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A B S T R A C T

Nowadays, digital imaging is mostly based on the paradigm that a
combinations of a small number of so-called primary colors is suffi-
cient to represent any visible color. For instance, most cameras use
pixels with three dimensions: Red, Green and Blue (RGB). Such low-
dimensional technology suffers from several limitations such as a sen-
sitivity to metamerism and a bounded range of wavelengths. Spectral
imaging technologies offer the possibility to overcome these down-
sides by dealing more finely withe the electromagnetic spectrum. Mutli-
, hyper- or ultra-spectral images contain a large number of channels,
depicting specific ranges of wavelength, thus allowing to better re-
cover either the radiance of reflectance of the scene. Nevertheless,
these large amounts of data require dedicated methods to be prop-
erly handled in a variety of applications. This work contributes to
defining what is the useful information that must be retained for vi-
sualization on a low-dimensional display device. In this context, sub-
jective notions such as appeal and naturalness are to be taken into
account, together with objective measures of informative content and
dependency. Especially, a novel band selection strategy based on mea-
sures derived from Shannon’s entropy is presented and the concept
of spectral saliency is introduced.



R É S U M É

De nos jours, la plupart des dispositifs numériques d’acquisition et
d’affichage d’images utilisent un petit nombre de couleurs dites pri-
maires afin de représenter n’importe quelle couleur visible. Par ex-
emple, la majorité des appareils photos "grand public" quantifient
la couleur comme une certaine combinaison de Rouge, Vert et Bleu
(RVB). Ce genre de technologie est qualifiée de tri-chromatique et,
au même titre que les modèles tetra-chromatiques communs en im-
primerie, elle présente un certain nombre d’inconvénients, tels que
le métamérisme ou encore la limitation aux longueurs d’onde visi-
bles. Afin de palier à ces limitations, les technologies multi-, hyper,
voire ultra-spectrale ont connu un gain notable d’attention depuis
plusieurs décennies. Un image spectrale est constituée d’un nom-
bre de bandes (ou canaux) supérieur à 3, représentant des régions
spectrales spécifiques et permettant de recouvrer la radiance ou re-
flectance d’objets avec plus de précision et indépendamment du cap-
teur utilisé. De nombreux travaux de recherche ont fait considérable-
ment progresser les méthodes d’acquisition et d’analyse, mais beau-
coup de challenges demeurent, particulièrement en ce qui concerne
la visualisation de ce type de données. En effet, si une image contient
plusieurs dizaines de canaux comment la représenter sur un écran qui
n’en accepte que trois ? Dans cette thèse, nous présentons un certain
nombre de méthodes d’extraction d’attributs pour l’analyse d’images
spectrales, avec une attention particulière sur la problématique de la
visualisation.
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1
I N T R O D U C T I O N

1.1 motivation

When it comes to digital imaging, most of today’s acquisition and
display hardware such as computer screens, digital cameras, scanners
or printers are based on the paradigm that a combination of a small
number of primary colors is sufficient to characterize any color that
one can see [Grassmann, 1854]. Digital camera for instance, record
the color information as a combination of Red, Green and Blue (RGB)
and therefore uses a three-dimensional space in which each location
corresponds to a different color. Such technology is referred to as
trichromatic, and suffers from several drawbacks such as metamerism
and the impossibility to represent non-visible wavelengths.

The colors, as perceived by humans, are the result of a complex
interaction of a light source, striking and being reflected by objects,
and the sensor (camera, eye). Two sensors with different spectral re-
sponses can therefore render a scene in two very different ways. Sim-
ilarly, distinct light sources may produce a different color sensation
on a same object. This is for instance the reason why it is recom-
mended to check the color of your clothes outside the shop before
buying it. Consequently, when too little spectral information is ac-
quired, pixels become dependent on the illumination and the sensor
and can therefore not be considered as invariant features. A good ex-
ample to illustrate this is metamerism, which is a phenomenon that
implies that two objects which appear to have exactly the same color,
may look very different under different lighting conditions [Harde-
berg, 2001] (see Figure 1). Such objects are metameric color matches,
as opposed to spectral color matches that have identical reflectance
distributions. In the industry, this "problem", which is actually the
very basis of color science, is critical for instance when advertising
for products for which color matching and/or tolerance are impor-
tant, such as clothes or orthodontics. This phenomenon can be dealt
with by increasing the precision with which color is measured, which
pertains to the spectral resolution of the image. One can then think
of an analogy with spatial resolution: the fewer the number of pixels
(low resolution), the harder it gets to identify shapes and/or textures.

The second critical problem of low-dimensional imaging is that
most cameras capture light solely in the visible wavelengths, which
is roughly 400-700nm (see Figure 2). Not all imaging science is dedi-
cated to reproduce what we see, far from it. A lot of very interesting
things happen outside the visible range, and not only for scientists as
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2 introduction

Figure 1: Illustration of metamerism. The two patches appear as similar un-
der sunlight, but different under another illuminant.

there is for instance an increasing interest of near infrared (nIR) pho-
tography, because of the unique colors that it allows to render. Clas-
sical examples of picturing the non-visible can be found in medical
imaging (magnetic resonance, X-ray), surveillance (thermography).

Figure 2: The electro-magnetic spectrum and the visible range (source:
wikipedia).

As an answer to these drawbacks, spectral imaging technologies of-
fer the possibility to deal more finely with the electromagnetic spec-
trum by acquiring light in small ranges of wavelengths, possibly non-
visible, and by conveying their respective contents in so-called spec-
tral channels (see Figure 3).

For purposes of readability and genericity, we use in this thesis
the expression spectral imaging whereas there exists an actual cate-
gorization of these images, according to their respective number of
channels. Although it is not strict and may vary from one application
to another, it is globally recognized that:

• Multispectral images contain between 4 and 99 channels and
usually range only in the visible wavelengths.
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Figure 3: Illustration of a hyperspectral cube (source: hyperspectralim-
agers.com).

• Hyperspectral images contain between 100 and 999 channels
and usually range in the visible and near IR (700-1000nm).

• Ultraspectral images contain more than 1000 channels and al-
low to display molecular absorption or emission line features.

Although there is a considerable interest for these technologies on
the acquisition side, spectral display devices are yet to become pop-
ular. Nevertheless, human interaction with spectral images is crucial
to direct or validate automated methods, and to make appropriate
decisions and interpretation. But then, how to display an image with
dozens of spectral channels on a screen that allows only three?

1.2 contributions

The work presented in this thesis led to the publication of several
papers. Please find hereafter a list of these contributions.

1.2.1 International journals

• Steven Le Moan, Alamin Mansouri, Yvon Voisin, and Jon Yn-
gve Hardeberg, “A constrained band selection method based
on information measures for spectral image color visualization”,
Transactions on Geoscience and Remote Sensing, vol. 49, no. 12, pp.
5104–5115, 2011, iEEE.

• (Submitted, August 2012) Steven Le Moan, Alamin Mansouri,
Yvon Voisin, and Jon Yngve Hardeberg, “Saliency for spectral
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image analysis”, to Journal of Selected Topics in Applied Earth Ob-
servations and Remote Sensing, IEEE.

• (Submitted, May 2012) Steven Le Moan, Alamin Mansouri, Yvon
Voisin, and Jon Yngve Hardeberg, “Visualization of multi/hy-
perspectral images: a comparative study”, to International Jour-
nal of Remote Sensing, Taylor & Francis.

1.2.2 International conferences

• Steven Le Moan, Alamin Mansouri, Yvon Voisin, and Jon Yngve
Hardeberg, “Convex objects recognition and classification using
spectral and morphological descriptors”, in Colour in Graphics,
Imaging, and Vision (CGIV), 5th European Conference on, Joen-
suu, Finland, June 2010, pp. 293–299, IS&T.

• Steven Le Moan, Alamin Mansouri, Jon Yngve Hardeberg, and
Yvon Voisin, “A class-separability-based method for multi/hy-
perspectral image color visualization”, in Image Processing (ICIP),
17th International Conference on, Hong Kong, Sep 2010, pp. 1321–1324,
IEEE.

• Steven LeMoan, Alamin Mansouri, Yvon Voisin, and Jon Yngve
Hardeberg, “An efficient method for the visualization of spec-
tral images based on a perception-oriented spectrum segmenta-
tion”, in Advances in Visual Computing (ISVC), 6th International
Symposium on, Las Vegas, NV, USA, Nov 2010, vol. 6453 of Lec-
ture Notes in Computer Science, pp. 361–370, Springer.

• Steven Le Moan, Alamin Mansouri, Jon Yngve Hardeberg, and
Yvon Voisin, “Saliency in spectral images”, in Image Analysis
(SCIA), 17th Scandinavian Conference on, Ystad, Sweden, May 2011,
vol. 6688 of Lec- ture Notes in Computer Science, pp. 114–123,
Springer.

• Steven Le Moan, Alamin Mansouri, Yvon Voisin, and Jon Yn-
gve Hardeberg, “Spatially variant dimensionality reduction for
the visualization of multi/hyperspectral images”, in Image Anal-
ysis and Recognition (ICIAR), International Conference on, Burnaby,
BC, Canada, June 2011, vol. 6753 of Lecture Notes in Computer
Science, pp. 375–384, Springer.

• Steven Le Moan, Alamin Mansouri, Jon Yngve Hardeberg, and
Yvon Voisin, “Visualization of spectral images: a comparative
study,” in Proceedings of the 6th Gjøvik Color Imaging Symposium,
September 2011, IEEE.

• Steven Le Moan, Alamin Mansouri, Jon Yngve Hardeberg, and
Yvon Voisin, “Saliency-based band selection for spectral image
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visualization”, in Proceedings of the 19th Color Imaging Conference,
San Jose, CA, USA, November 2011, IS&T.

• Steven Le Moan, Ferdinand Deger, Alamin Mansouri, Yvon Voisin,
and Jon Yngve Hardeberg, “Salient pixels and dimensionality
reduction for display of multi/hyperspectral images”, in Image
and Signal Processing, 5th International Conference on, Agadir, Mo-
rocco, June 2012, Lecture Notes in Computer Science, Springer.

1.2.3 National conferences

• Steven Le Moan, Alamin Mansouri, Yvon Voisin, and Jon Yn-
gve Hardeberg, “Visualisation d’images spectrales : une méth-
ode basée sur la perception humaine”, in Proceedings of ORASIS,
Praz-sur-Arly, France, June 2011.

• Steven Le Moan, Alamin Mansouri, Yvon Voisin, and Jon Yngve
Hardeberg, “Sélection de bandes pour la visualisation d’images
spectrales: une approche basée sur l’étude de saillance”, in Pro-
ceedings of the 23rd Colloque GRETSI, Bordeaux, France, Septem-
ber 2011.

1.2.4 Workshops / Symposiums

• Steven Le Moan, Alamin Mansouri, Yvon Voisin, and Jon Yngve
Hardeberg, “Visualization of three-dimensional spectral data”,
in Colour in Art, Science, Design, Conservation, Research, Printmak-
ing, Digital Technologies, Textiles (CREATE), Gjøvik, Norway, June
2010, IS&T.

1.3 dissertation outline

This thesis is organized as follows. Chapter 2 provides a review of
the state-of-the-art in terms of dimensionality reduction for spectral
images, with a focus on visualization. In Chapter 3, several contribu-
tions to the visualization of spectral images are introduced, including
two new quality measures, a perception-based spectrum segmenta-
tion, an information-based framework for band selection as well as
a brief study on distance-preserving adjustments. Finally, Chapter 4
introduces the concept of non-visual saliency for spectral images and
present a variety of applications. Chapter 5 concludes this disserta-
tion and discusses possible future work based on the results reported
here.
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1.4 notation used throughout this document

A low-dimensional representation of a spectral image is referred to
as a composite.

Vectors are represented in lowercase boldface letters and organized
in column, such as:

a =

⎡
⎢⎢⎢⎢⎢⎣
a1

a2

...

aL

⎤
⎥⎥⎥⎥⎥⎦

Matrices are represented as uppercase boldface letters:

A =

⎡
⎢⎢⎢⎢⎢⎣
a11 a12 · · · a1M

a21 a22 · · · a2M

...
...

. . .
...

aL1 aL2 · · · aLM

⎤
⎥⎥⎥⎥⎥⎦

The transpose of A is noted AT .
A spectral channel centered at wavelength λ is represented as the

column vector bλ, unless spatial coordinates (i, j) are necessary, in
which case it is noted as the 2-D matrix Bλ(i, j). For purposes of
clarity, we use the following equivalence:

b1 = bλ1
= bλ=λ1

B denotes a spectral image containing N channels, so that:

B =
[
b1 b2 · · · bN

]
The probability mass function of a discrete random variable X is

noted equivalently pX(x) or pX. The range of possible values of X is
denoted R(X).

In all the definitions of information measures such as entropy, we
chose to use a base-2 logarithm to be able to express the results in bits,
which we believe to be an intuitive and relevant unit for this study.

All metrics and measures are noted in italics such as H(X).



2
D I M E N S I O N A L I T Y R E D U C T I O N A N D D I S P L AY O F
S P E C T R A L I M A G E S : A R E V I E W

2.1 introduction

Traditional imaging uses a small number of primaries to represent
the full range of perceptible colors. Though sufficient for many ap-
plications, it has two critical limitations: metamerism and a bounded
range of wavelengths. In trichromacy, pixels can be represented as
vectors of values in some three-dimensional space. By extension, pix-
els from spectral images are high-dimensional vectors, which means
that they are defined by a large number of dimensions1. The num-
ber of these, that is the cardinality of the vectors, is also referred to
as their dimensionality. For example, well-known devices such as
the Airborne Visible / Infrared Imaging Spectrometer (AVIRIS)2 or
HySpex3 contain between 64 and 256 channels. Nevertheless, such
high dimensionality engenders a variety of problems and there are
therefore several motivations to reduce it:

• To fit low-dimensional imaging hardware. Evidently, this is
the critical point in this study. Although there is a considerable
interest for these technologies on the acquisition side, spectral
display devices are yet to become feasible.

• To emphasize the valuable information. As high dimensional-
ity implies a tremendous amount of data, spectral images usu-
ally contain a lot of redundant information and noise. They also
engender some peculiar properties [Jimenez and Landgrebe, 1998]
referred to as the curse of dimensionality. For example, the vol-
ume of a hypercube concentrates in the corners, and the vol-
ume of a hypersphere or hyperellipsoid concentrates in an outer
shell, which implies that most part of the high-dimensional
space is empty. Thus, the meaningfulness of the Euclidean dis-
tance is drastically decreased, which may influence distance-
based clustering algorithms. Consequently, there is a real chal-
lenge as to extract the proper information from spectral images.
Moreover, this information may not even be contained in one,
but several projections [Parsons et al., 2004].

• To reduce the size of the data. Spectral images are usually large
datasets and therefore are computationally expensive to manip-

1 also called attributes, features, components, channels, or bands
2 http://aviris.jpl.nasa.gov/
3 http://www.neo.no/hyspex/
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8 dimensionality reduction and display of spectral images : a review

ulate. Reducing the dimensionality of a dataset also reduces its
size and therefore can be used as a data compression technique.

There are many different approaches to perform Dimensionality
Reduction (DR) and they can be classified according to various cri-
teria. For instance, the DR process can be either supervised4 or un-

supervised, depending on whether or not there is a need for a priori
available data (training set, ground truth,..). DR methods can also
project the data in a linear or non-linear fashion. They can either
transform the original dimensions (spectral channels) or select a sub-
set of them in order to spawn the output reduced feature space.
Finally, DR techniques can be ranked according to a data/vision-
dependency scale. It will be shown in the next parts of this Section
that some techniques are indeed purely data-dependent, while some
others, inspired by human vision, are completely independent of the
data.

After a brief note on the different manners to represent color in
trichromacy, the next sections review the state-of-the-art in DR for
display of spectral images, with a particular focus on unsupervised
an linear techniques, as most of the work presented in this thesis lies
under that scope.

2.2 a note on color spaces

There are many different approaches to represent color in low dimen-
sionality. In printing industry for instance, it is common to use the
four-dimensional CMYK (Cyan, Magenta, Yellow and Black) space.
In trichromacy, the most widely used representation of color for dis-
play and capture devices is by a combination of Red, Green and
Blue (RGB). There exist several RGB color spaces such as CIERGB,
Adobe 1998 RGB, Apple RGB, etc., all of them representing colors in
a (slightly) different manner. In 1996, HP and Microsoft designed a
standard RGB space (sRGB) [Stokes et al., 1996] that was endorsed
by many brands such as Intel or Corel.

The RGB spaces are however limited inasmuch as the distance be-
tween two locations in such spaces does not correlate with the actual
difference of perception. The CIE 1931 Standard XYZ Colorimetric
system is a theoretical model based on perception only. It introduced
the notion of luminance (Y) as a subjective light intensity, indepen-
dent of chrominance, while X and Y were chosen so that visible colors
are expressed with positive values only. Moreover, XYZ was the first
step towards a perceptually uniform space or, in other words, a space
in which that the euclidean distance between two locations is con-
sistent with the difference of perception by human vision. The more
recent CIELAB color space has such uniformity. It was derived from

4 also referred to as assisted



2.3 fixed basis functions 9

XYZ and characterizes a color by means of an intensity parameter
(L*) which pertains to luminance and two chrominance parameters
(a* and b*). The Euclidean distance in CIELAB is commonly noted
ΔE∗

ab.
Finally, other representations may be useful to process the data

more intuitively such as Hue-Saturation-Value (HSV) (also known as
Hue-Saturation-Brightness) and Hue-Saturation-Lightness/Luminance
(HSL). The difference between these two is that the brightness of a
pure color is equal to the brightness of white, while the lightness of a
pure color is equal to the lightness of a medium gray.

Figure 4 depicts the geometry of the RGB and HSV color spaces.

(a) (b)

Figure 4: Geometry of color spaces: (a) RGB and (b) HSV (source:
wikipedia).

2.3 fixed basis functions

Dimensionality reduction is all about projecting the data (spectral
image) on a set of functions which, as stated earlier, can either be
data- or vision-dependent. In this section, we tackle the latter case, in
which the functions are fixed and known prior to even analyzing the
data.

2.3.1 True color

Human perception of colors is known to be a very complex system.
The back of the human eye contains photoreceptors (cones and rods)
that react dependently on the wavelength of light and are therefore
the cells responsible for the perception of color. The so-called L, M,
and S cones are respectively sensitive to the short, medium and long
wavelengths (centered around 440, 540 and 575nm, resp.) as depicted
in Figure 5. These photoreceptors forward the information to other
kinds of cells (bipolar and ganglion), that eventually convert the signal
to neural activity for the brain to understand and process. This color
information is "coded" in three dimensions, that is, by means of an
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achromatic and two color-opponent channels. The achromatic infor-
mation pertains to the luminance or overall intensity of light whereas
the two other dimensions represent the opposition red/green and
blue/yellow. This condition has for instance inspired the design of
several color spaces such as CIELAB (see Section 2.2). Needless to
say, all people do not perceive color in the same way, as there might
be slight discrepancies between two healthy observers.
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Figure 5: Normalized sensitivities of the L, M and S cones.

In 1931, the Commission Internationale de l’Eclairage (CIE) designed
a linear computational model to imitate the aforementioned trans-
duction, that is, to turn a specific light spectrum into a correspond-
ing tristimulus and for a standard observer. It was obtained through
a series of psychophysical experiments in which each viewer had to
determine the amount of the primary colors (red, green and blue
with primary wavelengths R0 = 700 nm, G0 = 546.1 nm, B0 = 435.8
nm, respectively) that was necessary to have the same color sensa-
tion as a monochromatic light at a particular wavelength. The result-
ing model involves a dimensionality reduction by means of so-called
Color Matching Functions (CMF): r̄(λ), ḡ(λ), b̄(λ), which are sketched
in Figure 6. For a wavelength-dependent pixel p(λ), e.g. in a spectral
image, the tri-stimulus values corresponding to an amount of red,
green and blue are respectively given by:

Rp =

∫
λ∈ΛV

p(λ)r̄(λ)dλ, (1)

Gp =

∫
λ∈ΛV

p(λ)ḡ(λ)dλ, (2)

Bp =

∫
λ∈ΛV

p(λ)b̄(λ)dλ, (3)
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with ΛV representing the visible range of wavelengths. Additionally,
the CMF can be defined according to the CIE 1931 Standard XYZ
Colorimetric System, so as to have only positive coefficients. The con-
version from RGB to XYZ CMF is given by the following linear trans-
form:

[
x̄(λ)
ȳ(λ)
z̄(λ)

]
=

1

0.17697

[
0.49 0.31 0.20

0.17697 0.81240 0.01063
0.0 0.01 0.99

] [ r̄(λ)
ḡ(λ)

b̄(λ)

]
(4)

Note that, in each case, the equal energy white point condition must
be satisfied, that is, for a flat light spectrum (same energy at each
wavelength), the resulting tri-stimulus must be either white or gray,
which is consistent with the definition of a perfect reflector. In order
for this condition to be satisfied, the following must stand true:

∫∞
0

r̄(λ)dλ =

∫∞
0

ḡ(λ)dλ =

∫∞
0

b̄(λ)dλ, (5)

and identically for the XYZ functions.
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Figure 6: The CIE standard observer color matching functions

When applied to a whole spectral image, a CMF transformation
outputs a so-called true color composite, as opposed to false color or
pseudocolor in the case of other DR techniques. Such composite re-
sults evidently in a very "natural" rendering and, because the spec-
tral weighting envelopes are fixed, the true color transformation is
also very efficient computationally-wise. Moreover, the association of
a color to a light spectrum is data-independent, and thus allows the
end user to give a consistent meaning to colors, making interpreta-
tion easier. Nevertheless, it belongs to this vision-inspired class of
DR methods that do not take the data itself into account at all and
therefore, noise, redundancy, and the overall repartition of informa-
tion along the spectrum are not efficiently handled. Note for instance
how the coefficients at the edges of the visible range tend to zero al-
together, making the channels in these regions almost neglected in
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terms of lightness and saturation. Another downside of using the
CMF for display purpose is that, in many applications, spectral im-
ages range outside the visible spectrum and actually contain valuable
information for instance in the nIR. Jacobson and Gupta [2005] pro-
posed an alternative use of the CMF by stretching them so as to fit
the entire range of wavelengths covered by the spectral image. This
trick comes evidently with a loss of physical meaning of the output
tristimuli but guarantees nonetheless a physically consistent correla-
tion of the red, green and blue channels, which results in natural and
intuitive color associations (note that the paper only presents results
on hyperpectral images acquired with the AVIRIS sensor).

Figure 7 gives an example of CMF-based visualization on an image
ranging to the nIR, with and without stretching.

Figure 7: Examples of CMF-based visualization. On the left: the true color
composite. On the right: result of stretching the CMF to the whole
range of wavelengths of the same image. The first one looks more
"natural" and allows to easily interpret the scene, while the sec-
ond one emphasizes the conspicuity of living materials, which are
particularly reflective in the nIR.

2.3.2 Other bases

Jacobson et al. [2007] investigated other fixed weighting functions for
linear DR and display of spectral and multimodal images. They used
three different bases. The constant-luma disc basis (Figure 8a) sam-
ples a circular curve in the CIELAB color space, with parameters
L = 50 and

√
a2 + b2 = 29 and at a constant ΔE∗

ab (Euclidean dis-
tance in CIELAB). It allows for an equal luma rendering, to make
sure that all channels are given the same emphasis (as opposed to
the CMF), as well as an equal hue difference, that is, the difference of
rendered hue for a pair of Kronecker deltas (monochromatic lights) is
dependent on their respective distance only. Nevertheless, the main
downside of this basis is that the endpoint colors (edges of the im-
age spectrum) are almost identical, which drastically decreases the
meaningfulness of colors in the composite. Moreover, it does not ex-
actly satisfy the equal energy white point condition as the area under
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each curve is slightly different. The unwrapped cosine basis (Figure
8b) is somewhat inspired by the shape of the constant-luma basis
and is therefore made of three out-of-phase sinusoids, one of them
being modified so as to be monotonically increasing, in order to ob-
tain distinct endpoint colors. This time, all three curves sum to the
same value. Finally, the constant-luma border basis (Figure 8c) sam-
ples a curve which progresses in sRGB from blue (R=0.122, G=0.122,
B=1) to green (R=0, G=0.256, B=0) to red (R=0.866, G=0, B=0) at ap-
proximately constant ΔE. Like the first basis, it gives an equal luma
rendering all across the spectrum but this time with distinct endpoint
colors.

These approaches are very efficient computationally-wise since the
weighting envelopes are fixed. However, and although a Signal-to-
Noise ratio (SNR) adaptation of the bases is also proposed, they suffer
from a lack of adaptivity to the repartition of the valuable information
over the image spectrum.
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Figure 8: The constant-luma disc (a), unwrapped cosine (b) and constant-
luma border (c) bases.

2.4 principal component analysis

Compared to the methods detailed in the previous section, Principal
Component Analysis5 (PCA) is on the other side of the data/vision-
dependent scale. This completely data-adaptive orthogonal linear trans-
formation projects the data to an equally or lower dimensional space
of uncorrelated attributes called Principal Components (PCs). It uses
variance (energy) as a measure of valuable information and derives
the new data so as to keep as much of it as possible (see Figure 9).
The next sections will guide you through the different steps of PCA
before reviewing some state-of-the-art alternative uses of it.

5 also called Principal Component Transform (PCT), Karhunen–Loève Transform
(KLT), the Hotelling Transform or Proper Orthogonal Decomposition (POD)
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Figure 9: The principle of PCA: the first principal component (PC1) is the
direction that contains most of the data’s variance.

2.4.1 Definition

Let us consider a spectral image B with zero mean, obtained by re-
moving the average value across all dimensions.

• Step 1: Covariance matrix. The covariance of two random vari-
ables is defined as a measure of how much they change to-
gether. Each column of B depicts a different random variable,
thus, measuring their covariance allows to evaluate the respec-
tive similarities/discrepancies between spectral channels. The
covariance matrix of data matrix B is defined as: Σ = BBT and
contains all covariances of pairwise channels.

• Step 2: Eigendecomposition of the covariance matrix. This step
consists of factorizing Σ into its canonical form, that is, decom-
posing the matrix in a set of vectors V =

[
v1 v2 · · · vn

]
and

corresponding values Λ =
[
λ1 λ2 · · · λn

]
that satisfy the

following property: Σvi = λivi, ∀i = 1 · · ·n.

• Step 3: Ranking eigenvectors to compute projection matrix.

This is the core of PCA. Each previously computed eigenvalue
λi is a measure of how significant its corresponding eigenvec-
tor vi is, that is, how much of the data’s energy is contained
in the direction pointed out by vi. These eigenvectors are also
referred to as Principal Components (PCs) of B. Most of the in-
formation contained in B can be conveyed by projecting it on
the top-ranked eigenvectors, the first PCs. Thus, the projection
matrix P consists of the N ′ (� N) first eigenvectors sorted ac-
cordingly, column-wise. In most cases, more than 95% of the
data’s energy is explained by the three first PCs [Tsagaris et al.,
2005].
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• Step 4: Deriving the new dataset. The output dataset B′ is the
result of a simple linear operation: B′ = BPT .

For a more in-depth tutorial on PCA, refer to [Smith, 2002].
Note that a straightforward mapping of the first three PCs to the

sRGB color space is usually not a good strategy for several reasons.
First, it implies a ranking of the Red, Green and Blue primaries as all
PCs do not contain the same amount of information (energy-wise).
Therefore, using the first PC as the red component will result system-
atically in a reddish rendering. Second, PCA spawns a gamut that
might not fit the one of sRGB (negative values, sparse outliers) with-
out proper normalization of the PCs. Not to mention the fact that PCA
has the critical downside to be able to confuse high-energy noise for
information as variance does not necessarily reflect real SNR in spec-
tral imaging due to unequal noise variances among spectral channels
[Green et al., 1988]. Finally, some objects might exist only in subsets
of the high-dimensional space [Parsons et al., 2004] and would there-
fore require a local analysis rather than considering all channels at
once. In the next parts, we review some methods to overcome these
drawbacks.

2.4.2 Alternatives

2.4.2.1 Vision-consistent PCA

According to a study by Buchsbaum and Gottschalk [1983], our vi-
sion works in a PCA-like manner as the achromatic channel (A) holds
about 95.7% of the stimulus information, while the red/green (R-G)
and blue/yellow (B-Y) opponents channels contain respectively 2.8%
and 1.5% of it. On the other hand, the first PC of a spectral image is
generally positive and very close to its average radiance and, as their
rank decreases, PCs contain less and less spatial information. This
condition suggests a convenient mapping of the first three PCs to the
A, (R-G) and (B-Y) channels, respectively as was investigated in [Tyo
et al., 2003] by means of the HSV color space and in [Zhang et al.,
2006] in CIELAB, YCrCb and YUV. Results show consistent colors for
regions with similar spectral properties, and good contrast, allowing
to coarsely identify pixels classes rapidly and accurately. However,
the overall association colors/objects is non-intuitive and the render-
ing is consequently poor in terms of naturalness.

2.4.2.2 MNF, NAPCA and INAPCA

As stated earlier, variance is generally not a good measure of infor-
mative content in spectral imaging inasmuch as noise variance may
not be homogenous over the spectral channels. Green et al. [1988]
proposed a SNR-adaptive transform called Minimum Noise Fraction
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(MNF) which ranks principal components in terms of Signal-to-Noise-
Ratio (SNR) rather than variance. It was later re-interpreted as the
Noise-Adjusted PCA (NAPCA) [Lee et al., 1990], which consists of
normalizing the data’s SNR by whitening the data’s noise, that is
reducing its variance to unity (1) in each channel, prior to the tradi-
tional PCA. This model assumes that the data’s covariance matrix Σ

can be decomposed as a sum of signal and noise components:

Σ = Σs +Σn (6)

Let F be a whitening matrix so that:

FTΣnF = I (7)

with I the identity matrix. Then, transforming Σ by F, i.e. Σadj = FTΣF

yields a noise-adjusted data covariance matrix Σadj, the eigendecom-
position of which thus allows to ranks PCs in terms of SNR instead
of overall variance.

Chang et al. [1998] introduced the notion of interference as a sep-
arate undesirable source, defined as clutter or structured noise and
which motivated them to later design the Interference- and Noise-
Adjusted PCA (INAPCA) [Chang and Du, 1999], derived in two mod-
els. The first one aims to increase the so-called Signal to Noise plus
Interference Ratio (SNIR), treating the interference as part of the noise,
while the second model tends to remove the interferers prior to per-
forming NAPCA.

The major drawbacks of these adjusted PCA techniques is that they
all depend on the estimation of noise (and/or interference) covariance
matrices, which is a device-dependent non-trivial task, especially in
an unsupervised framework.

2.4.2.3 Segmented PCA

As explained earlier, PCA finds the most informative directions (energy-
wise) in the whole high-dimensional feature space, while important
objects might exist only in subsets of it [Parsons et al., 2004]. Jia
and Richards [1999] introduced a (spectrally) local approach to PCA,
based on a partitioning of the image spectrum. In their design, bands
are first gathered in several contiguous and compact groups (clus-
ters), so as to maximize the intra-cluster correlation by finding edges
in the image correlation matrix. The latter is indeed known to be gen-
erally structured in blocks as shown in Figure 10. Eventually, only one
PC is extracted from each subgroup to create the lower dimensional
composite.

This segmented PCA approach was further investigated by Tsagaris
et al. [2005] with different partitioning strategies. The equal subgroups
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Figure 10: Example of correlation matrix, on a 224-channel hyperspectral
image from the AVIRIS sensor. Each location (i, j) represents the
correlation between the i-th and j-th channels (white = 1 or -1 and
black =0). It shows sharp edges that can be used for spectrum
segmentation.

segmentation (ES) divides the spectrum into three equally-sized con-
tiguous groups. The maximum energy partitioning (ME) selects the size
of each group so that the first eigenvalue, corresponding to the first
PC of the group, be maximum. Finally, the spectral-signature-based
segmentation (SSB) is a supervised approach that uses sample re-
flectances from a set of known materials. A subgroup is formed for
each sample and defined as all the channels in which the sample has
a higher reflectance than the others. Not only is this last strategy su-
pervised, it requires that each sample curves be more reflective than
the others in a reasonable number of bands, which constrains signifi-
cantly the choice of sample materials.

Although these studies also emphasize the fact that segmenting
the PCA decreases its computational complexity, it still requires the
computation of a correlation matrix (Jia et al. ), a succession of eigen-
decompositions (ME) or a comparison of spectra (SSB). More impor-
tantly, these criteria are either naive (equal partitioning) or based on
the scene’s statistics only and therefore do not properly handle the
characteristics of the human visual system. In Chapter 3, we intro-
duce a new approach to spectrum segmentation, based on such char-
acteristics.

2.5 independent component analysis

One major issue with PCA-based approaches is that they are based on
second order statistics only. The PCs are indeed by definition orthogo-
nal and therefore uncorrelated, while higher order dependencies may
exist within spectral datasets [Wang and Chang, 2006]. Moreover, al-
though ranking the PCs is quite straightforward, there is a question
as to how many of them should be retained, particularly for classifi-
cation tasks.
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Independent Component Analysis (ICA) was first introduced by
Jutten and Herault [1991] as a method for blind source separation,
but it is only a decade later, thanks to the work of Hyvärinen and
Oja [2000] that ICA started receiving proper attention in many areas
of signal processing, and more specifically in spectral image analysis
for tasks such as classification [Dalla Mura et al., 2011], dimensional-
ity reduction [Wang and Chang, 2006; Moon and Qi, 2012], spectral
unmixing [Xia et al., 2011] or target detection [Tiwari et al., 2011]. The
goal of this technique is to find a linear representation of nongaussian
data so that the components are as independent as possible. The gen-
eral assumption of ICA is that the image B is a linear mixture, by an
unknown mixing matrix A, of a set of independent random variables
in matrix S:

B = AS (8)

Note that, for purposes of conveniency and simplification of the
ICA algorithm, a common assumption is that B is centered and whitened,
which may quite as well be done as a pre-processing. Then, the goal
of ICA is to recover the unmixing matrix W so that S = WB. To do
so, ICA seeks to maximize the independence of the sources, the latter
being defined as follows. Two random variables X and Y, with respec-
tive probability mass functions (pmf) pX and pY and joint pmf pX,Y

are independent if, and only if:

pX,Y = pXpY (9)

That is, two random variables are independent if their joint pmf is
equal to the product of the marginal pmf. Therefore and more impor-
tantly, the mathematical expectation E[.] of the product of any linear
functions f1(X) and f2(Y) is also factorizable:

E [f1(X)f2(Y)] = E [f1(X)]E [f2(Y)] (10)

Note that two uncorrelated variables do not necessarily satisfy these
properties, which proves the usefulness of a higher-order metric to
evaluate independence. Most ICA approaches are motivated by the
well-known Central Limit Theorem, which states that the distribu-
tion of a sum of independent random variables tends towards a gaus-
sian distribution. Therefore, the mixed data B is usually more gaus-
sian than each of its independent components S, of which it is as-
sumed that at most one has a gaussian distribution. Consequently,
non-gaussianity can be used as a measure of probabilistic indepen-
dence. Now, unlike in PCA, there are several different manners to
implement such a measure in ICA. The most classical approach to
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evaluating non-gaussianity is by means of the adjusted fourth stan-
dardized moment called kurtosis6, which is defined as follows, for a
centered and whitened random variable X:

Kurt(X) = E
[
X4

]
− 3 (11)

This quantity measures the "peakedness" of the probability distribu-
tion of a real-valued random variable and the kurtosis of a gaussian
variable is equal to zero.

Another measure of non-gaussianity is the negentropy7, which esti-
mates the difference in entropy between a given distribution and the
gaussian distribution with the same mean and variance. Indeed, it is
known that, out of all distributions with a given variance, the gaus-
sian is the least structured one and therefore has the highest entropy
[Cover et al., 1991]. The negentropy J of a random variable X is then
defined as:

J(X) = H(Xgauss) − H(X) (12)

where Xgauss is a gaussian variable with same mean and variance than
X and

H(X) = −
∑

x∈R(X)

pX log2(pX) (13)

is the entropy of random variable B, with b being an event of the B

and pB(b) is the probability density of B. However, the contrast func-
tion J remains quite expensive computationally-wise as it requires the
estimation of pmf. In practice, it can be accurately approximated by
the maximum entropy principle [Hyvärinen, 1998].

Another way to approaching the problem of ICA is to minimize
the mutual information of the sources. The mutual information MI
between two random variables X and Y is given by (in the discrete
case):

MI(X; Y) =
∑

X,Y∈R(X,Y)

pX,Ylog2

(
pX;Y

pXpY

)
(14)

Yet, this principle also lies under the scope of information theory
and therefore leads to results similar to the ones obtained using ne-
gentropy. More precisely, it is roughly equivalent to finding 1-D sub-
spaces such that the projections in those subspaces have maximum ne-
gentropy [Hyvärinen and Oja, 2000]. Section 3.5 in chapter 3 reviews

6 also known as excess kurtosis
7 also referred to as negative entropy or sintropy.
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Shannon’s information theory [Shannon and Weaver, 1948] further in
details.

Having defined independence and ways to measure it, there ex-
ist various algorithms to perform ICA such as Infomax [Bell and
Sejnowski, 1995] or FastICA [Hyvärinen and Oja, 1997]. In spectral
imaging analysis, the latter is commonly used [Lennon et al., 2001a;
Zhu et al., 2007], mostly for its computational simplicity.

One major drawback of ICA however, is that there is a question as
to how the ICs should be ranked, in order to perform dimensionality
reduction. Unlike PCA, it is now irrelevant to use eigenanalysis as
ICA is based on higher order statistics. Zhu et al. [2007], proposed a
ranking scheme to alleviate this problem. On the one hand, they de-
signed a prioritization process based on correlation and mutual infor-
mation between each pair of IC and original spectral channel. On the
other hand, they proposed a segmented approach to ICA, in a similar
way to the segmented PCA presented in Section 2.4.2.3. Compared
to PCA, this approach shows good results with a better naturalness,
less pre-attentive features, and a higher entropy. The issue of ranking
ICs was also addressed by Wang and Chang [2006] using the concept
of virtual dimensionality [Chang and Du, 2004], which was originally
developed for estimating the number of spectrally distinct signatures
in hyperspectral images. Results show once again a considerable im-
provement compared to second-order statistics-based transforms.

In addition to the fact that ICA is overall significantly slower than
PCA, its main drawback is that the assumption of independent sources
does not always stand true in spectral imaging [Nascimento and Dias,
2005].

2.6 other linear transformations

2.6.1 Projection Pursuit

Both PCA and ICA can be considered as special cases of a more
general method called Projection Pursuit (PP) [Friedman and Tukey,
1974], which seeks "interesting" directions in the feature space. Most
PP algorithms measure this "interest" by the deviation from a gaus-
sian distribution [Huber, 1985], that is, the same motivation than in
ICA. The difference lies in the fact that PP is a deflective method,
which means that it progressively projects the data after each iter-
ation. Basically, PP characterizes a given projection by a numerical
index that indicates the amount of structure that is present. Once an
interesting structure has been found, it is removed from the data. The
data are then examined for further structure, which, if found, is also
removed. This process continues until there is no remaining structure
detectable within the data. Applications to spectral image analysis
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can be found in [Ifarraguerri and Chang, 2000; Renard and Bouren-
nane, 2009].

2.6.2 Multiresolution analysis

Many approaches to multiresolution-based spectral image analysis
have been developed, but very few for unsupervised dimensionality
reduction.

Wilson et al. [1997] proposed a contrast sensitivity approach that
relies on the human visual system to determine which spectral band
is most relevant in a neighborhood of a given pixel, and how the
features of this selected band are then incorporated into the fused
(greyscale) image.

In [Mignotte, 2010], Mignotte introduced a multiresolution-based
technique, referred to as M4ICD (multiresolution Markov model for
multidimensional imaging color display), that seeks the three bands
L̂, â and b̂ (not necessarily present in the initial spectral image, this is
not a band selection approach), that minimize the overall discrepancy
of pairwise Euclidean distances between pixels, in the first, second
and last third of the image’s spectrum, respectively. To do so, it uses
a coarse-to-fine approach, initialized at low resolution by a channel
from the spectral image and progressively optimized (preservation of
distances) and interpolated (by local color averaging) until reaching
the fullest resolution. Figure 11 illustrates the coarse-to-fine scheme.

Figure 11: The coarse-to-fine approach to optimizing distance preservation
(figure by Mignotte [Mignotte, 2010]).

Eventually, the three components are mapped to CIELAB and con-
verted to a RGB color space for visualization. This approach however
has several downsides: not only is it very expensive computationally-
wise, it uses the Euclidean distance between pixels spectra as a to-
be-preserved criterion, whereas it is known [Parsons et al., 2004] that
high-dimensional spaces are sparse, making this measure meaning-
less. More importantly, it is based on the assumption that the infor-
mation of luminance and chrominance can be separated in different
equally-sized partitions of the image spectrum, which is absolutely
counter-intuitive and physically non-consistent.
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2.6.3 Conical mapping

Cui et al. [2009] designed a scheme to map high-dimensional pixels to
the conical HSV color space, with respect to both the preservation of
Euclidean distances between pairs of pixels and the variety of colors
in the output composite. The methods features several steps, which
are depicted in Figure 12.

Figure 12: The different steps of the conical mapping approach (figure by
Cui et al. [2009]): clustering, projection to Hue-Saturation plane,
estimation of luminance and recovering of clustered pixels.

First, pixels are clustered by means of a median cut algorithm
(parametrized by M, the number of clusters to be generated) so as
to alleviate computational complexity in the next steps, by process-
ing only a few representative points. Then the M cluster centroids
are projected to the plane described by their first two PCs, which is
assumed to be aligned with the Hue-Saturation subspace. The prob-
lem of estimating the Value component (luminance) is then derived
as the minimization of the following function:

E =

M∑
i=1

M∑
j=i+1

∣∣∣∣D1(i, j) −
√
(DN(i, j))2 − (D2(i, j))2

∣∣∣∣ , (15)

with D1(i, j), D2(i, j) and DN(i, j) being the Euclidean distance be-
tween centroids of classes i and j in terms of luminance, in the Hue-
Saturation plane and in the high-dimensional space, respectively. And
under the following constrains:

if S(i) � S(j), then V(i) � V(j)

if ri + rj � DN(i, j), then
√
(ri + rj)2 − (D2(i, j))2 � D1(i, j)

with S(i) and V(i) representing coordinates of class centroid i in HSV
and ri is the average pixel distance to the centroid in cluster i. The
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first constraint implies that the data will be contained in a conical
hull while the second compels the pixel clusters to be well-separated
and therefore aims to occupy as much space as possible in HSV. Clus-
tered pixels are subsequently recovered by interpolation. Eventually,
the authors propose a set of interaction tools to focus on particular
elements of the image, both spatially and spectrally.

The main advantages of this study is that it tackles the problem
of distance preservation in a linear fashion and that it gives an inter-
esting emphasis on interaction. The DR method has however several
drawbacks that lower its usefulness in many applications. First, it is
sensitive to the initial clustering step. Secondly, it generates an under-
lying correlation between saturation and luminance. Thirdly, it uses
Euclidean distance as a reference for contrast preservation. Finally,
it is computationally more complex than most of the other methods
from the state of the art.

2.6.4 Pre-defined correlation

Tsagaris and Anastassopoulos [2005] proposed an original method-
ology to DR for trichromatic visualization by constraining the corre-
lation matrix of the composite, with respect to the statistics of nat-
ural scenes in the RGB color space. Their approach is based on the
Cholesky factorization that allows to decompose a symmetric positive
definite covariance matrix C by means of an upper triangle matrix Q

such that C = QTQ. Let Qx and Qy be such matrices, resulting re-
spectively from the factorization of the input (spectral) and output
(trichromatic) images covariance matrices Cx and Cy. Then the pro-
jection matrix P can be recovered by the following equation:

P = Q−1
x Qy (16)

Note that, if we note Σy the output correlation matrix and Sy the
diagonal matrix of the standard deviations of each output’s channel,
then:

Cy = SyΣyS
T
y (17)

This latter equation allows us to pre-determine Σy so as to im-
pose a certain amount of correlation between the RGB components
of the output composite and therefore compute the adequate matrix
P that satisfies this constraint. To do so, the authors averaged the
Red/Green, Red/Blue and Green/Blue correlations over a database
of 100 color images depicting natural scenes. Finally, the matrix Sy

was built so that the variances of each of the output’s channels are
equal (σR = σG = σB) and their sum is equal to the sum of the
variances of the input’s channels. Moreover, the authors proposed a
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Maximum Energy / Minimum Correlation-based (MEMC) ranking of
the original spectral channels in order to convey the largest amount
of information possible.

Resulting composites are well-contrasted, show a good natural ren-
dering and a fair preservation of information.

2.7 non-linear dimensionality reduction

Non-linear DR is based on the assumption that the interesting data
structures lie on an embedded non-linear manifold (a subset of Eu-
clidean space) within the high-dimensional space. It aims to derive a
lower-dimensional coordinate system that better represent such struc-
tures.

It has been pointed out by Bachmann et al. [2005] and further
demonstrated in [Han and Goodenough, 2008] that spectral datasets
contain various sources of non-linearity, such as the properties of
the bi-directional reflectance distribution (BRDF), which implies that
light is not scattered uniformly from a surface and therefore make
the acquired spectra dependent on the scene geometry, or the low
spatial resolution of remote sensed images of which pixels actually
contain a mixture of "pure" material spectra. Water, particularly, is an
important source of non-linearities in such mixtures. Several methods
have been proposed for to handle these characteristics for DR of spec-
tral images such as isometric mapping (ISOMAP) [Bachmann et al.,
2005], Locally Linear Embedding (LLE) [Mohan et al., 2007], Curvilin-
ear component analysis [Lennon et al., 2001b] or Kernel PCA [Fauvel
et al., 2006], which is an alternative to traditional PCA that project the
data to a higher dimensional reproducing kernel Hilbert space. Note
moreover that data analysis techniques such as detection, classifica-
tion or quantification can also be thought of as alternative ways to
perform non-linear DR as they allow to display, on low dimensional
maps, a certain amount of information about the raw spectral image.

Yet, there is no evidence that non-linear approaches are more suit-
able for DR. A recent extensive comparative review (although not
tackling particularly spectral datasets) [Van Der Maaten et al., 2007]
shows that, overall, both manners have their own advantages. Partic-
ularly, non-linear techniques are usually more time-demanding, since
their computational complexity is significantly higher.

2.8 band selection

All the previously presented approaches can be referred to as band
transformation techniques inasmuch as they produce combinations of
the original spectral channels to create an enhanced representative
triplet. The often mentioned drawback of this kind of approach is
the loss of physical meaning attached to a channel. That is, if, ini-
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tially, a spectral band is implicitly linked to a narrow range of wave-
lengths, what can be told about a combination of them? Band selection
approaches overcome this problem by reducing the dimensionality so
that the output (reduced) space is a subset of the input (raw) one, thus
preserving the underlying physical meaning of the initial dimensions.
This feature is particularly convenient when it comes to interpreting
a trichromatic composite while taking full advantage of the fine res-
olution of the spectral image. In other words, band selection aims to
find the best sparse representation of the multidimensional input. We
now review the state-of-the-art of such approaches, keeping in mind
that only a few of them are designed specifically for visualization
purposes.

2.8.1 Fixed band selection

There exist two techniques to perform a selection of spectral channels
with respect to their central wavelength only. The most naive one,
usually referred to as Uniform Spectral Sampling (USS) is based on
the assumption that the information and redundancy are distributed
uniformly over the spectral dimension. For example, if the number
of channels to be selected is three, USS will go for the first, middle
and last one. Needless to say, this is seldom a good strategy. The
second "fixed" approach consists of selecting the bands centered in
the middle of the red, green and blue ranges (approximatively 600,
546 and 436nm) and map them to an RGB color space. Such strategy
tends to give good natural rendering but relies on the fact that the
corresponding bands contain relevant visual information, which is
far from always the case.

2.8.2 Statistical methods

Second-order statistics such as correlation and variance were often
investigated for redundancy analysis in spectral images.

Back in 1982, Chavez et al. [1982] developed the so-called Optimum
Index Factor (OIF) to select three bands according to their respective
energy and correlation. This index is defined as follows:

OIF(SI) =

3∑
i=1

σi

ρ1,2 + ρ1,3 + ρ2,3
(18)

with σi representing the variance of band bi and ρi,j is the correlation
coefficient between bands bi and bj. It was recently used for instance
in [Qaid and Basavarajappa, 2008] for geological mapping.

The Sheffield index [Sheffield, 1985] is another measure of the in-
formation contained by a subset of bands. It is defined as the deter-
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minant of the subset’s covariance matrix, which turns out indeed to
represent the volume spanned by the subset. Beauchemin and Fung
[2001] discussed the drawbacks of these two index and proposed a
new one, which is based on a minimization of pairwise redundancy
only:

CI(b1,b2,b3) =
det(Σ123)∏
i={1,2,3}

σi

(19)

where Σ123 is the covariance matrix of (b1,b2,b3).
Bajcsy and Groves [2004] used the PCA-based ranking, which con-

sists of measuring, for each band, its contribution to the global vari-
ance. If λj is the eigenvalue corresponding to the j-th PC and vij is
the contribution of band bi to the j-th PC (see Section 2.4), then the
PCA-rank of bi is given as:

Rank(bi) =
∑
j

∣∣λjvij
∣∣ (20)

Note that a similar procedure using ICs instead of PCs was used
in [Du et al., 2003a]. The main inconvenient of this scheme is that it
ranks the channels without consideration for inter-band redundancy.
Moreover, as previously mentioned, second order statistics are not
well suited for spectral image analysis anyway. The use of higher
order moments such as skewness and kurtosis was briefly tackled in
[Du, 2003] for band prioritization.

2.8.3 Information theory

The most straightforward approach to band selection by information
theory is to rank spectral channels according to their entropy [Bajcsy
and Groves, 2004]. This method is evidently inefficient as it does not
consider the possible redundancy of information between channels,
which is however known to be usually high. Moreover, without a
proper handling of noise prior to measuring entropy, this approach is
extremely sensitive to variations of SNR across the spectrum.

Chang et al. [1999] proposed a two-step scheme based on variance
and on probabilistic dependence, in order to first rank channels ac-
cording to their informative content before de-correlating them, thus
ensuring a minimal redundancy in the selected subset. Two unsu-
pervised ranking criteria are used, based on variance and SNR, in a
similar way to the previously mentioned PCA-ranking. Nevertheless,
this ranking is based on intrinsic information only and does not han-
dle n-wise redundancy between channels. Therefore, two channels
with high priority (ranking) are both very informative but may be
redundant nonetheless. If this redundancy is higher than a certain
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threshold, the band with lower priority can then be removed. In or-
der to quantify this redundancy and cope with the problem of band
de-correlation, the authors used a symmetric version of the Kullback-
Leibler divergence (KLD), that we now define.

Let KL(X; Y) be the KL divergence8 of random variables X and Y so
that:

KL(X; Y) = −
∑
i

pX(i) log2(
pX(i)

pY(i)
) (21)

Then, the symmetric KL divergence between X and Y can be com-
puted as follows:

KLs(X; Y) = KL(X; Y) + KL(Y;X) (22)

This measure has the benefit not to require any second-order pmf
estimation, as opposed to mutual information for instance. Neverthe-
less, the method is sensitive to the divergence threshold under which
bands are considered too correlated, which must be adjusted manu-
ally. Moreover, the proposed scheme still relies on second order statis-
tics for the band prioritization process, while it is known that higher
orders are better suited for spectral image analysis [Wang and Chang,
2006].

Martinez-Uso et al. [2007] proposed a clustering-based band selec-
tion algorithm using mutual information (MI) and KLD as measures
of redundancy between spectral channels. Band clustering9 is but a
hierarchical, bottom-up approach to spectrum segmentation (see Sec-
tion 2.4.2.3). Their method utilizes the so-called Ward’s linkage, also
referred to as minimum variance clustering, which tends to mini-
mize the intra-cluster redundancy while maximizing the inter-cluster
one. Let D be a measure of divergence such as MI or KLD, and
Ci, i = {1, 2, 3} a set of clusters. Let us consider that C1 ∪ C2 is a
candidate to merge into a new cluster. Ward’s strategy then defines
the "distance" between the candidate couple and C3 as:

D(C1∪C2;C3) = a13D(C1;C3)+a23D(C2;C3)+a12D(C1;C2) (23)

with

aij =
ni +nj

n1 +n2 +n3

(24)

where ni is the number of bands in Ci. Clusters are chosen so as to
maximize D, and the process is repeated until reaching a pre-defined

8 also referred to as Kullback-Leibler distance, cross-entropy, relative entropy, informa-
tion divergence or information gain.

9 also referred to as band grouping, subspace identification, spectrum segmentation
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number of clusters. Afterwards, one representative band is selected
in each cluster, based on its average divergence with the rest of the
bands intra-cluster.

More recently, Cariou et al. [2010] proposed a recursive binary band
cluster-splitting algorithm based on MI. Given a compact cluster C

starting at band bmin and ending at bmax, the method defines the
optimal splitting of C at band bopt ∈ [bmin, ..,bmax] so that:

bopt = argminb

[
MI(B̄bmin→b; B̄b→bmax)

]
(25)

where B̄b1→b2
is the average of all channels included in the range

{b1, ...,b2}. Once (if) bopt is found, the procedure is applied to the two
newly formed clusters and so on, until no more splitting can be done.
Eventually, bands in each subgroup are averaged so as to form the
reduced set of channels. The inconvenients of this method stem from
the unpredictability of its convergence. Either one lets the algorithm
converge by itself, in which case, it is not possible to require a specific
number of output channels, or one makes the algorithm stop once
it reaches a certain level of partitioning and, but then, there is no
guarantee that the algorithm does not converge before reaching the
desired level.

2.8.4 Linear Prediction

Inspired by algorithms for endmember extraction [Heinz and Chang,
2001; Ren and Chang, 2003], Du and Yang [2008] proposed an unsu-
pervised band selection scheme based on the error of Linear Predic-
tion (LP) as a measure of independence. The method allows to eval-
uate the similarity between one and several channels, as explained
hereafter.

Let Φ be a matrix of n spectral channels represented column-wise.
The LP of a given band bn+1 by Φ is noted bpred and given by:

bpred =
[
a1 · · · an

]T
Φ+ a0 (26)

with ai the coefficients that minimize the linear prediction error e =

‖bn+1−bpred‖. Now, let us note Φ ′ the concatenation of a column of
ones and Φ. Then, the following least square solution allows to find
the vector of coefficients a = [a1 · · ·an]:

a = (Φ ′TΦ ′)−1Φ ′Tbn+1 (27)

The band which maximizes the error of prediction is then consid-
ered as the most dissimilar to the ensemble Φ. This process can then
be used for any number of bands greater than one in Φ. Note that
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this LP-based approach is mathematically equivalent to the Orthog-
onal Subspace Projection (OSP), also considered in [Du and Yang,
2008], but slightly more expensive computationally-wise.

After pre-processing the data by removing the water absorption
and low SNR channels as in [Cai et al., 2007] and by whitening the
noise in each channel in order to make the noise component uniform
along the spectrum, the LP-based band selection uses a sequential
search of optimal bands which progressively adds bands maximiz-
ing the dissimilarity with the whole set of already chosen ones. This
approach allows to considerably reduce the time requirement of an
exhaustive search for pairwise of n-wise optima, and allows to obtain
a ranking of the selected components, which is convenient to handle
the subsequent mapping to a given color space. The algorithm is ini-
tialized by the pair of bands that show the most dissimilarity, which
is found by the following procedure:

1. Randomly select a band b0

2. Identify b1, the band which is the most dissimilar to b0

3. Identify b2, the band which is the most dissimilar to b1

4. Proceed until bi−1 = bi+1.

This simple algorithm allows to avoid an exhaustive search while al-
ways converging towards the most dissimilar pair of channels bi and
bi+1. Note that, even if the selection is performed on noise-whitened
channels, the final subset may nevertheless be made out of the origi-
nal raw ones.

The main downside of LP-based band selection lies in the compu-
tational burden engendered by the height of the matrix Φ, which is
equal to the number of pixels in the raw image. It may indeed make
the computation of the least square solution prohibitive. The authors
state however that it is possible to uniformly subsample the image
down to 1% of the pixel population to overcome this problem with-
out affecting the result in most cases.

A similar approach tending to minimizing the correlation or de-
pendence of one band with respect to the others was proposed by
Chang and Wang [2006].Two algorithms were presented, based on
constrained energy minimization (CEM) and the linearly constrained
minimum variance (LCMV) and both are shown to give similar re-
sults, the latter being more computationally efficient than the former.
Moreover, it was later pointed out [Du et al., 2003b] that, in the case
of large SNR ratios, CEM- and LP- based band selection can be con-
sidered as equivalent.



30 dimensionality reduction and display of spectral images : a review

2.8.5 One-bit Transform

The One-Bit Transform (1BT) is a tool to analyze the spatial compact-
ness (structure) of a greyscale image, based on a multiband-pass fil-
tering. It generates a binary representation of its input, which makes
it a convenient tool for a low-complexity analysis of spectral chan-
nels. The 1BT was used by Demir et al. [2009] in a framework that
aims to reduce the overall complexity of the band selection process,
for efficient hardware implementation.

Let us explain the principle of this transform by first defining a
square multiband-pass kernel. Obviously, the size of the latter can be
chosen according to the user’s need, nevertheless, in Demir’s paper,
it is fixed to a 17x17 square:

kernel1BT(i, j) =

{
1/25 if i, j ∈ [0, 4, 8, 12, 16]

0 otherwise
(28)

with i and j denoting spatial coordinates. Now let b be a spectral
channel which, once filtered by the multiband-pass kernel, gives bF.
The 1BT of b is given by:

b1BT(i, j) =

{
1 if b(i, j) � bF(i, j)

0 otherwise
(29)

Figure 13 gives an example of a band with its 1BT.

(a) (b)

Figure 13: Example of 1BT on a spectral channel. The transform preserves
spatial information and emphasizes structure/compactness.

A single-value measure of the informative content of b, is then ob-
tained by counting the number of transition 0/1 or 1/0 in b1BT, in
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both horizontal and vertical directions. The higher this number is,
the less structured is the band, similarly to a measure of entropy. A
parametrized local thresholding then allows to make a first coarse
band selection by removing the channels whose entropy stands out
compared to their close spectral neighborhood. The remaining chan-
nels are then compared in terms of correlation, which turns out to
be reduced to a simple XOR operation on the binary representations.
The two bands with the highest XOR score are first selected as the
most dissimilar. The third band is chosen as the one maximizing the
sum of scores with the two first ones. Nevertheless, the resulting tri-
chromatic composite show a high correlation between their channels,
which implies that this 1BT-based scheme is not well-suited to detect
dissimilarities. It gives however a fairly high natural rendering and
becomes a very handy technique whenever computational complex-
ity is a critical requirement.

2.9 preprocessing and normalization

2.9.1 Radiance vs. Reflectance

By definition, the radiance of an object pertains to its overall appear-
ance under certain viewing conditions while the reflectance is a physi-
cal characteristic of its surface, independent of the illumination and of
the acquisition sensor. In short-range imaging, converting reflectance
to radiance consists simply of a multiplication by a given illuminant
such as the ones presented in Figure 14. In remote sensing however,
other adjustments are often required to compensate for the effect of
the atmosphere [Granahan and Sweet, 2001]. Nevertheless, these ra-
diance/reflectance conversions are mostly linear and have usually no
effect on discriminant analysis, as demonstrated in [Hoffbeck and
Landgrebe, 1994]. Therefore, we assume that there is very little dif-
ference between one and the other for dimensionality reduction. Tyo
et al. [2003] argued that radiance data is more intuitive when it comes
to visualization, but we assume here that the information to visualize
does not necessarily pertain to what can be perceived by our visual
system, but rather to the actual scene physical properties. In the light
of this assumption, reflectance is a more appropriate feature to work
with.

2.9.2 Low SNR and low entropy

As already mentioned in Section 2.4.2.2, the SNR is not the same in
every raw spectral channel. For instance, some bands may be very
dark at the outer limits of the image spectral range, due to the fall-
off of sensitivity of the sensor. Moreover, and especially in remote
sensing applications, some wavelength ranges are particularly sensi-
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Figure 14: Example of spectral power distributions for two widely used CIE
standard illuminants: A and D65. According to the ISO/CIE stan-
dard definition, the former is intended to represent typical, do-
mestic, tungsten-filament lighting, while the latter represents av-
erage daylight and has a correlated colour temperature of approx-
imately 6500 K.

tive to water absorption10, which makes them undesirable. In the nIR,
there are three noteworthy such regions around, 930, 820, and 730nm.
A noise whitening can overcome the first problem and reduce the
influence of noise in the DR process, which is for instance the core
rationale of the NAPCA. Nevertheless, it requires that the noise co-
variance matrix be known, which is not a trivial task. Du et al. [2003b]
demonstrated that whitening the data instead of just the noise gives
very similar improvements, without any knowledge about the noise.
Another approach consists of removing those channels whose SNR
and/or entropy is low, in order to process only the "good" bands. Cai
et al. [2007] assumed that a channel with a low correlation (under
0.8) with its spectral "neighbors" (adjacent bands), has either a poor
informative content (low entropy) or a high SNR ratio and therefore
can be removed. This unsupervised approach performs indeed well
at removing noisy channels, including the ones corresponding to wa-
ter absorption wavelengths. Demir et al. [2009] employed a similar
technique using a measure of local average structure/compactness of
the band (see Section 2.8.5) to remove channels that stand out in their
spectral neighborhood. In Chapter 3, we introduce an information-
theoretic version of the latter technique.

2.9.3 Invariant representation

Since reflectance depends on the scene’s geometry, invariant repre-
sentation of images are used so as to remove the influence of shades

10 http://en.wikipedia.org/wiki/Electromagnetic_absorption_by_water
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and highlights, mostly to enhance segmentation/classification results.
Ibrahim et al. [2011] proposed a simple yet effective method to com-
pute an invariant representation of spectral images based on the fol-
lowing processing, applied to all pixels at location (i, j) in band bλ:

b ′
λ(i, j) =

bλ(i, j) − min
n=1···N

(bn(i, j))√
N∑

m=1

(
bm(i, j) − min

n=1···N
(bn(i, j))

)2
(30)

This process gives another meaning to the measure of dissimilar-
ity between two channels. On the one hand, it allows to get rid of
some undesirable influences of the scene geometry and make an em-
phasis on the real physical properties of the materials contained in it.
On the other hand, it drastically decreases the meaningfulness of the
representation and thus its interpretability, as shown in Figure 15.

(a) (b)

Figure 15: Example of true color composite of the (a) raw image, and (b)
invariant representation by Ibrahim’s the method. The invariant
composite clearly demonstrates how shadows and highlight have
been removed so as to diminish the influence of the scene geom-
etry. Nevertheless, it also decreases the meaningfullness of colors
and shapes and makes the subjective interpretation more diffi-
cult.

2.9.4 Scaling and clipping

The reflectance of a surface is defined as the ratio of incoming light
that is reflected, therefore it must be in the range [0..1], without unit.
However, most of the aforementioned projection algorithms tend to
distort this gamut as well as the density of the data cloud as shown
in Figure 16, which depicts histograms of pixels values in the image
before and after PCA. Nevertheless, it is always possible to add a
normalization process a posteriori so as to enhance the occupation of
the color space and thus the "contrast" of the trichromatic compos-
ite. The simplest normalization is to uniformly scale the point set so
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that it fits into the output gamut. However, the distortion of density
induced by the projection might not be affine and introduce outliers.
To overcome this problem, it is possible either to clip the outliers to
a certain boundary which can be evaluated by subjective assessment
of the image’s brightness, or to perform a non-uniform scaling. More-
over, scaling can be done independently in each color channels, al-
though this induces distortions in color distances, particularly when
this is done in a perceptually uniform color space such as CIELAB.

Note that band selection does not require to deal with such scaling
as it maps channels as-is, which is another advantage of that class of
methods.
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Figure 16: Example of histograms of (a) raw reflectance (b) first 3 princi-
pal components. It shows that, although the raw reflectance is
bounded in [0..1], the PCA drastically transforms this range, even
introducing negative values.

2.10 on the evaluation of trichromatic composites

Despite the wide variety of DR methods presented so far, their au-
tomatic quality assessment for visualization remains a very challeng-
ing and application-dependent task. Jacobson and Gupta [2005] intro-
duced 9 general criteria (so-called design goals) to do so: consistent
rendering, edge preservation, computational ease, color symbolism,
equal energy white point (defined in Section 2.3.1), wavelength shift
invariance (all wavelengths are accorded equal weight), smallest ef-
fective difference (visual distinctions are no larger than needed to ef-
fectively show relative differences), appropriate pre-attentive features
and natural palette. Apart from the computational ease (which was
used for instance in [Kaewpijit et al., 2003; Cui et al., 2009]), these
design goals can roughly be categorized according to three general
criteria: the conveyed information from the raw, unreduced image, the
intrinsic information contained by the composite, and finally the appeal,
which is related to naturalness, intuitiveness and ease of interpreta-
tion. Whereas the two first categories are easily derived into objective
and quantitative metrics and measures, the appeal of an image per-
tains rather to a subjective evaluation, as discussed hereafter.
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2.10.1 Conveyed information

This first criterion can be equated with the similarity between the
high-dimensional image and its corresponding composite. Basically,
any criterion used in one projection method can be used to assess the
performance of another. For instance, the band-power ratio that was
investigated in [Chang et al., 1999], as a criteria for band selection,
could very well be used as a performance metric for any other band
selection approach. Nevertheless, many metrics and measures have
been proposed, especially under the general scope of multimodal im-
age fusion. Liu et al. [2012] pointed out four classes of measures/met-
rics: information-theory-based [Qu et al., 2002; Tsagaris and Anas-
tassopoulos, 2004; Cvejic et al., 2006; Hossny et al., 2008, 2010], im-
age feature-based [Xydeas and Petrovic, 2000; Zhu et al., 2007; Wang
and Liu, 2008], image structural similarity-based [Wang et al., 2004]
and human perception-inspired [Chen and Varshney, 2007; Chen and
Blum, 2009].

More specifically in the field of spectral image visualization, Du
and Yang [2008] also suggested that the result of a classification/clus-
tering in the high-dimensional space can also be used as an estimated
"ground truth" reference, in order to evaluate of accurately the dis-
criminative information have been conveyed by the projection. Jacob-
son and Gupta [2005] used the correlation of spectral angle and hue
distances in the (a,b) subspace of CIELAB. The same coefficient was
used in [Cui et al., 2009; Mignotte, 2012] with the Euclidean distance
instead of spectral angle and in the whole CIELAB space.

2.10.2 Intrinsic information

This second criterion pertains to the informative content of the com-
posite. However, in the absence of relevant information about the
scene (i.e. unsupervised framework), very few methods have been
used under the scope of spectral image visualization. The index pre-
sented at the beginning of Section 2.8.2 could serve for evaluation
purpose, but are limited to second-order statistics. Zhu et al. [2007]
used the marginal entropies of each output channel and one could
think also of using the joint entropy. Cui et al. [2009] considered the
average perceptual distance between pairs of pixels in the compos-
ite as a measure of overall separability of features. Du et al. [2008]
used the average inter-class euclidean distance in the (almost) per-
ceptually uniform CIELUV color space. Though the authors used a
known ground truth, it is still possible to assume that the result of an
unsupervised classification in the high-dimensional space is a good
reference for objects identification.
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2.10.3 Appeal

Although some of the aforementioned measures and metrics might
agree with human visual perception to some extent, most of them
cannot predict observer performance for different input images and
scenes. It is indeed extremely difficult to design a reliable model of
human visual quality assessment [Pedersen and Hardeberg, 2011].
Demir et al. [2009] assumed that the respective correlations of the
red, green and blue channels are a good indicator of naturalness, but
this idea is rather limited. In [Zhu et al., 2007], the correlation with the
reference true color (see Section 2.3.1) composite was used, although
the use of second order statistics in an RGB color space is not a suit-
able way to measure perceptual discrepancies. A subjective evalua-
tion was carried out by Cai et al. [2010], on a population of expert
subjects, and based on 5 criteria: representation of subtle variations,
anomaly pixel detection, estimation of the number of endmembers
(objects/materials in the scene), detailed information extraction and
overall appearance. Toet et al. [2010] proposed an assisted approach
that uses manually (and coarsely) drawn object boundaries, based on
the assumption that the overall quality of an image fusion scheme can
be characterized by the degree to which the composite represents the
objects existing in the unreduced dataset. The DR performance was
therefore evaluated according to the accuracy of a certain number of
manual segmentations by different users, conveyed into a single refer-
ence map, and for three kind of objects: terrain features, living beings
and man-made objects. More recently, Lin and Kuo [Lin and Jay Kuo,
2011] conducted an extensive survey on image quality metrics based
on perception, according to four main topics: image decomposition,
visual feature and artifact detection, just-noticeable distortion mod-
eling, and visual attention map generation. The study shows that a
lot of efforts have been directed to better understanding the human
visual system. Still, it suggests that most of the state-of-the-art met-
rics are supervised (so-called Full Reference -FR, as opposed to No-
Reference), that is, they require an image of the same dimensionality
as the composite as an "original" version of it. Yet, none of the current
metrics is able to properly convey subjective notions such as natural-
ness and intuitiveness in trichromatic imaging.

2.11 conclusions

The high dimensionality of spectral images makes them impossible to
visualize on tri-chromatic devices such as most of today’s computer
screens. Reducing the number of channels allows to cope with this
problem. In this chapter, we reviewed unsupervised dimensionality
reduction for spectral images, with a particular focus on band selec-
tion. While traditional approaches such as PCA or ICA seek the best
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combinations of spectral channels, band selection techniques aim to
find the best subset of them and therefore allow to keep a consis-
tent relation between these channels and the small range of wave-
lengths which they represent. Several criteria to prioritize bands have
been presented, such as second-order statistics or linear prediction,
which show considerable downsides compared to information mea-
sures such as mutual information. Nevertheless, these measures have
not yet been fully exploited for band selection and particularly in
terms of three-way interactions. Consequently, a part of the work pre-
sented in this thesis aims to further investigate information theory in
this context.

Furthermore, we tackled the underlying problems of normalization
for gamut mapping and discussed three different criteria to evaluate
the quality of a dimensionality reduction for visualization: the con-
veyed information, the intrinsic information of the composite and its
appeal. We determined that there is a growing need for dedicated fea-
tures to better analyze the information conveyed by DR, in the context
of visualization. For these reasons, we present new quality measures
(especially one based on naturalness), but more importantly, we in-
troduce the concept of spectral saliency, as a new strategy to measure
and compare information in spectral images.





3
D I M E N S I O N A L I T Y R E D U C T I O N A N D D I S P L AY O F
S P E C T R A L I M A G E S : C O N T R I B U T I O N S

3.1 introduction

This chapter introduces the contributions of this thesis made under
the scope of dimensionality reduction. They are four-fold: first we
present two new measures for quality assessment of tri-chromatic
composites, then we present a study on region-based spatially-variant
dimensionality reduction. Thirdly, a novel spectral partitioning ap-
proach, based on perceptual attributes is explained. Finally, we tackle
the topic of information theory-based band selection and present a
new constrained method. But first, let us introduce the data that were
used throughout these studies.

3.2 benchmarking data

In this study, we used a total of 20 spectral images of natural scenes
from various sensors:

• Foster’s 2002 database1, used in [Nascimento et al., 2002]. 8 mul-
tispectral images containing 31 spectral channels each, covering
a part of the visible range of wavelengths (400-700nm).

• Foster’s 2004 database2, used in [Foster et al., 2004]. 8 multi-
spectral images containing 33 spectral channels each, covering
a part of the visible range of wavelengths (400-720nm).

• The Jasper Ridge scene from the AVIRIS sensor3. It contains 224
channels ranging from 400 to 2500nm (sampling rate: 9.3nm).

• The Norway scene from the HySpex sensor4. It contains 160
channels ranging from 400 to 1000nm (sampling rate: 3.7nm).

All images contain reflectance data, coded as double precision val-
ues (64 bits), and have undergone several pre-processings prior to any
of the experiments of this thesis. For white point detection and coarse
noise removal, all pixels with value greater than maxval = mR + 4σR

1 http://personalpages.manchester.ac.uk/staff/david.foster/...
...Hyperspectral_images_of_natural_scenes_02.html

2 http://personalpages.manchester.ac.uk/staff/david.foster/...
...Hyperspectral_images_of_natural_scenes_04.html

3 http://aviris.jpl.nasa.gov/html/aviris.freedata.html
4 http://www.neo.no/hyspex/
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where mR and σR are respectively the average and standard deviation
of the whole raw image, werer clipped to this boundary. The result
was then divided by maxval so that each image has a maximal value of
1, which corresponds to a non-specular white. Moreover, bands with
average reflectance values below 2% and those with low correlation
(below 0.8) with their neighboring bands were removed, as suggested
in [Cai et al., 2007]. Note however that this last step involves solely
the "Jasper Ridge" scene, off which we automatically removed the
channels at the following indices: 1, 2, 3, 108, 109, 110, 111, 112, 113,
153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167,
168, 222, 223, 224.

All experiments were conducted in Matlab 2009b with various tool-
boxes. Only the most significant results are presented.

3.3 new quality measures for dimensionality reduction

3.3.1 Naturalness

As discussed in the last chapter, naturalness is a subjective notion
of which no computational model have yet been able to grasp the
complex meaning. Typically, strongly saturated colors, abnormal hue
shifts and/or non-consistent rendering of known objects are inter-
preted as "non-natural". Evidently, the way humans associate shape
with color also implies the role of semantics. It is for example the rea-
son why an image where the sky is blue is more easily interpretable
than one where it is green. The true color composite of a spectral image
is designed so as to be the best match with what one would actually
see if one were to be in stead of the camera. Therefore, it can serve as
a ground truth for visual information and naturalness.

Zhu et al. [2007] used the correlation between a given composite
and its true color version in an RGB color space, as a measure of how
likely it is that the visualized image is the true color image. This
correlation-based measure is however rather difficult to interpret and
definitely not suitable to properly evaluate perceptual discrepancies.
Let us now consider the Euclidean distance in CIELAB, referred to
as ΔE∗

ab, and defined as follows, for a pair of pixels (L∗1,a∗
1,b∗

1) and
(L∗2,a∗

2,b∗
2)s:

ΔE∗
ab =

√
(L∗1 − L∗2)2 + (a∗

1 − a∗
2)

2 + (b∗
1 − b∗

2)
2 (31)

As previously mentioned, CIELAB is a perceptually uniform space,
which means that ΔE∗

ab is proportional to an actual difference of per-
ception by the human visual system. By averaging ΔE∗

ab over all pix-
els of a given scene, and between a composite C and its correspond-
ing true color representation, we obtain what will here be refer to as
the natural difference of C, noted ν(C). The smaller the latter, the
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more natural the composite. This measure is simple and based on
well-established principles, which make it easy to use and interpret.

3.3.2 Color entropy

In order to evaluate the amount of visual information contained in
a tri-chromatic image, we define the color entropy HC as the disor-
der/unpredictability of perceptible colors. The first step to the com-
putation of HC is to cluster the pixels in CIELAB so that each cluster
represents a single perceptible color. In other words, inside a given
cluster Ci, the respective distances between each pair of pixels is un-
der the threshold of Just Noticeable Difference (JND), which means
that they are all interpreted as a same color by our visual system. To
do so, we propose to use the distance-based K-means classifier. The
number of clusters K is defined by a progressive search and the dis-
tance to be used is the Eclidean one. In our experiments, we used a
starting value of 100 clusters and progressively decreased this value
(by steps of 5) until all cluster centroids are separated by at least
twice the JND, which we defined to be equal to 3 (see for instance
Chapter 2 of [Hardeberg, 2001]), or until an inferior limit of 5 clus-
ters was reached. The resulting class labels are then used to compute
the histogram of perceptible colors κ(i) (as a discrete estimation of
the probability mass function over color clusters i ∈ [1 · · ·K]) so as to
eventually assess the color entropy HC:

HC = −

K∑
i=1

κ(i) log2 [κ(i)] (32)

Seemingly, this process involving several classifications may result
in an important computational burden. Nevertheless, the K-means
classifier is known to be very efficient and fast on low-dimensional
data. During our experiments, we noted execution times under a sec-
ond on images containing more than 700000 pixels.

3.3.3 Experimental validation

In order to demonstrate the usefulness and reliability of the proposed
measures, we show results obtained on 6 composites from two im-
ages, one from Foster’s 2002 database as well as the "Norway" scene.
Moreover, we used two naive metrics used in the literature, for objec-
tive comparison. The correlation with the true color in RGB [Zhu et al.,
2007], ρTC = ρRρGρB as a measure of naturalness, as well as the joint
entropy H(bR,bG,bB), which is theoretically better than any combi-
nation of the marginal entropies as it takes redundancy into account.
Figures 17-18 depict the composites while tables 1-2 give the results
obtained.
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(a) (b)

(c) (d)

(e) (f)

Figure 17: Examples of composites and their respective naturalness accord-
ing to the proposed measure: scene 4 of Foster’s 2002 database. (a)
true color - TC (b) PCA to sRGB - PCArgb1 (c) PCA to sRGB with
contrast enhancement - PCArgb2 (d) PCA to HSV as in [Tyo et al.,
2003] - PCAhsv (e) PCA to CIELAB - PCALab (f) Linear Prediction-
based band selection - LPBS.

Subjectively, and besides the true color composites, we observe that
the best natural rendering is produced by the PCAhsv technique, mostly
because it is the most consistent with the hues of the reference (TC).
On the other hand, the most "colorful" and somehow less natural is
produced by the PCArgb2 technique. Now, if we have a look at the
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(a) (b)

(c) (d)

(e) (f)

Figure 18: Examples of composites and their respective naturalness accord-
ing to the proposed measure: scene "Norway". (a) true color - TC

(b) PCA to sRGB - PCArgb1 (c) PCA to sRGB with contrast en-
hancement - PCArgb2 (d) PCA to HSV as in [Tyo et al., 2003] -
PCAhsv (e) PCA to CIELAB - PCALab (f) Linear Prediction-based
band selection - LPBS.

Table 1: Results on the first image

ρTC H(bR,bG,bB) ν HC

TC 0.83 16.1 0 4.6

PCArgb1 0.01 14.9 31.7 2.3

PCArgb2 0.01 16.1 55.5 6.1

PCAhsv 0.28 16.8 24.3 4.8

PCALab 0.23 13.5 33.0 5.4

LPBS 0.24 17.5 47.4 5.2
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Table 2: Results on the second image

ρTC H(bR,bG,bB) ν HC

TC1 0.82 11.9 0 3.6

PCArgb1 0.01 12.3 34.2 2.1

PCArgb2 0.01 11.9 50.8 2.1

PCAhsv 0.46 14.5 22.6 3.0

PCALab 0.14 11.6 43.1 4.4

LPBS 0.13 15.6 40.1 4.4

objective results, we note that ρTC succeeds in identifying the highest
natural rendering but fails at discriminating PCArgb1 and PCArgb2, al-
though the former performs better at producing naturally-consistent
hues and especially contains less of this coarse contrasts and areas of
strong saturation which make PCArgb2 look very colorful but consid-
erably less intuitive. The proposed metric ν generates results which
are much more consistent with the overall appeal of the composites as
it agrees with the aforementioned subjective assessment. In terms of
entropy now, HC performs indeed very good at emphasizing colorful-
ness and variety of colors, unlike the joint entropy which, for instance,
gives a high rate to the LPBS composite on the fist image, while it is
clear that this composite is mostly pink and not very "contrasted".

3.3.4 Conclusions

We introduced two new measures for the quality assessment of tri-
chromatic composites: ν and HC. The first one measures the percep-
tual difference with a ground truth for naturalness while the sec-
ond one measures the variety of perceptible colors. Both show re-
sults which are consistent with subjective evaluations and outperform
more naive approaches that were used in several paper about DR and
spectral imaging. Note that we present one more measure, based on
saliency, in the next chapter.

3.4 a perception-based spectrum segmentation

Most dimensionality reduction (DR) methods compute the optimal
projection in the entire high-dimensional feature space, while impor-
tant objects might exist only in subsets of it [Parsons et al., 2004]. In
the previous chapter (Section 2.4.2.3), we introduced several methods
[Jia and Richards, 1999; Tsagaris et al., 2005] to partition an image’s
spectrum in a set of representative subgroups of bands, thus allowing
for a local spectral analysis and consequently a lower computational
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cost. These methods from the state of the art use criteria which are
either naive (equal partitioning) or based only on the scene’s statis-
tics (correlation, energy), and therefore do not properly handle the
characteristics of the human visual system. In the next Section, we
introduce a new spectrum segmentation method which better takes
these properties into account.

3.4.1 Definition

The CIE standard observer XYZ Color Matching Functions (CMF) are
used to linearly project spectral channels to a tri-stimulus representa-
tion corresponding to how a human eye would see the scene. In other
words, each spectral channel centered at wavelength λ ∈ [λ1 · · · λN]

is associated with three positive weighting coefficients x̄(λ), ȳ(λ) and
z̄(λ), roughly corresponding to its contributions to the perception of
the red, green and blue. We propose to interpret this statement as
follows: the higher the weighting coefficient x̄(λ) the more relevant is
the band centered at λ to represent its primary (red for x̄, green for
ȳ and blue for z̄). Therefore, thresholding the CMF by means of a pa-
rameter τ allows to automatically extract the relevant wavelengths to
represent a given primary. In addition, segments are compelled not
to overlap, that is, one band cannot belong to more than one group,
in order to avoid redundancy. As for the choice of these particular
CMF, it is motivated by the fact that these are all positive, unlike
their RGB version. Note additionally that some problems may rise
from using the raw XYZ CMF. First, not all three functions have the
same maximal value, which is inconvenient in our framework. There
are basically two solutions to cope with this downside: one is to con-
sider the lowest maximum of all three functions as the maximal τ.
This would however yield segments of drastically different sizes. An-
other solution is then to stretch all three functions individually so
as the maximum coefficient of each is equal to another. Moreover,
this second solution is more consistent with the role of τ, as it turns
the CMF into comparable probability functions. A second problem
arising from using the raw CMF is that there is a drastic fall-off of
the coefficients at the edges of the spectrum, which implies that the
channels centered in these wavelengths are not relevant and thus sys-
tematically discarded. As a solution to this, we simply compensated
these fall-offs by maximizing the blue (resp., red) coefficients at the
beginning (resp., end) of the spectrum. If we note the normalized
functions with capital letters: X̄(λ), Ȳ(λ) and Z̄(λ), respectively, and
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the corresponding subgroups Στ
p, p ∈ {X, Y,Z}, the following equation

summarizes proposed strategy:

bλi
∈

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
∅ if m = τ

Στ
X if m = X̄(λi)

Στ
Y if m = Ȳ(λi)

Στ
Z if m = Z̄(λi)

(33)

with m = max
[
τ, X̄(λi), Ȳ(λi), Z̄(λi)

]
and bλi

the band centered at
wavelength λi. Figure 19 illustrates the role of τ.

Figure 19: Spectrum segments. The dashed line illustrates an example of
thresholding with τ = 0.7, and for which the segments are ap-
proximatively: Σ0.7

X = 400nm → 470nm, Σ0.7
Y = 520nm → 580nm,

Σ0.7
Z = 580nm→ 700nm.

If the spectral image contains channels outside the visible wave-
lengths (400-700nm), the CMF are stretched [Jacobson and Gupta,
2005] so to fit the entire range of the image. Eventually, three seg-
ments are obtained: Στ

X, Στ
Y and Στ

Z, the size of which depend on the
threshold value:

τ1 > τ2 → Στ2
p ∈ Στ1

p , ∀p (34)

The definition of τ makes it a moderation parameter of the follow-
ing assumption: the higher the weighting coefficient x̄(λ) the more
relevant is the band centered at λ to represent its primary. If it is set
to 0, the assumption is rejected. On the contrary, if τ = 1, the assump-
tion is considered perfectly relevant Eventually, a representative band
from each group may be extracted, concatenated and normalized so
as to fit a sRGB gamut and thereby create the trichromatic composite.
We will refer to this technique as CMF-based spectrum segmentation.
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3.4.2 Experimental setup and results

In this Section, we compare the proposed partitioning approach with
the equal subgroups and energy-based strategies, which were investi-
gated in [Tsagaris et al., 2005]. All three techniques are applied to
segmented PCA. The reason why we did not consider the correlation-
based approach is that it is very unclear how to segment the correla-
tion matrix, other than manually. Even then, the block structure of the
latter seldom allows for a clear segmentation in 3 groups. This exper-
imental setup consists of the 8 images of the Foster’s 2002 database
and two measures: the naturalness ν, introduced earlier in this chap-
ter and the product of pairwise correlation coefficients of the output
channels, noted ρRGB. The latter is indeed a measure of the redun-
dancy shared by all three channels of the output.

Figure 20 and 21 show the average evolution of both metrics, with
respect to the thresholding parameter τ, and over Foster’s 2002 database.
Note that very similar results were obtained on Foster’s 2004 database.
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Figure 20: Evolution of naturalness with τ: average values over Foster’s 2002
database. In solid line: CMF-based partitioning. In dashed line:
equal subgroups-based partitioning. In half-dashed line: energy-
based partitioning. When increasing the threshold τ, the resulting
composite scores better and better with our measure of natural-
ness. The best results obtained with our strategy overcome the
ones obtained with the benchmark.

Note in Figure 19 that for an increasing τ > 0.3, channels are
progressively discarded around 480nm. This threshold value corre-
sponds to the point where the curves in Figure 20 and 21 start "falling".
The same remark can be made for τ > 0.9 and around 570nm, which
also coincide with a point where the slopes of the aforementioned
curves increase. This is due to the fact that less and less channels
are taken into account and therefore, a whole range of wavelengths
is discarded, which considerably reduces the physical meaning of
the transformation and thus naturalness. On the other hand, as the
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Figure 21: Evolution of channel redundancy with τ: average values over
Foster’s 2002 database. In solid line: CMF-based partitioning. In
dashed line: equal subgroups-based partitioning. In half-dashed
line: energy-based partitioning. When increasing the threshold τ,
the resulting composite contains less and less correlation between
its channels. The best results obtained with our strategy overcome
the ones obtained with the benchmark.

band clusters tend to be "separated" by spectral gaps, the probabil-
ity of redundancy among them is also reduced, hence the increase
of ρRGB. Consequently, we observe that increasing τ simultaneously
reduces naturalness and enhances informative content. As for the
comparison with the two other segmentation strategies, we note that
our approach systematically outperforms the two other in terms of
ρRGB. For τ > 0.4 however, it shows less naturalness than the equal
subgroups-based partitioning, but is still better than the energy-based
partitioning up to τ > 0.9.

3.4.3 Conclusion

We introduced a new spectrum segmentation strategy which aims to
better take into account natural and visual information in DR meth-
ods such as PCA or band selection, while alleviating their compu-
tational complexity. Results show that proposed strategy performs
better than other state-of-the-art approaches and that the threshold
value τ can be seen as a parameter to balance between naturalness,
informative content and computational efficiency.

3.5 an information-theoretic framework for band se-
lection

As we described in the previous chapter, band selection aims to de-
fine the best subset of spectral channels to represent the whole image.
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Unlike transformation-based approaches such as PCA or ICA, band
selection does not seek for combinations of channels and therefore
allows to keep their physical meaning, that is, their underlying asso-
ciation with a small range of wavelengths. We propose a band selec-
tion approach, based on information theory, and motivated by two
criteria: one pertains to maximizing the information engendered by
the subset, and the second criterion consists of minimizing the redun-
dant information between its elements. The spectrum segmentation
method presented in the previous Section is used to constrain the se-
lection and ameliorate computational efficiency. This Section is there-
fore organized as follows: first we recall some elements of informa-
tion theory such as entropy, mutual information and co-information,
then we introduce the different steps of the proposed band selection
strategy, before presenting and discussing a variety of results.

3.5.1 Background

Information theory was developed by Claude E. Shannon [Shannon
and Weaver, 1948] with the intention of defining a probabilistic frame-
work to measure and quantify information in a set of data. It relies
mostly on defining information as disorder or unpredictability. Al-
though, unpredictability can be considered in other domains than
time, like in an image for instance, where a group of pixels is infor-
mative if it contains unique patterns, which cannot be predicted from
the rest of the scene. Information theory is nowadays widely used in
fields such as data compression, transmission, or cryptography. Here
we give some background information on first, second and third or-
der information measures, in the discrete case. Note that, throughout
this Section, we consider a spectral channel bλ as a random variable
and, whenever necessary, the band’s normalized histogram of pixels
values serves as an estimation of the probability mass function (pmf)
of bλ.

3.5.1.1 Entropy

All digital data can be modeled as a series of bits, a unit of infor-
mation which takes two values, 0 or 1. If the informative content is
poor, for instance if all pixels in an image are identical, only a few
bits are necessary to properly describe the data without loss. On the
other hand, if all pixels are different to each other, a large number of
bits will be required not to lose any information. Provided a spectral
channel bλ, the number of bits necessary to code all of its elements
separately is given by the base-2 logarithm of the number of pixels in
the band, sometimes referred to as the information size of bλ:

H0(bλ) = log2 (|bλ|) (35)
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with |bλ| denoting the cardinality of bλ. Note that this quantity is not
necessarily an integer, and therefore the actual number of bits to code
the elements in bλ is rather the closest integer greater than H0(bλ),
but this is irrelevant in this study.

Now that we have quantified the size of information, let us estimate
its value. A set of pixels S ⊂ bλ is informative if it cannot properly be
predicted by the rest of the pixels in the band, that is, the probability
of having S is poor, considering bλ. The information gain of S over
bλ is then defined as:

G(S) = log2

(
1

pbλ
(S)

)
= − log2 (pbλ

(S)) (36)

with pbλ
(S) denoting the probability of S in the spectral channel.

These definitions lead us to the most fundamental element of Shan-
non’s information theory: the entropy5 associated to a discrete ran-
dom variables bλ, which measures its disorder, uncertainty, or better
yet, its unpredictability. It is defined as the sum of information gains
of all elements (pixels) of bλ, weighted by their own probabilities:

H(bλ) = −
∑
b∈bλ

pbλ
(b) log2(pbλ

(b)) (37)

The entropy of bλ is thus a positive value which reaches its max-
imal value iff all elements in bλ have the same probability, i.e., it is
possible to gather identical pixels in as many equally-sized groups as
there are possible pixel values, which implies that H(bλ) � log2(|bλ|)).

It is measured in bits, although it can be alternatively defined with
a logarithm in a different base, typically Euler’s number e, or 10, in
which case its unit is nat6 or dit7, respectively.

3.5.1.2 Joint entropy and conditional entropy

Let us now assume that we want to measure the information con-
tained by a set of several random variable Φ =

[
b1 · · · bk

]
. Pro-

vided it is possible to compute or estimate their joint pmf pΦ, the
joint entropy of the ensemble is:

H(Φ) = −
∑
φ∈Φ

pΦ(φ) log2(pΦ(φ)) (38)

5 also referred to as self-information
6 nat stands for NATural unit ; also referred to as nit or nepit
7 dit stands for Decimal digIT ; also referred to as ban or Hart
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It should be noted that this quantity is greater or equal to the maxi-
mal marginal entropy from the group and necessarily lower or equal
to their sum:

max
i

H(bi) � H(Φ) �
∑
i

H(bi) (39)

It is also possible to estimate the entropy of a variable with respect
to another. The entropy of X ≡ bλ1

conditional on Y ≡ bλ2
gives the

amount of information provided by the first band, which is not con-
tained by the second one. In other words, it represents the remaining
entropy of X given that the value of Y is known. This conditional

entropy is defined as follows:

H(X|Y) =
∑

y∈R(Y)

pY(y)H(X|Y = y)

=
∑

x∈R(X) ; y∈R(Y)

pX,Y(x,y) log2
pX(x)

pX,Y(x,y)

(40)

Note that this quantity is not symmetric, i.e. H(X|Y) �= H(Y|X), un-
less X = Y, in which case H(X|X) = 0. Moreover, by noticing that
pX,Y = pXpX|Y , it can also be written as:

H(X|Y) = H(X; Y) − H(Y) (41)

Both the joint and conditional entropies can intuitively be repre-
sented by means of a diagram (so-called Venn diagram), as depicted
in Figure 22.

3.5.1.3 Kullback-Leibler divergence and mutual information

Another way to compare the information contained by random vari-
ables is the Kullback-Leibler divergence (KLD)8, which measures
the expected number of extra bits required to code samples from X
when using a code based on Y:

D(pX||pY) =
∑

x∈R(X)

pX(x) log2

pX(x)

pY(x)
(42)

This value thus quantifies the difference between two probabil-
ity distributions, over a common support (range of possible values).
Should they be identical (i.e. pX(x) = pY(x)), their relative entropy is
then equal to 0 as log(1) = 0. This provides us with a convenient tool
to measure the independence of two variables. Let us recall indeed
that X and Y are considered as independent iff their joint pmf is equal

8 also referred to as relative entropy
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(a) (b)

(c) (d)

Figure 22: Diagram representation of information measures: (a) each ellipse
depicts a marginal entropy, (b) joint entropy H(X; Y), (c) and (d)
conditional entropies: H(X|Y) and H(Y|X), respectively.

to the product of their marginal pmf: pX,Y = pXpY . Therefore the
KLD of pX,Y from pXpY , serves as a measure of independence, called
mutual information:

I(X; Y) = D(pX,Y ||pXpY)

=
∑

x∈R(X) ; y∈R(Y)

pX,Y(x,y) log2

(
pX,Y(x,y)

pX(x)pY(y)

) (43)

It is nonnegative, symmetric (i.e. I(X; Y) = I(Y;X)), and such that
I(X;X) = H(X). It is also measured in bits and is equal to zero iff
X and Y are independent. It can be expressed by means of entropy
terms as:

I(X; Y) = H(X) − H(X|Y)

= H(Y) − H(Y|X)

= H(X; Y) − H(X|Y) − H(Y|X)

= H(X) + H(Y) − H(X; Y)

(44)
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Mutual information can as well serve to compare two groups of
random variables Φ1 and Φ1 of possibly different sizes, following
the same definition but using the joint pmf pΦ1

, pΦ2
. For instance, if

Φ1 = (X,Z) and Φ2 = Y, then I(Φ1;Φ2) = I(X,Z; Y) represents the
information shared by Y with the dual variable (X,Z).

Similarly to the conditional entropy, it is possible to define a condi-

tional mutual information, measuring the information shared by a
couple of variables, given a third one:

I(X; Y|Z) =
∑

x∈R(X) ; y∈R(Y) ; z∈R(Z)

pX,Y,Z(x,y, z) log2

(
pZ(z)pX,Y,Z(x,y, z)
pX,Z(x, z)pY,Z(y, z)

)

(45)

Figure 23 give the diagram representation of mutual information
and conditional mutual information.

Figure 23: Diagram representation of information measures: (a) mutual
information I(X; Y) and (b) conditional mutual information
I(X; Y|Z).

Several normalizations of the mutual information are possible to
suit various needs. For instance, let us observe that equation 44 im-
plies that:

I(X; Y) � H(X) + H(Y) (46)

which shows that this measure is dependent on the entropy of its
inputs. Therefore, two variables with small entropies may be almost
identical but will however yield a low value of mutual information.
One way to cope with this downside is a normalization which is often
referred to as symmetric uncertainty, and was used for instance in
[Martinez-Uso et al., 2007]. It is defined as:

NI1(X; Y) =
2I(X; Y)

H(X) + H(Y)
(47)



54 dimensionality reduction and display of spectral images : contributions

As a number of bits is not always a very intuitive unit to evalu-
ate redundancy, mutual information can also be arranged so as to
represent a percentage of shared information. Indeed, we know that
I(X; Y) is bounded between zero and min [H(X), H(Y)], as the high-
est possible value for I(X; Y) is when X "contains" (information-wise)
Y or vice-versa. Thus, we obtain the normalization as suggested for
instance in [Kvalseth, 1987], which we will refer to as true mutual

information:

NI2(X; Y) =
I(X; Y)

min [H(X), H(Y)]
(48)

Now that we recalled basics of information theory and demon-
strated that mutual information is a practical tool to measure the
probabilistic dependence of two random variables, what about third-
order dependencies? After all, this study being under the scope of
trichromacy, there is a real interest as to measure such relations.

3.5.1.4 Multivariate mutual information

Several generalizations of mutual information to higher orders have
been proposed in the literature. Watanabe [Watanabe, 1960] intro-
duced the total correlation, also known as multivariate constraint

[Garner, 1962] or multiinformation [Studeny and Vejnarova, 1998]. It
is defined as the difference between the sum of marginal entropies
and the joint entropy of the set:

TC(X; Y;Z) =
∑

i∈{X;Y;Z}

H(i) − H(X; Y;Z) (49)

Total correlation is always positive and equals zero iff pX,Y,Z =

pXpYpZ. However, its main drawback lies in the fact that it measures
both second and third order indiscriminately, while favoring the third
order, as illustrated in Figure 24. We are indeed interested in having a
"pure" and therefore more precise measure of third order dependen-
cies.

McGill [McGill, 1954] introduced the interaction information, which
is defined as:

A(X; Y;Z) = I(X; Y|Z) − I(X; Y)

= I(X;Z|Y) − I(X;Z)

= I(Y;Z|X) − I(Y;Z) (50)

and can also be written as a sum of entropies at all orders:
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Figure 24: Diagram representation of information measures: (a) sum of
marginal entropies H(X) + H(Y) + H(Z), darker areas represent
information which are taken twice or three times into account,
(b) TC(X; Y;Z). This illustrates why Watanabe’s total correlation
is actually not an exact third-order dependence measure as it also
takes second-order information overlaps into account.

A(X; Y;Z) =−
∑

i∈{X;Y;Z}

H(i)

+
∑

i∈{X;Y;Z}
j∈{X;Y;Z}\i

H(i, j)

− H(X; Y;Z) (51)

More recently, Bell [Bell, 2003] re-defined this quantity as the co-
information, in what appears to us as a more intuitive fashion (see
Figure 25):

CI(X; Y;Z) = −A(X; Y;Z) (52)

Figure 25: Diagram representation of information measures: co-information
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Note that, unlike Watanabe’s total correlation, CI equals zero if
only a pair of attributes is independent. Moreover, the following rela-
tion stands between them:

CI(X; Y;Z) = TC(X; Y;Z) − I(X; Y) − I(X;Z|Y) − I(Y;Z|X) (53)

A particularly interesting property of co-information is that it can
be negative. Although Figure 25 emphasizes what we naturally point
out as the third order redundancy area, this diagram representation is
not really accurate because of the very existence of the negative case.
For the same reason, both McGill and Bell’s definitions are correct,
nevertheless, we find the latter more suitable and more intuitive for
this study.

In the case of positive co-information, we talk about redundancy,
whereas in the case of negative values, we talk about synergy. Re-
dundancies are foreseeable from lower orders while synergies exist
only when the random variables are taken together. Co-information is
therefore a measure of "hanging togetherness" [Bell, 2003]. If we refer
to equation 50, the synergy case exist when, for instance, I(X; Y|Z) >
I(X; Y) that is, when the knowledge of Z increases the dependency
between X and Y. In order to explain this particular property, a com-
mon example is to consider a simple XOR (eXclusive OR) cell with
two binary inputs, X and Y and an output Z = X⊕ Y. If we consider
the inputs as independent, the following stands true: I(X; Y) = 0. If
we now introduce the knowledge of Z, we also introduce the un-
derlying knowledge of the XOR relation linking the three variables.
For instance, if we know that Z = 0, we can deduce that X = Y,
and, by this, we increase the dependency between the inputs so that
I(X; Y|Z) > I(X; Y). This whole matter has been further discussed for
instance in [Jakulin and Bratko, 2004].

In the case of spectral images, this property also stands true. The
knowledge of one channel can increase the mutual information be-
tween the two others and, in that case, the smaller the co-information,
the higher the shared information. Therefore, in the context of mini-
mizing the dependence of a set of random variables, it is the absolute
value of co-information which must be minimized.

3.5.2 Band selection algorithm

In this Section, we introduce the different steps of the proposed strat-
egy, that we will refer to as IBS (Information-based Band Selection).
It consists of 3 main steps: first, a coarse selection is made based on
a comparison of each channel’s entropy with the one of its spectral
neighborhood. Secondly, the two most dissimilar channels are iden-
tified and selected by means of a sequential non-exhaustive search.
Thirdly, the last band is chosen so as to minimize the absolute co-
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information of the composite. Channels are then concatenated and
mapped to sRGB for visualization.

3.5.2.1 First order: coarse selection

We propose to make a first coarse selection allowing for the removal
of low informative channels. Spectral images are known to contain
high redundancy between neighboring bands and thus, channels that
do not meet this definition are considered noisy or poorly informative
[Cai et al., 2007]. Either way, these bands can be excluded. Measuring
the similarity by means of second-order measures such as correlation
or mutual information requires however a high computational bur-
den, since all the pairs of bands must be considered. Another way of
coarsely measuring similarity can be done by comparing the intrinsic
informative content of a band with that of its neighbors. This can be
achieved by means of a moving average as local threshold [Gonzalez
et al., 2004; Demir et al., 2009]. We propose to use Shannon’s entropy
as a measure of informative content. It is computed for each channel,
resulting in the solid curve in Figure 26 (for the "Jasper Ridge" image,
see description in the next Section).
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Figure 26: Exclusion of irrelevant bands: entropy, local average and thresh-
olds for the "Jasper Ridge" image. Channels outside the rejection
thresholds are excluded (δ = 4% and s = 11).

The dotted line represents the local average, which is defined for a
band bi as follows:

H̄s(bi) =
1

s

�s/2�∑
k=−�s/2�

H(bi+k) (54)

with s representing the size of the neighborhood. Bands whose en-
tropy is higher (resp. lower) than their local average value moderated
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by the thresholding factor δ are then considered as irrelevant. Thus,
if a band bi reaches the condition in equation 55, it is excluded.

H(bi) /∈ [H̄s(bi) ∗ (100− δ); H̄s(bi) ∗ (100+ δ)] (55)

With δ, the thresholding parameter, given in percentage. Both the
size of the window and the thresholds have to be set according to
the smoothness of the entropy curve. Indeed, the smoother the latter,
the lower the probability to have irrelevant bands and, accordingly,
the smaller the amount of channels that fall outside the range of rele-
vance. In that case, small value of δ and s are advised in order to gain
in precision. On the other hand, a sharp-shaped curve implies strong
differences between neighboring channels. In such a case, a large win-
dow size is prefered in order to reduce the influence of outliers. This
yields a smoother local average curve, and also a less precise analysis.
δ allows for adjusting how "strong" the exclusion will be (the lower,
the stronger). In the case of the example image "Jasper Ridge", one
can notice steep curvature changes, hence our choice to use a large
window size (s = 11). Moreover, since we first aim at a coarse band
selection, we set the threshold to a small value (δ = 4%).

3.5.2.2 Second and third order

In order to objectively compare the dependences of different pairs of
channels, we propose to use the true mutual information, presented
in Section 3.5.1. The first two bands to be selected, bλ1

and bλ2
, are to

be the most independent ones. Though, instead of considering each
pair of channels, which would require a considerably high computa-
tional cost, we propose to proceed iteratively, by means of an algo-
rithm similar to the one used in [Du and Yang, 2008] (see algorithm
1). The last band bλ3

is then chosen so as to minimize the absolute
value of this quantity:

bλ3
= arg min

X

|CI(bλ1
;bλ2

;X)|
H(X)

(56)

3.5.2.3 Constraints

Information measures such as NI2 or CI can be computationally ex-
pensive due to the fact that they require the manipulation of 2- and
3-dimensional histograms. Thus, we propose to use the spectrum seg-
mentation approach presented in Section 3.4 in order to restrict and
thus alleviate the band selection process. The three channels to be se-
lected are constrained to exist in different segments, so as to reduce
the number of possibilities at each step of the algorithm, while impos-
ing a certain distance between channels, so as to take better care of
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Algorithm 1 Unconstrained band selection (IBS)

i = 0 k = 1
randomly choose j

iterations = 0
while (i != k) and (iterations < 20) do

i← j; j← k

find k = arg min
k

[NI2(bj;bk)]

iterations++
end while

bλ1
← bj

bλ2
← bk

find l = arg min
l

|CI(bλ1
;bλ2

;bl)|
H(bl)

bλ3
← bl

the natural repartition of information along the spectral dimension.
Eventually, selected bands are mapped according to their segment of
origin (band from the red segment to red channel, etc.). This strat-
egy will be referred to as CIBS (Constrained Information-based Band
Selection), and it is detailed in algorithm 2.

Algorithm 2 Constrained band selection (CIBS)

i = 0; k = 1
randomly choose j so that bj ∈ Στ

X

iterations = 0
while (i != k) and (iterations < 20) do

i← j; j← k;
Ξ = arg

Σ∈{Στ
X;Στ

Y ;Στ
Z}

bj ∈ Σ

find k = arg min
k

[NI2(bj;bk)] with bk /∈ Ξ

iterations++;
end while

Ξ = arg
Σ∈{Στ

X;Στ
Y ;Στ

Z}

(bj /∈ Σ,bk /∈ Σ)

find l = arg min
l

|CI(bλ1
;bλ2

;bl)|
H(bl)

with bl ∈ Ξ

bλ1
← arg

b∈{bj;bk;bl}

b ∈ Στ
X

bλ2
← arg

b∈{bj;bk;bl}

b ∈ Στ
Y

bλ3
← arg

b∈{bj;bk;bl}

b ∈ Στ
Z

map (bλ1
,bλ2

,bλ2
) to (R,G,B)
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3.5.2.4 Computational considerations

In order to compute the entropy of a random variable, it is necessary
to estimate its pmf, which is usually done by histogram analysis. That
is, the probability that a pixel has a certain value, or better yet, falls
in a certain range of values, is estimated by the proportion of pixels
in the same range, in the band. The size of this range is determined
by the number of bins, β, used for histogram computation. Let us
assume that we manipulate 8-bits long pixels, that is a total of 256
possible values, then a 256-bins histogram would give the best possi-
ble resolution for the pmf estimation. Reducing the number of bins β

would considerably reduce the computational cost of our approach,
as shown in Figure 27, but would also lower the precision of calcu-
lations, as shown in Figure 28. Nevertheless, if the entropy of each
channel is equivalently modified, it is still possible to accurately com-
pare them to each other. In order to evaluate how entropies are rela-
tively altered by changing β, we computed, on a series of 100 random
vectors, entropies at first, second and third order and for a number
of bins ranging from 2 to 256. Thus, we computed the correlation of
the 100 entropy values obtained for each value of β with the ones
obtained with the highest β, and at each order. Results are shown in
Figure 29 and indicate a clearly decreasing trend, particularly abrupt
for the third order. Consequently, it is inaccurate to reduce β under
256 bins in the present framework.
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Figure 27: Computational time for third order entropy against number of
bins, on Matlab 2009b.

Nevertheless, a simple computational trick can indeed ameliorate
the computational cost of our method. Along the steps of the algo-
rithm, many pmf are to be estimated by histogram analysis of single,
pairs of and triplets of variables, some of them are required several
times and thus can be computed only once and stored until needed
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Figure 28: Error of entropy against number of bins.
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Figure 29: Correlation of entropy against number of bins.

again. For example, the marginal entropy of a band can be required in
up to N− 1 operations. Computing it only once allows to drastically
shrink the time consumption of our method.

3.5.3 Experimental setup and results

The proposed experimental setup aims to extensively evaluate the
performance of the proposed method, compared to other state-of-the
art techniques, and based on two criteria: appeal and intrinsic infor-
mation. The first criterion was measured by means of the aforemen-
tioned ν while information was evaluated in terms of color entropy
and Inter-Class Perceptual Distance (ICPD). The latter was computed
based on a K-means clustering (K=5) on an invariant representation
of the spectral image [Ibrahim et al., 2011], and by computing the
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average Euclidean distance between clusters, in CIELAB. We remind
the reader that we seek for a minimal ν, but a maximal HC and ICPD.
For comparison, we used the following methods: true color (TC), PCA
to CIELAB (PCALAB), linear prediction-based band selection (LPBS)
and One-bit-transform-based band selection (1BTBS). Moreover, we
also used a naive information-based method, which first prioritizes
channels by descending entropy and then de-correlates them by re-
moving the ones with a true mutual information greater than 0.5 (in-
spired by the strategy presented in [Chang et al., 1999]). This last
method will be referred to as H-prioritization I-decorrelation HPID.
Finally, we divided the setup in two Sections: one aims to compare
the unconstrained case (IBS) to measure the efficiency of the informa-
tion criteria alone, while the second part tackles the constrained case
(CIBS).

3.5.3.1 Unconstrained IBS

Tables 3 to 6 give the results obtained for each type of data, and Fig-
ures 30 to 33 show examples of composites. As expected, it appears
that the PCA-based approach gives very contrasted renderings, with
particularly saturated colors and important brightness variations. On
the other hand, the band selection techniques seem not to introduce
such distortions, thus better conveying the spatial characteristics of
the scene, even though their overall rendering is not necessarily ap-
pealing. In an attempt to finding an objective definition of natural-
ness, we observe that HPID and IBS obtain the best results in terms
of ν, which suggests that information-based measures seem to better
convey visual information than other methods based on second-order
statistics, orthogonality or structure/compactness. During our exper-
iments, we observed particularly that the three channels selected by
IBS are usually well-spaced along the spectral dimension, which im-
plies that different ranges of wavelengths are represented in the com-
posite, thus making it more physically consistent. Now, in terms of
informative content, IBS gives very good results, not always better
than PCALAB, but still very competitive, and globally better than the
other band selection techniques. Only the Norway scene seems less
suited for our algorithm as it is outperformed by the LPBS, in terms
of both color entropy and class-separability, still IBS gives very good
class-separability compared to the 1BTBS. We note that this scene is
both the largest and most structured one, which is most likely the
reason why the 1BTBS, as well as our approach, tend to extract fine
discriminative information such as the texture of the grass and trees,
rather than coarse one such as between rooftops and roads.
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Table 3: Average on Foster’s 2002 database. The proposed approach (last
line) obtains the best naturalness and color entropy. On the other
hand, it is the PCA-based strategy that outperforms the others in
terms of perceptual distance between classes, followed closely by
IBS.

ν HC ICPD

TC / 4.8 11

PCALAB 40 5.2 17

LPBS 27 5.3 13

1BTBS 30 5.5 11

HPID 25 4.1 10

IBS 23 6.2 16

Table 4: Average on Foster’s 2004 database. Same comments as for Table 3.

ν HC ICPD

TC / 3.4 10

PCALAB 30 3.9 19

LPBS 21 4.5 11

1BTBS 24 4.5 8

HPID 19 3.6 10

IBS 15 5.1 13
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Table 5: Jasper Ridge scene. Although our approach does not provide the
best results on this particular image, it gives a fairly good balance
between naturalness and informative content.

ν HC ICPD

TC / 4 3

PCALAB 58 4.9 44

LPBS 81 4.4 26

1BTBS 81 4.7 23

HPID 48 4.3 33

IBS 50 4.3 41

Table 6: Norway scene. Again, IBS is outperformed in terms of each mea-
sure, but gives an overall good compromise.

ν HC ICPD

TC / 3.6 17

PCALAB 43 4.7 18

LPBS 40 4.8 15

1BTBS 38 3.8 10

HPID 29 3.7 11

IBS 30 4.1 13
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(a) (b)

(c) (d)

(e) (f)

Figure 30: Examples of composites on scene 3 from Foster’s 2002 database.
(a) TC (b) PCALAB (c) LPBS (d) 1BTBS (e) HPID (f) IBS. Aside
from TC, our approach is the only one giving a consistent color
association as it depicts leaves in greenish hues.
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(a) (b)

(c) (d)

(e) (f)

Figure 31: Examples of composites on scene 2 from Foster’s 2004 database.
(a) TC (b) PCALAB (c) LPBS (d) 1BTBS (e) HPID (f) IBS. Again,
the latter gives a consistent and natural color association, with a
result very close to the true color composite.
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(a) (b)

(c) (d)

(e) (f)

Figure 32: Examples of composites on the Jasper Ridge scene. (a) TC (b)
PCALAB (c) LPBS (d) 1BTBS (e) HPID (f) IBS. The PCA-based
approach clearly shows the largest amount of information but
also exaggerates contrasts and yields non-intuitive color associ-
ations. On the other hand, the proposed approach gives a better
compromise between showing the important features of the scene
and respecting a natural palette of colors.
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(a) (b)

(c) (d)

(e) (f)

Figure 33: Examples of composites on the Norway scene. (a) TC (b)
PCALAB (c) LPBS (d) 1BTBS (e) HPID (f) IBS. Same remarks
as for the Jasper Ridge scene.
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3.5.3.2 Constrained IBS

Tables 7 to 10 give the results for each type of data, and Figures 34 to
35 show examples of obtained composites. For comparison, we used
the segmented PCA approach presented in Section 3.4, which we re-
fer to as sPCAcmf. The reason why this PCA-based strategy looks
a little bit washed-out is that PCA creates important distortions of
gamut and therefore stretches the gap between the brightest pixel
and the darkest, thus increasing the overall average value. Note that
we did not use any specific normalization other than a gentle clipping
to ten times the overall standard deviation. These results show an im-
provement of naturalness to even better results than IBS. We note
that increasing the value of τ augment the informative content of the
composite, in accordance with the results obtained in Section 3.4. Be-
sides, the green color plays a crucial role in natural scenes, especially
for plants. In the constrained case of our approach, and for τ = 1, the
green channel is always selected as the wavelength to which the hu-
man perception of green is the most sensitive, which results in very
appealing composites.

Table 7: Average on Foster’s 2002 database. In accordance with the results
presented in Section 3.4, increasing the threshold τ provides a bet-
ter informative content but a lower naturalness. Still, the proposed
strategies perform better than the segmented PCA.

ν HC ICPD

sPCAcmf 19 4 7

CIBSτ<0.3 17 5.4 7

CIBSτ=1 18 5.6 8

Table 8: Average on Foster’s 2004 database.

ν HC ICPD

sPCAcmf 21 3.6 11

CIBSτ<0.3 20 5.6 15

CIBSτ=1 21 5.7 19



70 dimensionality reduction and display of spectral images : contributions

Table 9: Jasper Ridge scene. Only HC gives significative results on this scene
as such small differences of ν and ICPD are not perceptible.

ν HC ICPD

sPCAcmf 3 0.19 0.25

CIBSτ<0.3 3 0.26 0.63

CIBSτ=1 2 0.26 1.6

Table 10: Norway scene. Same remark as for the Jasper Ridge scene.

ν HC ICPD

sPCAcmf 1.65 0.22 0.61

CIBSτ<0.3 1.48 0.28 0.99

CIBSτ=1 1.44 0.28 0.83
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(a) (b)

(c) (d)

(e) (f)

Figure 34: Examples of composites on scene 1 from Foster’s 2002 database
(left) and scene 2 from Foster’s 2004 database (right). First row:
sPCACMF, second row: CIBSτ<0.3, and third row: CIBSτ=1.
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(a) (b)

(c) (d)

(e) (f)

Figure 35: Examples of composites on the Jasper Ridge scene (left) and Nor-
way scene (right). First row: sPCACMF, second row: CIBSτ<0.3,
and third row: CIBSτ=1.
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3.5.4 Conclusions

We developed new information-based band selection strategies called
IBS and CIBS which use measures built upon Shannon’s entropy. It
is a somehow evolved version of the method presented in our first
journal publication [Le Moan et al., 2011b]. It has been established
that it is a difficult task to find the reasons why one DR method
gives an overall better naturalness than another, without a proper
definition of such subjective notion. Although no obvious relation
has been found between naturalness and any of the other measures
used, these results show that both IBS and CIBS perform very well at
identifying visual information and gives a good compromise between
naturalness and informative content.

3.6 cluster-adaptive projections

3.6.1 Statement of the problem

As explained in Chapter 2, most linear methods of DR for spectral
images consider a spectral channel as a whole and therefore per-
form in a global manner. That is, the computation of the optimal low-
dimensional projection is based on the information contained by all
pixels together. Nevertheless, as it is the case in the spectral domain,
the contribution of some components (pixels) may be undesirable and
bias favorably the projection toward the separability of certain classes
of pixels, creating distortion of distances between such classes. In the
case of data-adaptive methods such as PCA, this distortion is unpre-
dictable as each dataset can render a different set of PCs, as opposed
to fixed bases such as the CMF. For that reason, this effect prevents
particularly from being able to preserve and/or emphasize the local
contrast between specific groups of pixels, a problem which has been
addressed for instance in [Cui et al., 2009], where the preservation of
pairwise distances between pixels is considered as a criterion to opti-
mize. Nevertheless, some materials and/or objects may require to be
easily differentiable on the final composite, be it because they have dif-
ferent spectral characteristics (emphasis on some data properties) or
because it is a requirement for a specific task (manual adjustment of
the distortion). Let us assume for instance that we have three classes
of pixels C1, C2 and C3, and that a given DR method (say PCA),
stresses the contrast between C1 and C3, while rendering C2 and C3

in a same color, because the projection makes these groups overlap in
the color space. Now suppose that our application requires however
that classes C2 and C3 are clearly separable on the composite. Figure
36 shows that using a local PC, computed by means of C2 and C3

only, is a better strategy in that case.
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Figure 36: The distortion of distances implied by PCA. (a) Three clusters
clearly separated in a given 3D space. The overall average is noted
by the black ball. (b) The dashed line denotes the first principal
component of the whole dataset (global PC). The pointed line
represents the first principal component of the union of the green
and blue clusters, neglecting all red points (local PC). (c) Clusters
projected on the overall PC. It can be noted that the green and
blue clusters overlap. (d) Clusters projected on the local PC. The
separation of the green and blue clusters is now much clearer.

Scheunders [Scheunders, 2000] proposed a local mapping approach
to DR, based on a segmentation of the image into blocks, which does
not efficiently gather pixels with similar properties. Moreover, this
technique may produce inconsistent color mappings from one region
to another, i.e., using only local mappings does not guarantee that
one class of pixels will be given the same color in every region. Nev-
ertheless, global contrast should also be taken into account. In [Le
Moan et al., 2011a], we developed a tunable technique to perform DR
with traditional approaches such as PCA or band selection locally, so
as to emphasize the perceptual distance between specified groups of
pixels. Here we propose an updated revision of this strategy, which
we will refer to as Cluster-Adaptive Projections (CAP).
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3.6.2 CAP

While traditional methods consider each spectral channel as a whole,
the core idea of the CAP is to analyze subsets of pixels. For instance,
if one desires to enhance the contrast between a couple of specific
objects (groups of pixels), one must consider the union of them sepa-
rately from the rest of the scene, in order to obtain a more dedicated
analysis. Therefore, the first step of the proposed technique is to ob-
tain a spatial segmentation of the image so as to identify the different
classes/clusters of pixels. This can be achieved either manually or
automatically, by means of any classification, clustering and/or seg-
mentation algorithm, preferably distance-based (but not necessarily
Euclidean distance-based). In this study, we used only the K-means
classifier, in order to demonstrate the efficiency of the proposed tech-
nique, but this has to be considered as without loss of generality.

Let I be a spectral image segmented into K classes C1, · · · ,CK and
assume that an application requires to emphasize the difference be-
tween a certain number of objects contained in Cγ, with γ ⊂ {1, · · · ,K}.
We propose to consider three different mappings:

• A global mapping associated with the whole image (PG). Its
first PC contains most of the scene’s spatial information (which
pertains to luminance).

• A local mapping associated with the objects of interest (OoI) on
the raw image (Pγ). In our experiments, we observed that the
discriminative information of Cγ was maximized in the first
PC. Indeed, the second and third principal components usually
contain very little information with less than 10% of the global
energy in most cases.

• A local mapping associated with the OoI on an invariant repre-
sentation of the image [Ibrahim et al., 2011] (Pγ,I). Its first PC
contains highly discriminative information about Cγ, in terms
of chroma only.

Since we would like to enhance local contrast without lowering the
global one, we propose to use the first PC of all three aforementioned
projection in a convenient mapping to the Hue-Saturation-Value color
space: the first PC from PG to the Value channel, as it contains most
of the scene’s luminance, the first PC from Pγ,I to the Hue channel,
as it contains discriminative chromatic information, and finally the
first PC from Pγ to the Saturation channel to complete this intuitive
mapping. The resulting composite thus contains valuable discrimina-
tive information about the chosen OoI, while preserving the overall
structure of the scene in terms of luminance.
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3.6.3 Experimental setup and results

In order to demonstrate the efficiency of the proposed model, we
imagined a particular application on the "Jasper Ridge" scene from
the AVIRIS sensor: we would like to enhance the contrast between
the urban area on the right side and its surroundings, thus making
it more salient. Figure 37 depicts the classification map as well as
the location of both the urban area its surroundings. Figure 38 shows
the resulting first principal components obtained from the projection
matrices PG (global), Pγ (local - raw) and Pγ,I (local - invariant). It
shows an improved saliency of the OoI on both local results. Figure
39a depicts the resulting composite of a mapping of the 3 first global
PCs to the CIELAB color space while Figure 39b shows the result of
our mapping strategy. It can be seen on the composite resulting from
a global mapping that the overall contrast is poor as very few colors
are depicted. On the other hand, the proposed local adaption renders
the urban area in blue-ish hues, which makes it much more salient.
Finally, Table 11 depicts the Euclidean distance between the cluster
centroids of the two regions that we aim to separate, for all three
mapping strategies. It shows that the local mapping yields a better
cluster separation on the first PC.

(a) (b)

Figure 37: (a) Results from a K-means classification (K=7) (b) selected classes
(objects of interest).

3.6.4 Conclusion

In this Section, we briefly investigated local DR, based on a spatial
segmentation of the scene. We demonstrated that the principal com-
ponents of a subset of pixels containing objects of interest allows for a
better contrast between these objects than the overall PCs. We encour-
age further research on this topic, especially on the use of different
distances, which would for instance better suit the underlying non-
linearities of spectral images.
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(a) (b) (c)

Figure 38: (a) First PC from PG (b) First PC from Pγ (c) First PC from Pγ,I.
Both local strategies show a better contrast on the previously se-
lected objects.

Figure 39: (a) Mapping of three first global PCs to CIELAB (perceptual dis-
tance between cluster centroids = 18) (b) Result from the pro-
posed strategy (perceptual distance between cluster centroids =
56). The proposed approach shows a better contrast between the
previously chosen objects. For instance, the urban area on the
right side stands out much more.

Table 11: Euclidean distances. The global distance is computed using all
three PCs.

PG Pγ Pγ,I

Global 1.34 1.30 1.30

PC1 0.10 0.31 1.30

PC2 1.32 1.30 0.08

PC3 0.18 0.34 0.02

3.7 conclusions

In this chapter, we presented a variety of tools for the visualization of
multi/hyperspectral images. First, we introduced two new objective
measures to assess the naturalness and color entropy of trichromatic
composites. We demonstrated that they are able to better grasp visual
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information than other commonly used measures. Then, a perception-
based spectrum segmentation was introduced, aiming mainly to bet-
ter take into account natural and visual information in DR meth-
ods such as PCA or band selection, while alleviating their computa-
tional complexity. Furthermore, we developed an information-based
framework for band selection, which allowed us to suggest a possi-
ble relation between the subjective notion of naturalness in spectral
images and Shannon’s entropy. Results show indeed very good nat-
uralness, much better than other state-of-the-art approaches based
on second-order statistics, orthogonality and structure/compactness.
Composites are both appealing and contain valuable discriminative
information. Finally, we briefly tackled the problem of distance distor-
tions in PCA and proposed an adaptive strategy called CAP which is
based on a computation of the projection matrices from both global
and local topographies as well as a convenient mapping to the Hue-
Saturation-Value color space. Results show an increased class-separability
on a set of selected objects of interest. Several other techniques for vi-
sualization and scene understanding are introduced in the next chap-
ter, which is focused on the notion of spectral saliency.



4
S A L I E N C Y A N D S P E C T R A L I M A G E S

When it comes to visualizing spectral images, the main challenge lies
in defining what needs to be shown, and what needs not. The variety
of dimensionality reduction (DR) strategies presented in the previ-
ous chapters shows that there are many different manners to do so.
In this chapter, we propose a new approach to extracting informa-
tion for purposes of visualization and interpretation. We introduce
the concept of spectral saliency, and define two models to compute
highly informative saliency maps, through center-surround analysis
of a variety of dedicated features:

• the High Dimensional Saliency (HDS) of a pixel p is a single
value computed by means of dedicated center-surround com-
parisons at several scales and represents the prominence of p in
terms of several features.

• the Spectral Saliency Profile (SSP) φ(p, λ) represents the saliency
of p at wavelength λ, based on the computation of individual
maps for each spectral channel.

Consequently, the remainder of this chapter is organized as fol-
lows: first, we review some important related works on the topics of
saliency and visualization of spectral images before presenting and
discussing the aforementioned concepts and models in Sections 4.2
and 4.3. Conclusions are drawn in Section 4.4.

4.1 introduction

In the context of color and computer sciences, the notion of saliency
is closely related to the one of visual attention: "from a given scene,
which objects/features will first draw attention and why ?". Follow-
ing early influential work by Treisman et al. [Treisman and Gelade,
1980] and Koch et al. [Koch and Ullman, 1985], Itti et al. [Itti et al.,
1998] proposed a general visual attention model to design so-called
saliency maps, which purpose is to predict human gaze given a cer-
tain picture. This model is based on the extraction of three differ-
ent features: color, intensity and orientation. The color feature results
in two opposition maps: Red/Green and Blue/Yellow. Intensity is
computed as the average of the three channels (R, G and B) while
orientation feature maps are obtained by means of Gabor filters (to
four different angles) on the intensity map. Each feature map is then
derived into a gaussian pyramid (multiscale representation) allow-

79
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ing for straightforward center-surround comparisons, which is actu-
ally the key idea when it comes to saliency [Gao et al., 2008]. Then,
through a series of appropriate combinations, blurring and normal-
izations, the model outputs a single greyscale saliency map of the
same size as the original image. More recently, Harel et al. [2007] pro-
posed to model the feature spaces as Markov chains to better activate
and normalize the feature maps. In [Hou and Zhang, 2007], the au-
thors suggested a method using the log-spectrum of the input image
in which statistical singularities are assumed to be salient features
(or so-called proto objects). An information-theoretic approach based
on an extraction of independent components of the scene was [Bruce
and Tsotsos, 2009].

As opposed to these techniques that seek biological plausibility to
relate as much as possible to human vision, some methods have been
developed to use high-level features such as face recognition [Cerf
et al., 2008; Sharma et al., 2008] or more generally the context of the
input image [Goferman et al., 2010]. In [Judd et al., 2009], the au-
thors proposed a supervised approach trained by a large database of
eye-tracking data to train a bottom-up, top-down model of saliency
based on low, mid and high-level image features. A signature-based
approach was introduced by Hou et al. [2011]. A very interesting re-
view by Frintrop et al. [Frintrop et al., 2010] addresses thoroughly the
cognitive foundations of many saliency detection techniques from the
literature.

Yet, saliency is a much broader concept inasmuch as it can be seen
as a way of measuring informative content for any kind of data. In-
deed, in the large field of neurosciences, the salience (also called saliency)
of an item – be it an object, a person, a pixel, etc – is the state or quality by
which it stands out relative to its neighbors1, no matter what kind of fea-
ture space is considered. Only a few studies have extended this con-
cept to more than just two-dimensional trichromatic images. Among
them, and although not exactly in the scope of this paper, it is worth
mentioning the pioneer work by Lee et al. [Lee et al., 2005] on 3D
mesh saliency. Even though visual attention has already been used in
the context of spectral images for dimensionality reduction purposes
[Zhang et al., 2008], an actual saliency map from the entire high-
dimensional image has not yet been considered, to our knowledge.
Such a model presents however all the advantages of spectral imag-
ing over trichromacy: sensitive to metameric matches, not bounded
to visible wavelengths and device-independent.

In this chapter, we present a model of spectral saliency called HDS
and we introduce the concept of SSP, which measures saliency locally
in the spectral dimension.

1 http://en.wikipedia.org/wiki/salience (neuroscience)
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4.2 high dimensional saliency

4.2.1 Architecture

The HDS model, whose general architecture is depicted in Figure 40,
is based on the comparison of a pixel with its surroundings, in terms
of different features and at several scales. Furthermore, the model
uses an invariant representation of the spectral image, in order to
remove the influence of specularities, shading and surface geometry,
which are only relevant in the context of visualization. Indeed, we
aim to understand the scene in terms of physical properties more
than in terms of perception. We used the approach introduced by
Ibrahim et al. [2011], which is derived from the standard dichromatic
reflection model for dielectric and the extended dichromatic reflection
model for metal. For a spectral channel bλi

at wavelength λi, the
corresponding invariant representation b ′

λ is defined as follows:

b ′
λ(i, j) =

bλ(i, j) − min
n=1···N

(bn(i, j))√
N∑

m=1

(
bm(i, j) − min

n=1···N
(bn(i, j))

)2
(57)

The HDS model is then structured as follows: first, feature maps are
extracted, filtered and spatially subsampled into an 8-level gaussian
pyramid, so that a vector-pixel at a fine scale represents the center
of the corresponding location at a coarser scale (surrounding). As
suggested in [Itti et al., 1998], center-surround comparisons are then
achieved with centers at scales c ∈ {2, 3, 4} (scale 1 is the original
image, scale 8 corresponds to the lowest resolution) and surrounds at
scales s = c+ δ, with δ ∈ {3, 4}, which yields 6 so-called conspicuity
maps, for each feature. They are, in turn, normalized and fused into
the final map.

The next Sections give more detail about these steps, that is, which
features and comparison measures to use and how to normalize the
maps.

4.2.2 Features and comparison measures

There exist many features and measures/metrics to compare high-
dimensional vectors [Imai et al., 2002]. In this Section, we investigate
6 features combined with 2 spectral match measures, in an attempt to
define which ones are the most relevant for the HDS model. Each of
the following features is defined for a given spatial location (i, j) and
each measure is defined for a pair of feature-pixels.

• Features
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Feature extraction

HDS map

INVARIANT

SPECTRAL

IMAGE

Feature maps

Conspicuity maps

Gaussian filtering + spatial subsampling

Center-surround comparisons

Activation and normalization

Fusion

Figure 40: The HDS model.

– Normalized reflectance: ref(i, j). High-dimensional pixels,
taken directly from the image.

– CIELAB trichromatic value: lab(i, j). Reflectance converted
to CIELAB by means of the CIE standard observer Color
Matching Functions (CMF) and after multiplication by the
CIE D65 illuminant.

– First three principal components of the image: pc3(i, j).

– Average reflectance value: avg(i, j).

– Standard deviation of the reflectance curves: std(i, j). This
feature gives an image of how homogenous is the pixel’s
reflectance along its spectral dimension.
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– Gabor filtering of the first principal component: gab(i, j).
Linear filter for edge detection according to a specified di-
rection. Allows to compare pixels in terms of local orienta-
tion (see [Itti et al., 1998]).

• Measures

– Euclidean distance (L2-norm):

D(f1; f2) =
√∑

n

(f1(λn) − f2(λn))
2 (58)

– Spectral angle:

θ(f1; f2) = cos−1

(
f1 · f2
‖f1‖ ‖f2‖

)
(59)

where (i, j) are spatial coordinates and · is the dot product between
two vectors. Note that we use the wavelength λn to describe the spec-
tral dimension of the feature-pixels. Although, in the case of pc3(i, j),
this "spectral" dimension refers to the dimension spanned by the prin-
cipal components.

Our study considers 6 combinations of the aforementioned fea-
tures/measures, which we compared in terms of informative content
(entropy) and correlation, on the results obtained over a population of
800 pixels randomly chosen from Foster’s 2002 database (see Section
3.2 in the previous chapter). A high entropy means that the results
are varied and thus informative. We note Mf the combination of mea-
sure M with feature f. We did not consider gab(i, j) as they are the
only orientation-related features and they will therefore be used in
the HDS model in anyway. Results are presented in Tables 12 and 13.

Table 12: Comparison of features/metrics: entropy.

Dref θref Dlab Dpc3 Davg Dstd

Entropy 7.13 7.10 6.73 7.14 7.10 7.03

We observe that the most informative features are the Euclidean dis-
tance in the high-dimensional space (Dref) and in the space spanned
by the first three PCs (Dpc3). They are highly correlated together (0.99),
but also to Dlab (> 0.8), which implies that one and only one of them
should be retained for our model. In the previous chapters, we ar-
gued that the Euclidean distance becomes less relevant in high di-
mensionality due to the curse of dimensionality, it can therefore be
discarded. Furthermore, we make the assumption that Dpc3 is more
valuable than Dlab because it yields a higher entropy, but also because
perceptual information is irrelevant in the present framework, which
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Table 13: Comparison of features/metrics: correlation.

Dref θref Dlab Dpc3 Davg Dstd

Dref 0.18 0.87 0.99 -0.16 0.03

θref 0.24 0.17 -0.15 0.10

Dlab 0.86 -0.01 0.16

Dpc3 -0.16 0.03

Davg 0.52

Dstd

designs a model of spectral saliency. Finally, we note that the combi-
nation feature/measure presenting the best overall tradeoff between
informative content and correlation is Dstd.

Based on these remarks, we made the following selection for the
HDS model:

• θref, as a measure of chromaticity, independent from lightness.

• Dpc3, as a PCA-based coarse color difference metric.

• Dstd, as a measure of grayness or saturation.

• Dgab, as a measure of orientations.

4.2.3 Activation, normalization and fusion

After extracting the feature maps and performing the center-surround
comparisons, the resulting conspicuity maps contain raw saliency in-
formation, which need to be normalized and eventually fused into a
single and final map. The role of normalization is to activate the maps,
that is to concentrate brightness into a fewer key locations in order to
increase their interpretability [Harel et al., 2007]. We propose to use a
simple activation operator, based on mathematical morphology. For
a given input intensity image b, we define Ar(b) as follows:

Ar(b) =

(
b

max(b)

)
•Br (60)

where • is the morphological closing operator [Serra, 1982] and Br

is ball-shaped structural element of radius r. The greyscale morpho-
logical closing spreads out small bright regions so as to enlarge the
visibility of salient locations. The amount of spreading is set by the
size of the structural element Br, which may be adjusted according
to the user’s need. Small sizes make the activation less effective, but
on the other hand, a large structural element may yield a too coarse
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result. In this study, we set it to 1
20

of the image width. Eventually,
each feature analysis outputs (in scale 4) a single conspicuity map
(the four orientations are averaged) which are then normalized by
Ar and averaged for fusion. Averaging the maps allows not to favor
one combination feature/measure over the others. Figure 41 shows
an example of resulting map, before and after activation.

Figure 41: Example of normalization of θref conspicuity map obtained from
the first scene of Foster’s 2002 database. Left: raw ; right: acti-
vated. The brightness of a pixel represents its saliency (white
pixel: very salient).

The final map is in turn normalized and blurred. It will be referred
to as MHDS (Figure 42 shows an example).

Figure 42: Example of saliency map from the HDS model. Left: true color
composite. Right: corresponding map.

The output of the HDS model thus represents those pixels whose
reflectances stand out, in terms of the presented features. Note that
it can be applied regardless of the dimensionality of the image. How-
ever for non-spectral images (less than 4 channels), other combina-
tions feature/measures should be more relevant. For trichromatic im-
ages, we suggest to use only the Euclidean distance in the device-
independent CIELAB color space (DLAB) and in the Gabor maps (Dgab).
As for greyscale images, we suggest to use Dref (which becomes a sim-
ple difference) and Dgab.
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4.2.4 In color

We would like to go further into the concept of spectral saliency and
take full advantage of the human visual system, by creating saliency
maps in color. We aim indeed to create a single map, highly informa-
tive and easy to interpret. Therefore, based on the assumption that
several local analyses can yield more information than a single global
one, we propose to create color composite maps whose three chan-
nels result from a different local analysis each. By local, we mean
in the spectral dimension, that is, the image spectrum is to be parti-
tioned into three parts, roughly corresponding to the red, green and
blue ranges of wavelengths (see Section 3.4 in the last chapter) within
which the HDS model is applied, independently from one part to
another. The resulting maps are then concatenated and mapped to
sRGB, so as to obtain a highly informative map in color, which we
will refer to as Mc

HDS. Figure 43 illustrates the enhanced model, which
will be referred to as HDS-Color (HDS-C), and Figure 44 gives an ex-
ample of result.

On these maps, a bright pixel depicts a high saliency in a range
of wavelengths corresponding to its color (for example, red bright:
very salient in the last segment, but poorly in the two others). This
simple rule of interpretation, makes it possible to adapt the spectrum
segmentation strategy to the application. For instance, a visible/near
InfraRed (nIR) partitioning would depict in one color the pixels which
are salient in the visible and in another color the ones that are salient
in the nIR, as illustrated in Figure 45.
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RGB mapping
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Figure 43: The HDS-C model.
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Figure 44: Example of enhanced saliency map obtained from a 31-bands
spectral image. From top to bottom and from left to right: Blue
map, Green map, Red map, Mc

HDS. The variety of colors shows
the sensitivity of the HDS model to the range of wavelengths it is
used in. Interpretation is as follows: green pixels depict locations
which are salient in the green segment, and respectively for the
other colors.
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Figure 45: Example of enhanced saliency maps with a visible/nIR partition-
ing. They show very valuable information such as the river in the
first image (surrounded by minerals) and the urban area in the
second one (surrounded by vegetation) that stand out mostly in
the infrared.

4.2.5 Results

In this section, we present the resulting maps obtained on a variety
of spectral images and discuss on the similarity of the HDS with
the model presented in [Hou et al., 2011], which we will refer to
as Signature-based Visual Saliency (SVS) and which was applied on
the true color composites. Figure 46 shows the results obtained on
four spectral images: scene 1 from Foster’s 2002 database (”Flowers”),
scene 2 from Foster’s 2004 ("Fern"), as well as the Jasper Ridge and
Norway scenes (see Section 3.2 in the previous chapter).

It is important to note that these maps depict non-visual saliency,
which can be seen as a measure of informative content, as they are
computed regardless of the human visual system. Overall, the HDS
and SVS models extract different features from the scenes, particu-
larly on the two hyperspectral images. The central river on the "Jasper
Ridge" scene is very salient in both visible and nIR, as shown in Fig-
ure 45 and therefore shows on the HDS and HDS-C maps. On the
"Norway" scene, our models emphasize the urban area on the right
side, as it is surrounded with vegetations, creating a contrast in the
nIR, whereas the SVS map depicts the red rooftops and road signs
as salient features. On the "Fern" image, HDS detects mostly the part
with more branches than green leaves, instead of the conspicuous
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Figure 46: Results obtained on 4 images. Column-wise: true color compos-
ite, greyscale HDS MHDS,color HDS Mc

HDS, SVS map [Hou et al.,
2011]. Row-wise: "Jasper Ridge", "Norway", "Fern" and "Flowers"
scenes.

purple flower, which shows on the HDS-C map which allow to assess
that this flower is salient only in the green wavelengths. As for the
"Flowers" scene, it is mostly the central flower and a green area on
the top side that stand out according to our models.

4.2.6 Applications

4.2.6.1 Evaluating composites

Since the HDS model can be applied to any dimensionality, it is possi-
ble to compare two images with different number of channels. Conse-
quently, it can serve to assess how accurately a dimensionality reduc-
tion technique conveys such information into a trichromatic compos-
ite. We propose a measure that will be referred to as Mutual Saliency
(MS) based on the true mutual information between the maps in
high- and low-dimensionality:

MS(M1;M2) =
I(M1;M2)

min [H(M1); H(M2)]
(61)
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where M1 and M2 are two saliency maps from the HDS model, and
of two images of same size but potentially different number of spec-
tral channels. See Section 3.5 in the previous chapter for details on
entropy and mutual information.

Figures 47 and 48 depict 6 different composites each, obtained from
the Jasper Ridge and Norway scenes, respectively. Tables 14 and 15
give the results obtained with the proposed measure as well as two
others, for comparison: ρθ is the preservation of pairwise angles as
in [Jacobson and Gupta, 2005] and ν is the measure of naturalness
introduced in the previous chapter.

(a) (b) (c)

(d) (e) (f)

Figure 47: Example of composites from the Jasper Ridge scene. (a) true color,
(b) pseudo true color (stretched CMF), (c) PCA to CIELAB, (d)
segmented PCA, (e) linear prediction-based band selection and
(f)one bit transform-based band selection.

Table 14: Saliency-based evaluation of dimensionality reduction techniques:
Jasper Ridge scene composites.

Comp. 1 Comp. 2 Comp. 3 Comp. 4 Comp. 5 Comp. 6

MS 0.23 0.35 0.24 0.26 0.28 0.28

ρθ 0.19 0.93 0.64 0.74 0.72 0.79

ν 0 59 58 50 82 81

We observe that our measure ranks the pseudo true color strategy
first and the regular true color strategy last. Indeed, the latter discards
all the channels centered at non-visible wavelengths and therefore
fails to properly retain the scene properties. Mutual saliency is not
correlated neither with ρθ nor with ν, which implies that it conveys
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(a) (b) (c)

(d) (e) (f)

Figure 48: Example of composites from the Norway scene. From left to right
and top to bottom: true color, pseudo true color (stretched CMF),
PCA to CIELAB, segmented PCA, linear prediction-based band
selection and one bit transform-based band selection.

Table 15: Saliency-based evaluation of dimensionality reduction techniques:
Norway scene composites.

Comp. 1 Comp. 2 Comp. 3 Comp. 4 Comp. 5 Comp. 6

MS 0.26 0.46 0.35 0.41 0.41 0.39

ρθ 0.27 0.83 0.92 0.78 0.87 0.68

ν 0 33 42 30 40 38

a different kind of information. It is therefore a valuable measure in
complement with others, to evaluate saliency conveyed during the
dimensionality reduction.

4.2.6.2 Dimensionality reduction

The major drawback of most DR methods in the literature is that they
are based on the assumption that all the pixels are part of the same
population, i.e. they perform a global mapping. Some approaches
such as the linear prediction-based band selection [Du and Yang,
2008] require a regular subsampling of the pixel population (down to
1% without noticeable change, according to the authors) in order to
alleviate their respective complexity. Scheunders [Scheunders, 2000]
proposed to spatially divide the image into square blocks in order to
achieve local mappings by means of PCA and Neural Network-based
techniques. However, natural scenes are rich and complex, showing
large contrasts among their constituents, therefore a more dedicated
spatial partitioning would better take care of these properties.
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In this section, we investigate the use of the most salient pixels
in the scene to compute the projection functions. Three sets are ex-
tracted: the salient ones, the surrounders and the background. Only
a few pixels are retained for each set, by means of PCA, so that to
represent each of the first two sets aforementioned in the dimension-
ality reduction process. One of the tasks of DR is to convey and/or
enhance the relative discrepancies between the various Objects of In-
terest (OoI), contained in the input data. When it comes to images,
it is generally equally weighted over the spatial dimensions, despite
the rich and complex properties of natural scenes.

By thresholding an HDS map into three parts, we isolate different
sets of pixels according to their respective contribution to the scene:

• The salient pixels, Ω1, are the pixels whose level of saliency is
higher than a threshold Tup.

• The surrounders, Ω2, are the pixels whose level of saliency is
lower than Tup and higher than Tdown.

• The background pixels, Ω3, are all the rest.

Figure 49 shows an example of such segmentation on a natural
scene, using different threshold values. The values of the optimal
threshold are of course scene-dependent. We recommend to define
them according to the separation of objects present in Ω1 and Ω2.
For example, the segmentation in Figure 49b would be a more rele-
vant choice than the one in49c, where the flower petals spread out
on both Ω1 and Ω2, which is undesirable. In this study, the optimal
thresholds were defined manually for each scene.

Figure 49: Examples of saliency-based thresholding. Left: true color compos-
ite, Middle: Tup = 0.3 and Tdown = 0.1, Right: Tup = 0.5 and
Tdown = 0.3. Saturated areas represent the salient pixels while
surrounders are shown in grey and background in black.

In order to extract a set of representative pixels from each segment,
we used PCA, over the spatial dimensions. During our experiments,
we assessed that no more than five principal components are neces-
sary to explain most of the data’s energy (more than 95%) and there-
fore to represent each Ω1 and Ω2 (as we disregard the background).
Eventually, only 10 pixels are considered to compute the projection
matrix.
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Moreover, by mastering the number and type of objects present in
the input data, one allows the latter algorithm to be more dedicated
to conveying the discrepancies between, in our case, objects in Ω1

and Ω2. Considering the relatively high computational complexity
of PCA, we performed a random subsampling of 50 pixels in both
groups. Moreover, resulting components are then normalized so that
to fit the range [0..1]. Figure 50 shows an example of the principal
components obtained.

Figure 50: Examples of (first and second) principal components obtained.
Disks: representing Ω1 and Crosses: representing Ω2. We can ob-
serve for instance that the first PCs (plain lines) are discriminable
mostly in the first half of the image’s spectrum.

We selected three dimensionality reduction techniques to illustrate
the proposed approach.

• Information-based Band Selection (IBS). See Section 3.2 in chap-
ter 3.

• Linear Prediction-based Band Selection LPBS [Du and Yang,
2008] is a state-of-the-art band selection approach which con-
sists of progressively selecting bands by maximizing their re-
spective orthogonality.

• PCAhsv is the traditional Principal Components Analysis of
which components are mapped to the HSV color space, accord-
ing to the normalization used in [Tyo et al., 2003], without shift-
ing the origin of the HSV cone.

Band selection approaches have been implemented in such a way
that the bands are eventually sorted by descending wavelength before
mapping to sRGB.
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Figure 51 shows the true color composites of the images used in this
study, as well as the corresponding saliency maps. Figures52 to54
show the results obtained by means of the different dimensionality
reduction techniques, both by considering all the pixels in the image
(or a uniform subsampling for LPBS) and only a reduced set of pixels.

(a) (b) (c)

(d) (e) (f)

Figure 51: True color composites (first row) and the corresponding spectral
saliency maps (second row).

(a) (b) (c)

(d) (e) (f)

Figure 52: IBS approach. First row: using all the pixels in the image. Second
row: using a reduced set.

The optimal thresholds for each scene are given in table 16. LPBS

obtains its best results with a quite low upper threshold (0.3), while
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(a) (b) (c)

(d) (e) (f)

Figure 53: LPBS approach. First row: using a uniform subsampling of 1% of
the image’s pixels. Second row: using a reduced set.

(a) (b) (c)

(d) (e) (f)

Figure 54: PCAhsv approach. First row: using all the pixels in the image.
Second row: using a reduced set.

IBS and PCAhsv perform better with a very reduced set of pixels.
Overall, we observe that the most salient objects are emphasized,
mostly because of a darkening or a diminution of contrast of their
surroundings.

In order to objectively evaluate the results, we used the color dif-
ference metric ΔE∗, which measures the Euclidean distance in the
perceptually uniform color space CIELAB. Let ω1 and ω2 be two
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sets of 20 randomly selected pixels from Ω1 and Ω2, respectively.
Now let Δ12 be the average color difference between ω1 and ω2, on
a composite obtained with considering all pixels or a uniform sub-
sampling and let Δ12

′ have the same definition but on a composite
obtained by the proposed approach. We define the improvement of
saliency δs = Δ12

′
−Δ12. Table 17 shows the values obtained in this

experiment.

Table 16: Optimal thresholds.

scene 1 scene 2 scene 3

Tup 0.3 0.5 0.9

Tdown 0.1 0.3 0.8

Table 17: Improvements of saliency δs. Difference of average Euclidean dis-
tance in CIELAB between Ω1 and Ω2, using all the pixels versus
using only a subset.

scene 1 scene 2 scene 3

IBS 18.8 44.9 23.7

LPBS 13.9 32.5 2.1

PCAhsv 20.5 47.3 9.0

Results show that there is an overall increase of conspicuity for the
top salient objects. It is not surprising to see that the PCA is more
sensitive to the pixel selection as it is more adaptive to the data and
has more degrees of freedom than the BS techniques. However, it
also shows less contrast in the background areas, due to the fact that
these pixels are disregarded during the computation of the projection
matrix. Scene 3 shows the best results, mainly because of the well-
defined salient region on the bottom left side.

4.3 spectral saliency profiles

4.3.1 Definition

Whereas the HDS model is based on the comparison of high dimen-
sional vectors, the SSP involves the computation of one saliency map
per channel. Therefore it engenders, for every pixel, a vector of the
same dimensionality (the so-called profile) that depicts its promi-
nence along the spectrum. Since a spectral channel is an intensity
image, only two features are necessary here: intensities and orienta-
tions. The same scales and normalizations as in the previous Section
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were used. Figure 55 gives three examples of SSP, together with their
respective reflectance curves.

3

2

1

1

2 3

Figure 55: Examples of SSP (plain lines) and their corresponding reflectance
curves (dashed). Pixel 1 is fairly salient all over the spectrum,
with a slightly worse prominence at the end of the blue range,
where its surroundings (green leaves mostly) start to be very re-
flective. Pixel 2 differs from its neighborhood mainly between 400
and 600 nanometers (yellow/early red), meaning that it is either
much more or much less reflective in the blue and green ranges
than its surroundings (pixels of the like of pixel 1). Of course,
interpretation is easier if a prior knowledge about the scene is
available.

4.3.2 Application to band selection

In this section, we use the information-based band selection (IBS)
strategy presented in the previous chapter, but applied on the SSP in-
stead of on the reflectance data. The goal is to select bands that show
different things, that is, with different saliency maps. The approach
will be referred to as Saliency based-IBS (S-IBS). For our experiments,
we used three calibrated multispectral datasets, ranging in the visible
spectrum (400-700 nm):
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• "MacBeth" is the well-known MacBeth CC color calibration tar-
get. It contains 31 channels.

• "Sarcophagus" is a 35 bands (400-740nm) multispectral image
representing a portion of a 3rd century sarcophagus from the
St Matthias abbey in Trier, Germany [Simon et al., 2010]. It was
acquired by means of an 8 channel filter wheel camera rang-
ing only in the visible spectrum (400-740nm). Reflectance was
reconstructed by means of a supervised neural-network-based
algorithm [Mansouri et al., 2005].

• "Mural" represents a 16th century mural painting from the Brömser
Hof in Rudesheim, Germany. It has the same properties as "Sar-
cophagus".

In order to evaluate the performances of our method, we selected
two other dimensionality reduction techniques for comparison. Fig-
ure 56 depicts the resulting color visualization of all the images and
for the three dimensionality reduction approaches: PCAhsv, LPBS

and S-IBS.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 56: Different representations for each dataset (first column: PCAhsv,
second: LPBS and third: S-IBS)

It can be seen that the PCA-based method gives the least appealing
results, while LPBS and S-IBS give quite similar and "eye-satisfying"
images. On the first dataset, one can notice that the white patch (bot-
tom left) if whiter in the LPBS results, but still very discriminable
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from all the others in the S-IBS. However, if we now look at the
orange-yellow patch (second row, last one on the right), it is much
more discriminable from the yellow one in the result by our method.
Similar trends on the blue/violet patches allows us to assess that our
dimensionality reduction method is the one conveying the more dis-
criminative information (in a perceptual manner).

Furthermore, and in order to objectively compare the results, we
chose to use the MacBeth CC target, present in each scene and to com-
pare the CIELAB values of a set of 480 randomly selected pixels (20
by patch) with the "ground truth" ones, provided by Gretag, by means
of the ΔE∗

ab color difference metric. Dynamics of the colorspace com-
ponents have been set as follows: L∗ ∈ [0..100], a∗ ∈ [−100..100] and
b∗ ∈ [−100..100]. With this framework, we aim at an assessment of
how accurately the dimensionality reduction method can convey the
high variety of colors from a high dimensional space to three dimen-
sions. Table 18 gives the minimal, maximal and average perceptual
distances in CIELAB between the results and the "ground truth". It
can be seen that, even though the LPBS gives slightly better minimal
and maximal errors in two cases, the proposed approach outperforms
it on each dataset, in terms of average ΔE∗

ab, and especially on the two
last images.

Table 18: Colorimetric errors. We note ΔE = ΔE∗
ab.

PCAhsv LPBS S-IBS

ΔEmin
"MacBeth" 8.55 3.36 3.80

"Sarcophagus" 8.56 3.43 0.50

"Mural" 8.38 5.95 2.30

ΔEmax
"MacBeth" 86.47 48.39 45.74

"Sarcophagus" 80.42 38.16 38.60

"Mural" 85.63 45.65 35.12

ΔE
"MacBeth" 32.30 29.17 28.95

"Sarcophagus" 35.10 17.31 13.86

"Mural" 46.76 19.93 15.42

4.4 conclusions

We introduced the concept of spectral saliency for multi/hyperspec-
tral images analysis. It presents all the advantages of spectral imag-
ing over trichromacy: sensitive to metameric matches, not bounded
to visible wavelengths and device-independent. Two models were
presented: the High Dimensional Saliency model and the Spectral
Saliency Profiles from which many applications can be derived, and
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particularly under the scope of visualization, such as saliency-driven
conception, evaluation, adjusting and clustering of trichromatic com-
posites from spectral images. We tackled two applications for the
HDS model: evaluation of trichromatic composites and dimension-
ality reduction over a limited number of relevant pixels, as well as a
band selection strategy based on the SSP. Moreover, we introduced
a model to compute saliency maps in color, to help figuring out the
range of wavelengths in which objects are salient. Results show that
spectral saliency provides valuable information, which does not corre-
late neither with visual saliency, second-order statistics nor with our
definition of naturalness, but serves however well for visualization-
related applications. Therefore we expect the concept of spectral saliency
to be considered for further investigation in the future, and particu-
larly in order to define more precisely its relation with visual saliency.





5
C O N C L U S I O N S A N D P E R S P E C T I V E S

In this thesis, we presented a variety of methods of feature extraction
for spectral image analysis, with a particular emphasis on problems
related to display and visualization.

We developed a new band selection strategy called Information-
based Band Selection, based on measures derived from Shannon’s en-
tropy in order to retain a subset of bands containing as much infor-
mative content as possible. A spectrum-segmentation method based
on a thresholding of color matching functions allows to both alleviate
the complexity of the band selection algorithm and enhance the nat-
uralness of the resulting composites. Results show indeed very good
naturalness, much better than other state-of-the-art approaches based
on second-order statistics, orthogonality and structure/compactness,
and thus allow us to suggest a possible relation between this subjec-
tive notion of naturalness in spectral images and Shannon’s entropy.

Furthermore, two new quality measures were introduced, in order
to evaluate trichromatic composites in terms of naturalness and en-
tropy of perceptible colors (color entropy). We demonstrated that they
are able to better grasp visual information than other commonly used
measures.

The problem of distance distortion in principal components analy-
sis was briefly tackled and an adaptive strategy called Cluster-Adaptive
Projections was proposed. It is based on a computation of the pro-
jection matrices from both global and local topographies as well as
a convenient mapping to the Hue-Saturation-Value color space. Re-
sults show an increased class-separability on a set of selected objects
of interest.

Finally, we introduced the concept of spectral saliency and pro-
vided two models to compute it: the High Dimensional Saliency model
and the Spectral Saliency profiles. The former creates a single saliency
map from the whole spectral image whereas the latter depict the
prominence of each pixel as a function of the wavelength. An en-
hancement of the HDS model allowing to create highly informative
saliency maps in color was also introduced. Results show that spectral
saliency provides valuable information, which does not correlate nei-
ther with visual saliency, second-order statistics nor with our defini-
tion of naturalness, but serves however well for visualization-related
applications. Several applications of interest were considered and suc-
cessfully tackled by means of these models.

103
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Thus, the present work represents a step further in spectral image
analysis, yet, we reckon that the following trails are worth considering
for further investigation:

• Although we focused mainly on band selection in the third
chapter, we believe that third order information measures can
serve other contexts such as independent components analysis.
That is, it would be interesting to consider an algorithm that
seeks the most independent directions in the high-dimensional
feature space, and in terms not only of mutual information, but
also of co-information, and possibly higher orders.

• The notion of naturalness is yet to be defined in objective terms.
We suggested that Shannon’s entropy can convey valuable vi-
sual information, but it seems not well suited for all kind of
data. It would be interesting to further study this relation, and
especially in the context of a specific application.

• We showed that distance preservation during the dimension-
ality reduction is a criterion that can be tuned by considering
solely subsets of pixels. Other classifiers than K-means should
be investigated in this context, and not necessarily only distance-
based.

• The concept of spectral saliency being brand new, we assume
that there are many other applications in which it could poten-
tially be demonstrated as useful. In particular, we think it would
be interesting to consider it for object recognition, classification,
etc. Our preliminary results showed that the activation/normal-
ization process influences greatly object detection, therefore we
believe that this could be a starting point.

The problem of visualizing spectral images, or more generally, large
sets of data, is of particular interest as we are facing new challenges
due to the recent advent of multimedia technologies and computer
science. We hope that this thesis may contribute to elaborating new
technologies and give new perspectives on the matter.
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