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and Bo Jönsson
Manuscript (2012)



ii

List of Contributions

All papers employed own in-house computer codes/programs. These were
developed together with the help and support from Bo Jönsson and Christophe
Labbez.

I I conducted the MC simulations and took part in writing the article.
MF calculation were conducted by C.L.

II I conducted all the simulations and participated in writing the article.

III I performed all the simulations and took part in writing the article.

IV I performed all calculations and had the main responsibility for writing
the manuscript.

V All the MC simulations in 3D were conducted by me. Other simulations
were done by B.J. I took part in the writing process of the manuscript.



CONTENTS iii

Contents

Populärvetenskaplig sammanfattning på svenska 1
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Populärvetenskaplig
sammanfattning på svenska

De flesta ser nog kemi som ett abstrakt och komplicerat ämne mestadels för
att det behandlar byggstenar så små att de inte kan ses med blotta ögat. Men
om man tänker på det så finns kemi överallt! Kemiska processer sker runtom
och inuti oss oavbrutet: i våra kroppar där proteiners kemi spelar en stor roll,
i produkter som schampo och tandkräm, i cement som används för att bygga
våra hus etc. Det borde därför inte komma som någon stor överraskning att
enormt mycket resurser läggs på att förstå olika kemiska processer.

Så vad är då dessa osynliga beståndsdelar som kemi handlar om? Jag tror
mig våga påstå att alla någon gång hört talas om atomer och molekyler
(varav de senare utgörs av en grupp sammanlänkade atomer). Atomer och
molekyler är inte alltid neutrala, d.v.s., dom kan bära en elektrisk laddning.
Övergången från en neutral till en elektriskt laddad enhet kan exempelvis ske
när atomer eller molekyler kommer i kontakt med ett lösningsmedel, vilket
är fallet när ett salt löses upp i vatten och blir till fria joner. Fler exempel
på molekyler som blir laddade i vatten är proteiner, virus, polyelektrolyter
etc. Liksom magneters positiva och negativa poler attraherar varandra, kom-
mer den erhållna elektriska laddningen i molekyler spela en viktig roll för
hur dessa interagerar. Bland många andra faktorer såsom tex partikelge-
ometrin, spelar laddningen en primär roll i kemiska processer. Fysikalisk
kemi fokuserar på att förstå de processer som äger rum när så kallade kol-
loidala partiklar interagerar i en lösning under olika förhållanden. Att utföra
experiment med partiklar i storleksordningen 1-1000 nanometer är inte triv-
ialt. Här kommer beräkningskemin in som en kraftfullt komplement. Genom
att använda matematiska och fysikaliska modeller, så eftersträvar man att
simulera de experimentellt erhållna resultaten och samtidigt förstå de under-
liggande mekanismerna och drivkrafterna på en nivå som ej är möjlig på
något annat sätt.

Den här avhandlingen behandlar Monte Carlo-simuleringar av diskformade
mineralpartiklar. I första projektet undersöktes hur antalet laddningar på en
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diskformad mineralpartikel varierar som funktion av pH i en saltlösning av
olika koncentrationer. Därefter studerades hur denna laddningsfördelning
påverkar bildandet av geler och flytande kristallina faser. Genom denna
studie upptäcktes nya termodynamiskt stabila faser vilket kan leda till utveck-
landet av nya material. Slutligen så studerades tillväxten av diskformade
nanopartiklar och deras interaktioner under förhållande jämförbara med de
förekommande i en cementblandning.
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Popular science summary in
English

Most people see chemistry as an abstract and complicated subject because it
deals with species that can not be seen with bare eyes. But if one thinks about
it, chemistry is everywhere! Chemical processes happen all around you and
inside you everyday : there is chemistry in the human body where proteins
play a great role, in shampoo bottles, the toothpaste, in the cement that is
used to build houses. Then it should not come as a surprise that so much
effort are put into understanding chemical processes.

So what are those invisible species that chemistry is dealing with ? I can say
with few doubts that everyone have heard about atoms and molecules (the
latter being an assembly of atoms). Atoms and molecules are not always neu-
tral species, i.e, they can carry an electrical charge (in this case atoms turn
into ions). This transition from a neutral to a charged species can occur when
the species are put into a solvent (like water). This is the case for example
with salt that dissolves in water and form ions. Examples of molecules that
becomes charged in an solvent are numerous : proteins, virus, polyeletrolytes
... But why is this electrical charge so important ? Like for magnets, where
a positive pole will attract a negative one, the species will start to interact
according to their charge. Among other factors like the shape of the particles,
the role played by the charges in chemical processes is fundamental.
Physical chemistry focuses on the understanding of the behavior of such small
particles (called colloı̈dal particles) in solution. Nevertheless, down to this
scale, the experimental study of colloı̈dal dispersions is not trivial. In this
context computational chemistry happens to be very useful. By the use of
mathematical and physical models, one tries to simulate the results obtained
by experiments and this way one can access properties that are not obtainable
by other means. Hence, it is a complementary technique to experiments.

This thesis deals with simulations, using Metropolis Monte Carlo method, of
mineral particles. In a first project I investigate how the number of charges
on mineral particles varies when emerged into a salt solution. In a second
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project the influence of the charge carried by the particles in the formation
of the gels and liquid-crystals is studied. One of the striking result is the
discovery of new liquid crystal phases which could lead to the development
of new materials. Finally I studied the growth of nanoplatelets and their
interaction in conditions comparable to the one encountered in cement paste.
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Résumé simplifié en français

Beaucoup de personnes voient la chimie comme un sujet abstrait et difficile
parce qu’elle concerne l’étude d’éléments invisibles à l’oeil nu. Mais, en y
réfléchissant, la chimie est partout! Des processus chimiques se déroulent
tout autour de nous et aussi en nous tous les jours : dans le corps humain
oú les protéines jouent un grand rôle, dans les bouteilles de shampoing, dans
le dentifrice, dans le ciment utilisé pour bâtir les maisons... Cela ne devrait
donc être une surprise pour personne qu’autant d’efforts soient employés
dans l’étude des processus chimiques.

Qu’elles sont ces epèces invisibles avec lesquelles la chimie fonctionne ? Je
pense pouvoir affirmer avec peu de doutes que vous avez tous entendu parlé
des atomes et des molécules (qui sont un assemblage d’atomes). Atomes et
molécules ne sont pas toujours des espèces neutres, c’est-à-dire, elles peu-
vent porter une charge électrique (dans ce cas, les atomes sont appelés des
ions). Cette transformation d’une espèce chargé à une espèce neutre peut
se dérouler lorsque la particule est plongée dans un solvant (comme l’eau).
C’est le cas par exemple lorsque l’on met du sel dans l’eau et que des ions
sont formés. Les exemples de particules qui deviennent chargées dans un
solvant sont nombreux: protéines, virus, polyélectrolytes ... Mais pourquoi
cette charge électrique est elle si importante ? Comme pour les aimants, où le
pôle positif attire le négatif, les espèces vont commencer à interagir selon leur
charge. Parmi d’autres facteurs, tel que la forme de la particule, le rôle joué
par les charges dans les processus chimiques est primordial.
La physico-chimie se concentre sur la compréhension du comportement de
telles petites particules (appelés particules colloı̈dales) lorsqu’elles sont im-
mergées dans une solution. Néanmoins, à cette échelle, l’étude expérimentale
des dispersions colloı̈dales n’est pas triviale. Dans ce contexte, les simu-
lations informatiques se trouvent être très utile. Elles ont pour but, par
l’emploi de modèles physiques et mathématiques, d’essayer de reproduire les
résultats obtenus expérimentalement et d’accéder à des valeurs qu’aucunes
autres techniques ne peuvent procurer. Elles sont donc complémentaires aux
expériences.
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Cette thèse traite de simulations moléculaires, réalisées à l’aide de l’algorithme
de Metropolis, de particules minérales en forme de disques. Dans un pre-
mier projet, l’évolution du nombre de charges sur une particule en fonction
de la concentration en sel est étudiée. Dans un second temps, l’influence
de la charge portée par les particules sur la formation des phases de gels et
de cristaux liquides est examinée. Un des résultats les plus marquant est la
découverte de nouvelles phases de cristaux liquides qui pourraient permet-
tre le développement de nouveaux matériaux. Enfin, la croissance de nano
particules et leurs interactions sont étudiées dans des conditions similaires à
celles rencontrées dans les pâtes de ciment.
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Chapter 1

Introduction

Nano-particles with a plate-like geometry are common in nature and synthetic
materials, or at least can well be approximated as such. The most common
examples are minerals like clays, gibbsite and calcium silicate hydrate (C-
S-H) the main hydrate found in hydrated cement paste. Plate-like particles
are also found in organic chemistry, where bonding molecules into a discotic
macromolecule is possible. Clays and C-S-H dispersions in aqueous solutions
is the main focus of this work. Their geometry combined, in some cases,
with a charge heterogeneity, e.g. clays, give rise to complex and nonisotropic
inter-particle potentials. The sign and the magnitude of the overall interpar-
ticle potential depends strongly on the anisotropy, concentration, and charge
heterogeneity of the particles as well as on pH of the aqueous solution, salt
nature and concentration. This results in a vast zoo of atypical macroscopic
states and behaviors when dispersed in aqueous solution. As an example,
clays are known to form gels at low particle volume fractions (φ) and liquid
crystals when concentrated. Many industrial applications take advantage of
these properties e.g. drilling, plastics [1], construction materials, papers, soft-
eners, photonics and photovoltaic cells. However, the understanding of those
systems is still in its infancy.

Clays and C-S-H particles belong to the domain of colloids as at least one
of their dimensions is in the nanometer range. Since the forties, the stability of
colloidal dispersions in aqueous solution has been rationalized with the help
of the DLVO theory [2,3], that combines a short range attractive (van der Waals)
potential with a long range electrostatic repulsion. Indeed, a strong attraction

[1] S. Laschat, A. Baro, N. Steinke, F. Giesselmann, C. Hägele, G. Scalia, R. Judele, E. Kapatsina,
S. Sauer, A. Schreivogel, and M. Tosoni, Angew. Chem. Int. Ed. 46, 4832 (2007).

[2] B. V. Derjaguin and L. Landau, Acta Phys. Chim. URSS 14, 633 (1941).
[3] E. J. W. Verwey and J. T. G. Overbeek, Theory of the Stability of Lyophobic Colloids (Elsevier

Publishing Company Inc., Amsterdam, 1948).



8 Introduction

can force particles to coagulate and lead to a phase separation, whereas a
dispersion under strong repulsion can remain stabilized for years [4]. Un-
fortunately, the DLVO theory is valid only for a limited range of conditions.
In particular, it is valid in the thermodynamic limit of infinite particle dilu-
tion and for weakly coupled systems, i.e. where ion-ion correlations are not
predominant. What is more, the DLVO theory focus on the simplest case: dis-
persions of charged isotropic particles. The lack of a generalized DLVO like
effective potential, on one hand, and of extensive computer simulations on
dispersion of anisotropic particles, on the other hand, best explains our poor
understanding of these complex systems and the motivations of this work.

Here, computer simulations are used to identify, at the microscopic scale,
the different chemical and physical processes when plate-like particles are
immersed into a salt solution in an attempt to rationalize macroscopic ob-
servables. In Paper I a detailed investigation of the charging process of the
titrable edges of natural clay particles is performed in comparison with poten-
tiometric titration experiments. In papers II - IV, the modeling of dispersions
of plate-like particles in 1-1 salt solutions in various conditions is considered.
Paper II deals with the formation of gels in the low φ range and discusses
in some details the similarities and differences of the model results with ex-
perimental observations on laponite and montmorillonite. Paper III prospects
the high φ range where several liquid crystal phases are found. In Paper
IV a detailed investigation of the geometry and charge anisotropy effects on
the formation of gel and nematic phases is performed and discussed in light
of recent experimental findings on dispersions of various mineral plate-like
particles. Finally, paper V describes the growth and interaction between ho-
mogeneously charged disc particles in presence of multivalent counterions in
relation to observations on C-S-H nano-hydrates.

The book is organized as follow. First the theoretical background and
simulation techniques are described and then in section VII conclusions on
this work are drawn. For those who do not want to dwell on a full length
article, a brief summary of the important results is also presented. The papers
are presented in the appendix at the end of the book.

[4] D. F. Evans and H. Wennerström, The Colloid Domain where Physics, Chemistry, Technology and
Biology meet (VCH Publishers Inc., New York, 1994).
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Chapter 2

System

An interesting point when one works with physical chemistry is the necessity
to connect the different scales. As a matter of fact, the connection between
a macroscopic system in a gel state (as obtained in an experiment) with the
organization of particles and the interparticle forces at a nanometer scale (as
obtained by computer simulation) is not trivial. One thing I would like to
point out in this book is the route one has to follow to be able to work this
way up through the different scales and to link a real experimental system
constituted of billions of particles moving around a solution to the hundreds
of platelets that are included in a computer simulation.

2.1 Structure

This thesis deals with the simulation of plate-like particles and the results are
compared, when possible, to experimental systems of mineral disk-like par-
ticles from diverse origin (clays[5], gibbsite [6], cement [7]...). Montmorillonite
and laponite clays and C-S-H particles (found in cement paste) are classified
as phyllosilicates. It means that their crystalline structure is constituted of
an octahedral layer sandwiched by two tetrahedral layers of silicate. In the
case of clays, the layers are made of covalently bonded silicate atoms that or-
ganize in tetrahedral or octahedral sites. The tetrahedral sites share three of
their apex while the last one is linked to the octahedral site. Exchangeable
metal ions are present in both type of sites, and can be substituted by ions

[5] G. W. Brindley and J. J. Comer, THE STRUCTURE AND MORPHOLOGY OF A KAOLIN
CLAY FROM LES EYZIES (FRANCE).

[6] H. Saalfeld and M. Wedde, Zeitschrift fur Kristallographie 139, 129 (1974).
[7] J. J. Chen, J. J. Thomas, H. F. W. Taylor, and H. M. Jennings, Cement and Concrete Research

34, 1499 (2004).
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of lower valency. This produces a negative structural charge. The cleavage of
the crystalline structure gives rise to titratable sites on the edges, which sign
and magnitude depend on pH, electrolyte nature and concentration. Natural
clays e.g. montmorillonite have a thickness of 1 nm but a diameter that can
vary between 100 and 1000 nm. Laponite, a synthetic clay, has a smaller di-
ameter than montmorillonite, typically 20-50 nm, for the same thickness. The
crystalline structure of gibbsite contains stacks of sheets formed by aluminum
hydroxide octahedral sites. The aluminum ions can be exchanged with anions
of lower valency introducing this way a structural charge. Titratable sites are
also present on the rims as a consequence of the cleavage of the crystalline
structure. Gibbsite particles are often of a hexagonal shape of thickness 10-
15 nm and diameter between 100-400 nm. The C-S-H particles are formed
through the conjugated reactions of dissolution of tricalcium silicate grains
(C3S) and of precipitation. These particles are in the form of nanoplatelets
with dimensions 60 x 30 x 5 nm3. The C-S-H particles carry titratable silanol
sites both on the edges and on the basal surface. At high pH and in presence
of calcium salt solutions they are found to be highly negatively charged [8].

2.2 Gels

A gel is a non-ergodic disordered state that displays no long-ranged order.
Macroscopically, it is reached when the solution does not flow any longer. The
gel phase originates from attractive interactions between particles and thus
are formed by percolated particles that form an infinite elastic network. The
characteristic length of the network between two adjacent junctions, is much
larger than the size of the particle. Moreover, if E is the depth of the attractive
potential between two junctions: E/kBT � 1 [9]. Experimentally gel phases
can be characterized by the static structure factor S(q) obtained from scattering
experiments. As a matter of fact, the S(q) curve presents two peaks, the first
at large q reflects the short interparticle distance between aggregated particles
and the second at low q, followed by a power law tail, reflects the characteristic
size and fractal nature of the growing network. Gel and glass present different
dynamic properties due to their different characteristic lengths. This can be
investigated with the help of dynamic light scattering (DLS) [10,11]. Note that,
from simulations, the static structure factor, and dynamic properties (through

[8] C. Labbez, B. Jönsson, I. Pochard, A. Nonat, and B. Cabane, J. Phys. Chem. B 110, 9219
(2006).

[9] H. Tanaka, J. Meunier, and D. Bonn, Phys. Rev. E 69, 031404 (2004).
[10] S. Jabbari-Farouji, G. Wegdam, and D. Bonn, Phys. Rev. Lett. 99, 021402 (2007).
[11] S. Jabbari-Farouji, H. Tanaka, G. Wegdam, and D. Bonn, Phys. Rev. E 78, 061405 (2008).
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time autocorrelation functions) are also reachable [12].

2.3 Attractive glass

Glasses are non-ergodic disordered states but unlike the gel, their elasticity
originates from caging effects. The formation of an attractive glass is then
possible when attractive interactions are at play in the colloidal system. Typ-
ically such a phase would form if the volume fraction φ is high enough and
if the depth of the attractive well E is of the order of kBT [9]. Neverthe-
less, even if attractive interactions are active, the repulsive interactions still
play the main role, contrarily to the gel phase. As experimental evidence of
the formation of a glass phase, the static structure factor presents only one
peak at a distance characteristic of the interparticle distance and shows only
a small change when the system ages. According to Jabbari-Farouji et al. [11],
attractive glass displays features of both glass and gel when experimentally
characterized. Their detection in computer simulations is not trivial.

2.4 Wigner glass

A glass phase can also be found at very low volume fraction and in the ab-
sence of attractive interactions. In this case the caging effect originates from
the double layer repulsion between the particles. Thus, the particles do not
form a network and are spatially disconnected. The formation of the repulsive
glass is favored by low ionic strengths as the double layer repulsion is known
to decrease when increasing salt. All experimental evidences discussed in the
previous section stay true for a Wigner glass. But, unlike the gel phase, a
Wigner glass should melt when a dilution is performed on it. Recently Ruz-
icka et al[13] and Jabbari-Farouji et al [11] reported the formation of a Wigner
glass for high volume fractions for a system of laponite platelets. This contro-
versial result is discussed in paper II.

2.5 Liquid crystals

Due to their geometry, plate-like particles have the ability to form liquid crys-
tals at high volume fractions. In these phases, particles present a long-ranged
positional and/or orientational order but the phase preserves the properties

[12] E. Del Gado and W. Kob, Soft Matter 6, 1547 (2010).
[13] B. Ruzicka, L. Zulian, E. Zaccarelli, M. Sztucki, A. Moussaid, and G. Ruocco, Phys. Rev.

Lett. 104, 085701 (2010).
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of liquids. Onsager rationalized the formation of liquid crystal phases for un-
charged platelets [14,15] and explained, counter-intuitively, that their formation
had an entropic origin. Indeed the origin of these phase comes from the com-
petition between the orientational entropy, that tends to favor isotropic phase,
with the translational entropy that favors liquid crystals. The main classes of
liquid crystals encountered with plate-like particles are the nematic phase, the
smectic phase and the columnar phase, presented in figure 2.1.

Figure 2.1: Representation of the liquid crystal phases encountered with
platelets. a) Nematic phase, b) Smectic phase and c) Columnar phase.

While all of these phases present an orientational order they differ by the
positional correlation between the platelets. The nematic phase present no
positional order whereas the smectic phase, that is constituted of platelets
gathered in parallel sheets, has a one dimensional positional order. Finally,
the columnar phase, where the particles are organized in stacks including a
large number of platelets, have a two-dimensional positional order. While the
formation of such phases with uncharged platelets is now well understood
[16], the influence on the liquid crystal formation of charged platelets remains
unclear. This is investigated in papers II - IV.

2.6 Coarse graining

Ideally one would try to describe a system as accurately as possible. Unfortu-
nately, as described above, a mineral platelet has a minimum diameter of ∼ 50
nm which represents about 30000 atoms. With todays processors, computer
simulations can only be done with a limited number of species (around 106

species for Monte Carlo as an example). It becomes then mandatory to find

[14] L. Onsager, Phys. Rev. 62, 558 (1942).
[15] L. Onsager, Ann. N.Y. Acad. Sci. 51, 627 (1949).
[16] J. A. C. Veerman and D. Frenkel, Phys. Rev. A 45, 5632 (1992).
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a way to reduce the number of species in the simulations. The first way is
to consider smaller particles than the actual studied system. This is actually
not a big issue if one is interested in a qualitative description of the physical
phenomenon that happens in a system. A second way would be to vulgarize
the description of some species. That is where coarse graining comes into
play. It consists of gathering several units of any constituent of the system
into a single grain. The coarse graining has to be done with some care. While
decreasing the level of description of the model or the degrees of freedom of
the particles, one has to make sure to preserve the principal physical proper-
ties. For instance, the detailed description of a charge distribution can be lost
when merging several point charges into a single one. In all papers, several
different coarse grain models have been used : in paper I, the detailed de-
scription of the structure is replaced by hard grains to account for the finite
size of the particle. In papers II - IV, the description of the particles evolves
with the separation between themselves and in the last article, one platelet is
represented as a collection of charged grains. This method has been shown
to reduce the computing time up to several orders of magnitude and will be
further discussed in chapter 6.1.
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Chapter 3

Statistical Mechanics and
Thermodynamics

At a microscopic scale, a solution can be seen as an infernal mixture of species
in constant motion. How can one link this chaotic states to a macroscopic
thermodynamic property as obtained from experiments (pressure, tempera-
ture, ...) ? Statistical thermodynamics is the Rosetta stone that provides the
connection between the two scales. Originally from the 19th century, sta-
tistical thermodynamics is based on two postulates. The postulate about
equal a priori probability states that [17] ”an isolated system in equilibrium
is equally likely to be in any of its accessible microscopic quantum states”,
and links macroscopic properties of an isolated system to probability theo-
ries. Indeed, many of the macroscopic properties are time-averaged proper-
ties, which makes them difficult to access. Instead, the ergodic hypothesis
allows to access this properties by considering ensemble average. It states : ”
the time average of any mechanical variable is equal to the ensemble average
of the same variable”. An ensemble here is defined as an important number
of replica of the system.

3.1 Statistical mechanical ensembles

It is common to start looking into statistical thermodynamics [18,19] consid-
ering an isolated system with constant energy U, volume V, and number of

[17] R. Kjellander, The basis of statistical thermodynamics or My favorite path to thermodynamics and
beyond (University of Göteborg, Göteborg, Sweden, 1991).

[18] T. L. Hill, An Introduction to Statistical Thermododynamics (Dover Publications Inc., New York,
1986).

[19] D. A. McQuarrie, Statistical Mechanics (Harper Collins, New York, 1976).



16 Statistical Mechanics and Thermodynamics

particles N. In this ensemble, defined as the microcanonical ensemble, the
entropy S is given by :

S = kB ln ΩU,V,N (3.1)

where kB is the Boltzmann constant, and ΩU,V,N is the microcanonical par-
tition function. It refers to the number of accessible quantum states of the
system. In an isolated system this function is sufficient to determine a large
amount of thermodynamic properties (P, T, µ, ...). Partition functions are ac-
cessible from other ensemble. In the canonical ensemble, where the number
of particles N, the volume V and the temperature T are kept constant, it is
defined from the microcanonical partition function as :

QN,V,T = ∑
U

ΩU,V,N e−βU (3.2)

where β = 1/kBT. QN,V,T is referred as the canonical partition function. Fi-
nally, in the grand canonical ensemble, where exchange in particles between
the system and a reservoir is allowed, the grand potential, takes the form :

Ξµ,V,T = ∑
N

QN,V,T eβµN (3.3)

where µ is the chemical potential of a particle in the system. As for the
microcanonical ensemble, thermodynamic properties are derivable from these
two last ensemble. This way, the Helmholtz’ free energy is defined in the
canonical ensemble as :

AN,V,T = −kBT ln QN,V,T (3.4)

While the product of the pressure and the volume can be related to the grand
potential:

PV = kBT ln Ξµ,V,T (3.5)

3.2 Classical statistical mechanics

When considering a continuum approach rather than a quantum mechani-
cal one, one has to integrate over all the classical ”states” of a system. The
canonical partition function becomes :

QN,V,T =
1

N!h3N

∫∫
e−βH(pN ,qN)dpNdqN (3.6)

where h is the Planck’s constant, H(pN , qN) the Hamiltonian of an N compo-
nents system of coordinates q and momenta p. As the particles are indistin-
guishable the factor N! comes into play in the denominator. The Hamiltonian
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of the system is indeed the total energy of the system and can be written as
the sum of kinetic energy K(pN) and a potential energy U(qN), which gives :

H(pN , qN) = U(qN) + K(pN) (3.7)

Then, if one integrates over the kinetic part, equation (3.6) can be simplified
as follow :

QN,V,T =
1

N!Λ3N

∫
e−βU(qN)dqN (3.8)

where Λ = h/
√

2πmkBT and m is the mass of one particle.

3.3 Protonation state

As stated in chapter 2, the studied minerals carry titrable groups, clays on
the edges and C-S-H on all surfaces. Several types of groups exist and are
formed by a metal atom (Me) linked to a hydroxyl group. The total charge
carried by those groups may vary and can be integer or fractional. A typical
protonation/deprotonation reaction can be written as:

−Me−OH ←→ −Me−O− + H+ (3.9)

The intrinsic dissociation constant of above reaction is defined by :

KMe−O =
aH+ aMe−O

aMe−OH
=

γH+γMe−O
γMe−OH

· cH+cMe−O
cMe−OH

(3.10)

where ai are the activities, ci the concentrations and γi activity coefficients of
the species i. One can then express the pKa in terms:

pKa = −log
γH+γMe−O

γMe−OH
− log

cH+cMe−O
cMe−OH

(3.11)

Let’s denote Γ = γH+γMe−O/γMe−OH and pH the negative logarithm of the
proton concentration, we obtain:

pKa = −logΓ− log
cMe−O

cMe−OH
+ pH ⇐⇒ −log

cMe−O
cMe−OH

= logΓ− (pH − pKa)

(3.12)
where cMe−O

cMe−OH
is the probability of deprotonation of the group, and can be

written as a free energy difference:

β∆AMeOH→MeO = −ln
cMe−O

cMe−OH
= lnΓ− ln10· (pH − pKa) (3.13)
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lnΓ is defined as the sum of excess chemical potentials of all the species. This
can be used [20,21] to derive an MC move as explain in section 5.3.4 .

[20] M. Ullner, B. Jönsson, and P.-O. Widmark, J. Chem. Phys. 100, 3365 (1994).
[21] M. Lund and B. Jönsson, Biochemistry 44, 5722 (2005).
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Chapter 4

Intermolecular Interactions

The most accurate way to calculate the total interaction between two particles
would be to solve the Hamiltonian of this system. This quantum mechanical
calculation is at least very expensive and at worst impossible to carry out. It
is then necessary to use interactions like electrostatic interactions, exchange
repulsion or van der Waals interactions [22] to describe the behavior between
particles [23]. The aim of this chapter is not to give a full descriptions of all
the existing interactions but rather to give a brief description of those used in
papers I - V.

4.1 Coulombic interactions

Two charged species i and j sitting at a fixed distance rij from one another
will experience the field emitted by the other molecule. This strong and long-
ranged interaction is known as the Coulombic interaction [24] and reads :

u(rij) =
qiqj

4πε0rij
(4.1)

where q are the charges of the species and ε0 is the permittivity of vacuum
(ε0 = 8.854.1012 C2 J−1m−1). This description of the interplay between two
charged species does not take into account any influence of a surrounding
medium and remains only correct in vacuum. When the charged molecules
are immersed into a solvent, the solvent molecule rearrange according to the
total emitted field. The effect is particularly important in a highly polar sol-
vent like water. It can be derived that for purely dipolar solvent the electro-

[22] V. A. Parsegian, van der Waals Forces (Cambridge University Press, New York, 2006).
[23] J. Israelachvili, Intermolecular and Surface Forces (Academic Press, London, 1991), 2nd edn.
[24] J. D. Jackson, Classical Electrodynamis (John Wiley & Sons, Inc., New York, 1999).
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static interactions scale with a factor of ε−1
r , where εr is the dielectric constant,

changing the Coulomb interaction to its solvent average form :

w(rij) =
qiqj

4πε0εrrij
(4.2)

The most commonly used solvent is water and its dielectric constant is equal
to 80 at room temperature. Indeed, dielectric constant is known to be temper-
ature dependent as well as salt concentration dependent [25,26]. The averaged
Coulomb interaction is then a free energy. When salt is introduced in the
solution, it will influence the interactions the same way the solvent does. It
becomes possible to derive the expression of the Coulomb interaction when
a simple 1:1 salt is taken into account. This is known as the Debye-Hückel
potential [4] , derived from the linearized Debye-Hückel theory [27] :

u(rij) =
qiqj

4πε0εr

e−κrij

rij
(4.3)

where κ is the inverse Debye screening length and is defined as :

κ2 =
∑i(zie)2ci
ε0εrkBT

(4.4)

where ci and zi are the concentration and the valency of the ionic species i,
respectively. Scaling the Coulomb interaction with e−κrij simply represents
the decay of the electrostatic interactions due to the salt screening.
Note that in all papers included in the thesis, εr is considered constant through-
out space. This approximation is often used in simulation of colloı̈ds and is
known to give a good agreement between simulations and experiments for
several types of processes [28], like the charging process for instance.

4.2 Short ranged interactions

Due to Pauli’s exclusion principle, it is known that two particles repel one an
other at short separation. The simplest way to account for the finite size of
the particles in a simulation is to consider them as impenetrable hard spheres.
This is denoted as the hard sphere model :

u(rij) =

{
0 rij > σij

+∞ rij < σij
(4.5)

[25] J. Hubbard and L. Onsager, J. Chem. Phys. 67, 4850 (1977).
[26] J. M. Cailol, D. Levesque, and J. J. Weis, J. Chem. Phys. 85, 6645 (1986).
[27] P. Debye and E. Huckel, Z. Physik 24, 185 (1923).
[28] M. Lund, B. Jönsson, and C. E. Woodward, J. Chem. Phys. 126, 225103 (2007).
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where σij is the minimum separation between species i and j, σij = (di + dj)/2,
and d is the diameter. This potential presents inconvenience in the fact that
it is not a continuous function and causes problems when one want to derive
properties at contact, see e.g. force calculation in chapter 6.3. One way to
circumvent this problem is to use a soft repulsive interaction. One of them is
the 6-12 Lennard-Jones (LJ) potential expressed by :

u(r) = 4ε((
σij

rij
)12 − (

σij

rij
)6) (4.6)

where ε describes the strength of the interaction. This potential combines the
short range attractive part in r−6 from the van der Waals attraction with a
soft repulsion that decays as r−12. In fact, it is one of the most widely used
potentials in the literature. One way to get rid of the attractive part and to
preserve soft repulsion is to shift and truncate this potential. This gives rise
to the shifted and truncated LJ potential :

u(rij) =





4ε((
σij

rij
)12 − (

σij

rij
)6) + ε rij <

6
√

2σij

0 rij >
6
√

2σij

(4.7)

It has the advantage of being less long-ranged than a pure r−12 soft repulsive
potential.
Note that the combination of the Coulombic interaction and the hard sphere
model is called the primitive model [18] and is often used in simulations of
colloı̈dal systems.

4.2.1 Effective pair potentials

The use of effective pair potentials is an attractive and efficient way to model
/ simulate complex systems [29] like the ones of interest in this work. Indeed,
in such systems a brute force calculation that would involve, in addition to
the many atoms constituting the particles, a molecular description of the dense
solvent, i.e. water concentration is roughly 55 mol/l, and all the ions is ex-
tremely challenging if not stupid. The philosophy behind the term effective,
instead, consists in averaging over all the configurations of some of the com-
ponents. An effective pair potential has by its very nature, the characteristics
of a free energy. As an example, equation 4.2, introduced in preceding sec-
tion, is an effective pair Coulombs potential where the solvent molecules has
been averaged out and reduced to one single quantity that is the dielectric
constant εr. Similarly, equation 4.3 for the screened Coulombs interaction is a

[29] M. Turesson, B. Jönsson, and C. Labbez, Langmuir 28, 4926 (2012).
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effective potential between two point charges where the degrees of freedom of
the solvent molecules and ions have been averaged over.

On a more general ground, the effective pair potential, or the potential of
mean force between two macro-particles (w(2)(R)), defines the average work
needed to bring particles i and j from infinite separation to R,

w(2)(R) = −
∫ R

∞
Fij(r)dr (4.8)

where Fij(r) is the average force acting on the macro-particles i and j when
separated a distance r. w(2)(R) is also related to the probability P(R) of finding
two macro-particles a distance r,

P(R) ∝ exp(−w(2)(R)/kBT) (4.9)
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Chapter 5

Monte Carlo Simulations

Many different simulation techniques from diverse origin exist. Many of them
are based on statistical mechanics, like Molecular Dynamic (MD), Brownian
Dynamic (BD) or Monte Carlo (MC) [30,31,32]. The one of interest here is the
MC simulation technique. While MD and BD are dynamic simulations and
calculated properties are time-averaged properties, MC is a stochastic tech-
nique and works with ensemble average. From MC, it is possible to evaluate
definite multidimensional integrals, like eq. 3.8, which are intractable with
analytic techniques. It also provides several advantages inherent to this tech-
nique: i) the equilibrium is quickly reached, ii) it allows the use of a large
number of ensembles and iii) it allows unphysical displacements of the parti-
cles.

5.1 Thermal averages and importance sampling

Actually, MC simulations can not be used to evaluate directly integrals of the
form

∫
e−βU(qN)dqN but indeed they make reachable thermal average of any

observable ξ which expression is given by:

< ξ >=

∫
ξ(qN)e−βU(qN)dqN
∫

e−βU(qN)dqN
(5.1)

Technically, this can be done by averaging over a high number of reproduc-

[30] D. Frenkel and B. Smit, Understanding Molecular Simulation (Academic Press, San Diego,
1996).

[31] M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids (Oxford University Press,
Oxford, 1989).

[32] Landau and Binder, A Guide to Monte Carlo Simulations in Statistical Physics (Cambridge Uni-
versity Press, Cambridge, 2000).
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tions of the system which are representative of an ensemble. Those are gen-
erated stochastically with the help of random numbers. Obviously, the more
configurations of the system are generated and averaged over, the more accu-
rate the evaluation of the observable. Note that, it is important to use a good
random number generator if one wants to avoid bias in the sampling. This
will not be developed in this book, for more detailed information see reference
[32]. However, at this point, one problem emerges. Most of the generated con-
figurations of the system will not give any informations about the observable
of interest. Then an important number of reproductions would be needed to
evaluate correctly < ξ > and it would turn MC simulations into a slow and
useless technique. Indeed only configurations which gives informations of
interest should be sampled. This problem is solved with the method of the
Metropolis Importance Sampling [33]. The idea is to sample configurations
with a probability proportional to their Boltzmann weight :

P(qN
i ) =

e−βUi(qN
i )

∫
e−βU(qN

i )dqN
i

(5.2)

where i, refers to the i:th configuration of the system. Then it follows that the
probability of going from the configuration i to j is defined as :

P(qN
i )

P(qN
j )

= e−β(U(qN
i )−U(qN

j )) (5.3)

Equation 5.3 is actually very useful as it defines the Metropolis acceptance
test in a MC simulation in the canonical ensemble, that is : the probability of
acceptance to go from configuration i to j is :

αacc(i→ j) = min(1, e−β(U(qN
j )−U(qN

i ))
) (5.4)

The use of this criteria will be detailed in the next section.

5.2 The procedure

In this section, the procedure for a typical MC simulation is described. The
first step is to choose a box of any form (cubic, cylindrical, ...), where the
model particles are placed (randomly or not). Unfortunately the number of
sites (including particles, or other species) that a MC simulation can handle
is relatively limited, i.e about 106. Hopefully the thermodynamic limit is
reached for really small systems, and few particles are needed to get a proper

[33] N. A. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. Teller, and E. Teller, J. Chem.
Phys. 21, 1087 (1953).
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statistical average. At this point a problem that may arise, depending on the
type simulation box used, is that the surface of the box will have a strong
influence on the particles. Or, when interested in bulk properties, one wants
to avoid this effect. One way to circumvent it, is to apply periodic boundary
conditions to the box. It consists of reproducing the main simulation box
in all directions. This creates an artificial periodicity that mimics the bulk
conditions. The next step is to run the Markov chain that consists of several
operations :

• Choose a particle at random in the simulation box.

• Apply a random move to the particle. Different kind of moves are de-
veloped in the next section.

• Calculate the energy difference (using the chosen potential(s)) between
the new and the old configuration. ∆U = Unew −Uold.

• Apply the Metropolis acceptance criteria. For that, one needs to generate
a random number, denoted Rand ∈ [0, 1]. The move is accepted if Rand
< αacc (Eq. 5.4), else rejected.

• If the move is accepted, sample the desired properties.

• Start again from first step.

Usually a first run is done without any sampling. This is called the equili-
bration run. The aim of this operation is to make sure that the system has
reached equilibrium before one starts sampling equilibrium properties. It is
actually in the second run, called the production run, that all properties are
sampled. On the paper, running MC simulations seems like an easy task. But
sometimes it is a bit more intricate. Highly concentrated systems or systems
in (semi-)crystalline phases might reveal themselves tricky to equilibrate due
to their slow ”natural” dynamics. As an example figure 5.1 shows the evolu-
tion of the total energy of a system constituted of 200 platelike particles build
of 199 sites at a high volume fraction of 21 % and at a salt concentration of 1
mM. The system needs between 2 and 2.5 106 cycles (= moves per particles)
to be equilibrated, which corresponds to 8 days of calculation time on 8 pro-
cessors. This is a typical behavior when one deals with simulations of liquid
crystal phases (papers II - IV). At higher volume fraction up to 4 months were
necessary to equilibrate the systems.
A way to help the simulations to converge faster is to implement in the
Markov chain the use of cluster moves, see after 5.3.2.

5.3 Monte Carlo moves

When a particle is moved in the simulation box, the detailed balance criteria
has to be fulfilled, i.e. in equilibrium the probability of accepting a move from
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Figure 5.1: Evolution of the total energy as a function of the number of cycles
for a system of 200 platelets constituted of 199 sites for a volume fraction of
21 % and a salt concentration of 1mM.

configuration 1 to 2 has to be the same as the reverse move (from 2 to 1). This
implies :

P(1)π(1→ 2) = P(2)π(2→ 1) (5.5)

where P(x) is the probability to be in state x and π(a → b) is the transition
probability to go from configuration a to b. Eq. 5.5 can be rewritten :

π(1→ 2)
π(2→ 1)

=
P(2)
P(1)

= e−β(U(2)−U(1)) (5.6)

5.3.1 Single particle displacements

Single particle displacements are the simplest move that exists in a MC sim-
ulation. They consist in choosing one particle at random and translate or
rotate it a certain distance or angle. The amplitude of the moves are usually
set as input parameters of the MC runs. As a rule of thumbs, displacement
parameters are usually set so that the acceptance ratio is between 20 and 40%.
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5.3.2 Cluster moves

Sometimes moving the particles and sampling the configurational space might
be difficult. A trick to help the sampling is to create a ”bias” in the MC sim-
ulation by using unphysical moves that are more likely to be accepted. A
cluster move [30,34]consists in gathering several particles into a cluster and to
make a collective displacement (translation or rotation) of all particles that
belong to the cluster. The acceptance criteria of such a move is :

αcluster
acc = min(1, e−β∆U ∏

kl

1− pnew(k, l)
1− pold(k, l)

) (5.7)

where p(k,l) is the probability for particle k (inside the cluster) and l (outside
the cluster) to be in the cluster. The simplest way to use this criteria is to make
sure that the total number of particles in the cluster is the same before and
after the move. The criteria of affiliation of one particle to the cluster remains
of the choice of the user as the results do not depend on the cluster form. This
is actually satisfactory since it allows to adapt the cluster shape according to
the structure and geometry of the studied system. In papers II -IV, instead of
using the common spherical cluster, where all particles included in a sphere
of radius R from a random particle belong to the cluster, infinite thin slit and
sphero-cylindrical clusters have been developed. A 2D sketch of the cluster
moves with a sphero-cylinder is drawn in figure 5.2.

Figure 5.2: Schematic representation of a cluster move. The cluster described
is the sphero-cylindrical cluster and the figure on the left hand side describes
the result of a rotation while on the right hand side, the result of a translation.

The infinite slit cluster has a fixed thickness (defined in the input parameters).

[34] H. L. Gordon and J. P. Valleau, Mol. Simul. 14, 361 (1995).
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It allows the common displacement of aligned particles. This has been shown
to be efficient when dealing with layered liquid crystal phases, e.g. Smectic B
and columnar phases. The sphero-cylinder cluster has also a fixed thickness
but a variable radius taken at random and allows the displacement of close
proximity particles like aggregated particles. It has been shown to be efficient
for gel phases. Rotation moves of the slit cluster is, however, limited to small
angles, typically ∼ 5− 6◦, since artefacts in the cluster configuration can occur
due to the periodic boundary conditions, as illustrated in figure 5.3.

Figure 5.3: Schematic representation of the rejection of a rotation move of
an infinite cluster. In this case the periodic boundary conditions lead to the
creation of an artefact in the cluster.

In this particular example, particles 1 and 2 are moved out of the simulation
box after rotation of the cluster. Once the periodic boundary conditions ap-
plied, the particles are found in the new positions 1’ and 2’ with the new
interparticle distances inside the cluster different from the original ones, i.e.
d1 6= d1′ and d2 6= d2′ . In this case the detailed balance is not respected and
the MC move is rejected.

5.3.3 Addition or deletion of species

When simulating in the grand canonical ensemble, the simulation box is con-
nected to a reservoir of particles of appropriate species (salt, macroions ...).
This implies that besides of the normal moves, the species have to be allowed
to enter and leave the simulation box. This is done by trying random addi-
tions or deletions of the species in the box [35]. The acceptance criteria for
insertion is defined as :

[35] J. P. Valleau and K. Cohen, J. Chem. Phys. 72, 5935 (1980).
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αinsertion
acc = min(1,

V
Λ3(N + 1)

e(β(µ−∆U))) (5.8)

and for deletion as:

αdeletion
acc = min(1,

NΛ3

V
e(−β(µ+∆U))) (5.9)

where ∆U is the energy difference between the new configuration where the
species are added or removed and the old configuration, V is the volume of
the box, and N the number of species. When changing the number of charged
species, one has to be careful to keep electroneutrality in the box. This is done
by adding a number of molecules whose total charge is zero.

5.3.4 Grand canonical titration method

From the thermodynamic derivation in section 3.3 we extracted the free en-
ergy difference upon deprotonation of a titrable site. This can been used to
develop a MC titration move at the level of the primitive model where the pro-
tons are treated implicitly and for which the energy difference can be written
as:

∆U = ∆Uel ± kT ln 10(pH− pK0) (5.10)

where ∆Uel is the electrostatic part and the second term on the right hand
side accounts for the chemical effects through the log decimal of the intrinsic
dissociation constant (pK0) evaluated in the appropriate thermodynamic ref-
erence state (ideality). Note that the minus sign is for deprotonation and the
plus sign for protonation.
In practice, the method consists in (i) changing the charge status of the site
taken at random and (ii) moving an arbitrary salt ion in or out from the sim-
ulation box to maintain the electroneutrality of the system. Steps (ii) makes
eq. 5.10 incorrect by an energetic term associated with the move of the simple
salt ion. A grand canonical titration method has been proposed [36] to remedy
this problem. It relies on the idea that the titration can be decomposed in
several steps. As an example the (de)protonation can be decomposed in two
successive steps that involve i) the (de)protonation of the surface and ii) the
exchange of the ion couple (H+, B−) with the bulk. For deprotonation, the
acceptance rule thus reads:

αdeprotonation = min(1,
NB
V

e−βµB e−β∆Uel
e+ ln 10(pH−pK0)) (5.11)

[36] C. Labbez and B. Jönsson, Lect. Notes Comp. Sci. 66, 4699 (2007).
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and for protonation :

αprotonation = min(1,
V

NB + 1
e+βµB e−β∆Uel

e− ln 10(pH−pK0)) (5.12)

where µB is the chemical potential of the simple salt anion B−.
This method was used in paper I.
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Chapter 6

Simulations Techniques

An important number of simulation programs (open source and commercial
codes) are available, e.g. Gromacs [37](MD), Faunus [38] (MC), Molcas [39]

(QM). These codes can, in principle, be handled by a large community of
expert and non-expert users. All the codes used during my PhD are in-house
written. It is relevant to mention here that a lot of effort were devoted into
code development and optimization to obtain the results presented in this
work. The purpose of this section is to highlight some of the techniques I
used to improve the efficiency of Monte Carlo simulations and to analyze the
results.

6.1 Distance dependent coarse graining

As stated in chapter 2, one of the most efficient way to decrease the comput-
ing time is to coarse grain the system. For this purpose, a distance dependent
coarse graining was developed and used in the simulations presented in pa-
pers II-IV. Its principle relies on the idea that at large inter-particle separation
the use of the same level of particle description as at short separation is not
necessary when calculating the inter-particle interactions. Indeed, a detailed
description at short separation and a point-like net charge at large separation
give almost the same degree of accuracy. Figure 6.1 illustrates the particle
description employed on the fly during simulations as a function of their sep-
aration for calculating the interactions.
In practice, three levels of description were used, as described in Fig. 6.1,
delimited by two cut-off distances, f1 and f2. These conveniently allow to

[37] http://www.gromacs.org/.
[38] http://faunus.sourceforge.net.
[39] http://www.molcas.org/.
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Figure 6.1: Description of a particle as a function of its separation with respect
to the others when calculating the interactions. At short separations, the full
description is used; at intermediate separations, the sites are gathered into a
collection of hexagonal patches and at large separations the particle is reduced
to a punctual net charge. f1 and f2 are user defined cut-off distances, see the
text for more details.

switch from one level of description to another during a simulation. f1 and f2
were determined by comparing the energy of interaction between two rings of
appropriate charge and size with those obtained with the level of description
described above for a large range of screening length. At a given κ, the cut-off
distance was defined as the distance that gives an energy difference of ∼ 10−6

kT. The obtained points were interpolated with a simple exponential function
as exemplified in Figure 6.2. Note that the procedure has to be repeated for
all particle sizes and net charges considered.

6.2 Phase characterization

6.2.1 Nematic order parameter

A convenient way to characterize a nematic phase in a simulation is to cal-
culate the nematic order parameter (S) which is a measurable quantity in an
experiment. S is bound between zero and unity and measures the long range
orientational order characteristic of a nematic phase. It takes the value of
unity in a sample where all the platelets are perfectly orthogonal to the sam-
ple director, n, defined as the spatial and ensemble average of the particle
normal vectors, u. S = 0 when they are randomly oriented. As a matter of
fact, S2 = P2(r → ∞) where P2(r) is the second Legendre polynomial of the
azimuthal angle between the normal vectors of two platelets. P2 = 1 when the
normals are parallel and P2 = −1/2 when perpendicular. Typically, S ∼ 0.4
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Figure 6.2: Cut-off distances, f1 and f2, as a function of the inverse screening
length κ for particles having a diameter of 150 Å, a net charge of -103 e and
patches with a net charge of -19e. The dashed lines show the result of the
exponential fits.

at the isotropic/nematic phase transition. In addition, S is found to increase
rapidly with φ at the isotropic/nematic phase transition which allows to de-
fine quite accurately its position, as exemplified in figure 6.3.
Although S can in principle be calculated from P2 extrapolated at large r it
is in most of the cases computationally cumbersome since this presupposes
that simulations are run on large systems. More conveniently, S may be ob-
tained from the evaluation of the director [40]. Indeed, S can be written as the
following ensemble average,

S =
1

2N
〈

N

∑
i

3ui ·n− 1〉 (6.1)

where N is the total number of particles. The length scale of director fluctu-
ations is large compared to a typical simulation box size, and, consequently,
a single director apply to the simulated sample at any instant. That is, the
typical length scale of a liquid crystal without defect is considerably larger

[40] M. Allen, G. T. Evans, and D. Frenkel, Hard Convex body fluids (John Wiley & Sons, Inc., New
York, 1993).
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Figure 6.3: Nematic order parameter as a function of φ calculated for a system
of 200 uncharged platelets constituted of 199 sites and of diameter 150 Å. S is
found to increase rapidly at the isotropic/nematic transition.

than what is so far possible to simulate. During the course of a simulation
the director, however, slowly fluctuates, i.e. change direction. The difficulty
to determine the nematic order parameter is, thus, to determine the director.
For this purpose two routes were followed. The first consists in calculating
the director for each configuration, since ui = −ui (no polarity), n can be cal-
culated like n = ∑±ui, and S from equation 6.1. The second is based on the
maximization of S with respect to rotation of n. It can be shown [40] that writ-
ing S = n ·Q ·n, where Q is the order parameter tensor, reduces the problem
to diagonalizing Q ·Q, and may be written as,

< Q >=
1
N
〈

N

∑
i=1

3
2

ui ·ui −
1
2

I〉 (6.2)

where I is the identity matrix. The eigenvalues of this tensor are λ+, λ0 and
λ− in order of decreasing size. They are directly related to the order nematic
parameter as :





λ+ = S

λ0 = −S/2

λ− = −S/2

(6.3)
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The eigenvector corresponding to λ+ gives the director.

Figure 6.4 shows the behavior of the calculated nematic order parameter as a
function of the number of MC cycles at two different volume fractions using
the two methods described above. At low particle concentrations, i.e in the
isotropic phase (Fig. 6.4 left), S values obtained from equation 6.3 are con-
verged after ∼ 500 cycles. From the direct evaluation of the director, equation
6.1, the results converge more slowly. Equation 6.3 is more accurate at low
volume fraction but both techniques are equivalent at high volume fraction,
see Fig. 6.4 right). In this example, S obtained from λ+ and equation 6.1 are
indistinguishable and after a few cycles, converge to ∼ 0.9. From this com-
parison and further tests, not presented here, it was found that S determined
from λ+ was the more stable one. All the calculations of S presented in the
papers were thus determined from λ+.

Figure 6.4: Nematic order parameter obtained from equations 6.3 and 6.1,
see the text for more details. Simulations are performed for a system of 200
platelets constituted of 199 sites, of diameter 150 Å and net charge Znet=-151e.
The salt concentration is 10 mM and the particle volume fractions are chosen
such as φ=7% (left), and 18% (right).

6.2.2 Columnar phases

In paper III formations of columnar phases are described. In addition to the
usual radial distributions, several characteristic structural parameters were
determined to characterize them. These are the average inter-columnar dis-
tance, the average intra-columnar distance and the average angle of the parti-
cles with the columnar phase director as depicted in Figure 6.5
To do so, the following procedure is used and repeated for all particles of
a considered configuration. A “columnar” cylinder (dotted) and “planar”
sphero-cylinder (dashed lines) centered on a chosen particle are created ori-
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Figure 6.5: Schematic representation of the columnar structural parameters; h:
intra-columnar distance; l: inter-columnar distance, θ average particle angle.

ented according to its normal vector. The columnar cylinder is used to deter-
mine the nearest neighbors in the same column called intra-columnar (black
particles). The planar sphero cylinder (dashed line) is used to find the neigh-
bors in the adjacent columns belonging to the same or nearest planes desig-
nated as inter-columnar (red particles). The geometrical parameters are then
recorded as a function of the number of nearest intra- and inter-columnar
neighbors. The analysis is included in the Markov chain and takes place typ-
ically every 4000 cycles. At the end of the MC simulations the distribution of
the different structural parameters are determined. Note that the dimensions
of the two geometrical probes have to be adapted according to the columnar
phase studied.

6.2.3 Gels

As explained in chapter 5, MC simulations do not provide access to dynamic
quantities. Then to capture the gel formation from the simulations, two pa-
rameters are considered: the percolation and the elasticity of the system. The
percolation is studied through the connectivity of the particles in the simu-
lation box. Two platelets are considered to be ”connected” neighbors if the
separation between a site in one platelet is within 15Å of a site in the other.
Several connected platelets are said to form a cluster. From these definitions
several quantities are calculated like:

• The average number of neighbors for a platelet in a cluster (〈Nnei〉).

• The average number of platelets in a cluster (〈Ncl〉).

• The probability to find a particle in a cluster of size X (〈Pcl
X 〉).
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• The average fraction of particles in a cluster =
∫ N

2 Pcl
X dX (〈 f cl〉).

The elasticity of the suspension is evaluated calculating the average squared
force acting on a particle. For that, the squared force is calculated for the three
Cartesian components: 〈F2

x 〉, 〈F2
y 〉 and 〈F2

z 〉 where:

〈F2
x 〉 = −

〈(
∂w(R)

∂x

)2
〉

(6.4)

The total average squared force is then considered to be the arithmetic average
of the three Cartesian components.

6.3 Potential of mean force between two platelets

In paper V the potential of mean force, pm f , between two charged platelets
is studied at the level of the primitive model. The pm f is calculated within a
closed cylindrical cell where the particles are allowed to move along the axis
of revolution of the cell z.
The pm f calculation of two platelets quickly becomes computer demanding
as their size grow. This is related to the difficulty to move the platelets due
to their geometrical anisotropy, the number of species involved and the mag-
nitude of the interactions in play. For this reason the calculation of the pm f
from the platelet radial distribution function, c.f. equation 4.9, turns out to
be rather inefficient although cluster moves were employed and the sampling
was split into several windows. Alternatively, the pm f can be extracted from
the inter-particle force calculated at fixed positions R. The force can either be
calculated at contact with the colloids or at the cylinder mid-plane, see below.
The latter was found to be the more efficient mainly because the ion density
at the mid-plane is much lower than at contact with the colloids.
Figure 6.6 compares the calculated pm f between two platelets with 19 sites
(50 Å in diameter) immersed in a 10 mM 2:1 salt solution at φ = 0.013 using
the different approaches described above. In paper V the two last techniques
have been used to sample the free energy since they are either easier to use or
more accurate.

In the following we will assume two colloids decorated with ns charged sites,
immersed in a salt solution containing Ni ions. In addition, the sites and ions
are considered as charged Lennard-Jones (LJ) particles.

6.3.1 Contact force approach

The mean force between two platelets for a fixed colloid center-to-center sepa-
ration R can be evaluated at contact [30,31]. It can be written as the sum of four
distinct terms, see eq. 6.5. The two first terms are the direct Coulombs and LJ
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Figure 6.6: Potential of mean force between two platelets with 19 sites (50 Å in
diameter) immersed in a 10 mM 2:1 salt solution at φ = 0.013 obtained from
three different approaches. Full curve: mid-plane approach; symbols: contact
force approach; dotted curve: radial distribution function approach.

forces between the colloids. The two last terms are the ensemble average of
the electrostatic and LJ forces exerted on the colloids by the surrounding ions.

F(R) = −
〈

ns

∑
i=1

ns

∑
j=1

(
∂uel(rsisj)

∂R
+

∂uLJ(rsisj)

∂R

)〉

−
〈

Ni

∑
i=1

ns

∑
j=1

(
∂uel(risj)

∂R
+

∂uLJ(risj)

∂R

)〉
(6.5)

6.3.2 Mid-plane approach

The mean force can also be evaluated over the mid-plane [41,42] (z = 0) for
a fixed colloid center-to-center separation R along the main axis, z, of the
cylinder cell. By doing so, the total mean force can be divided into three

[41] P. Linse, Adv. Polym. Sci. 185, 111 (2005).
[42] J. Z. Wu, D. Bratko, H. W. Blanch, and J. Prausnitz, J. Chem. Phys. 111, 7084 (1999).
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terms according to 6.6.

F(R) = Fel(R) + FLJ(R) + Fid(R) (6.6)

The terms Fel(R) and FLJ(R), are calculated by summing all Coulomb and LJ
forces between species residing on different sides of the mid-plane. The last
term is the ideal contribution, which can conveniently be defined as

βFid(R) = [ρI(z = 0)− ρI(z = ±L/2)]A (6.7)

where ρI(z = 0) and ρI(z = ±L/2) are the ion densities at the mid-plane and
at the cylinder end walls of cross-sectional area A.
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Chapter 7

Summary of Results and
Concluding Remarks

7.1 Charging process of 2:1 clays

The role of electrostatic interactions on the acid-base titration of various nat-
ural clays is investigated in paper I. With a model that is shown to include
the main physics, we demonstrate that the observed pH shift in the titration
curves with the ionic strength originates from electrostatic interactions be-
tween the titratable edge charges and the permanent basal charge [43,44,45]. An
excellent agreement is found between simulations and experimental titrating
results. When looking at the titration of clay platelets stacks, like e.g. Illite, the
point of zero net proton charge (PZNPC) is found to decrease when increasing
the number of sheets in the stacks. These results are used to rationalize the
order of apparent PZNPC (or PZSE in the case of pyrophyllite) found in the
literature: Pyrophyllite (4 < PZSE < 4.5) < Illite < Montmorillonite. Finally
the mean field approach is shown to fail to describe the acid-base behavior of
clays for low pH and high salt concentration.

7.2 Gel and glass formations

When attractive interactions are at play in a clay suspension, gels form at low
volume fractions. They arise from the strong attraction between positively
charged edges and negatively charged basal planes. Their formation is shown

[43] B. Baeyens and M. Bradbury, J. Contam. Hydrol 27, 199 (1997).
[44] M. Duc, F. Gaboriaud, and F. Thomas, J. Colloid Interface Sci. 289, 148 (2005).
[45] E. Tombácz and M. Szekeres, Appl. Clay Sci. 27, 75 (2004).
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to be enhanced for large particle sizes, high charge anisotropy and low salt
concentration. A detailed study of the gel structure indicates that they are
formed by a network of platelets organized in a mixture of ”House of Cards”
and ”Overlapping Coins” configurations as experimentally observed [46].
For large platelets and high charge anisotropy, a phase separation between
an equilibrium gel and a isotropic liquid phase is predicted at low volume
fractions. The threshold volume fraction value at which the phase separation
occurs is further found to increase with salt concentration. The same ob-
servations made for aged laponite dispersions, although the phase separated
samples were found at lower volume fractions [46,47].
At intermediate charge anisotropy, a gel forms from a sol of clusters of in-
dividual particles randomly oriented that progressively grows with volume
fraction in qualitative agreement with observations in montmorillonite clay
dispersed in low pH and salt concentration aqueous solutions.
For entirely negatively charged platelets, a transition from an isotropic liq-
uid to a glass phase occurs. This transition is favored for small particles
in agreement with experimental observations on natural clay dispersions at
neutral pH [48]. Reversely, the sol-gel transition and liquid-gel separation
are found to be favored for large particles bearing a weak and strong charge
anisotropy, respectively.
Finally, in the case of strong charge anisotropy, the liquid-gel separation is
predicted to disappear in favor of a sol-gel transition upon decreasing the
size of platelets. This is depicted by papers II and III.

7.3 Liquid crystal formation

Several liquid crystal phases were encountered throughout the studies. Their
formation is studied as a function of charge anisotropy, ionic strength and size
of the platelets in papers II-IV.

• A smectic B phase is found for volume fractions between 1 and 7% and
low salt concentration (< 10mM). Its formation is only observed when
the particles bear a strong charge anisotropy. This phase dissolves at
high salt concentration. Note that, it is the first time that such a phase
is predicted for charged plate-like particles dispersed in an aqueous sol-
vent.

[46] P. Mongondry, J. F. Tassin, and T. Nicolai, J. Coll. Interface Sci. 283, 397 (2005).
[47] B. Ruzicka, E. Zacarelli, L. Zulian, R. Angelini, M. Sztucki, A. Moussaid, T. Narayanan, and

F. Sciortino, Nature Mat. 10, 50 (2011).
[48] L. J. Michot, C. Baravian, I. Bihannic, S. Maddi, C. Moyne, J. F. L. Duval, P. Levitz, and

P. Davidson, Langmuir 25, 125 (2009).
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• The formation of the nematic phase has been shown to be favored by
low aspect ratio for neutral platelets [16]. This result is also found in
our simulations. Its formation is predicted to be further favored for uni-
formly charged platelets. Reversely, the presence of a charge anisotropy,
i.e. positive charges on the edges, hinders the formation of a nematic
phase. The latest is shown to disappear when the charge anisotropy is
too strong. The isotropic-nematic transition is often close or pre-empted
by a liquid-solid transition. We found that a true liquid-nematic transi-
tion may occurs when the platelets carry a low charge anisotropy or are
entirely negatively charged.

• Finally, columnar phases are encountered for high volume fractions.
Their formation is found to be favored by high charge anisotropy and
low ionic strength. Depending on the positive charge distribution on the
edges and the salt concentration, new columnar phases were discovered
as the zig-zag columnar phase, the interpenetrated rectangular and hexagonal
columnar phases. The latter was also recently predicted by Morales-Andra
[49].

7.4 Growth and stability of nanoplatelets

In paper V, the growth of C-S-H nanoplatelets is shown to be limited by their
own internal electrostatic repulsions. We also study in some details the sta-
bility of such particles in calcium salt solutions and discuss the possible con-
sequences on the kinetic competition between the growth and aggregation of
C-S-H platelets. Finally, we investigate the different modes of aggregation
of these platelets onto C3S grain surfaces. In agreement with experimen-
tal observations[50,51], it is found that a high calcium concentration and pH
enhance the axial “growth” of the platelets, whereas opposite conditions en-
hance a lateral “growth”.

7.5 Concluding remarks

In this book, I present the results I obtained when investigating several scien-
tific problems by the use and development of computer simulations. The goal
was not only to create theoretical models but also to bridge experiments and
theories in order to give further insights into complicated physico-chemical

[49] L. Morales-Andra, H. H. Wensink, A. Galindo, and A. Gil-Villegas, J. Chem. Phys. 136,
034901 (2012).

[50] S. Garrault and A. Nonat, Langmuir 17, 8131 (2001).
[51] S. Garrault, E. Lesniewska, and A. Nonat, Material and Structures 38, 435 (2005).
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systems. The whole range of systems and chemical phenomena considered
clearly demonstrate the importance of the study of plate-like particles, more
especially as these results are relevant to many other systems.

The development of a model able to reproduce the main behavior and the
complete phase diagram of charged plate-like particle suspensions has been
an ongoing project for 30 years in physical chemistry. This thesis is a new
step in this direction. It shows that the underlying physics of clays and C-S-H
in aqueous solution can be partially captured by the use of simple models
and theories. Further investigations involving more sophisticated theories or
different techniques are of course needed to complete the picture.

An interesting aspect with computational physical chemistry is that computer
power increases rapidly with time. There is no doubt that, in few years time,
one will be able to approach scientific problems with a much more detailed
description of the systems. This is a good thing considering the number of
unanswered questions related to the behavior of dispersions of mineral plate-
like particles.

Finally, I hope that the reader has found some interest in the work presented
in this book and that the results will inspire further experimental and theo-
retical investigations.
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ces dernières années.

Enfin, je voudrais remercier les membres de ma famille pour leur indéfectible
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We present a theoretical investigation of a model clay dispersion in 1-1 salt solutions varying the particle volume fraction, ionic
strength as well as the charge distribution on the clay platelets. The platelets are modeled as discs with charged sites distributed
on a hexagonal lattice. The edge sites can be positively charged while the remaining sites are negative giving rise to a charge
anisotropy. Simulations are carried out using a Monte Carlo method in the canonical ensemble. The interactions between the
platelet sites are described with a screened Coulomb potential plus a short range repulsive potential. Simulations show a complex
phase behavior. When the charge anisotropy is strong, a repulsive liquid phase is found at low volume fraction and ionic strength.
When increasing the latter an attractive liquid phase forms. At these volume fractions the platelets aggregate in an ”Overlapping
Coins” configuration. With increasing volume fraction the dispersion becomes unstable and the pressure goes through a van der
Waals loop. A liquid crystalline phase, Smectic B, forms in the thermodynamically unstable region. On the other side of the van
der Waals loop a stable gel phase is found. A phase separation between a liquid and a gel is thus predicted. The threshold value
of the volume fraction at which the phase separation occurs is found to increase with the salt concentration. The gel structure is
a mixture of ”Overlapping Coins” and ”House of Cards” configurations. When the charge anisotropy is intermediate, no phase
separation occurs. Instead, a gel forms from a sol of clusters of individual particles randomly oriented that progressively growth
with the volume fraction. These results are discussed in light of experimental observations on clay suspensions.

1 Introduction

Clay minerals are hydrous aluminium (sometimes magne-
sium) phyllosilicates with variable amount of other cations.
They have an anisotropic structure and form flat hexagonal
or discotic sheets (occasionally fibrous) having radii ranging
from tens of nanometers to µm and a thickness in the nm
range. The sheets are formed from tetrahedral silicate and oc-
tahedral aluminate layers. Usually, the basal plane has a neg-
ative structural charge (permanent) due to chemical substitu-
tion of AlIII by MgII and SiIV by AlIII or FeIII , respectively. In
contact with water the edges ionize due to the presence of titra-
ble sites, mainly aluminols and silanols1. The resulting edge
charge is amphoteric, that is, it is positive at acidic or neutral
pH and negative in basic solutions2,3. Thus, clay platelets dis-
persed in water have both a structural and a charge anisotropy.
These anisotropies give rise to peculiar structural and dynamic
properties, which are exploited in processes and products such
as drilling, cements, paints, papers, softeners and composite

† Electronic Supplementary Information (ESI) available: Coarse graining
method See DOI: 10.1039/b000000x/
aLaboratoire Interdisciplinaire Carnot Bourgogne, UMR 6303 CNRS, Uni-
versité de Bourgogne, 21078 Dijon Cedex, France. Fax: +33 (0)380 393819;
Tel: +33 (0)380 396176; E-mail: christophe.labbez@u-bourgogne.fr
bTheoretical Chemistry, Chemical Center, POB 124, S-221 00 Lund, SWE-
DEN

materials4–6.

In dilute dispersions, clays with a medium structural charge
density (e.g. Montmorillonite, Laponite) swell and form
isotropic suspensions of mainly individual clay sheets that
exhibit Newtonian flow (the shear rate is proportional to the
applied shear stress). Under semi-dilute conditions and be-
yond, the flow becomes plastic and eventually exhibits a yield
stress characteristic of a gel formation7–11. In other words,
the gel starts to yield only above a critical applied stress.
Clay suspensions are anti-thixotropic and have a high viscos-
ity at low shear rate12 where electrostatic interactions dom-
inate over hydrodynamic forces13. At high shear rate, they
are thixotropic with a low viscosity which come as a result
of the particle alignment along the hydrodynamic forces and
of the network restructuration after shear8,14–18. Baravian and
co-workers18,19 found that the shear thinning of the flow in
dilute and semi-dilute clay dispersions with a volume frac-
tion of φ < 0.025 and at low salt concentrations (< 5 mM)
can, to first order, be explained on the basis of excluded vol-
ume effects. However, electrostatic interactions still play a
significant role, as best illustrated by both the zero and infi-
nite shear limit viscosity18,19, which are not fully understood.
The yield stress has been shown to be highly dependent upon
pH with a minimum at a pH value where the edges are neu-
tral3,12. In addition, it also exhibits a minimum as a function

1–16 | 1

51



of salt concentration20. These two examples show the impor-
tance of Coulombic interactions and charge anisotropy. It is
generally agreed from these experiments that the unusual rhe-
ological properties of clay dispersions and other similar par-
ticle dispersions17,21–25 are related to the formation of both
attractive and repulsive networks.

The boundary between the sol-gel transition in ionic
strength (I) vs particle volume fraction (φ ) phase diagrams is
in many cases found to have a “>” shape10,18,26,27. This shape
may be interpreted as follows28,29: at low ionic strength, in-
teractions among the particles are dominated by electrostatic
repulsion and the dispersion appears as a Wigner glass; when I
is increased, the electrostatic interactions are screened and as a
result the sol-gel transition moves toward higher φ . At high I,
electrostatic interactions are completely screened out and the
interactions between platelets are then governed by attractive
interactions which causes the system to flocculate. Though
this picture should be valid for homogeneously charged par-
ticles, it is most probably wrong for particles with a charge
anisotropy. This is suggested by the relatively small amount
of salt needed in order to observe a re-entrant sol-gel transi-
tion in some clay systems18. A delicate balance between at-
tractive and repulsive Coulomb interactions may significantly
contribute to the sol-gel transition and the formation of a gel
(or attractive glass)30.

Several conformations of the clay platelets have been pro-
posed to explain the formation of gels: (i) House of Cards
(HoC), as first proposed by Hofmann14,15, in which neighbor-
ing particles are in a T configuration, (ii) Stacked Plates in
which the particles are in a sandwich configuration and (iii)
band like structure, proposed by Weiss and Franck31, where
particles are in an Overlapping Coins (OC) configuration. The
HoC model has often been invoked to explain the gel state and
other properties of clay dispersions. A number of neutron and
X-ray scattering studies have been made on Laponite8,17,32,33

and smectite clay18,26 gels. While these experiments generally
confirm that the particles in gels are aggregated and form ex-
tensive networks, they do not discriminate between the above
configurations30.

There have been few attempts to simulate the structure and
thermodynamic properties in dispersions of charged platelets
and even less of platelets having a charge anisotropy. One
reason is that such simulations involve particles decorated
with explicit charged sites and are thus considerably more
computer demanding than a hard core or soft particle sys-
tem for which the contact function takes a relatively sim-
ple closed form. One natural way to handle such a problem
is to coarse grain the particle interactions. Dijkstra et al.34

used a quadrupole moment model. Even though the results
of this study point to a reversible sol-gel transition in semi-
quantitative agreement with experiments, it has been argued
that the quadrupolar disc model is an oversimplification that

leads to unrealistic particle configurations. Indeed, at short
range, the multipolar expansion is known to break down. Fur-
thermore, at long range, the electrostatic interactions were
simply disregarded. Kutter et al.35 and Leger et al.36 stud-
ied more detailed models by Molecular Dynamics and Monte
Carlo simulations, respectively. The main result of these sim-
ulations was that clay particles aggregate in the HoC confor-
mation. The coarse graining of the clay platelet is a delicate
problem and has to be done with some care. We have ear-
lier argued that the representation of charged sites has to be
accurate down to a length scale corresponding to the screen-
ing length of the salt or better. Following this prescription it
was possible to find two preferential conformations for two
platelets, in an infinitely dilute system, depending on the salt
concentration : the T-shape HoC conformation and the planar
OC conformation30. Similarly, Odriozola et al.37 found both
HoC and OC conformations using Brownian Dynamic simula-
tions of many particles with a clay model having a few dozens
of charged sites. However, the simulations were restricted to
relatively short runs due to the many interactions involved and
were restricted to high ionic strengths (I > 50 mM).

On the basis of these observations we have developed a
multi-level coarse graining of the interactions, which im-
proves the computational time by one to two orders of mag-
nitude, and employed it in Monte Carlo simulations of many
platelets using a model where each charged group is treated
explicitly30. These simulations allow us to calculate the equa-
tion of state and to investigate the particle configurations over
a wide range of volume fractions. The ionic strength, the mag-
nitude and sign of the edge charge (pH) are varied. We use
these results to address the following questions:

• What are the preferential configurations of platelets?

• What is the role played by the edge charges?

• Can the charge anisotropy favor the formation of liquid
crystals?

• How does the charge anisotropy affect the sol-gel transi-
tion?

2 Model and Simulations

2.1 Model

The model system consists of N platelets dispersed in a cubic
box of volume Vbox filled with a 1-1 salt solution. Periodic
boundary conditions are applied using the minimum image
convention. The platelets are free to translate and rotate in
the available space. A platelet is modeled as a disc of diame-
ter D decorated with nT soft spheres of diameter 1 nm spread
on a compact hexagonal lattice, as illustrated in Fig. 1. There
are ne edge sites, which can be positive, neutral or negative
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(ne < 0 means that the edge sites are negatively charged). The
nb basal sites located in the center of the disc are always neg-
atively charged, −e. The net charge of a platelet is thus given
by Znet = (ne−nb)e.

The solvent, that is water, is treated as a structureless dielec-
tric continuum characterized by its relative permittivity, εr,
assumed to be constant throughout space. Salt and counteri-
ons are represented implicitly via the Debye screening length,
κ−1, that depends on both the concentration of salt (cs) and
counterions (cc),

κ2 =
e2(2cs + cc)

ε0εrkT
(1)

where k is Boltzmann’s constant, T the absolute temperature
and ε0 is the permittivity of vacuum. From equation 1 it is
clear that at high clay concentrations the screening is domi-
nated by the counterions unless the background salt concen-
tration is exceptionally high. Fig. 2 emphasizes this fact and
one can notice that it is only at volume fractions of the order
of 0.01 and less that there is a significant long range screening
effect of the added salt.

Fig. 1 Schematic picture of a platelet used in simulations. Negative basal
sites are colored in red and edge sites (positive, neutral or negative) in blue.

2.2 Interaction potentials

A shifted and truncated Lennard-Jones (LJ) potential is used to
account for the finite size of particles. The shift, εLJ , removes
the attractive contribution to the LJ potential. In addition to
the shifted LJ potential a screened Coulomb potential is added
to describe the electrostatic contribution. The total interaction
between two sites, utot(ri j) = uel(ri j)+ uLJ(ri j), of charge z
separated a distance ri j then reads,

Fig. 2 The Debye-Hückel screening length, κ−1, as a function of added salt
for various clay volume fractions (when ne =-48) and hence counterion
concentrations

utot(ri j) =
ziz j exp(−κri j)

4πεrε0ri j
+4εLJ((

σLJ

ri j
)12− (

σLJ

ri j
)6)+ εLJ

(2)
εLJ and σLJ are the Lennard-Jones parameters. These were set
to εLJ = 0.5kT and σLJ = 1 nm in all simulations. The full
configurational energy of the N platelets system then becomes

U =
N

∑
i=1

N

∑
j>i

nT

∑
α=1

nT

∑
β=1

uel(rα
i ,r

β
j )+uLJ(rα

i ,r
β
j ) (3)

where indices i, j refer to platelets and indices α,β to sites
on these platelets, respectively. nT is the number of sites per
platelet.

2.3 Model limitations

The model described above has been used in previous simu-
lation studies of dispersion of isotropic and anisotropic par-
ticles35–38 in monovalent salt solutions. However, it suffers
from limitations inherent in the Debye-Hückel (DH) theory.
The DH theory is known to overestimate electrostatic interac-
tions for highly charged particles where instead, the non-linear
Poisson-Boltzmann (PB) theory or exact solution of the PM
by Monte Carlo simulation show a saturation of the particle
interaction free energy when the particle charge is increased.
The fact that the DH theory is easier and computationally
more efficient has led to the introduction of the concept of
charge renormalization or effective charge and effective De-
bye screening length. That is, effective parameters within the
DH theory that generate the same degree of accuracy as the
PB theory for charged colloids, for a review see39. This ap-
proach has been successfully applied to dispersions of charged
spherical colloids in monovalent salt solutions. These effec-
tive parameters can be obtained from solving the PB equation
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or by MC simulations of a single colloid in a Wigner-Seitz cell
model or using a Jellium approximation39,40.

On the other hand, theoretical approaches that describe the
phase behavior of charged disc-like particles, or generally
anisotropic particles, in an electrolyte solution are still in their
infancy41,42. Rowan et al41 have developed a screened pair
potential between two homogeneously charged discs at the DH
level from a perturbation expansion in κD. The approach is
limited to dilute dispersions, with κD < 1 and small charge.
Trizac et al. have extended the validity of this pair potential
to any charge density by introducing a charge renormaliza-
tion concept42 and to any κD using a constant effective po-
tential boundary condition instead of a constant effective sur-
face charge43. In this remarkable work, the authors show that
their effective potential accounts for the enhanced screening
with surface curvature, which in the context of disc like par-
ticles with a homogeneous bare charge, gives rise to a non-
homogeneous radial distribution of effective charge neglected
in our model. The effective pair potential is limited to particles
bearing a homogeneous bare charge and describes well their
interaction at large separation, but it becomes less accurate at
short separation.

Despite the problems discussed above, we believe that the
model used in the present work is able to provide a quali-
tative insight into the structural and thermodynamic behav-
ior of platelets bearing an homogeneous38 and heterogeneous
charge. Furthermore, if one follows ref43 and looks at the
saturation regime of our particular particle model, it gives a
value of κD =12 with Znet lb/D =7.5 when ne =0 and κD =7
with Znet lb/D =4.95 when ne =+48. That is, given the net
charge and diameter of the platelets used in our study, the sat-
uration of the charge is reached for κ−1 ≥1.25 nm when ne =0
and κ−1 ≥2.4 nm when ne=+48. This means that except in a
very dilute dispersion at low salt concentration, see Fig. 2, the
choices of the net charge and diameter of the particle used in
this study are reasonable44.

Finally, it is important to note that eq. 1 for κ natu-
rally arises from a statistical mechanics treatment of electro-
static interactions in colloidal suspensions in the linear formal-
ism45–47. This treatment therefore discards the nonlinear ef-
fects, unknown for charged platelets, but qualitatively capture
the change from the the salt-ion to the counter-ion dominated
screening as observed experimentally48,49 and so far neglected
in most of the theoretical work dealing with charged platelets.

To conclude this brief discussion, it is clear that accurate ef-
fective potentials for charged anisotropic particles are needed
for which promising routes has been recently worked out43,50.
However, the road for such potential to exist is still long and its
lack should not prevent qualitative effective potentials (mod-
els) to be used as long as their limitations are well known and
controlled.

2.4 Simulations

The model system is solved using Monte Carlo simulations in
the canonical ensemble (N,V,T). Collective displacements of
platelets were performed in addition to single displacements
by the use of the so-called cluster move technique51. The
clusters employed were cylinders and infinite layers instead
of the usual spheres. A multi-level coarse graining approach
was developed to reduce the computational cost of the simu-
lations. It relies on the idea that to calculate the electrostatic
energy between two particles a detailed charge description is
only needed at short separation, see the appendix for more
details. The dimensions and the displacement parameters of
the different clusters were adapted to each system such as to
get between 30 to 50 % of accepted moves. The electrolyte
concentration was varied from 1 to 100 mM. The temperature
was kept at T = 298 K and a fixed solvent dielectric constant
of εr = 78 was used. If not otherwise stated, simulations were
performed with periodic boundary conditions in a cubic box
containing 200 platelets with nT = 199 and D = 15 nm, giving
a site density of 0.87 sites/nm2 and ne = 48, 38, 0 or -48. Sim-
ulations with only soft core interactions were also performed.
As a test, some simulations were repeated with 100 as well as
1000 particles with the same both qualitative and quantitative
results. The particle volume fraction, defined as,

φ =
NVpart

Vbox
(4)

was varied from 0.0007 to 0.14, where the volume of a single
platelet, Vpart , was approximated as nT πσ3

LJ/6. 5.104 to 7.107

MC cycles (in a cycle all particles have been moved once)
were used to equilibrating the system. A production run typ-
ically involved 4.105 cycles. Initially at low volume fractions
the simulations are well-behaved and convergence of all prop-
erties is easily achieved. With increasing concentration the
systems become more and more sluggish, related to the for-
mation of various connected structures and the onset of phase
transitions. Our canonical simulations do not allow a full de-
scription of phase transitions, but they nonetheless describe
the formation of gel structures (non-equilibrium), which we
believe to be true properties of a clay system.

2.5 Calculated quantities

The characterization of the local structure of a dispersion is
provided by several tools. One of them is the radial pair distri-
bution function g(r), which describes the correlation between
the center of masses (c.m.) of the platelets. Because of the
platelet anisotropy, the local structure needs also to be de-
scribed by orientation correlation functions. In this study we
used two of them. The first is determined from the statis-
tical average of the second Legendre polynomial of the az-
imuthal angle between the normal vectors of two platelets,
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cosθ = ui ·u j,

P2(r) =
〈

1
2
(3cos2 θ(r)−1)

〉
(5)

When the platelets are parallel P2 takes the value 1, while
when they are perpendicular P2 = −1/2. The second is ob-
tained from the statistical average of the scalar product be-
tween the normal vector, u, and the vector separating two par-
ticles, ri j, defining the angle ξ = ui · ri j/ri j

L2(r) =
〈

1
2
(3cos2 ξ (r)−1)

〉
(6)

L2(r) takes the value 1 when platelets are face to face and 0
when they are side to side.

These two parameters, P2 and L2, give quite a good insight
into the clay structure although they do not provide direct ev-
idence for the formation of a gel state or percolated structure.
For this reason we have also included an analysis of the ”con-
nectivity” of the suspension. Two clay platelets are considered
to be ”connected” neighbors if the separation between a site in
one clay platelet is within 15 Å of a site in the other platelet.
Based on this criterion we can calculate,

〈Nnei〉= average number of neighbors for a platelet in a cluster
(7)

which can typically vary between 1 and 7-8. Using the
same distance criterion, we can also identify several connected
platelets defining a ”cluster” with an average cluster size,

〈Ncl〉= average number of platelets in a cluster (8)

with a maximum value equal to the total number of platelets
in the simulation. Furthermore, we can calculate the cluster
probability,

〈Pcl
X 〉= probability of finding a particle in a cluster of size X

(9)
At low particle concentration Pcl

X will have a maximum at
X = 1, while with increasing concentration it will be bimodal
and at really high concentrations it will again have a single
maximum for X = N. We will also use the integrated quantity,

〈 f cl〉=
∫ N

2
Pcl

X dX = average fraction of particles in a cluster

(10)
Finally, we also use simulation snapshots in order to charac-
terize the structure in the suspension.

The osmotic pressure is evaluated from the virial equation,

Π = Πideal +Πex = Πideal +
1

dV
〈∑

α<β
F(rαβ ) · rαβ 〉 (11)

where F(rαβ ) is the force between two sites in different
platelets. If the screening length only depends on the salt con-
centration, then the excess pressure would look like,

Πex ∝ 〈∑
α,β

zα zβ exp(−κrαβ )(κ +
1

rαβ
)〉 (12)

However, the counterions will also contribute to the pressure
according to eq. 1 and the excess pressure will be,

Πex ∝ 〈∑
α,β

zα zβ exp(−κrαβ )(κ +
1

rαβ
+

κ2
c

2κ
)〉 (13)

where κc is the inverse screening length from the counterions
only. Density dependent potentials like the Yukawa potential
are tricky to handle when it comes to the evaluation of thermo-
dynamic properties. In an interesting article Louis52 discusses
the possible pitfalls and inconsistencies that could arise. One
of his conclusions is that the volume derivative, κ2

c /2κ , in eq.
13 only makes things worse. In addition to the volume deriva-
tive of κc one should also include the one-body term coming
from the derivation of the Yukawa potential46. In the case of a
charged spherical particle it is straightforward to calculate this
contribution, but for a platelet with a charge anisotropy it be-
comes rather involved. Considering all the complications we
have decided to use eq. 12 when calculating the pressure.

We have tried to quantify the ”elasticity” of a clay suspen-
sion by calculating the average squared force acting on a par-
ticle, which can also be decomposed into its Cartesian compo-
nents, < F2

x >,< F2
y > and < F2

z >,. These should of course
be identical and the average force components should be zero,
< Fx >=< Fy >=< Fz >= 0. Note, that the squared force
is directly proportional to the spring constant in a harmonic
system.

3 Results

3.1 Isotropic phase

Irrespective of charge anisotropy, at low volume fraction of
clay and low salt concentration, cs ≤ 10 mM, electrostatic re-
pulsion dominates and a repulsive liquid is found character-
ized by a broad peak in the pair distribution function at approx-
imately c−1/3

p , where cp is the platelet concentration, see e.g.
the 1 mM curve in Fig. 3. The platelets are not in contact, i.e.
c−1/3

p > D, and no orientation preference is found. At cs = 30
mM and when the charge anisotropy is high, i.e. ne =+48, the
repulsive peak disappears and, instead, a sharp peak around
125 Å appears. This indicates that the overall interaction be-
tween the platelets turns from repulsion to attraction and the
formation of small aggregates in an Overlapping Coin (OC)
configuration. At high salt concentration, cs = 100 mM, the
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electrostatic interactions are screened and the particles aggre-
gate in a House of Card (HoC) configuration as indicated by
the peak around 75 Å in the pair distribution function (Fig. 3),
although a small OC shoulder is still visible.

With lower charge anisotropy, i.e. ne = +38, and φ =
0.0007 (data not shown), we still find the characteristic peak
from a repulsive liquid at low salt content, but both the OC
and the HoC configurations found with ne = +48 at high salt
have disappeared. This gives an indication that the structure
can be quite sensitive to the details of the charge anisotropy.

Fig. 3 Influence of the salt concentration on the center of mass radial
distribution function with ne =+48. The particle volume fraction is set to
φ = 0.0007 and the salt concentrations are given in the legend. The arrows
mark the peaks corresponding to the Overlapping Coin and House of Cards
configurations.

Fig. 4 shows the effect of charge anisotropy on g(r) at
φ = 0.07 and cs = 1 mM. With ne = +48 both OC and
HoC configurations are present, while they gradually disap-
pear when ne decreases. With no positive charges on the edge,
ne = 0 and −48, the structure is better described as a collec-
tion of ”tactoids”, with particles arranged in a parallel manner.
Further addition of salt has a profound effect on the system
with highest charge anisotropy, ne =+48, but has virtually no
effect on the other cases (curves are not shown).

Fig. 5 showing the pair orientation correlation, P2(r) for
platelets with ne = +48, confirms the interpretation of the
peaks in Fig. 3. The platelets are orientationally uncorrelated
at salt concentrations below 30 mM and P2(r) ≈ 0 for r > D.
At cs = 30 mM P2(r) shows a positive peak at r ≈ D indicat-
ing a parallel structure like in an OC configuration. Increasing
the salt concentration even further destroys the OC structure
and a structure with the platelets in HoC configurations takes
over. This can be seen from the negative values of P2(r) at
separations around r ≈ D/2. From the structural analysis we
find that the two strong peaks in Fig. 3 correspond to the for-

Fig. 4 Influence of charge anisotropy on the center of mass radial
distribution function with φ = 0.07 and 1 mM salt. The black dashed curve
is for cs = 10 mM salt.

Fig. 5 The second order Legendre polynomial as a function of particle
separation. The volume fraction is 0.0007 and ne =+48. The 10 mM curve
is virtually zero and hidden under the other curves for r > 140 Å.

mation of dimers, that is 〈Nnei〉 = 1 - see below. With a salt
concentration below 10 mM 〈Nnei〉 is virtually zero.

By increasing the volume fraction at constant salt concen-
tration a more exotic picture emerges - see Fig. 6. At a volume
fraction of 0.007 the liquid is dominated by repulsive interac-
tions between the platelets manifested as a single peak in g(r)
and 〈Nnei〉≈ 0. However, already at φ = 0.02 a completely dif-
ferent structure can be found and the radial distribution func-
tions show a long range order extending over the length of the
simulation box. The number of neighbors now increases to
about four and we start to get a two-dimensional percolated
structure as indicated by 〈Ncl〉, which increases dramatically -
see below. From the position of the first peak in g(r), at r∼D,
we can immediately draw the conclusion that the structure is
dominated by OC configurations. A further increase of the
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Fig. 6 The radial distribution function at cs = 10 mM and three different
volume fractions with ne =+48. Similar curves are found with 1 and 3 mM
salt.

volume fraction to 0.07 destroys the long range structure but
maintains a nearly percolated structure. The main peak in g(r)
now indicates a local structure characteristic of HoC. Note that
Fig. 6 shows the results for a salt concentration of 10 mM, but
a similar picture emerges for 1 and 3 mM salt.

Upon decreasing the charge anisotropy at φ = 0.02, that is
reducing ne from 48 to 38, leads to the disappearance of the
long range order, while at φ = 0.07 there remains peaks cor-
responding to HoC and OC configurations. A further decrease
of ne gives rise to stacked configurations without any distinct
characteristics as can be seen in Fig. 4.

3.2 Smectic B phase

When the particles exhibit a high charge anisotropy, i.e. ne =
+48, a phase transition is found at low salt concentrations,
cs ≤ 10mM, and between 0.02 to 0.05 in volume fraction.
This phase corresponds to the formation of a lamellar liquid
crystal where the platelets associate in two dimensions layers
in the OC configuration as illustrated in Fig. 7. These two-
dimensional layers then form a lamellar structure. The parti-
cles show long range order within the layers, while no posi-
tional correlation is found between the layers. As an example,
the positional order is shown in Fig. 8 with a two-dimensional
distribution function of a dispersion of platelets with φ = 0.02
and cs = 10 mM. The radial position of the peaks are related
as a : a

√
3 : a
√

4 : a
√

7 : a
√

9 : a
√

12 where a =120 Å. This
relation is characteristic of a hexagonal structure of the parti-
cles (100, 110, 200, 210, 300, 220 positions) within the layers.
The broadness and weakness of the 300 peak demonstrate that
the positional order is short ranged, although the hexagonal
organization extends over long distances, see Fig. 7. The po-
sition of the first correlation peak, a, is also found to be lower
than the diameter of the particles at an angle θ close to zero,
which is a result of an OC configuration within the Smectic

Fig. 7 Simulation snapshot showing a Smectic B phase - φ = 0.05 and
cs = 1 mM.

layers.

Fig. 8 Pair particle distribution function versus θ and r for φ = 0.02,
ne =+48 and cs =10 mM.

The parallel arrangement of the particles within the layers is
also exemplified in Fig. 9 where the angular distribution func-
tions L2 and P2 are shown. The former is close to zero as
should be expected for a side to side arrangement of platelets.
P2 goes to a non-zero asymptotic value indicating the long
range orientation order of the platelets. The most striking ob-
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servation is the lack of any correlation peak between the lay-
ers which makes a clear distinction between a Smectic B and
a hexagonal columnar phase - see also Fig. 7. However, as it
will be shown later from the equation of state, the Smectic B
phase is probably metastable.

Fig. 9 Angular distribution functions, L2(r) and P2(r) for φ = 0.035,
ne =+48 and cs =10mM.

The Smectic B phase can also be traced in 〈Nnei〉 and 〈Ncl〉
- in Fig. 10 and Fig. 12, respectively. The Smectic B phase
typically has an average of four neighbors indicative of a two-
dimensional structure. When the volume fraction increases
beyond about 0.05, the Smectic B phase disappears and P2(r)
goes to zero as seen in Fig. 9 for the φ = 0.09 curve. At the
same time 〈Nnei〉 increases slowly to approximately six neigh-
bors. Fig. 11 also contains the curve for a purely repulsive soft
core system without electrostatic interactions. For low volume
fractions, < 0.02, this curve runs between the 1 and 100 mM
curves, demonstrating that in the former case, 1mM, the in-
teractions are predominantly repulsive while in the latter, 100
mM, they are attractive. Consistently with the previous results,
above the threshold value φ = 0.02, the attractive interactions
between the particles take over at all salt concentrations when
a charge anisotropy is present, i.e. all ne > 0 curves lie above
that of the soft core system.

3.3 Gel phase

The metastable Smectic B phase is found only at high charge
anisotropy and in a limited region of salt concentration and
volume fraction; typically below 10 mM in salt and approxi-
mately between 0.02 and 0.07 in volume fraction. At higher
salt and volume fractions or lower ne the Smectic B phase
dissolves into amorphous aggregates which eventually leads,
upon increasing the platelet concentration, to the formation of
a fully percolated network characteristic of a gel phase. This
transition is depicted in Fig. 12, which gives the average num-

Fig. 10 Lines with symbols show the average number of neighbors as a
function of volume fraction of platelets for ne =+48. The 1 mM case is
virtually identical to 3 mM and 30 and 100 mM are also very similar. The
solid red curve shows the 10 mM case with ne =+38. The dashed black
curve shows the result for a system without any electrostatic interactions -
only the shifted Lennard-Jones is used.

Fig. 11 Lines with symbols show the fraction of particles participating in a
cluster (a cluster is defined as a dimer or bigger) as a function of volume
fraction for the ne =+48 case. The 3 mM curve has the same qualitative
appearance as 1 mM and the 30 mM curve is a good representative for the
salt range 10-100 mM. The red solid curve without symbols is a good
representative for all salt concentrations for ne =+38. The dashed curve
shows the result for a system without any electrostatic interactions - only the
shifted Lennard-Jones is used.

ber of platelets in a cluster, see also the snapshots in Fig. 13.
The percolation process can also be followed in Fig. 14, which
shows how the probabilities for the different aggregate sizes
evolve with φ . The probability distribution is a monotonic
function at low and high volume fraction, while in the inter-
mediate range it becomes bimodal - see for example φ = 0.07
in Fig. 14. Fig. 12 shows that the salt concentration has a
rather limited impact on the percolation and hence on the sol-
gel transition. This can be explained by the fact that it occurs
at φ ≥ 0.11 where the screening length is mostly governed by
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Fig. 12 Lines with symbols show the average number of platelets in a
cluster as a function of volume fraction with ne =+48. The solid red curve
without symbols shows the 10 mM case with ne =+38. The dashed curve
shows the result for a system without any electrostatic interactions - only the
shifted Lennard-Jones potential is used. (The actual value of < Ncl > should
not be taken too serious, since sometimes the simulation box can create one
single two-dimensional layer penetrating all space, which is an artifact of the
periodic boundary conditions.)

Fig. 13 Snapshot from simulations with increasing volume fraction and
fixed salt concentration at 30 mM. a) The volume fraction φ = 0.0035 and all
particles are disconnected, b) φ = 0.035 and some particles are connected,
which is indicated by a common color and c) φ = 0.11 and all particles are
connected.

the counterions, c.f. eq. 2, at least when cs ≤ 30 mM. How-
ever, the short ranged electrostatic interactions still play a role
in the gel phase as best described by the drop in the platelet
connectivity, Fig. 10, from ∼ 6 to ∼ 4-5 when rising cs from
1 to 100 mM. In this case the particles are mainly found in a
HoC configuration.

Upon decreasing the charge anisotropy, the same qualitative
picture remains, that is, the particle dispersion progressively
aggregates until full percolation with increasing φ - see the
red curves without symbols in Figs. 10, 11 and 12. However,
two differences can be noted: i) the aggregation and sol-gel
transition occur at higher φ and ii) the curves are more or less

salt independent.

Fig. 14 Logarithm of the probability distribution for different cluster size,
X . The salt concentration is 100 mM and ne =+48.

A weakness of the analysis is the lack of a proper defini-
tion of what a gel is. One straightforward definition that works
very well in a simulation is the percolation measure in terms of
〈Ncl〉. When 〈Ncl〉 exceeds a given threshold value the system
is defined as a gel. In an experiment, a gel does neither flow
nor melt in its solvent when in contact53. Another possibil-
ity is to use a threshold value of the force fluctuation, < F2 >,
which can be shown to be a reasonable approximation for eval-
uating the aggregate and gel elasticity, cf. the Lindemann cri-
terion54.

Fig. 15 Force fluctuation as a function volume fraction of platelets at
cs = 10 mM. The charge anisotropy is given in the figure. The dashed curve
with open symbols is for cs = 100 mM and ne =+48.

Fig. 15 shows how < F2 >= (< F2
x > + < F2

y > + <

F2
z >)/3 varies with the volume fraction for different charge

anisotropies. The most striking feature is the stiffness of the
metastable region around φ = 0.035. From an analysis of the
different Cartesian components one finds that it is the direction
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normal to the lamellar structure that gives a strong contribu-
tion. It turns out that < F2 > is mainly determined by the
number of close contacts, i.e. the platelet connectivity - see
Fig. 10, which means that the attractive interactions between
the positive edge and negative basal charges in an OC config-
uration gives a large contribution. Similarly, in the amorphous
aggregates and gels, < F2 > is found to be proportional to the
number of close contacts as best illustrated when the < F2 >
curves are compared with those of the particle connectivity,
c.f. Fig. 10. Indeed, the same qualitative trend is observed, i.e.
both the particle connectivity and aggregate stiffness decrease
when ne decreases and the salt concentration is increased.

3.4 Osmotic pressure

The osmotic pressure (Π) calculated for particles having
a strong charge anisotropy (ne = +48) at different ionic
strengths are displayed in Fig. 16 and compared with those ob-
tained for platelets having either no charge (Znet=0) or without
a charge anisotropy (ne = 0,−48) at cs=1 mM.
At cs=100 mM and ne = +48 the osmotic pressure increases
monotonically with the particle volume fraction. At cs < 100
mM the Π,φ curves are non-monotonic and exhibit the same
general trend. That is the osmotic pressure rises up to a par-
ticle volume fraction of about 0.035 where after it decreases.
At φ ' 0.11 it starts to increase again. When cs = 30 mM the
osmotic pressure even becomes negative indicating the exis-
tence of a significant overall attraction between the platelets
due to their strong charge anisotropy. Such a van der Waals
loop is characteristic of a first order phase transition. At a
macroscopic level the metastable region that encompasses the
maximum and minimum of Π is never observed but instead a
plateau in Π is to be found with the coexistence of an isotropic
liquid phase and a gel phase. Note that the metastable region
observed in the equation of state corresponds to the Smectic B
phase. It is instructive to compare the Π curve with ne =+48
at cs = 100mM with that of uncharged platelets. That is, in
most cases the pressure for charged platelets lies well below
that of uncharged platelets, which is a signature of attractive
interactions and the formation of small aggregates/clusters.

When the platelet edge charge is decreased, i.e. ne < 48,
the osmotic pressure increases monotonically with φ for all
salt concentrations, as illustrated in Fig. 16b. The osmotic
pressure curves are found in the order Πne=+38 < Πne=0 <
Πne=−48, which shows the important role played by the
platelet edge charges.

A quantitative comparison with experimental pressures is
not straightforward due to simplifications in our model, as dis-
cussed above. Nonetheless, magnitudes of the simulated pres-
sures are in surprisingly good agreement with the experimen-
tal data for both Laponite9,55 and Montmorillonite26 at low
volume fractions. In particular, we note that both clay systems

Fig. 16 Equation of state for platelets with various charge anisotropy, ne,
and bulk salt concentrations. a) Platelets with ne= +48 and varying salt
concentration. The dashed curve is obtained for platelets with uncharged
sites and repulsive soft core interactions. b) A comparison of different charge
anisotropies for cs = 1 mM.

exhibit a plateau at a volume fraction of φ ≈ 0.007, which is
somewhat lower than the van der Waals loop in our simula-
tions. Martin et al.55 have measured the pressure for highly
compressed Laponite (φ ≈ 0.3) in which case they reach MPa
values, which is somewhat higher than found in our simula-
tions.

4 Discussion and Conclusion

The existence of both attractive and repulsive interactions
in clay systems has been inferred from several experimental
sources. The origin of the attractive interactions is, however,
still an open question. One possibility would be the always
present van der Waals forces with an approximate Hamaker
constant56. Another possibility is the existence of positively
charged sites on the edges of the platelets. Both alternatives
suffer from the lack of experimental data, in the former case
the value of the Hamaker constant and in the latter the actual
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Fig. 17 Tentative phase diagram. Black spheres = repulsive liquid phase;
Blue triangles = attractive liquid with particles in an overlapping coin
configuration (OC); Green crosses = platelets with house of card
configuration in an attractive liquid (cluster fluid) below φ ∼ 8−10% and a
gel above; red squares = Smectic B phase. Left: ne =+48 and right:
ne =+38.

number of positively charged edge sites. There is, as men-
tioned in the introduction, experiments done under varying
salt and pH conditions, that would support the importance of
the edge charges.

The simulation of highly anisotropic particles is difficult.
A typical clay particle, e.g. Montmorillonite, has an aspect
ratio (diameter/thickness) of around 3-500, while in our sim-
ulations we have been forced to settle on a much smaller ratio
of approximately 15. The experimental information regarding
the quantity and structure of the edge charges is scarce. Thus,
we emphasize that the present simulations should be seen as
an attempt to create a model clay system with some essential
generic features. This precludes any quantitative comparison
with experimental data, but hopefully it should give a qualita-
tively correct picture. Another problem appearing in systems
undergoing some sort of phase transition involving an ordered
phase is the specific number of particles in the simulation box.
For example, choosing the number of particles as N3 will favor

a simple cubic arrangement and similarly for other choices.
We have tested the stability of our simulations by a five-fold
increase of the system size and the results remain quantita-
tively the same.

One often overlooked property of clay suspensions is the
electrostatic screening due to the clay counterions. For ex-
ample, in a 1 % Montmorillonite suspension the counterion
concentration is approximately 6 mM. That is, addition of salt
in the sub-millimolar range should have no effect on the elec-
trostatic interactions. This has also been observed in gibbsite
suspensions (weight fraction below 30 %) where the sol-gel
transition takes place only at salt concentrations above 100
mM27. Another result of the counterion screening is that the
phase boundary between the sol and the gel typically appears
as a vertical line in an ionic strength vs. volume fraction dia-
gram23,26. The osmotic pressure of, for example, Montmoril-
lonite suspensions is insensitive to the addition of salt over a
large concentration range26.

The different structures obtained for a dispersion of
platelets with a strong charge anisotropy (ne =+48) are sum-
marized in a tentative phase diagram, Fig. 17. The character-
ization of the different phases is mainly based on the appear-
ance of g(r). We did not attempt to calculate the coexistence
densities at the different phase boundaries.

In the dilute particle regime while increasing the salt con-
centration the same behavior as in the previously reported sim-
ulations between two platelets in a cell is observed30. At low
salt, below 10 mM, the interactions are repulsive and the dis-
persion appears as a repulsive liquid (RL). With increasing salt
concentration, small clusters of platelets are formed in an OC
configuration. A further increase in the ionic strength leads to
a change in the clusters from an OC conformation to an HoC
conformation. At sufficiently high salinity, electrostatic inter-
actions are completely screened and the introduction of van
der Waals forces would cause the precipitation of the platelets
and/or the formation of stacks.

The agreement between the two-platelet model30 and multi-
platelet model is limited to low φ . Above φ > 0.007 many
body interactions play a significant role in the formation of the
different structures observed. As an illustration let us take the
case where cs is maintained below 10 mM at increasing φ . The
disappearance of the RL phase in favor of an attractive liquid
can still be rationalized by the increasing electrostatic screen-
ing with φ . However, the formation of the Smectic B phase
as well as a gel phase is clearly a many body effect. Figs. 10
and 12 indicate that the Smectic B phase exists at intermediate
volume fractions and salt concentrations. That is, it does not
exist at high salt concentration and not at high and low vol-
ume fractions either (Fig. 6). We believe that this is a generic
result and the actual quantitative boundaries strongly depend
on the type of clay as well as solution pH. To our knowledge
it is the first time that such a Smectic B phase is observed with
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charged platelets. This finding might explain the liquid crys-
tal observed in dispersions of Laponite57. However, there is
no definite proof from the equation of state that this phase is
thermodynamically stable. This would necessitate a full free
energy calculation which is out of the scope of this work.

Both counterions and added salt ions contribute to the
screening of the electrostatic interactions. This means that
the dispersion is rather insensitive to salt addition except at
very low volume fractions. The radial distribution functions at
constant volume fraction but varying salt concentration in Fig.
18 demonstrates this effect. At φ = 0.035 more than 10 mM
of salt is needed before the Smectic B phase disappears. At
100 mM of salt, the Smectic B phase is totally dissolved and,
instead, an intense peak at r ∼ D/2 = 75 Å in g(r) appears,
which is characteristic of an HoC configuration.

Fig. 18 Influence of the salt concentration on the stability of the Smectic B
phase as seen in the radial distribution function; φ = 0.035 and ne = 48

As shown in Fig. 17, however, when the inter-particle inter-
actions are dominated by attraction, the location of the sol-gel
transition is found to decrease with the ionic strength. Sim-
ilarly, the size of the particle clusters grows faster when the
salt concentration is low and the charge anisotropy is impor-
tant. Consequently, the line that delimits the sol-gel transition
in the phase diagram cs versus φ should have a positive slope.
This result points out that contrary to the general understand-
ing based on the sign of such a slope in systems of isotropic
particles58,59, a positive value does not necessarily mean that
the platelets are governed by repulsive interactions and that the
solid thus formed is a Wigner glass60. Note that the salt de-
pendence of the sol-gel transition for cs ≤ 10 mM, is small in
agreement with experimental observations on clays and gibb-
site23,26,27.

It is also informative to put these results in perspective with
the equation of state plotted in Fig. 16. Indeed when the
charge anisotropy is high, Π shows a strong first order tran-
sition at low volume fraction (φ ∼ 0.035) followed by an in-
crease in the osmotic pressure when entering the gel phase.

This tells us that the gel is stable and co-exists with a dilute
repulsive liquid in a limited range of φ . Following an ap-
proximate construction, the liquid-gel transition is found at
φ as low as 1-2% when cs =1mM and increases with cs. As
long as one can consider that Laponite possess a strong charge
anisotropy, these results are found in good qualitative agree-
ment with the revisited phase diagram of Laponite by Mon-
gondry et al61,62 who experimentally observed for 100 mM
≥ cs ≥ 0.1 mM the co-existence of a sol and gel phases at low
φ that increases with cs. Such observations were confirmed
recently at cs ∼ 0.1 mM by Ruzicka et al and were used to
validate their concept of empty liquid63. They established that
Laponite dispersed in solutions closed to salt free conditions
forms an empty liquid for particle weight concentration, Cw,
below 1% and an equilibrium gel for Cw between 1 and 2%.
From small angle X-ray scattering measurements, the particles
were inferred to be in a HoC configuration in agreement with
our simulation predictions. Ruzicka et al rationalized these
results using an attractive patchy disc model. this model ne-
glects the strong electrostatic repulsions that prevail in such
systems while we show here that both ingredients, i.e. attrac-
tive and repulsive electrostatic interactions, are important to
understand the co-existence of a liquid with a gel at low φ
for particles having strong charge anisotropy. Note, however,
that our results largely over-predict the volume fraction of the
phase separation. Similarly to our results with ne =48 and
ne =38 (Fig. 16), it has been shown that the equation of state
of both Montmorillonite26 and Laponite9,10 exhibit a plateau
at small φ corresponding to the sol-gel transition. However,
in contradiction with the experimental results of Mongondry
et al61,62 and Ruzicka et al63 as well as our simulations these
authors did not observe any phase separation or evidence for a
HoC configuration in the gel phase9,26,32.

On the other hand, at Cw above 2% Ruzicka et al53 and Jab-
bari et al48 observed that Laponite form a solid state which dif-
fers from the gel observed at lower Cw, which they attributed,
from SAXS and time correlation intensity functions from dy-
namic light scattering measurements, to a Wigner glass. With-
out giving a clear explanation, they justified their results argu-
ing that at high Cw (Cw ≥ 2%) Laponite dispersions are gov-
erned by electrostatic repulsions which lead to the formation
of a Wigner glass, while in diluted conditions (Cw < 2%) the
dispersions are governed by basal-edge attractions and thus
form a gel. Thus, taking the exact opposite model as used
for rationalizing gels, they modeled the Laponite particles as
discs with 19 discrete sites all negatively charged, neglecting
the positive edge charges, and the interaction with a purely
repulsive Yukawa potential53. The latter allowed them to fit
their experimental structure factor extrapolated from SAXS
measurements for 2% ≤Cw ≤ 3%. In our work where a self-
consistent model is used for all particle volume fractions such
a transition from a gel to a Wigner glass when concentrating
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the dispersion in particles is not observed. On the contrary,
our model qualitatively predicts the opposite. That is, the
system is found to be governed by electrostatic repulsions at
low volume fraction (≡ low ionic strength). When increasing
the particle concentration (≡ the ionic strength), the electro-
static repulsions are progressively screened (see Fig. 2) and,
eventually, the system is found to be dominated by the short
range basal-edge electrostatic attraction at sufficiently high φ
(≡ high ionic strength). Consequently, within the approxima-
tion of our model, a gel cannot dissolve into a Wigner glass
when increasing the particle concentration. Interestingly, in
an earlier study Mourchid et al10 reported a state transition for
the same Cw as Ruzicka et al and Jabbari et al. In this study,
the solid state was ascribed to an isotropic gel. Also, Shahin
et al49 recently suggest the existence of an attractive glass or
gel from extensive rheological measurements of Laponite dis-
persions at Cw =2.8%.

Although more theoretical and experimental studies are
clearly needed to clarify these conflicting results, we would
like to make four remarks. Firstly, clay suspensions age
slowly. For diluted dispersions, i.e. Cw < 2 %, the observa-
tions by Mongondry et al61,62 and Ruzicka et al.63 were made
over a significantly longer period of time than previous stud-
ies. In particular, at low cs (< 1mM) and Cw (≤ 1 %), phase
separation and the HoC configuration were only observed af-
ter aging the Laponite samples for more than one year. Before
that, SAXS patterns on solid states only revealed well sepa-
rated particles in agreement with earlier studies9,32,64–66.

Secondly, in more concentrated Laponite dispersions, Cw
>2%, the aging time in ref48,53 was never longer than 100
hours48,63, considerably smaller than the year reported before
for diluted dispersions, which might explain partly the strik-
ing observation of a Wigner glass at Cw larger than the gel
phase. Indeed, Shahin et al49 who did perform intensive rhe-
ological measurements on Laponite dispersions at Cw =2.8%
and 0.1mM ≤ cs ≤ 7 mM as function of time elapsed over
a considerably longer period ot time (∼ 1200 hours) demon-
strated the importance of the aging time even at this relatively
high particle concentration. For the all range of salt concentra-
tions they obtained a self similar trend in the aging behavior.
They obtained much higher shear melting viscosity for exper-
iments carried out at greater aging times and evidenced the
difficulty to melt the so obtained solid phases. The measured
conductivity of 2.8 wt % Laponite suspension having no ex-
ternally added salt was ∼850µS/cm (≡ κ−1 ∼ 3.2nm) and at
7mM less than twice this value. Their results, in qualitative
agreement with our simulation results, give a strong support
to the facts that i) the screening length is much shorter than
the particle diameter even at cs =0.1mM (see Fig. 2) and ii)
the low free energy state (≡ high shear melting viscosity) of
the solid phase is associated with the formation of strong at-
tractive interactions among the Laponite particles. These facts

contradict the existence of a Wigner glass (governed by re-
pulsive interactions) for Cw > 2% Laponite suspensions and
suggest, instead, a gel or an attractive glass. As a matter of
fact, some of authors supporting the idea of a Wigner glass, in
ref53, recognize that “longtime attraction may also affect the
repulsive Wigner glass, through the formation of subsequent
additional bonds” after performing one dilution experiment on
a high-concentration sample aged one and half week and ob-
serving that it does not melt as expected for a Wigner glass.
However, they reject the idea of an attractive glass or gel argu-
ing that the pattern of the structure factor obtained from SAXS
was not altered significantly (see Fig. 2 in ref53) although it
closely resemble that of gel samples at Cw < 2% at a compa-
rable aging time (see e.g. Fig. 1-g in ref63. Whatever it is, we
strongly believe that more experimental and theoretical work
are needed to clarify the status of the solid state of Laponite
suspensions at Cw > 2%.

Thirdly, Laponite is known to have a weak stability in aque-
ous solution below pH 967. When aged over a long period of
time, pH of Laponite dispersions in CO2 free atmosphere en-
vironment, initially set to 10, was found to drop below 961

which might cause a partial particle dissolution with the re-
lease of Mg2+ and Li+ counterions67 and partly explain the
various behaviors observed.

Finally, smectite clays are considerably larger, by one to
two order of magnitude, than Laponite (D ∼ 30 nm) which is
comparable to our model clay. As a consequence, one would
expect a larger repulsive contribution to the interaction be-
tween smectite clays than in between our small model clay
particles. Indeed, the edge charge is linearly proportional to D
and the basal charge to∼D2. Nevertheless, it would be tempt-
ing to rationalize how the sol-gel transition varies with particle
size in i) Montmorillonite and Beidellite65 and ii) Nontronite
at cs < 1 mM68 and Mg/Al layered double hydroxides69 with
changes in the edge charge. As a matter of fact, the sol-gel
transition of the former, is found to increase with the size of
the platelets while the opposite trend is observed for the latter.

It is also informative to compare our simulation results to
the case of Montmorillonite at low pH conditions for which
the edge charge has been clearly identified to be positively
charge while the basal plane remains negative3. Note that
the comparison can only be qualitative since the aspect
ratio of such clays (1:100) is considerably larger than our
model plate particle. A careful characterization of the phase
diagram of sodium Cloisite (type of Montmorillonite clay)
at pH∼ 4, for 0.01mM < cs < 1 M and 0 wt% < Cw <
4.5 wt% has been performed recently by the group of P.
Schurtenberger, see Figure 1 and 7 of ref33, by mean of
SAXS, small-angle neutron scattering and dynamic light
scattering. Below cs =0.02 mM they observed a Wigner
glass containing clusters stabilized by electrostatic repulsions.
For 0.02 mM < cs < 10 mM and low Cw the suspension
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forms a fluid of clusters with particles randomly oriented,
characteristic of a sol, while for high Cw a continuous gel
with a random orientation of the individual discs is found.
Similarly to Laponite suspensions, the threshold value of Cw
for the sol-gel transition is first found to increase with the salt
concentration up to cs = 3 mM then to decrease upon further
addition of salt. Above cs = 10 mM the samples are phase
separated with a weak percolation gel formed by small stacks
of particles on the bottom and a few smaller clusters on the
top. This state diagram is, on a general ground, found to be
in a good qualitative agreement with that shown in Fig. 17-b.
In particular, we found a sol at low φ and a sol-gel transition
that increases with salt concentration up to cs ∼ 10 mM and
decreases above. The particles in the clusters and gels are also
found to be randomly oriented. Note, that we did not observe
a Wigner glass since we did not prospect the phase diagram at
cs below 1 mM. On the other hand, gels found at high cs are
qualitatively different. In these conditions, the simulated gels
are still formed by individual particles while experimental
gels are formed by the percolation of small stacks. Note,
however, that the effective pair potential between the model
platelets used in the simulations do not include any dispersive
interactions. In a recent paper30 we showed that the inclusion
of such interactions can explain the formation of stacks at
high salt concentration.

To conclude, using a self consistent model at all volume
fractions and salt concentrations we have shown that despite
its simplicity we could reproduce the general features of the
state diagram of Laponite and Montmorillonite clays when
they bear a charge anisotropy. In particular, the simulations
successfully predict a phase separation between a liquid and
a gel at low particle volume fraction and salt concentration
when the charge anisotropy is strong in accord with the
experimental observations on Laponite. The threshold φ
value at which the phase separation is predicted is found
to increase with cs in full agreement with the experimental
observations. At higher φ a Wigner glass could not be found.
On contrary, the effective pair potential between the platelets
is found to be mainly driven by repulsion in highly diluted
dispersions and, upon increasing the particle concentration, to
be mainly attractive. Simulations in the full primitive model
and further experimental work would be needed to clarify the
status of this solid phase.
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6 Appendix: Coarse graining

A multi-level coarse graining approach was developed to re-
duce the computational cost. It relies on the idea that for calcu-
lating the electrostatic energy between two particles a detailed
charge description is only needed at short separation. At suf-
ficiently large distance the electrostatic potential generated by
the many charged sites distributed on the surface of a particle
can be collapsed to one single charge positioned at the c.m.
and taking the value of the net particle charge Znet . Between
these two limits, denoted f1 and f2, the charged sites can be
collapsed locally into domains, see Fig. 19, hereafter called
patches, with the requirement that their size is negligible com-
pared to r.

For simplicity reasons we only used one patch size, which
leads to the definition of two levels of coarse graining. A
hexagonal shape was chosen in order to facilitate the recon-
struction of particles from the patches, see Fig. 19. A full
patch (red) contains 19 sites and has a net charge Zp = −19e
located at its center of mass (c.m.). The edge patches (green)
are generally not full and their net charge depends on ne. For
technical convenience, when the c.m. did not coincide with an
existing site, Zp was positioned on the closest site.

The different levels of coarse graining are delimited by the
cut-off distances f1 and f2. During simulations, the switch
from one level to another is simply based on a distance crite-
rion. At a separation ri j > f2 the electrostatic energy between
two platelets i and j reduces to

uel(ri j) =
Z2

net exp(−κri j)

4πεrε0ri j
(14)

When the center-to-center distance between two platelets,
ri j < f2 and the distance between two patches, k and l, is
rkl > f1 then the electrostatic interactions between two patches
simplifies to,

uel(rkl) =
Zp

k Zp
l exp(−κrkl)

4πεrε0rkl
(15)

where Zp is the patch charge. If rkl < f1 the full site descrip-
tion of those patches is used and the interaction becomes

uel(rkl) =
N p

∑
α=1

N p

∑
β=1

zα zβ exp(−κrαβ )

4πεrε0rαβ
(16)

f1 and f2 were determined by comparing the energy of inter-
action between two rings of appropriate charge and size with
those obtained from equations 14 and 15 for a large range of
κ . At a given κ , the cut-off distances were defined as the
distance that gives an energy difference of∼ 10−6kT . The ob-
tained points could be interpolated with a simple exponential
function and the expressions for f1 and f2 read,
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Fig. 19 Representation of a 199 sites particle (D=15 nm) split into 19
patches. The red patches located in the middle of the particle carry a negative
charge while the charge of the green patches depend on ne.

f1(κ) = 44.85+341.7exp(−13.4κ) (17)

f2(κ)= 57.0+528.3exp(−14.8κ) for D=15 nm and ne =+48:
(18)

Similar expressions were obtained for other values of D and
ne.
This coarse graining significantly reduces the computing time,
i.e. between one to two order of magnitude, without creating
a noticeable error in the energy calculation. The code was
parallelized and scales linearly up to eight processors.
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Abstract

In this paper, the influence of the charge anisotropy and the size of the platelets on the formation

of the gel and the nematic phases in suspensions of plate-like particles is investigated using

Monte Carlo simulations in the canonical ensemble. The platelets are modeled as discs with

charged sites distributed on a hexagonal lattice. The edge sites can carry a positive charge

while the remaining sites are negatively charged giving rise to a charge anisotropy. A screened-

Coulomb potential plus a short range repulsive potentials are used to describe the interactions

between the sites of the platelets. The liquid-gel transition is found to be favored by a high
∗To whom correspondence should be addressed
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charge anisotropy and by large particles. Oppositely, the liquid-glass transition is favored for

small particles without charge anisotropy, i.e, fully negatively charged. Finally, we find that

the isotropic/nematic transition is disfavored by the charge anisotropy and for a strong charge

anisotropy, the nematic phase does not form anymore. Instead, a gel/columnar transition is

found.

Introduction

The transition in suspensions of plate-like particles from an isotropic to an arrested state has

been widely studied during the past 60 years due to the important number of industrial appli-

cations they are involved in: cosmetics, paint products, drilling fluids ... Tanaka et al.1 give

a good description of all the nonergodic states of charged colloidal suspensions. In brief, a

disordered state which is percolated and whose characteristic length of the network between

two adjacent junctions is much larger than the particle size is defined as a gel. Therefore, gel

phases can only be formed when attractive interactions are at play in a system. Similarly, a

disordered state whose elasticity originates from caging effect and whose characteristic length

scale between two adjacent junctions is about the distance between two particles is defined as

a glassy state. One part of the confusion between gel and glassy states arises from the fact

that glass can either be attractive or repulsive while gels are only attractive. Then depending

on the charge carried by the edges of the platelet, two different transitions are considered, that

is, a transition to a gel phase in presence of charge anisotropy and a transition to a glassy state

without charge anisotropy. Unfortunately, the experimental characterization of the charge dis-

tribution of minerals is not trivial, and to the best of our knowledge no experimental studies of

mineral platelets as a function of their charge anisotropy has been reported. In a recent work on

a model clay system2 we report three different transitions according to the charge anisotropy

of the platelets: a liquid-gel transition is found for high charge anisotropy, a sol-gel transition
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for a moderate charge anisotropy and a liquid-glass one without charge anisotropy in agreement

with experimental observations on laponite.2 Similarly, studies of the influence of particle size

on the transition to an arrested state are scarce. In a general, when sol-gel or sol-glass transi-

tions involve perfectly exfoliated platelets, the transition is shifted to lower volume fractions for

smaller platelets, as observed on montmorillonite,3 nontronite4,5 and beidellite6 clays.

Another remarkable property of anisotropic plate-like particles, is their ability to form liquid

crystalline phases. Langmuir first reported the self assembly of colloidal particles in suspen-

sions of California hectorites.7 The transition from an isotropic to a nematic phase was ratio-

nalized by Onsager as a competition between orientational and translational entropy.8,9 This

explanation, first developed for hard rods and then extended to the disk-like particles, has been

confirmed by Monte Carlo simulations.10 Since then, efforts have been put into experimental

studies in order to understand the isotropic/nematic (I/N) transition of mineral platelets. Gibb-

site,11–13 layered double hydroxides like takovite,14 Mg/Al,15 hydrotalcite,16 copper sulfide17

and many different sort of clays4,6,18,19 were found to display a transition to a liquid crystalline

phase. However, few of these studies present results about the size dependence of the I/N transi-

tion. Michot et al.4 reported the formation of a nematic phase when the nontronite particle size

was increased, but the opposite trend was found experimentally for beideillite clays.6 According

to the authors, this difference in behavior is the result of an incomplete exfoliation of particles

in the suspension. Computer simulations of infinitely thin platelets20,21 and for different as-

pect ratio22 are in fairly good agreement with experimental results showing that polydispersity

disfavors the formation of the nematic phase, while decreasing the aspect ratio enhances its

formation. However, more informations about the influence of the charge anisotropy on the

I/N transition is needed. Only recently, Martínez-Haya et al.23 presented a new tool where

the directionality of the interactions between the platelets could be tuned. They show that the

nematic stability is favored for homogeneous or weakly directional interactions, i.e without or

with a very low charge anisotropy.
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The aim of this paper is to investigate further the influence of both the particle size and the

charge anisotropy on the I/N transition and the transition from an isotropic to a kinetically

arrested state. For this purpose, Monte Carlo simulations with a screened Coulomb potential

combined with a soft repulsion are used to simulate dispersions of mineral platelets.

Model and Simulations

Model

In this study we use the same model and simulation techniques as employed in a previous paper2

and they are only briefly described below. A dispersion of N platelets in a 1-1 salt solution

is considered. A single platelet, of diameter D, is decorated with a collection of nT sites of

diameter L =1 nm spread on an compact hexagonal lattice with a density of 0.87 site/nm2. A

platelet is composed of ne edge sites, chosen to be positive, neutral or negative and nb basal

sites which are always negatively charged. The net charge of a single platelet therefore reads

Znet = (ne− nb)e. The platelets are dispersed in a cubic box of volume Vbox, where periodic

boundary conditions are applied in all directions using the minimum image convention.

The solvent, that is water, is treated as a structureless dielectric continuum and is implicitly

represented by its relative dielectric permittivity, εr, which is assumed to be constant throughout

space. Salt and counterions are also implicitly represented through the Debye screening length

κ−1, which is described as :

κ2 =
e2(2cs + cc)

ε0εrkT
(1)

where k is the Boltzmann’s constant, T the absolute temperature, ε0 is the permittivity of vac-

uum, and cs and cc the salt and counterions concentration, respectively.
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Interaction potentials

A shifted and truncated Lennard-Jones (LJ) potential is used to account for the finite size of

particles. In addition to the shifted LJ potential a screened Coulomb potential is employed

to describe the electrostatic contribution. The total interaction between two sites, utot(ri j) =

uel(ri j)+uLJ(ri j), of charge z separated a distance ri j then reads,

utot(ri j) =





ziz j exp(−κri j)
4πεrε0ri j

+4εLJ

((
σLJ
ri j

)12
−
(

σLJ
ri j

)6
)
+ εLJ ri j <

6
√

2σi j

ziz j exp(−κri j)
4πεrε0ri j

ri j >
6
√

2σi j

, (2)

where εLJ and σLJ are the Lennard-Jones parameters. These were set to εLJ = 0.5 kBT and

σLJ = 0.5 nm in all simulations. The full configurational energy of the N platelets system them

becomes

U =
N

∑
i=1

N

∑
j>i

nT

∑
α=1

nT

∑
β=1

uel(rα
i ,r

β
j )+uLJ(rα

i ,r
β
j ) (3)

where indices i, j refer to platelets and indices α,β to sites on these platelets, respectively.

Systems

Three different platelet sizes are considered with nT = 61, 91 and 199 which correspond to D =

90, 110 and 150 Å, respectively. In addition, four different charge anisotropies are considered,

that is:

• high charge anisotropy (HiCh) where all edge sites are positively charged;

• moderate charge anisotropy (ModCh) where half of the edge sites are positive and the

other neutral (organized as an alternation of charged and neutral sites);

• low charge anisotropy (LoCh), where only neutral sites on the edges are present;
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• without charge anisotropy (NoCh), where all sites on the platelet are negatively charged.

Soft core systems, i.e. without electrostatic interactions, for the three sizes of platelets are also

considered for comparison. In all calculations, the salt concentration of the equilibrium solution

is kept constant at cs = 10 mM. The particle volume fraction, defined as,

φ =
NVpart

Vbox
(4)

is varied from 0.001 to 0.4, where Vpart = nT πσ3
LJ/6 is the volume of a single platelet.

Simulations

The calculations are carried out using the same procedure as in a previous paper.2 In brief,

the model is solved using Monte Carlo simulations in the canonical ensemble (N,V,T) and

the standard Metropolis algorithm. Collective platelets displacement and multi-level coarse

graining are employed. The simulations are performed with 1000/500/200 particles for the

small, medium and big platelets, respectively. An equilibrium run is done with 2·106 cycles

(in one cycle all particles have been moved once), and a typical production run involve 4·106

cycles.

Measured quantities

The nematic order parameter, S, is used to characterize the nematic phase. It is evaluated from

the tensor22 :

Q =
1

2N

〈
N

∑
i=1

3ui ·ui− I

〉
(5)

where N is the number of particles, ui is the normal vector to the ith particle and I the identity

matrix. The highest eigenvalue, λ+, was used to evaluate S, S = λ+. S is calculated over an
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average of 2·104 cycles for the isotropic and 4·106 cycles in the nematic phase. φ value at which

S = 0.4 is taken as the position of the I/N transition.24

The percolation of the system and the elasticity of the suspension are evaluated using the same

procedure as in the previous study.2 In brief, two clay platelets are considered to be "connected"

neighbors if the separation between one site of a particle is located at less than 15 Å from a site

of another particle. A cluster is defined as a collection of connected platelets. From these

considerations we calculate :

• 〈Nnei〉 = average number of neighbors around one platelet in a cluster

• 〈Ncl〉 = average number of platelets in a cluster

• 〈Npour〉 = percentage of particles aggregated in the system

The elasticity is approximated by calculating the average force fluctuation per platelet in the

three Cartesian directions:

〈 f 2〉=
〈 f 2

x 〉+ 〈 f 2
y 〉+ 〈 f 2

z 〉
3

Results

Nematic phase

The I/N transition is investigated in Figure 1, which shows the variation of S as a function of vol-

ume fraction for various platelet sizes and charge anisotropies in comparison to the soft platelet

case. The estimated I/N transition at S = 0.4 for the various cases treated are summarized in

Table 1. All curves present the same behavior - at low φ , S is close to zero. This is characteristic
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Figure 1: Nematic order parameter as a function of the volume fraction φ . The diameter of the particles is a)
90 , b) 110 and c) 150 . The NoCh case is represented in full black lines with circles, LoCh in full red lines with
squares and ModCh in full green lines with diamonds. The soft core case is given for comparison (black dashed
lines).

Table 1: Volume fractions at which the I/N transition occurs for various platelet sizes, D, and charge anisotropies.
The I/N transition is extracted from Figure 1 at S = 0.4. The statistical error in the calculation of S is ± 0.05.

D Soft core NoCh LoCh ModCh HiCh
90 Å 0.21 0.20 0.20 0.21 −

110 Å 0.18 0.16 0.16 0.18 −
150 Å 0.12 0.10 0.12 0.13 −

of an isotropic phase (I) where the platelets are randomly oriented. When increasing φ , a tran-

sition from an isotropic to a nematic phase occurs characterized by the rapid rise of the nematic

order parameter. In agreement with Onsager’s prediction, the transition is found to be shifted

toward lower volume fractions as the platelet size is increased - see Table 1. This is an example

of the role of the excluded volume in such phase formation. Interestingly, the I/N transition is

also found to be dependent of the charge carried by the edges. When the platelet edges bear the
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same charge as the basal plane (NoCh) or when they are neutral (LoCh), the formation of the

nematic phase is favored, i.e. compared to the soft core case. This seems to be true for all parti-

cle sizes, and illustrates the role of the electrostatic repulsions. When the edges are oppositely

charged (ModCh) the transitions are shifted toward high volume fractions. The formation of the

nematic phase is then disfavored. This is an important effect since for high charge anisotropy

(HiCh), the I/N transition is replaced by a gel/columnar transition, see below and ref.25 Note as

well that, the smaller the platelets, the less important the effect of the charge anisotropy. The

obtained results are consistent with the recent findings of Martínez-Haya et al.23 with the use

of anisotropic dispersive potentials.

Gel phase
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Figure 2: Equation of state for platelets with various charge anisotropies and sizes, D. a) HiCh; b) ModCh.

Figure 2 and Figure 3 display the osmotic pressure and structural parameters for dispersions

of platelets with various sizes and moderate to high charge anisotropy. As already shown else-

where,2 in the case of strong charge anisotropy, dispersions of platelets with D = 150Å expe-

rience a first order phase transition as revealed by the van der Waals loop in the equation of

state. This corresponds macroscopically to a phase separation between a repulsive liquid and

a percolated network, see Figure 3-a and -b, of randomly oriented particles characteristic of a

gel phase. The gel forms due to the strong basal-edge attraction between the platelets. The gel
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Figure 3: Structural parameters for dispersions of platelets at two charge anisotropies and with various sizes:
(ModCh) = red; (HiCh) = black; D = 90 (dashed lines); D = 110 (full lines); D = 150 (full line with circles).
a) Percentage of particles in the simulation box that are included in a cluster, < Npour >. b) Average number of
particles that form a cluster normalized with Ntot , < Npour >. c) Number of neighbors around a particle inside a
cluster, < Nnei >.

structure is characterized in Figure 3 through the quantities < Ncl >, < Nnei > and < Ncl >

which all show, a strong increase with volume fraction. In particular, a percolated network is

found above φ = 10%, c.f. Figure 3-b. The steep increase in < Ncl > and < Nnei > at low φ ,

in Figure 3 has been shown to be associated with the formation of the metastable Smectic B

phase.2 On the other hand, the drop in the number of neighbors, Figure 3-b, at φ > 0.15, is

related to the formation of a columnar phase, see ref.25 When the particle size is decreased,

< Ncl >, < Nnei > and < Ncl > are, instead, monotonically increasing functions. The percola-

tion point, i.e. φ at which the system is fully percolated, is seen to increase as the particle size

is reduced, see Figure 3-b, although, due to a weaker Znet , smaller particles start to aggregate
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earlier, as best seen in Figure 3-a. The equation of state, Figure 2, shows that the liquid-gel

separation is greatly soften when decreasing the platelets size to D=110 Å and, upon a further

decrease in D, is replaced by a continuous sol-gel transition. Using an approximate Maxwell

construction, the phase transition from a liquid to a gel is thus found to increase from φ ∼ 3%

to ∼ 15% as the platelet size is decreased.

0 0.05 0.1 0.15 0.2 0.25
φ

0

0.5

1

1.5

<
f2 >

 (
k

B
T

/Å
)2

HiCh
ModCh

Figure 4: Force fluctuation per particle as a function of the volume fraction φ for platelets with various sizes and
charge anisotropies. Dashed lines: moderate charge anisotropy; full lines: strong charge anisotropy; black curves:
D = 90; red curves: D = 110; green curves: D = 150.

In the case of platelets with moderate charge anisotropy, a continuous sol-gel transition is found

for all D, c.f. Figures 2-b and 3, respectively. Note that the osmotic pressure is approximatively

two times bigger as a result of the drop of the charge anisotropy and the related rise of Znet .

The evolution of < Npour > and < Ncl > with the particle size, Figure 3-a and -b, shows that,

although less pronounced, the same conclusion as in the case of strong charge anisotropy can

be drawn. That is, the bigger the particle size is, the easier the sol-gel transition. Interestingly

the same trend has been observed on dispersions of Mg/Al layered double hydroxide14 and

nontronite clay4 at low salt concentration. Although such a rationalization is appealing, a full

characterization of the charge anisotropy of these minerals would be needed in order to con-

clusively ascertain the dependence of the liquid-gel transition with the size of the platelets. A

closer look at Figure 3-c, reveals a step in the increase in the number of neighbors with φ for all

moderate charge anisotropy curves (ModCh), induced by the spatial reorganization of platelets,
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characteristic of the I/N transition, c.f. Figure 1. Note that, however, above this transition a true

nematic phase is not observed but, instead, what can be called a nematic gel.

Again the same conclusions can be drawn from the force fluctuation per particle shown in

Figure 4 , i.e. a measure of the gel elasticity. Indeed, the gel becomes stiffer with increase in

particle size and charge anisotropy. The stiffness goes up with the volume fraction, but slows

down at the transition to the nematic gel.

Glass phase

0 0.05 0.1 0.15 0.2

φ

0

0.2

0.4

0.6

0.8

1

<
N

p
o
u

r
>

0 0.05 0.1 0.15 0.2

φ

0

0.2

0.4

0.6

0.8

1

<
N

c
l>

 /
 N

to
t

0 0.05 0.1 0.15 0.2

φ

0

2

4

<
N

n
e
i>

Figure 5: Structural parameters for dispersions of platelets at two charge anisotropies and with various sizes:
(LoCh) = black; (NoCh) = red; D = 90 (dashed lines); D = 110 (full lines); D = 150 (full line with circles). a)
Percentage of particles in the simulation box that are included in a cluster, < Npour >. b) Average number of
particles that form a cluster normalized with Ntot , < Npour >. c) Number of neighbors around a particle inside a
cluster, < Nnei >.

Figure 5 presents the structural parameters versus φ of dispersions for fully negatively charged

12

82



platelets, i.e. ne = 0. Globally, the same trend is obtained for < Npour >, < Ncl > and < Nnei >

as compared to the moderate and strong charge anisotropy case. Indeed, due to the strong

repulsive electrostatic interactions that prevail in these systems, the “filled space” by the spatial

organization of the platelets is found to be reduced as depicted by the global shift of the curves

toward higher volume fractions. This is emphasized when the platelets are large and do not

present a charge anisotropy. As an example, the number of close neighbors, stays lower than

two up to φ ∼ 15% for all D when the platelets are fully negatively charged, while at high charge

anisotropy and D = 150 it drops to φ ∼ 2% - see Figures 3-c and 5-c.

0 0.05 0.1 0.15 0.2 0.25
φ

0

0.2

0.4

0.6

0.8

1

<
f2 >

 (
k

B
T

/Å
)2

NoCh
LoCh

Figure 6: Force fluctuation per particle as a function of the volume fraction φ for platelets with various sizes and
charge anisotropies. Full lines: low charge anisotropy; full lines with symbols: no charge anisotropy; black curves:
D = 90; red curves: D = 110; green curves: D = 150.

A striking feature is the change in stiffness of the repulsive glass (Wigner glass) as the volume

fraction and the particle size are increased. The stiffness is found to increase, as expected, with

the volume fraction, but contrary to the gel case, it decreases with particle size. This surprising

behavior is illustrated in Figure 6. Similarly to a previous finding on gels,2 < f 2 > is found to

be proportional to the number of close neighbors, see Figure 5-c. Indeed, the same qualitative

trend is observed, i.e. both the number of close neighbors and glass stiffness decrease when

edge sites become negatively charged and particle size is increased. The liquid-glass transition

is thus expected to be favored with small platelets. Interestingly, the same behavior has been

observed with dispersions of nontronite,5 bedeillite6 and montmorillonite.3
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Conclusion

We have provided new insight into the transition from an isotropic liquid to a nematic and

to various solid phases. Our results shed more light on how the different phases depend on

the charge heterogeneity of the platelets. In particular, we find that at high charge anisotropy

the liquid-gel transition is favored for dispersions of large platelets and reversely when the

platelets are fully negatively charged. These two different regimes (i.e. at low and high charge

anisotropy) may explain the differences in the liquid-solid transition observed between, on one

hand, montmorillonite, beidellite, and, on the other hand, nontronite, Mg/Al layered double

hydroxides, with changes in the particle size distribution. However, a full characterization of

the charge anisotropy of these minerals would be needed in order to conclusively ascertain the

dependence of the liquid-solid transition with the size of the platelets. In addition, we found that

the I/N transition is disfavored by the charge anisotropy, and, thus, often found to be pre-empted

by a gel phase. Surprisingly, this transition is found to disappear in favor of a gel-columnar

transition for strong enough charge anisotropy.
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Abstract

In this study, the growth and stability of mineral nanoplatelets are investigated with
Monte Carlo simulations (MC) and illustrated for the case of calcium silicate hydrate,
C-S-H, the main product of cement hydration. In a first model, 2D MC simulations
in the canonical ensemble are used to demonstrate that the growth of a single C-S-H
platelet could be limited by its own internal repulsion. In this case short range attractive
interactions are modeled with a square well potential and electrostatic interactions with
a screened Coulomb potential. Then the interaction between two charged platelets in a
2:1 salt is studied to investigate the competition between the growth and the aggregation
of C-S-H particles. The platelets are represented as a collection of sites distributed on a
hexagonal lattice. MC simulations in the grand canonical ensemble are used, and inter-
actions are modeled with Lennard-Jones and Coulombic potentials between all species.
The attraction between the C-S-H platelets are shown to increase with salt concentration
and size of the platelets. The results confirm that the competition between aggregation
and growth has a kinetic origin. Finally, the different modes of aggregation of the C-S-H
platelets onto C3S surfaces are investigated. For that purpose, a charged surface is in-
troduced in the simulation box. We report that, similarly to experimental results, a high
charge density (∼ pH) and calcium concentration favor the axial aggregation.

Introduction

Cement is a widely used material today and as such it also has a strong impact on
the environment - high energy consumption and large CO2 emission. Thus, there is a
considerable interest in making cement use more efficient. One way to achieve this is
by obtaining a better understanding of the setting of cement on a microscopic scale.
Modern Portland cement is made from limestone and clay, which are heated to 1500 oC,
producing a cement clinker, which is a polyphasic material including calcium silicates
(Ca3SiO5=C3S and Ca2SiO4), calcium aluminate and aluminoferrite. The final cement
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product is obtained by grinding the clinker with gypsum (CaSO4). One interesting aspect
of this mix of components is the conformity of the final concrete construction. That is,
the chemical composition can vary within generous limits, still the final product has the
desired strength. This indicates to us that the forces operating on the microscopic scale
are generic and largely of direct electrostatic origin.

After mixing cement with water and sand, one obtains a concentrated suspension of 10-100
µm grains with embedded gravels. The suspension, or paste, has a high volume fraction
and is best described as a colloidal suspension, although cement paste is very rarely
mentioned in colloidal chemical textbooks. When C3S comes into contact with water a
dissolution process begins and the grains start to dissolve. The solution soon contains
a variety of anions and cations and the ionic strength is high. After a few minutes the
solution becomes supersaturated with respect to calcium silicate hydrate (CaO-SiO2-H2O
= C-S-H) and calcium sulfoaluminate hydrate (ettringite) that precipitate. Among the
precipitated hydrates, the former constitutes at least 60 % of the fully hydrated cement
paste. The growth of C-S-H particles is both very directional and limited. A typical
C-S-H particle is a platelet with approximate dimensions of 50 · 30 · 5 nm [1, 2, 3]. The
platelets are highly charged due to titrating silanol groups and the dissolution of C3S and
precipitation of C-S-H take place at high pH (≈ 12 or higher).

Figure 1: Atomic Force Microscopy image of the growth of C-S-H nano-platelets on the C3S grains.
The size of the image is 1 µm x 1 µm. The size of the platelets is 50 x 30 x 5 nm3. From [1]

In the case of cement hydration, C-S-H nucleates onto the surface of C3S [4] and platelets
grow until they have reached a certain size. Then new platelets grow next to the previous
to form a network of C-S-H platelets which grows out into the solution [1, 5] - see Fig.
1. The limited growth of the single nano-platelet is an intriguing observation. It does
not occur only in the case of cement hydration but also in the case of precipitation from
solutions of soluble salts, i.e. sodium silicate and calcium nitrate or from a mix of silica
and lime (see Fig. 2). In that case, the final arrangement is a more or less random
aggregation of these small platelets. The aggregation of the platelets onto a C3S surface
is strongly oriented and depends on the ionic content of the solution. Low pH and low
calcium concentration promotes a lateral aggregation of platelets (i.e. next to each other)
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Figure 2: TEM image of C-S-H (x40 000) obtained from lime and silica. Platelets also aggregate. An
isolated one shows the same size than in the case of C3S hydration. (Courtesy J. Haas)

and a high calcium concentration promotes an axial aggregation of the platelets (i.e. on
top of each other) [5, 6].

The growth of charged aggregates in colloidal solution is often controlled by electrostatic
interactions and limited due to internal electrostatic repulsion. For example, in protein
solution it has been observed that the aggregation process halts once a certain aggregate
size is reached. This has been explained as a result of internal Coulombic repulsion
[7, 8, 9, 10]. In cement paste, however, this could be a less likely mechanism, since the
electrostatic screening is significant - in a typical paste, the range of the electrostatic
interactions might only be a nanometer or less, although the surface charge density is
much greater [11].

Thus, the explanation for the limited growth can be sought after somewhere else. One
possible explanation is that the aggregation is the determining factor for the growth. That
is, initially when the C-S-H platelet form they have a negative surface charge and according
to simple theory they should, repel each other. The interaction with the negatively
charged C3S grains should be also initially repulsive. When the platelets grow and become
increasingly negatively charged, the presence of divalent Ca2+ will, however, induce an
attractive interaction due to ion-ion correlations [12, 13, 14]. This attraction, together
with van der Waals forces, will eventually dominate and lead to an aggregation between
C-S-H platelets and the dissolving C3S grains as well as between the C-S-H platelets
themselves.

Below we will prospect on the mechanisms of growth inhibition and aggregation of nano-
platelets and discuss the obtained results in light with experimental observations on hy-
drated cement paste systems. The paper is organized as follows: firstly, we show, based on
a simple two-dimensional model, in what range of parameters (charge and ionic strength)
the internal electrostatic repulsion is not the growth limiting factor. Thereafter we de-
scribe a more sophisticated model used in Monte Carlo simulations of particle aggregation
to investigate the interaction between two platelets alone or in presence of a large sur-
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face which mimics the C3S surface. The results of these simulations are described and
discussed at some length and we end by some conclusions.

Model Systems

A single platelet

eb=−2
eb=−5

Figure 3: The final structure from two simulations with no electrostatic interactions and varying binding
energy. N = 289 and Rc = 378 Å. A binding energy of 2 kBT is not enough to maintain a compact
cluster but 5 kBT leads to an aggregated structure.

This model system depicted in Fig.3 is used by us to study the growth of a single platelet
in two dimensions. Spherical particles, with radius R are allowed to move on a circular
area with radius Rc. The interaction between any two particles i and j, with separation
rij is given by a short-ranged square well potential, with depth eb and width w,

βusw(rij) = ∞ rij < 2R

= −eb 2R < rij < 2R + w

= 0 otherwise (1)

This potential models a generic attractive interaction that promotes aggregation. We
assume that it is largely unaffected by other mobile ions. Actual C-S-H platelets, are
likely held together via a combination of short-ranged electrostatic correlations, dispersion
forces and covalent bonds. In addition, C-S-H plates are highly charged, thus the particles
of charge −αe that comprise the platelets experience strong electrostatic repulsion, that
will inhibit aggregation. This effect is modeled with a screened Coulomb potential, which
also accounts for the ambient electrolyte concentration,

βusc(rij) =
α2lB exp(−κrij)

rij
rij > 2R (2)
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Here, lB = e2/4πǫ0ǫrkBT is the Bjerrum length and κ is the inverse Debye-Hückel screen-
ing length, determined by the salt concentration. The solvent (water) is treated as a
dielectric continuum with a relative dielectric permittivity, ǫr = 78. e is the elementary
charge and α is the number of charge carried by each particle that comprise the platelets;
ǫ0 is the permittivity of vacuum, T is the absolute temperature and kB is Boltzmann’s
constant.

Two platelets

A more elaborate model is used to study the interaction between two C-S-H platelets in
a 2:1 salt solution, see Fig.4. Each platelet is modeled as a disc composed of np spherical
particles (diameter, d = 1 nm) arranged on a regular hexagonal lattice. Simulations of
these two discs are carried out in a cylindrical box of volume Vbox. To study the effect
of changing platelet size, we use the values, np = 19, 37, 61, 91 and 127. Similarly to
the previous model the particles that make up the platelets are also assigned a charge
of, −αe, where α is chosen as an input parameter. Hence, the total charge of a C-S-H
platelet is,

ZCSH = −npαe (3)

We investigate the role of surface charge by varying α. The following surface charge
densities are used in our studies, -0.6, -1.2 and -2.4 e/nm2.

Figure 4: Schematic picture of two platelets in a salt solution and confined to a cylinder (not shown).
The center of mass of the platelets are constrained to the cylinder axis. The sites of the platelets are
shown as red spheres while the divalent counterions as blue spheres.

As in the single platelet model above, the solvent is treated implicitly using the primitive
model. That is, charges are assumed embedded in a structureless dielectric continuum
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described by the relative dielectric permittivity. Thus, charged particles, i and j, interact
via a Coulomb potential,

Uel(rij) =
qiqj

4πǫ0ǫrrij
(4)

where qi is the charge carried by particle i and rij the particle separation. In this way, all
mobile ions are treated explicitly, unlike the implicit treatment of salt used in the previous
model. In all cases we considered, we assumed divalent counterions to the surface charges.
All particles also interact via a dispersion potential, modeled with the Lennard-Jones
function,

ULJ (rij) = 4ǫLJ((
σLJ

rij
)12 − (

σLJ

rij
)6) (5)

where, if not otherwise stated, the Lennard-Jones parameters took the values, ǫLJ =
0.1kBT and σLJ was equal to the sum of the radii of the two interacting species.

Two platelets and infinite surface

On top of the two platelets, a charged surface is introduced in the simulation box and
positioned at one end of the cylinder. The same model as for the platelets is used to
describe the charged surface, i.e. the surface is decorated with charged sites distributed
on a hexagonal lattice with the same density, charge and size as those of the platelets.

The aim of this model is to investigate two different modes of aggregation of the C-S-H
platelets onto the C3S surface, that is the axial and the lateral aggregation see Fig. 5-a
and -b, respectively. In the first case, Fig. 5, the center of mass of one platelet is kept
fixed in the close vicinity of the surface. Its position is further chosen such as to be at
the free energy minimum. The center of mass of the second platelet is moved along the
z axis, i.e. the rotation axis of the cylinder. In the second case, the centers of mass of
the two platelets are positioned in the free energy minimum with the surface and moved
along the x axis, parallel to the surface. Note that in all the simulations the platelets are
allowed to rotate.

Two particle sizes are used, np = 19 and 37, and the surface charge density is chosen to
be the same for the surface and the platelets by varying α. Three surface charge densities,
-0.5, -1.2 and -1.9 e/nm2, are studied. As for the two platelets case the primitive model
is used and the interactions between all species are described using a Coulomb and a
Lennard-Jones potential. The Lennard-Jones parameters are chosen as follow ǫLJ =
0.01kBT between ions and sites and ǫLJ = 0.1kBT otherwise and σLJ like in the two
platelet model.

Monte Carlo simulations

The Monte Carlo simulations for the single platelet system is carried out in two dimen-
sions using the standard Metropolis algorithm in the Canonical Ensemble, i.e., constant
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Figure 5: Sketches of the two platelets and one infinite surface model used to study the a) axial
aggregation and b) lateral aggregation.

number of particles, constant area and temperature. Most of the simulations for the two
platelets and for the two platelets and surface are carried out in the Grand Canonical
Ensemble (µ,V,T) when a finite salt concentration is considered. When only counter-ions
are present, the Canonical Ensemble (N,V,T) is used. Three different kinds of moves are
employed; i) single ion translations, ii) platelet rotation, where a platelet is rotated around
a random axis and iii) cluster displacements. Note that the centers of mass (CoM) of the
platelets are kept fixed during the simulations. The cluster move involves the rotation of
a single platelet together with the surrounding ions. Maximum displacements (displace-
ment parameters) for all moves are set so as to return an acceptance ratio of between 20%
and 40%. The temperature was kept constant, equal to T = 298K, for all simulations.
Three different salt concentrations are considered : 0, 10 and 20 mM. The volume fraction
of the platelets is defined as,

φ =
npπd

3

3Vbox
(6)

At a given fixed distance between the CoM of the platelets, the force exerted on one
platelet is evaluated by summing the forces exerted by each particle that interacts with
the platelet. To obtain good precision, the force is sampled every 100th move, where
the term move refers to any of the three different types of displacement of the different
species (as described above) or the attempted creation and deletion of mobile ions in the
simulation box in (µ,V,T) simulations.

In the case of the simulations of two particles with a surface the volume fraction is kept
fixed to φ = 0.005.
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Results and Discussion

A single platelet

Here we study the factors that control the growth of a single platelet. The free energy
of the platelet is a combination of energetic and entropic contributions. The latter will
disfavor aggregation, hence the energy term drives the clustering of particles and the
formation of the platelets. It also provides a lower bound on the cluster free energy and
hence an indication of its relative stability. That is, a stable cluster will always have a
negative energy.

We estimate the cluster energy by using the potential model, Eqs.(1) and (2). Assuming
n particles in the cluster, the short-ranged binding energy is approximately −nEb, where
Eb ≈ meb/2 with m being the number of nearest neighbors. Here we assume that the
range of the square well potential extends only to nearest neighbors. For the system we
investigated, the most stable sphere packing in the plane is hexagonal, hence we choose
m=6. The repulsive electrostatic energy can be estimated by integrating the screened
Coulomb potential over the cluster area. We assume the latter to be circular, with radius
Rclus ≈

√
nR.

Eel =
∫ Rclus

0
dr2πr

lBα
2

πR2

exp(−κr)

r
=

2lBα
2

R2

∫ Rclus

0
dr exp(−κr) (7)

which gives the following electrostatic energy per particle

Eel =
2lBα

2

κR2
[1− exp(−κR

√
n)] = E∞

el [1− exp(−κR
√
n)] (8)

where E∞
el is the repulsive electrostatic energy (per particle) of the infinite cluster. This

expression only approximately accounts for the truncating effects of the cluster boundary
on the electrostatic potential. The total energy is thus

Etot = n[(E∞
el − Eb)− E∞

el exp(−κR
√
n)] (9)

Minimizing with n, i.e., ∂Etot/∂n = 0, we obtain

(E∞
el −Eb)

E∞
el

= (1 +
κR

√
n

2
) exp(−κR

√
n) (10)

If E∞
el > Eb, then the electrostatic energy per particle in the infinite cluster becomes

greater than the square well contribution. One can reduce the electrostatic repulsion
per particle by reducing the cluster size. Thus, in this regime, finite clusters can be
stabilized by electrostatic repulsions and Eq.(10) has solutions corresponding to finite
n(> 0). As Eb → E∞

el the cluster begins to grow uncontrollably, n → ∞. Figure 6a
gives the solution to eq.(10) for three different values of Eb. The dashed vertical lines
shows the minimum value of κ/α2 for which the cluster growth is limited. That is, to the
right of the dashed lines the crystal size is no longer electrostatically constrained in size.
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Simulations of this system were carried out in the Canonical Ensemble, so the conditions
at which electrostatics does not constrain the cluster size is estimated as that where
a single cluster forms in the simulation volume. Clearly this estimate becomes more
accurate in the thermodynamic limit. In Fig. 6b we show the phase diagram derived
from simulations of 222 particles in a spherical simulation cell of radius 200 Å with α = 1,
together with the predictions based on our simple energy analysis. The theory gives a
surprisingly good prediction of the phase boundary between finite and infinite clusters.
This indicates that the entropy plays a relatively minor role in determining the cluster
free energy, especially at high binding energies. The major discrepancy at small binding
energies can be explained by the neglect of the entropy. On the other hand, surface
effects are unimportant in determining the position of the bulk phase boundary. Without
any electrostatic interactions we observed from simulations that an initial single cluster
disintegrates when Eb ≤ 2. Increasing the binding energy to Eb = 5, one obtains a
well-condensed single cluster. This cluster does not disintegrate upon introducing short-
ranged electrostatic repulsions, κ/α2 = 0.02. However, for longer ranged repulsions,
κ/α2 = 0.015, the single cluster breaks apart into smaller clusters. Figure 7 shows the
distribution of cluster sizes in such a simulation. We see that the average cluster consists
of approximately 20 particles. Using eq.(10) we get n ≈ 13. The agreement between
simulations and the simple model is surprisingly good, considering the neglect of entropic
and surface contributions to the free energy.

Eb is the major stabilizing component for the cluster. It is expected to be in the range
10-100 kBT . The ionic concentration and pH in pure equilibrium solutions of C-S-H vary
a lot without having a significant effect on the size of the particles. The lowest values
correspond to an ionic strength of I = 3.6 10−3 M and pH = 11 and the highest I = 5.5
10−2 M and pH = 12.5. The charge density of the platelets at these pH values are -1.9

and -4.8 e/nm2 [11], which give κ/α2 = 0.0072 Å
−1

and 0.0044 Å
−1
, respectively. In a

typical cement paste one obtains κ/α2 = 0.016 Å
−1
. Thus, according to our model we

would require Eb > 120 in the case of C-S-H suspensions for an infinite growth of C-S-H,
and 35 in the case of cement hydration. Thus, we are led to conclude that the growth
of C-S-H platelets is most likely limited by electrostatic repulsions despite the high ionic
strength met in these systems. Both the analytical theory and the simulations are based
on a simple description of the electrostatic interactions, that is the screened Coulomb
potential. This approximate form is strictly only valid at low electrostatic coupling.
However, the screened Coulomb approximation usually underestimates the electrostatic
screening and one could expect weaker electrostatic repulsion, and hence stronger growth,
in real systems.

While it seems that equilibrium mechanisms could explain the finite size of C-S-H platelets,
it has been observed an extensive growth of the platelets in the peculiar condition where
the platelets are grown in contact with an atomistically flat surface and in an electrolyte
solution close to equilibrium conditions [15]. Here, the competition between aggregation
and growth have probably a kinetic origin. This hypothesis shifts the investigation away
from the growth of single platelets to the study of interactions between platelets. In
particular, our conjecture would be supported if aggregation did not occur until platelets
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Figure 6: a) Solutions to eq.(10) for different binding energies as a function of electrostatic screening in
terms of the Debye-Hückel inverse screening length. The dashed lines show the boundary at which the
crystals start to grow infinitely. b) The black solid line shows the function eb = 2lB/3R

2.α2/κ describing
the boundary between infinite and finite growth, from eq.(10). The symbols show the corresponding
Monte Carlo results obtained for a system with N = 222 and Rc = 200 Å.
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Figure 7: a) The final configuration from a long simulation with κ/α2 = 0.015, N = 289, Rc = 378 Å
and Eb = −5. b) The corresponding probability distribution for cluster size n.

reached a particular critical size, and that significant growth did not seem to extend much
beyond this value. In the next section we explore mechanisms that give rise to attractive
interactions between platelets and changes in those interactions due to varying platelet
sizes.

The interaction of two platelets

Competition between mono- and divalent counterions: Figure 8 illustrates the
striking change of behavior between two rotating platelets when the salt is varied from
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monovalent to divalent. As known for a long time, a double layer repulsion is observed
between the particles when a 1:1 salt is present in the box. Note that, this repulsion
increases when increasing the size of the particles. When introducing a 2:1 salt in the
simulation box, ion correlations come into play. It results in a net attraction between the
particles, as it can be seen in Figure 8. The later also display size dependence interactions.
This will be further discussed in the next section.
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Figure 8: a) The average force between two rotating platelets with σ=-1.2 e/nm2 in 10mM of a 2:1 salt
(full lines) and a 1:1 salt solution (dashed lines) at a volume fraction of 0.023. The number of sites, 61
and 127, corresponds to 90 and 130 nm in diameter; ǫLJ = 0.1kBT . b) The corresponding free energy
curves.

Size dependent attraction: Recall that for the investigations described in this sec-
tion, the platelets are constructed from charged spheres arranged in a two-dimensional
hexagonal array. Fig. 9 shows the interactions between a pair of platelets that have been
constrained to be parallel. We note the attractive interaction, typical of highly charged
surface in the presence of divalent counterions. The major contribution to the attraction
is due to the correlations between counterions in the space between the surfaces. For the
three platelet sizes depicted in the figure, one notes that the magnitude of the attraction
increases with platelet size. Normalizing the force with the platelet area shows that the
depth at the force/area minimum is similar for all three cases. This indicates that the
total force between platelets scales approximately with the surface area. This becomes
more precise as the platelet size increases. For very large platelets, the force per unit area
of infinite surfaces then becomes the relevant quantity. We will explore this fact below.
Integration of the force curves gives the free energy of interaction of two parallel platelets
and is strongly negative at short separations.

In reality, platelets will generally only adopt parallel (or near parallel) orientations when
they are at close separation. Two freely rotating platelets with their centers of mass at
some fixed separation will possess a rotational entropy Srot. As the platelets approach,
this entropy decreases, which creates a repulsive force. The qualitative behavior of the
entropy loss versus platelet separation is the same for platelets of all sizes. Indeed, we
expect to obtain identical behavior if the center of mass separation, R, is scaled by the
average radius of the platelet, Rp. Thus, the rotational entropy is a function of the reduced
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Figure 9: a) The average force between two parallel platelets with σ=-1.2 e/nm2 in a 10 mM 2:1 salt
solution at a volume fraction of 0.023. The number of sites, from 19 to 61, corresponds to 50 to 90 nm
in diameter; ǫLJ = 0.1kBT . b) The corresponding free energy curves.

separation between platelets, i.e., Srot(R/Rp). Furthermore, we expect that,

Srot(R/Rp) ≈ Srot(R)− Srot(2Rp) for R < 2Rp (11)

That is, the effect of increasing Rp is to essentially decrease the entropy by a constant
amount for all R. This approximation is more accurate for small R/Rp. On the other
hand, the electrostatic interaction between the platelets grows as R2

p. Thus, the distance
dependent part of the rotational entropy becomes negligible for large platelets. The
platelet sizes, which we are able to simulate in this work are still in the range where the
orientational entropy plays a role. In Fig. 10 we consider two freely rotating interacting
platelets. Here we see that it is only for the cases, np = 37, 61 and 91, that the force
becomes net attractive.
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Figure 10: a) The average force between two freely rotating platelets with σ=-1.2 e/nm2 in a 10 mM
2:1 salt solution at a volume fraction of 0.023. ǫLJ = 0.1kBT . b) The corresponding free energy curves.

van der Waals attraction: In addition to the ionic correlation attraction there is also
the van der Waals term to take into account. Strictly speaking these two interactions can
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not be separated in a rigorous way, but an approximate treatment of them as two indepen-
dent terms facilitate the understanding of the underlying physics. Both terms will act so
as to aggregate the platelets, but we know that with only monovalent counterions, there is
no aggregation. The strength of the van der Walls term is not easily chosen. There exists,
however, a wealth of experimental data that indirectly addresses this issue and in many
cases it is possible to make a reasonable estimate of the interaction strength. The general
result for many colloidal systems with monovalent counterions is that the electrostatic
repulsion dominates unless the salt concentration is very high. With divalent counterions
the situation is qualitatively different, since the ordinary double layer repulsion is weak
and the interaction is already determined by the correlation term. The effect of the van
der Waals attraction is merely to increase the attraction, but it does not change the qual-
itative picture. There is of course a transition regime, where the correlation term has not
overcome the usual entropic double layer repulsion and in such a case the van der Waals
attraction can change the total interaction from repulsion to attraction. Figure 11 shows
an example of this, where the attraction is NOT determined by ion-ion correlations, but
rather by the van der Waals term.

0 20 40 60 80 100
R (Å)

−0.5

0

0.5

1

1.5

2

F
or

ce
 (

k B
T

/Å
)

εLJ=0.01
εLJ=0.1

0 20 40 60 80 100
R (Å)

−2

0

2

4

6

A
(R

) 
(k

B
T

)

εLJ=0.01
εLJ=0.1

Figure 11: a) The average force between two freely moving platelets constituted of 61 sites with σ=-1.2
e/nm2 in a 10 mM 2:1 salt solution at a volume fraction of 0.023. The Lennard-Jones parameter ǫLJ has
been varied. b) The corresponding free energy curve.

Surface charge density (pH): The surface charge density of a C-S-H platelet is deter-
mined by the titrating silanol groups on its surface (the same is true for the C3S grains).
The titration of the C-S-H surface is strongly affected by the repulsion between the disso-
ciated silanol groups, which means that the titration does not follow the titration behavior
of a simple acid, but presents a much more extended titration curve. The presence of large
amounts of divalent calcium ions, however, facilitates the dissociation [11]. The number
of titratable site is estimated to be around 4-5 sites/nm2 and a completely ionized surface
is reached in presence of calcium ions at pH = 12.5, that is the usual cement conditions.
Fig. 12 shows the counter intuitive result, that two equally charged surfaces attract each
other more the higher their surface charge density is. This phenomenon has been observed
experimentally in many different systems [16, 17, 18, 19] and is well understood from both
simulation work [12] and analytical studies [20, 21, 22].
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Figure 12: a) The average force between two freely moving platelets constituted of 37 sites in a 10
mM 2:1 salt solution at a volume fraction of 0.023. The surface charge density has been varied and
ǫLJ = 0.1kBT ; b) The corresponding free energy curves.

Additional salt: Standard double layer theory tells us that the addition of inert salt
should reduce the double layer repulsion. In the present case with a net attraction, the
effect of added salt is still the same - it makes the interaction less repulsive (=more
attractive). This is demonstrated in Fig. 13 where the addition of 20 mM 2:1 salt (e.g.
Ca(OH)2) makes the interaction significantly less repulsive and creates a local minimum at
short separation. For larger particles and/or higher surface charge density, this minimum
will become a global one.
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Figure 13: a) The average force between two freely moving platelets constituted of 37 sites with σ=-1.2
e/nm2 in a 2:1 salt solution at various concentration. and at a volume fraction of 0.023; ǫLJ = 0.1kBT
b) The corresponding free energy curves.
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Figure 14: The potential of mean force between two platelets consisting of neutral sites arranged as
hexagons. The number of sites is given in graph. The plate-plate separation has been scaled by the
average platelet radii - 18.9, 26.3, 33.8 and 61.2 Å.

Alternative treatment of two interacting platelets

The simulations of two rotating platelets with neutralizing counterions and possibly added
salt is a time-consuming procedure due to the different length scales involved - the size of
the platelet on one hand and the ”size” of a counterion on the other. The computation
times also scales in a deterrent way with the size of the platelet. In contrast, it is very easy
to carry through a simulation of two infinite charged surfaces as well as the interaction
between two neutral platelike particles. Combining these two types of simulations, the
former giving the attractive term due to ion-ion correlations and the latter providing
the repulsive contribution due to the hindered rotation of the platelets, one could more
efficiently obtain an approximate potential of two charged platelets of a given size. An
additional benefit of this approach is that the rotational entropy term scales in a neat way
with particle size. Figure 14 shows the potential of mean force for four different platelet
sizes where the interparticle separation has been scaled by the platelet radius. The four
curves are virtually on top of each other meaning that one can obtain the potential of
mean force for any platelet size from a universal curve - see Eq.(11).

We can now combine the repulsive term from the orientational degrees of freedom with
the calculated interaction between two infinite plates. The result is shown in Fig. 15
and one finds the same qualitative behavior as in the simulation of two finite charged
platelets. For small platelets the rotational entropy term dominates, while for sufficiently
large platelets the attractive ion-ion correlation term takes over and there is always a deep
minimum at short separation.
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Figure 15: The potential of mean force between two charged platelets based on the sum of an entropic
rotational repulsion and an attractive correlation term evaluated for a system consisting of two infinite
charged walls with neutralizing counterions in between. e is the estimated closest contact distance of the
platelets. The platelet size is indicated in figure and the results should be compared to Fig.10.
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Figure 16: The force between a single platelet with σ=-1.2 e/nm2 and a surface with the same surface
charge density in a 10mM 2:1 salt solution at various platelet sizes.

The interaction of one platelet with a surface

In the initial phase of the hydration of cement, the C-S-H platelets form near the C3S
grain and will be attracted to its surface. In order to mimic this situation we have also
simulated a single platelet outside an infinite (large) charged surface, see Fig. 16. Without
any detailed knowledge about the surface charge density of neither the C3S grain nor the
C-S-H platelets, it seems reasonably to assume that they have the same charge density.
The free energy of interaction is larger in this case than for two equally sized platelets,
since the correlation term is stronger - the orientational entropy is the same for the two
situations. An interesting feature in Fig. 16 is the initial weak minimum, which appears
for a perpendicular arrangement. It will, however, disappear for larger particles, since
the rotational entropy term is more long ranged than the attractive interaction. This can
already be seen in the comparison of platelets with np = 19 and np = 37 sites.
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The interaction of two platelets with a surface

From the previous results, one can conclude that at a critical size, a C-S-H platelet will
aggregate onto the C3S surface. The aggregation of further platelets onto the C3S surface
and on the first C-S-H particle, will then be dependent on both thermodynamics and
kinetics factors. In this section, we investigate the role played by thermodynamics in the
different modes of C-S-H aggregation onto C3S surfaces.

Axial aggregation. We investigate the case of the axial aggregation of charged platelets
on a charged surface of the same sign using the model sketched in Fig. 5-a. Figure 17
displays the axial force acting between the particles at different 2:1 salt concentrations.
The same qualitative behavior as in the case of one particle and a surface is observed.
Indeed, the force displays two minima, the first one at R = 30Å corresponds to a T shape
configuration while the second at R ∼ 15Å corresponds to a stack configuration. Both
minima increase with the calcium salt concentration. Again, this is attributable to the
increase of the ion-ion correlations when increasing cs. The interaction free energy, Fig.
17-b, indicates that a net attraction is only reached at high salt concentration, 20mM.
The free energy minimum corresponds here to a T shape configuration.
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Figure 17: a) Axial force acting between the platelets constituted of 19 sites in a 2:1 salt solution of
varying concentration obtained with the model sketched in Fig. 5-a. b) The corresponding free energy
curves.

A net attraction in the stack configuration is found when increasing the size of the particles
as shown in Fig. 18-b, which gives the axial interaction free energy between two platelets
with 37 sites in presence of a charged surface. Under the same conditions but in absence
of a charged surface, two platelets of 37 sites do not show any attraction, c.f. Fig. 10.
This demonstrates the importance of the charged C3S surface in the aggregation process
of C-S-H during the hydration of cement.

Figure 19 shows the influence of the platelet charge density (∼ pH) on the axial force
between the platelets and the corresponding free energy. At low surface charge density
(low pH), the platelets repel each others. When increasing the charge density from -0.5
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Figure 18: a) Axial force acting between the platelets constituted of 19 sites in a 10 mM 2:1 salt
solution at two different platelet sizes, i.e. 50 nm and 70 nm, obtained with the model in Fig. 5-a. b)
The corresponding free energy curves.

to -1.2 e/nm2 the same qualitative result is observed. Upon a further increase in pH,
a net attraction is obtained at a separation corresponding to a T-Shape configuration.
Note that, in the usual conditions of a cement paste, the surface charge density of C-S-H
is twice the highest value used, i.e. -4.8 e/nm2. For this surface charge density, a net
attraction should also be observed in the stack configuration.
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Figure 19: a) Axial force acting between the platelets in a 10 mM 2:1 salt solution at various charge
densities obtained with the model in Fig. 5-a; the same value is used for both the surface and platelets.
b) The corresponding free energy curves.

Lateral aggregation. The lateral aggregation of charged platelets on a charged surface
of the same sign is studied using the model in Fig. 5-b. Figure 20 gives the lateral
force (along the x axis) felt by the platelets when they are both lying at the surface.
The obtained force curves oscillates around 0 kBT is a consequence of the geometric
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representation of the surface and platelets with explicit sites distributed on a regular
lattice. Indeed, the same oscillating curve is obtained when sliding just one particle on
the surface (not shown). No attraction or repulsion is found between the particles until
the Lennard Jones potential comes into play. Furthermore, varying the salt concentration
has virtually no effect on the lateral force. The same conclusion can be drawn when the
size of the platelets or the surface charge density are varied. This suggests that there is
no preferential lateral position when a C-S-H particle adsorbs or starts to grow from a
C3S surface.
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Figure 20: Lateral force acting acting between the platelets in a 2:1 salt solution at different salt
concentrations obtained with the model sketched in Fig. 5-b.

Conclusions

We have shown that the limited growth of C-S-H nanoplatelets in solution could be
explained by internal Coulomb repulsions - despite the high ionic strength that prevails
in a cement paste. We also suggest that the competition between growth and aggregation
of the C-S-H platelets arises from a kinetic origin. The fact that charged platelets under
”cement like” conditions initially repel each other, but once the particles have reached
a certain size attract each other lends support to our suggestion. The properties of this
correlation attraction also explains why the initial C-S-H layer formed on the dissolving
C3S grains is denser. Finally, we have shown that the different modes of C-S-H aggregation
onto C3S grain surfaces can be partly explained with some thermodynamic considerations.
In agreement with experiments [5, 6], a high pH and calcium concentration is found to
favor the axial aggregation of the platelets.
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