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ABSTRACT

The primary goal of this thesis is to develop generic motion and structure al-
gorithms for images taken from constructed scenes by various types of central
imaging systems including perspective, fish-eye and catadioptric systems. As-
suming that the mapping between the image pixels and their 3D rays in space is
known, instead of image planes, we work on image spheres (projection of the
images on a unit sphere) which enable us to present points over the entire view
sphere suitable for presenting omnidirectional images.

In the first part of this thesis, we develop a generic and simple line matching
approach for images taken from constructed scenes under a short baseline motion
as well as a fast and original geometric constraint for matching lines in planar
constructed scenes insensible to the motion of the camera for all types of central
images including omnidirectional images.

Next, we introduce a unique and efficient way of computing overlap between
two segments on perspective images which considerably decreases the overall
computational time of a segment-based motion estimation and reconstruction al-
gorithm. Finally in last part of this thesis, we develop a simple motion estimation
and surface reconstruction algorithm for piecewise planar scenes applicable to all
kinds of central images which uses only two images and is based on minimum
line correspondences.

To demonstrate the performance of these algorithms we experiment with
various real images taken by a simple perspective camera, a fish-eye lens, and two
different kinds of paracatadioptric sensors, the first one is a folded catadioptric
camera and the second one is a classic paracatadioptric system composed of a
parabolic mirror in front of a telecentric lens.

RÉSUMÉ

L’objectif principal de cette thèse est de développer des algorithmes génériques
d’estimation du mouvement et de la structure à partir d’images de scènes prises
par différents types de systèmes d’acquisition centrale : caméra perspective,
fish-eye et systèmes catadioptriques, notamment. En supposant que la correspon-
dance entre les pixels de l’image et les lignes de vue dans l’espace est connue,
nous travaillons sur des images sphériques, plutôt que sur des images planes
(projection des images sur la sphère unitaire), ce qui nous permet de consid-
érer des points sur une vue mieux adaptée aux images omnidirectionnelles et
d’utiliser un modèle générique valable pour tous les capteurs centraux.

Dans la première partie de cette thèse, nous développons une approche
générique de mise en correspondance simple de lignes à partir d’images de
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scènes urbaines ou péri-urbaines sous la contrainte d’un faible déplacement du
capteur, ainsi qu’une contrainte rapide et originale pour apparier des lignes d’un
environnement plan par morceaux, indépendante du mouvement de la caméra
centrale.

Ensuite, nous introduisons une méthode unique et efficace pour estimer le
recouvrement entre deux segments sur des images perspectives, diminuant con-
sidérablement le temps global de calcul par rapport aux algorithmes connus.
Enfin, dans la dernière partie de cette thèse, nous développons un algorithme
d’estimation du mouvement et de reconstruction de surfaces pour les scènes
planes par morceaux applicable à toutes sortes d’images centrales, à partir de
deux vues uniquement et ne nécessitant qu’un nombre minime de correspon-
dances de ligne.

Pour demontrer les performances de ces algorithmes, nous les avons expéri-
mentés avec diverses images réelles acquises à partir d’une caméra perspective,
une lentille fish-eye, et deux différents types de capteurs paracatadioptriques
(l’un est composé d’un miroir simple, et l’autre d’un miroir double).

keywords: Structure and Motion, central omnidirectional image, catadioptric,
line segments matching, wide baseline, constructed scene.
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Part I

BACKGROUND

Here we give some backgrounds on material presented in this thesis.
We have also given some backgrounds inside each chapter wherever
it was more appropriate.
Chapter 1: we briefly talk about structure and motion from lines
followed by the objectives, the contributions and the layout of this
document.
Chapter 2: Basic pinhole camera and its image formation process, a
classification of the existing central imaging systems based on their
fabrication technologies and also with respect to the mirror geom-
etry and finally some common calibration techniques are material
presented in this chapter.





1
INTRODUCTION

Structure from Motion, or SfM, has been the subject of many researches. The
SfM problem, as it is handled by human stereo vision system, was formally
investigated by Ullman [136]. He investigated the process by which the visual
system constructs descriptions of the surrounding objects in the scene, their 3D
shapes and their motions. The structure from motion problem, as defined in
computer vision, is a similar problem where the aim is to find the correspondence
between images and the reconstruction of 3D scene or objects.

This field can be seen as a collection of tools and techniques for recovering
the geometry of 3D scenes from its projection on flat 2D images. The need for
estimating unknown internal parameters of the imaging system in addition to
the fact that during image formation process, depth information is lost makes
this field very challenging and additional information is inevitable in order
to solve the reconstruction problem. One way is to exploit prior knowledge
about the scene to reduce the complexity of the problem. For example, using
only one image from architectural scenes, one can reconstruct simple 3D line
segments and planar surfaces using parallelism and coplanarity constraints [123]
or recover a 3D texture-mapped architecture model by employing constraints
derived from shape symmetries, which are prevalent in architecture [65]. Another
possibility is to use more than one image taken from different locations and
to find corresponding image features across these images. 3D pre-images of
these correspondences then can be reconstructed by triangulation. However,
calibration parameters and location with respect to the scene coordinate system
of each camera are necessary for triangulation step to work. Assuming enough
accurate feature correspondences are established, these unknowns can also be
estimated from the correspondences between two or more views.

1.1 structure and motion from lines

In computer vision, straight line segments are particularly useful features from
images of man-made environments thanks to existence of numerous straight
edges in such scenes. Similar to other features of interest, they are also used to
perform motion estimation and/or 3D reconstruction between two or multiple
views of the same scene. Among these lines, if the scene is man-made, there
exist generally two or more groups of parallel lines which define vanishing
directions. Vanishing points in the image corresponding to these vanishing
directions can be used to derive useful parameters of the imaging system and
find feature correspondences between images. This is the approach considered
in the first part of this thesis for camera calibration and line matching. In

21



22 introduction

the second part of the thesis, these vanishing points are further exploited to
estimate the unknown rotation between two views and facilitate the development
of a practical interactive system for recovering motion between two images of
piece-wise planar scenes and at the same time reconstructing the surfaces.

Line segments are generally less numerous than interest points but richer in
information. Moreover, their detection is very reliable according to their orienta-
tion. Most keypoints hardly capture geometrical and structural information of
the scene since they are not localized at edges while lines are directly connected
to geometrical information about the scene. Despite these advantages, structure
and motion using lines is a particular difficult field and only a few works have
been proposed in literature.

As for matching stage, besides the traditional challenges in point matching,
these difficulties proceed from some other different reasons such as the inac-
curacy of the endpoint extraction, fragmented segments, the poor geometric
disambiguity constraint, lack of significant photometric information in the local
neighborhood of segments and no global geometric constraint such as the epipo-
lar constraint. Up to now, only a few methods are reported in the literature for
automatic line segment matching [115, 130, 45, 12, 139, 138].

As for motion estimation stage, these difficulties proceed mainly from the fact
that two views of lines are not enough to estimate motion [55, 96, 153, 141, 60,
9, 27]. Once again, besides our proposed algorithm in chapter 7, the algorithm
introduced in Zhang [153], are, so far, the only works on motion estimation based
on only two views of only line segments.

1.2 the line correspondence problem

Feature matching is a fundamental problem in computer vision for a wide variety
of vision tasks such as image registration, motion estimation, object recognition,
etc. It is defined as the task of determining the correspondences between two
sets of image features extracted from two or more views of the same scene. To
find correspondence between images, the trajectories of features such as corner
points (edges with gradients in multiple directions) need to be found from one
image to the next. These trajectories over time are then used to reconstruct their
3D positions and the cameras motion. The most used features of interest are
generally points and infinite lines, while line segments, contours and regions are
rarely exploited.

Line Matching is simply finding the corresponding images of the same 3D
line across two or multiple images of a scene. It is often the first step in the
reconstruction of scenes such as an urban scene. As argued by Ayache [1], we
may prefer to match segments instead of points because:

a. we can reduce the complexity of the matching by reducing the number of
matches which should be carried out since there are always less segments
than points
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b. segments can provide stronger matching constraints since geometric at-
tribute measured on contour segments are more richer and discriminant
than points.

c. the position and orientation of a segment are usually extracted more pre-
cisely than position and orientation of an isolated point (a point can also
have a consistent orientation based on local image properties, refer to SIFT
for more details [72]).

However, the problem of matching segments is more complex than points due to
the reasons mentioned earlier, especially if only two views are considered. One
solution is to identify corresponding segments interactively in each view, having
the advantage that surfaces can be defined simultaneously with correspondences,
e.g. the user can also identify geometric primitives such as 2D rectangles and
3D cubes. However, this interactive approach has the disadvantage that it
is time consuming and the accuracy of the resulting motion estimation and
reconstruction will depend seriously on how carefully the user positions the
image segments.

As long as automatic approaches are concerned, years of research have shown
that, in general, the correspondence problem is difficult to solve automatically.
Automatic algorithms work by computing some geometric and photometric prop-
erties of line segments such as length, orientation, average gray-level intensity
along the segment and the coordinates of the midpoint or endpoints based on
some assumptions (sometimes very naive) such as the transformation between
two images is either a similarity or an affine transformation.

Line matching techniques may be divided into two categories: narrow-baseline
and wide-baseline.

1.2.1 Narrow baseline line matching

Under the assumption that the change in camera position and orientation with
respect to the distance of the camera to the scene is small, the neighborhood of
line segments will look similar in two views and simple similarity measuring
function such as ZNCC1 from pixel intensity values sampled from a rectangular
window around the line segment can be efficient in matching the segments. Since
depth computation is quite sensitive to image coordinate measurement noise
for closely spaced viewpoints, structure and motion parameters can not be accu-
rately recovered. However, by considering multiple views and tracking segment
correspondences throughout consecutive images of this type, it is possible to
recover structure and motion parameters accurately.

1 Zero-mean Normalized Cross Correlation
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1.2.2 Wide baseline line matching

When the baseline is large, the segment translation in the two images may be
considerable and random, thus narrow-baseline matching algorithms can easily
fail and automatically motion and structure estimation becomes much more
difficult. Until now, only a few methods for automatic line segment matching for
wide baseline stereo exist. These methods are either based on known epipolar
geometry or based on some quantities that are invariant under perspective
viewing. Even if the epipolar geometry is available, it can not be used on line
segments that have a similar orientation as the epipolar lines and, therefore, other
properties have to be used for robust wide baseline line segment matching.

1.3 principal objectives

In this thesis, our main objective is to develop some tools for motion and struc-
ture between two images of lines regardless of the type of the imaging system
(perspective, fish-eye or catadioptric) assuming that the mapping between the
image pixels and their 3D rays in space is known.

In the first part, we investigate some methods of matching lines with no
dependency on the photometric information around the segments or their end-
points, therefore looking for a geometric constraint. Matching lines is already
a challenging task in general and in constructed scenes the problem is more
challenging due to the ambiguities caused either by large homogeneous regions
of texture or repeated patterns in images.

In the second part, assuming the rotation part of the motion between two
images can be estimated using matched vanishing points, we investigate how this
can be in our advantages for developing a simple algorithm for reconstruction
of piece-wise planar scenes from only two views and based on minimum line
correspondences.

1.4 key contributions

The main contributions of the thesis are:

• A generic and simple line matching approach for all types of central images
including omnidirectional images in constructed scenes under a short
baseline motion.

• A fast and original geometric constraint for matching lines for central
images including omnidirectional images in planar constructed scenes
insensible to the motion of the camera.

• A unique and efficient way of computing overlap between two segments
on perspective images.
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• A simple motion estimation and surface reconstruction algorithm for piece-
wise planar scenes applicable to all kinds of central images including
omnidirectional images.

The above two line matching methods are based merely on images of lines on
the unitary sphere and no other constraints such as the epipolar geometry are
neither known nor used.

1.5 outline of dissertation

This work is divided into three parts. In the first part of our work, following this
introduction, the work starts by reviewing image formation process for different
types of imaging systems followed by a brief examination and classification of
large field-of-view (FOV) cameras and some of their examples, the unitary sphere
and some common calibration techniques for central imaging systems.

The second and third parts of the thesis divide our main contributions into
automatic structure from motion methods and algorithms for constructed scenes
especially applicable to omnidirectional images. The conclusion and some
remarks on possible future work can be found at the end of each chapter.

Part I - Background

Chapter 1: A brief talk about structure and motion from lines followed by the
objectives, the contributions and the layout of this document.
Chapter 2: A classification of the existing central imaging systems based on their
fabrication technologies and also with respect to the mirror geometry and some
common calibration techniques.

Part II - Line matching for constructed scenes using two views

Chapter 3: A state of the art on various approaches of line matching along with
their classification based on the kind of motion which can be handled by each
method.
Chapter 4: Line matching across images taken by a central imaging system with
focus on short baseline motion of the system is proposed.
Chapter 5: We address the problem of matching randomly oriented lines on a
scene plane by finding the intersection of each line on the image plane with the
line at infinity of the plane followed by recovering the direction of the line in
scene.



26 introduction

Part III - Motion estimation and reconstruction for constructed scenes using two views

Chapter 6: We introduce a unique and efficient way of computing overlap
between two segments which considerably decreases the overall computational
time of a segment-based motion estimation and reconstruction algorithm.
Chapter 7: And finally, we present an algorithm for reconstruction of piece-wise
planar scenes from only two views and based on minimum line correspondences.

A general summary is the last chapter of the manuscript where we put together
a summary of the methods plus the contributions and future works.



2
CENTRAL IMAGING SYSTEMS AND THEIR GEOMETRY OF
IMAGE FORMATION

Cameras are, generally speaking, the most important elements of each and any
image-based computer vision task. They are devices that map points in the real
world onto pixels in the image. Therefore, we dedicate this separate chapter to
the geometry of how this image formation process occurs for different types of
imaging systems. We do so by considering basic pinhole camera and its geometry
of forming images followed by a brief examination of large field-of-view (FOV)
cameras and some of their examples. We then conclude with the unitary sphere
model and some common calibration techniques. Since the focus of our work
is central imaging systems therefore we do not investigate non-central imaging
systems and their properties and applications.

2.1 pinhole camera model

A basic pinhole camera, the simplest camera model, works on the same principal
as camera obscura built by medieval scientists for investigating the properties of
light and optics [97]. A camera obscura is a dark chamber with a small hole in
one of its walls and an image screen opposite of it (Figure 1). Early models were
large; comprising either a whole darkened room or a tent but later on, more
easily portable models became available (Figure 2). Such cameras were later
adapted by Nicephore Niepce (1765 – 1833) for creating the first photographs.

Consider the geometry of a pinhole camera as shown in Figure 3. Let the
projection centre of the camera, C, coincide with the origin of the world coordinate
system, XYZ, and the image plane be at a distance f from C and the centre of
the image coordinate system, xyz, coincides with the intersection of the Zaxis and
the image plane. This intersection point is called principal point.

Following properties of similar triangles, it is easy to show that a point in
Euclidean 3-space with coordinates X = (X,Y, Z)T is mapped to the point
( f X

Z , f Y
Z )

T on the image plane where a line joining the point X to the centre of
projection meets the image plane. This projection maps a 3D point in Euclidean
space R

3 to a 2D image point in R
2. The projection can be conveniently rep-

resented in homogeneous coordinates by a linear mapping in terms of matrix
multiplication:
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Figure 1: Camera obscura, from a manuscript of military designs. 17th century. Courtesy
of The Library of Congress, Washington (http://loc.gov/)

Figure 2: Joshua Reynolds’ camera obsecura (1723 - 1792): (left) open camera and
(right) disguised as a book. Courtesy of the Science Museum, London
(http://sciencemuseum.org.uk/)

Figure 3: The Pinhole camera geometry.
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To derive the above expression, we assumed that the origin of coordinates in
the image plane is at the principal point. In practice, it is common to assume
the origin of the image coordinate system at one of the corners of the image.
In this case, the coordinates of the principal point are not anymore (0, 0). We
also assumed the camera and world coordinate systems to be the same which is
not always the case. These two coordinate systems are generally related via a
rotation and a translation. Furthermore, we assumed that the image coordinates
are metric coordinates while in practice they are almost always measured in
pixels. Relaxing these assumptions and by following [52], the above equation can
be rewritten as:

x = KR [I| − C] X

where X is now in a world coordinate system, C represents the coordinates
of the camera centre in the world coordinate system, and R is a 3 x 3 rotation
matrix representing the orientation of the camera coordinate system. K is called
calibration matrix and contains five internal camera parameters:

K =




αx s u0

0 αy v0

0 0 1




where αx and αy represent the focal lengths of the camera in terms of pixel
dimensions in the x and y directions respectively; (u0, v0) is the principal point
on the image plane and s is the skew parameter. For more details on camera
matrix, we refer the reader to Hartley and Zisserman [52] or Faugeras and Luong
[28].

2.2 omnidirectional vision cameras

An off the-shelf traditional perspective cameras is an advanced variation of the
same old pinhole camera designed over a century ago. Soon it was realized that
these cameras are too limited and highly restrictive for many of the tasks such as
robot navigation, pattern recognition, tracking or surveillance tasks. One place
to look for the inspiration for designing new vision sensors is nature. Thanks to



30 central imaging systems and their geometries

the massive computational power offered by the brain, a human being is able to
smoothly perform navigation and recognition tasks despite a very limited field of
view compared to the other visual organs found in nature which have much less
computational capacity for processing visual information (for example insects
brain has 105 to 106 neurons compared to 1011 of a human brain [35]). Despite
this, we as humans are not capable to build similar view systems and it is logical
to assume that the performances of these perfect flying systems are improved
by the special construction of their eyes, mainly from a wide field of view given
by their compound eyes [99]. This might have inspired the design of some of
omnidirectional vision sensors such as the general imaging model proposed by
Grossberg and Nayar [48] which is composed of a set of light sensors on a sphere
and which is capable of representing any arbitrary imaging system.

Having said that, one can easily conclude that among the vision sensors, the
ones that replicate nature models are the most versatile and among the vision
sensors inspired by nature the omnidirectional ones are, theoretically, the most
suitable for 3D reconstruction and navigation tasks. In the rest of this section we
will give a classification of the most common omnidirectional sensors together
with a description of their characteristics.

Omnidirectional cameras are commonly classified based on their fabrication
technologies, see Figure 4.

Figure 4: Examples of non-perspective imaging systems. (a) a dioptric wide-angle system
such a fish-eye lens, (b) an imaging system made of a camera cluster and (c) a
catadioptric system. The images are courtesy of R. Orghidan [99].

2.2.1 Special lenses

Special lenses such as fish-eye lenses are imaging systems with a very short
focal length which can produce large FOV images (e.g. [10, 104]). However,
the modeling process of these cameras is very complicated due to their specific
drawbacks such as the radial distortion, the varying resolution (high in the
middle, low in peripherals) and the lack of a unique view point. Despite these
shortcomings, a fish-eye lens can provide images suitable for many applications
and many researchers have studied its projection function and how to remove
the distortion and calibrate the lens [29, 144, 20]. A particular configuration of
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the panoramic annular lens (PAL) with mirror surfaces is also used by Greguss
[46] in order to achieve large FOV images.

2.2.2 Multiple image acquisition systems

These systems form panoramic images by stitching images taken from:

• a spinning single camera [23, 68, 77, 156] where the camera rotates at
constant angular velocity , taking narrow, vertical scan lines from different
images and joins them to form a panoramic views;

• or from a single camera attached to a rotating arm[101, 88];

• or from two cameras attached to a rotating plate[17, 18]. An example of
their latest configuration is shown in Figure 5;

• or from multiple cameras oriented in different directions [4, 29]. The
configuration of several cameras looking in different directions is especially
more applicable where a full spherical field of view is not necessary for
instance for video-conferencing [25, 29].

Figure 5: Examples of multiple image acquisition systems proposed by Benosman et
al. (a) The panoramic sensor architecture, (b) Vertical scan line CCD camera
equivalent.

2.2.3 Catadioptrics

Considering the main drawbacks of above two classes of omnidirectional cameras
(e.g. complexity of modeling special lenses such as fish-eye lenses or difficult
fabrication, setup and calibration of multiple image acquisition systems), the
question is whether it is possible to create a simpler and faster imaging system
with still a spherical view field? To achieve this goal, Baker and Nayar [5, 93]
investigated the incorporation of a dioptric or refractive element with a catoptric
or reflective element, i.e. a combination of a lens and a mirror. They refer to this
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approach as catadioptric image formation. They classified these sensors in two
respective categories: central and non-central sensors.

The first group is sensors with a single viewpoint which are made of either
parabolic mirror associated to an orthographic camera or hyperbolic, elliptic or
planar mirrors placed in front of a perspective camera. Figure 6 shows the entire
class of feasible central catadioptric systems. Table 1 provides the equation of
the 3D surface assuming the origin of the coordinate system coincident with the
focus of the mirror and the zaxis is aligned with the mirror axis. The length of
latus rectum1 of the conic mirrors is 4p.

Figure 6: The entire class of feasible central catadioptric systems. Courtesy of Joao P.
Barreto

1 The line segment through a focus of a conic section, perpendicular to the major axis, which has
both endpoints on the curve.
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Table 1: All central catadioptric mirror equations

The design of these systems ensure that the camera only measures the intensity
of light passing through a single point in 3D space which is the projection point.
Uniqueness of an effective viewpoint is desirable because it allows the mapping
of any part of the scene to a perspective plane without creating any parallax. In
this sense, a central catadioptric system has the same effect as a camera rotating
about its focus, though without the necessity of rotating the camera (see Figure 7

for an example). The resulting perspective images can be processed by traditional
computer vision techniques though their resolution is not as good as a traditional
perspective image.

Figure 7: Generation of perspective images (b) from an omnidirectional image (a) made
possible thanks to unique effective viewpoint of the system. On the right are
two implementations of catadioptric omnidirectional cameras with paraboloidal
mirrors: (c) Hemispherical field of view. (d) Full sphere field of view. Courtesy
of S.K.Nayar.

Catadioptric systems can be composed of a single camera with a single mirror
[146, 102, 119, 22, 86, 26, 70, 148, 149, 140, 98, 93, 41, 122, 155, 56, 142, 38], a
single camera with multiple mirrors [95, 42, 43, 94, 87, 120, 31, 32] or multiple
cameras with multiple mirrors [91, 67, 58, 116, 121, 145, 147, 44]. The mirror
type can be flat, conic, elliptic, hyperbolic, parabolic or spherical among which
only flat, hyperbolic and parabolic mirrors exhibit a practical single view point
(SVP) property. The conical mirrors have the single view point at the apex of the
cone which means that the only rays entering the pinhole are those which gaze
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the cone and therefore they do not come from the scene. This is a degenerate
case and therefore cones can not be used to construct a SVP catadioptric camera.
Similarly for a spherical mirror, the viewpoint and pinhole coincide at the center
of the sphere which means the observer can only see itself. Even though elliptical
mirrors satisfy SVP, their practical application is limited because they decrease
the field of view instead of increasing it.

2.3 svp omnidirectional system examples

Since our subjects of interest are central imaging systems, in the next section we
will present some representative examples of related works on SVP complying
imaging systems. We refer the reader to sources such as [126, 99] for an in depth
treatment of the non-SVP catadioptric configurations including catadioptric
stereo systems, plenoptic cameras (where a lenticular array is placed in front of a
camera’s sensor plane forming many tiny pinhole cameras), along with several
common characteristics.

2.3.1 Single camera with single hyperbolic mirror

HyperOmni, an early prototype of this configuration was built by Yamazawa et al.
[148] in 1993 for robot localization. It was used later for obstacle detection [149]
and later in 1998 for map building [140] and video surveillance [98] applications.

2.3.2 Single camera with single parabolic mirror

S.K. Nayar was the first one to use a parabolic mirror with a telecentric
(orthographic) camera having a hemispherical field of view [93], see Figure 7.
Similar sensors were used by Gluckman and Nayar [41] and Sturm[122] for
ego-motion estimation and interactive 3D reconstruction respectively.

2.3.3 Single camera with multiple conic-shaped mirrors

Nayar and Peri [94] used a combination of two mirrors with conic cross-sections
for building what was termed “folded catadioptric camera” based on the fact
that SVP is possible by positioning two conic-shaped mirrors such that foci
of successive mirrors in a sequence of reflections coincide. As can be seen in
Figure 8, they used different combinations of planar (PL), hyperboloidal (HYP),
ellipsoidal (ELL) and paraboloidal (PAR) mirror in their design. This type of
design leads to a more compact sensor and in return the removal of undesirable
optical effects due to the curvatures of large mirrors. Recently, Nagahara et al.
[89] proposed an omnidirectional vision sensor which has a single viewpoint
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and a constant angular resolution. The proposed omnidirectional sensor uses
two mirrors, which improves the degree of freedom of the design for satisfying
each property.

2.3.4 Multiple cameras with multiple Planar mirrors

Using a single perspective camera and a planar mirror is of no practical use
since this configuration does not enhance the view field. However, several
synchronized perspective cameras looking at several planar mirrors arranged
as a pyramid can give a SVP wide field of view with high resolution images.
This setup which is often called the “Nalwa pyramid” was first patented by
Iwerks [64] in 1964 and later a basically same system was proposed by Nalwa in
1996 [91]. As shown in Figure 9, the main idea is to arrange all camera–mirror
pairs such that the effective viewpoints coincide. Some other works that use
different variants of Nalwa pyramid are [67, 73, 58, 116, 59]. For example, Hua
et al. [59] achieved a wider vertical field of view by arranging six cameras and
a hexagonal pyramidal mirror as a component and placing two such sensor
components symmetrically back to back such that the effective viewpoints of the
two pyramids coincide (see figure 9(c)).

Figure 9: The Nalwa pyramid concept. (a) The image captured a perspective camera
looking at a planar mirror is the same image as the one captured by the same
camera located behind the mirror, at the position obtained by reflecting the
original camera. (b) a pyramidal layout of several such camera–mirror pairs
gives a SVP wide field of view with high resolution images. (c) Double vertical
FOV design: Two hexagonal pyramidal mirrors component are put together
symmetrically such that the effective viewpoints of the two pyramids coincide.

To have a hemispherical field of view, recently Gao et al. [37] proposed a
similar design consisting of multiple imaging sensors and a hexagonal prism
mirror with six cameras plus a real camera located inside the pyramid with its
view point coincident with effective viewpoint of side cameras (see figure 10).
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Figure 8: A dictionary of two-mirror folded catadioptric camera designs that satisfy the
single viewpoint assumption.
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Figure 10: The imaging system with hemispherical field of view proposed by Gao et al..
(a) A hexagonal prism mirror with six cameras plus a real camera located
inside the pyramid. (b) A cross-section showing the hemispherical field of
view coverage.

2.3.5 Multiple cameras with multiple parabolic mirrors

S.K. Nayar also used a back-to-back configuration of two parabolic mirrors with
two telecentric cameras to achieve a full spherical field of view [93]. To do so,
each paraboloid is cut by the horizontal plane that passes through its focus
resulting in a field of view exactly equal to a hemisphere. Symmetrically placing
two such paraboloid back-to-back ensure that their viewpoints coincide and
therefore creating a SVP omnidirectional sensor with entire spherical field of
view. The catadioptric cameras with full sphere field of view in figure 7(d) is a
back-to-back configuration of two identical sensor in 7(c).

2.4 camera calibration

Calibration can be defined for every image pixel as the determination of the
3D ray along which light travels to reach the image plane in some common
coordinate system. Regardless of the steps involved, all the calibration technique
try to find and remove the effects of refractions, radial distortions, reflections
(for the case of catadioptric cameras) and such on the light rays entering the
camera. This enables us to map any given image pixel to a ray in space which
pass through the camera centre and the corresponding pre-image of the pixel
in 3D world. In other words, camera calibration enables us to back-project any
image pixel to its corresponding ray in 3D.

The calibration method either use a calibration object such as planar grids,
spheres or any other suitable 3D object with some known metric measures
or point correspondence across several images from an unknown solid scene
(self-calibration or auto-calibration).
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In this section, for the sake of completeness, we will briefly mention some
recent calibration methods for SVP systems. We skip few available tailor-made
methods for multiple image acquisition systems

2.4.1 Single perspective camera

The simplest approach for perspective camera calibration based on pinhole
camera model is to find a linear mapping in projective space in order to estimate
the internal camera parameters, mainly focal length and principal point. However,
this approach cannot fully model many real camera systems with nonlinear
distortion lenses. Perspective camera calibration is now a mature field and there
exist many techniques that take into consideration the radial and tangential
nonlinear distortion effects using simple parametric models in early works (Tsai
[135], Heikkila and Silven [54], Zhang [154], Sturm and Maybank [124], Heikkila
[53]) to high order parametric models capable of handling very large field of
views and fish-eye lenses (Shah and Aggarwal [118], Kannala and Brandt [66]).

2.4.2 SVP catadioptric systems

Here, we will briefly mention some representative techniques for calibrating
SVP systems. For a full coverage on both central and non-central catadioptric
calibration techniques found in literature and their common and most used ideas,
refer to Shabayek [117], chapters 2-7.

Micusik and Pajdla [82] use point correspondences and catadioptric epipolar
geometry constraints to generalize the geometric distortion model and the self
calibration method described by Fitzgibbon in [34].

Few methods use geometric invariants for the calibration procedure. Barreto
and Araujo [7] have shown that the central catadioptric sensor can be fully
calibrated from one image of three or more lines and Ying and Hu [150] use
images of lines and spheres as geometric invariants.

Scaramuzza et al. [112] proposed a very fast and completely automatic proce-
dure based on the assumption that the imaging function can be described by a
Taylor series expansion whose coefficients are the calibration parameters to be
estimated.

Ramalingam and Sturm [105] adapt the generic approach of Sturm and Ra-
malingam [125] which uses three or more views of a calibration grid, acquired
from unknown viewpoints, to calibrate a general imaging system. They see the
calibration problem as a motion estimation problem between these calibration
grids and they propose a four point calibration algorithm that computes the
motions between these grids using triplets of 3D points (lying on the three grids)
for four pixels in the image which in return allow recovering the projection rays.

Later, by relaxing the assumption of using a calibration grid, Ramalingam et al.
[107] consider the self calibration problem using a central variant of a generic
imaging model which assigns projection rays to pixels without a parametric



2.5 homogeneous presentation 39

mapping and the calibration is purely performed from image matches. However,
the motion of the camera is assumed to be pure translation and/or rotation. These
motion considerations together with image matches form geometric constraints
on the projection rays.

The fact that central catadioptric cameras can be considered as a camera
with general distortion is exploit by some researcher (Thirthala and Pollefeys
[131], Ramalingam et al. [106], Tardif et al. [128]) for modeling catadioptric
systems. In this sense, the projection model can be seen as a projection from a
perspective camera followed by a non-parametric displacement of the imaged
point in the distortion centre direction (i.e. the image is non-linearly distorted).
They also assume the radial symmetry (i.e. the displacement of a point is a
function of its distance from the distortion centre) and the coincidence of the
distortion centre with the principal point.

2.5 homogeneous presentation

For the rest of this thesis, we use homogeneous presentation of points and lines
in order to benefit from simple mathematical tools for defining lines and their
intersections on the image plane [52]. For a point p = [x, y]T in the image plane,
its homogeneous coordinates are p̃ = [x, y, 1]T. The infinite line supporting the
line segment passing through points p1 and p2 is represented by cross product
of these points: l = p̃1 × p̃2 and the intersection point of two lines l1 and l2 is
represented by I = l1 × l2 . The Euclidean coordinates of the intersection point
in the image plane are simply the first two elements of I divided by the third
element.

2.6 unified projection model

Geyer and Daniilidis [40] introduced an unifying theory for all central catadiop-
tric systems, covering elliptic, parabolic and hyperbolic projections as well as
perspective projection. They showed that the image formation of these systems
can be modeled as a two step projecting first from the scene to a sphere centered
at the mirror focus point and then projective mapping from the sphere to the
image plane with a projection center on the symmetry axis of the sphere per-
pendicular to the plane. The position of the point on the axis depends on the
mirror shape. Later on, Barreto and Araujo [6] introduced a modified version of
this unifying model based on three steps. This model was further extended by
Mei and Rives [81] to include optical distortion and the misalignment between
the sphere axis and the images plane and it was used for developing a general
calibration toolbox. Besides the obvious advantage of unifying the geometrical
model for this range of SVP omnidirectional sensors, the unified model reduces
the number of independent unknown parameters to be estimated during the
calibration.
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Since, in this thesis, we use the calibration algorithm of Mei and Rives (which is
also capable of calibrating fish-eye images) to calibrate our sensors, we mention,
in the followings section, the necessary equations for lifting a pixel on the image
onto the unitary sphere using the calibration results of this toolbox.

2.6.1 A full omnidirectional projection model

The necessary equations for lifting a pixel on the image onto the unitary sphere
(pixel point to metric ray) are already derived in several slightly different formu-
lations in literature. As was mentioned above, we use the projection model of
Mei and Rives [81] which is an extension of the model proposed by Barreto and
Araujo [6] and Geyer and Daniilidis [40]. Figure 11 shows the steps involved in
the projection of a 3D point in the scene to a pixel point on the omnidirectional
image plane.

Figure 11: A full model for projection of a 3D point in the scene to a pixel point on the
omnidirectional image plane.

By normalization, a 3D point χ = (X, Y, Z), in the mirror/sphere frame is
projected onto the surface of the unit sphere: χs = (Xs, Ys, Zs) =

χ
||χ|| . Mapping

h̄ then projects the point from the surface of the unit sphere onto a normalized
plane located at unit distance from the projection center, (0, 0, ξ), defined by
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Camera ξ η

Parabolic 1 −2p

Hyperbolic d√
d2+4p2

−2d√
d2+4p2

Ellipse d√
d2+4p2

2d√
d2+4p2

Plane 0 −1

Table 2: Unified model parameters

unified projection model (Table 2): h̄ (χs) = mu =
(

Xs
Zs+ξ ,

Ys
Zs+ξ , 1

)
. The radial

and tangential distortions are then added using the distortion function D (mu, V)
where V = [k1 k2 k3 k4 k5] includes the distortion coefficients.

md = mu + D (mu, V)

The radial and tangential distortion components of the distortion function
for the point mu = (x, y, 1) on the normalized plane are defined through the
following equations:

L(ρ) = 1+ k1ρ2 + k2ρ4 + k5ρ6 (2.1)

dtan =

[
2k3xy + k4(ρ

2 + 2x2)

k3(ρ2 + 2y2) + 2k4xy

]
(2.2)

where ρ =
√

x2 + y2. Finally a generalized camera projection matrix K, projects
the distorted point md on the normalized plane to the pixel p on the omnidirec-
tional image.:

p = K md =




γ1 γ1s u0

0 γ2r v0

0 0 1


 md

where (u0, v0)is the principal point, s is the skew, r is the aspect ratio, γ1 = f1η

and γ2 = f2η. The camera focal lengths f1 and f2 and the mirror parameter η

(Table 2) that depends on the mirror shape cannot be estimated independently.
All these parameters along with five distortion coefficients are available as the
result of calibration.
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2.6.1.1 The inverse mapping

The same above steps can be used in reverse to back project a pixel from image
plane to a 3D point on unitary sphere. However, because of the high degree
distortion model D (mu, V), there does not exist any general analytic expression
for the inverse mapping and one should take an iterative numerical approach.

2.6.2 The image sphere representation

After calibration of the imaging system, we are able to back-project any image
pixel to its corresponding ray in 3D. For reconstructing an undistorted image, it
is then common to re-project these rays onto some canonical image plane using
also some interpolation techniques. Even though choosing a planar image for
this purpose seems natural (since CCD arrays and photographic films are planar),
choice of a sphere is more advantageous. Unlike the image plane, image sphere

enables us to present points over the entire view sphere suitable for presenting
omnidirectional images. Furthermore, as will be shown in following chapters,
the projection of line segment images onto the image sphere gives us some nice
properties useful for matching lines.

2.7 our central imaging systems

The experiments of this thesis were carried out using images taken by four
different categories of sensors as presented in the figure 12(a-d). The perspective
sensor was a canon G9 and we employed the calibration technique using planar
grid developed by Mei and Rives [81] to accurately calibrate the camera. A
Canon DS126081 with a Canon EF 8-15mm fisheye lens was used for taking
fisheye images. As for catadioptric sensors, we experimented with two different
kinds of paracatadioptric sensors, provided by RemoteReality. The first one was
a folded catadioptric camera with configuration h (figure 8) and the second one
was a classic paracatadioptric system composed of a parabolic mirror in front of
a telecentric lens. All these wide field of view sensors were calibrated using the
generic toolbox of Scaramuzza et al. [113].

2.8 summary

In this chapter, beginning with basic pinhole camera and its image formation
process, a classification of the existing central imaging systems with some repre-
sentative examples for their most common configurations were presented. Based
on their fabrication technologies, omnidirectional cameras were classified to
special lenses (such as fish-eye lenses), multiple image acquisition systems (such
as multiple cameras oriented in different directions) and catadioptrics (obtained
by combining mirrors and conventional cameras). The catadioptric systems were
further investigated with respect to the mirror geometry. Finally, the unitary
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(a) (b)

(c) (d)

Figure 12: Four different categories of sensors used in this thesis. (a) Perspective cam-
era.(b) Camera with fisheye lens.(c) Camera with folded optics.(d) Paracata-
dioptric system composed of a parabolic mirror in front of a telecentric lens.
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sphere and some common calibration techniques for central imaging systems
concluded the chapter.



Part II

L INE MATCHING FOR CONSTRUCTED SCENES
US ING TWO VIEWS

In this part, line matching for constructed scenes using two views is
investigated and some efficient algorithms are proposed.
Chapter 3: We present a state of the art on line matching.
Chapter 4: Line matching across images taken by a central imaging
system with focus on short baseline motion of the system is proposed.
Chapter 5: Here, a generic method of matching randomly oriented
(however parallel to a scene plane) lines between two views of a
constructed scene is addressed.





3
STATE OF THE ART ON LINE MATCHING

The most used features of interest are generally points and there exist a number
of novel approaches to wide baseline matching of interest points, some of them
such as SIFT (Scale-invariant feature transform) [72] and SURF (Speeded Up
Robust Features) [11] are now even considered as reference ones. Less work has
considered matching of other features of interest such as line segments. One
of the main reasons for this lack of interest in research on lines might be that a
set of corresponding infinite lines does not constrain the motion of the camera
in two images. For this reason, at least three views are needed to perform 3D
reconstruction using lines, whereas two images are enough for points. However,
as we will show in following chapter, man-made environments do contain lots
of linear structures which in return provide us with some interesting properties
such as vanishing point features which we use to develop some simple algorithms
for line matching. Furthermore, these properties plus some scene constraints
such as planarity of constructed scenes, can be used for motion estimation and
3D reconstruction from line correspondences in two views (Part iii).

Here we will present some various approaches of line matching. A more
specific mention of related line matching techniques for man-made scenes will
be presented in their corresponding chapters.

3.1 perspective line matching

The earliest works involving line segments date back to 1970’s where researchers
were interested in grouping line segments belonging to the same solid object in
the scene and to extract its position and 3D structure based on the topological
configuration of its segments in the image. Roberts (1963) [108] assumed that
a scene could be decomposed into a number of primitive polyhedra. These
primitives then were recognized as a specific polyhedron by looking iteratively
for expected transformed versions of the primitives in the image. After finding
the most likely primitive polyhedron, the process was restarted until all objects
are recovered. Similarly, Guzman-Arenas and Guzmaan [50] and later both
Huffman (1971) [61] and Clowes (1971) [24] proposed a similar system where
the system looked for instances of polyhedra primitives based on the type of
junctions in the image such as L junctions,T junctions, arrow-shaped junctions or
based on whether the segment was the image of a concave or convex edge, or
whether it was an occluding contour. Though originally working with only one
image, this 3D pattern recognition technique can eventually be used for matching
primitive polyhedron objects (in other words, a set of line segments) between
two or more views by simply interpreting and grouping the same line segments

47
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belonging to the same object in different views. The method, however, works
only for scenes with only solid polyhedron objects.

In line segment-based algorithm introduced by Medioni and Nevatia [78, 79],
each line segment descriptor consists of its orientation, the average gray-level
intensity along the orientation and the coordinates of its endpoints. An iterative
matching procedure is employed where in each iteration, a hypothesized match
between two segments is accepted if the match can help matching many of
the other segments. Their algorithm allows for the possibility of fragmented
segments by considering sets of matches together. They compute iteratively so
called the "minimum differential disparity" evaluation function applied over
neighboring edge segments to determine the power of each match. The lower
is this criterion for a putative match, the stronger is the match. The minimum
differential disparity value for each possible pair is computed based on the
overlapped length of the matching segments along the epipolar lines. The method
can work only with very small view changes between the images therefore it is
more suitable for short baseline motion.

Ayache and Faverjon [2] describe each edge segment using the coordinates of
its midpoint, its length, and its orientation. They first use local constraints to
find a set of initial matches. A pair of line segments is considered a potential
match if the midpoints of the two segments satisfy the epipolar constraint near
an expected disparity value and their length ratio and orientation difference lie
below a preset threshold. Then a global correspondence search is applied on
these potential matches consisting of a prediction and recursive propagation
process. For their method to work, the cameras need to be fully calibrated.

In their work, McIntosh and Mutch (1988) [75] match lines based on geometric
and photometric properties of line segments such as length, orientation and
contrast. Therefore their approach is sensitive to illumination changes and
considerable camera motions. Similarly, Gros et al. (1998) [47] used angles
and length ratios between line segments to match them based on the naive
assumptions that the transformation between two images is either a similarity or
an affine transformation.

Gu et al. (1987) [49] presented each polygon by using a unique string which
encodes the concavity or convexity of each vertex of the polygon. Polygons are
then matched based on the similarity of their string values.

In [57], Horaud and Skordas proposed a matching algorithm based on graphs .
For each image, a graph, so called a relational graph, is built which encapsulates
the lines of the image as its nodes and edges in the graph include the relational
information between line segments such as whether they are collinear or which
side (left or right) one segment is located with respect to another one. Based on
these two relational graphs, a third graph, so called a correspondence graph, is
then constructed which encapsulates, as its nodes, a set of potential assignments
for each segment in the other image and edges in this graph are established on
the basis of segment relationships. Finally matching is carried on by searching
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for sets of mutually compatible nodes in this graph by looking for the maximal
clique which maximizes a benefit function.

Tsai [133, 134, 132] used the geometric hashing idea introduced by Wolfson
and Lamdan [143]. Considering each 3 line segments in the first image, an affine
invariant value can be computed from any forth line. A hash table indexed by
the invariant value is then used to store all possible triplets of lines in the first
image. Putative matches are then recognized by forming triplets of line segments
from the second image followed by computing their invariants and searching the
hash table for the triplets from the first image which have the same invariant
value. Finally, a voting scheme is used to find possible correspondences.

In [152], Zhang tries to solve the matching problem by taking long sequences
of images over short time interval. Since the time interval is small, the correspon-
dence of a token at the following image must be in the same neighborhood as in
the previous image. Consequently the (extended) Kalman filter is used for match-
ing. This technique, however, does not apply in cases where the assumption of
short time interval does not hold such as images taken with large baseline.

Schmid and Zisserman (1997) [115] used the epipolar geometry between the
two images, which is assumed to be known, and present a matching algorithm
based on correlation of the neighborhood around the line segments of potential
line matches. They also use the trifocal tensor as a tool for verification or rejection
of matches between three views. However, the assumption of known epipolar
geometry limits the usefulness of these methods.

Tell and Carlsson [130] look at line segments between two Harris corners and
use Fourier coefficients of the intensity values along the segments as descriptors.
The large number of corner pair combinations that may have to be considered is
a main drawback of this method.

Goedeme et al. [45] use invariant column segments as the local image features
and therefore their method deals only with vertical lines. For each vertical seg-
ment, a descriptor vector is computed based on geometrical, color and intensity
information. The motion is restricted and the camera may translate only in the
horizontal plane and rotate only around a vertical axis (such as a mobile robot).
Under this camera motion constraint, a vertical line in the world always projects
to a vertical line in the image plane which will only be scaled around the point
where it intersects the horizon. This provides a geometrical invariant which is
the ratio between the vertical segment length and the distance of the midpoint of
the segment to the horizon.

Bay et al. [12] proposed to match line segments, first based on the histograms
of the neighboring color profiles and then to use the topological relations between
all line segments to remove false matches as well as to find more matches. Their
method has two main drawbacks. Firstly, it is computationally expensive since
the matching propagation is an iterative process. Secondly, due to using the color
histogram for finding the initial matches, it is less robust to illumination and
other image changes.
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References

Short base-line

Medioni [78], Medioni and Nevatia
[79], Ayache and Faverjon

[2], McIntosh and Mutch [75], Gros
et al. [47], Gu et al. [49], Horaud

and Skordas [57], Tsai [134], Zhang
[152]

Short base-line/large rotation The work presented in chapter 4

Long base-line

Schmid and Zisserman [115], Tell
and Carlsson [130], Goedeme et al.
[45], Bay et al. [12], Wang et al.

[139, 138]

Table 3: Classification of perspective line matching methods

MSLD proposed by Z.H. Wang et al. [139] is a descriptor for line matching
analogous to SIFT for point matching. It is based on defining a pixel support
region for each pixel of a line and then accumulating a histogram of image
gradient for this region. The mean and standard deviation of these histograms
form the final MSLD descriptor. This descriptor relies on photometric information
around the segments which is not usually enough rich and the method may also
fails when encountering repeated textures, not to mention that it can not handle
the problem of scale changes.

L. Wang et al. [138] proposed to use angles and length ratios between lines
computed by their endpoints to describe a pair of line segments (named Line
Signature). The line matching is then done on the basis of pairs of line segments.
Since Line Signatures rely on the endpoints of line segments, the method may
fail when the endpoints are not accurate enough.

3.1.1 Classification

The above methods can be classified based on the amount of projective distortion
between two views (see table 3). The projective distortion is directly connected to
translation of the system with respect to the distance of the camera to the scene
and the rotation of the camera. We classified the methods into three groups: short
base-line (where neither the translation nor the rotation is considerable), long
base-line (where the translation and/or rotation are large) and a middle class
where the translation is small but the rotation can be arbitrary and large. The
following table classifies the above methods into these three groups. Obviously,
the methods which work for long base-line motion also work for the other two
kinds of motion but not vice versa. Similarly, the methods which work for short
base-line/large rotation motion also work for the short base-line motions but not
vice versa.
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Line matching methods can also be categorized into two major groups. One
group includes those methods which match each line separately without taking
into account the rest of the lines at the same time [1, 80, 152, 2, 45, 139]. The other
group consists of the methods which try to solve the correspondence problem by
considering spatial relationships among all the segments [100, 47, 51, 115].

3.2 omnidirectional line matching

Because of the non-linear distortions introduced by the large field of view of
omnidirectional cameras, the above perspective line matching methods can not
be directly applied to images taken by these imaging devices. Provided that the
imaging model is known and that the omnidirectional camera is central, one
solution to apply these methods is to generate a perspective view out of the
omnidirectional image[74]. It is obvious that this approach is computationally
very expensive and the performance of the algorithms greatly decreases since
the unwrapped perspective images have non-uniform image quality.

The algorithms which directly work on omnidirectional images are faster,
though they still have to deal with unavoidable problems from non-uniform
resolution of the image. Scaramuzza et al. [111, 114] developed a stable descriptor
based on the image gradients which is unique, distinctive and invariant to
rotation but it can only describe vertical lines. Assuming that the optical axis of
the camera is also vertical, all world vertical lines project into radial lines on the
image plane. Brassart et al. [19] also propose a catadioptric line matching method
which can deal only with 3D lines parallel to the optical axis of the camera.

More recently, Vasseur and Demonceaux [137] have proposed a method for
catadioptric line matching across multiple images. They present catadioptric
lines by their normals in sphere space and use only these normals and their
relative positions in order to perform the matching. If the motion of the camera
is a pure rotation, then the corresponding lines are related by the rotation and
they propose a voting method to find an initial set of two matched lines which
are enough to estimate the rotation.

As for a generic motion, they then show that for a translation up to the scene
depth, the angle difference between two normals of any couple of 3D lines in
two image spheres is less than 20 degrees on average and therefore suggest to
use the same voting approach than in the pure rotation case in order to find the
initial set of two matched normals. They proceed by constructing hashing tables
based on bases defined by few couples of normals associated to the longest lines
in the first image followed by a voting scheme in the second image to select the
best corresponding bases and subsequently to match the rest of the lines.

3.3 summary

This chapter reviewed main existing methods of line matching for central imaging
systems including their classification based on the kind of motion which can
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be handled by each method. In the following two chapters, we investigate
constraints and algorithms for matching lines under short baseline motion and
wide baseline motion.



4
SHORT BASE -L INE L INE MATCHING AND IMAGE
ST ITCHING FOR CENTRAL IMAGING SYSTEMS

Following our objective for developing a generic line matching method for
constructed scenes especially applicable to omnidirectional images, we start with
tackling the simplified problem where the motion of the system is mainly an
arbitrary rotation and the translation of the camera between two views with
respect to its distance to the imaged scene is negligible. We start by studying the
relationship between images of lines on unitary sphere followed by proposing
a simple algorithm for matching lines assuming the rotation of the system is
known a priori or it can be estimated from some correspondences in two views.
Two methods are also discussed for retrieving R in the case it is not known a
priori.

4.1 introduction

Our method for line matching consists of 3 main steps. First, lines of interest
have to be detected in both images. Second, the line segments are projected from
2D to 3D by lifting to unitary sphere. Locating corresponding lines using the
relation derived in the following section is the final stage of the line matching
algorithm. The geometric relation between two images required a priori here
is the rotation of imaging system. This can directly be recorded during image
acquisition or later by different available methods such as methods based on
matching corresponding vanishing points [14, 15]. In this work, we are interested
in the last step of the matching algorithm. In [85, 83], we presented a pipeline for
automatic line matching with focus on paracatadioptric systems under the short
baseline motion of the system by employing line intersection correspondences as
input to RANSAC in order to compute the rotation of the imaging system. In
this work, however, we employ two different methods for estimating rotation;
one is an already developed and robust method of retrieving the rotation using
vanishing points direction and second one is a simple alternative method which
will shortly be explained. We aim to formulate a generic method of matching
lines for all central imaging systems under the short baseline motion including
perspective cameras. While in the perspective case line matching is rather
efficiently solved, to the best of our knowledge, this is the first work dealing with
this problem in catadioptric images.

53
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4.2 proposed method

In this section, we derive the relation between normal vector of the great circle
of any 3D line represented in the first unitary sphere coordinate system and its
corresponding vector expressed in the second system which in return gives us
an adequate tool to match lines. Then, we give a brief description of the two
algorithms for recovering the rotation of the imaging system.

4.2.1 The relation between images of 3D lines on unitary sphere

Even if the motion of the camera is mainly a rotation, the images of lines on the
image plane are arbitrarily located and there is no definitive geometric constrain
for matching them. This problem is even more serious for omnidirectional images
due to huge deformation of the image which makes any photometric-based line
matching tools useless.

Having the intrinsic parameters of the imaging system, the key idea is to
project the image on the unitary sphere, turning the conic curves (images of the
lines on the image plane) into their corresponding great circles on the unitary
sphere. Knowing that a great circle is fully defined by the normal vector of its
plane, the problem of matching conics is then reduced to matching these vectors.
In this section we show that under short range motion, two corresponding great
circles are mainly related by the rotation part of the imaging system motion.
Consider a line in 3D scene with two separate 3D points X1 and X2 on it. Suppose
n is the non-normalized vector of the plane which passes through these two
points and the origin of the first unitary sphere and n′ is the corresponding vector
expressed in the second model (Figure 13). Then:

n′ = (RX1 + t)× (RX2 + t) =

det (R) R−T (X1 × X2) + [t]× R (X1 − X2) =

det (R) R−Tn + [t]× R (X1 − X2) = Rn + [t]× R (X1 − X2)

Where the metric transformation of the imaging system (represented by two
unitary spheres in Figure 13) is defined by the rotation matrix R and translation
vector t and R−T is the inverse transpose of R. Note that for a rotation matrix,
det(R) = 1 and the transpose inverse is the same as R. The above relation
coincides with the relation obtained in [92, 8] in which the equivalent Euclidean
Plücker representation of the line is used to derive a similar formula:

n′ = Rn + [t]× Rl, l =
(X1 − X2)

‖X1 − X2‖
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Figure 13: A 3D Line in the scene and its projections on a unitary sphere at two different
positions. n and n′ are the normal vectors of related great circles.

Where the 3D line segment is represented by its infinite supporting line
represented by two vectors l and n. l is a unit vector parallel to the line, and
n is a non-normalized vector to the plane defined by the line and the origin of
the coordinate system and its norm is equal to the distance of the line to the
origin, e.g.‖n‖ = d, see Figure 13. Therefore if the transformation between two
positions of the imaging system is a pure rotation (t = 0) or the movement of the
system in comparison to its distance to the scene is very small (short baseline, for
example aerial imaging), we can neglect the second term in the above equations
and conclude that under the pure rotation or short base line motion, n and n′ are
related by the rotation matrix:

n′ = Rn (4.1)

This equation can also be visually verified as shown in Figure 14. If the motion
of the imaging system is a short range motion, the images of a world point on
the unitary sphere at two different positions are approximately related by the
rotation of the system. If the motion is a pure rotation, it is well-known that there
is no parallax and the corresponding points on the unitary spheres are absolutely
related by the rotation of the system. Note that there is a considerable arbitrary
rotation between two unitary sphere coordinate systems. One immediate result
is that for the case of short baseline, after estimating the rotation matrix, for each
line in the first image, all which is needed to find its corresponding line in the
second image is to multiply R at normal vector of great circle of the line. The
calculated vector is pointing at the same direction as the normal vector of great
circle of corresponding line is pointing (inside a reasonable angular distance
error). In other words, the match n ⇋ n′ is considered a correct one, if the
angular difference between two vectors Rn and n′ (called △ hereafter) is less
than a preset tolerance, tol (in radian):
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∆ = arccos
(
|n′ � Rn

||Rn|| |
)
< tol (4.2)

where (�) stands for dot product and |....| and ||....|| stand for absolute and
norm functions respectively.

Figure 14: The relation between the corresponding points on the unitary spheres under
short baseline motion. The translation w.r.t. scene depth is negligible but there
is a considerable arbitrary rotation between two unitary sphere coordinate
systems.

4.2.2 Recovering R

For our method to work, we first need to recover the rotation between two views.
There are several methods for estimating R applicable to all types of central
imaging systems (cf. Bazin et al. [14] for a review on these methods and their
pros and cons). Regarding the simplicity and robustness, we have experimented
with two automatic methods, one from Bazin et al. [14] which works in urban
scene with at least two groups of 3D parallel lines and the other one is our
proposed method which is suitable for short baseline motion as follows.

4.2.2.1 Recovering R using vanishing points correspondences

Having extracted and matched some vanishing point correspondences (Appendix
A.3), the relative rotation between two views, can be computed using the simple
linear method of Bazin et al. [16]. Assume V1 and V2 (and their corresponding
V ′1 and V ′2) are unit vectors corresponding to two vanishing directions. R can be
decomposed into a rotation axis N and an angle θ which can be recovered as
follows:

• if V ′i = Vi , i ∈ [1, 2]⇒ R = I .
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• if





V ′i = Vi

V ′j 6= Vj

i, j ∈ [1, 2]

i 6= j
⇒





N = Vi

cosθ =
V′j .Vj−(Vj.N)2

1−(Vj.N)2

sinθ =
V′j .(N×Vj)

||N×Vj||2

• if V ′i 6= Vi , i ∈ [1, 2]⇒





N =
(Vi−V′i )×(Vj−V′j )

||(Vi−V′i )×(Vj−V′j )||

cosθ =
V′j .Vj−(Vj.N)2

1−(Vj.N)2

sinθ =
V′j .(N×Vj)

||N×Vj||2

where I is the 3×3 identity matrix. Finally, using Rodrigues’ formula, rotation
matrix R can be computed as:

R = I + sinθ[N]× + (1− cosθ)[N]2×

where [N]× is the skew-symmetric matrix corresponding to vector N.

4.2.2.2 Recovering R using point correspondences and RANSAC

The idea behind this approach is already depicted in Figure 14. In the case of short
baseline motion, the image of any point from the scene on the unitary sphere
goes under the same rotation as the imaging system similar to vanishing points.
Exploiting this fact, we suggest the following simple method for recovering R:

Algorithm 4.1 Recovering R using RANSAC.
1: Given two images taken by a central imaging system under short range

motion;
2: By means of automatic feature matching algorithms such as SIFT, extract

enough point correspondences between two views;
3: Lift these correspondences to the unitary sphere;
4: Using RANSAC [33] or similar fitting algorithms, find the best rotation matrix

which relates these corresponding 3D points;

Note that this method is only feasible when the imaging system goes under
a short range motion. Note also that theoretically, having the images of two
salient 3D points (which are not collinear with the center of unitary sphere) and
their correspondences is sufficient to estimate the rotation matrix. However we
employ RANSAC to be able to automatically extract some interest points and
their correspondences without being concerned about the errors in detection of
positions of these points in the image planes and also any possible mismatches.
Note also that the simple linear method of previous section also can be applied
on any two accurate correspondences to estimate the rotation.
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4.3 implementation details

Since up to now, there is not any generic feature matching method applicable to
omnidirectional images (and therefore capable of handling the deformation of
such images), and especially since our aim is to develop some generic tools for
constructed scenes (where vanishing directions are usual to be found), we adapt
the method based on vanishing points to recover the rotation. Therefore in our
experiments, we used the first approach since we had enough vanishing points
available. The first approach is also more efficient since it uses already extracted
features of our interest, lines, to estimate R in comparing to the second approach
which includes extra steps of extracting salient point correspondences and fitting
a rotation matrix to them.

The proposed method is composed of the following main steps:

Algorithm 4.2 Short baseline line matching algorithm
1: Given two images taken by a central imaging system under short range

motion and the preset tolerance tol;
2: Extract their lines by computing normal vectors of their great circles after

projection onto the unitary sphere (cf. Appendix A.1);
3: Extract and match two dominant vanishing directions among the extracted

lines and use them to estimate R (cf. section 4.2.2.1 and Appendix A.3);
4: Match lines using the relation 4.2;

Figure 15 along with Figure 16 demonstrates the steps of our algorithm on
a pair of synthetic images. We have applied the R on whole first sphere for
the sake of demonstration. In practice and during the implementation only the
normal vector and two end points of each segment (necessary to find the segment
bounding box for the case there are ambiguities) are affected.

Figure 15: Projection of two paracatadioptric images on the unitary sphere, their ex-
tracted great circles and two dominant vanishing directions. For a better
demonstration, half of the great circles are hidden.
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In the last step, for some segments, matching great circles using the relation 4.2
is not enough and one ambiguity may occur due to fragmented segments when
more than one segment are lying on corresponding infinite line because these
segments are all located on the same 3D scene plane (as it is shown in Figure 18).
To resolve this ambiguity we also find the corresponding bounding box of the
segment in the first image and we choose the candidate segment which is inside
the bounding box or is intersecting it.

Figure 16: Steps of the proposed algorithm: Lifting images onto unitary sphere, recov-
ering R and rotating the first image according to R. Segments on the back
projected image now coincide with their corresponding in the second image.

Before extending the above algorithm to a more efficient one, it is necessary to
explain a simple calibration method for perspective cameras as follows:

4.3.1 Auto-calibration of the perspective camera

The perspective camera which we use in our experiments is a Canon G9. During
several calibrations, we found that the camera pixels are square, so called a
natural camera. In fact, for a modern CCD camera, it can be assumed that the
pixel is a square and the principal point is also close to the middle of image
plane [103]. It has been shown that for such a camera, the image plane is a
metric plane and two orthogonal vanishing points are sufficient to estimate the
focal length of the camera which is the only unknown from the camera matrix
to be estimated [69]. We benefited from this property to remove the hassle of
calibrating the camera before each image acquisition while allowing for the focal
length to change (zooming) during the acquisition and instead to calibrate the
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camera using simply vanishing points which are needed to be extracted for
estimating the rotation anyway.

Assume two image points v1 = (v1x, v1y) and v2 = (v2x, v2y) are such or-
thogonal vanishing points, and K, the camera matrix for a natural camera with
principal point in the center of the image is:

K =




f h/2

f w/2

1




where (h,w) is the size of the image. Two image points v1 and v2 back-project
to two rays with directions V1 = K−1ṽ1 and V2 = K−1ṽ2 in the camera coordinate
system. The angle between the two rays is then given by the familiar cosine
formula:

cosθ =
VT
1 V2√

VT
1 V1

√
VT
2 V2

=
ṽ1ωṽ2√

ṽ1ωṽ1
√

ṽ2ωṽ2
(4.3)

where ω = (KKT)−1 is the image of absolute conic (IAC). Since two vanishing
points are orthogonal, the above equation is simplified to:

ṽ1(KKT)−1ṽ2 = 0 (4.4)

which is a quadratic equation in term of f with the solution:

f =

√
−4v2xv1x + 2v2xh− 4v2yv1y + 2v2yw + 2v1xh + 2v1yw− w2 − h2

2
(4.5)

If more than two mutually orthogonal vanishing points are available (e.g.
three Manhattan directions), any two vanishing points among three possible
configurations can be randomly selected to estimate the focal length. The three
calculated focal length will not necessarily be identical due to noise and lack
of accuracy in detecting vanishing points. An average of these values can be
considered as the best estimation for the focal length. If different, the camera
matrix for the second camera, K′, can be found similarly.

As a final remark, note that we do not need to match vanishing points between
views and calibration is done merely using vanishing point from each image
separately.

4.3.2 An extension

Vanishing point matching algorithm suggested by Bazin et al. [14] (refer to
Appendix A.3 for details) assumes that vanishing points provide strong photo-
metric information inside the spherical regions defined by them in the equivalent
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sphere. However, during our experiments with real images taken from con-
structed scenes, we found that these histograms are not enough discriminative
for images of poorly textured scenes, like indoor environments and constructed
scenes where edges and plain homogeneous surfaces such as walls are dominant.
As a result we developed a more compact algorithm, relaxing the assumption
that vanishing points are already matched. The new algorithm tries to match
vanishing points and lines simultaneously.

After extracting vanishing points, the algorithm considers all possible matching
solutions between vanishing points and picks up the one that results in maximum
number of line correspondences returned using the relation 4.2. If lines are
enough randomly distributed in the images, the highest number of matches
will occur under correct correspondences between vanishing points. Figure 17

better explains the idea. Two images are projected on the unitary sphere after
computing and applying the rotation on the second image. The normal vectors
corresponding to lines in each image are drawn at the origin of the sphere with
a different color (cyan for the first image and yellow for the second image).
If the computed R is correct (which means if the assumed correspondences
between vanishing points is correct) then one expects more correspondences to
be found compared to the number of correspondences for a wrong estimation
of R. To better visualize the figure 17, notice that since all normals are drawn
with identical norm, two lines are matched if their normals appear with the same
length in the figure and they are closely located beside each other.

The number of possible matching solutions is 8 (if only two vanishing points
are detected) or 16 (if three vanishing points are extracted). To justify these
numbers, let (v1, v2, v3) be three unit vectors on the unitary sphere corresponding
to the 3 main directions extracted from the first image and (v′1, v

′
2, v
′
3) be three

unit vectors from the second image. Note that given a possible matching solutions
vi ⇐⇒ v′j, there exist 4 possible combinations of the two other vanishing points
and therefore for 3 vanishing points, there are 14 possible combinations. Since
each vanishing direction corresponds to 2 antipodal points on the unitary sphere,
the possible combinations will be 24 among which only 16 combinations are
identical and 8 are repeated. Algorithm 4.3 summarize our extended method for
simultaneous matching of vanishing points and lines as a pseudo-code.

The combinatorial functions index(max(S)) return the index corresponding to
the biggest value in the vector S.

4.4 experimental results

During our experiments, for non-perspective imaging systems (Paracatadioptric
and fish-eye), the algorithm suggested by Bazin et al. [13] was used to extract
vanishing points and the calibration method of Mei and Rives [81] was employed
to calibrate them. For our perspective imaging system (Canon G9), the algorithm
proposed by Tardif [127] was employed to extract two vanishing points from the
images and the simple calibration method presented in section 4.3 was employed
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(a)

(b)

Figure 17: The effect of estimated R on the normal vectors corresponding to lines in
images on sphere. (a) R is wrong and two sets of normals do not exhibit any
overlap. (b) R is correct and two sets of normals overlap
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Algorithm 4.3 The extended algorithm
1: Given two images taken by a central imaging system under short range

motion and the preset tolerance tol;
2: if the images are perspective then

3: Extract their line segments and dominant vanishing points;
4: Calibrate the camera (section 4.3.1);
5: Project lines and vanishing points on the unitary sphere;
6: else

7: Calibrate the system (Mei and Rives [81]);
8: Extract their lines by computing normal vectors of their great circles

after projection onto the unitary sphere;
9: Extract all dominant vanishing directions among the extracted lines;

10: end if

11: Sol ← All 8 (or 16) possible matching solutions between vanishing points;
12: for each Sol(i) do

13: Estimate R (section 4.2.2.1);
14: Matches = [];
15: for each line n from the first image do

16: for each line n′ from the second image do

17: if ∆ < tol (Equation 4.2) then

18: Matches⇐ Matches + [ n ⇋ n′ ];
19: end if

20: end for

21: end for

22: M(i)← Matches;
23: S(i)← size(Matches);
24: end for

25: j← index(max(S));
26: return M(j) and Sol(j);
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for calibration. Unless mentioned differently, the tolerance tol was set to one
degrees for all the experiments.

4.4.1 Synthetic images

The developed algorithm was first applied on the synthetic paracatadioptric
aerial images of Figure 18. There is a 110 degrees rotation around the optical axis
of the system and 30 and 20 degrees around two other axes all measured w.r.t. a
fixed coordinate system. The two extracted dominant vanishing directions on
the unitary sphere are presented in Figure 15. The translation of the system is
negligible. Only lines of length 15 pixels or more are considered. The angular
threshold for matching great circles is set to one degrees. The total of 261 and 226

segments are obtained for the left and right images, respectively. The algorithm
outputs the matches displayed at the bottom row of the figure. All of the 121

matches obtained are correct.

4.4.2 Real perspective images

Figure 19 shows the result of applying our algorithm on two real perspective
images. Note that this method is far simpler than an approach such in [115]
in which photometric properties of the segments neighborhoods along with
epipolar geometry are combined to do the same job. For this experiment, rotating
imaging system around its focal point was not easy since this point is somewhere
inside the camera and we needed a special flexible fixture to carry out the job.
However, rotating (while trying to avoid translating) of imaging system can be
considered as a short baseline motion. Images of Figure 19(a) are taken by a
random rotation of the imaging system in this way. Even though matching 2

vanishing points is enough to recover R, we use 3 vanishing points to reduce the
overall error (Figure 19(b)). The recovered R is composed of an approximately
31 degrees rotation around the optical axis of the system and 4 degrees and 4.5
degrees around two other axes, all measured w.r.t. a fixed coordinate system.
For this example, the numbers of segments extracted are 284 and 245 for the left
and right images respectively. Obtained matches are shown in Figure 19(c). 120

out of 129 matches are correct. The performance of the proposed method has
decreased not only because the motion of the system is not a real short baseline
motion but mainly because perspective imaging systems suffers from a limited
field of view. The wider field of view of a perspective camera results in the better
extraction of lines and the longer line segments. Note that the larger error in
computing the position of the lines causes larger error in the estimation of the
vanishing points and therefore a less accurate recovery of R and eventually more
mismatches.
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(a)

(b)

(c)

Figure 18: (Top) Two paracatadioptric images and (Middle) their extracted segments.
Bottom: matched lines (each color represents one correspondence. All of the
121 matches shown are correct. Note that segments a, b, c and d share the
same great circle (dashed line). The end points of each segment are used to
find the correct correspondence.



66 short baseline line matching and image stitching

(a)

(b)

(c)

Figure 19: (a): Two perspective images and their extracted segments. (b): Related
great circles onto unitary sphere and three dominant vanishing directions
(75 % of lines are hidden). (c): Matched lines (each color represents one
correspondence). Note that the image on the left is the second view and the
image on the right is the first view after applying the R on it. 93% of 129

matches shown are correct.
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4.4.3 Real omnidirectional images

Figure 20 shows the result of applying our algorithm on two real fish-eye images
taken while trying to avoid translating the camera. Figure 20(b) shows 2 vanishing
directions and their corresponding great circles. For this example, the numbers
of extracted segments are 376 and 415 for the left and right images respectively.
The preset value for the tolerance is two degrees. Obtained matches are shown at
the bottom row of the Figure. 107 out of 119 matches are correct. 12 mismatches
are found where 2 or more line segments are located very close to each other.

4.4.4 Fusing different central images

As it was mentioned before, the algorithm 4.3 is based on unit sphere which
means it is independent of the type of images and it works as long as the images
are calibrated. For demonstration, we have applied our algorithm to establish
correspondences between a real fish-eye image and a real perspective image
taken from the same point of view (Figure 21). For this example, the number
of extracted segments is 440 and 415 for the perspective and fish-eye images
respectively. 112 out of 149 matches are one-to-one correct matches and the rest
are one-to-many or many-to-many matches due to close line segments.

4.5 other applications

Due to weak parallax, two consecutive short baseline images are of no use for 3D
reconstruction. However having a sequence of such images one can reconstruct
the common part of the scene between the first and the last image. Other than
matching lines between two central images, the algorithm presented in this
chapter can be used to track line segments between consecutive images and
eventually establish some useful segment correspondences between the first
and last images having enough parallax to be used for motion estimation and
reconstruction methods such as [153] (an optimized version of this algorithm
will be presented in chapter 6).

Another application is creating high resolution panoramic images from high
resolution perspective images taken by rotating a perspective camera around its
center of projection and shooting photos, such as the images in Figure 22. Note
that even though omnidirectional imaging systems such as catadioptric cameras
can be used to construct such images, the resulting panoramic image suffers
from non-uniform low resolution. Also note that here we only use the algorithm
to recover the rotation between images in order to align them and we do not
need really to establish any correspondences. In fact here we use line matching
as a measure of aligning images by correctly matching vanishing points.

Figure 23 shows a schematic of the method with real panoramic reconstruction.
The images were taken with some overlap between consecutive ones but no effort
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(a)

(b)

(c)

Figure 20: (a): Two fish-eye images and their extracted segments. (b): Related great circles
onto unitary sphere and two dominant vanishing directions (50 % of lines are
hidden). (c): Matched lines. Each color represents one correspondence.
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(a)

(b)

(c)

Figure 21: (a): A fish-eye and a perspective image and their extracted segments. (b): Re-
lated great circles onto unitary sphere and two dominant vanishing directions
(for the fish-eye image, more than 66 % of lines are hidden). (c): Matched
lines between two images. Each color represents one correspondence.
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Figure 22: Four among six high resolution perspective images taken by rotating a per-
spective camera around its center of projection.

was made to keep the axis of rotation fixed (which is inevitable in a relaxed
photography).

4.6 conclusion and outlook

This chapter dealt with the problem of matching lines for all types of central
imaging system under a short baseline motion by presenting a generic and simple
line matching approach. The method is composed of two main steps of extracting
line segments and estimating vanishing directions followed by simultaneously
recovering the rotation R and matching lines. Also, two methods for retrieving
R, one based on matching vanishing points and the other based on matching
any two feature points were proposed. Finally, various experimental results on
both synthetic and real images taken by different central cameras as well as an
application of the algorithm for creating high resolution panoramic images from
high resolution perspective images were also presented.

The state of the art line matching methods use demanding techniques (for
example using epipolar geometry [115]) to match lines between images with
short baseline and due to deformation of omnidirectional images, they do not
even work on these kind of images at all. On the other hand, we developed a very
simple and intuitive method which is generic and it works for both perspective
and omnidirectional images. It is based on the fact that the motion of the system
for a short base-line movement is mainly a rotation and in constructed scenes,
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(a)

(b)

(c)

Figure 23: (a,b) Stitching all images on the Unitary Sphere, (c) an unwrapped cylindrical
image.
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the rotation can be estimated by matching vanishing points which are easily
available in such scenes.



5
FAST L INE MATCHING BETWEEN DISPARATE VIEWS OF
PLANAR SURFACES

In the previous chapter, we developed some tools based on lines extracted from
two images taken with short baseline. Now, we will relax the assumption of
short baseline and aim to develop a generic method of line matching between
two views of a constructed scene, no matter what the motion of the system is.
As usual, we first start by a simplified problem where the images are perspective
and the scene is planar. We address the problem of matching randomly oriented
lines parallel to a scene plane. We do so by finding the vanishing points of each
line by intersecting the line on the image plane with the line at infinity of the
plane. The matching algorithm is then based on looking for the lines in both
images which follow the infinite homography. We also use vanishing points
to calibrate the camera, assuming a natural perspective camera. We then move
on to a more generic scenario where the scene is constructed of more than one
plane. Here we face a more complex problem. Hoping to solve some difficulties
of formulating the problem on the image plane and following our aim to expand
the method to all central images, we then formulate the problem using unitary
sphere and we show that the new algorithm can perform fairly well for planar
scenes such as aerial images.

5.1 related work

Most approaches for solving the correspondence problem are based on met-
ric information, such as topological arrangements of points, line orientation
conservation, etc. which are not preserved under perspective projection and
therefore they only work for images that have been taken under short baseline
motion [57, 76, 151]. For long baseline motion different methods exist which are
either based on the prior knowledge of some geometric constraints in the scene
such as known projections of four corresponding coplanar points [39] or known
epipolar geometry [115] or based on some perspective invariants (quantities that
are invariant under perspective viewing). It is well established that if a scene
consists of an arbitrary set of points or line segments in 3D and it goes under a
general motion then there are no invariants of its image under projection [21].
Therefore, some assumptions regarding the structure of the viewed scene have to
be made to gain suitable projective invariants. The most common assumption
made in the literature is that the features to be matched lie on one or more planes
in the scene [90, 109, 71]. Our method also benefits from a quantity which is
invariant to the motion of the camera and it is applicable as long as there is a
plane (real or imaginary) in the scene which is parallel to all lines. In this work,

73
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we present a novel and fast approach for finding the correspondence of two sets
of line segments which are images of a set of 3D lines parallel to a 3D plane in
the scene. The assumption we make is that there are two sets of parallel lines
among these lines.

Until now, only a few methods for automatic line segment matching for
wide baseline stereo exist [115, 130, 45, 12, 139, 138] (see table 3 , chapter 3).
Although not really in the context of matching but homography estimation
through matching points and lines together, the method developed by Lourakis
et al. [71] is of interest to us since it also particularly applies to planar scenes.
However, the first important difference between the method presented here and
their method is that for our method to work it is not necessary that the lines be
located on the scene plane and it suffices if they are parallel to it whereas their
methods only works for completely planar scenes. Secondly, for their geometric
constraint (so called two-line two-point (2L2P) projective invariant) to work, they
need both points as well as lines to match two planar views while our method is
purely a line matching approach.

5.2 proposed method

Our approach of matching lines starts with computing the rotation between two
views using two vanishing point correspondences as was already explained in the
previous chapter, section 4.2.2.1. We then compute the infinite homography, H∞,
between two views by means of the rotation and the camera intrinsic parameters.
Knowing the infinite homography, we are then able to match lines based on
the symmetric homographic transfer error of their vanishing points between
two images as will be shortly explained in following sections. For the complete
description of the vanishing point, the line at the infinity and the absolute conic
refer to [52]. Here, some basics will be recalled.

A scene line intersects the plane at infinity π∞ in a point and the image of this
point on the image plane is the vanishing point of the line. Similarly, parallel
planes in 3-space intersect π∞ in a common line, and the image of this line is the
vanishing line of the plane. Since the lines parallel to a plane intersect the plane
on π∞, it is easily seen that the vanishing point of a line parallel to a plane lies
on the vanishing line of the plane. Therefore, given a line in 3D space parallel to
a plane, the intersection of the image of the line on the image plane (a segment)
with the vanishing line of the plane results in the vanishing point of the line
as it is shown in Fig. 24. Two sets of parallel lines A and B which are also
parallel to the plane π in 3-scene intersect the plane at infinity at VA and VB. The
vanishing line of the plane on each image plane is the line connecting the images
of these two points. The vanishing point of any other 3D line L parallel to the
plane can then be found by intersecting the vanishing line and the image of the
3D line. This is the clue which we exploit to find the image of the intersection
of each line with the plane at infinity (the vanishing point of the line on each
image plane) followed by establishing correspondences by verifying weather each
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pair of putative vanishing point correspondences (e.g. line correspondences) are
following the infinite homography between two views.

Figure 24: Intersections of the plane π and lines parallel to it with the plane at infinity
and their images on the image planes.

5.2.1 Estimating the infinite homography:

The infinite Homography H∞ encloses the cameras’ parameters and the rotation
part of the motion between two positions of the cameras:

H∞ = K′RK−1 (5.1)

Having estimated the cameras’ intrinsic parameters (K and K′) and having
extracted and matched some vanishing point correspondences (Appendix A.3),
the relative rotation between two views can be computed using the simple linear
method of [16] which was also already described in previous chapter, section
4.2.2.1.

5.2.2 One scene plane

We match lines based on the symmetric homographic transfer error of their
vanishing points between two images. Let us consider the example illustrated
in Fig. 25. The line v1v2 (respectively v′1v′2 in the second image), is the line at
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infinity of a scene plane and HT
∞l′ and H−T

∞ l are homographic transformations of
line segments l and l′ between two images by the estimated homography H∞. If
l and l′ are images of the same 3D line which is parallel to the scene plane, then
i, the vanishing point of the line, can be found by intersecting the segment and
the line at infinity:

i = ĩ(1:2)/ĩ(3) , ĩ = (ṽ1 × ṽ2)× l (5.2)

where ĩ3 is the third element of ĩ. ih, i′and i′h are found in the similar way. The
symmetric homographic transfer error can now be computed as:

△sht = ∑ d(i, ih)
2 + d(i′, i′h)

2 (5.3)

where d(., .) is the Euclidean distance between two points in the image. Note
that if the line segment l is a true match for l′ and their pre-image (a line in 3D
space) is parallel to the plane, i and ih (and i′and i′h on the second image) should
coincident and the symmetric transfer error should be zero. However due to
the noise and the error in the detection of the lines and estimating the infinite
homography, the transfer error can be up to several pixels. If two segments are
not corresponding or their pre-image is not parallel to the plane, one expects a
large transfer error. Depending on the expected noise, a suitable threshold, tol

(in pixels), is selected and a match is accepted if its transfer error is less than the
threshold. For the simulation with images of size 800x600 and zero mean noise
with 2 pixel std, this threshold was set to 4 pixels.

Figure 25: The definition of the symmetric homographic transfer error. Refer to the text
for the explanation.

5.2.3 More than one scene plane

If more than one scene plane is detected (i.e more than two vanishing points are
available e.g. in Manhattan scenes), the algorithm works as before except now
the transfer error should be calculated for each plane. Consider Fig. 26. Three
vanishing points are corresponding to three main Manhattan directions. Each
two main directions define a plane in the scene. Note that if the line segment
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l is a true match for l′ and their pre-image is parallel to one of these planes,
the symmetric transfer error should be small and less than the threshold. On
the other hand, if two segments are not corresponding or their pre-image is not
parallel to the plane, one expects a large transfer error. If a line does not have
a match in the other image or its pre-image is not parallel to any of the scene
plane, its symmetric transfer error with any of the lines in the second image will
be large and it should be categorized as unmatched.

Figure 26: The distance between green and black points of intersection with each line at
infinity is directly related to the symmetric transfer error. Refer to the text for
the explanation.

5.2.4 The first algorithm

The proposed method is composed of the main steps depicted in algorithm 5.1.
The algorithm starts by extracting vanishing points that are assumed to exist
among extracted lines on the image plane (we used the technique presented in
[127]). As the set of putative matches, it then considers each line in one image as
a potential match for each and every line in the other image. The correct matches
are then identified and kept when their symmetric homographic transfer error is
in the order of a few pixels.

If a line is involved in more than one match, the match with the minimum
transfer error is kept and the rest of the matches are removed. However, note that
when matching line segments, it occurs that one segment matches with more
than one segment in the other image due to existence of fragmented segments
(line segments split into several smaller, more or less collinear line fragments)
and the segments which are the images of parallel lines in the scene (e.g they
form an identical intersection with the line at infinity because they are parallel so
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Algorithm 5.1 The first proposed algorithm
1: Given two perspective images and the preset tolerance tol;
2: Extract their line segments and extract all dominant vanishing points among

the extracted lines;
3: Calibrate the camera using these vanishing points (subsection 4.3.1) ;
4: Sol ← All possible matching solutions between vanishing points;
5: for each Sol(i) do

6: Estimate R (section 4.2.2.1 ) and then compute H∞(Equ. 5.1);
7: Matches = [];
8: for each selection of two vanishing point v1 and v2 (respectively v′1 and

v′2 in the second image) do

9: for each line l from the first image do

10: for each line l′ from the second image do

11: if △sht < tol (Equation 5.3) then

12: Matches⇐ Matches + [ l ⇋ l′ ];
13: end if

14: end for

15: end for

16: end for

17: M(i)← Matches;
18: S(i)← size(Matches);
19: end for

20: j← index(max(S));
21: return M(j) and Sol(j);
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they will intersect in the same point on the line). In both cases, the intersection
of the segment with the vanishing line of the plane lies on (very close) to that of
another segment (in other words, they have the same (very close) transfer errors).
Therefore also in this case, a line is involved in more than one match. To take care
of this particular case, if a line is involved in more than one match, the match
with the minimum transfer error and all the matches which have a difference in
transfer error within a certain tolerance region are kept and the rest are removed.

Fragmented segments have to be collinear in both images, therefore we can
furthermore separate fragmented line segments from disparate parallel lines by
checking co-linearity of the segments in both images. Note that it is important
that two line segments be collinear in both images since these segments may just
be collinear accidentally in one image while belonging to two different lines. This
is, however, unlikely to happen in both images.

For the parallel lines, however, computing intra-set correspondences in two
set of matched parallel lines with the constraint presented in this thesis is not
possible and we need to apply other constraints on these lines. We use sidedness
constraint as described in [30]) and later expanded in [12] which states that, for a
triplet of feature matches, the center of the first feature should lie on the same
side of the directed line going from the center of the second feature to the center
of the third feature. For a line feature, the center of the feature is defined as
its midpoint. If the set contains a pair of line matches, the midpoint of the first
segment must be on the same side of the second line segment in both views.

Also, when matching line segments, there is another group of lines which do
not have any correspondences (e.g. they are not detected in the other image) or
they are not parallel to the scene plane. Note that these segments interfere with
the matching process by increasing the number of one-to-many matches. The
effect of these lines on the performance of a simplified version of the algorithm
will be analyzed more through simulation in section 5.3.6.

5.2.5 Discussion

By performing some simulations, we found that if the algorithm outlined above
is used to match lines between two images of a scene constructed from planar
surfaces, then the results are perfect as long as the data is noise-free. However,
in practice, this is never the case, and the matching results are not good in the
presence of noise. To trace the roots of the problem, we investigated the effect of
noise on the transfer error for a given match and we found two main reasons.
The first cause is related to the number of lines to be matched. The effect of
noise is to perturb lines to lines that their directions lie close to the correct lines,
increasing the number of one to many or many to many matches. This effect will
be more serious when the number of lines is high. The second reason is better
depicted in Figure 27.

If the segment on the image plane forms a small angle with the line at infinity,
or the distance of the segment to the line at infinity is long, even a minor error in
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Figure 27: Small angle between a segment (or its homographic transformation from the
other image) and the line at infinity can dramatically magnify the effect of
error in the extraction of lines on the homographic transfer error.

the orientation of extracted segment can largely move its vanishing point along
the line at infinity. The same is true for the homographic transformation of the
segment from the other image. As a result, the total symmetric homographic
transfer error can be very large and the putative match is rejected even if it is
a correct match. This situation can happen very frequently which means the
computed transfer error for a large number of real matches is not resembling the
true similarity. See Figure 28 for an example of how vanishing points are vastly
scattered around the image. The position and the orientation of the each line at
infinity depends on the orientation of its plane in 3-scene. If the angle between
the 3D plane and the image plane is small, the line at infinity can be located very
far outside the image boundary since this line is in fact the intersection between
the image plane and a plane parallel to the 3D plane and passing through the
focal point. One way to overcome this problem is to consider only the angle
between two lines connecting the center of the segment to its vanishing point
and its transformation from the other image as error distance. Another way is to
normalize the transfer error by the distance of the center of the segment to the
line at infinity along the line. We tried these solutions and some other approaches
but none of them improved the performance of the algorithm. Working on the
unitary sphere, however, helped us to develop a better algorithm (at least for the
case of one scene plane) as will be presented in the rest of this chapter. Working
on the unitary sphere has many advantages: no need for normalization, a generic
domain for all central imaging systems and easier extraction of vanishing points
are among them.
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(a)

(b)

Figure 28: (a) Projection of synthetic lines on two image planes, (b) Their vanishing
points along lines at infinity.

5.3 line matching on the unitary sphere

Besides the problems mentioned above, the proposed algorithm is only applicable
on perspective images. Aiming to solve these difficulties and following our goal
to expand the method to all central images, we then formulated the problem
using the unitary sphere. In this domain, lines (curves) on the perspective
(omnidirectional) image plane change to great circles on the unitary sphere.
Vanishing points change to unit vectors and instead of H∞, they are mapped by
R from the first image to the second one.
In the rest of this section, by line nl we mean the normal vector of the great

circle plane corresponding to the line segment l projected on the unitary sphere,
and a point is meant to be the unit vector corresponding to projection of a pixel
point from image plane onto the unitary sphere.
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5.3.1 The second algorithm

We match lines parallel to each plane based on their angles with the direction
corresponding to one of the vanishing points of the plane. The algorithm starts by
first extracting vanishing points. Assuming line nl , the line that we like to find its
corresponding in the other image, is parallel to a plane defined by two vanishing
points VA and VB (we will soon relax this assumption), Vl , the vanishing direction
of nl can be computed by:

Vl = (VA ×VB)× nl (5.4)

One of the vanishing points, namely VA is then chosen as the reference and
using the cosine formula, the angle between the line and the reference direction
is found:

θ = arccos


 VT

A Vl√
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A VA

√
VT

l Vl


 (5.5)

These steps are repeated for all line segments in each image in order to compute
the angle between each line and the reference direction in 3D.

Having the angle between each line and the reference direction, the matching
is very easy now. Given a line segment and its angle with respect to the reference
direction in the first image, the corresponding line segment in the second image
should hence have the same angle (inside a reasonable tolerance to compensate
for the noise) with the reference direction in the second image. In other words, if
the difference between two angles θ and θ′ corresponding to two line segments l

and l′ from first and second image respectively (called ∆θ hereafter) is less than
a preset tolerance, tol1 (in radian):

∆θ = |θ − θ′| < tol1 (5.6)

where |....| stands for absolute function, then the match is considered a correct
one. Figure 29 visually demonstrates the principale of the method. Two red
and blue directions are corresponding to two main vanishing directions of the
scene plane and the black great circle is the line at infinity of the plane which
also passes through these two vanishing points on the unit sphere. Consider any
other line projected on the unit sphere. Here two such lines are represented by
their great circles and by lawn green and light steel blue colors. It can be shown
that the angle between the intersection of the line with the black great circle
(marked by a cross here) and one of the vanishing direction (for example the red
one) is the same and independent of the motion between two unit spheres (two
cameras).
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Figure 29: Two aerial catadioptric images projected on the unit sphere. Refer to the text
for the explanation.

The assumption that all lines are parallel to a plane defined by two vanishing
points VA and VB (while actually many of them are parallel to other planes
defined by other pairs of vanishing points), will cause many mismatches. The
correct matches are identified and kept by checking whether they are really
parallel to the plane by computing their angles with the plane. For each given
match nl ⇋ nl′ , the direction of their pre-image in 3D, L can be computed by:

L = nl × (R−1nl′) (5.7)

since L lies on the intersection of two planes defined by nl and R−1nl′ passing
through their corresponding camera centers and this intersection is independent
of the location of the planes (cameras) in 3D space and it depends only on the
relative orientation of two planes (two camera frames). In other words, L is
independent of the translation of the second camera w.r.t to first camera and it
only depends on the rotation between two views. Now if l and l′ are images
of the same 3D line which is parallel to the scene plane, then L and the normal
vector of the plane should be orthogonal:

(VA ×VB) � L = (VA ×VB) � (nl × (R−1nl′)) = 0 (5.8)

where (�) stands for dot product. Due to the noise, this equality will never be
satisfied and we need to define an angular tolerance:

∆orth =
π

2
− arccos

(
|(VA ×VB) � (nl × (R−1nl′))|

)
< tol2 (5.9)

The proposed method is composed of the following main steps:
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Algorithm 5.2 The second proposed algorithm
1: Given two images taken by a central imaging system and the preset tolerances

tol1 and tol2;
2: Extract their line segments and extract all dominant vanishing points among

the extracted lines;
3: Sol ← All possible matching solutions between vanishing points;
4: for each Sol(i) do

5: Estimate R (section 4.2.2.1);
6: Matches = [];
7: for each selection of two vanishing point do

8: for each line l from the first image do

9: for each line l′ from the second image do

10: if ∆θ < tol1 and ∆orth < tol2 (Equations 5.6 and 5.9) then

11: Matches⇐ Matches + [ l ⇋ l′ ];
12: end if

13: end for

14: end for

15: end for

16: M(i)← Matches;
17: S(i)← size(Matches);
18: end for

19: j← index(max(S));
20: return M(j) and Sol(j);

5.3.2 Special cases

If a line in 3D and two camera centers are coplanar, then any 3D line on their
plane can be the pre-image of projections of the line on two images, including
the line at infinity of the plane. This line at infinity, if in general position, will
intersect three line at infinity of the 3 scene planes in 3 points and therefore these
two segments can be correctly matched by each of three planes. In other words,
the 3D line seems to be parallel to all 3 orthogonal planes! This special case is
not a problem for the algorithm and the result is even a more robust match. As a
remark note that the reconstruction of the line is not possible since there exist no
parallax.

5.3.3 Discussion

Even though by projection on the sphere, the shortcomings of the previous
method was handled, the new algorithm still suffers from some inevitable
limitations which hold true for the previous algorithm working on the perspective
image plane as well as the new generic one. These limitations can be better
understood through some simulations in order to evaluate the performance of
the method with respect to noise level.
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The simulations were carried out on configurations of random line segments
as shown in Fig 30. For a realistic simulation, throughout all experiments, we
assume calibrated virtual cameras with the calibration results of a real camera
with image size of 704x528 pixels, effective focal length of 710.34 pixels and the
principal point at (340.74,259.42). Each pixel is a square with the size of 0.0014

millimeter. The camera has a random motion (rotation and translation) and we
only admit motion so that the scene cube can be seen from both camera poses.

Figure 30: The simulation configuration. The position and orientation of the lines in 3D
are random but parallel to 3 planes with also random orientations. Cameras
and image planes are drawn 100 times bigger for a better visualization.

All lines are randomly oriented parallel to 3 imaginary planes and among
the lines parallel to each plane, there are two groups of lines which are also
parallel to each other which are used for estimating two vanishing directions
for each plane. The number of lines in each group is fixed and equal to 10 for
all experiments. Finally, two segments are considered matched if the difference
in their angle with the reference direction in 3-scene is less than 2 degrees and
also their pre-image in 3D is parallel to the plane inside a tolerance region of 2

degrees.
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Figure 32: Dependence on noise level. Noise levels are reported in terms of the standard
deviation of a zero mean Gaussian.

Figure 31: Projection of synthetic lines on two image planes. The black lines belong to
the sets of parallel lines while the colored lines are randomly oriented.

The endpoints of the line segments are perturbed by a zero mean Gaussian
noise with different values of standard deviation, σ . We do so independently in
the x and y directions and we also only admit noise between −3σ and 3σ and
then quantize the points to the nearest pixel. We vary noise from 0.0 to 2.0 pixels,
simulating a quite noisy image condition. For each noise level, we generate 100

trials and in each trial, we generate 45 lines in 3 sets of 15 lines parallel to each
plane (excluding 30 lines used for estimating three vanishing directions). We also
generate 5 lines which are not parallel to any planes.

The result of the simulation is shown in Fig. 32. Surprisingly, even with
noise-free data, not more than 40 percent of matches are correct. The constraint
for checking parallelism is not enough discriminative due to the high possibility
that the pre-image of many random non-real matches can be also parallel to one
of the planes and this ambiguity is unresolvable.
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Table 4 shows part of matching result of the algorithm where identical line
numbers are true matches. Note that matches 2 ⇋ 4, 3 ⇋ 7, 4 ⇋ 2, 7 ⇋ 10
and 14 ⇋ 2 are wrong matches though they satisfy both tolerance regions of 2

degrees. Tightening the tolerances can reduce the number of mismatches when
the noise present is weak but it can also decrease the number of matches when
the noise is considerable (In fact, if the data is noise free, 100% correct matches
are guaranteed by setting both tolerances close to zero)

Line no in
first image

Line no in
second image

∆θ ∆orth

1 1 0 0

2 2 0 0

2 4 0.6 2.2

3 3 0 0

3 7 1.6 2.7

4 2 0.6 0.9

4 4 0 0

5 5 0 0

7 10 2.3 2.5

14 2 1.9 2.2

Table 4: Part of matching result of the proposed algorithm. Refer to the text for the
explanation.

The tolerance values for the above algorithm are functions of the expected
noise and finding an analytical relation for obtaining these values with respect
to the expected noise is not an easy task. Even if these values are set so that the
percentage of correct matches is in its highest, still the number of mismatches
would be high due to the complexity of scene (i.g. more than one dominant
plane). For example, applying the algorithm on a simple scene such as the scene
shown in figure 33 (composed of three planes) results in 237 matches (though
there are on total 96 lines to be matched) where less than 10 percent are correct.
This means that the number of one to many and many to many matches is high.
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Figure 33: Example of a complex scene consisting of more than one plane. Applying
the algorithm on these images results in 237 matches where only less than 10

percent are correct.

Therefore, we decided to evaluate and apply the algorithm assuming the scene
is planar such as aerial images. The algorithm is essentially the same as above
algorithm except that if more than two vanishing points are detected, any two of
them can be used to estimate R (since this vanishing points are located on the
same line at infinity and therefore they should be collinear).

We continue with performing some simulations for determining the perfor-
mance of the method with regard to the noise level, the number of lines and the
ratio of non-parallel lines to the total number of lines. By non-parallel lines we
mean the lines which are not parallel to any of the scene planes.

5.3.4 Simulation 1 (Dependence on noise level)

This simulation experiment was designed to determine how the accuracy of the
matching would vary as the amount of error in the extraction of the line segments
is increased. The same procedure as explained in previous section is used to
generate random line segments and add noise on their end points, except now
it is assumed that there is only one dominant scene plane and a line is either
parallel to this plane or intersecting it. For each noise level, we generate one set
of 50 lines parallel to the plane. We also generate 5 lines which are not parallel
to the plane. The preset value for both tolerance regions is 2 degrees.



5.3 line matching on the unitary sphere 89

Figure 34: Dependence on noise level. Noise levels are reported in terms of the standard
deviation of a zero mean Gaussian.

In Fig. 34, we observe that as expected the number of correct matches decreases
as the noise were increases. Note, however, that even with the presence of a
Gaussian noise with std of 2 pixels on the endpoints of the extracted segments,
more than 45 percent of matches are correct contrary to the complex scene
composed of 3 planes where even with noise-free data, less than 40 percent of
matches are correct (See Figure 32).

5.3.5 Simulation 2 (Dependence on the number of lines)

The simulation parameters are exactly as previous one except the total number
of lines to be matched is varied from 15 to 100. The noise is fixed on 0.5x0.5 pixel.
Note, in Figure 35, that the algorithm performs better for the lower number of
lines. This result is not surprising since in the presence of noise, increasing the
number of lines increases the number of one-to-many correspondence and many-
to-many correspondence. As the number of extracted segments goes behind
65, on average less than 50 percent of matches are correct. Loosing the second
tolerance region to 3 degrees, improves the performance of the algorithm. This
proves the importance of the preset tolerances.
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Figure 35: Dependence on the number of lines (0.5x0.5 pixel noise).

5.3.6 Simulation 3 (Dependence on the percentage of random lines).

Once again, the simulation parameters are exactly as simulation 1 except the
ratio of non-parallel lines to the total number of lines is varied from 0 to 70

percent. The noise is fixed on 0.5x0.5 pixel. Note, in Figure 36, that the algorithm
performance decreases as the percentage increases. Once again, this result is not
surprising since in the presence of noise, randomly oriented lines may intersect
the line at infinity of the plane at the same location as a real match and therefore
increasing multiple assignments. However as can be seen from the graph, in the
presence of 0.5x0.5 pixel noise and when the ratio is less than 40%, on average,
more than 50% of matches turn to be correct.

Figure 36: Dependence on the percentage of random lines.(1.0x1.0 pixel noise).

clarification: In an early paper published on this work [110], the result of
simulation are better than the result presented here. This is because, the
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algorithm presented in [110] assumes all the lines are parallel to the plane
and it does not check for parallelism while in the algorithm presented here,
many correct matches are removed during this verification (though some
mismatches are also filterered out but for the most of the simulations, the
number of filtered-out correct matches is higher). Also, the noise is fixed
on 1x1 pixel while for a calibrated camera, setting the noise on 0.5x0.5

pixel should be more realistic. Note that 0.5x0.5 pixel noise means that the
endpoints of the segments can be perturbed up to 1.5 pixels in both x and
y directions.

These results give us an insight on the reason for the bad performance of the
original algorithm for three planes. All the lines which are not parallel to a scene
plane will act as non-parallel lines to the plane under consideration. Assuming
each plane has equally number of lines parallel to it, more than 66 percent of
all lines (2*100/3 and also considering the lines which are parallel to none of
the planes) are not parallel to each scene plane which means only 35 percent of
matches (See the graph in figure 36 where the performance of the algorithm for
66% of non-parallel lines is around 35%) based on each plane are correct. This
result matches with the result of the graph in Figure 32 for the original algorithm,
where for the same amount of noise (0.5x0.5) the percentage of correct matches is
also around 35%.

5.3.7 Experimental results on real central images

5.3.7.1 Perspective images

The first experiment refers to the image pair shown in Figures 37(a) which are
the images of a drawing on a wall, imaged from two considerably different
viewpoints. The most prominent lines were extracted automatically using Matlab
embedded functions for extracting lines using Hough transform and the algo-
rithm proposed in [127] is employed to extract two vanishing points from the
images. Total numbers of line segments extracted from left and right images
were 92 and 77 respectively. The results of applying the proposed method on
these images are shown in 37(c), in which corresponding lines are distinguished
with identical colors. Excluding all sets of parallel lines, the algorithm outputs 24

one-to-one correspondences which all are correct. Applying the sidedness con-
straint on the segments inside each group of parallel lines increases the number
of matches to 34 among which 29 are correct. After extracting line segments and
two vanishing points, the execution time for the matching stage can be neglected.

The second experiment refers to a pair of aerial images shown in figures 38(a)
taken from two very different viewpoints. Note that in aerial images, the majority
of the extracted line segments are from the horizontal lines in the scene since
vertical lines are either occluded in one or both images or their projections on
the image planes are very short segments which are filtered out during the
extraction of the segments. The segments extracted from these two images are
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(a)

(b)

(c)

Figure 37: (a) Two views of a drawing composed of shapes with straight edges, (b) the
extracted line segments, and (c) the computed correspondences. Each color
present one match and parallel lines have identical color.
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shown in Figures 38(b). Only the most prominent line segments were extracted
by filtering out short segments. The numbers of extracted line segments are
144 and 121 line segments from the left and the right images respectively. The
output of the proposed method is shown in 38(c), in which corresponding lines
are distinguished with an identical color. Majority of the segments belong to five
groups of parallel lines and the algorithm outputs 38 one-to-one correspondences
among which 32 are correct. Applying the sidedness constraint on the segments
inside each group of parallel lines increases the number of matches to 64 among
which 51 are correct. The running time for the matching stage is negligible.

5.3.7.2 Omnidirectional images

The only aerial catadioptric image sequence available to us with known camera
intrinsic parameters was a set of images captured during a field experiment from
a hot-air balloon using the folded catadioptric camera (Figure 12(c)). Two images
taken from these set and their extracted conic segments are shown in figure 39.
The total numbers of line segments extracted from left and right images were
63 and 68 respectively. The results of applying the proposed method on these
images are shown in 40(b), in which corresponding lines are distinguished with
identical colors. The algorithm outputs 12 one-to-one correspondences (which
are all correct) and 14 many-to-many correspondences. Applying the sidedness
constraint on the segments inside each group of parallel lines results in 5 more
one to one correct matches.

5.4 conclusion and outlook

The problem which we tried to tackle in this chapter was to match two sets of
randomly oriented but parallel to a scene plane lines using the location of their
intersection with the line at infinity of the plane. Eventually, we proposed a
method which has several advantages. It exploits a geometric constraint (the
angle between two lines) based on the structure of the scene, without need for
the motion of the camera to be known. It is, therefore, also capable of handling
disparate views since it employ a constraint which is independent of the motion
of the camera. Finally it is computationally very fast and can be run in real-
time. Despite all these advantages, the stand-alone algorithm presented here for
matching lines between two views of a planar surface is sensitive to the noise
and the output of the algorithm is altered as the preset tolerance regions are
loosen or tighten.

The geometric constraints presented in this chapter narrow down the whole set
of possible matches (i.e. each line in one image is a potential match for each and
every line in the other image) to a much smaller set including correct matches.
Therefore, the subject is still open and one proper direction to improve the result
of current algorithm could be to further separate the correct matches from the
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(a)

(b)

(c)

Figure 38: (a) Two aerial images (courtesy of C3 Technologies), (b) the extracted line
segments, and (c) the computed correspondences. Each color present one
match and parallel lines have identical color.
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(a)

(b)

Figure 39: (a) Two aerial catadioptric images and (b) their extracted conic segments.
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(a)

(b)

Figure 40: (a) The extracted vanishing directions, and (b) the computed correspondences.
Each color present one match and parallel lines have identical color.
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rest by considering the spatial and topological configuration of group of lines on
unitary spheres or the image planes.

As a future work, an interesting application of the constraint presented in this
chapter for perspective images can be to use it as a filter/booster constraint for
leveraging the result of any chosen line matching technique currently available
rather than using it as a stand-alone algorithm. To do so, consider the output of
the selected technique as a set of putative matches. During the filtering stage,
whenever vanishing points are available, the ambiguous or false matches can
be detected and filtered out by verifying whether their symmetric homographic
transfer error is bigger than a chosen threshold. Similarly, during the boosting
stage, for any unmatched segment in one image, its possible correspondence can
be found by looking for the segment in the other image with transfer error less
than a chosen threshold.





Part III

MOTION EST IMATION AND RECONSTRUCT ION FOR
CONSTRUCTED SCENES US ING TWO VIEWS

In this part, motion estimation and planar surface reconstruction
for constructed scenes using two views are investigated and some
efficient algorithms are proposed.
Chapter 6: We introduce a unique and efficient way of computing
the overlap between two segments which considerably decreases the
overall computational time of a segment-based motion estimation and
reconstruction algorithm already existing in literature.
Chapter 7: We present an algorithm for reconstruction of piece-wise
planar scenes from only two views and based on minimum line
correspondences.





6
AN OPT IMIZED L INE SEGMENT BASED STRUCTURE AND
MOTION ALGORITHM FOR TWO VIEWS

Generally speaking, motion estimation is the second main stage of SfM process
after the feature matching and before the final reconstruction. Wide baseline
motion estimation from point correspondences between two views has been the
subject of much investigation and even though this is still a very active field of
research, many fast, simple and efficient methods have been proposed in such
studies. On the contrary, motion estimation from line correspondences between
two wide baseline views has not received much attention. The reasons for this
are manifold. First, line segments are more difficult to detect and match as was
sensed from previous chapter and also due to the reasons mentioned in the sec-
tion 1.2. Secondly, classical methods such as [129, 9] which use supporting lines
(geometric abstraction of straight line segments) need many line correspondences
across at least three images. For only two views, during the reviews of works
related to the line-based structure from motion, we found several works in which
the impossibility of motion determination from the line correspondences between
only two views (i.e. correspondences between image planes of lines i.e. normal
vector of the plane passing through the 3D line and the origin of the central
imaging system) is geometrically (but not algebraically) shown [141, 9, 27]. As it
was shown in the previous section 5.3.1, assuming the rotation part of the motion,
R, can be estimated (using for example vanishing points), for each given match
nl ⇋ nl′ , the direction of their pre-image in 3D, L can be computed by:

L = nl × (R−1nl′)

Having these directions, we were wondering if this knowledge can provide
necessary constraints to also estimate the translation part of the motion using just
two views. Unfortunately it can easily be shown that knowing the direction of
the matched lines do not provide any extra constraints since these line directions
are independent of the translation T. In other words, it can be shown that:

nl × nl′

−(nl′ .T)
= u

Where u is a non-normalized vector in the same direction as L. Note that
in this part of the thesis, we will use t and capital T to distinguish between
the normalized and un-normalized translation vectors respectively. It can be
clearly seen from this equation that T only contributes to the magnitude of the
u but not its direction. The simulation shown in Figure 41 also supports this
result. The position of the second camera is arbitrarily perturbed. However, the

101
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reconstructed 3D line, L′ , is still pointing in the same direction as the original
3D line L.

Figure 41: The direction of pre-image of a given match is independent of the relative
positions of two views. Gray color represents the true position of the second
camera system and blue color represents the perturbed position. There is no
rotation between two views.

On conclusion, any arbitrarily perturbed position of the second camera system
always yields in a set of reconstructed lines which are always parallel to their
corresponding 3D lines, hence, knowing the direction of the lines in 3D does not
provide us with extra constraints to solve the translation problem.

Therefore, some assumptions about the nature of the scene and line segments
are necessary. To our knowledge, the algorithm introduced by Zhang [153] is, so
far, the only work on motion estimation based on only two views of only line
segments. The algorithm tries to recover the motion using the epipolar geometry
by maximizing the total overlap of line segments in correspondence through
benefiting from three main assumptions: considerable overlap between each two
matched line segments, relatively large set of line correspondences and finally
the variation of the line segments being random. Because a closed-form solution
is not available, a five-dimensional motion space (three for rotation and two for
the translation) has to be sampled.

In this chapter, after a brief summary of the original algorithm, we try to
improve the efficiency of this algorithm by introducing an efficient measure
of overlap between two co-linear segments as well as estimating the rotation
using vanishing points instead of sampling the rotation space which considerably
decreases the overall computational time of the algorithm. For all our data sets
in hand, it was also found that the sampling strategy of the original method
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often is not dense enough to obtain a good initial guess and one needs to sample
the motion space with very small steps to obtain an acceptable solution. This
observation also motivated us to work on decreasing the time for calculating the
objective function in order to be able to search for a good solution over a densely
sampled motion space in a shorter time.

6.1 motion estimation by maximizing overlaps

In this section, we present a brief summary of the Zhang’s algorithm for solving
the motion problem by maximizing the overlap of line segments. The problem
to be solved is that given the cameras intrinsic parameters and two sets of line
segments, which are in correspondence, estimate the camera extrinsic parameters
(motion R and t).

Consider the pair of line segments (l, l′) in correspondence as shown in Fig.
42.

Figure 42: Overlap of two line segments in correspondence.

The line l′s in the second image is the epipolar line of end point s from the
first image, i.e. l′s = Es̃, where E = [t]×R is the essential matrix [52]. s̃ is the ray
which passes through the end point s and the center of first camera and it can be
easily computed since the camera intrinsic parameters are assumed to be known.
Similarly the line l′e is the epipolar line of the other end point e. Taking cross
product of each of these two epipolar lines with the segment e′s′ results in their
intersection, s" and e", with the segment. Provided that the epipolar geometry
(i.e. matrix E, or the motion (R , t)) between two images is correct, then s and s"
correspond to a single point in space; so do e and e". Thus, the statement that two
line segments l and l′ share a common part of a 3D line segment is equivalent to
saying that line segment s"e" and line segment s′e′ (i.e.l′) overlap. The overlap
length, L′, for two line segments in correspondence can then be computed from:
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L′ =





min(||e′ − s′||, ||e"− s′||, ||e′ − s"||, ||e"− s"||)

i f





(s"− s′) � (e′ − s") > 0

or (s"− s′) � (e′ − s") > 0

or (s"− s′) � (e′ − s") > 0

or (s"− s′) � (e′ − s") > 0





−min(||e′ − s"||, ||e"− s′||)
otherwise

(6.1)

where � stands for dot product of two vectors. The overlap length is positive
if two line segments overlap, otherwise it is negative. We assume that the
orientation information of a line segment is not available (i.e. the correspondence
between end points of the segments is not known). The overlap length in the first
image, denoted by L, can be computed exactly in the same way. Since a small
overlap length for a short line segment is as important as a large overlap length
for a long line segment, we should use the relative overlap lengths, L′/||l′||
and L/||l||, to measure the overlap of the pair of line segments. The relative
overlap length takes a value between 0 and 1 when two segments overlap;
otherwise it will be negative. We define relative non-overlap length between two
corresponding segments li and l′i in the second image as:

Hi = (1− L
′
i

||l′i ||
) (6.2)

which is 0 when two segments completely overlap, between 0 and 1 when they
partially overlap and bigger than one when there is a gap between two segments.
We can now formulate the motion problem as estimating the camera motion
parameters (R ; t) by minimizing the following non-linear objective function:

F =
n

∑
i=1

(Hi +H′i) (6.3)

where n is the number of lines. The algorithm can be summarized as the
following pseudo-code:
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Algorithm 6.1 Zhang’s algorithm.
1: Given two perspective images, extract and match their line segments.
2: Sample the rotation and the translation space with sufficient steps.
3: for each sample R(i) in the rotation space do

4: for each t(j) in the translation space do

5: For hypothesized motion E = [t(j)]×R(i) calculate objective func-

tion F0(i, j) =
n

∑
k=1

(Hk +H′k)
6: end for

7: end for

8: for each of 10 best solutions in matrix F0 do

9: Using downhill simplex method, minimize F (Equ.6.3) starting with the
best solution as initial guess.

10: end for

If sampling of motion space is with adequate small steps, at least one of the
ten minimization efforts in the last loop converges to a good solution.

6.2 the new measure of overlap

In the above algorithm, H′ (or H), the function for computing relative non-
overlap length for each line correspondence is the most frequently called function
and reducing computational time of this function can largely decrease the overall
computational time of the algorithm. Consider the two possible configurations
of two collinear line segments as shown in Fig. 43. The coordinates of two
endpoints of the overlap part, (Xmin,Ymin) and (Xmax,Ymax) can be found by
:





Xmin = max(min(s′x, e
′
x), min(s"x, e"x)),

Xmax = min(max(s′x, e
′
x), max(s"x, e"x)),

Ymin = max(min(s′y, e
′
y), min(s"y, e"y)),

Ymax = min(max(s′y, e
′
y), max(s"y, e"y)),

and the overlap length can be expressed by its Cartesian length:

L′i = L′ix + L′iy

where

L′ix = (Xmax − Xmin), L′iy = (Ymax −Ymin)
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Figure 43: Two possible configurations of two collinear line segments.

Note that the output of this new measure of overlap length is exactly equal
to that of Equ. 7.1 but without need for a i f − then construct with four OR

conditions. While computing the relative non-overlap length, computational
time can further be reduced by half by considering only one of the Cartesian
components of the overlap part and the segment in the second image (we chose
x component) based on the relation shown in Fig. 44:

Hi = (1− L
′
ix

||l′ix||
) (6.4)

Figure 44: The relation between Cartesian components of the overlap part and the
segment in the second image. The ratios of corresponding sides of two right
triangles are constant.

However, care should be taken when the segment is vertical where y compo-
nents should be used to avoid undefined division 0/0. In order to have a very
accurate comparison between two measures, we carefully counted the number
of CPU cycles needed to run the assembly instructions for the new non-overlap
length measure as defined by Equ. 6.4 versus the measure defined by Equ. 7.2
compiled using a C compiler on an Intel Pentium machine. Our new non-overlap
length measure needs 302 clock-ticks (including the conditional i f for proper
treating of vertical segments). The original measure of non-overlap needs a mini-
mum of 720 clock-ticks (if the first inequality condition among four inequalities
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in Equ. 6.1 is satisfied) and a maximum of 858 clock-ticks (if none of four in-
equalities are satisfied). We can not use clock-ticks average since for the majority
of samples in motion space and except for some random lines, the rest of lines
do not exhibit an overlap therefore the computation of the objective function for
these samples requires maximum number of clock-ticks. This means our new
measure can be computed on average slightly less than 858/302 = 2.841 times
faster than the measure introduced by Zhang, assuming that the variation of the
line segments is random. Refer to the result section for a comparison using real
data.

6.3 dense sampling of two dimensional translation space

Sparse sampling of the 5 dimensional motion space (three for the rotation and two
for the translation) followed by refinement of the best samples as suggested by
Zhang is problem-in-hand dependent and depending on how far the best initial
guesses are to the global minimum, the optimization stage can use considerable
number of iterations to converge to a good solution or it may not be able to
converge at all. Thanks to the possibility of estimating the rotation part of the
motion through matching two vanishing points in constructed scenes and also
thanks to our faster method for calculating the objective function, we are able to
obtain an initial guess for the rotation in advance and we only need to sample
the translation space more densely, resulting in a better initial guess closer to
the global minimum with less time required by the optimization algorithm to
converge to a good solution. The results in the next section demonstrate how
this new approach can help to recover the motion for the examples where the
sparse sampling followed by a refinement of the best samples cannot converge to
a good solution.

The new fast algorithm can be summarized as the following pseudo-code:

Algorithm 6.2 The fast proposed algorithm using vanishing points
1: Given two perspective images, extract and match their line segments.
2: Match two dominant vanishing directions among the extracted lines and use

them to estimate R (cf. section 4.2.2.1 and Appendix A.3)
3: Sample translation space with sufficient steps
4: for each t(j) in the translation space do

5: For hypothesized motion E = [t(j)]×R calculate objective function

F0(j) =
n

∑
k=1

(Hk +H′k)
6: end for

7: for each of 10 best solution in matrix F0 do

8: Using downhill simplex method, minimize F (Equ.6.4 and 6.3) starting
with the best solution as initial guess.

9: end for
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Note that this fast algorithm is applicable only in constructed scenes where at
least two vanishing points can be extracted and matched. If this is not the case,
then for more accurate results, the original algorithm with the new objective
function and a denser sampling of the motion space should be used.

6.4 results

We have already shown the efficiency of the new objective function in the terms
of execution cycles. In this section, however, we give the results on two real data
sets where for the last set the original algorithm fails to recover the motion due
to sparse sampling of the motion space.

The first set of real data is an image pair of a bakery (Fig. 45). The position
and rotation of the second camera with respect to the first one was obtained
through a very careful setup and use of a gyroscope:

R = [−0.0073,−0.3049,−0.0036],
t = [0.9318,−0.0123, 0.3629],
where the translation t is normalized and the rotation R is represented by a

3D Rodrigues’ vector (whose direction is that of the rotation axis and whose
norm is equal to the rotation angle). The segments which are aligned with the
epipolar lines are neglected during computing total overlap and later for the scene
reconstruction since in this case computed intersections, s and s" are unstable
and the calculated overlap can be irrationally big, resulting in eliminating a good
solution.

For speed comparison, we applied the algorithm with both original and new
objective functions on this data. We extracted and matched 85 lines between
two views manually. Through searching for the initial motion estimation by
the sampling strategy as described in the original algorithm (i.e. sampling the
range [−π

4 ,
π
4 ] with steps equal to π

8 for the rotation and 40 uniform sampling
of a Gauss hemisphere based on the icosahedron for the translation), only 1 of
10 best samples converged to the good solution. The result of the best solution
is shown in Fig. 45. The whole process (excluding the time for line extraction
and matching) took 3159 seconds composed of 1479 seconds for evaluating the
objective function over the motion space and 1680 seconds for optimization of
10 best initial guesses (both algorithm were implemented in Matlab and were
executed on the same computer). Though replacing the function for computing
relative non-overlap with our function does not alter the output of the new
algorithm, however it reduces the overall computational time to 1215 seconds
(around 2.6 times faster, including all overhead computations). The error in the
translation direction is 1.0847◦. The error in the rotation angle is 0.3087◦ and the
error in the rotation axis is 1.9147◦.

The results are even much better by using the fast algorithm 6.2 where we
estimate the rotation between two views using vanishing points and use it as an
initial guess. To do so, we used the approach suggested in [14] . Fig. 46 shows
projection of two images on unitary sphere. Dominant directions (vertical and
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Figure 45: Top row: Two images of a bakery with 85 matched line segments superim-
posed on the images (in green) . Bottom row: 3D reconstruction of the bakery
by Zhang’s technique. The right image corresponds to the top view.
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Figure 46: Unitary spheres after projecting the images onto them and extracting vertical
and horizontal vanishing points. For a better visualization only a small
percentage of lines are shown.

one horizontal) of lines in the scene were used to estimate the rotation of the
camera sufficiently accurate. The error in the rotation angle is 1.103◦ and the error
in the rotation axis is 2.074◦. For this example, we used 80 uniform sampling of
translation space. It turns out that the good solution obtained by the original
algorithm is already the global minima and therefore doubling the sampling of
the translation space does not alter the results, however the computational time
of the whole process took 430 seconds (around 7.3 times faster than the original
algorithm).

Fig. 47 shows the second pair of images taken from the real stereo image
data set available at INRIA [63]. The transformation from the first camera to the
second camera is:

R = [−0.0004, 0.3133, 0.0717],
t = [−0.9859,−0.0441, 0.1617],
We extracted and matched 104 lines between two views manually. Through

searching for the initial motion estimation by original sampling, none of the
best samples converged to a good solution. The best solution reconstruction
corresponding to the initial guess with the smallest value of objective function is
shown in Fig. 48 which is apparently a wrong solution.

As a matter of fact, this is an example of a scene where it can be shown that
the global minimum is closely located to many local minima and only a fine
sampling of the motion space can result in a good solution. Unfortunately, the
scene does not consist of at least two accurate vanishing directions. Therefore
we applied our dense sampling strategy by 90 sampling of translation space and
1330 sampling of rotation space. The evaluation of the objective function for all
these samples takes around 3120 seconds. The best solution’s reconstruction is
shown in Fig. 49. The error in the translation direction is 1.9◦. The errors in
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Figure 47: Top row: A stereo pair with 104 matched line segments superimposed on the
images (in green) . Middle row: A perspective view of the 3D reconstruction
by classical stereo including two camera image planes. Bottom row: a view
from the side.
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Figure 48: 3D reconstruction of the scene by the best solution of the structure from
motion technique described by Zhang. The bottom image corresponds to a
side view. Apparently this is not a good solution.
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Figure 49: 3D reconstruction of the scene corresponding to the sample with minimum
value of objective function from densely partitioned motion space.

the rotation angle and rotation axis are 0.94◦ and 1.986◦ respectively. This result
is already very good and further optimization is not necessary. One can notice
that even though we are benefiting from a faster objective function, however the
evaluation of all samples in the dense motion space is quite time consuming
and except inevitable evaluation of all these samples, there is not any other
deterministic alternative approach for such particular examples.

6.5 conclusion and outlook

We introduced a new measure of overlap which increases the speed of calculating
the overlap between two line segments in correspondence. It also allows a denser
sampling of the motion space for finding initial guesses for optimization of
the non-linear objective function for recovering motion based on line segment
correspondences and therefore facilitating the search for a good solution where
due to the nature of the scene, sparse sampling followed by optimization does
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not converge to a good solution. We also suggested, whenever possible, to
estimate the rotation between two views using vanishing points and use it as
an initial guess in order to reduce the sampling space to two dimensions. We
demonstrated this situation by giving the results on two real data sets including
the scene where the original algorithm fails to recover the motion.



7
MOTION AND STRUCTURE FROM TWO CENTRAL VIEWS
OF P IECEWISE PLANAR SCENES

The optimized method presented in the previous chapter for motion estimation
from line correspondences between two wide baseline views has this main
drawback that it needs relatively large set of correspondences of line segments
randomly distributed and oriented in the scene. Though the number of extracted
line segments from an image of a constructed scene can be relatively high,
matching them is a very difficult task especially if the motion has a long baseline.
Moreover, in constructed scenes, the assumption of randomly oriented lines may
not hold since the majority of the lines are pointing in the same direction as one
of three main Manhattan directions.

While searching for new methods of line matching in constructed scenes, we
came to realize a simple method of simultaneous motion estimation and recon-
struction of planar surface using minimum requirement of matched lines which
is especially powerful in dense reconstruction of planar surfaces. Architectural
interiors are often very poorly textured and as a result, the number of extracted
interest points is too small for dense 3D reconstruction. The problem is even
more challenging if the images are of low resolution or bear the omnidirectional
deformation. Therefore, in order to create a dense 3D model of a poorly textured
scene, we suggest an approach which uses as much as possible photometric
information available and some prior knowledge about the planar nature of
the scene. Despite the fact that two views of lines are not enough to estimate
motion, we present a novel method that still uses two views of just one line and
all pixel information around it and simultaneously estimates the translation and
reconstructs the surface.

7.1 the methodology

Using both geometric and photometric constraints of the line and its image
neighborhood and reconstructing the 3D surface around the line is the key idea
of our method. For each view, a set of planar facets passing through the 3D
line in space are hypothesized and the plane hypothesis which shows higher
similarity between two views is chosen to be the best reconstruction of the surface
(see figure 50). The camera translation is simultaneously recovered during the
construction of the surface.

For the rest of this text, we assume that the first camera coordinate system
is aligned with the world coordinate system with no loss of generality. The
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Figure 50: Geometry of proposed method. On each hypothesized plane (three planes are
shown here), one rectangular mesh is built on the same side of the 3D line
from each camera image.

intersection of two planes passing through each segment and the origin of the
related camera results in l, the direction of the 3D line:

l =
n× R−1n′

‖n× R−1n′‖ (7.1)

where n and n′ are known images of the 3D line on the image planes (i.e.

normal vector of the plane passing through the 3D line and the origin of the
camera) and the camera rotation, R, is known a priori.

The full reconstruction of the line, however, is not possible since at least
the ratio of the distances of the line to the origins of the cameras should be
known. T, the translation from first camera to the second camera (recall that
we are using t and capital T to distinguish between the normalized and un-
normalized translation vectors respectively) can be decoupled in three vectors
and be expressed by (see Fig. 50):

T = nss + lsl − ns′s
′ , ns =

l × n

‖l × n‖ , ns′ =
l × R−1n′

‖l × R−1n′‖ (7.2)

where s and s′ are the unknown distances between 3D line and the origins of
the cameras and sl is an unknown scalar value. Therefore in order to determine
the translation of the system we need to find these three values. Since the final
solution will always be up to a positive scale, we can set one of these values
to a fixed value (we chose s). Now the problem is simplified to estimating the
other two scalars. To estimate these two values we need to use the photometric
information around the line. However any comparison between the areas around
the images of the line in two views is meaningless due to distortion caused by the
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motion between two views. To overcome this difficulty we reconstruct the surface
and therefore the texture on it from each image by sweeping a hypothesized
plane through space which pass through 3D line and find the plane which best
matches two reconstructed surfaces. In the next section we derive the necessary
formulas for the parameterized reconstruction of the 3D surface and its texture
seen by each camera, referred to as the “mesh image” hereinafter.

7.1.1 Building 3D rectangular meshes and mesh images

For each image, the steps of building a 3D rectangular mesh with the orientation
nm on one side of the 3D line are as follows. Note that, for the sake of clarity
in the schematic figures, we draw a perspective image plane instead of more
generic image sphere.

Let p
j
i denote the back projection ray (a point on the image sphere) of ith

end point of the line segment of the jthcamera and P
j
i denote its corresponding

Cartesian coordinates on the 3D line with respect to the world coordinate system
(see Fig.50). P

j
i can be found by intersecting p

j
i with the plane which passes

through the 3D line and has the orientation nm. After some calculations, this
intersection can be expressed by (here T, as a superscript, means transpose):

P
j
i = Oj +

(
nm �

(
P0 −Oj

))
(

nm �

(
Rj p

j
i −Oj

))
(

Rj p
j
i −Oj

)
,

i = 1, 2
j = 1, 2

(7.3)

where Oj and Rj are the focal points and camera rotations with respect to the
world coordinate system, respectively. Since the first camera coordinate system is
aligned with the world coordinate system, we have O1 = [0 0 0]T , R1 = I (Identity

matrix) , R2 = R and O2 = T (since O2 is now the translation vector between two
camera positions). The 3D point P0 is a point on the 3D line, and it can be chosen
to be the closest point of the line to the origin of the first camera: P0 = nss. For
each image, P

j
w,h, the 3D coordinates of the mesh at location (w, h) is:

P
j
w,h = P

j
1 + wl + h

l × nm

‖l × nm‖
, w = 0 : W j , h = 0 : H j (7.4)

The mesh resolution should be carefully selected since it depends on the scale
of whole reconstruction which in return is determined by the value chosen for s.
W j should be chosen proportional to the distance between P

j
1 and P

j
2 in order to

simplify the registering of two meshes at later steps of the method:

W j = round(k
∥∥∥P

j
1 − P

j
2

∥∥∥) (7.5)

where k is a positive value. The higher the k is, the higher the resolution of the
mesh is and therefore the reconstruction of the surface is more accurate at the
expense of higher computational time.
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H j, the height of the mesh must be high enough to include neighboring texture
around the segment, otherwise during the registration, the similarity measuring
function can fail to match mesh images.

After some calculations, p
j
w,h , the corresponding image pixel for each mesh

vertex P
j
w,h can be expressed by:

p
j
w,h =

[
∆x + uj ∆y + vj

]T ,
w = 0 : W j

h = 0 : H j
, j = 1, 2 (7.6)

∆ = R−1


 f j

rT
3

(
P

j
w,h −Oj

)
(

P
j
w,h −Oj

)

 (7.7)

where r3 is the third column vector of rotation matrix R. Fig.51 shows examples
of what mesh images look like as the parameters change. Only for ground truth
parameters, the surface textures in both mesh images are identical. Note that one
of the strips is extended up to the image border, therefore, the algorithm works
as long as a part of the surface attached to the line is seen by both cameras and it
is not necessary that the segments overlap.

Figure 51: Two top rows: 2D mesh images where orientation of the surface and depth
ratio are different from the ground truth. Two bottom rows: As the second
mesh image sweeps the first mesh image, the Hausdorff distance between
points of overlapping parts is computed (point sets are shown by white pixels).
The best estimation of the surface orientation and s′ occurs to have the lowest
Hausdorff distance. The location where this smallest value occurs, d∗, is used
to register two meshes in 3D and therefore recovering sl .

7.1.2 Estimation of surface orientation, depth ratio and T

After setting s to an arbitrary value and choosing the mesh resolution accordingly,
the best values of scalars s′ and sl and also the orientation of the surface which
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minimizes the Hausdorff Distance between two point sets (extracted from mesh
images using edge detectors such as Canny) must then be estimated in order to
recover T (up to a scale factor) from the equation 7.2. Refer to the section 7.3 for
a justification on using Hausdorff Distance as the similarity measuring function.
This needs a brute force algorithm for searching among all possible values for
these variables which is computationally expensive. Fortunately, the problem
can be formulated in a simpler way and computational burden can be greatly
reduced by observing the following facts from the geometry of the proposed
method:

- sl can be set to zero since its value has no effect on retrieving the mesh images
(i.e. image pairs of Fig. 51 do not change as value sl changes). However its real
value is necessary for computing T and it will be recovered through registering
two meshes in 3D (Eq. 7.8).

- Changing depth values s and s′ has a zooming effect on their mesh images (i.e.

doubling the distance between camera origin and the 3D line results in a twice
larger mesh image). This suggests that in order to reduce computational time,
instead of reconstructing from scratch, the second mesh image can be built just
once by setting s′ to its maximum expected value and then the effect of reducing
s′ can be simulated by resizing the second mesh image using interpolation. We
limit the possible depth ratios s

s′ to the range [13 3] in order to restrict the search
and chose 20 equi-spaced points on this interval. In practice, this ratio is not
likely to exceed this range.

- The searching space for the surface ground truth orientation, nm, can also be
reduced by taking into account that not all orientations of the hypothesized plane
can generate proper image on the same side of the line segment. For details see
Fig.52.

Figure 52: The searching space for the surface ground truth orientation. Instead of
searching all potential surface orientations, a smaller set of likely surface
normals varying between n and n′ should be considered.

The pseudo-code algorithm 7.1 summarizes our method for simultaneous
estimation of surface orientation and depth ratio. The combinatorial functions
index(min(M)) return the index corresponding to the smallest value in the matrix
M.
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Algorithm 7.1 The proposed motion and structure algorithm.
1: Given two images taken by a central imaging system, extract their line

segments and match a line segment between two views belong to the surface
under consideration for reconstruction.

2: Match two dominant vanishing directions among the extracted lines and use
them to estimate R (cf. section 4.2.2.1 and Appendix A.3)

3: s← An arbitrary positive value
4: for each nm(i) between n and n′ do

5: for each s
s′ (j) between 1

3 and 3 do

6: - Construct two mesh images and extract edge points.
7: - M(i, j) = MIN(Hausd. Dis. between two point sets).
8: end for

9: end for

10: (i∗, j∗)← index(min(M));
11: return nm(i∗) and s

s′ (j∗);

The surface orientation nm and the depth ratios s
s′ corresponding to the smallest

distance in the matrix M inside nested loop are the best estimations of these two
parameters. Note that the nested loop is very fast since not only the template
and image to be searched are small, but also the whole image is not searched.
Since it is not clear that which side of the line is planar, we run the algorithm
for both sides and chose the side which gives a better reconstruction (i.e. lowest
Hausdorff distance). If the Hausdorff distances for both sides are small enough,
then there is a high chance that either the line is the intersection of two planar
surfaces or it is located inside the surface instead of its boundaries (in the later
case two computed orientations match).

After estimating nm and s′, computing sl is straightforward. Let denote d⋆

the distance at which the Hausdorff distance between two mesh images corre-
sponding to the best estimation of s′ and the surface orientation occurs to be
minimum as shown in Fig. 51. After some simple geometric considerations, sl

can be expressed by:

sl = P0 − P1
1 + d⋆l +

(
P2
1 − P0 −W2l

) (
s/s′

)
(7.8)

Knowing all the three scalars, T can be computed by equation 7.2.

7.2 more than one line correspondences

Theoretically, one line correspondence on a textured surface is enough to estimate
the translation. While it is noteworthy that the approach works from only a
single correspondence, in practice one can usually determine multiple good
correspondences and combining the estimates from all available correspondences
can help to verify and refine the accuracy of the estimated translation as well as
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reconstructing more planar surfaces of the scene. Assume Ti and Tj are two such
estimations and si

s′i
and

sj

s′j
are corresponding depth ratios. It is clear that:

Ti

‖Ti‖
=

Tj∥∥Tj

∥∥ ,
‖Ti‖∥∥Tj

∥∥ =
si

sj
=

s′i
s′j

(7.9)

The first constraint implies that the direction of the translation is identical for
each line correspondence. Even though translation vectors computed by each line
correspondence have different magnitude (due to different scales), they should
have the same direction. This constraint can provide a method for verifying the
other estimated translation directions. One can also improve the accuracy of
the final translation vector by computing the vector which has the minimum
deviation from all the estimations. The second constraint relates the overall scale
between two line (surface) reconstructions and can be used to reconstruct all
planar surfaces of the scene in one uniform framework (refer to the Fig.55 for an
example of application).

7.3 discussion

The bottleneck of our proposed method is finding the location of one of the
mesh images in the other one. This is simply well-known template matching
problem for which there are numerous number of methods available in literature
with different cons and pros. These methods are usually different in the level of
invariability to various deformations such as translation, rotation, scale, affine or
perspective. Due to the nature of our problem in this stage, we are looking for
the most simplest similarity measuring function which should not be invariant
to any deformation except translation (to escape any false positive matches
since we want the function to show a high similarity only when the surface
reconstruction is corresponding to the ground truth). One choice is ZNCC
which is very simple but as it is shown in [84], it increases the sensitivity of the
algorithm to the error in the estimation of rotation since this function is very
sensitive to the pixel displacement which is inevitable during forming mesh
images. Therefore we employed a generalized Hausdorff Distance which has
been shown to work well in comparing images and it is computationally efficient
when the template undergoes a simple translation [62]. It also can deal with
individual pixel displacement errors while remaining sensitive to overall mesh
images deformation.

The hausdorff Distance simply provides a means of determining the resem-
blance of one point set to another, by examining the fraction of points in one set
that lie near points in the other set. For more details on this similarity measuring
function, refer to Appendix B.

It is worth mentioning that, in order to compare the surrounding of the line
segments in two views, we also approached the problem in a similar way to
what plane-sweeping methods do for feature matching and depth recovery using
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homography induced by each plane hypothesis [36] and we ended up estimating
3 unknowns (instead of 2 for our proposed method) plus a higher computational
cost. One also may notice that our work is very different from plane-sweeping
approaches which use the already known motions between several views of
a scene for 3D reconstruction while our method uses lines first to recover the
motion from only two views and at the same time to reconstruct the surfaces of
the scene.

We consider our approach as a simple and efficient method for dense recon-
struction of a planar object or scene from two images taken with considerably
long baseline motion and with minimum need for the user interaction compared
to other methods. Using methods such as Zhang’s method [153] or multiple-view
methods, we are only able to reconstruct 3D line segments and not any surfaces,
therefore our method has the advantage of dense reconstruction. Also note that
since we reconstruct a line and part of the surface attached to it, any other line
coplanar with the surface is also reconstructed and we do not need to match and
reconstruct these lines anymore (for example each wall of the bakery and the
pavement attached to it (Fig. 55) are reconstructed using only one line from their
intersection and we do not need to deal with the rest of the lines on these two sur-
faces). On the contrary, these coplanar lines and also parallel lines can decrease
the performance of the methods which rely on only geometric information.

7.3.1 Sensitivity to the error in estimating R

While reconstructing two meshes, the estimated rotation between two views plays
a critical role. Generally speaking, the error in the estimation of the rotation can
have a considerable effect on the estimation of the translation and this is always
the case when estimating the displacement by a decoupling approach. The line
extraction stage can also introduce some error in the direction and location of
the segments on the image plane. In order to find the extend of the sensitivity
of the recovered translation to these errors, we have carried out 10 sets of 100

experiments with simulated image pair of Fig.50 and instead of identity matrix,
we set R to a rotation matrix with an arbitrary rotation axis and a rotation angle
around this axis which increases between each set by 0.2 degrees (i.e. in the 10th
set of experiments, there is a 2 degrees rotation between two views). The results
of the experiments are shown in Fig.53.

In general, the introduced error increases as the angle of rotation increases but
this is not true for all experiments. This reflect the fact that the angles close to 90

degree between axis of rotation and the 3D line may cause greater error in the
estimation of the translation than the increase in the angle of rotation. This is true
because in this case, the highest deformation on the mesh images occurs which
can easily affect the performance of the similarity measuring function in correctly
registering the two mesh images. Therefore a better similarity measuring function
is advised if the error in the estimation of the rotation is expected to be high.
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Figure 53: The mean/std error for the estimation of the translation direction.

7.4 an interactive 3d reconstruction interface

Two important steps of algorithm 7.1 are estimation of rotation and matching
line segments on the surface/es under reconstruction. While the former step can
be automatic using vanishing point extraction and matching methods, the latter
step is still a challenging task especially for omnidirectional images. Therefore
we suggest an interactive interface where, after automatic estimation of vanishing
points and recovering the rotation, as the user selects two corresponding line
segments between two views, the algorithm reconstructs the surface and estimate
the related translation. The interaction ends when all planar surfaces of the
scene are reconstructed. For more details on this interactive algorithm refer to
Appendix B.

7.5 experimental results

Here we present some result and comparison with the ground-truth (whenever
available) which were compiled during the development of the method and the
algorithm. Note that since, for the real perspective examples, we did not benefit
from above interactive reconstruction interface to locate the corresponding lines,
the results are less accurate due to the introduced localization and orientation
errors during automatic detection of the lines.

7.5.1 Perspective

7.5.1.1 Synthetic images

To prove the validity of the method, we tried our algorithm on simulated images
such as images of Fig.50 in which there is no rotation between two views. Note,
however, that there are still a few sources of error such as the error in the position
and direction of extracted line segments. Despite these errors, the translation
was estimated almost without error (the angle between estimated direction of
the translation and ground truth was 0.08 degrees).
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7.5.1.2 Real images

The first pair of real images are the same set presented in the previous chapter
in Figure 45 taken from a bakery which is mainly a piecewise planar structure.
Using Zhang’s algorithm, the motion is well estimated but the reconstruction is
not very accurate. This may reflect the fact that the computed overlap between
segments is not correct when there are segments that are almost parallel to their
epipolar lines. This is the case for many horizontal segments of this example.

For comparison, we applied also our algorithm on this data. We use all
lines which can automatically be extracted from each image (without need for
matching them) to recover the rotation and only one line correspondence to
recover the translation and two more line correspondences to verify and refine
the results.

For estimating the translation, we chose 30 equi-spaced points on the searching
interval for the surface orientation. The output of our algorithm for reconstruction
of 3 scene surfaces and 3 estimated translation vectors associated to each surfaces
is shown in Fig. 54.

Figure 54: Reconstruction of the pavement and two walls of the bakery and 3 estimated
translation vectors related to each surfaces. The scale of each surface recon-
struction is different from others. The right image corresponds to the top view.

All three surfaces plotted in a unique frame are shown in Fig. 55. The
worst estimated translation error among three is 4.7◦. The estimated motion
is comparable with the Zhang’s algorithm and as it can be seen from Fig.54,
the immediate result of the algorithm is a more useful reconstruction of the
scene. In order to test the accuracy of the reconstruction, we took a few concrete
distance and angle measurements (shown with blue arrows) and compared them
with the result of the reconstruction. The worst estimated angle error between
planes is less than 3◦ and the difference in the distance between landmarks is not
exceeding 2.4%.

Fig.56 shows the second pair of real images taken from a street sidewalk. The
green segments are the edges attached to three chosen planar surfaces. The final
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Figure 55: Reconstruction of the bakery and 3 estimated translation vectors in a unique
frame.

output of the algorithm is shown in Fig.57. Though we did not record the real
motion of the camera, the result of the reconstruction is acceptable and therefore
the estimated motion is accurate enough for such method.

Figure 56: Image pair of a street sidewalk scene.

Careful readers may notice that the accuracy of motion estimation and recon-
struction of the proposed algorithm should not be compared with multiple-view-
based methods such as [129, 9, 3] which are generally more accurate but need
extraction and matching of many line (point) correspondences between more
than two views, a very difficult task especially if the motion has a long baseline.
Besides, they are not applicable on omnidirectional images. For piece-wise planar
scenes, our algorithm outperforms such generic methods in the sense of speed
and accuracy of results are also comparable.

7.5.2 Omnidirectional

Figure 58 shows two images from an interior scene which is also mainly a
piecewise planar structure taken by our classic paracatadioptric system (Figure
12(d)). For this example, we also use all lines which can automatically be extracted
from each image to recover the rotation (58(b)) and only one line correspondence
to recover the translation and 3 more line correspondences to verify and refine
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Figure 57: Reconstruction of 3 surfaces in the street view and estimated translation
vectors in a unique frame.
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(a)

(b)

Figure 58: (a) Two interior catadioptric images and (b) their extracted vanishing direc-
tions.

the results. The searching interval for the surface orientation is 30 equi-spaced
points. The output of the algorithm for reconstruction of 4 main scene surfaces
and 4 estimated translation vectors associated to each surfaces is shown in Fig.
59. The worst estimated translation error among four is 3.6◦.

All four surfaces plotted in one uniform framework are shown in Fig. 60. We
did not have neither the true motion of the camera nor any metric information
from the scene to evaluate the accuracy of the estimated motion and overall
reconstruction but the fact that the errors between estimated translations is very
small is an indication of the accuracy of the results.

With other images, similar results were obtained. For more results refer to
Appendix B.

7.6 conclusion and outlook

We built a novel and efficient interactive interface especially suitable for piece-
wise planar scenes, proving that architecture modeling can be made very simple
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Figure 59: Reconstruction of four main planar surfaces of the scene and 4 estimated
translation vectors related to each surfaces from two catadioptric images.
Scale of each surface reconstruction is different from others. The right image
corresponds to the top view.

Figure 60: Reconstruction of the scene and translation vectors in a unique frame.
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by exploiting the available information from such senses such as vanishing points
and the planar nature of the surfaces.

We do not establish many feature correspondences (only one line correspon-
dence), nor do we estimate the optical flow or normal flow (in fact such methods
do not work for long-range motion) but we rely on image intensities of the flat
surface. Our method works on perspective as well as omnidirectional images; it
does not have multiple solution ambiguity and it guaranties one solution as long
as the surface/es are well textured.

An interesting application of the proposed algorithm is the extension of the
method to estimating the trajectory of a robot along with reconstructing all
possible surrounding planar surfaces as the robot moves inside a scene such as
a street and takes images from its surrounding, assuming consecutive images
share at least one planar surface.





8
GENERAL SUMMARY, F INAL REMARKS AND FUTURE
WORKS

In this chapter, we conclude with a short summary and some remarks on possible
future works. The primary goal of this thesis was to develop automatic SfM
methods for images taken from constructed scenes by any type of central imaging
systems including perspective, fish-eye or catadioptric systems.

The work started, in chapter 2, by investigating image formation process for
different types of imaging systems by considering basic pinhole camera and its
geometry of forming images followed by a brief examination and classification
of large FOV cameras and some of their examples. Finally, the unitary sphere
and some common calibration techniques for central imaging systems concluded
the chapter.

We continued, in chapter 3, by presenting the state of the art on various
approaches of line matching along with their classification based on the kind of
motion which can be handled by each method.

The rest of the manuscript was then devoted to four main contributions of the
thesis as follows:

1. A generic and simple line matching approach for all types of central images
including omnidirectional images in constructed scenes under a short
baseline motion :

This part was covered in chapter 4, where we started our objective of
developing a generic line matching method for constructed scenes specially
applicable to omnidirectional images by tackling the simplified problem
where the motion of the system is mainly an arbitrary rotation and the
translation of the camera between two views with respect to its distance to
the imaged scene is negligible.

The chapter dealt with the problem of matching lines for all types of central
imaging system under a short baseline motion by presenting a generic and
simple line matching approach. The method is composed of two main steps
of extracting line segments and estimating vanishing directions followed
by simultaneously recovering the rotation R and matching lines. Also, two
methods for retrieving R, one based on matching vanishing points and the
other based on matching any two feature points were proposed. Finally,
various experimental results on both synthetic and real images taken by
different central cameras as well as an application of the algorithm for
creating high resolution panoramic images from high resolution perspective
images were also presented.
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The state of the art line matching methods use demanding techniques to
match lines between images with short baseline and due to deformation of
omnidirectional images, they do not even work on these kind of images at
all. On the other hand, we developed a very simple and intuitive method
which is generic and it works for both perspective and omnidirectional
images. It is based on the fact that the motion of the system for a short
base-line movement is mainly consist of rotation and in constructed scenes,
the rotation can be estimated by matching vanishing points which are easily
available in such scenes.

2. A fast and original geometric constraint for matching lines for central
images including omnidirectional images in planar constructed scenes
insensible to the motion of the camera :

This part was covered in chapter 5. The problem which we tried to tackle
in this chapter was to match two sets of randomly oriented but parallel to
a scene plane lines using the location of their intersection with the line at
infinity of the plane. Eventually, we proposed a method which has several
advantages. It exploits a geometric constraint (the angle between two lines)
based on the structure of the scene, without need for the motion of the
camera to be known. It is, therefore, also capable of handling disparate
views since it employ a constraint which is independent of the motion of the
camera. Finally it is computationally very fast and can be run in real-time.
Despite all these advantages, the stand-alone algorithm presented here for
matching lines between two views of a planar surface is sensitive to the
noise and the output of the algorithm is altered as the preset tolerance
regions are loosen or tighten.

The geometric constraints presented in this chapter narrow down the whole
set of possible matches (i.e. each line in one image is a potential match for
each and every line in the other image) to a much smaller set including
correct matches. Therefore, the subject is still open and one proper direction
to improve the result of current algorithm could be to further separate the
correct matches from the rest by considering the spatial and topological
configuration of group of lines on unitary spheres or the image planes.

As a future work, an interesting application of the constraint presented
in this chapter for perspective images can be to use it as a filter/booster
constraint for leveraging the result of any chosen line matching technique
currently available rather than using it as a stand-alone algorithm. To do so,
consider the output of the selected technique as a set of putative matches.
During the filtering stage, whenever vanishing points are available, the
ambiguous or false matches can be detected and filtered out by verifying
whether their symmetric homographic transfer error is bigger than a chosen
threshold. Similarly, during the boosting stage, for any unmatched segment
in one image, its possible correspondence can be found by looking for the
segment in the other image with transfer error less than a chosen threshold.
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3. A unique and efficient way of computing overlap between two segments
on perspective images :

In the chapter covering this part of the contributions, chapter 6, we in-
troduced a new measure of overlap which increases the speed of the
calculating the overlap between two line segments in correspondence. It
also allows a denser sampling of the motion space for finding initial guesses
for optimization of the non-linear objective function for recovering motion
based on line segment correspondences and therefore facilitating the search
for a good solution where due to the nature of the scene, sparse sampling
followed by optimization does not converge to a good solution. We also
suggested, whenever possible, to estimate the rotation between two views
using vanishing points and use it as an initial guess in order to reduce
the sampling space to two dimensions. We demonstrated this situation
by giving the results on two real data sets including the scene where the
original algorithm fails to recover the motion.

As a future work, we can adapt Zhang method to omnidirectional images.
Though the original definition of the overlap and our new proposed defini-
tion are based on 2d Cartesian coordinates on the image plane, the adaption
of these definitions to image sphere should not be very complicated.

4. A simple motion estimation and surface reconstruction algorithm for piece-
wise planar scenes applicable to all kinds of central images including
omnidirectional images :

Finally in chapter 7, covering the last but not the least part of this thesis’s
contributions, we built a novel and efficient interactive interface especially
suitable for piece-wise planar scenes, proving that architecture modeling
can be made very simple by exploiting the available information from such
senses such as vanishing points and the planar nature of the surfaces.

We do not establish many feature correspondences (only one line corre-
spondence), nor do we estimate the optical flow or normal flow (in fact
such methods do not work for long-range motion) but we rely on image
intensities of the flat surface. Our method works on perspective as well as
omnidirectional images; it does not have multiple solution ambiguity and
it guaranties one solution as long as the surface/es are well textured. Also,
the simultaneous motion estimation and reconstruction of our method
makes it likely that errors are nicely spread over the whole 3D model,
compared to more sequential approaches.

An interesting application of the proposed algorithm is the extension of the
method to estimating the trajectory of a robot along with reconstructing all
possible surrounding planar surfaces as the robot moves inside a scene such
as a street and takes images from its surrounding, assuming consecutive
images share at least one planar surface.
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A
L INE EXTRACT ION ;
VANISHING POINT EXTRACTION AND MATCHING;
GENERALIZED HAUSDORFF DISTANCE

a.1 line extraction

For perspective images, there are two main approaches for extracting line seg-
ments. Both methods start by an edge detection step. The first approach starts
by an edge detection step followed by detecting the infinite support lines by
applying the Hough transform. This method directly inherits the disadvantage of
the Hough transform which is many false lines in highly-textured images due to
accidental linear arrangements of edge pixels. Furthermore, the location accuracy
of the detected lines is not very good. The second approach also starts by an edge
detection step followed by fitting the detected edge pixels into straight versus
curvilinear structures. The ratio of the length of the line segment divided by
the maximum deviation of any point from the line is then used to estimate the
quality of the fitting.

For omnidirectional images, however, the straight lines appear as curvilinear
structures and none of the perspective methods can be directly applied to extract
lines. Methods for extracting lines in catadioptric images can be divided into
three groups [13]. The first group is based on fitting the best conic to the points
of the line in the image. These algorithms are very sensitive to the occlusion.
The second group try to adapt the Hough transform methods for the perspective
images to the sphere space and they suffer from the same limitations as in
perspective case. The last category is based on specific geometric constraints of
paracatadioptric sensors and therefore cannot be applied to other catadioptric
systems.

Recently, Bazin et al. [13] proposed a fast central catadioptric line detection
algorithm which can be seen as an extension of polygonal approximation of
perspective case towards sphere space. This is the algorithm which we have used
in our experiments to detect and extract lines.

a.2 a fast central catadioptric line extraction

The main idea is based on this geometrical property that a line in space is
projected as a great circle on the equivalent sphere. Therefore, after detecting
edges in the image and building chains of connected edge pixels (by applying an
edge detection method such as Canny edge detector), in order to verify whether
these chains correspond to projection of world straight lines, they are projected
on the sphere and the great circle constraint is verified. For this, a split and merge
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algorithm based on the distance between chain points and the plane defining a
great circle is applied as follows.

a.2.1 Division criteria

Let n = P1× PN be the normal of the unique great circle which is passing through
P1 and PN , two endpoints of a chain composed of N pixels after projection onto
the unitary sphere. Any other point Ps of the chain is considered to belong to
this great circle if the distance between this point and the plane defined by the
great circle is less than a threshold |Ps � n| ≤ Threshold. If at least 95% of the chain
points belong to the great circle, then this chain is considered a line, otherwise,
the chain is cut into two sub-chains at the point argmax(|Pi � n|) which is the
furthest point from the great circle. This splitting step stops when the chain is
considered a line or the chain length is smaller than a certain threshold.

It often occurs that a line segments split into several smaller, more or less
collinear line fragments during building chains of connected edge pixels. These
line fragments can be merged based on the fact that they should share the same
great circle on the unitary sphere.

a.2.2 Fusion criteria

If n1 and n2 are the normals of two great circles associated to two extracted
lines by the above stage, these two lines are co-linear if they define the same
plane: 1− |n1 � n2| ≤ MergeThreshold. The normal of the great circle associated
to merged line is then is obtained from the SVD of matrix containing the pixels
of the chains which belong to two line segments.

Thought the fusion step can merge the fragmented segments but it also can
merge those segments which may just be accidentally collinear or almost collinear
while they are actually belonging to two different lines. See Figure 61(c) for an
example. Therefore we skip the merging step during the line extraction and
instead, during the line matching process, we merge fragmented line segments by
checking co-linearity of the segments in both images sine fragmented segments
have to be collinear in both images.

a.3 extracting and matching vanishing points

Vanishing points are points on the plane at infinity and therefore they are
invariant to translation. A rotation matrix has three degree of freedom and each
vanishing point correspondence provides two rotation constraints. Therefore
for estimating R, it is sufficient to have two enough distinct vanishing point
correspondences in two views. Reference Bazin et al. [15] has exploited above
facts to estimate the rotation of an imaging system in two steps, extraction of
vanishing points followed by recovering R by matching these points. For the
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(a) (b)

(c) (d)

Figure 61: (a) Original image, (b) Extracted chains, (d) Line detection results after division
step, (e) The results after fusion step. Note that many merged lines are
accidentally collinear or almost collinear.

sake of completeness, we briefly explain their method for extracting vanishing
point and matching them.

a.3.1 Extracting Vanishing Points

Consider two great circles corresponding to two parallel 3D lines. The intersection
of these two great circles (say vector u) corresponds to the common direction of
the lines. u should also point at the direction of any other line parallel to these
two lines (inside a similarity threshold). Therefore checking for all lines, we can
find the number of lines that may share the same direction u. By repeating this
procedure for each combination of two great circles, we can compute the vector
that corresponds to the highest number of parallel lines (the vanishing point of
those lines). To detect the second dominant direction, we remove the lines belong
to the first dominant direction and repeat the above steps.

a.3.2 Matching Vanishing Points

In their paper, Bazin et al. [14] present a fast and robust method for finding the
correspondences of vanishing points in catadioptric images based on comparing
the histograms of the spherical regions defined by the vanishing points in the
unitary sphere. They propose two ways for splitting the sphere into regions. An
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Algorithm A.1 Splitting the unitary sphere using two vanishing points.
1: Given an image taken by a central imaging system and two extracted vanish-

ing points V1 and V2.
2: for each image pixels P projected on the unitary sphere do

3: pos1 = P � V1.
4: pos2 = P � V2.
5: if pos1 > 0 and pos2 > 0 then

6: Region1 ⇐ Region1 + P;
7: end if

8: if pos1 > 0 and pos2 > 0 then

9: Region1 ⇐ Region1 + P;
10: end if

11: if pos1 > 0 and pos2 < 0 then

12: Region2 ⇐ Region2 + P;
13: end if

14: if pos1 < 0 and pos2 > 0 then

15: Region3 ⇐ Region3 + P;
16: end if

17: if pos1 < 0 and pos2 < 0 then

18: Region4 ⇐ Region4 + P;
19: end if

20: end for

21: return Region1, Region2, Region3, Region4;

intuitive region definition is in clustering each pixel with respect to its nearest
vanishing point and the second approach (which we employ in our experiments)
is to use the planes defined by vanishing directions and the center of the unitary
sphere to split the sphere. The image pixels projected on the unitary sphere are
then clustered into regions depending on their position with respect to the planes
defined by each vanishing point. The algorithm for two vanishing point is given
in Algorithm A.1.

Each region is then represented by a histogram using the intensity of every
pixel inside the region and then some distances are used to compute the similarity
between two histograms and therefore matching vanishing points. For more
details, interested readers are referred to the original paper.

a.4 generalized hausdorff distance

Given two sets of points A = {a1, ..., am} and B = {b1, ..., bn}, the Hausdorff
distance is defined as H(A, B) = max(h(A, B) , h(B, A)) where

h(A, B) = max
a∈A

min
b∈B
||a− b||
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The function h(A, B) is called the directed Hausdorff distance from A to B.
It identifies the point a ∈ A that is farthest from any point of B, and measures
the distance from a to its nearest neighbor in B. Thus the Hausdorff distance,
H(A, B), measures the degree of mismatch between two sets, as it reflects the
distance of the point of A that is farthest from any point of B and vice versa.

The Hausdorff distance as defined above is very sensitive to even a single
outlying point of A or B and especially for the application considered in this
thesis, it can not be directly used. Therefore we use a generalization of the
Hausdorff distance given by taking the k-th ranked distance rather than the
maximum:

hk(A, B) = kth
a∈A

min
b∈B
||a− b||

where kth denotes the k-th ranked value. We used k = m/2 for all our
experiments which means that the median of the m individual point distances
determines the overall distance.





B
THE INTERACT IVE 3D RECONSTRUCT ION INTERFACE

After automatic estimation of vanishing points and recovering the rotation, the
user is asked to select two points on a pair of corresponding line segments on
the surface under reconstruction between two views (points number 1 and 2 in
the figure 62).

Figure 62: Input interface. The user is asked to select two points on a pair of corre-
sponding line segments on the surface under reconstruction between two
views

The lower windows can be used to locate the planar surfaces more easily.
Optionally, the user can select a third point to indicate the planar side of the
line (point number 3). As the necessary point correspondences are input to the
software, it reconstructs the surface and estimate the related translation. The
estimated translation related to the first reconstructed surface is considered as the
reference and the rest of the reconstructions are scaled to have the same norm for
their estimated translations. Figure 62(a-d) shows the progressive reconstruction
of the planar scene previously shown in figure 58(a).

Finally for a better dense visualization, wherever appropriate, the reconstructed
planes can be extended to intersect other planes. Figure 64 shows another pair
of paracatadioptric images from an exterior scene which is mainly composed of
three planes.
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(a) (b)

(c) (d)

Figure 63: (a-d) Progressive reconstruction of the scene.
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(a)

(b)

Figure 64: (a) Two exterior catadioptric images and (b) their extracted vanishing direc-
tions.
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During the automatic construction of the plane corresponding to the street
floor, the similarity measuring function (Generalized Hausdorff Distance) failed
to correctly pick the right mesh images due to the fact that the street can not
be approximated anymore as a planar surfaces since big objects such as cars
are occupying a large part of the street. After successfully constructing some
surfaces, such wrong estimation of translation can be automatically detected by
simply verifying whether the estimated translation is coherent with the rest of
translation estimated so far and in case of failur, the user is asked to interfere and
select the correct mesh images. Figure 65(a) shows the initial results including
the wrong reconstruction of the street floor versus the corrected one (b).

All four surfaces plotted in one uniform framework are shown in Fig. 66. For
a better visualization, the planes are extended to intersect with each other.
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(a)

(b)

Figure 65: Reconstruction of three main planar surfaces of the street scene and 3 es-
timated translation vectors related to each surfaces from two catadioptric
images. (a) The street floor plane reconstruction and the related estimated
translation is wrong. (b) The street floor reconstruction is corrected.
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Figure 66: Reconstruction of the street scene and translation vectors in one uniform
framework.
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