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Résume: Un thème classique dans les sys-
tèmes dynamiques est que la première in-
formation fondamentale provient de la com-
préhension des orbites périodiques. Lorsque
l’on étudie les actions de groupe, cela signi-
fie que l’on veut comprendre les points fixes
des éléments du groupe, et une question na-
turelle qui en ressort est: Quels groupes
d’homéomorphismes peuvent agir sur une var-
iété de dimension 1 ayant tous les éléments
non triviaux avec au plus de N points fixes?
Notre objectif principal dans ce travail est
d’aborder cette question et de comprendre
quelles propriétés une telle hypothèse dy-
namique peut induire sur le groupe.
Pour le cas N=0, un résultat classique
de O. Hölder implique qu’un tel groupe
d’homéomorphismes agissant sur la droite
est toujours semi-conjugué à un sous-
groupe de translations et qu’un tel groupe
d’homéomorphismes agissant sur le cercle est
toujours semi-conjugué à un sous-groupe de
rotations. Pour N>0 il y a deux exemples
classiques pour cette question: l’action du
groupe affine sur la droite, avec N=1, et
l’action du groupe linéaire projectif sur le cer-
cle, avec N=2.
Un résultat de V. V. Solodov montre qu’il y
a une classification similaire pour les actions
de groupe sur la droite: si N=1, le groupe
est ou bien abélien ou bien semi-conjugué à
un sous-groupe du groupe affine. Par con-
tre, N. Kovačević; a présenté de nouveaux ex-
emples d’actions de groupe sur le cercle avec
N=2 qui ne sont semi-conjugués à aucun sous-
groupe du groupe linéaire projectif, ce qui
prouve qu’une affirmation similaire n’est pas

vrai pour les actions de groupe sur le cercle.
Dans ce travail, nous montrons que le résul-
tat de Solodov est valable même pour N=2.
De plus, sous l’hypothèse additionnelle de
non-discrétion, il y a une classification sim-
ilaire pour les actions de groupe sur le cer-
cle avec N=2. De plus, inspirés par cer-
taines des idées de Kovačević;, nous avons
introduit le concept de produit amalgamé
d’actions du cercle en considérant le blow-up
de deux actions de groupes distincts et en les
réarrangeant de sorte que l’ensemble invari-
ant minimal d’une action de groupe soit in-
clus dans le complément de l’ensemble invari-
ant minimal de l’autre. Ce concept s’avère
être un excellent outil pour créer de nou-
veaux exemples d’actions de groupe sur le cer-
cle qui ne sont semi-conjuguées à aucun sous-
groupe du groupe linéaire projectif, et telles
que chaque élément non trivial a au plus N
points fixes. Il conduit également à la con-
struction d’une deuxième famille d’exemples
d’actions de groupe où tout élément non triv-
ial a au plus N points fixes, qui sont des ex-
tensions HNN d’actions.
Enfin, nous présentons des exemples de haute
régularité, qui ne peuvent être obtenus di-
rectement par le produit amalgamé d’actions,
de groupes de type fini de difféomorphismes
du cercle où tout élément non trivial fixe
au plus 2 points et qui ne sont pas
semi-conjugués (et même pas isomorphe) à
n’importe quel sous-groupe du groupe linéaire
projectif. Par conséquent, nous pouvons con-
clure que la seule augmentation de la régular-
ité ne nous donne pas un théorème de classi-
fication.
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Abstract: A classical theme in dynamical
systems is that the first fundamental infor-
mation comes from the understanding of pe-
riodic orbits. When studying group actions,
this means that we want to understand the
fixed points of elements of the group, and a
natural question that emerges from that is:
Which groups of homeomorphisms can act on
a 1-manifold having all non-trivial elements
with at most N fixed points? Our main ob-
jective in this work is to approach that ques-
tion and understand what properties can such
dynamical hypothesis induces to the group.
For the case N = 0, a classical result from
O. Hölder implies that such group of homeo-
morphisms acting on the line is always semi-
conjugate to a subgroup of translations and
that such group of homeomorphisms acting
on the circle is always is semi-conjugate to a
subgroup of rotations. Now, for N > 0 there
are two classical examples for that question,
the action of the affine group on the line, with
N=1, and the action of the protective linear
group on the circle, with N=2, and if by one
hand a result from V. V. Solodov shows that
we have a similar classification for group ac-
tions on the line which states that if N = 1
then the group is either elementary or semi-
conjugate to a subgroup of the affine group,
by the other hand, N. Kovačević presented
new examples of group actions on the circle
with N = 2 which are not semi-conjugate to
any subgroup of the protective linear group,
which proves that a similar statement doesn’t

hold for group actions on the circle. In this
work we show that Solodov’s result holds even
for N = 2 and that once included the hypoth-
esis of non-discreteness a similar classification
also holds for group action on the circle with
N = 2. Moreover, inspired by some of the
ideas of Kovačević we introduced the concept
of amalgamated product of actions of the cir-
cle by considering the blow-up of two distinct
groups actions and rearranging them so that
the minimal invariant set of one group action
is included in the complement of the minimal
invariant set of the other. This concept proves
to be a great tool to create new examples of
group actions on the circle which are not semi-
conjugate to any subgroup of the protective
linear group, and such that every non-trivial
element has at most N fixed points, and it also
leads to the construction of a second family of
examples of group actions where every non-
trivial element has at most N fixed points,
which are HNN-extensions of actions.
Finally, we present examples with high reg-
ularity, that cannot be obtained directly
by the amalgamated product of actions, of
finitely generated groups of diffeomorphisms
of the circle where every non-trivial element
fixes at most 2 points and which are not
semi-conjugate (and even not isomorphic) to
any subgroup of the protective linear group.
Therefore, we can conclude that only increase
the regularity doesn’t give us a classification
theorem.



Acknowledgement
I would first like to acknowledge the École Doctorale Carnot-Pasteur, the Université de Bour-

gogne and the Institut de Mathématiques de Bourgogne for their financial and professional support.
Next I would like to say my most sincere thanks to Christian and Michele, my advisors, teachers

and friends. Even when I wasn’t the best student I could be, they were always by my side, being
careful and kind to me. Thank you so much for making part of my formation. I hope to continue
working with both of you.

I want to thank all the colleagues and friends I made at the department, the university and the
city. Thanks to you, the everyday was more pleasant. Thank you all.

I also want to record my thanks and my love to my parents Florindo and Valéria, to my brother
Daniel and my sister Maria, who even on the other side of the ocean were always able to be present
in my thoughts and memories. I hope to be with you soon.

And finally, I want to leave a special thanks to Mariana. If it weren’t for you, I would have spent
countless days without any affection. Thank you for being my home for these long years. Thanks
for your support, love and care.



Contents
1 Introduction 6

1.1 General setting and classical results . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2 Results on dynamical characterization of subgroups of PSL(2,R) . . . . . . . . . . . 8
1.3 A more structured theory of examples of groups with at most N fixed points . . . . 8
1.4 Mechanisms for building group actions on S1 with at most N fixed points . . . . . . 9
1.5 Structure of this work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Preliminaries 11
2.1 Group actions: definitions and first properties . . . . . . . . . . . . . . . . . . . . . . 11
2.2 Minimal invariant subsets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3 Semi-conjugacy and blow-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.4 Möbius action on the circle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.5 Elementary and non-elementary subgroups . . . . . . . . . . . . . . . . . . . . . . . 21
2.6 Möbius-Like elementary groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3 The non-locally-discrete case 25

4 Amalgamated products of group actions 34

5 Tracking the number of fixed points 42
5.1 Constructing group actions with at most 2n fixed points . . . . . . . . . . . . . . . . 42
5.2 Conditions for being non-conjugate into PSL(k)(2,R) . . . . . . . . . . . . . . . . . . 45

6 Examples with at most 2 fixed points 46
6.1 Amalgamated product of group actions with at most 2 fixed points . . . . . . . . . . 46
6.2 HNN-extension of group actions with at most 2 fixed points . . . . . . . . . . . . . . 50

7 Real-analytical and smooth examples 61
7.1 A group of real-analytic diffeomorphisms which is not conjugate into PSL(2,R) . . . 61
7.2 A group of smooth diffeomorphisms which is not isomorphic into PSL(2,R) . . . . . 63

A Appendix 64
A.1 Proof of Theorem 2.15 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
A.2 Groups of homeomorphisms of the line with at most 2 fixed points . . . . . . . . . . 66

5



1 Introduction

1.1 General setting and classical results

A classical theme in dynamical systems is that the first fundamental information comes from
the understanding of periodic orbits. When studying group actions, this means that we want to
understand the fixed points of elements of the group.

Definition 1.1. Let X be a topological space, and G ≤ Homeo(X) a subgroup of homeomorphisms
of X. Given N ∈ N, we say that G has at most N fixed points if every non-trivial element of G has
at most N fixed points. When N = 0, we simply say that the action of G on X is free.

The main purpose of this paper is to study the following question.

Question 1.2. Given N ∈ N, which subgroups of Homeo+(S1) have at most N fixed points?

Here Homeo+(S1) denotes the group of orientation-preserving circle homeomorphisms. In this
work, we will always assume that homeomorphisms do preserve the orientation, without explicitly
saying this.

Let us first discuss Question 1.2 for the case of actions on the real line, and for (very) small
values of N . In this case, we have two examples of geometric nature:

• the group of translations Isom+(R), which acts freely on R (i.e. it has at most 0 fixed points);

• the group of affine transformations Aff+(R), which has at most 1 fixed point.

For N = 0, the answer to Question 1.2 goes back to Hölder [13] (see also [11, Theorem 6.10] for
a more recent exposition), who proved that any free action on the real line can be reduced to an
action by translations.

Theorem 1.3 (Hölder). Every subgroup G ≤ Homeo+(R) acting freely on R is abelian and moreover
its action is semi-conjugate to an action by translations.

See Chapter 2 for the notion of semi-conjugacy. It is natural to ask whether actions with at
most 1 fixed point are always semi-conjugate to actions by affine transformations. The answer,
by Solodov [23] (see also the discussion in Ghys [11, Theorem 6.12], and an alternative proof by
Kovačević in [16]), says that this is almost the case.

Theorem 1.4 (Solodov). Let G ≤ Homeo+(R) be a subgroup with at most 1 fixed point. Then

• either the action of G admits a unique fixed point and G is abelian, or

• the actions of G is semi-conjugate to an action by affine transformations.

In Appendix A.2, we obtain a natural extension to the first case which is not covered by the
previous theorems, that is, when N = 2.

Theorem A. Consider a subgroup G ≤ Homeo+(R) with at most 2 fixed points. Then we have two
possibilities:

• G is abelian, and every fixed point of a non-trivial element is a global fixed point of G, or

• the action of G is semi-conjugate to an action by affine transformations.
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In other words, there is no new interesting group with at most two fixed points. In fact, the
group of affine transformations Aff+(R) is the only known example of group with at most N fixed
points, for any N ≥ 1, which acts minimally on the real line. This suggests the following conjecture.

Conjecture 1.5. Let N ∈ N and let G ≤ Homeo+(R) be a subgroup with at most N fixed points.
Let I ⊂ R be a maximal interval without global fixed points for G. Then the restriction of the action
of G to I is semi-conjugate to the action by affine transformations.

Remark 1.6. The above conjecture holds true under higher regularity assumptions. Indeed, a result
by Akhmedov [1] and [2] gives that any subgroup of Diffr+([0, 1]), with r > 1, with at most N
fixed points is solvable. On the other hand, a classical result of Plante [22] gives that if a solvable
group acts on the line such that the set of fixed point of any element acting non-trivial is discrete,
then the action is semi-conjugate to an affine action. Using results from Bonatti, Monteverde,
Navas, and Rivas [5], it is not difficult to conclude that if the affine action is non-abelian, then the
semi-conjugacy is actually a conjugacy.

For actions on the circle, the canonical example of group acting freely is the group of rigid
rotations SO(2). Somehow, this is the only example, after the following result which is a direct
consequence of Theorem 1.3 (see Ghys [11, Theorem 6.10]).

Theorem 1.7. Let G ≤ Homeo+(S1) be a subgroup whose action on the circle is free. Then G is
abelian and semi-conjugate to a group of rotations.

It is not difficult to see that if a group G acts on the circle with at most 1 fixed point, then this
must be a global fixed point and then the action reduces to a free action on the real line. There is
a classical group acting with at most 2 fixed points: the Möbius group PSL(2,R). This group may
be seen in two ways:

• it is the group of projective transformations on the projective line RP1;

• it is also the group of isometries of the hyperbolic disc D on its circle at infinity.

In the following, by Möbius action, we will mean the standard action of a subgroup of PSL(2,R)
which will be described in Section 2.4. Note that lifting PSL(2,R) to the N -fold cover of the circle
provides an example of group with at most 2N fixed points. We denote this lift by PSL(N)(2,R).

Question 1.2 for N = 2 consists in deciding whether groups with at most 2 fixed points are in
some sense comparable to subgroups of PSL(2,R). For this, we say that a group G is Möbius-Like
if every element is individually conjugate into PSL(2,R). In practice, this means that any element
in G is either periodic, or admits exactly one fixed point, or admits exactly two fixed points, one
attracting and one repelling.
Remark 1.8. The cyclic group generated by a homeomorphism of S1 with two parabolic fixed points
is never conjugate into PSL(2,R), although it admits at most 2 fixed points.

Many works tried to prove that Möbius-Like groups are indeed (semi)-conjugate to subgroups of
PSL(2,R) in particular through the notion of convergence groups (detailed in Section 2.4). However,
in the opposite direction, Kovačević [17] showed that being Möbius-Like is not enough to determine
the conjugacy class of subgroups of PSL(2,R).

Theorem 1.9 (Kovačević). There is a finitely presented Möbius-Like subgroup K ≤ Homeo+(S1)
whose action is minimal (every orbit is dense) but not conjugate into PSL(2,R).

The main results of our work are inspired by the construction of Kovačević. They can be
separated in two families of results of different nature.
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1.2 Results on dynamical characterization of subgroups of PSL(2,R)
With our first results, we want to understand which additional conditions allow to conclude that

a Möbius-Like subgroup of Homeo+(S1) is conjugate to a subgroup of PSL(2,R). Following this
principle, Kovačević showed in [16] that a Möbius-Like subgroup of Homeo+(S1) with a global fixed
point is always conjugate to a subgroup of PSL(2,R) and for the first statement, we will generalize
this result to elementary subgroups, that is, subgroups of Homeo+(S1) preserving a Borel probability
measure on S1.

Theorem B. If G ≤ Homeo+(S1) is a finitely generated elementary subgroup, whose action is
Möbius-Like, then G is semi-conjugate to an elementary subgroup of PSL(2,R) and, moreover, the
corresponding morphism G→ PSL(2,R) is injective.

For the second statement, we will assume the following topological condition.

Definition 1.10. A non-elementary subgroup G ≤ Homeo+(S1) of circle homeomorphisms is locally
discrete if for every interval I ⊂ S1 which intersects the minimal invariant subset, the identity is
isolated among the subset of restrictions {g|I : g ∈ G} ⊂ C0(I;S1), with respect to the C0 topology.

Equivalently, we say that G is non-locally discrete if there exists a non-wandering interval I ⊂ S1

such that the action of G restricted to I is non-discrete.

Theorem C. Let G be a non-elementary subgroup of Homeo+(S1) with at most 2 fixed points,
which is non-locally discrete. Then G is conjugate to a subgroup of PSL(2,R).

Question 1.11. Let G be a non-elementary subgroup of Homeo+(S1) with at most N fixed points,
whose action is non-locally discrete. Is it true that G is conjugate to a subgroup of PSL(k)(2,R),
for some k ∈ N?

1.3 A more structured theory of examples of groups with at most N fixed points

The next series of results goes in the direction of giving a structured theory of examples as those
by Kovačević. Let us briefly sketch here how these examples are obtained. Let F be a subgroup
of PSL(2,R) and x, y ∈ S1 two points with disjoint and free orbits. Denote by F̃ the subgroup of
PSL(2,R) given by a blow-up of the action of F on the orbits of x and y including respectively the
intervals I and J (see Definition 2.14 for a formal definition of blow-up). Now, let g ∈ PSL(2,R) be
a Möbius transformation mapping I to S1r int(J) and define K to be the subgroup of Homeo+(S1)
generated by F and g. From the choices of F̃ and g one can notice that, for every k ∈ Zr {0} and
every f ∈ F̃ r {id} it follows that

f(int(I ∪ J)) ⊂ S1 r (I ∪ J) and gk(S1 r (I ∪ J)) ⊂ int(I ∪ J).

Therefore, the subgroup K is a free amalgamated product of F̃ and 〈g〉 and as we show in Lemma
4.4, its action can always be semi-conjugate to a minimal action. Let us denote by K̃ the resulting
group acting minimally. In [17], Kovačević proceeds by proving that every element in K̃ can be
conjugate to a Möbius transformation, moreover every element generated by the product (which
is not conjugate to any element of F̃ or 〈g〉) is actually hyperbolic, being conjugate to a Möbius
transformation with one fixed point in I ∪ J and the other fixed point in the complement of I ∪ J .
We will show in Lemma 5.3 that is always the case when the subgroup admits a proper ping-pong
partition with non-crossing intervals (in Kovačević example, the two intervals in S1 r (I ∪ J) are
non-crossing for the action of 〈g〉). A sufficient condition to have the subgroup K̃ not conjugate to
any subgroup of PSL(2,R), is to choose F non-discrete. In that case, there is a sequence of elements
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in F̃ that converges to a non-decreasing function which is constant on every interval of the orbits
of I and J , hence it does not satisfies the criterion for convergence groups (see 2.16).

The more general result given by Lemma 5.3 lead us to the (oral) conjecture by Bonatti, sug-
gesting that the only way for a minimal subgroup of Homeo+(S1) with at most 2 fixed points not
to be conjugate to any subgroup of PSL(2,R) is by having an amalgamated product of subgroups
with at most 2 fixed points each.

Conjecture 1.12 (Bonatti). Let G ≤ Homeo+(S1) be a subgroup with at most 2 fixed points and
whose action is minimal. Assume that the action of G is not semi-conjugate to a Möbius action.
Then G is the amalgamated product over an abelian subgroup.

The spirit of the conjecture is that the action of H should split as an amalgamated product of
groups G and F admitting some wandering intervals and each of F and G acts, roughly speaking,
in the orbit of the wandering intervals of the other.

Let us also remark that the groups built by Kovačević are however isomorphic to subgroups of
PSL(2,R). This suggests the following problem.

Question 1.13. Is there a Möbius-Like subgroup G ≤ Homeo+(S1) which is not isomorphic to any
subgroup of PSL(2,R)?

1.4 Mechanisms for building group actions on S1 with at most N fixed points

The constructions of Kovačević are obtained by taking the blow-up of two distinct orbits in a
group action on the circle, and adding to the group a hyperbolic element that maps the complement
of an open interval into an open interval of the other orbit, this way the group generated will be
isomorphic to the free product of the previous group with Z. Inspired by this example, in Chapter 4
we consider the blow-up of two group actions on the circle, so that the resulting minimal invariant
set for one group action is contained in the complement of the minimal invariant set for the other,
so that the generated group is isomorphic to a (amalgamated) free product of the two previous
groups. In Definition 4.5 we formalize this construction, by introducing the amalgamated product
of two subgroups F and G of Homeo+(S1), denoted by (F, x) ?θ,σ (G, y) (here x, y, θ, and σ are for
keeping track of required additional choices). Indeed, in this notation, the example of Kovačević is
described by (F, x) ?id,id (Z, y). After, with Theorem 4.7 we determine conditions which guarantee
that an amalgamated product is well defined, and also unique up to conjugacy. Then we explore
when an amalgamated product produces an example of group acting with at most 2 (or N) fixed
points and also when it is Möbius-Like. In particular, the free product of any two given subgroups
with at most 2 fixed points also acts with at most 2 fixed points (see Corollary 6.3).

Theorem D. Consider two countable subgroups F and G of Homeo+(S1) with at most 2n fixed
points, and two collections of n points x = {x1, . . . , xn} ⊂ S1 and y = {y1, . . . , yn} ⊂ S1 such that,
for all distinct i, j ∈ {1, . . . , n}, the following conditions are satisfied:

• xi /∈ F.xj and yi /∈ G.yj,

• the stabilizers Stab(F, xi) = SF and Stab(G, yi) = SG are abstractly isomorphic, with isomor-
phism θ : SF

∼−→ SG,

• Fix(sf ) = {x1, . . . , xn} and Fix(sg) = {y1, . . . , yn}, for all sf ∈ SF and all sg ∈ SG,

• SF � F , SG � G and at least one of the indexes [F : SF ] and [G : SG] is greater than 2.
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Then, the amalgamated product (F, x) ?θ,σ (G, y) has at most 2n fixed points (here σ is any order-
preserving permutation of n elements).

With Theorem 5.4 we will see that if additionally we require the one of the starting subgroups
F and G is non-discrete in Homeo+(S1), then the resulting amalgamated product (F, x) ?θ,σ (G, y)
will not be conjugate to any subgroup of any lift PSL(N)(2,R), thus producing systematically the
desired examples of groups with this property.

In the case of subgroups with at most two fixed points, we will give with Theorems 6.1 and
6.2 two more precise results. Particularly, Theorem 6.2 is very similar to the situation considered
by Kovačević. In Theorem 6.18 we will describe a different construction using HNN extensions of
actions instead of amalgamated products. As we will show, these examples can still be seen as very
particular amalgamated product, thus they do not give a solution for the Conjecture 1.12. However,
for the goal of characterize the examples with at most 2 fixed points, the HNN extensions will be
considered as a distinct example from the ordinary amalgamated product, given its particularities.

The very general procedures above are then used to give very specific examples of groups with
remarkable properties.

Theorem E. There exists a finitely generated group of real-analytic circle diffeomorphisms, acting
minimally and with at most 2 fixed points, whose action is not semi-conjugate into PSL(2,R).

Theorem F. There exists a finitely generated group of smooth (C∞) circle diffeomorphisms, with
at most 2 fixed points, and which is not isomorphic to any subgroup of PSL(2,R).

Let us however point out that the examples obtained in the last two theorems are not Möbius-
Like and we remark that Navas in [21] has presented a contruction of a group of real-analytic circle
diffeomorphisms which is Möbius-Like and whose action is not semi-conjugate into PSL(2,R), but
it is not finitely generated. This suggests the following.

Question 1.14. Is there any finitely generated group of real-analytic circle diffeomorphisms which
is Möbius-Like but not semi-conjugate into PSL(2,R)?

Question 1.15. Is there any finitely generated group of circle homeomorphisms which is Möbius-
Like but not isomorphic to any subgroup of PSL(2,R)?

1.5 Structure of this work

In Chapter 2, we start by recalling fundamental facts and terminology for groups acting on
one-manifolds. At the end of the chapter we will prove our first main result, namely Theorem B,
about elementary Möbius-Like groups. In Chapter 3, we will discuss results on non-locally discrete
subgroups of circle homeomorphisms with at most N fixed points. The main result discussed here
is Theorem C. The notion of amalgamated product of actions on the circle is discussed in Section 4.
Then we move in Chapter 5 to the main technical results which give bound on the number of fixed
points when making an amalgamated product of actions, and thus presenting a structured theory
for the amalgamated product of group actions. In Chapters 6 and 7 we use the technical results to
produce examples of groups actions with new remarkable properties (notably Theorems E and F).
Finally, in Appendix A, we present the results on group actions on the line, which we have obtained
in our Master thesis.
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2 Preliminaries

2.1 Group actions: definitions and first properties

In this work, we will limit ourselves to countable groups, usually finitely generated and finitely
presented. Now, an action of a group G on a topological space X is a homomorphism φ from G to
the group Homeo(X) of homeomorphisms of X. An element g ∈ G and a point x ∈ X produces
the point g · x = φ(g)(x). Choosing a topology in G, if φ is a continuous homomorphism then the
action is called a continuous action. If φ is differentiable or analytical, then the action will be called
according to its regularity.

An action φ is faithful if it is injective, that is, if non trivial elements in the group act non
trivially on the space.

Note that if φ is any action on X, it defines canonically an action of the quotient group G/ker(φ)
of X and this action is faithful.
Example 2.1. If G is a subgroup of Homeo(X) (or Diff(X) in case of higher regularity), then there
is a natural faithful continuous action (called the tautological action) induced by the inclusion
morphism. In this case we will denote g · x = g(x).

For simplicity, except in the case of a different action φ being already described, we will al-
ways consider that any subgroup of Homeo(X) is acting faithfully and continuously on X by the
tautological action.

Let us set up some further notation. Given a point x ∈ X, we write G.x = {φ(g)(x) | g ∈ G}
for its orbit, and Stab(G, x) = {g ∈ G | φ(g)(x) = x} for its stabilizer in G. We say that
x ∈ X is a fixed point of g if φ(g)(x) = x and a global fixed point if G.x = {x}, or alternatively
Stab(G, x) = G. We denote by Fix(g) = {x ∈ X | φ(g)(x) = x} the set of fixed points and
supp(g) = {x ∈ X | φ(g)(x) 6= x} the support of g. A subset Y ⊂ X is invariant under the action
φ (or shortly φ-invariant) if it contains the orbit of any point y ∈ Y , that is, G.Y ⊂ Y .

Concretely, we will basically consider actions on the real line R and on the circle S1, which
we consider as the 1-dimensional compact manifold which is the quotient of the real line R by the
subgroup of integers Z, thus for the rest of this section X will be R or S1.

Let f be an element of Homeo+(X), with an isolated fixed point x. Then there are three
mutually exclusive possibilities for the local dynamics imposed by f :

1. either the image by f of every sufficiently small neighborhood U of x is a proper subset of U ,
in which case we say that x is a attracting fixed point, or

2. the pre-image by f of every sufficiently small neighborhood U of x is a proper subset of U , in
which case we say that x is a repelling fixed point, or

3. both image and pre-image by f of every sufficiently small neighborhood U of x are not con-
tained in U , in which case we say that x is a parabolic fixed point.

We also denote by hyperbolic fixed point an isolated fixed point which attracting or repelling. And
one may notice that for f with only isolated fixed points, it follows that between two attracting
fixed points there is always a repelling fixed point, and similarly between two repelling fixed points
there is always an attracting fixed point. Then, for X = S1, there is an equal amount of repelling
and attracting fixed points.

Given two elements f and g of Homeo+(X) such that g−1f fixes a point x, then the the graphs
of f and g are crossing at the point (x, f(x)) and we say that f and f are crossing. Moreover, if
the fixed point x is hyperbolic then we say that f and g have a hyperbolic crossing.
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In this paper we will mainly work with the uniform norm over the metric space Homeo+(X),
which is defined as

‖f − g‖ = sup
x∈X
|f(x)− g(x)|.

But, for the case of X = S1, we may also use the C0 distance over the metric space Homeo+(S1),
which we define as

distC0(f, g) = ‖f − g‖+ ‖f−1 − g−1‖.

As one can notice both define the same topology in Homeo+(S1), but the space is also complete
for the C0 distance.

We say that an element f ∈ Homeo+(X) is called ε-close to the identity if ‖f − id‖ ≤ ε. And
for ε smaller than 1

2 , we say that an element f ∈ Homeo+(S1) without fixed points and ε-close to
the identity is positive (or above the identity) if

f(x) ∈ (x, x+ ε] for all x ∈ S1.

For X = R, we say that an element f ∈ Homeo+(R) without fixed points is positive (or above
the identity) if

f(x) > x for all x ∈ R.

Given an element f ∈ Homeo+(X), we say that a connected component (a, b) of the supp(f) is
above the identity if

f(x) ∈ (x, b) for all x ∈ (a, b).

An element f ∈ Homeo+(X) is negative (or below the identity) if f−1 is positive. And a connected
component (a, b) of the supp(f) is below the identity if it is above the identity for f−1.

We may also say that two connected components of the support are on the same side of the
identity, if both are above the identity or both are below the identity.

2.2 Minimal invariant subsets

Given a group action, we define the minimal invariant subset as the smallest (by inclusion)
closed non-empty set such that the orbit of every point is contained in the set. Such sets always
exist for actions on compact topological spaces. We have the following classification for minimal
sets for actions on S1: either it is the whole space, or a Cantor set, or a finite set. The first case
happens when all the points have dense orbits, and in this case the action is called minimal. See
[11].

Lemma 2.2. Let G be a subgroup of Homeo+(X), X being R or S1, with at most N fixed points,
then X contains a minimal invariant subset for the action of G.

Let us restrict ourselves to the case where X = R, since S1 is a compact topological space. Then
the proof of this result will be a direct application of the following stronger lemma (see for instance
[20, Proposition 2.1.12]).

Lemma 2.3. Let G be a subgroup of Homeo+(R) and I a bounded open interval of R such that the
orbit of any point x ∈ R intersects I, then the closure of any orbit G.x contains a minimal invariant
subset for the action of G.
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Proof. Given x ∈ R, consider the set A of all compact subsets A contained in I ∩ G.x such that
G.A∩ I = A, equipped with the inclusion ⊂. One can observe that (A,⊂) is a partially ordered set
satisfying the hypothesis of Zorn’s Lemma. Therefore, there exists a minimal element Y ∈ A and
we define the invariant subset M as

M := G.Y =
⋃

y∈Y⊂R
G.y.

We claim that M is a closed subset. Indeed, for any m∞ ∈ M there exists a sequence
(mn)n∈N ⊂M converging to M∞ and, by hypothesis, G.m∞ intersects the open interval I, so
we choose g ∈ G such that g(m∞) ∈ I. Now, for sufficiently large n, we have

g(mn) ∈M ∩ I = G.Y ∩ I = Y.

But, since Y is closed, Y also contains the limit g(m∞) and thereforem∞ = g−1g(m∞) ∈ G.Y = M .
Now, by the minimality of Y , for any closed invariant subset M ′ ⊂M we have

M ′ ∩ I = Y

which implies that Y ⊂M ′ and since its invariant by the action of G, we have M = G.Y ⊂M ′ and
therefore, M = M ′. So we conclude that M is a minimal invariant subset for the action of G.

Now we can continue to the proof of Lemma 2.2 for the case X = R.

Proof of Lemma 2.2. We will assume that there are no global fixed points for the action of G,
otherwise such point would be a minimal invariant subset. Now, since every element has at most N
fixed points and there are no global fixed points, we can choose N + 1 elements {g1, . . . , gN+1} ∈ G
such that no point is fixed by all gn and we define the function F : R→ R as:

F (x) := max
n∈{1,...,N+1}

g±1
n (x).

One can observe that F is increasing, continuous and F (x) > x, for all x ∈ R. Now, let I be any
bounded open interval containing [0, F (0)] and we claim that every orbit intersects I. Indeed, for
all x ∈ R there exists k ∈ Z such that F k(x) < 0 and F k+1(x) ≥ 0, so we have

F k+1(x) = F (F k(x)) ∈ [0, F (0)) ⊂ I.

Therefore, the orbit of every point intersects the interval I and, by Lemma 2.3, we conclude that
there exists a minimal invariant subset for the action of G.

Lemma 2.4. Let G be an abelian subgroup of Homeo+(X), X being R or S1, with at most N fixed
points. If there exists an element f ∈ G with Fix(f) 6= ∅, then the minimal invariant subset of the
action of G is finite. Moreover, there exists a minimal invariant subset contained in Fix(f), for
every f ∈ G.

Proof. Let x ∈ X be a fixed point of f ∈ G, then for every g ∈ G we have

fg(x) = gf(x) = g(x).

Therefore, G · x ⊂ Fix(f) for every x ∈ Fix(f), which follows that Fix(f) is a closed and invariant
subset of X. Now, by lemmas 2.2 and 2.3, the closure of the orbit G.x contains a minimal invariant
subset for the action of G and since it is contained in Fix(f), we conclude that there exists a minimal
invariant subset contained in Fix(f).
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Corollary 2.5. Let G be an abelian subgroup of Homeo+(R), with at most N fixed points, then
every fixed point is globally fixed.

This corollary comes from the fact that the only finite minimal invariant subsets on R are single
points which are globally fixed. The complete classification for the minimal invariant subsets of
group actions on R is given in the following classical theorem.

Theorem 2.6. Let G be a subgroup of Homeo+(R) with a minimal invariant subset M . Then, the
closure of any orbit contains a minimal invariant subset for the action of G and moreover there are
four mutually exclusive possibilities:

1. All the orbits are dense and M = R is the only minimal invariant subset.

2. All minimal invariant subsets are globally fixed points.

3. All minimal invariant subsets are closed orbits of G, which are discrete and unbounded. More-
over, there exists an element g ∈ G without fixed points such that all minimal invariant subsets
are orbits of g.

4. There exists a unique minimal invariant subset M which is an unbounded Cantor set, i.e.
perfect, totally disconnected and unbounded.

Remark 2.7. Such classification is, in fact, analogous to the classification for minimal invariant
subsets of the circle, since every finite invariant subset of the line is globally fixed and every closed
discrete subset of the circle is finite. The ideas presented in [11] for the proof of the classification
of minimal sets of the circle can be used to prove Theorem 2.6.

2.3 Semi-conjugacy and blow-up

We start this part of the chapter with the notion of monotone 1-degree map, which is fundamental
when studying group actions on the circle. For further discussion, we recommend the monographs
by Calegari [6] and Kim, Koberda, and Mj [15], from which we borrow some terminology.

A continuous map h : R→ R is called a monotone 1-degree map if h is non-decreasing and if

h(x+ 1) = h(x) + 1, for all x ∈ R.

We also say that h is a monotone proper map if h is non-decreasing and limx→±∞ h(x) = ±∞.
Furthermore, we say that a continuous map h : S1 → S1 is a monotone 1-degree map if h has a

lift to R which is a monotone 1-degree map. We also denote by Gap(h) the set of locally constant
points of a monotone 1-degree map h : S1 → S1, and set Core(h) = S1 rGap(h).

Now we are ready to present the concept of semi-conjugacy for subgroups of Homeo+(X), with
X being R or S1, and its definition will follow.

Let G and F be two subgroups of Homeo+(R), we say that the action of G is semi-conjugate
to F if there exist a surjective morphism θ : G → F and a continuous, monotone proper map
h : R→ R, which is equivariant, in other words

θ(g)h = hg, for every g ∈ G.

Similarly, let G and F be two subgroups of Homeo+(S1), we say that the action of G is semi-
conjugate to F if there exist a surjective morphism θ : G→ F and a continuous, monotone 1-degree
map h : S1 → S1, which is equivariant.
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In both situations, the map h is called a semi-conjugacy, and when h is a homeomorphism, we
say that it is a conjugacy, in which case we also say that G and F are conjugate.

There exists a natural equivalence relation for elements of Homeo+(X) given by

G ∼ F if, and only if, G and F are conjugate.

However, we remark that such equivalence relation does not hold for semi-conjugacies.
The notion of conjugacy and semi-conjugacy can be extended to homeomorphisms by stating

that f and g in Homeo+(X) are (semi-)conjugate by the (semi-)conjugacy h if the subgroups 〈f〉
and 〈g〉 are (semi-)conjugate by the (semi-)conjugacy h.

In this case, the surjective morphism θ : 〈f〉 ∼= Z → 〈g〉 ∼= Z is either the identity or the
inversion, which implies that fh = hg or f−1h = hg. If we are in the second case, we replace our
notation by saying that f−1 and g are (semi-)conjugate by the (semi-)conjugacy h.

Lemma 2.8. If two elements f and g of Homeo+(X) are conjugate, then |Fix(f)| = |Fix(g)| and
the local dynamics imposed by each isolated fixed point is invariant by conjugacy.

More precisely, for each attracting, repelling or parabolic fixed point of g, f contains a fixed point
with the same behavior.

Proof. Let h be the conjugacy, we then have, for every x ∈ Fix(g), that

fh(x) = hg(x) = h(x),

then h(Fix(g)) ⊂ Fix(f), which implies that |Fix(f)| ≥ |Fix(g)|.
On the other hand, for every x ∈ Fix(f), we have that

gh−1(x) = h−1f(x) = h−1(x),

then h−1(Fix(f)) ⊂ Fix(g), which implies that |Fix(f)| ≤ |Fix(g)|.
Now, let us suppose that x ∈ Fix(g) is an attracting fixed point, then for every sufficiently small

neighborhood U of x, we have that g(U) ( U , and since h is a homeomorphism it follows that

fh(U) = hg(U) ( h(U)

then the neighborhood h(U) (which is as small as we wish) of the fixed point h(x) is sent into a
proper subset of itself by f . Then h(x) is an attracting fixed point of f .

A similarly argument can be made for repelling and parabolic fixed points, which concludes the
proof.

Next, we proceed with two classical but very useful results which characterize some of the
equivalence classes implied by the conjugacy of elements in Homeo+(R).

Lemma 2.9. Any two positive homeomorphisms of the line with no fixed points are conjugate.

Proof. Since the conjugacy defines an equivalence relation, it is enough to prove that any given
positive f ∈ Homeo+(R) is conjugate to the translation T ∈ Homeo+(R), such that

T : x 7−→ x+ 1.

For such, we will construct an element h ∈ Homeo+(R) such that

h(x+ 1) = fh(x) for all x ∈ R. (2.1)
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We start by fixing h(0) = 0, then

h(1) = fh(0) = f(0).

So, we take any homeomorphism ϕ : [0, 1]→ [0, f(0)] and since f is positive, we have f(0) > 0, and
ϕ is order-preserving.

Now, observe that, in general, if h and f respects (2.1), them for any k ∈ Z it also follows that

h(x+ k) = fkh(x) for all x ∈ R.

For x ∈ [0, 1], we define h(x) = ϕ(x) and, for any x ∈ R we have that there exists k ∈ Z such that
x− k ∈ [0, 1], then the only consistent way to define h(x) is given by

h(x) = h((x− k) + k) = fkh(x− k) := fkϕ(x− k),

which implies that h is defined as an order-preserving homeomorphism of R. Let us now show the
equality (2.1).

Take any x ∈ R, and let k ∈ Z be the integer such that x− k ∈ [0, 1], then for x+ 1 such integer
will be k + 1 and we have

h(x+ 1) = fk+1ϕ(x+ 1− (k + 1)) = fk+1ϕ(x− k) = ffkϕ(x− k) = fh(x)

as we wanted to prove.

Lemma 2.10. Let f and g be two order-preserving homeomorphisms of X with Fix(f) = {z1, . . . , zn}
and Fix(g) = {y1, . . . , yn}, such that the collections {z1, . . . , zn} and {y1, . . . , yn} are ordered, and
the fixed points zi and yi have the same behavior (attracting, repelling or parabolic), for all i ∈ {1, . . . , n}.

Then, f and g are conjugate in Homeo+(S1).

Proof. Define the intervals Ii = [zi, zi+1] and Ji = [yi, yi+1] for i = 0, . . . , n where, for the case of
X = S1, consider 0 ∼ n and 1 ∼ n + 1, and for the case of X = R, consider z0 = y0 = −∞ and
zn+1 = yn+1 = +∞.

Since the collections of fixed points are ordered, these intervals form a partition of X, with
n⋃
i=0

Ii =
n⋃
i=0

Ji = X and, for any i 6= j, I̊i ∩ I̊j = J̊i ∩ J̊j = ∅.

Then, as the fixed points zi and yi have the same behavior it is easy to verify that, for every
i ∈ {1, . . . , n}, the connected components (zi, zi+1) and (yi, yi+1) are on the same side of the identity,
which implies, by Lemma 2.9, that f and g are conjugate when restricted to each component Ii
and Ji. In other words, for each i, there exists an order-preserving homeomorphism h : Ii → Ji
satisfying

hif(x) = ghi(x) for all x ∈ Ii.

Now, consider the order-preserving homeomorphism h : X → X defined as

h(x) = hi(x) for all x ∈ Ii and all i ∈ {1, . . . , n}.

It is easy to check that f and g are conjugate with conjugacy h.
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Now, one may notice that an analogous of Lemma 2.9 for the case of circle homeomorphisms
is not true. In fact, given two rotations Rα and Rβ, with α 6= β ( mod 1), then Rα and Rβ are
not conjugate by circle homeomorphisms. However, we do have an invariant by semi-conjugacies
for circle homeomorphisms without fixed points, which is the rotation number.

Let f be an element of Homeo+(S1), x be any point of S1 and f̃ any lift of f into Homeo+(R).
After the work of Poincaré, we define the rotation number of f by

rot(f) = lim
n→+∞

1
n

[Fn(x)− x] mod 1.

The rotation number is an invariant by semi-conjugacies, as if f is semi-conjugate to g then
rot(f) = rot(g). Moreover, if rot(f) = p

q (we assume that the rational number p
q is in the lowest

terms), then f has a periodic orbit, every periodic orbit has period q and f is conjugate to R p
q
if

and only if f has finite order.

Theorem 2.11. If the rotation number rot(f) of f ∈ Homeo+(S1) is irrational, then f is semi-
conjugate to the rotation of angle rot(f). The semiconjugacy is a conjugacy if and only if all the
orbits of f are dense.

These results are the combined work of Poincaré and Denjoy. For a proof of this theorem and
a detailed construction of the rotation number, see [20].

We follow the text with a result about the topological properties of the Core(h) for a given
semi-conjugacy h, which will point to a characterization for the core.

Lemma 2.12. For two subgroups G and F of Homeo+(S1), such that G is semi-conjugate to F
with semi-conjugacy h : S1 → S1, the subset Core(h) (hence Gap(h)) is G-invariant and has no
isolated points.

In particular, when Gap(h) ⊂ S1 is dense, then Core(h) is a Cantor set.

Proof. Invariance of Core(h) follows from equivariance. The fact that Core(h) has no isolated points
corresponds to [6, Lemma 2.14].

Lemma 2.13. Let G and F be two subgroups of Homeo+(S1), such that F is semi-conjugate to
G with semi-conjugacy h : S1 → S1. Then Core(h) is the only closed subset X ⊂ S1 such that for
every x ∈ S1, we have #(h−1(x) ∩X) ∈ {1, 2}.

Proof. It is clear from the definition of Core(h) that it satisfies the required condition. Conversely,
let X ⊂ S1 be as in the statement. Observe that for every x ∈ S1rh(Gap(h)) we have h−1(x) ∈ X,
otherwise we would have a point x ∈ S1 with h−1(x) ∩X = ∅ which contradicts the assumption on
X. This implies Core(h) ⊂ X. If Core(h) = S1, then we get the desired conclusion. Otherwise,
Gap(h) is non-empty. Now, if Core(h) 6= X, then there exists a point y ∈ Gap(h) ∩ X, but this
would imply

#(h−1(h(y)) ∩X) ≥ 3,

which is an absurd.

This gives us a much more concrete idea of what is a conjugacy and it also points us to the concept
of blow-up of group actions, which is presented below and will be precisely stated in Definition 2.14.

Let G and F be two subgroups of Homeo+(S1), such that G is semi-conjugate to F with semi-
conjugacy h : S1 → S1. Write A = h(Gap(h)) ⊂ S1, and we say that G is a blow-up of F on the
subset A.
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This will be a very useful definition trough the text and a fundamental tool to construct semi-
conjugate actions. A blow-up is typically not unique, however it is unique up to conjugacy, as the
next theorem says (Theorem 2.15). So that the dynamical properties will be invariant to any chosen
blow-up. See also [14, Section 2.1].

Definition 2.14. Let F be a subgroup of Homeo+(S1) and let A ⊂ S1 be an F -invariant, at most
countable subset. Let {ak}k∈Ω ⊂ A be a choice of representatives for every F -orbit in A.

For each k ∈ Ω write Sk = Stab(F, ak) and choose a group action φk : Sk → Homeo+([0, 1]).
Then, a subgroupG ≤ Homeo+(S1) is an isomorphic blow-up of F at {ak}k∈Ω and including {φk}k∈Ω
on the intervals, if there exist a continuous, monotone 1-degree map h : S1 → S1 and an isomorphim
θ : G ∼−→ F , satisfying the following properties.

• G is semi-conjugate to F with semi-conjugacy h and homomorphism θ.

• h(Gap(h)) = A.

• For each k ∈ Ω, the subgroup θ−1(Sk) ≤ G is the stabilizer of the interval h−1(ak) and
the restriction θ−1(Sk)|h−1(ak) is conjugate to the action φk. That is, there exists an order-
preserving homeomorphism tk : [0, 1]→ h−1(ak) such that for all x ∈ h−1(ak) and all s ∈ Sk,
it follows that θ(s)(x) = tkφk(s)t−1

k (x).

Theorem 2.15. Let F be a subgroup of Homeo+(S1) and let A ⊂ S1 be an F -invariant, at most
countable subset, with choice of representatives {ak}k∈Ω ⊂ A for the F -orbits in A. For each k ∈ Ω
write Sk = Stab(F, ak), and consider any family of group actions φk : Sk → Homeo+([0, 1]).

Then, there exists an isomorphic blow-up of F at {ak}k∈Ω and including {φk}k∈Ω on the inter-
vals, which is unique up to conjugacy.

The statement above is certainly well-known to experts, but we include a proof in Appendix A
for completeness, as it is difficult to find a detailed proof in the literature.

2.4 Möbius action on the circle

We start with the linear group GL(2,R) which consists of 2 × 2 real invertible matrices. The
center of such group is the subgroup of scalar matrices and the quotient of the linear group by its
center is the projective group, which we denote as PGL(2,R). The elements of such group may be
represented as 2× 2 real invertible matrices with determinant equal to 1 or −1.

There is a natural action of PGL(2,R) on the circle (seen as the real projective line RP1).
Indeed, GL(2,R) acts linearly on the vector space R2 which induces a linear action on the set of
lines containing the origin, which is RP1 by definition. Such group action PGL(2,R)×RP1 → RP1

is described by [
a b
c d

]
· x 7−→ ax+ b

cx+ d
(2.2)

Now, the projective special linear group PSL(2,R), also known as the Möbius group, is isomor-
phic to the subgroup of PGL(2,R) of matrices with positive determinant. And for the rest of the
text, by Möbius action on the circle, we will mean the restriction of the standard action described
in (2.2) to the subgroup PSL(2,R).

A well known feature of this action is that it can be extended to the disc as the group of
isometries of the hyperbolic disc D.

18



Now, for a given elementM =
[
a b
c d

]
in PSL(2,R) there exists three mutually exclusive possi-

bilities:
1. M has no real eigenvalue, in which case there exists θ ∈ [−π

2 ,
π
2 ]/(−π2∼

π
2 ) such that after a

change of basis we can write

M =
[

cos(θ) sin(θ)
− sin(θ) cos(θ)

]
and by considering x = tan(φ), the standard action given by (2.2) leads to

M · tan(φ) = cos(θ) tan(φ) + sin(θ)
− sin(θ) tan(φ) + cos(θ) = cos(θ) sin(φ) + sin(θ) cos(φ)

− sin(θ) sin(φ) + cos(θ) cos(φ) = sin(θ + φ)
cos(θ + φ) = tan(θ + φ)

which defines a rotation on RP1. Such element will be called elliptic.
2. M has one real eigenvalue with multiplicity 2, in which case after a change of basis we can

write
M =

[
1 α
0 1

]
then, the standard action given by (2.2) leads to

M · x = x+ α

which fixes only the∞ ∈ RP1 which is a parabolic fixed point and acts as a translation at RP1r{∞}.
Such element will be called parabolic.

3. M has two real eigenvalues, in which case there exists a > 1 such that after a change of basis
we can write

M =
[
a 0
0 1

a

]
then, the standard action given by (2.2) leads to

M · x = a2x

which fixes the points 0 and ∞ ∈ RP1, where 0 is a repelling fixed point and ∞ is an attracting.
Such element will be called hyperbolic.

To summarize, each element of the Möbius group action on the circle is either elliptic (have
no fixed points and acts as a rotation), or parabolic (have exactly one parabolic fixed point), or
hyperbolic (have one attracting fixed point and one repelling fixed point). From this, one can notice
that the Möbius group PSL(2,R) acts on the circle with at most 2 fixed points.

We say that an element f of Homeo+(S1) is Möbius-Like if f is conjugate to an element of
PSL(2,R), and a subgroup F of Homeo+(S1) is Möbius-Like if every element of F is conjugate to
an element of PSL(2,R).

Note that a Möbius-Like subgroup F may not be conjugate to any subgroup of PSL(2,R), since
the conjugacy doesn’t need to be the same for every element. Indeed, after the work of Kovačević
in [17] we do have examples Möbius-Like subgroups that are not conjugate into any subgroup of
Möbius. This topic will be raised again in Chapter 6, where will be present new families of examples.

Now, since the number of fixed points and its behaviors (attracting, repelling or parabolic)
characterizes equivalence classes for conjugacy (see Lemma 2.10), it is easy to verify that:

– no circle homeomorphism with 3 or more fixed points is Möbius-Like,
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– a circle homeomorphism with 2 fixed points is Möbius-Like if and only if both points are
hyperbolic,

– all circle homeomorphisms with 1 fixed point are Möbius-Like, and

– a circle homeomorphism without fixed points is Möbius-Like if and only if it is conjugate to
a rotation.

Note that a circle homeomorphism with 2 fixed points which is not Möbius-Like has 2 parabolic
fixed points. Such homeomorphism will be called bi-parabolic.

Now, for the last line of the characterization of Möbius-Like homeomorphisms, we remark that
not every circle homeomorphism without periodic points is conjugate to a rotation. Indeed, by
Poincaré’s work, if the rotation number of such homeomorphism is irrational then it is conjugate to
a rotation only if it has a dense orbit. In a celebrated work, Denjoy exhibited the first examples of
aperiodic circle homeomorphisms without dense orbits. For the case of rational rotation number,
in order to be conjugate to a rotation, the homeomorphism needs to have finite order.

Therefore, one may replace the last line of the characterization of Möbius-Like homeomorphisms
by these two next lines

– a circle homeomorphism with rational rotation number is Möbius-Like iff it has a finite order,

– a circle homeomorphism with irrational rotation number is Möbius-Like iff it has a dense
orbit.

Many works tried to prove that Möbius-Like groups were indeed (semi)-conjugate to subgroups
of PSL(2,R) in particular through the notion of convergence groups. A major result in this context
has been obtained by Tukia [25] (in the torsion-free case), and then independently extended by Gabai
[10] and Casson and Jungreis [8]. They determine the topological conjugacy class of subgroups of
PSL(2,R) by a dynamical condition, which is called the convergence property. In the specific case
of the circle, this can be defined as follows (see Kovačević [16, Observation 1.4]).

Definition 2.16. For a subgroup G ≤ Homeo+(S1), we say that G is a convergence group if every
sequence {gn}n∈N in G has a subsequence {gni}i∈N, such that either:

• there exist points x and y ∈ S1, satisfying
gni(t)→ y for every t ∈ S1 r {x}, as i→ +∞,
g−1
ni (t)→ x for every t ∈ S1 r {y}, as i→ +∞, or

• there exists a homeomorphism g ∈ Homeo+(S1), satisfying
gni(t)→ g(t) for every t ∈ S1, as i→ +∞,
g−1
ni (t)→ g−1(t) for every t ∈ S1, as i→ +∞.

Theorem 2.17 (Tukia; Casson–Jungreis; Gabai). A subgroup G ≤ Homeo+(S1) is conjugate into
PSL(2,R) if and only if G is a convergence subgroup.

Let us also mention the recent work of Baik [4], which studies a possible characterization of
subgroups of PSL(2,R) in terms of invariant laminations on the circle.
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2.5 Elementary and non-elementary subgroups

A subgroup G of Homeo+(S1) is elementary if its action preserves a Borel probability measure.
Concretely, a subgroup G ≤ Homeo+(S1) is elementary, if either it admits a finite orbit or it is
semi-conjugate to a subgroup of rotations (see [20, Proposition 1.1.1]), so that the action can be
basically reduced to an action on the line.

Indeed, given any point x ∈ S1, we can compute the rotation number rot(g) for every element g
in an elementary subgroup G ≤ Homeo+(S1) using the invariant measure µ, and the result does not
depend on the choices of the point x and the invariant measure µ: the map rot : G → S1 defined
by rot(g) = µ[x, g(x)), is in fact a homomorphism. As a consequence we have a homomorphism
G → SO(2) defined by g 7→ Rrot(g), which semi-conjugates G to a subgroup of rotations. We have
the following basic result.

Lemma 2.18. Let G ≤ Homeo+(S1) be a subgroup with invariant Borel probability measure µ on
S1. Then, the kernel of rot fixes supp(µ) pointwise.

Proof. Take x ∈ supp(µ), and consider the morphism g 7→ µ[x, g(x)). If g(x) 6= x, then µ[x, g(x)) 6=
0 and thus rot(g) 6= 0.

Let us give a more precise statement in the case when the elementary subgroup preserves an
atomless Borel probability measure, and it has at most N fixed points.

Lemma 2.19. If a subgroup G ≤ Homeo+(S1) with at most N fixed points, preserves an atomless
Borel probability measure µ, then G is semi-conjugate to a group of rotations and, moreover, the
corresponding morphism G→ SO(2) is injective.

In particular, G is isomorphic to a subgroup of SO(2).

Proof. As explained before, the morphism g 7→ Rrot(g) gives a semi-conjugacy to an action by
rotations. If there was an element in the kernel, it will fix the support of µ, which is infinite. As
we are assuming that G acts with at most N fixed points, this gives that the kernel is trivial. This
gives the desired conclusion.

Let us remark that for a non-elementary group with at most 2 fixed points, the action has a
very good dynamical property which will be stated in Theorem 2.20. But before that, we need to
define when a group action of the circle is proximal.

Let G ≤ Homeo+(S1) be a subgroup. We say that the action of G on the circle is proximal if
for every non-empty open intervals I, J ⊂ S1, there exists an element g ∈ G such that g(I) ⊂ J .

We also say that the action is proximal in restriction to the minimal invariant subset if the
previous statement holds only for intervals J ⊂ S1 which are non-wandering.

The following fundamental result can be deduced from the work of Antonov [3] (see also Ghys [11]).

Theorem 2.20. Let G ≤ Homeo+(S1) be a non-elementary subgroup. Then there exists a finite
order element γ ∈ Homeo+(S1) which commutes with every g ∈ G, and such that the induced action
of G on the quotient S1/〈γ〉 is proximal in restriction to the minimal invariant subset.

We immediately deduce the following.

Proposition 2.21. Let G ≤ Homeo+(S1) be a non-elementary subgroup with at most 2 fixed points.
Then the action of G is proximal in restriction to the minimal invariant subset.

Moreover, there exists an element g ∈ G conjugate to a hyperbolic element of PSL(2,R).
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Proof. Assume that the action of G is not proximal in restriction to the minimal invariant subset.
After Theorem 2.20 there exists a non-trivial finite order element γ ∈ Homeo+(S1) centralizing G,
such that the induced action on the circle S1/〈γ〉 is proximal in restriction to the minimal invariant
subset. As the action on S1/〈γ〉 is proximal in restriction to the minimal invariant subset, the group
G contains elements with at least one attracting fixed point. Thus, in the original action on S1,
G contains elements with at least n fixed attracting fixed points, where n is the order of γ. But
the assumption that the action has at most 2 fixed points, forces n = 1, which contradicts the
non-triviality of γ.

Remark 2.22. Note that a straightforward consequence of the results above is Hölder’s theorem in
the case of the circle (Theorem 1.7). By an analogous approach for actions on the real line, one can
also obtain the classical Hölder’s theorem (Theorem 1.3). See for instance Malyutin [18].

2.6 Möbius-Like elementary groups

Here we discuss the first new contribution of this work, namely Theorem B, which states
that finitely generated, Möbius-Like elementary subgroups of Homeo+(S1) are semi-conjugate into
PSL(2,R).

Proof of Theorem B. Let ν be a Borel probability measure preserved by the action of G on the
circle. Consider the homomorphism rot : G → SO(2) defined by g 7→ Rrot(g). Now, since each
non-trivial element of G fixes at most 2 points, by Lemmas 2.18 and 2.19, one can notice that if
the support supp(ν) has more than 2 points then the kernel of rot is trivial and rot : G → SO(2)
defines an isomorphism between G and a subgroup of PSL(2,R).

Thus, from now on, we can assume that the action of G has a finite orbit, which is either a fixed
point or a pair of points.

Assume there is a unique global fixed point for G. Then, by Theorem 1.3, G is semi-conjugate to
a subgroup of affine transformations, and the corresponding morphism G → Aff+(R) ≤ PSL(2,R)
is injective.

Assume next that G has two global fixed points p, q ∈ S1, and let Iλ and Iρ be the connected
components of S1 r {p, q}. Denote by λ : G → Homeo+(R) and ρ : G → Homeo+(R) the actions
of G restricted to Iλ and Iρ, respectively, which are semi-conjugate to actions by translations
after Theorem 1.3, and moreover the corresponding induced homomorphisms G/ kerλ → R and
G/ ker ρ → R are injective. Now, since the number of fixed points of a non-trivial g ∈ G on the
whole circle is at most 2, it follows that if λ(g) = id or ρ(g) = id then g = id. By consequence, each
of these actions are faithful, and we have λ(G) ' ρ(G) ' G, in particular G is abelian.

If G ' Z then we choose a generator g ∈ G and on each side of the circle we can conjugate λ(g)
and ρ(g) to one of the translations x 7→ x+ 1 or x 7→ x− 1 depending if its graph is above or below
the identity. But since G is Möbius-Like, one side of its graph should be above the identity and the
other side below it, so g is conjugate to an element of PSL(2,R) and therefore G is also conjugate
to a subgroup of PSL(2,R).

For G ' Zd+1 with d ≥ 1, we choose a free basis of generators {f, g1, . . . , gd} and replacing f
with f−1 if necessary, we assume that f(x) > x for every x ∈ Iρ and f(x) < x for every x ∈ Iλ. By
Hölder’s theorem (Theorem 1.3), both λ(G) and ρ(G) are semi-conjugate to actions of translations
and we can choose a semi-conjugacy such that λ(f) is sent to the translation by x 7→ x−1 and ρ(f)
is sent to the translation by x 7→ x+ 1. Now, for every other element g ∈ G, we have λ(g) and ρ(g)
are sent to translations x 7→ x+ α and x 7→ x+ β. We claim that α+ β = 0.
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Indeed, if α + β 6= 0 then there exists an integer N ∈ Z such that N(α + β) > 1 and so, there
exists a second integer M ∈ Z such that

Nα > M > N(−β).

Therefore, Nα −M > 0 and Nβ + M > 0 and so the element gNfM ∈ G is sent, by the semi-
conjugacy, to translations larger than the identity on both sides of the circle. We conclude that the
element gNfM is sent by the semi-conjugacy to a circle homeomorphism with two parabolic fixed
points which is an absurd, because G is Möbius-Like.

Now we can write β = −α and we have that for every other element g ∈ G, λ(g) and ρ(g) are
sent to translations x 7→ x + α and x 7→ x − α, so it is an element of PSL(2,R) and therefore the
group G is sent, by semi-conjugacy, to a subgroup of PSL(2,R).

For the last case, we will assume that G has a finite orbit of order 2, and denote by ν the
corresponding invariant probability measure. After the previous discussion, we have a short exact
sequence

1→ ker(rot)→ G→ Z2 → 1.

Let a ∈ G be an element of the group with rot(a) = 1/2. Now, observe that if a2 6= id then a2 fixes
the 2 atoms of ν and no other points, so they are both parabolic fixed points. This contradicts the
Möbius-Like assumption. Thus, we can conclude that a2 = id. Therefore the exact sequence splits
and G can be written as G = ker(rot) oA Z2, where A is the involution defined by the conjugacy
by a. Since ker(rot) is also a free abelian group of finite rank, we have that for some integer n, G
is isomorphic to Zn oA Z2.

Claim. We have A = −id, thus G ∼= Zn o−id Z2 is semi-conjugate to a subgroup of PSL(2,R), and
the corresponding homomorphism G→ PSL(2,R) is injective.

Proof of claim. Note that Out(Zn) = Aut(Zn) = GL(n,Z), and order 2 elements in GL(n,Z) can
be always conjugated, in GL(n,Z), to a matrix of the form

A =



1
. . .

−1
. . .

0 1
1 0

. . .


.

See for instance Casselman [7, Section 4]. Thus, up to change of basis of Zn, we have an A-invariant
direct sum decomposition Zn = Zn1 ⊕Zn2 ⊕ (Z2)n3 , such that A acts on Zn1 as the identity, on Zn2

as −id and on every Z2-factor of (Z2)n3 as the permutation matrix
(

0 1
1 0

)
.

We have to prove that n1 = n3 = 0. The fact that n1 = 0 follows from the fact that if an
element with two fixed points is centralized by an element which exchanges the two points, then
both fixed points must be of the same dynamical nature, hence parabolic, contradicting the Möbius-
Like assumption. For n3, assume there exists f, g ∈ ker(rot) such that afa−1 = g. In particular the
subgroup H = 〈f, g〉 ' Z2 is fixing the two atoms of ν, and by the previous case for global fixed
points, we can assume f acts (up to semi-conjugacy) by translations x 7→ x − 1 and x 7→ x + 1
respectively on Iλ and Iρ, and similarly g acts (up to the same semi-conjugacy) by translations
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x 7→ x− α and x 7→ x+ α, respectively, on the same intervals. However, f and g are conjugate one
to the other by a, so we must have α = 1, contradicting that they generate a rank 2 free abelian
group.

The claim concludes the proof.
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3 The non-locally-discrete case
Here we will be interested in groups acting with at most two fixed points, satisfying certain

topological conditions in Homeo+(S1), with respect to the C0 topology. We will start this section
with an interesting example that will motivate our definition of non-local discreteness.

Lemma 3.1. There exists a finitely generated non-elementary subgroup G ≤ Homeo+(S1) with at
most two fixed points, but not Möbius-Like, and a non-empty wandering interval I ⊂ S1 such that
the action of G restricted to I is non-discrete.

Proof. First, we will construct an example of a non-elementary subgroup of PSL(2,R) with the
stabilizer of a point p ∈ S1 being parabolic and isomorphic to Z2. For this, let Tα, Tβ be two
parabolic elements of PSL(2,R) fixing the same point p ∈ S1, such that the subgroup T = 〈Tα, Tβ〉
is free abelian of rank 2. Using [15, Lemma 3.4], we can find a countable subset D ⊂ SO(2), such
that, for every rotation Rρ ∈ SO(2) rD, it follows that 〈T,Rρ〉 ' T ∗ Rρ. So, we take a rotation
Rρ ∈ SO(2)rD, and set F = 〈T,Rρ〉. Observe that the stabilizer of the point p has not changed,
that is Stab(F, p) = Stab(T, p) = T . Indeed, for every element g ∈ PSL(2,R) that fixes the point
p, we have that gTαg−1 commutes with Tα, so that if Stab(F, p) 6= T , we could find an element
g ∈ F r T such that [gTαg−1, Tα] = id. This is not possible after our choice of Rρ /∈ D. Finally,
note that F is a non-elementary subgroup of PSL(2,R) with a parabolic stabilizer T of the point p
isomorphic to Z2.

Now, let G ≤ Homeo+(S1) be the isomorphic blow-up of F at the point p including a minimal
action by translations of Stab(F, p) on an interval I (see Definition 2.14). We can choose such an
action so that there are elements of Stab(F, p) with two parabolic fixed points. Since every element
of Stab(F, p) has at most 1 fixed point, every non-trivial element of G will have at most 2 fixed
points. Therefore, G is a non-elementary group action of the circle, with at most 2 fixed points
whose action restricted to I is non-discrete.

There is a natural strengthening of the notion of discreteness, which is more appropriate when
one is interested in the dynamics of the group. After Lemma 3.1, a conventional definition for non-
locally discrete actions of the circle will not be enough for the results that we are willing to present in
this section. Therefore, we rather consider the notion of local discreteness introduced in Definition
1.10, which only takes into account the behavior in restriction to the minimal invariant subset. Now
we are ready to discuss Theorem C, which states that non-locally discrete non-elementary subgroups
of Homeo+(S1) with at most 2 fixed points are conjugate into PSL(2,R). This will require some
preliminary lemmas.

Lemma 3.2. Let G ≤ Homeo+(S1) be a subgroup acting with no global fixed point, and with at most
2 fixed points. Then, the minimal invariant subset of G contains every fixed point of any non-trivial
element.

Proof. If the action of G is free, there is nothing to prove. Therefore we can assume there exists
a non-trivial element with at least one fixed point. Since S1 is a compact topological space, the
action of G on S1 admits a minimal invariant subset Λ, and since we are assuming G acts with at
most 2 fixed points and it has no global fixed point, this must be unique, and it contains at least
two points. Take now any non-trivial element f and a point x ∈ Fix(f). If x ∈ Λ, we are done,
otherwise, take a point z ∈ Λ. Then there are two cases: either z ∈ Fix(f) or one of the sequences
fn(z) and f−n(z) converges to x. If the latter occurs, then x ∈ Λ = Λ. In the other case, we can
find a distinct z′ ∈ Λr {z}, which is not fixed by f , and so the previous argument applies.
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Lemma 3.3. Every non-discrete non-elementary subgroup G ≤ Homeo+(S1) whose action on the
circle has at most N fixed points, is minimal.

Proof. Assume the action admits an invariant Cantor set Λ. For given ε, every element g ∈ G which
is ε-close to the identity must fix every gap of Λ whose size exceeds ε. For sufficiently small ε, this
gives that g fixes more than N points, and thus g = id.

Lemma 3.4. Let G ≤ Homeo+(S1) be a non-elementary subgroup with at most 2 fixed points and
non-locally discrete, then its action is minimal and non-discrete.

Moreover, for every interval J ⊂ S1 and every ε > 0, there exists an element g ∈ G which is
ε-close to the identity and has no fixed points in the interval J .

Proof. Since G is non-locally discrete, there exists a non-empty open interval I ⊂ S1 which intersects
the minimal set K of G, and a sequence of elements (gn)n∈N ⊂ G, such that gn|I → id|I . Moreover,
since G is non-elementary, by Lemma 2.21, there exists an element f ∈ G conjugate to a hyperbolic
element of PSL(2,R) and, by Lemma 3.2, both points fixed by f are in K, and their orbits are
dense in K. Therefore, there exists a hyperbolic element in G, that we keep denoting by f (actually
this is only a conjugate of the previous f), such that its repelling fixed point is in the interior of
the interval I. Note that after the choice of f , we have |fm(I)| → 1 as m→∞.

Now, to show that the action of G is non-discrete, we will consider the following family of
sequences, indexed by m ∈ N,

(hm,n)n∈N := (fmgnf−m)n∈N ⊂ G.

Note that for a fixed m ∈ N, the sequence hm,n converges to id in restriction to fm(I). Indeed,
for every ξ > 0, choose m ∈ N such that |fm(I)| > 1 − ξ

2 , and then choose n ∈ N such that
|hm,n(x) − x| < ξ

2 for every x ∈ fm(I). We claim that |hm,n(x) − x| < ξ, for every point x ∈ S1.
For this, denote the endpoints of the interval fm(I) by a and b ∈ S1, that is fm(I) = (a, b), then
for every x ∈ S1 such that b < x < a, it follows that

|hm,n(x)− x| < |hm,n(a)− b| <
∣∣∣∣a+ ξ

2 − b
∣∣∣∣ < ∣∣∣∣a+ ξ

2 −
(
a− ξ

2

)∣∣∣∣ = ξ.

We conclude that the action of G is non-discrete, and by Lemma 3.3 it is minimal.
Now, for the second part of the lemma, if (hm,n)n∈N ⊂ G contains a subsequence without fixed

points, there is nothing to do. Otherwise, by taking a subsequence, we can assume that the fixed
points of hm,n are converging to p and q ∈ S1 (possibly p = q). Let J ⊂ S1 be any interval and since
G is non-elementary and minimal, by Theorem 2.21 there exists an element f ∈ G which sends p
and q to the complement of J . Now, by choosing hm,n close enough to the identity, we can assume
that fhm,nf−1 ∈ G is ε-close to the identity and this element only fixes f(p) and f(q), which are
in the complement of the interval J .

Lemma 3.5. Let G ≤ Homeo+(S1) be a non-discrete subgroup with at most 2 fixed points whose
action is minimal, then there exists a sequence of elements in G converging to the identity and
without fixed points.

Proof. If for every ε > 0 there exists an element in G without fixed points, and ε-close to the
identity then there is nothing to prove. Therefore we will assume that for a fixed (small) ε > 0,
every element ε-close to the identity has fixed points. By Lemma 3.4, we can define recursively a
sequence of nested intervals Jn+1 ⊂ Jn ⊂ S1 with the following properties.
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1. For any n ∈ N, there exists an element gn ∈ G such that ‖gn− id‖ ≤ ε
2 and the graph of gn is

strictly above the identity on the complement of Jn, and equal or below the identity on Jn.

2. The sequence Jn is shrinking to a point p ∈ S1, namely
⋂
n Jn = {p}.

Note that, when n is sufficiently large so that |Jn| < 1 − ε
2 , replacing gn by an appropriate power

gmn , guarantees also the condition that ε
4 < ‖gn − id‖ ≤ ε

2 . Indeed, if we assume that gn is ε
4 -close

to the identity (otherwise m = 1 works), since gn has fixed points only in Jn, for a sufficiently large
power m ∈ N, the distance of gmn to the identity will be larger than ε

2 . Therefore there exists m0 ∈ N
such that gm0

n is not ε
2 -close to the identity, but gmn is ε

2 -close to the identity for every 0 ≤ m < m0.
Now one can observe that gm0−1

n is ε
2 -close to the identity, but it is not ε

4 -close. Indeed, there exists
x ∈ S1 such that

ε

2 < |gm0
n (x)− x| <

∣∣∣gn (gm0−1
n (x)

)
− gm0−1

n (x)
∣∣∣+ |gm0−1

n (x)− x| < ε

4 + |gm0−1
n (x)− x|.

From now on we will assume that ε
4 < ‖gn− id‖ ≤ ε

2 , and that n is sufficiently large so that we can
find a point xn ∈ S1 r Jn such that gn(xn) ∈ (xn, xn + ε

4) and consider the interval In ⊂ S1 defined
by In := (xn + ε

12 , xn + ε
6). By taking a subsequence we can assume that xn converges to a point

x ∈ S1, and for n0 ∈ N large enough we have that
⋂
n≥n0 In is a non-trivial interval, which we will

denote by I. With such choices, for every y ∈ I and n ≥ n0 we have gn(y) > y + ε
12 . On the other

hand, since for every n ∈ N we have that gn(xn) > xn + ε
4 , gn is above the identity on [xn, xn + ε

4 ]
and therefore Jn does not intersect [xn, xn + ε

4 ]. Thus, there exists n1 ∈ N such that for any n ≥ n1
one has |xn− x| < ε

48 , which implies that the interval Jn is at distance at least ε
24 to the interval I.

We will write J for the union
⋃
n≥n1 Jn ⊂ S

1 r I.
Now, using Lemma 3.4, we take an element f ∈ G which is ε

2 -close to the identity and strictly
below the identity in the complement of I, therefore there exists δ > 0 such that f(y) < y − δ for
every y ∈ J . Take m > max{n0, n1} sufficiently large, such that |Jm| < δ, and we claim that the
element f−1gm ∈ G is ε-close to the identity and it has no fixed points in the circle.

Indeed, since f is strictly below the identity on the complement of I and gm is strictly above
the identity on the complement of Jm, it is clear that gm does not cross f in the complement of
Jm ∪ I. Now, one can notice that the size of the interval I is smaller than ε

12 and gm(y) > y + ε
12

for every y ∈ I, which implies that gm does not cross f in I. Similarly, the size of the interval Jm is
smaller than δ and f(y) < y−δ for every y ∈ J ⊃ Jm, which implies that gm does not cross f in Jm.
Therefore, gm does not cross f in the whole circle S1, which implies that the element f−1gm has no
fixed points in S1, but f−1gm is a composition of two elements ε

2 -close to the identity, therefore it
is also ε-close to the identity.

Given a subgroup G ≤ Homeo+(S1), we denote by G its closure in Homeo+(S1) with respect
to the C0 topology, which is still a subgroup of Homeo+(S1). Clearly G = G if and only if G is
discrete with respect to the C0 topology.

Lemma 3.6. Let G ≤ Homeo+(S1) be a subgroup with at most 2 fixed points acting minimally,
then its closure G has at most 2 fixed points. Moreover, if G is non-discrete then G is Möbius-Like.

Proof. We will assume that the group G is non-discrete, otherwise G = G which has at most 2
fixed points. One can notice that an element of G can cross the identity at most twice, indeed if
an element g ∈ G crosses hyperbolically the identity 3 or more times, then any element sufficiently
C0-close to g will also cross the identity at least 3 times and therefore it will have 3 or more fixed
points.

Now, we claim that for every element f ∈ G, the support of f cannot have two connected
components on the same side of the identity. Indeed, by Lemma 3.5, we take an element g ∈ G,
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ε-close to the identity without fixed points, one can notice that for ε sufficiently small, g or g−1

crosses the element f at least 4 times, which contradicts the hypothesis of at most 2 fixed points.
The last argument implies that for every element f ∈ G, the complement of Fix(f) can contain

at most 2 intervals, so that we are reduced to three cases: either f has at most 2 fixed points, or f
fixes one non-trivial interval, or f fixes two intervals where at least one of them is non-trivial and
the two complementary intervals are on opposite sides of the identity.

In the first case there is nothing else to prove, therefore we will focus on the two other cases.
First, let us assume that there exists an element f ∈ G such that f fixes two intervals with at least
one of them being non-trivial. Let ε > 0 be smaller than the size of both non-trivial fixed intervals
and than the size of both complementary intervals then, by Lemma 3.5, choose an element g ∈ G
which is ε-close to the identity without fixed points. We claim that the support of the element
f−1gfg−1 ∈ G contains at least 3 connected components, which contradicts our hypothesis of G
being a subgroup with at most 2 fixed points. For this, we conclude that no element in G fixes two
intervals with one of them being non-trivial.

Let us assume that f ∈ G fixes only one non-trivial interval and no other point. Similarly as
for the last argument, we take ε > 0 smaller than the size of the fixed interval and its complement
then, by Lemma 3.5, we choose an element g ∈ G ε-close to the identity without fixed points. We
claim that the element f−1gfg−1 ∈ G fixes two intervals with at least one of them being non-trivial,
which by the last argument contradicts our hypothesis of G being a subgroup with at most 2 fixed
points. For this, we conclude that no element in G fixes a non-trivial interval.

Therefore, we conclude that for every element of G has at most 2 fixed points, and since no
element can have two connected components of the support on the same side of the identity there
is no element with two parabolic fixed points, which implies that G is also Möbius-Like.

In the next lemma we will mostly discuss circle homeomorphisms close to the identity without
fixed points, such that it makes sense to say that they are above the identity or below the identity.
For that reason, we will state the next definition.
Definition 3.7. Let f ∈ Homeo+(S1) be a circle homeomorphism 1

3 -close to the identity free of fixed
points. We say that f is positive (or above the identity) if for every x ∈ S1, we have f(x) ∈ (x, x+ 1

3 ].
If f is not positive, we say that f is negative (or below the identity).
Remark 3.8. Every circle homeomorphism f ∈ Homeo+(S1) which is 1

3 -close to the identity and
without fixed points is positive or negative. Moreover, f and f−1 have opposite signs and the
composition of two positive circle homeomorphisms f1 and f2 is positive if and only if f1f2 is
1
3 -close to the identity.
Lemma 3.9. Let f ∈ Homeo+(S1) be a circle homeomorphism of order q ≥ 2, with rotation number
rot(f) = p

q , where p, q ∈ Z r {0}. Then, for every ε > 0 there exists δ > 0 such that for every
positive δ-close to the identity circle homeomorphism g ∈ Homeo+(S1), it follows that:

distC0(f, gf) < ε and rot(gf) ∈
(
p

q
,
p

q
+ 1
q3

]
.

Proof. We fix ε > 0 and we will find δ1 > 0 which satisfies that distC0(f, gf) < ε for every circle
homeomorphism g ∈ Homeo+(S1) which is δ1-close to the identity. We recall that ‖f−gf‖ = ‖id−g‖,
therefore if g is ε

2 -close to the identity we can assure that ‖f − gf‖ ≤ ε
2 .

On the other hand, since f−1 is uniformly continuous on S1, there exists δ0 > 0 such that if
|x− y| ≤ δ0 then |f−1(x)− f−1(y)| < ε

2 . So, if we choose g ∈ Homeo+(S1) δ0-close to the identity
(so that δ0 ≥ ‖id− g‖ = ‖g−1 − id‖), we then have

‖f−1g−1 − f−1‖ < ε

2 .
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Therefore, we take δ1 = min{δ0,
ε
2} and we conclude that

distC0(f, gf) = ‖f − gf‖+ ‖f−1 − f−1g−1‖ < ε

2 + ε

2 = ε.

Without loss of generality we will assume that gcd(p, q) = 1 and let f̃ ∈ HomeoZ(R) be the lift of f
such that f̃(0) ∈ (0, 1). Since the composition is continuous in the metric space of homeomorphisms
of the line, there exists δ2 > 0 such that for every positive homeomorphism g̃ ∈ HomeoZ(R) which
is δ2-close to the identity (on R) we have that(

g̃f̃
)q

(x) ∈
(
f̃ q(x), f̃ q(x) + 1

q2

)
for every x ∈ R.

Now, from the assumption, we have that f̃ q(x) = x+ p for any x ∈ R, therefore we have(
g̃f̃
)q

(x) ∈
(
x+ p, x+ p+ 1

q2

)
.

Thus, for any n ≥ 2 one has(
g̃f̃
)nq

(x) ∈
((
g̃f̃
)(n−1)q

(x) + p,
(
g̃f̃
)(n−1)q

(x) + p+ 1
q2

)
On the other hand, one has((

g̃f̃
)(n−1)q

(x) + p,
(
g̃f̃
)(n−1)q

(x) + p+ 1
q2

)
⊂ · · · ⊂

(
x+ np, x+ np+ n

q2

)
.

Therefore, we have that the rotation number of gf ∈ Homeo+(S1), where g ∈ Homeo+(S1) is the
projection of g̃, is given by

rot(gf) = lim
n→+∞

(
g̃f̃
)nq

(0)
nq

∈
[
np

nq
,
np+ n

q2

nq

]
=
[
p

q
,
p

q
+ 1
q3

]
.

To finish the proof, we just need to observe that rot(gf) 6= rot(f). Indeed, if rot(gf) = p
q then there

exists a point x ∈ S1 such that (gf)q(x) = x, which implies that
(
g̃f̃
)q

(x) = x+ k for some integer
k ∈ Z. On the other hand, we know that

k =
(
g̃f̃
)q

(x)− x ∈
(
p, p+ 1

q2

)
,

which however does not contain any integer number. So, we conclude that rot(gf) ∈
(
p
q ,

p
q + 1

q3

]
for every positive circle homeomorphism g ∈ Homeo+(S1) which is δ2-close to the identity. Taking
δ = min{δ1, δ2}, we have the statement of the lemma.

Lemma 3.10. With the assumptions as in Lemma 3.5, we have that G contains an element with
irrational rotation number.

Proof. If the subgroup G ≤ Homeo+(S1) has an element with an irrational rotation number there
is nothing to prove, because G is, by definition, a subgroup of G. Therefore, we will suppose that
G has no element with irrational rotation number.

Take a sequence of elements (fn)n∈N ⊂ G without fixed points and converging to the identity,
whose existence is ensured by Lemma 3.5. By changing fn for f−1

n when necessary and taking a
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subsequence we can assume that (fn)n∈N is a sequence of positive circle homeomorphisms whose
distance to the identity decreases.

Now we are going to contruct a sequence (hn)n∈N ⊂ G converging in the space of circle home-
omorphisms to h ∈ G with irrational rotation number. We start by choosing a numeric sequence
(εn)n∈N ⊂ R such that

∑
εn < 1

3 and we define h0 ∈ G as the first element fm0 such that
distC0(fm0 , id) < ε0.

Now, let us assume by induction that hn is a positive circle homeomorphism with rotation
number equal to pn

qn
and distC0(hn, id) <

∑n
k=0 εk then, by Lemma 3.9, there exists δ > 0 such that

for every for every positive circle homeomorphism g ∈ Homeo+(S1) which is δ-close to the identity,
we have that distC0(hn, ghn) < εn+1 and rot(ghn) ∈

(
pn
qn
, pnqn + 1

q3
n

]
. Therefore, for every n ∈ N,

we define hn+1 as fmnhn ∈ G, where fmn is the first element of the sequence (fn)n∈N such that
‖fmn − id‖ < δ. Now, one can notice that

distC0(hn+1, id) ≤ distC0(hn+1, hn) + distC0(hn, id) < distC0(fmnhn, hn) +
n∑
k=0

εk <
n+1∑
k=0

εk.

Since
∑n+1
k=0 εk <

1
3 , one can notice that hn+1 ∈ G is also a positive circle homeomorphism with ra-

tional rotation number that we will denote by pn+1
qn+1

, which is contained in the interval
(
pn
qn
, pnqn + 1

q3
n

]
.

We claim that the sequence (hn)n∈N ⊂ G converges into h ∈ Homeo+(S1) and that rot(h) /∈ Q.
Indeed, for every n and m ∈ N it follows that

distC0(hn+m, hn) ≤
n+m∑
k=n

distC0(hk+1, hk) <
n+m∑
k=n

εk <
+∞∑
k=n

εk
n→+∞−−−−−−→ 0.

Then, (hn)n∈N ⊂ G is a Cauchy sequence with respect to the C0 topology and by completeness of
Homeo+(S1) under this topology, we have that hn converges to a circle homeomorphism h ∈ G.

Now we define, for every n ∈ N, the intervals In =
(
pn
qn
, pnqn + 1

q2
n

)
. By the classical Dirichlet’s ap-

proximation theorem, we have that
⋂
In is an irrational number. Let us detail this for completeness.

First, we recall that
pn+1
qn+1

∈
(
pn
qn
,
pn
qn

+ 1
q3
n

]
.

So that we only have to prove that pn+1
qn+1

+ 1
q2
n+1

< pn
qn

+ 1
q2
n
. We will first show that qn+1 > qn.

Indeed, if qn+1 ≤ qn then

pn+1 ∈
(
pnqn+1
qn

,
pnqn+1
qn

+ qn+1
q3
n

]
⊂
(
pnqn+1
qn

,
pnqn+1
qn

+ 1
q2
n

]
which is an absurd, because

(
pnqn+1
qn

, pnqn+1
qn

+ 1
q2
n

]
does not contain any integer. Now, we have the

following inequality

pn+1
qn+1

+ 1
q2
n+1
≤ pn
qn

+ 1
q3
n

+ 1
q2
n+1
≤ pn
qn

+ 1
q3
n

+ 1
(qn + 1)2 = pn

qn
+ q3

n + (qn + 1)2

q3
n(qn + 1)2

= pn
qn

+ 1
q2
n

q3
n + q2

n + 2qn + 1
q3
n + 2q2

n + qn
<
pn
qn

+ 1
q2
n

q3
n + q2

n + 2qn + 1 + (q2
n − qn − 1)

q3
n + 2q2

n + qn
= pn
qn

+ 1
q2
n

So, we conclude that In+1 ⊂ In for every n ∈ N and we also remark, by the definition of In, that
rot(hn+k) ∈ In for every k > 0, then by the continuity of rot : Homeo+(S1) → S1, it follows that
rot(h) ∈ In, for every n ∈ N.
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On the other hand, (qn)n∈N is a strictly increasing sequence of integers, which implies that
qn → +∞ and that |In| = 1

q2
n
−→ 0, so

⋂
n∈N In converges to a point α ∈ R, which is the only possible

value of rot(h). We claim that α is not a rational number, otherwise α = p
q with p and q ∈ Z and

q ≥ 2. Which implies that p
q ∈ In =

(
pn
qn
, pnqn + 1

q2
n

)
, for every n ∈ N. Therefore, for n sufficiently

large, we have 2q < qn and then

p ∈
(
pnq

qn
,
pnq

qn
+ q

q2
n

)
⊂
(
pnq

qn
,
pnq

qn
+ 1

2qn

)

which is an absurd, because
(
pnq
qn
, pnqqn + 1

2qn

)
does not contain any integer.

We conclude that h ∈ G has an irrational rotation number.

Lemma 3.11. With the assumptions as in Lemma 3.5, we have that G contains an element which
is conjugate to an irrational rotation. Therefore, up to conjugacy, G contains SO(2).

Proof. Let f ∈ G be an element with irrational rotation number, and let us suppose it is not
conjugate to a rotation. Let µ be an ergodic f -invariant probability measure, and denote by Λ
the minimal f -invariant Cantor set. Take a point x ∈ Λ which is not in the closure of any non-
wandering interval, so that we can find an increasing sequence {nj} such that the intervals [x, fnj (x))
are nested, and such that µ([x, fnj (x))) tends to 0 as j →∞. Under such assumptions, the distance
between x and fnj (x) tends to 0. Indeed, if the sequence of intervals [x, fnj (x)) does not converge
to the point x, then there exists y ∈ S1r {x} such that [x, y] ⊂ [x, fnj (x)), for every j ∈ N. On the
other hand, the measure of µ([x, fnj (x))) goes to 0 and it implies that µ([x, y]) = 0, which is not
possible since [x, y] would be a non-wandering interval.

Now, we remark that for every gap Ia = [a, b] (that is, the closure of a connected component of
S1 r Λ), we have that g(a) /∈ (a, b) for every g ∈ G. Therefore, fnj (x) → x for every x ∈ Λ which
is not in the closure of a gap and fnj (a) > a+ |Ia| for every a ∈ S1 which is the leftmost point of a
gap.

Take ε > 0 smaller than the size of the two largest gaps. By Lemma 3.5, we can choose a
positive element g ∈ G which is ε-close to the identity. Note that for j ∈ N sufficiently large, g
crosses fnj at least 4 times, which is an absurd since g−1fnj ∈ G has at most 2 fixed points. So we
conclude that f ∈ G with rot(f) /∈ Q is conjugate to an irrational rotation and therefore G contains
a subgroup which conjugate to SO(2).

The following result can be obtained as a direct consequence of a theorem by Giblin and Markovic
[12, Theorem 1.2]. For sake of completeness, we will provide a direct proof.

Lemma 3.12. Let G ≤ Homeo+(S1) be a non-elementary closed subgroup with at most 2 fixed
points. Assume G contains the subgroup of rotations SO(2). Then, G = PSL(2,R).

Proof. We denote by H = Hy the stabilizer in G of a point y ∈ S1, which is a closed subgroup of G.
As SO(2) acts transitively on S1, we have that all point stabilizers are conjugate (by a rotation) in
G, and S1 ∼= G/H. Moreover, as H fixes a point and SO(2) acts freely, we can write G = SO(2)H,
and H ∩SO(2) = {id}. Thus, in order to understand what is G, we are reduced to understand what
H is.

As G is non-elementary and with at most 2 fixed points, there exists a hyperbolic element f ∈ G
(Lemma 2.21); by transitivity, we can assume that y is the repelling fixed point of f , and we denote
by z the other fixed point. We also denote by I = (y, z) the oriented interval between y and z.

Claim 1. For any δ ∈ (0, 1), there exists an element h ∈ H such that |h(I)| = δ.
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Proof. For any k ∈ Z, let us consider the continuous function dk : S1 → (0, 1), defined by dk(t) :=
|fkRt(I)|. As we are assuming that y is the repelling fixed point for f , for any sufficiently small
t > 0 we have Rt(I) ⊂ S1 r {y} and thus dk(t) → 0 as k → ∞; similarly, for any sufficiently small
t < 0 we have dk(t) → 1 as k → ∞. Therefore, by continuity of dk, for k large enough, there
exists t ∈ S1 such that dk(t) = δ. The element g = fkRt satisfies |g(I)| = δ. Take then a rotation
Rs ∈ SO(2) such that Rsg(y) = y. Thus h := Rsg ∈ H and |h(I)| = δ, as desired.

As G acts with at most 2 fixed points, we have that H acts with at most 1 fixed point on the
open interval S1 r {y}. Moreover, by Claim 1, such action is transitive. It follows from Solodov’s
theorem (Theorem 1.4) H is conjugate to closed a subgroup of the affine group A ≤ Aff+(R), which
acts transitively and contains hyperbolic elements.

We now want to argue that H is actually conjugate to the whole group Aff+(R). Note first that
as H is closed and acts transitively on S1r{y}, we have that H contains a normal subgroup T ∼= R
isomorphic to the subgroup of translations in Aff+(R), and H ∼= T oA, where A ≤ H is isomorphic
to a closed subgroup of the multiplicative group R∗+, given by the stabilizer in H of the point z. It
is enough then to prove the following

Claim 2. The subgroup A is non-discrete.

Proof. Fix ε ∈ (0, 1/2). For any s ∈ S1 r {0}, the element gs = fRsf
−1 is not a rotation, and we

have that ‖gs − id‖∞ → 0 as s→ 0. In particular, we can choose s > 0 such that ‖gs − id‖∞ < ε.
Now, for t ∈ (0, ε), the composition R−1

t gs has at most 2 fixed points and satisfies ‖R−1
t gs−id‖ <

ε. Moreover, by the choice of s, when t = 0 the graph of the composition R−1
0 gs = gs is above the

diagonal, whereas when t = ε we have that the graph of R−1
ε gs is below the diagonal. Therefore, by

continuity, the subset E ⊂ (0, ε) such that R−1
t gs has 2 fixed points, denoted by yt, zt, is non-empty,

and the length of the interval (yt, zt) for t ∈ E varies continuously from 0 to 1. Thus, we can choose
t0 ∈ E such that |(yt0 , zt0)| = |(y, z)|.

We can now take a rotation S ∈ SO(2) ≤ G such that k = SR−1
t gsS

−1 is in H, and actually, as
|(yt0 , zt0)| = |(y, z)| we get that k ∈ A. As ε > 0 was arbitrary, we deduce that A is non-discrete.

At this point, one can deduce that G ∼= SO(2)Aff+(R) is a connected non-compact Lie group
acting transitively on S1 with at most 2 fixed points, and use this to conclude that G is actually
equal to PSL(2,R), relying on some classic Lie theory [11, §4.1]. We prefer however to follow more
elementary arguments of dynamical nature.

As H is conjugate to the affine group Aff+(R), there exists a homeomorphism φ ∈ Homeo+(S1)
such that φHφ−1 = Stab(PSL(2,R), y). This conjugation φ is unique up to an affine rescaling,
which we will fix in the proof of Claim 3 below. Let us also consider the homeomorphism φ2 ∈
Homeo+(S1) given by φ2 := R 1

2
φR 1

2
, and the point y2 := R 1

2
(y). Note that the element φ2

conjugates Stab(G, y2) = Hy2 and Stab(PSL(2,R), y2). We also have that Stab(G, y, y2) = H ∩Hy2

is isomorphic to R∗+. So, the map

ψ : g ∈ Stab(G, y, y2) 7→ R 1
2
g R 1

2
∈ Stab(G, y, y2)

defines a non-trivial automorphism of R∗+, with ψ2 = id, so that ψ(g) = g−1. We deduce that for
every g ∈ Stab(G, y, y2), we have

φ2 g φ
−1
2 = R 1

2
φR 1

2
g R 1

2
φ−1R 1

2
= (φR 1

2
g R 1

2
φ−1)−1

= φR 1
2
g−1R 1

2
φ−1 = φ g φ−1.
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Therefore γ := φ−1
2 φ is in the centralizer of Stab(G, y, y2) ∼= R∗+, so there are two elements g+, g− ∈

Stab(G, y, y2) such that γ = g+ on [y, y2], and γ = g− on [y2, y]. As ψ takes g+ and g− to
their inverses, we deduce that R 1

2
γ R 1

2
= γ−1, and thus γ = g+ = g− on S1, and therefore γ ∈

Stab(G, y, y2). Similarly, we get that φφ−1
2 = φ2 γ φ

−1
2 ∈ Stab(PSL(2,R), y, y2).

Claim 3. There exists Φ ∈ Homeo+(S1) that conjugate stab(G, x) with stab(PSL(2,R), x), and
also conjugate stab(G, x2) with stab(PSL(2,R), x2).

Proof. Take ρ ∈ Stab(G, y, y2) ∼= R∗+ such that, ρ−2 = γ. Then, the element Φ := ρ φ2 conju-
gates Stab(G, y) to Stab(PSL(2,R), y), and similarly does Φ2 := R 1

2
ΦR 1

2
with Stab(G, y2) and

Stab(PSL(2,R), y2). Note that

Φ2 = R 1
2
ρ φR 1

2
= R 1

2
ρR 1

2
R 1

2
φR 1

2
= ρ−1R 1

2
φR 1

2
= ρ−1φ2

Since ρ−2 = φφ−1
2 , we have that id = ρ φφ−1

2 ρ = Φ Φ−1
2 . So we have that Φ = Φ2.

Now, observe that G = Stab(G, y2) Stab(G, y). Indeed, take any g ∈ G. If g ∈ Stab(G, y) we are
done, otherwise write z = g(y) 6= y, and take an element f ∈ Stab(G, y2) such that f(z) = y. Thus
fg ∈ Stab(G, y), as desired. Similarly, one gets PSL(2,R) = Stab(PSL(2,R), y2) Stab(PSL(2,R), y).
We conclude that the homeomorphism Φ from Claim 3 conjugates G to PSL(2,R), as desired.

We can now prove the main result of this section.

Proof of Theorem C. Let G be a non-elementary subgroup with at most 2 fixed points. If G is
non-locally discrete, then after Lemma 3.4, G is non-discrete, so that by Lemma 3.11 its closure G
contains a conjugate copy of the subgroup of rotations SO(2). From Lemma 3.12, we conclude that
G is conjugate to PSL(2,R), so that G is conjugate into PSL(2,R).
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4 Amalgamated products of group actions
In this chapter we present the main tool used to build examples for the rest of this work,

the definition of amalgamated product of group actions (stated in Definition 4.5). As we show
in Theorem 4.7, such product has a direct construction which is unique up to conjugacy and the
dynamics imposed by the amalgamated product will be very convenient once we try to track a
boundary for the number of fixed points of non-trivial elements in future chapters.

The first step leading to such definition is the concept of proper ping-pong partition, which is
given below.

Definition 4.1. Let F and G be non-trivial groups of homeomorphisms of a topological space X,
and assume that S = F ∩ G is a proper subgroup in both F and G. A proper ping-pong partition
(UF ,UG) for F and G is a pair of non-empty disjoint open subsets UF and UG ⊂ X with finitely
many connected components, such that:

i. (F r S)(UG) ⊂ UF and (Gr S)(UF ) ⊂ UG;

ii. S(UF ) = UF and S(UG) = UG;

iii. S � F and S � G and the index of S in one of them is greater than 2.

Lemma 4.2 (Ping-Pong Lemma). With the notations as in Definition 4.1, if (UF ,UG) is a proper
ping-pong partition for F and G, then the subgroup 〈F,G〉 ≤ Homeo(X) is isomorphic to the
amalgamated free product F ∗S G.

This is in fact a particular case of the ping-pong lemma for amalgamated free products (which
holds more generally for bijections of a set), originally due to Fenchel and Nielsen [9]. A detailed
proof can be found in Maskit [19, Section VII.A].

For the next result we need the assumption that the space X be compact.

Lemma 4.3. Assume that X is a compact topological space. With notation as in Definition 4.1,
if (UF ,UG) is a proper ping-pong partition for F and G, then the closure of the partition UF ∪ UG
contains an invariant closed subset for the action of H = 〈F,G〉 on X.

In particular, a necessary condition for the action of H being minimal is that UF ∪ UG = X.

Proof. This is also classical, but we sketch a proof as it is quite elementary. Set F ∗ = F r S and
G∗ = Gr S, then, using the fact that (UF ,UG) is a ping-pong partition, we see that the family of
subsets {Λn}n∈N defined by

Λ0 = UF ∪ UG,
Λ1 = F ∗(UG) ∪G∗(UF ),
Λ2 = F ∗G∗(UF ) ∪G∗F ∗(UG),
Λ3 = F ∗G∗F ∗(UG) ∪G∗F ∗G∗(UF ), . . .

has the finite intersection properties (more precisely, they are nested) and therefore Λ =
⋂
i∈N Λi is

closed, non-empty. It is not difficult to see that Λ is invariant by F and G, and hence by H.

Lemma 4.4. With notation as in Lemma 4.3, assume that X = S1 is the circle and that H ≤
Homeo+(S1) preserves the orientation. Then, the minimal set of the action of H on the circle is
unique and infinite.
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Proof. By Lemma 4.3, it follows that UF ∪ UG contains a minimal set, that we will denote by K.
Let us suppose by contradiction that K is finite. Without loss of generality, we assume that the
index of S in G is greater than 2.

Define NG := #{x ∈ K ∩ UG} and NF := #{x ∈ K ∩ UF } and observe that NF ≥ NG, since
there exists f ∈ F rS and for each point x ∈ K ∩UG, we have f(x) ∈ K ∩UF . On the other hand,
there are two elements g1 6= g2 ∈ Gr S from different left cosets of S in G, and then, for each two
points xi, xj ∈ K ∩ UF we have g1(xi) 6= g2(xj), otherwise, g−1

1 g2(xj) = xi that is g−1
1 g2 ∈ G sends

a point of UF into UF , then should have g−1
1 g2 ∈ S, that is, there exists s ∈ S with g2 = g1s, an

absurd since g1 and g2 are from different left cosets. This implies in 2NG ≥ NF .
We conclude that the only possibility is NF = NG = 0, that is, K ∩ (UF ∪ UG) = ∅. The same

argument can be done to UF and UG by continuity and taking in consideration the orientation-
preserving property, and that implies in K = ∅ which is an absurd.

Now, since K is a minimal non-finite on the circle, then it is unique.

We now introduce the notion of amalgamated product of actions, this will be a very important
concept that will be used in the constructions of the mains examples of this paper.

Definition 4.5. Given two countable subgroups F and G ≤ Homeo+(S1) and two collections of n
circularly-ordered points x = {x1, . . . , xn} ⊂ S1 and y = {y1, . . . , yn} ⊂ S1 such that, for all distinct
i, j ∈ {1, . . . , n}, the following conditions are satisfied:

• xi /∈ F.xj and yi /∈ G.yj ,

• Stab(F, xi) = SF and Stab(G, yi) = SG, with θ : SF
∼−→ SG.

Let σ : {1, . . . , n} → {1, . . . , n} be a cyclical permutation of n points. We say that a subgroup
H ≤ Homeo+(S1) is an amalgamated product of the subgroups F and G on x and y by the morphism
θ : SF → SG and the permutation σ, if H contains two subgroups ΓF and ΓG ≤ H, satisfying the
following properties.

i. There exists an isomorphism Ψ : F ∗θ G
∼−→ H, with Ψ(F ) = ΓF and Ψ(G) = ΓG.

ii. The action of ΓF on the circle is semi-conjugate to the action of F , with conjugacy hF : S1 → S1

and Core(hF ) = XF ⊂ S1. More precisely, for all f ∈ F , let γf = Ψ(f), then hFγf = fhF .
Similarly, the action of ΓG on the circle is semi-conjugate to the action of G, with conjugacy
hG : S1 → S1 and Core(hG) = XG ⊂ S1.

iii. XF ⊂
⋃n
i=1 h

−1
G (yi) and XF ∩ h−1

G (yi) 6= ∅ for all i ∈ {1, . . . , n}.

iii’. XG ⊂
⋃n
i=1 h

−1
F (xi) and XG ∩ h−1

F (xi) 6= ∅ for all i ∈ {1, . . . , n}.

iv. (h−1
F (x1), h−1

G (yσ(1)), . . . , h−1
F (xn), h−1

G (yσ(n))) is an ordered partition of the circle. Moreover,(⋃n
i=1 h

−1
F (xi),

⋃n
i=1 h

−1
G (yσ(i))

)
is a proper ping-pong partition for Ψ(F ) and Ψ(G).

We will use the abbreviated notation (F, x)?θ,σ (G, y) for the amalgamated product of the subgroups
F and G on x and y by the isomorphism θ : SF → SG and permutation σ.

For the case where x = {x} and y = {y} are both singletons, we will omit the trivial permutation
of one element σ and write (F, x) ?θ (G, y).

Remark 4.6. Since both XF and XG have no isolated points, items iii and iii’ in Definition 4.5
imply that h−1

F (xi) and h−1
G (yi) are non-trivial intervals, for every i ∈ {1, . . . , n}. Furthermore, by
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definition of the core, XF contains the limit points of h−1
F (xi) which implies in ∂{h−1

F (xi)} ⊂ XF ⊂⋃n
i=1 h

−1
G (yi) and similarly, ∂{h−1

G (yi)} ⊂
⋃n
i=1 h

−1
F (xi).

Therefore, the assumption in item iv of Definition 4.5 is not so strong. In fact, if the subsets
(h−1
F (x1), h−1

G (yσ(1)), . . . , h−1
F (xn), h−1

G (yσ(n))) have pairwise disjoints interiors and they are cyclically
ordered, then the limit points of h−1

F (xi) and h−1
G (yi) coincide and these subsets form an ordered

partition of the circle.
In the next theorem we show that the concept of amalgamated product of group actions is

well defined, for such, we present a construction of the product given the subgroups F and G,
the collection of points x and y, the isomorphism θ : Stab(F, x) → Stab(G, y) and the cyclical
permutation σ, then we prove that such construction is in fact unique up to conjugacy.

Theorem 4.7. Consider two countable subgroups F and G ≤ Homeo+(S1), and two collections of n
points x = {x1, . . . , xn} ⊂ S1 and y = {y1, . . . , yn} ⊂ S1 such that, for all distinct i, j ∈ {1, . . . , n},
the following conditions are satisfied:

• xj /∈ F.xi and yj /∈ G.yi,

• Stab(F, xi) = SF and Stab(G, yi) = SG, with θ : SF
∼−→ SG,

• SF � F , SG � G and at least one of the indices [F : SF ] and [G : SG] is greater than 2.

Let σ : {1, . . . , n} → {1, . . . , n} be any cyclical permutation of n points. Then, there exists a subgroup
H ≤ Homeo+(S1), which is minimal and H = (F, x) ?θ,σ (G, y). Furthermore, the subgroup H is
unique up to conjugacy.

Proof.
Summary of first constructions – First, we are going to blow-up the actions of F and G on
the orbits of x1, . . . , xn and y1, . . . , yn respectively, in such a way that the included intervals in
the action of F are exactly the complement of the included intervals in G. Then, we are going
to construct new group actions Ψ : F × S1 → S1 and Ψ : G × S1 → S1, in such a way that the
action Ψ restricted to the stabilizers SF and SG coincides and the included intervals form a proper
ping-pong partition for Ψ(F ) and Ψ(G). We start by the subsets where the actions are naturally
defined and then extend it inductively for the whole circle. The subgroup of homeomorphisms H
in the statement of Theorem 4.7 will be semi-conjugate to the generated group by Ψ(F ) and Ψ(G).
Blow-up – For the blow-up of the actions of F and G, we begin choosing a partition of the circle
(a1, b1, . . . , an, bn) with a1 < b1 < a2 < b2 < · · · < an < bn < a1. The interval [ai, bi] will be set as
the pre-image of the point xi for the orbital opening of F and the interval [bi, ai+1] the pre-image
of the point yσ(i) is for the orbital opening of G. For this, we take two functions hF , hG : S1 → S1

satisfying the following properties:

• hF and hG are weakly monotone increasing and continuous functions,

• h−1
F (xi) = [ai, bi] and Iξ := h−1

F (ξ) is a non-trivial closed interval for any ξ ∈
⋃n
i=1 F.xi,

• h−1
G (yσ(i)) = [bi, ai+1] and Jη := h−1

G (η) is a non-trivial closed interval for any η ∈
⋃n
i=1G.yi,

• h−1
F (z) is a point for any z /∈

⋃n
i=1 F.xi,

• h−1
G (z) is a point for any z /∈

⋃n
i=1G.yi.
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Subsets where the action will be defined – In the following write I =
⋃n
i=1

⋃
ξ∈F.xi Iξ and

J =
⋃n
i=1

⋃
η∈G.yi Jη. For every i ∈ {1, . . . , n} and ξ ∈ F.xi, let Aξ : Ixi → Iξ be the unique linear

orientation-preserving homeomorphism, and similarly write Bη : Jyi → Jη. Now, let us define by
induction the following subsets:

Km
F =

{
S1 r I if m = 0,⋃n
i=1

⋃
ξ∈F.xi Aξ(K

m−1
G ∩ Ixi) if m ≥ 1,

Km
G =

{
S1 r J if m = 0,⋃n
i=1

⋃
η∈G.yi Bη(K

m−1
F ∩ Jyi) if m ≥ 1.

Then we denote Km = Km
F ∪Km

G , for any m ∈ N, and K =
⋃
m∈NK

m and remark that

⋃
m∈N

Km
F = K ∩

n⋃
i=1

Jyi and
⋃
m∈N

Km
G = K ∩

n⋃
i=1

Ixi .

For any choice of i ∈ {1, . . . , n}, let ξ ∈ F.xi and η ∈ G.yi be points in the orbits of xi and yi by
the subgroup F and G respectively. Then, select any two elements fξ ∈ F and gη ∈ G, such that
fξ(xi) = ξ and gη(yi) = η, and define

Ψ(fξ)|K∩Ii := Aξ, Ψ(gη)|K∩Ji := Bη.

Summary of what follows –We want to define an action of the amalgamated free product F ∗SG
on the circle. For this, we will first define an action of such group on the subset K and then take
an extension to S1. By the universal property of amalgamated products, it is enough to define the
action for F and G, in such a way that definitions coincide for the stabilizers SF and SG. For this,
we will first define the action of the stabilizer, and as for the subset K above, the construction will
follow an iterative scheme. The same will be for the actions of F and G.

Note first that from the tautological actions of F andG, we can define actions ψF : F → Homeo+(S1 r I)
and ψG : G→ Homeo+(S1 r J ) by setting

ψF (f)(z) = h−1
F f hF (z) for f ∈ F and z ∈ S1 r I,

ψG(g)(z) = h−1
G g hG(z) for g ∈ G and z ∈ S1 r J ,

and the definition can be extended by continuity to actions on the closures K0
F and K0

G, that we
still denote (with abuse of notation) by ψF and ψG respectively.
Definition of the action for the stabilizers – Now we will define the action of the stabilizers
Ψ : SF → Homeo+(K) and Ψ : SG → Homeo+(K).

Since SF ∼= SG, we can choose an isomorphism θ : SF → SG and define, for all s ∈ SF ,

Ψ(s)|
K0
F

:= ψF (s) : K0
F → K0

F and Ψ(s)|
K0
G

:= ψG(θ(s)) : K0
G → K0

G.

Take s ∈ SF and let ξ1, ξ2 ∈ F.xi and η1, η2 ∈ G.yi be such that s(ξ1) = ξ2 and θ(s)(η1) = η2. By
induction, we define for every i ∈ {1, . . . , n}

Ψ(s)|
Aξ1 (Km

G
∩Ixi )

:= Aξ2 Ψ(f−1
ξ2

s fξ1)|
Km
G
A−1
ξ1
,

Ψ(s)|
Bη1 (Kn

F
∩Jyi )

:= Bη2 Ψ(θ−1(g−1
η2 θ(s) gη1))|

Km
F
B−1
η1 .

This way we have, for all s ∈ SF , that Ψ(s) is a well-defined homeomorphism in Homeo+(K). And
similarly, for s ∈ SG, we define Ψ(s) := Ψ(θ−1(s)) and we have, for all s ∈ SG, that Ψ(s) is a
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well-defined homeomorphism in Homeo+(K). Moreover, we have an equivalence between the image
of the stabilizers Ψ(SF ) = Ψ(SG).
Definition of the action for F and G –Now we will construct the group actions Ψ : F → Homeo+(K)
and Ψ : G → Homeo+(K). For this, remember that the representatives fξ ∈ F and gη ∈ G, are
already defined by

Ψ(fξ)|K∩Ixi := Aξ, Ψ(gη)|K∩Jyi := Bη.

Note that, for all f ∈ F , Ψ(f)|
K0
F

can be defined by the homeomorphism ψF (f) and, similarly, for

all g ∈ G, Ψ(g)|
K0
G

can be defined by the homeomorphism ψG(g).

To extend this action for Ψ(f)|K , one should notice that, if f(xi) = ξ, we have f−1
ξ f ∈ SF . So,

as Ψ(f−1
ξ f) is already defined in the subset K and Ψ(fξ) is already defined in K ∩ Ixi then the only

consistent way to extend the action is given by

Ψ(f)|K∩Ixi := Ψ(fξ) Ψ(f−1
ξ f).

This way we have that Ψ(f)|K∩Ixi is well defined for every i ∈ {1, . . . , n} and every f ∈ F .
Now, observe that the points z ∈ K such that Ψ(f)(z) is still not defined are exactly

z ∈ K r
((

K ∩
n⋃
i=1

Ixi

)
∪K0

F

)
=
(
K ∩

n⋃
i=1

Jyi

)
rK0

F =
⋃
m≥1

Km
F ,

and for allm ≥ 1 and all z ∈ Km
F , it follows that there existsAξ′ such that, A−1

ξ′ (z) ∈ Km−1
G ⊂ K ∩

⋃n
i=1 Ixi .

Then, to ensure the properties of a group action, we define Ψ(f)(z) by

Ψ(f)(z) := Ψ(f)Aξ′ A−1
ξ′ (z) = Ψ(f) Ψ(fξ′)(A−1

ξ′ (z)) = Ψ(f fξ′)(A−1
ξ′ (z)).

Since f fξ′ ∈ F is already defined at the point A−1
ξ′ (z), we have that Ψ(f)(z) is defined for z ∈ Km

F

and furthermore Ψ : F ×K → K is a continuous group action which can be extended to K.
An analogous construction can be done to define the continuous group action Ψ : G×K → K.

Getting an action on the circle – Since K ⊂ S1 is a closed subset of S1, we can extend the
action Ψ to the whole circle S1 in a continuous and orientation-preserving way, which we still denote
(with abuse of notation) by Ψ : F × S1 → S1 and Ψ : G× S1 → S1.
Proofs of the items – LetH be the subgroup of circle homeomorphisms generated by 〈Ψ(F ),Ψ(G)〉
and we will prove the conclusions in the statement of Theorem 4.7.

Let ΓF = Ψ(F ) and ΓG = Ψ(G), and notice that the action of ΓF on S1 is semi-conjugate to
the action of F on S1 with semi-conjugacy hF and Core(hF ) = XF = S1 r I̊.

Similarly, the action of ΓG on S1 is semi-conjugate to the action of G on S1 with semi-conjugacy
hG and Core(hG) = XG = S1 r J̊ . This way, the items ii, iii and iii’ of Definition 4.5 are satisfied.

For the items 4.5.i and iv, remember that h−1
F (xi) = [ai, bi] and h−1

G (yi) = [bi, ai+1] which, by
the choices of ai and bi, implies that (h−1

F (x1), h−1
G (yσ(1)), . . . , h−1

F (xn), h−1
G (yσ(n))) is an ordered

partition of the circle. Now, with the previous notation of h−1
F (xi) = Ixi and h−1

G (yi) = Jyσ(i) ,
observe that for all f ∈ F r SF and all i ∈ {1, . . . , n} there exists a element fξ with ξ ∈ F ∗.xi such
that f−1

ξ f ∈ SF . Then, it follows that

Ψ(f)(Ixi) = Ψ(fξ)Ψ(f−1
ξ f)(Ixi) = Ψ(fξ)(Ixi) = Iξ
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From the blow-up, it is clear that Iξ ∩ Ixi = ∅ for all i ∈ {1, . . . , n}, then we conclude that Ψ(f)(Ixi)
is contained at the interior of Jσ(i) for some i ∈ {1, . . . , n}. That is

Ψ(f)
(

n⋃
i=1

Ixi

)
⊂

n⋃
i=1

J̊yσ(i),

and similarly, for all g ∈ G r SG, we have Ψ(g) (
⋃n
i=1 Jyi) ⊂

⋃n
i=1 I̊xi . Then, (

⋃n
i=1 Ixi ,

⋃n
i=1 Jyi)

is a proper ping-pong partition for the actions of Ψ(F ) and Ψ(G). And finely, let us denote
S := Ψ(SF ) = Ψ(SG), then by the Lemma 4.2,

H = 〈Ψ(F ),Ψ(G)〉 = Ψ(F ) ∗S Ψ(G) ∼= F ∗θ G.

Now, by Lemma 4.4, if the action ofH on the circle is not minimal then it can be semi-conjugated
to a minimal action by collapsing some intervals, in which case we redefine the continuous group
action Ψ by the collapse of these intervals and conclude that the new subgroup of homeomorphisms
H = 〈Ψ(F ),Ψ(G)〉 acts minimally over S1. We remark that none of the proofs of the previous items
are impacted by this change, since we are changing the previous H for a minimal representative in
the semi-conjugacy class of the subgroup generated by Ψ(F ) and Ψ(G).

Uniqueness of H will be given by the following Lemma 4.8, and with that we conclude the proof
of the theorem.

Lemma 4.8. Given two subgroups H1 and H2 ≤ Homeo+(S1) obtained by the amalgamated product
of the subgroups F and G on the points {x1, . . . , xn} and {y1, . . . , yn} ⊂ S1 by the isomorphism
θ : SF → SG and permutation σ. Then, it follows that the actions of H1 and H2 are conjugate.

Proof. For the proof of this theorem, we will explicitly construct a continuous, monotone and
1-degree conjugation map, that we will denote by α : S1 → S1.

For q ∈ {1, 2}, we will use notation as in Definition 4.5, that is, ΓqF and ΓqG ≤ Hq will be the
subgroups with actions on S1 isomorphic and semi-conjugate to the actions of F and G on S1,
with semi-conjugacies hFq and hGq and isomorphisms γFq and γGq , and the cores for each semi-
conjugation will be denoted as Xq

F and Xq
G. We also define the subsets X̃q

F ⊂ X
q
F and X̃q

G ⊂ X
q
G by

the set of the points where each semi-conjugacy is bijective, that is, they are the cores without the
two preimages of each blown-up point. Observe that, the semi-conjugacies satisfy, for every f ∈ F
and g ∈ G, the following:

• h−1
Fq
fhFq(x) = γFq(f)(x) for every x ∈ X̃q

F ,

• h−1
Gq
ghGq(x) = γGq(g)(x) for every x ∈ X̃q

G.

Now, we define the maps αF : X̃1
F → X̃2

F and αG : X̃1
G → X̃2

G, by

αF (x) := h−1
F2
hF1

(x) for x ∈ X̃1
F and αG(x) := h−1

G2
hG1(x) for x ∈ X̃1

G.

Then, we extend the maps αF and αG by continuity to the closures, which are exactly the cores,
X̃1
F = X1

F and X̃1
G = X1

G. Moreover, since hFq and hGq are semi-conjugacies, this implies that αF
and αG are both continuous and order-preserving.

Observe that the subsets X̃q
F and X̃q

G are disjoints, and if x ∈ X1
F ∩X1

G, then by items iii and iii’
in Definition 4.5, there exists i, j ∈ {1, . . . , n} with x ∈ h−1

F1
(xi) ∩ h−1

G1
(yj). Then, such x is a limit

point of the intervals h−1
F1

(xi) and h−1
G1

(yj), since this intersection has empty interior. Moreover,
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by item iv in Definition 4.5, we have that j = σ(i) or j = σ(i − 1). We assume, without loss of
generality, that j = σ(i), which implies that

x = suph−1
F1

(xi) = inf h−1
G1

(yσ(i)).

Finally, notice that by the definition, αF (x) = suph−1
F2

(xi) and αG(x) = inf h−1
G2

(yσ(i)), and since
H2 is also an amalgamated product by the order-preserving permutation σ, we have

αF (x) = suph−1
F2

(xi) = inf h−1
G2

(yσ(i)) = αG(x).

Therefore we can define the map α : X1
F ∪ X1

G → X2
F ∪ X2

G as the natural continuous and order-
preserving extension of both αF : X1

F → X2
F and αG : X1

G → X2
G.

Now, denote the stabilizers by S1 := Γ1
F ∩ Γ1

G and S2 := Γ2
F ∩ Γ2

G. We will prove that, for every
s ∈ S1, there exists s′ ∈ S2 such that: α s(x) = s′ α(x), for all x ∈ X1

F ∪X1
G.

First, let us fix s ∈ S1 and, by the properties of hFq and hGq itemized previously, we have
γ−1
F1

(s) =: sf ∈ SF with h−1
F1
sfhF1(x) = s(x) for all x ∈ X̃1

F and, after fixing sf ∈ SF , there exists
γF2(sf ) =: s′ ∈ S2 with h−1

F2
sfhF2(x) = s′(x) for all x ∈ X̃2

F . Therefore, we have

α sα−1(x) = s′(x), for all x ∈ X̃2
F .

On the other hand, for the same s ∈ S1 and s′ ∈ S2, there exists γ−1
G1

(s) =: sg ∈ SG such that
h−1
G1
sghG1(x) = s(x) for all x ∈ X̃1

G and, similarly, γ−1
G2

(s′) =: s′g ∈ SG such that h−1
G1
s′ghG1(x) = s′(x)

for all x ∈ X̃2
G. So we conclude that

α sα−1(x) = s′(x), for all x ∈ X̃2
G if, and only if, sg = s′g.

But H1 and H2 are both amalgamated product by the same isomorphism θ, then we have that
sg = θ(sf ) = s′g, which implies that α sα−1(x) = s′(x), for all x ∈ X̃2

F ∪ X̃2
G. And, as α is the

continuously extension to X2
F ∪X2

G, this property remains, and we conclude that for every s ∈ S1,
there exists s′ ∈ S2 such that

α s(x) = s′ α(x), for all x ∈ X1
F ∪X1

G.

We now proceed to extend, by induction, the map α to the whole circle. For such, we will define
four families of subsets of S1 that will be necessary in this argument.

For every i ∈ {1, . . . , n} and every ξ ∈ F.xi, choose an element fξ ∈ F , such that fξ(xi) = ξ.
We do the same for every η ∈ G.yi, choosing gη ∈ G, such that gη(yi) = η and denote by Hq(fξ)
and Hq(gη) the elements associated to fξ and gη on the group action of Hq, for q = 1, 2. We define
the following subsets by induction, in a very similar way as in the proof of Theorem 4.7.

Y m
F =

{
X1
F if m = 0,⋃n
i=1

⋃
ξ∈F.xi H1(fξ)(Y m−1

G ∩ I1
xi) if m ≥ 1,

Y m
G =

{
X1
G if m = 0,⋃n
i=1

⋃
η∈G.yi H1(gη)(Y m−1

F ∩ J1
yi) if m ≥ 1,

ZmF =
{
X2
F if m = 0,⋃n
i=1

⋃
ξ∈F.xi H2(fξ)(Zm−1

G ∩ I2
xi) if m ≥ 1,

ZmG =
{
X2
G if m = 0,⋃n
i=1

⋃
η∈G.yi H2(gη)(Zm−1

F ∩ J2
yi) if m ≥ 1,
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where, similarly to the proof of Theorem 4.7, Iqxi := h−1
Fq

(xi) and Jqyi := h−1
Gq

(yi), for q ∈ {1, 2}.
Now, define

α|
H1(fξ)(Ym

G
∩I1xi )

:= H2(fξ) Γ|
(Ym
G
∩I1xi )

H1(fξ)−1,

α|
H1(gη)(Ym

F
∩J1
yi

)
:= H2(gη) Γ|

(Ym
F
∩J1
yi

)
H1(gη)−1,

and denote by Y :=
⋃
m(Y m

F ∪ Y m
G ) and Z :=

⋃
m(ZmF ∪ ZmG ).

By the induction and extending naturally by continuity, we have a well defined continuous,
monotone and 1-degree map α : Y → Z. Moreover, one can observe that both Y and Z are
closed and invariant subsets for the actions of H1 and H2, therefore, by minimality we have that
Y = Z = S1, which implies that we have α : S1 → S1.

Furthermore, such map α satisfies that, for every γ1 ∈ Γ1
F ∪ Γ1

G, there exists γ2 ∈ Γ2
F ∪ Γ2

G with

αγ1 α
−1(x) = γ2(x) for all x ∈ S1.

Now, since H1 = Γ1
F ∗S1 Γ1

G and H2 = Γ2
F ∗S2 Γ2

G, the map α conjugates the action of H1 on S1 to
the action of H2 on S1, as we wanted to prove.
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5 Tracking the number of fixed points
In this section, we will be paying attention to the number of fixed points each element of the

action have. Our goal will be to apply previous results on amalgamated product of group actions
to construct a family of actions on the circle with a limited number of fixed points. We will divide
this section into two parts, in the first one we will present Theorem D, which is a mechanism to
construct examples of group actions on S1 with at most 2n fixed points, and in the second part we
will show the conditions so that these examples are not conjugates into any subgroup of PSLn(2,R).

5.1 Constructing group actions with at most 2n fixed points

The proof of Theorem D will be a direct application of the following Lemma 5.3, more precisely
the item 5.3.i. For its statement, we will use the notation b0(U) for the number of connected
components of a non-empty subset U of a topological space X. We will also need the following
notion.

Definition 5.1. For a subset G ⊂ Homeo+(S1) and two distinct points x and y of S1, we say that
the (partial) orbits of x and y are cross free for the action of G, if for all g ∈ G we have that either
{g(x), g(y)} ⊂ [x, y] or {g(x), g(y)} ⊂ [y, x].

A collection of circle ordered points (x1, x2, . . . , xn) is proper cross free for the action of G if for
any pair {xi, xj} the orbits of xi and xj are cross free for the action of G and for every g ∈ G with
Fix(g) ∩ {x1, . . . , xn} = ∅ there exists at least one pair of consecutive points {xi, xi+1} such that
{g(xi), g(xi+1)} ⊂ [xi, xi+1].

If for two intervals I and J ⊂ S1, the orbits of any points x ∈ I and y ∈ J are cross free, we
say that the orbits of the intervals I and J are cross free for the action of G and, similarly, we say
that a collection of circle ordered intervals (I1, I2, . . . , In) is proper cross free for the action of G if
(x1, x2, . . . , xn) is proper cross free for any choice of distinct points xi ∈ Ii.

We remark that the collection of one single point (x1) is always proper cross free and we have
the following result.

Lemma 5.2. Let (x1, x2, . . . , xn) be a collection of circle ordered points which is proper cross free
for the action of a subset G ⊂ Homeo+(S1), then for every g ∈ G with Fix(g) ∩ {x1, . . . , xn} = ∅
there exists a pair of consecutive points {xi, xi+1} such that {g(x1), . . . , g(xn)} ⊂ [xi, xi+1].

Proof. Fix g ∈ G with Fix(g) ∩ {x1, . . . , xn} = ∅ and let k ∈ {1, . . . , n} be such that g(xk) and
g(xk+1) are contained in [xk, xk+1]. For any index t ∈ {1, . . . , n} other than k and k + 1, it follows
that the pairs {xt, xk} and {xt, xk+1} are cross free. Thus, since g(xk) ∈ [xk, xk+1] ⊂ [xk, xt] and
g(xk+1) ∈ [xk, xk+1] ⊂ [xt, xk+1], it implies that g(xt) is contained in both intervals [xk, xt] and
[xt, xk+1], therefore g(xt) ∈ [xk, xt] ∩ [xt, xk+1] = [xk, xk+1].

Lemma 5.3. Consider two subgroups F and G of Homeo+(S1) with H = 〈F,G〉 and F ∩ G = S.
Let (UF ,UG) be a proper ping-pong partition of F and G. Then, if H acts minimally, for every
element h ∈ H which is not conjugate in H into F ∪G, the following statements hold.

i. The number of fixed points of h does not exceed 2 min{b0(UF ), b0(UG)}.

ii. Moreover, if the collection of intervals UG is proper cross free for the action of F ∗ = F r S,
then h is Möbius-Like.
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Proof. Since h ∈ H is not conjugate into F ∪ G and H ∼= F ∗S G, then h or h−1 is conjugate
to an element h̃ that can be written as h̃ = gnfn · · · g1f1, with fi ∈ F ∗ and gi ∈ G∗. Clearly
#(Fix(h)) = #(Fix(h̃)).

Now, observe that after Definition 4.1, we have the inclusion h̃(UG) ⊂ UG. Moreover, one may
notice that such inclusion is proper, otherwise if h̃(UG) = UG we also have h̃(UF ) = UF and h̃ ∈ S.
This implies that for each connected component I of UG, either Fix(h̃) ∩ I = ∅ or there exists a
non-empty attracting interval A (possibly degenerate) defined as A =

⋂
n∈N h̃

n(I). We will see next
that the interval A is indeed always degenerate, for this let us consider the family of closed subsets
Λn as defined in the proof of Lemma 4.3. Notice that, after Definition 4.1.i, the interval h̃n(I) is
contained in the interior of Λi for all i ≤ n and therefore the interior int(A) is contained in the
intersection

⋂
n∈N int(Λn).

Note that this intersection is H-invariant, its complement is non-empty (it contains for instance
∂UF ), and, as we are assuming that the action is minimal, the complement must be dense. We
deduce that the interval A cannot have interior points, and therefore it is reduced to a single point.

We conclude that for each closed component I, the images of h̃n(I) converges to a point in I,
which is the only fixed point of h̃ in I. Moreover, if such point is in the interior of I, then it is an
attracting fixed point of h̃. By repeating the argument for h̃−1 and UF , we have that for each closed
component J , the images of h̃−n(J) converges to a point in J , which is the only fixed point of h̃−1

(and of h̃) in J and, if such point is in the interior of J , then it is a reppeling fixed point of h̃.
Now, we have that h̃ has at most 1 fixed point for each closed component I of UG and J of UF ,

and more precisely #(Fix(h̃) ∩ UG) ≤ b0(UG) and #(Fix(h̃) ∩ UF ) ≤ b0(UF ). Since the action is
minimal, by Lemma 4.3 we have UG ∪ UF = S1, which implies

#(Fix(h)) = #(Fix(h̃)) ≤ b0(UG) + b0(UF ).

To finish the proof of the lemma, suppose that UG and UF have a different number of connected
components b0(UG) 6= b0(UF ). Then, either UF or UG has at least two consecutive components,
and we can define a new ping-pong partition replacing these two components by the smallest open
interval of S1 containing them. After repeating this process finitely many times, we find a new
proper ping-pong partition (ŨF , ŨG) with b0(ŨF ) = b0(ŨG) = min{b0(UF ), b0(UG)}. Applying the
previous arguments for this new partition, we find the upper bound

#(Fix(h)) ≤ b0(ŨG) + b0(ŨF ) = 2 min{b0(UF ), b0(UG)}.

This proves statement i. For statement ii, after the argument of the last paragraph, we can assume
that the ping-pong partition (UF ,UG) has no two consecutive intervals which are connected com-
ponents of the same open subset UF or UG. By minimality of the action (Lemma 4.3), we can write
∂UF = ∂UG = {xk}2nk=1, so that the sequence of points xk is circularly ordered, and Ik := (x2k−1, x2k)
is a connected component of UG and Jk := (x2k, x2k+1) is a connected component of UF , for every
k ∈ {1, . . . , n}. See Figure 5.1. Observe that after this modification, the hypothesis of UG being
proper cross free for the action of F ∗ in the statement ii still holds for the intervals {Jk}nk=1 and
therefore, the collections (x1, x3, . . . , x2n−1) and (x2, x4, . . . , x2n) are proper cross free for the action
of F ∗.

Claim. For any f ∈ F ∗, the image f(UG) is contained in a single connected component of UF .

Proof of claim. We will consider the case n ≥ 1, since for n = 1 the claim is trivial. Now, take any
f ∈ F ∗ and observe that Fix(f) ∩ {x1, . . . , x2n} = ∅. As the collection (x1, x3, . . . , x2n−1) is proper
cross free, by Lemma 5.2, we have that there exists an index k such that f(x2j−1) ∈ [x2k−1, x2k+1],
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Figure 5.1: Alternating ping-pong partition for the proof of Lemma 5.3.ii.

for all j ∈ {1, . . . , n}. Moreover, since x2j−1 is an endpoint of a connected component of UG, we
conclude that f(x2j−1) ∈ [x2k−1, x2k+1] ∩ UF = [x2k, x2k+1], for all j ∈ {1, . . . , n}.

Similarly, the collection (x2, x4, . . . , x2n) is also proper cross free and, by Lemma 5.2, we have
that there exists an index k2 such that f(x2j) ∈ [x2k2 , x2k2+2] ∩ UF = [x2k2 , x2k2+1], for all
j ∈ {1, . . . , n}. On the other hand, between any two even indexes there is at least one odd in-
dex and, as f is an order-preserving homoemorphism, it follows that there exists j ∈ {1, . . . , n}
such that f(x2j−1) ∈ [x2k2 , x2k2+1], which implies that [x2k2 , x2k2+1] = [x2k, x2k+1] and then for all
j ∈ {1, . . . , n} we have f(x2j−1) ∈ [x2k2 , x2k2+1]. Therefore, f(UG) ⊂ UF ∩ [x2k2 , x2k2+1] = Jk2 .

Now, as for the first statement, take a conjugate element h̃ which can be written as h̃ = gnfn · · · g1f1,
with fi ∈ F ∗ and gi ∈ G∗. After the Claim, the image f1(UG) is contained in a single connected
component of UF and then by continuity, h̃(UG) is also contained in a single component I of UG.
This implies that all other connected components of UG contain no fixed point of h̃ and after Lemma
5.3, we have the upper bound #(Fix(h̃) ∩ UG) ≤ 1. We observe that the same holds for h̃−1 and
UF , arguing with f−1

n instead of f1. Hence we obtain

#Fix(h) = #(Fix(h̃) ∩ (UG ∪ UF )) ≤ #(Fix(h̃) ∩ UG) + #(Fix(h̃) ∩ UF ) ≤ 2.

To prove the h is Möbius-Like it is enough to show that h cannot contain more than one parabolic
fixed point. For such, let us suppose that h̃ does not contain any attracting fixed point, otherwise
there would be no parabolic fixed points. Then, the sequence h̃n(UG) converges to an endpoint x
of UG, which will be a fixed point of h̃ in UG and, since every endpoint of UG is also contained in
UF , we have that x is also a fixed point of h̃ in UF . Now, from the previous argument we have that
#(Fix(h̃) ∩ UG) ≤ 1 and #(Fix(h̃) ∩ UF ) ≤ 1, therefore x is the only fixed point of h̃ in both UG
and UG, which implies that x is the only fixed point of h̃ in S1. Thus we conclude that if h̃ has no
attracting fixed points then it has only one fixed point.

Proof of Theorem D. Using the notations as in Definition 4.5, one can notice that the elements of
(F, x) ?θ,σ (G, y) which are conjugate into Ψ(F ) and Ψ(G) (the blow-ups of F and G) fixes at most
2n points, since the only elements affected by the blow-up were in the stabilizers SF and SG and
they fixes either x or y, so after the blow-up they have exactly 2n fixed points.

Now, since Ψ(F ) and Ψ(G) satisfies a proper ping-pong partition with 2n partitions, by Lemma
5.3.i every other element generated by the amalgamated product of Ψ(F ) and Ψ(G) also fixes at
most 2n points. Therefore, (F, x) ?θ,σ (G, y) has at most 2n fixed points.
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5.2 Conditions for being non-conjugate into PSL(k)(2,R)
In the next theorem we will present a sufficient condition to have the amalgamated product

of group actions not conjugate to any subgroup of PSL(k)(2,R). The idea behind this result is
inspired by the one presented by Kovačević in [17] for the case k = 1, which uses a non-discrete
sequence of elements in one of the original subgroups to conclude that blow-up of this sequence by
the amalgamated product cannot be contained in a convergence group, and therefore it cannot be
conjugate to a subgroup of PSL(k)(2,R).

We remark that the condition described below is sufficient, but it is not necessary.

Theorem 5.4. Consider two countable subgroups F and G of Homeo+(S1) with at most 2n fixed
points, and two collections of n points x = {x1, . . . , xn} ⊂ S1 and y = {y1, . . . , yn} ⊂ S1 such that,
for all distinct i, j ∈ {1, . . . , n}, the following conditions are satisfied:

• xj /∈ F.xi and yj /∈ G.yi,

• Stab(F, xi) = SF and Stab(G, yi) = SG, with θ : SF
∼−→ SG,

• Fix(sf )={x1, . . . , xn} and Fix(sg)={y1, . . . , yn}, for all sf ∈ SF r {id} and sg ∈ SG r {id},

• SF � F , SG � G and at least one of the indexes [F : SF ] and [G : SG] is greater than 2.

Let σ be any circular-order-preserving permutation of {1 . . . , n} and assume that the action of F
or G on S1 is non-discrete. Then, any minimal group action of H, with H = (F, x) ?θ,σ (G, y), is
not conjugate into PSL(k)(2,R), for every k ≥ 1.

Proof. Let us assume, without loss of generality, that the action of F on S1 is non-discrete and that
the sequence of distinct elements {fi}i∈N ⊂ F converges to the identity on S1. Now, let us show
that we can always assume, upon extracting a subsequence, that fi /∈ SF for every i ∈ N.

Indeed, if it is not the case, there would be a sequence for which every element is contained in
the stabilizer {si}i∈N ⊂ SF with si → id on S1, but then, take any element f ∈ F r SF . Since
the points xi have disjoint orbits, it is clear that f(x1) 6= xi for all i ∈ {1, . . . , n}. Then, consider
the sequence {fsif−1}i∈N ⊂ F . That sequence converges to the identity on S1 and observe that
fsif

−1(x1) 6= f(f−1(x1)) = x1, therefore fsif−1 does not fix the point x1 and the sequence has no
element in the stabilizer S.

Now, fix a sequence of distinct elements {fi}i∈N ⊂ F rS converging to the identity on S1, and as
in Definition 4.5 write Ψ : F ∗θG

∼−→ H for the isomorphism, and Core(Ψ) = XF for the core for the
semi-conjugation of Ψ(F ) ≤ H to F . Notice that, the sequence of distinct elements {Ψ(fi)}i∈N ⊂ H
converges to the identity exactly in XF and to a constant value in every connected component of
the complementary of XF . In particular, {Ψ(fi)}i∈N does not converge to a homeomorphism.

We now argue that H is not conjugate into PSL(2,R). For this, note that for any M ≥ 1,
choosing M distinct points y1, y2, . . . , yM ∈ XF , we have {Ψ(fi)(yi)}i∈N converges to M different
points. Taking M ≥ 2, then Theorem 2.17 implies that the group H is conjugate into PSL(k)(2,R)
only if the sequence {Ψ(fi)}i∈N converges to a homeomorphism, which is not the case.

Finally, fix k ≥ 2 and take M > k for the previous choice of points. If H is conjugate into
PSL(k)(2,R), then there exists a periodic homeomorphism τ of order k which commutes with H, so
that the induced action of H on the quotient circle S1/〈τ〉 is conjugate to the action of a subgroup
of PSL(2,R). However, the image of the sequence {Ψ(fi)(yi)}i∈N in this quotient, would converge
to at least M/k > 1 different points, and as before, this is not possible.
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6 Examples with at most 2 fixed points
In the previous section, we presented a way to construct examples of group actions with at most

2n fixed points that are not conjugate into PSLn(2,R) by introducing the Theorem D. Now, we will
be interested in the case where the group action has at most 2 fixed points and it is not conjugate
into the Möbius group. One can notice that a first example for this is given by Theorem D for the
case n = 1 (this will be stated by Theorem 6.1).

In the first section, we will also present the construction of amalgamated product of group
actions such that the proper ping-pong partitions has more than 2 intervals, but still the action has
no more than 2 fixed points (see Theorem 6.2) and we will discuss about the conditions to have
such group action being Möbius-Like.

For the second part, Section 6.2, we will present a construction of HNN-extension of group
actions, which will also act with at most 2 fixed points and, as we will argue, it should be considered
as a different family of examples.

6.1 Amalgamated product of group actions with at most 2 fixed points

This result is the first natural way to construct amalgamated product of group actions with at
most 2 fixed points, which is by considering the restriction of Theorem D for the case n = 1.

Theorem 6.1. Consider a countable subgroup F of Homeo+(S1) with at most 2 fixed points, and
a point x ∈ S1 with stabilizer S := Stab(F, x), satisfying that:

• Fix(s) = {x}, for all s ∈ S,

• S � F and the index [F : S] is greater than 2.

Then, for all G ≤ Homeo+(S1) with at most 2 fixed points such that Stab(G, x) = SG is
isomorphic to S through an isomorphism θ : S

∼−→ SG, there exists a minimal group action
H ≤ Homeo+(S1), with H = (F, x) ?θ (G, x), which is unique up to conjugations, satisfying that:

1. H has at most 2 fixed points.

2. If F is non-discrete, then H is not conjugate into PSL(2,R).

Proof. Notice that we are in the hypothesis of Theorem D for the case n = 1. Therefore the first
conclusion is a direct application of it and, if F is non-discrete, we are also in the hypothesis of
Theorem 5.4 which implies in the second conclusion of H not being conjugate into PSL(2,R).

Now, we will present an interesting way to construct amalgamated products of group actions
with at most 2 fixed points, even though we may have more than 2 intervals in the proper ping-pong
partition. Although the statement of this theorem being quite surprising, the proof will be a direct
application of Theorem D and Lemma 5.3 from previous chapters.

Theorem 6.2. Consider two countable subgroups F and G of Homeo+(S1) with at most 2 fixed
points, and two collections of n points x = {x1, . . . , xn} ⊂ S1 and y = {y1, . . . , yn} ⊂ S1 such that,
for all distinct i, j ∈ {1, . . . , n}, the following conditions are satisfied:

• xi /∈ F.xj and yi /∈ G.yj,

• Stab(F, xi) = Stab(G, yj) = id,

• F and G are non-trivial and at least one of them has more than 2 elements.
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• the collection of points (x1, x2, . . . , xn) is proper cross free for the action of F .

Let σ be any order-preserving permutation of n elements. Then, any minimal group action H, with
H = (F, x) ?θ,σ (G, y) has at most 2 fixed points.

Proof. Observe that the subgroups F and G ≤ Homeo+(S1) act with at most 2 fixed points, then
they also act with at most 2n fixed points, which implies, by Theorem D, that the group H acts
with at most 2n fixed points. Now, since the stabilizers are trivial, we have SF = SG = {id},
no element of F or G fixes any blown-up point, so the blow-up of the actions of F and G in the
construction of H does not add any fixed point to the elements semi-conjugate into F ∪G. So, as
both F and G act with at most 2 fixed points, the only elements of H that can have more than 2
fixed points are the elements that cannot be semi-conjugate into F ∪G.

Now, with notations as in Definition 4.5, the blown-up collection of points x and y will form
the ordered partition of the circle (h−1

F (x1), h−1
G (yσ(1)), . . . , h−1

F (xn), h−1
G (yσ(n))) which is a proper

ping-pong partition for the actions of Ψ(F ) and Ψ(G). Moreover, since (x1, x2, . . . , xn) is proper
cross free for the action of F , we have that (h−1

F (x1), . . . , h−1
F (xn)) is proper cross free for the action

of Ψ(F ).
To summary, we have that:

• H = 〈Ψ(F ),Ψ(G)〉.

•
(⋃n

i=1 h
−1
F (xi),

⋃n
i=1 h

−1
G (yσ(i))

)
is a proper ping-pong partition for Ψ(F ) and Ψ(G).

• (h−1
F (x1), . . . , h−1

F (xn)) is proper cross free for the action of Ψ(F ).

Therefore, by Lemma 5.3, more precisely the item 5.3.ii, it follows that the number of fixed
points of any h ∈ H which is not conjugate into Ψ(F ) ∪ Ψ(G) is at most 2, so every non-trivial
element of H has at most 2 fixed points.

We remark that, even for n ≥ 2, Theorem 6.2 does not contradicts Theorem D, since an action
with at most 2 fixed points is also an action with at most 2n fixed points, for every positive n. The
notation of an action with at most N fixed points in Definition 1.1 does not assume the existence
of an element with exactly N fixed points.

Next we present a simple corollary from an algebraic perspective that best summarizes what
was shown by both previous theorems.

Corollary 6.3. Given any two countable subgroups F and G acting on the circle with at most 2
fixed points, there exists an action of the free product F ∗G on the circle with at most 2 fixed points.

Proof. Since both subgroups are countable, one can find x and y ∈ S1 such that the stabilizers
Stab(F, x) and Stab(G, y) are trivial. Then, by applying the Theorem 6.2 for n = 1 we have that
the subgroup H = (F, x) ?id,id (G, y) has at most 2 fixed points, but H is also isomorphic to the
free product F ∗G, which implies in the conclusion, that F ∗G can act on the circle with at most
2 fixed points.

We follow the text by describing the necessary conditions for an amalgamated product of actions
being Möbius-Like.

We recall from Section 2.4 that a subgroup H of Homeo+(S1) is Möbius-Like, if every element
of the subgroup is conjugate into an element of the Möbius group PSL(2,R), which is equivalent
to say that H acts with at most 2 fixed points, contains no bi-parabolic element and every h ∈ H
without fixed points is conjugate to a rotation.
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Now, one may notice that, with notation as in Definition 4.5, if the subgroups F and G are
Möbius-Like then any bi-parabolic element of the subgroup (F, x) ?id,σ (G, y) is contained in the
stabilizers Ψ(SF ) = Ψ(SG). Indeed, we have the following lemma.

Lemma 6.4. With notation as in Definition 4.5, let the subgroups F and G be Möbius-Like with x
proper cross free for the action of F and let H be the amalgamated product H = (F, x) ?θ,σ (G, y).

Then, if H contains a bi-parabolic element, the stabilizer Ψ(SF ) is not trivial and it contains
the bi-parabolic element.

Proof. Remark that all the elements in H that are not conjugate into Ψ(F )∪Ψ(G) are Möbius-Like
(see Lemma 5.3), and therefore, such bi-parabolic element would be conjugate into Ψ(F ) ∪Ψ(G).

Let us assume that such bi-parabolic element p ∈ H exists and that p ∈ Ψ(F ). As F and G are
Möbius-Like, they didn’t contain any bi-parabolic element before the blow-up for the amalgamated
product, which implies that the blow-up have interfered in the amount of fixed points of p and
therefore Ψ−1(p) ∈ SF , as we wanted to prove.

Now, before we state the next lemma, we remark that since the stabilizers SF and SG are abelians
subgroups acting on S1 with global fixed points, we have that SF and SG are both isomorphic into
subgroups of R and the isomorphism θ : SF → SG can be extended to an automorphism of the
ordered abelian group (R, <). So, θ can preserve or invert the orientation of each element s ∈ SF .

Lemma 6.5. With notation as in Definition 4.5, let the subgroups F and G be Möbius-Like
with x proper cross free for the action of F and let us suppose that the amalgamated product
H = (F, x) ?θ,σ (G, y) has at most 2 fixed points.

Then H contains a bi-parabolic element, if and only if, the isomorphism θ : SF → SG preserves
the order of at least one element s ∈ SF .

Proof. From Lemma 6.4, we have that the stabilizers SF ∼= SG are non-trivial, which implies that
the number of intervals in the proper ping-pong partition is at most 2. Otherwise, Ψ(s) would fixes
more than 2 points, for any s ∈ SF . Therefore, the collections of points x and y are single points,
and we will denote by x = {x1} and y = {y1}, and remark that the stabilizers SF and SG act
without fixed points on S1 r {x1} and S1 r {y1}, respectively.

Now, for any element γs ∈ Ψ(SF ) = Ψ(SG), observe that the signal of γs(z)− z on XF extend
to the whole interval h−1

G (y1) and similarly, the signal of γs(z) − z on XG extend to the interval
h−1
F (x1). Now, as we have the action of γs on XF given by hF s h−1

F and the action of γs on XG

given by hG θ(s)h−1
G , then the signal of γs(z)− z on XF is the opposite to the signal γs(z)− z on

XG if and only if θ inverts the orientation of γs.
These signals are extended to the partition of the circle (h−1

F (x1), h−1
G (y1)), which implies in γs

fixing exactly the 2 limit points of the partition with both fixed points being parabolic if and only
if θ preserves the orientation of γs.

Lemma 6.6. If a subgroup F ≤ Homeo+(S1) is non Möbius-Like, then any blow-up of F is also
non Möbius-Like.

Proof. Let f ∈ F be a non Möbius-Like homeomorphism. There are two possibilities: either f is
bi-parabolic, or f is a non conjugate blow-up of a rotation. In the latter case, a blow-up of the
group action F would contain the blow-up of a non conjugate blow-up of rotation, which is also a
non conjugate blow-up and then non Möbius-Like.

Now, for f bi-parabolic, a blow-up of the group action F would still contain a bi-parabolic
element or (in the case of the blow-up be on the orbit of those parabolic fixed points) an element
with at least 3 fixed points, which is non Möbius-Like.

48



We are now ready for the next two theorems which will describe the necessary and sufficient
conditions to have an amalgamated product of actions being Möbius-Like for the cases with trivial
and non-trivial stabilizers.

Theorem 6.7. Consider two countable subgroups F and G of Homeo+(S1) with at most 2 fixed
points, and two collections of n points x = {x1, . . . , xn} ⊂ S1 and y = {y1, . . . , yn} ⊂ S1 such that,
for all distinct i, j ∈ {1, . . . , n}, the following conditions are satisfied:

• xi /∈ F.xj and yi /∈ G.yj,

• Stab(F, xi) = Stab(G, yj) = id,

• the collection of points (x1, x2, . . . , xn) is proper cross free for the action of F .

Let σ be any order-preserving permutation of n elements. Then, the minimal amalgamated product
of group actions H = (F, x) ?id,σ (G, y) is Möbius-Like if, and only if, F and G are Möbius-Like
and contains no elements with irrational rotation number.

Proof. With notation as in Definition 4.5, if F or G is non Möbius-Like, then by Lemma 6.6 the
subgroup Ψ(F ) ∪Ψ(G) is also non Möbius-Like. Furthermore, if F or G contains an element with
irrational rotation number, then Ψ(F ) or Ψ(G) will also contain an element with irrational rotation
number, but since Ψ(F ) and Ψ(G) preserves a proper ping-pong partition, such element has no
dense orbits. Therefore, the conditions presented by the theorem are indeed necessary and we will
now show that they are also sufficient.

First, from Theorem 6.2, we know that H has at most 2 fixed points and since the stabilizer
Ψ(S) is trivial, from Lemma 6.4, it does not contain any bi-parabolic element. Therefore, the only
possible non Möbius-Like elements in H are the blow-up of rotations.

Now, Lemma 5.3 implies that any element ofH without fixed points is contained in Ψ(F )∪Ψ(G),
and since F and G are Möbius-Like and contains no elements with irrational rotation number, such
element would be isomorphic to a rational rotation. Therefore, such element is also conjugate to a
rotation. Then, we conclude that H is indeed Möbius-Like.

Theorem 6.8. Consider two countable subgroups F and G of Homeo+(S1) with at most 2 fixed
points, two points x and y ∈ S1 and with stabilizers SF := Stab(F, x) and SG := Stab(G, y) such
that, the following conditions are satisfied:

• Fix(sf ) = {x}, for all sf ∈ SF and Fix(sg) = {y}, for all sg ∈ Sg,

• SF � F and SG � G, with the index [F : SF ] > 2,

• there exists a isomorphism θ : Stab(F, x) ∼−→ Stab(G, y),

• the stabilizers Stab(F, x) ∼= Stab(G, y) are non trivial.

Then, any minimal group action H, with H = (F, x) ?θ (G, y) Möbius-Like if, and only if, F and G
are Möbius-Like, they contains no elements with irrational rotation number and θ is order-inverting.

Proof. Note that the arguments in the proof of Theorem 6.7 still hold for any element which is not
in the stabilizers. Therefore, it is enough to prove that both Ψ(SG) and Ψ(SF ) are Möbius-Like
(here Ψ is the one given by Definition 4.5).

On the other hand, all elements in Ψ(SG) and Ψ(SF ) have 2 fixed points, so the only non
Möbius-Like element that can possibly be in Ψ(SG) or Ψ(SF ) are bi-parabolic elements, which by
Lemma 6.5, exists if and only if θ is not order-inverting, as we wanted to prove.
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An interesting question that arises from the Theorem 6.8 is for which stabilizers SF and SG there
exists an order-inverting θ : SF

∼−→ SG so that we can make a Möbius-Like amalgamated product of
actions. And, as we have seen in the proof of Lemma 6.5, for the subgroup (F, x)?θ (G, y) be Möbius-
Like, the subgroups SF and SG should act on R without fixed points, then by Theorem 1.3 they are
abelian and semi-conjugate into Isom+(R) ∼= R. Therefore, let SF ∼= AF ⊂ R and SG ∼= AG ⊂ R,
for every isomorphism θ : SF → SG there is an associated isomorphism αθ : AF → AG, and αθ
inverts (or preserves) the order if, and only if, θ does it. Since there is a natural bijection between
order-preserving and inverting isomorphisms, to prove the existence of an order-inverting θ is the
same as to prove the existence of an order-preserving action.

So, to find stabilizers such that the amalgamated product of actions can be Möbius-Like is, in
fact, to find two abelian subgroups A and B of R which are isomorphic by an order-preserving
isomorphism.

6.2 HNN-extension of group actions with at most 2 fixed points

The next result will be the direct construction of an example that has as inspiration the HNN-
extension of groups. It will be part of the family of examples given by Theorem 6.18, but we
recommend reading it, since the ideas used here will be fundamental to the more general construction
that follows.

The idea is to construct a group action respecting a proper ping-pong partition (just as in the
case of usual amalgamated products), but with the inclusion of a finite order element that permutes
the intervals of the partition. For simplicity, in this first example such element will be the order 2
rotation.

Theorem 6.9. Consider a countable subgroup F of Homeo+(S1) with at most 2 fixed points, and
a point x ∈ S1 with stabilizer S := Stab(F, x), satisfying that:

• Fix(s) = {x}, for all s ∈ S,

• S � F and the index [F : S] is greater than 2.

Then there exists a minimal subgroup H ≤ Homeo+(S1) which contains two subgroups ΓS and
ΓF , with ΓS < ΓF < H, and satisfying that:

i. There exists an injective morphism Ψ : F → H, with Ψ(F ) = ΓF and Ψ(S) = ΓS;

ii. ΓF and ΓS are semi-conjugate to F and S, with the same semi-conjugacy;

iii. H is isomorphic to ΓF ∗ΓS
〈R 1

2
,ΓS〉;

iv. H has at most 2 fixed points.

Proof. Blow-up – First, we are going to blow-up the action of F on the orbit of x. For this, we
take a function h : S1 → S1 satisfying the following properties:

• h−1(x) = [0, 1
2 ] =: I and Iξ := h−1(ξ) is a non-trivial closed interval for any ξ ∈ F.x,

• h−1(z) is a point for any z /∈ F.x.
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Subsets where the action will be defined – Let I =
⋃
ξ∈F.x Iξ and Aξ : I → Iξ be the unique

linear orientation-preserving homeomorphism. We define by induction the following subsets

Kn =
{
S1 r I if n = 0,⋃
ξ∈F.xAξ(R 1

2
(Kn−1)) if n ≥ 1.

We denote Kn
1
2

:= R 1
2
(Kn) the mirror set of Kn for any n ∈ N, and K =

⋃
n∈NK

n ∪Kn
1
2
. Then, for

any choices of ξ ∈ F.x, select elements fξ ∈ F such that fξ(x) = ξ and define Ψ(fξ)|K∩I := Aξ.
Definition of the action for the stabilizers – Now, notice that from the tautological action of
F we can define the group action ψ : F → Homeo+(K0) by setting

ψ(f)(z) = h−1fh(z) for every f ∈ F and z ∈ S1 r I,

and then, extend it by continuity for every z ∈ K0.
Now, take any s ∈ S and let ξ1 and ξ2 ∈ F.x be such that s(ξ1) = ξ2. By induction, define

Ψ(s)|
Kn1

2

:= R 1
2

Ψ(s−1)|
Kn

R 1
2
, (6.1)

Ψ(s)|
Aξ1 (Kn1

2
) := Aξ2 Ψ(f−1

ξ2
s fξ1)|

Kn1
2

A−1
ξ1
. (6.2)

Observe that, this way we have for all s ∈ S, the homeomorphism Ψ(s) ∈ Homeo+(K) is well
defined. And notice that, for every s ∈ S and every z ∈ K, the following property is satisfied

Ψ(s−1)(z) = R 1
2

Ψ(s)R 1
2
(z). (6.3)

Indeed, for z ∈ Kn
1
2
, this is a clear application of (6.1) after changing s for s−1, and for z ∈ Kn, we

have R 1
2
(z) ∈ Kn

1
2
, then by (6.1) it follows that

R 1
2

Ψ(s)R 1
2
(z) = R 1

2
R 1

2
Ψ(s−1)R 1

2
R 1

2
(z) = Ψ(s−1)(z).

Definition of the action for F – Now we will define an action of the groups Ψ : F → Homeo+(K).
For this, remember that the representatives fξ ∈ F , are already defined as

Ψ(fξ)|K∩I := Aξ

and, for all f ∈ F , the element Ψ(f)|
K0 is already well defined by ψ(f) : K0 → K0.

To define Ψ(f)|K , one should note that, if f(x) = ξ, then f−1
ξ f is contained in the stabilizer

S. Therefore, Ψ(f−1
ξ f)(z) is already defined for all z ∈ K and Ψ(fξ)(z′) is already defined for all

z′ ∈ K ∩ I. Then the only consistent way to define Ψ(f) over K ∩ I is given by

Ψ(f)|K∩I := Ψ(fξ) Ψ(f−1
ξ f) = Aξ Ψ(f−1

ξ f).

Now, observe that the points z ∈ K such that Ψ(f)(z) is still not defined are exactly

z ∈ K r
(
(K ∩ I) ∪K0

)
=
(
K ∩ [1

2 , 0]
)
rK0 =

⋃
n≥1

Kn.
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For all n ≥ 1 and all z ∈ Kn, it follows that there exists Aξ′ such that A−1
ξ′ (z) ∈ Kn−1

1
2
⊂ K ∩ I.

Then, to ensure the properties of a group action, Ψ(f)(z) is uniquely defined by

Ψ(f)(z) := Ψ(f)Aξ′ A−1
ξ′ (z) = Ψ(f) Ψ(fξ′)(A−1

ξ′ (z)) = Ψ(f fξ′)(A−1
ξ′ (z))

and as f fξ′ ∈ F is already defined at the point A−1
ξ′ (z), we have that Ψ(f)(z) is defined for all

z ∈ Kn. Furthermore, Ψ : F ×K → K is a continuous group action, which can be extend naturally
to a continuous action on K.
Getting an action on the circle – Since K ⊂ S1 is a closed subset of S1, we can extend the
action Ψ to the whole circle S1 in a continuous and orientation-preserving way, which we still denote
(with abuse of notation) by Ψ : F × S1 → S1.
Proofs of the items – Let H be the subgroup of circle homeomorphisms generated by 〈Ψ(F ), R 1

2
〉

and we will prove the conclusions in the statement of Theorem 6.9.
Let ΓF = Ψ(F ) and ΓS = Ψ(S), and notice that both actions of ΓF and ΓS on S1 are semi-

conjugate to the action of F and S on S1 with semi-conjugacy h given at the beginning of the
construction. Therefore, the items 6.9.i and ii are satisfied.

Now, observe that ([0, 1
2 ], [1

2 , 0]) is a proper ping-pong partition for the subgroups Ψ(F ) and
〈R 1

2
,Ψ(S)〉. Indeed, for all f ∈ F r S it follows that f(x) = ξ ∈ F.xr {x}, then

Ψ(f)
(
[0, 1

2 ]
)

= Ψ(f)(I) = Iξ ⊂ [1
2 , 0].

For the subgroup 〈R 1
2
,Ψ(S)〉, notice that, by the property stated in (6.3), we can describe all the

elements of the subgroup as

〈R 1
2
,Ψ(S)〉 = {Ψ(s),Ψ(s)R 1

2
| s ∈ S}.

Then, for all ω ∈ 〈R 1
2
,Ψ(S)〉rΨ(S), we have ω = Ψ(s)R 1

2
for some s ∈ S, and it follows that

ω
(
[1
2 , 0]

)
= Ψ(s)R 1

2

(
[1
2 , 0]

)
= Ψ(s)

(
[0, 1

2 ]
)

= [0, 1
2 ].

After applying Lemma 4.2, it follows that

〈Ψ(F ), R 1
2
〉 = 〈Ψ(F ), 〈R 1

2
,Ψ(S)〉〉 = Ψ(F ) ∗Ψ(S) 〈R 1

2
,Ψ(S)〉 ∼= F ∗S 〈R̃ 1

2
, S〉.

Therefore, the item 6.9.iii is proved.
Finally, by Lemma 4.4, if the action of H on the circle is not minimal then it can be semi-

conjugated to a minimal action by collapsing some intervals, in which case we redefine the con-
tinuous group action Ψ by the collapse of these intervals and conclude that the new subgroup of
homeomorphisms H = 〈Ψ(F ), R 1

2
〉 acts minimally on S1. We remark that, after minimilizing the

action of H the subgroup may not caontain the actual rotation of order 2, but none of the proofs of
the previous items are impacted by this change, since we are changing the previous H for a minimal
representative in the semi-conjugacy class of the subgroup generated by Ψ(F ) and R 1

2
.

Then, the proof of 6.9.iv is a direct application of the Lemma 5.3, since every element which is
conjugate into Ψ(F ) ∪ 〈R 1

2
,Ψ(S)〉 has at most 2 fixed points.

Remark 6.10. One should notice that the subgroup H constructed in the proof of Theorem 6.9 is
generated by Ψ(F ) and R 1

2
, where the only new relation is given by the isomorphism α, where

α : Ψ(S)→ Ψ(S) is defined by α(Ψ(s)) := R 1
2
Ψ(s)R 1

2
= Ψ(s−1).
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So, we have that H is a HNN-extension of Ψ(F ) relative to the automorphism α and we may
say that H is isomorphic to Ψ(F )∗α, which is also isomorphic to F∗a, where a : S → S is the
inversion isomorphism. In fact, after Definition 6.20, one can easily conclude that the subgroup H
constructed in the proof of Theorem 6.9 is conjugate to the HNN-extension of group actions given
by (F, x)?a.

Now we will follow with more general constructions and we begin with a definition of what can
be considered as the trivial amalgamated product of a stabilizer with itself.

Definition 6.11. Let S be a countable subgroup of Homeo+(S1) with a global fixed point x ∈ S1

and fix two distinct points a, b ∈ S1. Now, take the following:

• an automorphism ϕ ∈ Aut(S),

• an order-preserving homeomorphism t : S1 r {x} → (a, b),

• an order-preserving homeomorphism ρ : S1 → S1 with ρ2 = id and ρ(a) = b.

Then, we define the group homomorphism Hϕ,ρ,t : S → Homeo+(S1) as the following:

Hϕ,ρ,t(s)(z) =
{
tst−1(z) for every z ∈ (a, b),
ρtϕ(s)t−1ρ(z) for every z ∈ (b, a),

Hϕ,ρ,t(s)(a) = a and Hϕ,ρ,t(s)(b) = b, for every s ∈ S.

Remark 6.12 (Uniqueness). The subgroup Hϕ,ρ,t(S) ≤ Homeo+(S1) is unique up to conjugacy, for
any choice of points a, b ∈ S1 and any choices of order-preserving homeomorphisms t and ρ satisfying
the hypothesis of the statement. Therefore, we will denote the subgroup only by Hϕ(S), whenever
the choice of the homeomorphisms ρ and t are irrelevant.
Remark 6.13. From Definition 4.5, one can observe that the subgroup Hϕ(S) is a trivial amalga-
mated product of actions of the group S with itself on the point x, that is, Hϕ(S) = (S, x)?ϕ (S, x).

The next lemma shows that for any countable subgroup F having S as the stabilizer for the
amalgamated product (F, x) ?ϕ (F, x), the blow-up of S by the amalgamated product is always
semi-conjugate to the subgroup Hϕ(S).

Lemma 6.14. Let F be a countable subgroup of Homeo+(S1) and let x ∈ S1 be a point whose
stabilizer S := Stab(F, x) has index [F : S] > 2. Consider the following:

• an automorphism ϕ ∈ Aut(S),

• an amalgamated product of actions H = (F, x) ?ϕ (F, x),

• the isomorphism Ψ : F ∗ϕ F
∼−→ H as in Definition 4.5.

Then the group action Ψ(S) is semi-conjugate to Hϕ(S).

Proof. For the proof of this lemma, we are going to construct the semi-conjugacy β : S1 → S1 from
the group action Ψ(S) to Hϕ(S).

First, since we have the amalgamated product of two copies of the subgroup F , we will instead
denote them by F1 and F2, respectively, so that we write H = (F1, x) ?ϕ (F2, x). Now, as in
Definition 4.5, for i ∈ {1, 2}, we will write Ψ(Fi) = ΓFi and we have that ΓFi is semi-conjugate to
Fi with semi-conjugacy hFi and Core(hFi) = XFi ⊂ S1.
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Now, let us define the continuous order-preserving map β : S1 → S1 as the following:

β(z) =

 t hF1(z) for every z ∈ h−1
F2

(x),

ρ t hF2(z) for every z ∈ h−1
F1

(x).

Notice that the union h−1
F2

(x)∪h−1
F1

(x) covers the circle, so the map β is defined for all points z ∈ S1.
Also observe that for every s ∈ S and every z ∈ S1 we have:

Hϕ(s)β(z) = βΨ(s)(z).

In particular, for z ∈ h−1
F2

(x) we have:

Hϕ(s)β(z) = Hϕ(s) t hF1(z) = t s t−1t hF1(z)
= t s hF1(z) = t hF1 Ψ(s)(z) = βΨ(s)(z).

Similarly, for z ∈ h−1
F1

(x) we have:

Hϕ(s)β(z) = Hϕ(s) ρ t hF2(z) = ρ t ϕ(s) t−1ρ2 t hF2(z)
= ρ t ϕ(s)hF2(z) = ρ t hF2 Ψ(s)(z) = βΨ(s)(z).

Remark 6.15. One can argue that Ψ(S) is the natural (S, x) ?ϕ (S, x) when it is considered as a
subgroup of (F, x) ?ϕ (F, x). Indeed, as in Remark 6.13, one can observe that the subgroup Ψ(S)
in Lemma 6.14 is also a trivial amalgamated product of actions of the group S with itself on the
point x, that is, Ψ(S) = (S, x) ?ϕ (S, x).

Corollary 6.16. Let F1 and F2 be two countable subgroups of Homeo+(S1), both satisfying the
assumptions in Lemma 6.14 with Stab(F1, x) = Stab(F2, x) = S, and suppose that the subsets F1.x
and F2.x ⊂ S1 are homeomorphic through an order-preserving homeomorphism.

Consider, for i ∈ {1, 2}, the amalgamated product of actions Hi = (Fi, x) ?ϕ (Fi, x) and the
isomorphism Ψi : Fi ∗ϕ Fi

∼−→ Hi given by Definition 4.5. Then the subgroups Ψ1(S) and Ψ2(S) are
conjugate.

Proof. This is a direct application of uniqueness of the blow-up, see Theorem 2.15.

Lemma 6.17. With notation as in Definition 6.11, assume in addition that S acts freely on S1r{x}.
Then, different choices of ρ and t give conjugate subgroups 〈Hϕ,ρ,t(S), ρ〉 in Homeo+(S1). Moreover,
we have the following.

1. Hϕ,ρ,t(S) is a normal subgroup of 〈Hϕ,ρ,t(S), ρ〉 if and only if ϕ2 = id, in which case 〈Hϕ,ρ,t(S), ρ〉
is isomorphic to S oϕ Z2.

2. The action of 〈Hϕ,ρ,t(S), ρ〉 has at most 2 fixed points if and only if ϕ2 = id.

Proof. First, let us show that, for every s ∈ S we have:

ρHϕ,ρ,t(s) ρ(z) =
{
Hϕ,ρ,t(ϕ(s))(z) for every z ∈ (a, b),

Hϕ,ρ,t(ϕ−1(s))(z) for every z ∈ (b, a).
(6.4)

Indeed, for z ∈ (a, b) we have ρ(z) ∈ (b, a) and it follows that

ρHϕ,ρ,t(s) ρ(z) = ρ2 t ϕ(s) t−1ρ2(z) = t ϕ(s) t−1(z) = Hϕ,ρ,t(ϕ(s))(z).
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Also, for z ∈ (b, a) we have ρ(z) ∈ (a, b) and it follows that

ρHϕ,ρ,t(s) ρ(z) = ρ t s t−1ρ(z) = Hϕ,ρ,t(ϕ−1(s))(z).

Now, let us suppose that ϕ2 6= id and choose s ∈ S such that ϕ2(s) 6= s. It follows that

Hϕ,ρ,t(s)−1ρHϕ,ρ,t(ϕ(s)) ρ(z) =
{
Hϕ,ρ,t(s−1ϕ2(s))(z) for every z ∈ (a, b),

z for every z ∈ (b, a).

Therefore, there exists an element in 〈Hϕ,ρ,t(S), ρ〉 which fixes the interval (b, a) pointwise, but it
is not trivial.

For the case where ϕ2 = id we have, for all s ∈ S and all z ∈ S1, that

ρHϕ,ρ,t(s) ρ(z) = Hϕ,ρ,t(ϕ(s))(z),

which implies that Hϕ,ρ,t(S) is a normal subgroup of 〈Hϕ,ρ,t(S), ρ〉. Furthermore, since 〈ρ〉 = {id, ρ},
it follows that for any element ω ∈ 〈Hϕ,ρ,t(S), ρ〉 = Hϕ,ρ,t(S) o 〈ρ〉, we have ω ∈ Hϕ,ρ,t(S) or
ω ∈ Hϕ,ρ,t(S) ρ.

Now, our assumptions give that Fix(Hϕ,ρ,t(s)) = {a, b} and Fix(Hϕ,ρ,t(s) ρ) = ∅, for any non-
trivial s ∈ S. Therefore, the generated group 〈Hϕ,ρ,t(S), ρ〉 has at most 2 fixed points.

The next theorem is the main result of this section. It shows the existence of an HNN-extension
of a given countable subgroup F , also acting with at most 2 fixed points. This will be reference for
the definition of HNN-extensions of group actions given in Definition 6.20.

Theorem 6.18. Let F be a countable subgroup of Homeo+(S1) with at most 2 fixed points, and
x ∈ S1 a point whose stabilizer S := Stab(F, x) acts freely on S1 r {x} and has index [F : S] > 2.
Consider the following:

• an automorphism ϕ ∈ Aut(S), with ϕ2 = id,

• the minimal amalgamated product of actions H = (F, x) ?ϕ (F, x),

• the isomorphism Ψ : F ∗ϕ F
∼−→ H as in Definition 4.5.

Then, there exists a non-trivial homeomorphism ρ̃ ∈ Homeo+(S1) with ρ̃2 = id, such that the
generated group 〈H, ρ̃〉 has at most 2 fixed points and has H as a normal subgroup.

Furthermore, the group 〈H, ρ̃〉 is isomorphic to the HNN-extension of F relative to the isomor-
phism ϕ̃, where ϕ̃ is an extension of ϕ.

Proof of Theorem 6.18. Fix two distinct points a and b ∈ S1, an order-preserving homeomorphism
t : S1 r {x} → (a, b) and an order-preserving homeomorphism ρ : S1 → S1 with ρ2 = id and
ρ(a) = b, as in Definition 6.11. By Lemma 6.14, for any choice of ρ and t, we have that Ψ(S) is
semi-conjugate to Hϕ,ρ,t(S), more precisely, one can observe that Ψ(S) is a blow-up of Hϕ,ρ,t(S) on
the points t(F ∗.x) and ρ t(F ∗.x), where F ∗ = F r S.

Now, let us denote by β : S1 → S1 the semi-conjugacy of Ψ(S) to Hϕ,ρ,t(S), Iη := β−1(η) the
intervals for every η ∈ t(F ∗.x)∪ ρ t(F ∗.x) and I =

⋃
η Iη the union of the opened intervals. Now we

define the homeomorphism ρ̃ : S1 → S1 as the following:

ρ̃(z) =
{
β−1ρ β(z) for every z ∈ S1 r I,
Aη(z) for every z ∈ Iη,
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where Aη : Iη → Iρ(η) is a orientation-preserving homeomorphism from Iη to Iρ(η) that will be fixed
in the future.

It is clear that 〈Ψ(S), ρ̃〉 is also a blow-up of 〈Hϕ,ρ,t(S), ρ〉 on the points t(F ∗.x) and ρ t(F ∗.x),
with semi-conjugacy β.

On the other hand, since for any z ∈ t(F ∗.x) ∪ ρ t(F ∗.x) the stabilizers Stab(Hϕ,ρ,t(S), z) are
trivial, this blow-up creates no new fixed point, and from Lemma 6.17, we conclude that 〈Ψ(S), ρ̃〉
has at most 2 fixed points.

Now, as we are under the assumptions of Lemma 6.17, from (6.4) we also know that

ρHϕ,ρ,t(s) ρ = Hϕ,ρ,t(ϕ(s)) for every s ∈ S,

therefore, by the semi-conjugacy, we have

β ρ̃Ψ(s) ρ̃ = βΨ(ϕ(s)) for every s ∈ S. (6.5)

From (6.5), it follows that ρ̃Ψ(s) ρ̃(z) = Ψ(ϕ(s))(z) for every z ∈ S1rI, but since every non-trivial
element has at most two fixed points, it implies that ρ̃Ψ(s) ρ̃ = Ψ(ϕ(s)). By this argument, we
conclude that Ψ(S) is a normal subgroup of 〈Ψ(S), ρ̃〉, and since 〈ρ̃〉 = {id, ρ̃}, we have the following
description for the generated group

〈Ψ(S), ρ̃〉 = Ψ(S)oϕ ρ̃ = {Ψ(S), ρ̃Ψ(S)}.

Now, one can observe that both subgroups Ψ(S) and 〈ρ̃〉 have at most 2 fixed points, in fact, 〈ρ̃〉 is
free of fixed points and the points β−1(a) and β−1(b) are the only fixed points of non-trivial elements
of Ψ(S). So, every non-trivial element of 〈Ψ(S), ρ̃〉 which is conjugate into Ψ(S)∪〈ρ̃〉 also has at most
2 fixed points. On the other hand, for every Ψ(s) ∈ Ψ(S) we have Ψ(s)(β−1([a, b])) = β−1([a, b])
and for every ω ∈ ρ̃Ψ(S) we have ω(β−1([a, b])) = β−1([b, a]). So, (β−1([a, b]), β−1([b, a])) is a proper
ping-pong partition for the action of 〈Ψ(S), ρ̃〉 and, by Lemma 5.3, every element of 〈Ψ(S), ρ̃〉 which
is not conjugate into Ψ(S) ∪ 〈ρ̃〉 also has at most 2 fixed points, therefore the subgroup 〈Ψ(S), ρ̃〉
acts with at most 2 fixed points.

Notice that we proved both conclusions of the theorem for the generated group 〈Ψ(S), ρ̃〉, in
effect, 〈Ψ(S), ρ̃〉 has at most 2 fixed points and has Ψ(S) as a normal subgroup. Now, we need to
extend this result to the subgroup H and the key point here is to extend, in the correct way, the
automorphism ϕ ∈ Aut(S) to an isomorphism ϕ : F1 → F2, where F1 and F2 are the two copies of
F in the amalgamated product.

First, observe that the subset I =
⋃
η Iη for every η ∈ t(F ∗.x) ∪ ρ t(F ∗.x) is dense over S1.

Indeed, with notation as in Definition 4.5 and denoting by (F1, x1) and (F2, x2) the two copies of
(F, x) and (U1,U2) the proper ping-pong partition, we have that I is the union of the images of the
blown-up intervals U1 and U2 by F ∗2 and F ∗1 , respectively.

I = F ∗1 (U2) ∪ F ∗2 (U1).

Moreover, as we shown in the proof of Lemma 4.3, the closure of I contains a closed H-invariant
subset, but since the action of H is minimal (by Theorem 4.7, the minimality is given by the
hypothesis of index [F : S] larger than 2), then the only closed H-invariant set is the full circle S1,
which implies that the closure of I contains S1 and we conclude that I is dense.

Now, like in the construction of the amalgamated product of actions (see Theorem 4.7), choose
representatives elements fα ∈ F , for every α ∈ F.x, such that fα(x) = α and we denote by f1,α
and f2,α the two copies of these elements in F1 and F2, and we argue that it is possible to choose a
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family of orientation-preserving homeomorphisms Aη : Iη → Iρ(η), for every η ∈ t(F ∗.x)∪ ρ t(F ∗.x),
such that, for any γ ∈ F.x and α ∈ F ∗.x we have{

Aρt(fα(γ))Ψ(f2,α)At(γ)(z) = Ψ(f1,α)(z) for every z ∈ It(γ),
At(fα(γ))Ψ(f1,α)Aρt(γ)(z) = Ψ(f2,α)(z) for every z ∈ Iρt(γ).

(6.6)

In fact, by the uniqueness of the amalgamated product of group actions, H is conjugate to the
amalgamated product where in the construction (see proof of Theorem 4.7) it is chosen the same
representative elements as here and the homoeomorphisms defined by the representatives are the
orientation-preserving linear homeomorphisms (as it was done for the proof of Theorem 4.7). So,
after changing H by its conjugate, (6.6) is satisfied by choosing Aη : Iη → Iρ(η) as the orientation-
preserving linear homeomorphisms between these intervals, for every η ∈ t(F.x) ∪ ρ t(F.x) (notice
that we are also defining Aη for Iη = It(x) and Iρt(x), which are the partition intervals).

Therefore, for every z ∈ I and every α ∈ F ∗.x, it follows that

ρ̃Ψ(f1,α) ρ̃(z) = Ψ(f2,α)(z) and ρ̃Ψ(f2,α) ρ̃(z) = Ψ(f1,α)(z).

Since I is dense over S1, by continuity we have that ρ̃Ψ(f1,α) ρ̃ = Ψ(f2,α) and ρ̃Ψ(f2,α) ρ̃ = Ψ(f1,α).
Then, we extend the automorphism ϕ ∈ Aut(S) to an isomorphism ϕ : F1 → F2 by defining, for
every α ∈ F ∗.x,

ϕ(f1,α) := f2,α.

Observe that ϕ is a well-defined isomorphism. Indeed, for every f ∈ F ∗1 , there exists α ∈ F ∗1 .x such
that ff−1

1,α = s ∈ S, therefore ϕ(f) = ϕ(s)ϕ(f1,α) = ϕ(s)f2,α ∈ F2 is uniquely defined. From the
definition, it is clear that we still have ϕ2 = id and it follows that, for every f ∈ F1 with f = sf1,α,
we have:

ρ̃Ψ(f) ρ̃ = ρ̃Ψ(s)Ψ(f1,α) ρ̃ = ρ̃Ψ(s) ρ̃ ρ̃Ψ(f1,α) ρ̃ = Ψ(ϕ(s))Ψ(ϕ(f1,α)) = Ψ(ϕ(f)) ∈ Ψ(F2).

And similarly, for every f ∈ F2, we also have

ρ̃Ψ(f) ρ̃ = Ψ(ϕ(f)) ∈ Ψ(F1).

So, since H = 〈Ψ(F1),Ψ(F2)〉 and, for every h ∈ Ψ(F1) ∪ Ψ(F2), we have ρ̃ h ρ̃ ∈ H we conclude
that H is a normal subgroup of 〈H, ρ̃〉, as we wanted to prove.

Now, we will show that the subgroup 〈H, ρ̃〉 has at most 2 fixed points. For such, notice that
ρ̃Ψ(f) ρ̃ = Ψ(F2), therefore

〈H, ρ̃〉 = 〈Ψ(F1),Ψ(F2), ρ̃〉 = 〈Ψ(F1), ρ̃〉 = 〈Ψ(F1), 〈Ψ(S), ρ̃〉〉.

Since H has at most 2 fixed points, the subgroup Ψ(F1) ≤ H also has at most 2 fixed points and
we have already shown that the subgroup 〈Ψ(S), ρ̃〉 = {Ψ(S), ρ̃Ψ(S)} also acts with at most 2 fixed
points, so every non-trivial element of 〈Ψ(F1), 〈Ψ(S), ρ̃〉〉 which is conjugate into Ψ(F1) ∪ 〈Ψ(S), ρ̃〉
also have at most 2 fixed points.

We claim that (U1,U2) is a proper ping-pong partition for the subgroups Ψ(F1) and 〈Ψ(S), ρ̃〉.
For such, remark that (U1,U2) and (β−1[a, b], β−1[b, a]) are the same partitions and they are the
proper ping-pong partition for Ψ(F1) and Ψ(F2), so Ψ(S)(Ui) = Ui, for i ∈ {1, 2}, but ρ̃(U1) = U2.
Now, by definition, for every Ψ(f) ∈ Ψ(F ∗1 ) = Ψ(F1)rψ(S), we have Ψ(f)(U2) ⊂ U1. On the other
hand, we have that 〈Ψ(S), ρ̃〉 r Ψ(S) = ρ̃Ψ(S), and therefore, for every ω ∈ 〈Ψ(S), ρ̃〉 r Ψ(S) it
follows that ω(U1) = U2, which proves our claim.
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Therefore, applying Lemma 4.2, we have

〈H, ρ̃〉 = 〈Ψ(F1), 〈Ψ(S), ρ̃〉〉 = Ψ(F1) ∗Ψ(S) 〈Ψ(S), ρ̃〉,

and, by Lemma 5.3, one can conclude that every element of 〈Ψ(F1), 〈Ψ(S), ρ̃〉〉 which is not conjugate
into Ψ(F1) ∪ 〈Ψ(S), ρ̃〉 have at most 2 fixed points, which implies that 〈H, ρ̃〉 has at most 2 fixed
points, as we wanted to prove.

Now, for the last conclusion, it is enough to observe that the subgroup 〈H, ρ̃〉 is generated by
Ψ(F1) and ρ̃ and that the only relation between these two subgroups is given by the isomorphism
Ψ(f1) 7→ ρ̃Ψ(f1)ρ̃ = Ψ(ϕ(f1)), which is isomorphic to ϕ. Therefore, since Ψ(F1) ∼= F , we conclude
that 〈H, ρ̃〉 is isomorphic to the HNN-extension F∗ϕ.

Remark 6.19. One can notice that the homeomorphism ρ̃ given by the Theorem 6.18 is unique up
to conjugacy. Indeed, it is uniquely defined by the choice of the amalgamated product of actions
H = (F, x) ?ϕ (F, x) (see (6.7)) and, by Theorem 4.7, H itself is uniquely defined up to conjugacy.
So the only fundamental information is given by the action of the subgroup F , the chosen point x
and the automorphism ϕ ∈ Aut(S).

Furthermore, the extension ϕ̃ stated at the Theorem 6.18 is also uniquely defined by the auto-
morphism ϕ.

The next statement will take the Remark 6.19 in consideration to define the HNN-extension of
group actions, after Theorem 6.18, by using only the fundamental information needed.

Definition 6.20. Let F be a countable subgroup of Homeo+(S1) with at most 2 fixed points, and
x ∈ S1 a point whose stabilizer S := Stab(F, x) acts freely on S1 r {x} and has index [F : S] > 2.
Consider the following:

• an automorphism ϕ ∈ Aut(S), with ϕ2 = id,

• the minimal amalgamated product of actions H = (F, x) ?ϕ (F, x),

• the isomorphism Ψ : F ∗ϕ F
∼−→ H as in Definition 4.5.

Let ρ̃ ∈ Homeo+(S1) be the non-trivial homeomorphism given by Theorem 6.18, such that, the
subgroup 〈H, ρ̃〉 is isomorphic to F∗ϕ̃, with ϕ̃ being an extension of ϕ.

Then, we say that the subgroup defined as 〈H, ρ̃〉 is a HNN-extension of the subgroup F on the
point x by the isomorphism ϕ and we use the abbreviated notation (F, x)?ϕ.

Remark 6.21. After Theorem 6.18 and Remark 6.19, the HNN-extension of the subgroup F on the
point x by the isomorphism ϕ is well defined and it is unique up to conjugacy.

We clarify that the definition of (F, x)?ϕ for x = {x1, . . . , xn} can be made. We chose to do only
the case where n = 1 for simplicity and because it is the most interesting case for group actions
with at most 2 fixed points. We recall that for n > 1, if the stabilizer S is non-trivial, then there
exists elements with 4 or more fixed points.

The next theorem will be a direct application of Theorem 6.1 and it will give a condition to
have (F, x)?ϕ non conjugate to any subgroup of PSL(2,R).

Theorem 6.22. Let F be a countable subgroup of Homeo+(S1) with at most 2 fixed points, and
x ∈ S1 a point whose stabilizer S := Stab(F, x) acts freely on S1 r {x} and has index [F : S] > 2.
Let ϕ ∈ Aut(S) be an automorphism, with ϕ2 = id.

Then, if F is non-discrete, (F, x)?ϕ is not conjugate into PSL(2,R).
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Proof. Since F is non discrete, by Theorem 6.1, the amalgamated product of actions (F, x)?ϕ (F, x)
is not conjugate into PSL(2,R). On the other hand, by Definition 6.20, (F, x) ?ϕ (F, x) is conjugate
to a subgroup of F?ϕ, which implies that (F, x)?ϕ cannot be conjugate into PSL(2,R).

The HNN-extension of group actions present a very distinct dynamics when compared with
others amalgamated products of actions, mainly because of the existence of an order 2 element
which permutes the intervals of the proper ping-pong partition. And, in last theorem of this chapter,
we will show that, for many choices of Stab(F, x) and ϕ, only trivial amalgamated products are
conjugate to HNN-extensions.

This fact encourages us to characterize the HNN-extension of group actions as a different family
of examples, since the dynamics of theses examples have much more similarities between themselves
than with other usual amalgamated products.

Theorem 6.23. Let F be a countable subgroup of Homeo+(S1) with at most 2 fixed points, and
x ∈ S1 a point whose stabilizer S := Stab(F, x) acts freely on S1 r {x} and has index [F : S] > 2.
Consider the following:

• an automorphism ϕ ∈ Aut(S), with ϕ2 = id,

• the minimal amalgamated product of actions H = (F, x) ?ϕ (F, x),

• the isomorphism Ψ : F ∗ϕ F
∼−→ H as in Definition 4.5.

• the homeomorphism ρ̃, with ρ̃2 = id, as in Theorem 6.18.

Let 〈H, ρ̃〉 = (F, x)?ϕ be the HNN-extension of the subgroup F on the point x by the isomorphism
ϕ, as in Definition 6.20.

Then, if ϕ = id and S is not trivial nor isomorphic to Z, the subgroup 〈H, ρ̃〉 is an amalgamated
product of group actions with index larger than 2 over the stabilizer.

Moreover, the only amalgamated product of group actions conjugate to (F, x)?ϕ is given by
(F, x) ?ϕ (Γ, x), where [Γ : Ψ(S)] = 2.

Proof. Let us suppose that 〈H, ρ̃〉 = (G1, y1)?θ,σ (G2, y2) with a proper ping-pong partition (U1,U2)
and denote by Sg = G1∩G2 the stabilizer of the amalgamated product and Ψg : G1∗θG2 → 〈H, ρ̃〉 the
ping-pong isomorphism. Now, since ϕ = id, we have that Ψ(s) has fixed points and it commutes with
ρ̃ (an order 2 element), then, for every non-trivial s ∈ S, the homeomorphism Ψ(s) is bi-parabolic
and it cannot be conjugate into PSL(2,R).

If there exists a non-trivial element s ∈ S such that Ψ(s) /∈ Sg, than all elements Ψ(s) should
be contained in Ψg(G1) or in Ψg(G2), since none of them would fix the same points as the elements
of Sg and the new elements generated by an amalgamated product of group actions are all Möbius-
Like. Therefore, we argue that either Ψ(G1)∗ = Ψg(G1) r Sg or Ψ(G2)∗ = Ψg(G2) r Sg contains
every non-trivial element of Ψ(S).

Indeed, for any non-trivial s ∈ S, the two fixed points of Ψ(s) should be in the interior of
intervals of only one between U1 and U2, after all, the non-trivial elements with fixed points at
the exterior of these intervals are the elements of the stabilizer Sg, and, by taking a sufficiently
large n, the element Ψ(sn) should send all the others intervals close to the fixed points, therefore
to the interior of U1 or U2. Since this partition is a proper ping-pong partition for the subgroups
Ψg(G1) and Ψg(G2), that is enough to determine whether Ψ(s) is contained in Ψg(G1) or in Ψg(G2).
Moreover, for all s ∈ S, the fixed points of Ψ(s) are the same, which implies that all of them should
be contained at the same Ψg(Gi).
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Now, let us assume that the subgroup Ψ(S) is contained in Ψg(G1) and its fixed points are
in the interior of U1. One should notice that for at least one interval I, defined by the two fixed
points of Ψ(S), there is an interval of U2, but as S is not trivial nor isomorphic to Z, its action on
I is non-discrete, which implies that there exists an element s ∈ S such that Ψ(s)(U2) ∩ U2 6= ∅,
which contradicts the hypothesis of (U1,U2) being a proper ping-pong partition for Ψg(G1) and
Ψg(G2). So, we conclude that Sg contains the subgroup Ψ(S). Furthermore, since Sg is abelian by
construction and no other non-trivial element of 〈H, ρ̃〉 have the fixed points of Fix(Ψ(S r id)), we
have that Sg = Ψ(S).

In particular, as the stabilizer Sg is not trivial, the amalgamated product (G1, y1) ?θ,σ (G2, y2)
has a proper ping-pong partition of only 2 intervals, that we will denote by (I1, I2), otherwise the
elements of Sg would have more than 2 fixed points. Moreover, both (G1, y1) ?θ,σ (G2, y2) and
H = (F1, x) ?ϕ (F2, x) have the same ping-pong partition (I1, I2), and we have (after changing the
index, if necessary) that:

Ψg(g1)(I2) ⊂ I1, for every g1 ∈ G∗1 = G1 r Sg,
Ψg(g2)(I1) ⊂ I2, for every g2 ∈ G∗2 = G2 r Sg,
Ψ(f1)(I2) ⊂ I1, for every f1 ∈ F ∗1 = F1 rΨ(S),
Ψ(f2)(I1) ⊂ I2, for every f2 ∈ F ∗2 = F2 rΨ(S).

(6.7)

Now, since ρ̃ has no fixed point, it should be contained in Ψg(G1) or Ψg(G2). Let us suppose,
without loss, that ρ̃ ∈ Ψg(G2), then for any g2 ∈ G∗2 it follows that

ρ̃Ψg(g2)(I1) ⊂ ρ̃(I2) = I1, with ρ̃Ψg(g2) ∈ Ψ(G2).

Therefore, the only way to not contradict (6.7) is to have ρ̃Ψg(G∗1) ∈ Sg which implies that the
index of [G2 : Sg] is equal to 2, and Ψg(G2) = 〈ρ̃, Sg〉 = 〈ρ̃,Ψ(S)〉.

Now, we claim that the subgroup Ψ(F1) is contained in Ψg(G1). Indeed, no independent gener-
ator of Ψ(F1) can be created from the combination of others generators and ρ̃. But, from the proof
of Theorem 6.18, we have that

〈Ψ(F1), 〈ρ̃,Ψ(S)〉〉 = 〈H, ρ̃〉 = 〈Ψg(G1), 〈ρ̃,Ψ(S)〉〉.

So, Ψg(G1) is also contained in Ψ(F1), which shows that (G1, y1) ?θ,σ (G2, y2) = (F, x) ?ϕ (Γ, x),
where Γ ∼= 〈ρ̃,Ψ(S)〉 and has index [Γ : S] = 2, as we wanted to prove.

Remark 6.24. On the hypothesis of Theorem 6.23, if S is isomorphic to Z, one can conclude that
the subgroup 〈H, ρ̃〉 is not an amalgamated product of Möbius-Like group actions with index larger
than 2 over the stabilizer. Indeed, if we suppose G1 and G2 Möbius-Like, this implies that every
bi-parabolic element should be in contained in the stabilizer Sg, then we have Ψ(S) contained in Sg
and the same results as in Theorem 6.23 follow.
Corollary 6.25. On the hypothesis of Theorem 6.23, ϕ can be chosen as an automorphism of S
which does not invert the orientation of at least one element s ∈ S, and the same results follow.
Proof. Let us fix an orientation for S1r{x} with S acting on it and suppose that the automorphism
ϕ ∈ Aut(S) does not invert the orientation of at least one non-trivial s ∈ S, then for such s ∈ S we
have that s and ϕ(s) with the same orientation on S1 r {x}, which implies that after the blow-up
of the point x, Ψ(s) will have the same orientation on both sides of the circle and it will not be
conjugate into PSL(2,R). In fact, it will have two parabolic fixed points.

Now, following the proof of Theorem 6.23, since Ψ(s) is non Möbius-Like, than it is contained
in the stabilizer Sg and therefore Ψ(s) ∈ Sg for all s ∈ S (they share the same fixed points). And
as no other element fixes the same points we conclude that Ψ(S) = sG, and the same results as in
Theorem 6.23 follow.
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7 Real-analytical and smooth examples
In this chapter we will present two examples of finitely generated subgroups of diffeomorphisms

acting with at most 2 fixed points which are not conjugate into PSL(2,R). One may notice that
both of these examples are not Möbius-Like and we remark that a finitely generated Möbius-Like
subgroup of diffeomorphisms which is not conjugate into PSL(2,R) is yet to be found.

For the second part of this chapter we will present an example which is not even isomorphic to
any subgroup of PSL(2,R), however such example does not act minimally. And, although we show
in Remark 7.1 a way to minimilize this action, we lose the regularity by doing it. We remark that
a finitely generated subgroup of diffeomorphisms acting minimally with at most 2 fixed points such
that it is not isomorphic to any subgroup of PSL(2,R) is yet to be found.

Note also that none of the methods presented in previous chapters can be used here, since none
of these methods has been shown to be able to maintain a regularity than higher C0.

7.1 A group of real-analytic diffeomorphisms which is not conjugate into PSL(2,R)
Let us discuss here Theorem E, that is let us give a concrete example of group of real-analytic

diffeomorphisms with at most 2 fixed points whose action is minimal and which is not conjugate to
any subgroup of PSL(2,R).

For this, recall that the central extension of degree 2 of the Möbius group PSL(2,R) is natu-
rally identified with the special linear group SL(2,R), by considering the action on half-lines in R2.
Both groups contain the group of rigid rotations SO(2) as a subgroup (which canonically deter-
mines the actions on the circle), so that there is a homomorphism from the amalgamated product
PSL(2,R) ∗SO(2) SL(2,R) into the group of real-analytic diffeomorphisms Diffω+(S1) (the question
whether such map is injective is mentioned by Tsuboi in [24] and it is still open up to our knowl-
edge). Keeping the notation as in [24], we will denote by G(2) the image of such homomorphism.
Also, we will use square brackets for homographies in PSL(2,R) and parentheses for matrices in
SL(2,R), and we will write them with respect to the canonical basis of R2.

Proof of Theorem E. Let f ∈ SL(2,R) be the linear transformation given by the matrix
(

1 2
0 1

)

and let g ∈ PSL(2,R) be the homography represented by the matrix
[
2 −3
3 −4

]
. We consider them as

elements of G(2), and denote by R 1
2
∈ G(2) the order-two rigid rotation. We then write g = R 1

2
gR 1

2
.

Note that the element f commutes with R 1
2
. It is not difficult to verify that the subgroup in G(2)

generated by f, g, g acts on the circle with the ping-pong partition as in Figure 7.1, and thus is
isomorphic to the free group F3.

Indeed, using projective coordinates, we have eight intervals

I1 = (∞,−2), I2 = (−2,−1), I3 = (−1,−1
2), I4 = (−1

2 , 0)
I5 = (0, 1

2), I6 = (1
2 , 1), I7 = (1, 2), I8 = (2,∞),
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Figure 7.1: Example of finitely generated subgroup of Diffω+(S1) with at most 2 fixed points and
whose action is minimal (see Theorem E).

and the elements satisfy

f(I1) = I1 ∪ {−2} ∪ I2 ∪ {−1} ∪ I3,

f−1(I4) = I2 ∪ {−1} ∪ I3 ∪
{
−1

2

}
∪ I4,

g(I7) = I7 ∪ {2} ∪ I8 ∪ {∞} ∪ I1 ∪ {−2} ∪ I2 ∪ {−1} ∪ I3 ∪
{
−1

2

}
∪ I4 ∪ {0} ∪ I5,

g−1(I6) = I8 ∪ {∞} ∪ I1 ∪ {−2} ∪ I2 ∪ {−1} ∪ I3 ∪
{
−1

2

}
∪ I4 ∪ {0} ∪ I5 ∪

{
1
2

}
∪ I6,

R 1
2
(Ii) = Ii+4, for every i ∈ Z8.

A short computation gives that derivatives of the generators on the intervals of the partitions
which are “expanded” (that is, sent to unions of more than one interval) are always greater than 1
on the corresponding interval.

To see this, we compute derivatives with respect to the coordinate θ ∈ [−π
2 ,

π
2 ]/(−π2∼

π
2 ) given

by tan θ = x, where x is the projective coordinate. Observe that when h =
[
a b
c d

]
is a projective

transformation the corresponding map

H = tan−1 ◦ h ◦ tan

has derivative
H ′(θ) = h′(x)

1 + h(x)2 (1 + x2) = 1 + x2

(ax+ b)2 + (cx+ d)2 .
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Using the expressions for f and g, and using that the action induced by f on the quotient of the
circle by the rotation R 1

2
is a projective transformation, one gets the desired estimates for the

derivatives.
Moreover, from this, we can check that the composition fg has a unique fixed point (which will

correspond to 1
2 in projective coordinates, see Figure 7.1). This gives that every endpoint of element

of the partition {I1, . . . , I8} is fixed by at least one element with 2 or less fixed points, which implies
that every endpoint of the partition is contained in the minimal set. From this, we deduce that the
action of 〈f, g, g〉 is minimal. Indeed, if there was a wandering interval, it must be contained in one
interval of the partition. Take a wandering interval J of maximal size, and apply the generator that
expands such interval. As the derivative of such generator is greater than 1 on J , we must have
that its image is strictly larger, which is a contradiction.

Now, we will show that the action of 〈f, g, g〉 has at most two fixed points. For this, we consider
the segments A = [2, 1

2 ] and B = [1
2 , 2], and observe that (A,B) is a ping-pong partition for the

actions of 〈f,R 1
2
〉 and 〈g〉 (see Lemma 4.2), and then, as both subgroups have ate most 2 fixed

points we conclude that every element in 〈f, g,R 1
2
〉 conjugate into 〈f,R 1

2
〉 ∪ 〈g〉 also fixes 2 points

or less. For the elements that are not conjugate into 〈f,R 1
2
〉 ∪ 〈g〉, we apply Lemma 5.3 to show

that the number of fixed points of such element is bounded by the number of intervals in the proper
ping-pong partition, which is 2. Therefore, the generated subgroup 〈f, g,R 1

2
〉 has at most two fixed

points, and we conclude that the action of 〈f, g, g〉 also has at most two fixed points.
To conclude the proof of Theorem E, we remark that f has two parabolic fixed points, so the

group 〈f, g,R 1
2
〉 is not conjugate to a subgroup of PSL(2,R).

7.2 A group of smooth diffeomorphisms which is not isomorphic into PSL(2,R)
Here we will discuss Theorem F, that is, we give an example of group of C∞ circle diffeomor-

phisms, with at most two fixed points, but which is not isomorphic to any subgroup of PSL(2,R).

Proof of Theorem F. For the construction of this example we will consider the following maps with
respect to the projective coordinates of the circle: fix λ and µ > 1, such that, log λ and logµ are
linearly independent over Q, and set

f(x) =
{
λx for x ∈ [0,∞],
µx for x ∈ [∞, 0].

For convenience set g = R 1
2
fR 1

2
. It is clear that f and g generate a rank 2 abelian free group.

Moreover, conjugation by the rotation R 1
2
defines an action of Z2 on such Z2 given by the matrix

A =
(

0 1
1 0

)
(with respect to the basis f, g). In other terms, the group G = 〈f,R 1

2
〉 is isomorphic to the semi-

direct product Z2oA Z2. By construction, one can observe that G acts with at most 2 fixed points,
and by the proof of Theorem B, G is not Möbius-Like, and in particular G is not isomorphic to any
subgroup of PSL(2,R). Finally, conjugating G by a suitable C∞ homeomorphism which is infinitely
flat at 0 and ∞, we can embed G into Diff∞(S1). This proves Theorem F.

Remark 7.1. An example of a minimal finitely generated group of circle homeomorphisms, with at
most 2 fixed points, and which is not isomorphic to any subgroup of PSL(2,R), can be build by
considering any amalgamated product of this subgroup over a trivial stabilizer.
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A Appendix

A.1 Proof of Theorem 2.15

Existence –We will prove the existence by constructing the blow-up. First, we take any continuous
1-degree map h : S1 → S1, satisfying that:

• h−1(x) is a singleton, for all x ∈ S1 rA,

• h−1(a) =: Ia is a non-trivial compact interval, for all a ∈ A.

Such a continuous map h clearly exists. Now, for each a ∈ A denote by ta : [0, 1] → Ia the unique
linear orientation-preserving homeomorphism mapping the interval [0, 1] onto Ia ⊂ S1. The next
step is to choose for every k ∈ Ω and every ξ ∈ F.ak, an element gξ ∈ F such that gξ(ak) = ξ and
define ϑ(gξ) : Iak → Iξ as ϑ(gξ) := tξt

−1
ak

.
For every ak and every element s ∈ Sk of the stabilizer, we define the homeomorphism ϑ(s) : Iak →

Iak as
ϑ(s)(x) = takφk(s)t

−1
ak

(x), x ∈ Iak .

Now, for each element g ∈ F , we define ϑ(g)(x) for all x ∈ S1 r
⋃
a∈A Ia as ϑ(g)(x) = h−1gh(x). It

is well defined since h is a bijection in restriction to this subset.
The next step is to define ϑ(g)(x) on every Ia, for a ∈ A. Fix a ∈ A, and let k ∈ Ω be

such that a ∈ F.ak; write also a′ := g(a), which is also a point on the orbit F.ak. Observe that
g−1
a′ gga(ak) = ak, therefore g−1

a′ gga ∈ Sk, hence we can define

ϑ(g)(x) = ϑ(ga′)ϑ(g−1
a′ gga)ϑ(ga)−1(x), for all x ∈ Ia.

This gives the desired homeomorphism ϑ(g) : S1 → S1. One can observe that, by construction, the
application ϑ : F → Homeo+(S1) satisfies the conditions to be a group homomorphism. Further-
more, the homomorphism ϑ : F → Homeo+(S1) is injective, indeed taking two elements g1, g2 ∈ F
with g1 6= g2, there exists a point x ∈ S1 r A such that g1(x) 6= g2(x) (this is because A is at most
countable), then both g1(x) and g2(x) are contained in S1 rA and the preimages h−1(x), h−1g1(x)
and h−1g2(x) are all singletons with h−1g1(x) 6= h−1g2(x). Therefore

ϑ(g1)(h−1(x)) = h−1g1h(h−1(x)) = h−1g1(x) 6= h−1g2(x) = h−1g2h(h−1(x)) = ϑ(g2)(h−1(x)).

Consider the subgroup G := ϑ(F ) ≤ Homeo+(S1) and the isomorphism θ = ϑ−1 : G → F . It is
clear that the subgroup G is an isomorphic blow-up of F in {ak}k∈Ω and including {φk}k∈Ω on the
intervals.
Uniqueness – For the uniqueness, we are going to construct the conjugacy between any two blow-
ups. Let G1 and G2 be two subgroups of Homeo+(S1), obtained by an isomorphic blow-up of F in
{ak}k∈Ω and including {φk}k∈Ω on the intervals. For i ∈ {1, 2}, denote by hi the semi-conjugacy
for Gi to F , and the isomorphism θi : Gi → F , and write Xi = Core(hi).

First, observe that

for all x1 ∈ S1 r
⋃
a∈A

h−1
1 (a) and all x2 ∈ S1 r

⋃
a∈A

h−1
2 (a)

we have for all g ∈ F

θ1(g)(x1) = h−1
1 gh1(x1) and θ2(g)(x2) = h−1

2 gh2(x2).
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Then, we can define an application β : S1 r
⋃
a∈A h

−1
1 (a)→ S1 r

⋃
a∈A h

−1
2 (a) as

β(x) := h−1
2 h1(x) for all x ∈ S1 r

⋃
a∈A

h−1
1 (a).

Observe that β is an order-preserving homeomorphism and we can extend it to a homeomorphisms of
the closures of S1r

⋃
a∈A h

−1
1 (a) and S1r

⋃
a∈A h

−1
2 (a), which are the cores X1 and X2, respectively.

We still denote such map by β : X1 → X2, and we observe that for every g ∈ G it satisfies that

βθ1(g)β−1(x) = θ2(g)(x) for all x ∈ X1.

Now, for all k ∈ Ω and all s ∈ Sk there exist two order-preserving homeomorphisms

t1,k : [0, 1]→ h−1
1 (ak) and t2,k : [0, 1]→ h−1

2 (ak),

such that
θ1(s) = t1,kφk(s)t−1

1,k and θ2(s) = t2,kφk(s)t−1
2,k.

Then we can extend β such that it gives a homeomorphism from h−1
1 (ak) → h−1

2 (ak), by the
expression

β(x) := t2,kt
−1
1,k(x) for all x ∈ h−1

1 (ak).
Observe that this extension of β is an order-preserving homeomorphism and for every ak and every
s ∈ Sk it follows that

βθ1(s)β−1(x) = θ2(s)(x) for all x ∈ h−1
1 (ak).

Now, we are going to conclude the definition of β to the whole circle by extending it to the
preimages h−1(a) for all a ∈ A, in an equivariant way: for every k ∈ Ω and every ξ ∈ F.ak choose
an element gξ ∈ F such that gξ(ak) = ξ, therefore for any element s′ ∈ StabF (ξ) we have

θ1(s′) = θ1(gξg−1
ξ s′gξg

−1
ξ ) = θ1(gξ)θ1(g−1

ξ s′gξ)θ1(g−1
ξ ).

Notice that, g−1
ξ s′gξ(ak) = ak, then this element is in Sk and it follows that

θ1(g−1
ξ s′gξ) = t1,kφk(g−1

ξ s′gξ)t−1
1,k.

Then, we have that:

θ1(s′) = θ1(gξ)t1,kφk(g−1
ξ s′gξ)t−1

1,kθ(g
−1
ξ ), for all s′ ∈ StabF (ξ)

Similarly,
θ2(s′) = θ2(gξ)t2,kφk(g−1

ξ s′gξ)t−1
2,kθ(g

−1
ξ ).

Now, we define β : h−1
1 (ξ)→ h−1

2 (ξ) as

β(x) := θ1(gξ)t2,kt−1
1,k(θ2(gξ))−1(x) for all x ∈ h−1

1 (ξ).

Observe that it is an order-preserving homeomorphism and for every s ∈ StabF (ξ) it follows that

βθ1(s)β−1(x) = θ2(s)(x) for all x ∈ h−1
1 (ξ).

As a summary of the construction, we have an order-preserving homeomorphism β : S1 → S1

defined as:

β(x) =


h−1

2 h1(x) for all x ∈ X1,

t2,kt
−1
1,k(x) for any ak and all x ∈ h−1

1 (ak),
θ1(gξ)t2,kt−1

1,k(θ2(gξ))−1(x) for any ξ ∈ F.ak and all x ∈ h−1
1 (ξ),
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where gξ is any fixed element of F such that gξ(ak) = ξ.
With this definition, β satisfies, for every k ∈ Ω and any s ∈ Sk, the relation βθ1(s)β−1 = θ2(s).
Now, to conclude the proof, observe that for all x ∈ S1 and every g ∈ F we have that

βθ1(g)β−1 = θ2(g).

Indeed, for x ∈ X1 it is clear, and for any x ∈ S1rX1 there exist one k ∈ Ω and one point ξ ∈ F.ak
with x ∈ h−1

1 (ξ) (possibly ξ = ak), and then denoting g(ξ) = η ∈ F.ak, we have that g−1
η ggξ ∈ Sk,

which implies:

βθ1(g)β−1 = βθ1(gηg−1
η ggξg

−1
ξ )β−1 = βθ1(gη)θ1(g−1

η ggξ)θ1(g−1
ξ )β−1

= βθ1(gη)β−1βθ1(g−1
η ggξ)β−1βθ1(g−1

ξ )β−1 = θ2(gη)θ2(g−1
η ggξ)(θ2(gξ))−1 = θ2(g).

Remark A.1. Observe that a similar construction to the one in the proof of uniqueness in Theorem
2.15 can be used to prove that any two isomorphic blow-ups of F , the first in {ak}k∈Ω and including
{φk}k∈Ω on the intervals and the second in {bk}k∈Ω and including {ϕk}k∈Ω on the intervals, are con-
jugate if there exists an order-preserving homeomorphism τ : S1 → S1 such that τ(

⊔
G.ak) =

⊔
G.bk

and for every k ∈ Ω the homeomorphisms φk and ϕk are conjugate.

A.2 Groups of homeomorphisms of the line with at most 2 fixed points

The main purpose of this section is to prove the following result on group actions of the line.

Theorem A.2. Let G be a subgroup of Homeo+(R) with at most 2 fixed points, then

• either G is abelian, or

• the action of G is semi-conjugate to an action by affine transformations.

We first analyse the situation when the action admits a global fixed point, and this is essentially
based on Solodov’s theorem (Theorem 1.4).

Lemma A.3. Let G be a subgroup of Homeo+(R) with at most 2 fixed points such that there exists
a global fixed point x ∈ R, then G is abelian and any point which is fixed by a non-trivial element is
globally fixed.

Proof. We letG− ≤ Homeo+((−∞, x)) andG+ ≤ Homeo+((x,+∞)) denote the subgroups obtained
by considering the restriction of the action of G to the two G-invariant half-lines, respectively. Note
that the morphisms G→ G± are both isomorphisms, as elements in one of the kernels fix a half-line
and thus are globally trivial. Notice that if either G− or G+ is abelian, this implies that G is also
abelian and so there is nothing to prove. So we will assume that none of them is abelian, and
look for a contradiction. Since every element of G has at most one fixed point other than x, it
follows that both G− and G+ acts with at most 1 fixed point and therefore, by Solodov’s theorem
(Theorem 1.4), both G− and G+ are semi-conjugate to non-abelians subgroups of Aff+(R). Now,
any element g ∈ G which is non-trivial in the abelianization G/[G,G], gives in G− and G+ elements
which are semi-conjugate to homotheties, and thus g admits at least three fixed points, giving the
desired contradiction.

We next move to the case where the action has no global fixed points. We first introduce some
terminology which will provide the combinatorial set-up for the core of the proof of Theorem A.2:
for homeomorphisms of the line it is natural to consider whenever its graph is above or below the
identity, and since we are restricting ourselves to homeomorphisms with at most N fixed points,
this information can be encoded in a finite string as in the following definition.
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Definition A.4. Let h ∈ Homeo+(R) be an orientation-preserving homeomorphism with Fix(h) =
{x1, . . . , xn}, where x1 < · · · < xn. We say that h is of type (ε0, , . . . , εn) for εk ∈ {+,−} if the
sign of h − id restricted to (xk, xk+1) is εk for every k ∈ {0, . . . , n} (here we write x0 = −∞ and
xn+1 = +∞).

Remark A.5. The notion presented in Definition A.4 is invariant by conjugation and for every
h ∈ Homeo+(R) and n ∈ N∗, h and hn are of the same type, but h and h−1 are of opposite types
(every coordinate has the opposite sign).

We can now discuss the main technical lemma, which describes the case when the group contains
an element with two fixed points.

Lemma A.6. Let G be a subgroup of Homeo+(R) with at most 2 fixed points, whose action admits
no global fixed point. Assume there exists an element g ∈ G such that Fix(g) = {x, y}, with x < y.
Then, the orbit of x does not intersect the interval (x, y).

Proof. We will structure the proof by considering all the possible types for g. To start with, we argue
that it is enough to restrict to the cases where the type of g is (+,+,+), (−,+,+) and (+,−,+),
since all the 23 possible types are can be reduced to this case by considering g−1 or the conjugate
of g by an orientation-reversing isometry.

Arguing by contradiction, let us suppose that there exists f ∈ G with f(x) ∈ (x, y). In this case
f(y) 6= y, otherwise the subgroup defined by 〈g, f〉 ≤ G would act with at most 2 fixed points with
one of them being globally fixed, and by Lemma A.3, this would imply that x is also globally fixed,
which is not the case.
Case 1.(a) g is of type (+,+,+) and f(y) < y. Consider h = fgf−1 ∈ G, it is of type
(+,+,+) with Fix(h) = {f(x), f(y)} satisfying that x < f(x) < f(y) < y, then one can observe
that h(x) ∈ (x, y) but h(y) > y, so we take f ′ = h and we are reduced to the next case 1.(b).
Case 1.(b) g is of type (+,+,+) and y < f(y). Consider h = fgf−1 ∈ G, it is of type (+,+,+)
with Fix(h) = {f(x), f(y)} satisfying that x < f(x) < y < f(y), therefore:

• hg−1(x) = h(x) > x

• hg−1(f(x)) < h(f(x)) = f(x)

• hg−1(y) = h(y) > y

• hg−1(f(y)) < h(f(y)) = f(y)

which implies that hg−1 has a fixed point in each of the intervals (x, f(x)), (f(x), y) and (y, f(y)).
This contradicts the assumption that G has at most 2 fixed points.
Case 2.(a) g is of type (−,+,+) and f(y) < y. Consider h = fgf−1 ∈ G, it is of type (−,+,+)
with Fix(h) = {f(x), f(y)} satisfying that x < f(x) < f(y) < y, then take n ∈ N sufficiently large
such that gn(x− 1) < h(x− 1) and gn(y + 1) > h(y + 1). Since the type of gn and its fixed points
are constant for every positive n, it follows that:

• hg−n(h(x− 1)) > h(x− 1)

• hg−n(x) = h(x) < x

• hg−n(y) = h(y) > y

• hg−n(h(y + 1)) < h(y + 1)
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which implies that hg−n has a fixed point in each of the intervals (h(x−1), x), (x, y) and (y, h(y+1)),
which gives the desired contradiction.
Case 2.(b) g is of type (−,+,+) and y < f(y). Consider h = fgf−1 ∈ G, it is of type (−,+,+)
with Fix(h) = {f(x), f(y)} satisfying that x < f(x) < y < f(y). Then one can observe that
h−1(x) ∈ (x, y) but h−1(y) < y, so we take f ′ = h and we are back to the case 2.(a).
Case 3.(a) g is of type (+,+,−) and f(y) < y. Consider h = fgf−1 ∈ G, it is of type (+,+,−)
with Fix(h) = {f(x), f(y)} satisfying that x < f(x) < f(y) < y. Take n ∈ N sufficiently large such
that g−n(x− 1) < h−1(x− 1) and g−n(y + 1) > h−1(y + 1) then we have:

• h−1gn(h−1(x− 1)) > h−1(x− 1)

• h−1gn(x) = h−1(x) < x

• h−1gn(y) = h−1(y) > y

• h−1gn(h−1(y + 1)) < h−1(y + 1)

which implies that h−1gn has a fixed point in each of the intervals (h−1(x − 1), x), (x, y) and
(y, h−1(y + 1)), which again gives the desired contradiction.
Case 3.(b) g is of type (+,+,−) and y < f(y). Consider h = fgf−1 ∈ G, it is of type (+,+,−)
with Fix(h) = {f(x), f(y)} satisfying that x < f(x) < y < f(y). Then one can observe that
g(x) ∈ (f(x), f(y)) but g(f(y)) < f(y), so we take g′ = h and f ′ = g and we are back to the case
3.(a).
Case 4.(a) g is of type (+,−,+) and f(y) < y. This is by far the most complex case, and its
proof will be given by a long construction.

First, we remark that as the action of G has no global fixed point, we can find two elements
u, v ∈ G such that u(y) < x and v(x) > y. Define the following elements of G:

• h = fgf−1 of type (+,−,+), with Fix(h) = {f(x), f(y)} = {x̃, ỹ}

• fu = ugu−1 of type (+,−,+) with Fix(fu) = {u(x), u(y)}

• fv = vgv−1 of type (+,−,+) with Fix(fv) = {v(x), v(y)}

These points satisfy the order relation

u(x) < u(y) < x < x̃ < ỹ < y < v(x) < v(y).

Now, observe that there exists n1 ∈ N, such that for every n ≥ n1 one has h−n(x) < f−1
v (x), and

thus
hnfvh

−n(x) < hnfv(f−1
v (x)) = hn(x) < x̃.

On the other hand, there exists n2 ∈ N such that for every n ≥ n2 one has hnfv(ỹ) > y + 2, and
thus

hnfvh
−n(y) > hnfvh

−n(ỹ) = hnfv(ỹ) > y + 2.

Let n = max{n1, n2} and define s = hnfvh
−n ∈ G+, so we have s(x) < x̃ and y + 2 < s(y).

Similarly, one can observe that there exists m1 ∈ N, such that for every m ≥ m1 one has
g−m(fu(x)) > ỹ, and thus

g−mfug
m(x) = g−mfu(x) > ỹ.
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On the other hand, there exists m2 ∈ N such that for every m ≥ m2 one has g−m(fu(y)) < y + 1,
and thus

g−mfug
m(y) = g−mfu(y) < y + 1.

Let m = max{m1,m2} and define t = g−mfug
m ∈ G, so we have ỹ < t(x) and t(y) < y + 1.

We also observe that Fix(s) = {hn(v(x)), hn(v(y))} and Fix(t) = {g−m(u(x)), g−m(u(y))}, and
we have

g−m(u(x)) < g−m(u(y)) < u(y) < x < y < v(x) < hn(v(x)) < hn(v(y)).

Now, let z1 := g−m(u(x)) ∈ R, so that z1 is a fixed point of t, which is smaller than both fixed
points of s, which is of type (+,−,+). Therefore, t(z1) = z1 and s(z1) > z1. Similarly, let
z2 := hn(v(y)) ∈ R, so that z2 is a fixed point of s, which is larger than both fixed points of t, which
is of type (+,−,+). Therefore, s(z2) = z2 and t(z2) > z2. This leads to the following inequalities:

• t(z1) = z1 < s(z1)

• t(x) > ỹ > x̃ > s(x)

• t(y) < y + 1 < y + 2 < s(y)

• t(z2) > z2 = s(z2)

which implies that ts−1 ∈ G is a non-trivial element with at least one fixed point in each of
the intervals (z1, x), (x, y) and (y, z2), adding up to at least 3 fixed points. This contradicts the
hypothesis that G has at most 2 fixed points.
Case 4.(b) g is of type (+,−,+) and y < f(y). Consider h = fgf−1 ∈ G, it is of type (+,−,+)
with Fix(h) = {f(x), f(y)} satisfying that x < f(x) < y < f(y). Then one can observe that
h(x) ∈ (x, y) but h(y) < y, so we take f ′ = h and we are reduced to the previous case 4.(a).

As we have covered all possible situations, we conclude that if there exists an element g ∈ G
such that Fix(g) = {x, y}, then the orbit of x by G does not intersect the interval (x, y).

Proof of Theorem A.2. If the action of G admits a global fixed point, then Lemma A.3 implies that
G is abelian. So we can assume that the action of G has no global fixed point. If G has at most 1
fixed point, then we conclude by Solodov’s theorem (Theorem 1.4) that the action is semi-conjugate
to an affine action. When G contains non-trivial elements with exactly two fixed points, Lemma
A.6 implies that any interval of the form (x, y), where x, y are fixed by some non-trivial element, is
wandering. Now, since there are elements with non-global fixed points we have that the complement
RrG.(x, y) contains the minimal invariant subset which is uncountable, so the non-decreasing map
h : R→ R that collapses any such interval to a single point defines a semi-conjugacy of the action
of G to an action with at most 1 fixed point, so that we are reduced to the previous case.
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