
THÈSE DE DOCTORAT DE L’ÉTABLISSEMENT UNIVERSITÉ BOURGOGNE FRANCHE-COMTÉ

PRÉPARÉE À L’UNIVERSITÉ DE BOURGOGNE

École doctorale n°37

Sciences Pour l’Ingénieur et Microtechniques

Doctorat d’Informatique et Instrumentation de l’Image

par

ROBERTO ENRIQUE MARROQUÍN CORTEZ

Context-aware intelligent video analysis
for the management of smart buildings

Thèse présentée et soutenue à Dijon, le 18 October 2019

Composition du Jury :

GESQUIÈRE GILLES Professeur à l’Université Lumière
Lyon 2

Président

BOUCHAFA-BRUNEAU SAMIA Professeure à l’Université d’Evry
Val d’Essonne

Rapportrice

SÈDES FLORENCE Professeure à l’Université de
Toulouse Paul Sabatier

Rapportrice

DUBOIS JULIEN Maître de Conférences HDR à
l’Université de Bourgogne

Directeur de thèse

NICOLLE CHRISTOPHE Professeur à l’Université de
Bourgogne

Codirecteur de thèse

N◦ X X X

école doctorale sciences pour l ’ingénieur et microtechniques

Université Bourgogne Franche-Comté
32, avenue de l’Observatoire
25000 Besançon, France

Title: Context-aware intelligent video analysis for the management of smart buildings

Keywords: Smart camera, artificial intelligence (AI), building information modeling (BIM), ontology
engineering, real-time knowledge fusion, people detection, people tracking, event detections, multi-camera
multi-space dataset.

Abstract:
To date, computer vision systems are limited to
extract digital data of what the cameras "see".
However, the meaning of what they observe could be
greatly enhanced by environment and human-skills
knowledge.
In this work, we propose a new approach to cross-
fertilize computer vision with contextual information,
based on semantic modelization defined by an
expert.
This approach extracts the knowledge from images
and uses it to perform real-time reasoning according
to the contextual information, events of interest and
logic rules. The reasoning with image knowledge
allows to overcome some problems of computer

vision such as occlusion and missed detections
and to offer services such as people guidance and
people counting. The proposed approach is the
first step to develop an "all-seeing" smart building
that can automatically react according to its evolving
information, i.e., a context-aware smart building.
The proposed framework, named WiseNET, is an
artificial intelligence (AI) that is in charge of taking
decisions in a smart building (which can be extended
to a group of buildings or even a smart city). This
AI enables the communication between the building
itself and its users to be achieved by using a
language understandable by humans.

Titre : Analyse vidéo en temps-réel intégrant les données contextuelles pour la gestion de bâtiments
intelligents

Mots-clés : Caméra Intelligente, intelligence artificielle (IA), modélisation des informations sur le bâtiment
(BIM), ingénierie d’Ontologies, fusion de connaissances en temps réel, detection de personne, suivi de
personne, détection d’événement, multi-space multi-camera dataset.

Résumé :
Les systèmes de vision artificielle sont aujourd’hui
limités à l’extraction de données issues de ce que les
caméras « voient ». Cependant, la compréhension
de ce qu’elles voient peut être enrichie en associant
la connaissance du contexte et la connaissance
d’interprétation d’un humain.
Dans ces travaux de thèse, nous proposons une
approche associant des algorithmes de vision
atificielle à une modélisation sémantique du contexte
d’acquisition.
Cette approche permet de réaliser un raisonnement
sur la connaissance extraite des images par les
caméras en temps réel. Ce raisonnement offre
une réponse aux problèmes d’occlusion et d’erreurs
de détections inhérents aux algorithmes de vision

artificielle. Le système complet permet d’offrir
un ensemble de services intelligents (guidage,
comptage...) tout en respectant la vie privée des
personnes observées. Ces travaux forment la
première étape du développement d’un bâtiment
intelligent qui peut automatiquement réagir et
évoluer en observant l’activité de ces usagers, i.e.,
un bâtiment intelligent qui prend en compte les
informations contextuelles.
Le résultat, nommé WiseNET, est une intelligence
artificielle en charge des décisions au niveau du
bâtiment (qui pourrait être étendu à un groupe de
bâtiments ou même a l’échelle d’un ville intelligente).
Elle est aussi capable de dialoguer avec l’utilisateur
ou l’administrateur humain de manière explicite.

ACKNOWLEDGEMENTS

I wish to thank the members of my jury for agreeing to read the manuscript and to partic-
ipate in the defense of this thesis. I am very grateful to Samia Bouchafa-Bruneau et Flo-
rence Sèdes for generously offering their time and efforts for the review of this manuscript.
I equally extend my gratitude to the other member of the jury Gilles Gesquière for his sup-
port and interest in this thesis.

Firstly, I would like express my immense gratitude to my supervisors Julien Dubois and
Christophe Nicolle for their motivation and enthusiasm in my research, for their patience
and understanding, as well as for always being available and for sharing all their knowl-
edge in their respective domains. Moreover, I would like to thank them for all the profes-
sional and personal guidance they taught me.

I also would like to thank the Université de Bourgogne and the French Ministry of Educa-
tion for providing me the opportunity and funding to pursue this research.

Moreover, I am grateful to my family (Salvadorian and French) for all the motivation words,
their support, their love and for always being there. Also, I would like to thank all my
friends (from the lab, la copro and from life in general) for their support, their happiness
and their craziness. Finally, I would like to thank my love Chloé for her motivation, her
love, her help, but most importantly for her tolerance and her courage for supporting me
during my thesis.

v

CONTENTS

1 Introduction 1

1.1 Motivation and objectives . 3

1.2 Dissertation outline . 3

2 Visual sensor network 7

2.1 From VSN to IVS . 7

2.2 Smart cameras . 9

2.3 Computer vision - People detection and tracking 10

2.3.1 Object detection→ People detection 11

2.3.2 People tracking . 17

2.4 Conclusion . 25

3 Contextual information and interoperability 27

3.1 Elements of context . 27

3.2 Models to represent a built environment . 28

3.3 Ontology domain . 30

3.3.1 Ontology formalism . 32

3.3.2 Ontology implementation . 37

3.4 Conclusion . 43

4 WiseNET system 45

4.1 WiseNET system overview . 46

4.2 WiseNET ontology . 48

4.2.1 Ontology development: from requirements to implementation 49

4.2.2 Semantic rules . 69

4.3 Conclusion . 73

5 Static and dynamic ontology population 75

5.1 Central API . 75

5.2 Static population . 76

vii

viii CONTENTS

5.2.1 Environment knowledge extraction and population 76

5.2.2 Smart camera static information . 84

5.3 Dynamic population . 90

5.3.1 Knowledge extraction . 90

5.3.2 Knowledge processing . 91

5.3.3 Use case . 102

5.4 Conclusion . 108

6 Dataset and Evaluations 111

6.1 Multi-camera multi-space datasets . 111

6.1.1 Existing datasets . 112

6.1.2 WiseNET dataset . 113

6.2 System evaluation . 124

6.2.1 Ontology evaluation . 124

6.2.1.1 Static CQs . 126

6.2.1.2 Dynamic CQs . 130

6.2.1.3 Monitor unit . 135

6.2.2 Tracking with Semantics - evaluation 137

6.3 People detector impact . 143

6.3.1 Comparison of detectors . 144

6.3.2 Influence of detectors in the WiseNET system 146

6.4 Conclusion . 154

7 Conclusions and future work 157

8 Author’s publications 163

Appendices 165

A WiseNET ontology specification 167

1
INTRODUCTION

The intelligence deployed at buildings, has brought the concept of smart building. In the
past few decades, this term has been used for referring to a building equipped with a
network of devices to improve its energy efficiency [158, 119, 178, 70]. In general, the
smart building consists of:

• Sensors: devices used for measuring parameters/features of the environment (e.g.,
a thermometer);

• Actuators: devices used for performing a physical action (e.g., opening a window);

• Controllers: set of programmed rules used for controlling the actuators (also known
as system’s response);

• Central unit: enables the programming of the different system’s units;

• Interface: allows the user to communicate with the system;

• Network: enables the communication between the units.

Building managers (also known as facility managers) are concerned with the people using
the space. Their main duties are: ensuring the safety of the building’s occupants and
visitors, oversee the security system and ensuring the maintenance and repair of building
elements. Consequently, a smart building should provide services that assist the building
managers to perform their tasks, as well as, make the life of the users easier [70, 118].

Smart buildings are not restricted to energy efficiently applications (even though is the
most common one). Specifically, after the boom of the Internet of Things (IoT), new smart
building applications have emerged (e.g., access control, surveillance, activity monitoring,
smart lighting, localization), using multiple sensing devices (e.g., radio-frequency tags
and readers, beacons, passive infra-red, smart phones, 2D/3D cameras) [22, 62, 96, 2].

Visual data coming from cameras is very rich, since multiple and heterogeneous informa-
tion can be extracted from it. For example, from a single image, it is possible to know all
the objects present in the scene, their status and the relations between them. In a smart
building context, the integration of multiple data extracted from a Visual Sensor Network
(VSN) is a challenge [51, 181]. The most widespread and well-known application of this
type of networks is video surveillance. In this type of application, the videos captured
by the VSN are usually analyzed in real-time by a human operator in a monitor room,
using dozens of screens [37]. However, as the size of the network increases, it becomes

1

2 CHAPTER 1. INTRODUCTION

difficult, even impossible, for a human being to monitor all the video streams at the same
time and to quickly identify events.

A solution to this problem is to rely on Intelligent Video Surveillance (IVS) systems, to
detect “abnormal” or “interesting” behaviors in the observed scene [36, 145, 174]. This
type of systems might take advantage of the great advances in computer vision, and in
general the advances of Artificial Intelligence (AI), to automatically detect the pertinent
information from the scene. For example, a Convolutional Neural Network (CNN) could
be used for detecting a bag in a lobby or a person in a space [103, 142]. There exists
two types of AI: (1) symbolic IA, based on the knowledge of common sense or human
learning. This type of AI enables to check logical hypotheses, by using inferences, to
identify new knowledge by causal relation. In this AI system, to find the balance between
the level of expressivity and the level of decidability is a complex task and impact the
performance. Moreover, the associated models, such as ontology are domain dedicated
and lack of generalization [163]; (2) non-symbolic AI, which learns by example/data. This
type of AI are high dimensional models, which present high generalization and gives good
results in many applications. However, their decision processes are (almost) impossible
to decrypt by humans, thus they are also called "black box AI". Some examples are deep-
learning based model, and in general any Artificial Neural Networks (ANN) [89]. Most of
recent (almost all) computer vision systems are based on non-symbolic AI [89, 103, 142].

The use of non-symbolic AI systems in a smart building (and in general), raises some
open questions. Firstly, a question concerning the lack of contextual information: Is it
possible to consider external and heterogeneous information during the decision process
of an AI system? Secondly, some questions concerning the understanding, interpretabil-
ity and communication with the non-symbolic AI system: Is there a way to better under-
stand and control the decision process of AI systems? How can we interact with it? How
can we insert human reasoning in it? As Professor Hawking said “The rise of powerful
AI will be either the best, or the worst thing, ever to happen to humanity. We do not yet
know which”.1 Which for us refers to the lack of understanding and interaction with non-
symbolic AIs. Finally, one question may arise: Is it possible two combine both types of AI
in an application which requires, interpretability, performance and generalization?

In this context, we propose a semantic-based AI framework, that combines the informa-
tion coming from a network of cameras with the contextual information of the environ-
ment, applied in a smart building application. The proposed framework is a “transparent”
AI which allows to interact with it using a human understandable language, and allows
the use of non-symbolic AI to extract information from the scene.

Finally, we consider that a real smart building should not be limited to connecting sensor
information, but also it should be able to extract, interpret and understand the contextual
information, to automatically adapt its services accordingly.

1“The best or worst thing to happen to humanity ” - Stephen Hawking launches Cen-
tre for the Future of Intelligence, October 19, 2016, https://www.cam.ac.uk/research/news/
the-best-or-worst-thing-to-happen-to-humanity-stephen-hawking-launches-centre-for-the-future-of

https://www.cam.ac.uk/research/news/the-best-or-worst-thing-to-happen-to-humanity-stephen-hawking-launches-centre-for-the-future-of
https://www.cam.ac.uk/research/news/the-best-or-worst-thing-to-happen-to-humanity-stephen-hawking-launches-centre-for-the-future-of

1.1. MOTIVATION AND OBJECTIVES 3

1.1/ MOTIVATION AND OBJECTIVES

The use of a multi-camera based system is not a trivial task and several limitations to
these systems have been identified. In any system generating a large amount of hetero-
geneous information (such as visual), the selection of significant data remains a problem.
Another limitation, is the integration of data coming from the different cameras, and the
integration of non-visual data (e.g., context). Besides, the cameras should be able to
adjust their configuration according to the tasks required. Finally, the use of multi-camera
systems always poses the problem of invasion of privacy.

Many efforts have being devoted to deal with some of the aforesaid limitations. The most
prominent one is to rely on smart cameras to extract, in a semi-autonomously manner
(with minimal human interaction), the pertinent information from a scene, by executing
computer vision algorithms. Furthermore, smart cameras are able to execute (and recon-
figure) multiple computer vision algorithms according the task of interest.

However, the information extracted from visual data lacks of contextual information. Con-
text is everything that helps the understanding of an action/situation, thus, it is an essential
factor in decision-making. In a built environment, context is very heterogeneous, and it
refers to information about the structure of the building, information about the events that
have occurred and human-skill knowledge that facilitate the analyze of a situation.

Beyond the work of extracting information from the cameras, we are interested in the
deduction of new knowledge by aggregating information from multiple heterogeneous
sources. In other words, our ambition is to combine the information from a smart camera
network with contextual information to automatically understand what is happening in the
environment.

In that regard, we propose the creation of a semantic-based framework, called WiseNET,
that enables the interoperability between the heterogeneous sources of information, and
reasons over the aggregation of knowledge. The main objectives of WiseNET are: (1) to
enable interoperability between the heterogeneous sources of information, (2) to per-
form real-time reasoning over the aggregation of information, (3) to enhance classical
computer vision by considering the contextual information of the environment, and (4) to
provide a set of innovative services to building managers, to ease their work. As a result,
WiseNET overcomes some limitations of computer vision—such as occlusions—as well
as the previously presented limitations of multi-camera based systems. Furthermore, the
WiseNET system enables building managers to perform queries, in real-time, to have
information related to the environment and its usage.

In a few words, the proposed semantic-based system allows a smart building, equipped
with a camera network, to know beyond seeing.

1.2/ DISSERTATION OUTLINE

This work is positionned in the intersection of two vasts domains: computer vision and
knwoledge representation and reasonning. Therefore, the thesis starts by an introduction
and state-of-the-art of each of these domains, presented in Chapter 2 and Chapter 3,
respectively. Follows by, our proposition on how to combine the domains, presented in
Chapter 4 and Chapter 5. And finishes by, presenting the advantages of the combination,

4 CHAPTER 1. INTRODUCTION

applied in a smart building.

Chapter 2 starts by introducing some important concepts that will be used along all the
thesis: Visual Sensor Networks (VSN) and Intelligent Video Surveillance (IVS) systems.
Followed by a discussion about the different types of smart cameras, specifically about
their hardware. Finally, computer vision is introduced, where we focus on the image
recognition task. Specifically, a state-of-the-art of feature-based and deep-learning-based
people detection methods are presented. As well as, a state-of-the-art of people tracking
methods. The chapter finishes with an example showing that classical computer vision
methods lacks of contextual information, which can be useful for resolving ambiguities
and for overcoming some visual limitations. At the end of this chapter, the reader will
know about, the role of an smart camera in an IVS system, how it can extract information
by using computer vision algorithms, and how contextual information could improve the
results.

In Chapter 3, the concepts of context, context-aware system, and semantic model (on-
tology) are introduced. The chapter starts by a discussions on, what is context? why
is important? and, which elements compose it? This follows by a comparison between
different ways of representing the built environment information, making emphasis in the
Building Information Modelling (BIM) and the Industry Foundation Classes (IFC). This
lead us to a machine-understandable representation of a built information using a se-
mantic model, i.e., an ontology. The rest of the chapter introduces the ontology world,
their formalism, their implementation, and technologies that ease their creation, exten-
sion and interaction. At the end of this chapter, the reader will know, what is contextual
information in a built environment, the different ways of obtaining it, and the advantages
of using an ontology model to represent it, specially the inherent semantic interoperability.
As well as, what is an ontology and the mathematical formalism behind it.

Chapter 4 starts by giving and overview of the proposed semantic-based framework
(named WiseNET), and presenting the different modules that compose it. Afterwards,
the chapter focuses on the definition of the core module of the system, the ontology.
This is done by following an ontology-development methodology, where each step is pre-
sented and explained in details. The steps goes from defining a set of questions that
the ontology should be able to answer, to selecting a set of ontologies from which some
knowledge could be re-used, until defining a set of concepts, constrains and inserting in-
dividuals. Furthermore, the chapter finishes by presenting a way of inserting human-skill
(common sense) rules, that extends the ontology knowledge. At the end of this chapter,
the reader will know, how to develop an ontology from A to Z, how the WiseNET ontology
semantically links the knowledge from sensors with the environment knowledge, and how
to extend the ontology knowledge by defining human-skill logic rules.

Chapter 5, presents the different procedures developed to automatically populate data
into the semantic model. The chapter starts by presenting the central API, which is an in-
termediary software that enables the communication between the different data sources
and the ontology. Followed by the static population procedure, that allows to automatically
extract the pertinent environment data from an IFC file and inserts it into the ontology. The
static population procedure also includes the insertion of the camera-calibration informa-
tion. Finally, the dynamic population procedure is presented. This procedure consists in
automatically extracting, structuring and inserting the data observed by a camera node,
into the ontology. At the end of this chapter, the reader will know, how to extract data
from an IFC file, how to constantly insert data into an ontology, and how to fusion the

1.2. DISSERTATION OUTLINE 5

knowledge coming from a smart camera with contextual knowledge.

In Chapter 6, the a dataset used for evaluating the proposed semantic-based system, as
well as the different evaluation procedures are presented. The first part of the chapter
deals with the choice of dataset, starting by presenting a state-of-the-art of multi-camera
multi-space datasets, following by a detail presentation of the WiseNET dataset, which is
composed of video sets, information of the environment and annotations for people detec-
tion and tracking. The second part of the chapter deals with evaluating the system. Firstly,
the ontology is evaluated by checking if it is able to answered some important questions
concerning, the structure of the building, the sensors deploy on it and information about
the building usage. Secondly, the performance of the semantic-based in tracking people
is evaluated. Furthermore, an monitor unit interfaces is presented, which agglomerates a
set of services to help building managers. Finally, a comparison between different state-
of-the-art people detectors is presented, as well as their influence on the semantic-based
framework. At the end of this chapter, the reader will know, the dataset used for evaluat-
ing the proposed framework, as well as, the different evaluation procedures, the results
obtain by the framework and some of its limitations.

Finally, conclusions, limitations and future research are presented in Chapter 7, where
we summarized our contributions, their utility in a smart building and the possible use in
different scenarios.

2
VISUAL SENSOR NETWORK

The most profound technologies are those that disappear. They weave them-
selves into the fabric of everyday life until they are indistinguishable from it.

Mark Weiser, 1991

2.1/ FROM VSN TO IVS

Currently, we are living in a world of data, where smart and connected objects are almost
constantly acquiring and analyzing information about our daily life, without we even notice
it! This goes from data taken by our smart phones, for example our current location and
how many steps we did in a day; to data taken by the different types of sensors deployed
in the environments we visit, for example occupancy sensor, thermal sensors and visual
sensors.

In this study, we focus our interest in the visual sensors due to the richness of the in-
formation that can be extracted from them. For instance, from a simple image it can be
extracted information about the environment, the objects present on it, their character-
istics and relations between the different objects. To exemplify this, consider the image
shown in Fig. 2.1, some information that can be extracted from the image is: that the
image was taken in an indoor environment; that there are three doors and one person;
that the doors are closed; that the person is standing and is dressed in blue; that there is
a person which is around a closed door (relation between objects), etc.

The most widespread and well-known use case of visual sensors is in video surveillance
systems [181], which (normally) is composed of a network of sensors, better known as
Visual Sensor Network (VSN). In most current VSN systems, the captured videos are
analyzed in real time by a human operator in a monitor room using dozens of screens [37]
(see Fig. 2.2 for an example). This type of monitoring is not a trivial task, especially as the
size of the network increases the richness of visual information leads to a high cognitive
load1, making it difficult, or even impossible, for a human being to monitor all the video
streams at the same time and to extract useful information from them.

Many efforts have being devoted to ease the monitoring of a VSN system. One solution is
to pre-analyze the generated videos thus only monitoring the pertinent data, this type of

1In cognitive psychology, cognitive load refers to the total amount of mental activity imposed on the
working memory at any instant [165].

7

8 CHAPTER 2. VISUAL SENSOR NETWORK

Figure 2.1 – A picture is worth thousand information. Many information can be obtained
from this image, for example, that the scene happens in an indoor environment, that there
are some doors in the space which are closed, that there is a single person with a blue
shirt which seems happy (by looking its facial expression), that the person is around a
closed door, etc.

Figure 2.2 – Classical monitoring room.

systems are called Intelligent Video Surveillance (IVS) and will be our main research ap-
plication [86]. According to Wang [174], the goal of an IVS system is to " efficiently extract
useful information from a huge amount of videos collected by surveillance cameras by
automatically detecting, tracking and recognizing objects of interest, and understanding
and analyzing their activities". From this statement we conclude that IVS is a multidisci-
plinary field that relates computer vision, embedded computing and image sensors. This
chapter presents some works that allows to achieve the IVS vision; more precisely, the
next sections will introduce the smart cameras which are image sensors with embedded
computing capabilities, followed by a state-of-the-art of the computer vision algorithms
required in a surveillance application, such as person detection and tracking.

2.2. SMART CAMERAS 9

Figure 2.3 – Generic architecture of a smart camera. Figure taken from [145].

2.2/ SMART CAMERAS

The most prominent way to efficiently filtering/selecting pertinent data from the huge
amount of visual information, is to rely on Smart Cameras (SCs) to perform visual tasks
semi-autonomously (with minimal human interaction) [67, 18, 145, 174]. Smart cameras
are sensors which are capable of acquiring visual information and filtering/extracting the
pertinent information of the scene. Thus, allowing to better exploit visual data and to
optimize/minimize data storage and transmission. Therefore, the SCs not only contain
the image sensor, but also a processing unit and communication interfaces, i.e., SCs are
self-contained vision systems. Figure 2.3 depicts the smart camera pipeline presented
by [145]. The image sensor, which is commonly implemented either in Complementary
Metal–Oxide–Semiconductor (CMOS) or Charge-Coupled Device (CCD) technology, is
the one that captures the raw data in the form of an image. The sensing unit reads the
raw image and performs some preprocessing to enhance it, like color transformation or
white balance. The processing unit receives the image, performs some computer vision
algorithm to analyze it, and then transfers the abstracted data to the communication unit.
This unit enables communication with the external world by providing various interfaces
such as the standard USB and Ethernet, or even wireless ones like Wi-Fi or Bluetooth.

The processing unit is the central part of a SC. Thus, the type of processing unit will
determine the SC’s computing power, development time (i.e., utilization of high-level pro-
gramming languages, development tools, availability of libraries, etc, that help to reduce
the development time) and versatility (i.e., the ability to manage and modify the process-
ing tasks performed). For implementing complex image analysis in real-time, the choice
of an SC is firstly a choice of its processing unit and secondly a choice of the image
sensor and the communication interfaces. Table 2.1 presents a comparison of differ-
ent processing units, based on our experience on SC design [120, 168, 33, 151, 14].
Multi-core processors are generic purpose processors that can be adapted in embedded
systems. Currently, Multi-core enables a quick and efficient implementation of image pro-
cessing algorithms, due to their architecture and the vast availability of development tools
and libraries. Therefore, the trade-off between computing performance and development
time is significant. Moreover, its versatility is optimal—compared to the other processing
target—thanks to its generic architecture. Graphics Processing Unit (GPU) processors,
which originally were designed and specialized for graphical tasks, are recently used for
embedded image analysis. GPUs are particularly efficient in the implementation of Con-
volutional Neural Networks (CNNs)—used for object detection—due to its highly parallel
structure. However, the achievement of high performance might involve the optimization/-
parallelization of algorithms, which has an impact on the development time and versatility.

10 CHAPTER 2. VISUAL SENSOR NETWORK

Table 2.1 – Comparison of processing units that can be found in smart cameras. The best
value of each characteristic is shown in bold.

Computing power Development time Versatility
Multi-core medium low very high

GPU high medium high
FPGA very high very high low

SoC very high high medium

The Field-Programmable Gate Array (FPGA) is equivalent to very large number of logical
gates associated to a large set of arithmetic operators (i.e., up to several thousand of
multipliers) and embedded memory. These resources and their reconfigurable architec-
ture enable high processing performance to be reached using the intrinsic parallelism of
the applications. Nevertheless, even if some High Level Synthesis (HLS) strategy can be
used to decrease the development time [167], it is still significantly higher compared to
the Multi-core and GPU. A System on Chip (SoC) regroups basically a FPGA with others
hardware cores (e.g., processors, interface controllers and GPUs). The SoC’s computing
power is very high. Moreover, its embedded processor reduces the development time
and increases its versatility, compared to FPGA.

Based on our experience and on the video surveillance application—where multiple SCs
need to be deployed and multiple algorithms needs to be implemented on them (e.g.,
person detection, face detection and motion detection)—we favoured SCs with: (1) high–
computing power, to enable real-time analysis; (2) low-development time, to facilitate the
implementation of algorithms; (3) and high-versatility, to allows the management of dif-
ferent processing tasks. Leaving us with the choice of either Multi-core- or GPU- based
SCs.

The output of a SC is some abstracted data of the observed scene (see Fig. 2.3). The de-
livered abstraction depends on the performed computer vision algorithm, which itself de-
pends on the specific application of the SC. Computer vision is the science that deals with
how computers/software systems can recognize and understand scenes, in other words,
computer vision seeks to automate tasks that the human vision does. Some examples
of computer vision algorithms are motion detection, face detection, 3D reconstruction,
contour detection, image segmentation, etc. [17, 30]. However, since the most important
task in video surveillance is the tracking of humans through a network of cameras then,
our study will be focused on the people detection and people tracking algorithms.

Moreover, by being able to perform onboard image analysis and hence to avoid trans-
ferring raw data (videos), SCs have a great potential for increasing privacy, security and
reducing the required network bandwidth.

2.3/ COMPUTER VISION - PEOPLE DETECTION AND TRACKING

The ultimate goal of computer vision is to allow computers (or SCs in our case) to emulate
human vision by performing tasks like learning, making inferences and performing actions
based on those inferences [17, 30]. Some typical computer vision tasks are:

• Image enhancement, which consists in processing an image to be more suitable for

2.3. COMPUTER VISION - PEOPLE DETECTION AND TRACKING 11

Person Person

+

Input Image Localization Classi�cation Output

Object detection

Figure 2.4 – Object detection overview, example for people detection. The output of the
detector is a bounding-box containing the object and a label stating its class.

a further analysis. For example, remove noise from an image, sharpen it, blur it,
brighten it, detect edges, etc.

• Scene reconstruction, which consists on generating a 2D/3D model of a scene,
from a given set of images. The model could be a simple set of points or a surface
model. Some examples are stitching 2D images to create a panoramic view and
the structure from motion algorithm which computes a 3D model of a scene from a
sequence of 2D images.

• Image recognition, which consists in classifying, identifying and detecting objects or
actions in an image. For example, identifying a person’s face, identifying handwrit-
ten digits, detecting cats or people in an image, detecting human activities such as
dancing or playing soccer, etc.

We will focus our study in the image recognition aspect, specifically in the different ways
to detect people in an image and track them while they appear in different cameras.

2.3.1/ OBJECT DETECTION → PEOPLE DETECTION

Object detection consists in identifying the location of an object in an im-
age—localization—and predicting its class (i.e., type of object)—classification. Thus, the
output of an object detector are: (1) the rectangle containing the object, called bounding
box (Bbox), and (2) its class name. Figure 2.4 illustrates an example where a person-
object is being detected.

People detection (also known as pedestrian detection) is a particular case of object de-
tection, which has interest researchers over time, due to its challenges and its many appli-
cations including robotics, surveillance, entertainment, and driverless cars [48, 60, 152].

People detection methods can be grouped into two categories according to their nature:
(1) feature-descriptor based, or (2) deep-learning based. We will now review some works
on both categories. Please note that it is outside the scope of this manuscript to give
precise details on the presented methods, and we refer interested readers to their papers.

Feature-descriptor based methods A feature descriptor is a representation of an im-
age (or image patch) that simplifies it by extracting useful information and removing un-
necessary information (i.e., selecting), according to a hand-crafted model. The goal of

12 CHAPTER 2. VISUAL SENSOR NETWORK

a feature descriptor is to generalize a class of objects in such a way that different ob-
jects of the same class will produce similar feature descriptors, like this simplifying the
classification task.

Generally, all the methods using feature descriptors follow a sliding-window paradigm in
order to detect people at different scales [48, 10]. This paradigm entails acquiring im-
age patches from the complete image, passing each patch through the person detection
pipeline (see Fig. 2.5, which will be explained afterwards) and finally applying a Non-
Maximum Suppression (NMS) algorithm to eliminate multiple nearby detections. The
image patches are obtained by sliding a fixed size window from left to right, and from up
to down and cutting out the corresponding patch in the image. To achieve multi-scale
people detection, the image should be iteratively resized and each image size should be
process using the same fixed sized window [128].

A classical person detector pipeline based on feature descriptor is shown in Figure 2.5.
The input of the pipeline is an image patch, obtained from sliding window in the image.
This image patch is then preprocessed to adjust it for the feature descriptor extraction.
Some examples of preprocessing algorithms are image resizing, filtering (e.g., sharp-
ening, blurring, reducing noise), color normalization (i.e., reduce color variations), color
transformation (e.g., passing from Red-Green-Blue (RGB) to grayscale), etc.

After preprocessing, the image patch is passed through a feature descriptor model that
extracts and selects the useful features from it. Some examples of feature descrip-
tors are Histogram of Oriented Gradients (HOG) [42], Scale-Invariant Feature Transform
(SIFT) [105], haar-like features [128, 171], Local Binary Pattern (LBP) [126] and color his-
tograms like RGB or HSV [179, 130]. The color features can be obtain in different spaces,
such as: RGB color space which stores individual values for red, green and blue, and de-
scribes what kind of light needs to be added/subtracted to produce a given color; HSV
color space which stores values of hue, saturation and value/brightness, thus allowing
to remove the influence of light changes by only considering the HS channels; CIELAB
which is a perceptually linear space (i.e., a change in a color value should produce a
visual change of the same importance) expresses color as three values: L∗ for the light-
ness that goes from black to white, a∗ that goes from green to red, and b∗ that goes from
blue to yellow; and the YCbCr space which is widely is in video and image compression,
where Y is the light component and Cb and Cr are the blue-difference and red-difference
chroma components.

Afterwards, the resulting features are passed through a binary classifier, that will deter-
mine the presence or not of a person in the input data. The most popular choices of
classifiers, due to their theoretical guarantees, extensibility, and good performance, are
Support Vector Machines (SVMs) [39, 23], Adaptive Boosting (AdaBoost) [59] and de-
cision forest [138]. Finally, if a person is detected, then the coordinates of the Bbox
will correspond to the sliding window used to extract the image patch (the input of the
pipeline).

Papageorgiou and Poggio [128] were one of the firsts to propose a sliding window de-
tector using haar-like features and SVM for classification. Viola et al. [172] based on
those ideas, introduced the integral images for fast feature computation and used a cas-
cade of AdaBoost classifiers for feature selection and classification. Inspired by shape
context and SIFT features, Dalal and Trigss [42] introduced the popular HOG features
and test them using a SVM classifier. Since their introduction, the HOG features have
inspired many researchers. In 2014, Benenson et al. [10] reviewed 44 people-detectors,

2.3. COMPUTER VISION - PEOPLE DETECTION AND TRACKING 13

Input data
(image patch)

Preprocessing
Feature

descriptor
(hand-crafted)

Classification
Output

(Bbox and class)

Feature selection

(e.g., resizing, ✁ ltering,
normalization, etc)

(e.g., color histogram,
HOG, SIFT, etc)

(e.g., adaboost,
SVM, etc)

Figure 2.5 – Pipeline of a person detector based on feature descriptors.

from which 40 used HOG plus other type of features; for example, Wang et al. [175]
combined HOG and LBP features to deal with partial occlusions, and Bar-Hillel et al. [8]
combined HOG, SIFT and other features in a part-based method using an SVM classi-
fier. Felzenszwalb et al. [56] proposed a Deformable Part Model (DPM) that handled view
and pose variations; their model combined HOG features plus a set of part filters and
deformation models, and used a modified version of SVM called Latent-SVM. Dollar et
al. [47, 46] proposed the Integral Channel Features (ICF) and the Aggregated Channel
Features (ACF) detectors, which combined HOG and color channels features, selected by
a boosted decision forest; they also proposed to increased the computational efficiency
by approximating features at multiple scales using a sparsely sampled image pyramids.
The ICF/ACF methods have inspired many detectors as presented by Zhang et al. [189];
one method worth to mention due to its high performance, is the Checkboard detector
presented by Zhang et al. [190] which used HOG, motion and color features with a set of
filters with “checker-board like” patterns and a boosted decision forest.

Even-though, some feature-descriptor based methods have achieved competitive results
at low computational complexity (as presented in [189]), they still present many disadvan-
tages, such as:

• Hand-crafted features The main focus of the methods is on designing features.
The detectors accuracy is largely determined by the ability of the designer to come
up with and appropriate set of features [93]. Moreover, these features are mainly
designed based on the people shape, which limits their discriminative ability against
similar-looking background objects.

• Low-level features The basis of the descriptors are low-level features (local) such
as edges, colors and textures, which lack of higher level of representation.

• Sliding window paradigm The sliding window paradigm is a computational bottle-
neck for most of the detectors [46].

• Disjointness between features and classifier One main problem with these meth-
ods is that the classification part has no influence on the feature descriptor, in con-
trast to the methods based on Convolutional Neural Networks (CNNs). Meaning
that the feature representations and the classifiers cannot be jointly optimized to
improve performance.

Remark. For additional details on the detectors, their evaluations and comparisons we
refer the reader to the original publications and to the following surveys: [48, 10, 189].

14 CHAPTER 2. VISUAL SENSOR NETWORK

Input data
(pixels/image)

Preprocessing
Deep learning

model

Object detection

(Bbox and class)

Feature extraction

(CNN architecture)

(e.g., crop, sharp,
SS and EdgeBox)

Classi�cation

(e.g., VGG-Net, AlexNet
and ResNet)

(e.g., softmax, sigmoid
and SVM)

(e.g., R-CNN, SSD,
and YOLO)

Learning

(e.g., people, cat,
car and bird)

Figure 2.6 – Pipeline of an object detector based on a deep learning model.

Deep-learning based methods Deep learning is a class of machine learning tech-
nique that teaches computers to learn by examples. CNN is a class of deep learning
commonly applied to recognize visual patterns directly from pixel/images with minimal
preprocessing. CNNs learn higher-order features of an image via performing a sequence
of convolution, which are trained using the back-propagation algorithm [93, 89, 97, 104].
Some advantages of CNNs are that they can discover features from raw pixel values i.e.,
no need of human effort in feature design; that they can recognize patterns (i.e., objects)
with extreme variability and; that the classification step has an influence in the feature
extraction–due to the back-propagation. Another important feature of CNN-based object
detectors is that they are capable of detecting multiple classes of objects at once. Thus,
state-of-the-art person detector can also accurately detect cats, dogs, chairs, cars, etc.

The rapid adoption of CNN in the last few years—and more generally of deep learning—
has brought into development highly-accurate deep-learning based object detectors such
as: Regions with CNN features (R-CNN) [64]; Fast R-CNN [63]: Faster R-CNN [143]; Sin-
gle Shot Detector (SSD) [103]; RetinaNet [99]; and You-Only-Look-Once (YOLO) [142].
Figure 2.6 presents a general pipeline of this type of object detectors. These detectors
use as feature extractors some of the most well-known CNN architectures (also known
as backbone network) such as: AlexNet [89], VGG-Net [153], ResNet [69] and Darknet-
59 [141]. The CNN architectures differ by their layers configurations (i.e., their design),
for example they present different number of layers, type and sequence of layers. The
deep-learning models may also use some well-known classifiers like SVM [39, 23], sig-
moid binary-classifier [68] and its multi-class generalization called softmax [147]; as well
as some region proposal algorithms like Selective Search (SS) [170], EdgeBox [196] and
Region Proposal Network (RPN) [143].

Deep-learning based object detectors can be divided into two classes according to the
number of stages. Two-stage detectors (also known as region-based), such as R-CNN,
Fast R-CNN and Faster R-CNN, perform a strategy that (mainly) consists of: (1) pro-
pose some category-independent regions of interest, in order to reduce the number of

2.3. COMPUTER VISION - PEOPLE DETECTION AND TRACKING 15

image patches feed to the CNN, and (2) classify the proposed regions. The R-CNN de-
tector [64], uses the SS method [170] to propose some regions of interest, afterwards
each proposed region is preprocessed and passed through the AlexNet architecture [89],
finally the extracted features are passed through a set of SVMs to predict the class of
the image patch. The Fast R-CNN detector [63], improved the speed and accuracy of R-
CNN, by passing the whole image through the CNN architecture, and then selecting the
proposed regions; Fast R-CNN used the VGG-Net that is much deeper than AlexNet (i.e.,
it has more layers), and SVM and softmax classifier. The Faster R-CNN detector [143],
adopted similar design as the Fast R-CNN except, it improved its speed by implementing
an internal CNN-based region proposal approach called RPN, which replaced the exist-
ing "slow" region proposal methods (e.g., SS, EdgeBox [196]). Faster R-CNN performs
around 10 times faster than Fast R-CNN, while Fast R-CNN performs around 25 times
faster than R-CNN [63, 143].

One-stage detectors (also known as single-shot), such as SSD, RetinaNet and YOLO,
perform a detection strategy that consist of generating, in single step, the Bboxes and the
classes, i.e., they do not have a separate step for region proposal as two-stage detectors.
The SSD [103], uses the VGG-Net to extract the feature maps of the complete image,
then applies a sequence of multi-scale convolutional layers and anchor boxes (as intro-
duced in Faster R-CNN) and finally uses softmax classifier. The RetinaNet detector [99],
proposes to increase the accuracy of one-stage detectors by reducing the foreground-
background class imbalance during training. To achieve this, they introduced a new focal
loss function that prevents the vast number of easy negatives from overwhelming the
detector during training. The RetinaNet adopted the ResNET-FPN architecture [98] with
sigmoid classifier. The YOLO detector [142], divides the image into regions and predicts
Bboxes and probabilities for each region, moreover, the Bboxes are weighted by the pre-
dicted probabilities. The current version, YOLOv3, uses the DarkNet-53 architecture, for
feature extractor, plus a multi-scale prediction method based on Feature Pyramid Net-
works (FPN) [98], that allows it to better detect small objects.

Generally, people detectors are evaluated by their precision and processing time. In the
Pascal VOC Challenge [52], it was proposed to evaluate the precision by computing the
Average Precision (AP), using a fix Intersection Over Union (IOU) threshold of 50% and
the model confidence to compute an accumulated Precision and Recall curve (PR-curve).
The IOU is used to evaluate the ability to “localize” and the confidence the ability to “clas-
sify”. Firstly all the detections are compared to the ground truth detection to determine
their degree of overlapping, if the overlapping is greater (or equal) than the IOU thresh-
old then the detection is considered as a True Positive (TP) (correct detection), if not,
is considered as a False Positive (FP). Afterwards, the accumulated precision and recall
is computed and plotted (PR-curve) starting from the most confident detection until the
less confident one. Precision is the fraction of detected instances that are relevant (see
Eq. 2.1), while recall is the fraction of relevant instances that are detected, if a detection
is not detected then is consider as a False Negative (FN) (see Eq. 2.2). Finally, after
obtaining the PR-curve, the AP is computed as the area under the curve (AUC). A com-
mon method, is to interpolate the PR-curve based on 11 recall points and then computed
the AUC, from the interpolated curve, as an average of the their precision values. AP
is a numerical metric, which simplifies the comparison of different detectors. Moreover,
if there are multiple types of objects to be detected, then the AP for each type should
be computed, and finally all those APs should be average to obtain the Mean Average

16 CHAPTER 2. VISUAL SENSOR NETWORK

Figure 2.7 – Inference time (ms) versus mean average-precision (mAP) of one- and two-
stage detectors. The figure was taken and adapted from [142].

Precision (mAP) metric.

Precision =
T P

T P + FP
(2.1)

Recall =
T P

T P + FN
(2.2)

The processing time or inference time, is the time required by the detector to output
the results (detections), and is normally measured in milliseconds (ms). The processing
speed is very important, not only for real-time applications, but also for applications that
required the use of systems with limited resources, such as smart cameras. In previous
years, one-stage were considered as trading accuracy for real-time processing speed,
thus having a lower AP compared to two-stage detectors [99]. However, as shown in
Table 2.2 and Fig. 2.7, the recent developments of one-stage detectors have reached
the same (or better) level of accuracy than state-of-the-art two-stage methods, while still
being much faster. For example, the YOLOv3 detector is by far the fastest (see Fig. 2.7)
object detector of all, and his accuracy (in most of the cases) is around 5% lower than
the highest accuracy achieved by Faster R-CNN with FPN the state-of-the-art two-stage
detector (see Table 2.2). The evaluations shown in Table 2.2 and Fig. 2.7 were performed
on the COCO test-dev benchmark [100] using different variants of: SSD with different
image scales (321 and 513) [103]; RetinaNet with different depths (50 and 101) and
image scales (500 and 800) [99]; YOLOv3 with different image scales (320, 416 and
608) [142]; and a combination of Faster R-CNN with FPN [98]. Moreover, the accuracy
shown is not only for the person class, but for the 80 object types considered in the COCO
dataset (person, cat, banana, etc).

Some of the main disadvantages of deep-learning object detectors are: their high de-
mand of processing resources (multiple GPU cores), the need of large amount of data

2.3. COMPUTER VISION - PEOPLE DETECTION AND TRACKING 17

Table 2.2 – Average-precision (AP) of one- and two-stage detectors at different IOU
thresholds and across different object scales (small (S), medium (M) and large (L)). Table
taken and adapted from [142].

AP AP50 AP75 APS APM APL

Two-stage method
Faster R-CNN with FPN 36.2 59.1 39.0 18.2 39.0 48.2
One-stage methods
SSD513 31.2 50.4 33.3 10.2 34.5 49.8
RetinaNet 39.1 59.1 42.3 21.8 42.7 50.2
YOLOv3-608 33.0 57.9 34.4 18.3 35.4 41.9

to train the models and their complex configuration (high number of parameters to tune).
However, those disadvantages are relevant only if the model should be train from scratch
using a new (and large) data set. Moreover, most of the state-of-the-art deep-learning
models are shared already pre-trained, and they can be used off-the-shelf (i.e., they can
be applied to new data directly without any modification). Still, the result of the pre-trained
model in the new data might not be acceptable. In this case, a common solution is to apply
fine-tuning techniques (a type of transfer learning [187]) to re-train only selected model
layers using new data. Model fine-tuning requires much fewer resources and data than
training from scratch.

Based on the current results of state-of-the-art people detectors, it can be concluded
that this task is (almost) solved, however the detection accuracy depends on the re-
sources available. Feature-descriptor based detectors tend to required lower processing
resources compared to deep-learning based detectors, however their accuracy tend to be
lower as well. Furthermore, the accuracy of deep-learning based detectors also depends
on the amount of data used to train them.

Remark. For additional details on the detectors, their evaluations and comparisons we
refer the reader to the original publications.

2.3.2/ PEOPLE TRACKING

The impressive progress in people detectors has led to great advancements in people
tracking techniques [166]. People tracking is an important task in computer vision, es-
pecially for applications such as robotics and intelligent video surveillance. It consists of
assigning an Unique Identifier (ID) to each people and maintaining it through time, while
they move within single or multiple cameras [90]. Hence, multi-camera people tracking
consists of two crucial functional modules: (1) intra-camera tracking, i.e., tracking people
within a single camera view; and (2) inter-camera tracking, i.e., associating the people’s
tracks observed by different cameras, to maintain the identities of people when they move
from one camera to another [90, 174]. Moreover, inter-camera tracking can be done be-
tween cameras which have overlapping fields of view (i.e., cameras that have a common
view of the scene), or between non-overlapping.

Figure 2.8 depicts the relation between people detection and tracking modules. Ab-
stractly, a people tracker takes as inputs a set of detections computed by a people detec-
tor algorithm (see Section 2.3.1). Afterwards, for each camera, the tracker should partition
the detections into sets, where each set corresponds to one person—more precisely a

18 CHAPTER 2. VISUAL SENSOR NETWORK

Video

People detection

Camera 1

Video

People detectionDetection

Tracking

Camera 2

Intra-camera

tracking

Intra-camera

tracking

Inter-camera

tracking

Figure 2.8 – Relation between people detection and tracking functional modules.

person’s ID. The set of detections coming from a single cameras and order by time is
known as tracklet [166], and is the output of the intra-camera module. Finally, the people
tracker should associate the tracklets, coming from multiple cameras, that correspond
to the same person. The set of a tracklets corresponding to a precise person’s ID and
ordered by time is known as a trajectory, and is the output of the inter-camera module.

People tracking is a challenging task, since different people may look alike, making it dif-
ficult to discriminate between them. Moreover, the appearance of a single person may
also vary due to changes in illumination, camera viewpoints, pose (e.g., standing and
sitting), partial or total occlusions, and background clutter [79]. In order to deal with these
challenges, numerous researchers have proposed different approaches, as presented in
the surveys of Hou et al. [79] Smeulders et al. [157] and Luo et al. [106]. In general,
multi-camera tracking methods differ according to their assumptions and the type of in-
formation considered to tackle the tracking challenges. Hou et al. [79], categorized the
tracking methods in: (1) generative trackers, (2) discriminative trackers, (3) Camera-Link
Module (CLM)-based, (4) Graph Model (GM)-based, and (5) human re-identification (hu-
man re-id). The first two categories can be used only for intra-camera tracking, while the
rest can be also be used for inter-camera tracking with or without overlapping.

Generative trackers estimate each people’s location and correspondence, based on their
locations and movements in previous frames. To reduce exhaustive search, the trackers
use methods like kalman filter [177, 94], particle filter [185, 115] and kernel-based track-
ing [35, 80]. In contrast to generative trackers, discriminative trackers obtain all the people
locations in each video frame (or a temporal window) and then jointly establish the people
correspondence that optimize all the tracklets. The tracklets are optimized by using tar-
get association techniques such as joint probability data association filtering [124, 144],
multiple-hypothesis tracking [197, 85] and flow network framework [24, 129]. The main
drawback of generative and discriminative trackers is their strong dependence on target
location and movement factors, which makes them usable only for intra-camera tracking.

2.3. COMPUTER VISION - PEOPLE DETECTION AND TRACKING 19

The CLM-based trackers focus on establishing the link models (correlations) between
the cameras in a network, to estimate feature correspondence relationships between
adjacent cameras (i.e., space-time and appearance relationships). For example, some
CLM trackers use the topology of the camera networks—more precisely the connectivity
between entry zones and exit zones– to reduce mismatch across cameras [108, 26]; oth-
ers compensate the illumination variations between cameras by estimating a Brightness
Transfer Function (BTF) [84, 137]; and others combined the space-time information—
obtained from the walking transition time between cameras—and BTF to obtained a more
robust results [90, 34]. CLM-based trackers can be used for inter-camera tracking how-
ever, their main drawback is the requirement of a large amount of training data (manually
or automatically labelled) to stablish correspondences, which limits the scalability to real-
istic applications.

The GM-based trackers use graph modelling techniques to deal with data associations
across multiple cameras, using as inputs people’s detections, tracklets and trajectories.
The GM is composed of nodes, edges ad weights and is solved using the Maximum A
Posteriori (MAP) optimization solution framework. Some examples of this type of tracker
can be found at [83, 31, 32]. GM-based trackers can effectively track people in complex
scenes, such as crowd and interference of human appearance. However, it is difficult to
get optimal solutions from the data association, moreover, they require all observations
in advance to create the GM.

Human re-id techniques, also known as person re-id, consists on matching two im-
ages/detections of the same person, under intensive appearance changes, based on the
similarity of their visual features [195]. Compared to the other tracking methods where
several cues can be applied (e.g., spatio-temporal information), person re-id methods typ-
ically use the appearance as the only cue (type of feature). Thus, person re-id trackers
focus on extracting discriminative and robust visual features to characterize human ap-
pearance and shape. We are particularly interested in this type of techniques due to they
can be used for both intra- and inter- camera tracking, they have good scalability and they
can be used online (i.e., they just need the current and past information). Person re-id
approaches differ by three main aspects:

1. Feature descriptor: there are a lot of feature descriptors which can be used in per-
son re-id, such as color, texture, shape, regional features, patch-based features,
etc [107]. In general, compared to other features, color feature is dominant under
slight lighting changes since it is robust to changes in viewpoint [186, 79]. Thus, it
is widely used in appearance matching for inter-camera tracking since the color of
clothing provides information about the identity of the individual [107]. In the other
hand, texture and shape features are stable under significant lighting changes, but
they are subject to changes in viewpoint and occlusion.

However, most visual features are either insufficiently discriminative for cross-view
matching or insufficiently robust to viewpoint changes, thus a combination of fea-
tures is required. Some examples of combined features are: the Ensemble of Local-
ized Features (ELF) [65], which uses a combination of color histograms in the RGB,
HS and YCbCr color spaces, as well as texture histograms of Gabor and Schmid fil-
ters; the dColorSIFT descriptor [192], which densely divided the image into patches,
and for each patch they extract and concatenate CIELAB color histograms—to han-
dle color variations—as well SIFT descriptors—to handle viewpoint and illumination
changes; the Local Maximal Occurance (LOMO) [95], that uses HSV histograms

20 CHAPTER 2. VISUAL SENSOR NETWORK

combined with scale-invariant LBP; the WHOS descriptor [101], which uses his-
tograms in HS and RGB, combined with HOG texture features; and the Gaussian
Of Gaussian (GOG) [114], that uses a combination of color histograms in HSV, RGB
and Lab color spaces, as well as gradient features.

Furthermore, many studies have showed that color histograms are the most im-
portant features for person re-id [61, 65, 91, 186, 101, 114]. Specifically, the HS
color channels are considered as the most discriminative cues given the illumina-
tion changes between different cameras.

2. Distance metric: the distance metric determines the correspondence/similarity be-
tween two feature descriptors. There are two types of metrics, the standard un-
supervised metrics which directly compare two feature descriptors, and the super-
vised metric learning which maximize the human matching accuracy and improves
person re-id performance. Cha [28] presented a survey on standard distance met-
rics, for histogram-based features, from which the most commonly used are bhat-
tacharya distance, used in [65, 54]; the cosine distance, used in [95]; and the eu-
clidean distance, used in [194, 114]. In the other hand, metric learning shifts the
focus from capturing feature descriptors to learning a new feature space such that
feature descriptors of the same person are close whereas those of different people
are relatively far [160]. Srikrishna et al. [160] presented evaluations using differ-
ent metric learning methods, from which the best performance were obtained using
the Keep-It-Simple-and-Straightforward (KISSME) [88], the Cross-View Quadratic
Discriminant Analysis (XQDA) [95] and the Discriminative Null Space Learning
(NFST) [188].

Even thought metric learning improves person re-id accuracy, it requires pairwise
supervised labeling of training datasets, which is a severe limitation in real applica-
tion scenarios where a priori labeled data is not available [101].

3. Improvement: there are many types of enhancements that might be employed to
improve the correct matching between detections, the most common are:

• Background suppression, which consist on reducing the inclusion of non-
informative information in the feature descriptor. Farenza et al. [54], proposed
to separate the foreground (the person) from background by segmentation,
and then to extract features only from some localized regions in the foreground
image. Similarly, Kuo et Nevatia [91], proposed to extract features directly from
a set of localized regions. Zheng et al. [194] and Matsukawa et al. [114], pro-
posed a simple solution by exerting a 2-D Gaussian kernel in order to reduce
the influence of the pixels which are farther from the center. In a similar way,
Lisanti et al. [101] propose an Epanechnikov kernel to diminish the influence
of background information near the image boundary.

• Stripping, which consist on dividing the detection image into a set of horizon-
tal stripes and extracting the feature descriptors in each stripe. As shown in
the literature, stripping makes the descriptors more robust to viewpoint vari-
ations, however, it may also lose spatial details within a stripe, thus affecting
its discriminative power [95]. Some examples of stripping can be found in the
following works [102, 95, 101, 194, 114].

• Normalization, which consists in keeping the relative contribution of the each
feature regardless of their absolute contribution. Normalization should be spe-
cially performed while working with color histograms to deal with images of

2.3. COMPUTER VISION - PEOPLE DETECTION AND TRACKING 21

different scales. There are two typical histogram normalization methods that
can be found in the literature, the l1-norm and the l2-norm. Some works us-
ing l1-norm can be found at [127, 184], while some works using the l2-norm
can be found at [56, 149, 176, 114]. The choice of normalization method may
be based on the type feature descriptor and distance metric used, however,
Sanchez et al. [149] presented some advantages of using l2-norm over l1-
norm. Moreover, according to Weiming et al. [176], the l2-norm is widely used
in the computer vision community.

A systematic evaluation of person re-id methods combining different feature descriptor
with multiple distance metrics, can be found at [160].

The current results of state-of-the-art tracking methods are quite promising but not per-
fect [146]. The current tracking methods have a high dependence on the detection results,
which themselves depend on the resources available (as stated in the previous section).
Moreover, in real applications the detectors might have some problems such as false
and miss detections, or sensor failures, which might lead to scenarios where the track-
ing methods cannot be applied. Furthermore, current tracking methods do not consider
the semantic contextual information of the environment, which can help to improve the
tracking.

For contextual information, we do not mean the network topology as consider in the CLM-
based tracking methods; but we mean the complete information of the environment, its
topology (i.e., connection between spaces), its functionality (e.g., the capacity of each
space and if a space is restricted or not), the relation of the environment with the camera
network (e.g., which doors are observed by each camera and where does those doors
lead to) and human-skill knowledge of the environment. For example, logic knowledge
that "if a person has not leave the room, then the person is still in the room" or that "if
two cameras observe, two different people, around the same door at the same time, then
those people are the same". The consideration of semantic contextual information
can facilitate more robust and accurate people tracking among different camera
views and enhance the analysis of difficult situations.

To exemplify the impact of contextual information, let us consider the example of Fig 5.11
were a person is walking in a building while being detected by two smart cameras that
perform a high-accurate people detection algorithm. The example was analyzed using
three (hypothetic) tracking methods: (1) a dummy single-camera method which does
not consider any relation between cameras (i.e., only intra-camera), (2) a multi-camera
methods which considers the relation between cameras (intra- and inter-camera), and is
based on person re-id tracking method, i.e., considers visual similarity between people,
and (3) a multi-camera+context method which considers the relation between cameras
and some contextual information. Based on the tracking method, three questions need
to be answered: how many people there are in space1?, how many people there are in
space2?, and how many people there are in the complete building?.

The results are presented in Table 2.3. At t1 the person was detected by a single camera,
thus all methods responded correctly. At t2 the person was detected by both cameras.
In this case, the single-camera method made a mistake by considers that there are two
people in the building due to each camera detects a person. In the other hand, the multi-
camera method responded correctly by comparing the similarities between the detections
of both cameras and determining that they belong to the same person. However, the
comparison based on visual features might not always give the correct result (e.g., due

22 CHAPTER 2. VISUAL SENSOR NETWORK

to illumination changes between cameras). Thus, the multi-camera + context method
used the knowledge that "if two cameras observe, two different people, around the same
door at the same time, then those people are the same" to determine the correspondence
between both person detections. At t3 the person was again detected by a single camera,
thus all methods responded correctly. At t4 the person was not detected by any camera,
due to it was in a blind region (i.e., outside the cameras’ field of views). Consequently, the
single-camera and multi-camera methods made a mistake, stating that there is no person
in any place. However, the multi-camera + context method used the knowledge that "if
a person has not leave the room, then the person is still in the room" to determine that
there was a person in space2, even if it was not being observed. At t5 and t7 the person
was again detected by a single camera, thus all methods responded correctly, while at t6
the person was detected by both cameras an the situation of t2 was repeated.

As observed in the previous example, the contextual information helps to resolve am-
biguities and uncertainties that arise due to changes in visual features, and it allows to
deal with the situation when the target is totally occluded, i.e., it allows to know what the
cameras do not see.

Remark. For additional details on the people trackers, their evaluations and comparisons
we refer the reader to the original publications.

2.3. COMPUTER VISION - PEOPLE DETECTION AND TRACKING 23

Person

2

1

1 2

Detections by cameras Time instants
...

Figure 2.9 – People tracking example. One person is walking in a built environment
while being detected by two cameras. The pertinent images taken by the cameras at the
different time instants are shown in the lower part of the figure. Notice that at time instants
t2 and t6 the person is being detected by both cameras, while at t4 is not being detected
by any camera.

24 CHAPTER 2. VISUAL SENSOR NETWORK

Table 2.3 – Analysis of the example shown in Fig. 5.11 using single-camera, multi-camera
and multi-camera+context methods. The analysis focus on answering the questions
shown in gray, about the number of people at the different time instants (t1 . . . t7). "Px"
stands for "person detection X" and "Px@door" stands for "person detection X was made
around a door".

Single-camera Multi-camera Multi-camera+context

t1

cam1
detects
−−−−−→ Px cam1

detects
−−−−−→ Px cam1

detects
−−−−−→ Px

cam2
detects
−−−−−→ − cam2

detects
−−−−−→ − cam2

detects
−−−−−→ −

People in space1? 1 People in space1? 1 People in space1? 1
People in space2? 0 People in space2? 0 People in space2? 0
People in the building? 1 People in the building? 1 People in the building? 1

t2

cam1
detects
−−−−−→ Px cam1

detects
−−−−−→ Px cam1

detects
−−−−−→ Px

cam2
detects
−−−−−→ Py cam2

detects
−−−−−→ Py cam2

detects
−−−−−→ Py

(Px
similar
←−−−→ Py)

then
−−−→ Px = Py (Px@door ∧ Py@door)

then
−−−→ Px = Py

People in space1? 1 People in space1? 1 People in space1? 1
People in space2? 1 People in space2? 1 People in space2? 1
People in the building? 2 People in the building? 1 People in the building? 1

t3

cam1
detects
−−−−−→ − cam1

detects
−−−−−→ − cam1

detects
−−−−−→ −

cam2
detects
−−−−−→ Py cam2

detects
−−−−−→ Py cam2

detects
−−−−−→ Py

People in space1? 0 People in space1? 0 People in space1? 0
People in space2? 1 People in space2? 1 People in space2? 1
People in the building? 1 People in the building? 1 People in the building? 1

t4

cam1
detects
−−−−−→ − cam1

detects
−−−−−→ − cam1

detects
−−−−−→ −

cam2
detects
−−−−−→ − cam2

detects
−−−−−→ − cam2

detects
−−−−−→ −

Py has not left the space2
People in space1? 0 People in space1? 0 People in space1? 0
People in space2? 0 People in space2? 0 People in space2? 1
People in the building? 0 People in the building? 0 People in the building? 1

t5

cam1
detects
−−−−−→ − cam1

detects
−−−−−→ − cam1

detects
−−−−−→ −

cam2
detects
−−−−−→ Py cam2

detects
−−−−−→ Py cam2

detects
−−−−−→ Py

People in space1? 0 People in space1? 0 People in space1? 0
People in space2? 1 People in space2? 1 People in space2? 1
People in the building? 1 People in the building? 1 People in the building? 1

t6

cam1
detects
−−−−−→ Px cam1

detects
−−−−−→ Px cam1

detects
−−−−−→ Px

cam2
detects
−−−−−→ Py cam2

detects
−−−−−→ Py cam2

detects
−−−−−→ Py

(Px
similar
←−−−→ Py)

then
−−−→ Px = Py (Px@door ∧ Py@door)

then
−−−→ Px = Py

People in space1? 1 People in space1? 1 People in space1? 1
People in space2? 1 People in space2? 1 People in space2? 1
People in the building? 2 People in the building? 1 People in the building? 1

t7

cam1
detects
−−−−−→ Px cam1

detects
−−−−−→ Px cam1

detects
−−−−−→ Px

cam2
detects
−−−−−→ − cam2

detects
−−−−−→ − cam2

detects
−−−−−→ −

People in space1? 1 People in space1? 1 People in space1? 1
People in space2? 0 People in space2? 0 People in space2? 0
People in the building? 1 People in the building? 1 People in the building? 1

2.4. CONCLUSION 25

2.4/ CONCLUSION

In this chapter, we introduced the terms of Visual Sensor Networks (VSN), Intelligent
Video Surveillance (IVS), Smart Cameras (SC) and computer vision. Furthermore, we
presented the state-of-the arts of people detection and people tracking methods.

Nowadays, VSN have become a part of our daily life. They can be found in cities, com-
mercial centers, supermarkets, offices, and even in houses. However, as the size of the
network increases, it becomes more difficult (or even impossible) for the human operators
to monitor all the video streams at the same time, due to the high cognitive load. A solu-
tion to this problem, is to implement and IVS system which pre-analyzes the video data
to extract only the useful/pertinent information. The most prominent way of achieving the
IVS vision is by using SC to capture high-level descriptions of a scene and analyze them
in real-time by employing different computer vision algorithms.

The detection of people within an environment is a key task of most IVS systems. Thus,
the performance of this task using computer vision algorithms has interest many re-
searchers over time. Furthermore, as presented in the state-of-the-art methods, this
problem is almost solved, specially by considering the results of deep-leaning based mod-
els. However, the accuracy of the detectors depends highly on the resources available
—processing resources (hardware) and data for training.

Another important task of IVS systems is people tracking. This task is tightly related to the
people detection, and it consists of tracking a person across a series of cameras. This is
done by assigning an ID to each people and maintaining it through time while they move
within cameras. The current results of state-of-the-art people tracking methods are quite
promising. However, one main drawback of those methods is the disregard of semantic
contextual information which can be very useful for an IVS system.

For example, in a built environment, context is an essential factor since it provides infor-
mation about the current status of users, places, objects, sensors and events. All these
information are important and necessary to understand what is really happening within
the building. Therefore, we consider that an IVS system deployed in a smart building
should be aware of its context to automatically adapt its functionality according to the
contextual changes.

In the next chapters will focus on the different ways of obtaining the contextual informa-
tion of an environment, and how to integrate it with the information coming from an IVS
system.

3
CONTEXTUAL INFORMATION AND

INTEROPERABILITY

For me context is the key—from that comes the understanding of everything.

Kenneth Noland, 1988

As presented in the previous chapter, visual information is very rich and most of that rich-
ness can be exploited with the advances in computer vision. However, current computer
vision systems is that they are limited to extract data from what the cameras "observe",
more precisely they lack of contextual information of the environment. For example, re-
consider the Fig. 2.1 presented in the previous chapter. A state-of-the-art computer vi-
sion algorithm could easily detect a person in a scene, or the doors in a room, however
no computer vision algorithm will be able to determine that: the scene happened in a
corridor which is located in the third floor of a building, that the door—next to the per-
son—connects the corridor with a storage room, or simply that the person is about to
leave the corridor to enter the storage room. Those informations which add "extra mean-
ing" to the image are examples of contextual information in a built environment.

The first section of this chapter will introduce the contextual elements required in an In-
telligent Video Surveillance (IVS) system, while Section 3.2 presents some approaches
to obtain them. Moreover, Section 3.3 will present some advantages of using an ontol-
ogy as a machine understandable knowledge representation model, making emphasis in
its availability of enabling interoperability between multiple (and maybe) heterogeneous
sources of information.

3.1/ ELEMENTS OF CONTEXT

Let us start by answering two simple questions, what is context? and why is it important?

According to the Oxford dictionary, context is defined as: “the circumstances that form the
setting for an event, statement, or idea, and in terms of which it can be fully understood.”1

In other words, context is everything—information, knowledge, etc—that enables a better
understanding of an action, event, statement or an image. Thus, a system that pretends

1https://en.oxforddictionaries.com/definition/context

27

28 CHAPTER 3. CONTEXTUAL INFORMATION AND INTEROPERABILITY

to be "smart"—such as an Intelligent Video Surveillance (IVS) system—should un-
derstand its context in order to have a better interpretation of a perceived action.
That is why context is so important!

A system that considers contextual information for decision-making is known as a context-
aware system. Thereby, an IVS context-aware system (referred simply as IVS system)
should accurately perceive sensor data and integrate it with the contextual information,
to automatically and "smartly" adapt its services according to the evolving information of
the environment. By contextual information we refer to: information about the structure of
the building (number and location of storeys, spaces, corridors, etc), its topology (storey-
space relation, space-space relation, etc), the different elements contained in the spaces
(doors, windows, walls, furnitures, etc), information about events that have occurred (in-
formation coming from sensors, their location, occurrence time, people involved, etc) and
human-skill knowledge that can facilitate the analyze of a situation (e.g., knowledge that a
person should enter a space by a door not by a window, or that a non-authorized person
shouldn’t be in a restricted space) [109].

As it can be observed, an IVS system deployed in a building should consider highly
heterogeneous contextual information; that goes from evolving information coming from
a network of sensors, to information concerning the built environment, passing through
human-skill knowledge which is based on the fusion of sensor and environment infor-
mation. Consequently, an IVS system requires and agent that enables the integration
between multiple and heterogeneous sources of information (interoperability).

The rest of the chapter will focus on how to obtain the required built environment infor-
mation (Section 3.2), and on how this information can be integrated with the rest of the
contextual information (Section 3.3).

3.2/ MODELS TO REPRESENT A BUILT ENVIRONMENT

The need to represent building information in a compact and practical form has motivated
several approaches in the history of Architecture, Engineering and Construction (AEC).
Starting from the designs using pen and paper, passing through the geometrical models
conceived using Computer-Aided Design (CAD) systems, and finally arriving to the mod-
els based on the Building Information Modelling (BIM) that goes beyond the geometrical
representation of a building and allows to store, manage, exchange and share information
between all the agents involved in a building’s life-cycle.

The term BIM is becoming the standard in the building-design and -construction fields
for over the past 25 years [38]. Eastman et al. [50] defines BIM as a technology that
enables "one or more accurate virtual models of a building to be constructed digitally.
They support design through its phases, allowing better analysis and control than manual
processes. When completed, these computer generated models contain precise geome-
try and data needed to support the construction, fabrications, and procurement activities
through which the building is realized". A BIM model is a set of numerical data, objects
and processes appended during the complete life-cycle of a building—from the concep-
tion to construction and later maintenance. BIM’s main advantage is allow the different
actors involved in the development of a building—e.g., architectures, engineers, construc-
tors, plumbers, and electricians—to exchange data in a uniform way.

3.2. MODELS TO REPRESENT A BUILT ENVIRONMENT 29

Table 3.1 – Comparison of file formats for BIM. Notice that we did not have access to the
proprietary formats RVT and DWG/DXF, therefore their features are unknown.

Features

Format
Open
source

Machine
readable

Geometry
data

Building
topology

External
interoperability

Machine
understandable

RVT 7 – – – – –
DWG/DXF 7 – – – – –
COBie 3 7 7 7 7 7

IFC 3 3 3 3 3 7

An IVS context-aware system could exploit the information contained in a BIM model.
However, due to the nature of IVS systems, the BIM model should comprise the following
features: (1) it should be open access, i.e., it shouldn’t be limited to the use of specific
proprietary softwares which harms interoperability; (2) it should be machine-readable (not
only human-readable) to allow the automatic process of the data; (3) it should include ge-
ometric data from which two- and three- dimensional schemes could be generated; (4) it
should include topological information, i.e., the relations between the building, the storeys,
the spaces and the elements contained in the spaces like door, walls, etc; (5) it should
allow the integration with external data sources such as sensors data or building usage
information; (6) and it should have a formal semantic representation that will enable ma-
chines to understand—process and interpret—the information, i.e., new knowledge could
be inferred from existing information thanks to the mathematical formalization of the se-
mantics. There exist many formats used to represent data in a BIM workflow and that will
characterize the BIM model itself. The most common BIM formats are: Revit (RVT) [6],
Drawing/Drawing Interchange Format (DWG/DXF) [5], Construction Operations Building
Information Exchange (COBie) [49] and the Industry Foundation Classes (IFC) [21]. All
the previous formats model the built environment information in different manners, result-
ing in different quality of contextual information. Table 3.1 compares these formats based
on the required features. As it can be observed, IFC is the one that posses most of the
required features.

The IFC data model is an open specification that is aiming to be a global standard to BIM.
The IFC was developed by buildingSMART (previously known as International Alliance for
Interoperability)2 in the 1990s, to facilitate interoperability in the building industry [81]. The
IFC is defined using the EXPRESS language 3 and it gives the basis for describing all el-
ements making the building, both semantically and graphically. The semantics level aims
to clearly specify the meaning of each element making the BIM [81, 21]. However, as pre-
sented in [9, 193], there are several aspects that limit the IFC-EXPRESS format, the most
important being the lack of formalization of the semantic information—mathematically
rigid theory—and its limited reuse and interoperability due to the unpopularity of the EX-
PRESS language outside few engineer domains.

According to Table 3.1, none of the BIM formats available allows machines to process
and interpret—understand—the information, instead they focus on storing it. However, to
bridge this gap many papers propose to represent the BIM information in the form of an
ontology [44, 131, 116]. An ontology is a semantic oriented model based on a mathemat-
ical formalism, where the knowledge is represented in a structured and well-understood

2wwww.buildingsmart.org
3EXPRESS is a standard data modeling language for product data https://en.wikipedia.org/wiki/

EXPRESS_(data_modeling_language)

https://en.wikipedia.org/wiki/EXPRESS_(data_modeling_language)
https://en.wikipedia.org/wiki/EXPRESS_(data_modeling_language)

30 CHAPTER 3. CONTEXTUAL INFORMATION AND INTEROPERABILITY

manner. Furthermore, according to Castano et al. [27], ontologies are recognized as
"an essential tool for allowing communication and knowledge sharing among distributed
users and applications, by providing a semantically rich description and a common un-
derstanding of a domain of interest". In this manner, ontologies can also be used as
interoperability agents, to combine the heterogeneous contextual information of an IVS
system. Therefore, in the next section we will present what is an ontology, how to define
it, and how to implement it.

3.3/ ONTOLOGY DOMAIN

In philosophy, the term Ontology—in upper-case—refers to the study of "being", "exis-
tence" and "reality" [180, 25]. Artificial intelligence (AI) has borrowed the term and gave
a more technical meaning to it. An often used definition of ontology—in lower-case—is
the one of Studer et al.:

An ontology is a formal, explicit specification of a shared conceptualization.
A ’conceptualization’ refers to an abstract model of some phenomenon in the
world by having identified the relevant concepts of that phenomenon. ’Explicit’
means that the type of concepts used, and the constraints on their use are ex-
plicitly defined. ’Formal’ refers to the fact that the ontology should be machine
readable, which excludes natural language. ’Shared’ reflects the notion that
an ontology captures consensual knowledge, that is, it is not private to some
individual, but accepted by a group [163].

Based on that definition, an ontology can be represented via a set of classes, relation-
ships, constrains and individuals. Classes (also called concepts) are abstract groups that
represent a collection of individuals. Relationships (also called properties) are used to
describe features and attributes of classes; they connect a class to other classes or to
data values (e.g., integers and strings). Constrains are restriction that determine which
relations are allowed and make sense. Individuals (also called instances or objects) are
assertions of classes. The statements of membership of individuals in classes and rela-
tionships between individuals are called facts.

For exemplification, consider three basic statements capturing the knowledge about a
building topology domain:

S.1 A building contains storeys.

S.2 A storey contains spaces.

S.3 A building contains the spaces that are contained in its storeys.

These statement, can be represented in a ontological form by defining the terms
Building, Storey and Space as classes; and the terms containsStorey (which
relates a Building with a Storey) and containsSpace (which relates a Building
and a Storey with a Space) as relationships. Notice that classes are normally written
in upper-case while relationships and individuals in lower-case. This building topology

3.3. ONTOLOGY DOMAIN 31

containsStoreyBuilding Storey Space

containsSpace

containsSpace

Figure 3.1 – Graphical representation of a simple building topology knowledge, where the
rectangles represent classes while the connections between them represents relation-
ships.

example will be used as running example in the whole section. To have a better visual-
ization of it, Fig. 3.1 presents a graphical representation where the different classes and
their relationships can be easily observe.

Moreover, the statement S.3 can be used to deduce implicit knowledge. For example,
consider we state the following facts: (i) a building X contains a storey Y, and (ii) the
storey Y contains an space Z. Then using the knowledge stated in S.3, we can deduce
that the building X also contains the space Z even if this fact was not explicitly stated, this
is a simple example of reasoning which will be discussed afterwards.

The use of ontologies presents many advantages such as:

• Machine understandable, an ontology collects and represents knowledge of a given
domain, using a semantic formalism (see Section 3.3.1) which enables machines
to process and interpret (understand) the information, instead of only store it.

• Knowledge sharing, ontologies provide a shared and common understanding of a
domain which can be communicated to multiple people and application systems.
Therefore, ontologies are a way of standardizing and facilitating knowledge shar-
ing and reuse. Moreover, the standardization enables more rapid development of
applications, because we do not have to "re-invent the wheel".

• Data organization, an ontology provides a flexible and natural mean of organizing
(structuring) data according to a hierarchy of classes and their relations, thus facili-
tating data browsing.

• Search improvement, the ontology’s semantics aid for disambiguation during
search. For example in linguistic, the term "space" is a polysemic word (i.e., it
has many possible meanings), it might refer to the outer space, the physical space
(framework of distance and directions), a film, a book, a game etc, hence the addi-
tion of a semantic annotation will facilitate the retrieval of the desired entity.

• Reasoning, the semantic formalism of the ontology enables the inference of im-
plicit knowledge and facts from explicit ones. Moreover, the ontology reasoning can
be used for query answering (i.e., finding patterns), to detect inconsistencies (i.e.,
violation of a constraints) and to identify redundancies.

• Data integration, due to the explicit and formal description of data and knowl-
edge, an ontology can serve as semantic glue between heterogeneous informa-
tion sources (i.e., sources which were not designed to work together), achieving
serendipitous interoperability [92], i.e., discovered by chance in a beneficial way.

Interoperability is a crucial characteristic of multi-source systems. Some common het-
erogeneity factors that hinder the interoperability are the variety of data formats, different

32 CHAPTER 3. CONTEXTUAL INFORMATION AND INTEROPERABILITY

data organization (schema), different protocols, the use of multiple languages, etc. An
ontology overcomes these semantic heterogeneity issues by providing a uniform access
to the multiple information sources, thus semantically unifying the data [1].

As presented in Section 3.1, an IVS context-aware system needs to consider multiple and
heterogeneous sources of information such as information of the environment, data from
the sensors and information about the different computer vision algorithms performed.
Therefore, an IVS context-aware system needs an interoperability agent to deal with the
multi-heterogeneous sources. Some important works that used the ontology as an inter-
operability agent in the built environment and computer vision domains are:

• Hong et al. presented many context-aware systems where the ontology plays a
central role for enabling interoperability between devices which were not designed
to work together [73].

• Dibley et al. developed an ontology framework that combines a sensor ontology
with a building ontology and other ontologies [45].

• SanMiguel et al. used an ontology for combining image processing algorithms with
knowledge about objects and events [150].

• Chaochaisit et al. presented a semantic connection between sensor specifications,
localization methods and contextual information [29].

• Town presented an ontology that fuses multiple computer vision stages with context
information for image retrieval and event detections [169].

• Suchan and Bhatt developed a framework that reason about human activities us-
ing commonsense knowledge founded in qualitative spatio-temporal relations and
human-object interactions [164].

In all those works, the ontology played a crucial role in enabling the processing and
sharing of information and knowledge between multiple sources.

Now that we know what is an ontology and what are its main advantages, the following
subsections will focus on the mathematical formalism used to define them and the lan-
guages used to implement them, i.e., we will pass from the ontology conceptualization to
its definition and finish with its implementation.

3.3.1/ ONTOLOGY FORMALISM

The representation of the building topology example presented in Fig 3.1 is easy to read
and understand by humans, however that representation is informal, i.e., it is ambiguous
(different people may represent the same knowledge differently, take for example the rep-
resentation of statement S.3), and thus a machine wont be able to automatically process
and understand it.

Therefore, ontologies need to be specified using a mathematical formal description lan-
guage to be machine understandable. There exists several formal description languages
that can be used to define an ontology, which differ by the level of expressivity (i.e., the
variety or quantity of ideas that can be represented in that language) and decidability (i.e.,

3.3. ONTOLOGY DOMAIN 33

PL FOLDL

Ex
pr

es
si

vi
ty

Non decidability
Decidability

Figure 3.2 – Expressivity and decidability comparison of Propositional Logic (PL), De-
scription Logic (DL) and First-Order Logic (FOL) formalisms.

the existence of effective methods for deriving a correct answer within an acceptable time
span). The most well-known formal description languages are:

• Propositional Logic (PL), which is a branch of logic that only deals with binary propo-
sitions (true or false values) and their combination using logical operators (and, or
and not operators) [87]. The sentence "if you have a son then you are a parent"
is a simple example of a PL statement. Furthermore, PL is consider as zero-order
logic, as it does not deal with non-logical objects such as quantifiers or variables,
however, it is the foundation of all higher order logics. PL has a low expressivity
level however it is decidable;

• First-Order Logic (FOL), extends PL by considering variables, existential and uni-
versal quantifiers, and non-logical relations (predicates) [15]. Thus, it is possible to
extend the PL expression by the following FOL sentence "there exists X such that
X has a son and X is a parent", where there exists is an existential quantifier while
X is a variable. Furthermore, the relation parent between to variables X and Y is
a predicate. FOL has a high expressivity level, however, its theoretical proof is very
complex, consequently, there is no terminating decision algorithm that can deter-
mine if arbitrary formulas are logically valid or not, thus making it semi-decidable;

• Description Logics (DLs), are decidable fragment of FOL, which provides a set of
constructors to describe classes, instances, relations and constraints. DLs are
suited for modeling, due to its sufficient level of expressivity and low complexity
which guaranties a complete and terminating reasoning.

Figure 3.2 summarize the expressivity and decidability differences between PL, DL and
FOL. The relation between expressivity and decidability is as follows: higher the ex-
pressivity of a language, higher its computational complexity and thus lower its
decidability. Therefore, due to its good balance between expressivity and decidability,
DL is the standard formalism used to define ontologies [7].

Description logics (DLs) are a family of formal knowledge representation languages, used
to represent knowledge in a structured and well-understood way [7]. Semantically, DL lan-
guages are decidable fragments of the classical FOL that allows a mathematical formal-
ization of knowledge and the use of automated theorem proving, referred as reasoning.

34 CHAPTER 3. CONTEXTUAL INFORMATION AND INTEROPERABILITY

Table 3.2 – Description Logic conventional notation. Where C and D are concepts, R and
P are roles and a and b are instances.

Symbol Description Example Read
> Most general concept > Top
⊥ Empty concept ⊥ Bottom
u Intersection C u D C and D
t Union C t D C or D
¬ Negation ¬C not C
v Inclusion C v D All C are in D (subclass of)
≡ Equivalence C ≡ C C is equivalent to D
∀ Universal restriction ∀R.C All R-successors are in C
∃ Existential restriction ∃R.C An R-successor exist in C
◦ Role chain R ◦ P R-successor is P-predecessor
− Role inverse R ≡ P− R is inverse of P
: Concept assertion a : C a is a C (instance of)
: Role assertion (a, b) : R a is R-related to b

By reasoning we mean deriving facts or information which were not express explicitly in
the ontology , i.e., deducting new entailment of statements which are not express ex-
plicitly in the knowledge base). According to Baader et al. [7], common reasoning tasks
are:

• checking the satisfiability and consistency of facts—determining weather a class or
instance violates/contradicts the description (model);

• checking for subsumption of classes—determining if a class subsumes (is more
general) than another;

• retrival of instances—finding all individuals that are instances of a class;

• answering queries—respond to database-style queries over the knowledge state-
ments.

The family of DL languages differ by their level of expressiveness which is determined by
the supported class and property constructors, and by the type of axioms they allow [7].
Table 3.2 presents the main symbols used to define DL constructors and axioms. Notice
that in DL, classes are referred as concepts, relationships/properties are referred as roles
and individuals as objects. Moreover, let NC ,NR and NO be (respectively) sets of concept
names (also known as atomic concepts), role names and individual names; and C,D ∈
NC, R, P ∈ NR and a, b ∈ NO. Furthermore, if a is related to b by the role R, then we
say that a is R-related to b, that b is the R-successor of a, and that a is the R-predecessor
of b.

Currently, the most expressive and decidable DL language is SROIQ(D), where each let-
ter represents a set of constructors as shown in Table 3.3. Furthermore, Table 3.4 present
some axioms, assertions and property characteristics allowed in SROIQ(D). Notice that
the Web Ontology Language (OWL) notation will be used afterwards, in the implementa-
tion section. The constructors can be nested arbitrary to create axioms, for example the
role domain and range axioms, which respectively restrict the class of the predecessor

3.3. ONTOLOGY DOMAIN 35

Table 3.3 – SROIQ(D) constructors, with their corresponding OWL functional syn-
tax [121]. Where C and D are concepts, R and P are roles, a and b are instances, d
is a data property, v is a data value and n is a non-negative integer.

Constructor DL syntax OWL functional syntax
Concept negation ¬C ObjectComplementOf(C)
Concept intersection C u D ObjectIntersectionOf(C D)

S Concept union C t D ObjectUnionOf(C D)
Universal restriction ∀R.C ObjectAllValuesFrom(R C)
Existential restriction ∃R.C ObjectSomeValuesFrom(R C)
Role inclusion R v P SubObjectPropertyOf(R P)

R Complex role inclusion R ◦ P v T SubObjectPropertyOf(
ObjectPropertyChain(R P))

O Nominals {a}, {b} ObjectOneOf(a b)
I Inverse role R ≡ P− InverseObjectProperties(R P)
Q Qualified cardinal restriction ≥ n R.C ObjectMinCardinality(n R C)

≤ n R.C ObjectMaxCardinality(n R C)
(D) Data properties (a, v) : d DataPropertyAssertion(d a v)

and the successor of a property. Moreover, SROIQ(D) allows to declare special charac-
teristics to properties. To exemplify each characteristic, we will use family-relationships
which are familiar to everybody:

• Transitive, R is transitive if: (a, b) : R and (b, c) : R then (a, c) : R. For example, take
the property hasAncestor, if a hasAncestor b and b hasAncestor c, then a
also hasAncestor c.

• Symmetric, R is symmetric if: (a, b) : R then (b, a) : R. For example, consider the
property hasSpouse, if a hasSpouse b, then b also hasSpouse a.

• Asymmetric, R is asymmetric if: (a, b) : R then ¬(b, a) : R. For example, take the
property hasChild.

• Reflexive, R is reflexive if: (a, a) : R for all a. For example, consider the property
hasRelative.

• Irreflexive, R is irreflexive if: ¬(a, a) : R for any a. For example, consider the property
parentOf.

There exists other DL languages which are less expressive than SROIQ(D), i.e., they
only consider a portion of SROIQ(D)’s constructors. For example SHOIQ(D) does not
consider complex role inclusion; or SHIQ(D) and SHOQ(D) do not consider complex
role inclusion and (respectively) nominals and inverse roles. The price of high expres-
sivity is paid in computational complexity of reasoning. SROIQ(D) has complexity of
N2ExpTime, compare to SHOIQ(D)’s NExpTime and SHIQ(D)’s and SHOQ(D)’s Exp-
Time, where the complexity classes are ordered according to following set inclusion [71]:

ExpTime ⊆ NExpTime ⊆ N2ExpTime (3.1)

Introducing complexity theory is beyond the scope of this thesis, the reader is referred
to [3] for a comprehensive overview of these classes. Moreover, the complexity of an

36 CHAPTER 3. CONTEXTUAL INFORMATION AND INTEROPERABILITY

Table 3.4 – Some SROIQ(D) axioms, assertions and property characteristics, with their
corresponding OWL functional syntax [121]. Where C and D are concepts, R and P are
roles, a and b are instances, d is a data property and v is a data value.

Axioms DL syntax OWL functional syntax
Concept inclusion C v D SubClassOf(C D)
Concept equivalence C ≡ D EquivalenceClasses(C D)
Concept assertion a : C ClassAssertion(C a)
Role assertion (a, b) : R ObjectPropertyAssertion(R a b)
Role domain ∃R.> v C ObjectPropertyDomain(R C)
Role range > v ∀R.C ObjectPropertyRange(R C)
Role transitivity Trans(R) TransitiveObjectProperty(R)
Role symmetry Sym(R) SymmetricObjectProperty(R)
Role antisymmetry Asym(R) AsymmetricObjectProperty(R)
Role reflexivity Ref(R) ReflexiveObjectProperty(R)
Role irreflexivity Irref(R) IrreflexiveObjectProperty(R)

ontology do not only depends on its expressivity but also in the quantity of axioms con-
sidered.

Even though SROIQ(D) has a high complexity, its decidability was proved in [76].

The building topology example can be defined using the SROIQ(D)’s constructors and
axioms as follows:

• Equations 3.2 and 3.3 define (respectively) the domain and range of property
containStorey. Meaning that containStorey can only be used to relate a
Building object to a Storey instance, which is a formal way representing the
knowledge stated in S.1.

∃containsStorey.> v Building (3.2)

> v ∀containsStorey.Storey (3.3)

• Equations 3.4 and 3.5 define (respectively) the domain and range axioms of prop-
erty containSpace. Meaning that containSpace can only be used to relate a
Building or a Storey object to a Space object, which is a formal way represent-
ing the knowledge stated in S.2 .

∃containsSpace.> v (Building t Storey) (3.4)

> v ∀containsSpace.Space (3.5)

• Equation 3.6 defines the complex role inclusion between properties
containStorey and containSpace. Which can be read as "if an object X
is related by containsStorey to object Y, and Y is related by containsSpace
to object Z, then X is also related to Z by containsSpace", which is a formal way
of representing the knowledge stated in S.3.

containsStorey ◦ containsSpace v containsSpace (3.6)

3.3. ONTOLOGY DOMAIN 37

After formalizing the ontology, we need to implement it using a language that can fa-
cilitate its applicability and authoring (creation of programs and databases for computer
applications). Recently, DLs have played a central role in the development of the se-
mantic web [7, 74], specially in the development of ontology languages such as the Web
Ontology Language (OWL), and its predecessors the Ontology Inference Layer (OIL) and
the Darpa Agent Markup Language + OIL (DAML+OIL) [78].

Remark. For more details about DLs, SROIQ(D) and the definition of the different rea-
soning task we refer the readers to [7, 76].

3.3.2/ ONTOLOGY IMPLEMENTATION

The implementation or materialization of an ontology is known as a Knowledge Base
(KB). A KB consists of a terminological knowledge, called the TBox, and an assertional
knowledge, called the ABox. The TBox expresses the general structure on what (the
abstraction of) the domain looks like, and it is composed of the set of classes, relation-
ships and constrains. In the other hand, the Abox defines the concrete elements, their
attributes and their relations (i.e., data), and is composed of the set of instances and
instances-facts [7]. For simplicity, in this manuscript both terms—"ontology" and "knowl-
edge base"—will be used interchangeably, even if the former is a conceptualization and
the latter is its implementation.4

Currently, the most common language for implementing KBs is the Web Ontology Lan-
guage (OWL) which was developed by the World Wide Web Consortium (W3C), the main
international standards organization for the World Wide Web.5 The second revision of
OWL, denoted as OWL 2, is the current recommendation of W3C [182]. The seman-
tics of OWL 2 are defined using the expressiveness of the SROIQ(D) DL language [76].
Tables 3.3 and 3.4 present the OWL syntax of DL’s constructors and axioms.

For exemplification of a KB, OWL and interoperability, let us consider a simple KB about
an IVS system, where the building topology example is combined/merged with some
visual sensor network knowledge. The set of TBox and ABox statements are:

•TBox.i A building contains storeys.

TBox.ii A storey contains spaces.

TBox.iii A building contains the spaces that are contained in its storeys.

TBox.iv A space contains building elements such as a sensor.

TBox.v A smart camera is a type of sensor.

TBox.vi A smart camera observes the space that contains it.

ABox.i I3M is a building.6

ABox.ii I3M contains storey Level-3 .

ABox.iii Level-3 contains space PhD-room .

ABox.iv PhD-room contains element Raspberry-Pi, which is a smart camera.

4This is a common practice found in the literature.
5https://www.w3.org/
6The Institut Marey Maison de la Metalurgie (I3M) building is located in Dijon, France

38 CHAPTER 3. CONTEXTUAL INFORMATION AND INTEROPERABILITY

Those KB statements can be represented—in a formal manner—as an OWL 2 ontology,
as shown in Listing 3.1, where: Lines 2-15 declare the classes, relationships and individ-
uals, e.g., Building is a class, containsStorey is a relationship and Level-3 is an
instance; Lines 19-20 state the subclass relationships stated in TBox.iv and TBox.v; Lines
26-33 constrains the relationship’s domains and ranges based on the TBox statements;
Lines 36-37 state the complex role inclusion stated in TBox.iii; and Lines 40-44 define the
ABox assertion statements.

Moreover, the OWL 2 formalization allows—thanks to its formal semantics—the deduc-
tion of implicit knowledge. Specifically, the following five facts can be deduced from the
previous TBox and ABox statements:

• Level-3 is-a Storey. Deduced thanks to statement TBox.i and fact ABox.ii.

• PhD-room is-a Space. Deduced by using statement TBox.ii and fact ABox.iii.

• I3M containsSpace PhD-room. Deduced thanks to statement TBox.iii and
facts ABox.ii and ABox.iii.

• Raspberry-Pi observes PhD-room. Deduced by using statements TBox.vi and
facts ABox.iv.

• Raspberry-Pi is-a Sensor. This fact is not shown in the Fig. 3.3 for simplicity,
however, it can be deduced by using statement TBox.v and facts ABox.iv.

Figure 3.3 presents an informal representation of the IVS KB in a graphical form. As
presented in the figure, the ontological definition of both domains—visual sensor network
and built environment—enables semantic homogeneity which allows the semantic inter-
operability between heterogeneous domains. Moreover, notice that in the figure we have
called Wised NETwork (WiseNET) to the merging between the domains, WiseNET is the
name of our system and it will be explained in the next chapter.

SEMANTIC WEB

We cannot talk about ontology implementation without talking about the Semantic Web
(SW). As it will be presented in this section, the ontology universe has greatly benefited
from the SW "boom", and many Web standards and technologies developed for SW allow
to implement, extend and interact with ontologies.

As Berners-Lee stated [12], the SW is

an extension of the current Web, in which information is given well-defined
meaning, better enabling computers and people to work in cooperation.

The well-defined meaning mentioned by Berners-Lee refers to semantic information that
explains the provenance and usability of data or a resource. Therefore, an ontology is
perfect for the job, thus it has taken a central role in the development of the SW [74].

The SW’s vision has stimulated the development of many technologies in order to create
a common framework for representing, publishing, sharing, exchanging and integrating
data (and knowledge) from different sources. It is beyond the scope of this manuscript to
provide a detailed description of all the different SW technologies, however a brief sketch

3.3. ONTOLOGY DOMAIN 39

Building Storey Space

Sensor
Smart

Camera

containsStorey containsSpace

Building
Element

containsElement

observes

subClassOf

subClassOf

I3M Level-3 PhD-room Raspberry-Pi

is-a is-a is-a is-a

containsStorey containsSpace

containsElement

TBox

ABox

IVS Context

Built
environment

Ontology Ontology

WiseNET

Semantic
Homogenity

WiseNET example

Visual
sensor
network

containsSpace

containsSpace

observes

Figure 3.3 – An informal, graphical view of knowledge about Intelligent Visual Surveillance
(IVS) context. TBox stands for terminology knowledge and ABox stands for assertional
knowledge. Classes are shown in filled rectangles, relations are represented by the black
arrows, instances are shown in empty rectangles and inference relations are represented
by red arrows.

of the ones that empowered the ontologies will be given; interested readers are to refer to
https://www.w3.org/standards/semanticweb/ for complete information. Notice
that all the technologies presented below—less SWRL—are W3C recommendations thus
they are considered as Web standards.

https://www.w3.org/standards/semanticweb/

40 CHAPTER 3. CONTEXTUAL INFORMATION AND INTEROPERABILITY

• RDF [41], stands for Resource Description Framework, and it provides a graph-like
data model, where each statement is represented as a triple, often written as

〈s, p, o〉, (3.7)

where s is the subject, p the predicate and o the object. The use of triples pro-
vides a natural way to capture ABox assertions [7], for example the triples 〈a, R, b〉
and 〈a, rdf:type, C〉 correspond respectively, to the role assertion (a, b) : R and
concept assertion a : C in Table 3.4. Also, RDF assigns special meaning to certain
predicates, for example the previous predicate rdf:type represents the "is-a"
relation. RDF is the standard model for data interchange on the Web. Both RDFS
and OWL are modeling languages for describing RDF data.

• RDFS [19], stands for RDF Schema, and it extends RDF by assigning spe-
cial predicates to capture "schema" level statements. For example, the RDFS
special predicates rdfs:subClassOf and rdfs:subPropertyOf allow the
creation of hierarchies between classes and properties respectively, such as
〈C, rdfs:subClassOf, D〉 and 〈R, rdfs:subPropertyOf, P〉 which correspond,
respectively, to the concept inclusion C v D and role inclusion R v P in Tables 3.4
and 3.3.

• OWL [182], stands for Web Ontology Language, and is the standard and most com-
mon language to formally represent knowledge. As stated previously, most of OWL’s
logic-semantics is based on DL, however its data structure and some of the schema
axioms are based on two pre-existing W3C recommendations: RDF and RDFS.

• OWL Functional syntax [121], which is a high level syntax close to the ontology
structure of OWL. Tables 3.3 and 3.4 presents some translations from DL to OWL
functional syntax, moreover, a complete example of the use of this syntax is pre-
sented in Listing 3.1.

• SPARQL [183], stands for SPARQL Protocol and RDF Query Language, and it pro-
vides standard means to interact with the ontology’s data by performing database-
style queries. SPARQL provides specific graph traversal syntax for data that can be
thought of as a graph. Therefore, SPARQL can be seen as a basic graph pattern
matching, where the graph patterns are RDF triples that contains variables at any
arbitrary place (subject, predicate, object). The SPARQL features are: extraction of
data, exploration of data, transformation of data, construction of new RDF graph,
updates of RDF graphs and logical deduction.

The most common SPARQL query commands are:

– SELECT query, used to query the RDF database and show all results that fulfill
the required conditions (pattern). The results are return in a table format.

– ASK query, used to check whether there exist at least one result. The result is
boolean.

– DESCRIBE, used to give all the information concerning the result. The result
is an RDF graph.

– CONSTRUCT, used to construct a new RDF graph from a template.

– INSERT DATA, used to add some triples.

– DELETE DATA, used to remove some triples.

3.3. ONTOLOGY DOMAIN 41

Each of these query forms takes a WHERE block to restrict the query.

For exemplification, Listing 3.2 presents and SPARQL query over the IVS example
ontology. The query returns the instances of Sensor that are contained in the
PhD-room. This query joins together all of the triples where the predicate and
object are rdf:type and Sensor (Line 3), with all the triples where subject and
predicate are PhD-room and containsElement (Line 4). The result of this join,
which itself is the result of the query, is stored in the variable ?sensors. In this
simple example the result is the following one element table,

?sensors
Raspberry-Pi

.

• SWRL [77], stands for Semantic Web Rule Language, and it allows to overcome
some expressivity limitations of DL languages by inserting knowledge in the form of
semantic rules, i.e., SWRL allows to define expressions which can not be defined
using OWL DL alone. For example, DL formalisms does not allow the composition
of complex classes and properties by combining both classes and properties simul-
taneously, however this limitation can be overcome by using rule-based knowledge.
Moreover, the rules should have the form of an implication between an antecedent
(body) and consequent (head):

b1 ∧ . . . ∧ bn =⇒ h1 ∧ . . . ∧ hn, (3.8)

where b1, . . . ,bn are the antecedents of the rule and h1, . . . ,hn are the consequent.
Both antecedents and consequents should be a conjunctions of atoms. The in-
tended meaning can be read as: whenever the antecedent conditions hold, then
the consequent conditions must also hold. Variables are indicated using the stan-
dard convention of prefixing them with a question mark (e.g., ?x).

Using this syntax, a SWRL rule asserting that "the elements contained in a space
are also contained by the building containing that space", can be written as,

Building(?x) ∧ Space(?y)
∧ containsSpace(?x,?y)

∧ containsElement(?y,?z)

=⇒ containsElement(?x,?z),

(3.9)

and can be read as "if there is a building ’x’ that contains a space ’y’ and ’y’ contains
an element ’z’ then ’x’ contains ’z’ ". Currently, SWRL is not W3C recommendation,
however is still used in many application.

Remark. The list of Semantic Web technologies presented in this section is by no means
exhaustive, it focuses only on the technologies that are relevant to our work.

42 CHAPTER 3. CONTEXTUAL INFORMATION AND INTEROPERABILITY

Listing 3.1 – Intelligent Visual Surveillance (IVS) ontology example using OWL functional syn-
tax [121]. Lines that start by ’#’ are comments.

1 ### Declaring classes, relations and instances,
2 Declaration(Class(:Building))
3 Declaration(Class(:BuildingElement))
4 Declaration(Class(:Sensor))
5 Declaration(Class(:SmartCamera))
6 Declaration(Class(:Space))
7 Declaration(Class(:Storey))
8 Declaration(ObjectProperty(:containsElement))
9 Declaration(ObjectProperty(:containsSpace))

10 Declaration(ObjectProperty(:containsStorey))
11 Declaration(ObjectProperty(:observes))
12 Declaration(NamedIndividual(:I3M))
13 Declaration(NamedIndividual(:Level-3))
14 Declaration(NamedIndividual(:PhD-room))
15 Declaration(NamedIndividual(:Raspberry-Pi))
16

17 ### Stating class hierarchies,
18 # e.g.: ’Sensor’ is a sub-class of ’BuildingElement’.
19 SubClassOf(:Sensor :BuildingElement)
20 SubClassOf(:SmartCamera :Sensor)
21

22 ### Constraints,
23 # e.g.: ’containsStorey’ can only be used
24 # by a ’Building’ individual (its domain)
25 # to connect to a ’Storey’ individual (its range)
26 ObjectPropertyDomain(:containsElement :Space)
27 ObjectPropertyRange(:containsElement :BuildingElement)
28 ObjectPropertyDomain(:containsSpace ObjectUnionOf(:Building :Storey))
29 ObjectPropertyRange(:containsSpace :Space)
30 ObjectPropertyDomain(:containsStorey :Building)
31 ObjectPropertyRange(:containsStorey :Storey)
32 ObjectPropertyDomain(:observes :SmartCamera)
33 ObjectPropertyRange(:observes :Space)
34

35 ### Role Chain,
36 SubObjectPropertyOf(ObjectPropertyChain(
37 :containsStorey :containsSpace) :containsSpace)
38

39 ### Instances,
40 ClassAssertion(:Building :I3M)
41 ObjectPropertyAssertion(:containsStorey :I3M :Level-3)
42 ObjectPropertyAssertion(:containsSpace :Level-3 :PhD-room)
43 ObjectPropertyAssertion(:containsElement :PhD-room :Raspberry-Pi)
44 ClassAssertion(:SmartCamera :Raspberry-Pi)

Listing 3.2 – SPARQL query for getting the sensors located in the PhD-room.

1 SELECT ?sensors
2 WHERE {
3 ?sensors rdf:type Sensor.
4 PhD-room containsElement ?sensors.
5 }

3.4. CONCLUSION 43

3.4/ CONCLUSION

In this chapter, we introduced the notions of context and context-aware system in the built
environment. Furthermore, we presented a semantic model that can be used to represent
the context, an ontology.

A "smart" system should no longer be limited to connecting sensor information, but it
must also consider the contextual information in order to have a better interpretation of
a perceived action. Thus, it could adapt its services according to the context. In the
built environment, contextual information refers to: information about the structure of the
building, its topology, the different elements contained in the spaces, information about
the sensors deployed in the environment, information about events that have occurred,
and human-skill knowledge about the environment. Thus, a smart system deployed in
a built environment requires an agent that (1) will be able to represent the multiple and
heterogeneous sources of information and that (2) will enable interoperability between
them. An ontology agent fulfills both requirements.

One important feature of ontology is to enable semantic fusion, which consists in inte-
grating and organizing data and knowledge coming from multiple heterogeneous sources
and to unify them into a consistent representation, i.e., it enables interoperability between
heterogeneous sources of information. Therefore, many works have been done using
ontologies along with different semantic web standards, to represent contextual data.
Furthermore, important works were made to represent the environment information us-
ing an ontology-based model. This way of modeling environment information presents
many advantages compared to others, as shown in Table 3.5. Specifically, the ontology-
based model is the only one to be machine understandable due to its formal semantic
representation, i.e., new knowledge could be inferred from existing information thanks to
the mathematical formalization of the semantics. This is an important feature in smart
applications were machines should be able to automatically process and understand the
information.

The ontology development is guided by the formalisms and tools for knowledge represen-
tation that have emerged over the past decades. Thus, we introduced how to pass from
the ontology conceptualization to the formalization, until arriving to the ontology imple-
mentation. In the next chapter, we will present the process followed for the development
of an ontology, that will combine the information extracted by a smart camera network
with building information, events that may occur and human-skills that help the analysis
of the information. The process uses all of the semantic web technologies explained in
this chapter.

Table 3.5 – Comparison of file formats for BIM. Adaptation of Table 3.1, with the ontology
format added.

Features

Format
Open
source

Machine
readable

Geometry
data

Building
topology

External
interoperability

Machine
understandable

RVT 7 – – – – –
DWG/DXF 7 – – – – –
COBie 3 7 7 7 7 7

IFC 3 3 3 3 3 7

ontology 3 3 3 3 3 3

4
WISENET SYSTEM

As presented in the previous chapters, the main function of an Intelligent Video Surveil-
lance (IVS) system is to combine different information in the context of a built environ-
ment, to enable automatic and real-time deduction of events and the triggering of actions.
Hence, a IVS system should not only understand the static data of an environment, but it
should also perceive and understand the environment’s dynamic and evolving data, i.e.,
it should be aware of its context. The dynamic environment data can be obtained from
different sensors deployed in the environment. Due to the IVS application, we focus on
visual sensor networks, specifically on Smart Cameras Networks (SCNs) that can per-
form a plethora of Computer Vision (CV) algorithms (see Chapter 2 for more details). As
well, the static environment data—e.g., it’s topology and the elements contained in it—
-can be obtained from a Building Information Modelling (BIM) model defined using the
Industry Foundation Classes (IFC) specification, which is becoming the standard in the
building-design and -construction fields (see Chapter 3 for more details).

The creation of an IVS context-aware system is a complex task. Even if the environment’s
static and dynamic data can be obtained from existing models/algorithms, an IVS system
requires extra information. For example, information about the different events that may
occur in the environment, their location, their occurrence time, the agents involved in
them, the relation to other events and their consequences. Moreover, an IVS context-
aware system should be able to combine all those heterogeneous data sources to have
a correct vision of what is really happening in the built environment.

To achieve our vision of an IVS context-aware, we developed the WiseNET system, which
will gather and combine the heterogeneous data sources, and will enable automatic de-
duction of events and ease the monitoring of a built environment.

This chapter is divided into two parts. Firstly, Section 4.1 introduces the WiseNET system
and the main elements that compose it. Secondly, Section 4.2 presents the methodology
followed to build the WiseNET ontology and a way to extend it by including semantic rules.
The WiseNET ontology is the core element of the WiseNET system, and it is in charge of
enabling the interoperability between the previously mention heterogeneous data sources
and allowing the deduction of new facts. Thus, at the end of this chapter, the kernel of
our WiseNET system will be completely defined, and it will be ready to be populated with
the static and dynamic data, as it will be presented in Chapter 5.

45

46 CHAPTER 4. WISENET SYSTEM

Central API

WiseNET

ontology

CV

CV

Smart camera

Network

Built

environment

If

 then ...

Semantic rules

Monitor unit

WiseNET system
II

III

IV

V VI

Figure 4.1 – Overview of the WiseNET system. The number of each module corresponds
to the thesis chapter that explains it. We highlighted in light blue the elements that will be
explained in this chapter.

4.1/ WISENET SYSTEM OVERVIEW

The Wised-NETwork (WiseNET) is a semantics-based system that aggregates heteroge-
neous data such as data coming from a SCN (after performing CV algorithms within the
smart camera), and multiple contextual information (e.g., building topology and building
usage). The main goals of the WiseNET system are: (1) to enhance classical computer
vision by considering the contextual information of the environment and by performing re-
al-time reasoning, (2) to provide a set of innovative services to building managers, to ease
their work. As a result, WiseNET overcomes some limitations of computer vision— such
as occlusions— as well as limitations of classical Visual Sensor Network (VSN) deployed
in a built environment—such as human-monitoring high cognitive load and privacy pro-
tection. Moreover, the WiseNET system enables building managers to perform queries,
in real-time, to have information related to the environment and its usage.

Figure 4.1 illustrates an overview of the WiseNET system. As shown, the system is
composed of six main elements: smart camera network, built environment, WiseNET
ontology, semantic rules, central API, and monitor unit

Smart camera network The SCN is a set of smart cameras distributed in an environ-
ment. The main functions of the SCN, in the WiseNET system, is to constantly extract
data from a scene—by performing CV algorithms—to convert it into knowledge and then
to send it to the central unit. The data extracted by the SCN represents the evolving in-

4.1. WISENET SYSTEM OVERVIEW 47

formation of the environment, thus we will refer to it as dynamic data. Moreover, there is
the calibration of the SCN, which is performed once during the system set-up, thus, this
data will be referred as static calibration data.

Notice that our contribution is not in designing a new SCN or a new CV algorithm, but
is in the extraction of knowledge from the results of CV algorithms and their combination
with other knowledge. Thus, the WiseNET system is totally independent on the hardware
used (i.e., type of smart camera) or the CV algorithms deployed on them, meaning that
we could use different smart cameras and different CV algorithms without changing the
system itself. However, the hardware and software choice will have an impact on the
final result of the system, i.e., a smart camera with high resources will cope better with
real-time constraints; in the same manner, a robust CV algorithm will increase the overall
accuracy of the system.

As a guide, Chapter 2 presented different smart cameras as well as different CV algo-
rithms in the domain of IVS. Furthermore, this chapter will introduce the vocabulary used
to represent the SCN data in the form of an ontology. Moreover, the processing of the dy-
namic data and the static calibration data will be presented in Chapter 5, while the impact
of using different CV algorithms will be presented in Chapter 6.

Remark. Based on the IVS application, we focused in this manuscript on a specific type
of sensors: smart cameras; however, the WiseNET system is not dependent on this type
of sensors, and could be easily extended to include other sensors such as temperature,
humidity, depth sensor, etc.

Built environment A IVS system should understand its environment and consider its
context, in order to have a better interpretation of a perceived action. The WiseNET
system focus on indoor built environments contexts. The environment data required by
the WiseNET system are the structure of the building (i.e., number and location of storeys,
spaces, doors, etc), its topology (i.e., the building-storey, storey-space and space-space
relation) and the different elements contained in the spaces (e.g., doors, windows and
walls). An example of the building topology relations will be: "the building ’A’ contains
a storey ’B’, which itself contains spaces ’c’ and ’d’, that are connected to each other".
The environment data is—normally—static, i.e., it does not change often during time.
Therefore, this type of data will be inserted once during the system set-up, and it will be
referred as static environment data.

Chapter 3 presented different BIM models used to represent the environment data. Like-
wise for the SCN, the WiseNET system is independent of the built environment source,
however, it should contain the minimum required data. Furthermore, this chapter will in-
troduce the vocabulary used to represent the built environment data in an ontology form.
Moreover, the processing of the static environment data will be presented in Chapter 5.

WiseNET ontology and semantic rules The WiseNET ontology is the kernel of the
WiseNET system, and is in charge of enabling the interoperability between the data
coming from the SCN, the environment data, the information about the events that
have occurred and set of semantic rules, in order to deduce new knowledge and detect
events/anomalies. The semantic rules are a set common-sense knowledge concerning
the built environment context, expressed in a rule-like form (i.e, if-then rules) . For ex-
ample, the knowledge that "a restricted space should be empty", can be express in the

48 CHAPTER 4. WISENET SYSTEM

rule-like form as "if there is a space X, and X is restricted, then X should be empty".
Another example will be "two spaces that are connected contain a common door ", which
can be express in a rule-form as "if there are two spaces X and Y, and X and Y contain
the same door D, then X and Y are connected.

Central API The ontologies are not meant to be used in situations were data is con-
stantly changing over time, which is the case of our system, thus the role of the central
API is crucial to enable this type of ontology usage. The central API was developed as a
set of web services, and is in charge of the updating/management of the WiseNET ontol-
ogy, i.e., capturing the knowledge coming from the SCN and inserting it into the ontology,
inserting the environment data into the ontology, retrieving the inferred knowledge from
the ontology, transferring data to the monitor unit and sending new configurations to the
smart cameras. In other words, the central API is the interface between the WiseNET
ontology and the incoming and outgoing data.

Furthermore, the central API performs some processing tasks before inserting the data
(static and dynamic), as it will be presented in Chapter 5.

Monitor unit The monitor unit’s main function is the visualization of the static and dy-
namic built information; this unit automatically retrieves information and presents it in a
graphical manner, for example a people heat map that shows the number of people in the
each space, or a space-time graph that shows the location of each person in a period of
time. Also, the monitor unit implements many queries to answer questions related to the
building management such as: questions related to security e.g., how many people are
present in a room? and what is the location of a person?; question related to the space
usage like, what is the space more used in a period of time? and a what time a precise
space contains more people?; or questions related to the building maintenance e.g, how
many times a door have been used? and if a space has been used or not in order to
clean it?.

More details on the monitor unit will be presented in Chapter 6.

4.2/ WISENET ONTOLOGY

The WiseNET ontology provides a formal model that aggregates, analysis and re-
purposing the information coming from a SCN deployed in a built environment. The
ontology is defined using the Web Ontology Language (OWL) version 2 [182], and it
incorporates a vast corpus of concepts in the domain of an IVS context-aware system.
The main functions of the WiseNET ontology are to enable interoperability between the
heterogeneous data and to deduce implicit facts from the explicit ones. Thus, allowing to
answer queries about the building usage and to perform real-time event/anomaly detec-
tion.

This section will firstly present the development process followed to build the WiseNET
ontology, and secondly it will present a way to extend the ontology’s knowledge by includ-
ing semantic rules in the form of Semantic Web Rule Language (SWRL) rules.

Notice that all the formulas presented in this section were written using the Description

4.2. WISENET ONTOLOGY 49

Logic (DL) notation. Details about this notation can be found in Section 3.3. Moreover, all
the terms used in or related to the ontologies have been written using the typewriter
font.

4.2.1/ ONTOLOGY DEVELOPMENT: FROM REQUIREMENTS TO IMPLEMENTATION

An ontology development methodology refers to a sequence of activities (guidelines) that
should be performed to build an ontology. In the last few decades, many methodolo-
gies have been proposed. Iqbal et al. [82] and Stadlhofer et al. [161] have performed
detailed surveys and a critical analysis on some of these methodologies. To develop
the WiseNET ontology, we followed the well-known 101-methodology presented by Noy
and McGuinness [125]. This is an easily understood methodology, which has an itera-
tive nature, covers some critical ontology design issues and it supports reusability (i.e.,
it makes use of existing ontologies, reducing the ontology development time and effort).
The 101-methodology consists of seven steps: (1) determine the domain and scope of
the ontology, (2) consider reusing existing ontologies, (3) enumerate terms, (4) define
classes and their hierarchies, (5) define properties, (6) define constrains and (7) create
instances. Figure 4.2 shows and overview of the different procedures of each step. In
the following subsection we will present how each step was performed, which lead to the
creation of the WiseNET ontology.

STEP 1. DETERMINE THE DOMAIN AND SCOPE

The determination of an ontology domain/scope consists of finding the different knowl-
edge domains that should be covered by it and its expected use. A way to formalize
those requirements is by using a list of Competency Questions (CQs), as introduced by
Grunier and Fox [66]. The CQs are a set of question used to characterize an ontology
by presenting some tasks that the ontology should be able to represent and answer. Fur-
thermore, CQs not only provide an initial direction for the development of an ontology,
but also can be used to evaluate if the resulting ontology contains enough information to
answer these types of question (as presented in Chapter 6).

Table 4.1 presents the CQs used to determine the requirements of the WiseNET ontology.
The questions were obtained from conversations with smart building and indoor surveil-
lance specialists, and from our expectations of a IVS context-aware system. Please note
that, for the moment, we are just interested in the CQs (first column of Table 4.1), their
categorization concerns the next step.

Judging from the list of CQs, the WiseNET ontology should include information about the
built environment, its topology, the different sensor deployed in the building with a focus
on visual sensors, and information concerning the space usage.

STEP 2 AND 3. ENUMERATE TERMS AND CONSIDER REUSE

According to the 101-methodology [125], Step 2 is to consider reusing existing ontologies
and Step 3 is to enumerate important terms in the ontology. However, we believe that
before searching for external ontologies to reuse, it is important to know in advance the
terms that should be included in the ontology itself. In this way, the choice of an external

50 CHAPTER 4. WISENET SYSTEM

Extract
terms

Cluster by
domains

Find external
ontologies

Reuse
terms

Add classes
and properties

Add
restrictionsInsert data

Data Data

Smart camera
network

Built
environment

Step 1 Step 2
Step 3

Step 4 & 5Step 6Step 7

Formulate
CQs

Figure 4.2 – Overview of the steps followed to developed the WiseNET ontology. The
orange circles represent the terms of interest extracted from the CQs (competency ques-
tions). These terms get colored according to the ontology that will define them. The
dotted circles represent the domain categories, while the purple, red and green circles
represent the external ontologies that define some of the terms of interest. Finally, the
blue shape represents the resulting ontology.

ontology can be based on the inclusion of most necessary terms. Therefore, we propose
to swap steps 2 and 3, as presented below.

Step 2 - Enumerate terms Most of the terms that should be included in the WiseNET
ontology can be extracted from the CQs by considering their main composing elements
(e.g., subject, verb and objects), as highlighted in each CQs in Table 4.1. For exam-
ple, from CQs 1–5, we extracted the terms building, storey, space and door that define
classes of objects; the terms contains and are contained that define relationships be-
tween objects; and the terms capacity, and functionality that define attributes of a space.
To have a better visualization of the terms of interest, the first appearance of each term
has been highlighted. Moreover, the CQs (with their corresponding terms) were clus-
ter/categorized according to their domain of interest. They were categorized into three
domain axes (see Table 4.1):

• built environment: questions regarding the building, its structure, it topology and
the different elements that can be found in the building;

• sensor: questions concerning the sensors deployed in the environment, their lo-
cations, the process they implement and their observations;

• building usage: questions associating the building users (person) with the envi-

4.2. WISENET ONTOLOGY 51

Table 4.1 – Competency questions used for developing the WiseNET ontology. The ques-
tions are categorized by domains, according their essence and the terms that composed
them. The first appearance of important terms have been highlighted.

Domains

Competency question (CQs)
Built

environment Sensor
Building
usage

CQ1. How many stories/spaces does a building contains? X
CQ2. How many doors are contained in each storey? X
CQ3. How many spaces are contained in each storey? X
CQ4. What is the functionality of each space? X
CQ5. What is the capacity of each space? X
CQ6. What to do if a space’s capacity is exceed? X
CQ7. Which doors are contained in a space? X
CQ8. What are all the spaces connected to a space? X
CQ9. Which door connects two spaces? X
CQ10. Which types of alarms are in the system? X
CQ11. When an alarm should be triggered? X
CQ12. Which type of sensors are in the building? X X
CQ13. What are the locations of sensors? X X
CQ14. Which/where are the nearest sensors to a sensor? X
CQ15. Is a camera in the same space than another one? X X
CQ16. Which building elements does a camera observes? X X
CQ17. What algorithms are implemented in a smart camera? X
CQ18. Which cameras overlap their field of view? X
CQ19. What is the IP address of a camera? X
CQ20. Are there two cameras observing the same person? X X
CQ21. What visual descriptors describe a person? X
CQ22. Is there a person which is occluded? X X
CQ23. Where is a person located? X X
CQ24. Where was a person in the last few minutes? X X
CQ25. For how long a person has been in a space? X X
CQ26. Where were all the people at a specific time? X X
CQ27. How many people are/were in a space? X X
CQ28. Is a space empty/occupied? X X
CQ29. Is there an intruder? X
CQ30. Is somebody in a restricted space? X X
CQ31. At what time does a person entered/left a space? X X
CQ32. From which door a person entered/left a space? X X
CQ33. Where does a person stayed the longest time? X X
CQ34. What is the most visited space in the building? X X
CQ35. Which is the most used door in the building? X X
CQ36. At what time there are more people in a space? X X
CQ37. How many people entered a space in a period of time? X X
CQ38. What are the events that may occur? X
CQ39. Which events are related? X
CQ40. What is the location of an event? X X
CQ41. Who was involved in an event? X

ronment by considering the different events that may occur. Some of these ques-
tions also consider the notion of time.

Notice that the domain axes are not disjoint, i.e., a question may concern multiple do-
mains (e.g., CQs 12, 16, 24, 31 and 33).

As a result, we have sets of terms grouped by domains of interest. For example built
environment-related terms include: building, storey, space, door, space’s capacity and

52 CHAPTER 4. WISENET SYSTEM

space’s connection; sensor-related terms include: type of sensor, sensor’s location, cam-
era, observation and the process implemented by them; building usage-related terms
include person, person’s location, type of event, event’s location, event’s relation and
event’s duration.

Step 3 - Consider reuse When developing a new ontology, it is recommended to reuse
existing ontologies as much as possible. Thus, one can focus on defining the new and
specific knowledge for a particular application. Ontology reuse is defined as "the pro-
cess in which existing ontological knowledge is used as input to generate new ontolo-
gies" [154]. The reuse of existing ontologies not only saves time but also gives the ad-
vantage of using mature and proved ontological resources that have been validated by
domain experts and (some) by the World Wide Web Consortium (W3C).

The search for ontologies to reuse starts by considering the results obtained from the
CQs, such as the domains that should be covered by the ontology (i.e., built environment,
sensor and building usage) and the different terms that each domain should include.
With that information, the next step is to search for adequate and matured ontologies that
cover most of the terms of each domain. To perform the search, the Linked Open Vocab-
ularies (LOV) dataset was used.1 LOV is a library containing high-quality and reusable
ontologies/vocabularies. LOV allows to focus the search by vocabularies (domains) or
by specific terms. During the search, we followed a top-down approach, meaning we
first searched for ontologies based on the domains of interest and then checked if the
resulting ontologies included most of required terms. We prioritized ontologies that are
maintained, recommended by the W3C, and widely used. The search results for each
category were as follows:

• For the built environment domain, three ontologies were considered: rooms,
ifcowl and bot. The rooms ontology [40], is a small ontology that provides a
simple set of terms for describing buildings, storeys and rooms. This ontology is
missing many important terms, for example terms for describing a building’s topol-
ogy. The ifcowl ontology [135], is a semantic representation of the IFC schema
(standard for representing building and construction data) [135, 132] (see Sec-
tion 3.2). This ontology is rich in information, it provides (directly and indirectly)
all the required concepts needed to describe the building structure, its topology and
the different elements contained in a space. However, in practice, the complexity
and the structure of the ifcowl makes it hard to use and to extend. For exam-
ple, the relation IfcRelAggregates for stating that a building contains a space, is
defined in ifcowl as intermediate instance, which raises the complexity unneces-
sarily [112, 134]. In the first version of the WiseNET ontology we managed to used
the ifcowl by omitting the intermediate relations and creating simpler ones [112].
However, by the same time of our work (early 2017) the Linked Building Data Com-
munity developed the Building Topology Ontology (bot) [140]. bot is a simple
ontology covering the core concepts for describing a building, its topology and its
elements. This ontology provides all the required built environment terms, while
using a simple schema which makes it easy to extend. Consequently, we decided
to use bot instead of ifcowl.

• Regarding the sensor domain, three ontologies were considered: saref and
1https://lov.linkeddata.es/dataset/lov

4.2. WISENET ONTOLOGY 53

Table 4.2 – Prefixes and namespaces used in WiseNET ontology and in this document.

Prefix Namespaces Description
bot https://w3id.org/bot# The building topology ontology
event http://purl.org/NET/c4dm/event.owl# The event ontology
foaf http://xmlns.com/foaf/0.1/ The friend of a friend vocabulary
geo http://www.w3.org/2003/01/geo/wgs84_pos# The geo positioning vocabulary
owl http://www.w3.org/2002/07/owl# The OWL 2 schema vocabulary
rdf http://www.w3.org/1999/02/22-rdf-syntax-ns# The RDF concepts vocabulary
rdfs http://www.w3.org/2000/01/rdf-schema# The RDF schema vocabulary
sosa http://www.w3.org/ns/sosa/ The sensor, observation, sample, and actuator ontology
ssn http://www.w3.org/ns/ssn/ Semantic sensor network ontology
time http://www.w3.org/2006/time# OWL-Time ontology
wisenet http://ontology.wisenet.checksem.fr# The WiseNET ontology
wni http://ontology.wisenet.checksem.fr/inst# WiseNET instances
xml http://www.w3.org/XML/1998/namespace XML specification
xsd http://www.w3.org/2001/XMLSchema# XML schema definition

ssn/sosa. The Smart Appliances REFerence (saref) ontology [43], provides
terms to specify devices in smart environments. saref focus on the device’s func-
tions, services, states and commands. This ontology could be easily extended to
include the required sensor terms. The Sensor, Observation, Sample, and Actua-
tor (sosa) and Smart Sensor Network (ssn) ontologies [4], provides concepts to
describe sensors, their observations, their procedures, their results, etc. This on-
tology provides most of the required terms, and can be easily extended to include
the rest of them. Both ontologies—saref and ssn/sosa—could be reused in
the WiseNET ontology however, the ssn/sosa is a W3C recommendation and its
widely used, therefore we decided to use it as the basis of our sensor domain.

• For the building usage domain we used the well-known event ontology [139], which
deals with the notion of events and their different properties such as location, time,
agents (people involve), factors and products. This is an easily extendable ontology
that provides most of the vocabulary required for describing activities and events
that may happen in a built environment. Moreover, the event ontology imports the
owl-time ontology which is a W3C recommendation for describing the temporal
properties of resources [72]. Also, the event ontology makes reference to the terms
Person and Agent from the Friend Of A Friend (foaf) ontology [20], terms which
are also important to us.

Figure 4.3 shows the external classes and properties reused by the WiseNET on-
tology. In total, the WiseNET ontology reuses 45 terms from 6 external ontolo-
gies, from which 15 are classes, 28 are object properties and 2 are data proper-
ties. The suggested prefixes for the external ontologies and their namespaces Uni-
form Resource Identifiers (URIs) are presented in Table 4.2. As a reminder, the
namespace URI is a unique global identifier of the ontology resource, while the prefix
name is used as an abbreviation of the namespace. For example, instead of writing
https://w3id.org/bot#Building, we can write bot:Building because bot is
the prefix for the namespace https://w3id.org/bot#. Moreover, because we are
inside the WiseNET ontology, the default prefix corresponds to wisenet and can be writ-
ten by the empty prefix ":". In the rest of this chapter, the prefixes will be used to refer
the external ontologies and the empty prefix to refer the terms defined in the WiseNET
ontology.

There are two ways of reusing external ontologies inside a base-ontology (in our case

54 CHAPTER 4. WISENET SYSTEM

event

+Event
-agent
-agent_in
-factor
-factor_of
-place
-sub_event
-time

bot

+Building
+Element
+Space
+Storey
+Zone
-adjacentZone
-containsElement
-containsZone
-hasElement
-hasSpace
-hasStorey

geo

+SpatialThing

foaf

+Agent
+Person

ssn/sosa

+Sensor
+Procedure
-hosts
-isHostedBy
-implements
-implementedBy
-isObservedBy
-madeBySensor
-observes

time

+Duration
+Instant
+Interval
+TemporalEntity
-after
-before
-hasBeginning
-hasDuration
-hasEnd
-hasTime
-inXSDDateTimeStamp
-numericDuration

WiseNET
ontology

reuses

Legend

Figure 4.3 – External classes and properties reused by the WiseNET ontology. Classes
are marked with (+) and properties (object and data properties) are mark with (-).

WiseNET): complete import or selective import. The first solution—complete import—
consists of including the whole set of statements (classes, properties, axioms, individu-
als, etc) defined in the imported ontology. This is achieved by using the owl:imports
property in OWL. The advantage of this solution is that all the terms and axioms of the
imported ontology (and of the ontologies that themselves they import) are taken into con-
sideration while performing inference, thus resulting in a rich model. However, this rich-
ness is often unnecessary, and it may cause many drawbacks in the base-ontology, such
as: increasing its size; decreasing its comprehension, thus making more difficult its main-
tenance and its flexibility (i.e., to be reused); and rising its reasoning complexity and thus
reasoning time, by including more complex DL constructors and by increasing the on-
tology size [16]. The second solution—selective import—consists in only importing the
terms of interest, not the complete ontology that defined them. This is done by referring
to the terms using their namespaces URI, which points to their definition in the external
ontology. The advantages of this solution is that the base-ontology stays understandable
and there is no unnecessary explosion in size and complexity. Moreover, this solution is
practical if only some few terms of the external ontologies are required, which is the case
with most of our external ontologies. For example, from the ssn/sosa ontologies we only
need 2 classes out of 19 and 7 properties out of 38; from the foaf vocabulary, we only
need 2 classes out of 23 classes and 71 properties. Table 4.3 presents a comparison of
both solutions. The comparison was performed by considering the WiseNET classes and

4.2. WISENET ONTOLOGY 55

Table 4.3 – Comparison between methods for reusing ontologies, by importing the com-
plete ontology or just importing specific terms. The WiseNET terms presented in Steps 4
and 5, were also included in both experiments.

Complete import Selective import
#Classes 85 27
#Object properties 153 40
#Data properties 74 17
#Axioms 3049 609
DL expressivity SROIN(D) SRI(D)
Reasoning time (ms) 81.6 18.1

properties (that will be presented in the next steps) and adding them two sets of extra
knowledge: (1) the complete axioms of the 6 external ontologies (complete import), or
(2) only the necessary external terms (selective import). The experiment was done using
the Protégé ontology editor [162] and the Pellet reasoner [155]. The reasoning time was
obtained by executing the reasoner 10 times and performing an average. The results are
as expected, the selective import considers a much lower set of axioms and has a lower
DL-expressivity, which translate in a lower reasoning time—around 4.5 times faster than
the complete import. Based on those results and in our application where the goal is
to obtain, as close as possible, real-time reasoning, we decided to use the second
solution—selective import.

The reused terms will not provide enough information to answer the competency ques-
tions defined in Step 1. More specific terms related to our precise application— intelligent
visual system in a built environment—are still missing as shown in the Step 3 in Figure 4.2
by the terms outside the blue ontology. For example, terms that define the different types
of events that can occur, that define the capacity of a space, the different elements that
can be contained in the environment, the connectivity between cameras, etc. Hence, in
the following two steps, we will define the missing terms and organize them in a hierar-
chical way.

STEP 4 AND 5. DEFINE CLASSES AND PROPERTIES

According to the 101-methodology [125], the Step 4 consists in defining the missing
classes and organizing them into a taxonomical hierarchy. While, the Step 5 consists
in defining the missing properties that will allow us to characterize the classes according
to our needs. Both steps are closely related, therefore we decide to develop them in the
same section.

Classes are collections of objects with similar properties. Thus, the terms that describe
objects as an independent existence, rather than characterize the objects, were defined
as classes. In the other hand, the terms that characterize an object by describing its
attributes were defined as properties. For example, an instance of the class Space can
be characterize by properties stating if it is occupied, if it is restricted, its maximal capac-
ity, the number of people in the space, etc; another example, an instance of the class
Detection can be characterize by properties stating the place where it occur, the time,
if it was done in region of interest, etc.

There are 42 new terms defined in WiseNET ontology, as follows:

56 CHAPTER 4. WISENET SYSTEM

Classes :Alarm, :BoundingBox, :Detection, :Door, :FieldOfView,
:ImageProcessing, :InstantEvent, :IntervalEvent,
:PersonDetection, :PersonInSpace, :RegionOfInterest,
:SmartCamera.

Object Properties :appearsIn, :containsPerson, :hasAlarm,
:hasBoundingBox, :hasFieldOfView, :hasNearbySensor,
:inRegionOfInterest, :isFieldOfViewOf, :isSubEventOf,
:isRelatedTo, :overlaps, :personLocation, :represents, :shows.

Data Properties :dimension, :ipAddress, :isEntryViolation,
:isEventOpen, :isIntruder, isNoise, :isOccluded,
:isOccupied, :isRestricted, :maxCapacity, :numberOfPeople,
:startRecording, :triggeredByIntruder, :triggeredByMaxCapacity,
:visualDescriptors, :xywh.

Based on the standards, class names are written in majuscule while property names in
minuscule.

After defining the missing terms, the classes and properties were organized in a hierar-
chical manner by using the top-down approach presented by Noy’s et al. [125], that con-
sists in starting from a general class/properties and then specialize it in sub-classes/sub-
properties. One way of doing this for the classes is by asking if by being an instance of
class B, will necessarily (i.e., by definition) mean being an instance of class A. In other
words, if B is a sub-class of A (B v A) then every instance of B will also be an instance of
A, thus the class B represents a concept that is a specialized version A. Based on this,
we started by specializing (i.e., extending) the reused terms as follows:

:IntervalEvent v event:Event, (4.1)

:InstantEvent v event:Event, (4.2)

:ImageProcessing v sosa:Procedure, (4.3)

:Door v bot:Element, (4.4)

:SmartCamera v sosa:Sensor. (4.5)

Then, we specialized the newly defined classes as follows:

:RegionOfInterest v :BoundingBox (4.6)

:PersonDetections v :ImageProcessing (4.7)

:Detection v :InstantEvent, (4.8)

:PersonInSpace v :IntervalEvent. (4.9)

Furthermore, we performed some containment semantic relation (i.e., a type of mapping
specifications) between the external terms. Specifically, we stated that the element in
one ontology represents a more specific aspect of the world than the element in the other
ontology, as follows:

4.2. WISENET ONTOLOGY 57

foaf:Agent

owl:Thing

foaf:Person

:Alarm

:BoundingBox

:RegionOfInterest

bot:Element

:Door

sosa:Sensor

:SmartCamera

event:Event

:InstantEvent

:Detection

:IntervalEvent

:PersonInSpace

:FieldOfView

sosa:Procedure

:ImageProcessing

:PersonDetection

geo:SpatialThing

bot:Zone

bot:Building

bot:Space

bot:Storey

time:TemporalEntity

time:Instant

time:Interval

time:Duration

Figure 4.4 – WiseNET class hierarchy. The arrow represents the "sub-class of" relation-
ship. The owl:Thing class is the root of all the classes.

bot:Zone v geo:SpatialThing, (4.10)

sosa:Sensor v bot:Element, (4.11)

sosa:hosts v bot:containsElement, (4.12)

event:time v time:hasTime. (4.13)

The complete terminology of the WiseNET ontology—classes, object properties and data
properties—ordered in a hierarchical manner is presented in Figures 4.4 and 4.5. Notice
that for brevity we did not state above all the hierarchical formulas defined in the exter-
nal ontologies (e.g., time:Instant v time:TemporalEntity and bot:hasSpace v
bot:containsZone), however they were considered as it can be observed in the fig-
ures. The terms defined in WiseNET, allow us to complete the information from the differ-
ent domains, to describe attributes of instances according to our needs and to relate (i.e.,
bridge) the different domains. To create those "bridges" we need to constraint the class
expressions and the properties, as shown in the next step.

58 CHAPTER 4. WISENET SYSTEM

bot:adjacentzone

owl:top
ObjectProperty

time:after

event:agent

event:agent_in

:appearsIn

time:before

:containsPerson

bot:containsZone

bot:hasSpace

bot:hasStorey

event:factor

event:factor_of

:hasAlarm

time:hasBeginning

:hasBoundingBox

time:hasDuration

bot:hasElement

bot:containsElement

sosa:hosts

time:hasEnd

:hasFieldOfView

:hasNearbySensor

time:hasTime

event:time

ssn:implementedBy

ssn:implements

:inRegionOfInterest

:isFieldOfViewOf

sosa:isHostedBy

sosa:isObservedBy

:isRelatedTo

:isSubEventOf

sosa:madeBySensor

sosa:observes

:overlaps

:personLocation

event:place

:represents

:shows

event:sub_event

:dimension

owl:top
DataProperty

time:inXSDDateTimeStamp

:ipAddress

:isEntryViolation

:isEventOpen

:isIntruder

:isOccluded

:isRestricted

:triggeredByMaxCapacity

:maxCapacity

:numberOfPeople

time:numericDuration

:startRecording

:visualDescriptors

:xywh

:isOccupied

:triggeredByIntruder

:isNoise

Figure 4.5 – WiseNET object and data properties. The arrow represents the
"sub-property of" relationship. The properties owl:topObjectProperty and
owl:topDataProperty are the root of all the object properties and data properties,
respectively.

Remark. A detailed description of each term composing the WiseNET ontology can be
found in the Appendix A.

STEP 6. DEFINE CONSTRAINS

After having the complete set of terms needed in the WiseNET ontology, some con-
straints/restrictions on the use of properties need to be defined. The WiseNET ontology
is defined in OWL 2, thus the type of constraints depend on the DL constructors used.
They can be constraints about the value type (i.e., data types like boolean, string, integer,
etc.), the classes allowed to use the properties (i.e., property’s domain and range), the
number of values a property can have (i.e., cardinality), the characteristic of a property

4.2. WISENET ONTOLOGY 59

Figure 4.6 – General view of the WiseNET ontology, showing the different domains in-
volved.

(i.e., transitive, inverse, symmetric, etc.), the inclusion of a property which is the combina-
tion of multiple properties (i.e., chain rules), etc (see Section 3.3, specifically Tables 3.2,
3.3 and 3.4 for more details). The constraints define the intended (and allowed) use of
the classes and properties and will define the semantic relations between the classes of
different domains.

Figure 4.6 shows a general view of the WiseNET ontology showing the main domains that
compose it—built environment, sensor, event, building user and time. For each domain,
an overview of the main classes, properties, and the property’s domain/range restrictions
will be presented below. All the figures presented in this section were created based on
the Graffoo notation [53]. In the figures, the elements (i.e., nodes and edges) in blue
denotes our extensions of that domain.

Built environment An overview of the core classes and properties related to built en-
vironment domain is shown in Figure 4.7. The core concept is bot:Zone which is a
sub-class of geo:SpatialThing and is divided into three sub-classes bot:Building,
bot:Storey and bot:Space, these sub-classes will share the same properties as
bot:Zone. An instance of bot:Zone is characterized by the following attributes: if it
is a restricted zone or not (specified by the relation :isRestricted); if it is occupied
or not (:isOccupied); by the number of people that it contains (:numberOfPeople);
the maximum number of people it can contains :maxCapacity; the instances of people

60 CHAPTER 4. WISENET SYSTEM

that it contains (:containsPerson), notice that this property links the built environment
and the building user domains; if it has an alarm (:hasAlarm) that can be triggered
if there is somebody in a restricted zone (:triggeredByIntruder) or if the maxi-
mum number of people allowed has been exceeded (:triggeredByMaxCapacity);
the other zones it contains (bot:containsZone); and the building elements it contains
(bot:hasElement). Notice that the property sosa:host is specifically used to relate a
bot:Space with a sosa:Sensor, thus linking both domains.

Moreover, some of the properties incorporate extra constraints. The property
:containsPerson has as inverse the property :personLocation, meaning that,
if <zoneX> (instance of bot:Zone) contains person <personA> (instance of
foaf:Person), then it can be inferred that <personA> has person location <zoneX>,
and vice-versa as presented in Eq. 4.14. In the same manner, sosa:hosts has inverse
sosa:isHostedBy (Eq. 4.15). In addition, the property bot:containsZone is tran-
sitive as stated in Eq. 4.16, for example, if <buildingX> contains zone <storeyY>
and <storeyY> contains zone <spaceZ>, then it can be inferred that <buildingX>
also contains zone <spaceZ>. As well, the property bot:adjacentZone is symmet-
ric as stated in Eq. 4.17, meaning that, if <spaceX> is an adjacent zone of <spaceY>,
then it can be inferred that <spaceY> is also an adjacent zone of <spaceX>. Further-
more, complex role inclusions (i.e., property chains of the forms s ◦ p v p , p ◦ s v p
and r ◦ s v p), were also incorporated. The Eq. 4.18 states that: if <zoneX> con-
tains zone <zoneY> and <zoneY> contains person <personA>, then <zoneX> also
contains person <personA>. In the same manner, the Eq. 4.19, taken from the bot on-
tology [140], states that: if <zoneX> contains zone <zoneY> and <zoneY> has element
<elementD>, then <zoneX> also has element <elementD>.

:personLocation ≡ :containsPerson−

:containsPerson ≡ :personLocation−
(4.14)

sosa:hosts ≡ sosa:isHostedBy−

sosa:isHostedBy ≡ sosa:hosts−
(4.15)

Trans(bot:containsZone) (4.16)

Sym(bot:adjacentZone) (4.17)

bot:containsZone ◦ :containsPerson v :containsPerson (4.18)

bot:containsZone ◦ bot:hasElement v bot:hasElement (4.19)

Sensor Figure 4.8 presents the core classes and properties related to the sensor do-
main. The core concepts are sosa:Sensor and its sub-class :SmartCamera. An in-
stance of bot:Sensor is characterized by the space that host it (specified by the rela-
tion sosa:isHostedBy), the sensor it has close by (:hasNearbySensor) and by its
IP address if any (:ipAddress). An instance of :SmartCamera is characterized by
its recording flag (:startRecording); its field of view (FOV) (:hasFieldOfView);
by what it observes (sosa:observes) that can be a person (foaf:Person) or a
particular region of interest (ROI) in the image (:RegionOfInterest); and by the

4.2. WISENET ONTOLOGY 61

Figure 4.7 – Overview of the WiseNET classes and properties in the perspective of the
built environment domain.

image processing algorithm (:ImageProcessing) it implements (ssn:implements).
We focus in person detection algorithms (:PersonDetection), specifically in four
different algorithms—HOG_SVM, SSD, YOLOv3 and groundTruth2—inserted as in-
stances (see Section 2.3.1 for more details in the algorithms). Moreover, the
class :RegionOfInterest is a sub-class of :BoundingBox, which represents
(:represents) a physical building element like a door. An instances of :BoundingBox
is characterized by its coordinates (:xywh), defined by it’s top-left point coordinate (x,y),
width (w) and height (h). Furthermore, a FOV may overlap with other FOVs (overlaps),
and it may show a person or a ROI (:shows).

Moreover, the property :shows has inverse :appearsIn (Eq. 4.20); in the same
way, :hasFieldOfView has inverse :isFieldOfViewOf (Eq. 4.21), sosa:observes
has inverse sosa:isObservedBy (Eq. 4.22) and ssn:implements has inverse
ssn:isImplementedBy (Eq. 4.23). In addition, the properties :overlaps and
:hasNearbySensor are symmetric (Eqs 4.24 and 4.25 respectively). Lastly, complex
role inclusions were stated for the properties sosa:observes and :shows as presented
in Eqs. 4.26 and 4.27.

2the person detection ground-truth is not really an algorithm but we will consider it as a "perfect" detector

62 CHAPTER 4. WISENET SYSTEM

Figure 4.8 – Overview of the WiseNET classes and properties in the perspective of the
sensor domain.

:shows ≡ :appearsIn−

:appearsIn ≡ :shows−
(4.20)

:hasFieldOfView ≡ :isFieldOfViewOf−

:isFieldOfViewOf ≡ :hasFieldOfView−
(4.21)

sosa:observes ≡ sosa:isObservedBy−

sosa:isObservedBy ≡ sosa:observe−
(4.22)

ssn:implements ≡ ssn:implementedBy−

ssn:implementedBy ≡ ssn:implements−
(4.23)

Sym(:overlaps) (4.24)

Sym(:hasNearBy) (4.25)

:hasFieldOfView ◦ :shows v sosa:observes (4.26)

:shows ◦ :represents v :shows (4.27)

4.2. WISENET ONTOLOGY 63

Event An overview of the core classes and properties related to event domain
is shown in Figure 4.9. The core concepts are event:Event and its sub-
classes :InstantEvent and :IntervalEvent. To start, we constraint the class
event:Event by stating that is the union of :InstantEvent and :IntervalEvent,
as presented in Eq. 4.28. An instance of event:Event is characterized by the per-
son involve in it (specified by the relation event:agent), this relation links the event
and the building user domains; the place were it occur (event:place), this relation
links the event and the built environment domain; the sensor that created the event
(sosa:madeBySensor), this relation links the event and the sensor domains; the pro-
cedure used to create the event event:factor, this relation also links the event do-
main with the sensor domain; and the time when it occurred (event:time). The type
of time instance will define the type of event. The class :InstantEvent is a kind of
event which the property event:time can relate only to time:Instant class, while
the class :IntervalEvent can relate only to time:Interval class, as stated in
Eqs. 4.29 and 4.30. An instance of :InstantEvent can compose an :IntervalEvent
(stated by :isSubEventOf), and inversely an :IntervalEvent can be composed by
an :InstantEvent (event:sub_event). Thus, the class :Detection is a kind of
:Event that occurs in a specific point in time/space and which normally is the out-
put of sensing device. An instance of :Detection can be an entry violation or not
(:isEntryViolation), can be performed around a ROI (:inRegionOfInterest) for
example around a door, and can have a bounding box (:hasBoundingBox). The class
:PersonInSpace is a container of :Detection instances relating a specific person
with a specific space during a period of time. An instance of :PersonInSpace might be
open or closed (:isEventOpen), if it is not open it means that the person involved left
the space hence no more detections can be attached to it. Also, a :PersonInSpace
instance can be created by noise detection, thus the boolean property isNoise can be
used to distinguish them. Moreover, multiple instances of :PersonInSpace can be re-
lated to each other (:isRelatedTo) to constitute the space/time trajectory of a person,
as it will be shown in Chapter 6.

Furthermore, the property event:agent has inverse event:agent_in
(Eq. 4.31); in the same way, event:factor has inverse event:factor_-
of (Eq. 4.32) and event:sub_event has inverse :isSubEventOf. In addi-
tion, the property :isRelatedTo is transitive and symmetric, meaning that if
<intervalEventA> (instance of :IntervalEvent) is related to <intervalEventB>
and <intervalEventB> is related to <intervalEventC>, then it can be inferred
that: <intervalEventA> is also related to <intervalEventC>, by transitivity ;
and that <intervalEventB> is also related to <intervalEventA>, as well as
<intervalEventC> is also related to <eventB>, by symmetry.

event:Event ≡ :InstantEvent t :IntervalEvent (4.28)

:InstantEvent v event:Event u ∀ event:time . time:Instant (4.29)

:IntervalEvent v event:Event u ∀ event:time . time:Interval (4.30)

event:agent ≡ event:agent_in−

event:agent_in ≡ event:agent−
(4.31)

event:factor ≡ event:factor_of−

event:factor_of ≡ event:factor−
(4.32)

64 CHAPTER 4. WISENET SYSTEM

:isNoise:isEventOpen

Figure 4.9 – Overview of the WiseNET classes and properties in the perspective of the
event domain.

event:sub_event ≡ :isSubEventOf−

:isSubEventOf ≡ event:sub_event−
(4.33)

Sym(:isRelatedTo) (4.34)

Trans(:isRelatedTo) (4.35)

Building user An overview of the core classes and properties related to build-
ing user domain is shown in Figure 4.10. The core concept is foaf:Person.
An instance of foaf:Person is characterized by its location (specified by the
relation :personLocation), by an array of visual features that describes it
(:visualDescriptors), if it is occluded or not (:isOccluded) and if it is a intruder
or not (:isIntruder). As previously stated, the relations :personLocation and its
inverse :containsPerson (Eq. 4.14), link the building user domain with the built envi-
ronment domain.

Time An overview of the core classes and properties related to built environment do-
main is shown in Figure 4.11. As it can be observed in the schema, this domain

4.2. WISENET ONTOLOGY 65

Figure 4.10 – Overview of the WiseNET classes and properties in the perspective of the
building user domain.

was not extended in any way, i.e., all the restrictions were taken from the time ontol-
ogy [72]. The core concepts are the time:Instant and time:Interval, which are
sub-classes of time:TemporalEntity. An instance of time:Instant has a times-
tamp that states the date and time of day when it occur (time:inXSDDateTimeStamp).
An instance of time:Interval has a starting time-instant (time:hasBeginning), an
end time-instant (time:hasEnd), and a duration (time:hasDuration) which itself has
a value (time:numericDuration). Moreover, the class time:TemporalEntity is
the union of its sub-classes, as presented in Eq. 4.36. Furthermore, an instance of
time:TemporalEntity can occur before (time:before) or after (time:after) an-
other instance. As expected, the properties time:before and time:after are inverse,
and transitive, as stated in Eqs. 4.37, 4.38 and 4.39 respectively.

time:TemporalEntity ≡ time:Instant t time:Interval (4.36)

time:before ≡ time:after−

time:after ≡ time:before−
(4.37)

Trans(time:after) (4.38)

Trans(time:before) (4.39)

As previously stated, the type of constraints used define the ontology’s DL language—i.e.,
it’s expressivity level. Based on the constraints presented above, the WiseNET ontology
is defined in the SRI(D) DL language. A definition of the SRI(D) constructors and the
corresponding formulas that used those constructors are presented in the Table 4.4. Even
though stronger constraints could be added to the WiseNET ontology (e.g., qualified num-
ber restrictions constraint (Q constructor) stating that all the spaces have to have at least

66 CHAPTER 4. WISENET SYSTEM

Figure 4.11 – Overview of the WiseNET classes and properties in the perspective of the
time domain.

one door, or that an smart camera can have only one field of view), this will incurred
in a higher computational cost during inference, which is undesirable in our application.
Moreover, SRI(D) allowed us to represents all the constraints that we considered es-
sential while providing a suitable computational cost. Furthermore, Horrocks et al. [75],
presented a tableau decision procedure for SRI(D) that solves the ontology consistency
problem and allows the use of reasoning services, thus demonstrating the decidability of
SRI(D).

In the last three steps—4, 5 and 6—we have defined a set of axioms (formulas) describing
the structure of the WiseNET domain. This set of structural axioms represents the termi-
nological knowledge called TBox. The TBox’s constraints and characteristics allow us to
link concepts between the different domains, thus attaining interoperability in a semantic
level. The next step concerns the assertion of axioms describing a concrete situations
(i.e., instantiation of classes and properties). The set of assertional knowledge is called
ABox.

STEP 7. CREATE INSTANCES

The last step of the 101-methodology [125] consist in inserting instances of classes and
creating relations between the different instances by using the properties. For example,

4.2. WISENET ONTOLOGY 67

Table 4.4 – Definition of SRI(D) constructors. The equations in bold corresponds to the
examples given in OWL functional syntax [121]. TheALC constructors contains the basic
concept constructor such as intersection, negation and universal/existential restrictions,
for more details refer to Section 3.3.1.

Example in
Constructor Definition Equations OWL functional syntax
S ALC + Transitivity 4.16, 4.28, 4.29, TransitiveObjectProperty(

4.30, 4.35, 4.36, :isRelatedTo)
4.38, 4.39

R Complex role 4.18, 4.19, 4.26, SubObjectPropertyOf(
inclusions 4.27 ObjectPropertyChain(

:shows :represents):shows)
I Inverse role 4.14, 4.15, 4.20 InverseObjectProperties(

4.21, 4.22, 4.23 :containsPerson
4.31, 4.32, 4.33 :personLocation)
4.37

(D) Datatypes DataProperty(:xywh)

using the WiseNET ontology we can represent the situation presented in Figure 4.12
where there is a small building that contains 1 storey and 2 spaces; one of the spaces
contains 2 doors and 1 camera, while the other one contains 1 door and 1 camera;
moreover, both cameras are looking at the same door and there is one of them which
also observes a person. The situation can be modeled in the WiseNET ontology by
inserting some knowledge as shown below. Notice that to ease readability, we will use
in the rest of this chapter the triple notation for asserting axioms in the ontology, where
the DL notation " a : C " corresponds to the triple notation "<a> rdf:type C" that means
that "a" is an instances of the class "C". In a similar manner, DL notation " (a, b) : r "
corresponds to the triple notation "<a> r " that means that the instance "a" relates to
the instance "b" by the property "r".

Firstly, the classes instances needs to be created. The inserted class instances are:

<building1> rdf:type bot:Building,
<storey1> rdf:type bot:Storey,
<space1> rdf:type bot:Space,
<space2> rdf:type bot:Space,
<door1> rdf:type :Door,
<door2> rdf:type :Door,
<cam1> rdf:type :SmartCamera,
<cam2> rdf:type :SmartCamera,
<fov1> rdf:type :FieldOfView,
<fov2> rdf:type :FieldOfView,
<person1> rdf:type foaf:Person.

Secondly, the created instances are related by properties. The inserted properties are:

<building1> bot:hasStorey <storey1>,
<storey1> bot:hasSpace <space1>,
<storey1> bot:hasSpace <space2>,

68 CHAPTER 4. WISENET SYSTEM

<building1>

<storey1> <space1>

<space2><cam2>

<cam1>

<person1>

<door1>

<door2>

<fov1>

<fov2>

Interior
2D view

Figure 4.12 – Example of a situation that can be represented using the WiseNET ontology.

<space1> bot:containsElement <door1>,
<space1> bot:containsElement <door2>,
<space2> bot:containsElement <door2>,
<space1> sosa:hosts <cam1>,
<space2> sosa:host <cam2>,
<cam1> :hasFieldOfView <fov1>,
<cam2> :hasFieldOfView <fov2>,
<door2> :appearsIn <fov1>,
<door2> :appearsIn <fov2>,
<person1> :appearsIn <fov1>.

The inserted classes and properties allow to completely and correctly model the situation
presented in Figure 3. Moreover, after inserting the knowledge, the reasoner can be
executed to deduce new information. This new information was not explicitly inserted and
can be inferred thanks to the constraints defined in Step 6, for example:

<building1> bot:containsZone <storey1>,
<building1> bot:containsZone <space1>,
<building1> bot:containsZone <space2>,
<building1> bot:hasElement <door1>,
<building1> bot:hasElement <door2>,
<building1> bot:hasElement <cam1>,
<building1> bot:hasElement <cam2>,
<cam1> sosa:isHostedBy <space1>,
<cam1> sosa:observes <door2>,
<cam1> sosa:observes <person1>,
<fov1> :shows <door2>,
<fov1> :shows <person1>,
<fov1> :isFieldOfViewOf <cam1>,
<door2> :isObservedBy <cam1>,
<door2> :isObservedBy <cam2>,
<person1> :isObservedBy <cam1>.

As a conclusion, the WiseNET ontology was able to completely and correctly model the
example situation and, moreover, it enabled the deduction of new useful information.

4.2. WISENET ONTOLOGY 69

However, this example situation revealed two main limitations of our current ontology.

1. The manual insertion of knowledge. This is feasible for toys examples where there
are two spaces, two doors and two cameras (as the example presented). However,
in a real video surveillance application where we have a camera network send-
ing data constantly, manual insertion is unfeasible. In Chapter 5 we will present a
solution to extract and insert the building and camera knowledge (i.e., knowledge
about the structure and topology of the building, and the detections performed by
the camera network) in an automatic way.

2. Missing inference information. Re-consider the example situation, with the inserted
knowledge, we expected the ontology to deduce much more information, for ex-
ample: that <space1> is connected to <space2> because they contained the
same door; that <cam1> is nearby <cam2> because they are hosted by connected
spaces; that <fov1> overlaps <fov2> because they show the same door; or sim-
ply that <person1> is located in <space1> because it is being observed by a
camera hosted by that space. These type of rules cannot be represented using
DL formalism, however they can be represented using semantic rules. Thus, the
next section will present how to extend our WiseNET ontology by including this type
of rules. Notice that the inclusion of semantic rules are not consider by the 101-
methodology.

Moreover, the ontology needs to be checked according to all the CQs formulated in the
Step 1. This evaluation will be presented in Chapter 6.

4.2.2/ SEMANTIC RULES

As previously stated the WiseNET ontology is defined is OWL 2 using the SRI(D) DL ex-
pressivity. However, all DL formalisms have expressive limitations, for example the com-
position of complex classes or properties resulting from the combination of both classes
and properties simultaneously. Those limitations can be overcome by adding rule-based
knowledge, especially by using Semantic Web Rule Language (SWRL) rules [77]. SWRL
is built on OWL DL and shares its formal semantics, meaning that conclusions reached by
SWRL rules have the same formal guarantees as the conclusions reached using standard
OWL constructs. Moreover, SWRL provides more expressivity than OWL DL alone [77].

However, reasoning may become undecidable for the combination of OWL 2 + SWRL, i.e.,
inference with SWRL rules is not guaranteed to terminate. Therefore, the expressivity of
SWRL needs to be reduced to assure decidability. Although, many procedures exists to
guarantee decidability of SWRL, the DL-safe rules are the most commonly adopted [122].
This procedure consists in restricting the possible variables assignments to known indi-
viduals in an ontology (instances). All the rules presented in this manuscripts are DL-safe
SWRL rules.

Listings 4.1 to 4.11 present the SWRL rules defined in the WiseNET ontology. An ex-
planation of the SWRL rules syntax can be found in Section 3.3.2. The rules state the
following:

• Rule 1: If two spaces contain the same door, then those spaces are adjacent/con-
nected (Listing 4.1).

70 CHAPTER 4. WISENET SYSTEM

Listing 4.1 – SWRL rule for inferring if two spaces are adjacent.

bot:Space(?sp1) ∧ bot:Space(?sp2) ∧ :Door(?d)
∧ bot:containsElement(?sp1,?d) ∧ :containsElement(?sp2,?d)
=⇒ bot:adjacentZone(?sp1,?sp2)

• Rule 2: If two sensors are hosted by the same space, then those sensors are
nearby (Listing 4.2).

Listing 4.2 – SWRL rule for inferring if two sensors are nearby.

bot:Space(?sp) ∧ sosa:Sensor(?ss1) ∧ sosa:Sensor(?ss2)
∧ sosa:hosts(?sp,?ss1) ∧ sosa:hosts(?sp,?ss2)
=⇒ :hasNearbySensor(?ss1,?ss2)

• Rule 3: If two sensors are hosted by adjacent spaces, then those sensors are
nearby (Listing 4.3).

Listing 4.3 – SWRL rule for inferring if two sensors are nearby (2).

sosa:Sensor(?ss1) ∧ sosa:Sensor(?ss2) ∧ bot:Space(?sp1)
∧ bot:Space(?sp2) ∧ bot:adjacentZone(?sp1,?sp2)
∧ sosa:hosts(?sp1,?ss1) ∧ sosa:hosts(?sp2,?ss2)
=⇒ :hasNearbySensor(?ss1,?ss2)

• Rule 4: If two fields of view show the same door, then those fields of view overlap
(Listing 4.4).

Listing 4.4 – SWRL rule for inferring if two fields of views overlap.

:FieldOfView(?fov1) ∧ :FieldOfView(?fov2) ∧ :Door(?d)
∧ :shows(?fov1,?d) ∧ :shows(?fov2,?d)
=⇒ :overlaps(?fov1,?fov2)

• Rule 5: If a person is observed by a smart camera, then that person is located in
the space hosting the smart camera (Listing 4.5).

Listing 4.5 – SWRL rule for inferring the location of a person.

foaf:Person(?p) ∧ bot:Space(?sp) ∧ :SmartCamera(?sc)
∧ sosa:hosts(?sp,?sc) ∧ sosa:observes(?sc,?p)
=⇒ :personLocation(?p,?sp)

• Rule 6: If a zone contains a person, then that zone is occupied (Listing 4.6).

Listing 4.6 – SWRL rule for inferring if a zone is occupied.

bot:Zone(?z) ∧ foaf:Person(?p) ∧ :containsPerson(?z,?p)
=⇒ :isOccupied(?z,true)

• Rule 7: If two person-in-space events involve the same person, then those events
are related (Listing 4.7).

Listing 4.7 – SWRL rule for inferring if two person-in-space events are related.

:PersonInSpace(?pis1) ∧ :PersonInSpace(?pis2) ∧ foaf:Person(?p)
∧ event:agent(?pis1,?p) ∧ event:agent(?pis2,?p)
=⇒ :isRelatedTo(?pis1,?pis2)

4.2. WISENET ONTOLOGY 71

• Rule 8: If a person is located in a restricted space, then that person is an intruder
(Listing 4.8).

Listing 4.8 – SWRL rule for inferring if a person is an intruder.

foaf:Peson(?p) ∧ bot:Space(?sp)
∧ :personLocation(?p,?sp) ∧ :isRestricted(?sp,true)
=⇒ :isIntruder(?p,true)

• Rule 9: If a detection is performed, by a smart camera in a restricted space,
then that detection is an entry violation event and the smart camera should start
recording (Listing 4.9). Notice that this rule could be divided into two—one for each
consequence—however, both consequences are tightly related thus we decided to
keep them together.

Listing 4.9 – SWRL rule for inferring if a detection is an entry violation and if a smart
camera should start recording.

:Detection(?dt) ∧ bot:Space(?sp) ∧ :SmartCamera(?sc)
∧ sosa:madeBySensor(?dt,?sc) ∧ event:place(?dt,?sp)
∧ :isRestricted(?sp,true)
=⇒ :isEntryViolation(?dt,true) ∧ :startRecording(?sc,true)

• Rule 10: If there is a person located in a restricted space, and the space has an
alarm, then the alarm should be triggered with an intruder flag (Listing 4.10).

Listing 4.10 – SWRL rule for triggering the alarm if there is an intruder.

foaf:Peson(?p) ∧ bot:Space(?sp) ∧ Alarm(?a)
∧ :personLocation(?p,?sp) ∧ :isRestricted(?sp,true)
∧ :hasAlarm(?sp,?a)
=⇒ :triggeredByIntruder(?a,true)

• Rule 11: If the number of people in a space is greater or equal than its maximal
capacity, and the space has an alarm, then the alarm should be triggered with a
maximal-capacity flag (Listing 4.11). Notice that swrl:greaterThanOrEqual is
a SWRL built-in function that allows the comparison of two values, more details on
the SWRL built-in functions can be found in [77].

Listing 4.11 – SWRL rule for triggering the alarm if the maximum capacity is exceeded.

bot:Space(?sp) ∧ :Alarm(?a) ∧ :hasAlarm(?sp,?a)
∧ :maxCapacity(?sp,?val1) ∧ :numberOfPeople(?sp,?val2)
∧ swrlb:greaterThanOrEqual(?val1,?val2)
=⇒ :triggeredByMaxCapacity(?a,true)

To observe the impact of the SWRL rules, let us re-considered the example-situation
presented in the Step 7 of the previous section (see Fig. 4.12 in Section 4.2.1). In order
to trigger most of the rules, let us insert—in addition to the knowledge inserted in the
Step 7—some axioms stating that <space1> is a restricted space, that it has a maximal
capacity of 1, that it has an alarm and that currently there is one person in it. The complete
set of inserted knowledge is presented in Table 4.5. After inserting the knowledge in the
ontology, the reasoner is executed to infer new information. Table 4.6 presents some of
the inferred information, along with the rules and constraints used to deduce them. As it
can be observed, the consideration of the SWRL rules and the ontology constraints allows

72 CHAPTER 4. WISENET SYSTEM

Table 4.5 – Knowledge inserted in the WiseNET ontology to model the situation presented
in Fig. 4.12. The axioms in gray were introduced in this section while the rest were
introduced in the Step 7 of Section 4.2.1.

Class assertions Property assertions
<building1> rdf:type bot:Building <building1> bot:hasStorey <storey1>
<storey1> rdf:type bot:Storey <storey1> bot:hasSpace <space1>
<space1> rdf:type bot:Space <storey1> bot:hasSpace <space2>
<space2> rdf:type bot:Space <space1> bot:containsElement <door1>
<door1> rdf:type :Door <space1> bot:containsElement <door2>
<door2> rdf:type :Door <space2> bot:containsElement <door2>
<cam1> rdf:type SmartCamera <space1> sosa:hosts <cam1>
<cam2> rdf:type SmartCamera <space2> sosa:host <cam2>
<fov1> rdf:type :FieldOfView <cam1> :hasFieldOfView <fov1>
<fov2> rdf:type :FieldOfView <cam2> :hasFieldOfView <fov2>
<person1> rdf:type foaf:Person <door2> :appearsIn <fov1>
<alarm1> rdf:type :Alarm <door2> :appearsIn <fov2>

<person1> :appearsIn <fov1>
<space1> :isRestricted "true"
<space1> :maxCapacity "1"
<space1> :hasAlarm <alarm1>
<space1> :numberOfPeople "1"

the deduction of rich information from few explicit information. The inference process
was performed using the Pellet reasoner [155] in the Protégé ontology editor [162]. The
inference task took around 19.3 ms, time obtained by executing the reasoner 10 times
and then performing an average. This procedure was performed in a machine with the
following configuration: Intel Core i7-4790 CPU @3.6GHz × 4, 16GB of RAM and a "Java
Heap" size set to 200MB.

4.3. CONCLUSION 73

Table 4.6 – Some inferred information after executing the reasoner. The explanation of
the axioms refers to the rules and constrain formulas used to deduce the information.

Inferred information Explaination
<building1> :containsPerson <person1> Rule 5 + Eq. 4.18
<building1> :isOccupied "true" Rule 5 + Eq. 4.18 + Rule 6
<storey1> :containsPerson <person1> Rule 5 + Eq. 4.18
<storey1> :isOccupied "true" Rule 5 + Eq. 4.18 + Rule 6
<space1> :isOccupied "true" Rule 5 + Rule 6
<space1> bot:adjacentZone <space2> Rule 1
<space2> bot:adjacentZone <space1> Rule 1
<cam1> :hasNearbySensor <cam2> Rule 1 + Rule 3
<cam2> :hasNearbySensor <cam1> Rule 1 + Rule 3
<fov1> :overlaps <fov2> Eq. 4.20 + Rule 4
<fov2> :overlaps <fov1> Eq. 4.20 + Rule 4
<person1> :personLocation <space1> Eq. 4.20 + Eq. 4.26 + Rule 5
<person1> :personLocation <storey1> Rule 5 + Eq. 4.18 + Eq. 4.14
<person1> :personLocation <building1> Rule 5 + Eq. 4.18 + Eq. 4.14
<person1> :isIntruder "true" Rule 5 + Rule 8
<alarm1> :triggeredByIntruder "true" Rule 10
<alarm1> :triggeredByMaxCapacity "true" Rule 11

4.3/ CONCLUSION

In this chapter, we introduced a framework called WiseNET(Wised NETwork), which is a
semantic-based system that fuses heterogeneous sources of data in the Intelligent Video
Surveillance (IVS) and smart building domains. The creation of a context-aware system
in the built environment is a complex task; it requires information from different domains
such as environment data, sensing devices, spatio-temporal facts and details about the
different events that may occur. For example, the required event information could be
a set of concepts and relations concerning the different events that may occur in a built
environment, their location, the time they occurred, the agents involved, the relation to
other events and their consequences. In the case of the sensor information, the required
data could be the description of the different sensing devices, the processes implemented
on them and their results. Regarding the environment, the required data could be the
building topology and the different elements contained in the spaces.

The main goals of WiseNET are to enhance what sensors "observe" by considering con-
textual information, and to provide a set of services to the building managers to ease their
work by fusing pertinent information. In this work we focused on visual sensors, however,
the WiseNET system was designed in a generic manner, meaning that any type of sensor
could be considered.

The WiseNET ontology is the kernel of the WiseNET system and is responsible for (1)
describing the different kinds of information presented in the system and (2) enabling
interoperability between them. The interoperability between heterogeneous sources of
information is performed in a semantic level, i.e., a set of terms are defined which bridge
the heterogeneous sources. Moreover, the definition of each term in the ontology should
not contradict the model’s constraints.

74 CHAPTER 4. WISENET SYSTEM

The ontology development procedure was performed using different semantic web tech-
nologies, and it consisted of: defining a set of questions that the ontology should an-
swer (competency questions); reusing different domain ontologies (bot, event, ssn,
time and foaf); creating a set of classes and properties to connect the different domain
ontologies and to complete the application knowledge; defining a set of constrains and
extending the expressiveness by using logic rules. However, we propose to modify the be-
ginning of the procedure by extracting the relevant terms from the competency questions,
enumerate them and cluster them into categorize, and then to look for external ontolo-
gies that have already defined them. The reuse of external ontologies not only saves
time but also gives the advantage of using mature and proved ontological resources that
have been validated by their applications and by the W3C. Moreover, SWRL allows to
extend the knowledge of an ontology, by enabling the inclusion of human-skill knowledge
in the form of rules. In our case, the rules help the analyzes of the multiple situations that
can occur in the environment, such as knowing if a space is occupied or if the maximal
capacity of a space has been reached.

The resulting WiseNET ontology allows the description of information concerning smart
building manage and IVS systems. Furthermore, as shown by the examples, it accurately
infers information relating a sensor network, with the environment and its users. Thus,
allowing to understand what is happening in the building in an intuitive way, which is
human and machine understandable.

Once the WiseNET ontology is formally defined, the next step is to populate the ontol-
ogy with information about the built environment and sensor setup (static information),
and with information about the detections performed by the sensors (dynamic popula-
tion). The population step will be presented in the next chapter, along with the different
processes developed for performing the population in an automated way.

Remark. Most of the information presented in this chapter was validated in the following
papers [109, 110, 112].

5
STATIC AND DYNAMIC ONTOLOGY

POPULATION

The WiseNET ontology, defined in Chapter 4, incorporates a vast corpus of concepts in
the domain of an Intelligent Video Surveillance (IVS) system, which enables the aggre-
gation of knowledge coming from a Smart Camera Network (SCN) deployed in a built
environment. After having defined the WiseNET ontology, the next step is to automati-
cally populate the ontology with pertinent information that will enable the analysis of an
IVS system. The ontology population process can be divided into static and dynamic pop-
ulation. The static population, that will be presented in Section 5.2, consist in inserting
the knowledge that (normally) stays unchangeable in an IVS system, such as information
of the environment and the calibration information of the SCN. The dynamic population,
that will be presented in Section 5.3, consist in extracting pertinent knowledge from the
continuous data sent by the SCN (e.g., detections), to process it and to insert it into the
ontology. Furthermore, the central API, presented in Section 5.1, is in charge of man-
aging the ontology, thus enabling the static and dynamic population of data, as it can be
observed in Fig. 4.1. In summary, this chapter focus on the insertion of data coming from
the SCN and the built environment into the WiseNET ontology, by using the central API.

All the vocabulary, prefixes, rules and equations used and referred to in this chapter, were
defined in Chapter 4. Moreover, specific details about the vocabulary can be also find in
Appendix A.

5.1/ CENTRAL API

An Application Programming Interface (API) is an intermediary software that enables the
communication/interaction and data sharing between various components [148]. An API
furnishes a set of well-defined methods—referred as web services—accessible via web
protocols, such as the Hypertext Transfer Protocol (HTTP) [57]. HTTP is a protocol uti-
lize for machine-to-machine communication, more specifically for transferring machine-
readable file formats such as JSON (JavaScript Object Notation). HTTP defines different
commands that allows accessing the API’s web services, for example the GET and POST
commands used to retrieve and send data to a web service, respectively.

In the case of the WiseNET system, the central API is the interface between the WiseNET
ontology and the incoming and outgoing data (see Fig. 4.1). The central API is composed
of web services in charge of the updating/management of the WiseNET ontology. Specif-

75

76 CHAPTER 5. STATIC AND DYNAMIC ONTOLOGY POPULATION

ically, the central API is in charge of:

• inserting the environment data into the ontology,

• capturing the data coming from the SCN and inserting it into the ontology,

• retrieving the inferred knowledge from the ontology, and

• transferring data to the monitor unit.

Furthermore, the central API performs some processing tasks before inserting the data,
as it will be presented in this chapter, for example it filters the incoming data, to don’t over
saturate the WiseNET ontology with redundant information.

All the population processes and queries presented in this chapter are performed
by the central API. Thus, making it a key element of the static and dynamic populations.

Moreover, ontologies are not meant to be used in situations were data is constantly
changing over time, which is the case of the dynamic population in our system, thus
the role of the central API is crucial to enable this type of ontology usage.

5.2/ STATIC POPULATION

We considered as static population, the insertion of information that is (normally) un-
changeable after its introduction in the system. This concerns the information of the en-
vironment, presented in Section 5.2.1, and the general information of a SCN, presented
in Section 5.2.2.

As a running example for this chapter, we will use the Institut Marey et Maison de la
Métallurgie (I3M) building located in Dijon (France). The I3M building has three storeys,
from which we will focus on the third storey where a SCN has been deployed. Notice that,
all the process presented in this chapter are general, and they do not depend on
the I3M building nor of the SCN deployed in it. We decided to use it as an example
because its information is easily available to us (it is our laboratory) and we believe that
is easier to understand something if an example is given.

Figure 5.1 depicts the position of the camera nodes in the I3M building, as well as the
position of the spaces and doors relevant to our system. Mostly, we are interested in the
doors observed by the camera nodes and the spaces containing those doors.

5.2.1/ ENVIRONMENT KNOWLEDGE EXTRACTION AND POPULATION

To analyze the activities of a building, the information of the environment is crucial to
understand what is happening and where is happening.

In the case of the WiseNET system, it requires information about the structure of the
building (number and location of storeys and spaces), its spatial topology (storey-storey
relation, storey-space relation and space-space relation) and the different elements con-
tained in the spaces. Figure 5.2 summarize, in the form of a graph, the required environ-
ment elements and their relations that need to be populated into the WiseNET system.
As shown in the figure, we are only interested on four classes of objects Building,

5.2. STATIC POPULATION 77

space_2

sp
a
ce

_6

sp
ac

e_
5

sp
ac

e_
4

space_3

space_1

I3M Building - Storey 3

1

45

6

3

2

door_6

door_5

door_2 door_3

door_1

door_4

door_7

Camera 1 Camera 2

Camera 4 Camera 5

Camera 3

Camera 6

Figure 5.1 – WiseNET network deployed in the I3M building. (Top) Illustration of the
position of the six camera nodes (in blue), and some spaces and the doors (in green) of
interest. (Bottom) Example images from the camera nodes. Images from cameras 1, 4,
5 and 6 were taken at the same time; similarly for images 2 and 3.

Storey, Space and Door and the relations between them. We are specifically inter-
ested in door elements, instead of other elements (such as walls, stairs or windows), due
to their importance in a building environment, e.g., they connect two spaces and people
have to pass through them to enter/exit a space, however the other elements could also
be considered if needed.

The process shown in Fig. 5.3 was developed for automatically obtaining and populating
the required environment data into the WiseNET ontology. The process consists mainly
of five components: (1) an Industry Foundation Classes (IFC) file, (2) a requirement
checker of the IFC file, (3) a conversion of the IFC into the ifcowl ontology, (4) the
extraction of the pertinent instances from ifcowl, and finally (5) the population of the
extracted instances and their relationships into the bot part of the WiseNET ontology
(see Section 4.2.1).

78 CHAPTER 5. STATIC AND DYNAMIC ONTOLOGY POPULATION

i3M_building

storey_3

space_2space_1

door_3door_4 door_5 door_6

hasStorey

hasSpace

containsElement

Figure 5.2 – Example of the environment elements and their relations that need to be
populated into the WiseNET system. The graph only represents a small selection of
spaces and elements present on the third storey of the I3M building (see Fig 5.1). The
colors of the graph’s nodes denote the different types (classes) of elements such as
Building (in white), Storey (in blue), Space (in orange) and Door (in green).

(1) IFC file The process starts with an IFC file of a building, which will be the source of
information. In the context of Building Information Modelling (BIM), a digital representa-
tion of the building comes in the form of one or several IFC files [44] (see Section 3.2 for
more details). An IFC file contains a large amount of information concerning a built envi-
ronment, including the information that the WiseNET system requires. For example, it in-
cludes information about all the elements composing the building (storeys, spaces, stairs,
elevators, doors, walls, electrical elements, gas/heating/water distribution systems, etc.),
their geometrical information (dimension of each space/stair/door/wall, dimension of dis-
tribution elements such as pipes, etc.), their position and their relation to other elements
(a space is restricted by walls, a wall has a door/window in it, etc.).

Following our example, the IFC file describing all the elements composing the I3M building
was obtained from the company in charge of the construction of this building.

(2) Requirements checker The requirements checker process is in charge of verifying
the presence of necessary entities in the IFC file, according the environment information
required by the WiseNET system. The necessary IFC-entities that need to be instantiated
are:

5.2. STATIC POPULATION 79

IFC file Requirement
Cheker IFC to ontology

Extraction
Query

Population
Query

ifcowl
(TBox + ABox)

WiseNET ontology

i3M_building

storey_3
space_2

space_1

door_3door_4

door_5

door_6

1 2 3

4

5

Figure 5.3 – IFC to WiseNET: environment extraction and population process. The dotted
elements show outputs of some components.

• IfcBuilding, use to represent building instances,

• IfcBuildingStorey, use to represent storey instances,

• IfcSpace, use to represent space instances,

• IfcDoor, use to represent door instances,

• IfcRelAggregates, is an intermediate class used to represent a composition
(and decomposition) relationship between an instance and a set of instances. For
example, if a building instance contains a set of storeys, this "set of storeys" is
represented by an instance of IfcRelAggregates, which itself is decomposed by
each storey instance. The same occurs for the relationship between a storey and a
set of spaces.

• IfcRelSpaceBoundary, is and intermediate class used to represent the relation
between a space and different building elements, such as door, walls, windows, etc.

(3) IFC to ontology The manipulation of data contained in an IFC file is a fastidious
process, mainly performed manually and therefore source of numerous errors [44]. In
order to facilitate the handling of IFC files, some researchers propose to convert (rep-
resent) the IFC into an ontology [55, 135]. An IFC-based ontology model enhances the
interoperability of the IFC data and facilitates its access and manipulation, for example by
using Semantic Web technologies such as SPARQL queries.

Therefore, after checking the compliance of the IFC file, the file is converted to an on-
tology by using the IFC-to-ontology converter developed by Pauwels and Oraskari [133].

80 CHAPTER 5. STATIC AND DYNAMIC ONTOLOGY POPULATION

The result of the conversion is the ifcowl ontology which consists of a semantic rep-
resentation of the IFC schema (TBox) with the instances of a building (ABox), in our
example the instances concerning the I3M building.

In the ifcowl ontology, the TBox elements (classes and relationships) are defined using
the prefix ifcowl:, while the ABox (instances) are defined using the prefix inst: which
is a prefix assigned by the IFC-to-ontology converter and is used only to define IFC
instances.

(4) Extraction query The ifcowl ontology (which is a loyal conversion of the IFC file)
contains a large amount of information concerning the environment. However, only a
small portion is required in the WiseNET system. For example, the ifcowl of the I3M
building contains 1,350,346 instances including Cartesian points, polygons, measure-
ments, characteristics of each building element, etc., from which we are only interested
in 75 instances. Therefore, to improve the WiseNET ontology performance (by reducing
its data complexity), only the required data will be extracted from the ifcowl ontology.

The required data could be obtained as an ifcowl sub-graph, as shown in Fig 5.4.
However, in practice, the complexity and the structure of the ifcowl makes it hard
to use and to extend. For example, consider the relationship for stating that a build-
ing contains a space, in ifcowl this relationship is defined by using an intermediate
IfcRelAggregates instance, which raises the complexity unnecessarily [134, 112].
Moreover, by comparing the required data graph shown in Fig 5.2 with the ifcowl graph
shown in Fig 5.4, it can be easily observed that the ifcowl is not only overcomplicated
but also it uses more instances and relationships to define the same information—12 in-
stances and 12 relationships in compare to 8 respectively. Therefore, instead of extracting
a sub-graph from the ifcowl, we will just extract the pertinent instances (the ellipses in
Fig 5.4) and afterwards we will re-create their relationships in a simpler manner.

To extract the pertinent instances, the ifcowl ABox is queried using the SPARQL code
shown in Listing 5.1, where:

• Line 4 obtains the building instance by using its class.

• Line 7 acquires the array of building storeys that decompose the building; and line
8 obtains the storeys inside that array.

• The same is done for the spaces that decompose the storeys on Lines 11-12.

• Lines 15-16 obtain the elements that are contained in a space.

• Lines 19 filter out the undesired elements (such as windows, walls, etc) just leaving
the doors.

The result of the query is the extracted table presented in Table 5.1, where the columns
corresponds to the variables used with the SELECT operator (Listing 5.1, Line 1) and
each row correspond to instance entries. Notice that the ?building and ?storey columns
have the same value, this is due to there is only one building in the file—the i3m_-
building—and we are only interested in the entries related to a specific building
storey—the storey_3 where the cameras are installed.

5.2. STATIC POPULATION 81

ifcowl:relatedObjects_IfcRelDecomposes

ifcowl:relatingObject_IfcRelDecomposes

inst:IfcRelAggregates_1

ifcowl:relatedObjects_IfcRelDecomposes

ifcowl:relatingObject_IfcRelDecomposes

ifcowl:relatedObjects_IfcRelDecomposes

inst:IfcRelAggregates_2

ifcowl:relatingSpace_IfcRelSpaceBoundary

ifcowl:relatedBuildingElement_IfcRelSpaceBoundary

inst:IfcRelSpaceBoundary_2

ifcowl:relatingSpace_IfcRelSpaceBoundary

ifcowl:relatedBuildingElement_IfcRelSpaceBoundary

inst:IfcRelSpaceBoundary_1

inst:i3M_building

inst:storey_3

inst:space_2inst:space_1

inst:door_3inst:door_4 inst:door_5 inst:door_6

Figure 5.4 – Graph showing the representation of the required data in the ifcowl on-
tology. The red rectangles are intermediate instances which overcomplicate the ifcowl
structure.

82 CHAPTER 5. STATIC AND DYNAMIC ONTOLOGY POPULATION

Listing 5.1 – SPARQL query for extracting pertinent instances from the ifcowl ontology. Lines
that start with # are comments.

1 SELECT ?building ?storey ?space ?door
2 WHERE {
3 # Get building
4 ?building rdf:type ifcowl:IfcBuilding.
5

6 # Get building storeys
7 ?storey_array ifcowl:relatingObject_IfcRelDecomposes ?building;
8 ifcowl:relatedObjects_IfcRelDecomposes ?storey.
9

10 # Get spaces: room, corridors, hall, etc
11 ?space_array ifcowl:relatingObject_IfcRelDecomposes ?storey;
12 ifcowl:relatedObjects_IfcRelDecomposes ?space.
13

14 # Get elements: doors, windows, walls, floor, furnitures, etc
15 ?element_array ifcowl:relatingSpace_IfcRelSpaceBoundary ?space;
16 ifcowl:relatedBuildingElement_IfcRelSpaceBoundary ?door.
17

18 # Filter elements to just keep doors, walls and windows
19 ?door rdf:type ifcowl:IfcDoor.
20 }

(5) Population query After extracting the pertinent instances from ifcowl, we need
to insert them into the WiseNET ontology, while re-creating the relationship between in-
stances. To re-create the relationships we will use the vocabulary defined in the Building
Topology Ontology (bot) [140]. The bot ontology covers the core concepts for describing
a building, its topology and its elements. Moreover, bot uses a simple schema that allows
the creation of direct relationships between the pertinent instances. The bot classes
used are bot:Building, bot:Storey and bot:Space; while the bot relationships
used are bot:hasStorey, bot:hasSpace and bot:containsElement. The bot
schema corresponds to the graph presented in Fig. 5.2.

To accomplish the population, each row of the extracted table (Table 5.1) is passed
through the population query, and then executed in the WiseNET ontology. Listing 5.2
shows the population query, where:

• Line 1 inserts into the WiseNET ontology the triples defined below.

• Lines 3-6 define the objects as instances/individuals (owl:NamedIndividual).

• Lines 9-12 states the class of each instances. Notice that the class Door was not
defined in bot, thus it was defined in the wisenet ontology.

• Lines 15-17 relate the extracted instances of the ifcowl using bot relationships.

The process needs to be repeated for all the rows of the extracted table, which is achieved
by using an external loop.

To summarize, the WiseNET ontology is populated with the environment knowledge ob-
tained from an IFC file. The process starts by converting the IFC file into an ifcowl
ontology, and then extracting the relevant environment information. Finally, the extract in-
formation is inserted into the WiseNET ontology by using the bot vocabulary. This extrac-
tion and population process uses different semantic web technologies such as SPARQL

5.2. STATIC POPULATION 83

Table 5.1 – Extracted environment instances from the ifcowl ontology. The results were
obtained after executing the extraction query in Listing 5.1.

?building ?storey ?space ?door
inst:i3m_building inst:storey_3 inst:space_1 inst:door_1
inst:i3m_building inst:storey_3 inst:space_1 inst:door_2
inst:i3m_building inst:storey_3 inst:space_1 inst:door_3
inst:i3m_building inst:storey_3 inst:space_1 inst:door_4
inst:i3m_building inst:storey_3 inst:space_1 inst:door_7
inst:i3m_building inst:storey_3 inst:space_2 inst:door_2
inst:i3m_building inst:storey_3 inst:space_2 inst:door_3
inst:i3m_building inst:storey_3 inst:space_2 inst:door_5
inst:i3m_building inst:storey_3 inst:space_2 inst:door_6
inst:i3m_building inst:storey_3 inst:space_3 inst:door_4
inst:i3m_building inst:storey_3 inst:space_4 inst:door_5
inst:i3m_building inst:storey_3 inst:space_5 inst:door_6
inst:i3m_building inst:storey_3 inst:space_6 inst:door_7

queries. Furthermore, if required, extra information could be extracted from the ifcowl
ontology using the same methodology. For example, the dimensions of a door, its material
and the dimensions of the spaces.

THOUGHTS ON IFC EXTENSION

The IFC data could be enhanced by considering information about the space functional-
ities and space security. Particularly, we propose to extend the IFC data by adding extra
information regarding:

• Space functionality: spaces have many usages, such as: corridor, office, co-
working room, lobby, kitchen and infirmary room. By considering the space function-
ality it is possible to design specific rules according to each function. For example,
knowledge that people should not loiter in a particular corridor could be inserted
into the ontology in form of a rule. Another example could be the knowledge that in
the infirmary room it is normal to have people laying down.

• Space capacity: the capacity of a space is very important for security reasons, for
example, to have and efficient emergency protocol, the quantity of people should not
exceed a certain number depending on the environment. Moreover, when spaces,
and environments in general, are design, their intended capacities need to be taken
into account, thus facilitating the addition of this information into the IFC.

• Space alarm property: spaces could have different types of alarm, such as: fire
alarm, siren and light alarm. We consider that a smart building should know the
information about which spaces have alarms, the type and what triggers them.

• Security system property: spaces or more precisely doors might have different
types of security systems, such as: key-lock system, card reader, keypad and bio-
metric systems. This information could be used to know the level of restriction of a
space.

84 CHAPTER 5. STATIC AND DYNAMIC ONTOLOGY POPULATION

Listing 5.2 – SPARQL query for inserting the instances and their relationships into the WiseNET
ontology. In italics are the instances of the first row of Table 5.1. Lines that start with # are com-
ments.

1 INSERT DATA {
2 # Define instances
3 inst:i3m_building rdf:type owl:NamedIndividual.
4 inst:storey_3 rdf:type owl:NamedIndividual.
5 inst:space_1 rdf:type owl:NamedIndividual.
6 inst:door_1 rdf:type owl:NamedIndividual.
7

8 # Insert types
9 inst:i3m_building rdf:type bot:Building.

10 inst:storey_3 rdf:type bot:Storey.
11 inst:space_1 rdf:type bot:Space.
12 inst:door_1 rdf:type wisenet:Door.
13

14 # Create relations
15 inst:i3m_building bot:hasStorey inst:storey_3.
16 inst:storey_3 bot:hasSpace inst:space_1.
17 inst:space_1 bot:containsElement inst:door_1.
18 }

The extra information may allow the deduction of security restrictions and the design of
rules according to the space usage.

5.2.2/ SMART CAMERA STATIC INFORMATION

After adding the environment information into the WiseNET ontology, the next step is to
populate the static information about the Smart Camera Network (SCN).

There are two types of information that need to be populated concerning the SCN. Firstly,
the setup information, which consists in describing the Smart Cameras (SCs) and their
relation to the built environment. Secondly, the information generated each time the SCs
perform a detection. The first one is inserted once, during the system configuration,
therefore it is considered as a static population and it will be presented in this section.
While the second one, needs to be inserted each time there is a detection, therefore it is
considered as a dynamic population and it will be presented in Section 5.3.

SMART CAMERA SOFT CALIBRATION

The SCN setup requires the information about the position of the camera nodes in the
environment and about the objects/regions of interest they observe. This setup process
can be seen as a soft camera-calibration process because it only requires the knowledge
of the location of the cameras in the building. This differs from standard calibration pro-
cesses, that require the extrinsic and intrinsic parameters of the camera (transformations
between the world coordinate to the camera’s coordinate and to the 2D image coor-
dinate), thus obtaining the precise information about the camera’s locations and orienta-
tions, however leading to a time-consuming and skill-dependent calibration process [159].

For each camera node, the setup information is stored in a camera-calibration file. This

5.2. STATIC POPULATION 85

file is structured in a JSON format (a lightweight format to serialize structure data1) where
each field corresponds to:

• deviceID: identification of the camera node.

• isHostedBy : space where the camera node is located.

• ipAddress: IP address of the camera node.

• implements: set of algorithms/procedures implemented by the camera.

– imageProcessing: name of the image processing algorithm.

• observes: set of Regions Of Interest (ROIs) observed by the camera.

– regionOfInterest : identification of the ROI.

– xywh: position of the ROI in the camera’s Field Of View (FOV), where (x,y) are
the coordinates of the ROI’s top-left point, and (w,h) are the width and height
respectively.

– represents: real object represented by the ROI.

An example of a camera-calibration file is presented in Listing 5.3. The information con-
tained in the file can be summarize as: the smartCamera_4 is located at space_2,
it implements the HOG_SVM and YOLOv3 image processing algorithms, and it observes
three ROIs in the image scene which represent the door_2, door_5, and door_6.

There is a semantic gap between the visual information of an image and its physical
representation. Thus, the selection of ROIs in the camera image is known as semantic-
labelling and its goal is to bridge the gap between the real objects (or regions) and their
projections in the camera view. As stated previously, we will only consider doors as ROIs
due to their importance in a building environment, e.g., they connect two spaces and
people have to pass through them to enter/exit a space, however, the system is able to
consider other ROIs if required.

The camera-calibration file is stored in each camera node. Thus, each camera knows the
position of each ROI in its FOV and its identification. Moreover, a software was developed
that allows to draw ROIs directly in the camera view, hence facilitating the obtention of
their coordinates.

After having defined the soft camera-calibration information for each camera node, the
information needs to be populated into the WiseNET ontology. The population process
is presented in Algorithm 1, and is explained as follows: firstly, in Line 2, a camera-
calibration file is taken from the set of files (the FOR loop). For exemplification, consider
the file presented in Listing 5.3. Afterwards, in Line 3, the smart camera and its FOV
are defined and inserted by performing the query presented in Listing 5.4. Notice that
the prefix wni: is used to define WiseNET instances. Then, in Line 6, the relationship
between the smart camera and the algorithms is inserted by performing the query pre-
sented in Listing 5.5. This query needs to be performed for each algorithm defined in the
calibration-file thus the need of the FOR loop (Line 5). Finally, in Line 9, the ROIs are
defined and inserted by performing the query presented in Listing 5.6. This query needs
to be performed for each ROI defined in the calibration-file thus the need of the FOR loop
(Line 8).

86 CHAPTER 5. STATIC AND DYNAMIC ONTOLOGY POPULATION

Listing 5.3 – Camera-calibration file of smart camera #4.

1 {
2 "deviceID": "smartCamera_4",
3 "isHostedBy": "space_2",
4 "ipAddress": "10.141.13.26",
5 "implements": [
6 { "imageProcessing": "HOG_SVM" },
7 { "imageProcessing": "YOLOv3" }
8],
9 "observes": [

10 { "regionOfInterest": "regionOfInterest_8",
11 "xywh": [552, 119, 98, 239],
12 "represents": "door_2"
13 },
14 { "regionOfInterest": "regionOfInterest_9",
15 "xywh": [1048, 85, 125, 193],
16 "represents": "door_6"
17 },
18 {
19 "regionOfInterest": "regionOfInterest_10",
20 "xywh": [805, 83, 79, 146],
21 "represents": "door_5"
22 }
23]
24 }

Algorithm 1 Pseudocode for populating the static information of the cameras.
Input: Set of camera-calibration files
Output: Information populated into the WiseNET ontology

1: procedure SCN STATIC POPULATION

2: for each camera-calibration file do
3: insert camera and FOV instances (query in Listing 5.4)
4:
5: for each algorithm in the camera-calibration do
6: insert camera-algorithm relationship (query in Listing 5.5)
7:
8: for each ROI in the camera-calibration do
9: insert ROI instance (query in Listing 5.6)

10:

SCN: Smart Camera Network
FOV: Field Of View
ROI: Region Of Interest

An example of the semantic-graph inserted during the static camera population process
is presented in Fig 5.5. The left part of the graph corresponds to the smartCamera_4
(Listing 5.3) while the right side corresponds to the smartCamera_1. The information
about smartCamera_1 was added to show the relationships that can be deducted af-
ter the static population of both the environment and the smart camera information. For
instance, we can deduce the bot:adjacentZone relationship between both spaces be-

1JSON (JavaScript Object Notation) http://www.json.org/

http://www.json.org/

5.2. STATIC POPULATION 87

Listing 5.4 – SPARQL query for inserting and defining a smart camera and its field of view.

1 INSERT DATA {
2 # Define field of view
3 wni:fieldOfView_4 rdf:type owl:NamedIndividual;
4 rdf:type wisenet:FieldOfView.
5

6 # Define smart camera
7 wni:smartCamera_4 rdf:type owl:NamedIndividual;
8 rdf:type wisenet:SmartCamera;
9 sosa:isHostedBy inst:space_2;

10 wisenet:ipAddress "10.141.13.26"^^xsd:string;
11 wisenet:hasFieldOfView wni:fieldOfView_4.
12 }

Listing 5.5 – SPARQL query for inserting an algorithm to the smart camera. Example with
HOG_SVM algorithm.

1 INSERT DATA {
2 # Relate the camera with the algorithm
3 wni:smartCamera_4 ssn:implements wisenet:HOG_SVM.
4 }

cause they contain the same door (rule in Listing 4.1); the wisenet:hasNearbySensor
relationship between both cameras can be deduced due to they are hosted by adjacent
spaces (rule in Listing 4.3); the wisenet:overlap relationship between both FOVs can
be deduces because they show the same door (rule in Listing 4.4 and Eq 4.27); and the
relationship wisenet:observes that relates the smart cameras with the ROIs shown
in their FOV’s (Eq. 4.26). As stated previously, all the prefixes, vocabulary, rules and
equations defining the WiseNET ontology can be found in Chapter 4.

FACILITATING THE SOFT CALIBRATION PROCESS

Figure 5.6 presents the System Configuration Interface (SCI) designed to facilitate the
soft calibration process by visualizing and automatically suggesting pertinent elements.
The SCI helps specifically to perform the following tasks:

• Defining a smart camera: the interface allows to insert the smart camera identifi-
cation, along with its general information such as the IP address and the algorithms
implemented. Moreover, the interface automatically proposes a set of spaces to
attach the smart camera to. Those spaces are obtained by querying the ifcowl
ABox.

• Setting up ROIs: the interface allows to manually label the camera image by
drawing ROIs and assigning them a representation in the built environment. The
ROI’s [x, y, h,w] coordinates are automatically obtained from the drawing. Moreover,
the system automatically suggests a set of elements, in our case doors, according
to the selected space. This information is obtained by querying the ifcowl ABox.

• Extend IFC: the interface allows to insert extra environment information, for exam-

88 CHAPTER 5. STATIC AND DYNAMIC ONTOLOGY POPULATION

so
sa
:is
H
os
te
dB

y

rd
f:t
yp
e

w
is
en
et
:h
as
N
ea
rb
yS
en
so
r

w
is
en
et
:h
as
Fi
el
dO

fV
ie
w

ss
n:
im
pl
em

en
ts

w
is
en
et
:ip
Ad

dr
es
s

w
is
en
et
:o
bs
er
ve
s

w
ni
:s
m
ar
tC
am

er
a_
4

bo
t:a
dj
ac
en
tZ
on
e

rd
f:t
yp
e

bo
t:c
on
ta
in
sE
le
m
en
t

in
st
:s
pa
ce
_2

rd
f:t
yp
e

w
is
en
et
:s
ho
w
s

w
is
en
et
:o
ve
rla
ps

w
ni
:fi
el
dO

fV
ie
w
_4

w
is
en
et
:S
m
ar
tC
am

er
a

bo
t:S

pa
ce

rd
f:t
yp
e

bo
t:c
on
ta
in
sE
le
m
en
t

in
st
:s
pa
ce
_1

so
sa
:is
H
os
te
dB

y

rd
f:t
yp
e

w
is
en
et
:h
as
Fi
el
dO

fV
ie
w

w
is
en
et
:o
bs
er
ve
s

w
ni
:s
m
ar
tC
am

er
a_
1

w
is
en
et
:s
ho
w
s

rd
f:t
yp
e

w
ni
:fi
el
dO

fV
ie
w
_1

rd
f:t
yp
e

w
is
en
et
:H
O
G
_S

VM

w
is
en
et
:Im

ag
eP

ro
ce
ss
in
g

w
is
en
et
:F
ie
ld
O
fV
ie
w

rd
f:t
yp
ew

is
en
et
:re
pr
es
en
ts

w
is
en
et
:x
yw

h

w
ni
:re
gi
on
O
fIn
te
re
st
_8

rd
f:t
yp
e

w
is
en
et
:re
pr
es
en
ts

w
ni
:re
gi
on
O
fIn
te
re
st
_2

w
is
en
et
:R
eg
io
nO

fIn
te
re
st

"1
0.
14
1.
13
.2
6"

rd
f:t
yp
e

in
st
:d
oo
r_
2

w
is
en
et
:D
oo
r

"5
52
,1
19
,9
8,
23
9"

cl
as
s

in
st
an
ce

"L
ite
ra
l"

In
se
rte
d

re
la
tio
ns
hi
p

D
ed
uc
ed

re
la
tio
ns
hi
p

Figure 5.5 – Example of semantic-graph after populating the environment and camera-
calibration information. The example considers some information concerning the
smartCamera_1 and smartCamera_4.

5.2. STATIC POPULATION 89

Listing 5.6 – SPARQL query for inserting and defining a region of interest. Example with
regionOfInterest_8.

1 INSERT DATA {
2 # Define region of interest
3 wni:regionOfInterest_8 rdf:type owl:NamedIndividual;
4 rdf:type wisenet:RegionOfInterest;
5 wisenet:xywh "552,119,98,239"^^xsd:string;
6 wisenet:represents inst:door_2.
7

8 # Relate FOV with ROI
9 wni:fieldOfView_4 wisenet:shows wni:regionOfInterest_8.

10 }

Space
Function:

Space
Alarm:

Assigned
to:

smartCamera_5

space_2 CoworkingRoom

System Con guration

Door

Setup

Assign Regions Of Interest

Represents:

Represents:

door_3

door_2

Security
System:

Security
System:

Key System

Card Reader

Door_303_1
Door_303_2

Siren

Image
Processing: HOG_SVM

Validate

Door_303_1
Door_303_2

Figure 5.6 – System Configuration Interface. In this example the smartCamera_5 is
being configured to perform HOG_SVM algorithm and is being assigned to the space_2.
Additionally, the space_2 is being defined as a CoworkingRoom with an alarm of type
Siren. Furthermore, the blue region of interest (located in the top-left image) is assigned
to represent the door_2 which has as security system Card Reader, similar for the red
region of interest. The 3D view (bottom-left) was obtained from the IFC file.

ple, information about the space functionality, information about the presence and
the type of alarm and information about the security systems of a door.

After introducing the information in the interface, the SCI needs to follow the population
process presented in Algorithm 1 to insert the information into the WiseNET ontology.
However, the connection between the SCI and the population process is still under devel-
opment.

Furthermore, the SCI presents many advantages such as allowing the definition of the
camera-calibration information in a semi-automated manner by using a graphical inter-
face, visualizing the semantic-labelling of the ROIs, and using the already populated en-
vironment data to automatically suggest pertinent elements.

90 CHAPTER 5. STATIC AND DYNAMIC ONTOLOGY POPULATION

5.3/ DYNAMIC POPULATION

An IVS system should be able to perceive (accurately) the dynamic and evolving data
of the environment. In our IVS system configuration, the perception is done thanks
to the SCN, where each camera node detects pertinent information using different im-
age processing algorithms, extracts the knowledge from it and send it to the central API
(that is in charge of inserting the knowledge into the WiseNET ontology). Furthermore,
the WiseNET framework furnishes a vocabulary—in the form of an ontology (see Chap-
ter 4)—that allows each camera node to express what is happening in a textual manner,
instead of (only) sending images. In other words, we enable cameras to express what
they are observing.

Beyond the work of extracting information from the digital signal constructed by the cam-
eras, our ambition is to deduce new knowledge by gathering all the messages coming
from the camera nodes and combine them with other type of knowledge such as time,
environment and human-skill rules. In this section, we will present the dynamic popu-
lation procedure, that start with the extraction of knowledge from the camera images,
follows by its conversion to a vocabulary understandable by our system, and finish by the
processing and insertion of it into the WiseNET ontology. Figure 5.7 illustrates the over-
all procedures involved in the dynamic population, details of each step will be presented
below.

5.3.1/ KNOWLEDGE EXTRACTION

As observed in Fig. 5.7 the knowledge extraction process consists of two procedures,
data extraction and image processing. Both procedures are performed by the SCs.

Data extraction this step consists of extracting/acquiring data. In our case, the SCs
observe a part of the real world and represent it as a raw image format.

Image processing afterwards, image processing algorithms are implemented to filter
the data and to extract the knowledge from the raw image. The data filtration step, is
similar to the data extraction, however in this step we decide which data to keep based
on our interest. For an IVS application, the priority is to detect people—as explained
in Chapter 2—thus the SCs perform person detection algorithms on the raw image to
keep only the parts of the image (set of pixels) that correspond to pertinent information.
The data filtration can be seen as the localization step of an object detector (see Sec-
tion 2.3). The knowledge extraction consists on adding some knowledge to data. In our
case, the image processing algorithms assigns some knowledge to the selected image
parts. The knowledge extraction can be seen as the classification step of an object de-
tector (see Section 2.3). The result of the image processing—data filtration + knowledge
extraction—is a processed image. For example, consider the processed image shown
in Fig 5.7, this image was obtained by passing the raw image through HOG_SVM per-
son detector (see Section 2.3.1), which firstly selected some image parts (red and blue
bounding boxes) and then assigned the knowledge that "those set of pixels corresponds
to people". Moreover, the smart camera knew (a priori, thanks to the static population)

5.3. DYNAMIC POPULATION 91

that the green bounding box represents a door, therefore the complete knowledge ex-
tracted from what the smart camera observes is: "At a specific time, two people were
detected and one of them (the one inside the blue box) was around a door".

After extracting the knowledge of what the SCs observe, some processing should be
done to translate this knowledge into a "language" understandable to our system, which
then will enable its insertion into the WiseNET ontology.

5.3.2/ KNOWLEDGE PROCESSING

The knowledge processing consists of two procedures, knowledge mapping and popula-
tion (see Fig. 5.7). Notice that the first procedure is performed by the smart camera node
while the second one is performed by the central API.

Knowledge mapping consists on converting a knowledge representation to another
one. In this case the knowledge extracted by the smart camera ("two people were de-
tected at a specific time, and one of them was detected around a door") is then converted
to the WiseNET ontology representation. This is done by describing the knowledge using
the vocabulary defined in the WiseNET ontology. The result of the knowledge mapping
is the smart camera message (SC-message) defined using the JSON syntax. In our
example, the smartCamera_2 sends the SC-message shown in Listing 5.7, where each
field correspond to:

• deviceID: identity of the smart camera node that sends the message.

• inXSDDateTime: synchronized timestamp, shared by all the SCs. The synchro-
nization was obtained by implementing a Network Time Protocol (NTP) server
[117, 156].

• detections: array of detections observed in a time instance. In the example, there
are two detections made at the same time.

– imageProcessing: computer vision algorithm used to perform the detections.
The system is not depended on a particular computer vision algorithm, and
its choice depends on the application, the resources of the SC nodes and
their accuracy. In Chapter 6 we will compare the results using different people
detectors presented in the state of the art (see Section 2.3).

– class: type of object detected by the computer vision algorithm.
– regionOfInterest : states if the detection was made around a ROI. A detection

is considered around a ROI if: (1) the center of its bounding box is inside
the ROI and (2) if the bounding box is at a similar level than the ROI, i.e., if the
highest and lowest points of the Bbox and the ROI are around the same height.
In the example, one detection—the red bounding box—was made around a
regionOfInterest_5, which represent the real object door_4, while the
other detection—the blue bounding box—was not made around any ROI, thus
its value is null.

– xywh: coordinates of the detection bounding box. These coordinates can be
used to project the detections in the building map and to draw them into the
image, as shown in the example.

92 CHAPTER 5. STATIC AND DYNAMIC ONTOLOGY POPULATION

Smart camera

Raw
image

Processed
image

Smart
camera
message

Data
extraction

Knowledge
mapping

Population

Real world

{
 "deviceID": "smartCamera_2",
 "inXSDDateTime": "2017-05-20T10:18:45.9Z",
 "detections": [
 {
 "imageProcessing": "YOLOv3",

 "class": "person",
 "regionOfInterest": "null",
 "xywh": [82,22,24,52],
 "visualDescriptors": [0.0,0.1,...,0.7]

 },
 {
 "imageProcessing": "YOLOv3",

 "class": "person",
 "regionOfInterest": "regionOfInterest_5",
 "xywh": [107,20,30,50],
 "visualDescriptors": [0.2,0.4,...,0.12]

 }
]

}

Knowledge
Processing

Knowledge
extraction

Central API WiseNET
ontology

Image
Processing

Figure 5.7 – Dynamic population: knowledge extraction and processing. The process
starts by extracting some data from the real world in the form of a video. Follows by
processing the data to extract some knowledge from it, this is done by applying image
processing algorithms. Then, a mapping procedure is performed to express the extracted
knowledge with the vocabulary defined in the WiseNET ontology. Finally, the central API
inserts the resulting knowledge into the WiseNET ontology by performing a set of queries.

5.3. DYNAMIC POPULATION 93

Listing 5.7 – Example of smart camera message (SC-message) sent to the central API. The
message describes what the smart camera is observing in the example presented in Fig 5.7

1 {
2 "deviceID": "smartCamera_2",
3 "inXSDDateTime": "2017-05-20T10:18:45.922Z",
4 "detections": [
5 {
6 "imageProcessing": "YOLOv3",
7 "class": "person",
8 "regionOfInterest": "regionOfInterest_5",
9 "xywh": [107,20,30,50],

10 "visualDescriptors": [0.2,0.4,...,0.12]
11 },
12 {
13 "imageProcessing": "YOLOv3",
14 "class": "person",
15 "regionOfInterest": "null",
16 "xywh": [82,22,24,52],
17 "visualDescriptors": [0.0,0.1,...,0.7]
18 }
19]
20 }

– visualDescriptors: array of visual features used for describing a detection. The
system is not depended on a particular type of visual features, and its choice
depends on the application and the resources of the SC nodes. In Chapter 6
we will compare the results using different types of visual features presented
in the state of the art (see Section 2.3.1).

The final output of the SC is the image knowledge not an image, in this way the
privacy of the building users is protected. The addition of semantic meaning to what
the camera observes narrows the semantic gap between the human interpretation of an
image/video an the computer interpretation [169].

Finally, the SC-message—structured in a JSON format—is sent to the central API by
using the standard HTTP POST method [57].

Population Once the central API receives the SC-message it creates and inserts the
semantic-graph shown in Figure 5.8, for each detection in the message. The graph pre-
sented in the figure only concerns the first detection in the SC-message. The semantic-
graph extends and combines the knowledge extracted by the SC with knowledge of
the environment and knowledge about events—i.e., Detection and PersonInSpace
events.

As explained in Chapter 4, a Detection is a type of event that occurs in a specific point
in time/space. In the other hand, a PersonInSpace event (PIS-E) is a container of
Detections relating a specific Person with a specific Space during a period of time
(time Interval). If a Person is in a Space, the corresponding PIS-E is active (open)
and Detections can be attached to it, however, when the Person leaves the Space
the PIS-E is then closed and no more detections can be attached to it. Furthermore, two
or more PIS-Es are related to each other if they involve the same Person instance.

94 CHAPTER 5. STATIC AND DYNAMIC ONTOLOGY POPULATION

:D
et

ec
tio

n

ev
en

t:p
la

ce

:is
S

ub
E

ve
nt

O
f

ev
en

t:t
im

e

rd
f:t

yp
e

so
sa

:m
ad

eB
yS

en
so

r

:h
as

B
ou

nd
in

gB
ox

:in
R

eg
io

nO
fIn

te
re

st

ev
en

t:f
ac

to
r

ev
en

t:a
ge

nt

w
ni

:d
et

ec
tio

n_
1

w
ni

:s
m

ar
tC

am
er

a_
2

rd
f:t

yp
e

:x
yw

h

w
ni

:b
ou

nd
in

gB
ox

_1

:B
ou

nd
in

gB
ox

"1
07

,2
0,

30
,5

0"

:Y
O

LO
v3

w
ni

:re
gi

on
O

fIn
te

re
st

_5

in
st

:s
pa

ce
_1

rd
f:t

yp
e

:p
er

so
nL

oc
at

io
n

:v
is

ua
lD

es
cr

ip
to

rs
w

ni
:p

er
so

n_
1

fo
af

:P
er

so
n

"0
.2

,0
.4

,..
.,0

.1
2"

rd
f:t

yp
e

tim
e:

in
X

S
D

D
at

eT
im

eS
ta

m
p

w
ni

:in
st

an
t_

1

tim
e:

In
st

an
t

"2
01

7-
05

-2
0T

10
:1

8:
45

.9
22

Z"

:P
er

so
nI

nS
pa

ce

rd
f:t

yp
e

ev
en

t:p
la

ce

ev
en

t:t
im

e

:is
N

oi
se

:is
E

ve
nt

O
pe

n

w
ni

:p
er

so
nI

nS
pa

ce
_1

tim
e:

ha
sB

eg
in

ni
ng

tim
e:

ha
sE

nd
rd

f:t
yp

e

w
ni

:in
te

rv
al

_1

tim
e:

In
te

rv
al

"f
al

se
"

"t
ru

e"

C
la

ss
In

st
an

ce
"L

ite
ra

l"

Figure 5.8 – Semantic-graph after populating the first detection of the smart camera mes-
sage presented in Listing 5.7. For simplicity, the default prefix ":" corresponds to the
wisenet: prefix.

5.3. DYNAMIC POPULATION 95

SC-message

CREATE
Time-Instant

GET
Space

NO YES
Is detection

around
ROI?

CREATE
Person

CREATE
PersonInSpace

NO YES

Are there
people in

the space?

YESNO

More than 1?

GET
Closest person

UPDATE
Person

UPDATE
PersonInSpace

NO YES
Is person
already

in space?

Are there
relating

candidates?

YESNO

More than 1?

GET
Closest person

CREATE
Related
Person

CREATE
Related

PersonInSpace

CREATE
Detection

NO

YES
Are there more

detections?

Clean ontology

CREATE
Related
Person

CREATE
Related

PersonInSpace

UPDATE
Person

UPDATE
PersonInSpace

NO YES

Is ROI
 observed by

a single
camera?

CLOSE
Previous

PersonInSpace

YESNO

A

B C

D E

Figure 5.9 – Dynamic population process performed by the central API. The blue
points—A, B, C, D, E and F—are used as reference in the text.

To achieve the creation/insertion of the previous semantic-graph, the central API performs
the process presented in Figure 5.9. All the CREATE, GET and UPDATE processes, and
most of the decision blocks involve SPARQL queries, as it will be presented next.

96 CHAPTER 5. STATIC AND DYNAMIC ONTOLOGY POPULATION

Listing 5.8 – Query to create a time-instant instance. In this example the instant_1 is being
created.

1 INSERT DATA {
2 wni:instant_1 rdf:type owl:NamedIndividual;
3 rdf:type time:Instant;
4 time:inXSDDateTimeStamp "2017-05-20T10:18:45.922Z"^^xsd:dateTime.
5 }

Listing 5.9 – Query to get the space hosting a sensor. This example gets the space hosting the
smartCamera_2.

1 SELECT ?space
2 WHERE {
3 wni:smartCamera_2 sosa:isHostedBy ?space.
4 }

The dynamic population process starts by receiving a SC-message. For exemplification,
consider the SC-message presented in Listing 5.7. Then, a time- Instant instance is
created, by executing the query present in Listing 5.8. Afterwards, the Space instance
where the situation is happening is obtained by executing the query presented in List-
ing 5.9. This query makes use of the property sosa:isHostedBy, which relates the
sensor instance that sent the SC-message with the space where it was installed. In the
example, the resulting is space_1. For the rest of the process, the resulting space will
be considered as the space of interest.

Subsequently, the central API takes the first detection of the SC-message and checks if
it was done around a ROI (i.e., a door), this corresponds to the point A in Fig. 5.9. This
is performed by looking the value of the regionOfInterest field in the SC-message. If the
value is "null", then the detection was not made around a ROI (the "NO" branch of point
A, we will refer to it as "A.NO branch"), otherwise the detection was made around a ROI
(the A.YES branch). For example, the first detection of the SC-message presented in
Listing 5.7 was made around a ROI, while the second one was not.

(A.NO branch) if the detection was not made around a ROI, then the central API checks if
there are people already in the space of interest (point B). This is performed by executing
the query presented in Listing 5.10. The query gets all open PIS-Es in the space of
interest (Lines 3-5), with their corresponding Person instances involved (Line 6) and
their visual descriptors (Line 8).

(B.NO branch) if there is nobody in the space, then it means that the detection belongs
to a person not seen by the system before, therefore a Person and a PIS-E instances
are created. The Person instance is created by executing the query presented in List-
ing 5.11. The query inserts the person’s visual descriptors (Line 4) obtained from the
SC-message, and the person’s location (Line 5) which corresponds to the space of in-
terest. The PIS-E instance is created by executing the query presented in Listing 5.12.
The query first creates a time- Interval instance (Lines 3-6), with the same beginning
and end instant; then a PIS-E is created by relating space of interest (Line 11) with the
previously created person (Line 12) and time interval (Line 13), moreover, the open and
noise boolean properties are set to "true" and "false", respectively (Lines 14 and 15).

5.3. DYNAMIC POPULATION 97

Listing 5.10 – Query to get people that have an open PIS-E, in a particular space. This example
use the space_1.

1 SELECT ?person ?descriptors ?event
2 WHERE {
3 ?event rdf:type wisenet:PersonInSpace;
4 wisenet:isEventOpen "true"^^xsd:boolean;
5 event:place inst:space_1;
6 event:agent ?person.
7

8 ?person wisenet:visualDescriptors ?descriptors.
9 }

Listing 5.11 – Query to create a person instance. In this example, the person_1 is being
created.

1 INSERT DATA {
2 wni:person_1 rdf:type owl:NamedIndividual;
3 rdf:type foaf:Person;
4 wisenet:visualDescriptors "0.2,0.4,...,0.12"^^xsd:string;
5 wisenet:personLocation inst:space_1.
6 }

(B.YES branch) if there is somebody in the space of interest, then the new detection
should be attach to it, thus the Person instance and its corresponding PIS-E should
be updated. If there is only one person in the space, then the detection corresponds
to it, however, if there are more than one people in the space, a comparison of their vi-
sual descriptors with the detection’s visual descriptors (obtained from the SC-message)
is performed to determine which Person instance should be updated. The compari-
son of visual descriptors is performed by using distance metrics such as cosine-distance
and bhattacharyya-distance. Details the distance metrics used, their thresholds and their
influence in the results are presented in the evaluation chapter (Chapter 6). After the com-
parison, the Person instance with the closest visual descriptor is updated by executing
the query in Listing 5.13. The query-updating process starts by obtaining the current/old
person’s visual descriptors (Line 7-10), then removing them (Lines 1-3) and finally the
inserting the new descriptors in the place of the old ones (Lines 4-6). Moreover, the new
descriptors are a naive average between the old visual descriptors and the detection’s
visual descriptors, this is done to reduce the influence of light changes [160]. Finally,
the ending time of the corresponding PIS-E is also updated by executing the query in
Listing 5.14.

(A.YES branch) If the detection was made around a ROI/door, then multiple scenarios
might happen, for example a person can be passing by a door, or a person can be entering
or leaving a space (see Fig 5.10). To determine what is happening, the central API will
firstly check if the detected person is already in the space of interest or not (point C). This
is done by getting the Person instances located in the space (query in Listing 5.10) and
then comparing their visual descriptors to the detection’s visual descriptors.

(C.NO branch) if the detection does not belongs to somebody in the space, then it means
that: a person is passing by the door or a person is entering the space. To determine this,
the central API checks if there exist a relating candidate in neighbouring space, i.e., if

98 CHAPTER 5. STATIC AND DYNAMIC ONTOLOGY POPULATION

Listing 5.12 – Query to create a time interval and PIS-E instances. In this example, the
interval_1 and the personInSpace_1 are being created. Lines that start with # are comments.

1 INSERT DATA {
2 # Create time interval
3 wni:interval_1 rdf:type owl:NamedIndividual;
4 rdf:type time:Interval;
5 time:hasBeginning wni:instant_1;
6 time:hasEnd wni:instant_1.
7

8 # Create person in space envent
9 wni:personInSpace_1 rdf:type owl:NamedIndividual;

10 rdf:type wisenet:PersonInSpace;
11 event:place inst:space_1;
12 event:agent wni:person_1;
13 event:time wni:interval_1;
14 wisenet:isEventOpen "true"^^xsd:boolean;
15 wisenet:isNoise "false"^^xsd:boolean.
16 }

there is a detection in a neighbour space around the same ROI and around the same
time (point D). This is performed by executing the query in Listing 5.15. The query starts
by getting the Door instance represented by the known ROI (Line 4), then considers
all the ROIs representing that door less the known ROI (Lines 5-6), the filtration of the
known ROI is done to only consider detections from other cameras. Furthermore, the
query gets the detections performed around the previously obtained ROIs (Lines 9-10)
and only considers those that occurred 2 seconds before the current detection (Lines
11-13), the 2 seconds were chosen empirically. The query gets the PIS-E instances
containing the previously obtained detections (Line 16), and the Person instance involve
in it (Lines 17-18). Finally, the query checks if the person candidates are already in the
space, if yes then they will be filtered out (Line 19).

(D.NO branch) if there is no relating candidate, then it means that the detection belongs
to a person passing by a door, thus no instance will be created or updated. For example,
in the person passing by scenario in Fig. 5.10, the smartCamera_3 observes somebody
around a door, however in the smartCamera_2 this person is not around that door, thus
the person is just passing in front of the door.

(D.YES branch) if there exist a relating candidate, then it means that a person is entering
the space. Thus, a Person and PIS-E instances will be created, related to the candidate.
If there exists more than one candidate, then the closest to the detection is obtained. The
related Person instance is created by executing the query in Listing 5.11 with the addition
of line:

wni:new_person owl:sameAs wni:candidate_person,

which asserts that the newly created Person instance refers to the Person candidate
even if they have different names/identifiers. The related PIS-E instance is created by
executing the query in Listing 5.12 with the addition of line:

wni:new_event wisenet:isRelatedTo wni:candidate_event,

which asserts that the newly created PIS-E is related to the PIS-E candidate. For exam-

5.3. DYNAMIC POPULATION 99

Listing 5.13 – Query to update the visual descriptors of a person instance. In this example, the
person_1 is being updated.

1 DELETE {
2 wni:person_1 wisenet:visualDescriptors ?descriptors.
3 }
4 INSERT {
5 wni:person_1 wisenet:visualDescriptors "0.3,0.3,...,0.15"^^xsd:string.
6 }
7 WHERE
8 {
9 wni:person_1 wisenet:visualDescriptors ?descriptors.

10 }

smartCamera_2 smartCamera_3

Person
passing by
a door

Person
leaving/entering
a space

Person
entering a
blind-space

Figure 5.10 – Different scenarios of a person detected around a door. The green boxes
represent Regions Of Interests (ROIs), while the blue and red boxes represent, respec-
tively, detections made around and not around a ROI. In the first case, the person is
just passing by the door (based on smartCamera_3, because it is not being detected
around the door in the smartCamera_2. In the second case, the detected person is
leaving the space_1 (the space hosting smartCamera_2) and at the same time enter-
ing the space_3. In the final case, the person is entering the space_6, which does not
have any cameras (blind-space) (see Fig. 5.1).

100 CHAPTER 5. STATIC AND DYNAMIC ONTOLOGY POPULATION

Listing 5.14 – Query to update the time interval of a person in space event. In this example, the
personInSpace_1 is being updated.

1 DELETE {
2 ?timeInterval time:hasEnd ?instantEnd.
3 }
4 INSERT {
5 ?timeInterval time:hasEnd wni:instant_2.
6 }
7 WHERE {
8 wni:personInSpace_1 event:time ?timeInterval.
9 ?timeInterval time:hasEnd ?instantEnd.

10 }

ple, in the person entering scenario in Fig. 5.10, the smartCamera_3 observes some-
body around a door and a relating candidate was found (person observed around the
same door by smartCamera_2), thus new Person and PIS-E instances will be created
related to the candidate in the space_2.

(C.YES branch) if the detection belongs to somebody in the space, it means that the
person is leaving the space (point E). The person can be going to a space where it will
be observed by another camera or to a space where there is no cameras, referred as
blind-space. To determine if the person is going to a blind-space, the central API checks
if the ROI is observed by single camera, by executing the query presented in Listing 5.16.
The query gets the spaces containing the door represented by the ROI (Lines 3-4), and
then filters out the spaces hosting a camera (Lines 5-8), thus resulting in the blind-space.

(E.NO branch) if the detection was made around a ROI which is observed by multiple
cameras, then it means that the person is not entering a blind-space, thus the Person
and PIS-E instances are simply updated by executing the queries presented in List-
ings 5.13 and 5.14, respectively.

(E.YES branch) if the detection was made around a ROI observed by a single camera,
then it means that the person is about to enter a blind-space. Therefore, a new Person
and PIS-E instances will be created in the blind-space. These new instances will be
related to the Person and PIS-E in the current space (result of point C). Moreover, the
"old" instances need to be closed/updated to avoid multiple creation of instances in the
blind-space, due to subsequent detections. The updating is performed by executing the
query presented in Listing 5.17, where the "old" PIS-E is being closed (Line 6) and the
"old" Person is being removed from the current space (Line 3). For example, consider the
blind-space scenario in Fig. 5.10, where a person is entering the space_6 and leaving
the space_1, thus new Person and PIS-E instances will be created in space_6, while
the Person and PIS-E instances in space_1 will be closed and removed.

The dynamic population process continues by creating and inserting a BoundingBox
and Detection instances. This is done by executing the query in Listing 5.18, where
Lines 3-5 create the BoundingBox while the rest create a Detection and relate it to:
the time Instant when it occurred (Line 10), the PIS-E that contains it (Line 11), the
SmartCamera that performed it (Line 12), the Person to which the detection belongs
to (Line 13), the Space where it happened (Line 14), the ImageProcessing algorithm
used to obtain it (Line 15), the previously created that BoundingBox, and finally if the
detection was made around a ROI then it will also be related to it (Line 17).

5.3. DYNAMIC POPULATION 101

Listing 5.15 – Query to relate candidates (events and people) from other spaces.

1 SELECT DISTINCT ?event ?person ?descriptors
2 WHERE {
3 # Get Door instance and all other ROIs that represent it
4 wni:regionOfInterest_5 wisenet:represents ?door.
5 ?roi wisenet:represents ?door.
6 FILTER(?roi != wni:regionOfInterest_5)
7

8 # Get detections around the same time and around the same door
9 ?detection rdf:type wisenet:Detection;

10 wisenet:inRegionOfInterest ?roi;
11 event:time ?timeInstant.
12 ?timeInstant time:inXSDDateTimeStamp ?detectionTime.
13 FILTER (?detectionTime > "2017-05-20T10:18:43.922Z"^^xsd:dateTime)
14

15 # Get their PIS_E, their person and their descriptors
16 ?detection wisenet:isSubEventOf ?event;
17 event:agent ?person.
18 ?person wisenet:visualDescriptors ?descriptors.
19 FILTER NOT EXISTS {?person wisenet:personLocation inst:space_1}
20 }

After creating the Detection instance, the process is repeated for each detection in the
SC-message.

Finally, the central API performs a cleaning process which consists of detecting noisy
events and closing events:

• Detect noisy events: generally, false detections (i.e., wrong detections) occurred
randomly, caused by light changes, and they last for few seconds. Therefore, events
are considered "noisy" if they were generated by and contain false detections. In
that manner, the central API tags events as noisy if they have not being populated
for certain time and they only contain few detections. To perform this, the central
API executes the query presented in Listing 5.19. The query first gets all the events
which last detection occurred 2 seconds before the current time, along with the
number of detections contained (Lines 12-28). If the number of detections is lower
than a threshold (Line 30), then the event will be closed and considered as noisy
(Lines 1-9). The minimum number of detections was empirically set to 40, meaning
that the person was detected for at least few seconds.

• Closing events: an event is closed if its last detection occurred some time ago and
this detection was made around a door, i.e., if the person left the space. The central
API close events by performing the query presented in Listing 5.20, which Lines
9-17 get the last detection of events, Line 18 checks if that detection was made
around a ROI and Lines 19-22 filter those events which last detection occurred 2
seconds before the current time. Moreover, Lines 1-7 close the PIS-E and removes
its related Person instance from the Space. This way of closing events allows to
leave open events where the related person has not been "seen" leaving the space,
for example the case of a person being outside the FOV of a camera.

Notice that the central API executes the dynamic population process by demand, it does
not run in the background, i.e., that it only runs each time a SC-message is received.

102 CHAPTER 5. STATIC AND DYNAMIC ONTOLOGY POPULATION

Listing 5.16 – Query to check if a door is contained by a space without a camera.

1 SELECT DISTINCT ?spaces
2 WHERE {
3 wni:regionOfInterest_5 wisenet:represents ?door.
4 ?spaces bot:containsElement ?door.
5 ?spaces_withCameras bot:containsElement ?door.
6 ?camera rdf:type wisenet:SmartCamera;
7 sosa:isHostedBy ?spaces_withCameras.
8 FILTER (?spaces_withCameras != ?spaces)
9 }

5.3.3/ USE CASE

To better observe the different steps performed by the central API, consider the scenario
depicted in Fig. 5.11, where two people are walking in the I3M building. The SCN extracts
the pertinent information from the scene, and then sends the SC-messages to the central
API. The central API processes those messages and generates the new knowledge that
will be inserted into the ontology by following the diagram shown in Fig. 5.9. Table 5.2
shows the dynamic population performed by the central API at each timestamps. For the
sake of clarity, the following information was omitted in the table:

• The first time a person is detected in a new space a Person and PIS-E instances
are created (timestamps 1, 3, 6 and 8). The PIS-E instance is created in the space
where the detection was performed.

• For each detection performed by a SC, a Detection instance is created and at-
tached to a Person instance and to a PIS-E instance.

• If a detection is made around an door (i.e. a ROI), then the new PIS-E may be
related to an existing PIS-E (timestamps 3, 6 and 8), meaning that they involve the
same Person instance.

• The time of the use case is continuous, meaning that between each timestamps
there exists many others. For example between timestamps 3 and 4 there is a
detection (at timestamp 3.5 for example) that explains the creation of person_4
and PIS-E_4, which was omitted for conciseness.

• Each time a Detection instance is attached to a Person instances, then the
Person instance is updated. In the same manner, each time a Detection in-
stance is defined as sub-event of a PIS-E instance, then the PIS-E is updated.

At timestamp 1, both people are observed by the first time, thus two Person and PIS-E
instances are created. At timestamp 2, the detections are not around a door and the
people are already in the space, thus the previously created instances are updated. At
timestamp 3, the detection_5 was made around a door and a relating candidate was
found, thus a new Person and PIS-E instances are created in the new space. At time
stamp 4, the detections are not around a door and the people are already in the space,
thus they are updated. At timestamp 5, the second person is not being detected how-
ever, notice that at timestamp 6 no new Person instance was created, this is because

5.3. DYNAMIC POPULATION 103

Listing 5.17 – Query to close/update a PIS-E which was related to a blind-space. In this example,
the personInSpace_1 event is being updated.

1 DELETE {
2 wni:personInSpace_1 wisenet:isEventOpen "true"^^xsd:boolean.
3 ?person wisenet:personLocation ?space.
4 }
5 INSERT {
6 wni:personInSpace_1 wisenet:isEventOpen "false"^^xsd:boolean.
7 }
8 WHERE {
9 wni:personInSpace_1 event:place ?space;

10 event:agent ?person.
11 }

Person_1
Person_2

5 3

2

2 35

Detections by cameras

Figure 5.11 – Dynamic population use case. Two people are walking in a built envi-
ronment while being detected by a SCN. Nine timestamps are being highlighted in the
scenario. Notice that at timestamp 5, Person_2 is not being detected. The dynamic
population at each timestamp can be found in Table 5.2.

the system deduced that the person has not left the space. At timestamp 6, both de-
tections—detection_10 and detection_11—are made around a door. However, a
relating candidate was found only for detection_10, thus no new PIS-E was created
for detection_11. At timestamp 7, the detections are not around a door and the people
are already in the space, thus they are updated. At timestamp 8, the detection_14 was
made around a door and a relating candidate was found, thus a new Person and PIS-E
instances are created in the new space. Finally, at timestamp 9, the detections are not
around a door and the people are already in the space, thus they are updated.

The dynamic population was performed in a machine with the following configuration:
Intel Core i7-4790 CPU @3.6GHz × 4, 16GB of RAM and a "Java Heap" size set to
200MB.

The time required for the central API to process the SC-messages at each timestamp is
shown in the Table 5.2. From that processing time, it can be observed that the central
API requires more time to process related detections (i.e., detections which are around

104 CHAPTER 5. STATIC AND DYNAMIC ONTOLOGY POPULATION

Listing 5.18 – Query to create a bounding box and detection instances. In this example, the
boundingBox_1 and the detection_1 are being created.

1 INSERT DATA {
2 # Create bounding box
3 wni:boundingBox_1 rdf:type owl:NamedIndividual;
4 rdf:type wisenet:BoundingBox;
5 wisenet:xywh "107,20,30,50"^^xsd:string.
6

7 # Create detection
8 wni:detection_1 rdf:type owl:NamedIndividual;
9 rdf:type wisenet:Detection;

10 event:time wni:instant_1;
11 wisenet:isSubEventOf wni:personInSpace_1;
12 sosa:madeBySensor wni:smartCamera_2;
13 event:agent wni:person_1;
14 event:place inst:space_1;
15 event:factor wisenet:YOLOv3;
16 wisenet:hasBoundingBox wni:boundingBox_1;
17 wisenet:inRegionOfInterest wni:regionOfInterest_5.
18 }

a door, like in t3, t6 and t8) compared to detections which are not around a region of
interest. Furthermore, we can observe that the processing time of a SC-message with a
single detection (t5) is lower than the rest.

5.3. DYNAMIC POPULATION 105

Listing 5.19 – Query to detect and close noisy events.

1 DELETE {
2 ?event wisenet:isNoise "false"^^xsd:boolean;
3 wisenet:isEventOpen "true"^^xsd:boolean.
4 ?person wisenet:personLocation ?space.
5 }
6 INSERT {
7 ?event wisenet:isNoise "true"^^xsd:boolean;
8 wisenet:isEventOpen "false"^^xsd:boolean.
9 }

10 WHERE {
11 {
12 SELECT ?event (count(?detections) as ?numDetections)
13 WHERE {
14 ?event rdf:type wisenet:PersonInSpace;
15 wisenet:isEventOpen "true"^^xsd:boolean;
16 event:agent ?person;
17 event:place ?space;
18 event:time ?timeInterval.
19 ?timeInterval time:hasEnd ?endInstant.
20 ?endInstant time:inXSDDateTimeStamp ?endTime.
21

22 ?detections wisenet:isSubEventOf ?event.
23 ?lasDetection wisenet:isSubEventOf ?event;
24 event:time ?timeInstant.
25 ?timeInstant time:inXSDDateTimeStamp ?endTime.
26 FILTER (?endTime < "2017-05-20T10:18:43.922Z"^^xsd:dateTime)
27 }
28 GROUP BY (?event)
29 }
30 FILTER (?numDetections < "40"^^xsd:int)
31 }

106 CHAPTER 5. STATIC AND DYNAMIC ONTOLOGY POPULATION

Listing 5.20 – Query to close events.

1 DELETE {
2 ?event wisenet:isEventOpen "true"^^xsd:boolean.
3 ?person wisenet:personLocation ?space.
4 }
5 INSERT {
6 ?event wisenet:isEventOpen "false"^^xsd:boolean.
7 }
8 WHERE {
9 ?event rdf:type wisenet:PersonInSpace;

10 wisenet:isEventOpen "true"^^xsd:boolean;
11 event:agent ?person;
12 event:place ?space;
13 event:time ?timeInterval.
14 ?timeInterval time:hasEnd ?endInstant.
15 ?endInstant time:inXSDDateTimeStamp ?endTime.
16

17 ?lastDetection wisenet:isSubEventOf ?event;
18 wisenet:inRegionOfInterest ?roi;
19 event:time ?timeInstant.
20 ?timeInstant time:inXSDDateTimeStamp ?endTime.
21

22 FILTER (?endTime < "2017-05-20T10:18:43.922Z"^^xsd:dateTime)
23 }

5.3. DYNAMIC POPULATION 107

Table 5.2 – Dynamic population performed during the people tracking scenario shown in
Fig 5.11. The time denotes the processing time required by the central API to perform
the dynamic population.

Dynamic population Time (s) Dynamic population Time (s)

t1

person_1 created

0.147

t5
detection_9 created

0.068detection_1 created attached to: person_3
attached to: person_1 subEventOf: PIS-E_3
subEventOf: PIS-E_1

t6

detection_10 created

0.657

PIS-E_1 created around: door_4
attached to: person_1 attached to: person_5

person_2 created subEventOf: PIS-E_5
detection_2 created person_5 created

attached to: person_2 same as: person_3
subEventOf: PIS-E_2 PIS-E_5 created

PIS-E_2 created related to: PIS-E_3
attached to: person_2 detection_11 created

t2

detection_3 created

0.161

around: door_4
attached to: person_1 attached to: person_4
subEventOf: PIS-E_1 subEventOf: PIS-E_4

detection_4 created

t7

detection_12 created

0.166

attached to: person_2 attached to: person_5
subEventOf: PIS-E_2 subEventOf: PIS-E_5

t3

detection_5 created

0.623

detection_13 created
around: door_4 attached to: person_6
attached to: person_3 subEventOf: PIS-E_6
subEventOf: PIS-E_3

t8

detection_14 created

0.635

person_3 created around: door_3
same as: person_1 attached to: person_7

PIS-E_3 created subEventOf: PIS-E_7
related to: PIS-E_1 person_7 created

detection_6 created same as: person_5
attached to: person_2 PIS-E_7 created
subEventOf: PIS-E_2 related to: PIS-E_5

t4

detection_7 created

0.158

detection_15 created
attached to: person_3 attached to: person_6
subEventOf: PIS-E_3 subEventOf: PIS-E_6

detection_8 created

t9

detection_16 created

0.172

attached to: person_4 attached to: person_7
subEventOf: PIS-E_4 subEventOf: PIS-E_7

detection_17 created
attached to: person_6
subEventOf: PIS-E_6

108 CHAPTER 5. STATIC AND DYNAMIC ONTOLOGY POPULATION

5.4/ CONCLUSION

In this chapter we presented a set of processes, developed for automatically populating
an ontology with static and dynamic contextual data.

The proposed frameworks are part of an Artificial Intelligence (AI) system, WiseNET,
that draw conclusions based on observations and context. This AI creates semantic-
links between different knowledges in order to take decisions. Thus, allowing humans
to directly design and understand the different algorithms for intelligent decision making,
for example the dynamic process performed by the central API (Fig 5.9). i.e., it is a
transparent AI.

Moreover, thanks to this "transparency", semantic-based models allows to pinpoint the
cause of errors (unexpected results/ wrong decisions) and to solved them by modifying
the semantic-links. This is a big advantage compared to deep-learning AI models which
are "black boxes", where (for the moment) is almost impossible to know which part of the
network is causing an unexpected decision. However, the main drawback of semantic-
based models is that each situation of interest should be defined "manually", for example,
the "person in blind-space" and the "person passing by a door" situations presented be-
fore. In contrast, deep-learning models could (probably) deduce, by using big amount
of data, many of the situations "manually" defined, however, their definition can not be
controlled by humans.

Furthermore, we developed an innovative method to constantly insert data into an on-
tology—which are normally used with static data—by using an API bridge between the
data sources and the ontology. The API uses multiple semantic web technologies which
enable the interaction with the ontology. We applied the processes into an smart building
problem.

Static population the proposed static population process, consisted in inserting into an
ontology the knowledge that (normally) stays unchangeable, such as information of the
environment and the calibration information of a sensor network.

The proposed IFC to WiseNET process (Fig. 5.3), allows to automatically extract pertinent
information from an IFC file and insert it into the WiseNET ontology by using a simple
and intuitive structure. The process is based on semantic web technologies, specifically
it uses a set of queries for extracting and inserting the pertinent information.

The camera-calibration process (Algorithm 1), is a sequence of queries that enables the
automatic insertion of the camera-calibration information, such as its location, the com-
puter vision algorithms it performs and the regions of interest it observes.

As the building structure and the location of the cameras remain (normally) unchangeable
after its construction/installation, the population of the static information needs to be per-
formed once at the initialization of the system. However, if the building is modified (e.g.,
if it is extended, or a door or a space is added) the environment population should be
re-performed using the new IFC file, or the new elements should be manually inserted in
the ontology by executing the population query (Listing 5.2). In a similar manner, to add a
different sensor or modified an existing one, its calibration file should be defined and then
simply inserted by following the Algorithm 1.

Furthermore, the processes were designed in a modular and generic way, meaning that

5.4. CONCLUSION 109

they are not dependent of the previous modules. For example, if the IFC file of a building
is not available (which is the case for most of old buildings), the environment knowledge
can still be inserted using our framework by manually executing the population query
(Listing 5.2). However, if there is a high amount of information a more suitable solution
should be considered.

Is important to notice that we use as a running example the I3M building and the network
of smart cameras deployed in it, however, the frameworks are not dependent of the
building environment nor the network of cameras. Thus, it could be applied to any
type of environment equipped (or not) with any type of sensors.

Dynamic population the proposed dynamic population process, consisted in automat-
ically extracting, structuring and inserting the data observed by each camera node, into
the WiseNET ontology. In a few words, it enables smart cameras to express, in a struc-
tured manner, what they are looking. Moreover, the dynamic population enables the
interaction between knowledge extracted by computer vision algorithms with con-
textual data. The dynamic population process is divided into knowledge extraction and
processing (see Fig. 5.7).

The knowledge extraction consists in acquiring the image and performing some image
processing algorithm in it, to give some knowledge to (understand) what the camera is
observing.

The knowledge processing consists in representing the extracted knowledge using the
vocabulary understood by the WiseNET system and then inserting it according to the
current and previous information in the system by following the diagram presented in
Fig. 5.9. The process focuses in the information if a detection was made around a door
(ROI), because this information determines if a person is entering/leaving a space, and
can also be used for person re-identification between multiple cameras. Which are prin-
cipal knowledges on a intelligent video surveillance systems.

The result of the dynamic population is the insertion of a semantic-graph relating informa-
tion of the smart camera, with the detection performed, the events generated, the person
involved and time (see Fig 5.8).

Regarding the privacy protection, it is important to remark that the SCN used in the
WiseNET system does not send or save any images, thereby protecting the privacy of
the individuals. However, one exception could be made if the ontology infers that an il-
legal act is occurring, in which case, the central API can use that inferred knowledge to
send a message to the SC telling it to start recording and to save the images locally (to
have them as proof).

This chapter defined the ways for automatically inserting data into the WiseNET system.
In the next chapter, the system will be populated with real data from a smart camera
network, which will allow to evaluate its performance.

Remark. Most of the information presented in this chapter was validated in the following
papers [111, 112].

6
DATASET AND EVALUATIONS

The main motivation of a Intelligent Video Surveillance (IVS) system is to ease the man-
agement and monitoring of an environment. This can be done by filtering the data, and
providing just the pertinent information about the building structure, the elements contain
in it, and about the building usage (i.e., what has happened and what is happening). In
this section, we will validate that our semantic-based system (WiseNET) is able to provide
all these informations in an intuitive way.

Datasets play an extremely important role in validating a newly proposed system or algo-
rithm. Therefore, Section 6.1 will present the dataset used during the complete validation
procedure. Furthermore, the evaluation procedure is articulated in two parts. The first
one, presented in Section 6.2.1, consist in a proof of concept of the system by using per-
fect detection conditions. In this part, the kernel of our semantic-based system (i.e., the
ontology) will be evaluated, as well as the system’s performance on tracking people. The
second part, presented in Section 6.3, consist in going beyond the proof of concept, and
evaluating the system performance and limits by using non-ideal detectors.

Remark. All the CQs, prefixes, vocabulary, rules and equations used and referred to in
this section were defined in Chapter 4.

6.1/ MULTI-CAMERA MULTI-SPACE DATASETS

Dataset are important in the development and evaluation of a system. In contrast to real-
time data (i.e., not stored), a dataset allows to test different configurations of the systems,
using the same data-conditions. Furthermore, a dataset provides a baseline, which can
be used to evaluate the performance of an algorithm. The best baseline is the "truth",
which in computer vision is referred "ground truth".

As presented previously, we are interesting in combining the information coming from a
camera network, with contextual information of the environment. Therefore, we require a
dataset that includes all the necessary information.

Nowadays, camera networks are part of our every-day life environments, consequently,
they represent a massive source of information for monitoring human activities and to
propose new services to the building users. To perform human activity monitoring, peo-
ple have to be detected and the analysis has to be done according to the information
relative to the environment and the context. Available multi-camera multi-space datasets
furnish videos with few (or none) information of the environment where the network was

111

112 CHAPTER 6. DATASET AND EVALUATIONS

deployed. Thus, we developed the WiseNET dataset, which provides multi-camera multi-
space video sets along with the complete contextual information of the environment.

This section is articulated in two parts. The first part presents some existing multi-camera
datasets, while the second part presents the WiseNET dataset.

6.1.1/ EXISTING DATASETS

The existing multi-camera datasets can be categorized by the scene they ob-
serve—indoor, outdoor or both—by the type of data provided—full-frames or only cropped
images—by their main application—people detection, re-identification, tracking or activity
recognition—and even by the distribution of the cameras in the environment—cameras
located in a single or multiple spaces.

In this section, we briefly summarize some publicly available datasets deployed in mul-
tiple indoor spaces and that provide full-frame data. Table 6.1 summarizes the rele-
vant datasets. For each dataset we indicate the number of video sets (#Sets), cameras
(#Cams), people (#People) and the annotation method used for obtaining the bounding
boxes: manually (hand) or automatically (auto) methods. We also indicate the presence
of contextual data, such as environmental data and scene semantic information. For envi-
ronmental data, we considered the inclusion of: 2D schema (2D), 3D schema (3D) or ex-
tra environmental data (E+), for instance, the topology of the environment and information
about the different elements contained in the spaces. For scene semantic information, we
considered the presence of any semantic labeling, for instance the labeling of enter/exit
regions. Moreover, each dataset was annotated with the following challenging attributes:
view-point variations (VV)—target appears at different poses and viewpoints—illumination
variations (IV)—changes on light conditions—detection errors (DE)—occurs (mostly)
when detections are performed by an automatic method—occlusion (OCC)—target totally
or partially non-visible—and background clutter (BC)—background filled with targets.

CAVIAR [58] was acquired using two cameras with overlapping Fields Of View (FOVs).
It consists of 26 small video sets involving 72 people and manually labeled bounding
boxes. CAVIAR suffers from viewpoint variations due to the position of the cameras.
V47 [173] was constructed from two indoor cameras with overlapped FOVs. It consists
of 47 people walking in two directions (in and out). However, no contextual information
is provided. V47 suffers from viewpoint variations and partial occlusion. SAIVT [13] was
collected by eight surveillance cameras. It consists of ten video sets involving 152 peo-
ple. The annotations were performed manually and a 2D schema of the environment is
provided. SAIVT suffers from viewpoint variation, illumination variation and background
clutter. Dana36 [136] was acquired from 36 camera views in a mixed scene—27 cameras
outdoors and nine indoors. It consists of 15 people following predefined activities around
a building. Moreover, no contextual information is provided. Dana36 suffers from view-
point and illumination variations, as well as from partial occlusion. HDA+ [123] consists
of a single 30-minutes long video set recorded using 13 indoor cameras. The dataset in-
volves 85 people moving around three floors of a building. HDA+ provides both manually
and automatically annotated bounding boxes. The automatic annotations were obtained
using the Aggregated Channel Features (ACF) people detector [46]. HDA+ also provides
a 2D schema of the environment. Moreover, HDA+ suffers from viewpoint and illumination
variations, as well as from occlusion and detection errors due to the automatic people de-
tector. NLPR [31] consists of four subsets from which we consider the third one (NLPR-3)

6.1. MULTI-CAMERA MULTI-SPACE DATASETS 113

Table 6.1 – Characteristics of indoor multi-camera multi-space datasets. People appear-
ing at multiple video sets are considered as different people.

Dataset #Sets #Cams #People Annotation Environment Semantics Attributes Year
CAVIAR 26 2 72 hand 7 7 VV 2004
V47 2 2 47 hand 7 7 VV,OCC 2011
SAIVT 10 8 152 hand 2D 7 VV,IV,BC 2012
Dana36 1 36† 15 hand 7 7 VV,IV,OCC 2012
HDA+ 1 13 85 hand/auto 2D 7 VV,IV,OCC,DE 2014
NLPR-3 1 4 14 hand 2D 3 VV,IV,OCC 2015
CamNeT 4 8‡ 50 hand 2D 7 VV,IV,OCC 2015
WiseNET 11 6 77 hand/auto 2D,3D,E+ 3 VV,IV,OCC,BC,DE 2019
† 9 indoors.
‡ 5 indoors.

due to the indoor scene. NLPR-3 has a single video set, which captures 14 people using
four cameras installed at different spaces. The datasets provides a 2D schema of the en-
vironment and semantic information about the enter/exit regions of each camera scene.
CamNeT [191] is a mixed environment dataset composed of three outdoor cameras and
five indoors. It involves 50 people and it provides the 2D schema of the environment.
CamNeT suffers from viewpoint and illumination variations, as well as from occlusion.

Finally, the WiseNET dataset provides 11 video sets recorded using 6 indoor cameras
deployed on multiple spaces. The video sets represent more than one hour of video
footage, include 77 people tracks and captured different human actions such as walking
around, standing/sitting, motionless, entering/leaving a space and group merging/split-
ting. Moreover, each video has been manually and automatically annotated to include
people detection and tracking meta-information. The automatic people detection annota-
tions were obtained by using different complexity and robustness detectors, from machine
learning to state-of-art deep convolutional neural network (CNN) models. Concerning the
contextual information, the Industry Foundation Classes (IFC) file that represents the en-
vironment’s Building Information Modeling (BIM) data provided, as well as semantic infor-
mation relating real objects with enter/exit zones (i.e., doors). The BIM/IFC file describes
the complete structure of the environment, it’s topology and the elements contained in it,
moreover, it can be used to generate 2D and 3D schema. Furthermore, the WiseNET
dataset provides all challenging attributes, making it an interesting candidate for bench-
marking people detection and tracking algorithms.

To our knowledge, the WiseNET dataset is the first to provide a set videos along
with the complete information of the environment. More details about the WiseNET
dataset will be given in the next section.

6.1.2/ WISENET DATASET

The WiseNET dataset was created using an indoor network composed of 6 Smart Cam-
eras (SCs) deployed on the third floor of the Institut Marey et Maison de la Métallurgie
(I3M) building located in Dijon, France [113]. The dataset consists of three main ele-
ments: (1) video sets, (2) information of the environment and (3) annotations for people
detection and people tracking.

1. The video sets were recorded using from 5 to 6 cameras simultaneously. The videos
captured different human actions such as walking around, standing/sitting, motion-

114 CHAPTER 6. DATASET AND EVALUATIONS

Rotating mount

Fan
Lense

Figure 6.1 – Raspberry Pi 3 used as smart camera. The camera case was specially
designed to include a fan and a rotating mount.

less, entering/leaving a space and group merging/splitting. In addition, one view
only includes shadows of people moving around.

2. The information of the environment is crucial for smart building applications. For this
reason, the dataset includes the IFC file of the I3M building (referred as I3M-IFC)
and a camera-calibration file for each camera node.

3. The dataset also includes people detection manual and automatic annotations (PD-
MAN and PD-AUT respectively), as well as people tracking manual annotations
(PT-MAN). The use of automatic people annotation aims not only to propose an
alternative to the time- consuming manual annotation but also to evaluate the com-
plexity of each video (in terms of difficulty to detect people) using state-of-art people
detectors.

Figure 5.1 presents the distribution of the SCs in the environment and some exam-
ples of their images. A demonstration of the deployed network can be found at http:
//wisenet.checksem.fr/#/demo. The SCs used were the Raspberry Pi 3 model B1 and its
camera module v2.12, that contains a Sony IMX219 8-megapixels sensor.1 the Rasp-
berry Pi was chosen due to its high-performance and low-cost. The Raspberry Pi is a
multi-core, general-purpose mini computer with the capability to attach a high definition
camera and to execute multiple programs. Some of its specifications are: quad-core
64-bit ARM Cortex A53 processor at 1.2GHz, 1GB LPDDR2-900 SDRAM, fast Ether-
net (100Mbit/s), 802.11n Wireless LAN, Bluetooth 4.1 (including Bluetooth Low Energy),
400MHz VideoCore IV multimedia and a 8-megapixels camera sensor (Sony IMX219). A
case for the Raspberry Pi was specially designed to include a cooling system and a ro-
tating mount that facilitates its installation (see Fig.6.1). The cooling system is important
to enable the Raspberry Pi to record for long periods of time without overheating.

1https://www.raspberrypi.org/products/raspberry-pi-3-model-b/

http://wisenet.checksem.fr/#/demo
http://wisenet.checksem.fr/#/demo
https://www.raspberrypi.org/products/raspberry-pi-3-model-b/

6.1. MULTI-CAMERA MULTI-SPACE DATASETS 115

Table 6.2 – Description of WiseNET video sets. #Videos indicates the number of cameras
used in the set; #Frames (Time) indicates the number of frames and the recording time
of a complete set; #People indicates the number of people present in the set; #PD-MAN
refers to the number of manually annotated people detection bounding boxes.

Set # Resolution FPS #Videos #Frames (Time) #People #PD-MAN
1 1280×720 30 5 8749 (01'00"×5) 5 13777
2 1280×720 30 5 17767 (02'00"×5) 2 8590
3 1280×720 30 5 17758 (02'00"×5) 2 9777
4 1280×720 30 5 35747 (04'00"×5) 3 17489
5 640×480 25 6 6000 (00'40"×6) 14 11495
6 640×480 25 6 6000 (00'40"×6) 6 6545
7 640×480 25 6 6000 (00'40"×6) 7 7109
8 640×480 25 6 6000 (00'40"×6) 6 4605
9 640×480 25 6 6000 (00'40"×6) 8 11520
10 640×480 25 6 6000 (00'40"×6) 9 10375
11 640×480 25 6 6000 (00'40"×6) 15 10631

62 122021 (1h13'00") 77 111913

VIDEO SETS

Multiple video sets were recorded at different times. A description of each video set is
presented on Table 6.2. In summary, there are 11 video sets, composed of 62 videos that
cover more than 1 hour of video footage, 122K frames, 77 people tracks,2 and around
112000 PD-MAN annotations. The video sets were captured at two resolutions—HD
720 (1280 × 720) or VGA (640 × 480)—different Frames Per Second (FPS)—30 or
25—various recording time—40 seconds or 1, 2 and 4 minutes—and using two video
codecs—MPEG-4 and Planar 4:2:0 YUV. The different recording characteristics leads to
a richer and more diversified dataset.

Notice that the videos recorded by the smartCamera_6 do no recorded any person.
However, they were left in the dataset because they include shadows of people moving,
which might be useful for people interested in shadow detection.

CONTEXTUAL INFORMATION

The contextual information of the WiseNET network is composed of two parts, the infor-
mation of the environment where the network was deployed and the information concern-
ing the camera nodes.

The information about the environment is contained in the I3M-IFC file. The I3M-IFC file
was obtained from the company in charge of the construction of the I3M. IFC is a data
model standard, use to describe architectural, building and construction industry data.
The IFC data model facilitates the interoperability between the different agents involved
in a building construction. The I3M-IFC contains large amount of information concerning
the I3M building, e.g., information about all the elements composing the building, their ge-
ometrical information, their position and their relation to other elements. Figure 6.2 shows

2Each people that appear in the video sets signed informed written consent before participating.

116 CHAPTER 6. DATASET AND EVALUATIONS

space_2

space_1

I3M_building

storey_3

space_2space_1

door_3door_4 door_5 door_6

hasStorey
hasSpace
containsElement

I3M-IFC

Topology

3D model

2D schema

Figure 6.2 – Data generated from the IFC file of the I3M building (I3M-IFC). The 2D
schema and the topology graph focus only on the third storey and on some spaces and
doors of interest.

some examples of data that can be generated from the I3M-IFC file. For example, the en-
vironment’s topology can be obtained from an IFC file by following the process presented
in Chapter 5, while the 2D and 3D schema can be generated using Computer-Aided De-
sign (CAD) software such as Solibri.3. Another example of data that can be obtained from
an IFC file are, the dimensions of the spaces where the cameras were installed and the
dimensions of the doors they observe, as presented in Table 6.3. However, to be able to
extract detailed information—such as the dimensions of elements—some knowledge of
the IFC standard is required.

The camera-calibration files contain the position of each camera node in the environment
and the information about the Regions Of Interest (ROIs) they observe. The position
of each camera node can be observed in Fig. 5.1, moreover Fig 6.3 shows the ROIs
observed by each node and their assigned unique identifier (ID). Furthermore, Table 6.4
presents the doors represented by each ROI. Notice that a door can be represented by
multiple ROIs, this was done to make each camera-calibration file independent of each
other, and to facilitate the procedure.

The camera-calibration files, which were already presented in Section 5.2.2, take all the
information presented in Fig.6.3 and Table 6.4 and synthesize it in JSON structured files.
An example of a camera-calibration file can be found in Listing 5.3.

PEOPLE DETECTION ANNOTATIONS

The people detection manual (PD-MAN) annotations were obtained by manually enclos-
ing a bounding box (Bbox) around each person that appears in a video frame, assigning

3https://www.solibri.com/bim-ifc

6.1. MULTI-CAMERA MULTI-SPACE DATASETS 117

Table 6.3 – Dimensions of the spaces and doors of interest depicted on Fig. 5.1. These
dimensions were extracted from the I3M-IFC file. The door’s dimensions are defined as
width×height, while the space’s dimensions are defined as length×width×height.

Element Dimension (m)
door_1-door_4 1.5 × 2.075
door_5-door_7 1 × 2.075
space_1 27.7 × 1.747 × 3.52
space_2 14.33 × 7.04 × 3.52
space_3 7.5 × 7.04 × 3.52
space_4 2.77 × 2.91 × 3.52
space_5 3.16 × 4.14 × 3.52
space_6 2.48 × 4.47 × 3.52

them an ID and stating if they are around a ROI. The process was performed by us-
ing a software developed in Python4 using OpenCV library5—the code is provided in the
dataset. The PD-MAN annotation rules were as follows:

1. On each video set, a unique ID should be associated to each person. For example,
the person “Mario” should have the same ID in the five videos composing the set 1.
Moreover, if “Mario” appears in another set, he might be assigned a different ID.

2. The Bbox should be created by selecting its top-left and bottom-right corners.

3. If only a person’s limb is visible, then no Bbox should be drawn.

4. If a person is partially occluded, then the Bbox should enclose only the visible parts.

5. If a person torso is no visible, e.g., only its head is visible, then no Bbox should be
drawn.

6. If a person is not visible for the human eye—because is totally occluded by an
object, is outside the camera’s FOV or the scene is too dark—then no Bbox should
be drawn. Even if the person’s position could be deduced from previous frames.

7. A person is considered around a ROI if: (1) the center of its bounding box is inside
the ROI and (2) if the bounding box is at a similar level than the ROI, i.e., if the
highest and lowest points of the Bbox and the ROI are around the same height.

Performing manual annotations is a time-consuming task, therefore, it was only performed
on every fifth frame starting from frame 0. However, the information was propagated to
the missing frames, e.g., the annotation in frame 0 was propagated into frames 1, 2, 3
and 4, in the same manner, the annotation of frame 5 was propagated to frames 6, 7,
8 and 9, and so on. Nevertheless, it took around 26 hours for 3 people to obtain the
PD-MAN annotations.

The annotation’s meta-data was stored in JSON files, structured following the logic that a
video has a set of frames and some of those frames present a set of Bboxes (detections).
Listing 6.1 presents an extract of a resulting JSON file, where the fields correspond to:

4https://www.python.org/
5http://opencv.org/

https://www.python.org/
http://opencv.org/

118 CHAPTER 6. DATASET AND EVALUATIONS

smartCamera_1
space_1

ROI_2

ROI_1

ROI_13

ROI_5
ROI_3

ROI_4

ROI_8

ROI_10

ROI_9

ROI_12

smartCamera_2
space_1

ROI_11

smartCamera_3
space_3

smartCamera_4
space_2

ROI_7

ROI_6

smartCamera_5
space_2

smartCamera_6
space_4

Figure 6.3 – Regions Of Interest (ROIs) observed by each camera node.

• video: name of the video file from which the meta-data was obtained. In the exam-
ple, video3_2.avi means that the video comes from set 3 and camera node 2.

• resolution: video resolution.

• frames: set of frames with Bboxes. The frames with no Bboxes are not considered.

– framNumber: frame number.
– deviceID: ID of the smart camera observing the scene.

6.1. MULTI-CAMERA MULTI-SPACE DATASETS 119

Table 6.4 – Doors represented by Regions Of Interest (ROIs).

door_1 door_2 door_3 door_4 door_5 door_6 door_7
ROI_1 3 - - - - - -
ROI_2 - 3 - - - - -
ROI_3 - 3 - - - - -
ROI_4 - - 3 - - -
ROI_5 - - - 3 - - -
ROI_6 - 3 - - - - -
ROI_7 - - 3 - - -
ROI_8 - 3 - - - - -
ROI_9 - - - - - 3 -
ROI_10 - - - - 3 - -
ROI_11 - - - 3 - - -
ROI_12 - - - - 3 - -
ROI_13 - - - - - - 3

– inXSDDateTime: synchronized timestamp, obtained from the smart camera.

– detections: set of Bboxes (detections) made in the same frame.

* imageProcessing: algorithm used to perform the detections. We consider
the manual detections as a ground truth method.

* class: type of object detected by the image processing algorithm.

* regionOfInterest : ROI’s ID. If the detection is not around a ROI then the
value is null.

* xywh: detection’s top-left point (x,y), width (w) and height (h).

* visualDescriptors: array of visual features describing a detection.

* id : person’s ID.

The PD-MAN annotations are sufficient to test and evaluate the WiseNET system, as it
will be presented in Section 6.2. However, we decided to go a step forward and to test the
system using real people detectors methods, as it will be presented in Section 6.3. The
use of real detectors allow us to obtain automatically generated annotations (PD-AUT),
and to evaluate the influence of the detection-quality in the WiseNET system. We decided
to presented the methods to obtain the PD-AUT afterwards (in Section 6.3) because other
explanations are required for comparing them, such as the different metrics used.

PEOPLE TRACKING ANNOTATIONS

People tracking manual annotations (PT-MAN) consists in manually stating the space
location of each person at all times, during a complete video set. This is done by consid-
ering the people’s ID and the time they enter and leave each space.

For each video set, the tracking meta-data is stored in a JSON file, where the fields
corresponds to:

• set: video set number from which the PT-MAN was obtained.

120 CHAPTER 6. DATASET AND EVALUATIONS
s
p
a
c
e
_1

s
p
a
c
e
_2

s
p
a
c
e
_3

Figure 6.4 – Space-time graph representing the tracking ground truth of video set 2.

• tracks: set of people tracks. A track relates a person with a set of spaces at some
periods of time. A track is divided into a set of tracklets.

– id: person’s ID.

– tracklets: set of tracking segments of a person.

* location: tracklet’s space location.

* start: tracklet’s starting time.

* end: tracklet’s end time.

Furthermore, a space-time graph generated from the tracking meta-data is also provided
in the dataset. The space-time graph is an intuitive way of presenting the location and the
changes of spaces of all people during a period of time. For exemplification, Listing 6.2
presents the tracking data for video set 2, while Fig. 6.4 presents a graphical representa-
tion of the data. In the space-time graph, each blue line represents the different tracklets
of persons #1, while the complete set of blue lines represent the track of person #1. From
the space-time graph it can be easily observed that there were 2 people recorded on
video set 2; that person #1 moved between spaces 1, 2 and 3, while person #2 stayed at
space 2 during the whole recording time. Notice that sometimes the tracklets overlap in
time, this occurs when a person is passing from one space to another thus it is detected
around a door (e.g., around time 12:16:07).

The PT-MAN can be used for evaluating tracking algorithms, as it will be presented in
Section 6.2.2.

6.1. MULTI-CAMERA MULTI-SPACE DATASETS 121

VALUE OF THE DATASET

To summarize, the value of the WiseNET dataset can be recapitulated in 5 points [113]:

• Large, diverse and high-quality video sets recorded using an indoor multi-camera
multi- space network (6 cameras deployed on 4 spaces, more than 1 hour of video
footage, 11 video sets, 62 videos, 77 people).

• The dataset could be used as a benchmark for people detection, people re-
identification and multi-space people tracking, thanks to the given automatic and
manual annotations.

• The video sets could be used for human-action recognition such as walking around,
standing/sitting, motionless, entering/leaving a space and group merging/splitting.
Moreover, they could be also be used for office-objects detections such as tables,
monitors, chairs, etc. Furthermore, one camera view only includes shadows of
people moving around.

• Each frame was timestamped and annotated using a JSON format, making the
meta- data easy to read, understand and re-use.

• Non-conventional information about the network’s environment is provided, such
as: (1) the position of the camera nodes, (2) the doors observed by them, (3) the
dimensions of the doors and their position with respect the camera’s field of view,
(4) the dimensions of the spaces containing the camera nodes and (5) an IFC file
containing the complete information of the environment.

The complete dataset is publicly available at https://data.4tu.nl/repository/uuid:
c1fb5962-e939-4c51-bfd5-eac6f2935d44. It can be also downloaded from the project’s
website http://wisenet.checksem.fr/#/dataset.

https://data.4tu.nl/repository/uuid:c1fb5962-e939-4c51-bfd5-eac6f2935d44
https://data.4tu.nl/repository/uuid:c1fb5962-e939-4c51-bfd5-eac6f2935d44
http://wisenet.checksem.fr/#/dataset

122 CHAPTER 6. DATASET AND EVALUATIONS

Listing 6.1 – Example of person detection file of video3_2.avi. For simplicity only one frame is
shown.

1 {
2 "video": "video3_2.avi",
3 "resolution": [
4 {
5 "width": 1280.0, "height": 720.0
6 }
7],
8 "frames":[
9 .

10 .
11 .,
12 {
13 "frameNumber": 1639,
14 "deviceID": "smartCamera_2",
15 "inXSDDateTime": "2017-05-20T12:18:45.922Z",
16 "detections": [
17 {
18 "imageProcessing": "groundtruth",
19 "class": "person",
20 "regionOfInterest": "regionOfInterest_5",
21 "xywh": [107, 20, 30, 50],
22 "visualDescriptors": [0.2, 0.4,..., 0.12],
23 "id": 1,
24

25 },
26 {
27 "imageProcessing": "groundtruth",
28 "class": "person",
29 "regionOfInterest": "null",
30 "xywh": [88, 22, 24, 52],
31 "visualDescriptors": [0.0, 0.1,..., 0.7],
32 "id": 2,
33 }
34]
35 },
36 .
37 .
38 .
39],
40 }

6.1. MULTI-CAMERA MULTI-SPACE DATASETS 123

Listing 6.2 – Tracking ground truth file of video set 2.

1 {
2 "set": 2,
3 "tracks":[
4 {
5 "id": 1,
6 "tracklets": [
7 {
8 "location": "space_1",
9 "start": "2017-04-24T12:15:00.001Z", "end": "2017-04-24T12:15:23.234Z"

10 },
11 {
12 "location": "space_3",
13 "start": "2017-04-24T12:15:23.234Z", "end": "2017-04-24T12:15:55.267Z"
14 },
15 {
16 "location": "space_1",
17 "start": "2017-04-24T12:15:55.267Z", "end": "2017-04-24T12:16:08.834Z"
18 },
19 {
20 "location": "space_2",
21 "start": "2017-04-24T12:16:06.834Z", "end": "2017-04-24T12:16:32.687Z"
22 },
23 {
24 "location": "space_1",
25 "start": "2017-04-24T12:16:32.687Z", "end": "2017-04-24T12:16:40.834Z"
26 },
27 {
28 "location": "space_2",
29 "start": "2017-04-24T12:16:40.834Z", "end": "2017-04-24T12:16:55.201Z"
30 },
31 {
32 "location": "space_1",
33 "start": "2017-04-24T12:16:55.201Z", "end": "2017-04-24T12:16:58.434Z"
34 }
35]
36 },
37 {
38 "id": 2,
39 "tracklets": [
40 {
41 "location": "space_2",
42 "start": "2017-04-24T12:15:00.001Z", "end": "2017-04-24T12:16:58.434Z"
43 }
44]
45 }
46]
47 }

124 CHAPTER 6. DATASET AND EVALUATIONS

6.2/ SYSTEM EVALUATION

Once the WiseNET ontology has been defined (Chapter 4); the framework for inserting
data into the ontology has been explained (Chapter 5); and a dataset made of the envi-
ronment and SCN information has been acquired (Section 6.1); then, we can proceed to
the evaluation of the system. The evaluation consists in verifying if the system satisfy its
intent. We will perform two types of evaluations. The first one, is a qualitative evaluation
and focus on the WiseNET ontology which is the core element of the system (presented
in Section 6.2.1). The second one, is a quantitative evaluation and focus on applying
the system to solve a computer vision problem, specifically people tracking problem (pre-
sented in Section 6.2.2).

6.2.1/ ONTOLOGY EVALUATION

The WiseNET ontology plays a central role in the WiseNET system, it is in charge of com-
bining the information coming from the SCN with the contextual information. Moreover, all
the system’s results are stored in it. According to Hitzler et al. [71], the accuracy criteria
is a central requirement for ontology evaluation. This criteria consists in verifying if the
ontology accurately captures the aspects of the modeled domain for which it has been
designed for. The development of the WiseNET ontology was based on 41 Competency
Questions (CQs) that the ontology should be able to answered (see Table 4.1). Therefore,
the ontology evaluation consists in showing that those questions can be answered by the
ontology. Moreover, the CQs were divided into 2 sub-sets: static CQs which answers do
not change over time (Section 6.2.1.1), and dynamic CQs which answer might change
over time (Section 6.2.1.2).

The evaluations were performed after inserting the complete contextual information, i.e.,
the information of the I3M environment and the general information of the camera nodes.
This was done by using the static population process presented in Section 5.2).

Concerning the dynamic information, the video set 3 was used for evaluating the CQs.
This video set was chosen because is suitable for exemplification and it has a adequate
level of complexity. In this video set, there are two people moving around multiple spaces,
while being observed by multiple cameras. Figure 6.5 presents a graphical representation
of a part of video set 3. For conciseness, only seven timestamps, taken approximately
each 10 seconds, will be consider during the evaluation: t1 ≈ 12:15:44, t2 ≈ 12:15:55,
t3 ≈ 12:16:07, t4 ≈ 12:16:13, t5 ≈ 12:16:28, t6 ≈ 12:16:39 and t7 ≈ 12:16:50. Furthermore,
Fig 6.6 presents the manually generated (i.e., ground truth) space-time graph of video set
3. From this graph, it can be observed the position of each person at each time, during
the complete video set. Notice that the person with ID 2 is not visible by any camera for
around 10 seconds, from 12:16:10 to 12:16:19 (as shown in the graph).

The people detection manual annotations from video set 3, were automatically in-
serted by using the dynamic population process presented in Section 5.3. More-
over, the dynamic population was stopped at the different timestamps, to execute some
CQs. This was performed to show the evolution/changes of the answers in time as it will
be presented in Section 6.2.1.2.

Furthermore, the query execution times presented below, were obtained by executing the
queries 10 consecutive times and then performing an average. The evaluation procedure

6.2. SYSTEM EVALUATION 125

Person_1
Person_2

5 3

2

2 3 51 4

Detections by cameras

4

1 space_1

space_3

space_2

Figure 6.5 – Extract of video set 3, where two people are walking around three spaces,
while being detected by a SCN. Seven timestamps of interest are being shown. The
images information shown in the top-left corner is not relevant.

was performed in a machine with the following configuration: Intel Core i7-4790 CPU
@3.6GHz × 4, 16GB of RAM and a "Java Heap" size set to 200MB.

126 CHAPTER 6. DATASET AND EVALUATIONS
s
p

a
c
e
_1

s
p

a
c
e
_2

s
p

a
c
e
_3

Person Occluded 1 2

Figure 6.6 – Space-time graph representing the tracking ground truth of video set 3 and
the position of the timestamps of interest.

6.2.1.1/ STATIC CQS

The static CQs are those which answers do not change over time. This type of CQs
concern mostly the information about the structure of the building, its topology and the
different elements contained in the spaces. Furthermore, the static CQs are independent
of the data coming from the SCN. Thus, if we perform the static CQs at the beginning,
during or at the end of any video set, the answer will be the same. Therefore, we decided
to evaluate the static CQs after populating the complete data of video set 3.

In Table 4.1, the CQs 1 to 19 are static. Due to space constrains, only some relevant CQs
will be presented:

• CQ2: how many doors are contained in each storey? Listing 6.3 presents the
query used for answering the question, where Line 3 gets all the storeys, Lines
4-5 get all the doors contained in the storeys, Line 6 groups each door by storey
and the command COUNT in Line 1 calculates the total number of door instances
by storey. The query uses the storey-element relation (hasElement) which is not
directly inserted in the ontology, but can be deduced by the subsumption hierarchies
containsElement v hasElement and hasSpace v containsZone and the
property chain containsZone◦hasElement v hasElement (Eq.4.19). Because
deduction is needed, then the reasoner is required to obtain the results. The query
execution time is around 130 ms. Based on the real I3M data, the query returns the
correct results:

6.2. SYSTEM EVALUATION 127

Listing 6.3 – SPARQL query for getting the number of doors contained in each storey (CQ2).

1 SELECT ?storeys (COUNT (?doors) AS ?numberOfDoors)
2 WHERE {
3 ?storeys rdf:type bot:Storey;
4 bot:hasElement ?doors.
5 ?doors rdf:type wisenet:Door.
6 } GROUP BY ?storeys

Listing 6.4 – SPARQL query for getting the number of spaces contained in each storey (CQ3).

1 SELECT ?storeys (COUNT (?spaces) AS ?numberOfSpaces)
2 WHERE {
3 ?storeys rdf:type bot:Storey;
4 bot:hasSpace ?spaces.
5 } GROUP BY ?storeys

?storeys ?numberOfDoors
inst:storey_3 40

.

• CQ3: how many spaces are contained in each storey? Listing 6.4 presents
the query for answering the question, where Line 3 and 4 get all the storeys and
the spaces contained by them, Line 5 group them by storeys and Line 1 count the
number of spaces. This query does not need the reasoner to obtain the results, and
its execution time is around 10 ms. The query returns the correct results:

?storeys ?numberOfSpaces
inst:storey_3 33

.

A similar query could be used to obtain all the spaces contained in the storeys, by
removing the COUNT-AS and GROUP BY commands.

• CQ8: what are all the spaces connected to a space? Listing 6.5 presents the
query for getting all the spaces connected to space_2. This query deduces that
two spaces are adjacent/connected due to the rule stating that: two spaces are
adjacent if they contain the same door (Rule 1 presented in Listing 4.1). Line 4
filters out the space itself to only consider the other spaces. This query requires
the reasoner and its execution time is around 20 ms. The query returns the correct
results:

?connectedSpaces
inst:space_1
inst:space_4
inst:space_5

A similar query could be used to count the number of connecting
spaces of each space by replacing: Line 1 by "SELECT ?spaces
(COUNT(?connectedSpaces) AS ?numConnectedSpaces)" and the en-
try "inst:space_2" by the general variable "?spaces".

128 CHAPTER 6. DATASET AND EVALUATIONS

Listing 6.5 – SPARQL query for getting the spaces connected to inst:space_2 (CQ8).

1 SELECT ?connectedSpaces
2 WHERE {
3 inst:space_2 bot:adjacentZone ?connectedSpaces
4 FILTER (?connectedSpaces != inst:space_2)
5 }

Listing 6.6 – SPARQL query for getting the type of sensor deployed and their locations (CQ12-
13).

1 SELECT ?sensor ?type ?location
2 WHERE {
3 ?sensor rdf:type sosa:Sensor;
4 rdf:type ?type;
5 sosa:isHostedBy ?location.
6 FILTER (?type!=owl:Thing && ?type!=bot:Element && ?type!=sosa:Sensor)
7 }

• CQ12-13 which type of sensors are deployed in the system and where are
they? Listing 6.6 answer the question by getting all the sensor instances (Line 3),
their types (Line 4) and their locations (Line 5). Moreover, the general classes of
sensors are filter out (Line 6), leaving only the detailed types, such as smart camera,
thermostat, humidity sensor, etc. However, in our system there are only smart
cameras as shown in the results. This query requires the reasoner for deducing the
association to the upper-class Sensor and to deduce the location (isHostedBy).
The query execution time is around 400 ms, and it returns the following results:

?sensor ?type ?location
wni:smartCamera_1 wisenet:SmartCamera inst:space_1
wni:smartCamera_2 wisenet:SmartCamera inst:space_1
wni:smartCamera_3 wisenet:SmartCamera inst:space_3
wni:smartCamera_4 wisenet:SmartCamera inst:space_2
wni:smartCamera_5 wisenet:SmartCamera inst:space_2
wni:smartCamera_6 wisenet:SmartCamera inst:space_4

.

• CQ14: which and where are the nearest sensors to a sensor? Listing 6.7
presents the query to get the nearest sensor to smartCamera_1, where Line 3
gets all its nearby sensors, Line 4 gets their location and Line 5 filter out the same
sensor. This query deduces the relation between sensors (hasNearBySensor)
due to the rules stating that: two sensors are nearby if they are located in the same
space or if they are located in adjacent spaces (Rules 2 and 3, presented in List-
ings 4.2 and 4.3 respectively). This query requires the reasoner for the deduction
of the sensor relation, and its execution time is around 100 ms. The results of the
query are the nearest sensors to smartCamera_1:

6.2. SYSTEM EVALUATION 129

Listing 6.7 – SPARQL query for getting the nearest sensors to the wni:smartCamera_1 and
their location (CQ14).

1 SELECT ?nearestSensor ?location
2 WHERE {
3 wni:smartCamera_1 wisenet:hasNearbySensor ?nearestSensor.
4 ?nearestSensor sosa:isHostedBy ?location.
5 FILTER (?nearestSensor != wni:smartCamera_1)
6 }

Listing 6.8 – SPARQL query for getting the elements observed by the wni:smartCamera_1
(CQ16).

1 SELECT ?elements
2 WHERE {
3 wni:smartCamera_1 sosa:observes ?elements.
4 ?elements rdf:type bot:Element.
5 }

?nearestSensor ?location
wni:smartCamera_2 inst:space_1
wni:smartCamera_3 inst:space_3
wni:smartCamera_4 inst:space_2
wni:smartCamera_5 inst:space_2

.

Notice that if we are interested in a specific type of sensors, this can be easily done
by adding a line restricting the type of the ?nearestSensor variable. This can be
useful, for example, when a smart camera needs to broadcast information only to
nearby cameras.

• CQ16: which building elements does a camera observes? Listing 6.8 present
the query to get the elements observed by the smartCamera_1. This query looks
simple but it needs a concatenation of deductions. Firstly, the deduction that a
camera’s Field Of View (FOV) shows and element represented by a ROI, defined
by the property chain shows ◦ represents v shows (Eq. 4.27). Afterwards, the
deduction that a camera observes the elements shown by it’s FOV, defined by the
property chain hasFieldOfView ◦ shows v observes (Eq. 4.26). This query
requires the reasoner and its execution time is around 1100 ms. The results of the
query are:

?elements
inst:door_1
inst:door_2

.

The static CQs concerning only the building information—e.g., CQs 2,3,8—are answered
by using the data extracted directly from the IFC file of the building (see Section 5.2 for the
extraction procedure). Similarly, the static CQs concerning the sensors and their relation
with the environment—e.g., CQs 12,13,14,16—are answered by using the sensor static
information (i.e., sensor’s calibration, see Section 5.2.2)

130 CHAPTER 6. DATASET AND EVALUATIONS

As presented in this section, the system is able to correctly answer all the CQs con-
cerning the built environment and the sensors deployed in it. Furthermore, the pro-
posed formalism for defining the CQs allows to question, in real-time, the different
elements composing a smart building.

Moreover, the proposed CQs have many applications. Specially, for building managers
which would like to quickly know: the building’s topology, how many elements are lo-
cated in a building, their position, their dimensions, etc. Or a path guidance application,
which can use the connection between spaces to compute the closest path between
two spaces. This type of application could be use in, for example, hospitals or even
for disaster-evacuation guidance. Moreover, the proposed CQs have many applications.
Specially, for building managers which would like to quickly know: the building’s topology,
how many elements are located in a building, their position, their dimensions, etc. Or a
path guidance application, which can use the connection between spaces to compute the
closest path between two spaces. This type of application could be use in, for example,
hospitals or even for disaster-evacuation guidance.

6.2.1.2/ DYNAMIC CQS

In contrast to the static CQs, the answer of the dynamic CQs might change over time,
according to the data sent by the SCN.

In Table 4.1, the CQs 20 to 41 are dynamic, and as it can be observed, they concern
mostly the building usage information, i.e., what is happening (or happened) in the build-
ing at a precise time.

Therefore, the evaluation of the dynamic CQs will be performed at different timestamps,
as shown in Fig. 6.6. Furthermore, the space-time graph presented in the figure summa-
rizes the building usage during the whole video set, thus it will be used as ground truth,
i.e., the results of the queries below should be compared to the information in the graph.

Let us start by answering two important questions: CQ27: how many people are in a
space? and CQ28: is a space empty/occupied? Listing 6.9 presents the query for
getting the number of people in each space. The query first gets all the PersonInSpace
instances which are open (Lines 3-5) and which are not noise (Line 6), then it group them
by each space (Line 7) and finally count them (Line 1). This query does not the reasoner
and its execution takes around 20 ms. Listing 6.10 presents the query for getting the
spaces which are occupied. The query uses the boolean property isOccupied, which is
deduced by the rule stating that: if a zone/space contains a person then that zone/space
is occupied (Rule 6 presented in Listing 4.6). This query requires the reasoner and its
execution time is around 143 ms. Furthermore, the query in Listing 6.9 will be referred as
the heatmap-query, because it gives the occupancy map of people in the spaces.

Table 6.5 presents the results after performing both queries (one after the other) at each
timestamps. All the results are correct. For example, at timestamp t2, the query in List-
ing 6.9 returns that there is 1 person in space_1 and 1 person in space_3, similarly,
the query in Listing 6.10 returns that space_1 and space_3 are occupied. The spaces
which are not returned as results are consider empty, thus with 0 people in them. Notice
that, at timestamp t4 there is one person located in space_3 which is not visible by any
camera, however the system is able to deduce that the person is still in the space, due to
its last detection was not made around a door, i.e., the person has not left the space thus

6.2. SYSTEM EVALUATION 131

Listing 6.9 – SPARQL query for getting the number of people in each space (CQ27). This query
is referred as heatmap query.

1 SELECT ?spaces (COUNT (?x) AS ?numberOfPeople)
2 WHERE{
3 ?x rdf:type wisenet:PersonInSpace;
4 event:place ?spaces;
5 wisenet:isEventOpen "true"^^xsd:boolean;
6 wisenet:isNoise "false"^^xsd:boolean.
7 } GROUP BY ?spaces

Listing 6.10 – SPARQL query for getting the spaces which are occupied (CQ28).

1 SELECT ?spaces
2 WHERE {
3 ?spaces wisenet:isOccupied "true"^^xsd:boolean.
4 }

its PersonInSpace event is open.

The following questions CQ34: what is the most visited space in the building? and
CQ37: how many people entered a space in a period of time?, can be answered
by slightly modifying the heatmap-query, as shown in the accumulated heatmap-query
presented in Listing 6.11. In contrast to the heatmap-query which counts the number of
people that are in each space at a precise time, the accumulated heatmap-query counts
the number of people that have been in each space until a precise time. Where the word
until refers to a period of time, that is why is consider as accumulated. This is done
by considering both open and closed PersonInSpace instances. This query does not
required the reasoner and its execution time is around 18 ms. Table 6.6 shows the results
after performing the accumulated heatmap-query at different timestamps. All the results
are correct. Notice that before t1, 1 person has already been in space_1 and 2 people
have been in space_2 (see Fig. 6.6). Thus, when executing the query at t1, 2 more
people are in space_1 which makes a total of 3 people that have been in the space_1.
Similarly, at t5, the 2 people re-enter the space_1 thus resulting in 5 people that have
been in space_1; and until the same time, 2 people have been in space_2 and 2 in
space_3. Finally, if we re-consider the questions and by looking the results, we can state
that at each timestamp the space_1 is the most visited space, and until t7, 5 people have
been there. Furthermore, the most visited space could also be directly obtained from the
query by adding the line "ORDER BY DESC(?numberOfPeople) LIMIT 1", which will
order the result in a descending order according to the number of people and it will return
only the first result (i.e., the one with more people), the line should be added after Line 6.

Listing 6.12 presents the space-time query used to obtain the tracks for each person,
i.e., the time they enter and left each space. The query gets all the PersonInSpace
instances which are not noise (Lines 3-4), and then gets all the information related to the
event, such as the people involved in them, their location, the time the event started and
the time it ended (Lines 5-10). Finally, the results are order according to their starting time
(Line 11). This query requires the reasoner to deduce that multiple Person instances are
the same if they are related by the owl:sameAs property, consequently for each person
we will get a single ID instead of multiple IDs. The execution time of the query is around

132 CHAPTER 6. DATASET AND EVALUATIONS

Table 6.5 – Heatmap results - Number of people in the spaces at different timestamps.
The cells in gray represent the spaces which are occupied at each timestamp.

t1 t2 t3 t4 t5 t6 t7
space_1 2 1 0 0 2 1 0
space_2 0 0 0 0 0 1 2
space_3 0 1 2 2 0 0 0
space_4 0 0 0 0 0 0 0
space_5 0 0 0 0 0 0 0
space_6 0 0 0 0 0 0 0

Table 6.6 – Accumulated heatmap results - Number of people that are and have been in
the spaces at different timestamps.

t1 t2 t3 t4 t5 t6 t7
space_1 3 3 3 3 5 5 5
space_2 2 2 2 2 2 3 4
space_3 0 1 2 2 2 2 2
space_4 0 0 0 0 0 0 0
space_5 0 0 0 0 0 0 0
space_6 0 0 0 0 0 0 0

220 ms.

The resulting table of the space-time query can be represented in a graphical way as
shown in Figure 6.7. Where each horizontal line is a tracklet, i.e., a PersonInSpace
instance which relates a Person with a Space during a period of time; and the set
of tracklets from the same person (e.g., all the blue lines) is a track. Notice that if a
PersonInSpace is open, then its end is plotted with a circle (see the last two tracklets in
Fig. 6.7). Moreover, the people IDs are high—18 and 24—because multiple people have
been created. Some are considered as "noise", thus, they are ignored, and others have
been related and the reasoner just considers the latest ID of Person instance.

The space-time graph in Fig. 6.7 allows to answer many CQs, such as:

• CQ23: where is a person located? For example, at t6 it can be observed that
Person_24 (which corresponds to Person_2 in Fig. 6.5) is located at space_1,
while at t7 is located at space_2.

• CQ24: where was a person in the last few minutes? For example, at t6 it can be
stated that Person_24 has been in space_1 and space_3, for the last minute.

• CQ25: For how long a person has been in a space? For example, it can be stated
that Person_18 was in space_3 around 34 seconds, from 12:15:54 to 12:16:28.

• CQ26: where were all the people at a specific time? For example, at t1 it can
be observed that both people are located at space_1, while at t4, both people are
locate at space_3.

• CQ31: at what time does a person entered/left a space? For example, it can be
observed that Person_24 entered the space_3 at 12:15:56 and left it at 12:16:27.
Notice that the person is considered in the space even thought is occluded for
around 10 seconds.

6.2. SYSTEM EVALUATION 133

Listing 6.11 – SPARQL query for getting the number of people that enter each space. This
query is referred as accumulated heatmap-query.

1 SELECT ?spaces (COUNT (?x) AS ?numberOfPeople)
2 WHERE{
3 ?x rdf:type wisenet:PersonInSpace;
4 event:place ?spaces;
5 wisenet:isNoise "false"^^xsd:boolean.
6 } GROUP BY ?spaces

Listing 6.12 – SPARQL query for getting time each person enter and left the spaces. This query
is referred as space-time query.

1 SELECT ?person ?place ?start ?end ?isopen
2 WHERE {
3 ?events rdf:type wisenet:PersonInSpace;
4 wisenet:isNoise "false"^^xsd:boolean;
5 event:agent ?person;
6 event:place ?place;
7 wisenet:isEventOpen ?isopen;
8 event:time ?interval.
9 ?interval time:hasBeginning/time:inXSDDateTimeStamp ?start.

10 ?interval time:hasEnd/time:inXSDDateTimeStamp ?end.
11 } ORDER BY ?start

s
p
a
c
e
_1

s
p
a
c
e
_2

s
p
a
c
e
_3

SET_3

Figure 6.7 – Space-time graph obtained by executing the space-time query (Listing 6.12)
few seconds after t7.

134 CHAPTER 6. DATASET AND EVALUATIONS

Listing 6.13 – SPARQL query for getting the number of times a person has passed/used each
door.

1 SELECT ?door (COUNT (?detections) AS ?usage)
2 WHERE{
3 ?events rdf:type wisenet:PersonInSpace;
4 wisenet:isNoise "false"^^xsd:boolean;
5 event:sub_event ?detections;
6 event:time/time:hasBeginning ?timeInstant.
7 ?detections event:time ?timeInstant;
8 wisenet:inRegionOfInterest/wisenet:represents ?door.
9 ?door rdf:type wisenet:Door.

10 } GROUP BY ?door

• CQ33: where does a person stayed the longest time? For example, consider
the Person_18, if the question is asked at timestamps t1, t2, t3 or t4 the answered
will be space_2, however if it is asked at timestamps t5, t6 or t7 the answered will
be space_3.

• CQ36: at what time there are more people in a space? For example, it can be
stated that there are more people in space_3 from 12:15:56 to 12:16:27.

The resulting space-time graph presented in Fig. 6.7, is similar to the one presented in
Fig. 6.6, however the latter one was obtained manually, without any detections just by
looking the videos (i.e., it is a ground truth), while the former one was obtained after
automatically passing each camera’s detection through the WiseNET system and then
executing the space-time query. Furthermore, some differences can be observed in the
degree of overlap between tracklets. A quantitative comparison between the ground truth
and the resulting space-time graphs will be presented in Section 6.2.2.

Finally, the question CQ35: which is the most used door in the building?, can be
answered by executing the query presented in Listing 6.13. When a person cross a
door from one space to another, many detections are performed but (normally) only one
PersonInSpace event is created. Therefore, the door usage is determined by counting
the number of PersonInSpace events that stareted around a door. This is done by
getting all the PersonInSpace instances which are not noise (Lines 3-4), then getting
their first detections (Lines 5-7) and checking if they were made around a door (Lines 8-
9). Finally, the number of detections are counted (Line 1) and grouped by doors (Line 10).
This query requires the reasoner and it takes around 220 ms to be executed. The results
of executing the query at the different timestamps are presented in Table 6.7. From the
table it can be observed that, from t1 to t2 the door_2 was the most used, from t3 to
t4 it was the door_2 and door_3, while from t5 to t7 the door_4 was the most used.
Notice that is possible to automatically obtain only the door most used at each timestamp
by adding the following line "ORDER BY DESC(?usage) LIMIT 1", at the end of the
query.

As presented in this section, the system is able to correctly answer all the CQs con-
cerning the building usage. Furthermore, the proposed formalism for defining the
dynamic CQs allow to interaction with an smart building, and to monitor what is
happening in real-time. Moreover, the semantic-based system enables the smart build-
ing to understand what is happening inside itself without any human interaction. One
important example, is the deduction that somebody is still present in a space even if no-

6.2. SYSTEM EVALUATION 135

Table 6.7 – Door usage at different timestamps. The cells in gray show the most used
door at each timestamp.

t1 t2 t3 t4 t5 t6 t7
door_1 0 0 0 0 0 0 0
door_2 2 2 2 2 2 2 3
door_3 1 1 1 1 1 2 2
door_4 0 1 2 2 4 4 4
door_5 0 0 0 0 0 0 0
door_6 0 0 0 0 0 0 0
door_7 0 0 0 0 0 0 0

body is detected by any camera (person occluded). This type of deduction shows how
our semantic-based system overcomes a big limitation of computer vision systems
—they only know what they observe—by using contextual information and logic
rules.

The CQs presented in this section can be used for many smart building applications.
For example, it can be used for maintenance, where is important to know the usage of
the different building elements (e.g., spaces, doors), to plan their cleaning or changing.
They can also be used for smart light control, where the building will automatically turn
on/off light according to the person’s presence in spaces. However, the application we
are more interested in is the Intelligent Video Surveillance (IVS), which consist in helping
the building managers to know (monitoring) what is happening in the environment. For
example, by using the heatmap, accumulated heatmap and spac-time query, the system
is able to count how many people are/have been in the building, where are the people
now, where they have been, etc.

The following section will present the monitor unit, which is an IVS application that ease
the monitoring task by graphically showing the results of some CQs.

6.2.1.3/ MONITOR UNIT

The monitor unit is in charge of presenting the status of the WiseNET system in an in-
tuitive form, thus helping the monitoring and management of a built environment. The
monitor unit is an user interface, designed thinking on the building managers which (most
probably) may not be fluent with information technology, thus, they might not know how
to create and execute SPARQL queries.

The main task of the monitor unit is to automatically execute each 2 seconds the heatmap-
query (Listing 6.9), the accumulated heatmap-query (Listing 6.11) and the space-time
query (Listing 6.12) in order to present in real-time what is happening in real-time. More-
over, it presents the query results in a graphical manner as shown in Fig 6.8. The exam-
ples shown in the figure were obtained at around t7.

The three views—heatmap, accumulated heatmap and space-time graph—combine the
contextual information of the environment with the environment usage and present the
results in graphical and intuitive way. Moreover, these views can be very useful for people
in charge of monitoring a built environment. For example, if somebody wants to know the
position of the people in the building in real-time or where a person was some time before,

136 CHAPTER 6. DATASET AND EVALUATIONS

Heatmap

space_1

space_2 space_3

Accumulated heatmap

space_2 space_3

space_1

sp
a
ce

_1
sp

a
ce

_2
sp

a
ce

_3

SET_3

Space-time graph

Monitor Unit

 People count:

0 1 2 3 4

Predefined CQs

CQ2

CQ3

CQ28

 People count:

0 1 2 3 4

Figure 6.8 – Components of the monitor unit. The heatmap shows the number of people
in each space at a given time. The accumulated heatmap shows the number of people
that have been in each space. The space-time graph shows the location of people with
respect to time. The Competency Questions (CQs) are a set of predefined SPARQL
queries that can be executed at any time.

they just need to observe the heatmap or the space-time graph, instead of looking all the
camera screens. Another example, if somebody would like to schedule cleaning task,
they could look the accumulated heatmap to avoid cleaning spaces which have not been
visited. Furthermore, these views protect the privacy of the building users, due to the
people monitoring the environment do not need to observe the images from the cameras.

The monitor unit also collects a set of predefined SPARQL queries, that allow to answer
some CQs presented previously. The queries are present in a graphical interface where
the user just needs to press a button to execute them. In this way, users can easily
execute queries even if they do not have any knowledge about SPARQL.

As a summary, the monitor unit is an interface of the WiseNET system. The main objective
of the monitor unit ease the human-machine interaction. Specifically, the Artificial Intel-
ligence (AI) behind the monitor unit, creates semantic links between the different
data and extracts only the pertinent information. Then, the extracted information is
presented in an intuitive way to the users, in order to reduce their cognitive load.
By enabling this, we can conclude that the WiseNET system is an IVS system.

Moreover, the monitor unit presents many advantages, such as ease the building moni-
toring, visualizing in real-time what is happening in the environment, and protecting the
private life of building users by not showing any image.

6.2. SYSTEM EVALUATION 137

An interface showing the heatmap, the accumulated heatmap and the space-time graph
can be found at http://wisenet.checksem.fr/#/monitor. While an interface showing the pre-
defined SPARQL queries can be found at http://wisenet.checksem.fr/#/query.

6.2.2/ TRACKING WITH SEMANTICS - EVALUATION

In this section, we will measure the performance of our semantic-based system in tracking
people. As stated in Chapter 2, people tracking is an important task in computer vision,
especially for surveillance applications. People tracking consists of automatically assign-
ing an Unique Identifier (ID) to multiple-people and maintaining it through time while they
move through multiple-space and appeared in multiple-cameras. This specific task is also
known as Multi-target, Multi-Camera (MTMC) tracking.

The tracking evaluation consists in comparing the ground truth and computed tracks. To
better understand what we will evaluate, Fig. 6.9, presents the manually obtained people
tracks of video set 3. In contrast, (b) presents the people tracks generated after passing
the set of detections through the WiseNET system.

To better understand the tracking evaluation, let us consider Fig. 6.9. The people space-
time tracks presented in (a) were obtained manually, by looking directly the video set 3. In
contrast, the people tracks presented in (b) were generated automatically, after passing
a set of detections through the WiseNET system. Therefore, the goal of the tracking
evaluation, is to measure "how good" are the tracks computed by the WiseNET system,
based on the real people tracks (i.e., the manually obtained/ground truth ones). The
evaluation consist in firstly deciding the best match between the computed tracks and
the ground truth tracks. In this example, the computed track of Person_18 should be
match to the ground truth track of Person_1, and the track of Person_24 with the track
of Person_2. Once the match is done, then every frame in which the ground truth tracks
are assigned to a wrong computed track will be consider as an error. More details will be
presented below.

TRACKING METRICS

There exits two types of metrics used to for evaluating the performance of MTMC trackers:

• Event-base metrics: focus on how often a tracker makes wrong decisions. This
type of metrics help to pinpoint the source of some errors. The well-known CLEAR
MOT metrics are an example of this measurements [11]. These metrics measures
the performance by considering the number of track’s fragmentation (i.e., if a tracker
switches/changes the identity), tracks merging (i.e, if two tracks with different iden-
tity are merged into a single one, is the opposite of fragmentation), and track mis-
match (i.e., the total number of wrong decisions, that is the sum of fragmentations
and merging).

• Identity-based metrics: focus on how well a tracker can determine who is where at
all times. This type of metrics are more interested in the preservation of identities,
thus they evaluate how well computed identities conform to true identities, while
disregarding where or why mistakes occur. These types of metrics were introduced
recently by Ristani et al. in [146].

http://wisenet.checksem.fr/#/monitor
http://wisenet.checksem.fr/#/query

138 CHAPTER 6. DATASET AND EVALUATIONS

s
p
a
c
e
_1

s
p
a
c
e
_2

s
p
a
c
e
_3

Person_1 Person_2

(a) Ground truth tracks

s
p
a
c
e
_
1

s
p
a
c
e
_
2

s
p
a
c
e
_
3

(b) Computed tracks

Figure 6.9 – Comparison of ground truth tracks (a) and computed tracks (b) of video set
3.

To observe the difference between the two types of metrics, we will considered the sce-
nario abstractly presented in Fig 6.10, which was taken from [146]:

In the scenario, airport security is following suspect A spotted in the airport
lobby. They need to choose between two trackers, (a) and (b). Both tag the
suspect as identity 1 and track him up to the security checkpoint. System (a)
makes a single mistake at the checkpoint and henceforth tags the suspect
as identity 2, so it loses the suspect at the checkpoint. After the checkpoint,
system (b) repeatedly flips the tags for suspect A between 1 and 2, thereby
giving police the correct location of the suspect several times also between the
checkpoint and the gate, and for a greater overall fraction of the time. Even
though system (a) incurs only one ID switch, airport security is likely to prefer
system (b), which reports the suspect’s position longer—multiple ID switches
notwithstanding—and ultimately leads to his arrest at the gate.

6.2. SYSTEM EVALUATION 139

Figure 6.10 – Comparison of two trackers (a) and (b). There is one true identity A (thick
line, with time in the horizontal direction), a tracker may mistakenly compute identities 1
and 2 (thin lines) broken into two fragments (a) or into eight (b). Identity 1 covers 67% of
the true identity’s trajectory in (a) and 83% of it in (b). The figure was taken and adapted
from [146].

In the presented scenario, event-based metrics charge one fragmentation error to (a)
and 7 to (b), thus (a) is considered a much better tracker than (b). In the other hand,
identity-based metrics charge 33% of the length of A as tracking error to (a) and 17% to
(b), thus (b) is considered a better tracker than (a). Moreover, as stated in [146], there
is no one type of metric better than the other, but rather each of them serve different
purposes. Thus, the choice of metrics depends on what needs to be measured and on
the desired application. Consequently, based on our Intelligent Video Surveillance
(IVS) application, where we are interested in knowing the position of people at all
time, we decided to use the identity-based metrics to measure the performance of
our system.

The identity-based metrics use a truth-to-result matching criterion to measure the perfor-
mance not by how often mismatches occur, but by how long the tracker correctly identifies
the targets [146]. Where truth are the ground truth tracks and result are the computed
tracks.

As observed in Fig 6.10, the key mistake made by the trackers is to see two identities
where there is one. To quantify the extent of the mistake, we need to decide which
of the two computed identities we should match with A for the purpose of performance
evaluation. Once that choice is made, every frame in which A is assigned to the wrong
computed identity is a frame in which the tracker is in error. In both cases in Fig 6.10, the
most favorable choice is to tie A to 1, because this choice explains the largest fraction of
A. Once this choice is made, we measure the number of frames over which the tracker is
wrong—in the example, the number of frames of A that are not matched to 1. In Fig 6.10,
this measure makes (b) better than (a). This penalty is consistent because it reflects
precisely what the choice made above maximizes, namely, the number of frames over
which the tracker is correct about who is where. In (a) the tracker matches ground truth
67% of the time, and in (b) it matches it 83% of the time [146].

To compute the optimal truth-to-result match, we constructed and solved a bipartite graph
as shown in [146]. Roughly, the procedure is as follows. First, consider a set of true tracks
VT , which has a track τ ∈ VT ; and a set of computed tracks VC, which has a computed
track γ ∈ VC. Then, two tracks have a match cost e ∈ E if their trajectories overlap in time,
where E is the set of matching costs.

The cost of the matching (τ, γ) ∈ E tallies the number of false negative and false positive
frames that would be incurred if that match were chosen as correct. Specifically, let τ(t) be
the the sequence of detections for true track τ, one detection for each frame t in the set Tτ
over which τ extends, and define γ(t) for t ∈ Tγ similarly for computed trajectories [146].

140 CHAPTER 6. DATASET AND EVALUATIONS

The two simultaneous detections τ(t) and γ(t) are a consider as miss if they do not overlap
in the space, and is written as

m(τ, γ, t,∆) = 1 . (6.1)

While, if there is no miss, is written as

m(τ, γ, t,∆) = 0 . (6.2)

Where ∆ is the overlapping threshold between detections. For example, it can be the
minimum overlapping area between the detections bounding boxes, or the minimum dis-
tance between the detections coordinates. However, in our particular case ∆ is not used,
because we consider a lower space resolution, meaning that we declare a miss if the
detections are not performed in the same space location.

With this definition, the cost of matching (τ, γ ∈ E) is defined as follows:

c(τ, γ,∆) =
∑
τ∈Tτ

m(τ, γ, t,∆)︸ ︷︷ ︸
False Negative

+
∑
τ∈Tγ

m(τ, γ, t,∆)

︸ ︷︷ ︸
False Positive

. (6.3)

Where the first part of the equation measures the number of misses by considering the
detections in the true track, i.e., the false negatives. While the second part measures the
number of misses by considering the detections in the computed track, i.e., the number
of false positives. Finally, one-to-one matching between the true and computed tracks
are obtained by determining a minimum-cost solution that minimizes the cumulative false
negative and false positive errors [146].

Every (τ, γ) match is a True Positive ID (IDT P). Every γ without a match is a False Positive
ID (IDFP). And every τ without a match is a False Negative ID (IDFN). In general not
every trajectory is matched. The sets MT = {τ|(τ, γ) ∈ IDT P} and MC = {γ|(τ, γ) ∈ IDT P}
contain the matched ground truth tracks and matched computed tracks, respectively. The
pairs in IDT P can be viewed as a bijection between MT and MC. In other words, the
bipartite match implies functions γ = γm(τ) from MT to MC and τ = τm(γ) from MC to
MT [146].

Finally, the counts of IDFN, IDFP and IDT P, will be used to compute the Identification
Precision (IDP), the Identification Recall (IDR), and the corresponding F1 score (IDF1),
as follows:

IDFN =
∑
τ∈MT

∑
t∈Tτ

m(τ, γm(τ), t,∆) (6.4)

IDFP =
∑
γ∈MC

∑
t∈Tγ

m(τm(γ), γ, t,∆) (6.5)

IDT P =
∑
τ∈MT

len(τ) − IDFN =
∑
γ∈MC

len(γ) − IDFP (6.6)

IDP =
IDT P

IDT P + IDFP
(6.7)

6.2. SYSTEM EVALUATION 141

IDR =
IDT P

IDT P + IDFN
(6.8)

IDF1 =
2 IDT P

2 IDT P + IDFP + IDFN
(6.9)

Identification precision (recall) is the fraction of computed (ground truth) detections that
are correctly identified. While, Identification F1 score is the ratio of correctly identified de-
tections over the average number of ground truth and computed detections [146]. There-
fore, we will use these three metrics to evaluate the tracking performance of our system.

RESULTS AND DISCUSSION

To perform the evaluations, we modified a Matlab6 implementation of the metrics devel-
oped by the authors Ristani et al. [146].

The evaluations were performed on each video set of the WiseNET dataset. For each
video set the people tracking manual annotations are considered as the ground truth
tracks (see Section 6.1.2). While the computed tracks are obtained after passing the
people detection manual annotations through the dynamic population process presented
in Section 5.3. Furthermore, the evaluations are performed after inserting the complete
contextual information, i.e., the information of the I3M environment and the general infor-
mation of the camera nodes.

The videos of the dataset are quite challenging, they have sudden changes in light condi-
tions, people suddenly appearing/disappearing from the camera’s field of view, people are
partially observed, different view-point variations, large distance between the target and
the cameras, etc. The WiseNET tracking results on each video set are presented in Ta-
ble 6.8. For the three metrics, a high value is better. In general, the results show that the
WiseNET system manage to successfully track people while they moved through
different spaces. Specially, the system presents high results in video sets 1, 2, 3, 4,
8, and 9. In these video sets, there are people which are seated throughout the set and
people which are moving, alone or in groups of two, through multiple spaces. These video
sets present standard indoor scenarios, which are considered by the WiseNET system.
However, the rest of the video sets, present some scenarios which were not considered
during the system design, thus, they are interesting for discussion:

• The video sets 5 and 11, are the most challenging video sets in the dataset. There
are 14 and 15 people moving as a group through multiple spaces. Both video
sets start by all people going out from a blind space. A situation which was not
considered in the WiseNET system, thus those people tracks were missed. This
translate in a high count of IDFN, thus resulting in a low value of IDR. Moreover,
throughout the video sets there are multiple occlusions due to people being in front
of others, which resulted in multiple fragmentations of people tracks and multiple
tracks which were missed. This translate in a high count of IDFP and IDFN, thus
resulting in low values of IDP and IDR.

6https://www.mathworks.com/products/matlab.html

https://www.mathworks.com/products/matlab.html

142 CHAPTER 6. DATASET AND EVALUATIONS

Table 6.8 – Tracking results on each video set, using identity-base metrics.

IDP ↑ IDR ↑ IDF1 ↑

Set 1 97.97 100.00 98.97
Set 2 96.12 99.30 97.69
Set 3 93.21 100.00 96.49
Set 4 97.90 99.07 98.48
Set 5 73.89 56.85 64.26
Set 6 100.00 86.82 92.95
Set 7 100.00 82.75 90.56
Set 8 98.64 97.63 98.13
Set 9 99.97 99.19 99.58
Set 10 92.57 88.24 90.35
Set 11 73.98 54.68 62.88

• Before starting the video set 6, there were two people which were not visible by
any camera. And they become visible after some time. In the ground truth, those
people were considered inside the space, through the whole video set. However,
it is impossible for the WiseNET system to know what happened before the video
set. Thus, it only considered those people when they appeared in the cameras. As
a result the system "missed" a part of the tracks (IDFN), which had an impact in its
IDR value. Moreover, each generated people track had a correct match in ground
truth, resulting in perfect IDP value.

• Similarly to video set 6, in video set 7, there was one person in a blind space
before starting the recording, and it stayed there for around 80% of the time. It was
impossible for the WiseNET system to know that there was somebody inside a blind
space, thus it "missed" a part of its track, which had a negative impact in its IDR
value.

• In video set 10, there is one person which enters to a blind space, stays there some
time, and then go out of it. This situation of "somebody leaving a blind space" was
not considered in our system, thus, (1) the person track is always considered in the
blind space, and (2) a new person track is created when it re-enters the non-blind
space. Both actions, translate in high IDFP count, which results in lowering the IDP
value. Furthermore, a person is also not visible at the beginning of the video, thus
impacting in the IDR value.

To conclude, people tracking using semantic information is possible and gives promising
results. The WiseNET system allow to know the location of people even if they are not
visible by any camera. However, if the scenarios of the video sets were not consider in
the system (e.g., people going out of a blind space), then the performance decreases.

Video sets 5 and 11 test the system’s limitation by their complexity. However, to test
further the limitations, the next section will evaluate the influence of using real people
detections, instead of the manual ones used in this section.

6.3. PEOPLE DETECTOR IMPACT 143

6.3/ PEOPLE DETECTOR IMPACT

The WiseNET system is independent of the method used to obtained the people detec-
tions. In the previous section, we evaluated the system performance by using the people
detections obtained manually (referred as PD-MAN in Section 6.1.2). Instead, in this
section we will evaluate the system by using automatically generated people detections,
obtained by using real people detector models.

The use of real people detectors aims to: (1) propose an alternative to the time consuming
manual annotation task, (2) to evaluate the complexity of each video (in terms of difficulty
to detect people) by using state-of-art people detectors (Section 6.3.1), and (3) to evaluate
the influence of the people detections in the WiseNET system (Section 6.3.2).

The automatic people detection (PD-AUT) annotations were obtained by passing each
video frame through a set of pre-trained people detector models. This resulted in a set of
automatically generated Bboxes, that (ideally) represent people. We used three off-the-
shelf detector models, the well-known Histogram of Oriented Gradients (HOG_SVM) [42],
as well as two state-of-the-art CNN-based models: Single Shot Detector (SSD) [103], and
the You-Only-Look-Once version 3 (YOLOv3) [142].

The HOG_SVM detector is based on HOG feature descriptors and Support Vector Ma-
chine (SVM) in order to detect people [42]. We used the implementation provided by
the OpenCV library.7 We chose this detector due to its popularity in the computer vision
community and its low complexity, which results in a reduced processing time.

The SSD is a one-stage detector that extracts the feature map of the complete image,
then applies a sequence of multi-scale convolutional layers and anchor boxes in or-
der to classify the different regions of the feature map [103]. We used the pre-trained
model—configuration and weights—provided by the authors.8 Specifically, we used the
model with input image size of 512 × 512, thus, we will referred to it as SSD_512. This
model was first trained on the COCO dataset (Common Objects in Context)9 and then
fine-tune on the union of PASCAL VOC2007 and VOC2012 dataset.10 We chose this
detector model due to it’s high precision as presented in [103].

The YOLOv3 uses a single neural network that predicts Bboxes and class proba-
bilities directly from full images. We used the pre-trained model—configuration and
weights—provided by the authors.11 Specifically, we used the model with size 608 ×
608, thus, we will referred to it as YOLOv3_608. This model was trained on the COCO
dataset. We chose this detector model due its high precision and low inference time [142],
which are two crucial factors for a real-time surveillance system.

For the SSD and YOLO detectors, only the person class was considered, i.e., the rest of
objects were simply ignored. More details on each detector can be found in the people
detection background presented in Section 2.3.1.

A software was developed that takes the different detectors and videos, and automati-
cally generates files similar to Listing 6.1, where the value of the imageProcessing field
is the name of the detector —HOG_SVM, SSD_512 or YOLOv3_608. Thus, for each

7https://docs.opencv.org/3.4.1/d5/d33/structcv_1_1HOGDescriptor.html
8https://github.com/chuanqi305/ssd
9http://cocodataset.org/

10http://host.robots.ox.ac.uk/pascal/VOC/
11https://github.com/pjreddie/darknet/blob/master/cfg/yolov3.cfg

https://docs.opencv.org/3.4.1/d5/d33/structcv_1_1HOGDescriptor.html
https://github.com/chuanqi305/ssd
http://cocodataset.org/
http://host.robots.ox.ac.uk/pascal/VOC/
https://github.com/pjreddie/darknet/blob/master/cfg/yolov3.cfg

144 CHAPTER 6. DATASET AND EVALUATIONS

video in the dataset there are four people detection files, one obtained by manually
detecting people (PD-MAN), and three obtained by automatically detecting people
(PD-AUT) using the HOG_SVM, SSD_512 and YOLOv3_608 detectors. The software
that plugs-in the detectors was developed in Python using OpenCV library, and the code
is provided in the WiseNET dataset. Moreover, the automatic detections were obtained
using a machine with the following configuration: Intel Core i7-4790 CPU @3.6GHz × 4,
16GB of RAM and a "Java Heap" size set to 200MB.

6.3.1/ COMPARISON OF DETECTORS

The choice of detectors differs in complexity and robustness, which we consider an inter-
esting evaluation factor for the WiseNET system. Therefore, we will evaluate the perfor-
mance of the three automatic detectors—HOG_SVM, SSD_512 and YOLOv3_608—with
respect to the manual annotations, which are considered as the ground truth. This eval-
uation allows to (1) compare the different detectors methods, (2) to validate the usability
and quality of the WiseNET dataset, and to (3) evaluate the complexity of each video in
terms of their difficulty to detect people.

To carry out the evaluation, a matching value needs to be obtained between the resulting
Bboxes (coming from a PD-AUT method) and the ground truth Bboxes (coming from the
PD-MAN). The possible outcomes of a match are:

• True positive (T P), a person Bbox is present in the ground truth and in the PD-AUT
annotations (also called correct detection).

• False positive (FP), a person Bbox is present in the PD-AUT annotations, but is not
present in the ground truth (also called false alarm).

• False negative (FN), a person Bbox is present in the ground truth, but is not present
in the PD-AUT annotations (also called missed detection).

• True negative (T N), a person is not present in the ground truth, neither in the PD-
AUT annotations.

The matching value depends of the overlapping between pairs of Bboxes. In a few words,
if there are two Bboxes, one coming from the PD-MAN annotations (Bman) and the other
one from the PD-AUT annotations (Baut), the measure of Intersection Over Union (IOU)
between their areas is defined as,

IOU =
area(Bman ∩ Baut)
area(Bman ∪ Baut)

. (6.10)

Consequently, the matching between Bman and Baut is defined as a TP or FP depending
on the IOU value and an overlapping threshold IOUTh, as follows:

matching(Bman, Baut) =

T P if IOU ≥ IOUTh

FP if IOU ≤ IOUTh
(6.11)

After having the matching value for each pair of Bboxes, the performance of the detector
is evaluated by computing different metrics. The metrics used for the evaluation were

6.3. PEOPLE DETECTOR IMPACT 145

the standard Precision/Recall curve and the Average Precision. These are well-known
metrics proposed by the Pascal VOC challenge [52]. To determine these metrics, the
detector’s precision and recall values need to be computed. Precision is the fraction of
detected items that are correct, and is defined as:

Precision =
T P

T P + FP
(6.12)

Recall is the fraction of items that were correctly detected among all the items that should
have been detected, and is defined as:

Recall =
T P

T P + FN
(6.13)

Furthermore, the confidence of each detection also needs to be considered. Confidence
is the detector’s belief in the correctness of the detection.

The Precision/Recall curve (PR-curve) is obtained by ordering the detector’s results
in a descending manner according to their confidence value, and then computing and
plotting the accumulated precision and recall values. A detector is considered good if
its precision stays high as the recall increases, meaning that if you vary the confidence
threshold the precision and recall will stay high. In the other hand, poor detectors will
start with high precision value but will decrease as the recall increases.

To compare different PR-curves (detectors) in the same plot is not an easy task, due to
the curves tend to cross each other frequently. Thus, a "summary" of the curve will better
for comparing.

The Average Precision (AP) is a numerical metric that simplifies the comparison be-
tween different detectors. AP is obtained by computing the area under the PR-curve, i.e.,
averaging the precision across all recall values between 0 and 1. The AP value goes from
0 to 1, where higher is better.

Both metrics—PR-curve and AP—depends on a IOU threshold (IOUTh) that determines
if a detected instance is a correct or false detection. The Pascal VOC Challenge [52],
proposes to set the threshold to 50%. However, the MS Common Objects in Context
(COCO) challenge [100] proposes to compute the AP using different thresholds, for ex-
ample from 50% to 95%, and then to compute an average of the resulting APs to provide
a single number as result. We decided to set the IOUTh threshold at 50%, because in this
way we take into account the inaccuracies in the manually annotated bounding boxes, as
stated in [52].

To perform the evaluations, we used the Python implementation of the metrics available
on-line.12

The evaluations were performed for each video in the dataset. For exemplification,
Fig. 6.11 presents the resulting PR-curves of the three detector on the video set 3. As
previously stated, it is difficult to compare the detectors by observing the curves, thus we
will focus on the AP metric. The AP values were computed from each PR-curve. Fig-
ure 6.12 presents the comparison of the resulting APs for all the videos. Notice that there
are some videos without detections (i.e., nobody appeared in the camera’s view), thus
they were ignored during the evaluation (e.g., the videos from camera 6 in sets 5-11).

Figure 6.13 presents the mean AP per detector. As it can be observed YOLOv3_608
has a better performance followed by the SSD_512, and in the last place HOG_SVM.

12https://github.com/rafaelpadilla/Object-Detection-Metrics

146 CHAPTER 6. DATASET AND EVALUATIONS

YOLOv3_608 has a median AP of around 0.8, and half of the AP values are between 0.6
and 1, which is overall good performance. In the other hand, HOG_SVM has a median
AP of around 0.1, and most of its AP values (around 75%) are lower than 0.4.

The detectors can also be compared by the number of Frames Process per Second
(FPS). The HOG_SVM has around 20 FPS, YOLOv3_608 around 1.4 FPS, and SSD_512
around 1.1 FPS. Thus, it can be conclude that deep-learning models —YOLOv3_608 and
SSD_512—are more complex, thus they required more time to process a frame, than the
machine learning one (HOG_SVM).

Furthermore, from the AP results, it is complicated to evaluate the difficulty/challenge
degree of each video in the dataset. A statistical analysis should be performed to make
conclusions about this (which is left as future work). However, it can observed that video
sets 2 and 4 are the less challenging ones, while video set 5 is the most challenging
one. Moreover, it can be observed that people detection in cameras 2 and 4 are more
challenging than in camera 3.

Finally, it is important to notice that the results presented in this section strongly depend
on the quality of the ground truth (PD-MAN annotations), which was done by multiple
humans, thus is prompt to subjectivity and errors. Furthermore, to obtain the PD-MAN
annotations is a time-consuming task. In contrast, automatic annotations (PD-AUT) are
not subjective and they can be performed almost without human intervention. Moreover,
the results of YOLOv3_608 and SSD_512 are very promising just by using them off-the-
shelf, which can be enough for many applications. But if a fine-tuning step using an
small amount of data is performed, the results would be much better. Therefore, for all
those reasons we believe that ideal ground truth detections could be obtained by
fine-tunning a deep-learning model (e.g., YOLOv3) in an specific scenario. This will
required much less time and lower human resources, than doing all the annotations
manually.

6.3.2/ INFLUENCE OF DETECTORS IN THE WISENET SYSTEM

After evaluating each detector independently, we will evaluate the performance of the
WiseNET using the different detectors. The evaluation will consists on (1) obtaining the
number of people at different timestamps, as presented in the Dynamic CQs section
(6.2.1.2), and (2) checking the people tracking performance of the system, as presented
in the Tracking with Semantics section (6.2.2). Notice that we will not consider the Static
CQs because their answers do not depend on detections performed, thus the type of
detector used has no influence on them.

The output of the automatic detectors is a set of Bboxes (Baut). However, there are some
parameters that need to be defined in order to use them in the WiseNET system:

• Visual descriptors: any type of visual features could be use to describe the de-
tection Bbox. We decided to use the combination of Hue-Saturation (HS) and Red-
Green-Blue (RGB) color histograms. This choice was done due to, as presented
in Section 2.3.1, color information is widely used and is considered as the most
important feature for describing people detections [61, 65, 91, 101, 107, 114, 186].
Furthermore, the HS color channels are considered as the most discriminative cues
given the illumination changes. The visual descriptor is composed of 128 features,
64 from the HS histogram and 64 from the RGB. In this way, both color histograms

6.3. PEOPLE DETECTOR IMPACT 147

have the same weight.

• Distance metric: to determine the correspondence/similarity between two vi-
sual descriptors, a distance metrics needs to be defined. We decided to use
the unsupervised Bhattacharyya distance metric. As presented in Section 2.3.1,
for histogram-based features the Bhattacharyya distance is the most used met-
ric [28, 65, 54]. The Bhattacharyya distance dB, between two visual descriptors P
and Q is defined as,

dB = −ln
n∑

i=1

√
PiQi , (6.14)

where n is the total number of features in the descriptor (in our case 128). Moreover,
a distance threshold was empirically set to 50%.

Afterwards, for each detector and for each video set, the dynamic population process is
performed.

PEOPLE PRESENCE EVALUATION

The first evaluation consists in determining the people presence by using the heatmap-
query. As presented in the Dynamic CQs section, the goal of this evaluation is to observe
if the system is able to deduce the correct number of people in each space, at different
times. As done previously, the video set 3 will be used for this evaluation, along with the
timestamps. Table 6.9 presents the results of the heatmap-query for each detector. From
the results, it can be observed that:

• At space_1, the WiseNET system using YOLOv3_608 and SSD_512 detectors,
correctly answered the question at (mostly) all times. However, the use of HOG_-
SVM detector resulted in wrong answers. Mostly, due to a merge in a people tracks
(it considered mostly one person in all the set) and a constant false detection due
to a particular light reflection.

• At space_2, the system using YOLOv3_608 and SSD_512 returned a wrong an-
swered at t6. These detectors were able to detect people before entering the
space_2 (few time before t6), which resulted in more time to consider that a person
entered the space. However, at t7 they answered correctly. In contrast, HOG_-
SVM was not able to perform detections before t6 (the detections were too small for
HOG_SVM to detect them), which resulted in a faster consideration that a person
was in space_2.

• At space_3, the WiseNET system using YOLOv3_608 and SSD_512 detectors,
correctly answered the question at (mostly) all times. At t2 and t5, YOLOv3_608 took
a bit longer during the transition between spaces, thus resulting in wrong answers.
Moreover, notice that at t4 the system was able to understand that the person was
still in the space, even if it was not detected from some seconds. In the other
hand, HOG_SVM merged both people tracks, thus resulting in a single person in
the space.

148 CHAPTER 6. DATASET AND EVALUATIONS

Table 6.9 – Heatmap results using different detectors. The results were obtained using
video set 3. The spaces 4, 5 and 6 where omitted since no person was presence on them
throughout the set.

Detector t1 t2 t3 t4 t5 t6 t7

space_1

ground_truth 2 1 0 0 2 1 0
HOG_SVM 1 1 1 1 1 1 1
YOLOv3_608 2 1 0 0 2 1 0
SSD_512 1 1 0 0 1 1 0

space_2

ground_truth 0 0 0 0 0 1 2
HOG_SVM 0 0 0 0 0 1 2
YOLOv3_608 0 0 0 0 0 0 2
SSD_512 0 0 0 0 0 0 2

space_3

ground_truth 0 1 2 2 0 0 0
HOG_SVM 0 0 1 1 1 0 0
YOLOv3_608 0 0 2 2 1 0 0
SSD_512 0 1 2 2 0 0 0

From this evaluation it can be concluded that the WiseNET system using the YOLOv3_-
608 and SSD_512 detectors, were able to correctly deduce the presence of people at
different times. Moreover, the results of HOG_SVM were not as good as the rest. This
could be due to its low detection rate, specially in the space_1 (see set 3-cam1-2 in
Fig 6.12).

PEOPLE TRACKING EVALUATION

The second evaluation consists in measuring the tracking performance of the WiseNET
using the different detectors. The evaluation process is the same as followed in the
Section 6.2.2. Table 6.10 presents the results obtained using the different detectors.
From the results, it can observed that:

• The system using HOG_SVM presents in all video sets a better IDP value in com-
pare to the IDR. Meaning that most of the tracks generated were correct but it
misses many of them. For example, in sets 6, 7, 8 and 9, it obtained an a perfect
IDP values and a low IDR value, thus resulting in a low IDF1 value. Moreover, by
considering the low detection rate of HOG_SVM (see Fig. 6.12), we expected to
have a low IDR value.

• The system using the YOLOv3_608 presents, mostly good results, meaning that
it manage to correctly track people. In sets 1, 5 and 11, the IDR values are quite
low, which could also be expected by observing the Fig. 6.12. Furthermore, the
IDP values of sets 5 and 11 are quite low, this was also expected due to the high
complexity of the video sets.

• The system using the SSD_512 presents, in general, good results. Similarly to the
previous case, the IDR values are quite low for sets 1, 5 and 11; as well as the IDP
for sets 5 and 11.

From the results, it can be concluded that is very important to have multiple metrics
during a comparison, specially one that balance different factors/metrics, in our

6.3. PEOPLE DETECTOR IMPACT 149

case the IDF1 metric. For example, consider sets 6, 7, 8 and 9, if just the IDP metric
will be considered, then HOG_SVM will have the better performance, which is by far not
the case. Also, consider sets 9 and 10, where HOG_SVM has the best IDP, YOLOv3_-
608 has the best IDR, and SSD_512 has the best balance between both metrics thus
resulting in the best IDF1 value.

Also, we can conclude that people tracking using a semantic-based system with real
detectors is possible. This results allow to validate the proof of concept of our
system, which fusions the results of computer vision with contextual information.
However, the detector quality do have an influence on the performance of the system.
For example, YOLOv3_608 and SSD_512 are much better detectors than HOG_SVM,
and this difference can be also be seen in the results of the WiseNET system.

150 CHAPTER 6. DATASET AND EVALUATIONS

Table 6.10 – Tracking results using the different detectors. We highlighted in bold the best
result for each video set.

Detector IDP ↑ IDR ↑ IDF1 ↑

Set 1
HOG_SVM 51.39 10.28 17.13
YOLOv3_608 71.52 29.63 41.90
SSD_512 58.82 23.74 33.83

Set 2
HOG_SVM 64.17 53.40 58.29
YOLOv3_608 97.93 91.32 94.51
SSD_512 55.15 64.86 59.61

Set 3
HOG_SVM 49.62 6.52 11.52
YOLOv3_608 91.60 46.68 61.84
SSD_512 58.07 48.35 52.77

Set 4
HOG_SVM 45.65 6.40 11.23
YOLOv3_608 78.42 29.98 43.38
SSD_512 76.12 59.80 66.98

Set 5
HOG_SVM 32.27 3.17 5.78
YOLOv3_608 28.95 40.95 33.92
SSD_512 38.37 36.97 37.66

Set 6
HOG_SVM 100.00 16.67 28.57
YOLOv3_608 82.67 96.03 88.85
SSD_512 81.91 77.18 79.47

Set 7
HOG_SVM 100.00 4.95 9.43
YOLOv3_608 81.68 77.42 79.49
SSD_512 88.41 68.73 77.34

Set 8
HOG_SVM 100.00 28.03 43.79
YOLOv3_608 74.33 69.33 71.74
SSD_512 80.65 72.18 76.18

Set 9
HOG_SVM 100.00 21.70 35.66
YOLOv3_608 72.62 89.94 80.35
SSD_512 92.39 88.24 90.26

Set 10
HOG_SVM 90.43 71.41 79.58
YOLOv3_608 57.94 92.07 71.12
SSD_512 71.67 91.79 80.49

Set 11
HOG_SVM 56.36 23.82 33.49
YOLOv3_608 36.56 37.25 36.90
SSD_512 39.95 33.84 36.64

6.3. PEOPLE DETECTOR IMPACT 151

(a) Cam 1 - HOG_SVM (b) Cam 1 - YOLOv3_608 (c) Cam 1 - SSD_512

(d) Cam 2 - HOG_SVM (e) Cam 2 - YOLOv3_608 (f) Cam 2 - SSD_512

(g) Cam 3 - HOG_SVM (h) Cam 3 - YOLOv3_608 (i) Cam 3 - SSD_512

(j) Cam 4 - HOG_SVM (k) Cam 4 - YOLOv3_608 (l) Cam 4 - SSD_512

(m) Cam 5 - HOG_SVM (n) Cam 5 - YOLOv3_608 (o) Cam 5 - SSD_512

Figure 6.11 – Precision/Recall curves for each camera video (rows) in set 3 obtained
using HOG_SVM, YOLOv3_608 and SSD_512 detectors (each column, respectively).

152 CHAPTER 6. DATASET AND EVALUATIONS

Figure 6.12 – Average Precision (AP) comparison of HOG_SVM (in blue), YOLOv3_608
(in green) and SSD_512 (in red) people detectors, in all the video sets. The videos without
detections were ignored, thus no result is shown.

6.3. PEOPLE DETECTOR IMPACT 153

Figure 6.13 – Mean Average Precision (AP) of HOG_SVM (in blue), YOLOv3_608 (in
green) and SSD_512 (in red) people detectors.

154 CHAPTER 6. DATASET AND EVALUATIONS

6.4/ CONCLUSION

In this section we presented different evaluations of the WiseNET system, as well as a
dataset which was created for the evaluation.

The WiseNET dataset, consists of three main elements: (1) video sets, (2) information
of the environment and (3) annotations for people detection and people tracking. To
our knowledge, the WiseNET dataset is the only multi-camera multi-space dataset that
provides the complete environment and contextual information. Moreover, the WiseNET
dataset is a contribution to the computer vision community, due to its large panel of appli-
cations, such as, people detection, re-identification, tracking, human-action recognition,
office object detections, etc.

The first WiseNET evaluation, consisted in checking if the system could correctly answer
the question it was designed for. The questions concerned the built environment, the sen-
sors deployed in it and building usage. These type of questions allow to interact with an
smart building and to monitor in real-time what is happening. Due to the semantic nature
of the system, the questions were defined using the SPARQL formalism. This formalism
allows to interact and extract information from the ontology and perform reasoning.

The system was able to correctly answered all the questions, due to the semantic-links
between the information populated and the predefined human-skills rules. The questions
used during the evaluation, open the door of many applications, specially for building
managers. For example, they could be used to tell: the number of spaces (elements)
in a storey (space); which doors should be used to go from one space to another (this
could be used for firemen); to determine that maximum number of people is not exceeded
(people count); a what time there is more people in a space; the flow of people; count the
number of times a door is used, to schedule its maintenance; etc. All those applications
can be performed while protecting the private life of the building users, by not sending any
image. Furthermore, a monitor unit was developed, to agglomerate multiple services. The
monitor unit is an intuitive interface designed for building managers and technicians who
may not be fluent with information technology.

The second evaluation, consisted in checking the performance of the semantic-base sys-
tem in tracking people. The evaluation was done using identity-based metrics, which
measure how long the system was able to correctly track the identities of people. This
type of metrics fits the Intelligent Video Surveillance (IVS) application where we are inter-
ested in knowing the position of people at all times. Furthermore, with this type of metrics,
we can make use of the previously obtained space-time graphs.

The system presented was able to correctly track people while they moved through dif-
ferent spaces. In most of the video sets, the results were very good. Specifically, the
results were near perfect in video sets 1, 2, 3, 4, 8 and 9, which presented scenarios that
are common in indoor environments. However, there were some uncommon situations
(where state-of-art computer vision algorithms struggle) that were not considered during
the system design, thus, resulting in some incorrect results. Situations such as, high
number of people (in some videos 14) moving together, multiple and constant occlusions
due to people clutter, people going out from blind spaces. Also, there are some situations
which were impossible for the system to know, for example, the presence of people in
blind spaces before starting the recording. The advantage of the semantic-based system
is that it allows to easily pinpoint the sources of errors and, if required, modify the system
accordingly.

6.4. CONCLUSION 155

From the previous evaluations, it can be concluded that, the semantic combination of data
coming from a smart camera network with the data of the environment, allows to a smart
building to reason by itself, by using a formalism easy to understand by humans. Making it
a "real" smart building. The combination of knowledge allows a dialog and interventions of
building managers by executing queries. Moreover, the addition of contextual information
to what the cameras observe, allows to overcome computer vision problems, specifically
the occlusion problem that occurs when a persons goes outside the field of view of a
camera.

The limitation of the system were also evaluated, specifically the influence of the quality of
detections. Our goal was not to improve people detectors or to develop a new deep learn-
ing architecture. Our goal was to develop a framework independent of the people detector
model. Therefore, we decided to use off-the-shelf people detectors methods and insert
them into our system, kind of a plug-and-play. A comparison between the different off-the-
shelf methods was presented before evaluating their influence in the system. From the
tree people detectors tested, the deep-learning based models —YOLO and SSD–present
much better detection performance compared to the feature based one–HOG. Further-
more, YOLO has a better capacity of performing small detections, which results in a higher
detection rate compared to SSD. Also, something that was noticed during the experimen-
tations, was that the deep-learning models presented (almost) none false detections, in
contrast to the feature based models. However, the HOG is much faster compared to the
other two, this is might be due to the higher complexity of deep-leaning models.

From the results obtained using the different detectors, it can be concluded that the sys-
tem is able to answered some general questions concerning the building usage, for ex-
ample the number of people in a space. However, the system present some problems
in tracking and keeping the identity of people. This is mainly due to the re-identification
task, which depends on the type of visual descriptors use. Thus, suggesting that a more
robust visual descriptor should be used. Also, some tracking errors—specifically us-
ing HOG—are due to the low detection frequency and the presence of false detection.
Furthermore, to determine the influence of the visual descriptors, more tests should be
performed using different features and distance metrics.

Finally, it can be concluded that the quality of the people detectors has an influence on
the result of the system. Even with low quality detectors (e.g., HOG) the system is able
to answer correctly most of the questions related to the building usage. The choice of
detectors could be guided by the computing resources available, the processing time or
the required accuracy of results.

7
CONCLUSIONS AND FUTURE WORK

Currently, the most common application of a Visual Sensor Network (VSN) deployed in
a smart building, is video surveillance. However, as the size of the network increases,
it is almost impossible for a human operator to monitor what is happening in real-time.
Furthermore, the images observed by the operator lack of contextual information, which
in a built environment is an important factor to understand what is happening and to take
decisions. In this context, we proposed semantic-based (symbolic AI) system, that com-
bines the information coming from a VSN with contextual information of the environment.
The proposed system enables semantic interoperability between multiple and heteroge-
neous sources of information by using an ontology model. Furthermore, the semantic-
based system was created using human-knowledge, thus allowing a direct understanding
and control of the decision process. In addition, the proposed system could be interro-
gated using a human understandable language, thus bridging the human-AI language
gap. Consequently, new smart services are proposed, which ease the tasks of building
managers. The final question concerning the combination of both types of AI—symbolic
and non-symbolic—is still left open, however, we took the first steps to answer it.

In Chapter 2, we discussed about the Visual Sensor Networks (VSN), Intelligent Video
Surveillance (IVS), Smart Cameras (SC) and computer vision. As concluded in this chap-
ter, the most prominent way of achieving the IVS vision is by using Smart Cameras to
capture high-level descriptions of a scene and analyze them in real-time by employing
different computer vision methods. Specially, people detection and tracking are key tasks
for most IVS systems. Furthermore, as presented in the state-of-the-art, the person de-
tection problem is almost solved, specially by considering the results of deep-leaning
based models. However, one important consideration is that the accuracy of the detec-
tors depends highly on the resources available—processing resources (hardware) and
data for training. Furthermore, one main drawback of current people tracking methods is
the disregard of semantic contextual information which can be very useful for an IVS sys-
tem. Consequently, we consider that an IVS system deployed in a smart building should
be aware of its context to automatically adapt its functionality according to the contextual
changes.

Chapter 3 introduces the notions of context and context-aware system in the built environ-
ment, as well as, the ontology world. As discussed in this chapter, a way of obtaining the
contextual information concerning the building’s structure, is by using the Industry Foun-
dation Classes (IFC) file that represents the environment’s Building Information Modeling
(BIM) data. From the IFC/BIM, it could be extracted some pertinent contextual informa-
tion, such as the structure of the environment, it’s topology and the elements contained
in it. Furthermore, a smart system deployed in a built environment requires an agent that

157

158 CHAPTER 7. CONCLUSIONS AND FUTURE WORK

(1) will be able to represent the multiple and heterogeneous contextual information and
that (2) will enable interoperability between different sources of information. As conclude
in this chapter, an ontology agent fulfills both requirements. This is due to the inherent
semantic fusion feature, which consists in integrating and organizing data and knowledge
coming from multiple heterogeneous sources and to unify them into a consistent repre-
sentation (i.e., enables interoperability). Furthermore, it was concluded that, an ontology
representation of BIM is the only one to be machine understandable due to its formal
semantic representation. Thus, it allows the inference of knowledge from existing infor-
mation. This is an important feature in smart applications were machines should be able
to automatically process and understand the information.

The creation of a context-aware system in the built environment is a complex task; it
requires information from different domains such as environment data, sensing devices,
spatio-temporal facts and details about the different events that may occur. Our research
efforts to combine and integrate those heterogeneous data sources have led to the devel-
opment of a semantic-based AI framework, called WiseNET. The main goals of WiseNET
are to enhance what sensors "observe" by considering contextual information, and to
provide a set of services to the building managers to ease their work by fusing pertinent
information. In this work, we focused on visual sensors, however, the WiseNET system
was designed in a generic manner, meaning that it does not depend on the type of envi-
ronment, sensor or process procedure.

Chapter 4 presented the methodology followed to develop the core element of the
semantic-based framework, the ontology. The WiseNET ontology is responsible for (1)
describing the different kinds of information presented in the system and (2) enabling
interoperability between them. The interoperability between heterogeneous sources of
information is performed in a semantic level, i.e., a set of terms are defined which bridge
the heterogeneous sources. Furthermore, one key step of the ontology development pro-
cess, is to reuse external ontologies (already defined). This presents important advan-
tages, such as saving time by not "reinventing the wheel" and using mature and proved
ontological resources that have been validated by their applications and by the W3C.
In addition, the ontology allows the inclusion of human-skill knowledge, in the form of
semantic rules defined using a human understandable language. As concluded in this
chapter, the resulting WiseNET ontology allows the description of information concerning
an IVS context-aware system. This ontology model is human and machine understand-
able, and allows the inference of information relating the sensor network, the environment
and the building usage.

Chapter 5, presented the different procedures developed to automatically populate data
into the semantic model. Ontologies are normally used in static systems, were informa-
tion is not changing over time. Therefore, we developed an innovative method to con-
stantly insert data into an ontology, by using an Application Programming Interface (API)
bridge between the data sources and the ontology. The API uses multiple semantic web
technologies which enable the interaction with the ontology. Furthermore, the insertion
procedures were divided in two types: static population and dynamic population.

The static population consisted in inserting into an ontology the knowledge that (normally)
stays unchangeable, such as information of the environment and the calibration informa-
tion of a sensor network. The proposed static population process automatically extracts
pertinent information from an IFC/BIM file and insert it into the WiseNET ontology. The
IFC/BIM was used as input due to it contains the required environment information and

159

they are becoming a standard in the architecture and construction communities. How-
ever, the process does not depend on the IFC/BIM, since it was designed in a modular
and generic way. For example, if the IFC/BIM file is not available (which is the case for
most of old buildings), the environment knowledge can still be inserted using our process
by manually executing the population query.

The dynamic population consisted in inserting into the ontology the knowledge that should
be inserted frequently (i.e., multiple times), such as sensor data. The dynamic population
process automatically extracts structures and inserts the data observed by each camera
node and insert it into the WiseNET ontology. The dynamic population process is divided
into knowledge extraction and processing. The knowledge extraction consists in acquir-
ing the image and performing a computer vision methods in it, to give some knowledge to
(understand) what the camera is observing (e.g., people detection). The knowledge pro-
cessing consists in representing the extracted knowledge using the vocabulary defined
in the ontology, then inserting it according to the current and previous information in the
system. The latter step is performed by following a domain dedicated process. Based on
the IVS application, the process focus on creating people in spaces and tracking them
while they move between spaces. Furthermore, the process uses the information if a
detection was made around a door, to determine if a person is entering/leaving a space,
and to ease the person re-identification between multiple cameras. Finally, regarding the
privacy protection, is important to remark that the system does not send or save any im-
age, just the knowledge of it is extracted. However, if required, the smart cameras used
could record.

After having defined the semantic-based framework and the process to automatically
populate it, Chapter 6 presented a dataset created for evaluating the system, as well
as the different evaluations procedures. As shown in this chapter, existing multi-camera
multi-space dataset does not include the complete information of the environment, thus,
to evaluate our system a new dataset had to be created. To our knowledge, the WiseNET
dataset is the first to provide a set videos along with the complete information of the en-
vironment. Moreover, the WiseNET dataset is a contribution to the computer vision com-
munity, due to its large panel of applications, such as, people detection, re-identification,
tracking, human-action recognition, office object detections, etc.

Two types of evaluations were performed, one qualitative that focus on answer some
questions of interest, and the second one a quantitative which focus on the performance
of our semantic-based system in a computer vision task. The first evaluation consisted
in verifying if the system satisfy its intent. This was done by checking if it is able to an-
swer some Competency Questions (CQs) concerning the built environment, the sensors
deployed in it and the building usage. As concluded in this chapter, the system is able
to correctly answered all the CQs. Furthermore, the proposed formalism for defining the
CQs allow to easily interrogate a smart building and to monitor what is happening in real-
time. Moreover, the semantic-based system enables the smart building to understand
what is happening inside itself without any human interaction. One important example
is the deduction that somebody is still present in a space even if nobody is detected by
any camera (person occluded). This type of deduction shows how our semantic-based
system overcomes a big limitation of computer vision systems—they only know what they
observe—by using contextual information and common sense rules. Furthermore, a mon-
itor unit interfaces is presented, which agglomerates a set of services to ease some tasks
of building managers. The services are based on the CQs which results are presented
in an graphical and intuitive manner. The propose services can help building managers

160 CHAPTER 7. CONCLUSIONS AND FUTURE WORK

to: interrogate the system about information of the building structure and the elements
contained in it; to ease the building monitoring; to visualizing in real-time what the flow of
people; and to protecting the private life of building users by not showing any image.

The second evaluation consisted in checking the performance of the semantic-base sys-
tem in tracking people. The evaluation was done using identity-based metrics, because
we considered that is the most appropriate for people tracking application. In general,
the results showed that the WiseNET system manage to successfully track people while
they moved through different spaces, specially in standard indoor scenarios (i.e., people
seated and people moving, alone or in groups of two). However, there were some uncom-
mon scenarios that were not considered during the system design, thus, resulting in some
incorrect results. Specifically, scenarios such as, high number of people moving together
(14-15 people), multiple and constant occlusions due to people clutter, people going out
from blind spaces. Thus, it can be concluded that, the advantage of the semantic-based
AI system is that it allows to easily pinpoint the sources of errors and, if required, modify
the system accordingly. However, the disadvantage is that all the situations that needs
to be considered, they have to be "manually" inserted into the system, they cannot be
generalized as in non-symbolic AI systems.

From the previous evaluations, it can be concluded that, the semantic combination of
data coming from a smart camera network with the data of the environment, allows a
smart building to reason by itself, by using a formalism easy to understand by humans.
Making it a "real" smart building. Moreover, the addition of contextual information to
what the cameras observe, allows to overcome computer vision problems, specifically
the occlusion problem that occurs when a persons goes outside the field of view of a
camera. Furthermore, the proposed semantic-based framework allows to dialog with the
smart building by executing queries.

The previous evaluations validate the proof of concept of our semantic-base system.
However, we decided to go further by evaluating the influence of using real people de-
tectors, obtained from non-symbolic AI. This type of evaluation allow us to observe some
limits of our system. The results of this evaluation showed that the performance of the
system depends on the quality of people detections, however, even with a low quality de-
tector the system was able, to some extend, to correctly answer some CQs and to track
people. Moreover, further evaluations and test should be performed to clearly determine
the influence of the detection process in the semantic-based framework, and how this
influence could be decreased. However, this is a first approach of combining both types
of AIs—non-symbolic and symbolic—in a distributed way. Thus, it can be considered as
a distributed intelligence system, where the non-symbolic AI is used to do what it does
the best, which is detection, while the symbolic AI (which is based on human knowledge)
is used in a higher level, to control what is happening in the system.

Many different adaptations, test, and experiments have been left as future work. For
example, experiments could be performed considering different types of sensors (e.g.,
temperature, motion) and actuators, in this way, the reasoning of the smart building could
influence the environment. In the same line, some test could be be performed where the
using the system to re-configure the smart camera process according to different situa-
tions. Furthermore, a deeper analysis could be performed to concerning the influence
of people detection, specifically, different parameters could be tested, such as different
visual descriptors (e.g., SIFT, SURF), number of features, different metrics (e.g., cosine
distance, chebyshev distance), and the use of feature improvements (e.g., background

161

suppression, stripping). Also, to determine which is the most challenging camera in the
dataset an statistical study should be performed, this could be interesting for understand-
ing the problems of camera installations. Furthermore, a qualitative analysis could be
done on the advantages of using the monitor unit. In addition, the system could be tested
in real-time, without using recorded videos, to test the system in a real scenario. Finally,
deeper analysis could be performed to in the axis of combining both non-symbolic and
symbolic AI in a smart building application.

Finally, the presented work opens the doors of a plethora of applications, specially in the
smart building domain. For example, the presented CQs could be used for: maintenance
scheduling, where is important to know the usage of the different building elements (e.g.,
spaces, doors); smart light control, where the building will automatically turn on/off light
according to the person’s location in a space, not only if a person is moving (like most
current "smart" light systems); people counting, where building could control if the number
of people is appropriate to the space limitations; path guidance, the system could control
if a user takes the correct path and reaches his final destination; and fire evacuation, in
the case of a fire, the system could guide the people to different exits, as well as, the
heatmap could be used to firemen to know the number of people and their location in the
building. In addition, accurately knowing the occupancy of the spaces and their usage,
could be very useful in optimizing building operations, such as energy saving policies.

8
AUTHOR’S PUBLICATIONS

INTERNATIONAL JOURNALS

[a] R. Marroquin, J. Dubois, and C. Nicolle. WiseNET: An indoor multi-camera multi-
space dataset with contextual information and annotations for people detection and
tracking. Data in Brief, 104654, oct 2019.

[b] R. Marroquin, J. Dubois, and C. Nicolle. Ontology for a Panoptes building:
Exploiting contextual information and a smart camera network. Semantic Web,
9(6):803–828, sep 2018.

INTERNATIONAL CONFERENCES AND WORKSHOPS

[i] R. Marroquin, J. Dubois, and C. Nicolle. Know beyond seeing : combining com-
puter vision with semantic reasoning. In Proceedings of the12th IEEE International
Conference on Semantic Computing (ICSC), pages 310–311, 2018.

[ii] R. Marroquin, J. Dubois, and C. Nicolle. Multiple Ontology Binding in a Smart Build-
ing Environment. In Proceedings of the Workshop on Linked Data in Architecture
and Construction (LDAC), 2017.

[iii] R. Marroquin, J. Dubois, and C. Nicolle. PhD forum: WiseNET - Smart camera
network interacting with a semantic model. In Proceedings of the 10th International
Conference on Distributed Smart Cameras (ICDSC), pages 224–225, 2016. (Best
paper price)

[iv] R. Marroquin, J. Dubois, and C. Nicolle. WiseNET: smart camera network com-
bined with ontological reasoning for smart building management. In 5th Workshop
on Architecture of Smart Cameras (WASC), 2016.

[v] J. Dubois, A. Moinet, S. Bobbia, R. Marroquin, B. Heyrman, P. Bonazza, B. Darties,
C. Nicolle, Y. Benezeth, J. Mitéran, D. Ginhacet. WiseEye: A Platform to Manage
and Experiment on Smart Camera Networks. In 5th Workshop on Architecture of
Smart Cameras (WASC), 2016.

163

164 CHAPTER 8. AUTHOR’S PUBLICATIONS

NATIONAL CONFERENCES AND WORKSHOPS

[I] R. Marroquin, J. Dubois, and C. Nicolle. Savoir au dela de voir: vision artificielle et
raisonnement logique. In Proceedings of Conference sur l’Extraction et la Gestion
de Connaissances (EGC), pages 385–386, 2018.

[II] R. Marroquin, J. Dubois, and C. Nicolle. Supervision et respects de la vie
privée, l’enjeu ethique des interfaces de visualisation. In Atelier VIF: Visualisation
d’informations, Interaction, et Fouille de données - In Conference sur l’Extraction et
la Gestion de Connaissances (EGC), pages 385–386, 2018.

Appendices

165

A
WISENET ONTOLOGY SPECIFICATION

167

WiseNET ontology general information

Release date:

2019-03-20

This version:

http://ontology.wisenet.checksem.fr/

Previous version:

3.1

Revision:

3.2

Authors:

Roberto Marroquin (mailto:robertomarrok@gmail.com)

License:

Abstract

The Wised-NETwork (WiseNET) ontology provides a formal model that aggregates, analysis and

re-purposing the information coming from a network of smart cameras, deployed in a built

environment. The WiseNET ontology incorporates a vast corpus of concepts in the domain of an

intelligent video surveillance systems. The main functions of the WiseNET ontology are to enable

interoperability between the heterogeneous data and to deduce implicit facts from the explicit ones.

Thus, allowing to answer queries about the building usage and to perform real-time event/anomaly

detection.

For more information and a better visualization of the WiseNET ontology we refer readers to the

ontology http://ontology.wisenet.checksem.fr/ .

WiseNET: Overview

This ontology has the following classes and properties.

Classes

Agent Alarm Bounding

box

Building Building

element

Detection Door Event Field of

view

Image

processing

algorithm

Instant

event

Interval

event

Person Person

detection

Person in

space

Procedure Region of

interest

Sensor Smart

camera

Space

Spatial

thing

Storey Temporal

entity

Time

duration

Time instant

Time

interval

Zone

Object Properties

adjacent

zone

after agent agent in appears in

before contains

element

contains

person

contains

zone

factor

factor of has alarm has

beginning

has bounding

box

has

duration

has element has end has FOV has nearby

sensor

has space

has storey has time hosts implemented

by

implements

in region of

interest

is FOV of is hosted

by

is observed

by

is related

to

is sub event

of

made by

sensor

observes overlaps person

location

place represents shows sub-event time

Data Properties

dimension in XSD Date-

Time-Stamp

ip

address

is entry

violation

is event

open

is intruder is noise is

occluded

is occupied is

restricted

max

capacity

number of

people

numeric

value of

temporal

duration

start

recording

triggered

by intruder

triggered

by

maxCapacity

visual

descriptors

xywh

Cross reference for WiseNET classes, properties and

dataproperties

This section provides details for each class and property defined by WiseNET. Notice that the

definitions of the external terms were taken directly from the original ontologies.

Legend
c: Classes
op: Object Properties
dp: Data Properties
ni: Named Individuals

Classes

Agentc

IRI: http://xmlns.com/foaf/0.1/Agent

The Agent class is the class of agents; things that do stuff. A well known sub-class is Person,

representing people. Other kinds of agents include Organization and Group.

has sub-classes

Person c

is in domain of

agent in op

is in range of

agent op

Alarmc

IRI: http://ontology.wisenet.checksem.fr#Alarm

Signal used to aware of the presence of an undesired situation.

has super-classes

has time op some Temporal entity c

is in domain of

triggered by intruder dp, triggered by maxCapacity dp

is in range of

has alarm op

Bounding boxc

IRI: http://ontology.wisenet.checksem.fr#BoundingBox

Rectangular box, defined by the coordinates of the top left point, its width and its height.

It can be used to defined a region of interest, a detection, etc.

has sub-classes

Region of interest c

is in domain of

xywh dp

is in range of

has bounding box op

Buildingc

IRI: https://w3id.org/bot#Building

An independent unit of the built environment with a characteristic spatial structure, intended to

serve at least one function or user activity [ISO 12006-2:2013].

has super-classes

Zone c

is disjoint with

Space c, Storey c

Building elementc

IRI: https://w3id.org/bot#Element

Constituent of a construction entity with a characteristic technical function, form or position

[12006-2, 3.4.7].

has sub-classes

Door c, Sensor c

is in range of

contains element op, has element op, represents op

is disjoint with

Zone c

Detectionc

IRI: http://ontology.wisenet.checksem.fr#Detection

An event identifiying the presence of something in a specific point in the time/space.

has super-classes

Instant event c

has bounding box op some Bounding Box c

in region of interest op some Region of interest c

is in domain of

is entry violation. dp

Doorc

IRI: http://ontology.wisenet.checksem.fr#Door

A hinged, sliding, or revolving barrier at the entrance to a space.

has super-classes

Building element c

Eventc

IRI: http://purl.org/NET/c4dm/event.owl#Event

An arbitrary classification of a space/time region, by a cognitive agent. An event may have actively

participating agents, passive factors, products, and a location in space/time.

is equivalent to

Instant event c or Interval event c

has sub-classes

Instant event c, Interval event c

is in domain of

agent op, factor op, is noise dp, is sub event of op, made by sensor op, place op, sub-event op,

time op

is in range of

agent in op, factor of op, is sub event of op, sub-event op

Field of viewc

IRI: http://ontology.wisenet.checksem.fr#FieldOfView

Observable area of the world. A field of view may shows different elements of the world such as

people, cars, doors, etc.

has super-classes

shows op some Region of interest c

shows op some Person c

is in domain of

is FOV of op, overlaps op, shows op

is in range of

appears in op, has FOV op, overlaps op

Image processing algorithmc

IRI: http://ontology.wisenet.checksem.fr#ImageAlgorithm

Algorithms used to process images.

has super-classes

Procedure c

has sub-classes

Person detection c

Instant eventc

IRI: http://ontology.wisenet.checksem.fr#InstantEvent

An event that occurs at a precise instant in time.

has super-classes

Event c

is sub event of op only Interval event c

time op only Time instant c

has sub-classes

Detection c

Interval eventc

IRI: http://ontology.wisenet.checksem.fr#IntervalEvent

An event that occurs in a time interval.

has super-classes

Event c

sub-event op only Instant event c

time op only Time interval c

has sub-classes

Person in space c

is in domain of

is related to op

is in range of

is related to op

Personc

IRI: http://xmlns.com/foaf/0.1/Person

The Person class represents people. Something is a Person if it is a person. We don't nitpic about

whether they're alive, dead, real, or imaginary. The Person class is a sub-class of the Agent class,

since all people are considered 'agents' in FOAF.

has super-classes

Agent c

is in domain of

is intruder dp, is occluded dp, person location op, visual descriptors dp

is in range of

contains person op

Person detectionc

IRI: http://ontology.wisenet.checksem.fr#PersonDetection

Image processing algorithms that focus on localizing and classifying people in images. Person

detection is a particular case of object detection algorithms.

has super-classes

Image processing algorithm c

has members

ground truth ni, HOG_SVM ni, SSD ni, YOLOv3 ni

Person in spacec

IRI: http://ontology.wisenet.checksem.fr#PersonInSpace

Container of detections relating a specific person with a specific space during a period of time.

has super-classes

Interval event c

is in domain of

is event open dp

Procedurec

IRI: http://www.w3.org/ns/sosa/Procedure

A workflow, protocol, plan, algorithm, or computational method specifying how to make an

Observation, create a Sample, or make a change to the state of the world (via an Actuator). A

Procedure is re-usable, and might be involved in many Observations, Samplings, or Actuations. It

explains the steps to be carried out to arrive at reproducible results.

Example
The measured wind speed differs depending on the height of the sensor

above the surface, e.g., due to friction. Consequently, procedures for

measuring wind speed define a standard height for anemometers above

ground, typically 10m for meteorological measures and 2m in

Agrometeorology. This definition of height, sensor placement, and so forth

are defined by the Procedure.

has sub-classes

Image processing algorithm c

is in domain of

implemented by op

is in range of

implements op

Region of interestc

IRI: http://ontology.wisenet.checksem.fr#RegionOfInterest

Abstract region of interest (ROI), defined by a bounding box. Normally, there are some ROIs in

the field of view of a camera.

has super-classes

Bounding Box c

is in domain of

represents op

is in range of

in region of interest op

Sensorc

IRI: http://www.w3.org/ns/sosa/Sensor

Device, agent (including humans), or software (simulation) involved in, or implementing, a

Procedure. Sensors respond to a stimulus, e.g., a change in the environment, or input data

composed from the results of prior Observations, and generate a Result. Sensors can be hosted by

Platforms.

Example
Accelerometers, gyroscopes, barometers, magnetometers, and so forth are

Sensors that are typically mounted on a modern smart phone (which acts as

Platform). Other examples of sensors include the human eyes.

has super-classes

Building element c

has sub-classes

Smart camera c

is in domain of

has nearby sensor op, implements op, ip address dp, is hosted by op

is in range of

has nearby sensor op, hosts op, implemented by op

Smart camerac

IRI: http://ontology.wisenet.checksem.fr#SmartCamera

Sensors which are capable of acquiring visual information and filtering/extracting the pertinent

information of the scene by implementing image processing algorithms.

A smart camera is a self-contained vision systems.

has super-classes

Sensor c

implements op some Image processing algorithm c

is in domain of

has FOV op, observes op, start recording dp

is in range of

is FOV of op, is observed by op, made by sensor op

Spacec

IRI: https://w3id.org/bot#Space

A limited three-dimensional extent defined physically or notionally [ISO 12006-2 (DIS 2013),

3.4.3].

has super-classes

Zone c

is in domain of

contains element op, hosts op

is in range of

has space op, is hosted by op

is disjoint with

Building c, Storey c

Spatial thingc

IRI: http://www.w3.org/2003/01/geo/wgs84_pos#SpatialThing

Anything with spatial extent, i.e. size, shape, or position. e.g. people, places, bowling balls, as

well as abstract areas like cubes.

has sub-classes

Zone c

is in range of

place op

Storeyc

IRI: https://w3id.org/bot#Storey

A level part of a building.

has super-classes

Zone c

is in range of

has storey op

is disjoint with

Building c, Space c

Temporal entityc

IRI: http://www.w3.org/2006/time#TemporalEntity

A temporal interval or instant.

is equivalent to

Time instant c or Time interval c

has sub-classes

Time instant c, Time interval c

is in domain of

after op, before op, has beginning op, has end op

is in range of

after op, before op, has time op, time op

Time durationc

IRI: http://www.w3.org/2006/time#Duration

Duration of a temporal extent expressed as a number scaled by a temporal unit.

is in domain of

numeric value of temporal duration dp

is in range of

has duration op

Time instantc

IRI: http://www.w3.org/2006/time#Instant

A temporal entity with zero extent or duration.

has super-classes

Temporal entity c

is in domain of

in XSD Date-Time-Stamp dp

is in range of

has beginning op, has end op

Time intervalc

IRI: http://www.w3.org/2006/time#Interval

A temporal entity with an extent or duration.

has super-classes

Temporal entity c

is in domain of

has duration op

Zonec

IRI: https://w3id.org/bot#Zone

A spatial 3D division. Sub-classes of bot:Zones include bot:Site, bot:Building, bot:Storey, or

bot:Space. An instance of bot:Zone can contain other bot:Zone instances, making it possible to

group or subdivide zones. An instance of bot:Zone can be adjacent to other bot:Zone instances.

has super-classes

Spatial Thing c

has sub-classes

Building c, Space c, Storey c

is in domain of

adjacent zone op, contains person op, contains zone op, has alarm op, has element op,

has space op, has storey op, is occupied dp, is restricted dp, max capacity dp,

number of people dp

is in range of

adjacent zone op, contains zone op, person location op

is disjoint with

Building element c

Object Properties

adjacent zoneop

IRI: https://w3id.org/bot#adjacentZone

Relationship between two zones that share a common interface, but do not intersect.

has characteristics: symmetric

has domain

Zone c

has range

Zone c

afterop

IRI: http://www.w3.org/2006/time#after

Gives directionality to time. If a temporal entity T1 is after another temporal entity T2, then the

beginning of T1 is after the end of T2.

has domain

Temporal entity c

has range

Temporal entity c

is inverse of

before op

agentop

IRI: http://purl.org/NET/c4dm/event.owl#agent

Relates an event to an active agent (a person, a computer, ... :-)).

has domain

Event c

has range

Agent c

is inverse of

agent in op

agent inop

IRI: http://purl.org/NET/c4dm/event.owl#agent_in

has domain

Agent c

has range

Event c

is inverse of

agent op

appears inop

IRI: http://ontology.wisenet.checksem.fr#appearsIn

Property that defines that something is observed by a visual sensor.

Example
A door may appear in a camera's field of view.

has range

Field of view c

is inverse of

shows op

beforeop

IRI: http://www.w3.org/2006/time#before

Gives directionality to time. If a temporal entity T1 is before another temporal entity T2, then the

end of T1 is before the beginning of T2. Thus, "before" can be considered to be basic to instants

and derived for intervals.

has characteristics: transitive

has domain

Temporal entity c

has range

Temporal entity c

is inverse of

after op

contains elementop

IRI: https://w3id.org/bot#containsElement

Relation to a building element contained in a zone.

has super-properties

has element op

has sub-properties

hosts op

has domain

Space c

has range

Building element c

contains personop

IRI: http://ontology.wisenet.checksem.fr#containsPerson

Relation to people contained in a zone.

has domain

Zone c

has range

Person c

is inverse of

person location op

has sub-property chains

contains zone op o contains person op

contains zoneop

IRI: https://w3id.org/bot#containsZone

Relationship to the subzones of a major zone. A space zone could for instance be contained in a

storey zone which is further contained in a building zone. bot:containsZone is a transitive property

meaning that in the previous example the space zone would also be contained in the building zone.

has characteristics: transitive

has sub-properties

has space op, has storey op

has domain

Zone c

has range

Zone c

factorop

IRI: http://purl.org/NET/c4dm/event.owl#factor

Relates an event to a passive factor (a tool, an instrument, an abstract cause...).

has domain

Event c

is inverse of

factor of op

factor ofop

IRI: http://purl.org/NET/c4dm/event.owl#factor_of

has range

Event c

is inverse of

factor op

has alarmop

IRI: http://ontology.wisenet.checksem.fr#hasAlarm

Relation to an alarm and the zone it covers.

has domain

Zone c

has range

Alarm c

has beginningop

IRI: http://www.w3.org/2006/time#hasBeginning

Beginning of a temporal entity

has domain

Temporal entity c

has range

Time instant c

has bounding boxop

IRI: http://ontology.wisenet.checksem.fr#hasBoundingBox

Relation to a bounding box object.

Example
A detection was made in an area defined by a bounding box.

has range

Bounding Box c

has durationop

IRI: http://www.w3.org/2006/time#hasDuration

Duration of a temporal entity, expressed as a scaled value or nominal value.

has domain

Time interval c

has range

Time duration c

has elementop

IRI: https://w3id.org/bot#hasElement

Links a Zone to an Element that is either contained in or adjacent to, the Zone. The intended use

of this relationship is not to be stated explicitly, but to be inferred from its sub-properties. It will,

for example, allow one to query for all the doors of a building given that they have an adjacency

to spaces of the building.

has sub-properties

contains element op

has domain

Zone c

has range

Building element c

has sub-property chains

contains zone op o has element op

has endop

IRI: http://www.w3.org/2006/time#hasEnd

End of a temporal entity.

has domain

Temporal entity c

has range

Time instant c

has FOVop

IRI: http://ontology.wisenet.checksem.fr#hasFieldOfView

Relation between a visual sensor and its field of view.

has domain

Smart camera c

has range

Field of view c

is inverse of

is FOV of op

has nearby sensorop

IRI: http://ontology.wisenet.checksem.fr#hasNearbySensor

Relation between two sensors. Two sensors are considered nearby if: 1) they are located at the

same space, 2) if their FOV overlaps (for cameras).

has characteristics: symmetric

has domain

Sensor c

has range

Sensor c

has spaceop

IRI: https://w3id.org/bot#hasSpace

Relation to spaces contained in a zone. The typical domains of bot:hasSpace are instances of

bot:Storey and bot:Building.

has super-properties

contains zone op

has domain

Zone c

has range

Space c

has storeyop

IRI: https://w3id.org/bot#hasStorey

Relation to storeys contained in a zone. The typical domains of bot:hasStorey are instances of

bot:Building.

has super-properties

contains zone op

has domain

Zone c

has range

Storey c

has timeop

IRI: http://www.w3.org/2006/time#hasTime

Supports the association of a temporal entity (instant or interval) to anything.

has sub-properties

time op

has range

Temporal entity c

hostsop

IRI: http://www.w3.org/ns/sosa/hosts

Relation between a Platform and a Sensor, Actuator, Sampler, or Platform, hosted or mounted on

it.

has super-properties

contains element op

has domain

Space c

has range

Sensor c

is inverse of

is hosted by op

implemented byop

IRI: http://www.w3.org/ns/ssn/implementedBy

Relation between a Procedure (an algorithm, procedure or method) and an entity that implements

that Procedure in some executable way.

Example
For example, the relationship between a scientific measuring Procedure

and a sensor that senses via that Procedure.

has domain

Procedure c

has range

Sensor c

is inverse of

implements op

implementsop

IRI: http://www.w3.org/ns/ssn/implements

Relation between an entity that implements a Procedure in some executable way and the Procedure

(an algorithm, procedure or method).

Example
For example, the relationship between a sensor and the scientific

measuring Procedure via which it senses.

has domain

Sensor c

has range

Procedure c

is inverse of

implemented by op

in region of interestop

IRI: http://ontology.wisenet.checksem.fr#inRegionOfInterest

Relation between something that happened or is located around an area of interest.

has range

Region of interest c

is FOV ofop

IRI: http://ontology.wisenet.checksem.fr#isFieldOfViewOf

Relation between a field of view and a visual sensor.

has domain

Field of view c

has range

Smart camera c

is inverse of

has FOV op

is hosted byop

IRI: http://www.w3.org/ns/sosa/isHostedBy

Relation between a Sensor, or Actuator, Sampler, or Platform, and the Platform that it is mounted

on or hosted by.

has domain

Sensor c

has range

Space c

is inverse of

hosts op

is observed byop

IRI: http://www.w3.org/ns/sosa/isObservedBy

Relation between an ObservableProperty and the Sensor able to observe it.

has range

Smart camera c

is inverse of

observes op

is related toop

IRI: http://ontology.wisenet.checksem.fr#isRelatedTo

Relation between two interval events.

Example
Two person in space events are consider related if they involve the same

agent/person.

has characteristics: symmetric, transitive

has domain

Interval event c

has range

Interval event c

is sub event ofop

IRI: http://ontology.wisenet.checksem.fr#isSubEventOf

Relation between a simple event and a complex one that contains the simple one.

Example
A detection event is a sub event of a person in space event.

has domain

Event c

has range

Event c

is inverse of

sub-event op

made by sensorop

IRI: http://www.w3.org/ns/sosa/madeBySensor

Example
Relation between an Observation and the Sensor which made the

Observations.

has domain

Event c

has range

Smart camera c

observesop

IRI: http://www.w3.org/ns/sosa/observes

Relation between a Sensor and an ObservableProperty that it is capable of sensing.

Example
A smart camera observes a door and a person

has domain

Smart camera c

is inverse of

is observed by op

has sub-property chains

has FOV op o shows op

overlapsop

IRI: http://ontology.wisenet.checksem.fr#overlaps

Relation between two field of views. They are consider overlapping if they observe the same object

at the same time, e.g., a building element like a door.

has characteristics: symmetric

has domain

Field of view c

has range

Field of view c

person locationop

IRI: http://ontology.wisenet.checksem.fr#personLocation

Location of a person in a Zone.

has domain

Person c

has range

Zone c

is inverse of

contains person op

placeop

IRI: http://purl.org/NET/c4dm/event.owl#place

Relates an event to a spatial object.

has domain

Event c

has range

Spatial Thing c

representsop

IRI: http://ontology.wisenet.checksem.fr#represents

Property to state the real (physical) entity of an abstract area.

Example
A region of interest in an image represents a door in the real world.

has domain

Region of interest c

has range

Building element c

showsop

IRI: http://ontology.wisenet.checksem.fr#shows

Property to state that a visual sensor is observing something.

Example
A camera's filed of view shows a person.

has domain

Field of view c

is inverse of

appears in op

has sub-property chains

shows op o represents op

sub-eventop

IRI: http://purl.org/NET/c4dm/event.owl#sub_event

This property provides a way to split a complex event (for example, a performance involving

several musicians) into simpler ones (one event per musician).

has domain

Event c

has range

Event c

is inverse of

is sub event of op

timeop

IRI: http://purl.org/NET/c4dm/event.owl#time

Relates an event to a time object, classifying a time region (either instantaneous or having an

extent). By using the Timeline ontology here, you can define event happening on a recorded track

or on any media with a temporal extent.

has super-properties

has time op

has domain

Event c

has range

Temporal entity c

Data Properties

dimensiondp

IRI: http://ontology.wisenet.checksem.fr#dimension

Dimension of objects in meters.

Example
A door has dimensions "1.5x2.075" m.

has range

string

in XSD Date-Time-Stampdp

IRI: http://www.w3.org/2006/time#inXSDDateTimeStamp

Position of an instant, expressed using xsd:dateTimeStamp.

has domain

Time instant c

has range

date time stamp

ip addressdp

IRI: http://ontology.wisenet.checksem.fr#ipAddress

IP address of a sensor.

has domain

Sensor c

has range

string

is entry violationdp

IRI: http://ontology.wisenet.checksem.fr#isEntryViolation

Property to state if person detection is considered an entry violation.

Example
If a person detection is made in a restricted area.

has domain

Detection c

has range

boolean

is event opendp

IRI: http://ontology.wisenet.checksem.fr#isEventOpen

Property to define if a person in space event is open. If it is open then detections can be attached

to it.

has domain

Person in space c

has range

boolean

is intruderdp

IRI: http://ontology.wisenet.checksem.fr#isIntruder

Property to define if a person is considered as an intruder.

Example
If it was detected in a restricted zone.

has domain

Person c

has range

boolean

is noisedp

IRI: http://ontology.wisenet.checksem.fr#isNoise

Property to state if an event is noise, i.e., if it was considered as true when it should not.

Example
Events generated after false detections.

has domain

Event c

has range

boolean

is occludeddp

IRI: http://ontology.wisenet.checksem.fr#isOccluded

Property to state if a person is occluded. A Person is occluded if it is located in a space but is not

observed by any camera.

has domain

Person c

has range

boolean

is occupieddp

IRI: http://ontology.wisenet.checksem.fr#isOccupied

Property to state if there is a person in a Zone. If a Zone is not occupied, then it means is empty.

has domain

Zone c

has range

boolean

is restricteddp

IRI: http://ontology.wisenet.checksem.fr#isRestricted

Property to define if a zone has restricted access.

has domain

Zone c

has range

boolean

max capacitydp

IRI: http://ontology.wisenet.checksem.fr#maxCapacity

Property to define the maximal people capacity of a zone.

Example
The PhD room has a maximal capacity of 20 people.

has domain

Zone c

has range

int

number of peopledp

IRI: http://ontology.wisenet.checksem.fr#numberOfPeople

Number of people located in a Zone.

has domain

Zone c

has range

int

numeric value of temporal durationdp

IRI: http://www.w3.org/2006/time#numericDuration

Value of a temporal extent expressed as a decimal number scaled by a temporal unit.

has domain

Time duration c

has range

decimal

start recordingdp

IRI: http://ontology.wisenet.checksem.fr#startRecording

Property to state if a visual sensor should record.

Example
If there is an intruder alarm triggered, then start recording should be

true.

has domain

Smart camera c

has range

boolean

triggered by intruderdp

IRI: http://ontology.wisenet.checksem.fr#triggeredByIntruder

Property to state if an alarm has been triggered due to an intrusion.

has domain

Alarm c

has range

boolean

triggered by maxCapacitydp

IRI: http://ontology.wisenet.checksem.fr#triggeredByMaxCapacity

Property to state if an alarm has been triggered due to the maximal capacity of a zone has been

reached.

has domain

Alarm c

has range

boolean

visual descriptorsdp

IRI: http://ontology.wisenet.checksem.fr#visualDescriptors

Array of visual features used for describing a person.

has domain

Person c

has range

string

xywhdp

IRI: http://ontology.wisenet.checksem.fr#xywh

Vector that defines the coordinates of a bounding box: ' x,y ' are the coordinates of the top left

point, while ' w,h ' are the width and the height of the bounding box.

has domain

Bounding Box c

has range

gstring

BIBLIOGRAPHY

[1] S. Abiteboul, I. Manolescu, P. Rigaux, M.-C. Rousset, and P. Senellart. Web Data
Management, volume 28. Cambridge university press, 2012.

[2] H. Arasteh, V. Hosseinnezhad, V. Loia, A. Tommasetti, O. Troisi, M. Shafie-Khah,
and P. Siano. Iot-based smart cities: a survey. In Proceedings of the 16th Interna-
tional Conference on Environment and Electrical Engineering (EEEIC), pages 1–6.
IEEE, 2016.

[3] S. Arora and B. Barak. Computational complexity : a modern approach. Cambridge
University Press, 2009.

[4] R. Atkinson, R. García-Castro, J. Lieberman, and C. Stadler. Semantic Sensor
Network Ontology. https://www.w3.org/TR/vocab-ssn/, 2017.

[5] AutoDesk Inc. AutoCAD DXF file format documentation.
https://www.autodesk.com/techpubs/autocad/acad2000/dxf/index.htm, 2000.

[6] AutoDesk Inc. Revit | BIM Software. https://www.autodesk.com/products/revit/overview,
2019.

[7] F. Baader, I. Horrocks, C. Lutz, and U. Sattler. An Introduction to Description Logic.
Cambridge University Press, Cambridge, 2017.

[8] A. Bar-Hillel, D. Levi, E. Krupka, and C. Goldberg. Part-based feature synthesis for
human detection. In Proceedings of the European Conference on Computer Vision
(ECCV), pages 127–142, 2010.

[9] J. Beetz, J. Van Leeuwen, and B. De Vries. IfcOWL: A case of transforming EX-
PRESS schemas into ontologies. Artificial Intelligence for Engineering Design,
Analysis and Manufacturing (AIEDAM), 23(1):89–101, 2009.

[10] R. Benenson, M. Omran, J. Hosang, and B. Schiele. Ten years of pedestrian de-
tection, what have we learned? In Proceedings of the European Conference on
Computer Vision (ECCV), pages 613–627. Springer, 2014.

[11] K. Bernardin and R. Stiefelhagen. Evaluating multiple object tracking performance:
The CLEAR MOT metrics. Eurasip Journal on Image and Video Processing,
2008:1–10, 2008.

[12] T. Berners-lee, J. Hendler, and O. Lassila. The Semantic Web. Scientific American,
284(5):34–43, 2001.

[13] A. Bialkowski, S. Denman, S. Sridharan, C. Fookes, and P. Lucey. A database for
person re-identification in multi-camera surveillance networks. In 2012 International
Conference on Digital Image Computing Techniques and Applications, DICTA 2012,
2012.

199

200 BIBLIOGRAPHY

[14] P. Bonazza, J. Mitéran, D. Ginhac, and J. Dubois. Machine Learning VS Transfer
Learning Smart Camera Implementation for Face Authentication. In Proceedings of
the 12th International Conference on Distributed Smart Cameras (ICDSC), pages
1–2. ACM Press, 2018.

[15] A. Borgida. On the Relative Expressiveness of Description Logics and Predicate
Logics. Artificial Intelligence, 82(1-2):353–367, apr 1996.

[16] A. Borgida. On Importing Knowledge from Ontologies. In Modular Ontologies,
chapter 4, pages 91–112. Springer, 2009.

[17] G. R. Bradski and A. Kaehler. Learning OpenCV - computer vision with the OpenCV
library: software that sees. O’Reilly, 2008.

[18] M. Bramberger, A. Doblander, A. Maier, B. Rinner, and H. Schwabach. Distributed
embedded smart cameras for surveillance applications. Computer, 39(2):68–75,
feb 2006.

[19] D. Brickley and R. V. Guha. RDF Schema 1.1. https://www.w3.org/TR/rdf-schema/,
2014.

[20] D. Brickley and L. Miller. FOAF Vocabulary Specification.
http://xmlns.com/foaf/spec, 2014.

[21] BuildingSMART. IFC Releases. http://www.buildingsmart-
tech.org/specifications/ifc-releases/summary.

[22] A. Burbano, S. Bouaziz, and M. Vasiliu. 3d-sensing distributed embedded system
for people tracking and counting. In Proceedings of the International Conference
on Computational Science and Computational Intelligence (CSCI), pages 470–475.
IEEE, 2015.

[23] C. J. Burges. A Tutorial on Support Vector Machines for Pattern Recognition. Data
Mining and Knowledge Discovery, 2(2):121–167, 1998.

[24] A. A. Butt and R. T. Collins. Multi-target Tracking by Lagrangian Relaxation to Min-
Cost Network Flow. In Proceedings of the 26th IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pages 1846–1853, 2013.

[25] S. M. Cahn. Classics of Western philosophy. Hackett Pub. Co, 2012.

[26] Y. Cai and G. Medioni. Exploring context information for inter-camera multiple tar-
get tracking. In Proceedings of the IEEE Winter Conference on Applications of
Computer Vision (WACV), pages 761–768. IEEE, mar 2014.

[27] S. Castano, A. Ferrara, and S. Montanelli. Ontology-based Interoperability Ser-
vices for Semantic Collaboration in Open Networked Systems. In Interoperability
of Enterprise Software and Applications, pages 135–146. Springer-Verlag, London,
2006.

[28] S.-H. Cha. Comprehensive Survey on Distance/Similarity Measures between Prob-
ability Density Functions. International Journal of Mathematical Models and Meth-
ods in Applied Sciences, 1(4):300–307, 2007.

BIBLIOGRAPHY 201

[29] W. Chaochaisit, M. Bessho, N. Koshizuka, and K. Sakamura. Human Localization
Sensor Ontology: Enabling OWL 2 DL-Based Search for User’s Location-Aware
Sensors in the IoT. In Proceedings of the 10th IEEE International Conference on
Semantic Computing (ICSC), pages 107–111, 2016.

[30] C. H. Chen. Handbook of Pattern Recognition and Computer Vision. World scien-
tific, feb 2016.

[31] W. Chen, L. Cao, X. Chen, and K. Huang. An equalised global graphical model-
based approach for multi-camera object tracking. IEEE Transactions on Circuits
and Systems for Video Technology, 27(1):2367–2381, 2017.

[32] X. Chen and B. Bhanu. Integrating Social Grouping for Multitarget Tracking Across
Cameras in a CRF Model. IEEE Transactions on Circuits and Systems for Video
Technology, 27(11):2382–2394, nov 2017.

[33] M. Chouchene, F. E. Sayadi, J. Miteran, H. Bahri, M. Atri, and J. Dubois. Optimized
parallel implementation of face detection based on GPU component. Microproces-
sors and Microsystems, 39(6):393–404, aug 2015.

[34] C. T. Chu and J. N. Hwang. Fully Unsupervised learning of camera link models for
tracking humans across Nonoverlapping cameras. IEEE Transactions on Circuits
and Systems for Video Technology, 24(6):979–994, jun 2014.

[35] C. T. Chu, J. N. Hwang, H. I. Pai, and K. M. Lan. Tracking human under occlusion
based on adaptive multiple kernels with projected gradients. IEEE Transactions on
Multimedia, 15(7):1602–1615, nov 2013.

[36] R. T. Collins, A. J. Lipton, and T. Kanade. Introduction to the special section on
video surveillance. IEEE Transactions on pattern analysis and machine intelligence,
22(8):745–746, 2000.

[37] R. T. Collins, A. J. Lipton, T. Kanade, H. Fujiyoshi, D. Duggins, Y. Tsin, D. Tolliver,
N. Enomoto, O. Hasegawa, P. Burt, et al. A system for video surveillance and
monitoring. VSAM final report, pages 1–68, 2000.

[38] M. H. Construction. The Business Value of BIM for Construction in Major Global
Markets. Technical report, Construction, McGraw Hill, 2014.

[39] C. Cortes and V. Vapnik. Support-vector networks. Machine Learning, 20(3):273–
297, sep 1995.

[40] R. Cyganiak. Rooms ontology - DERI Vocabularies. http://vocab.deri.ie/rooms.html,
2012.

[41] R. Cyganiak, D. Wood, and M. Lanthaler. RDF 1.1 Concepts and Abstract Syntax.
https://www.w3.org/TR/rdf11-concepts/, 2014.

[42] N. Dalal and B. Triggs. Histograms of oriented gradients for human detection. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pages 886–893. IEEE, 2005.

202 BIBLIOGRAPHY

[43] L. Daniele, F. den Hartog, and J. Roes. Created in Close Interaction with the In-
dustry: The Smart Appliances REFerence (SAREF) Ontology. In Proceedings of
the International Workshop Formal Ontologies Meet Industries, pages 100–112.
Springer, Cham, 2015.

[44] T. M. de Farias, A. Roxin, and C. Nicolle. A Rule Based System for Semantical
Enrichment of Building Information Exchange. In Proceedings of the RuleML, aug
2014.

[45] M. Dibley, H. Li, Y. Rezgui, and J. Miles. An ontology framework for intelligent
sensor-based building monitoring. Automation in Construction, 28:1–14, 2012.

[46] P. Dollar, R. Appel, S. Belongie, and P. Perona. Fast feature pyramids for object
detection. IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI),
36(8):1532–1545, aug 2014.

[47] P. Dollar, Z. Tu, P. Perona, and S. Belongie. Integral Channel Features. In Proceed-
ings of the British Machine Vision Conference (BMVC), pages 91.1–91.11. British
Machine Vision Association, 2009.

[48] P. Dollár, C. Wojek, B. Schiele, and P. Perona. Pedestrian detection: An evalua-
tion of the state of the art. IEEE Transactions on Pattern Analysis and Machine
Intelligence (PAMI), 34(4):743–761, 2012.

[49] B. East. Construction-Operations Building Information Exchange (COBie) | WBDG
- Whole Building Design Guide. http://www.wbdg.org/resources/construction-
operations-building-information-exchange-cobie, 2016.

[50] C. M. Eastman, C. Eastman, P. Teicholz, R. Sacks, and K. Liston. BIM handbook: A
guide to building information modeling for owners, managers, designers, engineers
and contractors. John Wiley & Sons, 2011.

[51] V. L. Erickson, M. Á. Carreira-Perpiñán, and A. E. Cerpa. Observe: Occupancy-
based system for efficient reduction of hvac energy. In Proceedings of the 10th
ACM/IEEE International Conference on Information Processing in Sensor Net-
works, pages 258–269. IEEE, 2011.

[52] M. Everingham, S. A. Eslami, L. Van Gool, C. Williams, J. Winn, and A. Zisserman.
The PASCAL Visual Object Classes Challenge: A Retrospective. International jour-
nal of computer vision (IJCV), 111(1):98–136, 2015.

[53] R. Falco, A. Gangemi, S. Peroni, D. Shotton, and F. Vitali. Modelling OWL ontologies
with Graffoo. In Proceedings of the European Semantic Web Conference (ESWC),
pages 320–325, 2014.

[54] M. Farenzena, L. Bazzani, A. Perina, V. Murino, and M. Cristani. Person re-
identification by symmetry-driven accumulation of local features. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages
2360–2367, 2010.

[55] T. M. D. Farias, A. Roxin, and C. Nicolle. IfcWoD, Semantically Adapting IFC Model
Relations into OWL Properties. In Proceedings of the 32nd CIB W78 Conference
on Information Technology in Construction, pages 175–185, 2015.

BIBLIOGRAPHY 203

[56] P. F. Felzenszwalb, R. B. Girshick, D. McAllester, and D. Ramanan. Object Detec-
tion with Discriminative Trained Part Based Models. IEEE Transactions on Pattern
Analysis and Machine Intelligence (PAMI), 32(9):1627–1645, 2010.

[57] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and T. Berners-
Lee. Hypertext Transfer Protocol – HTTP/1.1. Technical report, Network working
group, jun 1999.

[58] R. Fisher, J. Santos-Victor, and J. Crowley. CAVIAR: Con-
text Aware Vision using Image-based Active Recognition.
http://homepages.inf.ed.ac.uk/rbf/CAVIARDATA1/, 2004.

[59] Y. Freund and R. E. Schapire. A Decision-Theoretic Generalization of On-Line
Learning and an Application to Boosting. Journal of Computer and System Sci-
ences, 55(1):119–139, aug 1997.

[60] D. Gerónimo, A. M. López, A. D. Sappa, and T. Graf. Survey of pedestrian detection
for advanced driver assistance systems. IEEE Transactions on Pattern Analysis and
Machine Intelligence (PAMI), 32(7):1239–1258, jul 2010.

[61] T. Gevers and A. W. Smeulders. Color-based object recognition. Pattern Recogni-
tion, 32(3):453–464, mar 1999.

[62] H. Ghayvat, S. Mukhopadhyay, X. Gui, and N. Suryadevara. Wsn-and iot-based
smart homes and their extension to smart buildings. Sensors, 15(5):10350–10379,
2015.

[63] R. Girshick. Fast R-CNN. In Proceedings of the IEEE International Conference on
Computer Vision (ICCV), pages 1440–1448, 2015.

[64] R. Girshick, D. Jeff, D. Trevor, and J. Malik. Rich feature hierarchies for accurate ob-
ject detection and semantic segmentation. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), pages 580–587, 2014.

[65] D. Gray and H. Tao. Viewpoint invariant pedestrian recognition with an ensemble
of localized features. In Proceedings of the European Conference on Computer
Vision (ECCV), pages 262–275, 2008.

[66] M. Grüninger and M. S. Fox. The Role of Competency Questions in Enterprise
Engineering. In Benchmarking — Theory and Practice, pages 22–31. Springer,
Boston, MA, 1995.

[67] A. Hampapur, L. Brown, J. Connell, A. Ekin, N. Haas, M. Lu, H. Merkl, and
S. Pankanti. Smart video surveillance: exploring the concept of multiscale spa-
tiotemporal tracking. IEEE Signal Processing Magazine, 22(2):38–51, 2005.

[68] J. Han and C. Moraga. The influence of the sigmoid function parameters on the
speed of backpropagation learning. In Proceedings of the International Workshop
on Artificial Neural Network, pages 195–201. Springer, Berlin, Heidelberg, 1995.

[69] K. He, X. Zhang, S. Ren, and J. Sun. Deep Residual Learning for Image Recog-
nition. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 770–778, 2016.

204 BIBLIOGRAPHY

[70] L. Hernandez, C. Baladron, J. M. Aguiar, B. Carro, A. J. Sanchez-Esguevillas,
J. Lloret, and J. Massana. A survey on electric power demand forecasting: fu-
ture trends in smart grids, microgrids and smart buildings. IEEE Communications
Surveys & Tutorials, 16(3):1460–1495, 2014.

[71] P. Hitzler, M. Krotzsch, S. Rudolph, M. Krotzsch, and S. Rudolph. Foundations of
Semantic Web Technologies. Chapman and Hall/CRC, 2009.

[72] J. R. Hobbs and F. Pan. Time ontology in OWL. https://www.w3.org/TR/owl-time/,
2017.

[73] J. Y. Hong, E. H. Suh, and S. J. Kim. Context-aware systems: A literature review
and classification. Expert Systems with Applications, 36(4):8509–8522, 2009.

[74] I. Horrocks. Ontologies and the semantic web. Communications of the ACM,
51(11):58–67, dec 2008.

[75] I. Horrocks, O. Kutz, and U. Sattler. The irresistible SRIQ. In Proceedings of the
Workshop on OWL: Experiences and Directions (OWLED), page 11, 2005.

[76] I. Horrocks, O. Kutz, and U. Sattler. The Even More Irresistible SROIQ. In Proceed-
ings of the 10th International Conference on Principles of Knowledge Representa-
tion and Reasoning (KR), volume 6, pages 57–67, 2006.

[77] I. Horrocks, P. F. Patel-Schneider, H. Boley, S. Tabet, B. Grosof, and
M. Dean. SWRL: A semantic web rule language combining OWL and RuleML.
https://www.w3.org/Submission/SWRL/, 2004.

[78] I. Horrocks, P. F. Patel-Schneider, and F. Van Harmelen. From SHIQ and RDF to
OWL: The making of a Web Ontology Language. Web Semantics, 1(1):7–26, dec
2003.

[79] L. Hou, W. Wan, J. N. Hwang, R. Muhammad, M. Yang, and K. Han. Human
tracking over camera networks: a review. Eurasip Journal on Advances in Signal
Processing, 2017(1):43, dec 2017.

[80] L. Hou, W. Wan, K. H. Lee, J. N. Hwang, G. Okopal, and J. Pitton. Robust Hu-
man Tracking Based on DPM Constrained Multiple-Kernel from a Moving Camera.
Journal of Signal Processing Systems, 86(1):27–39, jan 2017.

[81] International Organization for Standardization. ISO 16739:2013 Industry Founda-
tion Classes (IFC) for data sharing in the construction and facility management
industries. https://www.iso.org/standard/51622.html.

[82] R. Iqbal, M. Azrifah Azmi Murad, A. Mustapha, and N. Mohd Sharef. An Analysis
of Ontology Engineering Methodologies: A Literature Review. Research Journal of
Applied Sciences, Engineering and Technology, 6(16):2993–3000, 2013.

[83] Javed, Rasheed, Shafique, and Shah. Tracking across multiple cameras with dis-
joint views. In Proceedings of the 9th IEEE International Conference on Computer
Vision (ICCV), pages 952–957. IEEE, 2003.

[84] O. Javed, K. Shafique, and M. Shah. Appearance modeling for tracking in multiple
non-overlapping cameras. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pages 26–33. IEEE, 2005.

BIBLIOGRAPHY 205

[85] C. Kim, F. Li, A. Ciptadi, and J. M. Rehg. Multiple Hypothesis Tracking Revisited.
In Proceedings of the IEEE International Conference on Computer Vision (ICCV),
pages 4696–4704, 2015.

[86] I. S. Kim, H. S. Choi, K. M. Yi, J. Y. Choi, and S. G. Kong. Intelligent visual
surveillance - A survey. International Journal of Control, Automation and Systems,
8(5):926–939, oct 2010.

[87] H. Kleine Buning and T. Lettman. Propositional logic : deduction and algorithms.
Cambridge University Press, 1999.

[88] M. Kostinger, M. Hirzer, P. Wohlhart, P. M. Roth, and H. Bischof. Large scale metric
learning from equivalence constraints. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pages 2288–2295. IEEE, jun
2012.

[89] A. Krizhevsky, I. Sutskever, and G. E. Hinton. ImageNet Classification with Deep
Convolutional Neural Networks. In Proceedings of the 25th International Confer-
ence on Neural Information Processing Systems (NIPS), pages 1097–1105, 2012.

[90] C. H. Kuo, C. Huang, and R. Nevatia. Inter-camera association of multi-target tracks
by on-line learned appearance affinity models. In Proceedings of the European
Conference on Computer Vision (ECCV), pages 383–396, 2010.

[91] C. H. Kuo and R. Nevatia. How does person identity recognition help multi-person
tracking? In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 1217–1224, 2011.

[92] O. Lassila. Serendipitous Interoperability. In Proceedings of the Semantic Web
Kick-Off Seminar, pages 243–256, 2002.

[93] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

[94] X. Li, K. Wang, W. Wang, and Y. Li. A multiple object tracking method using Kalman
filter. In Proceedings of the IEEE International Conference on Information and Au-
tomation (ICIA), pages 1862–1866. IEEE, jun 2010.

[95] S. Liao, Y. Hu, X. Zhu, and S. Z. Li. Person re-identification by Local Maximal Occur-
rence representation and metric learning. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), pages 2197–2206, 2015.

[96] K. Lin, M. Chen, J. Deng, M. M. Hassan, and G. Fortino. Enhanced fingerprinting
and trajectory prediction for iot localization in smart buildings. IEEE Transactions
on Automation Science and Engineering, 13(3):1294–1307, 2016.

[97] M. Lin, Q. Chen, and S. Yan. Network In Network. In Proceedings of the Interna-
tional Conference on Learning Representation (ICLR), page 10, 2014.

[98] T.-Y. Lin, P. Dollár, R. Girshick, K. He, B. Hariharan, and S. Belongie. Feature
Pyramid Networks for Object Detection. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pages 2117–2125, 2017.

206 BIBLIOGRAPHY

[99] T. Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollar. Focal Loss for Dense Ob-
ject Detection. In Proceedings of the IEEE International Conference on Computer
Vision (ICCV), pages 2999–3007, 2017.

[100] T.-Y. Lin, M. Maire, S. Belongie, L. Bourdev, R. Girshick, J. Hays, P. Perona, D. Ra-
manan, C. L. Zitnick, and P. Dolí. Microsoft COCO: Common Objects in Context.
In Proceedings of the European Conference on Computer Vision (ECCV), pages
740–755. Springer, 2014.

[101] G. Lisanti, I. Masi, A. D. Bagdanov, and A. D. Bimbo. Person Re-identification by
Iterative Re-weighted Sparse Ranking. IEEE Transactions on Pattern Analysis and
Machine Intelligence (PAMI), 37(8):1629–1642, 2015.

[102] C. Liu, S. Gong, C. C. Loy, and X. Lin. Person Re-identification: What Features
Are Important? In Proceedings of the European Conference on Computer Vision
(ECCV), pages 391–401, 2012.

[103] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C. Y. Fu, and A. C. Berg.
SSD: Single shot multibox detector. In Proceedings of the European Conference
on Computer Vision (ECCV), pages 21–37, 2016.

[104] J. Long, E. Shelhamer, and T. Darrell. Fully Convolutional Networks for Semantic
Segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence
(PAMI), pages 3431–3440, 2015.

[105] D. G. Lowe. Distinctive image features from scale invariant keypoints. International
Journal of Computer Vision (IJCV), 60(2):91–110, 2004.

[106] W. Luo, J. Xing, A. Milan, X. Zhang, W. Liu, X. Zhao, and T.-K. Kim. Multiple Object
Tracking: A Literature Review. arXiv preprint arXiv:1409.7618, 2014.

[107] B. Ma, Y. Su, and F. Jurie. Discriminative Image Descriptors for Person Re-
identification. In Person Re-Identification, pages 23–42. Springer London, London,
2014.

[108] D. Makris, T. Ellis, and J. Black. Bridging the gaps between cameras. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
volume 2, pages 205–210, 2004.

[109] R. Marroquin, J. Dubois, and C. Nicolle. PhD forum: WiseNET - Smart camera
network interacting with a semantic model. In Proceedings of the 10th International
Conference on Distributed Smart Cameras (ICDSC), pages 224–225, 2016.

[110] R. Marroquin, J. Dubois, and C. Nicolle. Multiple Ontology Binding in a Smart Build-
ing Environment. In Proceedings of the Workshop on Linked Data in Architecture
and Construction (LDAC), 2017.

[111] R. Marroquin, J. Dubois, and C. Nicolle. Know beyond seeing : combining com-
puter vision with semantic reasoning. In Proceedings of the12th IEEE International
Conference on Semantic Computing (ICSC), pages 310–311, Laguna Hills, USA,
2018. IEEE.

[112] R. Marroquin, J. Dubois, and C. Nicolle. Ontology for a Panoptes building: Exploit-
ing contextual information and a smart camera network. Semantic Web, 9(6):803–
828, sep 2018.

BIBLIOGRAPHY 207

[113] R. Marroquin, J. Dubois, and C. Nicolle. Wisenet: An indoor multi-camera multi-
space dataset with contextual information and annotations for people detection and
tracking. Data in Brief, page 104654, 2019.

[114] T. Matsukawa, T. Okabe, E. Suzuki, and Y. Sato. Hierarchical Gaussian Descriptor
for Person Re-identification. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pages 1363–1372, 2016.

[115] K. Meshgi, S. Ishii, H. Skibbe, S. Oba, S.-i. Maeda, and Y.-z. Li. An occlusion-aware
particle filter tracker to handle complex and persistent occlusions. Computer Vision
and Image Understanding, 150:81–94, sep 2016.

[116] C. Mignard and C. Nicolle. Merging BIM and GIS using ontologies application to
Urban facility management in ACTIVe3D. Computers in Industry, 65(9):1276–1290,
dec 2014.

[117] D. Mills, J. Martin, J. Burbank, and W. Kasch. Network time protocol version 4:
Protocol and algorithms specification. Technical report, Internet Engineering Task
Force, 2010.

[118] D. Minoli, K. Sohraby, and B. Occhiogrosso. Iot considerations, requirements, and
architectures for smart buildings—energy optimization and next-generation building
management systems. IEEE Internet of Things Journal, 4(1):269–283, 2017.

[119] B. Morvaj, L. Lugaric, and S. Krajcar. Demonstrating smart buildings and smart
grid features in a smart energy city. In Proceedings of the 3rd International Youth
Conference on Energetics (IYCE), pages 1–8. IEEE, 2011.

[120] R. Mosqueron, J. Dubois, M. Mattavelli, and D. Mauvilet. Smart camera based
on embedded HW/SW coprocessor. Eurasip Journal on Embedded Systems,
2008(1):597872, 2008.

[121] B. Motik, P. F. Patel-Schneider, and P. Bijan. OWL 2 Web Ontology Lan-
guage Structural Specification and Functional-Style Syntax (Second Edition).
https://www.w3.org/TR/owl2-syntax/, 2012.

[122] B. Motik, U. Sattler, and R. Studer. Query answering for OWL-DL with rules. Web
Semantics: Science, Services and Agents on the World Wide Web, 3(1):41–60,
2005.

[123] A. Nambiar, M. Taiana, D. Figueira, J. C. Nascimento, and A. Bernardino. A mul-
ticamera video dataset for research on high-definition surveillance. International
Journal of Machine Intelligence and Sensory Signal Processing, 1(3):267–286,
2014.

[124] S. M. Naqvi, L. Mihaylovay, and J. A. Chambers. Clustering and a joint proba-
bilistic data association filter for dealing with occlusions in multi-target tracking. In
Proceedings of the 16th International Conference on Information Fusion, pages
1730–1735. IEEE, 2013.

[125] N. F. Noy and D. L. McGuinness. Ontology Development 101: A Guide to Creating
Your First Ontology. Technical report, Standford University, Stanford, CA, 2001.

208 BIBLIOGRAPHY

[126] T. Ojala, M. Pietikäinen, and D. Harwood. A comparative study of texture measures
with classification based on featured distributions. Pattern Recognition, 29(1):51–
59, jan 1996.

[127] M. Ortega, Y. Rui, K. Chakrabarti, S. Mehrotra, and T. S. Huang. Supporting ranked
boolean similarity queries in MARS. IEEE Transactions on Knowledge and Data
Engineering, 10(6):905–925, 1998.

[128] C. Papageorgiou and T. Poggio. Trainable system for object detection. International
Journal of Computer Vision (IJCV), 38(1):15–33, 2000.

[129] C. Park, T. J. Woehl, J. E. Evans, and N. D. Browning. Minimum cost multi-way data
association for optimizing multitarget tracking of interacting objects. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence (PAMI), 37(3):611–624, mar
2015.

[130] G. Pass, R. Zabih, and J. Miller. Comparing images using color coherence vectors.
In Proceedings of the 4th ACM international conference on Multimedia, pages 65–
73, New York, New York, USA, 1996. ACM Press.

[131] P. Pauwels, T. M. de Farias, C. Zhang, A. Roxin, J. Beetz, J. De Roo, and C. Nicolle.
A performance benchmark over semantic rule checking approaches in construction
industry. Advanced Engineering Informatics, 33(C):68–88, aug 2017.

[132] P. Pauwels, T. Krijnen, W. Terkaj, and J. Beetz. Enhancing the ifcOWL ontology
with an alternative representation for geometric data. Automation in Construction,
80:77–94, 2017.

[133] P. Pauwels and J. Oraskari. IFC-to-RDF-converter. https://github.com/mmlab/IFC-
to-RDF-converter, 2016.

[134] P. Pauwels and A. Roxin. SimpleBIM: From full ifcOWL graphs to simplified building
graphs. In Proceedings of the 11th European Conference on Product and Process
Modelling (ECPPM), pages 11–18. CRC Press, 2016.

[135] P. Pauwels and W. Terkaj. EXPRESS to OWL for construction industry: Towards a
recommendable and usable ifcOWL ontology. Automation in Construction, 63:100–
133, 2016.

[136] J. Perš, V. S. Kenk, R. Mandeljc, M. Kristan, and S. Kovačič. Dana36: A multi-
camera image dataset for object identification in surveillance scenarios. In Pro-
ceedings of the 9th IEEE International Conference on Advanced Video and Signal-
Based Surveillance (AVSS), pages 64–69, 2012.

[137] B. Prosser, S. Gong, and T. Xiang. Multi-camera Matching using Bi-Directional
Cumulative Brightness Transfer Functions. In Proceedings of the British Machine
Vision Conference (BMVC), page 10, 2008.

[138] J. R. Quinlan. Induction of decision trees. Machine Learning, 1(1):81–106, mar
1986.

[139] Y. Raimond and S. Abdallah. The Event Ontology.
http://motools.sourceforge.net/event/event.122.html, 2007.

BIBLIOGRAPHY 209

[140] M. H. Rasmussen, P. Pauwels, M. Lefrançois, G. F. Schneider, C. A. Hviid, and
J. Karshøj. Recent changes in the Building Topology Ontology. In Proceedings of
the 5th Linked Data in Architecture and Construction Workshop (LDAC), page 7,
2017.

[141] J. Redmon. Darknet: Open Source Neural Networks in C.
https://pjreddie.com/darknet/.

[142] J. Redmon and A. Farhadi. YOLOv3: An Incremental Improvement. Computing
Research Repository (CoRR), abs/1804.0, 2018.

[143] S. Ren, K. He, and R. Girshick. Faster R-CNN: Towards Real-Time Object Detec-
tion with Region Proposal Networks Shaoqing. In Advances in Neural Information
Processing Systems (NIPS), pages 91–99, 2015.

[144] S. H. Rezatofighi, A. Milan, Z. Zhang, Q. Shi, A. Dick, and I. Reid. Joint probabilistic
data association revisited. In Proceedings of the IEEE International Conference on
Computer Vision (ICCV), pages 3047–3055. IEEE, dec 2015.

[145] B. Rinner and W. Wolf. An introduction to distributed smart cameras. Proceedings
of the IEEE, 96(10):1565–1575, 2008.

[146] E. Ristani, F. Solera, R. Zou, R. Cucchiara, and C. Tomasi. Performance Mea-
sures and a Data Set forMulti-Target, Multi-Camera Tracking. In Proceedings of the
European Conference on Computer Vision (ECCV), pages 17–35, 2016.

[147] A. Rosebrock. Softmax Classifiers Explained - PyImageSearch.
https://www.pyimagesearch.com/2016/09/12/softmax-classifiers-explained/, 2016.

[148] M. Rouse. What is open API (public API)?
https://searchmicroservices.techtarget.com/definition/open-API.

[149] J. Sánchez, F. Perronnin, T. Mensink, and J. Verbeek. Image classification with the
fisher vector: Theory and practice. International Journal of Computer Vision (IJCV),
105(3):222–245, 2013.

[150] J. C. SanMiguel, J. M. Martinez, and A. Garcia. An Ontology for Event Detection
and its Application in Surveillance Video. In Proceedings of the 6th IEEE Inter-
national Conference on Advanced Video and Signal Based Surveillance (AVSS),
pages 220–225, 2009.

[151] B. Senouci, I. Charfi, B. Heyrman, J. Dubois, and J. Miteran. Fast prototyping of a
SoC-based smart-camera: a real-time fall detection case study. Journal of Real-
Time Image Processing, 12(4):649–662, dec 2016.

[152] O. Sidla, Y. Lypetskyy, N. Brändle, and S. Seer. Pedestrian detection and tracking
for counting applications in crowded situations. In Proceedings of the IEEE Interna-
tional Conference on Advance Video and Signal Based Surveillance (AVSS), pages
70–76. IEEE, nov 2006.

[153] K. Simonyan and A. Zisserman. Very Deep Convolutional Networks for Large-Scale
Image Recognition. In Proceedings of the International Conference on Learning
Representations, 2015.

210 BIBLIOGRAPHY

[154] E. Simperl. Reusing ontologies on the Semantic Web: A feasibility study. Data and
Knowledge Engineering, 68(10):905–925, oct 2009.

[155] E. Sirin, B. Parsia, B. C. Grau, A. Kalyanpur, and Y. Katz. Pellet: A practical OWL-
DL reasoner. Web Semantics, 5(2):51–53, jun 2007.

[156] F. Sivrikaya and B. Yener. Time synchronization in sensor networks: a survey. IEEE
network, 18(4):45–50, 2004.

[157] A. W. Smeulders, D. M. Chu, R. Cucchiara, A. Calderara, Simone Dehghan, and
M. Shah. Visual Tracking: An Experimental Survey. IEEE Transactions on Pattern
Analysis and Machine Intelligence (PAMI), 36(7):1442–1468, jul 2014.

[158] D. Snoonian. Smart buildings. IEEE spectrum, 40(8):18–23, 2003.

[159] S. Soro and W. Heinzelman. A survey of visual sensor networks. Advances in
multimedia, 2009:21, 2009.

[160] K. Srikrishna, M. Gou, Z. Wu, A. Rates-Borras, O. Camps, and R. J. Radke. A Sys-
tematic Evaluation and Benchmark for Person Re-Identification: Features, Metrics,
and Datasets. IEEE Transactions on Pattern Analysis and Machine Intelligence
(PAMI), 41(3):523–536, 2018.

[161] A. Stadlhofer, Bernd and Salhofer, Peter and Durlacher. An overview of ontology
engineering methodologies in the context of public administration. In Proceedings
of the 7th International Conference on Advances in Semantic Processing, pages
36–42, 2013.

[162] Standford University. Protégé. https://protege.stanford.edu/.

[163] R. Studer, V. R. Benjamins, and D. Fensel. Knowledge engineering: principles and
methods. Data & knowledge engineering, 25(1-2):161–197, 1998.

[164] J. Suchan and M. Bhatt. Deep Semantic Abstractions of Everyday Human Activities.
In Proceedings of the 13th Iberian Robotics conference, pages 477–488. Springer,
2017.

[165] J. Sweller. Cognitive load during problem solving: Effects on learning. Cognitive
Science, 12(2):257–285, 1988.

[166] S. Tang, M. Andriluka, B. Andres, and B. Schiele. Multiple People Tracking by Lifted
Multicut and Person Re-identification. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pages 3539–3548, 2017.

[167] R. Thavot, R. Mosqueron, M. Alisafaee, C. Lucarz, M. Mattavelli, J. Dubois, and
V. Noel. Dataflow design of a co-processor architecture for image processing. In
Proceedings of the Conference on Design and Architectures for Signal and Image
Processing (DASIP), pages 1–8, 2008.

[168] D. Toczek, T.Ginhac, F. Hamdi, B. Heyrman, J. Dubois, J. Miteran, and D. Gin-
hac. Scene-based non-uniformity correction: From algorithm to implementation on
a smart camera. Journal of Systems Architecture, 59(10):833–846, nov 2013.

[169] C. Town. Ontological inference for image and video analysis. Machine Vision and
Applications, 17(2):94–115, 2006.

BIBLIOGRAPHY 211

[170] J. R. Uijlings, T. Van De Sande, Koen EA Gevers, and A. W. Smeulders. Selective
Search for Object Recognition. International Journal of Computer Vision (IJCV),
104(2):154–171, 2013.

[171] P. Viola and M. Jones. Rapid object detection using a boosted cascade of simple
features. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 511–518. IEEE, 2001.

[172] P. Viola, M. Jones, and D. Snow. Detecting pedestrians using patterns of motion and
appearance. In Proceedings of the 9th IEEE International Conference on Computer
Vision (ICCV), pages 734–741. IEEE, 2003.

[173] S. Wang, M. Lewandowski, J. Annesley, and J. Orwell. Re-identification of pedes-
trians with variable occlusion and scale. In Proceedings of the IEEE International
Conference on Computer Vision, pages 1876–1882. IEEE, nov 2011.

[174] X. Wang. Intelligent multi-camera video surveillance: A review. Pattern Recognition
Letters, 34(1):3–19, 2013.

[175] X. Wang, T. X. Han, and S. Yan. An HOG-LBP human detector with partial occlusion
handling. In Proceedings of the 12th IEEE International Conference on Computer
Vision (ICCV), pages 32–39. IEEE, sep 2009.

[176] Weiming Hu, Nianhua Xie, Ruiguang Hu, Haibin Ling, Qiang Chen, Shuicheng Yan,
and S. Maybank. Bin Ratio-Based Histogram Distances and Their Application to Im-
age Classification. IEEE Transactions on Pattern Analysis and Machine Intelligence
(PAMI), 36(12):2338–2352, 2014.

[177] S. K. Weng, C. M. Kuo, and S. K. Tu. Video object tracking using adaptive Kalman
filter. Journal of Visual Communication and Image Representation, 17(6):1190–
1208, dec 2006.

[178] T. Weng and Y. Agarwal. From buildings to smart buildings—sensing and actuation
to improve energy efficiency. IEEE Design & Test of Computers, 29(4):36–44, 2012.

[179] Wikipedia. Color histograms. https://en.wikipedia.org/wiki/Color_histogram.

[180] Wikipedia. Ontology in philosophy. https://en.wikipedia.org/wiki/Ontology.

[181] T. Winkler and B. Rinner. Security and privacy protection in visual sensor networks:
A survey. ACM Computing Surveys (CSUR), 47(1):2, 2014.

[182] World Wide Web Consortium OWL Working Group. OWL 2 Web Ontology
Language Document Overview (Second Edition). https://www.w3.org/TR/owl2-
overview/, 2012.

[183] World Wide Web Consortium SPARQL Working Group. SPARQL 1.1 Overview.
https://www.w3.org/TR/sparql11-overview/, 2013.

[184] F. Xiong, M. Gou, O. Camps, and M. Sznaier. Person re-identification using kernel-
based metric learning methods. In Proceedings of the European Conference on
Computer Vision (ECCV), pages 1–16, 2014.

212 BIBLIOGRAPHY

[185] B. Yang and R. Yang. Interactive particle filter with occlusion handling for multi-
target tracking. In Proceedings of the 12th International Conference on Fuzzy Sys-
tems and Knowledge Discovery (FSKD), pages 1945–1949. IEEE, aug 2015.

[186] Y. Yang, J. Yang, and J. Yan. Salient Color Names for Person Re-identification.
In Proceedings of the European Conference on Computer Vision (ECCV), pages
536–551. Springer, 2014.

[187] J. Yosinski, J. Clune, Y. Bengio, and H. Lipson. How transferable are features in
deep neural networks? In Proceedings of the 27th International Conference on
Neural Information Processing Systems (NIPS), pages 3320–3328, nov 2014.

[188] L. Zhang, T. Xiang, and S. Gong. Learning a Discriminative Null Space for Person
Re-identification. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pages 1239–1248, 2016.

[189] S. Zhang, R. Benenson, M. Omran, J. Hosang, and B. Schiele. Towards Reach-
ing Human Performance in Pedestrian Detection. IEEE Transactions on Pattern
Analysis and Machine Intelligence (PAMI), 40(4):973–986, apr 2018.

[190] S. Zhang, R. Benenson, and B. Schiele. Filtered channel features for pedestrian
detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 1751–1760. IEEE, jun 2015.

[191] S. Zhang, E. Staudt, T. Faltemier, and A. K. Roy-Chowdhury. A camera network
tracking (CamNeT) dataset and performance baseline. Proceedings - 2015 IEEE
Winter Conference on Applications of Computer Vision, WACV 2015, pages 365–
372, 2015.

[192] R. Zhao, W. Ouyang, and X. Wang. Unsupervised salience learning for person
re-identification. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pages 3586–3593. IEEE, jun 2013.

[193] W. Zhao and J. K. Liu. OWL/SWRL representation methodology for EXPRESS-
driven product information model Part I. Implementation methodology. Computers
in industry, 59(6):580–589, 2008.

[194] L. Zheng, L. Shen, L. Tian, S. Wang, J. Wang, and Q. Tian. Scalable person re-
identification: A benchmark. In Proceedings of the IEEE International Conference
on Computer Vision (ICCV), pages 1116–1124, 2015.

[195] L. Zheng, Y. Yang, and A. G. Hauptmann. Person Re-identification: Past, Present
and Future. Computing Research Repository (CoRR), abs/1610.0, 2016.

[196] C. L. Zitnick and P. Dollár. Edge boxes: Locating object proposals from edges.
In Proceedings of the European Conference on Computer Vision (ECCV), pages
391–405. Springer, Cham, 2014.

[197] M. A. Zulkifley and B. Moran. Robust hierarchical multiple hypothesis tracker for
multiple object tracking. Expert Systems with Applications, 39(16):12319–12331,
nov 2012.

LIST OF FIGURES

2.1 A picture is worth thousand information. 8

2.2 Classical monitoring room. 8

2.3 Generic architecture of a smart camera. 9

2.4 Object detection overview, example for people detection. 11

2.5 Pipeline of a person detector based on feature descriptors. 13

2.6 Pipeline of an object detector based on a deep learning model. 14

2.7 Inference time (ms) versus mean average-precision (mAP) of one- and two-
stage detectors. 16

2.8 Relation between people detection and tracking functional modules. 18

2.9 People tracking example. 23

3.1 Graphical representation of a simple building topology knowledge. 31

3.2 Comparison of Propositional Logic, Description Logic and First-Order Logic. 33

3.3 Graphical view of knowledge about Intelligent Visual Surveillance (IVS)
context . 39

4.1 Overview of the WiseNET system. 46

4.2 Overview of the steps followed to developed the WiseNET ontology. 50

4.3 External classes and properties reused by the WiseNET ontology. 54

4.4 WiseNET class hierarchy. 57

4.5 WiseNET object and data properties. 58

4.6 General view of the WiseNET ontology. 59

4.7 WiseNET classes and properties in the perspective of the built environment
domain. 61

4.8 WiseNET classes and properties in the perspective of the sensor domain. . 62

4.9 WiseNET classes and properties in the perspective of the event domain. . . 64

4.10 WiseNET classes and properties in the perspective of the building user
domain. 65

4.11 WiseNET classes and properties in the perspective of the time domain. . . 66

4.12 Example of a situation that can be represented using the WiseNET ontol-
ogy. 68

213

214 LIST OF FIGURES

5.1 WiseNET network deployed in the I3M building. 77

5.2 Example of the environment elements to be inserted into the WiseNET
system . 78

5.3 IFC to WiseNET: environment extraction and population process. 79

5.4 Graph showing the environment data in the ifcowl ontology. 81

5.5 Semantic-graph after populating the environment and camera-calibration
information. 88

5.6 System Configuration Interface. 89

5.7 Dynamic population: knowledge extraction and processing. 92

5.8 Semantic-graph after populating a smart camera message 94

5.9 Dynamic population process performed by the central API. 95

5.10 Different scenarios of a person detected around a door. 99

5.11 Dynamic population use case. 103

6.1 Raspberry Pi 3 used as smart camera. 114

6.2 Data that can be generated from an IFC file. 116

6.3 Regions Of Interest (ROIs) observed by each camera node. 118

6.4 Space-time graph representing a tracking ground truth. 120

6.5 Extract of video set 3. 125

6.6 Space-time graph representing the tracking ground truth of video set 3. . . 126

6.7 Space-time graph obtained by executing the space-time query. 133

6.8 Components of the monitor unit. 136

6.9 Comparison of ground truth tracks and computed tracks. 138

6.10 Comparison of two trackers. 139

6.11 Precision/Recall curves using HOG_SVM, YOLOv3_608 and SSD_512 de-
tectors. 151

6.12 Average Precision comparison of HOG_SVM, YOLOv3_608 and SSD_512
detectors. 152

6.13 Mean Average Precision of HOG_SVM, YOLOv3_608 and SSD_512 de-
tectors. 153

LIST OF TABLES

2.1 Comparison of processing units that can be found in smart cameras. 10

2.2 Average-precision (AP) of one- and two-stage detectors 17

2.3 Example of single-camera, multi-camera and multi-camera+context. 24

3.1 Comparison of file formats for BIM. 29

3.2 Description Logic conventional notation. 34

3.3 SROIQ(D) constructors. 35

3.4 SROIQ(D) axioms, assertions and property characteristics. 36

3.5 Comparison of file formats for BIM + ontology. 43

4.1 Competency questions used for developing the WiseNET ontology. 51

4.2 Prefixes and namespaces used in WiseNET ontology. 53

4.3 Comparison between ontology reuse methods. 55

4.4 Definition of SRI(D) constructors. 67

4.5 Example of knowledge inserted in the WiseNET ontology. 72

4.6 Inferred information after executing the reasoner. 73

5.1 Extracted environment instances from the ifcowl ontology. 83

5.2 Example of the dynamic population performed during a people tracking
scenario. 107

6.1 Characteristics of indoor multi-camera multi-space datasets. 113

6.2 Description of WiseNET video sets. 115

6.3 Dimensions of the spaces and doors extracted from an IFC file. 117

6.4 Doors represented by Regions Of Interest (ROIs). 119

6.5 Hetmap results. 132

6.6 Accumulated heatmap results. 132

6.7 Door usage at different timestamps. 135

6.8 Tracking results on each video set, using identity-base metrics. 142

6.9 Heatmap results using different detectors 148

6.10 Tracking results using the different detectors. 150

215

Document generated with LATEX and:
the LATEX style for PhD Thesis created by S. Galland — http://www.multiagent.fr/ThesisStyle

the tex-upmethodology package suite — http://www.arakhne.org/tex-upmethodology/

http://www.multiagent.fr/ThesisStyle
http://www.arakhne.org/tex-upmethodology/

	1 Introduction
	1.1 Motivation and objectives
	1.2 Dissertation outline

	2 Visual sensor network
	2.1 From VSN to IVS
	2.2 Smart cameras
	2.3 Computer vision - People detection and tracking
	2.3.1 Object detection People detection
	2.3.2 People tracking

	2.4 Conclusion

	3 Contextual information and interoperability
	3.1 Elements of context
	3.2 Models to represent a built environment
	3.3 Ontology domain
	3.3.1 Ontology formalism
	3.3.2 Ontology implementation

	3.4 Conclusion

	4 WiseNET system
	4.1 WiseNET system overview
	4.2 WiseNET ontology
	4.2.1 Ontology development: from requirements to implementation
	4.2.2 Semantic rules

	4.3 Conclusion

	5 Static and dynamic ontology population
	5.1 Central API
	5.2 Static population
	5.2.1 Environment knowledge extraction and population
	5.2.2 Smart camera static information

	5.3 Dynamic population
	5.3.1 Knowledge extraction
	5.3.2 Knowledge processing
	5.3.3 Use case

	5.4 Conclusion

	6 Dataset and Evaluations
	6.1 Multi-camera multi-space datasets
	6.1.1 Existing datasets
	6.1.2 WiseNET dataset

	6.2 System evaluation
	6.2.1 Ontology evaluation
	6.2.1.1 Static CQs
	6.2.1.2 Dynamic CQs
	6.2.1.3 Monitor unit

	6.2.2 Tracking with Semantics - evaluation

	6.3 People detector impact
	6.3.1 Comparison of detectors
	6.3.2 Influence of detectors in the WiseNET system

	6.4 Conclusion

	7 Conclusions and future work
	8 Author's publications
	Appendices
	A WiseNET ontology specification

