




ii ii

Thesis for the degree of Philisophiae Doctor

Joint degree between

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Computer Science

UniversitØ Bourgogne Franche-ComtØ
Laboratoire Electronique, Informatique et Image

c 2018 Haris Ahmad Khan. All rights reserved

ISBN 978-82-326-3371-5 (printed version)
ISBN 978-82-326-3370-8 (electronic version)
ISSN 1503-8181

Doctoral theses at NTNU, 2018:290

Printed by NTNU-Skipnes



iii

Abstract

A conventional color imaging system provides high resolution spatial information
and low resolution spectral data. In contrast, a multispectral imaging system is
able to provide both the spectral and spatial information of a scene in high resol-
ution. A multispectral imaging system is complex and it is not easy to use it as
a hand held device for acquisition of data in uncontrolled conditions. The use of
multispectral imaging for computer vision applications has started recently but is
not very ef�cient due to these limitations. Therefore, most of the computer vision
systems still rely on traditional color imaging and the potential of multispectral
imaging for these applications has yet to be explored.

With the advancement in sensor technology, hand held multispectral imaging sys-
tems are coming in market. One such example is the snapshot multispectral �lter
array camera. So far, data acquisition from multispectral imaging systems require
speci�c imaging conditions and their use is limited to a few applications includ-
ing remote sensing and indoor systems. Knowledge of scene illumination during
multispectral image acquisition is one of the important conditions. In color ima-
ging, computational color constancy deals with this condition while the lack of
such a framework for multispectral imaging is one of the major limitation in en-
abling the use of multispectral cameras in uncontrolled imaging environments.

In this work, we extend some methods of computational color imaging and apply
them to the multispectral imaging systems. A major advantage of color imaging is
the ability of providing consistent color of objects and surfaces across varying ima-
ging conditions. In this work, we extend the concept of color constancy and white
balancing from color to multispectral images, and introduce the term multispectral

constancy.

The validity of proposed framework for consistent representation of multispec-
tral images is demonstrated through spectral reconstruction of material surfaces
from the acquired images. We have also presented a new hyperspectral re�ect-
ance images dataset in this work. The framework of multispectral constancy will
make it one step closer for the use of multispectral imaging in computer vision
applications, where the spectral information, as well as the spatial information of a
surface will be able to provide distinctive useful features for material identi�cation
and classi�cation tasks.
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Translations of the Abstract

The following translations of the abstract have been kindly provided by the super-
visors, Jon Yngve Hardeberg (Norwegian translation) and Jean-Baptiste Thomas
(French translation).

Sammendrag (Norwegian translation)

Et konvensjonelt fargebasert avbildningssystem kan gi hły romlig opplłsning men
lav spektral opplłsning . Et multispektralt avbildningssystem, derimot, kan gi både
spektral og romlig informasjon om en scene i hły opplłsning. Et multispektralt
avbildningssystem er komplekst, og det er ikke lett å bruke det som en håndholdt
enhet for opptak av data under ukontrollerte forhold. Bruken av multispektral avb-
ildning for maskinsynanvendelser har startet nylig, men er ikke veldig effektivt på
grunn av disse begrensningene. Derfor er de �este maskinsynssystemer fortsatt
basert på tradisjonell fargebildeteknologi og potensialet for multispektral avbild-
ning for disse anvendelsene har ennå ikke blitt utnyttet.

Gjennom teknologiske fremskritt innen sensorteknologi er håndholdte multispek-
trale avbildningssystemer i ferd med å komme på markedet. Et eksempel er kamer-
aer basert på multispektrale �ltermatriser. Så langt har datainnsamling fra multis-
pektrale avbildningsssystemer blitt gjort under kontrollerte avbildningsforhold, og
bruken av dem er derfor begrenset til noen få applikasjoner, inkludert fjernnmåling
og laboratoriebaserte systemer. Informasjon om belysningen ved multispektral
avbildning er et av de viktige forholdene. Innen fargeavbildning håndterer fargekon-
stansalgoritmer dette problemet, men mangelen på et slikt rammeverk for multis-
pektral avbildning er en av de stłrste begrensningene for å muliggjłre bruk av
multispektrale kameraer under ukontrollerte avbildningsforhold.

I dette arbeidet foreslår vi å utvide eksisterende metoder for fargekonstansberegn-
ing og anvende dem for multispektral avbildning. En stor fordel ved fargeavbild-
ning er evnen til å gi konsistent farge på gjenstander og over�ater på tvers av var-
ierende bildeforhold. I dette arbeidet utvider vi konseptet fargekonstans og hvit-
balanse fra farge til multispektrale bilder, og introduserer begrepet multispektral
konstans. Gyldigheten av det foreslåtte rammeverket for konsistent representasjon
av multispektrale bilder er demonstrert gjennom spektral rekonstruksjon av ma-
terialover�ater fra de multispektrale bildene. Vi har også presentert et nytt hyper-
spektralt bildedatasett i dette arbeidet. Rammeverket for multispektral konstans vil
muliggjłre bruk av multispektral bildebehandling i maskinsynapplikasjoner, hvor
spektral informasjon, sammen med romlig informasjon av en over�ate, vil kunne
gi spesi�kke nyttige egenskaper for materialidenti�kasjon og klassi�seringssopp-
gaver.
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R·esum·e (French translation)

En imagerie couleur, un systŁme d’acquisition capture une scŁne avec une haute
rØsolution spatiale mais une rØsolution spectrale limitØe. L’imagerie hyperspec-
trale permet d’acquØrir la scŁne avec une grande rØsolution spectrale. Un systŁme
d’acquisition hyperspectrale est un ensemble complexe et il est dif�cile de l’utiliser
pour acquØrir des donnØes dans une situation oø les conditions d’imageries ne sont
pas contrôlØes. De plus, ces systŁmes sont chers et souvent encombrants ou dif-
�ciles à manipuler. À cause de ces problŁmes, l’utilisation de l’imagerie hyper-
spectrale n’a pas encore ØtØ beaucoup utilisØe en vision assistØe par ordinateur, et
la plupart des systŁmes de vision utilise l’imagerie couleur.

L’imagerie multispectrale propose une solution intermØdiaire, elle permet de cap-
turer une information moins rØsolue selon la dimension spectrale, comparØe à
l’hyperspectrale, tout en prØservant la rØsolution spatiale. Ces systŁmes sont moins
encombrants et moins dif�ciles à maitriser grâce aux rØcentes avancØes technolo-
giques, et arrivent sur le marchØ en tant que produits commerciaux. On peut citer
les matrices de �ltres spectraux (spectral �lter arrays) qui permettent l’acquisition
en temps rØel d’images multispectrales grâce à l’utilisation d’une camØra de com-
plexitØ similaire à une camØra couleur. Jusqu’ici, les informations capturØes par
ces systŁmes Øtaient considØrØes de la mŒme maniŁre que les imageurs hyperspec-
traux en champ proche, c’est à dire que pour utiliser l’information au mieux, les
conditions d’acquisitions devaient Œtre connues et le systŁme calibrØ, en particulier
pour l’Øclairage de la scŁne et la dynamique de la scŁne.

A�n d’Ølargir l’utilisation de l’imagerie multispectrale pour la vision par ordin-
ateur dans des conditions gØnØrales, je propose dans cette thŁse de dØvelopper les
mØthodes calculatoires en imagerie couleur (computational color imaging) et de
les adapter aux systŁmes d’imagerie multispectraux. Une caractØristique trŁs puis-
sante de l’imagerie couleur est de proposer un rendu constant des couleurs de la
surface d’un objet à travers diffØrentes conditions d’acquisition via l’utilisation
d’algorithmes et divers traitements de l’information.

Dans cette thŁse, j’Øtends la notion de constance des couleurs et de balance des
blancs de l’imagerie couleur à l’imagerie multispectrale. J’introduis le terme de
constance de l’information spectrale (multispectral constancy).

Je propose la construction d’un ensemble d’outils permettant la reprØsentation con-
stante de l’information spectrale à travers le changement d’Øclairage. La validitØ
de ces outils est ØvaluØe à travers la reconstruction de la rØ�ectance spectrale des
objets lorsque l’Øclairage change. Nous avons Øgalement acquis de nouvelles im-
ages hyperspectrales et multispectrales mises à disposition de la communautØ.
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Ces outils et donnØes permettront de favoriser la gØnØralisation de l’utilisation de
l’imagerie multispectrale en champ proche dans les applications classiques util-
isant traditionnellement l’imagerie couleur et de sortir ce mode d’imagerie des
laboratoires. L’avantage en vision par ordinateur est une meilleure analyse de la
rØ�ectance de la surface des objets et donc un avantage certain dans les tâches de
classi�cation et d’identi�cation de matØriaux.
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Chapter 1

Introduction

1.1 Background

Digital imaging has evolved tremendously in the last few decades. The amount
of visual information acquired in the form of digital images is huge and imaging
devices are easily available due to the advancement in computational power, op-
tics, sensor technology, memory management and several other factors. The im-
portance of imaging has been recognized throughout the history of mankind, as
the visual sense is regarded as one of the dominant senses. That’s why there is the
famous saying that a picture is worth thousand words.

Most digital imaging systems are based on a small number of channels that are
sensitive to relatively wide bands along the visible wavelength spectrum. A system
with only one channel can be used to capture grayscale image of a scene with
high spatial resolution but no spectral information. By using three channels in an
imaging system, color images are be acquired, providing high spatial resolution
information of the scene.

Although color images are able to provide details of the objects and surfaces in
a scene and enable humans to detect and recognize objects, the spectral inform-
ation content is limited. Spectral re�ectance is the intrinsic property of materials
and surfaces. It depends on the physical and chemical properties of a material,
color, roughness and the geometric properties of a surface. The re�ectance from
a surface is unique for each material and is called the �spectral signature�. This
property makes it possible to identify the material surfaces. The electromagnetic
energy re�ected back from a surface is called radiance. This radiance is captured
by imaging devices and is composed of a mixture of the spectral re�ectance of
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2 Introduction

material and the incoming energy. For computation of spectral re�ectance of a
surface, the imaging system is generally calibrated for the incoming radiation and
the system required to be re-calibrated when the imaging conditions are changed.

The human visual system is able to interpret grayscale and color images, therefore
majority of imaging systems focus on these two types. Both of these imaging
techniques tend to work well in applications where the spectral information, color
accuracy and color control are not important.

Multispectral imaging provides more spectral information as compared to color
images. With the advancement in sensor technology and imaging techniques,
devices are developed that are able to capture more information as compared to
color images, while still providing high resolution spatial information of the scene.
A multispectral imaging system can acquire spectral data in the visible, ultraviolet
and infrared regions. These systems use a set of �lters over the imaging sensor to
capture scene information in a particular spectral region. Due to the higher num-
ber of channels, output of multispectral images is often interpreted and stored as a
datacube. The output of each channel is stacked over each other and the inform-
ation for one pixel provide the spectral characteristics of captured radiance from
the imaged surface.

1.2 Motivation

Our research focuses on multispectral imaging and the aim is to enable the use
of multispectral cameras in uncontrolled imaging environments. Most of the use
for multispectral cameras is in remote sensing and indoor imaging in controlled
imaging conditions. The reason for such limitation is the requirement of system’s
calibration for speci�c imaging environment. One of the factors that cause change
in imaging conditions is the illumination in a scene, and therefore an illuminant
invariant imaging system is desired when the re�ectance information from a scene
is required.

Color imaging systems are able to operate in uncontrolled imaging conditions be-
cause of the processing techniques of the captured data. One of the key elements
among them is white balancing, which deals with the correction of color casts that
occur due to the in�uence of illumination color. In this way, the objects with white
color are rendered white in the �nal image and the colors are corrected in a way
that the human visual system expects to see. This correction of colors is called
color constancy and is widely used in digital color images. The ability of provid-
ing illuminant invariant imaging data is one of the key factors that has made color
imaging widely popular for photography and for computer vision applications,
where the data is used.
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Our motivation for this research is to enable the use of multispectral imaging in
the same way as color imaging for uncontrolled imaging environments. We want
to develop a framework for exploiting the rich spectral information obtained from
multispectral imaging. To do so, the techniques of computational color imaging
are extended for multispectral imaging. So far, multispectral imaging systems are
calibrated for speci�c imaging conditions and our aim is to introduce a dynamic
calibration system in the imaging pipeline. As described above, one of the factors
contributing to the wide acceptability of color imaging is the ability of represent-
ation of consistent colors in uncontrolled imaging environments. The aim of this
thesis is to provide the framework for enabling the use of multispectral imaging
outside the laboratory conditions and to obtain consistent representation of multis-
pectral data across different imaging environments.

1.3 Research Objectives

The main objective of this study is to enable the use of multispectral imaging for
uncontrolled imaging conditions. A change in the illumination of a scene causes
change in the output of camera data for the same imaging system and surfaces be-
ing captured. Therefore, in order to acquire consistent presentation of multispectral
data across varying illumination conditions, a framework for illuminant-invariant
representation of multispectral data needs to be developed.

For obtaining illuminant invariant representation of multispectral images, a frame-
work is developed in this work. It is named as multispectral constancy. This
framework use the concepts of computational color constancy and extends them
for high dimensional spectral data. The core concept of multispectral constancy is
the transformation of multispectral data taken under unknown illumination condi-
tions into a representation as if the data is taken under a known (canonical) illu-
minant. For such representation, the acquired image data has to be transformed.
The multispectral image transformation methods developed in this thesis involves
incorporating the spectral characteristics of imaging sensor and the compensation
for the illuminant. For a given sensor con�guration, a spectral adaptation trans-

form is developed for incorporating the intrinsic properties of imaging sensor. De-
tails of this transform and demonstration the in�uence of sensor sensitivities of
an imaging system on the obtained data are provided in Chapters 4 and 5. The
second part of multispectral constancy deals with scene illumination, which can
be obtained either by placing a white diffuser in the scene or by estimating it. For
estimation of scene illumination in multispectral images, a study of the potential
algorithms that are developed for color images is performed.

Finally, methods developed during this study are demonstrated for spectral recon-
struction of material surfaces. Images of various objects under different illumina-
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tions are acquired. We use the concept of multispectral constancy and demonstrate
its ability to perform under uncontrolled imaging conditions.

We realize that an ef�cient multispectral imaging system should be able to retain
the spectral and spatial properties of material surfaces being imaged. Keeping this
in view, a high spatial and spectral resolution data set of hyperspectral images is
created. These hyperspectral images contain various samples from textile, wood,
rocks, food items and vegetation. This hyperspectral image dataset is made avail-
able for public use and will help in enabling the research community to develop
algorithms for spectral and spatial analysis using this data. Examples of such ana-
lysis include spectral decomposition of the high resolution hyperspectral data and
texture analysis.

To summarize, we develop this work with the aim of enabling the use of multis-
pectral imaging systems for uncontrolled illumination conditions. To achieve this
goal, we propose illuminant invariant representation of multispectral imaging. Such
a representation is obtained through multispectral constancy, which involves illu-
minant estimation and spectral adaptation transform.

1.4 List of published articles

Throughout the span of this study, a number of articles have been published, see
the list below.

Article A H. A. Khan, J. B. Thomas, J. Y. Hardeberg, and O. Laligant, �Spec-
tral adaptation transform for multispectral constancy,� Journal of Imaging

Science and Technology, vol. 62, no. 2, pp 020504-1-020504-12, 2018.

Article B H. A. Khan, J. B. Thomas, J. Y. Hardeberg, and O. Laligant, �Illumin-
ant estimation in multispectral imaging,� Journal of the Optical Society of

America A, vol. 34, no. 6, pp 1085-1098, 2017.

Article C H. A. Khan, J. B. Thomas and J. Y. Hardeberg, "Analytical survey of
highlight detection in color and spectral images", in Proceedings of Com-

putational Color Imaging Workshop, CCIW, Milan, Italy, Lecture Notes in
Computer Science, vol 10213. Springer, Cham, 2017.

Article D H. A. Khan, J. B. Thomas and J. Y. Hardeberg, "Towards highlight
based illuminant estimation in multispectral images," in Proceedings of In-

ternational Conference on Image and Signal Processing, Cherbourg, France,
Lecture Notes in Computer Science, vol 10884. Springer, Cham, 2018.
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Figure 1.1: Research outline and publications. Article A provides the idea and framework
for multispectral constancy that involve spectral adaptation transform and illuminant in-
formation. The later part involves the of white diffuser in a scene or illuminant estimation,
which is further divided into two parts. Article B describes the image statistics based illu-
minant estimation methods, while Article C and D describe highlights detection methods,
and illuminant estimation from those highlights, respectively. Article F provides a demon-
stration of the overall concept of multispectral constancy, involving multispectral image
visualization (Article E) and spectral data for experiments (Article G).

Article E H. A. Khan, and P. Green, "Color characterization methods for a multis-
pectral camera," in Proceedings of IS&T International Symposium on Elec-

tronic Imaging: Color Imaging XXIII: Displaying, Processing, Hardcopy,

and Applications, San Francisco, USA, 2018.

Article F H. A. Khan, J. B. Thomas and J. Y. Hardeberg, "Towards the use of
multispectral camera as spectrophotometer in uncontrolled illumination con-
ditions", draft paper.

Article G H. A. Khan, S. Mihoubi, B. Mathon, J. B. Thomas and J. Y. Hardeberg,
�HyTexiLa: High resolution visible and near infrared hyperspectral texture
images,� Sensors, vol. 18, no. 7, 2045; 2018.

1.5 Thesis organization

This thesis is organized in the form of compilation of published articles. Fig. 1.1
gives an overview of the research outline and the publications originated from spe-
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ci�c modules of this research. Chapter 2 provides an overview and background of
the research carried out in this work. Discussion on the contributions in this thesis
is present in Chapter 3. Chapter 4 consist of Article A. In this chapter, the concept
of multispectral constancy and data transformation is provided. The preliminary
results of this work is also presented in a conference paper1. Since the material
in this conference publication is already covered in Article A, therefore it is not
included as part of this dissertation Illuminant estimation in multispectral imaging
is discussed in Chapters 5 and 7. Chapter 5 is based on the Article B. In this
chapter, image statistics based illuminant estimation methods are discussed along
with analysis of different multispectral sensors and number of channels. A review
of the specular re�ection based illuminant estimation methods in color images are
provided in Article D. This article forms Chapter 7, where the potential algorithms
for highlights based illuminant estimation, that can be extended for multispectral
imaging are discussed. For such methods, highlight detection in images is the �rst
step and those techniques are discussed in Article C and it forms Chapter 6 of this
thesis.

Chapter 8 consist of Article E where a discussion on the use of multispectral
camera for obtaining the colorimetric values of a scene is provided. This work is
later used for visualization of multispectral data. A demonstration of multispectral
constancy is provided in Chapter 9, which consist of Article F. In Chapter 10,
we describe the development of a hyperspectral dataset of re�ectance data which
is presented in Article G. This dataset is created as a part of this research and
is made publicly available for research and analysis. Finally, a discussion on the
work presented in this thesis and the conclusion is in Chapter 11, along with the
future perspectives.

1H.A. Khan, J. B. Thomas and J. Y. Hardeberg, "Multispectral constancy based on spectral adapt-
ation transform", Scandinavian Conference on Image Analysis, SCIA, pp 459-470, Tromsł, Norway,
Lecture Notes in Computer Science, vol 10270. Springer, Cham, 2017.



Chapter 2

Research Overview

2.1 Introduction

In this chapter, an overview of the research work is presented. We start with the
brief description of image formation, imaging techniques and multispectral ima-
ging. The research carried out in this thesis is focused on illuminant invariant
representation of multispectral images. In color vision, the consistent representa-
tion of images is known as color constancy and is discussed in Section 2.4. After
providing the fundamental knowledge, Section 2.6 starts with the introduction of
multispectral constancy, which is the contribution from the work presented in this
dissertation. Throughout the rest of this chapter, the necessary fundamental know-
ledge for understanding the imaging model and the need for consistent represent-
ation of multispectral images is provided.

2.2 Imaging techniques

Recording the interaction of electromagnetic radiations with objects, along with
the spatial and volumetric sense is termed as digital imaging [1]. This interac-
tion occurs due to absorption or re�ection of electromagnetic radiation from the
surface of objects. These electromagnetic radiations contain information across
the wavelength spectrum and various sensors are designed to capture information
in a particular region. A typical color camera records the radiation ranging from
approximately 380 nm to 780 nm while the infrared imaging sensors are able to re-
cord the radiations in approximately 800 nm to 1100 nm [2]. X-ray sensors operate
in the wavelength spectrum of about 0.01 nm to 10 nm while the positron emission
tomography captures the information in gamma rays (about 10�11 meters). The
focus of this study is on the electromagnetic radiation-based digital imaging in the

7
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visible spectral range and will be developed by introducing the image formation
and digital imaging model in the following.

Objects are perceived by their radiance in the visible region of the electromagnetic
spectrum. The recorded radiance from a given object depends on its material prop-
erties, its shape and location in the scene. Considering non-luminous objects, the
intensity, position and spectral characteristics of the scene illuminant also play a
major role in image generation. Finally, the spectral sensitivity of �lters is another
important parameter in image creation. In a simple imaging model with three chan-
nels, the image values f = (R; G; B)T are dependent on the light source e(�), sur-
face re�ectance r(�) and camera sensitivity functions c(�) = fr(�); g(�); b(�)g,
within the visible electromagnetic wavelength spectrum ! as

f =

Z

!
e(�)r(�)c(�)d�: (2.1)

In the human visual system, there are three cone types in the eye which are sens-
itive to certain wavelengths [3]. The perception of color is formed when data
from these three cones is combined in the brain. Color cameras work on the same
principle, having three �lters, named as R, G and B �lters. They are sensitive
to particular regions of wavelengths and their combination forms a color image.
The sensor sensitivity of color cameras varies for each manufacturer and model
of camera. These sensitivities are not similar to the sensitivities of cones in the
human eye and are adjusted for obtaining a sharp and vivid image. Despite such
variations, the output of color images is standardized and can be used across dif-
ferent devices. Color cameras are inexpensive and due to developments in pro-
cessing power, memory, optics and sensor technology, almost every person having
a mobile phone has a built-in color camera. Color images do not require lot of
processing power and space. hey are widely used in numerous applications of
computer vision and since they are used in standardized color spaces, the effect of
sensor sensitivity (c(�) in Eq. 2.1) is generally ignored [4]. The spatial resolution
of color images can be very high but their spectral resolution is low and generally
it is dif�cult to recover the re�ectance of surfaces from color images since their
sensor sensitivities cover broad areas in the visible wavelength region. Color im-
ages are affected by the change in scene illumination and need to be corrected for
its effect. The issues related to change in illumination and methods for correction
are discussed in Section 2.4.

2.3 Multispectral imaging

Human eyes can sense electromagnetic radiation in the visible spectrum mostly
through three type of �lters (cones) while multispectral imaging cameras can ac-
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quire the radiation information in many more channels. Multispectral cameras can
operate not only in the visible spectrum, but also in the ultraviolet and infrared
regions. A multispectral camera combines the power of spectroscopy and digital
imaging. Spectroscopy deals with the study of emitted or re�ected radiation from
materials and its variation along the wavelength spectrum. Spectrometers are used
for measurement of radiance at a single point. These instruments consist of a
diffraction grating or prism that splits the incoming light into several narrow and
adjacent wavelength bands. The energy in each band is measured by a separate
detector. Spectral measurements of very narrow bands can be performed through
the use of hundreds of such detectors. Those instruments are able to acquire spec-
tral information from only one point while the multispectral cameras can acquire
not only spectral, but also the spatial information of a whole scene. The trade-off
in multispectral imaging is in the form of lower spectral resolution as compared to
the spectrophotometer. Each pixel in a multispectral image consists of the radiance
information in a large number of channels while each channel consists of spatial
information acquired at a particular wavelength. For a multispectral imaging sys-
tem, the camera sensitivity function c(�) in Eq. 2.1 consists of several �lters,
ranging from dozens to hundreds. Each of those �lters allows a narrow region of
wavelength spectrum to pass through it. According to the sensitivity of a typical
silicon sensor behind an optical system, having sensitivity range !, a multispec-
tral system usually provides a combination of visible and/or near infrared bands,
where the imaging model de�ned in Eq. 2.1 still holds.

f =

Z

!
e(�)r(�)m(�)d�; (2.2)

here the camera sensitivities are represented bym(�) = fm1(�); m2(�); :::; mN (�)g
and N is the total number of channels.

Use of spectral imaging gained worldwide attention after the launch of Landsat

in 1970 and since then it has been widely used in remote sensing applications.
Multispectral imaging is used in many �elds including satellite and air borne re-
mote sensing systems [5], process control in food industry [6], quality control
[7, 8], cultural heritage [9, 10], medical imaging [11�14] and a number of other
�elds [15].

For the acquisition of multispectral images, push broom cameras have been extens-
ively used [16]. In the push broom imaging technique, line scanning of the scene
is performed and the spectrogram of a particular scan is recorded on a charged
couple device sensor. Another method for acquisition of multispectral images is
through the use of liquid crystal tunable �lter �lter (LCTF) [17, 18] and MEMS
Tunable Fabry-PØrot Filters [19] on top of a monochrome sensor. Use of such �l-
ters provides direct imaging ability and line scan of the scene is no longer required.
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The drawback of using these �lters is the low speed of spectral sampling and need
for correction of acquired data due to shift in position in case of moving objects.
Recently, low cost spectral imaging devices has been introduced that use off-the-
shelf components for conversion of an imaging sensor into hyperspectral camera
[20].

Filter-wheel camera based cameras are also popular for acquisition of multispec-
tral images. Such cameras consist of a set of band-pass �lters which are rotated
over the imaging sensor and values are recorded for each �lter. A combination
of these images (which are gray-scale) forms the multispectral image. A recently
developed method of multispectral image acquisition is through the spectral �lter

array [21], consisting of a number of �lters embedded over the imaging sensor.
These �lters are embedded in the same way as Bayer �lter mosaic but instead of
three, there are more types of �lters. In this way, an image consisting of responses
from several �lters is acquired.

Filter-wheel cameras have high spatial resolution and there is no requirement of
de-mosaicing since each of the channels is acquired separately. The major short-
coming of such cameras is the requirement of static scene and camera position.
The image acquisition time depends on the number of �lters and the integration
time being set of each of the �lter. Due to the time required for image acquisition,
such cameras are not feasible for capturing moving objects. A spectral �lter array
(SFA) camera, on the other hand, is able to take an image of the scene in a single
shot [22]. The shortcoming of SFA based camera is the low spatial resolution,
since the distance between same class of �lters is relatively large in the �lter array
pattern, as compared to Bayer �lter array pattern. The acquired image from SFA
consists of a mosaic with each pixel representing the imaged data from only one
�lter. De-mosaicing is used to reconstruct each channel and this process causes
loss of spatial resolution.

The advantage of multispectral imaging is the availability of high resolution spec-
tral and spatial data of a scene. The availability of such information aids in the
development of advanced spatio-spectral models for various tasks of computer vis-
ion and data processing. The use of multispectral images in object recognition can
perform better than the conventional RGB color images [23]. One of the limita-
tions of multispectral imaging is the need for known imaging conditions in order
to perform any task that deals with the spectral re�ectance of materials. Therefore,
most of the existing multispectral imaging systems are speci�cally designed and
require re-calibrating when the imaging conditions are changed. This limitation
is a hurdle in the use of multispectral imaging in outdoor environments where the
imaging conditions are not controlled. Color imaging, on the other hand, is able to
address such changes as much as possible and the data is corrected from in�uence



2.4. Color Constancy 11

of imaging conditions. One of such condition is the change in scene illumination.
In this research work, our focus is to enable the use of multispectral imaging for
uncontrolled imaging environment through the use of illuminant invariant repres-
entation of multispectral images.

As expressed in Eq. 2.1, the formation of an image is mainly dependent on three
key factors. Among them, the re�ectance of an object and the camera sensor sens-
itivities remain constant for a given object and camera. However, the change in
illumination condition can cause different result for the same object, taken with
the same camera. It is desirable to get consistent colors of objects. In the human
visual system, constant color for objects is maintained through complex processes
in the brain and as a result, we perceive the same color of objects most of the time,
regardless of the illumination conditions. Digital camera manufacturers put a lot of
effort to achieve this quality by designing the imaging sensor for optimal perform-
ance, and also through software correction of acquired data within the imaging
pipeline. The consistent representation of colors is a well studied area both in the
�eld of neuroscience and digital image processing. In the following section, we
will provide a brief introduction to this �eld.

2.4 Color Constancy

The ability of the human visual system to perceive consistent color of objects
across different illumination conditions is known as color constancy. The human
visual system has the ability to address the changes in illumination and correct
the color of objects. In the color constancy mechanism, the source of illumination
is not necessarily known to the observer. In a complex environment with many
objects, the illumination at one point can be the mixture of direct and indirect irra-
diation distributed over a range of incident angles and mutual re�ections. Objects
and surfaces are perceived by humans with consistent colors most of the time even
if there is drastic change in illumination of the scene. This ability is the result of
complex processes in the human visual system and the working of this mechanism
is not fully understood yet [24].

Perception of colors in a constant manner is important for daily life tasks since
color of objects is one of the important features in tasks involving recognition
[25, 26]. For example, the color of fruits determine if they are ripe, raw or spoiled.
The ability to perceive constant colors in different environments is crucial since it
avoids confusion and makes life easier. Without color constancy, color of objects
would not be a reliable clue for object identi�cation. As an example, in Fig. 2.1,
the color of the cup is perceived as white by human visual system while the close-
up of a patch of the surface of the cup shows that the color is different. Four
different illuminations cause difference in surface color but the human brain is
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Figure 2.1: Close-up look of the color of cup under different illuminations.
Image taken from http://www.lacasamorett.com/foxgallery/color-constancy.html

able to compensate for changes in scene illumination.

Although the mechanism behind color constancy in human visual system is not
fully understood yet, there are attempts to model such a system for computer vis-
ion. Such modelling is known as �computational color constancy� where the aim
is to develop an illuminant-invariant representation of image data. Developing an
illuminant invariant computer vision system is an open area of research and there
are algorithms which are able to perform well for particular conditions and as-
sumptions, but a universally accepted computational color constancy system does
not exist.

The challenge in achieving ef�cient computational color constancy is that it is
not easy to estimate the spectral re�ectance of surface and the spectral irradiance
of the incident illumination from the re�ected spectral radiance into the imaging
sensor. Mathematically, the recovery of re�ectance from the sensor data is an ill-
posed problem since the data recorded by imaging sensor is composed of surface
re�ectance, sensor sensitivity and the scene illumination (Eq. 2.1).

Computational color constancy plays an important role in color-based computer
vision applications including object recognition, tracking and image classi�cation
[27]. Object representation and recognition from the standpoint of computer vis-
ion is discussed in detail by Dickinson [28]. For example, in the case of object
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recognition, the color of the object can be used as a feature, and it should appear
constant across changes in illumination [29]. So the �rst step in achieving a con-
stant representation of colors is to adjust the color changes that occur due to the
scene illuminant. Therefore, computational color constancy deals with the repres-
entation of a scene with the effect of the illuminant being as small as possible.
There are several attempts to solve for the problem of computational color con-
stancy by imposing constraints on the surface re�ectances and illuminants [30].
There are two approaches for this. One is to compute illuminant invariant features
[31, 32] while the second technique is to estimate the scene illuminant [33] and
later apply a correction. In this work, we focus on the technique of estimation of
scene illumination and then removing its effect from the acquired image.

From the imaging model given in Eq. 2.1, the goal of a color constancy system is to
estimate the illuminant ê, and this estimation is performed in the camera domain.
Illumination in the camera domain is dependent on the camera sensor sensitivities
and it de�nes how the illumination is recorded by the camera. For a color camera
with three channels, it is represented by

e =

Z

!
e(�)c(�)d� =

0

@

Re

Ge

Be

1

A : (2.3)

The aim of illuminant estimation method is to estimate ê with minimum error and
as close as possible to e. Both e and ê are in the sensor domain and are composed
of a set of discrete values with the dimension equal to total number of �lters (N).
It should be noted that ê is the response of each �lter for the illumination (ground
truth or estimated), and it is not equivalent to the spectral power distribution of the
illumination itself. Some algorithms aim at recovery of spectral power distribution
of illumination from ê, while most of the techniques use the information from
estimated algorithm directly for correction of the acquired image. In the following
section, an overview of the illuminant estimation techniques is provided.

2.5 Illuminant estimation in color images

There are two categories of illuminant estimation algorithms; one method is to use
the statistical properties of the scene, while the other is to utilize the physics-based
analysis of surfaces [34]. Machine learning is also used for estimation of scene
illumination. In the following sections, a brief description of those techniques is
provided.
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2.5.1 Statistics based illuminant estimation methods

This type of illuminant estimation method is based on the image statistics and is
applied by using �xed set of parameters. One of the earlier algorithms in this cat-
egory is the Land’s white-patch algorithm [35] which is based on the assumption
that there is at-least one pixel in the image which causes maximum re�ectance and
when such pixels are combined, they provide information of scene illumination.
A surface with perfect re�ectance is assumed to re�ect back all the incident illu-
mination on it. This assumption is alleviated by considering the color channels
separately, resulting in the max-RGB algorithm [36]. This method computes the
maximum response in each channel separately for each color channel of an image
F, which is taken under the unknown illuminant, as

max
x

F(x) = (max
x

R(x); max
x

G(x); max
x

B(x)) = kê (2.4)

where x is the spatial location and k is the multiplicative constant which is chosen
to keep with estimated illuminant ê = (êR; êG; êB) within the unit length. A
number of improvements are suggested in the max-RGB algorithm. One of the
methods is to apply smoothing on the image [37] for removal of noisy pixels. Eb-
ner [38] suggested the local space average color method which also allows pixel-
wise illuminant estimation. Max-RGB algorithm is sensitive to the pre-processing
strategies and the dynamic range of imaging sensor [39]. Some approaches aim at
�nding gray pixels and surfaces in the scene instead of white patches. Hue et al.

[40] used such gray points in an image for estimation of illuminant temperature. In
their method, RGB image is converted into YUV color space and then those pixels
where U = V = 0 or R = G = B = Y are pointed out as gray points. The values
at those points is taken as the estimate for scene illuminant.

A commonly used algorithm in this category is the grey-world algorithm. It was
proposed by Buchsbaum [41] and is based on the assumption that the average
color of a scene is achromatic. Following this assumption, any deviation from
achromaticity in the average color of a scene is caused due to the scene illumina-
tion. Therefore, by computing the average color in an image taken under unknown
illumination, the color of light source can be estimated by

�
R

Fdx
R

dx

�

= kê (2.5)

The result of Grey-World algorithm was improved by Gershon et al. [42] by taking
average re�ectance of a database and assuming the average of the scene to be equal
to that average re�ectance. Gray-world algorithm is able to perform well when
the natural scene statistics are satis�ed and the image contain a large number of
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surfaces, but fails in the presence of large uniformly colored surfaces. To overcome
this problem, segmentation of the scene and then computing the average color of
the segmented regions is suggested in [42, 43].

Finlayson and Trezzi [44] proposed that the gray-world and max-RGB algorithms
are special instantiations of the more general Minkowski framework. They pro-
posed shades of gray algorithm with Minkoeski norm, where the gray-world al-
gorithm is the same as using the L1 Minkowski norm while max-RGB is equival-
ent to using L1 norm. In their case, the general equation for estimation of light
source becomes

�
R

F
pdx

R

dx

�1=p

= kê; (2.6)

where p is the order of the Minkowski norm. The value of p varies according to
the image and dataset type and is set individually. Therefore, the optimal value of
p may vary for different image datasets and even for each image within a dataset.

The assumptions in max-RGB, gray-world and shades of gray algorithm are based
on the distribution of pixel values in a given image. Weijer et al. [45] proposed
the use of higher order image statistics for estimation of scene illuminant. Their
proposed algorithm is called gray-edge algorithm in which it is assumed that the
average of re�ectance derivative in a scene is achromatic. This algorithm is ex-
pressed as:

�

[
R

[F�]pdx
R

dx

�1=p

= kê; (2.7)

where F� is the smoothed image, after applying a Gaussian �lter.

Edge-based color constancy is explored further for higher order derivatives in [46].
Celik and Tjahjadi [47] used wavelet transform to down-sample the image be-
fore applying Grey-Edge algorithm for estimation of illuminant color and for each
down-sampled image, separate estimation is performed on the high pass �lter’s
result. Decision for illuminant color is based on minimum error between the es-
timation in consecutive scales. There are some approaches [48, 49] which try to
select the most appropriate estimation using intrinsic properties from other color
constancy algorithms. Gijsenij et al. [50] extended the gray-edge method to incor-
porate a general weighting scheme for the image edges and proposed that different
types of edges might contain various amounts of information. Their results suggest
that the specular edges are favored for the estimation of scene illuminant. Use of
specular re�ection for illuminant estimation is further discussed in section 2.5.2.

Some approaches for illuminant estimation are proposed by imposing constraints
on the set of plausible illuminants. Gamut mapping is one such technique where
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it is assumed that for a given illuminant, one observes only a limited number of

colors. Based on this assumption, any change in colors of the image is caused by
the variation in color of the light source. The limited set of colors which can occur
under a given illuminant is called the canonical gamut and is determined through
observations of many surfaces under the known light source. Gamut mapping was
introduced by Forsyth [51] and he proposed that the color of an object is its repres-
entation under a �xed canonical light, rather than as a surface re�ectance function.
Color-by-correlation [52] is a discrete version of Gamut mapping where the cor-
relation matrix is used instead of canonical gamut for the considered illuminants,
and is used with the image data to calculate the probability that the illumination in
the test image is caused by which of the known illuminants.

Statistics based illuminant estimation methods are able to provide good results as
long as the assumptions for scene statistics are ful�lled. Most of those methods
require a large number of various colored surfaces in a scene. In the presence of
very few colors or a large surface in the image, those methods tend to fail. For
illuminant estimation in scenes with less diversity in terms of colored surfaces,
dichromatic re�ection model based illuminant estimation methods are used. These
methods are also known as highlights based illuminant estimation algorithms. In
the following section, an overview of those methods is provided.

2.5.2 Highlights based illuminant estimation methods

The imaging model of Eq. 2.1 is valid for matte surfaces with only diffuse re�ec-
tion and follow the Lambertian model. In highlights based illuminant estimation
methods, the information about the physical interaction between the light source
and the objects in a scene is used. In practice, both specular and diffuse re�ections
are present in a scene. Diffuse re�ection is caused when the incident light is par-
tially absorbed and partially re�ected from the surface of a material. Such diffuse
re�ection is omni-directional and is not dependent on the viewing angle. The color
of objects and surfaces is determined by the diffuse re�ection through the re�ec-
ted wavelengths in a particular spectral region, while the rest of wavelengths are
absorbed by that material. Specular re�ections occur when all of the incident light
on a material surface is re�ected back. In this case, the incident light on the ima-
ging sensor is composed of both diffuse and specular re�ections from the material
surface. Shafer [53] proposed to decompose the light into its diffuse mb(x) and
specular ms(x) components:

f(x) = mb(x)

Z

!
e(�)s(x; �)c(�)d� + ms(x)

Z

!
e(�)c(�)d�: (2.8)

Eq. 2.8 is the basis for �dichromatic re�ection model� which explains both the
diffuse and specular re�ections from the surface of a material. In the dichromatic
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re�ection model, the diffuse re�ection is of low intensity and is Lambertian, while
the specular re�ection is generally of high intensity, directional, independent from
the surface re�ectance and dependent on the viewing direction.

The specular re�ection part of Eq. 2.8 is the same as illuminant in the sensor do-
main (Eq. 2.3), along with the specular component ms(x). This relation suggests
that solving for the diffuse and specular components can provide information of
scene illumination. This information is contained in the specular re�ection since
the incident illumination is re�ected back in that case. Eq. 2.8 shows that an im-
age is a linear combination of the diffuse and secular components and for a camera
with c(�) = fR(�); G(�); B(�)g, this linear combination de�nes a plane in the
RGB color space. The data points from the RGB color space are projected onto a
space normalized by r + g + b = 1, where they form a line. The two points de-
�ning the line consist of the diffuse and specular points on a surface. Data points
from a uniformly colored surface are distributed along this line which is called
the dichromatic line. Assuming uniform illumination in a scene, all the dichro-
matic lines have one point in common, which corresponds to the scene illuminant.
Therefore, if there are two or more materials being illuminated by the same light
source and their dichromatic planes are identi�ed, the vector containing illuminant
information can be estimated by the intersection of these planes.

Several authors have used the two-dimensional chromaticity space by using the
dichromatic re�ection model for illuminant estimation. One of the earlier attempts
in specular re�ection based illuminant estimation are by Lee [54], and D’Zumra
and Lennie [55], who proposed the use of color coordinates of specular highlights
for estimation of illumination. Lehmann and Palm [56] extended Lee’s red diagram
[54] to the rg-diagram and called it �color line search�. Recently, Uchimi et al.

[57] proposed estimation of illumination from u0v0 chromaticity, xy chromaticity
space is used in [58], and the rg color space in [59, 60]. By applying constraints
on the set of possible illuminants, some algorithms [61�64] aim at �nding the
chromaticity of an illuminant by intersecting a dichromatic line with the Planckian
locus, or a set of known illuminants. The basic idea of such methods is to calculate
the projected area for a set of candidate illuminants along the Planckian locus and
pick the candidate that gives the minimum error in terms of distance, as an estimate
of the scene illuminant.

The inverse intensity chromaticity space (IICS) is also a physics-based illuminant
estimation method introduced by Tan et al. [65]. It is spanned by the chromaticity
of a single channel and the inverse of image intensity. A linear correlation between
the image chromaticity and illumination chromaticity is formed in the IICS. This
correlation allowed the estimation of scene illumination without segmenting the
color beneath the highlights. Riess et al. [66] proposed local estimates of scene
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illuminant through decomposition of the image into mini-regions. Those estimates
are used for computing the dominant illuminant of the scene by using the inverse
intensity chromaticity space.

One of the limitations of specular re�ection based illuminant estimation methods
is the requirement of pre-segmented highlight regions in an image. Detection of
highlights in images is not straightforward and is still an open area of research [67].
There are some attempts to eliminate the requirement of pre-segmentation. Shi and
Funt [68] proposed two Hough Transforms for computation of a histogram that
represents the likelihood that a candidate intersection line is the image illumination
axis. This axis is de�ned by the set of known illuminants and is limited for generic
use. Highlights based illuminant estimation methods are limited by the dynamic
range of the imaging sensor and are unable to perform well if the highlight regions
in the image are saturated.

2.5.3 Machine learning based illuminant estimation

Machine Learning is also applied for illuminant estimation and is becoming a pop-
ular method. Although most of the machine learning, particularly deep learning
methods aim at �nding the illuminant-invariant features in images, there are at-
tempts to use machine learning for illuminant estimation. In [69], a multi-layer
neural network is trained by using the histograms of chromaticity of input images
along with corresponding chromaticity of illuminant. A number of similar ap-
proaches can be found in [70�72] where the network learns the illuminant in scene
through various examples. Support Vector Machine is used in [73], which is based
on the higher-order structure of images. Recently, Deep Learning is also utilized
in color constancy as in [74, 75]. Oh and Kim [76] used deep learning for treating
illuminant estimation as a classi�cation problem. Bianco et al. [77] used convo-
lutional neural network for illuminant estimation in raw images. For generation of
ground truth illumination, shades of gray, gray edge and gamut mapping is applied
on the training data in their proposed method.

In the presence of a large dataset along with ground truth for training, machine
learning methods are able to perform the illuminant estimation task ef�ciently.
However, in the absence of a large training dataset, their performance can be lower
than the linear methods. Machine learning, and particularly deep learning based
illuminant estimation methods in color imaging have the potential to outperform
conventional methods if the network is trained over a huge amount of data and the
standardization of both training and test data can be ensured.

So far we have discussed the concept of color constancy and illuminant estimation
for color imaging. From the next section, we will focus on multispectral ima-
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ging and the work discussed in the following forms the contribution towards this
dissertation.

2.6 Multispectral Constancy

Extending the use of multispectral imaging system from heavily constrained en-
vironments to real world applications is still an open challenge. One of the major
obstacles is calibration of multispectral camera according to the scene illuminant
[78�82]. When the multispectral image is acquired with known (canonical) illu-
minant, processing of spectral data is relatively straightforward. Fig. 2.2 illustrates
the effect of scene illumination on the behaviour of acquired data. An object with
measured re�ectance as in Fig. 2.2(c) is imaged with a �lter-wheel camera with
6 sensors in the visible wavelength range (2.2(a)). Three illuminants (A, D65 and
F12) are used in this example and for each of the illuminants, the sensor response
for the same surface is quite different. If a surface identi�cation system is trained
to identify the response of Fig. 2.2(d) as the material corresponding to the spec-
tral response in Fig. 2.2(c), it will fail if the camera data for the same material
is obtained as in Fig. 2.2(e) or 2.2(f). In both cases, material and camera are the
same but a change in illumination causes change in the �nal image and therefore,
it is necessary to remove the effect of illumination. Once the effect of illumination
is removed and the image is transformed into a canonical representation, various
computer vision applications can be applied on the multispectral images.

Multispectral constancy deals with such a transformation of acquired multispectral
data under uncontrolled illumination conditions, into a canonical representation.
Multispectral constancy has two parts, �rst is the diagonal transform D

c;ill and
second is the spectral adaptation transform. The elements of diagonal transform
consist of illuminant in the sensor domain. These values are either extracted manu-
ally from a white patch in the scene or estimated through different methods. In the
following section, multispectral data transformation is discussed.

2.7 Transformation into canonical representation

The aim of multispectral constancy is to transform the acquired image into a rep-
resentation as if it would have been taken under a known light source. The known
light source is called as canonical light source and the representation of image
taken under a known light source is known as canonical representation. This
process is also expressed as �discounting the chromaticity of the illuminant� by
D’Zmura and Lennie [55], and is expressed as

Fc = Mc;illFill; (2.9)
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Figure 2.2: Illustration of the in�uence of illumination. The data obtained from camera is different in (d,e,f) varies when the scene
illumination is changed for the same imaging device and surface re�ectance.
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where Fill is the image taken in unknown light source and Fc is the transformed
image as if taken under a canonical illuminant, while Mc;ill is the transformation
matrix, which maps colors from captured image to their corresponding colors un-
der a known illumination.

In most of the computational color constancy literature [83, 84], a diagonal trans-
form D

c;ill is used to transform the input image taken under unknown illuminant,
into a canonical representation. Such a transform requires the measurement or es-
timation of scene illuminant in the sensor domain. The diagonal matrix Dc;ill is
a N � N matrix and the components of this matrix are the sensor responses to
the illuminations Ec and Eill. As an alternate explanation, sensor response to the
illuminants can be understood as the sensor response to a perfect white diffuser
under a certain illuminant, and denoted by wc and will for the two illuminants.
The matrix D is de�ned by

D
c;ill = diag(wc=will) (2.10)

The diagonal transform assumes that there are no inter-channel dependencies and
that each of the image channels is adjusted independently for correction of image
colors as

0

@

Rc

Gc

Bc

1

A =

0

@

� 0 0
0 � 0
0 0 

1

A

0

@

Ru

Gu

Bu

1

A : (2.11)

Eq. 2.11 describes a basic model. Thomas [85] suggested that it may be possible
to extend it for multispectral images where instead of three channels, there are
N > 3 channels.
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where F ill
n is the uncalibrated pixel of nth channel, F c

n is the calibrated pixel while
Kn is the correction parameter for channel n.

The independence of color channels from each other is de�ned in the Retinex
Model [35, 36, 86]. This assumption is closely related to the Von Kries coef�cient
rule. Dc;ill generally holds for color images and has been widely used in literat-
ure. However, the imaging sensors are not always independent and there are inter-
channel dependencies which arise due to factors related to optics and overlapping
of sensor sensitivities in the wavelength spectrum. There are efforts to address
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those dependencies and several transforms are developed for color images. These
transforms are generally known as �chromatic adaptation transforms� and they aim
at minimizing the perceptual error in color imaging. Examples of chromatic adapt-
ation transform are the Bradford transform [87], the sharp transform [88] and CM-
CCAT2000 [89]. In our work, we have introduced �spectral adaptation transform�
for multispectral imaging, which is used to address the inter-channel dependencies
of imaging sensor. This transform is discussed in the following section.

2.7.1 Spectral adaptation transform

The assumption of having no inter-channel dependencies for an imaging system is
valid when the overlapping among channels is minimal or none. However, in the
color and multispectral cameras, there is overlapping among the sensitivity regions
of each �lter. The diagonal transform Dc;ill does not address such inter-channel
dependencies and assumes perfect isolation of each channel.

In our work on illuminant estimation in multispectral imaging, we performed sim-
ulation of multispectral sensors in three different con�gurations and found that
sensors with more overlapping among them can help in better estimation of scene
illumination (for details, please refer to Chapter 5). However, the spectral recon-
struction results suggest that sensors with lower or no overlapping among them
perform better. This different is caused by the spectral noise, which is introduced
due to the �lter’s overlapping in the wavelength region. To overcome this problem
in order to get optimal performance for spectral reconstruction, we have introduced
the spectral adaptation transform (SAT). The idea of SAT is to incorporate the in-
trinsic properties of imaging sensor in the multispectral constancy pipeline for data
transformation. SAT is unique for each imaging system and is calculated by using
the sensor sensitivities and a set of training re�ectances. The optimal SAT matrix
ASAT should minimize the error for all re�ectances i and illuminants j.

F
i
c = ASATD

c;j
F

i
j (2.13)

To �nd the best ASAT , Eq. 2.13 is written as the explicit minimization of an error
function in Eq. 2.14;

min
ASAT

=
X

j

jFi
c � ASATD

c;j
f

i
j j (2.14)

For a given sensor con�guration, a generic ASAT is computed once and is used
along with the diagonal transform as in Eq. 2.13.

The role of SAT is to address the inter-channel dependencies and optimize the
diagonal transform. In Chapter 4, the role of SAT is demonstrated through the
results of spectral reconstruction from multispectral images. A demonstration of



2.7. Transformation into canonical representation 23

diagonal correction and SAT by using a real multispectral �lter-wheel camera and
material surfaces is provided in Chapter 9.

So far we have discussed SAT while assuming the information about scene illu-
minant in the sensor domain is measured through a white diffuser in the scene.
However, in practical scenarios it is not always feasible to use diffuser while ima-
ging. Therefore, we propose illuminant estimation in multispectral imaging, which
is discussed in the following section.

2.7.2 Illuminant estimation in multispectral images

For estimation of scene illumination in multispectral imaging, we proposed the
extension of four statistics based illuminant estimation methods. Those methods
were developed for color images and we investigated their performance on multis-
pectral images. Those four algorithms are;

� Gray-World Algorithm [41] ! Spectral Gray-World Algorithm

� Max-RGB Algorithm [36] ! Max-Spectral Algorithm

� Shades of Grey Algorithm [44] ! Spectral Shades of Gray Algorithm

� Gray-Edge Algorithm [45][46] ! Spectral Gray-Edge Algorithm

Illuminant is estimated for each channel individually and the �nal estimate is com-
posed of a one dimensional vector with N values. Those values correspond to the
illuminant is sensor domain. Details of these algorithms and their use in multis-
pectral imaging is discussed in detail in Article B and Article D (Chapters 5 and
7). Chapter 5 provide details of statistics based illuminant estimation methods in
multispectral imaging while in Chapter 7, a discussion on specular re�ection based
illuminant estimation methods is provided. We do not consider machine learn-
ing based illumination estimation for multispectral imaging. A machine learning
based method relies on training data for creating a model that is able to predict and
classify the input data. For illuminant estimation purpose, a machine learning al-
gorithm will require standard multispectral camera data with a lot of examples that
include the ground truth information about scene illumination. Machine learning
and particularly, deep learning methods have been proved to outclass the classical
methods for detection and classi�cation tasks under the standardized data but in
case of multispectral imaging, there is no standard way of representing the im-
age data. Each multispectral camera has a speci�c number of channels and sensor
sensitivities that vary among camera models and manufacturers. Some cameras
cover only the visible range of wavelength spectrum, some operate in near infrared,
some cameras include the ultraviolet region and there are cameras that operate in
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all of those regions. For creating an ef�cient machine learning system for illumin-
ant estimation, hundreds and thousands of examples using one camera need to be
created for training the system and that system will not perform well for another
multispectral camera with different number of channels and/or spectral range and
sensor sensitivities. Due to such limitations, we do not use machine learning for
illuminant estimation in multispectral imaging in our current work.

2.8 Applications of multispectral constancy

Once multispectral constancy is achieved, a multispectral imaging system can be
used for obtaining the spectral re�ectance of material surfaces. This spectral in-
formation along with spatial information can increase the performance of material
identi�cation and classi�cation. The ef�ciency of SAT along with diagonal trans-
form is demonstrated in Chapter 4. Once the in�uence of illumination is removed
from the acquired multispectral data, the spectral information can be used to re-
construct the spectra of material surfaces in a scene. Use of multispectral camera
for spectral reconstruction is demonstrated in Chapter 9. Multispectral imaging
can also be used for acquisition of colorimetric values of a scene. In Chapter 8,
multispectral data is mapped from N dimensions to 3 dimensional representation
and colorimetric information is extracted. The availability of illuminant invariant
multispectral imaging system will enable the use of multispectral cameras for gen-
eric computer vision applications where the spectral and spatial information will
enhance the ability of surface identi�cation and materials classi�cation.The work
presented in this dissertation will help in coming one step closer in enabling the
use of multispectral cameras in the same way as color cameras and to explore their
potential for numerous applications.
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Chapter 3

Contributions

There have been several research publications during this work. A summary of
each of them is discussed in this chapter. In all of the articles, the literature review,
methodology, experimental setup, analysis evaluation of results and manuscript
writing are performed by the author of this dissertation, except for one article in
which the work is performed in collaboration with another group. The contribu-
tions of author for that paper are explicitly mentioned in the description.

3.1 Article A: Spectral adaptation transform for multispectral

constancy.

H. A. Khan, J. B. Thomas, J. Y. Hardeberg, and O. Laligant, �Spectral
adaptation transform for multispectral constancy,� Journal of Imaging

Science and Technology, vol. 62, no. 2, pp 020504-1- 020504-12,
2018.

In this paper, we have proposed the idea of multispectral constancy for illuminant
invariant representation of multispectral data. Multispectral constancy is analog-
ous to color constancy but in higher dimensions. We propose the transformation
of multispectral data, taken under uncontrolled imaging condition, into a repres-
entation that makes the data look like it was taken under a known illuminant.
The known illuminant is called the canonical illuminant and the representation
of multispectral data under such an illuminant is called canonical representation.

In this work, we simulated four different multispectral sensors for acquisition of
multispectral data from measured re�ectance values. The re�ectance data used in
experiments is the SFU re�ectance data and Foster hyperspectral images. Multis-
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pectral images are taken after conversion of re�ectance data into radiance. Eight
illuminants are used with SFU re�ectance data while four illuminants are used to
create radiance data from Foster hyperspectral images dataset. The preliminary
results from simulations are also presented in a conference publication1.

In this work, we compare the data transformation through a diagonal transform
and propose spectral adaptation transform (SAT). The values of diagonal trans-
form consist of scene illuminant in the sensor domain. This transform is used to
incorporate the intrinsic properties of imaging sensor. A diagonal transform as-
sumes that there are no inter-channel dependencies. It is true in the case of narrow
band �lters with almost no overlapping but when that condition is not satis�ed,
only the diagonal transform is not suf�cient. In color imaging, chromatic adapt-
ation transforms are applied to get the color correction. We use the same idea
with multispectral imaging and develop SAT for reduction of error in image trans-
formation. In this paper, we have presented the spectral reconstruction results with
diagonal transformation of data and also by applying SAT along with diagonal
transform. To evaluate the effectiveness of such transforms, we use a case when
no transformation is applied to the input multispectral data. Results from spec-
tral reconstruction show that SAT along with diagonal transform provides the best
result.

For each multispectral imaging system, separate SAT needs to be calculated once
and later that SAT is used every time during image transformation. Diagonal trans-
form requires the information of scene illumination in the sensor domain and it can
be acquired either by placing a white diffuser in the scene or through illuminant
estimation. In the experiments, we performed estimation of scene illumination for
the hyperspectral images of natural scenes. Results show a promising aspect of
using SAT along with diagonal transform when evaluated in terms of root mean
square error, goodness of �t and calorimetric error.

The �ndings from this paper are based on simulations and need to be veri�ed
through the use of multispectral camera for acquisition of data under varying illu-
minations. This is illustrated in Chapter 9 through the use of �lter-wheel multis-
pectral camera for acquisition of various objects and illuminations.

1H. A. Khan, J. B. Thomas and J. Y. Hardeberg, �Multispectral constancy based on spectral
adaptation transform�, Scandinavian Conference on Image Analysis, SCIA, pp 459-470, Tromsł,
Norway, 2017.
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3.2 Article B: Illuminant estimation in multispectral imaging.

H. A. Khan, J. B. Thomas, J. Y. Hardeberg, and O. Laligant, �Illu-
minant estimation in multispectral imaging,� Journal of the Optical

Society of America A, vol. 34, no. 6, 2017

In Article A, we proposed multispectral constancy which is based on spectral ad-
aptation transform and illuminant in the sensor domain. The information of illu-
minant in the sensor domain can be acquired by placing a white diffuser in the
scene and using the sensor values for that patch. However, it is not feasible all the
time to have a white diffuser during image acquisition. In such a case, the illumin-
ant should be estimated and then used in the diagonal transform. In this paper, we
propose the methods and experiments for illuminant estimation in multispectral
images.

Illuminant estimation is a well studied area in color imaging and there are many
methods for this purpose. Those methods can be divided into two categories; im-
age statistics based methods and physics based methods. We determined the feas-
ibility of both methods for extension towards multispectral imaging and found
that the image statistics based methods can be extended from three channel color
images to N channels. Base on an extensive literature review, we selected four al-
gorithms and extended them for multispectral imaging. We used the hyperspectral
images of natural scenes from Foster dataset and simulated multispectral sensors.
We used three different con�gurations for sensor sensitivities and different number
of channels (3, 5, 8, 12 and 20).

The results from illuminant estimation are evaluated in terms of angular error. The
performance of each of the sensor con�gurations is evaluated for the proposed
illuminant estimation algorithms. The statistical signi�cance of performance is
assessed through Wilcoxon signed rank test. Results show that optimal perform-
ance is obtained with eight overlapping sensors and Dirac delta sensors are able
to provide better results when the number of channels is increased. Among the
proposed algorithms, the spectral gray-edge and max-spectral algorithms perform
better and are robust to noise.

These results suggest that if the sensor sensitivities on �lters are wide and over-
lapping, the illuminant estimation performance gets better. This is interesting due
to the fact that such sensors also reduce the spectral resolution of imaged surfaces
which can be observed during spectral reconstruction. Therefore, in Article A, we
proposed spectral adaptation transform to incorporate such behavior of imaging
sensor.
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We also found that the bright pixels in an image provide useful information of
illuminant estimation. The max-spectral algorithms used such information and
provides better performance. Another useful source of information are the edges
of materials in a scene which are exploited by the spectral gray-edge algorithm and
gave the overall best results. These observations motivated us to explore the high-
lights based illuminant estimation methods in multispectral imaging. Discussion
on those methods is in the following two publications.

3.3 Article C: Analytical survey of highlight detection in color

and spectral images.

H. A. Khan, J. B. Thomas and J. Y. Hardeberg, "Analytical survey
of highlight detection in color and spectral images", in Proceedings of
Computational Color Imaging Workshop, CCIW, Milan, Italy, Lecture
Notes in Computer Science, vol 10213. Springer, Cham, 2017.

For highlights based illuminant estimation, the �rst step required by most of the
algorithms is to detect the specular re�ection in an image. Detection of highlights
is a prominent issue in computer vision, graphics and image processing. Applic-
ations which require object properties measurement or rendering are affected by
specular re�ection since the models assume matte diffusing surfaces most of the
time. Hence, detection, and sometimes removal, of specular re�ection (highlights)
in an image may be critical. In this paper, we provide literature review of various
highlight detection algorithms and classify them according to their techniques, as-
sumptions and constraints. We make analysis of various categories of highlight
detection and removal algorithms on the basis of the use of dichromatic re�ection
model, requirement of segmenting the image for highlights and the need for white
balancing. We also provide an overview of the highlights detection algorithms for
multispectral imaging.

A qualitative comparison of the highlights detection algorithms is presented in
this paper and we pointed out that in most of the literature, results from detection
and removal of highlights is presented qualitatively while comparing with other
methods. Although qualitative analysis provide a general overview, quantitative
measurement should also be used to provide a fair comparison. Once the highlight
areas in an image are detected, the next step is to use it for estimation of scene
illumination. It is described in the next paper.
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3.4 Article D: Towards highlight based illuminant estimation in

multispectral images.

H. A. Khan, J. B. Thomas and J. Y. Hardeberg, "Towards highlight
based illuminant estimation in multispectral images," in Proceedings
of International Conference on Image and Signal Processing, Cher-
bourg, France, Lecture Notes in Computer Science, vol 10884. Springer,
Cham, 2018.

In this paper, we provide a review of the physics based illuminant estimation
methods. In Article C, image statistics based illuminant estimation methods are
discussed and we identi�ed that bright pixels provide valuable information. In
physics based illuminant estimation approaches, the analysis of interaction of light
with surfaces is performed for estimating the scene illuminant. The optically in-
homogenous objects (e.g. plastics, ceramics, paints, etc) create a neutral interface
re�ection condition, where the spectral power distribution of the specular re�ec-
tion is the same as the incident illumination; and this property is used to estimate
the scene illuminant. The basis of illuminant estimation from specular highlights
in images is the dichromatic re�ection model, which describes the re�ected light
from an object as a combination of the diffuse and specular re�ection. The specu-
lar re�ection is also termed as highlights in an image, and therefore, the problem
of illuminant estimation is treated as the analysis of highlights from surfaces.

In this work, we reviewed the illuminant estimation methods which are based on
highlights in images and identi�ed the potential methods which can be extended to
multispectral imaging. Based on this qualitative analysis, the dichromatic re�ec-
tion model based methods that work in two dimensional chromaticity space can
be computationally complex and unstable for extension to multispectral imaging.
We identi�ed some techniques that can be extended for multispectral imaging.
Quantitative analysis of such an extension is also required before reaching to a
conclusion. By combining the current work with state of the art highlight detec-
tion algorithms described in the earlier paper, the reader can pick the algorithms
which best suit the type of images and data to be processed for illuminant estima-
tion.

One of the limitations of this work is that we did not explicitly use the highlights
based illuminant estimation methods further. The reason for it is the presence of
saturated pixels in multispectral data that is acquired and presented in Chapter 9.
However, we used the spectral gray-edge based illuminant estimation method and
obtained good performance. The spectral gray-edge algorithm used the edge in-
formation from a material’s surface. The incident light on a material forms sheen
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re�ection at the edges and provides the information about the illumination. There-
fore, in a way we can express the spectral gray-edge algorithm as a method based
on both image statistics and highlights based algorithm. Further investigation of
physics based illuminant estimation methods for multispectral imaging is one of
the future aspects from the work presented in this dissertation.

3.5 Article E: Color characterization methods for a multispec-

tral camera.

H. A. Khan and P. Green, �Color characterization methods for a multis-
pectral camera,� in Proceedings of IS&T International Symposium on

Electronic Imaging: Color Imaging XXIII: Displaying, Processing,

Hardcopy, and Applications, San Francisco, USA, 2018

In this work, we evaluate the performance of multispectral camera as a colori-
meter. We measure the camera characterization performance by two methods,
linear mapping and through spectral reconstruction. Linear mapping is used in 3-
channel camera characterization and we use the same method for a multispectral
camera. We also investigate if instead of linear mapping, spectral reconstruction
from the camera data improves the performance of color reproduction or not. The
recovery of re�ectance spectra is an ill-posed problem and certain assumptions are
required for obtaining a unique solution. Linear methods are generally used for
spectral reconstruction from the camera data and are based on training on known
spectra. These methods can perform well when the test data consists of a subset
of the training spectra, however, their performance is signi�cantly reduced when
the test data is different. In this paper, we also investigate the role of training
spectra for the camera characterization. Five different spectral re�ectance datasets
are used for training the camera characterization models.We investigated the re-
�ectance models created with re�ectance spectra from ISO 17321, GretagMacbeth
ColorChecker, Skin re�ectance, Munsell chips and SFU dataset. The SFU dataset
consists of re�ectance spectra from a number of objects including paints, natural
objects, color patches and dyes. The generic nature of this dataset makes it a good
training data for the spectral re�ectance reconstruction system. We found that by
using linear method, ef�cient colorimetric information can be obtained and the
results outperform non-linear method being tested.

We did not use illuminant estimation and data transformation methods in this study.
However, this work demonstrates the use of multispectral camera as colorimeter
and it can be anticipated from the promising results of this work that a multispectral
camera can be used in uncontrolled imaging environment for obtaining colorimet-
ric data of a scene. This work is also used for visualization of multispectral images
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under a canonical illuminant in our work presented in the following.

3.6 Article F: Towards the use of multispectral camera as spec-

trophotometer in uncontrolled illumination conditions.

After de�ning the multispectral constancy based of spectral adaptation transform
and diagonal correction for illumination, and getting promising results in simula-
tion, we made experiments with a �lter-wheel multispectral camera.Three images
with varying illuminations are captured and the spectra of material surfaces is re-
constructed. The scenes consisted of various objects and some of those objects are
imaged through the hyperspectral camera. The re�ectance data from hyperspectral
images is used as ground truth and is used to compare the spectral reconstruction
results.

The acquired multispectral data is transformed into canonical representation through
manual selection of white patch of ColorChecker in the image and by estimating
the illuminant. Spectral reconstruction is performed by using Wiener estimation
method and results are evaluated in terms of root mean square error, cosine dis-
tance and spectral angle mapper. Results show a promising aspect of multispectral
imaging as they can be used as a spectrophotometer for getting spectral informa-
tion of a whole scene. The proposed concept of multispectral constancy is valid for
both �lter-wheel and snapshot type of multispectral cameras. Having such prom-
ising results, we are one step more close towards enabling the use of multispectral
imaging for computer vision applications.

One of the shortcoming that we noticed while trying to perform object detection
through spectral information is that not only the spectral information is required for
an image but the spatial information of texture is also an important feature. In order
to investigate the spectral and spatial features of objects and material surfaces, a
dataset is required. We joined another team from University of Lille, France, who
are experts in texture analysis. Through the collaboration of both teams, we created
a hyperspectral re�ectance dataset for various material surfaces. Details are that
dataset are as follows;

3.7 Article G: HyTexiLa: High resolution visible and near in-

frared hyperspectral texture images.

H. A. Khan, S. Mihoubi, B. Mathon, J. B. Thomas and J. Y. Harde-
berg, �HyTexiLa: High resolution visible and near infrared hyper-
spectral texture images,� Sensors, vol. 18, no. 7, 2045; 2018.

Hyperspectral images contain more spectral information compared to color im-
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ages. The high dimensionality of hyperspectral image data is an open challenge,
and a trade-off between high information content and practical handling is often re-
quired. To evaluate this compromise and assess its performance, high quality data
with high spatial and high spectral resolutions are required. Creating such a dataset
takes time and effort, but it is necessary to the research community. Considering
these needs, we present a hyperspectral image dataset of 112 textured objects fall-
ing into �ve different categories. Images are re�ectance data that span the visible
and near infrared (NIR) parts of the electromagnetic spectrum. The data is referred
to as HyTexiLa (Hyperspectral Texture images acquired in Laboratory). The idea
behind creating this dataset is to provide a platform for the benchmark analysis
of various applications and processing. The areas where this data could be used
are in the �elds of image processing, computational imaging and computer vision,
such as surface identi�cation, spatio-spectral analysis of textured surfaces, image
sensor simulation, color reproduction, image relighting and so on. The availability
of a high spectral and spatial resolution dataset will provide easy access for the
evaluation of different techniques and will allow the results to be compared. In
this paper, we present that dataset and analyze its spatial and spectral properties.
We de�ne the image acquisition protocol, the distortions that occur during the ac-
quisition of the objects, the method for the correction of such distortions and the
effect of such corrections. Our focus in this paper is to present a hyperspectral
dataset to the community and to provide an analysis on our dataset as a bench-
mark for further research. We provide the methodology for pre-processing the raw
hyperspectral data before using it for the intended applications.

In this work we used principal component analysis for determining the effective
dimension of hyperspectral re�ectance data and used non-negative matrix factor-
ization (NMF) for decomposition of spectral data into the corresponding compon-
ents 2. Spectral decomposition of imaged surfaces provide valuable information
about their physical and chemical behavior. The spectral decomposition of a leaf
provided us the information of chlorophyll and areas causing green color of the
leaf. Similarly, the spectral decomposition of textile sample provided us inform-
ation about different materials in it. Such a study is valuable in acquisition of
spectral signatures for determination of various properties from the imaged sur-
face.

This dataset is available for scienti�c use and simulations, and it provides a bench-
mark to test various computer vision algorithms that are related to object classi�c-
ation and material identi�cation. This dataset will also help in designing optimal

2Author of this dissertation have partial contribution in post processing of raw hyperspectral data
and no contribution in texture analysis. Details of contributions to work in this paper can also be
found at the end of the published article
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spectral sensors, computational imaging systems and spectral reconstruction al-
gorithms.

3.8 Summary of contributions

In this dissertation, the concept of multispectral constancy is introduced. Multis-
pectral constancy is analogous to color constancy but in higher spectral dimension.
It is achieved through spectral adaptation transform and diagonal correction. The
spectral adaptation transform is used to incorporate the intrinsic properties of ima-
ging sensor while the diagonal correction is used for correction of scene illuminant.
The information of scene illuminant in the sensor domain can be found through the
use of a white diffuser in the image or through illuminant estimation. In this work,
we have presented methods for illuminant estimation in the sensor domain. The
demonstration of multispectral constancy is provided in two experiments where the
multispectral data is used for spectral reconstruction and for obtaining colorimetric
values from a scene.

Figure 1.1 gives the summary of research modules, along with the publications
generated by working on speci�c modules or sections of this research. The true
potential of multispectral imaging can be realized after those systems are widely
used imaging in uncontrolled imaging environments. The work presented in this
dissertation makes it one step closer towards the use of multispectral images for
computer vision applications.
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Chapter 4

Spectral adaptation transform

for multispectral constancy

Article A

This chapter is a reformatted reprint of the publication

H. A. Khan, J. B. Thomas, J. Y. Hardeberg, and O. Laligant, �Spectral
adaptation transform for multispectral constancy,� Journal of Imaging

Science and Technology, vol. 62, no. 2, pp 020504-1-020504-12,
2018.

The spectral re�ectance of an object surface provides valuable inform-
ation of its characteristics. Re�ectance reconstruction from multispec-
tral image data is typically based on certain assumptions. One of these
common assumptions is that the same illumination is used for system
calibration and image acquisition. We propose the concept of multis-
pectral constancy which transforms the captured sensor data into an
illuminant-independent representation, analogously to the concept of
computational color constancy. We propose to transform the multis-
pectral image data to a canonical representation through spectral ad-
aptation transform. The performance of such a transform is tested
on measured re�ectance spectra and hyperspectral re�ectance images.
We also investigate the robustness of the transform to the inaccuracy
of illuminant estimation in natural scenes. Results of re�ectance re-
construction show that the proposed spectral adaptation transform is
ef�cient and is robust to error in illuminant estimation.
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4.1 Introduction

The formation of an image depends on the spectral re�ectance of the surface be-
ing viewed, the spectral power distribution and intensity of the illumination, and
the spectral sensitivities of the sensors. In the human visual system, the three
cone types act as sensors. In case of a camera with 3 channels, the RGB �lters
together with the imaging sensor, play a similar role. The human visual system
has the natural ability to perceive constant color of surfaces despite the change
in spectral composition of the illuminant, and this ability to discard illumination
effects is called Color Constancy [1]. Creation of such models for illuminant in-
variant representation of scenes in computer vision is called computational color
constancy [2]. An illuminant invariant representation is important for computer
vision applications including object recognition, tracking and image classi�cation
[3]. There are two major techniques for achieving computational color constancy.
One method is to compute illuminant invariant features, and a second method is to
estimate the illuminant and later apply a correction [4]. In this paper, we use the
former method of illuminant estimation.

The advancement in sensor technology has developed the use of multispectral ima-
ging for indoor and close range imaging. The ability of multispectral imaging in
acquisition of more spectral information is useful for object and material classi�c-
ation and identi�cation by means of spectral reconstruction [5�9] of surfaces in a
scene. The need for spectral reconstruction of surfaces was recognized in 1980s
[10�14]. Since then, many methods are developed to provide spectral reconstruc-
tion from the camera data. Most of these methods rely on the use of training data
to learn the mapping between the camera data and the desired spectra. This pro-
cess is called calibration of the system and is performed through a training set of
measured re�ectances and radiance data with a given illuminant. To maintain a
reasonable accuracy, the same illuminant is required for scene acquisition. This
limitation of having the same illuminant for calibration and image acquisition is a
major shortcoming for generic use of multispectral imaging [15].

To overcome this limitation, we propose to transform the acquired multispectral
data under any unknown illumination into its canonical representation. This trans-
formation requires the estimation of scene illuminant. For multispectral images,
estimation of illuminant in the sensor domain by using image statistics based meth-
ods is proposed by Thomas [16] and Khan et al. [17]. In their work, the illuminant
estimation methods for color images are extended from three channels to K chan-
nels. The estimated illuminant is used for the diagonal correction [18] to transform
the input sensor data into a canonical representation. We call this consistent repres-
entation of multispectral data as multispectral constancy. A preliminary proposal
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of this concept is provided in [19].

To achieve multispectral constancy, we use a diagonal transform and also intro-
duce a spectral adaptation transform (SAT). The concept of SAT being proposed
is closely related to the data based sensor sharpening transform by Finlayson et

al. [20]. The main difference between these strategies is that instead of �nding
a sharpening transform and then diagonalizing it, we want to optimize the result
after applying the diagonal transform, where the elements of diagonal transform
are obtained from illuminant estimation in the sensor domain. The proposed idea
of multispectral constancy and optimization of diagonal transform is tested with
a simulated multispectral camera on the re�ectance dataset and hyperspectral im-
ages of real scenes from the Foster dataset [21]. The advantage of having a ca-
nonical representation is that the spectral reconstruction system can be calibrated
with a canonical illuminant and hence, the condition of having same illuminants
for training under which the scene is acquired, is no longer needed. Results show a
promising aspect of the use of multispectral imaging for outdoor scene acquisition
under uncontrolled illumination condition.

This paper is organized as follows. In Section 4.2, we de�ne multispectral con-
stancy after formalizing a model for the multispectral image acquisition system.
System calibration and spectral reconstruction are de�ned as linear problem in
the section. Section 4.3 de�nes our experimental protocol based on simulations.
Results are analyzed in Section 4.4 before we conclude.

4.2 Multispectral constancy

4.2.1 De�nition

In a simpli�ed noiseless imaging model, formation of an image depends on the
spectral sensitivity of imaging sensor c(�), spectral re�ectance of the surface r(�)
and the spectral power distribution of illuminant e(�). This formation for the vis-
ible wavelength spectrum ! is de�ned as

f =

Z

!
r(�)e(�)c(�)d� (4.1)

In practice, we can formulate an extended and discrete version of Eq. 4.1 as;

F = REC (4.2)

Considering the spectral sampling (N ) of 10nm within the wavelength range of
400nm to 700nm and K number of spectral channels, F is S � K matrix (S is
the number of spectral samples), R is S � N matrix of surface re�ectance, E is
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the diagonal matrix (N � N ) of the scene illuminant and C is N � K matrix,
consisting of spectral sensitivities of the channels.

Here we consider two cases of image acquisition with the same imaging system.
One image is acquired with a canonical illumination Ec and another image with
an unknown illuminant Eill. We present both cases in parallel in Eq. 4.3.

Fill = REillC ; Fc = REcC (4.3)

To perform the spectral re�ectance estimation R̂ from the imaged data in both of
the above mentioned cases, a generalized inverse, denoted by +, can be applied as;

R̂ = FillC
+
E

+
ill ; R̂ = FcC

+
E

+
c (4.4)

However, C is not necessarily a square matrix and therefore, it is not trivial to
compute the inverse. Computational procedures are applied to achieve the task of
spectral reconstruction. There are several works in literature where the spectral re-
construction is performed by linear transform through a calibration matrix. Linear
methods are popular for learning the mapping between camera data and desired
output (spectral re�ectance). The idea behind using linear methods is that when
the re�ectance spectra is continuous and band-limited [10, 13], the statistical ana-
lysis of measured re�ectances of standard color samples are enough to calibrate
the spectral reconstruction system [14, 22].

By using the calibration matrix W, the equations for spectral re�ectance recon-
struction become R̂ = FillWill and R̂ = FcWc for both cases, respectively. This
calibration is speci�c for a given illumination Ec. The scene illuminant plays a
direct role in the spectral reconstruction [7, 23], because of its effect in the camera
image formation, as in Eq. 4.1.

With Fc, the spectral reconstruction system can work ef�ciently, since the calib-
ration is already performed with the same canonical illuminant, but with Fill, the
calibration matrix needs to be recomputed with Eill. Measurement of scene illu-
minant and calibration matrix for each change in imaging environment is a dif�cult
task and is not a practical solution for a situation where the illumination is not con-
stant all the time. To avoid this problem, we propose to transform the acquired
multispectral data Fill into a canonical representation Fc. Thus, Wc can be used
for the spectral reconstruction from the multispectral data, being taken under any
illumination. We denote such a transform as Mc;ill, which maps the camera data
Fill, taken under unknown illuminant Eill, into its canonical representation Fc.

Fc = Mc;illFill: (4.5)
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Once such a transform is available, then the problem of spectral reconstruction is
limited to �nding the transform Mc;ill. The spectral reconstruction in this case is
mathematically represented as;

R̂ = WcM
c;ill

Fill (4.6)

We call this concept of illuminant invariant representation of multispectral data as
multispectral constancy. By achieving multispectral constancy, the requirement of
having the same illumination for calibration and scene is no longer required.

In this work, we propose the use of illuminant estimation for achieving multispec-
tral constancy. In [19], a diagonal transform is used as Mc;ill and the preliminary
results for spectral reconstruction from the sensor data were provided. Such a
transform requires the estimation of scene illuminant in the sensor domain and the
sensor data is corrected from effects of illumination through a diagonal transform
(D). The diagonal matrix Dc;ill is a K � K matrix and the components of this
matrix are the sensor responses to the illuminations Ec and Eill. As an alternate
explanation, sensor response to the illuminants can be understood as the sensor
response to a perfect white diffuser under a certain illuminant, and denoted by wc

and will for the two illuminants. The matrix D is de�ned as;

D
c;ill = diag(wc=will) (4.7)

With the use of diagonal transform as in Eq. 4.7, the problem of color constancy
(for 3-channel images) and multispectral constancy (for multispectral data) is re-
duced to the estimation of K parameters of the diagonal transform. D is applied
on each channel independently and is used in many color constancy algorithms
[24, 25].

With a perfect white diffuser, Eq. 4.5 holds and the input illuminant is transformed
into the desired canonical illuminant with a diagonal transform. However, when
the surface re�ectance is not constant across the wavelength spectrum, then this
transformation generates errors. The diagonal transform also works well when
the bandwidth of spectral sensitives of �lters are within 100 to 150 nanomet-
ers [26, 27]. However, in case of large band �lters, the diagonal transform may
not be suf�cient. Therefore, we investigate the performance of diagonal trans-
form and propose to minimize the error during diagonal transformation through
a spectral adaptation transform ASAT . The idea of SAT is to incorporate the
sensors response for ef�cient transformation, along with the diagonal transform.
The concept of spectral adaptation transform is analogous to chromatic adaptation
transform [28], while here we consider multispectral data, rather than the three-
channel color images.



48 Article A: Spectral adaptation transform for multispectral constancy

4.2.2 Related state of the art

To improve the performance of M for color images, Finlayson et al. [20] pro-
posed sensor sharpening which aims at �nding a linear combination of the spectral
sensitives of a camera, with respect to which a diagonal transform for illuminant
transform works the best. The idea in this technique is to transform the sensor
responses so that they appear to be sharper than the original ones. Finlayson et

al. [20] proposed three methods for �nding the sharpening transform T. The �rst
method is called sensor based sharpening, and �nds T by optimizing the intuit-
ive notion of sharpness for each �lter individually. This optimization requires the
knowledge of sharpening interval in the wavelength spectrum and the Lagrange
multiplier [20]. The second method is called perfect sharpening, in which it is
assumed that the surface re�ectances can be �tted in a three dimensional linear
model while the illuminants can be �tted in a two dimensional linear model. The
third method is data based sharpening, in which RGBs are generated from a set of
known spectral re�ectances, using a speci�c camera and two illuminations, one as
canonical illumination Ec while the other as test illumination Eill. The sharpening
transform T is added on both sides of Eq. 4.5 to reduce the error in mapping. It is
expressed as;

TFc = MTFill: (4.8)

According to Eq. 4.8, M can be optimal in the least-square sense if it can be
de�ned by the Moore-Penrose inverse (+);

M = TFc[TFill]
+ (4.9)

Since T is still unknown in Eq. 4.9, the unknown terms are shifted to the left hand
side;

T
�1MT = Fc[Fill]

+ (4.10)

The sharpening transform T is found through eigenvector decomposition of the
expression on left side of Eq. 4.10. In their work, the expression [T]�1MT is
diagonalized so that M is replaced by a diagonal matrix D. Finlayson et al. [20]
found similar T for sensor based sharpening and data based sharpening.

The sharpening transform can sometimes have negative values and there are some
investigations to reduce this problem [29]. Data based sharpening was further im-
proved by Barnard et al. [30] by using an average of measured illuminants, and
introduced a parameter for prioritizing the positivity. Drew and Finlayson [31]
proposed data driven positivity by adding constraints to ensure that all the values
in sharpening transform are positive. Chong et al. [32] proposed the measurement
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tensor technique for �nding T. Spherical sampling [33] is also introduced as a
technique for spectral sharpening where the discretely sampled points on a sphere
are found and related to the original sensors. Sharpening through �lter chart cal-
ibration was proposed by Abdellatif [34]. An overview of spectral sharpening
methods is provided by Corral and Bertalmío [29].

In case of multispectral imaging, the concept of spectral sharpening is not straight-
forward due to the higher dimensionality of sensors. In [33], spectral sharpening
for six multispectral sensors is discussed. Their method is computationally expens-
ive since there is need to generate a sphere of the sensor dimension which is not
trivial. For a dimension above 3, the spherical sampling [33] has to be extended to
hyper-sphere computation. Due to these complications, we do not use the sensor
based sharpening method. We do not use the data based sharpening method either,
because we are not interested in diagonalizing the result of Eq. 4.10. Instead,
we are using D as the diagonal matrix containing the illuminant in the sensor
domain, as in Eq. 4.7, and to improve the ef�ciency of such a transform in the
same way as in spectral sharpening. It can be argued that instead of improving the
diagonal transform, why not �nd any other linear transform which can serve the
same purpose more ef�ciently? The reason for preferring the diagonal transform
(and its improvement) in our work is the fact that knowledge of scene illuminant
is of major importance in computer vision applications. Therefore, either it can
be measured for a speci�c scene or can be estimated, and this information can be
used by our proposed method. Another reason is that most of the color constancy
algorithms are de�ned in terms of a diagonal transform, where the elements of
diagonal transform are found through illuminant estimation in the sensor domain.

For achieving illuminant invariant representation in multispectral imaging, Ab-
rardo et al. [35] proposed the concept of color constancy for multispectral imaging
by linearly transforming the sensor response under an unknown illuminant. The
transformation matrix M is determined through the least-square solution as;

M = FcF
+
ill = FcF

t
ill(FillF

t
ill)

�1 (4.11)

The transformation M is applied to the acquired multispectral data and then spec-
tral re�ectance is estimated. It is interesting to note that the right side of Eq. 4.11
resembles with the concept of data based sharpening (Eq. 4.10). This method
works well when the canonical representation (Fc) for the same scene is available.
In [35], authors claim that 97% accuracy in spectral reconstruction is achieved by
their method. The problem with this technique is that in the absence of Fc, it is not
possible to use Eq. 4.11. In fact, our aim is to transform the input multispectral
data into its canonical representation, while in Eq. 4.11, the availability of canon-
ical representation of same scene is assumed, which is not feasible for every image
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being captured.

4.2.3 Proposal for computation of M

It can be observed that Eq. 4.10 and 4.11 are originally formulated from Eq. 4.5
and the goal is to �nd the transform M. In spectral sharpening, M is found by
eigenvector decomposition of Eq. 4.10 and diagonalizing it, while the product of
Fc and Fill is used directly in Eq. 4.11. We propose decomposing M into two
elements; Dc;ill as in Eq. 4.7 and ASAT . In this proposed method, the diagonal
transform performs the transformation of multispectral data taken under unknown
illuminant Eill, into its canonical representation under the illuminant Ec. The role
of ASAT is to incorporate the spectral response of imaging sensors and improve
the transformation of camera data into its canonical representation. The optimal
ASAT should minimize the error for all re�ectances i and illuminants j.

F
i
c = ASATD

c;j
F

i
j (4.12)

To �nd the best ASAT , Eq. 4.12 is written as the explicit minimization of an error
function in Eq. 4.13;

min
ASAT

=
X

j

jFi
c � ASATD

c;j
f

i
j j (4.13)

For a given sensor con�guration, a generic ASAT is created by minimizing the
error for all the re�ectances and illuminations in the training dataset.

The advantage of our proposed technique is that only the knowledge of sensor
sensitives of camera is required to compute ASAT . This speci�c ASAT for a cam-
era can be used to transform the multispectral data captured under any illuminant,
into its canonical representation through the diagonal correction for illumination.
The only parameter left in the proposed system is the performance of illuminant es-
timation algorithm, since the elements of diagonal transform are obtained through
the illuminant estimation.

The multispectral data being acquired under any illumination is transformed into
a canonical representation after estimating the scene illuminant, and then the pre-
calibrated Wc is used. The advantage of our proposed idea of multispectral con-
stancy is that it is no more necessary to acquire the multispectral data in a con-
trolled environment.

Once the transform M
c;ill = ASATD

c;ill is de�ned, spectral reconstruction can
be mathematically represented as;

R̂ = WcASATD
c;ill

Fill (4.14)
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Preliminary results by using the diagonal transform D
c;ill are provided in [19].

In the current work, we are using D
c;ill along with ASAT . The experimental

protocol for testing the idea of multispectral constancy through SAT is provided in
the following section.

4.3 Experiments

To implement and validate the idea of multispectral constancy through SAT, we
use measured re�ectance data of 1995 surfaces from the SFU re�ectance dataset
[36]. These surfaces include the 1269 Munsell chips, 24 patches of the X-rite
ColorChecker, 170 natural objects [37], 120 Dupont paint chips [37], 350 surfaces
from the Krinov dataset and 57 surfaces measured by Barnard et al. [36]. This
dataset is used as the training data for calibration of Wc with D65 as the canonical
illuminant. The re�ectance data is in the wavelength range of 400 to 700 nm with
10 nm sampling.

For testing the proposed idea of multispectral constancy, we use 24 patches from
the X-rite ColorChecker and 1296 Munsell chips as the test data and acquire them
using the simulated multispectral sensors. Spectral reconstruction is done from the
acquired multispectral data as in Eq. 4.14. To validate the usefulness of proposed
idea for natural outdoor images, we use the re�ectance data from Foster dataset
of hyperspectral images [21]. These hyperspectral images are within wavelength
range of 400 nm to 720 nm, but we use these images within wavelength range
of 400 nm to 700 nm, since the training dataset [36] is within this range. In the
following sections, the details of experimental setup are provided.

4.3.1 Sensor

Diagonal transform works well when the sensor sensitives are narrow-band (ideally
Dirac delta functions). Following this, it seems as the use of narrow band �lters
is the optimal choice to be used in imaging systems. The term FcF

t
ill in Eq. 4.11

resembles the spectral sharpening, introduced by Finlayson et al. [20]. They pro-
posed a linear combination to transform the original sensor responses into narrower
bands. However, from a practical point of view, one reason for not employing such
narrow band systems is that the acquisition time, complexity and cost of such sys-
tem is high as compared to wide band systems [38]. Other reasons are the fact
that the narrow band systems are not an optimal choice for illuminant estimation
[16, 17] and demosaicing (when multispectral �lter array is used [39]). Wang et

al. [40] studied the in�uence of increase in number of bands and found that in-
creasing the number of spectral bands cause reduction in performance of spectral
reconstruction. Also, the ef�ciency of illuminant estimation algorithms decreases
when the number of spectral �lters is increased [17]. In this work, we are limit-
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ing the experiments to linear systems and our aim is to investigate the concept of
multispectral constancy for a generalized multispectral imaging system. We use 5,
8 and 12 spectral bands for testing the proposed framework of spectral constancy.
In the results of illuminant estimation in multispectral images by Khan et al. [17],
the accuracy of illuminant estimation is reduced when the number of spectral bands
is increased beyond 8. On the other hand, having more than 8 bands still increase
the spectral estimation. For this reason, we limit the number of bands within this
range for our experiments.

In our experiments, we use a Gaussian model of sensor sensitivities. Such a
model has been extensively used in the literature to simulate sensors or to ap-
proximate Fabry-PØrot �lter transmittance [41]. This con�guration is called the
equi-Gaussian [16]. This sensor con�guration is tested for illuminant estimation
[17] and spectral estimation [19]. The Full Width at Half Maximum (FWHM) of
the sensor sensitivities decrease with increase in number of bands and the over-
lap between adjacent bands remain approximately the same. By increasing the
number of bands (K) in this con�guration, we are gradually shifting from typical
multispectral sensors towards hyperspectral sensors.

For testing the proposed method of SAT for spectral reconstruction, we also use
measured sensitivities of a real implementation of spectral �lter array (SFA) cam-
era [42]. There are eight �lters in this SFA camera. The �rst six �lters are used in
our experiments as the available spectral re�ectance data for training (SFU dataset)
is within the wavelength range of 400 nm to 700 nm. Figure 4.1 shows the spectral
sensitivities of each �lter being used in the experiments.

4.3.2 ASAT computation

For a given sensor con�guration, ASAT is computed by using the set of 102 illu-
minants and surface re�ectance of 1995 surfaces from the SFU data [36]. Radiance
data is generated using an illuminant j (from the set of 102 illuminants) and is ac-
quired as multispectral data. For each illuminant, a diagonal transform is created
by using Eq. 4.7 and the multispectral data under that illuminant is transformed
by using Eq. 4.5. The desired output after applying M

c;ill is the multispectral data
under the canonical illuminant (D65). As discussed in Section 4.2.3, we propose to
decompose Mc;ill into diagonal transform D

c;ill, and ASAT . This ASAT is unique
for a given sensor con�guration and is computed by using Eq. 4.13. Once ASAT

is computed, Eq. 4.12 is used to transform Fill into Fc.

4.3.3 Illuminant estimation

For testing and validating the proposed concept of spectral adaptation transform,
we keep D

c;ill �xed for the spectral re�ectance data. For obtaining the elements
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Figure 4.1: Spectral sensitivities of the �lters being used

of Dc;ill, we use the test and canonical illuminants in the sensor domain. Initially
we want to validate the ef�ciency of ASAT while testing the re�ectance dataset,
therefore we assume that the illuminant is estimated in the sensor domain without
error.

In practical cases, the information about scene illumination may not be available
all the time. This is where the illumination estimation algorithms come into play.
By using an illuminant estimation algorithm, the elements of diagonal transform
are obtained and then the pre-calculated SAT is used.

For testing the proposed concept for natural scenes, we perform illuminant es-
timation in the multispectral data of natural scenes and use the Max-Spectral Al-
gorithm, which is the extension of Max-RGB algorithm [43]. The extension of this
algorithm from color to spectral is proposed and analyzed in detail in [16, 17]. The
estimated values of illuminant, which are de�ned in the sensor domain, are used
in the diagonal transform D

c;ill. For each image, Dc;ill is estimated individually
and this estimation may consist of error as well. We report the error in illuminant
estimation in form of angular error (�A).



54 Article A: Spectral adaptation transform for multispectral constancy

4.3.4 Spectral re�ectance reconstruction

As explained in Section 2, a calibration matrix W is required for the spectral
reconstruction from camera data. It is obtained by using measured re�ectance
spectra Rt and the camera sensor sensitivities (M). For reducing the error between
original spectra R and the estimated spectra R̂, a covariance matrix of a set of
measured re�ectance samples can be used. Those measured re�ectance samples
provide the a-priori statistical information about the surfaces in a scene [44]. If
the a-priori information is well chosen, error in the spectral reconstruction can be
minimal.

There are several methods being proposed for the spectral reconstruction in liter-
ature [45]. We use a linear method for clarity, namely the Wiener estimation [46]
because of its robustness to noise. It is de�ned as

W = RtR
T
t (CE)T ((CE)RtR

T
t (CE)T + G)�1: (4.15)

Here, RtR
T
t and G are the autocorrelation matrices of the training spectra and

additive noise, respectively. G is in the form of a diagonal matrix consisting of the
variance of noise �2. Training for obtaining the matrix Wc is performed with CIE
illuminant D65 as the canonical illuminant Ec. The obtained calibration matrix is
used for spectral reconstruction in Eq. 4.14.

4.3.5 Evaluation

For testing the proposed idea of multispectral constancy, radiance data is simulated
from the measured test spectra with CIE illuminants A, D50, D55, D75, F5, F7
and F12. We also use the LED (Philips SlimStyle: 2700K) as an illuminant in the
experiments.

The proposed idea is also tested on hyperspectral images of scenes consisting of
vegetation and urban areas. We create radiance data from these images using illu-
minants A, D50, D55 and D75. The same procedure of re�ectance reconstruction
for each pixel of simulated multispectral image is performed and evaluated.

To measure the performance of the spectral reconstruction, we compare the recon-
struction r̂ for each patch of the reconstructed re�ectance with the corresponding
measured re�ectance r, through root mean square error (RMSE) as

RMSE =

v

u

u

t

1

N

N
X

j=1

(rj � r̂j)2 (4.16)

We also use goodness of �t coef�cient (GFC) [47] for evaluation of spectral recon-
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struction results. For each reconstructed re�ectance r̂, GFC is calculated as

GFC =
rT r̂

q

(rT r)(r̂T r̂)
: (4.17)

In case of the multispectral images from Foster dataset, RMSE is calculated for
each pixel of the estimated re�ectance, with the original re�ectance in the hyper-
spectral image. We also compute the colorimetric error by a linear mapping of the
re�ectance data into its corresponding CIEXYZ. The CIEXYZ is converted into
CIELab by taking white point of D65. Error between CIELab from the original re-
�ectance and reconstructed re�ectance is calculated in terms of CIEDE2000 [48].
For each evaluation metric, we include three methods. First method is by doing
nothing to the input multispectral data and using Eq. 4.15 for spectral reconstruc-
tion. We call this method as do nothing. In second method, simple diagonal trans-
form is applied to the input data before using it for spectral reconstruction, while
in the third experiment, the input data is �rst transformed by using the proposed
SAT. Results are discussed in Section 4.4.

4.4 Results

The results of spectral reconstruction of Munsell re�ectance data, by using eight
different illuminations and four different sensor con�gurations, are shown in form
of graphs in Fig. 4.2, consisting of mean RMSE, mean GFC and mean CIEDE2000.
For each test illuminant, we compare the spectral reconstruction results after ap-
plying diagonal transform to the input multispectral data, SAT and do nothing. The
RMSE results show that for illuminant A, the diagonal transform reduces the error
as comparing to do nothing, but for illuminants D50, D55 and D75, applying only
a simple diagonal transform signi�cantly increases the error in spectral reconstruc-
tion as compared to when the SAT is applied. There is slight increase in RMSE
with the use of diagonal transform for illuminants F5, F7 and F12, while there is
no change in error when LED is used as illuminant source. These results show
that in terms of RMSE, applying diagonal transform to input multispectral data in-
creases the error in comparison to do nothing. This trend is consistent among the
5, 8 and 12 channel cameras being used. Results obtained from simulated 6 chan-
nel SFA camera also show similar results. When our proposed SAT is used along
with diagonal transform on the input multispectral data, then RMSE is reduced
signi�cantly. By increasing the number of channels, there is further reduction in
RMSE for all illuminants except F12, where RMSE is minimum when 8 channels
are used. Overall, the signi�cant reduction in RMSE shows the ef�ciency of our
proposed SAT for spectral reconstruction.
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When the spectral reconstruction is evaluated in terms of GFC, diagonal transform
and SAT perform closely. Do nothing performs lower for illuminants A, F5, F12
and LED while the performance difference is less signi�cant for other test images.
There is no change in performance by increasing the number of channels, except
for illuminant F12, where the performance of do nothing goes down by increasing
the number of channels. The increase in error for do nothing is because the bands
become more sensitive to illumination changes when they get narrower.

Colorimetric evaluation of the spectral reconstruction reveals the interesting fact
that there is no difference in do nothing and applying the diagonal transform. Error
in terms of CIEDE2000 for both diagonal transform and do nothing, is increased
slightly when the number of channels are increased from 5 to 12. However, apply-
ing SAT signi�cantly reduces the colorimetric error, as can be seen in Fig. 4.2. The
performance of SAT behaves opposite to other two methods and error is slightly
reduced with increase in number of channels.

For testing the proposed idea of multispectral constancy on images containing real
scenes, we use the Foster hyperspectral re�ectance data [21]. We use four different
sensor con�gurations as simulation of multispectral camera for acquiring the data.
Sensor con�guration for these cameras is shown in Fig. 4.1. Before acquiring the
multispectral data, each hyperspectral re�ectance image is converted into radiance
image by applying an illuminant. We use illuminants A, D50, D55 and D75.

Illuminant estimation in each multispectral image is performed by using the Max-
spectral algorithm [17]. Diagonal transform is applied to each multispectral image
with the estimated illuminant. That estimated illuminant contain error which is
evaluated in terms of angular error (�A). Fig. 4.3 show the performance of spec-
tral reconstruction in terms of mean RMSE, mean GFC and mean CIEDE2000 of
the eight images being tested. Detailed results along with �A are provided in the
supplementary data �le.

With the Foster dataset, the error in spectral reconstruction is larger than the results
of Munsell dataset. The main reason is the error in illuminant estimation. As the
elements of diagonal transform are an estimation of the illuminant, therefore the
error in illuminant estimation is intensi�ed in the spectral reconstruction as well.
Fig. 4.3 show RMSE results for 5, 8, 12, and 6 (SFA) channels, respectively. Do

nothing and simple diagonal transform produces almost similar results except for
multispectral data acquired with 8 channels. In that case, simple diagonal trans-
form performs better as compared to do nothing. RMSE is reduced signi�cantly
when SAT is used, which shows that our proposed method performs effectively in
reducing RMSE.
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In terms of GFC, do nothing performs better than simple diagonal transform, ex-
cept for illuminant A, where the do nothing performs signi�cantly lower. Same
trend can be seen across all four sensor con�gurations being tested. SAT is able
to perform slightly better than diagonal transform and do nothing. Evaluation in
terms of CIEDE2000 shows that do nothing and simple diagonal transform per-
forms same except for 5 channels, where error is increased when diagonal trans-
form is used. By using the proposed SAT, there is decrease in CIEDE2000 which
shows that the proposed idea is valid with images containing real scenes. Although
the colorimetric error is still large, but it should be kept in mind that inaccuracy in
illuminant estimation also play its role in the overall error in spectral reconstruc-
tion. The average RMSE with 5 and 12 channels are almost equal and the same
result in obtained with SFA, while RMSE is comparatively larger when 8 channels
are used. In terms of colorimetry, the error is reduced gradually by increasing the
number of channels. When simple diagonal transform is used then CIEDE2000 re-
mains almost equal for 8 and 12 channels while the error is reduced for all sensor
con�gurations when SAT is used. Therefore, by increasing the number of �lters,
there is slight improvement in the spectral reconstruction results. However, the
performance may become more sensitive to the imaging noise. Those results are
based on simulations and are still to be validated for the experimentally captured
multispectral data. Detailed results from the experiments, including the angular er-
ror in illuminant estimation for each image, mean and maximum errors of RMSE,
GFC and CIEDE2000, are provided in the supplementary data �le.

In most of the illuminant estimation algorithms proposed in literature, the ef�-
ciency of algorithm is evaluated in the terms of angular error �A and a diagonal
transform is applied to the input images. In most of the cases, the transformed
images appear to be taken under a canonical (usually white) illuminant and it is
assumed that the effect of scene illuminant is removed through the diagonal trans-
form. Results from our experiments show that a simple diagonal transform is not
suf�cient. For illustration, we show an example of radiance image from Foster
dataset and the corresponding transformations (Fig. 4.8. In this example, the color
rendering of radiance spectral image with test illumination and reconstructed spec-
tral images (after applying diagonal transform and SAT), are shown. D55 is used
for creating the radiance scene and multispectral image is acquired with 12 equi-
Gaussian channels Illuminant estimation gives �A of 0.1013. As can be seen in
Fig. 4.8, the effect due to D55 is removed after the transformations and the output
images appear to be almost the same visually but the RMSE, GFC and CIEDE2000
evaluation shows that there is difference among these 2 images in terms of spectra
and colorimetry. This suggests that the effect of such transformations has to be
veri�ed in computer vision applications.


















































































































































