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Abstract
Atomic Transitions and Population Control by Laser Frequency Scanning Speed
and Magnetic Field

In this thesis the influence of laser radiation and external uniform magnetic field on alkali-metal
atomic vapor is studied. We focused on three topics. In the first part, we examined atomic
population control in an M-type system to demonstrate that such systems can serve as universal
three-bit logical devices. The second part concerns an experiment of atomic spectroscopy.
From the fluorescence spectra recorded for stationary, transient and non-stationary interaction
regimes, we were able to extract important parameter values which are the relaxation rate of the
lower energy levels to the equilibrium isotropic state, the diffusion coefficient in a buffered vapor
cell, and the corresponding collisional cross section. In addition, optimal temporal conditions
are obtained to provide efficient control of the atomic population. In the last chapter, an
interesting application of a magnetic field interacting with alkali-metal atoms is presented.
Theoretically and numerically, the transitions between magnetic sublevels of alkaline atoms
in the Zeeman and Paschen-Back regimes are examined. We obtained magnetic-field values
canceling transitions which only depend on the fundamental physical and atomic constants.
These values in the case of an appropriate experimental determination can serve as standards
of magnetometry.

Résumé
Transitions Atomiques et Contrôle de la Population par Fréquence de Balayage
Laser et Champ Magnétique

Dans cette thèse, l’influence du rayonnement laser et du champ magnétique externe uniforme
sur la vapeur atomique de métal alcalin est étudiée. Nous nous sommes concentrés sur trois
sujets. Dans la première partie, nous avons examiné le contrôle de la population atomique
dans un système de type M pour démontrer que de tels systèmes peuvent servir de dispositifs
logiques universels à trois bits. La deuxième partie concerne une expérience de spectroscopie
atomique. A partir des spectres de fluorescence enregistrés pour les régimes d’interaction sta-
tionnaires, transitoires et non stationnaires, nous avons pu extraire des valeurs de paramètres
importantes qui sont le taux de relaxation des niveaux d’énergie inférieurs à l’état isotrope
d’équilibre, le coefficient de diffusion dans une cellule avec gaz tampon, et la section efficace
de collision correspondante. De plus, des conditions temporelles optimales sont obtenues pour
fournir un contrôle efficace de la population atomique. Dans le dernier chapitre, une appli-
cation intéressante d’un champ magnétique interagissant avec des atomes de métaux alcalins
est présentée. Théoriquement et numériquement, les transitions entre les sous-niveaux mag-
nétiques des atomes alcalins dans les régimes Zeeman et Paschen-Back sont examinées. Nous
avons obtenu des valeurs de champ magnétique annulant les transitions qui ne dépendent que
des constantes physiques et atomiques fondamentales. Ces valeurs dans le cas d’une détermi-
nation expérimentale appropriée peuvent servir d’étalons de magnétométrie.
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Chapter 1

Introduction

1.1 Description of the thesis
This thesis is devoted to physical systems where quantum physics is the necessary theoretical
formalism needed to be used: atomic systems. Today, lasers are not only applied to investi-
gate quantum (atomic) systems, but also to manipulate and steer properties and processes in
these media. In past decades, the most intense studied processes on alkali atoms are Faraday
effect [1, 2] (the rotation of the plane of polarization of light), Hanle effect [3–5] (reduction
in the polarization of light), Dicke effect [6, 7] (narrowing of spectral lines in dense alkali va-
por), increase of the resonance interaction time in a buffered vapor cell [8–10], magneto-optical
processes [11–13], atomic beam splitting [14–16], etc. Except of these effects and processes,
the research of resonance interaction [17] opened a way for the construction of lasers based
on alkali vapors [18,19], for a development of very precise and wide-range optical magnetome-
ters [13, 20–23], and also brought a huge contribution in quantum informatics, for instance
the construction of optical quantum memory devices [24, 25], logical gates [26, 27], etc. To-
day, in addition to classical (mm- or cm-size) atomic vapor cells, the study of effects raised in
a nanocell [28–30] is very interesting and important because it allows us to use sub-Doppler
resolution in the investigation of the phenomena and processes.

Atomic systems become very complicate objects to study as soon as one wants to enter
into the hyperfine structure of the atoms. Moreover, the Schrödinger equation is not enough
sufficient to examine with a high degree of precision the interaction of this hyperfine structure
with external fields as for instance magnetic and electric fields responsible of the Zeeman,
Paschen-Back and Stark effects. The high precision of the measurements in the last decades
implies to implement sophisticated mathematical and physical tools as Liouville equation, von
Neumann formalism, Dirac equation, etc., within more and more powerful computers in order
to perform numerical simulations as precise as the measurements.

The first part of this thesis deals with transfer of populations. This part is at the inter-
face of physics and computer sciences. Briefly summarized, the issue could be shortened as:
“How much, how far can we replace material components of a computer by optical devices?”.
More precisely in this part of the thesis we want to demonstrate that atoms and population
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transfer between hyperfine levels of these atoms are equivalent to logical devices. In order to
have calculable and solvable equations, based on the density matrix theory, the atoms used to
modeling a possible implementation of these full atomic logical devices are the ones of the first
column of the atomic table due to hydrogen-like electronic structure.

The second part of the thesis relates more directly to real experiments on these alkaline
atoms. The fluorescence spectra have been obtained and analyzed in a dynamic transient pro-
cess. Among many information, data, measures that can be extracted from these experiments,
it worth to notice the followings: determination of relaxation rates, how to control population
in these atomic systems, measure of the populations of the excited atomic states. As the most
satisfactory result of our experiments would be to have an efficient atomic population control,
the main goal of this chapter is to determine as precise as possible the most optimal temporal
conditions for that.

The last chapter introduces and develops a very interesting application of a magnetic field
interacting with these alkali atoms. Indeed, by studying atomic M-system in the first chapter
we understood that the Zeeman splitting is an easy way to obtain M-like systems. By varying
the intensity of the magnetic field we have seen a variation of the transition probability when
lighting these alkali atoms with a polarized laser field. Intriguingly, we observed theoretically
complete annihilation of some transitions for very precise values of the magnetic field. Thus we
have wanted to know more about the theoretical description of this phenomenon and indeed
we have been able in the case of n 2S1/2 → k 2P 1/2 transitions to obtain formulas giving the
values of these particular B-fields and furthermore in more complicated cases, all the values of
B-field have been exactly determined by numerical simulation. This allows us to envisage the
reciprocal effect annihilation of a transition for a very precise value of the B-field means this
value can be used as a standard for the calibration of a magnetometer.

The main objectives of the thesis
• To investigate a mechanism of complete population transfer in five level M-type system

without each transition exact resonances and to propose realistic schemes of Toffoli and
Fredkin gate implementation on five level atomic system.

• To develop a theoretical model and experimentally record the spectra in a transient
regime of 87Rb and 85Rb atomic vapor fluorescence, and from the theoretical simulation
to be able to determine fitting parameters, such as the relaxation rate and the diffusion
coefficient.

• To solve all types (π, σ+ and σ−) of modified transfer coefficients which have a cancel-
lation. For n 2S1/2 → k 2P 1/2 transitions to solve analytically and for more complicated
cases (i.e. for rubidium 87 and 85 isotopes 5 2S1/2 → 5 2P 3/2 and 5 2S1/2 → 6 2P 3/2

transitions) to solve numerically. Furthermore, to propose realistic experiment to de-
termine hyperfine transition cancellations, where the obtained values can be used to
calibrate wide-range magnetometers and improve the involved quantities’ accuracy.
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The main statements of the thesis
• Full population transfer in five level M-type atomic system using laser frequency scanning

methods or various laser pulse sequences.
• Realization of Toffoli and Fredkin universal reversible atomic gates on alkali-metal vapor.
• Rubidium vapor fluorescence spectra in a transient regime caused by laser frequency

scanning at various scanning speeds.
• A new method to determine rubidium vapor ground state relaxation rate, the diffusion

coefficient and respective collisional cross section of a buffered cylindrical cell.
• Magnetic-field values for which dipole allowed transitions intensity between magnetic

sublevels becomes zero. These values can serve to decrease the uncertainty of involved
physical quantities and as standards to calibrate magnetometers.

Scientific novelty and practical importance
• In this thesis a method to make a complete population transfer is proposed without the

exact resonances of the atomic transitions. A possible scheme to implement reversible
atomic Toffoli and Fredkin gates is proposed. The considered method and atomic gate
implementation can be realized using the electronic terms and magnetic sublevels of an
alkali atom and can lead to the experimental development of atomic logical devices and
to the mentioned above atomic gates for quantum processors.

• Method of determination of the ground state relaxation rate to the equilibrium isotropic
state, the diffusion coefficient in a buffered vapor cell, and the corresponding collisional
cross section is proposed based on the consideration of the atomic vapor fluorescence
spectra in a non-stationary regime. Also it is possible to determinate appropriate tem-
poral conditions for efficient heralded control of atomic population in a multilevel system.
We may expect, that the results can be used for the enhancement of efficiency of pho-
tochemical reactions, development of new schemes of sensitive optical magnetometers,
development of elements for quantum communication systems, and for other applica-
tions.

• For the first time, a systematic analysis of all cancellations of optical transitions between
magnetic sublevels of hyperfine levels are considered. For simplest cases, which are
n 2S1/2 → k 2P 1/2 transitions, unique analytical formula for the magnetic-field value
canceling transitions is obtained, which means that the uncertainty of the magnetic-
field value depends only on the uncertainties of the physical quantities included in the
formula. For more complicated cases involved in this thesis, that is for 85Rb and 87Rb
isotopes 5 2S1/2 → 5 2P 3/2 and 5 2S1/2 → 6 2P 3/2 transitions, the study is done using
numerical methods. These two different transitions require different laser wavelengths.
The first one, ∼ 795 nm, is the characteristic wavelength of cheap and widely available
semiconductor red laser, which makes extremely easy the reproduction of the experiment
by any experimental team. Another laser wavelength is ∼ 422 nm (blue laser) and the
experimental investigation of the transition cancellations will be completely new, because
these transitions are not well studied, even frequency differences of fine and hyperfine
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structures are not precisely measured. Wide-range magnetic-field values can serve as
a tool to calibrate magnetometers and improve the accuracy of the involved physical
quantities, such as frequency differences, Bohr magneton, Landé factors, etc.

1.2 Structure of the thesis
The dissertation consists of a list of figures, list of tables, list of abbreviations, a first chap-
ter “Introduction”, a second chapter “Implementation of Universal Logical Atomic
Gates”, a third chapter “Rubidium Vapor Fluorescence in a Transient Interaction
Regime” and a fourth one “New Standard Magnetic Field Values Determined by
Transition Cancellations Between Magnetic Sublevels of Alkali Vapor”. After these
chapters and before a relevant bibliography, in the part called “Conclusion and Outlook”
we provide the main results obtained in the thesis and discuss about further researches.

Chapters
The Chapter 1 “Introduction” formulates the relevance of the work, goals of the research,

scientific novelty and practical value of the thesis, as well as the main provisions for the defense.
In the Chapter 2 “Implementation of Universal Logical Atomic Gates”, we consider

a particular case of the atomic levels of the alkali atoms: a five-level M-type system. This
M-system could be a natural one or can be created by the magnetic field due to the Zeeman
effect. In the first part of this chapter we studied the way of a complete population transfer
based on the technique of linear scanning of the laser field frequency near the resonance of the
corresponding transition. The obtained results were also compared with the results obtained by
the method based on the adiabatic population transfer of atomic levels. In the second part the
simple realization of three-bit Toffoli and Fredkin programmable atomic gates on a five-level
atom is demonstrated. The scheme is based on an adiabatic transfer of the populations of
atomic levels. It should be mentioned, that the results were obtained using numerical methods.

Chapter 3 “Rubidium Vapor Fluorescence in a Transient Interaction Regime”
is devoted to another type of interaction: we study the modification of the fluorescence spectra
of a room-temperature atomic rubidium vapor in the region of 87Rb and 85Rb D2 lines while
changing the temporal rate of linear (triangular) scanning of laser radiation frequency. An
increase in the ramping speed over a certain value (106 MHz/s) results in essential modification
of magnitudes of individual atomic transitions, different on rising and falling slopes, which
characterize transition from a steady state interaction regime to a transient one.

In the Chapter 4 “New Standard Magnetic-Field Values Determined by Tran-
sition Cancellations Between Magnetic Sublevels of Alkali Vapor”, we study the
behavior of 87Rb and 85Rb atomic vapor in a cell under the influence of a wide range of mag-
netic field values (from 0 to 10000 G). We have analyzed the magnetic field dependence of
intensities of all the 5 2S1/2 → 5 2P 1/2, 3/2 and 5 2S1/2 → 6 2P 1/2, 3/2 optical transitions between
magnetic sublevels of hyperfine levels, excited with π, σ+ and σ− polarized light. Magnetic
field values canceling 5 2S1/2 → 5 2P 1/2 and 5 2S1/2 → 6 2P 1/2 transitions are given by analyt-
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ical expressions. For the 5 2S1/2 → 5 2P 3/2 and 5 2S1/2 → 6 2P 3/2 transitions, magnetic field
values are investigated using numerical methods. The accuracy of these values is limited by
the precision of some of the involved physical quantities. Also we addressed the experimental
implementation feasibility and its possible outcome.

Publications
On the topic of the dissertation, six articles are published in international peer-reviewed

journals:

• [31] A. Y. Aleksanyan and E. A. Gazazyan, “Realization of the Programmable Logical
Atomic Gate,” J. Contemp. Phys., vol. 53, pp. 205–211, Jul 2018.

• [32] A. Aleksanyan, S. Shmavonyan, E. Gazazyan, A. Khanbekyan, H. Azizbekyan, M.
Movsisyan, and A. Papoyan, “Fluorescence of rubidium vapor in a transient interaction
regime,” J. Opt. Soc. Am. B, vol. 37, no. 1, pp. 203–210, Jan 2020.
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Chapter 2

Implementation of Universal Logical
Atomic Gates

2.1 Introduction
The classical theory of information science began in 1936 when Turing [37] and Church [38],
independently of each other, published their papers on the nature of computations. In 1961,
Landauer showed that any irreversible computation leads to an inevitable dissipation of energy
[39] and an additional heating of the components.

In recent decades, quantum computing has developed very rapidly, but the problem associ-
ated with the creation of quantum memory devices is still relevant [40–43]. Another problem is
the design of the given coherent superposition states of atoms in a macroscopic volume [44–46],
which is necessary to create logical gates [47–49]. One of the promising solutions to the above
problems is the recording and reproduction of optical quantum information based on the elec-
tromagnetically induced transparency of the atomic media [50–53].

The only alternative to overcome the “Landauer limit” [54] is the use of computations with
the reversible gates. The examples of reversible gates are the Toffoli and Fredkin gates [40].
The three-bit Toffoli gate (the CCNOT gate) has three inputs and three outputs. Two bits are
the static ones (the control bits, columns 1 and 2 of Table 2.1), and the third bit (the target
bit, column 3 of Table 2.1) changes if and only if the static bits have the value of 1. But in
the three-bit Fredkin gate (the CSWAP gate), the first bit is a static (the control bit, column
1 of Table 2.2), and the second and third bits (the target bits, columns 2 and 3 of Table 2.2)
are swapped when the first bit has the value of 1. The schemes of these gates are depicted on
Figure 2.1. Both gates are universal, that is, using only one type of these gates, any reversible
logic scheme can be constructed. Owing to the properties of reversibility and universality, the
Toffoli and Fredkin gates play an important role not only in the classic but also in the quantum
computations.
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Table 2.1: Truth table of CCNOT gate.

Input Output
0 0 0 0 0 0
0 0 1 0 0 1
0 1 0 0 1 0
0 1 1 0 1 1
1 0 0 1 0 0
1 0 1 1 0 1
1 1 0 1 1 1
1 1 1 1 1 0

Table 2.2: Truth table of CSWAP gate.

Input Output
0 0 0 0 0 0
0 0 1 0 0 1
0 1 0 0 1 0
0 1 1 0 1 1
1 0 0 1 0 0
1 1 0 1 0 1
1 0 1 1 1 0
1 1 1 1 1 1

in
pu

ts

outputs
(a)

in
pu

ts

outputs

(b)

Figure 2.1: (a) Toffoli and (b) Fredkin reversible gate schemes. The black circles stand for the
control bits, and crosses for the target bits.

The possibility of realization of the Toffoli gate on a three-level atomic Λ-system using
short pulses whose duration is less than the relaxation times in the system was demonstrated
in [55]. The adiabatic population transfer was done using the methods of stimulated Raman
adiabatic passage (STIRAP) [45, 56–59] and bright-state stimulated Raman adiabatic passage
(b-STIRAP) [53, 59, 60], which make the Λ-system completely reversible. With the duration
of the laser pulses ∼ 10−10 s, the same pulse sequence can result in the transfer of population
from one ground state to another and back without losses.

The coherent cyclic population transfer can be implemented also in the multilevel sys-
tems [56]. This makes it possible to realize an optical reversible universal logic gate in such
systems. One such model of the Toffoli gate was considered in [61]. The main difficulty for the
experimental realization of the models proposed in [55,61] is that the laser pulses were used as
control bits, and the populations of atomic levels as a target bit. In addition, these studies did
not take into account the relaxation processes resulting in the dissipation and dephasing of the
coherences induced in the media.

In this chapter another method of a complete population transfer and a simple realization of
programmable atomic gates on the five-level atom (M-system) are demonstrated. The method
for the complete population transfer is based on the technique of linear scanning of the laser
field frequency close to the resonant frequency of the corresponding transition. Moreover, the
comparison of the complete population transfer obtained using the scan technique with the
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results obtained by the method based on pulse sequences is made. The realization of the
programmable logical atomic gates is based on a cyclical adiabatic population transfer. A
generalization of the STIRAP and b-STIRAP methods on a five-level M-system is considered
for the pulses of arbitrary duration, taking into account all the relaxation processes. The
proposed models of optical reversible universal logic elements can serve as a basis for the design
of a reversible optical processor operating on the cyclic transfer of atomic populations.

2.2 Density matrix theory and overview of some tech-
niques and approximations

In this section we are going to discuss a bit about the theory of density matrix, about laser
field - atomic system interaction in the case of Λ-system with some common approximations in
laser physics (Electric Dipole and Rotating Wave Approximations), Apart from that, we will
briefly take a look at a few well-known techniques, which allow us to perform effective adiabatic
population transfer between the levels of atomic systems.

2.2.1 Density matrix theory
In this subsection we will briefly discuss the density matrix theory. More detailed information
is available in Ref. [62]. In classical mechanics, at every moment of time t, the dynamics of
a system is known if all the positions and momenta of all the particles are given. Often we
are dealing with a lot of particles and only the averages of the mentioned above quantities are
known. It means that we do not have a complete information about the system, so the methods
of statistical mechanics must be applied. As we are interested in quantum systems, it means
that complete information about the considered system is not available in any case because of
Heisenberg’s uncertainty principle. In addition to this, the “maximum possible information” in
quantum physics has a more strict meaning than in classical physics. Not all the observables can
be measured at the same time with precision, so we need to understand what means “maximum
possible information” in quantum mechanics.

It is well known, that two quantities can be simultaneously and precisely measured only if
the two operators corresponding to these quantities commute. Thus, if operators Q1 and Q2

commute, it is possible to find states (defining a common basis) corresponding to operators Q1

and Q2 with certain eigenvalues q1 and q2. In the same way, if operator Q3 commutes with
both Q1 and Q2 operators, it is possible to find states (i.e. a common basis) where Q1, Q2 and
Q3 have eigenvalues q1, q2 and q3 respectively, and so on. The eigenvalues can give precisely
the system classification if these eigenvalues make it possible to unambiguously distinguish the
states of the system. The largest set of mutually commuting observables give the “maximum
possible information” about the system. But if there exist an observable, which operator does
not commute with the operators of the set of Q1, Q2, . . . observables, at least one of the
observables will have uncertainty. So, it is not possible to give more complete specification of
the quantum system.
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In general, “maximum possible information” is given by the q1, q2, . . . eigenvalues of a
commuting set of observables Q1, Q2, . . . , which are measured. The system is specified by the
state vector |q1, q2, . . .⟩. Doing the same experiment, one will obtain the same results again.

Pure states represent the maximum information (the limit of precise observation) that
we can have, which are permitted by Heisenberg’s uncertainty principle, are the quantum
mechanical analogues of classical invariants or constants of motion from which all the mechanical
characteristics of the particles are known (i.e. all positions and momenta).

To get deeper, now we will consider two sets of observables. The first set is Q1, Q2, . . .
with eigenstates |ψ⟩ = |q1, q2, . . .⟩, and the second one is Q′

1, Q′
2, . . . with eigenstates |ϕ⟩ =

|q′1, q′2, . . .⟩. Here at least one of the operatorsQ′
i does not commute with the first set. Assuming

that the basis states
(
|ϕn⟩

)
are orthonormal and complete, let us represent our system by the

state vector |ψ⟩ and write it as a superposition of the eigenstates of Q′
1, Q′

2, . . . :

|ψ⟩ =
∑
n

an |ϕn⟩ , (2.1)

where the index n distinguishes the different eigenstates. The normalization will be done in
the following way:

⟨ψ|ψ⟩ =
∑
n

|an|2 = 1, (2.2)

where |an|2 is the probability that a measurement will find the system in the nth eigenstate.
Now we will consider a mixture of independently prepared states |ψn⟩. The density operator

is as follows
ρ =

∑
n

Wn |ψn⟩ ⟨ψn| , (2.3)

where Wn are statistical weights. We need to choose a convenient set of basis states to ex-
press the density operator in matrix form. Let us denote them as |ϕ1⟩, |ϕ2⟩, . . . . From the
relation (2.1) we obtain

|ψn⟩ =
∑
m′

a
(n)
m′ |ϕm′⟩ and ⟨ψn| =

∑
m

a(n)∗m ⟨ϕm| , (2.4)

and relation (2.3) can be written in the following form:

ρ =
∑
nm′m

Wna
(n)
m′ a

(n)∗
m |ϕm′⟩ ⟨ϕm| . (2.5)

Then applying orthonormality conditions on the matrix elements of the right hand side of the
operator (2.5), we obtain

⟨ϕi| ρ |ϕj⟩ =
∑
n

Wna
(n)
i a

(n)∗
j . (2.6)

As |ϕn⟩ basis states were used, formula (2.6) gives the elements of the density matrix in the
|ϕn⟩ representation.

Wn is the probability to find the system in the state |ψn⟩, and the probability that |ψn⟩ can
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be found in the state |ϕm⟩ is
∣∣∣a(n)m

∣∣∣2. By the diagonal element ρm,m, the probability of finding
the system in the state |ϕm⟩ is given:

ρm,m =
∑
n

Wn

∣∣∣a(n)m

∣∣∣2 . (2.7)

Just to remind, the trace of any matrix is constant and thus independent of the representation:

Tr(ρ) =
∑
i

ρi,i =
∑
i

∑
n

Wn

∣∣∣a(n)i

∣∣∣2 = 1. (2.8)

The trace of the product of ρ and the operator Q will gives the average value of this operator:

⟨Q⟩ =
∑
mm′

∑
n

Wna
(n)
m′ a

(n)∗
m ⟨ϕm|Q |ϕm′⟩ =

∑
mm′

⟨ϕm′| ρ |ϕm⟩ ⟨ϕm|Q |ϕm′⟩ = Tr(ρQ) (2.9)

Relation (2.9) indicates that the expectation value of an operator, which is an information of
the system we want to extract, implies to determine the density matrix.

Taking the time derivative of the density operator (2.3), we obtain

dρ

dt
=
∑
n

Wn

(
d

dt
|ψn⟩ ⟨ψn|+ |ψn⟩

d

dt
⟨ψn|

)
. (2.10)

From the Schrödinger equation
i~
d |ψn⟩
dt

= H |ψn⟩ (2.11)

and its adjoint, Eq. (2.10) becomes:

i~
dρ

dt
= [H, ρ] , (2.12)

where [H, ρ] = Hρ−ρH is the commutator between the Hamiltonian H and the density matrix
ρ. This equation is called Liouville equation, which is a more comfortable way to include the
statistical distribution than the Schrödinger equation.

2.2.2 Lindblad equation
Until this moment we have not considered the interaction of the system with its environment,
which brings to the dissipation of energy, causing decay and phase randomization. This in-
teraction consideration is important to understand a lot of fundamental phenomena, like the
spontaneous emission of light from excited atoms, or the performance of many quantum tech-
nological devices, like the laser. For more details, see Ref. [63] and Ref. [64].

Taking into account dissipation processes, such as spontaneous decay, collisions, etc. (that
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is, we consider an open system), Eq. (2.12) transforms into the Lindblad master equation:

i~
dρ

dt
= [H, ρ] + i~ ·

N2−1∑
n,m=1

hn,m

(
AnρA

†
m − 1

2
{A†

mAn, ρ}
)
. (2.13)

Here {Am} is a basis of orthonormal Hilbert-Schmidt operators acting on the Hilbert space
[65] of the N -dimensional system. The second term of the right hand side of Eq. (2.13) is
usually called the dissipator, the term hn,m in the dissipator is the Fourier transform of the
homogeneous reservoir correlation functions, is positive by Bochner’s theorem [66] and hence
h can be diagonalized. If the matrix h is zero, then the mentioned above equation reduces to
the Liouville equation. The anticommutator is defined as {A†

mAn, ρ} = A†
mAnρ+ ρA†

mAn.
With a unitary transformation u, the matrix h can be diagonalized:

u†hu =


λ1 0 · · · 0

0 λ2 · · · 0
... ... . . . ...
0 0 · · · λN2−1

 . (2.14)

In the result, the eigenvalues λi are non-negative. Defining another orthonormal operator basis

by Li =
N2−1∑
j=1

uj,iAj, the Lindblad equation will have a diagonal form and will be:

i~
dρ

dt
= [H, ρ] + i~ ·

N2−1∑
i=1

λi

(
LiρL

†
i −

1

2
{L†

iLi, ρ}
)
. (2.15)

Operators Li are called the systems’ Lindblad or jump operators.
We stress that the physical assumptions underlying the Lindblad form of the master equa-

tion are the Born (weak coupling) [63], Markov (memoryless) [67] and Rotating Wave [68]
approximations. The next subsection is devoted to the consideration of some of these approx-
imations and some well-known techniques of population transfer in the case of Λ-type atomic
system.

2.2.3 Brief analysis of adiabatic passages using Electric Dipole and
Rotating Wave Approximations

We will briefly review the relevant physics of coherent-adiabatic interactions between lasers and
quantized media. The latter could be atoms or molecules in the gas phase, as well as appropriate
“atom-like” solid media. Coherent interactions rely on the fact that a laser exhibits a strong
electromagnetic field which, together with the internal electromagnetic field of the quantum
system interacts with the electronic subsystem of the latter. This modifies the quantized level
structure of the atom and also the population distributions among the quantum states (as well
as the coherences between the quantum states). As we can control the level structure and
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population distribution in the medium, we have an access to steer many physical properties or
processes of the system. We note that not only the strength of the radiation field, but also the
coherence properties plays a role here. Thus, quantum interference may enhance or suppress
properties and processes in the coherently-driven medium.

STIRAP and b-STIRAP techniques: This technique already exhibits a well-estab-
lished tool to manipulate population distributions of atomic and molecular medium in the gas
phase [45, 59]. STIRAP relies on the adiabatic interaction of two near-resonant laser pulses
with a three-level Λ–type system [see Figure 2.2].

|1⟩

Ωp

∆p ∆s |2⟩

Ωs

|3⟩

Figure 2.2: Scheme of Λ-type atomic system levels.

The Hamiltonian of our system could be represented as

H = H0 +H1, (2.16)

where H0 is the Hamiltonian of the free atom without external fields and H1 describes the
perturbation due to the applied laser field. In the terms of eigenstates of free Hamiltonian |n⟩,
the H0 may be written as:

H0 =

~ω1 0 0

0 ~ω2 0

0 0 ~ω3

 . (2.17)

According to the Figure 2.2, the external electric field could be written as the sum of applied
two laser field electric components:

E = Ep cos
(
ωpt− kpr

)
+ Es cos (ωst− ksr). (2.18)

As the magnetic field components of the lasers are very weak compared to the electric field
ones (by an order 1/c2), it is relevant not to take them into account. When we can neglect
the spatial phase shift of the wave over the effective atomic space, this approximation is called
the Electric Dipole Approximation. Below we will derive a simple explanation about that.
For a more deep discussion one can see references [69, 70]. The kr terms on the right side
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of Eq. (2.18) are 2πr/λp,s, where λp,s the applied laser wavelengths are. As in this thesis we
examine alkali atoms, for the energy levels involved in our studies r ∼ ra, where rCs

a ≈ 0.265 nm
is the atomic radius of Caesium. It should be noted, that rNa

a < rK
a < rRb

a < rCs
a . Caesium

van der Waals radius is rvdW = 0.343 nm and covalent radius is rcov = 0.244 nm. For optical
transitions the laser wavelength is in visible or near-infrared range (λCs

p,s ≈ 852 nm) and

r/λp,s =
0.265 nm
852 nm ≈ 3 × 10−4 ≪ 1. Thus the term kr of Eq. (2.18) can be neglected and it

becomes

E = Ep cosωpt+ Es cosωst =
Ep

2

(
eiωpt + e−iωpt

)
+
Es

2

(
eiωst + e−iωst

)
. (2.19)

With d the dipole moment operator and U(t) = eiH0t/~ the time evolution operator, the per-
turbation Hamiltonian H1 = −dE will be

UH1U
† = −E

 0 d1,2e
−i(ω2−ω1)t 0

d2,1e
i(ω2−ω1)t 0 d2,3e

i(ω2−ω3)t

0 d3,2e
−i(ω2−ω3)t 0

 . (2.20)

The exponential parts of the UH1U
† non-zero matrix elements have

e±i(ω2−ω1,3+ωp,s)t + e±i(ω2−ω1,3−ωp,s)t = e±i(ω2−ω1,3−ωp,s)t
[
1 + e±2iωp,st

]
(2.21)

form, with the obvious assumptions [see Figure 2.2] that ω1 ≈ ω3 and ωp ≈ ωs. Let us analyze
the term 1 + e±2iωp,st. For a time of detection, or a time of interaction or any characteristic
time Tc, the average value of this term is:

1 + e±2iωp,st =
1

Tc

∫ Tc

0

[
1 + e±2iωp,st

]
dt = 1∓ i

1

2ωp,sTc

[
e±2iωp,sTc − 1

]
. (2.22)

Now we want to understand when the value of right hand side of the Eq. (2.22) is approximately
equal to one. After decomposition we will obtain:

1 + e±2iωp,st = 1± 1

ωp,sTc

[
± sin 2ωp,sTc − i

(
cos 2ωp,sTc − 1

)
2

]
. (2.23)

Thus 1 + e±2iωp,st = 1 ± 1

ωp,sTc
· z with 0 ≤|z| ≤ 1. Taking for instance the wavelength of the

optical transitions of Caesium λCs
p,s ≈ 852 nm, and considering the case where the characteristic

time Tc is an experimental time, it gives 4.5×10−16 ≤ 1

ωp,sTc
≤ 4.5×10−1 for 10−15 s ≤ Tc ≤ 1 s.

This means that as long as the physical phenomena observed are not of femtosecond order,
approximating the average value 1 + e±2iωp,st by 1 is an excellent approximation called the
Rotating Wave Approximation (abbreviated RWA in the literature, see for instance Ref. [68]).
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Consequently, the non-zero matrix elements (2.21) verify:

e±i(ω2−ω1,3+ωp,s)t + e±i(ω2−ω1,3−ωp,s)t = e±i(ω2−ω1,3−ωp,s)t
[
1 + e±2iωp,st

]
≈ e±i(ω2−ω1,3−ωp,s)t. (2.24)

Coming back to Schrödinger representation and after combining with the Hamiltonian of
free atom, we will obtain

H = −~
2

 0 Ωp 0

Ωp −2∆p Ωs

0 Ωs −2δ

 , (2.25)

where Ωp =
Ep

∣∣d1,2∣∣
~

and Ωs =
Es

∣∣d3,2∣∣
~

are the Rabi frequencies of the pump and Stokes
laser fields respectively, δ = ∆p −∆s is the two-photon detuning, and ∆p = ω2 − ω1 − ωp and
∆s = ω2−ω3−ωs are single-photon detunings. When ∆p = ∆s, then the two-photon detuning
δ is zero.

The bare states |1⟩, |2⟩ and |3⟩ are no more eigenstates of the strongly driven system, so
we have to pass to others eigenstates:

|a0⟩ = cosΘ |1⟩ − sinΘ |3⟩ ,
|a+⟩ = sinΦ

(
sinΘ |1⟩+ cosΘ |3⟩

)
+ cosΦ |2⟩ ,

|a−⟩ = cosΦ
(
sinΘ |1⟩+ cosΘ |3⟩

)
− sinΦ |2⟩ ,

(2.26)

where Φ and Θ are the mixing angles. The tangents of mixing angles, depending on the time
are

tan 2Φ(t) =
Ω(t)

∆
,

tanΘ(t) =
Ωp(t)

Ωs(t)
,

(2.27)

where we denoted Ω(t) =
√

Ω2
p(t) + Ω2

s(t).
We call the state |a0⟩ the “dark” state. From Eq. (2.26) it is obvious, that the “dark” state

does not include any contribution of |2⟩, thus it does not suffer from the fluorescence decay. In
contrast, the “bright” states |a±⟩ include decay of state |2⟩.

Let us to examine the “dark” state. It should be mentioned, that the laser pulses are delayed
in time. When cosΘ → 1, the state |a0⟩ corresponds to the initial state |1⟩. To obtain this,
we need to provide the following: Ωs ≫ Ωp (i.e. strong Stokes laser pulse compared with the
pump pulse). If sinΘ → 1, the state |a0⟩ corresponds to the final state |3⟩. This requires
Ωp ≫ Ωs (i.e. strong pump laser pulse compared with the Stokes pulse). A pulse sequence
“Stokes preceding pump” transfers the system directly from the |1⟩ to the |3⟩ via the dark state
|a0⟩ [see Figure 2.3]. This is the essence of the STIRAP technique.
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Figure 2.3: Population transfer via the “dark” state. To obtain this result we used the following
parameter values: ∆ = 5, Ωp = Ωs = 5, and the peaks of pulses correspond to the values ts = 22
and tp = 38. All parameters are normalized to the average pulse duration T .

Efficient population transfer is also possible via the “bright” states (b-STIRAP technique).
State |a+⟩ initially should correspond to the state |1⟩ (i.e. sinΘ → 1). To be able to carry
out population transfer we need to provide the following conditions: ∆ ≫ Ωs and ∆ ≫ Ωp. In
other words the detuning of the system should be large compared to the pulses, and the pump
laser pulse should exceed the Stokes pulse many times. At the end of the process the state
|a+⟩ should correspond to the state |3⟩ (cosΘ → 1). To complete this we need to have more
stronger Stokes pulse than a pump pulse: Ωs ≫ Ωp. It follows, that a sequence “the Stokes
pulse following the pump pulse” transfers the population of the system from state |1⟩ to state
|3⟩ via the “bright” state |a+⟩. During this process some transient population is stored on the
state |2⟩. The fraction of transient population is given by cosΦ term. If the detuning ∆ is large
enough and the lifetime of the state |2⟩ is many times long compared with the interaction time,
the efficiency of the b-STIRAP technique approaches the efficiency of the STIRAP technique.

RAP technique: Another adiabatic process than STIRAP has a huge interest in laser-
based physics. The technique of rapid adiabatic passage (RAP) [71] relies on the interaction
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of a two-level system with a resonant pump laser pulse and an intense, off-resonant Stark laser
pulse. The latter drives dynamic Stark shifts in the medium. RAP permits complete transfer
of atomic populations between two quantum states, and also permits strong enhancement of
nonlinear optical processes in the coherently-driven medium [72].

The effects of spatial dispersion, caused by finite sizes of the interaction region, on coherent
processes such like STIRAP or RAP are by far not completely studied. Any resonant medium
of finite size is spatially inhomogeneous (i.e. it exhibits spatial dispersion). This dispersion is
most prominently displayed in a gaseous medium due to thermal motion of atoms. By collisions
with the cell walls, atoms lose their excitation and only after traveling some distance in the
radiation field they “forget” the collision. This propagation distance (averaged over all thermal
atomic velocities) defines the typical scale of spatial dispersion. In a simple two-level model
the relevant scale is determined in [73].

2.3 Basic equations describing M-type system of an al-
kali atom

Let us consider a five-level atomic system that interacts with four pulses of Gaussian shape
and of arbitrary duration. The frequency of each pulse is close to the resonance frequency of
an atomic transition.

|1⟩

Ω1,2

∆1,2
|2⟩

Ω2,3

∆2,3

|3⟩

Ω3,4

∆3,4
|4⟩

Ω4,5

∆4,5

|5⟩

Figure 2.4: Scheme of atomic levels in the M-system.

With the use of the Lindblad operator Λ, the Lindblad equation (2.12) is usually written
in the more compact form:

dρ

dt
= − i

~
[H, ρ] + Λ(ρ). (2.28)

The Lindbladian Λ, also called Lindblad superoperator, models the environmental conditions
that make up the open quantum system such as dephasing and relaxation.
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The interaction Hamiltonian of the scheme depicted in Figure 2.4 has the following form:

H(t) =



0 Ω1,2e
−i∆1,2t 0 0 0

Ω2,1e
i∆2,1t 0 Ω2,3e

i∆2,3t 0 0

0 Ω3,2e
−i∆3,2t 0 Ω3,4e

−i∆3,4t 0

0 0 Ω4,3e
i∆4,3t 0 Ω4,5e

i∆4,5t

0 0 0 Ω5,4e
−i∆5,4t 0


. (2.29)

Here ∆i,j are the time-dependent one-photon detunings defined as ∆1,2 =
E2 − E1

~
− ω

(1,2)
L (t),

∆2,3 =
E2 − E3

~
−ω

(2,3)
L (t), ∆3,4 =

E4 − E3

~
−ω

(3,4)
L (t) and ∆4,5 =

E4 − E5

~
−ω

(4,5)
L (t), where Ei

is the energy of the ith atomic level, and ω(i,j)
L denotes the frequency of laser pulses of Gaussian

form. Multi-photon detunings are expressed through one-photon detunings as follows:
i) two-photon detunings are

∆1,3(t) = ∆1,2(t)−∆2,3(t),

∆2,4(t) = −∆2,3(t) + ∆3,4(t),

∆3,5(t) = ∆3,4(t)−∆4,5(t),

(2.30)

ii) three-photon detunings are

∆1,4(t) = ∆1,2(t)−∆2,3(t) + ∆3,4(t),

∆2,5(t) = −∆2,3(t) + ∆3,4(t)−∆4,5(t),
(2.31)

iii) and the only four-photon detuning has the following form:

∆1,5(t) = ∆1,2(t)−∆2,3(t) + ∆3,4(t)−∆4,5(t). (2.32)

Ωi,j = Ω∗
j,i are the Rabi frequencies of the corresponding pulses (Figure 2.4). In the matrix

form, the Lindblad operator [74] can be written as

Λ(ρ) =



Γ2,1ρ2,2 γ1ρ1,2 0 γ2ρ1,4 0

γ1ρ2,1 2γ1ρ2,2 γ1ρ2,3 (γ1 + γ2) ρ2,4 γ1ρ2,5

0 γ1ρ3,2 Γ2,3ρ2,2 + Γ4,3ρ4,4 γ2ρ3,4 0

γ2ρ4,1 (γ1 + γ2) ρ4,2 γ2ρ4,3 2γ2ρ4,4 γ2ρ4,5

0 γ1ρ5,2 0 γ2ρ5,4 Γ4,5ρ4,4


, (2.33)

where γ1 = −Γ2,1 + Γ2,3

2
, γ2 = −Γ4,3 + Γ4,5

2
and Γi,j is the natural linewidth of the i → j

spontaneous emission transition. So, the system of the equations for five level M-system will
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consist of 15 first order differential equations, which are the followings:

ρ̇1,1 = i
(
Ω1,2ρ1,2 − Ω1,2ρ2,1

)
+ Λ1,1(ρ),

ρ̇1,2 = i
(
∆1,2ρ1,2 + Ω1,2ρ1,1 − Ω1,2ρ2,2 + Ω2,3ρ1,3

)
+ Λ1,2(ρ),

ρ̇1,3 = i
(
∆1,3ρ1,3 − Ω1,2ρ2,3 + Ω2,3ρ1,2 + Ω3,4ρ1,4

)
+ Λ1,3(ρ),

ρ̇1,4 = i
(
∆1,4ρ1,4 − Ω1,2ρ2,4 + Ω3,4ρ1,3 + Ω4,5ρ1,5

)
+ Λ1,4(ρ),

ρ̇1,5 = i
(
∆1,5ρ1,5 − Ω1,2ρ2,5 + Ω4,5ρ1,4

)
+ Λ1,5(ρ),

ρ̇2,1 = ρ̇∗1,2,

ρ̇2,2 = i
(
−Ω1,2ρ1,2 + Ω1,2ρ2,1 + Ω2,3ρ2,3 − Ω2,3ρ3,2

)
+ Λ2,2(ρ),

ρ̇2,3 = i
(
−∆2,3ρ2,3 + Ω2,3ρ2,2 − Ω2,3ρ3,3 − Ω1,2ρ1,3 + Ω3,4ρ2,4

)
+ Λ2,3(ρ),

ρ̇2,4 = i
(
∆2,4ρ2,4 − Ω2,3ρ3,4 − Ω1,2ρ1,4 + Ω3,4ρ2,3 + Ω4,5ρ2,5

)
+ Λ2,4(ρ),

ρ̇2,5 = i
(
∆2,5ρ2,5 − Ω2,3ρ3,5 − Ω1,2ρ1,5 + Ω4,5ρ2,4

)
+ Λ2,5(ρ),

ρ̇3,1 = ρ̇∗1,3,

ρ̇3,2 = ρ̇∗2,3,

ρ̇3,3 = i
(
−Ω2,3ρ2,3 + Ω2,3ρ3,2 + Ω3,4ρ3,4 − Ω3,4ρ4,3

)
+ Λ3,3(ρ),

ρ̇3,4 = i
(
∆3,4ρ3,4 + Ω3,4ρ3,3 − Ω3,4ρ4,4 − Ω2,3ρ2,4 + Ω4,5ρ3,5

)
+ Λ3,4(ρ),

ρ̇3,5 = i
(
∆3,5ρ3,5 − Ω3,4ρ4,5 − Ω2,3ρ2,5 + Ω4,5ρ3,4

)
+ Λ3,5(ρ),

ρ̇4,1 = ρ̇∗1,4,

ρ̇4,2 = ρ̇∗2,4,

ρ̇4,3 = ρ̇∗3,4,

ρ̇4,4 = i
(
−Ω3,4ρ3,4 + Ω3,4ρ4,3 + Ω4,5ρ4,5 − Ω4,5ρ5,4

)
+ Λ4,4(ρ),

ρ̇4,5 = i
(
−∆4,5ρ4,5 + Ω4,5ρ4,4 − Ω4,5ρ5,5 − Ω3,4ρ3,5

)
+ Λ4,5(ρ),

ρ̇5,1 = ρ̇∗1,5,

ρ̇5,2 = ρ̇∗2,5,

ρ̇5,3 = ρ̇∗3,5,

ρ̇5,4 = ρ̇∗4,5,

ρ̇5,5 = i
(
−Ω4,5ρ4,5 + Ω4,5ρ5,4

)
+ Λ5,5(ρ).

(2.34)

2.4 Implementation of the atomic logical device
In this section, the possibility of a complete atomic population transfer from state |1⟩ to state |5⟩
[see Figure 2.4] in different regimes combined with scanning the frequency of laser pulses at the
corresponding transitions, taking into account relaxation processes is numerically investigated.
The comparison of population transfer using the frequency scanning technique with the results
obtained using methods in which there is no scanning is carried out. Two types of scanning are
considered. In the first case, the scanning of the atomic transition frequency is synchronized
with the laser pulse, i.e. a certain transition is in resonance when the laser pulse has the biggest
Rabi frequency. In the second case there is no synchronization, i.e. the frequency scanning of
the atomic transition is fixed and does not depend on Rabi frequency.

Figure 2.5 shows the population dynamics when the atom interacts with four laser pulses
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of a same duration and are switched on simultaneously. Moreover, two of them (Ω1,2 and Ω3,4)
have a big, and the rest (Ω2,3 and Ω4,5) have a small Rabi frequency. Obviously there is no
difference between synchronous and asynchronous scanning when all pulses are switched on at
the same time.

Figure 2.5: Comparison of the population dynamics of atomic levels (a, b, c, d, e): curves 1
without scanning (g) and curves 2 with scanning (f). The following values for the parameters
in numerical calculations were used: Ω1,2 = Ω3,4 = 5, Ω2,3 = Ω4,5 = 0.01, δ = 5 and Γi,j = 0.5.
The peaks of all pulses correspond to the values t1 = t2 = t3 = t4 = 30. All parameters are
normalized to the total scan time T .

On Figure 2.5 (c) and Figure 2.5 (e), continuous curve 1 describes the population transfer
dynamics when scanning is not applied and, obviously the detuning for each transition from
the corresponding resonant frequency is fixed: ∆1,2 = ∆2,3 = ∆3,4 = ∆4,5 = 5. Dotted curve
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2 shows the dynamics of population transfer [59], when scanning is combined with the pulse
regime and the detuning changes according to

∆n,n+1(t) = δ − 2δ

T
· t, (2.35)

where δ is the scan amplitude and T is the total scan time. As can be seen from Figure 2.5,
when scanning is applied, a complete transfer of populations occurs, and without scanning it
is possible to transfer to state |5⟩ only about 86 % of the entire population.

Figure 2.6: Comparison of the population dynamics of atomic levels (a, b, c, d, e): curves
1 without scanning, curves 2 with synchronous scanning (f) and curves 3 with asynchronous
scanning (g). For the obtained results: Ω1,2 = Ω3,4 = 5, Ω2,3 = Ω4,5 = 0.01, δ = 5 and Γi,j = 0.5.
The peaks of pulses correspond to the values t1 = t2 = 27 and t3 = t4 = 33. All parameters are
normalized to the total scan time T .
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Figure 2.6 shows the dynamics of the transfer of atomic populations upon interaction with
four pulses, of which one pair, Ω2,3 and Ω4,5, lags slightly behind the other pair Ω1,2 and Ω3,4 in
time. In this case, there is a clear difference between synchronous and asynchronous scanning,
that is, during synchronous scanning, the atom is never in three- and four-photon resonances.
However, these detunings are small, and a complete transfer of populations from state |1⟩ to
state |5⟩ takes place.

On Figure 2.6 (c) and Figure 2.6 (e), continuous curve 1 describes the dynamics of population
transfer when there is no scanning and the atom is in exact two-photon resonances: ∆1,2 =

∆2,3 = ∆3,4 = ∆4,5 = 5. Dotted curve 2 shows the result for synchronous scanning and detuning
can be written in the following form:

∆n,n+1(t) = δ − 2δ

T
· t− tn +

T

2
, (2.36)

where tn corresponds to the time at which the corresponding laser pulse has the maximum Rabi
frequency. Dashed curve 3 (asynchronous scanning) is obtained when the detuning corresponds
to formula (2.35). One can mention, that the results for synchronous and asynchronous scanning
are the same, and a complete transfer of populations can be performed. Without scanning, only
about 90 % of the entire population can be transferred to state |5⟩.

On Figure 2.7 and Figure 2.8, sub-figures (c) and (e), continuous curve 1 shows the pop-
ulation dynamics that was obtained using Gaussian pulses without scanning. Dotted curve 2
and dashed curve 3 show the population dynamics obtained using the same Gaussian pulses
combined with scanning. Curve 2 corresponds to synchronous scanning, which is shown on
sub-figure (f), and curve 3 is obtained in the case of asynchronous scanning (g). For the curve 1
the detunings have the following values: ∆1,2 = ∆3,4 = 5 and ∆2,3 = ∆4,5 = −5. For the
curve 2 the detunings can be represented as follows:

∆n,n+1(t) = (−1)n+1 ·
(
δ − 2δ

T
· t− tn +

T

2

)
, (2.37)

and curve 3 corresponds to the following formula for the detuning:

∆n,n+1(t) = (−1)n+1 ·
(
δ − 2δ

T
· t
)

(2.38)

with n = 1, 2, 3, 4.
Figure 2.7 shows the dynamics of population transfer using a counter-intuitive sequence

of pulses, where Ω2,3, Ω1,2 and Ω4,5, Ω3,4 are pair pulses. This configuration of laser pulses,
when scan technique is not applied, results to a transfer of 46 % of the initial population.
The use of counter-intuitive configurations, which are combined with synchronous scanning,
leads to a complete transfer of populations from state |1⟩ to state |5⟩, and with asynchronous
scanning, 95 % of the population can be transferred.

On Figure 2.7 (f), the atom is in two-photon resonances for a short time, but despite
this, the scanning technique allows efficient population transfer, and in asynchronous scanning

34



[see Figure 2.7 (g)] the transition frequencies corresponding to Ω2,3 and Ω3,4, are in single-photon
resonances when certain Rabi frequencies are relatively low, which leads to a deterioration in
population transfer, compared to the case when synchronous scanning was used.

Figure 2.7: Comparison of the population dynamics of atomic levels (a, b, c, d, e): curves 1
without scanning, curves 2 with synchronous scanning (f), curves 3 with asynchronous scanning
(g). Values of the parameters are the following: Ω1,2 = Ω2,3 = Ω3,4 = Ω4,5 = 5. The peaks of
pulses correspond to the values t1 = 27, t2 = 21, t3 = 39, t4 = 33, δ = 5 and Γi,j = 0.5. All
parameters are normalized to the total scan time T .

Figure 2.8 shows the dynamics of population transfer upon interaction with two long-
duration pulses and a relatively low Rabi frequency (Ω2,3, Ω3,4), and with two short-duration
pulses and a high Rabi frequency (Ω1,2, Ω4,5). When scanning is not applied, we have only 54 %
of the population transferred to the state |5⟩. The use of laser pulses, which are combined with
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the scanning technique, leads to a complete transfer of population from state |1⟩ to state |5⟩.

Figure 2.8: Comparison of the population dynamics of atomic levels (a, b, c, d, e): curves
1 without scanning, curves 2 with synchronous scanning (f) and curves 3 with asynchronous
scanning (g). For the obtained results: Ω1,2 = Ω4,5 = 15, Ω2,3 = Ω3,4 = 5, δ = 5 and Γi,j = 0.5.
The peaks of pulses correspond to the values t1 = 27, t2 = t3 = 30 and t4 = 33. All parameters
are normalized to the total scan time T .

2.5 Implementation of the Toffoli and Fredkin atomic
universal logical gates

The figures presented in this section show the results of the numerical solution of the problem
for the Toffoli and Fredkin gates. Pulses of the same duration are used. It is important to
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note, that we chose the detunings such that single- and three-photon resonant transitions do
not exist during the whole process of population transfer, but our system is in two- and four-
photon resonances for every moment of the process. It is done to minimize the population of
excited levels |2⟩ and |4⟩ in intermediate processes. To implement this kind of gates on alkali
atoms’ magnetic sublevels, we need to consider non-zero values for Λ1,5(ρ) and Λ5,1(ρ) [see
formula 2.33], which mix the population of the states |1⟩ and |5⟩ over time. We recall that the
relaxation matrix is diagonal symmetrical [63], thus values for both elements are the same:

Λ1,5(ρ) = Λ5,1(ρ) = γ1 + γ2 −
Γ2,1 + Γ4,5

2
. (2.39)

Figure 2.9: Dynamics of the populations of atomic levels (a, b, c, d, e) and the sequence of
switching on of laser pulses (f). This sequence of pulses is used to prepare the considered atomic
system for the Toffoli and Fredkin gate implementation. All parameters are normalized to the
average pulse duration T .

To prepare our system for the reversible Toffoli and Fredkin atomic gate implementation, we
need to do a simple operation on the atom. Let us assume, that the atoms’ initial distribution of
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populations [see Figure 2.9] at the levels |1⟩, |3⟩ and |5⟩ are equal to ρ1,1(−∞) = 1, ρ3,3(−∞) = 0

and ρ5,5(−∞) = 0 respectively. Here we need to use only two pulses: Ω1,2 and Ω2,3, where the
first pulse switches on after the second one. These pulses are responsible for the redistribution
of populations between the states |1⟩ and |3⟩. At the end of the atom-laser field interaction, the
populations of atomic levels are equal to ρ1,1(+∞) = 1/2, ρ3,3(+∞) = 1/2 and ρ5,5(+∞) = 0

(this corresponds to the inputs 1 1 0 of Tables 2.1 and 2.2). So, by doing only this operation we
are able to prepare our atomic system for both Toffoli and Fredkin gates implementation. The
numerical computations are done using the following values of the parameters: ∆1 = ∆2 = 10,
Ω1,2 = Ω2,3 = 30, Γi,j = 0.5 and t1 = 25.07, t2 = 24.93.

On Figure 2.10, the pulses Ω2,3 and Ω1,2, which are responsible for the redistribution of
populations between levels |1⟩ and |3⟩ are first switched on. Then pulses Ω4,5 and Ω3,4, which
are responsible for the redistribution of populations between levels |3⟩ and |5⟩ are switched on.

Figure 2.10: Dynamics of the populations of atomic levels (a, b, c, d, e) and the sequence of
switching on of laser pulses (f). This corresponds to input 1 1 0 and the output 1 1 1 of the
Toffoli gate. All parameters are normalized to the average pulse duration T .

The initial distributions of populations at the levels |1⟩, |3⟩ and |5⟩ are equal to ρ1,1(−∞) =
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1/2, ρ3,3(−∞) = 1/2 and ρ5,5(−∞) = 0, respectively (it corresponds to the initial input 1 1 0
of Table 2.1), and at the end of the interaction process, the populations of atomic levels are
equal to ρ1,1(+∞) = 1/3, ρ3,3(+∞) = 1/3 and ρ5,5(+∞) = 1/3 (it corresponds to the output
1 1 1 of Table 2.1). The numerical computations were carried out at the following values of
the parameters (all parameters are normalized to some average duration T ): ∆1 = ∆2 = ∆3 =

∆4 = 10, Ω1,2 = Ω2,3 = Ω3,4 = Ω4,5 = 30, Γi,j = 0.5 and t1 = 17.5, t2 = 17, t3 = 27.15, t4 = 27.
To show the reversibility of the Toffoli gate implemented on the alkali atom, we need to

consider the population transfer according to the 8th row of the truth table of CCNOT gate
[see Table 2.1]. It is obvious, that the laser pulses should be switched on in a reversed order
(compared with the sequence of laser pulses depicted on Figure 2.10) to achieve our goal.

On Figure 2.11, the pulses are switched on in the reversed order.

Figure 2.11: Dynamics of the populations of atomic levels (a, b, c, d, e) and the sequence of
switching on of laser pulses (f). This corresponds to input 1 1 1 and the output 1 1 0 of the
Toffoli gate. All parameters are normalized to the average pulse duration T .

First, the pulses Ω3,4 and Ω4,5 are switched on, which are responsible for the redistribution
of populations between the levels |3⟩ and |5⟩. Then the pulses Ω1,2 and Ω2,3 are switched
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on, which are responsible for the redistribution of populations between levels |1⟩ and |3⟩. The
initial distributions of the populations at the levels |1⟩, |3⟩ and |5⟩ are equal to ρ1,1(−∞) = 1/3,
ρ3,3(−∞) = 1/3 and ρ5,5(−∞) = 1/3, respectively (it corresponds to the initial input 1 1 1
of Table 2.1), and at the end of the process we obtain ρ1,1(+∞) = 1/2, ρ3,3(+∞) = 1/2 and
ρ5,5(+∞) = 0 (it corresponds to the output 1 1 0 of Table 2.1). For this result, the parameter
values are ∆1 = ∆2 = ∆3 = ∆4 = 10, Ω1,2 = Ω2,3 = Ω3,4 = Ω4,5 = 30, Γi,j = 0.5; the
dimensionless pulse peaks are corresponding to the following values: t1 = 26, t2 = 26.05,
t3 = 15, t4 = 22.

From now on we will show the implementation of reversible atomic Fredkin gate on a
M-system. As it has one control bit, which corresponds to the state |1⟩, it is simpler to
implement this reversible gate. In fact instead of four laser pulses we need only two of them:
Ω3,4 and Ω4,5, which are responsible for the redistribution of populations between levels |3⟩ and
|5⟩ (so-called the target bits).

Figure 2.12: Dynamics of the populations of atomic levels (a, b, c, d, e) and the sequence of
switching on of laser pulses (f). This corresponds to input 1 1 0 and the output 1 0 1 of the
Fredkin gate. All parameters are normalized to the average pulse duration T .
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On Figure 2.12, firstly the laser pulse Ω4,5 is switched on, and then the pulse Ω3,4 is turned
on. Initial populations of the levels |1⟩, |3⟩ and |5⟩ are ρ1,1(−∞) = 1/2, ρ3,3(−∞) = 1/2 and
ρ5,5(−∞) = 0 (it corresponds to the initial input 1 1 0 of Table 2.2). At the end of the interaction
process, the populations are equal to ρ1,1(+∞) = 1/2, ρ3,3(+∞) = 0 and ρ5,5(+∞) = 1/2 (it
corresponds to the output 1 0 1 of Table 2.2). These results were obtained for the following
values of the parameters: ∆3 = ∆4 = 10, Ω3,4 = Ω4,5 = 30, Γi,j = 0.5, t3 = 24 and t4 = 19.

As in the case of Toffoli gate [see Figures 2.10 and 2.11], here too, to show the implemen-
tation of the 7th row of Table 2.2, we need to use the reverse order of laser pulses applied on
the system depicted on Figure 2.12.

Figure 2.13: Dynamics of the populations of atomic levels (a, b, c, d, e) and the sequence of
switching on of laser pulses (f). This corresponds to input 1 1 0 and the output 1 0 1 of the
Fredkin gate. All parameters are normalized to the average pulse duration T .

On Figure 2.13, firstly the pulse Ω3,4 is turned on, then the laser pulse Ω4,5 is switched on.
The initial population of levels |1⟩, |3⟩, and |5⟩ are equal to ρ1,1(−∞) = 1/2, ρ3,3(−∞) = 0

and ρ5,5(−∞) = 1/2 (it corresponds to the initial input 1 0 1 in Table 2.2), and at the end of
the process of interaction, the populations are equal to ρ1,1(+∞) = 1/2, ρ3,3(+∞) = 1/2 and
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ρ5,5(+∞) = 0 (it corresponds to the output 1 1 0 of Table 2.2). These results are obtained at
the following values of parameters: ∆3 = ∆4 = 10, Ω3,4 = Ω4,5 = 30, Γi,j = 0.5, t3 = 19 and
t4 = 24.

2.6 Conclusion
In this chapter the dynamics of atomic population transfer in a five-level M-type system, which
interacts with four Gaussian laser pulses is studied in detail. The analysis is based on the
non-stationary solution of the equations for the density matrix, which takes into account both
the relaxation processes and the various sequences of the switching on of the laser pulses of
arbitrary duration. A comparison of the population transfer using different sequences of laser
pulses combined with the scanning technique is made. From the obtained results it is obvious
that the scanning technique leads to a complete population transfer, despite the fact that the
atom may not be in a resonance throughout the entire interaction time. In other words, it is
not necessary to know the exact resonance of a certain atomic transition and to tune the laser
for it, but it is only necessary to tune the laser close to the resonance frequency of the atomic
transition. The proposed method, which allows us to make a full population transfer in a very
simple way, can serve as a base in the construction of atomic logical devices. The possibility
of realization of programmable logic gates is demonstrated using the different sequences of
laser pulses. The realization of logic gates is based on the reversible cyclic transfer of atomic
populations. It is shown that with the use of short pulses (up to values ΓT ∼ 1) the reversibility
of population transfer is preserved.

The considered scheme can be experimentally realized, for example, on atomic sublevels
of alkali-metals in a magnetic field or on the electronic terms of an atom. As this chapter
is purely theoretical, thus giving orienting, indicative values for experimenters can make this
chapter more clear for the realization of logical atomic devices from the experimental point of
view. For example in the case of 87Rb, using a laser pulse of 25 ns duration the Rabi frequency
value is equal to the natural linewidth of this isotope: 2π × 6.06 MHz, which is an acceptable
value.

The results obtained in this chapter are partly published in references [31] and [35].
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Chapter 3

Rubidium Vapor Fluorescence in a
Transient Interaction Regime

3.1 Introduction
Resonant interaction of narrow-linewidth cw laser radiation with atomic vapors of alkali-metals
has been intensely studied in the past decades, driven by fundamental interest and emerging
important applications. Most of these studies deal with a steady state regime of interaction of
atomic ensemble with resonant light required for establishment of the relevant processes.

To the best of our knowledge, there are just a few works on atomic spectroscopy with cw
excitation radiation where transient resonant interaction processes are studied. Particularly,
theoretical and experimental investigations of processes under dynamic excitation of atomic
media with modulated cw laser radiation were done for nonlinear magneto-optical processes [75],
saturation spectroscopy [76], four-wave mixing [77], and coherent population trapping [78, 79].
Analytical solutions of temporal evolution of populations in optically pumped atoms were
obtained in Ref. [80]. Besides transient processes imposed by temporally modulated laser
radiation, dynamic effects were studied also for spatial Ramsey schemes, such as dark Raman
resonances caused by interference [81].

When laser radiation frequency is tuned to an atomic transition, the atom can undergo
many cycles of absorption and emission that eventually lead to establishment of the steady-
state atomic response. There are two main factors that determine interaction time of an
individual atom with the laser field in conventional atomic spectroscopy experiments. First,
the interaction time can be limited by a time of flight (TOF) of an atom through a laser
beam. For the room-temperature alkali vapor, the mean atomic velocity is ∼ 200 m/s, and
for the 1 mm diameter laser beam, the TOF of an atom crossing the laser beam at a 90◦

angle is τTOF = 5 µs. Second, the interaction time can be determined by the temporal rate of
linear scanning of laser radiation frequency employed in many experiments. For example, when
scanning the ∆ωL = 2π × 10 GHz frequency interval around the resonance line by applying
triangular modulation pulses with repetition frequency of fs = 50 Hz, the interaction time of
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an individual atom with γnat = 2π × 6.07 MHz natural linewidth is

τs =
γnat

2fs∆ωL

≈ 6 µs. (3.1)

In most spectroscopic experiments, the scanning is slow enough, so that the interaction time is
restricted by a flight time.

Besides the above-mentioned physical limitations, the resonant interaction of atom with
the laser field is governed by the laser electric field amplitude E and atomic transition dipole
moment di,j , characterized by a Rabi frequency Ωi,j =

di,jE

~
. The corresponding experimental

(measurable) parameter is laser radiation intensity IL:

IL =
1

2
ϵ0nc|E|2 =

ϵ0nc~2Ω2
i,j

d2i,j
, (3.2)

where ϵ0 is the vacuum permittivity, and n is the refractive index. Taking into account possible
detuning ∆ of the laser radiation frequency from the atomic transition (including also the
spectral linewidth of laser radiation when it exceeds γnat), generalized (effective) Rabi frequency
should be considered [68]:

Ω̃i,j =
√

Ω2
i,j +∆2. (3.3)

The study of transient effects in resonant interaction of cw laser radiation with atomic
media is of practical interest for two reasons. First, as seen from the abovementioned, it
can be used for determination of experimental parameters such as relaxation rates. Second,
dynamic transient processes can be utilized for heralded control of population in atomic systems,
resembling excitation by π and π/2 pulses in a Rabi cycle. Studies of transient processes
involving fluorescence spectra are of particular interest, since the fluorescence can serve as a
direct measure of population of excited atomic states.

In this chapter, we present the results of theoretical and experimental studies of Rb D2

line fluorescence spectra while changing the rate of linear scanning of laser radiation frequency
by four orders of magnitude. Fluorescence signal is merely dependent on the population of
excited atomic states, exhibiting linear dependence; moreover, as compared with absorption
spectra, the fluorescence spectra appear on a zero-background level, which facilitates treatment
and simulation of the measurement results. Our primary aim was to determine the most
appropriate temporal conditions for efficient atomic population control. Also, we were aimed
at determination of important relaxation parameters of the atomic system based on the fitting
of experimental results by our theoretical model.

3.2 Theoretical model, describing 85Rb and 87Rb atom
D2 line − laser field interaction

We employ a density matrix model written in the Chapter 2, Section 2.2 to simulate the
resonant fluorescence on hyperfine transitions 85Rb Fg = 2, 3 → Fe = 1, 2, 3, 4 and 87Rb
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Fg = 1, 2 → Fe = 0, 1, 2, 3 of the atomic D2 line [see Figure 3.1 (a)], developed upon excitation
of the atomic system by laser radiation with a frequency scanned across the hyperfine transitions
manifold [see the system diagram in Figure 3.1 (b)].

For this system, the time-dependent Liouville-von Neumann equation reads

dρ

dt
= − i

~
[H, ρ]−R(ρ), (3.4)

where ρ is 6 × 6 dimensional density matrix with diagonal elements ρi,i(t) representing the
population of |i⟩-th state, and off-diagonal elements ρi,j(t) representing coherences linked with
|i⟩ → |j⟩ transitions, H is the Hamiltonian of the system, and R(ρ) is the relaxation matrix.
As we deal with the non-stationary (transient) interaction regime caused by fast frequency
scanning, we consider a time-dependent problem. The initial condition for Eq. (3.4) is ρ1,1(0)+
ρ2,2(0) = 1. Taking into account the magnetic sublevels manifold, the initial ground state
populations are ρ1,1(0) = 5/12, ρ2,2(0) = 7/12 for 85Rb, and ρ1,1(0) = 3/8, ρ2,2(0) = 5/8 for
87Rb [82, 83].
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Figure 3.1: a) Hyperfine structure of rubidium D2 line and individual optical transitions for
85Rb [82] and 87Rb [83] with indicated relative strengths. b) Scheme of the theoretical model
with notations of the parameters.
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The time-dependent Hamiltonian has the following form:

H(t) =



0 0 Ω1,3e
−i∆1,3t Ω1,4e

−i∆1,4t Ω1,5e
−i∆1,5t 0

0 0 0 Ω2,4e
−i∆2,4t Ω2,5e

−i∆2,5t Ω2,6e
−i∆2,6t

Ω1,3e
i∆1,3t 0 0 0 0 0

Ω1,4e
i∆1,4t Ω2,4e

i∆2,4t 0 0 0 0

Ω1,5e
i∆1,5t Ω2,5e

i∆2,5t 0 0 0 0

0 Ω2,6e
i∆2,6t 0 0 0 0


, (3.5)

where Ωi,j =
di,jE

~
are the matrix elements of the Rabi frequency with di,j the matrix elements

of the dipole moment for the respective transitions [82,83], E is the amplitude of classical electric
field interacting with the atomic media of 85Rb and 87Rb, ∆i,j are one-photon detunings of the
scanning laser field from atomic resonances and are a function of time. For periodic triangular
temporal modulation of the laser radiation frequency, we can write

∆i,j = ∆0
i,j +

∆

π
arcsin (cos 2πfst), (3.6)

where ∆ is the spectral range of scanning, fs is the triangular modulation frequency, i = 1, 2,
and j = 3, 4, 5, 6 [see Figure 3.1 (b)]. Employing this modulation, the radiation frequency will
linearly increase/decrease in time, so that the laser field will be consecutively in resonance with
all the groups of transitions: 87Rb Fg = 2 → Fe = 1, 2, 3, 85Rb Fg = 3 → Fe = 2, 3, 4, 85Rb
Fg = 2 → Fe = 1, 2, 3 and 87Rb Fg = 1 → Fe = 0, 1, 2, in direct (rising frequency) and reverse
(falling frequency) orders.

The relaxation matrix R(ρ) involves all the relaxation processes in the system:

R(ρ) =



Γ(1,1) (γ0 + γtot)ρ1,2 γtotρ1,3 γtotρ1,4 γtotρ1,5 γtotρ1,6

(γ0 + γtot)ρ2,1 Γ(2,2) γtotρ2,3 γtotρ2,4 γtotρ2,5 γtotρ2,6

γtotρ3,1 γtotρ3,2 Γ(3,3) γtotρ3,4 γtotρ3,5 γtotρ3,6

γtotρ4,1 γtotρ4,2 γtotρ4,3 Γ(4,4) γtotρ4,5 γtotρ4,6

γtotρ5,1 γtotρ5,2 γtotρ5,3 γtotρ5,4 Γ(5,5) γtotρ5,6

γtotρ6,1 γtotρ6,2 γtotρ6,3 γtotρ6,4 γtotρ6,5 Γ(6,6)


, (3.7)

where the following notations are used:

Γ(1,1) = γ0(ρ1,1 − ρ01,1)− Γ3,1ρ3,3 − Γ4,1ρ4,4 − Γ5,1ρ5,5,

Γ(2,2) = γ0(ρ2,2 − ρ02,2)− Γ4,2ρ4,4 − Γ5,2ρ5,5 − Γ6,2ρ6,6,

Γ(3,3) = (Γ3,1 + γ0)ρ3,3,

Γ(4,4) = (Γ4,1 + Γ4,2 + γ0)ρ4,4,

Γ(5,5) = (Γ5,1 + Γ5,2 + γ0)ρ5,5,

Γ(6,6) = (Γ6,2 + γ0)ρ6,6.
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Here Γi,j is the natural decay rate of the corresponding excited state; γ0 is the relaxation rate
of the lower energy levels to the equilibrium isotropic state [79]; γtot is the total broadening
rate comprising radiative damping, collisional broadening, laser radiation linewidth, and inho-
mogeneous (Doppler) broadening making a dominant contribution (γtot ≈ γDop). All the rate
values used in theoretical calculations have been normalized to the natural decay rate for the
Rb D2 line: γnat = 2π × 6.07 MHz.

The time-dependent fluorescence spectra are then calculated numerically using the following
formula [83]

Φ(t) =
∑

i=3,4,5,6

∑
j=1,2

Γi,jρi,i(t), (3.8)

where ρi,i(t) are the solutions of Eq. (3.4).

3.3 Experiment and numerical simulation
Experimental measurements were done on a simple setup schematically depicted in Figure 3.2.
Collimated linearly polarized radiation from a free-running single-frequency diode laser (maxi-
mum power 25 mW; spectral linewidth 15 MHz) with 2 mm beam diameter was directed into a
glass cell (135 mm long, 20 mm diameter, no antirelaxation coating, no added buffer gas) with
a side arm containing natural rubidium.

oscilloscope

waveform
generator

attenuator

diode
laser

photodetector

Rb cell

Figure 3.2: Schematic drawing of the experimental setup.

The choice of a free-running laser was conditioned by the necessity for fast linear frequency
scanning, which, unlike external piezoelectric-driven cavity diode lasers, is easily realizable by
modulation of an injection current. The cell was kept at a room temperature (22◦C), which
corresponds to the number density of rubidium atoms NRb = 5 × 109 cm−3. A fast linear
photodetector was placed at 90◦ to the laser beam propagation direction, closer to the entrance
window.

In order to scan the laser radiation frequency across the spectral region of atomic D2 line,
covering Doppler-overlapped hyperfine transition groups 87Rb Fg = 2 → Fe = 1, 2, 3, 85Rb Fg =
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3 → Fe = 2, 3, 4, 85Rb Fg = 2 → Fe = 1, 2, 3, and 87Rb Fg = 1 → Fe = 0, 1, 2 (typically 11 GHz
range), the laser diode injection current was modulated by periodic triangular pulses from
Siglent SDG5082 waveform generator. The scanning rate and frequency range were controlled
by changing the generator frequency and amplitude, respectively. It was possible to fine-tune
the laser radiation frequency by applying a bias (offset) to the generator signal. Fluorescence
signal from the photodetector (photodiode with operational amplifier) was recorded by a digital
storage oscilloscope Tektronix TDS3032B. The maximum used scanning frequency was limited
by the temporal response of the photodetector (τdet ≈ 5 µs).

The scanning time (period) itself cannot be considered as a physical parameter, since the
resonant interaction time of an individual atom with laser radiation depends also on the spec-
tral range covered by scanning. A real physical meaning should be attributed to the scan-
ning rate defined as S = ∂ω/∂t. In addition, the interaction time is also affected by the
homogeneous broadening width and laser radiation linewidth. For this reason, to facilitate
interpretation of the results, only two experimental parameters were varied throughout our
measurements: laser radiation power PL and triangular modulation frequency fs. The spectral
range ∆ωs = 2π× 11.12 GHz was kept invariable both on descending (ω−) and ascending (ω+)
wings. Moreover, the frequency positions of hyperfine transitions in the scanning spectral range
were kept unchanged, independently of fs value. In these conditions the scanning rate can be
determined by simple rescaling of modulation (scanning) frequency:

S =
∂ω

∂t
=

∆ωs

τ±
= 2∆ωsfs, (3.9)

where τ± is the scanning time on the ascending and descending wings of modulation signal
(τ+ = τ−). Experimental measurements were done for thirteen values of fs, from 1 Hz to
10 kHz [see Table 3.1]. The table contains also corresponding values of τ± and S/2π.

Table 3.1: Linkage between the temporal parameters of the experiment.

No. fs (Hz) τ± (ms) S/2π (MHz/µs)
1 1 500 0.02224
2 2.5 200 0.0556
3 5 100 0.1112
4 10 50 0.2224
5 25 20 0.556
6 50 10 1.112
7 100 5 2.224
8 250 2 5.56
9 500 1 11.12
10 1000 0.5 22.24
11 2500 0.2 55.6
12 5000 0.1 111.2
13 10000 0.05 222.4
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The recorded spectra are combined in Figure 3.3. The three column panels represent the
results for three values of PL (1, 5, and 20 mW). In each panel, the spectra recorded for
different values of fs are shifted vertically from each other for visual convenience, preserving a
unique vertical scale for the whole graph. First (left) and second (right) halves of the spectrum
correspond to falling and rising laser radiation frequency, respectively.

τ± ω± ω± ω±

0.05 ms

0.1 ms

0.2 ms

0.5 ms

1 ms

2 ms

5 ms

10 ms

20 ms

50 ms

100 ms

200 ms

500 ms

PL = 1 mW PL = 5 mW PL = 20 mW

Figure 3.3: Fluorescence spectra recorded at thirteen values of scanning rate for three values of
laser power: PL = 1, 5, and 20 mW. τ± indicates rising (right half) and falling (left half) laser
frequency scan times. The scanning spectral range is 11.12 GHz, covering 87Rb Fg = 2 → Fe =
1, 2, 3, 85Rb Fg = 3 → Fe = 2, 3, 4, 85Rb Fg = 2 → Fe = 1, 2, 3, and 87Rb Fg = 1 → Fe = 0, 1, 2
transition groups (in order of rising frequency; see right halves of each panel). Spectra are
shifted vertically at equal distances; the same vertical scale is applied for all the spectra.
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The following observations can be drawn from these graphs. For PL = 1 mW, spectra
with ω− and ω+ scans exhibit mirror symmetry, and the shapes of spectra do not change
significantly when changing τ±. Mirror asymmetry in ω−/ω+ scans appears for PL = 5 mW
with the decrease in scanning time, over certain values of τ±. This asymmetry establishes
earlier, and becomes more pronounced for PL = 20 mW. However, the symmetry tends to
recover again when reaching the shortest attainable scan times. Finally, in the slow scanning
limit (steady state interaction regime), hyperfine transition groups 85Rb Fg = 2 → Fe = 1, 2, 3

and 87Rb Fg = 1 → Fe = 0, 1, 2 consisting of “open” (non-cycling) components are strongly
suppressed, notably for high laser power. Decrease in the scanning time results in gradual
enhancement of fluorescence on these transitions.

Numerical simulation of the obtained experimental results has been done using the the-
oretical model described in Section 3.2. The simulated fluorescence spectra were plotted by
using Eq. (3.8), with ρi,i(t) found from solving Eq. (3.4). The values of physical and optical
parameters characterizing the Rb atomic D2 line system (transition dipole matrix elements,
frequency positions, decay rates, etc.) were taken from Refs. [82,83]. Simulation of linear scan-
ning by symmetric triangular pulses was done using Eq. (3.6). Two fitting parameters were used
throughout the simulation: the laser electric field amplitude E (see the reasoning in Section
3.4), and the relaxation rate of the ground energy levels to the equilibrium state γ0. The results
of numerical simulation are in a good agreement with the experimental results. Comparison of
theoretical and experimental spectra for three values of the scanning rate is presented in Fig-
ure 3.4. The best fitting of spectral lineshapes throughout the whole range of exploited scanning
frequencies and incident laser powers has been obtained for γ0 = 1.03(±0.1)× 10−3γnat.

Theory
Experiment

PL = 1 mW PL = 5 mW PL = 20 mW τ±

200 ms

0.2 ms

0.05 ms

Frequency (1 GHz/div.)

Fl
uo

re
sc
en
ce
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.u
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Figure 3.4: Comparison of theoretical (red lines) and experimental (black lines) fluorescence
spectra for 3 values of the laser radiation power and 3 values of the scanning rate.

Quantitative dependences of the fluorescence peak signals from scanning time (separately,
for descending ω− and ascending ω+ scans) derived from the spectra shown in Figure 3.3 are
presented in Figure 3.5, along with corresponding theoretical modeling curves. As one can
clearly see from these graphs, establishment of a steady state interaction regime correspond-
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ing to scan-time-independent (horizontal) trace on the graphs, is strongly dependent on laser
radiation power, but also somewhat varies for different transition groups. The most drastic
changes occur for the groups containing V-type cycling transitions: 85Rb Fg = 3 → Fe = 2, 3, 4

and 87Rb Fg = 2 → Fe = 1, 2, 3, where a deep well is formed at a certain value of τ− for
ω+ scanning direction, while for the opposite direction, ω− fluorescence grows monotonically
with the decrease in τ+. Monotonic growth when decreasing scan time is observed also for the
transition groups 85Rb Fg = 2 → Fe = 1, 2, 3 and 87Rb Fg = 1 → Fe = 0, 1, 2, independently of
the sense of scanning. No expected saturation of this growth was observed at the largest values
of fs attainable in our experiment. At the same time, it can be seen that as the scanning speed
increases, the peak fluorescence values for scanning with falling and rising frequencies tend to
approach each other.

3.4 Discussion and emerging results
The observed dynamics of the fluorescence spectra when changing the scanning conditions is
caused mainly by the optical pumping [84]. In this process, taken into account by our theoretical
model, the atom absorbing the laser photon on “open” (non-cycling) atomic transitions (Fg =

1, 2 → Fe = 1, 2 for 87Rb and Fg = 2, 3 → Fe = 2, 3 for 85Rb) is driven to the excited state
with possible consequent spontaneous emission to the other hyperfine sublevel of the ground
state, which does not interact with the laser radiation. The efficiency of this process depends
on both the laser intensity and atom-light interaction time.

For slow enough scanning of the laser radiation frequency, allowing establishment of a
steady-state atom-light interaction regime, the time period between successive resonances is
longer than the ground-state relaxation time (the population is “thermalized” to equilibrium
condition), and the amplitude for each particular transition group remains invariable, inde-
pendent of scanning conditions [see the lower spectra in Figure 3.5]. The situation changes
for the transient regime, when increasing the scanning rate to a value for which coherence or
redistribution of population established during the resonant interaction with a particular hy-
perfine transition is partly preserved by the time of resonance with the neighboring transition.
As a result, the ground-state population and, hence, also absorption and fluorescence, are af-
fected by population redistribution occurring during the previous resonance. This “memory
effect” causes modification of magnitudes of individual fluorescence components depending on
the scanning rate and direction.

As one can expect, the further increase in scanning rate (beyond the values explored in
the present experiment) should eventually result in equalization of the fluorescence peaks for
the rising and falling frequency scans, as no significant redistribution of population due to the
optical pumping can be developed because of an extremely short interaction time. In parallel,
the fluorescence signal amplitude should decline for the same reason: eventually, only one cycle
of absorption and emission can occur at the highest scanning rates. These considerations are
supported by the results of numerical modeling [see simulation curves in Figure 3.5 for frequency
scanning time below 10−5 s].
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Figure 3.5: Dependence of the fluorescence peak intensity on the laser frequency scanning
rate for the four hyperfine transition groups of Rb D2 line, recorded at three values of PL.
Lines: theory; symbols: experiment. Dashed lines/open symbols and solid lines/solid symbols
correspond to scanning with falling and rising frequency (ω− and ω+), respectively. Insets in
(a) and (b) show zoomed plots in the region of τ± = 4× 10−5 − 6× 10−3 s.

For extremely fast scanning rates, when the atom-light interaction time becomes comparable
to the natural decay time (∼ 30 ns), one can expect to observe behavior intrinsic to a pulsed
excitation regime, such as nutation referred to as the Rabi oscillation between the ground and
excited states. However, we should note that each individual atom with a certain velocity
(frequency shift) and position in the laser beam (Rabi frequency) will contribute to such a
process with random frequency and phase, so that the overall oscillatory signal will be averaged
and damped, even if the photodetector bandwidth is appropriate.

The theoretical model used in this chapter allows to reproduce experimental results, which
indicates that all the involved physical processes are adequately addressed. Throughout the
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modeling, we have used known spectroscopic parameters for Rb D2 line system, except for
two quantities that were free-fitting parameters, namely, (i) the effective amplitude of the laser
electric field E dependent on laser radiation power PL, and (ii) the relaxation rate of the lower
energy levels to the equilibrium isotropic state γ0. Necessity to fit the value of E, which enters
in expression for the Rabi frequency Ωi,j = di,jE/~, comes from uncertainty of the distribution
of laser radiation intensity across the beam and its broad spectral linewidth, which exceeds the
Rb natural linewidth.

A much more important fitting parameter is the ground-state relaxation rate γ0, which
characterizes the particular vapor cell used in the experiment. The value of γ0 comprises
contributions from population relaxation time T1 (relevant for our study) and coherence re-
laxation time T2. As this parameter remains unchanged throughout the experimental mea-
surements, it can be determined unambiguously by the best fitting of all the experimen-
tal spectra recorded for different temporal and power conditions. The obtained fitted value
γ0 ≈ 1.03× 10−3γnat ≈ 2π × 6.25 kHz is close by the order of magnitude to the expected value
for the conditions of our experiment.

Indeed, in the absence of a buffer gas and antirelaxation coating, the value of relaxation
rate γ0 should be determined by the flight of optically pumped atoms to the cell walls where
they undergo spin–exchange collisions. The contribution from Rb-Rb pairwise collisions has to
be completely ruled out because of a small value of the cross section (1.9× 10−14 cm2 [85]) and
very low vapor density. As shown in Ref. [86], the spin-exchange binary collisions in comparable
experimental conditions yield only ∼ 2π × 25 Hz contribution. In our experiment, the mean
atomic velocity v =

√
8kBT/πma = 265 m/s (kB is Boltzmann constant, T is cell temperature,

ma is atomic mass). A rough estimate for the atom departing from the laser beam normally
towards the wall, undergoing spin-exchange collision with 100 % probability, and returning into
the beam with the same trace gives γ0 = 2π × 13.3 kHz.

More detailed calculations should take into account the angular distribution of atomic veloc-
ity, probabilistic nature of relaxation caused by the atom-wall collision, as well as self-diffusion
of atoms in a vapor. All these factors lead to the decrease in the estimated value, as demon-
strated by Franzen [see Ref. [87]]. In the conditions of our experiment, the mean free path of
Rb atoms λ = 1/

√
2Nσself, where N is the number density of atoms, and σself is the total inter-

atomic collision cross section, substantially exceeds geometric dimensions of the cell. Indeed,
with N = 5 × 109 cm−3 and σself = 1.397 × 10−13 cm2 [88], we get λ ≈ 10 m. This estimate
indicates that we can consider ballistic trajectories of atoms towards cell walls, excluding as
irrelevant the self-diffusion in the vapor.

Elaborated expressions for determination of the ground-state population relaxation time
T1 (and hence, relaxation rate γ0) in a high-vacuum cell, in which interatomic collisions are
irrelevant, are presented in Ref. [89], where this relaxation time is identified with the mean
TOF of the atoms between two collisions with the walls. Following these calculations, for a
cylindrical cell with diameter d and length l, the ground-state relaxation rate is expressed as

γ0 = 2π × 1

T1
= 2π × vS

4V
= 2π × v(l + d/2)

ld
, (3.10)

53



where V and S are the cell volume and surface area, respectively. For the conditions of our
experiment, Eq. (3.10) yields γ0 = 2π × 14.2 kHz, which is 2.3 times bigger than the value
obtained from the fitting.

This difference can be attributed to the presence of residual buffer gas (unidentified con-
tamination) in the cell, which can lead to the decrease in the estimated value, as first shown by
Franzen [87]. For a cylindrical cell with diameter d [cm] and length l [cm], the relaxation rate
of optically pumped Rb atoms caused by diffusion to the cell walls γ0D [Hz] can be expressed
in the following form [86, 90]:

γ0D = 2π ×

[(
µ

d/2

)2

+

(
π

l

)2
]
D,

D = D0
p0
p

(
T

T0

)3/2

,

(3.11)

where µ = 2.405 is the first zero of the Bessel function [91], D [cm2/s] is the diffusion coeffi-
cient dependent on pressure and temperature, D0 is the diffusion constant at normal conditions
(pressure p0 = 760 Torr, temperature T0 = 273 K), and p and T are the pressure and temper-
ature of the cell, respectively. Taking the values for the present work d = 2 cm, l = 13.5 cm,
γ0D ≈ γ0 = 2π × 6.25 kHz, we obtain for the diffusion coefficient D ≈ 1070 cm2/s.

Assuming that our homemade cell was not properly pumped out or that over time (20 years
from the date of manufacturing), some air leaked through the welded junctions, we may suppose
that the most realistic residual buffer gas is nitrogen (N2). The contribution from known helium
permeation through the cell walls is negligible in this case because of low partial pressure in
the air (∼ 4 mTorr). As one can find from Ref. [90], the diffusion constant for N2-buffered Rb
vapor is D0 = 0.144 cm2/s, and from the second expression of Eq. (3.11) for T = 295 K, we
obtain p ≈ 0.11 Torr, which seems realistic.

We should note that if we know the type and pressure of the buffer gas X, this result can be
further explored for determination of another important spectroscopic parameter that is a cross
section σbuf of elastic velocity-changing Rb-X atomic collisions. The latter can be calculated in
the frame of Chapman-Enskog theory, following the expression presented, e.g., in Ref. [92]:

σbuf =
3

8pD

√
π (kBT )

3

2mr

, (3.12)

where mr is the reduced mass of the interacting particles. Exploring this equation for p =

0.11 Torr, D = 1070 cm2/s, T = 295 K, and reduced mass of Rb-N2 atomic pair mr =

3.52× 10−23 g, we obtain the cross section for Rb-N2 collisions σbuf = 4.06× 10−15 cm2, which
is in very good agreement with the value 3.93× 10−15 cm2 reported in Ref. [88].

The presence of a buffer gas in the cell can be easily checked by implementing the sat-
urated absorption (SA) experiment: addition of > 0.5 Torr of a foreign gas leads to nearly
complete suppression of sub-Doppler features in the SA spectrum because of velocity-changing
collisions [93]. The SA measurement done with our cell has not revealed any noticeable distinc-
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tion in appearance of a Doppler pedestal and lineshapes of velocity-selective optical pumping
and crossover resonances as compared with a buffer-free reference cell, which indicates that the
residual buffer gas pressure is below the critical level.

The obtained results can be used for the realization of a heralded control of atomic level
population in alkali-metal vapor by implementing frequency modulation of cw lasers in a non-
stationary (transient) regime of resonant interaction. The control will be realized by means of
changing the shape, duration, and delay of the sequence of generated pulses. It is expected
that the results of these studies can be used for the enhancement of efficiency of photochemical
reactions, development of new schemes of sensitive optical magnetometers, development of
elements for quantum communication systems, and for other applications.

3.5 Conclusion
Summarizing, we have studied the evolution of fluorescence spectra of a room-temperature
rubidium vapor in the region of the atomic D2 line while changing the linear (triangular)
scanning rate of exciting cw laser radiation frequency, exploring changeover from steady-state
to the transient interaction regime. The general aim of this chapter was to quantitatively study
temporal dynamics of fluorescence based on an extremely simple experiment.

In the low scanning rate limit, the spectral lineshape and magnitude of fluorescence across
the hyperfine transitions manifold are independent of the speed and direction of frequency
scanning, evidencing the steady-state atom-radiation field interaction regime. In this regime,
the interaction time is determined by the mean TOF of atoms through the laser beam. Increase
in the scanning rate above ∼ 2 MHz/µs (for the conditions of our experiment) results in
gradual modification of the amplitudes of fluorescence peaks, different for different transitions
and dependent on the scanning direction and speed, manifesting the onset of the transient
interaction regime. In this regime, the interaction time is caused by the temporal period when
the scanned laser field is in resonance with atomic transition. The maximum asymmetry in
fluorescence peak amplitudes for rising and falling frequency scanning is obtained at the rate
of ∼ 20-60 MHz/µs. The symmetry tends to recover again at a higher scanning rate.

Theoretical modeling taking into consideration all the relevant physical processes exhibits
good agreement with the experimental results. Due to this consistency, it is possible to retrieve
some important parameters of the experiment, in particular, the relaxation rate of the lower
energy levels to the equilibrium isotropic state γ0, the diffusion coefficient D in a buffered
vapor cell, and the corresponding collisional cross section σ. The obtained results can also
be used for determination of appropriate temporal conditions for efficient heralded control of
atomic population in a multilevel system, by implementing a frequency-modulated cw laser as
an effective source of controllable pulsed radiation.

After this work, presented here-before, we have continued to study it and used machine
learning methods to determine the value of the fitting parameter γ0 from the experimentally
registered fluorescence spectra [see Ref. [94]]. Using machine learning methods for this kind
of physical problems is justified because in general they allow predicting fitting parameters
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from the spectra registered for systems with another configuration (e.g. another laser power,
laser scanning frequency, isotopes abundance, geometrical characteristics of the cell) than the
one on which the “learning” process is done. This type of physical problems are classified
as a typical regression problem. We used linear and nonlinear machine learning methods, as
they are the most promising ones for processing and predicting the behavior of the physical
system. An optimal regression model was built, which is characterized by high accuracy and
short modeling time.

The results obtained in this chapter are published in Ref. [32]. The experiment was carried
out in the Optics Laboratory at Institute for Physical Research, National Academy of Sciences
of Armenia. The participants of the experiment were all the co-authors of the aforementioned
article.
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Chapter 4

New Standard Magnetic-Field Values
Determined by Transition
Cancellations Between Magnetic
Sublevels of Alkali Vapor

4.1 Introduction
Laser spectroscopy of atomic vapors of alkali-metals (Li, Na, K, Rb, Cs) is widely used in atomic
physics and numerous emerging applications, including Bose-Einstein condensate, quantum
information, optical metrology, laser and sensor technologies, etc. [32, 95–99]. Interest in such
single-electron atomic media is caused by the simplicity of the energy levels and the presence
of strong optical transitions in the visible and near infrared, for which narrow-linewidth cw
lasers are widely available. In recent decades, various magneto-optical processes in vapors of
alkali-metals have been intensively investigated, which is in particular due to interest in the
development of new schemes of optical magnetometry [22, 100, 101].

Among these processes is modification of the frequency and intensity of optical transitions
between individual magnetic sublevels of the hyperfine structure of atoms in a magnetic field.
It is well known that in an external magnetic field B, the initially degenerate atomic energy
levels are split into magnetic sublevels (Zeeman splitting) [3, 102, 103]. The corresponding
linear shift of atomic transition frequencies with B-field holds till it becomes comparable with
the hyperfine splitting. With the further increase of the B-field, the transition frequencies
strongly deviate from the linear behavior [104, 105]. Also, significant changes occur for atomic
transition probabilities [106]. Further increase of the B-field results in re-establishment of linear
frequency dependence and stabilization of the transition probabilities (hyperfine Paschen-Back
regime) [107, 108].

The experimental observation of the above modifications, especially for relatively weak
magnetic fields (. 1000 G), is strongly complicated due to the thermal motion of atoms in the
vapor: individual transitions between the magnetic sublevels are Doppler-broadened (hundreds
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of MHz), and they overlap under a wide Doppler profile. This complexity can be overcome by
using sub-Doppler spectroscopy methods (for instance SA) or appropriate devices, for instance
optical nanocells [109–111]. It is important to note that in addition to a significant decrease
in the inhomogeneous broadening of transitions, the spectroscopy of nanocells (e.g. derivative
of selective reflection (dSR) technique [109, 112–115]) also allows one to preserve the linear
response of the medium (the magnitude of the atomic signal is directly proportional to the
transition probability) [116].

In recent years, a number of papers have been published devoted to the study of the be-
havior of atomic transitions in a wide range of magnetic field spanning from the Zeeman to
hyperfine Paschen-Back regime (G to kG scale) [117–121]. Along with the experiment, theo-
retical models have been developed, giving very good agreement with the measurement results.
Among other results, strong transitions that are forbidden by the selection rules at zero mag-
netic field (magnetically-induced transitions), as well as significant suppression of the initially
allowed transitions were observed exploiting different polarizations of the exciting laser radia-
tion [122, 123].

Our theoretical model is used to determine polarization configurations and magnetic-field
values, which outright cancel or maximize the transition intensities between individual magnetic
sublevels of alkali atoms (i.e. drive the transition probability to zero or possible maximum).
The cancellation theory is valid for n 2S1/2 → k 2P 1/2, 3/2 transitions, where k = n, n+ 1, n+

2, n+3, . . . is the principal quantum number of the excited 2P 1/2 and 2P 3/2 state. Nevertheless,
there is a restriction on k: The Zeeman degenerated k 2P 1/2, 3/2 states should not be overlapped
with other states for the magnetic-field values starting from zero up to the maximum considered
one. We were able to extract a unique formula for the magnetic-field values canceling some
transitions while leading to the maximum of others. Particularly, in this chapter we consider
the cancellation or maximization of transition intensities of stable and long-lived alkali-atom
isotopes. But for 85Rb and 87Rb isotopes we considered 5 2S1/2 → 5 2P 1/2, 3/2 (D1 and D2

lines accordingly) and 5 2S1/2 → 6 2P 1/2, 3/2 transitions. For these transitions all the quantum
numbers (with the exception of the principal quantum number) and all the Landé factors are
the same, but also a lot of significant differences exist. The first important difference is the
laser wavelength. For the D1 and D2 lines the laser wavelength is ∼ 795 nm and ∼ 780 nm
respectively, while the laser wavelengths are ∼ 422 nm and ∼ 420 nm for 5 2S1/2 → 6 2P 1/2, 3/2

transitions. Another difference is the overall transition strength. From the point of view of
theoretical calculations the only difference between these two type of transitions is the energy
differences of the excited states. For the 5 2S1/2 → 5 2P 3/2 and 5 2S1/2 → 6 2P 3/2 transitions,
the study is done mostly using numerical methods, but in several cases we were able to extract
analytical formula depending on the Hamiltonian submatrices sizes. All the magnetic-field
values, which cancel the transitions are obtained. This set of values may be used as standards in
the magnetometer calibration tasks and to improve the precision of physical constants involved
in the model.

The issues related to experimental feasibility of the B-field cancellation of transitions, and
outline the possible applications, such as optical mapping of magnetic field and B-field control
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of optical information are also addressed.

4.2 Dirac equation and atom - magnetic field interaction
As in this chapter we are going to study transition cancellations and the spectra of an alkali
atom under the influence of electromagnetic field, it will be better to start from brief analysis of
the well known Dirac equation to order v2/c2, which is well describing the atom-electromagnetic
field interaction, where the field is described by the potentials A and V

[
1

2mel

(
p+

e

c
A

)2

+
e

melc
S ·∇×A− p4

8m3
elc

2
− e~

8m2
elc

2
∆V

− e

2m2
elc

2
S · (∇V × p)− eV

]
Ψ = EΨ, (4.1)

where mel is the electron mass, p is its impulse, e is its electric charge, c is the light velocity,
A is the vector and V is the scalar potential, S =

~
2
σ is the electron’s spin momentum:

σ =
(
σx, σy, σz

)
are the Pauli matrices. One can find more details in references [70, 124, 125].

When we consider non-relativistic electron in the gauge {A = 0, V }, then the Dirac equation
(4.1) shortens to

H0Ψn ≡

[
p2

2mel

− eV

]
Ψn = EnΨn. (4.2)

If the atomic states are bounded and the potential is spherical symmetric: V ≡ V (r), from
Eq. (4.2) we obtain

En = −RZ2

n2
, (4.3)

with R =
mele

4

8ϵ0h2
≈ 13.6 eV, the Rydberg constant, Z the atomic number and n the princi-

pal quantum number. The scalar potential is V = Ze/r and the spin-orbit (SO) interaction
Hamiltonian could be rewritten as

HSO = − e

2m2
elc

2
S · (∇V × p) =

Ze2

2m2
elc

2r3
S · L, (4.4)

where L = r×p is the angular momentum. H0 +HSO is the electron Hamiltonian bounded to
the nucleus of atom. For the energy it will lead to the following formula:

ESO =
Z4e2~2

4a30m
2
elc

2
· J(J + 1)− L(L+ 1)− S(S + 1)

n3L(L+ 1/2)(L+ 1)
, (4.5)

where a0 =
4πϵ0~2

m2
ele

2
≈ 0.53 Å is the Bohr radius. Taking into account the expression for the

zero-field Hamiltonian [see Eq. (4.2)], the first order relativistic correction HR = − p4

8m3
elc

2
can
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be rewritten as

HR = − 1

2melc2

(
H0 +

Ze2

r

)2

, (4.6)

with the energy of the first order relativistic correction:

ER = −E2
n ·

Z2e2

2melc2a0
·
(

2n

L+ 1/2
− 3

)
. (4.7)

And the energy of Darwin term, which Hamiltonian HD =
e~2∆V
8m2

elc
2

and it brings to the
energy shift for the S-states, is

ED =
Z4e2~2

2n3m2
elc

2a30
. (4.8)

The following is the so-called fine structure Hamiltonian:

Hf = H0 +HSO +HR +HD. (4.9)

To completely describe the system under the influence of static external magnetic field, we
need to consider the Zeeman effect. It arises, when A ̸= 0. So, the magnetic Hamiltonian is

Hm =
e

2melc
(p ·A+A · p) + e

melc
S ·∇×A. (4.10)

In the case that the magnetic field is constant and uniform (for instance, due to its geometry,
this condition is extremely well verified for a nanocell), it follows that

A =
1

2
(B× r) (4.11)

with B the magnetic field vector. Taking into account Eq. (4.10) and Eq. (4.11), the Hamilto-
nian could be expressed as follows:

Hm =
µB

~
B (L+ 2S) , (4.12)

where µB =
e~

2melc
is the Bohr magneton. Drawing parallels with the classical expression of a

magnetic dipole in a magnetic field, the magnetic Hamiltonian could be rewritten as

Hm = −µL ·B− µS ·B, (4.13)

where µL = −µBgL
~

L and µS = −µBgS
~

S are called as magnetic moment operators associated
with L and S respectively. gL = 1 and gS = 2 are electron orbital and electron spin Landé
factors. To obtain more precise value of gL, we need to take into account the finite mass of the
nucleus. So, the expression for the orbital Landé factor [82] is

gL = 1− mel

mn

(4.14)
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with mn the nuclear mass [126] of the atom. Dirac’s theory predicted gS = 2, but one should
note that in what follows we will use the most known exact values of the Landé factors in
the present chapter, as we want to obtain exact analytical relations and precise magnetic-field
values canceling transitions.

From now on we choose the direction of the external static magnetic field along z-axis, i.e.
B = Bêz. This defines the quantization axis. It is important to note that a lot of formalism
describing magnetic Hamiltonian exist [3, 104, 124, 127, 128], but we chose a formulation of
Tremblay et al. [104]. After applying Wigner-Eckart theorem on the derived formulas and
expanding 3-j and 6-j symbols [129–131], for the Hm matrix diagonal elements we obtain

⟨J,mJ |H0 +Hm |J,mJ⟩ = Ef (J)− µBgJmJB (4.15)

with gJ the Landé factor of the total electronic angular momentum J [see Ref. [132]], given by

gJ = gL
J(J + 1)− S(S + 1) + L(L+ 1)

2J(J + 1)
+ gS

J(J + 1) + S(S + 1)− L(L+ 1)

2J(J + 1)
. (4.16)

Non-diagonal elements are different from zero, if ∆L = 0 and ∆mJ = 0:

⟨J,mJ |H0 +Hm |J − 1,mJ⟩ = ⟨J − 1,mJ |H0 +Hm |J,mJ⟩

= −µBB

2
(gL − gS)

(
J2 −m2

J

J(2J + 1)(2J − 1)

)1/2

×

([
(L+ S + 1)2 − J2

] [
J2 − (L− S)2

]
J

)1/2

. (4.17)

Above we did not took into account the electron-nucleus interaction of the atom. It brings
to the splitting of the hyperfine structure (so-called hyperfine structure) and is described by
the following expression [133]:

Hhf = AhfI · J+Bhf

3 (I · J)2 + 3

2
I · J− IJ (I + 1) (J + 1)

4IJ (2I − 1) (2J − 1)
, (4.18)

where I is the nuclear spin, Ahf and Bhf are the magnetic dipole and the electric quadrupole
constants. So, our new magnetic Hamiltonian will be

Hm =
µB

~
B (gLL+ gSS + gII) (4.19)

with gI nuclear Landé factor. Now we denote our complete Hamiltonian as

H ≡ Hf +Hhf +Hm, (4.20)

which fully describes alkali atom under the influence of external static magnetic field.
In the coupled |F,m⟩ basis the diagonal elements of the Hamiltonian matrix H have the
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following form:
⟨F,m|H |F,m⟩ = Ehf (F )− µBgFmB, (4.21)

where Ehf (F ) is the energy of the hyperfine F level, gF is the associated Landé factor [132]
expressed as

gF = gJ
F (F + 1)− I(I + 1) + J(J + 1)

2F (F + 1)
+ gI

F (F + 1) + I(I + 1)− J(J + 1)

2F (F + 1)
, (4.22)

and m is the magnetic quantum number. Non-diagonal elements are non-zero when ∆F = 0

and ∆m = 0, and are given by

⟨F − 1,m|H |F,m⟩ = ⟨F,m|H |F − 1,m⟩

= −µBB

2
(gJ − gI)

(
F 2 −m2

F (2F + 1)(2F − 1)

)1/2

×

([
(J + I + 1)2 − F 2

] [
F 2 − (J − I)2

]
F

)1/2

. (4.23)

The electric dipole component Dq [104, 134] is determined using the following relation:

∣∣⟨e|Dq |g⟩
∣∣2 = 3ϵ0~Γeλ

3
eg

8π2
a2[|ψ(Fe,me)⟩ ; |ψ(Fg,mg)⟩ ; q], (4.24)

where Γe is the natural decay rate, λeg is the wavelength between the ground and excited states,
and q ≡ ∆m = 0,±1 stands respectively for π, σ± transitions. To distinguish the m values,
for the ground and excited states we will use mg and me notations respectively. The modified
transfer coefficients read:

a[|ψ(Fe,me)⟩ ; |ψ(Fg,mg)⟩ ; q] =
∑
F ′
e,F

′
g

cFeF ′
e
a(F ′

e,me;F
′
g,mg; q)cFgF ′

g
, (4.25)

where a(Fe,me;Fg,mg; q) are the unperturbed transfer coefficients:

a(Fe,me;Fg,mg; q) = (−1)1+I+Je+Fe+Fg−me
√
2Je + 1

√
2Fe + 1

√
2Fg + 1

×

(
Fe 1 Fg

−me q mg

){
Fe 1 Fg

Jg I Je

}
, (4.26)

which depend on 3-j (parenthesis) and 6-j (curly brackets) Wigner symbols.
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4.3 Alkali-metal atoms n 2S1/2 → k 2P 1/2 transition can-
cellations theory

The characteristic polynomial of a 3 × 3 or 4 × 4 matrix admits analytical expressions for its
roots (based on Cardano and Ferrari’s formulas [135]), but they are too heavy to be calculated
and moreover to be exhibited in the thesis. Thus in order to explain clearly the way we will
determine the magnetic-field values, we begin here-after with 2× 2 matrices.

It is well known that fine structure is the splitting of the main spectral lines of an atom
and is the result of the coupling between the orbital angular momentum L and spin angular
momentum S of the single optical electron. The total electronic angular momentum can be
written as

J = L+ S (4.27)

and the J quantum number corresponding to the momentum takes

|L− S| ≤ J ≤ L+ S (4.28)

values with L and S the projections of L and S respectively on the quantization axis (the
convention that the magnitude of J is ~

√
J(J + 1) and the eigenvalue of Jz is mJ~ is used).

For s → p transitions, for the ground state we have L = 0 and S = 1/2 and for the excited
state L = 1 and S = 1/2.

Hyperfine structure is the result of the combination between the total electronic angular
momentum J and the total nuclear angular momentum I of the atom. The total angular
momentum F is the sum of I and J:

F = I + J. (4.29)

In this section we are only interested in n 2S1/2 → k 2P 1/2 alkali-atom transitions and the value
of the total electronic angular momentum magnitude for these transitions is J = 1/2. The total
atomic angular momentum magnitude takes the following values:

I − 1/2 ≤ F ≤ I + 1/2, (4.30)

where I is the magnitude of the total nuclear angular momentum. For all alkali atoms the
total nuclear angular momentum is an integer or half-integer quantity. For the F number the
following notations will be used:

F±
g,e = I ± 1/2, (4.31)

where indices g and e stand for the ground and excited states respectively.
Within a magnetic field, the considered hyperfine structure energy levels splits into several

magnetic sublevels, which are described by magnetic quantum numbers m taking the following
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values:
− F ≤ m ≤ F. (4.32)

On Figure 4.1, all possible schemes of n 2S1/2 → k 2P 1/2 transitions are depicted. The following
notations are used: n is the principal quantum number, which generally describes the system,
ζ = E0(F

+
g )−E0(F

−
g ) is the energy difference between ground levels and ε = E0(F

+
e )−E0(F

−
e )

is the energy difference between excited levels.

m = −F+
e −F+

e + 1 ... F+
e − 1 F+

e
F+
e
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e

...
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F−
e
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g −F+

g + 1 ... F+
g − 1 F+

g
F+
g

−F−
g

...
F−
g

F−
g

ζ

εk 2P1/2

n 2S1/2

(a) n 2S1/2 → k 2P 1/2 transitions scheme in a
magnetic field, when I is a half-integer quantity.
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(b) n 2S1/2 → k 2P 1/2 transitions scheme in a
magnetic field, when I is an integer quantity.

Figure 4.1: Schemes of all possible n 2S1/2 → k 2P 1/2 transitions within magnetic field.

It should be noted that when I is an integer number the hyperfine structure is inverted.
Couple of pages before, general diagonal and non-diagonal elements of the Zeeman split

matrix were mentioned [see relations 4.21 and 4.23]. Taking into account the obtained expres-
sions for total electronic and total atomic angular momenta, these formulae could be written
in more simple way. The diagonal elements of the Hamiltonian matrix H are

⟨F,m|H |F,m⟩ = E0(F )− µBgF (F
±
g,e)mB, (4.33)

Non-diagonal elements can be expressed in the following form:

⟨F,m|H |F − 1,m⟩ = ⟨F − 1,m|H |F,m⟩ = −µB

2
(gJ − gI)B

√
1−

(
2m

1 + 2I

)2

, (4.34)

For the ground and excited states

ggJ = gS and geJ =
4gL − gS

3
. (4.35)

Taking into account that F quantum numbers for both ground and excited states are the same,
in Eq. (4.33) we can use the following formulas for gF (F ):

gF (F
−
g,e) = gI +

gI − gg,eJ

1 + 2I
and gF (F

+
g,e) =

gg,eJ + 2gII

1 + 2I
. (4.36)
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For the complete description of n 2S1/2 → k 2P 1/2 transition cancellations within a magnetic
field it is enough to write general 2× 2 block matrices for the ground and excited states, where
each block matrix corresponds to a given value of m, using Eq. (4.33) and Eq. (4.34). We will
not write Hamiltonian elements for the m = ±Fg,e values because they correspond to pure
states and the corresponding transitions do not depend on magnetic-field value B. The zero-
field energies E0 have been chosen as references for both ground and excited states lower levels.
Below, the matrix HG describes the ground state and can be written as follows:

HG =



|F+
g ,mg⟩ |F−

g ,mg⟩

⟨F+
g ,mg | ζ − µB

fg
1 + 2I

mgB
µB

2
ggB

√
1−

(
2mg

1 + 2I

)2

⟨F−
g ,mg |

µB

2
ggB

√
1−

(
2mg

1 + 2I

)2

−µB

(
gI +

gg
1 + 2I

)
mgB

. (4.37)

where gg = gI −gS and fg = gS +2gII. After diagonalization, the eigenvalues of the HG matrix
are given by

Λ±
G =

ζ − 2µBgImgB

2
± 1

2

(
ζ2 + µ2

Bg
2
gB

2 +
4ζµBggmgB

1 + 2I

)1/2

. (4.38)

The eigenkets corresponding to eigenvalues Λ±
G, expressed in terms of unperturbed state

vectors |ψ(Fg,mg)⟩ =
∑

F ′
g
cFgF ′

g
|F ′

g,mg⟩ are

|ψ(F±
g ,mg)⟩ =

1√
1 + κ2g±

|F+
g ,mg⟩+

κg±√
1 + κ2g±

|F−
g ,mg⟩ , (4.39)

where we denoted
κg± =

2(1 + 2I)(Λ±
G − ζ) + 2µBfgmgB

µBggB
√

(1 + 2I)2 − 4m2
g

.

Similarly, for the excited state, the general 2× 2 Hamiltonian block matrix is

HE =



|F+
e ,me⟩ |F−

e ,me⟩

⟨F+
e ,me| ε− µB
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meB
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. (4.40)

where ge =
3gI − 4gL + gS

3
and fe =

4gL − gS + 6gII

3
. The eigenvalues of HE are

Λ±
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ε− 2µBgImeB

2
± 1

2

(
ε2 + µ2

Bg
2
eB

2 +
4εµBgemeB
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)1/2

, (4.41)
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and its eigenkets, written in terms of the unperturbed atomic state vectors
∣∣ψ (Fe,me)

〉
=∑

F ′
e
cFeF ′

e
|F ′

e,me⟩, are the following:

|ψ(F±
e ,me)⟩ =

1√
1 + κ2e±

|F+
e ,me⟩+

κe±√
1 + κ2e±

|F−
e ,me⟩ , (4.42)

where we denoted
κe± =

2(1 + 2I)(Λ±
E − ε) + 2µBfemeB

µBgeB
√
(1 + 2I)2 − 4m2

e

.

Taking into account the total electronic angular momenta Jg and Je quantum numbers for
n 2S1/2 → k 2P 1/2 transitions, the unperturbed transfer coefficient a(Fe,me;Fg,mg; q) reads

a(Fe,me;Fg,mg; q) = (−1)3/2+I+Fe+Fg−me
√
2
√

2Fe + 1
√
2Fg + 1

×

(
Fe 1 Fg

−me q mg

){
Fe 1 Fg

1/2 I 1/2

}
. (4.43)

There are no σ+ and σ− transition cancellations (i.e. transfer coefficients are never equal to
zero) for any value of the magnetic-field of any alkali-atom isotope. Cancellations occur only for
π transitions (mg = me). In this section from now on in formulas and equations instead of mg

and me we will write m. Let’s examine the unperturbed transfer coefficients a(Fe,m;Fg,m; 0).
Two of them have the following expression:

a(F±
e ,m;F±

g ,m; 0) = ± 2m√
3 (1 + 2I)

. (4.44)

For the next two unperturbed coefficients the expression is

a(F±
e ,m;F∓

g ,m; 0) =
1√
3

√
1−

(
2m

1 + 2I

)2

. (4.45)

From Eq. (4.25), and formulas (4.44) and (4.45), modified transfer coefficients which have
a cancellation are

a[|ψ(F±
e ,m)⟩ , |ψ(F±

g ,m)⟩ , 0]

=
κe±√
1 + κ2e±

a
(
F−
e ,m;F−

g ,m; 0
) κg±√

1 + κ2g±

+
κe±√
1 + κ2e±

a
(
F−
e ,m;F+

g ,m; 0
) 1√

1 + κ2g±

+
1√

1 + κ2e±
a
(
F+
e ,m;F−

g ,m; 0
) κg±√

1 + κ2g±

+
1√

1 + κ2e±
a
(
F+
e ,m;F+

g ,m; 0
) 1√

1 + κ2g±

. (4.46)
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The solutions of a[|ψ(F±
e ,m)⟩ , |ψ(F±

g ,m)⟩ , 0] = 0 are

B±
± = − 4mζε

µB (1 + 2I)
(
ggε+ geζ

) . (4.47)

The condition on the considered modified transfer coefficients solutions which defines per-
missible values of magnetic quantum number m depends on nuclear spin:

0 ≤ (−1)2Im ≤ I − 1

2
. (4.48)

From the formula (4.47) one can notice that for isotopes having a half-integer nuclear spin,
transition cancellations exist for π transitions between levels for which the magnetic quantum
number is zero (m = 0). But as the atomic states are degenerated, it is not possible to observe
the cancellations of these transitions.

Modified transfer coefficients a[|ψ(F±
e ,m)⟩ , |ψ(F∓

g ,m)⟩ , 0] can not be equal to zero, but
these quantities have a very interesting behavior. While for certain values of B, transition
intensities corresponding to a[|ψ(F±

e ,m)⟩ , |ψ(F±
g ,m)⟩ , 0] are zero (transition cancellation), the

transition intensities corresponding to a[|ψ(F±
e ,m)⟩ , |ψ(F∓

g ,m)⟩ , 0] reach their maximum value
which corresponds to the intensity of a π transition occurring between pure states (so-called
“guiding” atomic transitions [136]). This is ensured by the calculation of the derivative of
modified transfer coefficients squared with respect to magnetic field:

da2[|ψ(F±
e ,m)⟩ , |ψ(F∓

g ,m)⟩ , 0]
dB

= 0. (4.49)

The solution of Eq. (4.49) is exactly formula (4.47) with the condition mentioned in for-
mula (4.48). We call quantities a[|ψ(F±

e ,m)⟩ , |ψ(F∓
g ,m)⟩ , 0] and a[|ψ(F±

e ,m)⟩ , |ψ(F±
g ,m)⟩ , 0]

pair-modified transfer coefficients, and transitions corresponding to them pair-transitions. As
one can notice, cancellations occur only for transitions obeying∆F = Fe−Fg = 0 and maximum
values take place when ∆F = Fe − Fg = ±1.

4.4 Analysis of stable and long-lived isotopes n 2S1/2 →
k 2P 1/2 transition cancellations

In this section we fully analyze D1 line transition cancellations and maxima of 23Na, 39K, 40K,
41K, 85Rb, 87Rb and 133Cs atoms. In addition, we study 85Rb and 87Rb isotopes 5 2S1/2 →
6 2P 1/2 transitions. All the mentioned isotopes except 40K and 87Rb are stable. The half-life
of 40K is 1.248(3)× 109 years and that of 87Rb is 49.23(22)× 109 years. It should be noted that
we do not study all the possible isotopes of all alkali atoms mainly due to the lack of data on
these isotopes and also because their half-life time is too short to envisage an experiment in
the close future. However the present theory is still valid to study them.

In Table 4.1 all considered isotope data is given with uncertainties. As one can see, the
most imprecise values in general are ε. But for 39K, 40K and 41K frequency differences between
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ground state levels are not precisely known. These quantities have the most influence on the
size of the uncertainties of the calculated B values.

Table 4.1: Values used to calculate transitions between magnetic sublevels of n 2S1/2 and
k 2P 1/2 states with their uncertainties.

Isotope I Transition Values

23Na 3/2 3 2S1/2 → 3 2P 1/2 (D1 line)

gL = 0.999 976 13 [137]
gI = −0.000 804 610 80(80) [133]
ζ = 1771.626 1288(10) MHz [133]
ε = 188.697(14) MHz [138,139]

39K 3/2 4 2S1/2 → 4 2P 1/2 (D1 line)

gL = 0.999 979 053 396 70(14)∗
gI = −0.000 141 934 89(12) [133]

ζ = 461.73(14) MHz [140]
ε = 57.696(10) MHz [138]

40K 4 4 2S1/2 → 4 2P 1/2 (D1 line)

gL = 0.999 979 745 316 40(14)∗
gI = 0.000 176 490(34) [133]
ζ = −1285.87(35) MHz [140]
ε = −155.31(35) MHz [140]

41K 3/2 4 2S1/2 → 4 2P 1/2 (D1 line)

gL = 0.999 980 393 902 46(13)∗
gI = −0.000 077 906 00(8) [133]

ζ = 253.99(12) MHz [133,140, 141]
ε = 30.50(16) MHz [140]

85Rb 5/2 5 2S1/2 → 5 2P 1/2 (D1 line)

gL = 0.999 993 54 [82]
gI = −0.000 293 640 00(60) [133]

ζ = 3035.732 4390(60) MHz [133,142]
ε = 361.58(17) MHz [142–144]

85Rb 5/2 5 2S1/2 → 6 2P 1/2

gL = 0.999 993 54 [82]
gI = −0.000 293 640 00(60) [133]

ζ = 3035.732 4390(60) MHz [133,142]
ε = 117.33(66) MHz [145]

87Rb 3/2 5 2S1/2 → 5 2P 1/2 (D1 line)

gL = 0.999 993 69 [83]
gI = −0.000 995 1414(10) [133]

ζ = 6834.682 610 904 290(90) MHz [146]
ε = 814.50(13) MHz [133,143, 144]

87Rb 3/2 5 2S1/2 → 6 2P 1/2

gL = 0.999 993 69 [83]
gI = −0.000 995 1414(10) [133]

ζ = 6834.682 610 904 290(90) MHz [146]
ε = 265.12(66) MHz [145]

Continued on next page
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Table 4.1 – Continued from previous page
Isotope I Transition Landé factors

133Cs 7/2 6 2S1/2 → 6 2P 1/2 (D1 line)

gL = 0.999 995 87 [74]
gI = −0.000 398 853 95(52) [133]
ζ = 9192.631 770 MHz (exact) [74]
ε = 1167.680(30) MHz [147,148]

It should be noted that when the value of I is integer (i.e. 40K in this thesis), the values of ζ and
ε should have the minus sign to be in agreement with our notations. For further calculations,
for the Bohr magneton and gS spin Landé factor we used µB/h = −1.399 624 5042(86) MHz/G
and gS = 2.002 319 304 3622(15) [149] values respectively. In Ref. [34], where cancellations
of rubidium 5 2S1/2 → 6 2P 1/2, 3/2 transitions were examined, we noticed that the value of
this fundamental constant had just been refined, thus we used the following one: µB/h =

−1.399 624 493 61(42) MHz/G [150]. It is important to emphasize that this difference, which
only affects one millionth of the Bohr magneton, only causes an infinitesimal modification to
the values of the B-field.

In Table 4.1, * stands for the calculated values of gL using the exact formula of Phillips [151]
and values for the isotopes of Audi et al. [152]. We noticed that in the paper of Phillips [151]
1/m is missing in the second term of the exact formula for gL.

Below, on Figure 4.2, 23Na, 39K and 41K isotopes D1 line π transition cancellations are
depicted. The total atomic angular momentum magnitude is F = 1 for the lower levels of
ground and excited states and F = 2 for the upper levels. For all these isotopes, transitions
cancel only for m = −1.

Figure 4.2: 23Na, 39K and 41K isotopes D1 line π transition modified transfer coefficients for
m = −1. Numbering given in the inset is defined in Table 4.2.
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One can note that I = 3/2 also for 87Rb, but to provide a good readability of the thesis we
will consider D1 line and 5 2S1/2 → 6 2P 1/2 transition cancellations of this isotope together.
Obviously all the figures in this chapter, which show transition cancellations, have been drawn
without taking into account uncertainties of the involved quantities.

Table 4.2: B-field values canceling transitions of 23Na, 39K and 41K with their uncertainties.

Isotope No. F m B (G) B∗ (G)
23Na 1 1 -1 153.2007(86) 153.2007024(11)

2 2 -1 153.2007(86) 153.2007024(11)
39K 3 1 -1 44.991(10) 44.9915(37)

4 2 -1 44.991(10) 44.9915(37)
41K 5 1 -1 24.042(95) 24.0418(30)

6 2 -1 24.042(95) 24.0418(30)

In Table 4.2 all B-field values which cancel D1 line transitions of 23Na, 39K and 41K are
calculated. The numbers in the second column refer to the labeling of Figure 4.2, the third
column shows the values of the total angular momentum magnitude for both ground and excited
states. The fourth column indicates between which magnetic sublevels the transition occurs
and the fifth column displays calculated values of B-field with their uncertainties, which are a
consequence of the physical quantities uncertainties involved in the calculations. The B∗ value
in the sixth column is obtained by ignoring the uncertainty on ε. This calculation has been
made in order to show how precise the B values that cancel the transitions can be determined if
the uncertainty on ε could be reduced. As immediate consequence, one sees the importance to
determine experimentally an improved, i.e. more precise, value of ε. From this very precisely
known ε value, it becomes clear that B∗ can be useful for the calibration of magnetometers.

For 40K the total atomic angular momentum magnitude is F = 9/2 for the lower levels
of ground and excited states and F = 7/2 for the upper levels. Transition cancellations are
observed for m = 7/2, m = 5/2, m = 3/2 and m = 1/2. In Table 4.3 all B-field values which
cancel transitions of 40K D1 line are calculated.

Table 4.3: B-field values canceling transitions of 40K with their uncertainties.

Isotope No. F m B (G) B∗ (G)

40K

1 9/2 7/2 190.20(33) 190.204(13)
2 7/2 7/2 190.20(33) 190.204(13)
3 9/2 5/2 135.85(24) 135.8602(98)
4 7/2 5/2 135.85(24) 135.8602(98)
5 9/2 3/2 81.51(15) 81.5161(59)
6 7/2 3/2 81.51(15) 81.5161(59)
7 9/2 1/2 27.171(48) 27.1720(19)
8 7/2 1/2 27.171(48) 27.1720(19)
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On Figure 4.3, modified transfer coefficients for all π transitions which have a cancellation
are depicted.

Figure 4.3: 40K D1 line π transition coefficients which have a cancellation. Cancellations are
observed for m = 7/2, m = 5/2, m = 3/2 and m = 1/2. Numbering given in the inset is
defined in Table 4.3.

Next we examine 85Rb 5 2S1/2 → 5 2P 1/2 and 5 2S1/2 → 6 2P 1/2 π transitions. For this
isotope the total atomic angular momentum magnitude is F = 2 for the lower levels of ground
and excited states and F = 3 for the upper levels. Some transitions cancel for m = −2 and
m = −1.

For this isotope we will also analyze those transitions which have maximum value as it
was mentioned before. π transitions corresponding to the above-mentioned magnetic quan-
tum numbers which do not cancel reach their maximum values for the magnetic-field values
canceling the other transitions. On Figure 4.4 (a.1) and (b.1), modified transfer coefficients
(i.e. a[|ψ(Fe,m)⟩ , |ψ(Fg,m)⟩ , 0] quantities) are depicted for m = −2 and m = −1 for both
5 2S1/2 → 5 2P 1/2 and 5 2S1/2 → 6 2P 1/2 transitions. Lines numbered 5, 6, 7 and 8 have
no cancellation and are nothing more than transition coefficients between ground and excited
states, where Fg ̸= Fe. As an illustration, the dashed line on Figure 4.4 (a.1) indicates that
the intensity of transitions 1 and 2 is equal to zero for the same value of B. On Figure 4.4
(a.2) and (b.2), modified transfer coefficients squared are depicted in order to compare them
with each other and with guiding atomic transition coefficient for which m = −3. To extend
the previous illustration with the dashed line of Figure 4.4 (a.2), we draw it in the case of the
modified transfer coefficients squared to show explicitly that the minimum of transitions 1 and
2 (point A) coincides with the maximum of transitions 5 and 6 (point B).

In Table 4.4 all B-field values which cancel transitions of 85Rb D1 line (5 2S1/2 → 5 2P 1/2)
and 5 2S1/2 → 6 2P 1/2 are calculated. One also can see that for these values of magnetic-
field the transitions 5, 6, 7 and 8 (Table 4.5) reach their maximum value equal to the transfer
coefficient 9 squared.
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Figure 4.4: (a.1) 85Rb D1 line modified transfer coefficients for m = −2 and m = −1 π
transitions. For this isotope four cancellations exist: 1, 2, 3 and 4. (a.2) 85Rb D1 line modified
transfer coefficients squared for m = −3,−2 and −1. The vertical dashed line indicates the
value B = 380.73 G which corresponds to the cancellation of the transitions 1, 2 (point A)
and coincides with the maximum of transitions 5, 6 (point B). On sub-figures (b.1) and (b.2)
for 5 2S1/2 → 6 2P 1/2 transition modified transfer coefficients and modified transfer coefficients
squared are depicted. Numbering 1-8 given in the inset are defined in Tables 4.4 and 4.5,
guiding transition transfer coefficient squared 9 on sub-figures (a.2) and (b.2) corresponds to
m = −3.

Table 4.4: B-field values canceling 85Rb 5 2S1/2 → 5 2P 1/2 and 5 2S1/2 → 6 2P 1/2 π transitions
with their uncertainties.

Isotope Excited state No. F m B (G) B∗ (G)

85Rb

5 2P 1/2

1 1 -2 380.73(13) 380.7362466(29)
2 2 -2 380.73(13) 380.7362466(29)
3 1 -1 190.368(66) 190.3681233(15)
4 2 -1 190.368(66) 190.3681233(15)

6 2P 1/2

1 1 -2 150.31(76) 150.31738954(20)
2 2 -2 150.31(76) 150.31738954(20)
3 1 -1 75.15(38) 75.15869477(10)
4 2 -1 75.15(38) 75.15869477(10)
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Table 4.5: B-field values maximizing 85Rb 5 2S1/2 → 5 2P 1/2 and 5 2S1/2 → 6 2P 1/2 π transi-
tions with their uncertainties.

Isotope Excited state No. ∆F m B (G) B∗ (G)

85Rb

5 2P 1/2

5 -1 -2 380.73(13) 380.7362466(29)
6 1 -2 380.73(13) 380.7362466(29)
7 -1 -1 190.368(66) 190.3681233(15)
8 1 -1 190.368(66) 190.3681233(15)

6 2P 1/2

5 -1 -2 150.31(76) 150.31738954(20)
6 1 -2 150.31(76) 150.31738954(20)
7 -1 -1 75.15(38) 75.15869477(10)
8 1 -1 75.15(38) 75.15869477(10)

On Figure 4.5, on the left side 5 2S1/2 → 5 2P 1/2 and on the right side 5 2S1/2 → 6 2P 1/2 all
possible π transition transfer coefficients and transition intensities of 87Rb isotope for m = −1

value are depicted.

Figure 4.5: 87Rb 5 2S1/2 → 5 2P 1/2 (left side) and 5 2S1/2 → 6 2P 1/2 (right side) π transition
transfer coefficients and transition intensities for m = −1 magnetic quantum number.

The values for 87Rb, for which the contribution of the magnetic field cancels π transitions
for m = −1 is B = 642.590(76) G for the 5 2S1/2 → 5 2P 1/2 and B = 254.39(57) G for the
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5 2S1/2 → 6 2P 1/2. In Table 4.6 these values are written with corresponding ground and excited
states F quantum number. Again, in column 7, B∗ is calculated without taking into account
the uncertainty on ε.

Table 4.6: Magnetic-field values canceling 87Rb 5 2S1/2 → 5 2P 1/2 and 5 2S1/2 → 6 2P 1/2 π
transitions.

Isotope Excited state No. F m B (G) B∗ (G)

87Rb
5 2P 1/2

1 1 -1 642.590(76) 642.5904743(48)
2 2 -1 642.590(76) 642.5904743(48)

6 2P 1/2
1 1 -1 254.39(57) 254.398160387(80)
2 2 -1 254.39(57) 254.398160387(80)

Once again it is necessary to note, that for every isotope’s canceling transition there is
another one for the same value of magnetic quantum number m maximizing for exactly the
same B-field value as it was mentioned in Section 4.3, Eq. (4.49).

For 133Cs, the total atomic angular momentum magnitude is F = 3 for the lower levels of
ground and excited states and F = 4 for the upper levels. Transition cancellations are observed
for m = −3, m = −2 and m = −1. On Figure 4.6, modified transfer coefficients for all π
transitions which have a cancellation are shown.

Figure 4.6: 133Cs D1 line π transition modified coefficients which have a cancellation. Cancella-
tions are observed for m = −3, m = −2 and m = −1. Numbering given in the inset is defined
in Table 4.7.

In Table 4.7 all B-field values which cancel transitions of 133Cs D1 line are calculated.
Despite the fact that in general the uncertainty of the ground state energy has a smaller
contribution on the uncertainty of the B-field value than the uncertainty of the excited one,
the formula works much more better for 133Cs isotope as the ground state energy is known
precisely [see Table 4.1].
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Table 4.7: B-field values canceling transitions of 133Cs with their uncertainties.

Isotope No. F m B (G) B∗ (G)

133Cs

1 3 -3 1359.237(26) 1359.2372467(92)
2 4 -3 1359.237(26) 1359.2372467(92)
3 3 -2 906.158(17) 906.1581644(61)
4 4 -2 906.158(17) 906.1581644(61)
5 3 -1 453.0790(84) 453.0790822(31)
6 4 -1 453.0790(84) 453.0790822(31)

As an illustration of our calculations we have computed one spectrum for the value B =

150.31739 G that cancels the transition |Fg = 2,mg = −2⟩ → |Fe = 2,me = −2⟩ between states
5 2S1/2 and 6 2P 1/2, and two other spectra for the values B = 125 G and B = 175 G. The peak
no. 1 is the one canceling for the mentioned exact value of B-field and according to the equations
derived in the previous section, the peak no. 2 is maximizing for the same value of the magnetic-
field [see Figure 4.7 for the numbering]. These spectra, depicted on the Figure 4.8, have been
obtained by simulating a dSR experiment performed with a nanocell of length l = 211 nm at the
temperature of 403 K. As it was mentioned before, the wavelength of 85Rb 5 2S1/2 → 6 2P 1/2

transition is λ = 422 nm. The best coincidence between theory and experiment is reached
when the nanocell length is the half length of the wavelength. The atomic density in the case
of nanocell corresponding to 403 K is 1013 cm−3. For the simulation we used a continuous wave
0.1 mW power laser. More detailed explanations and relations used to obtain these spectra can
be found in the thesis of Klinger [70]. It is worth to mention that these spectra indicate clearly
the probable experimental difficulty to determine the B-values which cancel the transitions
considered in this chapter.

−3 −2 −1 0 1 2 3
Fe = 3

Fe = 2

Fg = 3

Fg = 2
1 2 3 4 5 6 7 8 9 10

Figure 4.7: 85Rb 5 2S1/2 → 6 2P 1/2 scheme in a magnetic field with all π transitions from
Fg = 2 level to Fe = 2 and Fe = 3 levels.
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Figure 4.8: 85Rb 5 2S1/2 → 6 2P 1/2 π transitions spectra in a magnetic field. (a) B = 125 G,
(b) B = 150.31739 G, (c) B = 175 G. Atomic density = 1013 cm−3, laser power = 0.1 mW,
laser wavelength = 422 nm, nanocell length = 211 nm, temperature = 403 K.

4.5 Magnetic-field values canceling 87 and 85 rubidium
5 2S1/2 → 5 2P 3/2 and 5 2S1/2 → 6 2P 3/2 transitions

In this section the 5 2S1/2 → 5 2P 3/2 and 5 2S1/2 → 6 2P 3/2 transitions for both 87Rb and
85Rb isotopes are considered. As mentioned before, we will present only those transitions, and
respectively modified transfer coefficients, which have a cancellation.

Indeed, transitions are canceled for extremely precise values of the magnetic-field. However,
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when using a computer program, these values verifying a2[|ψ(Fe,me)⟩ ; |ψ(Fg,mg)⟩ ; q] = 0 will
never be reached no matter the step of variation ∆B used. This situation will be even more
evident in the case of 3 × 3 and 4 × 4 matrices, since in these cases, we can hardly hope to
obtain simple and compact formulas, function of the variables of our model, and giving the
value of the field B which cancels a transition. Only numerical values, also extremely precise,
can be given and the change of sign of the quantity a[|ψ(Fe,me)⟩ ; |ψ(Fg,mg)⟩ ; q] ensures the
nullity of its square.

It is very important to note that we also did a numerical simulation for 2 × 2 matrices.
Analytically calculated values of magnetic-field and the values which are obtained by numerical
simulation are in very good agreement. The adequacy of these two values is 10−12 and it means
that we are completely allowed to use the same code for numerical simulation in the case of
3× 3 or 4× 4 block matrices in order to find extremely precise values of magnetic-field, which
contribute to transition cancellations (eigenvalues of 3 × 3 and 4 × 4 matrices are given by
Cardano and Ferrari’s formulas [135], which in our case, do not seem to be possible to simplify.
Consequently formulas, in the case of 3 × 3 and 4 × 4 matrices, for the B-field that cancel
transitions, exist, however it is not sure that it is possible to write them in a short, compact
form pages.).

4.5.1 Analysis of the 87Rb transitions
We denote ζ the frequency difference between the ground states. For the excited states, no-
tations are shown on Figure 4.9. For 87Rb, from the ground state to the 5 2P 3/2 and 6 2P 3/2

excited states only ten π transitions have a cancellation, five for each of them.

−3 −2 −1 0 1 2 3
Fe = 3

Fe = 2

Fe = 1

Fe = 0

Fg = 2

Fg = 1

ζ

α

β

γ

1

2

3

4

5

Figure 4.9: 87Rb 5 2S1/2 → 5 2P 3/2 and 5 2S1/2 → 6 2P 3/2 scheme in a magnetic field with all
π transitions which have a cancellation.

As already explained above, in this section we will not derive analytical formulas for the
magnetic-field values which cancel transitions due to the complexity of calculations which in-
volve 3 × 3 or 4 × 4 matrices. For the numerical calculations we used values from Table 4.8.
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Here too, all excited state frequency differences have relatively big uncertainties compared with
others quantities involved in the calculations. In fact, this results can serve to determine more
precisely excited state frequency differences. One of the possible techniques is the selective re-
flection (SR) or/and transmission spectra. By making a fitting between theory and experiment
it is possible to improve the following quantities: ε for the 5 2P 1/2 and 6 2P 1/2, and α, β, γ for
the 5 2P 3/2 and 6 2P 3/2 excited states.

Table 4.8: Excited state frequency differences for 87Rb and 85Rb 5 2P 3/2 and 6 2P 3/2 states
with their uncertainties.

Atom Excited state Frequency difference (MHz) References

87Rb

5 2P 3/2

α = 72.2180(40)
[153]β = 156.9470(70)

γ = 266.6500(90)

6 2P 3/2

α = 23.744(28)
[145]β = 51.445(25)

γ = 87.050(23)

85Rb

5 2P 3/2

α′ = 29.372(90)
[133, 143]β′ = 63.401(61)

γ′ = 120.640(68)

6 2P 3/2

α′ = 9.802(25)
[145]β′ = 20.850(24)

γ′ = 39.265(23)

In Table 4.8 for 85Rb α′ is the frequency difference between Fe = 2 and Fe = 1 excited
states, β′ is the frequency difference between Fe = 3 and Fe = 2 excited states and γ′ is the
frequency difference between Fe = 4 and Fe = 3 excited states.

On Figures 4.10 and 4.11 are depicted all 87Rb 5 2S1/2 → 5 2P 3/2 and 5 2S1/2 → 6 2P 3/2 π

transitions which cancel for a certain value of the magnetic-field. For both of these transitions
there are no cancellations for the same value of B-field, unlike n 2S1/2 → k 2P 1/2 transitions.

Figure 4.10: 87Rb D2 line π transfer coefficients which have a cancellation.
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The transitions which have a cancellation are depicted on Figures 4.10, 4.11, 4.13, 4.14,
4.16 and 4.17. Started from 4000 G transfer coefficients become very small and for 7000 G the
patterns of lines are very close to the asymptotic behavior.

Figure 4.11: 87Rb 5 2S1/2 → 6 2P 3/2 π transfer coefficients which have a cancellation.

In Tables 4.9 and 4.10 magnetic-field values which cancel 5 2S1/2 → 5 2P 3/2 and 5 2S1/2 →
6 2P 3/2 π transitions are given respectively. First column shows the numbering according to the
scheme depicted on Figure 4.9, second and third columns show ground and excited level total
atomic angular quantum number values respectively. Column 4 expresses magnetic quantum
number value for the ground state. Column 5 was calculated using all the uncertainties of
involved quantities. Column 6 expresses magnetic-field values without taking into account
excited states uncertainties (i.e. we assume, that α, β and γ have no uncertainties), and column
7 shows on which frequency differences between excited states the uncertainty of magnetic-field
value depends on according to Figure 4.9.

Table 4.9: Magnetic-field values canceling π transitions for 87Rb D2 line.

No. Fg Fe mg B (G) B∗ (G) ∆Ee

1 2 2 -1 55.6964(22) 55.69646550(39) β, γ
2 1 2 0 118.7058(51) 118.70586363(82) α, β, γ
3 2 1 0 77.5048(35) 77.50487199(54) α, β, γ
4 1 2 1 114.2418(50) 114.24183482(79) β, γ
5 2 1 1 77.2414(35) 77.24147013(54) β, γ

Table 4.10: Magnetic-field values canceling 87Rb 5 2S1/2 → 6 2P 3/2 π transitions.

No. Fg Fe mg B (G) B∗ (G) ∆Ee

1 2 2 -1 17.8789(60) 17.8789466978(55) β, γ
Continued on next page
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Table 4.10 – Continued from previous page
No. Fg Fe mg B (G) B∗ (G) ∆Ee

2 1 2 0 38.152(19) 38.152597093(12) α, β, γ
3 2 1 0 24.724(13) 24.7247536874(76) α, β, γ
4 1 2 1 36.224(15) 36.224262166(11) β, γ
5 2 1 1 24.289(11) 24.2896121953(75) β, γ

Below, on Figure 4.12 are shown all 5 2S1/2 → 5 2P 3/2 and 5 2S1/2 → 6 2P 3/2 σ
+ transitions,

which have a cancellation. There are only 8 transitions for each one, and one of them, No. 3,
is so-called forbidden. But due to the coupling of total atomic angular momenta (F ) this
transition becomes possible.
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Figure 4.12: 87Rb 5 2S1/2 → 5 2P 3/2 and 5 2S1/2 → 6 2P 3/2 scheme in a magnetic field with all
σ+ transitions which have a cancellation.

Figure 4.13 and Figure 4.14 demonstrate 87Rb 5 2S1/2 → 5 2P 3/2 and 5 2S1/2 → 6 2P 3/2 σ
+

transfer coefficients which cancel for a certain value of the magnetic-field. Transfer coefficients
are labeled accordingly with Figure 4.12.

Figure 4.13: 87Rb D2 line σ+ transfer coefficients which have a cancellation.
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Figure 4.14: 87Rb 5 2S1/2 → 6 2P 3/2 σ
+ transfer coefficients which have a cancellation.

Table 4.11 indicates magnetic-field values which cancel certain σ+ transitions 87Rb D2 line.
Table 4.12 indicates magnetic-field values canceling 87Rb 5 2S1/2 → 6 2P 3/2 σ

+ transitions.
Columns 5 (B) involve all the uncertainties of values used in the calculation. Columns 6
(B∗) show magnetic-field values without taking into account excited state uncertainties. In
columns 7 are written on which frequency differences between excited states the uncertainty of
magnetic-field value depends on according to Figure 4.12. Magnetic-field values, which cancel
the |Fg = 2,mg = 1⟩ → |Fe = 2,me = 2⟩ transitions [see No. 8 for each table], depend only on
γ, the frequency difference between Fe = 3 and Fe = 2 levels.

Table 4.11: Magnetic-field values canceling σ+ transitions for 87Rb D2 line.

No. Fg Fe mg B (G) B∗ (G) ∆Ee

1 2 1 -2 1792.8(1.2) 1792.854752(13) β, γ
2 1 0 -1 1595.84(93) 1595.846039(12) α, β, γ
3 2 0 -1 1762.3(1.7) 1762.305097(13) α, β, γ
4 2 1 -1 37.7187(20) 37.71876912(27) α, β, γ
5 2 2 -1 157.6244(63) 157.6244550(11) α, β, γ
6 2 1 0 35.0323(19) 35.03235682(25) β, γ
7 2 2 0 183.1469(71) 183.1469403(13) β, γ
8 2 2 1 211.1182(80) 211.1182479(15) γ

Table 4.12: Magnetic-field values canceling 87Rb 5 2S1/2 → 6 2P 3/2 σ
+ transitions.

No. Fg Fe mg B (G) B∗ (G) ∆Ee

1 2 1 -2 606(4) 606.26243494(19) β, γ
2 1 0 -1 528(8) 528.89107942(16) α, β, γ
3 2 0 -1 581(4) 581.79032289(18) α, β, γ
4 2 1 -1 12.1773(77) 12.1773749366(36) α, β, γ

Continued on next page
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Table 4.12 – Continued from previous page
No. Fg Fe mg B (G) B∗ (G) ∆Ee

5 2 2 -1 50.263(19) 50.263197219(15) α, β, γ
6 2 1 0 11.2105(63) 11.2105200388(35) β, γ
7 2 2 0 57.089(18) 57.089445775(18) β, γ
8 2 2 1 64.164(18) 64.164811472(20) γ

For transitions 8, we were able to exhibit the following analytical formula (among all these
transitions it is the only one where Hamiltonian matrices are of maximum 2× 2 dimension):

B = − 4ζγη

µB

(
η + 3(gI − gS)γ

) (
η − (gI − gS)γ

) , (4.50)

where we denoted η = 3(gI−gS)γ−(3gI−2gL−gS)ζ. While comparing with the formula (4.47)
obtained in the case of n 2S1/2 → k 2P 1/2 transitions, one can note a huge difference between
them. Obviously, Hamiltonian matrix for the ground state remains the same while for the
excited state the matrix becomes more complicated. One of the reasons is the reference of the
excited state’s zero-field energy. Different total electronic angular momentum quantum numbers
describing the excited state form = −2 value play a role which completely changes diagonal and
non-diagonal elements of the matrix. Also unperturbed transfer coefficients a(Fe,me;Fg,mg; q)

undergo a significant change as σ+ transition needs to be considered. We see, that the study of
n 2S1/2 → k 2P 3/2 transitions remains an interesting problem. The formula (4.50) provides a B-
value for the cancellation B = 211.1182479(15) G for the D2 line and B = 64.164811472(20) G
for the 5 2S1/2 → 6 2P 3/2 transition, showing the theory to be in perfect agreement with the
numerical simulation.

Figure 4.15 shows the only three cases of 87Rb 5 2S1/2 → 5 2P 3/2 and 5 2S1/2 → 6 2P 3/2 σ
−

transitions which cancel for a certain value of magnetic-field.

−3 −2 −1 0 1 2 3
Fe = 3

Fe = 2

Fe = 1

Fe = 0

Fg = 2

Fg = 1
1 2 3

Figure 4.15: 87Rb all 5 2S1/2 → 5 2P 3/2 and 5 2S1/2 → 6 2P 3/2 σ
− transitions scheme in a

magnetic field which have a cancellation.

All 87Rb 5 2S1/2 → 5 2P 3/2 and 5 2S1/2 → 6 2P 3/2 σ
− transition transfer coefficients, which
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have a cancellation are depicted on Figure 4.16 and Figure 4.17 respectively. Curves on the
figures are labeled in accordance with Figure 4.15.

Figure 4.16: 87Rb D2 line σ− transfer coefficients which have a cancellation.

Figure 4.17: 87Rb 5 2S1/2 → 6 2P 3/2 σ
− transfer coefficients which have a cancellation.

In Tables 4.13 and 4.14 87Rb all possible 5 2S1/2 → 5 2P 3/2 and 5 2S1/2 → 6 2P 3/2 σ
−

transition cancellations are expressed.

Table 4.13: Magnetic-field values canceling σ− transitions for 87Rb D2 line.

No. Fg Fe mg B (G) B∗ (G) ∆Ee

1 1 2 0 114.3072(50) 114.30723113(80) β, γ
2 1 1 1 140.8256(71) 140.82560775(98) α, β, γ
3 1 2 1 71.9264(47) 71.92641933(50) α, β, γ
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Table 4.14: Magnetic-field values canceling 87Rb 5 2S1/2 → 6 2P 3/2 σ
− transitions.

No. Fg Fe mg B (G) B∗ (G) ∆Ee

1 1 2 0 36.226(15) 36.226299830(11) β, γ
2 1 1 1 44.053(32) 44.053383584(14) α, β, γ
3 1 2 1 22.932(18) 22.9322893243(71) α, β, γ

4.5.2 Analysis of the 85Rb transitions
Hereafter we will examine 85Rb 5 2S1/2 → 5 2P 3/2 and 5 2S1/2 → 6 2P 3/2 π, σ+ and σ−

transfer coefficients within magnetic field. We will consider only transitions which have a
cancellation. 85Rb is a much more complicated system than 87Rb, with large total atomic
angular momentum (F ). The structure scheme of 85Rb 5 2S1/2 → 5 2P 3/2 and 5 2S1/2 →
6 2P 3/2 transitions is depicted on Figure. 4.18.

5 2P 3/2

6 2P 3/2

5 2S1/2

−4 −3 −2 −1 0 1 2 3 4
Fe = 4

Fe = 3

Fe = 2

Fe = 1

Fg = 3

Fg = 2

ζ ′

α′

β′

γ′

Figure 4.18: 85Rb 5 2S1/2 → 5 2P 3/2 and 5 2S1/2 → 6 2P 3/2 transitions structure scheme in a
magnetic field.

We will not show any scheme or transfer coefficients concerning π, σ+ or σ− transitions,
because distinguishing one line from another would be very hard. We will only give tables
where magnetic-field values which cancel certain transitions are indicated. As one can notice,
for 85Rb 5 2P 3/2 and 6 2P 3/2 excited states, the frequency differences are smaller than in the
case of 87Rb. For some cases we obtain analytical formulas similar to (4.47) and (4.50), where
the value of B-field canceling transitions mostly depends on excited and ground state frequency
differences (i.e. α′, β′, γ′ and ζ ′). Because of that the values of B-field which cancel certain
transitions are generally smaller than the B-field values obtained in the case of 87Rb.

Tables 4.15 and 4.16 include all magnetic-field values which cancel certain π transitions.
Attentive readers may notice that some values of magnetic-field that cancel certain transitions
are quite, comparatively, high (> 5686 G). And accordingly, the uncertainties of these values
are big too. There are no such results for 87Rb 5 2S1/2 → 5 2P 3/2 and 5 2S1/2 → 6 2P 3/2

transitions.
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Table 4.15: B-field values canceling 85Rb D2 line π transitions.

Fg Fe mg B (G) B∗ (G) ∆Ee

3 3 -2 31.977(23) 31.97774839(22) β′, γ′
2 2 -1 6.565(17) 6.565192522(44) α′, β′, γ′
2 3 -1 48.463(58) 48.46368819(33) α′, β′, γ′
2 4 -1 5686(29) 5686.364269(49) α′, β′, γ′
3 2 -1 35.228(43) 35.22828802(24) α′, β′, γ′
3 3 -1 12.811(11) 12.811030753(85) α′, β′, γ′
2 3 0 47.491(54) 47.49141288(32) α′, β′, γ′
2 4 0 6013(29) 6012.951766(52) α′, β′, γ′
3 2 0 35.218(43) 35.21852774(24) α′, β′, γ′
2 3 1 46.336(49) 46.33622671(31) α′, β′, γ′
2 4 1 6345(29) 6345.448972(54) α′, β′, γ′
3 2 1 34.945(40) 34.94502121(24) α′, β′, γ′
2 3 2 45.099(42) 45.09972813(31) β′, γ′
2 4 2 6681(30) 6681.226747(57) β′, γ′
3 2 2 34.689(33) 34.68962622(24) β′, γ′

Table 4.16: Magnetic-field values canceling 85Rb 5 2S1/2 → 6 2P 3/2 π transitions.

Fg Fe mg B (G) B∗ (G) ∆Ee

3 3 -2 10.3069(82) 10.3069257317(79) β′, γ′
2 2 -1 2.1781(46) 2.1781258679(16) α′, β′, γ′
2 3 -1 15.733(18) 15.733434029(12) α′, β′, γ′
2 4 -1 6017(27) 6017.225484(16) α′, β′, γ′
3 2 -1 11.353(14) 11.3538322950(87) α′, β′, γ′
3 3 -1 4.1561(37) 4.1561596068(32) α′, β′, γ′
2 3 0 15.296(17) 15.296627412(12) α′, β′, γ′
2 4 0 6367(30) 6367.765683(17) α′, β′, γ′
3 2 0 11.268(14) 11.2682145868(88) α′, β′, γ′
2 3 1 14.769(16) 14.796304738(12) α′, β′, γ′
2 4 1 6726(33) 6726.356956(18) α′, β′, γ′
3 2 1 11.089(13) 11.08932124359(87) α′, β′, γ′
2 3 2 14.269(15) 14.269650745(11) β′, γ′
2 4 2 7090(36) 7090.515803(19) β′, γ′
3 2 2 10.909(12) 10.9098105059(87) β′, γ′

Tables 4.17 and 4.18 include all magnetic-field values up to 10000 G which cancel certain
85Rb 5 2S1/2 → 5 2P 3/2 and 5 2S1/2 → 6 2P 3/2 σ

+ transitions.
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Table 4.17: B-field values canceling 85Rb D2 line σ+ transitions.

Fg Fe mg B (G) B∗ (G) ∆Ee

3 2 -3 278.3(1.4) 278.3151250(19) β′, γ′
2 1 -2 180.9(1.5) 180.9519212(13) α′, β′, γ′
3 1 -2 254.1(1.3) 254.1070281(17) α′, β′, γ′
3 2 -2 16.798(26) 16.79814373(12) α′, β′, γ′
3 3 -2 62.626(59) 62.62663916(42) α′, β′, γ′
2 1 -1 156.9(1.6) 156.9842182(11) α′, β′, γ′
3 1 -1 231.6(1.3) 231.6749004(16) α′, β′, γ′
3 2 -1 15.983(23) 15.98380527(11) α′, β′, γ′
3 3 -1 72.575(61) 72.57573219(49) α′, β′, γ′
2 1 0 137.2(1.6) 137.21112478(91) α′, β′, γ′
3 1 0 211.1(1.3) 211.1105805(15) α′, β′, γ′
3 2 0 15.337(20) 15.33734519(11) α′, β′, γ′
3 3 0 83.643(63) 83.64378929(57) α′, β′, γ′
3 2 1 14.808(18) 14.80813301(10) β′, γ′
3 3 1 96.085(66) 96.08519850(66) β′, γ′
3 3 2 110.162(71) 110.16208826(76) γ′

Table 4.18: B-field values canceling 85Rb 5 2S1/2 → 6 2P 3/2 σ
+ transitions.

Fg Fe mg B (G) B∗ (G) ∆Ee

3 2 -3 93.67(48) 93.677445672(70) β′, γ′
2 1 -2 59.84(46) 59.841534398(47) α′, β′, γ′
3 1 -2 84.76(46) 84.761785943(65) α′, β′, γ′
3 2 -2 5.4915(84) 5.4915494036(42) α′, β′, γ′
3 3 -2 20.189(19) 20.189735198(15) α′, β′, γ′
2 1 -1 52.69(48) 52.687400374(41) α′, β′, γ′
3 1 -1 76.78(44) 76.787359782(59) α′, β′, γ′
3 2 -1 5.1947(76) 5.1947367200(40) α′, β′, γ′
3 3 -1 23.036(20) 23.036018017(18) α′, β′, γ′
2 1 0 46.62(48) 46.624063888(36) α′, β′, γ′
3 1 0 69.65(42) 69.651160862(54) α′, β′, γ′
3 2 0 4.9572(70) 4.9572750343(38) α′, β′, γ′
3 3 0 26.064(20) 26.064610199(21) α′, β′, γ′
3 2 1 4.7610(65) 4.7610264016(37) β′, γ′
3 3 1 29.313(20) 29.313263093(24) β′, γ′
3 3 2 32.813(20) 32.813410682(27) γ′

In order to reduce uncertainties of the involved parameters, the first step is to try to mea-
sure more precisely the values of magnetic-field which cancel these transitions. The second
step includes in itself the measurement of magnetic-field values for those transitions which un-
certainties depends on only one frequency difference (e.g. last line of Tables 4.17 and 4.18).
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Consequently, by measuring different magnetic-field values which cancel certain transitions, it
is possible to decrease the uncertainties of excited state frequency differences. It is important to
note, that the values written on last lines of the tables cancel |Fg = 3,m = 2⟩ → |Fe = 3,m = 3⟩
transition and its uncertainty depends only on excited state Fe = 3 and Fe = 4 frequency dif-
ference (γ′) [see Figure 4.18].

Tables 4.19 and 4.20 include all the magnetic-field values that cancel certain 85Rb 5 2S1/2 →
5 2P 3/2 and 5 2S1/2 → 6 2P 3/2 σ

− transitions.

Table 4.19: B-field values canceling 85Rb D2 line σ− transitions.

Fg Fe mg B (G) B∗ (G) ∆Ee

2 3 -1 46.630(40) 46.63046914(32) β′, γ′
2 4 -1 4718(20) 4718.168407(41) β′, γ′
2 2 0 50.440(68) 50.44005212(34) α′, β′, γ′

2 3 0 32.361(41) 32.36112827(22)
α′, β′, γ′4354(19) 4354.588882(38)

2 2 1 51.930(93) 51.93093445(35) α′, β′, γ′

2 3 1 29.726(51) 29.72652541(20)
α′, β′, γ′4005(19) 4004.977769(35)

2 2 2 52.27(12) 52.27464320(36) α′, β′, γ′

2 3 2 27.764(58) 27.76483242(19)
α′, β′, γ′3669(21) 3669.632908(32)

Table 4.20: B-field values canceling 85Rb 5 2S1/2 → 6 2P 3/2 σ
− transitions.

Fg Fe mg B (G) B∗ (G) ∆Ee

2 3 -1 14.939(14) 14.939707247(12) β′, γ′
2 4 -1 5028(24) 5028.533960(13) β′, γ′
2 2 0 16.100(22) 16.100382502(13) α′, β′, γ′

2 3 0 10.383(14) 10.3833071342(80)
α′, β′, γ′4661(22) 4661.474736(12)

2 2 1 16.511(27) 16.511161122(13) α′, β′, γ′

2 3 1 9.459(16) 9.45921227700(74)
α′, β′, γ′4308(19) 4308.0783929(12)

2 2 2 16.582(32) 16.582004270(14) α′, β′, γ′

2 3 2 8.769(18) 8.7690392145(69)
α′, β′, γ′3968(20) 3968.442808(10)

One can notice that in both tables rows 4, 6 and 8 have two magnetic-field values canceling
one transition. Determination of an explicit formula giving these magnetic-field values, if
possible, could help to understand why these transitions are canceled twice.
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4.6 Experimental feasibility analysis
Calculations for the cancellation of transitions in a magnetic field in the framework of the
proposed model were carried out based on physical constants and the values of the basic quan-
tities characterizing the atomic system under consideration, available from the literature [see
Tables 4.1 and 4.8]. In the case of a proper experimental implementation, an accurate mea-
surement of the magnetic field corresponding to the canceling of the optical transition will
make it possible to determine exact values of the physical parameters, in particular excited
state frequency differences ε in the case of n 2S1/2 → k 2P 1/2 transitions and α, β and γ in
the case of n 2S1/2 → k 2P 3/2 transitions, the only physical constants determined so far with
least precision. Carefully elaborated experimental configuration and extremely high accuracy
in measuring the applied magnetic field are required to achieve this goal, which makes the task
ambitious. Let us briefly analyze the requirements to experimental setup and its character-
istics needed to attain transition cancellation, which can be used, in particular, for accurate
calibration of magnetometers and refinement of the values of physical constants involved in the
processes under study.

First, in thermal atomic vapor, the hyperfine transitions, and especially, transitions between
the magnetic sublevels of hyperfine states are Doppler-broadened and overlapped. To work with
a chosen individual transition, it has to be frequency-separated from the neighboring ones. This
can be done with the use of high-resolution spectroscopic techniques providing sub-Doppler or
Doppler-free frequency resolution, in particular, monokinetic atomic beam [154,155] or nanocell
[105, 110] spectroscopy. Moreover, the tuning range of a single-frequency cw laser should be
sufficiently large to follow the frequency shift of the chosen transition in a B-field. These
requirements are easy to fulfill with the use of non-expensive diode lasers and Rb vapor nanocells
with ≈ λ/2 thickness in SR configuration providing ≈ 40 MHz linewidth [109], or in the
fluorescence configuration providing ≈ 60 MHz linewidth [93, 156]. These widths are sufficient
for the complete separation of individual transitions, and hence the study of the cancellation, for
magnetic fields above ≈ 100 G. Noteworthy, both of these techniques provide a linear response
of the atomic medium [109, 156], unlike the widely used sub-Doppler technique of saturated
absorption spectroscopy. The use of nanocells is advantageous also for a guaranteed uniformity
of the applied magnetic field thanks to extremely small size of the interaction region [112,157].

Another important point is detection sensitivity. The precision of transition cancellation
is physically limited by a noise level. Here the figure of merit is a signal-to-noise ratio (SNR).
The level of typical SR signal varies within ≈ 5 % from the incident light signal. In contrast,
the fluorescence signal has a zero off-resonance background. Conventional signal acquisition
and processing techniques allow reliable detection of signal with SNR up to 10000. For par-
ticular cases of SR and fluorescence measurements, the estimate for the magnitude of canceled
transition is ∼ 0.1 % of the initial value.

Furthermore, the signal magnitude can be affected by the accuracy of setting and main-
taining a given thickness of the nanocell in the interaction region. This problem is easily
solved by controlling the radiation beam diameter and precise positioning of the beam with
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micro-controlled translation stage.
The main limitation are expected to come from the precision of application and measurement

of B-field values. We should clearly distinguish two aspects: i) the accuracy of magnitude
and direction of the applied B-field needed to cancel the transition, and ii) the precision of
measurement of this field. We believe the most appropriate solution combining magnetic field
control with its measurement may be the use of optical compensation magnetometry [13,158].
The essence of the method is as follows. The interaction region, i.e. the vapor nanocell,
is mounted into a system of calibrated Helmholtz coils (three mutually perpendicular pairs).
Coil currents are scanned according to a special algorithm controlled by the studied transition
signal. Using the method of successive approximations, a magnetic-field value corresponding
to the minimum of the atomic signal is achieved, and from the corresponding current values of
coil currents a canceling field value is determined. With the use of this method, control and
measurement of a B-field with ≈ 1 mG accuracy is experimentally feasible.

Last but not least, in the course of the measurements the laser radiation frequency should
be stabilized on the transition under study. This can be done by implementing a feedback-
based tunable locking of radiation frequency to an atomic resonance providing ∼ 2 MHz accu-
racy [113], realized on an auxiliary setup with the second nanocell.

The above analysis shows that the expected realistic accuracy of the application and mea-
surement of the B-field in the experiment is still far from the precision of the calculated values
given in the tables of Sections 4.4 and 4.5. However, it should be noted that it is possible to
decrease the uncertainties of excited state frequency differences by measuring the cancellation
B-field values for different transitions, for which the uncertainties depend on one frequency
difference (e.g. last line of Tables 4.17 and 4.18).

Another possibility is the indirect measurement of the B-field values canceling transitions,
which in the case of n 2S1/2 → k 2P 1/2 transitions is possible. As for small peaks the signal-
to-noise ratio is smaller than for higher peaks, it is profitable to measure peaks with bigger
intensity. Thus the option is to measure those transitions which are maximizing for a B-field
value. If we can measure precisely the magnetic-field magnitude for which the transition in-
tensity is maximum, it will mean that pair-transition cancellation value is found. Obviously,
the graph of the derivative of the intensity with respect to the magnetic field should be calcu-
lated in the neighborhood of the maximum value, despite the fact that the change of transition
intensity can be very smooth, as the change of sign of the slope of the derivative will give
precisely the value for which it crosses the B-axis, thus will give the B-field value for which the
pair-transitions reach their minimum.

Besides a more accurate determination of physical quantities, the obtained results can be
used for practical applications, in particular, for magnetometry and optical information. Con-
tinuous detection of an atomic signal while moving the nanocell across highly non-uniform
magnetic field will allow a high-contrast optical mapping of a B-field. On the other hand, mod-
ulation of the magnetic field around the transition cancellation point will allow to modulate
the amplitude of the optical atomic signal that carries optical information.

As a final remark, let us note that not all the B-field values canceling transitions can be of
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interest for particular practical tasks. There is yet another figure of merit that is the rate of
variation of transition probability with the B-field around the cancellation value. The higher
this rate, the more accurately one can determine the canceling B-field value.

4.7 Conclusion
Summarizing, we have developed a precise model to calculate intensities of all the optical tran-
sitions between magnetic sublevels of hyperfine levels, excited with π, σ+ and σ− polarized
light, for n 2S1/2 → k 2P 1/2, 3/2 transitions of alkali-metal atoms. We determined a unique
formula for n 2S1/2 → k 2P 1/2 transitions, expressing magnetic-field values for which some π
transition intensities become zero and the intensity of some others become maximum simultane-
ously. n 2S1/2 → k 2P 1/2 transitions do not cancel for σ+ and σ− polarization. Our analytical
and numerical calculations have revealed complete canceling of some individual transitions at
precisely determined values of the B-field that can serve for very sensitive magnetometers cali-
bration. Some standards should exist and these values are good standards for atomic systems:
they do not depend on any external condition or parameter.

We have calculated all the transition-canceling B values using two different methods. In the
first method, all the parameters are kept with their uncertainties. The obtained magnetic-field
values are given in tables, and obviously the precision is strongly affected by the uncertainty
of the excited state frequency differences. In the second method, the excited state frequency
differences were used without their uncertainties, while other parameters were used with their
uncertainties (Tables 4.2, 4.3, 4.7, 4.9, 4.10, 4.11, 4.12, 4.13 and 4.14 column 6, 4.4 and 4.6
column 7, and 4.15, 4.16, 4.17, 4.18, 4.19 and 4.20 column 5). These columns clearly indicate
that the uncertainties on the B-field values arise mainly from the excited state frequency
differences.

We believe the appropriate experimental realization will allow reducing the uncertainties of
some physical parameters, in particular the values of frequency difference between the upper
states that are currently determined with a least accuracy. In addition, we have outlined other
applications, notably in optical magnetometry and optical information, where the obtained
results can be used.

The results obtained in this chapter are published in references [33], [34] and [36].
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Conclusion and Outlook

To conclude, the main results of this thesis, expressing the relevance of the subject, scientific
novelty and practical importance, could be formulated in the following way.

In the second chapter we theoretically demonstrate the possibility of atomic population
transfer in a M-type system interacting with four Gaussian pulses, using non-stationary nu-
merical solutions of time-dependent quantum Liouville equation. It is shown that the transition
frequency scanning technique allows us to completely transfer the population very efficiently,
without precisely knowing the resonant frequency of the given transition. Then very simple
implementation of reversible atomic Toffoli and Fredkin gates are demonstrated by using near-
resonant pulsed laser fields of Gaussian shape. Due to the fact that these gates are universal,
the obtained results could serve as a basis for logic circuits construction based on alkali-metal
vapors. The choice of such a system is due to the fact that it allows us to make a three-bit de-
vices and gates. On the other hand, M-type system could be implemented using the electronic
terms or magnetic sublevels of the alkali atom.

In the third chapter we provide a simple experiment to record the fluorescence spectra of
rubidium atomic vapor D2 line in a transient regime. In addition, we developed a theoretical
model, which describes all the processes in the atomic vapor cell, and the results of the nu-
merical simulation are in very good agreement with the experimental results. The experiment
and fitting with the theory allow us to determine important parameters, such as the relaxation
rate of the ground energy levels to the equilibrium isotropic state. Except of it we are able to
determine the diffusion coefficient of the buffered alkali atom vapor cell and the corresponding
collisional cross section. Based on this and upcoming research we hope to be able to deter-
mine appropriate temporal conditions for efficient heralded control of atomic population in a
multilevel system, by implementing a frequency-modulated cw laser as an effective source of
controllable pulsed radiation.

In the fourth chapter we consider optical n 2S1/2 → k 2P 1/2 transition cancellations between
magnetic sublevels analytically. We obtained a unique formula expressing magnetic-field values
canceling these transitions. In addition, we analyzed all stable and long-lived alkali-metal
isotopes. For more complicated cases, i.e. 5 2S1/2 → 5 2P 3/2 and 5 2S1/2 → 6 2P 3/2 transitions
of 85Rb and 87Rb isotopes, we obtained these values by numerical simulation. Analytical formula
could be used to decrease uncertainty of the physical quantities involved in the calculations,
such as energy difference between excited states, Bohr magneton, Landé factors. Vice versa,
if these quantities will be known more precisely, the magnetic field values could be improved.
Another point is that these values can serve as a good tool to calibrate precisely wide-range
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magnetometers (from 5 G up to 7000 G). To provide the experiment, that is to be able to
measure precisely magnetic field values canceling transitions we need to use high-resolution
spectroscopic techniques providing sub-Doppler or Doppler-free frequency resolution, of course
the perfectly adequate ingredient for carrying out the experiments is the nanocell.
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Atomic Transitions and Population Control by Laser Frequency Scanning Speed
and Magnetic Field

Abstract
In this thesis the influence of laser radiation and external uniform magnetic field on alkali-metal
atomic vapor is studied. We focused on three topics. In the first part, we examined atomic
population control in an M-type system to demonstrate that such systems can serve as universal
three-bit logical devices. The second part concerns an experiment of atomic spectroscopy.
From the fluorescence spectra recorded for stationary, transient and non-stationary interaction
regimes, we were able to extract important parameter values which are the relaxation rate of the
lower energy levels to the equilibrium isotropic state, the diffusion coefficient in a buffered vapor
cell, and the corresponding collisional cross section. In addition, optimal temporal conditions
are obtained to provide efficient control of the atomic population. In the last chapter, an
interesting application of a magnetic field interacting with alkali-metal atoms is presented.
Theoretically and numerically, the transitions between magnetic sublevels of alkaline atoms
in the Zeeman and Paschen-Back regimes are examined. We obtained magnetic-field values
canceling transitions which only depend on the fundamental physical and atomic constants.
These values in the case of an appropriate experimental determination can serve as standards
of magnetometry.
Keywords: alkali vapor; spectroscopy; atomic gate; fluorescence; magnetometry

Transitions Atomiques et Contrôle de la Population par Fréquence de Balayage
Laser et Champ Magnétique

Résumé
Dans cette thèse, l’influence du rayonnement laser et du champ magnétique externe uniforme
sur la vapeur atomique de métal alcalin est étudiée. Nous nous sommes concentrés sur trois
sujets. Dans la première partie, nous avons examiné le contrôle de la population atomique
dans un système de type M pour démontrer que de tels systèmes peuvent servir de dispositifs
logiques universels à trois bits. La deuxième partie concerne une expérience de spectroscopie
atomique. A partir des spectres de fluorescence enregistrés pour les régimes d’interaction sta-
tionnaires, transitoires et non stationnaires, nous avons pu extraire des valeurs de paramètres
importantes qui sont le taux de relaxation des niveaux d’énergie inférieurs à l’état isotrope
d’équilibre, le coefficient de diffusion dans une cellule avec gaz tampon, et la section efficace
de collision correspondante. De plus, des conditions temporelles optimales sont obtenues pour
fournir un contrôle efficace de la population atomique. Dans le dernier chapitre, une appli-
cation intéressante d’un champ magnétique interagissant avec des atomes de métaux alcalins
est présentée. Théoriquement et numériquement, les transitions entre les sous-niveaux mag-
nétiques des atomes alcalins dans les régimes Zeeman et Paschen-Back sont examinées. Nous
avons obtenu des valeurs de champ magnétique annulant les transitions qui ne dépendent que
des constantes physiques et atomiques fondamentales. Ces valeurs dans le cas d’une détermi-
nation expérimentale appropriée peuvent servir d’étalons de magnétométrie.
Mots clefs : vapeurs alcalines ; spectroscopie ; porte atomique ; fluorescence ; magnétométrie
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