

THESE DE DOCTORAT EN COTUTELLE ENTRE L’UNIVERSITE BOURGOGNE

FRANCHE-COMTE ET l’UNIVERSITE DE LA MANOUBA

École doctorale n°37

Présentée par

Maissa DAMMAK

Pour obtenir le

Grade de Docteur de l’Université de Bourgogne

Spécialité: Informatique

Authentication and Authorization Security Solutions for the Internet of

Things

Thèse présentée et soutenue à l’ISAT, le 17 Juillet 2021 devant le Jury composé de :

Pascal URIEN Président de jury Professeur, Telecom-paris, France

Sidi-Mohammed SENOUCI Directeur de thèse Professeur, Université de Bourgogne, France

Leila SAIDANE Co-Directeur de thèse Professeur, Université de la Manouba, Tunis

Christophe GRANSART Co-encadrant Charge de Recherche, IFSTTAR, France

Mohamed Houcine ELHDHILI Co-encadrant
Maitre Assistant, Université de la Manouba,

Tunis

Hakima CHAOUCHI Rapporteur
Professeur, Institut Telecom, Telecom Sud

Paris, France

Abdelmadjid BOUABDALLAH Rapporteur
Professeur, Université de Technologie de

Campiègne, France

Yacine GHAMRI-DOUDANE Examinateur
Professeur, Université de La Rochelle,

France

Isabelle CHRISMENT
Examinateur

Professeur, Telecom Nancy, France

Laboratoire DRIVE - EA 1859 -
Département de Recherche en Ingénierie

des Véhicules pour l'Environnement (Equipe d'Accueil)

i

ii

“No research is ever quite complete. It is the glory of a good bit

of work that it opens the way for something still better, and

this repeatedly leads to its own eclipse.”

-Mervin Gordon-

iii

Acknowledgment
A successful project big or small is always achieved due to the effort of a group of helpful

people who have always given their valuable advice or lend a helping hand. I have the honor

and the pleasure to express my gratitude and appreciation to all those who have guided, assisted

and supervised me during the development of this thesis.

I would like to express my sincere gratitude to my thesis supervisor Professor Sidi-Mohammed

SENOUCI for his continuous support, and guidance throughout the realization of this thesis

and beyond. His availability, constant encouragement, and his patience made for a great

working relationship and the motivation for me to finish. Big thanks once again to him for

giving me the chance to do this PhD and offering me the best conditions and opportunities to

succeed this work and making it as it is today. Thank you Sidi!

I would also like to thank all the jury members, Abdelmadjid BOUABDALLAH, Hakima

CHAOUCHI, Yacine GHAMRI-DOUDANE, Isabelle CHRISMENT, and Pascal URIEN, for

their participation in my PhD defense.

I am grateful to my joint supervisor, Professor Leila SAIDANE for her advice and guidance. I

greatly appreciate her valuable support and cheerful encouragement. Without her praise,

endorsement and valuable help, I would have never gotten the chance to undertake this thesis.

I will be forever grateful to my co-supervisor Christophe GRANSART for his advice, guidance,

and deep insights that helped me at various stages of my research. I really appreciate his useful

suggestions so that I could improve my research and writing skills.

I would like to extend my thanks to Mohamed Houcine ELHDHILI who co-supervised this

work. His valuable suggestions and expertise throughout this thesis definitely help improving

the quality and presentation of this work. I appreciate his patience during all those long meetings

that we had together in order to come up with answers and provide solutions for each problem.

I gratefully acknowledge the funding sources that made my Ph.D. work possible. This work is

achieved as part of the European project ITEA PARFAIT, which is partially funded by FEDER

(European Regional Development Fund), BPIFRANCE, the BFC region (Bourgogne-Franche

Comté), and l’Agglomération de Nevers.

My heartfelt thanks go to my family for always believing in me. I thank my mother for her

blessing and tireless support all the way through my adult life, I would have not be what I am

today. A special thank goes to my great role model of resilience, and strength, my father who

sacrifices his life for me keeping encouraging and motivating me. I feel so blessed and thankful

to have such devoted parents who always expressed how proud they are of me. I shall always

be in their debt, without them, I would have achieved nothing. I would never forgot to thank

my sister for her caring, her help and support throughout my struggle and for being there for

me in good and bad times. I am also thankful for my little brother who is the light and joy of

my life for his joyful humor, which gave me the strength and made this arduous journey easier.

My deepest thanks to all my friends who were by my side and made this hard adventure easier,

for me, especially Amel, Awatef, Wided, Mariem, Aicha and Rahma who have always been

iv

there despite the thousands of kilometers that separate us. Special thanks goes for my friend

Amina who has stood by me especially during writing the manuscript and with the vicissitudes

moments of the pandemic that helped me a lot to reach my goal.

v

Contents

Introduction .. 1

1.1. Context and Motivation ... 1

1.2. Opportunities and Challenges ... 2

1.3. Dissertation Scope and Methodology .. 3

1.4. Thesis Structure and Contributions Overview ... 5

Authentication and Access Control in IoT Environment... 9

2.1 Introduction ... 9

2.2 Internet of Things (IoT) .. 10

2.2.1 IoT Architecture ... 11

2.2.1.1 Perception Layer ... 11

2.2.1.2 Network Layer ... 12

2.2.1.3 Service Management Layer ... 13

2.2.1.4 Application & Business layers ... 13

2.2.2 IoT Applications ... 13

2.2.2.1 Smart Home ... 14

2.2.2.2 Smart Grid ... 14

2.2.2.3 Transportation Systems ... 14

2.2.2.4 Healthcare .. 15

2.2.2.5 Smart Cities ... 15

2.2.2.6 Manufacturing and Industrial IoT .. 15

2.2.3 IoT Challenges .. 15

2.3 Security in the Internet of Things .. 18

2.3.1 IoT Security Challenges and Security High Requirements 21

2.3.2 Authentication in IoT .. 25

2.3.2.1 Centralized IoT Authentication Architecture .. 26

2.3.2.2 Distributed IoT Authentication Architecture .. 30

2.3.2.2.1 Distributed Trusted Authentication IoT Infrastructure 30

2.3.2.2.2 Distributed Authentication Architecture Based on Blockchain 31

2.3.2.2.2.1 Blockchain Overview... 31

2.3.2.2.2.2 Authentication in IoT based on Blockchain .. 32

2.3.3 Access Control in IoT .. 34

2.3.3.1 Traditional Access Control Solutions .. 34

2.3.3.2 Group Key Management Solutions in IoT .. 36

vi

2.4 Summary & Discussion... 40

2.5 Conclusion ... 41

Token-based Lightweight Authentication for IoT environment .. 42

3.1. Introduction ... 42

3.2. Related Works .. 43

3.3. Background .. 46

3.3.1. One-way Hash Function ... 46

3.3.2. Symmetric Key Cryptography ... 47

3.4. System Model and Security Requirements .. 47

3.4.1. System Model .. 48

3.4.2. Security and Threat Model .. 49

3.5. Proposed Token Based Lightweight Authentication for IoT Environment (TBLUA)

 49

3.5.1. Offline Smart Device and GW Registration phase .. 50

3.5.2. User Registration Phase .. 51

3.5.3. Token Distribution Between GW and Smart Device Phase 52

3.5.4. Login, Authentication, and Key Agreement Phase .. 54

3.5.5. Password Change Phase ... 57

3.6. Security Evaluation... 59

3.6.1. Security Analysis ... 59

3.6.2. Formal Verification Using AVISPA Tool .. 62

3.7. Performance Analysis ... 64

3.7.1. Functionality Comparison ... 64

3.7.2. Computation Costs Comparison ... 65

3.7.3. Communication Costs Comparison .. 66

3.8. Proof of Concept Within Smart Hotel Use Case .. 67

3.8.1. Smart Hotel Use Case ... 67

3.8.2. Risk Management and Vulnerability .. 69

3.8.3. Design of a Smart Lock Prototype ... 70

3.9. Conclusion ... 74

DGKM-AC: Decentralized Group Key Management for Access Control in IoT .. 76

4.1. Introduction ... 76

4.2. Related Works .. 77

4.3. Background .. 81

4.3.1. Group Key Management (GKM)... 81

4.3.2. Master Key Encryption (MKE) ... 81

vii

4.3.3. Logical Key Hierarchy (LKH) .. 82

4.3.4. One-Time Pad (OTP) key .. 83

4.4. DLGKM-AC General Overview .. 83

4.4.1. System Architecture ... 83

4.4.2. Threat Model .. 85

4.4.3. System Requirements ... 85

4.5. DLGKM-AC Detailed Description ... 86

4.5.1. Overview .. 86

4.5.2. Initialization of the System ... 87

4.5.3. Registration Phase .. 89

4.5.3.1. Device Groups Registration .. 89

4.5.3.2. User Groups Registration .. 90

4.5.4. Key Update Scenarios ... 92

4.5.4.1. User joins/leaves Events Scenarios .. 92

4.5.4.2. IoT Devices Joins/Leaves Events .. 96

4.6. Security Analysis ... 100

4.6.1. Forward Secrecy .. 101

4.6.2. Backward Secrecy ... 102

4.6.3. Collusion Attack Analysis Using Random Oracle Model 103

4.7. Performance Analysis and Evaluation .. 104

4.7.1. Performance Analysis ... 104

4.7.1.1. Storage Overhead .. 104

4.7.1.2. Computation Overhead .. 105

4.7.1.3. Communication Overhead ... 105

4.7.2. Performance Evaluation ... 106

4.7.2.1. Storage Costs ... 106

4.7.2.2. Computation Cost ... 108

4.7.2.2.1. When a User Leaves a Group .. 109

4.7.2.2.2. When a User Joins a Group ... 111

4.7.2.2.3. When an IoT Device Joins a Group .. 114

4.7.2.2.4. When an IoT Device Leaves a Group ... 114

4.7.2.3. Communication Cost .. 115

4.8. Conclusion ... 116

DiGABlock: Distributed Group Authentication based on Blockchain Technology 117

5.1. Introduction ... 117

5.2. Related Works .. 119

viii

5.3. Background .. 121

5.3.1. Elliptic Curve Cryptography (ECC) .. 121

5.3.2. Review on Shamir’s Secret Sharing Scheme .. 122

5.3.3. Blockchain - Practical Byzantine Fault Tolerance Consensus Algorithm (PBFT)

 123

5.4. System Model .. 124

5.4.1. System Architecture ... 124

5.4.2. Adaptation to the Smart Hotel Scenario ... 125

5.4.3. Threat Model .. 126

5.4.4. Security Goals ... 127

5.5. DiGABlock Description ... 127

5.5.1. Setting up the Blockchain Network ... 129

5.5.2. Initialization Phase ... 129

5.5.3. User Registration Phase .. 130

5.5.4. Distributed Group Authentication Phase ... 134

5.5.5. Consensus Phase ... 138

5.5.6. Service Delivery Phase ... 141

5.6. Security Evaluation... 142

5.6.1. Correctness Proof ... 142

5.6.2. Security Analysis ... 144

5.6.2.1. Forgery Attack .. 144

5.6.2.2. Denial of Service Attack: ... 144

5.6.2.3. Man-in-The-Middle Attack ... 145

5.6.2.4. Replay Attack .. 145

5.6.2.5. User Impersonation Attack ... 145

5.6.2.6. Perfect Forward and Backward Secrecy .. 145

5.7. Performance Analysis and Evaluation .. 146

5.7.1. Experimental Settings .. 146

5.7.2. Computation Costs ... 147

5.7.2.1. User Overhead ... 147

5.7.2.2. System Response Time... 148

5.7.3. Energy Consumption .. 149

5.7.4. Communication Costs .. 150

5.7.5. Improvement Rate of Communication Costs .. 152

5.8. Conclusion ... 153

Conclusion ... 154

ix

6.1 Summary of the Contributions .. 154

6.2 Future Research Directions ... 156

Bibliography ... 158

Appendix ... 167

x

List of Figures
Figure.1. 1: Dissertation outline diagram .. 8

Figure.2. 1: Internet of Things ... 11

Figure.2. 2: IoT 5-layers architecture [11] .. 12

Figure.2. 3: IoT main applications .. 14

Figure.2. 4: Taxonomy of IoT authentication schemes ... 25

Figure.2. 5: Group Key Management Taxonomy ... 37

Figure.3. 1: Symmetric key cryptography ... 47

Figure.3. 2: Proposed Network model ... 48

Figure.3. 3: Security model ... 49

Figure.3. 4: User registration phase ... 52

Figure.3. 5: Token distribution phase .. 54

Figure.3. 6: Login, authentication and key agreement phase .. 58

Figure.3. 7: Results reported by the OFMC backend .. 63

Figure.3. 8: Computation costs.. 66

Figure.3. 9: Communication costs ... 67

Figure.3. 10: Smart Hotel architecture .. 68

Figure.3. 11: Smart Hotel prototype .. 71

Figure.3. 12 : Reservation phase ... 71

Figure.3. 13: Token generation ... 72

Figure.3. 14: Authorized access .. 73

Figure.3. 15: Unauthorized access .. 73

Figure.3. 16: (a) Successful access and (b) Unsuccessful access .. 74

Figure.4. 1: The logical key hierarchy tree structure ... 82

Figure.4. 2: Proposed system model ... 84

Figure.4. 3: Key distribution in our system model .. 92

Figure.4. 4 : Structure inside UG1 when U4 joins .. 94

Figure.4. 5: Structure inside UG1 when U3 leaves ... 96

Figure.4. 6: Examples of LKH structure updates for device join. ... 98

Figure.4. 7: Examples of LKH structure updates for device leave. ... 98

Figure.4. 8: Rekeying procedure based on OTP when a device joins a group 99

Figure.4. 9: Rekeying procedure when a device leaves a group ... 100

Figure.4. 10: Users’ storage overhead while varying the number of devices...................................... 107

Figure.4. 11: Users’ storage overhead while varying the number of users ... 107

Figure.4. 12: Devices storage overhead .. 108

Figure.4. 13: Remaining user computation overhead varying devices’ number (user leave) 109

Figure.4. 14: Remaining user computation overhead varying users’ number (user leave) 110

Figure.4. 15: Server time update on the user-leaving event .. 111

Figure.4. 16: Old user computation overhead varying the devices’ number (user join) 112

Figure.4. 17: Old user computation overhead varying the users’ number (join) 112

Figure.4. 18: New user computation overhead varying devices .. 113

Figure.4. 19: Server time update on the joining event .. 113

Figure.4. 20: Computation cost: device join ... 114

file:///C:/Users/Drive/Desktop/Maissa/These_maissa_manuscript/full_Manuscript_version/Maissa_Manuscript_V_finale.docx%23_Toc68693808
file:///C:/Users/Drive/Desktop/Maissa/These_maissa_manuscript/full_Manuscript_version/Maissa_Manuscript_V_finale.docx%23_Toc68694427
file:///C:/Users/Drive/Desktop/Maissa/These_maissa_manuscript/full_Manuscript_version/Maissa_Manuscript_V_finale.docx%23_Toc68694428
file:///C:/Users/Drive/Desktop/Maissa/These_maissa_manuscript/full_Manuscript_version/Maissa_Manuscript_V_finale.docx%23_Toc68694429
file:///C:/Users/Drive/Desktop/Maissa/These_maissa_manuscript/full_Manuscript_version/Maissa_Manuscript_V_finale.docx%23_Toc68695185
file:///C:/Users/Drive/Desktop/Maissa/These_maissa_manuscript/full_Manuscript_version/Maissa_Manuscript_V_finale.docx%23_Toc68695186
file:///C:/Users/Drive/Desktop/Maissa/These_maissa_manuscript/full_Manuscript_version/Maissa_Manuscript_V_finale.docx%23_Toc68695187
file:///C:/Users/Drive/Desktop/Maissa/These_maissa_manuscript/full_Manuscript_version/Maissa_Manuscript_V_finale.docx%23_Toc68695188
file:///C:/Users/Drive/Desktop/Maissa/These_maissa_manuscript/full_Manuscript_version/Maissa_Manuscript_V_finale.docx%23_Toc68695189
file:///C:/Users/Drive/Desktop/Maissa/These_maissa_manuscript/full_Manuscript_version/Maissa_Manuscript_V_finale.docx%23_Toc68695190
file:///C:/Users/Drive/Desktop/Maissa/These_maissa_manuscript/full_Manuscript_version/Maissa_Manuscript_V_finale.docx%23_Toc68695198
file:///C:/Users/Drive/Desktop/Maissa/These_maissa_manuscript/full_Manuscript_version/Maissa_Manuscript_V_finale.docx%23_Toc68695251
file:///C:/Users/Drive/Desktop/Maissa/These_maissa_manuscript/full_Manuscript_version/Maissa_Manuscript_V_finale.docx%23_Toc68695252
file:///C:/Users/Drive/Desktop/Maissa/These_maissa_manuscript/full_Manuscript_version/Maissa_Manuscript_V_finale.docx%23_Toc68695253
file:///C:/Users/Drive/Desktop/Maissa/These_maissa_manuscript/full_Manuscript_version/Maissa_Manuscript_V_finale.docx%23_Toc68695254
file:///C:/Users/Drive/Desktop/Maissa/These_maissa_manuscript/full_Manuscript_version/Maissa_Manuscript_V_finale.docx%23_Toc68695255
file:///C:/Users/Drive/Desktop/Maissa/These_maissa_manuscript/full_Manuscript_version/Maissa_Manuscript_V_finale.docx%23_Toc68695256
file:///C:/Users/Drive/Desktop/Maissa/These_maissa_manuscript/full_Manuscript_version/Maissa_Manuscript_V_finale.docx%23_Toc68695257
file:///C:/Users/Drive/Desktop/Maissa/These_maissa_manuscript/full_Manuscript_version/Maissa_Manuscript_V_finale.docx%23_Toc68695258
file:///C:/Users/Drive/Desktop/Maissa/These_maissa_manuscript/full_Manuscript_version/Maissa_Manuscript_V_finale.docx%23_Toc68695259
file:///C:/Users/Drive/Desktop/Maissa/These_maissa_manuscript/full_Manuscript_version/Maissa_Manuscript_V_finale.docx%23_Toc68695260
file:///C:/Users/Drive/Desktop/Maissa/These_maissa_manuscript/full_Manuscript_version/Maissa_Manuscript_V_finale.docx%23_Toc68695261
file:///C:/Users/Drive/Desktop/Maissa/These_maissa_manuscript/full_Manuscript_version/Maissa_Manuscript_V_finale.docx%23_Toc68695262
file:///C:/Users/Drive/Desktop/Maissa/These_maissa_manuscript/full_Manuscript_version/Maissa_Manuscript_V_finale.docx%23_Toc68695263
file:///C:/Users/Drive/Desktop/Maissa/These_maissa_manuscript/full_Manuscript_version/Maissa_Manuscript_V_finale.docx%23_Toc68695264
file:///C:/Users/Drive/Desktop/Maissa/These_maissa_manuscript/full_Manuscript_version/Maissa_Manuscript_V_finale.docx%23_Toc68695265
file:///C:/Users/Drive/Desktop/Maissa/These_maissa_manuscript/full_Manuscript_version/Maissa_Manuscript_V_finale.docx%23_Toc68695266
file:///C:/Users/Drive/Desktop/Maissa/These_maissa_manuscript/full_Manuscript_version/Maissa_Manuscript_V_finale.docx%23_Toc68695267
file:///C:/Users/Drive/Desktop/Maissa/These_maissa_manuscript/full_Manuscript_version/Maissa_Manuscript_V_finale.docx%23_Toc68695268
file:///C:/Users/Drive/Desktop/Maissa/These_maissa_manuscript/full_Manuscript_version/Maissa_Manuscript_V_finale.docx%23_Toc68695269
file:///C:/Users/Drive/Desktop/Maissa/These_maissa_manuscript/full_Manuscript_version/Maissa_Manuscript_V_finale.docx%23_Toc68695270

xi

Figure.4. 21: Computation overhead: device leave ... 115

Figure.4. 22: Communication costs ... 115

Figure.5. 1: Network model of the proposed scheme .. 124

Figure.5. 2: IoT environment of a Smart Hotel ... 126

Figure.5. 3: Workflow model of the proposed scheme ... 128

Figure.5. 4: Secret shared authenticator recovering .. 132

Figure.5. 5: Authentication & Service delivery phases ... 137

Figure.5. 6: User authentication data block ... 139

Figure.5. 7: Computation overhead on users ... 147

Figure.5. 8: System Response Time .. 148

Figure.5. 9: Energy consumption .. 149

Figure.5. 10: Communication costs ... 151

Figure.5. 11: Improvement Rate .. 152

file:///C:/Users/Drive/Desktop/Maissa/These_maissa_manuscript/full_Manuscript_version/Maissa_Manuscript_V_finale.docx%23_Toc68695271
file:///C:/Users/Drive/Desktop/Maissa/These_maissa_manuscript/full_Manuscript_version/Maissa_Manuscript_V_finale.docx%23_Toc68695272
file:///C:/Users/Drive/Desktop/Maissa/These_maissa_manuscript/full_Manuscript_version/Maissa_Manuscript_V_finale.docx%23_Toc68695273
file:///C:/Users/Drive/Desktop/Maissa/These_maissa_manuscript/full_Manuscript_version/Maissa_Manuscript_V_finale.docx%23_Toc68695274
file:///C:/Users/Drive/Desktop/Maissa/These_maissa_manuscript/full_Manuscript_version/Maissa_Manuscript_V_finale.docx%23_Toc68695275
file:///C:/Users/Drive/Desktop/Maissa/These_maissa_manuscript/full_Manuscript_version/Maissa_Manuscript_V_finale.docx%23_Toc68695276
file:///C:/Users/Drive/Desktop/Maissa/These_maissa_manuscript/full_Manuscript_version/Maissa_Manuscript_V_finale.docx%23_Toc68695277
file:///C:/Users/Drive/Desktop/Maissa/These_maissa_manuscript/full_Manuscript_version/Maissa_Manuscript_V_finale.docx%23_Toc68695279
file:///C:/Users/Drive/Desktop/Maissa/These_maissa_manuscript/full_Manuscript_version/Maissa_Manuscript_V_finale.docx%23_Toc68695280
file:///C:/Users/Drive/Desktop/Maissa/These_maissa_manuscript/full_Manuscript_version/Maissa_Manuscript_V_finale.docx%23_Toc68695281
file:///C:/Users/Drive/Desktop/Maissa/These_maissa_manuscript/full_Manuscript_version/Maissa_Manuscript_V_finale.docx%23_Toc68695282
file:///C:/Users/Drive/Desktop/Maissa/These_maissa_manuscript/full_Manuscript_version/Maissa_Manuscript_V_finale.docx%23_Toc68695283

xii

List of Tables

Table 2. 1: Main security issues vs. Applications ... 18

Table 2. 2:Security services ... 20

Table 2. 3:Security IoT challenges .. 23

Table 2. 4: Access Control Solutions Comparison .. 36

Table 3. 1: Evaluation of IoT Authentication Schemes .. 44

Table 3. 2: Symbols and their descriptions .. 50

Table 3. 3: Functionality Features Comparison .. 64

Table 3. 4: Computation Costs Comparison.. 65

Table 3. 5: Vulnerability analysis of a smart hotel .. 69

Table 4. 1: Comparison of existing GKM Schemes .. 80

Table 4. 2: Keys’ description .. 87

Table 4. 3: Summary of symbols and their description ... 88

Table 4. 4: Communication analysis. .. 105

Table 5. 1 : Comparison of existing Authentication Schemes .. 120

Table 5. 2: Comparison of consensus algorithms [27] .. 123

Table 5. 3: List of acronyms .. 129

Table 5. 4: Energy costs .. 149

Table 5. 5: Communication Parameters .. 150

file:///C:/Users/Drive/Desktop/Maissa/These_maissa_manuscript/full_Manuscript_version/Maissa_Manuscript_V_finale.docx%23_Toc68631902
file:///C:/Users/Drive/Desktop/Maissa/These_maissa_manuscript/full_Manuscript_version/Maissa_Manuscript_V_finale.docx%23_Toc68632613
file:///C:/Users/Drive/Desktop/Maissa/These_maissa_manuscript/full_Manuscript_version/Maissa_Manuscript_V_finale.docx%23_Toc68632392
file:///C:/Users/Drive/Desktop/Maissa/These_maissa_manuscript/full_Manuscript_version/Maissa_Manuscript_V_finale.docx%23_Toc68652630

xiii

List of Publications

 Accepted papers:

 M. Dammak, O. R. M. Boudia, M. A. Messous, S. M. Senouci and C. Gransart, "Token-Based

Lightweight Authentication to Secure IoT Networks," 2019 16th IEEE Annual Consumer

Communications & Networking Conference (CCNC), Las Vegas, NV, USA, 2019, pp. 1-4, doi:

10.1109/CCNC.2019.8651825.

 M. Dammak, S. -M. Senouci, M. A. Messous, M. H. Elhdhili and C. Gransart, "Decentralized Lightweight

Group Key Management for Dynamic Access Control in IoT Environments," in IEEE Transactions on

Network and Service Management, vol. 17, no. 3, pp. 1742-1757, Sept. 2020,

 M. Dammak et al., "A Secure and Interoperable Platform for Privacy Protection in the Smart Hotel

Context," 2020 Global Information Infrastructure and Networking Symposium (GIIS), Tunis, Tunisia,

2020, pp. 1-6, doi: 10.1109/GIIS50753.2020.9248483.

 Under review papers:

 M. Dammak, S. -M. Senouci, M. H. Elhdhili, C. Gransart and L. Saidane "DiGABlock:Distributed Group

Authentication based on Blockchain technology for IoT," in IEEE Transactions on Systems, Man, and

Cybernetics: Systems, Under review.

 M. Dammak, S. -M. Senouci, "Group Lightweight Authentication Based on Blockchain in IoT

Environments" in IEEE Internet of Thing Magazine, Under review.

xiv

Glossary

Letter

Acronym Description

A

ABAC

ABE

ACL

ACM

AES

AMI

API

ATIS

Attribute-Based Access Control

Attribute-Based Encryption

Access Control List

Access Control Matrix

Advanced Encryption Standard

Advanced Metering Infrastructure

Application Programming Interface

Alliance for Telecommunications Industry Solutions

C

CA

CapBAC

CBA

CBC

CIA

CoAP

CRP

CRT

Certification Authority

Capability-Based Access Control

Certificate-Based Authentication

Cipher Block Chaining

Confidentiality, Integrity, and Availability

Constrained Application Protocol

Challenge-Response Pair

Chinese Remainder Theorem

D

D2D

DDoS

DEP

DES

DoS

dPoS

DTLS

Device to Device

Distributed Denial of Service

Dual-Encryption Protocol

Data Encryption Standard

Denial of Service

delegated Proof of State

Datagram Transport Layer Security

E

ECC

ECDSA

EPID

E-SAP

ETSI

Elliptic Curve Cryptography

Elliptic Curve Digital Signature Algorithm

Enhanced Privacy ID

Efficient-Strong Authentication Protocol

European Telecommunications Standards Institute

F FCAPS Fault, Configuration, Accounting, Performance, and Security

G
GCRT

GKM

Generalized Chinese Remainder Theorem

Group Key Management

H

HLPSL

HMAC

HTTP

HVAC

High-Level Protocol Specification Language

Hash-based Message Authentication Code

Hypertext Transfer Protocol

Heating, Ventilation and Air-Conditioning

I

IBE

IIoT

IoT

IP

IT

ITS

Identity-Based Encryption

Industrial Internet of Things

Internet of Things

Internet Protocol

Information Technology

Intelligent Transportation Systems

K
KDC

KEK

Key Distribution Center

Key Encryption Key

L

LAN

LKH

LoRaWAN

LTE

Local Area Network

Logical Key Hierarchy

Low Radio Wide Area Networks

Long-Term Evolution

xv

LWM2M Lightweight Machine-to-Machine

M

MAC

MD5

MKE

mMTC

MFA

MQTT

M2M

Medium-Access Control

Message Digest 5

Master Key Encryption

massive Machine Type Communication

Multi-Factor Authentication

Message Queuing Telemetry Transport

Machine-to-Machine

N NFC Near Field Communication

O

OAuth

OBU

OFT

OTP

Open Authorization

On-Board Unit

One-way Function Tree

One-Time Pad

P

PAuthKey

PBFT

PFS

PKI

PUF

PoET

PoS

PoW

Pervasive Authentication Protocol and Key establishment

Practical Byzantine Fault Tolerance

Perfect Forward Secrecy

Public Key Infrastructure

Physical Unclonable Functions

Proof of Elapsed Time

Proof of State

Proof of Work

Q
QoE

QoS

Quality of Experience

Quality of Service

R

RA

RBAC

RFID

ROM

ROR

RPL

RSA

RSU

Registration Authority

Role-Based Access Control

Radio-Frequency Identification

Random Oracle Model

Real-Or-Random

IPv6 Routing Protocol

Rivest, Shamir, Adleman (3 inventors of the RSA protocol)

Roadside Unit

S

SDN

SHA

SKDCs

Software Defined Networking

Secure Hashing Algorithm

Sub Key Distribution Centers

T

TIA

TEK

TPM

TRNG

TTP

Telecommunications Industry Association

Traffic Encryption Key

Trusted Platform Module

True Random Number Generator

Trust Third-Party

U UCON Usage Control

V

VANETs

V2C

V2G

V2I

V2P

V2V

Vehicular Ad hoc Networks

Vehicle to Cloud

Vehicle to Grid

Vehicle to Infrastructure

Vehicle to Pedestrian

Vehicle to Vehicle

W

WBAN

WiFi

WSNs

Wireless Body Area Network

Wireless Fidelity

Wireless Sensor Networks.

Z
ZigBee

ZKP

Zonal Intercommunication Global-standard

Zero Knowledge Proof

https://cts.businesswire.com/ct/CT?id=smartlink&url=https%3A%2F%2Fwww.tiaonline.org%2F&esheet=51927280&newsitemid=20190117005438&lan=en-US&anchor=Telecommunications+Industry+Association&index=1&md5=bd3c839ae4ad9e5f6c45a989711435b4

1.1. Context and Motivation

The Internet of Things (IoT) is a global new paradigm that considers connecting objects,

intelligent systems, and applications in order to gather data from the physical world and offer

IoT services to IoT consumers [42]. The IoT has emerged as a prominent solution that allows

anyone to access anything from anywhere and anytime. In particular, it enables several physical

objects prepared to collect data through the sensing and actuation capabilities, process, and

exchange this data over the network transparently and seamlessly. The communication through

the IoT network provides an entirely connected smart world in which objects collaborate to

achieve a high-level new service dimension. Thus, the capacity to monitor and manage things

in the physical world develops the spectrum of IoT applications that directly impacts the

economics’ increasing and the quality of our daily life. IoT supports numerous and massive

IoT applications, including smart home, smart manufacturing, smart building, smart

transportation, smart grid, and smart healthcare [1]. According to the published study [2], the

anticipated number of connected IoT devices during this year, 2021, will reach 27.1 billion IoT

devices. Despite the attractive promises of the developing IoT network, security presents a real

issue that hinders its full deployment. In fact, IoT security is not efficiently established as it has

not gained sufficient attention proportional to the IoT growth. The US Intelligence Community

classifies the IoT as a significant cyber technology that can endanger data privacy, data

integrity, and service availability. Besides, the IoT network's open nature makes it composed

of many heterogeneous smart devices and characterized by a dynamic structure. Thus IoT

security could be a disaster and more severe than traditional security problems in the Internet.

Moreover, IoT intensifies existing cyber-security issues and introduces a whole new degree

of potential threats. We give in the following the some well-known attacks that occurred

recently in the IoT network: (i) In December 2014, attackers penetrated a German steel mill

facility by using booby-trapped emails to steal logins and obtained control access to the mill's

control systems. Through this attack, they lead to a furnace explosion [3]. (ii) In October 2016,

the Mirai [4] launched a malicious program that infected numerous IoT devices by taking

control of connected objects such as surveillance cameras and routers and then initiated massive

Introduction

Chapter 1

Chapter 1

2

distributed denial of service attacks (DDoS) by flooding servers. This attack leads to a botnet,

which results in transforming the large-scale Internet network paralyzed. (iii) In 2017, a medical

malware named BrickerBot damaged the healthcare application. Indeed, attackers used the

brute force password and compromised medical IoT devices [5], destroyed their memory, and

deleted their data. This attack has dangerous consequences on users of healthcare IoT

applications.

To sum up, the IoT's attractiveness by the massive number of connected devices into IoT

systems increases the attack surface and the hackers' possibilities to get unauthorized access

and damage these systems. Therefore, adequate security mechanisms should be deployed to

mitigate risks and respond to the dynamic environment's security requirements.

1.2. Opportunities and Challenges

Despite the encouraging advances of the IoT environment in our daily life, security and

privacy challenge the way of its full development. Even though the IoT networks present the

same security concerns with the Internet as the 4/5G security, WiFi security, and Internet

Protocol (IP)-based security, the traditional security solutions cannot be directly implemented

for the IoT environment [6]. Indeed, IoT's ability to connect billions of smart things, collecting

sensitive and personal data, creates new degrees of security and privacy issues, especially

authentication and authorization problems. According to the massive number of connected

objects, IoT network records high volume communication traffic of exchanged/collected data

that potentially threaten IoT. Therefore, this environment, characterized by high scalability,

should apply an effective security solution to mitigate attackers' exploitation. Furthermore,

another crucial challenge is related to the diversity in security requirements and resource

availability. Explicitly, the potential number of communication standards and information

system technologies with heterogeneous security configuration requirements will generate a

complex networking model and impact the IoT systems' security. Besides, the remote access

mechanisms and the sensitive exchanged data over the wireless channel attract many intruders'

attention through physical and wireless access and increases the probability of threats. In

particular, IoT systems are susceptible to denial-of-service (DoS) and distributed DoS (DDos),

in which an adversary may exploit network protocols with massive traffic [47] and degrade the

system's availability. Adding to the fundamental illustrated challenges, the IoT environment is

likely to face other silent challenges that stand in the way of its deployment. The resource

constrained IoT devices cannot support the excessive computational requirements in

cryptography and will be subject to high energy consumption. Besides, with the distributed

and the high heterogeneity nature of an IoT environment, many IoT services are offered.

However, devices may be added and removed, and users may subscribe and unsubscribe from

these IoT services dynamically.

Consequently, dynamically unstable situations may impact authentication/authorization in

IoT systems. The current preventive and security countermeasures solutions are inadequate and

insufficient to successfully address these characteristics and mitigate threats. In fact, most of

the designed authentication and authorization schemes rely on a centralized trusted third party,

which might lead to a bottleneck in the IoT system due to the scalability issue and the dynamic

3

changes. Moreover, using a server-client model establishing one-to-one connections is not

scalable with broadcasting communications and leads to repeated requests or authentication and

access authorization. Therefore, frequent authentication and authorization require a more

appropriate authentication and authorization architecture model with dynamic defense to

address the security requirements. Some distributed authentication trusted frameworks were

proposed to handle the scalability issue and eliminate the third party's load and trust. However,

these mechanisms suffer from the necessity of having distributed trusted servers that are a great

point of attackers' attraction. Hence, blockchain technology-based on trustless distributed nodes

might be beneficial to deal very well with scalability and heterogeneity issues. However, since

blockchain technology is energy and time-consuming due to the proof of work mechanism, it

become important to think how to take advantage of this technology while taking into account

resource-limited IoT devices.

In addition to authentication, granting the corresponding permissions with the dynamic IoT

environment is a high challenge that needs to be addressed. The exiting solutions for access

control are not suitable for a large dynamic environment and limited resources IoT

environments. They need to rely on a connected third party to get access permissions

continuously. Moreover, regarding the continuous growth of connected objects in IoT, group-

based applications have emerged. Thus, authorization frameworks should also address the

group security requirement to control the permissions' assignment. The Group Key

Management (GKM) has been used as a prominent solution to achieve a secure and efficient

access control in IoT. The group members in a heterogeneous IoT network could subscribe to

IoT services and then change their subscriptions dynamically. In this context, members join and

leave the IoT services group (subscribe/unsubscribe to an IoT service). Therefore, the group

key must be changed whenever a member leaves or joins the group to ensure secure group

communication, especially both forward and backward secrecy with respect to the resources

and capacity of IoT objects.

1.3. Dissertation Scope and Methodology

According to the previously discussed IoT challenges and the security requirements, we

introduce in this section how to build a secure IoT system to address the earlier mentioned

issues. The large IoT environment connecting billion of things enumerates many security

challenges that need to be overcome to deploy the IoT system efficiently. More specifically,

authentication and authorization are essential security features for building a secure IoT

environment. In this thesis, we focus on proposing authentication and access control protocols

for IoT environments with respect to the dynamic nature of group communication, the security

requirements, and the constrained features of IoT devices. We summarize in what follows our

research objectives:

 Design a mutual lightweight authentication for a period of time that responds to the

users' dynamic changes in the IoT environment and the resource-limited IoT devices.

4

 Deploy an efficient access control system using group key management that responds

to the dynamic changes features and the group communications requirements and

eliminates the third-party load.

 Design a distributed group authentication protocol for authenticating the user with many

IoT services to eliminate the trust in the third-party using a trustless environment, meet

the requirement of a large scale and heterogenous environment, and ensure a secure and

efficient authentication for the group-based communication.

To design our secure IoT system regarding the security requirements, including scalability,

heterogeneity, dynamic changes, automated authentication, limited resources, and security

features, we summarize the adopted approaches in Table 1.1.

Table 1.1: Methodology of building our IoT secure system

Requirement Design Principle Approach Chapter

Scalability

Distributed group authentication

architecture

Blockchain

5 Edge server

Shamir secret sharing

A decentralized access control

architecture
Group Key Management 4

Heterogeneity
Ubiquitous network with

heterogeneous entities

GKM for users
4

GKM for IoT devices

Dynamic

changes

Dynamic access control

Logical key Hierarchical

4 Master Token Encryption

One Time Pad encryption

Periodic authentication Token of identification 3

Automated

authentication

Distributed authentication for

users with many IoT services

Trustless environment

based on Blockchain
5

Limited

resources

Considering the consumption

from computation, Storage,

Bandwidths, and Power

Lightweight

authentication protocol

3

5

Security &

Privacy

Confidentiality

Secure Authentication

and Access Control

Management

3

4

5

Integrity

Availability

Non-repudiation

Authentication

5

1.4. Thesis Structure and Contributions Overview

We addressed two crucial security features in the IoT environment all over this thesis,

including authentication and authorization. These security services are challenging regarding

the peculiar characteristics of the progressing IoT network. To be more practical, we describe

in the following a storyline scenario that uses our secure IoT system. We adopt a smart-hotel

scenario equipped with various modern IoT technologies that make the guests’ stay more

comfortable, lower the energy consumption, and help the staff and management with their tasks.

Our system gives the freedom for guests to choose a smart room or a standard room. Suppose

two different guests named Bob and Jenny, where Jenny wants to book a smart room and Bob

wants to book a standard room.

Bob, the first smart-hotel guest, passes by our smart hotel rapidly and wants to book a room

at a low price for five days. After checking the hotel’s availability on the given days, Bob uses

the TBLUA system (chapter 3) to make a reservation. The hotel booking system uses TBLUA

that generates a token of identification, which uses high-security standards to authenticate the

guest during his accommodation and open the reserved room’s smart lock. At Bob’s arrival,

Bob has not to pass by the reception for the check-in. Indeed, Bob uses his smartphone to

connect to the hotel application, uses the received token and then opens his room by

approaching his smartphone to the smart lock. During Bob’s stay, his friend has joined him,

and he preferred to stay with him in the same room. Therefore, Bob’s friend needs to get access

to Bob’s room at any time during the accommodation. At this level, it is essential to share the

entrance to the same room securely between Bob and his friend. The hotel ensures a secure

share of access by using the DLGKM-AC system (chapter 4). In particular, the DLGKM-AC

system controls the access to the same room and gives another token for Bob’s friend, who

could enter the room freely. At Bob’s departure, the DLGKM-AC system updates Bob’s room’s

smart lock by revoking the two tokens used during the last reservation.

Jenny is the second guest, who is impressed by the advanced technology of nowadays, has

preferred a reservation to a smart room with full smart objects. Besides, after checking the

hotel’s availability on the given days, Jenny chooses to book a full smart room with many other

IoT services offered by the hotel (smart cleaning, smart food operations, smart tourism, etc.).

The hotel system uses DiGABlock (chapter 5) to reserve the room and register Jenny for the

requested hotel services. At Jenny’s arrival, the environment in the room is prepared on her

preferences (such as the temperature, lighting, etc.), and Jenny needs to get access to her room

and all objects in the room. Therefore, DiGABlock authenticates Jenny by making a full

authentication to secure access to the smart room. At this level, Jenny’s information is stored

in the hotel’s blockchain network to be used during her stay and for her next visit. During

Jenny’s accommodation, she enjoyed the offered IoT services, which are accessible based on

her reservation request. In fact, DiGABlock ensures rapid and secure access to these IoT

services through delivering these services without the need to re-authenticate. For instance,

Jenny gets access to the cleaning robots and programmed them with her non-presence in the

room. Thus, if Jenny is not in the room, robots could clean it. Knowing that Jenny has two kids

with her, aged 10 and 18, the hotel uses the DLGKM-AC system to securely share the access

between Jenny and her kids. Indeed, Jenny and her kids have different access permissions, they

6

all could access the room, but only Jenny and the adult kid could control the heater and all

room’s accessories, while only Jenny could program the robots to clean the room. Once Jenny

and her kids check out the hotel, the DLGKM-AC updates all IoT devices used during the

accommodation. Furthermore, the blockchain network store all information related to Jenny

and her kids about their access to all IoT services and their preferences that are useful for

further reservation.

The rest of this dissertation is organized as follows, as illustrated in Figure 1.1, representing

our dissertation's diagram. Chapter 2 reviews the existing security solutions in the IoT

environment based on the unconventional characteristics and the IoT security challenges,

including heterogeneity, scalability, dynamic changes, and limited resources. Chapter 3

describes a lightweight authentication protocol to meet IoT's resource-constrained requirements

and design a proof-of-concept representing a smart hotel use case. Chapter 4 addresses the

problem of granting permissions access to users and IoT devices for a large-scale environment.

Chapter 5 improves the authentication process in such a large-scale environment through

designing distributed group authentication based on blockchain technology. Conclusions and

future directions of the research are presented in Chapter 6. More details and contributions of

each chapter are given in the following:

 Chapter 2:

Chapter 2 surveys the most prominent literature related to authentication and access control

in IoT environments. Throughout this chapter, we first provide a detailed study of the IoT

network by presenting its architecture and the challenges standing in the way of its deployment.

Then, we point out the security challenges and requirements related to its development. We

continue by presenting the existing solutions that address the fundamental security

requirements, including the IoT authentication and access control schemes. We also give an

overview of the different approaches used to handle the selected security requirements, such as

blockchain, token, group key management, etc.

 Chapter 3:

This chapter proposes a new lightweight mutual authentication for a one-to-one scenario in

IoT. In fact, using passwords or pre-defined keys is insufficient to authenticate legitimate users

in a dynamic environment. For instance, in the smart hotel application that involves different

IoT devices, the users dynamically change their reservation status. Meanwhile, the users who

reserve the IoT services in the smart hotel should get authenticated only during their

accommodation. Hence, a temporary authentication is required to give access to the hotel during

the reservation period. In this context, and to enhance the robustness of authentication, the

chapter proposes a new protocol named Token-Based Lightweight User Authentication

(TBLUA). This protocol is achieved by adding a new security layer using the software token

of identification mechanisms. In fact, adding to the password and the login, the token is used to

identify the legitimate user during a specific period securely. This token is mainly designed to

respond to the limitation of the resources of IoT devices. Both security and performance

analysis show that the proposed scheme is a strong competitor among existing ones for user

7

authentication in IoT environments. Furthermore, we describe the smart hotel use case

reservation system composed of one smart lock and study its vulnerability.

 Chapter 4:

In addition to the authentication requirement described in the previous chapter, it is crucial

to give adequate permissions to legitimate users and IoT devices. In particular, in a large-scale

dynamic IoT environment characterized by subscribers (users/IoT devices) that frequently

change interest to IoT services, it is significant to maintain secure data distribution to legitimate

subscribers. Therefore, we elaborate a novel Decentralized Lightweight Group Key

Management architecture for Access Control in the IoT environment (DLGKMP-AC) that

manages the dissemination of keys of access control and secure data distribution. This solution

aims to address the scalability challenge introduced by the massive scale of IoT devices and the

increased number of subscribers. This, thanks to a hierarchical architecture composed of one

Key Distribution Center (KDC) and several Sub Key Distribution Centers (SKDCs), enhancing

subscribers' management' groups, and alleviating the rekeying overhead on the KDC.

Furthermore, the solution removes the dependency of symmetric group keys per subgroup

communication, which is inefficient when managing access control for subscribers with highly

dynamic behavior. Hence, a new master token management protocol was introduced through

this chapter to succeed in keys dissemination across a group of subscribers. This protocol

reduces storage, computation, and communication overheads during join/leave events.

Likewise, DLGKM-AC guarantees secure group communication by preventing collusion

attacks and ensuring backward/forward secrecy. Simulation results and analysis show

considerable resource gain in storage, computation, and communication overheads.

 Chapter 5:

The growing IoT environment offers many IoT services that might be composed of many

IoT devices allowing group-based communication. Indeed, we can recognize that controlling

unauthorized access to group communication is achieved through our solution in the previous

chapter 4. However, before granting permission access, users need to authenticate themselves

with all requested IoT services by authenticating with each IoT device composing these IoT

services. These frequent and redundant authentication actions may lead both to exploit

exchanged data of authentication mechanisms by intruders and signaling congestion. Therefore,

to secure the communication in an environment with a large number of devices, we propose a

novel Distributed Group Authentication system based on Blockchain technology (DiGABlock)

to build an efficient and secure distributed group authentication system in an IoT environment

based on group communication. In particular, we design a group authentication algorithm based

on the threshold secret sharing technique through the Blockchain edge layer to allow users to

authenticate securely within many groups of IoT devices in a distributed manner. In fact, users

have to achieve only one full authentication process with an IoT service (a group of IoT

devices), and then they need to complete a service delivery process to get authenticated with

the rest of the required IoT services. Security analysis shows that DiGABlock resists man-in-

the-middle and DDoS attacks. Furthermore, simulation results show that DiGABlock

8

outperforms exiting schemes by 75%-80% in terms of communication costs and conducts a

considerable computation and energy consumption gain.

Introduction

chapter 1

Lightweight
authentication

chapter 3

Implemntation
Smart Hotel

Prototype

Group key
management for

access control
chapter 4

Distributed group
authentication

chapter 5

Authentication
and authorization

chapter 2

 Figure.1. 1: Dissertation outline diagram

9

2.1 Introduction

As we deliberated in the introduction chapter, the Internet of Things (IoT) has witnessed a

tremendous evolution with the significant increase in the number of smart devices. These

intelligent devices around us are increasingly becoming ubiquitous to enable new IoT

applications in our daily life, including smart homes, smart grid, smart cities, intelligent

transportation, smart healthcare, etc. [1]. Within this progress, designing IoT security solutions

is a challenging task. Indeed, IoT devices and users need to be authenticated and authorized to

access IoT services. Furthermore, the IoT, with its intrinsic characteristics, including

heterogeneity, constrained resources, and large-scale network infrastructure, has given birth to

different security requirements and challenges, such as scalability, interoperability, and

dynamicity. All these security challenges can be considered as a significant barrier to the

deployment of a secure IoT system. Therefore, to build a secure IoT system, we conducted a

survey on IoT solutions over the past years, and the selection of the research works in the

literature is based on the criteria mentioned below:

i. The surveyed research should be designed for IoT environments, such as a wireless

network, sensors network, or other connected IoT objects.

ii. The surveyed IoT solutions should mainly study one of the following indispensable

security features: the authentication and the authorization.

iii. These studies should consider one of the advanced features of the IoT environment,

such as scalability, heterogeneity, dynamic changes, group communication, and

limited resources.

As previously mentioned, the IoT network aims to connect everything, including people,

devices, organizations, applications, services data, etc., leading to a massive amount of

extensive data that should be secured. Thus, any disclosure of the exchanged and transmitted

data impacts the IoT system's security and functionality, which leads to many serious risks [8].

Authentication and Access Control in IoT
Environment

Chapter 2

10

Since the security issue is primordial for the IoT environment, especially the authentication1

and authorization2 mechanisms, we classified these IoT solutions into two main categories to

handle these security features while addressing the previous IoT unconventional characteristics,

specifically scalability, heterogeneity, dynamic changes, group communication, and limited

resources. In this context, we analyze the exiting authentication solutions in the literature that

tried to adapt the security solutions proposed for wireless sensor networks (WSNs) to the

context of IoT. Throughout our analysis of these selected solutions, we can highlight that some

of the authentication approaches relying on a centralized architecture, make their

implementation in IoT applications much more complicated because of the high number of IoT

objects. Hence, they cannot handle the peculiar characteristics of a distributed IoT environment.

Besides, we reviewed some distributed approaches that are considered beneficial to handle the

scalability issues but causing an important overhead. At this level, we can observe that is

essential to build a secure and efficient IoT system addressing the security requirements,

explicitly, confidentiality, integrity, availability, and privacy. For that reason, we surveyed the

authentication and the access control in the literature [9] [10] [51] [52] [98] [104], and it turns

out challenges about how to manage authentication and the access control permissions for a

large number of IoT devices delivering many IoT services. Furthermore, it points out the

importance of eliminating the dependence on a connected third party to protect IoT devices and

IoT users' security and privacy and ensure IoT availability over the various attacks.

Throughout this chapter, we first provide a comprehensive presentation of the IoT

environment and highlight its deployment challenges. In particular, we specify the security

issues and the requirements of unconventional IoT characteristics. Then, we investigate the

recent studies and survey the authentication and authorization solutions. Finally, we point out

specific approaches to build a secure IoT system.

2.2 Internet of Things (IoT)

The Internet of Things (IoT) is the future of the Internet, enabling a fully connected "smart"

world to provide various services to Information Technology (IT). More specifically, the IoT

concept is based on interconnecting "things" and devices that take the form of wearables,

sensors, actuators, mobiles, computers, meters, or even vehicles, which communicate through

the Internet, as shown in Figure.2.1. These inter-networked “things” interact and cooperate to

achieve a common goal by sensing, transmitting, and processing valuable data [10], which

define the emerging homes applications and the buildings automation, smart cities and

infrastructure, smart industries, and smart-everything.

Besides, the IoT network is a dynamic system connecting digital devices based on

interoperable communication and characterized by self-configuration capabilities such as

identities, physical attributes, and virtual personalities. Therefore, the IoT paradigm transforms

the physical objects from being conventional to smarter ones by exploiting communication

technologies' advancement, which expands the communication from human-human to human-

1 The authentication is responsible for verifying legitimate communicating parties in peer-to-peer networks.
2 The authorizations framework prescribes rules to the users and IoT objects for interacting with each other and

ensures the availability of the IoT system.

11

device or even device-device (D2D). This vision of the IoT has introduced a new dimension to

information and communication technologies, where physical objects allow users' connection

to the Internet from anywhere and anytime. However, these connected IoT objects' security

plays a centric role and brings new challenges due to low memory, energy, and computation

capacity. In the following, we first present the IoT architecture model and the IoT ecosystem's

main layers. Then, we discuss IoT applications and the main challenges facing them.

Figure.2. 1: Internet of Things

2.2.1 IoT Architecture

The high level of IoT applications explains the varieties of generic and horizontal IoT

architectures proposed by many known groups and consortiums, such as M2M (Machine-to-

Machine), ETSI (European Telecommunications Standards Institute), ATIS (Alliance for

Telecommunications Industry Solutions), TIA (Telecommunications Industry Association). A

typical IoT architecture is proposed by ETSI which is composed by three main layers, including

the M2M domain layer, network layer, and application layer [9]. According to the recent

literature [11], other models, including the five-layer model, have been proposed to improve

the basic three-layers models and support the IoT's scalability. Consequently, the five-layer

model is the most suitable model for IoT applications among the proposed models, as presented

in Figure 2.2. In what follows, we briefly describe and define the different layers of IoT

architecture.

2.2.1.1 Perception Layer

This layer is composed of the physical devices, such as sensors, actuators, intelligent

terminals, and RFID systems required to implement the IoT environment. The features of this

layer would be the sensing, actuating, and communication capabilities. In particular, it collects

and gathers information about the IoT environment, such as querying location, temperature,

patient health state, pressure, weight motion, vibration, acceleration, humidity, etc. These

of

https://cts.businesswire.com/ct/CT?id=smartlink&url=https%3A%2F%2Fwww.tiaonline.org%2F&esheet=51927280&newsitemid=20190117005438&lan=en-US&anchor=Telecommunications+Industry+Association&index=1&md5=bd3c839ae4ad9e5f6c45a989711435b4

12

collected data are useful for performing various functionalities, such as identification and

information storage, information processing using embedded edge processors,

communications, control, and actuation. More specifically, these components composing the

perception layer can be divided into two categories, named perception nodes and perception

network [12]. The perception nodes, including the sensors, controllers, perform data acquisition

and control, while the perception network, defining the communication interface of the

perception nodes, transmits the collected data to the gateway. Thanks to the huge amounts of

data created at this layer, the perception layer is the entry point of what we commonly call Big

Data.

2.2.1.2 Network Layer

The network layer is responsible for transmitting the sensed data of the perception layer to

the service management layer. Indeed, the sensed data is transmitted through various networks

 Figure.2. 2: IoT 5-layers architecture [11]

13

such as wireless, 3G, LTE, LAN, LoRaWAN, 5G, Bluetooth RFID, and NFC. In particular, this

layer includes various devices, such as switching, internet gateways, and cloud computing

servers that can perform local analysis and routing messages to the service management layer.

This layer is introduced as an intermediate layer to manage the tremendous number of objects

through aggregating, filtering, and transmitting data and support sensitive IoT applications by

adopting several communication technologies [11].

2.2.1.3 Service Management Layer

This layer comprises M2M platforms, middleware, API of M2M applications, and cloud

computing technologies useful for managing the perception layer's data. In particular, the

service management layer has features of information storage, analytics, and processing of the

data to enable the IoT application developers to deliver high-level applications independent of

any physical platform. Besides, this layer's features allow handling the received data by the

vendors to provide various kinds of IoT services.

2.2.1.4 Application & Business layers

The application layer's main feature is to provide specific services based on the application

type to the user through application protocols, such as HTTP, MQTT, CoAP, etc. At this layer,

all required software is installed to evaluate, analyze the received data, and then afford high-

quality services that meet final customers' requirements. These designed applications also

answer many markets' needs in different fields such as smart building, transportation, industry,

smart grids, and healthcare [13][14][15]. Furthermore, these applications should satisfy a good

quality of service and ensure an adequate reliability level to final users. At this level, a business

layer is defined on the top of the application layer to manage the entire IoT system, especially

the business and profit models, in a user-friendly way with privacy. More specifically, this

business layer is responsible for complex data processing, such as restructuring, cleaning, and

combining to develop more effective business models, predict customer behaviors, and show

high-level metrics, graphs, and flowcharts. This processing data process may be in the context

of performing big data analytics to transform data and information into actions to support

decision-making processes.

2.2.2 IoT Applications

The IoT revolution has emerged with a remarkable potential to cover a wide range of

applications in various domains. These domains deal with almost every area of our daily lives,

such as smart homes, smart buildings, intelligent transportation, smart healthcare, smart grid,

and other industrial applications. More specifically, the IoT paradigm combines some features

(sensing, communication, networking, identification, and computing) to provide ubiquitous IoT

services for users anytime and anywhere. In this context, the latest 2020 economic analysis of

14

IoT-based services have recorded considerable growth [16]. Figure 2.3 shows the various IoT

applications where some of them are briefly describe in the following subsections.

2.2.2.1 Smart Home

The smart home is one of the most known IoT applications as it is considered as a promising

solution to enhance personal lifestyle. The smart home deploys various sensors and actuators

to control / monitor home appliances remotely (e.g., microwave, lights, heating, ventilation,

and air-conditioning – HVAC systems) and perform security surveillance. Moreover, it enables

owners to configure time schedules to control costs and be more energy-efficient (e.g., green

homes).

2.2.2.2 Smart Grid

One of the most attractive IoT applications that has a considerable industrial value is the

Smart Grid. In particular, this technology plays an essential role in economic development as

in modern cities we use IT technologies to optimize electricity production and improve the

energy consumption of houses and buildings. This technology is a data communications

network integrated with the power grid, called the advanced metering infrastructure (AMI),

installed between the electricity production centers and the end customers to collect, analyze,

monitor, and coordinate energy production and consumption customers' needs. The smart grid's

primary goal is to improve final customers' quality of experience, increase efficiency, and

optimize electricity production. To better understand in detail how IoT can improve electricity

production in smart grids, the reader is referred to [17][18].

2.2.2.3 Transportation Systems

The future generation of transportation is mainly presented by the intelligent transportation

system (ITS). In fact, due to the development of the embedded systems and communication

technologies, this system aims to link people, roads, and intelligent vehicles & infrastructures.

This intelligent system employs four main components, namely: the vehicle on-board unit

(OBU), the station subsystem that represents the roadside unit (RSU), the ITS monitoring

Figure.2. 3: IoT main applications

15

center, and the security subsystem [19]. Connected vehicles use four types of communications:

Vehicle to Vehicle (V2V), Vehicle to Infrastructure (V2I), Vehicle to Cloud (V2C) and Vehicle

to Pedestrian (V2P). A new type of communication has recently emerged, called Vehicle to

Grid (V2G), which has a primary goal to ensure electrical Vehicles charging based on the smart

grid's energy electricity distribution [17].

2.2.2.4 Healthcare

Smart Healthcare has emerged as a prominent IoT application due to the technological

advancement in biomedical sensing, signal processing, and wireless communication. In fact,

healthcare IoT applications are based on embedding sensors and actuators in patients' bodies to

monitor their physiological statuses. In particular, IoT-based healthcare equipped with the

embedded sensors aims to collect information directly from the patient's body area, analyze and

transmit information to healthcare providers. This latter guarantees real-time monitoring of the

patient state and make the right decision at the right time. Healthcare-based IoT applications

currently have gained significant interest as they hugely impact society mainly due to the aging

population and the cost related to medical treatment. In this context, adopting new IoT based

technologies to monitor the patients in real-time is indispensable [21] [125].

2.2.2.5 Smart Cities

Smart cities are considered one of the emerging paradigm applications in IoT. Indeed, the

smart city aims to enhance public resource usage, improve information sharing and

coordination, and increase service quality to citizens [22]. In this perspective, a smart city

environment is composed of smart devices deployed all over the roads, buildings, smart cars,

etc., which can better manage the traffic, adapt to the weather, lighting follows the sun's

position. Furthermore, it can avoid domestic incidents with alarms and thus enhance the comfort

and security of citizens.

2.2.2.6 Manufacturing and Industrial IoT

Automation in manufacturing using IoT has emerged as a prominent role in the industry. In

fact, it is considered a promising solution to enhance productivity and efficiently monitor and

control the production chain. The Industrial IoT (IIoT) deploys new technologies such as

Machine-to-Machine (M2M) communication, Wireless Sensor Networks (WSN), automation

technologies as well as Big Data to produce an intelligent industrial ecosystem [23]. More

specifically, it ensures an accurate, fast, and reliable production process based on four elements

[24]: transportation, processing, sensing, and communication to provide better control of final

products.

2.2.3 IoT Challenges

The IoT has appeared as a significant industry that provides many new opportunities and

benefits to end-users and manufacturing. Indeed, it accentuates a considerable positive impact

while enabling various applications in our daily life. However, these benefits address several

complicated challenges and issues, including availability, reliability, mobility, network

16

performance, security & privacy, energy, consumption, and management. In fact, recent

contributions demonstrate that the increasing number of connected objects causes high traffic

demands enabling new traffic models. Therefore, it is essential to deal with these issues, leading

to various practical and efficient IoT services [25]. We enumerate in the following the main

challenges that IoT faces:

 Scalability:

Scalability is mainly about a system's ability to ensure flexibility that achieves and responds

to the growth required works. Its principal aim is to enable adaptability to the changing

environment and technology, leading to seamless connectivity and supporting dynamic

topology changes. Therefore, the scalability's fundamental challenge is to support a massive

number of heterogeneous connected objects using various hardware platforms and

communications protocols and meet people's needs. Scalability is considered as an absolute

necessity to provide a good functioning of the IoT environment and save the available resources

[26]. Two different scalability types are defined in the context of IoT, namely vertical scalability

and horizontal scalability. The vertical scalability is referred to as the ability to increase

resources in terms of hardware or software by adding more processing memory and storage

capability. The horizontal one is achieved by increasing the capacity by connecting multiple

hardware and software to work together. To enhance the IoT applications' scalability, highly

scalable cloud-based platforms, called Cloud of things [27], have been introduced as an

effective architecture. Some other solutions based on fog/edge computing are used to extend

cloud services, be closer to the connected objects, and improve the computing network

capability. Furthermore, 5G, the new radio system, is being envisaged for massive IoT (mMTC

- massive Machine Type Communication) applications that will allow the connection of very

densely distributed objects, necessary for the exponential increase in the number of connected

objects.

 Limitation of resources and energy consumption:

Most of the IoT devices are characterized by a limited capacity of storage and computation.

Consequently, it is a critical challenge to integrate the embedded devices with the required

computation process. The authors in [28] studied the challenge of improving the devices'

capabilities (e.g., computation and communication) with low-cost terminal and low power

consumption. However, it is mandatory to design lightweight protocols to meet the resource

limitation and the customers' requirements

 Reliability:

Reliability is a critical issue in the IoT environment, especially in emergency scenarios

where an appropriate time response should be provided, such as critical applications like

manufacturing, transportation, and healthcare applications [11]. Indeed, as it refers to the

system functionality, unreliable perception, data collection, transmission, and processing may

cause long delays, loss of data, and eventually wrong decisions. Therefore, this may cause huge

damages or life-threatening conditions. It is essential to design reliable systems transversely to

17

all the IoT architecture layers that work correctly under any circumstances and then build an

efficient IoT system.

 Availability:

The availability is about maintaining the availability of services' IoT systems over time and

delivering the requested services for authorized connected objects anywhere and anytime.

Indeed, it is as critical as information protection to properly handle the IoT systems. Therefore,

the connected objects need to be compatible with the IoT system requirements to maintain the

availability and connectivity. Moreover, the communication channels of the IoT network could

be vulnerable to availability issues. Thus, the IoT system should also guarantee services'

continuity even in availability threats, topology changes, and consumers' mobility [29].

 Management and Self-configuration:

One of the biggest and challenging IoT tasks is managing the Fault, Configuration,

Accounting, Performance, and Security aspects (FCAPS) of the complex and heterogenous

interconnected IoT environment. In this context, to provide adequate IoT services, it is

mandatory to design real-time, lightweight, and secure management protocols. Specifically, the

data management mechanisms should ensure several functionalities, including data

aggregation, data analytics, and security aspects that meet the system requirements. Besides,

the large-scale network infrastructure of connected devices must also be managed by

monitoring the high traffic load and the quality-of-service requirements. Consequently, this

type of management could handle the IoT environment's dynamic nature and the network

elements [30].

 Mobility:

Mobility is a critical challenge in the IoT environment, where IoT services' consumers are

mobile. Meanwhile, the challenge is about connecting users continuously with the requested

IoT services with respecting their requirements. In this context, some existing works in the

literature [31][32] managed to solve this issue by implementing efficient mobility management

mechanisms to guarantee service continuity.

 Interoperability:

Interoperability is the capability of many heterogeneous systems, platforms, and devices to

communicate and intercorporate together. Specifically, the IoT ecosystem comprises

heterogeneous devices with different standards and technologies, which is the origin of the

interoperability problem. For instance, there is still no standard for the IoT network that

supports the interconnection of all heterogeneous IoT systems [11]. Therefore, interoperability

in IoT systems should be achieved over the varied connected objects and the communication

protocols such as IPv6, IPv4, IPv6 Routing Protocol (RPL), Constrained Application Protocol

(CoAP), ZigBee, WiFi, Bluetooth, RFID, etc. Besides, there is an absolute requirement to

support the heterogeneity aspects to build IoT applications and services that can be extended

and integrated with other IoT systems easily [33]. In fact, the PARFAIT project [7] that defines

18

the context of this thesis, is designed to ensure the IoT interoperability through integrating

different communication protocol including NFC, Bluetooth, and ZigBee.

 Security and privacy:

Security and privacy are the most critical challenges in the IoT environment. As

communication in such environments is ensured through wireless channels, IoT architecture is

vulnerable to various security risks, such as eavesdropping, unauthorized access, data

modification, and privacy issues. Therefore, the design of adequate security countermeasures

is necessary to secure the IoT network and ensure ubiquitous connectivity. Significantly, the

existing cryptography algorithms and protocols are claimed unsuitable for constrained IoT

devices [18] [21]. Additionally, IoT applications are characterized by their distributed nature

and large-scale connected devices that impose more security and privacy challenges [34][35].

More other security and privacy challenges are related to definite IoT applications, including

transportation systems, industrial automation systems, smart cities, and healthcare systems [36].

At this level, the challenges are carried out independently and prudently to meet each

application's requirements.

In Table 2.1, we highlight a summary of the leading security challenges related to some IoT

applications. Specifically, we present the severity of each issue in the different IoT applications.

In the next section, we detail security issues in the IoT environment.

2.3 Security in the Internet of Things

Regarding the high presence of the IoT in the industry and our daily lives and the previously

mentioned IoT challenges, we must sort out the security requirement to design a secure IoT

system. In particular, securing IoT systems is based on several fundamental and specific

Table 2. 1: Main security issues vs. Applications

Applications vs.

Challenges

Smart

Home

Intelligent

Transportation

Industrial

Automation

Smart

Healthcare

Smart

Grid

Smart

City

Resource

constraints
High Not applicable Low High Low Medium

Mobility Low High Low Medium
Not

applicable
High

Scalability High High Medium Medium High High

Availability High High High High High High

Interoperability Medium Medium Medium Medium Medium High

Management

and

configuration

Medium Medium Medium Low Medium High

19

security requirements, from the CIA of information security (confidentiality, integrity, and

availability), to the five pillars of information assurance (confidentiality, integrity, availability,

authenticity, and non-repudiation). Many researchers have discussed the security considerations

related to IoT systems. For instance, authors in [37] figure out the IoT challenges like

scalability, heterogeneity, and mobility and review the importance of the security and privacy

considerations, including CIA and trust. Besides, other authors [38] classified the required

security services for the different IoT applications regarding their importance, such as in the

smart grid, availability is the most critical service, while for healthcare, authentication is a more

serious service. Consequently, the IoT paradigm imposes many concerns over data security due

to economic espionage, infection of sensitive computer systems, identity theft, etc. At this level,

secure IoT infrastructures should provide reusable security services such as confidentiality,

integrity, authentication, authorization, availability, and privacy. In the following, we describe

the properties of the mentioned security services:

Confidentiality

It prevents unauthorized persons, entities, or processes

from retrieving sensitive data [39]. For that reason,

confidentiality should be addressed on two crucial

security mechanisms, including the authentication and

the authorization processes. Furthermore,

confidentiality should also be operated through the

different layers of an IoT architecture [39].

Particularly, it considers protecting data in IoT devices

and in IoT applications concerning specific users from

disclosure and tampering. Furthermore, data stored at

the third-party service providers require

confidentiality service that avoids malicious attackers

to steal sensitive information. Otherwise, these

centralized service providers are straightforward to

many intruders.

Integrity

It is mainly about ensuring the truth, honesty, and

reliability of the data. Indeed, it is the assurance that

the transferred data is not modified by a third-party

accidentally or intentionally [40]. Therefore, as the

number of connected devices and IoT consumers are

becoming very high, providing reusable security

services, such as integrity, becomes a core issue

regarding IoT security. In fact, integrity in IoT devices

guarantees that these devices are trusted and not

hijacked by malicious attackers [41]. Besides,

ensuring integrity through the network layer evades

signaling data and then avoids denial of service attacks

[42]. Likewise, at the application layer, integrity

concerns the users’ data protection.

Non-repudiation

Non-repudiation guarantees the sender of the message

in IoT systems. Therefore, the sender cannot deny

being the author of a transmitted message [41]. The

non-repudiation aims to protect against false denial of

involvement in a communication. Attackers can

manipulate an IoT system by forging the identifying

credentials that threaten the origin of service data

providers and the user data. Hence, a non-repudiation

service is an effective security service that should be

implemented and built on IoT to provide genuine high

confidence in the transmitted data.

Availability

It implicates that all IoT services and devices of the

IoT system are accessible for authentic users and

resistant to several malicious attacks. Indeed,

availability highlights the IoT security systems at

runtime, where systems can deliver services to others.

Otherwise, the availability of services has no meaning.

Due to the highly distributed nature of the IoT

environment, availability could ensure the

interconnectivity and accessibility of IoT systems'

services. In contrast, systems with low availability

could incur many security concerns such as attacks on

reliability. In fact, malicious intruders can control IoT

systems by gaining control of IoT systems, such as

capture attacks and impersonation attacks [43]. In

particular, maintaining the availability in the devices

layer aims to prevent physical attacks and DoS attacks.

20

Besides, availability guarantees the accessibility of the

networks, services, and applications.

Privacy

It concerns principally the users and particularly the application layer. Indeed, a privacy mechanism gives users

the ability to control their personal data and determine the amount of information to reveal to others [42].

Moreover, it ensures the non-traceability of the user's behaviors and performed actions in the system. Therefore,

privacy, defined as individuals, groups, and institutions' rights, is considered a severe security issue. For

example, the RFID tag tracking attack and the eavesdropping attack are all about the individuals. At this level,

intruders may misuse the hidden RFID to retrieve sensitive data like credit card information [25]. It is evident

that privacy-preserving goals to protect users' sensitive information like identity, location, mobility trace, etc.,

[38, 17].

At this level, we confirm that designing authentication and authorization mechanisms are

indispensable to meet the cited security services requirements. Indeed, authentication is the

process of verifying the genuine and originality of the sender and validating whether a given

identity fits the pretended IoT entity [8]. In particular, authentication is necessary to prevent

illegal access and tampering related to IoT devices, while at the network layer, authentication

is about protecting signaling data to avoid the DoS attacks. Similarly, the authentication

operates over the service layer to provide the key management and access control policies.

Finally, authentication identifies, authenticates, and authorizes users in the IoT environment at

the application layer. Furthermore, authorization is about granting the required access

permissions to the authenticated user identity [9]. The authorization is achieved after the

successful authentication of the trusted identity user. At this level, the IoT system can give the

user the corresponding right to get data or service from the IoT environment. Consequently,

establishing efficient authentication and identity mechanisms and protocols are needed for

authorization protocols. These protocols operate over the service and application layers and are

imposed at the device layer.

To design the previously mentioned security services and respond the limited resources IoT

requirement, several cryptographic mechanisms are used through the literature [38] and Table

2.2 shows some of these mechanisms.

Table 2. 2:Security services

SECURITY

SERVICES

SECURITY

MECHANISMS

CRYPTOGRAPHY

EXAMPLES

CONFIDENTIALITY
Message encryption /

message signature

 Symmetric cryptographic

mechanisms (AES, CBC,

etc) ; asymmetric mechanisms

(RSA, DSA, IBE, ABE, etc).

INTEGRITY
Hash functions, message

signature

 Hash functions

(SHA, MD5, etc) ;

Message Authentication

Codes (HMAC)

21

AUTHENTICITY
Chain of hash, Message

Authentication Code

 HMAC, CBC-MAC,

ECDSA

NON-REPUDIATION Message signature ECDSA, HMAC

AVAILIBILITY

Pseudo-random frequency

hopping, Access control,

Intrusion prevention systems,

firewalls

 Signature-Based Intrusion

Detection, Statistical

anomaly-based intrusion

detection

PRIVACY

Pseudo-anonymity,

unlinkability,

k-anonymity, Zero Knowledge

Proof (ZKP)

 EPID, Pedersen

Commitment

In the following subsection, we firstly explore the security challenges in IoT and point out

the critical security requirements. Then, we survey the existing authentication and authorization

solutions in the context of IoT.

2.3.1 IoT Security Challenges and Security High Requirements

In addition to the previously mentioned security services in the IoT environment, we still

have to sort other security requirements to build a secure IoT infrastructure. In fact, as the

number of connected objects in the IoT is continuously increasing, the current state-of-the-art

network security solutions cannot address some security IoT challenges [8]. The challenges of

IoT environment presented previously, lead to many critical security challenges in such

environment. We highlight in what follows these security challenges:

 Heterogeneity: It refers to the diversity in security requirements and resource

availability. In particular, the potential number of communication standards and

information system technologies having heterogeneous security configurations requires

service management, which will impact IoT systems' security. Consequently, due to the

IoT network components heterogeneity, the reuse of the current network protocols is

inadequate in the IoT environment, and it is necessary to provide security standards that

work with different IoT platforms and protocols [45][38].

 Support for scalability issues: The distributed nature of the IoT environment imposes

scalability security challenges for the IoT network. In fact, the large scale of connected

IoT devices and users define a high volume of communication traffic, including one-to-

many traffic patterns such as broadcasting or publish-subscribe protocols such as MQTT

[45] [49]. Hence, the management of the security of the presented device and traffic

communication introduces several challenges. For instance, applying efficient updates

and security patches over the distributed environment characterized by high

heterogeneity is challenging. This environment with great scalability should build

effective key management protocols to secure the communication through the wireless

network [46]. Otherwise, attackers can exploit IoT devices' interconnection to disclose

private information and reveal criminal activities such as a man-in-the-middle attack,

etc.

22

 Vulnerability related to communication systems: It refers to the increasing risks

caused by the communication in the IoT environment where adversaries have physical

and wireless access to IoT devices. Indeed, the remote access mechanisms and the

sensitive exchanged data over the wireless channel raise the probability of attacks. Thus,

IoT systems are susceptible to some of these attacks considering IP spoofing, injection,

DoS/DDoS in which an adversary may exploit network protocols with massive traffic

[47]. Further, the attacker may violate the communication based on traffic analysis,

eavesdropping, and passive monitoring, implying an efficient security requirement for

M2M communication.

 Dynamic changes in IoT systems and environments: The characteristic of dynamic

changes in the IoT environment is mainly a fundamental property of the IoT. The

dynamic changes are particularly related to the IoT devices' behavior over time, such as

started and standby, sleeping and waking up, leaving and joining networks [48].

However, since the number of connected devices is continuously increasing, it causes a

very dynamic IoT environment due to the continually changing status and thus emerging

of many threats. For instance, a publish-subscribe based IoT system characterized with

a high changing network topology and unbounded network size is an attractive area for

many threats and attacks [40]. Consequently, a secure IoT infrastructure needs to resist

to these dynamic changing environments and afford effective security services

(authentication and authorization).

 Frequent authorization and authentication: Regarding the dynamic changes in the

IoT environment resulting from the changing states, such as connected / disconnected

and the context of devices including speed and location, specific authentication and

authorization mechanisms are needed. Furthermore, dynamically varying situations may

also include the IoT users resulting from changing interest over time, which may change

their authorization access to the IoT devices. Therefore, frequent demands of

authorization require a continuous management for access control, which can avoid and

limit the dynamic feature of IoT environment.

 Automated distributed mutual authentication: Due to the IoT network's scalability

approaches, including the publish-subscribe protocols [49], it is excessive for users to

remember passwords for a large number of devices. Thus, the IoT devices must be able

to authenticate themselves without user intervention to keep the practical functionality

of the IoT system.

 Dynamic registration of IoT entities: Distinct from traditional Internet

communication, the IoT includes devices with shorter life cycles and users with various

interest over time (subscription to IoT services for a shorter time). Meanwhile, devices

may be added and removed, and users may subscribe and unsubscribe from

authentication/authorization systems dynamically. Therefore, managing the adding and

removing entities in IoT should be operated strongly to build a secure IoT architecture.

 Consideration for resource constraints: Designing robust security measures requires

developing strong cryptographic protocols, which are based on many computing

operations. Nevertheless, some IoT devices suffer from the limited resources of

computation and storage, and thus an excessive energy consumption can harm their

23

availability. At this level, the authentication and authorization security services should

be lightweight to save energy consumption with respect to the security requirements.

 Locality: authentication and authorization services should be maintained and not

impacted by the internet connections and remote server operations. For that, the IoT

security measure must be enhanced with edge services. Designing the previously

mentioned security services in the edge network of the IoT environment, could

guarantee an improved authentication and authorization services for IoT users.

To sum up, the IoT environment with high scalability, heterogeneity, and dynamic changes

constitute new security challenges and requirements. Adding to essential security services the

confidentiality, integrity, availability, non-repudiation, and privacy it is necessary to address

the security challenges related to a large-scale distributed IoT environment. Table 2.3 presents

a classification of previous research works that cope with the different challenges:

Table 2. 3:Security IoT challenges

IoT security challenges Research area

Heterogeneity

IoT platforms and architectures [73] [98] [99]

Device management [68] [69]

Network management [66] [96]

Data management [94] [95]

Scalability

Large-scale issues [71] [72] [97]

Low power communications [63] [64] [65]

Availability and reliability of IoT applications and

services [56] [57] [77] [81] [85] ̶

Continuous connectivity [78] [79] [80]

Infrastructure reliability [82] [83] [84] ̶

Vulnerability related to

communication systems

QoS and QoE evaluation [80-82] ̶

Traffic models and loads [61] [62]

Application layer protocols [89] [90] ̶

Network layer protocols [66] [86-72] ̶

Link layer protocols [85-71] [87-73]

Security issues [97-99] ̶

Privacy issues [94-96]

24

Dynamic changes
̶ Mobility management of smart devices [58] [59]

[60]

25

2.3.2 Authentication in IoT

As discussed previously, authentication is the fundamental security in the IoT environment.

Furthermore, authentication should be operated over the different IoT architecture layers.

Therefore, various authentication techniques in the literature concerning IoT applications have

been proposed. We summarized, as shown in Figure.2.4, these techniques in a taxonomy of IoT

authentication schemes categorized into several criteria selected in the literature [44] [45].

IoT
Authentication

IoT
Authentication

IoT architectureIoT architecture

Centralized Centralized

Flat Flat

HierachicalHierachical

DistributedDistributed

FlatFlat

HierachicalHierachical

Authentication
factor

Authentication
factor

Context Context

Physical Physical

Behavioral Behavioral

Identity Identity

Hashing Hashing

SymmetricSymmetric

Asymmetric Asymmetric

Certificate-based Certificate-based

ExplicitExplicit

ImplicitImplicit

Group-basedGroup-based

Group signatureGroup signature

Group-identity Group-identity

PolynomialPolynomial

Token based Token based

Yes Yes

NoNo

HW-basedHW-based

ImplicitImplicit

TRNGTRNG

PUFPUF

ExplicitExplicit TPMTPM

Figure.2. 4: Taxonomy of IoT authentication schemes

26

Related to the discussed metrics of IoT characteristics and the previously mentioned security

requirements (section 2.2), we mainly evaluate in the following the authentication in IoT

according to the two authentication architectures: (i) centralized and (ii) distributed. We review

IoT systems for each architecture in compliance with classified categories presented in the

taxonomy.

2.3.2.1 Centralized IoT Authentication Architecture

The centralized authentication architecture is based on a centralized server or a trusted third

party to manage and disseminate the credentials useful for the authentication process. The

centralized architecture can also be hierarchical, where it uses multi-level architecture to handle

the authentication process or flat without using the hierarchical feature to deal with the

authentication procedure. Authentication is basically based on verifying legitimate users

(identities) and IoT devices. Therefore, when an IoT system wants to check the communicating

component's identity ID, it first must trust the issuer of this identity, like a national government.

In incoming subsections, we review and discuss research works based on a centralized

authority, which are classified as follows: (i) Multi-factor authentication (MFA), (ii)

Certificate-based authentication (CBA), (iii) Token-based authentication, (iv) Group-based

authentication, and (v) Hardware authentication.

 Multi-factor authentication

Multi-factor authentication is mainly achieved through two attributes: identity and context.

The identity defines one party to be authenticated with another party of communication [50].

Furthermore, the identity-based authentication schemes are designed with one or a combination

of hash, symmetric, or asymmetric cryptographic algorithms. Otherwise, the context can be

physical, which is defined by the biometric information based on physical characteristics of an

individual, e.g., fingerprints, hand geometry, retinal scans, etc. Besides, the context can also be

behavioral, which is explained by an individual's biometric behavioral features, e.g., keystroke

dynamics (the model and time of the person's rhythm during typing), gait analysis (the process

used to measure the way we walk or run), voice ID (voice-print of the voice authentication),

etc., [52].

The multi-factor technique is widely used in the literature. Authors in [53] proposed a two-

factor authentication scheme to authenticate the user. The two-factor used are the smartphone

with Near Field Communication (NFC) feature and fingerprint of the user. Their scheme uses

a database library to verify the embedded personal data in the NFC tag with the fingerprint, and

then authenticate the user and give him/her access to the internal library network. In [54], the

authors provided a two-factor authentication protocol called E-SAP (Efficient-Strong

Authentication Protocol) for hierarchical wireless sensor networks for healthcare applications.

The proposed protocol, using smart card and password as two-factor, involves hash and XOR

operations to ensure lightweight feature and make it highly suitable for resource-constrained

devices. Besides, it guarantees mutual authentication between sensors, confidentiality, the

ability to change passwords, and resilience against several attacks using symmetric

cryptography. Furthermore, authors in [55] combine a unique contextual attribute fingerprint, a

physical biometric, to succeed in IoT object authentication. This scheme guarantees that each

27

object is identified through a unique fingerprint referring to numerous characteristics, including

location, physical state, or transmitter state. In fact, authors have based on the transfer learning

technique to authenticate devices, which is useful to separate the regular changes related to the

environmental effects from the malicious changes caused by intruders. The proposed

authentication methodology accomplishes improved performance results than conventional

authentication techniques. Besides, authors in [56] discussed a behavioral-based authentication

mechanism to authenticate the user. Their approach is based on the network traffic patterns

generated during the user access to the IoT application, using a small amount of information

extracted from end-user devices, such as smartphones. This scheme ensures a high degree of

accuracy concerning the security requirement. Moreover, the authors of [57] used a new factor

called the device capability to present a two-factor device authentication scheme. This factor is

a mathematical challenge or even a cryptographic-based puzzle solved by the device.

Combining this factor with a digital signature helps achieve mutual authentication between an

IoT device and the server. Indeed, the device sends a request to communicate with the server,

this latter responds with a nonce encrypted with its private key and the timestamp to avoid

replay attacks. At this level, once the device receives the responses, it solves the nonce with the

functional operation to finalize the mutual authentication with the server.

To achieve stronger authentication with a remote user, using a password and another factor

is still vulnerable to security attacks. Therefore, in [58], the authors proposed a novel

authentication protocol using three-factor: the user smart card, personal biometrics, and a

password to authenticate a remote user as authentication attributes. The scheme ensures various

security properties like mutual authentication and sensing node anonymity. However, it costs

in terms of computation and communication overhead as it uses the fuzzy fingerprint function.

Therefore, authors in [59] designed a lightweight remote user authentication for IoT

communication using elliptic curve cryptography. The scheme is a three-factor remote user

authentication based on ECC that ensures mutual authentication between the user and the

gateway and between the gateway and the sensor node. The scheme's performance analysis

proves its efficiency and effectiveness regarding the communication and computation overhead

as it applies only cryptographic hash functions along with the symmetric encryption/decryption.

Also, it considers several security issues such as data confidentiality, integrity, and availability.

 Certificate-based authentication

A certificate-based authentication technique involves a third trusted party, known as the

Certificate Authority (CA), responsible for registering and generating certificates to the various

entities. Also, a Registration Authority (RA) is defined to ensure the validity and the correctness

of the registration process. The digital certificates issued by the CA are verified and signed by

the CA. Thus, every entity in the network can verify the certificate through the CA's signature.

This certificate has mainly three elements, including the identification data, a public key, and a

digital signature to identify the user. Besides, the certificate's use might be implicitly or

explicitly, where explicit certificates are managed and signed by a trusted third party (a CA),

while the implicit is a variant of a public key certificate [60].

The most widely used certificate standard is X.509 that identifies the format of the public

key certificates. In [61], the authors used the explicit X.509 certificate in the IoT by combining

28

the identity and certificate to reduce the storage overhead introduced when using multiple

certificates. In addition, an improved use of the explicit certificate X.509 for the IoT was

designed in [62]. Indeed, this scheme eliminates the fields not used and required from the

certificate and compresses the useful fields, which improves the system's efficiency. The

exploitation of implicit certificates in the IoT was presented in [63] and [64]. The authors

propose a two-way authentication protocol in these works, namely the certificate registration

and the authentication, using the Datagram Transport Layer Security (DTLS). However, it is

noticed that their schemes are not compliant with the DTLS standard. Hence, the authors solved

this problem in [65] by proposing the PAuthKey (Pervasive Authentication Protocol and Key

establishment) protocol, which relies on the link layer's security IEEE 802.15.4.

 Token-based authentication

In contrary to the certification-based authentication that uses a set of asymmetric keys, the

token-based authentication are essentially based on symmetric keys. A token-based

authentication concerns the creation of a piece of data by a server called an identification token.

This identification token is used to authenticate the user or the IoT device in the IoT. The widely

known servers responsible for creating the token are OAuth2 [66] [67] or open ID [68].

Otherwise, a non-token-based authentication implicates the regular use of credentials, such as

username and password, when there is a need to exchange data.

The Kerberos authentication system [69], a widely used approach based on a centralized

trusted third party, uses temporary tokens called tickets to authenticate users and servers to get

access from services. The authors of [70] implemented a prototype on an Android smartphone

and an MSP430 based MCU of an authentication token. This token permits a fast authentication

procedure without the need for additional user action. The authors of [71] suggest an

authentication framework for the IoT that exploits the security model of OAuth 1.0a. Their

scheme ensures the self-securing tokens that provide an independent security stack from all the

network using signatures on the token. This work uses the basic functionalities of Public Key

Infrastructure PKI to enhance the trust between the devices. Therefore, simplifying the

exchange of tokens and enhancing the level of security for IoT devices.

 Hardware-based authentication

The design of authentication protocol might require using the physical characteristics of the

hardware or the hardware itself. We find two types: implicit hardware-based, built with the

physical characteristics embedded on the hardware to enhance the security, such as Physical

Unclonable Function (PUF) or True Random Number Generator (TRNG), and explicit

hardware-based, established by the use of a Trusted Platform Module (TPM) [52]. The current

trend of hardware security is using the PUF regarding its advantages over software security

approaches. Indeed, a combination of software solutions (lower cost) and hardware solutions

(more secure) should be considered. The authors of [72] designed a new hardware-based

authentication approach, using a hardware fingerprint to authenticate IoT devices with their

Physical Unclonable Functions (PUF). In fact, the PUF exploits the random physical factors to

create a unique identifier for each IoT object. The authentication is achieved by applying

machine learning-based to avoid modeling-based attacks on PUF and hence developing a

29

software model on the PUF. In [73], authors implement PUF-based algorithms for IoT devices

using elliptic curves for enrollment, authentication, decryption, and digital signature.

Otherwise, due to the variations of the physical IoT environment, it affects the usage of the PUF

when using error correction codes. Thus, the authors combined the PUF with ECC to encrypt

generated key and handle the machine-learning attacks. In [74], the authors proposed a

lightweight authentication protocol for RFID tags based on PUF. The protocol is achieved

through three transactions: tag recognition, verification, and update. The first transaction

consists of recognizing the tag reader, while the second is the mutual authenticity verification

between the tag and the reader. The third transaction concerns the update process, where each

one should keep the last recent used key. To provide anonymous authentication for RFID

systems, the authors of [75] presented a PUF-based authentication scheme for classic RFID

tags. Indeed, the scheme suggests an improved authentication protocol for a noisy PUF

environment. However, this scheme does not consider updating the server with the new

Challenge-Response Pair (CRP) once the exiting pool becomes empty, which vulnerable the

system.

 Group-based authentication

Due to the large number of IoT devices requiring access to the network, the authenticating

server is overloaded. Therefore, it is essential to design a new authentication type to enhance

the IoT system's effectiveness concerning the security requirement. For that reason, a group-

based authentication has been introduced to meet the system requirement and the IoT devices'

requirements. According to that, authors in [76] proposed a group based lightweight

authentication and key agreement scheme called GLARM to attain mutual authentication and

secure key agreement for resource-constrained devices. This scheme consists of two essential

phases: the identification phase and the second one, a group authentication and key-agreement

phase. This work uses a combination of message authentication code of a group of devices to

achieve the authentication of a group of devices. The performance results also prove this

scheme's efficiency in terms of the system's communication and response time. In [77] [78], the

authors provided a threshold authentication protocol to support secure and privacy-preserving

communications in VANETs. This work uses a group signature scheme that accomplishes the

threshold authentication, anonymity, and traceability during vehicles' communication.

Furthermore, to allow remote users access to the internet services, authors in [79] introduced a

new technique to afford secure roaming for anonymous users through the group signature

method. This scheme ensures mutual authentication and privacy-preserving features. Indeed, it

also offers devices to move between the access points without the need to re-authenticate. This

fact is achieved by transmitting the roaming members' information to the Base Station (BS)

after a first authentication. A group manager is responsible for collecting and aggregating all

group members' information to send them back to the BS. This work removes the complication

of certificate management in signature cryptography. Moreover, a multicasting key

establishment scheme was provided in [80] to enable sensor nodes to join a multicasting group.

This scheme uses an ECC secret key and Elliptic Curve Digital Signature Algorithm (ECDSA)

to verify that a sensor node belongs to the multicasting group. The advantage of using ECDSA

is mainly about avoiding the DoS attack, the man-in-the-middle attack, and the replay attack.

30

This work guarantees high efficiency and effective performance compared to other

benchmarking approaches.

To sum up the centralized authentication architecture is based on a centralized trusted third

party. This trusted third party is responsible for managing and disseminating the credentials to

succeed the authentication process. Nevertheless, the number of connected devices and users

consuming the IoT services is increasing progressively, which causes a bottleneck and

congestion problems. Thus, distributed IoT authentication architectures are proposed to handle

with these problems, which is the subject of the next section.

2.3.2.2 Distributed IoT Authentication Architecture

A distributed authentication architecture in IoT is defined within distributed trust

communicating parties, where the participants coordinate autonomously to build further trust

[52]. A distributed architecture could be hierarchical, where the authentication procedure is

achieved through using multi-level architecture or flat, where no hierarchical architecture is

required to deal with the authentication procedure. There is no central trusted third party in

distributed authentication architecture schemes that can evade the problem related to a

centralized authority, including congestion signaling leading to a single point of failure [52]. In

particular, IoT systems that rely on a centralized third party cannot handle the unconventional

security requirements, particularly scalability and dynamic changes in IoT. However, the

distributed trusted systems still suffer from the non-repudiation identity problem since anyone

can establish a trusted identity provider. Consequently, it is necessary to trust all service

providers, which might lead to interoperability issues. Therefore, trustless distributed identity

providers in peer-to-peer networks are beneficial to handle with all previously mentioned

security requirements. In the following, we discuss the distributed trusted authentication IoT

architecture and the trustless distribution authentication IoT architecture based on Blockchain

technology.

2.3.2.2.1 Distributed Trusted Authentication IoT

Infrastructure

A distributed trust authentication architecture requires that every trusted authority needs to

verify the legitimacy of communicating members. In this context, the authors in [81] suggested

an authentication protocol referred to as distributed aggregate privacy-preserving authentication

(DAPPA). This work is built to ensure the vehicle system's authentication using multiple trusted

authorities and the one-time identity-based aggregate signature techniques. Indeed, this scheme

allows each vehicle to verify many messages once time and aggregate the related signatures

into one message. At this level, the data collator and the vehicle save storage space in their

memory needed for the authentication procedure. Regarding the previously mentioned scheme's

benefits, the authors of [82] also introduced an authentication protocol using identity-based

aggregate signatures to secure communication for vehicular ad-hoc networks.

A distributed trust lightweight authentication protocol was proposed in [83] to ensure a fast

authentication and authorization. This work uses the token technique to ensure an energy-

efficient distributed lightweight authentication and encryption system for IoT. The token

generation relies on the devices' trustworthiness, where the receiver generates a token for each

31

sender. Then, token expiration time might be concluded based on each sender's trust value,

while the sleep period of the receiver radio is determined based on its remaining energy.

Furthermore, this scheme applies Cipher Block Chaining‐Message Authentication Code to

encrypt exchanged messages. This proposed distributed scheme achieves mutual authentication

between users and IoT devices and ensure higher resilience against node capture attack.

However, IoT objects using the proposed encryption and token generation strategy cannot store

trust values in limited storage memory.

To manage the storage of the trust value among sensor-enabled mobile devices in the IoT

environment, the authors of [84] provided a trust management mechanism. This scheme

introduces a security manager to initiate a request to authenticate the devices that cannot hold

the security. The security manager is responsible for establishing communication between two

nodes that want to exchange information or services from each other. At this level, the

authentication of the node is ensured by verifying the request sent to the security manager. This

work provides a confidentiality security service by adopting a public key for the two

communicating nodes during every communication among nodes. Furthermore, this approach

provides users with confidentiality, authentication, and integrity based on the encryption used.

However, the performance is uncertain and theoretical evaluation is insufficient to prove the

effectiveness of the proposed model.

2.3.2.2.2 Distributed Authentication Architecture Based on

Blockchain

The distributed trust infrastructure insists that every trusted entity is responsible for

evaluating and maintaining the trust among the communicating parties. In general, these

schemes' security is more resilient than centralized schemes, and it handles the unconventional

security requirement such as the scalability issue. Otherwise, the trusted distributed schemes

are more vulnerable to collusion attacks as it is harder to keep track of the whole system.

Furthermore, the overhead of an individual entity is higher than centralized approaches.

Therefore, the Blockchain technology is introduced to achieve a distributed trustless

authentication concerning security requirements.

2.3.2.2.2.1 Blockchain Overview

Blockchain is a recent effective technology of secure computing without relying on the

centralized authority in an open system. Furthermore, according to the data management

viewpoint, a blockchain is a distributed database, where transaction records are held and

organized into a chain of blocks [85]. Besides, referring to the security perspective, the

blockchain is a peer-to-peer network secured by using intelligent cryptography with crowd

computing [86]. Consequently, as a secure ledger, the blockchain contains all the transaction

records made by all the participating entities to constitute the expanding chain of blocks.

Basically, the nodes constituting the blockchain network do not trust any other node while

trusting the whole blockchain network. These nodes carry on a pair of cryptographic keys used

to generate transactions for blocks. A block maintains information about transaction records,

the hash value of the entire block itself, and the hash value of its preceding block, which serves

as a cryptographic linkage to the previous block in the blockchain. Such a block's commitment

32

in the network is achieved through a consensus procedure enforced by the network (a

classification of the consensus is given in the appendix 1). The consensus procedure controls

the admission of new blocks into the blockchain, the read protocol for secure verification of the

blockchain, and the consistency of the data content of transaction records included in each copy

of the blockchain maintained on each node [86]. As a result, the transaction is immutable and

cannot be altered and tampered with by hindsight. Therefore, a blockchain is a secure and

distributed ledger that archives all transactions between any two parties of an open networked

system effectively, persistently, and in a verifiable manner (the transaction procedure is

presented in the appendix 1)

Blockchain offers appropriate features that would enhance security in the IoT environment.

Indeed, new emerging IoT applications are taking advantage of the security transaction

messaging. In particular, these features include tamper resistance, distributed ledgers,

cryptography secured records, and resilience to a single-point failure [91]. In addition,

blockchain consists of an efficient way to automate business and create smart contacts among

smart devices without referring to central entities. A smart contract is a kind of digital rules

forming the terms of contact [92]. Concretely, a smart contract consists of a computer program

that is automatically executed by smart objects and defines a set of rules and conditions based

on the terms of the contract. Blockchain could help to ensure the smooth running of the contracts

in a distributed way. The benefits that blockchain technology can add to the security domain in

IoT are [86]:

 Blockchain security aims to make data tampering infeasible by storing data copies at as

many possible locations.

 The blockchain system is characterized by decentralization, and the distributed nature

of the ledger provides availability and integrity.

 Blockchain is supposed to run on untrusted distributed devices without a central

authority.

Some blockchain-based solutions have recently been proposed to solve security and privacy

issues in IoT in the literature, especially authentication, which is the subject of the next

subsection.

2.3.2.2.2.2 Authentication in IoT based on Blockchain

According to the existing IoT authentication solutions, the distributed model could improve

the IoT systems' scalability and ensure high-level security and privacy for users compared with

centralized architecture, where users and devices have to trust a third party. Nevertheless, these

distributed systems suffer from the non-repudiation identity problem since anyone can involve

a trusted identity provider. Therefore, the blockchain technology emerges as a prominent

perspective to design IoT security solutions in distributed trustless environments. Taking

advantage of this feature, many researchers proposed distributed authentication solutions for

IoT based on blockchain.

In [93], the authors provided a distributed lightweight anonymous authentication protocol

for vehicular fog services based on blockchain. Their scheme is a consortium blockchain that

adopts the Practical Byzantine Fault Tolerance (PBFT) consensus algorithm to validate new

33

blocks. This work also introduces service manager nodes responsible for ensuring cross-data

authentication and the blocks' validation. Furthermore, the authors guarantee the anonymity of

the client by generating a pseudonym with every authentication. The blockchain's use offers

vehicle clients the possibility to choose to non-reauthenticate with the system when changing

the location. However, in the designed scheme, the blockchain is not deployed for keeping

authentication keys but for storing authentication results, while the keys are generated in a

corporation with a fully trusted authority. In addition, mutual authentication between vehicles

and services managers is not achieved, which is an essential feature in the authentication

protocol. Hence, the authors of [94] extended this work to resolve these problems. Indeed, they

used elliptic curve cryptography (ECC) to provide mutual authentication between vehicles and

service manager. However, the key generation still depends on a fully trusted authority. This

scheme is more efficient than [93] in terms of computation and communication overhead and

safer in terms of security.

The authors of [95] proposed an efficient distributed authentication and access control

management for the IoT. This scheme uses a set of validators to apply a distributed consensus

protocol and agree with an IoT device's admission using predefined rules. The blockchain nodes

maintain the full IoT device's information and the corresponding certificates gathered from

authorities. Furthermore, blockchain provides the integrity and validity of IoT devices'

information, leading to easy and secure access from anywhere. In particular, the IoT device no

longer needs to send its certificate to the system to be authenticated. Otherwise, the

authentication is ensured by checking the public key of the IoT devices used to sign its request

in the valid status stored in the blockchain. Their scheme has considerably reduced both the

communication and computation overheads associated with the use of certificates.

It is noticed that changing some parts of the blockchain network costs much more than

building a new network. As a result, the cost of upgrading the IoT system is very high. For this

reason, the authors of [96] have presented an authentication scheme for the IoT using

blockchain. Their protocol allows users to access and manage IoT device information with

respect to the privacy-preserving. In addition, this work can establish a secure authentication in

IoT applications. However, this scheme is vulnerable to various attacks such as secret

disclosure, traceability, and replay attacks, impacting privacy and trust. The authors of [97]

provided an enhanced version of this protocol in terms of security and cost.

Moreover, to ensure user integrity, a lightweight authentication and authorization framework

for the Blockchain-enabled IoT network was proposed [98]. The proposed protocol consists of

two services named, applications and networks. The IoT applications are cloud-based services,

like public mobility assistance, offering seamless mobility for users to interact. This

characteristic ensures a reasonable availability of the system. Otherwise, the network service

concerns the sensed data transferred in the network by a user who needs to forward into the

cloud via the predefined path. These data are stored continuously to be available for all entities

in the network, such as gateway cloud services. Every entity in the network is defined and

attached with a public-key certificate to authenticate the entire service information and get data

access. Experimental results analysis show that this framework is robust and highly secure, and

reliable compared to others.

34

To sum up, authentication is the process of confirming and ensuring the identity of objects.

In the IoT context, each object should have the ability to identify and authenticate all other

objects in the system. Once authenticated, an IoT object needs to get permission to access

another IoT entity or have something [38]. In the following section, we explain the access

control mechanisms in the IoT environment.

2.3.3 Access Control in IoT

Access control or authorization is a fundamental element to address IoT security, and mainly

it concerns regulating who can access what kind of resources or services. Indeed, an effective

access control system satisfies the main security requirements of availability by assuring data

access by legitimate users when requested, integrity by preventing resources from being

modified without authorization resources, and confidentiality by avoiding unauthorized data

exposure. Furthermore, to address a successful authorization, the following phases are required:

first is about defining a security policy by setting rules, the second concerns selecting an access

model to encapsulate the defined rules, then applying the model with the access policy [9].

Various access control models are designed through the literature in IoT to handle the growing

security requirements, which are discussed in the next subsections. In the following, we discuss

the traditional access control solutions adopted for the IoT network and then present the access

control solutions based on the group key management technique.

2.3.3.1 Traditional Access Control Solutions

Role-based Access Control (RBAC) is an access control approach and framework applied

to control and restrict user access privilege to resources based on roles. The RBAC model

comprises four different components: the core RBAC, the hierarchical RBAC, the static

separation of duty relations, and the dynamic separation of duty relations. Each component

assigns various functionalities to the RBAC. In fact, this model alleviates the effort of managing

access rules by assigning roles to permissions instead of granting access rights directly to users

[9]. RBAC approach was introduced to the access rights to the smart things that are managed

via the Web [100]. The integration with the Web has the purpose of performing a mapping

between RBAC entities: Users, Permissions, Objects, Authorization policies, Session, and the

different components of the Web of Thing. However, RBAC is unsuitable for distributed

networks such as IoT, as this kind of access model is not flexible and scalable enough. Indeed,

the user should have access to credentials and profiles on every device he/she owns, which is

an issue of scalability. At this level, we could confirm that RBAC cannot handle millions or

even billions of devices, where each one has a specific role to access and many users to

administrate, which makes it unsuitable for a large IoT environment.

Another access control solution, named Attribute-Based Access Control (ABAC), is more

flexible and scalable comparing to RBAC. ABAC model access is established according to

various attributes presented by a subject. This subject is identified through the attributes

associated with some characteristics [101] [102]. Besides, access policy rules specify conditions

over a set of attributes under which access is authorized or denied. Indeed, when a subject

initiates an access request to accomplish operations on objects, this request could be denied or

granted according to the attributes defining the object and the subject. Therefore, the ABAC

35

model facilitates the assignment of rules and the definition of an access control list. In fact,

instead of defining the access permission for each system entity, the attributes authorities are

responsible for managing and distributing the set of attributes to proper users. Consequently,

access management is effectively simplified, considering the number of attributes less than the

system's number. Many works have been suggested in the literature using the ABAC model in

IoT. Recently, the authors of [102] have proposed an efficient authentication and access control

scheme for the perception layer of the IoT. This scheme adopted the ABAC-based authorization

method for access control policy based on ECC. This work designed an efficient mutual

authentication based on secure key establishment protocol. Moreover, the access to the data in

this approach is based on user attribute certificates that ensure fine-grained access control.

Nevertheless, this model involves complex management, where each entity should update the

attributes to maintain a continuous authorization before, during, and after the access execution

permission, which is not suitable to be applied to constrained devices.

An advanced access control model named the Usage Control (UCON) proposed by [103]

introduces numerous novelties compared to traditional access control such as RBAC and

ABAC. In particular, it is composed of eight components, including authorizations, obligations,

conditions, continuity, and mutability. As the traditional models, UCON uses the notion of

subjects and objects associated with their attributes. Specifically, the subject can be an entity in

a system and is represented by several properties and capabilities related to its attributes, while

the object is associated with object attributes. The subjects hold rights on objects, which leads

to grant access or usage of an object. Both subject and object attributes can be mutable at this

level, which means that the value can be modified only by administrative action and not by its

user's activity. Moreover, UCON handles the changing of access attributes while the access is

in progress, which avoids dissatisfaction with the security policy. Also, it solves the problem

of continuous authorization before, during, and after the access execution permission. Even

though the UCON model's claimed novelties, UCON still a conceptual approach, and only

theoretic experiments have been conducted. Thus, practical feasibility and the construction of

this model in IoT should be carried out.

Capability-Based Access Control (CapBAC) was introduced to address an appropriate

authorization model for the IoT environment requirements. The concept of CapBAC is based

on using a cryptographic token, ticket, or key that permits to grant access rights and privileges.

Many CapBAC approaches were presented in the literature, citing the [105], where the authors

used the Access Control Matrix (ACM), and [106] that use Access Control List (ACL) to build

capability-based access control models. Actually, CapBAC might be classified as a centralized

and distributed model adopted in many large-scale projects [107] and is widely used in the IoT

field. Indeed, the centralized model provides interoperability, reduces computation complexity,

and enhances memory efficiency. However, this mechanism is also susceptible to a single point

of failure as the access decision's delegation depends on a central entity. The distributed

approach assigns access control logic to smart devices [104]. However, the IoT environment is

characterized by resource-constrained devices that are easily compromised. Consequently,

CapBAC is unsuitable to address a secure access control mechanism in untrustworthy IoT

environments.

36

We summarize these traditional access control solutions in the Table 2.4 as follow:

Table 2. 4: Access Control Solutions Comparison

Factors RBAC ABAC UCON CapBAC

Access Control to

Information
Through roles

Through

attributes

Through object

attributes
Through ACL

Access Control

Based on

Classification

of roles

Evaluation of

attributes

Evaluation of

subjects and

objects

Classification

of roles

Flexibility for

Accessing

Information

High High Very high High

Access Revocation

Complexity
Easy Easy Very easy Very easy

Support for

Multilevel

Database System

Yes Yes Yes Yes

With the advent of the IoT environment, these access control models designed for centralized

systems become obsolete due to the rapid growth of roles and policies. In practice, ensuring

protection for IoT systems is a great challenge due to the IoT environment's dynamic nature.

Indeed, IoT devices should maintain the connection to the Internet because of the access control

configuration and satisfy particular needs. Consequently, it becomes easier to compromise IoT

devices that are issue to cyber-security risks and attacks with severe impacts. Besides, more and

more factors and parameters should also be considered when designing access control solutions

to meet the requirement of scalable decentralized IoT systems, and day-to-day access control

decisions are becoming a group key management (GKM) responsibility.

2.3.3.2 Group Key Management Solutions in IoT

Regarding the continuous growth of connected objects in IoT, group-based applications have

emerged the communication in the IoT environment. In these group communications, numerous

members are participating in exchanging and sharing information. Thus, securing group

communication among members should be taken into consideration, including authentication

and authorization. For that reason, implementing a system to control the assignment of

permission system must be built. The Group Key Management (GKM) has been emerged as a

prominent solution to achieve the access control and assignment of permissions [108]. The

GKM is a peer-to-peer access control mechanism for IoT applications. Indeed, GKM provides

its access control based on signed permission certificates. Furthermore, since the group

members in a heterogeneous network like IoT are characterized with a high dynamicity, where

members can join and leave the group, managing a secure group communication is difficult.

Therefore, the group key must be changed whenever a member leaves or joins the group to

ensure forward and backward secrecy. Figure.2.5 shows the taxonomy of Group Key

37

Management Protocols, which are classified into three categories: centralized, decentralized,

and distributed to be discussed in what follows:

Figure.2. 5: Group Key Management Taxonomy

 Centralized GKM:

The centralized group key management operates with a single entity for controlling the group

communication. The group key is requested from a central server. This central server handles

the request by creating and disseminating the key to the appropriate group members. Various

encryption mechanisms are used in the centralized key management to setup a secure group

communication. Indeed, it adopts the symmetric keys, asymmetric keys, and the secrets to

manage key distribution.

Various are the works that have provided centralized group key management mechanisms,

the two-fundamental centralized GKM approaches are the Logical Key Hierarchy (LKH) [109]

and the One-way Function Tree (OFT) [110]. Both methods design a hierarchical key tree based

on symmetric keys, including traffic keys and encryption keys. The traffic keys are designed to

encrypt the data among the group, while the encryption keys are used to encapsulate and

distribute the updated group key and traffic keys. In contrast to LKH, all the OFT

implementations suffer from collusion attacks and increase devices’ computational overhead

for obtaining group keys. Hence, OFT is far from ideal in an IoT environment, where the

communicating devices may have limited computational power. Indeed, in the LKH, upon a

join and leave events, the key distribution center engenders OLog(n) complexity to reach the

group key to all group members, making this protocol more suitable for small groups.

In order to reduce the impact of rekeying operations, the authors of [111] have introduced

an interval-based centralized protocol. This scheme suggested a mechanism that can predict the

time of a member leaving the group. In fact, when a member first joins the group, the key

Group key
management

Centralized

Key hierarchy

Pair wise keys

Broadcast
secrets

Decentralized

Rekeying based
on time

Rekeying based
on membership

Distributed

Ring based
cooperation

Broadcast
cooperation

Hierarchical
cooperation

38

distribution center transmits the needed rekeying materials according to the period for the

member's intention to be part of the group. Once this period expires, the member leaves the

group without any triggering of rekeying events. Nevertheless, this approach has numerous

drawbacks as predicting leaving members' time is not practical for highly dynamic networks.

Moreover, remaining for a long time in the group may risk increasing the storage in IoT

constrained devices. Hence, this protocol cannot meet the requirement of dynamic IoT

environments with a high number of unpredictable leaving events.

All previously mentioned schemes are designed for single multicast groups. Authors of [112]

accommodate various services' groups to ensure many multicast groups. Their scheme

addressed rekeying in the wireless mobile environment, based on a centralized architecture and

an LKH mechanism to manage multiple communications. Besides, taking advantage of the

construction proposed by [112], authors in [113] established a two-tier centralized system,

where groups run the LKH method to handle updates of keys efficiently. This scheme addresses

the requirement of dynamic nature in the IoT environment. However, communication within

user groups is based on symmetric keys, increasing the centralized center's rekeying operations

costs.

The centralized GKM presents several problems, including the latencies caused by the

central server's workload. In fact, the procedure of creating key groups, defining keys for access

considering the permissions, and disseminating keys to group members takes time and effort.

Due to the growing number of groups on the IoT network, the number of group members grows.

Consequently, the workload at that central server quickly reaches capacity, which can lead to a

single point of failure.

 Distributed GKM:

A distributed key management mechanism has no explicit key distribution center KDC.

Furthermore, the group key is generated either in a collaborating manner between group

members or by one member. Hence, all members might perform the access control decisions

and then contribute with information to create a shared group key. Besides, each group member

should maintain and keep track of the other members to make robust and secure communication

among the group. Various cryptographic mechanisms are adopted to securely achieve

distributed key management, classified into three categories, including ring-based cooperation,

broadcast cooperation, and hierarchical cooperation.

Some typical distributed key management schemes known in the literature include

Conference Key Agreement [114], Distributed Logical Key Hierarchy [115], Distributed One-

way Function Tree [116], Diffie-Hellman Logical Key Hierarchy [117], and Distributed Flat

Table [118]. Recently researchers and references paid more attention to collaborative group key

agreement. In fact, the authors of [119] provided a completely distributed approach for group

key management based on distributed hash tables. In this approach, key management is not

controlled by any central authority. Indeed, anyone can create groups and principles by

collaborating with members. This protocol is characterized to set with various applications.

Furthermore, it enhanced the security and privacy level after removing the central authority.

However, the member group should keep a hash table of all members to ensure the security

requirements. Hence, this approach is very costly in terms of computation and storage for each

39

group member, which is not suitable for the devices' dynamic nature and the constrained

resources character in the IoT environment.

The authors of [120] provided a distributed key management scheme to decrease the

communication overhead by adopting a Distributed Batch-based Group Key. Their work is

based on polynomial to set up and generate the group key for collaborative groups in the IoT

environment. It also studies the heterogeneity of the devices with multiple capabilities under

IoT enabled sensing networks. Nevertheless, this scheme is limited to manage the

communication in one group, and it does not consider multiple communications among

different groups. Also, a large group's dynamicity with the join and leave events makes the

system more vulnerable to attacks, while it is crucial to protect the backward and forward

secrecy.

However, for large groups collecting a contribution from every member, the distributed key

management approach is time processing-consuming and capacity power-consuming [120].

Likewise, the scalability issue imposed by the IoT environment is not fulfilled.

 Decentralized GKM:

The decentralized group key management mechanisms split the network of a large group

into several smaller subgroups. Each subgroup is associated with the group manager responsible

for creating and distributing keys among the group members. This group manager tries to

reduce the problem of concentrating the work on a single server, which can avoid the single

point failure issue. Besides, the decentralized key management mechanisms meet the

unconventional security requirement, including scalability and reliability in a dynamic IoT

environment. Indeed, they offer beneficial solutions that secure multicast communication by

restricting the impact caused by the membership change in one group. Also, in the decentralized

solutions, the group member should not keep track of the other members, which reduces the

overhead. The decentralized key management techniques are classified depending on rekeying

operations, which concerns updating the group keys regarding some conditions: rekeying

basing on time and rekeying based on membership.

Protocols like Scalable Multicast Key Distribution (SMKD) [121], Intra-domain Group Key

Management Protocol (IGKMP), Hydra fall under the membership-driven category [116],

Kronos, MARKS [112], and Dual-Encryption Protocol (DEP) [120], are examples of

decentralized key management solutions. Recently, a Decentralized Batch-based Group Key

(DBGK) scheme was suggested in [122]. This scheme involves several sub-groups managed by

the area key management server, while the general keying server manages the whole group. In

this work, the group key is composed of long-term and short-term keys. Similarly, security

credentials are shared with member nodes in the group, ensuring the availability of resources.

Also, it achieves and enhances the efficiency of the system, including storage, computation,

and residual energy.

Likewise, in [123], the authors proposed an enhanced decentralized key management using

a distribution list of the session key and key update slot for each subgroup. This list is centrally

managed by a node called the area key distributor. The proposed protocol alleviates the 1-affect-

40

n phenomenon and transmission overhead of the core network, but it does not ensure forward

secrecy. Hence, the authors of [124] extended the proposed scheme [123] to another protocol

called area based multiple GKM that securely provides services when users migrate to different

wireless networks, ensuring forward secrecy. Nonetheless, its high overhead, due to revocation

events, makes it unsuitable for dynamic IoT environments.

Although the benefits that accord the decentralized schemes compared to the other GKM

model, some challenges should be considered while building the decentralized GKM. The first

one is about ensuring efficient communication between different group key management

schemes to distribute keys among member subgroups securely. The second is about establishing

a trust communication between the third parties involved in a decentralized manner. Then, to

ensure the authentication of members participating in the session group even if they belong to

the same or different network.

2.4 Summary & Discussion

To design a secure IoT system in a peer-to-peer network, we studied and reviewed the

existing IoT solutions in the literature in compliance with the established security requirements

of the developing IoT environment. Throughout our analysis of the selected research works, we

notice that authentication and authorization are the IoT environment's principal security

requirements. Indeed, we observe that the traditional security solutions, which are mainly based

on cryptographic techniques, were improved for IoT applications. These solutions are generally

efficient in terms of storage, communication, and computation. However, they cannot handle

and fulfill the new IoT environment security requirements, including scalability, heterogeneity,

interoperability, dynamic changes, etc. Although we highlighted some beneficial approaches to

handle some of IoT's unconventional security requirements, some of the existing approaches

are still closely associated with the previous major security paradigms. In fact, distributed

authentication trusted frameworks are useful to handle the scalability issue and eliminate the

load and trust on a third party, but the distributed trusted server brings more attacks' attention.

Therefore, the blockchain technology-based on trustless distributed nodes might be beneficial

to deal very well with scalability and heterogeneity issues. However, blockchain technology is

energy and time consuming due to the consensus mechanism to validate transactions. For that

reason, it is not suitable to implement blockchain for constrained resource devices. However, it

is essential to take advantage of the trustless secure infrastructure of the blockchain, which can

significantly preserve the security of a distributed IoT environment and enhance users' security.

Furthermore, we also surveyed and outlined the exiting access control and key management

solutions, which are the sources and origin for designing authorization solutions. We illustrated

various access control models, including Role-based Access Control (RAC), Attribute-based

Access Control (ABAC), Capability-based Access Control (CapBAC), and Relationship-based

Access Control (RBAC). However, all of them are not suitable for a large dynamic environment

and limited resources IoT environments. In fact, they need all to rely on a connected third party

to provide the access permissions continuously to the demanding objects or users. Otherwise,

key management techniques eliminate the dependency on an online third party. Considering

IoT characteristics such as scalability, heterogeneity, dynamicity, and security, we provided the

41

shortages of traditional key management solutions in the context of a multi-services IoT

environment. Therefore, we are experiencing impressive challenges to secure and protect large

dynamic IoT environment due to the significant increase in the attack surface.

2.5 Conclusion

Throughout this chapter, we surveyed a comprehensive overview of the IoT by presenting

the IoT architecture and the different challenges related to its continuous progressing. This IoT

revolution has emerged with a remarkable potential to cover a wide range of applications in

various domains, such as smart homes, smart industry, smart healthcare, smart cities, and

intelligent transportation. The tremendous number of connected objects transmitting data and

supporting sensitive IoT applications makes IoT environment vulnerable to many attacks. We

investigated reviewing security solutions proposed for IoT, and we identified the security

inherent challenges and limitations. For that reason, we enumerated the basic security service,

including confidentiality, integrity, availability, non-repudiation, and privacy. To meet all these

security services, designing authentication and authorization are fundamental for any IoT

application. However, in addition to these security services, IoT environments have reached a

remarkable development; therefore, they are facing many new security challenges and issues

that need to be resolved for effective deployment. Thus, we listed these security requirements

in this chapter, namely scalability, heterogeneity, limited resources of objects, interoperability,

and dynamicity related to high changes of connected objects and users of the IoT environment.

For that, we discussed the existing IoT solutions to handle the mentioned issues, such as

blockchain technology, which builds a trustless distributed infrastructure. Moreover, we

presented the group key management technique used to ensure a robust authorization and

handle the group communication issue in IoT environment. Despite the presented security

solutions that take care of the context in which IoT applications involve, there are still a lot of

open issues to be addressed, such as scalability and dynamism issues, mainly because IoT is

becoming an Internet of Everything where humans, data, processes, and objects are developing

together in a highly dynamic and complex system. Therefore, throughout this thesis, we

investigated to design a secure IoT solution to fit these issues, including the scalability, dynamic

changes, and limited resources IoT environment through achieving the two primary security

features, namely authentication, and authorization. In our first contribution, presented in the

next chapter of this manuscript, we design a new lightweight mutual authentication based on

the token concept. In this work, we added a new security layer for the authentication protocol

to meet the IoT applications' security requirements (such as the reservation Smart hotel system)

by combining the user credential with the token to identify legitimate users for a predefined

period.

42

Token-based Lightweight Authentication
for IoT environment

3.1. Introduction

As presented in the previous chapter, the rapid growth of the Internet of things has given rise

to many different applications related to environmental sensing and industrial areas (e.g., smart

city, smart hotel, smart office) [35]. This huge number of connected objects brought more

security challenges to IoT environments concerning data protection, access control, and

authentication between the user and smart devices. In particular, authentication is becoming

more challenging with the new IoT platforms [126], where the user needs to be authenticated

for a predefined fixed interval of time with a list of smart devices. Nevertheless, most IoT

devices are resource-constrained devices, where the computation capacity and energy

consumption are limited. Indeed, the authentication process should be adequately adapted to

deal with these challenges and save power consumption to increase IoT devices battery lifetime.

Throughout the literature, different user authentication solutions were investigated in IoT

environments. Researchers in [127] have introduced a continuous user authentication in IoT

based on a secret shared scheme to prove the user's legitimacy for a predefined interval of time.

However, their solution is based on a password mechanism only and hence considered as a

heavy solution and vulnerable to many security attacks. In particular, as IoT devices

communicate over insecure communication channels, the probability of an illegal user

(attacker) that can break the security and gain access to the smart device increases during

communication. Hence, the security mechanism should adopt a firm policy, such as multi-factor

authentication and encryption [128] [58]. The authors in [58] have proposed a three-factor user

authentication in the IoT environment to enhance security during communication. However,

compromising one secret key in their scheme, an attacker may deduce any previous session

key, which represents a severe threat. For this purpose, it is essential to ensure the perfect

forward secrecy, which represents a fundamental security property for session key-based

authentication.

To overcome the important issues mentioned above, we have proposed in this chapter a new

efficient and secure user authentication protocol named Token-Based Lightweight User

Chapter 3

Chapter 3

43

Authentication (TBLUA) to reach a robust security and ensure the perfect forward secrecy for

such IoT environment. In this context, we have introduced a software token-based

authentication as an efficient solution to create a strong binding between the users and the

smart devices. Indeed, we generated an additional security layer of authentication by adopting

a software token technique that offers access to a specific resource for a predefined fixed

interval of time. Furthermore, we used only lightweight computation operations such as XOR

and hash functions as cryptography techniques to authenticate the user with IoT devices. To

this end, we guarantee a remarkable decrease in computation time and saving energy of IoT

devices during the authentication process, while preventing the most widespread security

attacks and ensuring the known security properties, especially perfect forward secrecy. We

evaluated the robustness of our solution in terms of security using AVISPA as a formal

verification tool. Results have shown that the proposed TBLUA is secure under various kinds

of attacks. We also evaluated its performances, and results have shown its efficiency in terms

of computation and communication. Finally, we conducted a proof of concept that describe the

smart hotel use case in the context of the PARFAIT project.

The rest of the chapter is structured as follows. We briefly present a survey of various

existing IoT authentication schemes proposed in the literature. Then, we give an overview of

the cryptography background used in this chapter. After, we present a general description of

the network and the threat models. Later, we give a detailed description of the proposed scheme

TBLUA for user authentication in IoT environments. After that, informal security analysis and

formal security evaluation using AVISPA tools are presented. To prove our approach's

effectiveness, we achieve a performance comparison with the existing relevant schemes through

providing a simulation analysis, results, and discussions. Finally, we present a description of

the smart hotel use case, studying the vulnerabilities of such environment and giving the

accomplished simulation.

3.2. Related Works

IoT environments are exposed to their potential users in general and IoT devices

communicate through the Internet. Therefore, adversaries can easily access those devices which

makes IoT environments vulnerable to various security threats. Consequently, authentication

becomes a fundamental mechanism for the user to be first authorized to the Gateway (GW) as

well as the smart device (IoT device) before granting access to the real-time data. In this section,

we study existing authentication solutions in IoT presented in the literature. Indeed, to achieve

user authentication, Wong et al [129] proposed a lightweight hash-based user authentication

scheme, but Das [130] found out that is vulnerable to replay attack and stolen-verifier attack.

Subsequently, Das [130] presented a two-factor authenticated key establishment scheme for

WSNs, which claimed to provide strong authentication and resist to various kinds of attacks.

However, many articles [9-13] pointed out that Das's scheme [130] is still vulnerable to

privileged insider attacks and parallel session attacks. Although the abovementioned schemes

[9-13] have much better performance than Das' scheme [130], they still have various defeats

such as smart card loss attacks and forgery attacks. In 2012, Das et al. [135] presented a better

scheme than the previous two-factor authentication to solve these weaknesses. Unfortunately,

44

the security of this new scheme was not satisfactory due to its vulnerability to some attacks

such as privileged insider attack and stolen smart card attack [15-17]. Turkanović et al. [136]

designed a lightweight user authentication protocol for wireless sensor networks (WSN)

tailored for an IoT environment. Their protocol is based on symmetric key encryption, hash and

XOR computations that tends to save both computation and communication resources.

However, it has also several security flaws, as it does not protect privileged insider, offline

password guessing, user impersonation attacks and untraceability [128].

Chang and Le [137] recently designed smartcard-based user authentication protocols P1 and

P2 with the help of user password: P1 is greatly lightweight since it is based only on bitwise

XOR and hash functions; P2 is not lightweight as it applies ECC along with bitwise XOR and

hash functions. Unfortunately, Das et al. [138] found out that both P1 and P2 are insecure

against offline password guessing and session specific temporary information attacks. In

addition, P1 is also insecure against session key breach attack. Most recently in 2016, Gope and

Hwang [139] designed a practical authentication scheme, which ensure mutual authentication,

user anonymity and perfect forward secrecy. Nevertheless, the protocol causes the

desynchronization attack in the communication between the gateway and the smart device

because the hash chain value is updated after each successful session. In 2017, Wazid et al. [58]

proposed a three-factor authentication scheme that ensures various kinds of imperative security

properties like, mutual authentication, sensing node capture, impersonation, and privileged

insider attacks. Unfortunately, it requires more communication and computation costs

compared to other schemes. Furthermore, it does not ensure perfect forward secrecy, which is

an indispensable security property for authenticated schemes.

Table 3. 1: Evaluation of IoT Authentication Schemes

Scheme Environment
Authentication

technique
Strength(+)/Weakness(-)

[129]

Wireless Sensor

Network (WSN)

environment

Single Factor

authentication uses:

Hashing/ XOR

functions

 Resilience to the insider attack.

 Low computation and communication

overhead.

- Vulnerable to replay attack and stolen-

verifier attack.

- Perfect forward secrecy not considered.

[130]
Wireless Sensor

Network environment

Two-Factor

authentication uses:

Hashing/XOR

functions

 Low computation and communication

overhead.

 Resist against the replay attack, and denial

of service attack.

- Vulnerable to privileged insider attacks and

parallel session attacks.

- Cannot ensure mutual authentication and

session key verification.

[132]
Wireless Sensor

Network environment

Single Factor

authentication uses:

 Low computation and communication

overhead.

45

Hashing/XOR and

Symmetric key

Encryption functions

 Anonymous authentication for remote

users.

- Vulnerable to the insider attack problem.

- Perfect forward secrecy not considered.

[133]
Wireless Sensor

Network environment

Two-Factor

authentication uses:

Hashing/XOR

 Protection against Gateway node bypassing

attack.

 Mutual authentication between GW and

sensor nodes.

- Vulnerable to smart card loss attacks and

forgery attacks.

- No backward and no forward secrecy are

considered.

[134]

Internet of Things

(IoT)

Environment

Three-Factor

authentication uses:

Elliptic Curve

Cryptosystem

 Ensuring user anonymity and forward

secrecy.

 Resist to impersonation, replay and

dictionary attack.

- Backward secrecy not considered.

- High communication and computation cost.

[136]

Internet of Things

(IoT)

Environment

Single Factor

authentication uses:

Hashing/XOR and

Symmetric key

Encryption functions

 Saving both computation and

communication.

 Resilience against Denial of Service attack.

- Vulnerable to insider attack, stolen smart

card and offline password guessing attacks.

- Vulnerable to session key disclosure.

[137]
Wireless Sensor

Network environment

Single Factor

authentication uses:

ECC along with

bitwise XOR and hash

functions

 Mutual authentication is achieved.

 Ensuring the perfect forward secrecy

 Resilience against DoS attack.

- High communication and computation

overhead.

- Vulnerable session key breach attack.

[139] WSN environment

Single Factor

authentication uses:

Hashing/XOR and

Symmetric key

Encryption functions

 Anonymous authentication.

 Low complexity.

 Ensure perfect forward secrecy.

- Vulnerable to session key disclosure

- Vulnerable to the desynchronization attack

in the communication between the GW and

the smart device

[128]

Internet of Things

(IoT)

Environment

Three-Factor

authentication uses:

ECC along with

bitwise XOR and hash

functions

 Anonymity and untraceability in the

authentication.

 Resilience to several security attack such as

DoS, replay attack, and man-in-the-middle

attack.

- Heavy computational cost.

- No backward and no forward secrecy are

considered.

46

[58]

Internet of Things

(IoT)

Environment

Three-Factor

authentication uses:

Hashing/XOR and

Symmetric key

Encryption functions

 Ensuring mutual authentication.

 Resilience sensing node capture,

impersonation and privileged insider

attacks.

- It requires more communication and

computation.

- Perfect forward secrecy is not provided.

To the best of our knowledge and as it is presented in Table 3.1, most of the authentication

schemes have several security limitations especially in providing the perfect forward secrecy3

feature, which is a basic and important security property for authentication in IoT environment.

Some schemes [139] attempt to achieve this issue using the one-time hash chain technique.

However, this latter causes desynchronization attack. Moreover, most schemes present high

communication and computation costs in order to provide several security services. Besides,

with the growth of IoT environment and applications (smart hotel, smart office, etc.), new

security challenges emerged, where authentication is necessary for different predefined periods.

Motivated by the above fact, we construct a new efficient authentication scheme for IoT

environment based on token technique to insure a secure and lightweight mutual authentication

between the user, the gateway, and the smart device. Token is used to enhance the

authentication scheme and to offer access to a specific resource for a predefined period. Thus,

using this mechanism, each communication will be valid only for a fixed period, which reduces

risks of stolen identity.

3.3. Background

In this section, we provide a brief description about the one-way hash function mechanism

and the symmetric key cryptography mechanism, which serve as techniques to design our

solution.

3.3.1. One-way Hash Function

A cryptographic one-way hash function is a powerful cryptography technique that accepts a

variable length block of data as input and outputs a fixed-size bit string, known as the hash

value or message digest. The hash function is used to provide data integrity to check whether

an adversary has modified the message in transit from the source to the destination.

Furthermore, the hash technique is a lightweight mechanism as its execution time is very low

compared to other cryptography mechanisms.

Considering the one-way hash function ℎ: {0, 1}∗ → {0, 1}𝑙 takes an arbitrary length input

𝑥 ∈ {0, 1}∗, and produces a fixed length (say, l-bits) output ℎ(𝑥) ∈ {0, 1}𝑙 hash value. The

hash function has the following properties:

 h can be applied to a data block of all sizes.

3 Forward secrecy: when an adversary compromises the secret key of one session, then he/she can learn any

previous session key, which is a serious threat.

47

 For any given input x, the message digest h(x) is easy to operate, enabling easy

implementation in software and hardware.

 The output length of the message digest h(x) is fixed.

 Deriving the input x from the given message digest 𝑦 = ℎ(𝑥) and the given hash

function ℎ(.) is computationally infeasible. This property is called the one-way

property.

 For any given input x, finding any other input 𝑦 ≠ 𝑥 so that ℎ(𝑦) = ℎ(𝑥) is

computationally infeasible. This property is known as weak-collision resistant

property.

 Finding a pair of inputs (𝑥, 𝑦), with 𝑥 ≠ 𝑦 so that ℎ(𝑥) = ℎ(𝑦) is computationally

infeasible. This property is referred to as strong-collision resistant property.

3.3.2. Symmetric Key Cryptography

The symmetric key encryption mechanism uses a single key for encryption/decryption.

Consider the model of symmetric encryption shown in Figure 3.1. Before the secure

communication takes place, both the sender, denoted S, and the receiver, denoted R, share the

same secret key k. Hence, S can encrypt a plaintext with the key k using the encryption function

when he/she wants to communicate securely with R. Indeed, S produces a ciphertext using the

symmetric encryption function and sends it to R over a public channel (insecure channel). At

this level, R can recover the original plaintext by decrypting the ciphertext using the same secret

key k.

Since the channel is public, an adversary A can eavesdrop, modify, or delete the messages from

the channel. In this model, A can try to derive the secret key and the plaintext with the help of

the eavesdropped ciphertext. This kind of attack is known as ciphertext-only attack.

3.4. System Model and Security Requirements

In this section, we present the proposed system model that ensures a token-based lightweight

authentication for IoT environment and the related threat model.

Figure.3. 1: Symmetric key cryptography

48

3.4.1. System Model

The system model, depicted in Figure 3.2, is composed of the following components:

 The Reservation Server (RS) responsible of generating reservation tokens for users

and distributing them to the registration authority.

 The Registration Authority (RA) is a trust server responsible for registering all smart

devices and gateway securely.

 The Gateway (GW) node, which is more powerful than smart devices, is used as the

trusted third-party entity to help establishing the mutual authentication and key

agreement [58].

 The End user, who wants to access data from smart devices for a predefined interval

of time, registers himself/herself at the trusted RS.

 The Smart devices representing the IoT devices that collect and publish data to the

legitimate user during the prefixed interval time.

Moreover, we assume that all the heterogeneous devices (i.e., GW, users with their smart

phones and smart IoT devices) are synchronized with their clocks and agree (mutually) on a

maximum transmission delay (ΔT) to protect replay attacks in the proposed scheme [140].

Figure.3. 2: Proposed Network model

49

The main idea of our solution is to generate an additional security layer of authentication by

adopting a software token technique that offers access to a specific resource for a predefined

fixed interval of time. As mentioned in Figure 3.3, the authentication process is guaranteed

through the login, password, and a lightweight token defined for a period.

3.4.2. Security and Threat Model

We have used the Dolev-Yao threat model [131], in which two communicating parties

interact over insecure channel. According to this model, the endpoint entities such as user Ui

and smart device SDj are not considered as trustworthy. An adversary A can eavesdrop the

exchanged messages, and thus modify or delete the messages during transmission. Furthermore,

smart devices are not tamper-resistant and thus, some smart devices can be physically

compromised by A. Therefore, A can extract sensitive information stored in those nodes using

the well-known power analysis attacks [143]. Nevertheless, we assume that the GW in the

proposed scheme is a trusted node and is not compromised under any circumstances; otherwise,

the whole network is compromised [58]. Furthermore, RA and RS are also fully trusted and

cannot be compromised by an adversary. Finally, the user's smart phone SP can be lost/stolen

by A and the stored sensitive information, such as the token of identification, can also be

extracted from its memory using the power analysis attacks [143].

3.5. Proposed Token Based Lightweight Authentication for

IoT Environment (TBLUA)

After introducing the system model and the threat model, we describe in more detail the

proposed authentication and key agreement protocol (TBLUA) that secures data transmission

after a successful reservation. In Table 3.2, we define the most important notations used in this

chapter.

Figure.3. 3: Security model

Figure 3. 2: Security model

50

Table 3. 2: Symbols and their descriptions

Symbols Descriptions

RS.

RA

Ui

GW

SDj

PWi

IDi

SP

IDSDj

K

KUG

KSG

TIDi

R1

R2

R3

EK(·)/DK(·)

NS

T

ΔT

h(·)

ǁ

⊕

Reservation Server

Registration Authority

User i

Gateway node

Smart device node j

Password of Ui

Identity of Ui

User's Smart Phone

Identity of SDj

Secret key of GW.

Shared key between User U and GW.

Shared key between SD and GW.

Temporary identity generated by GW for Ui

Random nonce created by Ui

Random nonce created by GW.

Random nonce created by SDj

Symmetric encrypt/decrypt using key K

Sequence number

Current timestamp

Maximum transmission delay

Cryptographic one-way hash function

Concatenation operation

Bitwise XOR operation

To design TBLUA, we develop the following phases, which we detail in the subsequent

subsections:

1) Offline smart device and GW registration phase,

2) User reservation or registration phase,

3) Token distribution between GW and smart devices phase,

4) Login, authentication, and key establishment phase,

5) Password change phase.

3.5.1. Offline Smart Device and GW Registration phase

During this phase, the registration authority server (RA) is responsible for registering smart

devices and gateway nodes. More specifically, the RA manages the request for the initial

enrolment from IoT devices, the gateway, and the user by generating the necessary keys and

identities for them.

In fact, RA selects a unique identity IDSDj for each deployed smart device SDj , then generates

a unique random 160-bits secret shared key, KSG, between the GW and SDj, where 1 ≤ j ≤ n (n

is the number of smart devices) and produces the initial sequence numbers for the smart device,

51

NSDj, and the gateway, NSGj respectively, NSDj = NSGj = 0. Subsequently, the RA stores

{𝐼𝐷𝑆𝐷𝑗 , 𝑁𝑆𝐷𝑗 , 𝐾𝑆𝐺} into the smart device SDj memory, and {𝐼𝐷𝑆𝐷𝑗 , 𝑁𝑆𝐺𝑗 , 𝐾𝑆𝐺} into the GW

memory. We adopt the concept of sequence number to counter the desynchronization attack

and promote the authentication process.

The RA further randomly generates a unique GW's identity IDGW, and a unique random 1024-

bit gateway secret key K. Then, depending on the localization and the IoT service, the RA

defines the different groups of SDj composing the system, which is identified by 𝐺𝑖 =

{𝑆𝐷𝑗; 1 < 𝑗 < 𝑁, N is the number of SDj in 𝐺𝑖}. Each group is associated and controlled by a

gateway. After that, RA computes the corresponding smart device secret information 𝑆𝑗 =

 ℎ (𝐼𝐷𝑆𝐷𝑗|| 𝐺𝑖 || 𝐾) for each SDj and finally RA updates the SDj node information's table entry

with < 𝐼𝐷𝑆𝐷𝑗 , 𝑆𝑗 , 𝑁𝑆𝐺𝑗 , 𝐾𝑆𝐺 , 𝐺𝑖 > in the GW memory. At the end of this phase, the system is

designed with many groups of IoT devices controlled with a gateway.

3.5.2. User Registration Phase

In this phase, the user Ui needs to register himself with the RA and get the necessary

information for authentication to access securely to the services of a particular smart device

SDj. As depicted in the Figure.3.4, many steps are carried out by the mentioned components:

the user Ui, the reservation server RS, and the registration authority RA as follow:

 Step1: The user picks an identity IDi, a password PWi, computes the masked password:

𝑀𝑃𝑊𝑖 = ℎ (𝐼𝐷𝑖⊕ 𝑃𝑊𝑖) and sends a request message containing < 𝐼𝐷𝑖 , 𝑀𝑃𝑊𝑖 > to

the reservation server securely using either the TLS (Transport Layer Security) protocol

or in an offline mode.

 Step2: The reservation server RS reserves a group of smart devices Gi from the existing

groups defined in the system to the user. Then, RS generates a reservation token for this

user basing on the user and the gateway's identities, the selected devices group, and the

time of reservation 𝑇𝑜𝑘𝑒𝑛𝑢 = 𝐸𝐾(𝐼𝐷𝑖 , 𝐼𝐷𝐺𝑊 , 𝐺𝑖, 𝑇𝑒), where Te is the expiration time

of the token. Then, RS sends the 𝑇𝑜𝑘𝑒𝑛𝑢 to the RA through secured channels.

 Step3: After receiving the 𝑇𝑜𝑘𝑒𝑛𝑢, RA generates a unique random 128-bits number n

and computes a shred secret key with the user 𝐾𝑈𝐺 = ℎ(𝐼𝐷𝑖||𝑛) ⊕ 𝐼𝐷𝐺𝑊 . Subsequently,

RA also generates a random number Ri to hide the masque password and selects a

different temporary identity TIDi for the user Ui in each session that ensure the user's

anonymity and untraceability. At this level, RA computes the necessary information for

the user to be used during the authentication phase as follow:

 𝑅𝑒𝑔𝑖 = ℎ(𝐼𝐷𝑖||𝑅𝑖 ||𝑀𝑃𝑊𝑖 ||𝐾𝑈𝐺) Ensure a mutual authentication between

the user and the gateway.

 𝐴𝑖 = 𝑅𝑖⊕𝑀𝑃𝑊𝑖,

 𝑇𝐾𝑈𝑖 = 𝑇𝑜𝑘𝑒𝑛𝑢⊕ ℎ(𝐼𝐷𝑖⊕𝑅𝑖⊕𝑀𝑃𝑊𝑖⊕𝐾𝑈𝐺)

 𝐷𝑖 = 𝑅𝑖⊕ℎ(𝑇𝐼𝐷𝑖||𝐾𝐺𝑊).

Finally, RA stores the couple < 𝑇𝐼𝐷𝑖, 𝐷𝑖 > into the GW memory for further use and

forwards to the user Ui the registration information < 𝑇𝐼𝐷𝑖 , 𝑅𝑒𝑔𝑖, 𝐴𝑖, 𝑇𝐾𝑈𝑖 , 𝐾𝑈𝐺 >

through a secured channel.

52

 After receiving < 𝑇𝐼𝐷𝑖 , 𝑅𝑒𝑔𝑖, 𝐴𝑖 , 𝑇𝐾𝑈𝑖 , 𝐾𝑈𝐺 >, the smart phone of the user updates the

shared secret key 𝐾𝑈𝐺
∗ = 𝐾𝑈𝐺⊕ℎ(ℎ(𝐼𝐷𝑖) ⊕ ℎ(𝑃𝑊𝑖)) to ensure the perfect forward

secrecy, and then stores in its memory < 𝑇𝐼𝐷𝑖 , 𝑅𝑒𝑔𝑖, 𝐴𝑖, 𝑇𝐾𝑈𝑖 , 𝐾𝑈𝐺
∗ >.

3.5.3. Token Distribution Between GW and Smart Device Phase

After a successful reservation phase, the GW distributes the generated Token of the user Ui

to the selected group of smart devices. This phase is presented in the Figure.3.5, and detailed

as follows:

 Step1: 𝐺𝑊 → 𝑆𝐷𝑗: {𝐷1, 𝐷2, 𝑡1}.

The RA sends the 𝑇𝑜𝑘𝑒𝑛𝑢securely to the GW Then, the GW decrypts first the token using its

secret key K; decrypts 𝐷𝐾(𝑇𝑜𝑘𝑒𝑛𝑢)𝐾 = (𝐼𝐷𝑖, , 𝐺𝑖, 𝑇𝑒, 𝐼𝐷𝐺𝑊) and retrieves all identities' smart

devices IDSDj of the group Gi. Then, for each smart device SDj, the GW generates a random

number rj and Timestamp t1, and forms a request to authenticate the SDj by computing:

 𝐷1 = ℎ(𝐾𝑆𝐺𝑗 ||𝑟𝑗|| 𝐼𝐷𝑆𝐷𝑗||𝑡1),

Figure.3. 4: User registration phase

53

 𝐷2 = 𝑟𝑗⊕ℎ(𝐾𝑆𝐺𝑗).

Finally, the GW forwards the authentication request < 𝐷1, 𝐷2, 𝑡1 > to the selected smart device

SDj.

 Step2: 𝑆𝐷𝑗 → 𝐺𝑊: {𝐷3, 𝐷4, 𝑡2}.

After receiving the request from GW, SDj checks the timestamp |𝑡1
∗ − 𝑡1| < 𝛥𝑇: if it matches

the smart device SDj computes the challenge 𝑟𝑗
∗ = 𝐷2⊕ℎ(𝐾𝑆𝐺𝑗), and the device's information

𝐷1
∗ = ℎ(𝐾𝑆𝐺𝑗||𝑟𝑗

∗||𝐼𝐷𝑆𝐷𝑗||𝑡1). If equation 𝐷1
∗ = 𝐷1 holds, SDj authenticates its gateway and

generates a random number sj and timestamp t2, computes the following messages D3 and D4 to

authenticate in return the gateway:

 𝐷3 = ℎ(𝐼𝐷𝑆𝐷𝑗||𝐾𝑆𝐺||𝑟𝑗
∗ ||𝑠𝑗|| 𝑡2),

 𝐷4 = 𝑠𝑗⊕ℎ(𝐾𝑆𝐺)

Then, the smart device SDj sends its response < 𝐷3, 𝐷4, 𝑡2 > to the GW Otherwise, if 𝐷1
∗ ≠ 𝐷1,

this phase breaks immediately.

 Step3: 𝐺𝑊 → 𝑆𝐷𝑗: {𝐹, 𝑇𝑥, 𝑡3}.

The GW checks first the timestamp|𝑡2
∗ − 𝑡2| < 𝛥𝑇: if it holds, the GW verifies the received

message through computing:

 𝑠𝑗
∗ = 𝐷4⊕ℎ(𝐾𝑆𝐺𝑗),

 𝐷3
∗ = ℎ(𝐼𝐷𝑆𝐷𝑗 ||𝐾𝑆𝐺𝑗|| 𝑟𝑖 ||𝑠𝑗

∗|| 𝑡2),

Subsequently, the GW compares D3* and D3. If 𝐷3
∗ = 𝐷3 holds the device is authenticated,

thus, the GW continues this phase and generates timestamp t3. Afterward, the GW computes a

factor F to identify SDj with the corresponding token 𝐹 = ℎ(𝑇𝑜𝑘𝑒𝑛𝑢||𝐾||𝐼𝐷𝑆𝐷𝑗), calculates

the expiration time 𝑇𝑥 = 𝑇𝑒 ⊕ ℎ(𝐾𝑆𝐺𝑗) and updates the shared secret key with the smart

device, 𝐾𝑆𝐺𝑛𝑒𝑤 = ℎ(𝐼𝐷𝑆𝐷𝑗||𝐾𝑆𝐺𝑗). Finally, the GW sends the user token under the factor F, the

time expiration 𝑇𝑥, and the timestamp parameter < 𝐹, 𝑇𝑥, 𝑡3 > to the corresponding SDj.

Otherwise (𝐷3
∗ ≠ 𝐷3) the GW breakdowns the communication.

 Step 4: the smart device SDj, after receiving < 𝐹, 𝑇𝑥, 𝑡3 >, updates the shared secret

key with the GW. 𝐾𝑆𝐺𝑛𝑒𝑤 = ℎ(𝐼𝐷𝑆𝐷𝑗||𝐾𝑆𝐺𝑗) and stores the factor F and the 𝑇𝑥

parameter.

54

3.5.4. Login, Authentication, and Key Agreement Phase

Once the registration process is completed, a user Ui is now ready to login into the system

proceeding as follows (step 1 in Figure.3.6):

 Step1: 𝑆𝑃𝐺𝑊: {𝑇𝐼𝐷𝑖 , 𝐶𝐼𝐷𝑖 , 𝐶𝐼𝐷𝑆𝐷𝑗 , 𝑀1, 𝑅0, 𝑇1}

Ui enters his/her IDi and PWi into his smart phone SP. Then, SP computes the MPW and Regi to

verify the legitimacy of the user as follows:

 𝑀𝑃𝑊𝑖
∗ = ℎ(𝐼𝐷𝑖⊕𝑃𝑊𝑖),

 𝑅𝑖
∗ = 𝐴𝑖⊕𝑀𝑃𝑊𝑖

∗,

 𝐾𝑈𝐺 = 𝐾𝑈𝐺
∗ ⊕ℎ(ℎ(𝐼𝐷𝑖

∗) ⊕ ℎ(𝑃𝑊𝑖
∗)),

 𝑅𝑒𝑔𝑖
∗ = ℎ(𝐼𝐷𝑖||𝑅𝑖

∗||𝑀𝑃𝑊𝑖
∗||𝐾𝑈𝐺),

Figure.3. 5: Token distribution phase

55

Besides, SP aborts the login request if 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 𝑅𝑒𝑔𝑖
∗ = 𝑅𝑒𝑔𝑖 does not hold. Otherwise,

SP proceeds for further operations. At that moment, the user enters the identity IDSDj of the

smart device with which he/she wants to communicate; after that, the SP produces a random

nonce R1 and a current timestamp T1. Further, SP forms a login message basing on the

registration information, with his identity, registration token, and the smart device's identity. In

fact, SP calculates CIDi and CIDSDj to hide the real identities and ensure the anonymity.

Moreover, it computes the message M1 to authenticate with the gateway:

 𝑇𝑜𝑘𝑒𝑛𝑢
∗ = 𝑇𝐾𝑈𝑖 ⊕ℎ(𝐼𝐷𝑖

∗||𝑅𝑖
∗||𝑀𝑃𝑊𝑖

∗||𝐾𝑈𝐺),

 𝐶𝐼𝐷𝑖 = 𝐼𝐷𝑖⊕ℎ(𝑇𝐼𝐷𝑖||𝐾𝑈𝐺||𝑅𝑖
∗||𝑇1),

 𝑅0 = ℎ(𝐾𝑈𝐺||𝑅𝑖
∗) ⊕ 𝑅1,

 𝐶𝐼𝐷𝑆𝐷𝑗 = 𝐼𝐷𝑆𝐷𝑗⊕ℎ(𝑇𝑜𝑘𝑒𝑛𝑢
∗ ||𝐾𝑈𝐺||𝑅𝑖

∗||𝑇1),

 𝑀1 = ℎ(𝐼𝐷𝑖||𝑅1||𝑇𝑜𝑘𝑒𝑛𝑢
∗ ||𝐾𝑈𝐺||𝑇1)

Finally, the SP sends < 𝑇𝐼𝐷𝑖, 𝐶𝐼𝐷𝑖 , 𝐶𝐼𝐷𝑆𝐷𝑗 , 𝑀1, 𝑅0, 𝑇1 > to GW through a public channel. At

this level, an authentication process begins among the user, the gateway, and the smart devices,

which leads to establishing a session key between the user and the smart device. The

authentication and key agreement are executed through the steps expressed below and shown

in Figure.3.6:

 Step2: 𝐺𝑊𝑆𝐷𝑗: {𝑀𝟐, 𝑀3, 𝑀4, 𝑁𝑆𝐺𝑗 , 𝑇2}

The GW checks the legitimacy of the user once receiving the login request. Thus, the GW

checks if |T1* – T1 | < ΔT to resist the replay attack: if so, the GW searches the temporary

identity TIDi in its memory to retrieve the corresponding Di from the couple< 𝑇𝐼𝐷𝑖 , 𝐷𝑖 >. At

this level, GW verifies the user identity through computing the necessary information to ensure

the user's legitimacy using the message M1:

 𝑅𝑖
∗ = 𝐷𝑖⊕ℎ(𝑇𝐼𝐷𝑖||𝐾),

 𝐼𝐷𝑖
∗ = 𝐶𝐼𝐷𝑖⊕ℎ(𝑇𝐼𝐷𝑖||𝐾𝑈𝐺||𝑅𝑖

∗||𝑇1),

 𝑅1
∗ = 𝑅0⊕ℎ(𝑅𝑖

∗||𝐾𝑈𝐺),

 𝑀1
∗ = ℎ(𝐼𝐷𝑖

∗|𝑅1
∗||𝑇𝑜𝑘𝑒𝑛𝑢||𝐾𝑈𝐺||𝑇1).

Now, if equation 𝑀1
∗ = 𝑀1 holds, the GW assumes that the message sent by Ui is authentic;

otherwise, it discontinues the protocol's operations. After that, the GW verifies the time

expiration of the token, hence the GW decrypts (𝑇𝑜𝑘𝑒𝑛𝑢)𝐾 = (𝐼𝐷𝑖 , 𝐼𝐷𝐺𝑊 , 𝐺𝑖 , 𝑇𝑒), generates a

current timestamp T2. If equation Te >T2 does not hold, the GW dismisses this phase. Otherwise,

the token has not expired and the GW verifies the SDj's identity chosen by the user by

computing:

 𝐼𝐷𝑆𝐷𝑗 = 𝐶𝐼𝐷𝑆𝐷𝑗⊕ℎ(𝑇𝑜𝑘𝑒𝑛𝑢||𝐾𝑈𝐺||𝑅𝑖
∗||𝑇1),

 𝑆𝑗
∗ = ℎ(𝐼𝐷𝑆𝐷𝑗

∗ ||𝐺𝑖 ||𝐾)

Besides, the GW checks whether 𝑆𝑗
∗ = 𝑆𝑗 holds, to ensure the validity of the requested devices,

otherwise, this phase is corrupted.

After verifying the legitimacy of the user Ui and the time expiration of the token, the GW

generates a random nonce R2 to prepare the user request to the corresponding smart device. For

that, the GW calculates M2 including the user information that ensure the authentication

56

between the user and the smart device. In addition, GW should authenticate the smart device

through computing M3 and M4, and then updates the sequence number 𝑁𝑆𝐺𝑗 to maintain the

synchronization with the smart device:

 𝑀2 = ℎ(ℎ(𝐼𝐷𝑖||𝐼𝐷𝑆𝐷𝑗
∗ ||𝑅1

∗||𝑅2)||ℎ(𝑇𝑜𝑘𝑒𝑛𝑢||𝐾||𝐼𝐷𝑆𝐷𝑗)||𝐾𝑆𝐺𝑗||𝑅2||𝑁𝑆𝐺𝑗||𝑇2),

 𝑀3 = ℎ(𝐼𝐷𝑖||𝐼𝐷𝑆𝐷𝑗||𝑅1
∗||𝑅2) ⊕ 𝐾𝑆𝐺𝑗 ,

 𝑀4 = 𝑅2⊕ ℎ(𝐾𝑆𝐺𝑗)

 𝑁𝑆𝐺𝑗 = 𝑁𝑆𝐺𝑗 + 1.

Finally, the GW forwards < 𝑀2, 𝑀3, 𝑀4, 𝑁𝑆𝐺𝑗 , 𝑇2 > to SDj through the public network.

 Step3: 𝑆𝐷𝑗 𝐺𝑊: {𝑀6, 𝑀7, 𝑇3}

Once receiving the request from the GW, the SDj checks first if |𝑇2
∗ − 𝑇2| < 𝛥𝑇, and verifies

whether 1 ≤ 𝑁𝑆𝐺𝑗 − 𝑁𝑆𝐷𝑗 ≤ N, where N is a threshold, which is set according to the specific

applications requirements. If they do not hold, SDj terminates the session. Otherwise, SDj

retrieves the nonce R2 from the M4 and prepares the session key through M5:

 𝑅2
∗ = 𝑀4⊕ℎ(𝐾𝑆𝐺𝑗),

 𝑀5 = 𝑀3⊕𝐾𝑆𝐺𝑗 ,

 𝑀2
∗ = ℎ(𝑀5||ℎ(𝑇𝑜𝑘𝑒𝑛𝑢||𝐾 ||𝐼𝐷𝑆𝐷𝑗) ||𝐾𝑆𝐺𝑗||𝑅2

∗||𝑁𝑆𝐺𝑗 − 1||𝑇2).

Afterward, if equation 𝑀2
∗ = 𝑀2 holds the user is authentic, the SDj generates a random number

R3 and the current timestamp T3, and computes 𝑇𝑒 = 𝑇𝑥 ⊕ ℎ(𝐾𝑆𝐺𝑗) to check if the token is

expired. If 𝑇𝑒 > 𝑇3 does not hold, this phase ends. Else, the SDj computes the session key and

calculates the response to the GW:

 𝑆𝐾 = ℎ(𝑀5||𝑅2
∗||𝑅3||𝑇3),

 𝑀6 = ℎ(𝑆𝐾||𝑅3||𝐾𝑆𝐺𝑗||𝑁𝑆𝐺𝑗||𝑇3),

 𝑀7 = 𝑅3⊕ℎ(𝑅2).

Finally, the SDj derives a new shared secret key with the GW, 𝐾𝑆𝐺𝑗 = ℎ(𝐾𝑆𝐺𝑗||𝐼𝐷𝑆𝐷𝑗),

updates its shared secret key 𝐾𝑆𝐺𝑗
∗ ← 𝐾𝑆𝐺𝑗 to ensure the perfect forward secrecy, updates the

sequence number 𝑁𝑆𝐷𝑗 ← 𝑁𝑆𝐺𝑗 to maintain the synchronization and forwards

< 𝑀6, 𝑀7, 𝑇3 > to the GW through the public network.

 Step4: 𝐺𝑊 𝑈𝑖: {𝑀7, 𝑀8, 𝑀9, 𝑀10, 𝑇4}

After receiving < 𝑀6, 𝑀7, 𝑇3 >, the GW checks if |𝑇3
∗ − 𝑇3| < 𝛥𝑇; if it holds, the GW retrieves

the challenge of the smart device R3 using 𝑀7, the session key to compute M6:

 𝑅3
∗ = 𝑀7⊕ℎ(𝑅2),

 𝑆𝐾∗ = ℎ(ℎ(𝐼𝐷𝑖||𝐼𝐷𝑆𝐷𝑗||𝑅1
∗||𝑅2)||𝑅2||𝑅3

∗||𝑇3),

 𝑀6
∗ = ℎ(𝑆𝐾∗||𝑅3

∗||𝐾𝑆𝐺𝑗||𝑁𝑆𝐺𝑗||𝑇3),

Besides, the GW checks whether 𝑀6
∗ = 𝑀6 holds to ensure the legitimacy of the smart device.

If it is incorrect, the GW abandons the connection. Otherwise, the GW generates a timestamps

T4 and a new temporary identity 𝑇𝐼𝐷𝑖
∗ ≠ 𝑇𝐼𝐷𝑖. Then, the GW calculates a response to the user

Ui including the session key:

57

 𝑀8 = 𝑅2⊕ℎ(𝐼𝐷𝑖|||𝑅1),

 𝑀9 = ℎ(𝐼𝐷𝑖||𝑆𝐾
∗||𝑅3

∗||𝐾𝑈𝐺),

 𝑀10 = 𝑇𝐼𝐷𝑖
∗⊕ℎ(𝑅2⊕𝑅3

∗),

After, the GW updates its memory by a new-shared secret key with the user 𝐾𝑈𝐺𝑛𝑒𝑤 =

ℎ(𝐾𝑈𝐺||𝐼𝐷𝑖) and with the smart device 𝐾𝑆𝐺𝑛𝑒𝑤𝑗 = ℎ(𝐾𝑆𝐺𝑗||𝐼𝐷𝑆𝐷𝑗), which ensure the perfect

forward secrecy. Finally, the GW sends the response message < 𝑀7, 𝑀8, 𝑀9, 𝑀10, 𝑇4 > to the

user Ui through the public channel.

 Step5: After receiving < 𝑀7, 𝑀8, 𝑀9, 𝑀10, 𝑇4 > Ui checks the timeliness of T4: if equation

 |𝑇4
∗ − 𝑇4| < 𝛥𝑇 holds, the SPs of the user retrieves the smart device and the GW challenges

R2 and R3 from 𝑀8, 𝑀7 and the temporary identity using 𝑀10 to compute the session key and

𝑀9:

 𝑅2
∗ = 𝑀8⊕ℎ(𝐼𝐷𝑖||𝑅1),

 𝑅3
∗ = 𝑀7⊕ℎ(𝑅2

∗),

 𝑇𝐼𝐷𝑖
∗ = 𝑀10⊕ℎ(𝑅2

∗⊕𝑅3
∗),

 𝑆𝐾∗ = ℎ(ℎ(𝐼𝐷𝑖||𝐼𝐷𝑆𝐷𝑗)||𝑅𝟏|𝑅2
∗)||𝑅2

∗||𝑅3
∗||𝑇3),

 𝑀9
∗ = ℎ(𝐼𝐷𝑖||𝑆𝐾

∗||𝑅3
∗||𝐾𝑈𝐺),

Then, the SP's user checks whether 𝑀9
∗ matches with the received 𝑀9. If it is correct, Ui

considers that all the received message < 𝑀7, 𝑀8, 𝑀9, 𝑀10, 𝑇4 > is valid and then transmits

a confirmation message to the GW, which confirm a session key is established successfully.

The SP now updates the old 𝑇𝐼𝐷𝑖 with the new 𝑇𝐼𝐷𝑖
∗ and also updates the shared secret key

with the GW. 𝐾𝑈𝐺𝑛𝑒𝑤 = ℎ(𝐾𝑈𝐺||𝐼𝐷𝑖) to preserve the perfect forward secrecy. Similarly,

the GW computes a new value 𝐷𝑖
∗ = 𝑅𝑖⊕ℎ(𝑇𝐼𝐷𝑖

∗||𝐾) and replaces < 𝑇𝐼𝐷𝑖 , 𝐷𝑖 > with

< 𝑇𝐼𝐷𝑖
∗, 𝐷𝑖

∗ >. Otherwise, if the 𝑀9
∗ is different from 𝑀9, the authentication fails.

3.5.5. Password Change Phase

During this phase, we offer the user the possibility to update periodically his password

without the help of the GW. The required updates are explained in the following:

 Step1: Ui inputs IDi and PWi into his smart phone SPs. Then, SP calculates:

 𝑀𝑃𝑊𝑖
∗ = ℎ(𝐼𝐷𝑖⊕𝑃𝑊𝑖),

 𝑅𝑖
∗ = 𝐴𝑖⊕𝑀𝑃𝑊𝑖

∗,

 𝐾𝑈𝐺 = 𝐾𝑈𝐺
∗ ⊕ℎ(ℎ(𝐼𝐷𝑖

∗) ⊕ ℎ(𝑃𝑊𝑖
∗)),

 𝑅𝑒𝑔𝑖
∗ = ℎ(𝐼𝐷𝑖||𝑅𝑖

∗||𝑀𝑃𝑊𝑖
∗||𝐾𝑈𝐺),

Afterward, the SP verifies whether the condition 𝑅𝑒𝑔𝑖
∗ = 𝑅𝑒𝑔𝑖 holds. If it is not valid,

SP ends the password change phase; otherwise, the SP retrieves the corresponding

Token 𝑇𝑜𝑘𝑒𝑛𝑢
∗ = 𝑇𝐾𝑈𝑖⊕ℎ(𝐼𝐷𝑖⊕𝑅𝑖⊕𝑀𝑃𝑊𝑖 ⊕ 𝐾𝑈𝐺) and proceeds for further

computations.

 Step2: After verifying the legitimacy of Ui, the SP requests the user Ui to enter a new

password.

58

 Step3: The user Ui inputs a new password 𝑃𝑊𝑖−𝑛𝑒𝑤, then the SP calculates:

 𝑀𝑃𝑊𝑖−𝑛𝑒𝑤 = ℎ(𝐼𝐷𝑖⊕𝑃𝑊𝑖−𝑛𝑒𝑤),

Figure.3. 6: Login, authentication and key agreement phase

59

 𝑅𝑒𝑔𝑖−𝑛𝑒𝑤 = ℎ(𝐼𝐷𝑖||𝑅𝑖
∗||𝑀𝑃𝑊𝑖−𝑛𝑒𝑤||𝐾𝑈𝐺),

 𝐴𝑖−𝑛𝑒𝑤 = 𝑅𝑖
∗⊕𝑀𝑃𝑊𝑖−𝑛𝑒𝑤,

 𝑇𝐾𝑈𝑖−𝑛𝑒𝑤 = 𝑇𝑜𝑘𝑒𝑛𝑢
∗ ⊕ℎ(𝐼𝐷𝑖⊕𝑅𝑖⊕𝑀𝑃𝑊𝑖−𝑛𝑒𝑤⊕𝐾𝑈𝐺),

 𝐾𝑈𝐺_𝑛𝑒𝑤
∗ = 𝐾𝑈𝐺⊕ℎ(ℎ(𝐼𝐷𝑖) ⊕ ℎ(𝑃𝑊𝑖−𝑛𝑒𝑤)).

Finally, the SP's user drops the existing user information related to the old password

< 𝑅𝑒𝑔𝑖, 𝐴𝑖, 𝑇𝐾𝑈𝑖 , 𝐾𝑈𝐺
∗ > and stores < 𝑅𝑒𝑔𝑖−𝑛𝑒𝑤, 𝐴𝑖−𝑛𝑒𝑤, 𝑇𝐾𝑈𝑖−𝑛𝑒𝑤 , 𝐾𝑈𝐺_𝑛𝑒𝑤

∗ > into its

memory. Thus, the Ui can easily change the password without involvement of the GW.

3.6. Security Evaluation

In this section, we evaluate the security of the proposed scheme TBLUA, and show that it

ensures many security properties and withstands most popular security attacks. For that, we

analyze TBLUA security and provide formal verification using the AVISPA tool [145].

3.6.1. Security Analysis

In this section, we present a discussion about the main security analysis and the proof of

properties that our proposed TBLUA protocol ensures.

(i) Anonymity of the User and the Smart Device

An outsider person may try to guess the identities IDi and IDSDj. For that, we suppose that an

adversary A traps all exchanged messages between user, GW and SDj. After the login phase,

the user sends the login message, and we assume that A traps <

𝑇𝐼𝐷𝑖, 𝐶𝐼𝐷𝑖 , 𝐶𝐼𝐷𝑆𝐷𝑗 , 𝑀1, 𝑅0, 𝑇1 >. He cannot compute IDi and IDSDj from CIDi, M1 and CIDSDj

without knowing 𝑅𝑖, < 𝑇𝑜𝑘𝑒𝑛𝑢, 𝑅1, 𝐾𝑈𝐺 > and < 𝑇𝑜𝑘𝑒𝑛𝑢, 𝑅𝑖, 𝐾𝑈𝐺 >, respectively. During the

authentication and key agreement phase, the GW hides IDi and IDSDj to compute the message

< 𝑀2, 𝑀3, 𝑀4, 𝑇3 >. Consequently, the extraction of IDi and IDSDj using these information is

computationally infeasible owing to property of hash function h(·). Furthermore, the identity

IDi of Ui and IDSDj of smart device are not directly involved in < 𝑀6, 𝑀7 >, A cannot derive IDi

and IDSDj when A traps < 𝑀6, 𝑀7 > during the protocol run. In addition, the GW hides IDi and

IDSDj in < 𝑀7, 𝑀8, 𝑀9, 𝑀10 , 𝑇4 >, where the identities IDi and IDSDj are protected by h(·), thus

the extraction is computationally infeasible and the probability of guessing is negligible. We

can claim that A is unable to break the anonymity of the proposed protocol using public

messages.

(ii) Mutual Authentication Property

In client-server communication model, mutual authentication is an extremely essential

security aspect of any authentication protocol. In Step 2 of the login and authentication phase

(step2 in Figure.3.5), the GW first ensures the legitimacy of the user Ui before starting further

computation. In Step3, the SDj checks if the condition 𝑀2
∗ = 𝑀2 to authenticate the user Ui and

the GW This latter checks the legitimacy of the smart device through verifying the condition

𝑀6
∗ = 𝑀6 in Step4. Finally, after receiving < 𝑀7, 𝑀8, 𝑀9, 𝑀10 , 𝑇4 > the Ui authenticates GW

60

and SDj in Step 5 by checking the received 𝑀9. Hence, the authentication is ensured mutually

between all the participants during the authentication phase in all the exchanged messages.

(iii) Perfect Forward Secrecy

The perfect forward secrecy (PFS) feature prevents the leakage of any prior session key even

if the secret key is revealed. In the proposed scheme, let suppose the adversary has obtained the

long-term shared secret keys between both the (user, gateway) and the (smart device, gateway)

that are KUG and KSG, respectively. After each transaction, both the user and the GW update the

keys KUG; KUG.
∗ = h(KUG.||𝐼𝐷𝑖), and the smart device and the GW update the shared secret keys

KSG; KSG.
∗ = h(KSG.||𝐼𝐷𝑆𝐷𝑗) by one-way hash function. Under this assumption, if the adversary

compromises a smart device or the smart phone, he can manage only KSG.
∗ and KUG

∗ . Since the

hash function is one way, the adversary cannot obtain KUG. and KSG. from KUG.
∗

 and KSG
∗ .

Therefore, as the identities of the user and the smart device are hidden the adversary cannot

obtain the future shared keys. Thus, the perfect forward secrecy is retained in our proposed

protocol TBLUA.

(iv) Mobile Device Stolen Attack

In this attack, an adversary A attempts to extract confidential information and then tries to

misuse this information. We assume that A has got the mobile device of a legal user Ui and

extracted all the information < 𝑇𝐼𝐷𝑖 , 𝑅𝑒𝑔𝑖, 𝐴𝑖 , 𝑇𝐾𝑈𝑖 , 𝐾𝑈𝐺
∗ > with the help of the power analysis

attack [143]. Note that 𝑅𝑒𝑔𝑖 is protected by one-way hash function h(.). Therefore, A is not

capable to extort any information from 𝑅𝑒𝑔𝑖 owing to the one-way property of h(·).The

probability of guessing IDi and 𝑃𝑊𝑖 using 𝑅𝑒𝑔𝑖 is negligible. In addition, A is unable to

compute 𝑀𝑃𝑊𝑖 without knowing 𝑅𝑖. The confidential information in the mobile device is

𝑇𝑜𝑘𝑒𝑛𝑢, which is used to compute 𝑇𝐾𝑈𝑖, but the adversary A cannot compute Tokenu without

knowing < 𝐼𝐷𝑖 , 𝑅𝑖, 𝑀𝑃𝑊𝑖, 𝐾𝑈𝐺𝑖 >. In addition, computing 𝑅𝑖is not feasible without knowing

the secret key of the GW, which makes the proposed protocol withstand this attack.

(v) User Impersonation Attack

In an impersonation attack, an adversary A makes efforts to impersonate the identity of a

legitimate user Ui. In our scheme, to forge a user, the adversary A must generate a valid value

< 𝑇𝐼𝐷𝑖 , 𝐶𝐼𝐷𝑖 , 𝐶𝐼𝐷𝑆𝐷𝑗 , 𝑀1, 𝑅′0, 𝑇′1 > by incorporating a new random number and timestamp to

be accepted by the GW. However, to compute 𝐶𝐼𝐷𝑖, 𝐶𝐼𝐷𝑆𝐷𝑗, and 𝑀1, he needs the correct

identities IDi, IDSDj, the secret shared key KUG, and Tokenu. Besides, the identities and the token

are not transmitted in the public channel clearly, and the shared secret key KUG is updated after

each transaction. Therefore, our proposed scheme can resist the user impersonation attack.

(vi) Offline Password Guessing Attack

Offline password guessing attack is the most damaging threat, where an adversary chooses

a password from a dictionary to guess the sensitive information of the user. We suppose that A

has got the mobile device of Ui and extracted the stored information in its memory

61

< 𝑇𝐼𝐷𝑖 , 𝑅𝑒𝑔𝑖, 𝐴𝑖 , 𝑇𝐾𝑈𝑖 , 𝐾𝑈𝐺
∗ >. In the proposed protocol, 𝑃𝑊𝑖 is used to compute the masque

password 𝑀𝑃𝑊𝑖 = ℎ(𝐼𝐷𝑖⊕ 𝑃𝑊𝑖). Otherwise, using the mobile device information, A may

guess 𝑃𝑊𝑖 from (𝑅𝑒𝑔𝑖 = ℎ(𝐼𝐷𝑖||𝑅𝑖 ||𝑀𝑃𝑊𝑖 ||𝐾𝑈𝐺), and 𝐴𝑖 = 𝑅𝑖⊕𝑀𝑃𝑊𝑖); however, the

probability to get the true 𝑃𝑊𝑖 is negligible in polynomial time. Therefore, A cannot guess the

password PWi, and our scheme resist the offline password guessing attack.

(vii) Desynchronization Attack

Our scheme employs different shared keys between the user, GW and smart devices and

one-time hash function techniques to provide PFS. Furthermore, an additional synchronization

method is essential to maintain the consistency of several one-time values between the GW and

the smart device. Hence, we use the sequence number to resist the desynchronization attack. If

an adversary A blocks the message flow between the smart device and the GW, the

synchronization will be lost, and the hash chain values of the two participants will not match

each other. For that, we use a sequence number 𝑁𝑆𝐺𝑗 and 𝑁𝑆𝐷𝑗 to record the updated number

of hash chain, where NSGj is the sequence number of the GW side. Thus, after the GW sends

the message flow, the value of hash chain 𝑁𝑆𝐺𝑗 in GW side must be updated. Besides, the SDj

receives the message < 𝑀2, 𝑀3, 𝑀4, 𝑁𝑆𝐺𝑗 > and synchronizes the one-time hash chain value

through performing the operation below 𝑁𝑆𝐺𝑗 − 𝑁𝑆𝐷𝑗 time hash functions.

(viii) Physical Node Capture Attack

Capturing node attack enables an adversary to extract sensitive information stored in those

captured smart devices to compromise a secure communication among non-compromised smart

devices in the network. Let’s assume that SDj is a compromised smart device, where an

adversary A can extract the secret key KSGj and even the session key SK, established between

the compromised node SDj and a legitimate user Ui. In the proposed authentication protocol,

we use distinct shared secret keys between the gateway and each smart device SDi. Thus, SDi

establishes a distinct session key with Ui, which is different from all other session keys in the

network. Therefore, all non-compromised smart devices can still communicate with the

legitimate user Ui with higher secrecy. Hence, our proposed scheme withstands smart device

capture attacks.

(ix) Node Impersonation Attack

An impersonation attack means that a malicious attacker may try to masquerade as a valid

smart device SDj. If an attacker wants to impersonate as a smart device SDj node, he/she will

need to forge the message < 𝑀6, 𝑀7, 𝑇3 >, sent to the GW. For that, the adversary needs to

know both identities IDi and IDSDj to calculate the session key embedded in 𝑀6 and the

corresponding shared secret key KSG of SDj. However, it is computationally hard for adversary

A to get the true value as its information is protected by the one-way hash function. Hence, we

can declare that our protocol resists the node impersonation attack.

62

(x) Token Impersonation Attack

In this attack the adversary A tries to create a new token and duplicates an existing token,

where 𝑇𝑜𝑘𝑒𝑛𝑢 = 𝐸𝑘 (𝐼𝐷𝑖 , 𝐼𝐷𝐺𝑊 , 𝐺𝑖 , 𝑇𝑒). If adversary A intercepts the messages exchanged

between user, GW and SDj node, he cannot guess both identities IDi and IDGW, which are

protected with the one-way hash function h(.). In addition, A cannot create a token without prior

knowledge of the GW's long-term secret key K, which confirm that our scheme is resistant to

this attack.

(xi) Token Modification Attack

An attacker may generate a fake token or modify the token contents (such as the expiration

time or the list of the identity of SDj) of an existing token. Thus, a malicious client may modify

the assertion to gain access to information that they should not be able to view. It can be

observed that the token is protected with a symmetric cipher function using the secret key of

GW. Hence, A cannot either modify or delete any information of the token. Therefore, our

scheme resists against this attack.

(xii) Token Replay Attack

Under this attack, an attacker attempts to use an expired token that has already been used

with a user in the past to get access in the future. However, A cannot reuse a token, as each

token is characterized by an expiration time parameter, and the use of this token is limited for

a prefixed time.

3.6.2. Formal Verification Using AVISPA Tool

We described our protocol using the AVISPA's High-Level Protocol Specification Language

(hlpsl) [145]. The AVISPA tool allows the designers of security protocols to detect potential

attacks and verify if their protocols meet the attended security services. In our protocol, we

defined three roles in the HLPSL language, named: the gateway (GW), the smart device (SD),

and the user (U) roles, which correspond to the different agents of our system. Specifically, we

modeled a channel (dy) in our specifications based on Dolev-Yao intruder model, which means

that all the exchanged messages between all the agents (GW, SD, U) are intercepted by the

intruder. This last can analyze, modify the intercepted messages, or eventually decrypts them if

he knows the required keys. In our protocol, we examine some security properties, which are

specified in the goal section of HLPSL specifications, through verifying the following

properties:

 GW authenticates U on ℎ(𝐼𝐷𝑖||𝑅1||𝑇𝑜𝑘𝑒𝑛𝑢
∗ ||𝐾𝑈𝐺||𝑇1): U generates a nonce value

𝑅1 and sends the challenge 𝑅0 = ℎ(𝐾𝑈𝐺||𝑅𝑖
∗) ⊕ 𝑅1. If GW is able to construct

ℎ(𝐼𝐷𝑖||𝑅1||𝑇𝑜𝑘𝑒𝑛𝑢
∗ ||𝐾𝑈𝐺||𝑇1) from the challenge 𝑅0, GW authenticates U.

 SD authenticates GW on ℎ(𝑀5||ℎ(𝑇𝑜𝑘𝑒𝑛𝑢||𝐾 ||𝐼𝐷𝑆𝐷𝑗) ||𝐾𝑆𝐺𝑗||𝑅2
∗||𝑁𝑆𝑗0 − 1||𝑇2): GW

generates a nonce value 𝑅2 and sends the challenge 𝑀4 = 𝑅2⊕ ℎ(𝐾𝑆𝐺𝑗). If the SD is

able to construct ℎ(𝑀5||ℎ(𝑇𝑜𝑘𝑒𝑛𝑢||𝐾 ||𝐼𝐷𝑆𝐷𝑗) ||𝐾𝑆𝐺𝑗||𝑅2
∗||𝑁𝑆𝑗0 − 1||𝑇2) from the

challenge 𝑀4, SD authenticates GW.

63

 GW authenticates SD on ℎ(𝑆𝐾||𝑅3||𝐾𝑆𝐺𝑗||𝑁𝑆𝑗0||𝑇3): SD generates a nonce value

𝑅3 and sends the challenge 𝑀7 = 𝑅3⊕ℎ(𝑅2). If GW is able to construct

ℎ(𝑆𝐾||𝑅3||𝐾𝑆𝐺𝑗||𝑁𝑆𝑗0||𝑇3), from the challenge 𝑀7, GW authenticates SD.

 U authenticates SD on ℎ(𝐼𝐷𝑖||𝑆𝐾
∗||𝑅3

∗||𝐾𝑈𝐺): SD generates a nonce value 𝑅3 and sends

the challenge 𝑀7 = 𝑅3⊕ℎ(𝑅2). If U is able to construct ℎ(𝐼𝐷𝑖||𝑆𝐾
∗||𝑅3

∗||𝐾𝑈𝐺), from

the challenge 𝑀7, U authenticates SD.

We performed the test through AVISPA tools using the On-the-fly Model-Checker (OFMC)

that executes protocol falsification and bounded verification by exploring the transition system.

Besides, the backend OFMC ensures an automatic verification of security properties. We can

see clearly in figure 3.7 the obtained results on OFMC that prove the security of our TBLUA

protocol.

Figure.3. 7: Results reported by the OFMC backend

64

3.7. Performance Analysis

In this section, we analyze the performance of our scheme TBLUA regarding the

functionality features, communication, and computation costs. In fact, we compare our

proposed scheme with four prior related works [58][136][137][142]. Furthermore, we only

concentrate on comparing communication and computation costs during login and

authentication phases since the registration phase, token distribution phase, and password

update phase are not used frequently.

3.7.1. Functionality Comparison

In this subsection, we present a comparison of the functionality features between the existing

schemes and the proposed scheme in Table 3.3. We consider many security features such as

mutual authentication, user anonymity, offline password guessing, and perfect forward secrecy,

etc. In addition, we present many possible attacks for such an environment, especially we

consider token attacks, where an attacker may abuse the token to compromise a communication.

As shown in table 3.3, our proposed scheme can resist against various kinds of known attacks

and fulfill the desirable security features particularly the perfect forward secrecy. Thus, the

proposed scheme is more secure compared to other schemes.

Table 3. 3: Functionality Features Comparison

Properties [16] [18] [23] [5] TBLUA

Mutual Authentication - + + + +

Key agreement + + + + +

Intractability - - + + +

User anonymity - - + + +

SD. anonymity - - + + +

Off line PW guessing - - + + +

User impersonation - - + + +

GW impersonation - - + + +

SD impersonation - - + + +

Privileged-insider - - + + +

Perfect Forward Secrecy - + - - +

Replay attack - - + + +

Man-in-the-middle - - + + +

Stolen verifier + - + + +

De-synchronization - - - - +

GW bypassing - - + + +

Node capture - - + + +

Token impersonation N/A N/A N/A N/A +

Token replay N/A N/A N/A N/A +

Token modification N/A N/A N/A N/A +
Note: N/A: Not Aplicable, (+): resists, (-): does not resist

65

3.7.2. Computation Costs Comparison

In the computation comparison, we study the evaluation of our proposed scheme in terms of

the number of executions of cryptographic operations such as encryption, decryption, and hash

functions with respect to the number of performed actions. We consider the notations Th=0.5ms

to be the time for one hashing operation (usage of SHA-256 hash function). Furthermore,

TEnc=TDec=8.7ms be respectively the time for one encryption/decryption using symmetric

cryptography operations, and TECC=TFE=63.075ms represent the time for one elliptic curve

cryptography and one fuzzy extraction operation [128][58] respectively. Besides, we omit XOR

operation due to its negligible computational cost. In Table.3.4, we provide computation cost

separately for user, gateway node, and smart device during the login and authentication phase.

Table 3. 4: Computation Costs Comparison

Scheme User GW Smart Device

[136] 7Th= 3.5ms 5Th= 2.5ms 7Th= 3.5ms

[137] 2TECC+7Th= 129,6ms 9Th=4,5ms 2TECC+5Th= 128,6ms

[142] 7Th+TDec+TEnc= 20ms
11Th+2*TDec+2* TEnc=

40.3ms

4Th+TDec+TEnc=

19.4ms

[58]
TFE+13Th+TDec+ TEnc=

87.0ms
5Th+2TDec+2TEnc= 37.3ms

4Th+TDec+TEnc=

19.4ms

TBLUA 16Th= 8ms 19Th+TDec= 18.2ms 7Th= 3.5ms

For the smart device and the user, we notice that our protocol minimizes the number of

encryption/decryption operations against increasing the number of hash computations.

However, the cost of a hash function is negligible compared to the high cost of

encryption/decryption operations. Indeed, our scheme TBLUA offers a lower computation cost

compared to the other schemes, which proves that a TBLUA is a lightweight solution. Figure.3.8

plots the computation costs of our scheme compared to existing methods [58][136][137][142]

presented in Table.3.4. Actually, the computation cost on the smart device presents less value,

which is explained by using the hash function operation to achieve the authentication process.

Besides, the cost on the user's smartphone and the gateway is less than the cost in

[58][137][142] schemes but higher than in [136] scheme. In fact, as shown in the table.3.3, we

can see that [136] fulfill only key agreement security feature, which explains that their solution

is not secure. Finally, we confirm that TBLUA presents a better computation cost with respect

to the security issues in such an environment.

66

Figure.3. 8: Computation costs

3.7.3. Communication Costs Comparison

In the communication comparison, we evaluate our scheme in terms of the number of

messages exchanged during the login and authentication phase execution. We assume 160 bits

as the length of the user identity and 32 bits as the length of the smart device's identity.

Furthermore, we consider the size of the challenge equal to 128 bits, while the timestamp is

equal to 32 bits, and the size of the sequence number is set to 64 bits. In addition, the length of

each hash value is set to160 bits (i.e., if SHA-1 hashing algorithm is applied [144]), and the size

of symmetric encryption/decryption block size is set to 128 bits (i.e., if we use AES-128

algorithm [141]). For elliptic curve cryptography (ECC) operations, we assume each ECC

value's length is equal to 160-bit.

During the authentication phase, the user in our scheme needs only to transmit the request of

authentication below: {𝑇𝐼𝐷𝑖 , 𝐶𝐼𝐷𝑖, 𝐶𝐼𝐷𝑆𝐷𝑗 , 𝑀1, 𝑅0, 𝑇1}. In fact, the communication cost can be

calculated as follow:

𝑢𝑠𝑒𝑟𝑐𝑜𝑚𝑚 = 𝑠𝑖𝑧𝑒 (𝑇𝐼𝐷𝑖 + 𝐶𝐼𝐷𝑖 + 𝐶𝐼𝐷𝑆𝐷𝑗 + 𝑀1 + 𝑅0 + 𝑇1)

𝑢𝑠𝑒𝑟𝑐𝑜𝑚𝑚 = 160 + 160 + 32 + 160 + 128 + 32 = 672 bits = 84 𝐵𝑦𝑡𝑒𝑠

In addition, the smart device should only response to the authentication request to the

gateway {𝑀6, 𝑀7, 𝑇3}, where 𝑀6 = ℎ(𝑆𝐾||𝑅3||𝐾𝑆𝐺𝑗||𝑁𝑆𝑗0||𝑇3), and 𝑀7 = 𝑅3⊕ℎ(𝑅2).

Hence, we can conclude the communication's cost of the smart device is:

𝑠𝑚𝑎𝑟𝑡_𝑑𝑒𝑣𝑖𝑐𝑒𝑐𝑜𝑚𝑚 = 𝑠𝑖𝑧𝑒 (𝑀6 +𝑀7 + 𝑇3)

𝑠𝑚𝑎𝑟𝑡_𝑑𝑒𝑣𝑖𝑐𝑒𝑐𝑜𝑚𝑚 = 160 + 160 + 32 = 352 bits = 44 𝐵𝑦𝑡𝑒𝑠

Finally, the gateway, which is the relay between the user and the smart device, transmits these

messages during the authentication phase: 𝐺𝑊𝑆𝐷𝑗: {𝑀𝟐, 𝑀3, 𝑀4, 𝑁𝑆𝑗0, 𝑇2}, and

𝐺𝑊 𝑈𝑖: {𝑀7, 𝑀8, 𝑀9, 𝑀10, 𝑇4}. Thus, the GW communication cost is calculated as follow:

67

𝐺𝑊𝑐𝑜𝑚𝑚 = 𝑠𝑖𝑧𝑒 (𝑀2 +𝑀3 +𝑀4 + 𝑁𝑆𝑗0 + 𝑇2 +𝑀7 +𝑀8 + 𝑀9 +𝑀10 + 𝑇4)

𝐺𝑊𝑐𝑜𝑚𝑚 = 7 × 160 + 2 × 32 + 64 = 1248 𝑏𝑖𝑡𝑠 = 156 𝐵𝑦𝑡𝑒𝑠

The Figure.3.9. plots the communication cost comparison with benchmarking schemes. Indeed,

we can see that our scheme presents an enhancement in the communication cost compared to

[136] [137] [58]. Otherwise, TBLUA presents a desirable communication costs compared to

[142] scheme. In fact, as presented in the Table.3.3, [142] scheme does not ensure the perfect

forward secrecy and cannot resist the desynchronization attack. Whereas, TBLUA achieves the

perfect forward secrecy through updating the shared secret keys after each transaction and

transmitting a sequence number that resists to desynchronization attack, which explain the

communication cost of TBLUA comparing to the [142] scheme. We conclude that our proposed

scheme offers a tradeoff between the security and the communication costs.

Figure.3. 9: Communication costs

3.8. Proof of Concept Within Smart Hotel Use Case

The smart hotel is an intelligent system with a range of IoT objects working together to make

the guests' stay more comfortable, lower the energy consumption, and help the staff and

management with their tasks. The high density of guests with a regular change of reservation

status might be problematic in such an intelligent environment. Thus, securing communication

in such a smart system is primordial. In what follow, we present the architecture of the smart

hotel use case used in the context of PARFAIT project [7]. Then, we study the possible

vulnerabilities and the risk in the corresponding use case. Finally, we describe the designed

prototype and the different performed simulation

3.8.1. Smart Hotel Use Case

To secure a smart hotel, we design and create an architecture of an intelligent control system

that can be used in the hotel environment in the context of the PARFAIT project, such as shown

68

in Figure.3.10. Our architecture is composed of a reservation smart hotel server responsible for

generating the token of authentication for guests based on the period of accommodation and the

availability of rooms in the hotel, and for the employers basing on their tasks. The reservation

server communicates with the registration authority server to sign the users' initial enrollment

requests with the smart hotel. These servers may be locally or maintained in the cloud. At this

level, the registration authority, after receiving requests, registers the user under the smart hotel

system and issues certificated tokens to the corresponding users.

The smart hotel comprises an extensive range of IoT objects that communicates via the

Internet through the ZigBee gateway. This latter is maintained to connect the IoT objects to the

external world network. In particular, the smart lock receives the token of identification through

the gateway node to access the legitimate user during the accommodation. All the necessary

information about the guest is loaded into the system from the registration phase previously

filled. Consequently, the room environment, such as temperature or lighting, is prepared before

the guest's arrival based on his/her preferences. At the guest's arrival, he/she could unlock the

doors using the sensors on his/her smartphone, such as NFC. We can confirm that the smart

hotel is also beneficial for the hotel staff as the information about the guest's preferences can

save time if they have special requests.

Figure.3. 10: Smart Hotel architecture

69

3.8.2. Risk Management and Vulnerability

Smart hotel based on IoT network contains several critical components required for the proper

functioning of guest and hotel staff, prone to several vulnerabilities and threats. These vulnerabilities

allow a malicious entity to attack the IoT devices and threaten security goals. It is essential to understand

the vulnerabilities and possible attacks at the different communication stack layers in this context. Table

3.5 shows the principal vulnerabilities that can be exploited in the smart hotel environment reporting

different attacks that menace the smart hotel's main different components.

Table 3. 5: Vulnerability analysis of a smart hotel

Vulnerability exploited Attack \ threat Consequence(s)

Communication network

Vulnerabilities in the initial

handshake between a user's

smartphone and the smart

lock.

Man-in-the-middle attack

The adversary can eavesdrop on the

communication and inject fake

messages.

Weak link-layer

authentication and lack of

anti-replay protection

Denial of Service (DoS)

attack

Smart hotel unavailability and

connection interruption

Lack of network access

control.
Eavesdropping attack

The intercepted messages may contain

sensitive data information related to user

accommodation.

Weak authentication and

anti-replay protection.
Spoofing attack

The adversary can transmit fabricated

data to a smart lock from a fake source.

Authentication packets

shortage protection
Data tampering

The adversary can delete or replace part

or all of eavesdropped information.

Weak anti-replay protection. Replay attack
The adversary could reuse the guest

request to get access to the room

Sensitive traffic to identify

the session token is not

protected.

Hijacking attack
The adversary can use the token to make

a request as a user

Weak authentication

process: manipulation of

unknown data.

Desynchronization attack

Interrupting communication between

guest and smart lock to cause a sequence

of retransmissions

Mobile application

Insufficient knowledge and

lack of awareness.
Phishing attacks

An adversary can gain access to guest's

accommodation information using

phishing mail techniques such as

fraudulent notification that contains

malware.

SLack of encryption, and

unprotected communication

network.

Sniffing attack

An adversary could get guest personal

data such as his/her name, identity, and

password.

70

Misconfigure the smart

hotel's application on guest's

smart phone.

Software attacks (malware,

viruses, worms, etc.)

Software configuration updates and

changes in guest monitoring devices can

lead to a system malfunctioning.

Limited resources Data flooding attack

Exhausted memory resources and the

guest could not make a request to access

the room.

Weak authentication and

access control mechanisms.
Impersonation attack

The adversary masquerading as a

legitimate guest can control and access

the smart lock.

Server

Insufficient knowledge and

lack of awareness.
Social engineering attack

An adversary can gain access to guest's

accommodation information using social

engineering techniques that contains

malware.

Weak application and

network layer security

Denial of Service (DoS)

attack

Guest cannot access to their

accommodation information and smart

hotel reservation server cannot perform

any operation.

Manufacturing fault. -

Unprotected interfaces. -

Weak application and

network layer security.

Hardware failure

The guest cannot access to their

reservation information, and all the

smart hotel services

Smart lock

Insufficient cryptography of

authentication factor
Brute force attack

An adversary could get the guest

password and then get access and

control to the guest room

Limited resources Data flooding attack

Exhausted memory resources and the

lock could not respond to the guest

request

3.8.3. Design of a Smart Lock Prototype

This section illustrates the implementation of the smart lock prototype designed to

authenticate users in the context of the PARFAIT project [7]. In fact, our testbed, as shown in

Figure 3.11, contains (A) the smartphone, (B) the server, and (C) the smart lock; the smart lock

comprises two communicating interfaces: an NFC module to communicate with the smartphone

and a ZigBee module to communicate with the server. Besides, the server is composed of two

main parts; the first one is connected to the Internet responsible for interconnecting smartphones

to our system, while the second part is joined through the ZigBee to the smart lock.

71

Figure.3. 11: Smart Hotel prototype

The smart hotel use case involves three main phases detailed hereafter, including the (i)

reservation phase, (ii) token generation and distribution, and (iii) user access phase.

 The reservation phase:

The user needs to connect to the smart hotel application by creating an account with his/her

name and password. On the reservation application page, the user fills in the necessary

information (name_identity, start_date, depart_date, room_number) to make a room

reservation. All filled information are organized to prepare a request to the server.

Figure.3. 12 : Reservation phase

72

 The token generation and distribution phase:

Once the server receives the smartphone's reservation request, it starts to process token

generation according to the request's validity. Indeed, the server verifies the dates of

accommodations and their availability in the smart hotel. At this level, if the dates are valid, the

server proceeds to generate a software token of identification based on AES (Advanced

Encryption System), using the user identity, the smart lock identity, and the period of the

accommodation, as shown in Figure 3.13:

𝑇𝑜𝑘𝑒𝑛 = 𝐸𝑛𝑐𝑟𝑦(𝐼𝐷𝑖, 𝐼𝐷𝑆𝐿 , 𝑇𝑒), Te is the period of the accommodation

Figure.3. 13: Token generation

After successfully generating the token, the server stores the user credentials in its database

MySQL and transmits the generated token securely to the user through the Internet with a PIN

access code. Besides, the server transfers the token to the corresponding smart lock through the

ZigBee interface. This data transmission involves different random challenges to ensure the

smart lock's legitimacy, as mentioned in section 3.5.3.

 The User Access phase:

Throughout this phase, a lightweight authentication is achieved between the user and the

smart lock, as shown in section 3.5.4, and two scenarios are possible: authorized access or a

denied access.

73

 Authorized access: through using the smart hotel application, a legitimate user fills the

access page with the PIN code and then, after activating the NFC shield, approaches the

smartphone to the smart lock. At this moment, an authentication request is sent to the smart

lock with the valid token. After receiving the request, the smart lock verifies the received

access token's legitimacy and expiration time. Once the data validation is completed

successfully, a session key is established between the user and the smart lock for secure

access, and the smart lock is opened as figured in Figure. 3.14:

 Denied access: through this scenario, we verified that only a user with a valid token,

including the time expiration, the user's identity, could access the smart lock. In fact, we

tried the access using a false token with an expired period, and then the request was rejected.

Besides, with a non-expired token but a wrong user's identity, the smart lock stills locked

and refuse the request, as mentioned in Figure. 3.15.

Figure.3. 15: Unauthorized access

Figure.3. 14: Authorized access

74

All information of the user access phase is sent to the local server promptly through the

ZigBee wireless communication. Besides, in the context of the PARFAIT project, our local

server communicates this data securely to the Ericsson MQTT broker. A successful access to

the smart lock sent to Ericsson MQTT is shown in Figure 3.16 (a) and the unsuccessful access

is shown in Figure 3.16(b).

(a)

(b)

Figure.3. 16: (a) Successful access and (b) Unsuccessful access

To sum up, the authentication procedure using a smartphone that communicates via the NFC

works correctly. The user needs to download our smart hotel's application, and then he/she

could ensure the reservation by choosing the date of reservations and the room number. Besides,

a PIN code will be sent to the user after a successful reservation. Finally, using the delivered

code PIN, the user could get access to the corresponding room during the reservation dates

securely, and all access information is sent promptly to the local server, as well as to the

Ericsson MQTT server.

3.9. Conclusion

In this chapter, we have proposed a lightweight authentication protocol based on token

concept to ensure authentication for a period of time and response to the needs of modern IoT

applications (smart hotel, smart office, etc.). Therefore, the proposed protocol, TBLUA, could

be adopted in any system reservation to ensure mutual authentication between the

communicating parties (User, GW, smart device). In particular, the concept is based on adding

a new security layer through adopting the software token, which enhances the security level. In

75

fact, the user could gain access securely to any smart device for a predefined interval of time

with respect to the efficiency capability. Furthermore, we demonstrated the tradeoff between

the effectiveness and efficiency of the proposed TBLUA. Indeed, the security analysis, using

the AVISPA toolkit, showed that our protocol is robust against various attacks and provides

relatively more security features such as anonymity and perfect forward secrecy. Moreover, we

have demonstrated through performance analysis that TBLUA has a low computation and

communication overhead compared to benchmarking schemes. Finally, a proof of concept is

conducted, where we designed the smart hotel use case that ensure a successful authentication

through the smart lock prototype.

In the next chapter, we address the problem of allowing many users access to the group of

IoT devices. We propose a novel decentralized group key management for access control in an

IoT environment that aims to control and manage users' access according to their subscriptions.

76

4.1. Introduction

As shown in the previous chapter, user authentication is the primary security issue in the IoT

environment as the IoT network is progressively permeating every aspect of our daily lives and

is widely used in various kinds of applications (e.g., smart city/hotel/office) [154]. Recently, a

new productive ground for developing a new type of group-based applications has been

presented due to the increasing number of connected objects in the wireless networks. Mostly,

we cite, for example, the wireless sensor networks [146], mobile ad-hoc networks [147], and

IoT environment [80]. In fact, in the IoT environment, which is characterized by a large scale

of connected devices, IoT objects (data subscribers) could request to communicate with the

same IoT devices (data publishers). Thus, grouping communication might alleviate the IoT

network, but it produces new security challenges. To safeguard IoT data from tampering and

unauthorized access, designing an appropriate access control for group-based applications is

the most critical and necessary security issue than ever. To ensure this, group key management

(GKM) is one promising approach, which would be used to provide access control to data

streams for legitimate users only [80]. GKM consists of creating a group key shared between a

devices' group and its current subscribers, such that the device can encrypt its data, and only

the subscribers can decrypt it. This encryption-based access control mechanism is suitable for

large IoT environments characterized by a dynamic structure, where IoT users change their

interest frequently over time. Indeed, GKM needs to disseminate permission keys when new

members join, or old ones leave the system. Therefore, it does not require a continuously

connected server to manage the access control.

Besides, the limited capabilities of IoT devices and the frequent and dynamic changes of the

network had given birth to new challenges in the IoT domain. Given that, whenever a new user

or IoT node is granted to join or leave the network, a new shared key should be distributed to

DGKM-AC: Decentralized Group Key
Management for Access Control in IoT

Chapter 4

Chapter 4

77

authorized users in the network, which can cause a severe problem with rekeying overhead.

Several generic solutions, based on the centralized structures [80] and symmetric pre-shared

key framework [146], have been introduced throughout the literature. However, these schemes

are not entirely applicable to all IoT environments, as IoT networks are composed mainly of

resource-constrained devices. Additionally, the current GKM schemes for access control in IoT

networks are not suitable for a scalable and dynamic IoT network with frequent changes.

In fact, many users can subscribe to numerous services offered by different IoT devices and

change their interests frequently over time. Thus, maintaining an efficient GKM in a dynamic

IoT environment remains a challenging issue due to the rekeying process that affects all

members in the same group for joining/leaving events. Therefore, all members should update

their shared group access keys. Hence, an efficient group key mechanism should be introduced

to reduce the rekeying dependence of members in the same group, and thus reducing the

overhead.

To solve the rekeying dependence, minimize resulting overhead and achieve scalable access

management in a dynamic IoT environment, this chapter introduces a new Decentralized

Lightweight Group Key Management Architecture for Access Control named DLGKM-AC.

We consider the smart hotel use-case mentioned in the previous chapter, in the context of the

European project PARFAIT [7]. In this scenario, key cards and smartphones might be

interchangeably used to give guests access permissions in different rooms. They can also be

used to control the usage of various facilities according to room classes’ and purchased services.

When a guest checks out and the room becomes vacant, devices should stop sending the room’s

information, like temperature, cleaning status, hotel services status, etc., and deny access to the

room by blocking the smart lock for this guest.

The main idea of DLGKM-AC is to create an efficient and flexible mechanism to secure

the distribution of content to eligible subscribers. In particular, DLGKM-AC is a hierarchical

scheme comprising a central Key Distribution Center (KDC) and several Sub Key Distribution

Centers (SKDCs) to manage permission keys’ dissemination .

The remainder of this chapter is structured as follows: First, we briefly present the related

work in the literature. Then, we discuss some background necessary to understand the proposed

scheme before presenting the overall system architecture, attacker model, and system

requirements. Subsequently, we detail the proposed DLGKM-AC scheme before analyzing its

security and its resistance to various attacks. Finally, we study its performance in terms of

storage, communication, and computation overheads.

4.2. Related Works

GKM is essential for group communication to secure group data. More specifically, GKM

guarantees access control in the group communication, where the group members share a group

key to define the access permissions. In particular, the dynamic nature of group

communications in IoT environments makes safeguarding data from unauthorized access a

significant challenge. Indeed, it leads to a rekeying process, which causes significant network

78

resource consumption. Hence, it is crucial to reduce the overhead when updating shared keys

among subscribers and publishers.

Table 4.1 summarizes and classifies existing GKM solutions based on different attributes

and criteria as follows: (i) Environment of its application, such as wired Internet [146], wireless

sensor networks (WSN) [80][148][112], ad hoc networks [147], wireless body area networks

(WBAN) [149] and IoT environment [113][122]. (ii) Network model of the GKM access

control that could be centralized, decentralized, or distributed. (iii) Used cryptography types.

Then, we enumerate for each scheme its weaknesses and strengths. We deal with the essential

security services backward secrecy and forward secrecy, where shared keys need to be updated

whenever a new member joins or an existing one leaves its group. The key Independence

permits to alleviate the rekeying process where updating group keys do not affect all the keys

in the group. The vulnerability to collusion attack (the collaboration of adversaries to

compromise a communication) for which rekeying is important to maintain security. Moreover,

the rekeying process may cause a lot of key management overhead and leads to a single point

of failure, especially in a scalable environment that supports multiple group services and is

composed of dynamic publishers and dynamic subscribers. Hence, ensuring subscribers’

Independence makes subscribers of one group independent from the entire group in the

rekeying process of the group key after a join/leave event in this group.

In [150], the authors surveyed numerous key distribution schemes over wireless networks

and classified them into centralized, decentralized, and distributed schemes. Centralized

schemes use only one server known as the key distribution server (KDC) to create and distribute

encryption keys. Distributed schemes do not have a specific KDC; they instead generate group

keys either in a collaborative manner between the group members or by one member. Moreover,

each member must keep track of the other members to make robust communication. Besides,

membership change events (join/leave) cause high processing and communication overheads

[157], leading to a congestion problem in a dynamic IoT environment. In contrast, decentralized

schemes divide the system into several subgroups, thus, reducing the load on the KDC and

offering a solution to scalability issues. Furthermore, a subgroup manager is responsible for

keeping track of the group’s members, reducing computation and storage overhead on

members.

The distribution of encryption keys in the different cited GKM architectures is further

ensured by using two main cryptographic types (symmetric and asymmetric). Two fundamental

and efficient GKM schemes were proposed: The Logical Key Hierarchy (LKH) [109] and the

One-way Function Tree (OFT) [110] based on symmetric keys (traffic key and encryption key)

to distribute the updated encryption keys. In contrast to LKH, all the OFT implementations

suffer from collusion attacks and increase devices’ computational overhead for obtaining group

keys. Hence, OFT is far from being ideal in an IoT environment, where the communicating

devices may have limited computational power. Additionally, [152] [153] schemes provided

fine-grained access control Attribute-Based Encryption (ABE) to manage keys’ update.

However, ABE is a cumbersome mechanism that relies on asymmetric cryptography, unsuitable

for running on resource-constrained IoT devices [154]. Besides, asymmetric encryption

mechanisms are also used in key management schemes [155] [156]. Specifically, Porambage

79

et al. [80] proposed a group key establishment protocol for multicast communication using the

Elliptic Curve Cryptographic (ECC) operations. Even though their solution is suitable for

resource-constrained devices, it does not efficiently manage the rekeying process.

Furthermore, all previously mentioned schemes are designed for single multicast groups, but

users may subscribe to multiple services. To ensure many multicast groups, Park et al. [112]

accommodate various services groups. Their scheme addressed rekeying in the wireless mobile

environment based on a centralized architecture and an LKH mechanism to manage multiple

communications. Likewise, Mapoka et al. [123] proposed using a distribution list of the session

key and key update slot for each subgroup. This list is centrally managed by a node called the

area key distributor. The proposed protocol alleviates the 1-affect-n phenomenon and

transmission overhead of the core network, but it does not ensure forward secrecy. Hence,

Zhong et al. [124] proposed another protocol called area-based multiple GKM that securely

provides services when users migrate to different wireless networks, ensuring forward secrecy.

Nonetheless, its high overhead, due to revocation events, makes it unsuitable for dynamic IoT

environments.

Besides, for addressing the IoT environment's rekeying process, Tsai et al. [151] proposed a

lightweight symmetric key establishment based on the Kronecker product. However, their

protocol does not consider the key update when users or devices join or leave the system, which

lacks forward and backward secrecy. Furthermore, Abdmeziem et al. [122] proposed a

decentralized batch-based group key that includes several subgroups managed by key servers.

This scheme considered long-term and short-term keys per group, which are common to all

nodes. Nevertheless, it does not ensure communication between multiple groups, and it requires

large storage and computation resources. Thus it was enhanced to decrease the communication

overhead by adopting a Distributed Batch-based Group Key [120]. It is based on polynomial

cryptography to set up the key for collaborative groups in the IoT environment. However, these

schemes are limited to managing communications in one group and do not consider

communications between different groups and services. Kung et al. [113] took advantage of the

Chinese Remainder Theorem (CRT) based construction proposed by Park et al. [112] to

accommodate multiple device groups. They established a two-tier centralized system, KDC,

where each group (devices or users) runs LKH to handle updates of keys efficiently. However,

communication within a user group is based on the symmetric group key, which leads to the

dependence between members. Therefore, after each event (triggered by a join/leave user

operation), the rekeying process induces all the members in the entire group to update their

group key, increasing the computation overhead.

In summary, and as mentioned in Table 4.1, existing GKM solutions do not support

members' Independence in the same group, where each member needs to update its key after

every join/leave event. Specifically, they focus only on the symmetric group key per subgroup

communication. Consequently, the rekeying performance is decreased when the number of

subscribers is high and varies frequently. Moreover, lesser attention is paid to achieve efficient

and scalable GKM for access control among a dynamic IoT environment, where many users

(subscribers) can subscribe to different IoT services and frequently change their interests over

time. Hence, throughout this chapter, we propose a flexible access management protocol that

80

is based on the GKM mechanism. Therefore, we suggest a new decentralized GKM to secure

group communication, which offers the scalable feature in a dynamic IoT environment,

alleviates the rekeying overhead caused by the member changes, and reduces the load on the

KDC.

Table 4. 1: Comparison of existing GKM Schemes

Schemes Environment Network model
Cryptography

type
Strength(+) /weakness(-)

[149]
Wireless Body

Area Network

Centralized key

distribution

architecture

Symmetric

cryptography &

polynomial

cryptography

 Backward secrecy

 Forward secrecy

- Does not support multiple

group services.

- Not scalable.

[112] [148]
Wireless Sensor

Network

Centralized key

distribution

architecture

Symmetric &

Asymmetric

cryptography &

LKH

mechanism

 Support multiple group

services

 key Independence

- Does not achieve the

forward secrecy.

- Subscribers are dependent to

each other.

[152] [153]

[154]

Cloud

Computing

Centralized key

distribution

architecture

Attribute Based

Encryption ABE
& Asymmetric

cryptography

 Backward secrecy

 Forward secrecy

- Vulnerable to collusion

attack
- Does not ensure key

Independence

[113]
Internet of Thing

environment

Two tier-
Centralized key

distribution

architecture

Symmetric &

Asymmetric

cryptography &

LKH

mechanism

 Support publishers’

dynamism

 Support multiple group

services.

- Does not support

subscribers’ Independence.

- Vulnerable to collusion

attack

[123] [124]
Wireless Sensor

Network

Decentralized

key distribution

architecture

Symmetric &

Asymmetric

cryptography

 High scalability

 Alleviate 1 affect n

phenomenon

- Does not support publisher

dynamism.

- High overhead due to

dynamic environment

[147]
IPv6 Ad Hoc

Networks

Decentralized

key distribution

architecture

Symmetric

cryptography

 Resist collusion attack

 Support multiple group

services.

- Key Independence.

- Moderate scalability.

[122]
Internet of Thing

environment

Decentralized

key distribution

architecture

Symmetric

cryptography,

 Alleviate 1 affect n

phenomenon key

Independence.

- Large storage and

computation resources.

- Limited scalability.

[157] [120]
Internet of Thing

environment

Distributed key

distribution

architecture

Asymmetric

cryptography &

polynomial

cryptography

 Backward secrecy

 Forward secrecy

- does not support multiple

group services.

- Limited scalability.

81

4.3. Background

In this section, we briefly present the background and the main mechanisms used in our

approach. We first define the Group Key Management (GKM), then we present the techniques

used in our scheme for GKM. We detail the Master Key Encryption (MKE) based Generalized

Chinese Remainder Theorem (GCRT) that is used for managing multiple user groups (UGs)

and various users. Then, we describe the Logical Key Hierarchy (LKH) and One-Time Pad

(OTP) schemes used for efficient key management of different device groups (DGs).

4.3.1. Group Key Management (GKM)

Group key management (GKM) is a cryptographic technique used to ensure access control

for group communications. It secures one-to-many or many-to-many group communication by

encrypting the group's data using a traffic encryption key (TEK). In particular, GKM supports

establishing and preserving these keys, where only members of a group (called subscribers)

could decrypt the data. Besides, due to the dynamic group of members, who change their

membership frequently for various kinds of service demands, GKM accomplishes a rekeying

process to maintain security among the group members. The rekeying procedure should be

ensured with regard to the backward and forward secrecy. Indeed, a new joining member should

be prevented from computing the joined group's old group key and learning the previous

exchanged data to meet the backward secrecy requirement. A member who leaves a group

should be prohibited from calculating the future group key and knowing the upcoming

exchanged data to respond to the forward secrecy requirement. Therefore, for a large-scale

environment such as the IoT with a highly dynamic group of members, designing an efficient

GKM is essential to maintain and enforce access control.

4.3.2. Master Key Encryption (MKE)

The concept of MKE is defined as a key management scheme based on the Group Chinese

Remainder theorem (GCRT). MKE permits multiple decryption keys to decrypt the same

message encrypted by an encryption key [112]. The main idea of the master key encryption

scheme is to generate one master key and several slave keys, where the master key encrypts a

message that can be decrypted by each legitimate slave key. The MKE scheme can alleviate the

rekeying cost resulting from symmetric cryptography. Hence, Park et al. [112] have proposed

a general MKE algorithm to minimize the rekeying cost of the group key using a master key

based on the following theorem:

 Theorem 1: Let {p1, p2,… , pN, q1, q2,…,qN} a set of safe prime numbers and {e1, e2…eN}

a set of corresponding public keys. If all public keys satisfy the following condition,

𝑒1 ≡ 𝑒2 ≡ ⋯ ≡ 𝑒𝑁 𝑚𝑜𝑑(4), then there exists a unique master key, 𝑒𝑀 modulo

4𝑥1𝑦1𝑥2𝑦2… 𝑥𝑁𝑦𝑁, where 𝑥𝑖 = (𝑝𝑖 − 1)/2 and 𝑦𝑖 = (𝑞𝑖 − 1)/2, 1 ≤ i ≤ N.

Theorem Proof: to explain the computation of slave keys and the master key, we consider there

are N public/private slave key pairs (𝑒𝑖, 𝑑𝑖), 𝑖 ≤ 𝑁 with (𝑝𝑖, 𝑞𝑖) being the ith safe prime number

pair, and one master key pair(𝑒𝑀, 𝑑𝑀). For simplicity, we now consider the modulus of the

82

prime pairs ∅(𝑝𝑖𝑞𝑖) = (𝑝𝑖 − 1)(𝑞𝑖 − 1) are mutually prime to each other. For a plaintext P and

a ciphertext C, the master key should satisfy:

 𝑃𝑒𝑀 ≡ 𝑃𝑒𝑖 𝑚𝑜𝑑 (𝑝𝑖𝑞𝑖) (4.1)

 𝐶𝑑𝑀 ≡ 𝐶𝑑𝑖 𝑚𝑜𝑑 (𝑝𝑖𝑞𝑖), 1 ≤ 𝑖 ≤ 𝑁 (4.2)

According to Euler’s theorem, the necessary condition for the equation above is:

𝑒𝑀 ≡ 𝑒𝑖 𝑚𝑜𝑑 (∅(𝑝𝑖𝑞𝑖)) , 𝑑𝑀 ≡ 𝑑𝑖 𝑚𝑜𝑑 (∅(𝑝𝑖𝑞𝑖))

The set of safe prime numbers, presenting the slave key, satisfies the following condition: 𝑒1 ≡

 𝑒2 ≡ ⋯ ≡ 𝑒𝑁 𝑚𝑜𝑑(4). Then, there exists a unique master key, 𝑒𝑀mod(4𝑥1𝑦1𝑥2𝑦2… 𝑥𝑁𝑦𝑁),

where 𝑥𝑖 = (𝑝𝑖 − 1)/2 and 𝑦𝑖 = (𝑞𝑖 − 1)/2, 1 ≤ i ≤ N, solution of a system congruence that

can be calculated by the GCRT as follows:

𝑒𝑀 = ∑ 𝑒𝑖 𝑀[𝑖] 𝑁[𝑖]
𝑁
𝑖=1 , Where 𝑀[𝑖] = (∏ 𝑥𝑗𝑦𝑗

𝑁
𝑗=1) ∕ 𝑥𝑖𝑦𝑖 and

 𝑁[𝑖] is an integer such that 𝑀[𝑖] 𝑁[𝑖] ≡ 1𝑚𝑜𝑑(4𝑥𝑖𝑦𝑖).

Based on Theorem 1, [112] proposes a general MKE algorithm, which generates and

modifies the master key and the key pairs, respectively. Our proposed scheme takes advantage

of this algorithm and proposes an optimized algorithm for membership renewal and revocation.

This algorithm is described in the DLGKM-AC scheme section 4.5.3.2.

4.3.3. Logical Key Hierarchy (LKH)

The LKH mechanism is used to handle the rekeying issue efficiently in a secure group

communication. This method minimizes communication costs by reducing the number of

transmissions in rekeying as well as storage requirements. In fact, LKH is presented through a

Figure.4. 1: The logical key hierarchy tree structure

83

binary tree (as shown in Figure.4.1) structure to manage keys' distribution. Indeed, the tree

structure is composed of the root node that holds the group key (GK), the internal nodes that

hold the Key Encryption Keys (KEK), and the leaf nodes. Each leaf node shares a secret key

with the root and maintains the subtree rooted with the corresponding internal nodes. In

particular, the constructed subtree composes a path key (PKt) with the internal KEKs that are

used later to update the GK efficiently. The binary LKH tree structure guarantees an

enhancement in the storage and communication overhead compared to other tree structures

(section 4.2). Indeed, in a complete tree with n devices on leaf nodes, each leaf node stores

log(2n+1) keys [109], while the rekeying procedure requests multicasting O(log(n)) KEKs for

these n devices instead of multicasting O(n) KEKs.

4.3.4. One-Time Pad (OTP) key

The One-Time Pad key encryption mechanism is a strong encryption technique that cannot

be damaged. In particular, while the proof of OTP security does not depend on any hardness

assumptions, OTP is considered a perfectly secure mechanism. The OTP encryption is achieved

by using a pre-shared key with the same size or longer to the exchanged messages. Fix an

integer 𝑙 > 0, a message space 𝑀, space of key 𝐾, and ciphertext space 𝐶 can all be a set of l-

bit strings. The key generation is ensured by selecting an l-bit key randomly and is never reused,

which makes OTP entirely secure [33]:

 Encryption works as follows: given a key 𝑘 ∈{0,1}𝑙, and a message 𝑚 ∈ {0,1}𝑙, output

𝑐 = 𝐸𝐾(𝑚) = 𝑚 ⊕ 𝑘, where ⊕ is the “exclusive OR” operator.

 Decryption works as follows: given a key 𝑘 ∈ {0,1}𝑙, and a ciphertext 𝑐 ∈ {0,1}𝑙, output

𝑚 = 𝐷𝐾(𝑐) = 𝑐 ⊕ 𝑘.

4.4. DLGKM-AC General Overview

This section briefly describes the proposed decentralized group key management scheme,

where we introduce the system architecture, the attacker model, and the system requirements.

4.4.1. System Architecture

We propose a new decentralized architecture for access control in group communication based

on group key management. Indeed, the proposed DLGKM-AC illustrates a typical three-tier

scheme composed of three essential layers, as shown in Figure.4.2. Two layers, named

publisher and subscriber layers, defining groups of IoT devices (DGs) and users (UGs). In

addition, the middle layer defines the decentralized controller, which is responsible for key

management between and within groups. All these layers are described hereafter:

 Publisher layer: is the layer composed of constrained IoT devices with limited

computational power, memory, or energy availability, such as smart door locks or IP

cameras, collecting and sending data to subscribers. In our architecture DLGKM-AC,

we use many groups of IoT devices, which are grouped related to their functionalities,

84

localization, and security requirements. Therefore, a new joining IoT device is assigned

to precisely one of the device groups (DG).

 Subscriber layer: is the layer composed of users communicating with their

smartphones to retrieve data from the publisher layer. A user can be a device owner with

legitimate, full, and permanent control or an IoT device with only limited access.

Consequently, users and IoT devices subscribe to different DGs related to their wishes

and desires. Then, a group of users UG is created based on the user’s interest and

reservation period.

 Decentralized group key manager layer: is the layer responsible for maintaining the

purpose of security by generating the system parameters and managing group members

by providing required encryption keys used to control data access. In particular, this

layer presents a decentralized architecture of servers, and it is composed of a KDC, a

KDC backup, and several SKDCs. The number of SKDC is not fixed and depends on

the IoT application needs. More specifically, the number of SKDC is influenced by the

characteristics of SKDC like storage, computation capacities, and the number of

registered users.

The intended approach considers a dynamic reservation system in an IoT environment,

where both the number of users and IoT devices might frequently change over time. Indeed, a

user may join or leave at any time. Likewise, an IoT device can be introduced in or removed

Figure.4. 2: Proposed system model

Figure 4.1: Proposed system model

85

from the system at any time. Thus, it is crucial to managing the distribution of encryption keys

to secure both group communication and data transmission from possible threats that will be

defined in the next subsection.

4.4.2. Threat Model

Consider the adversaries' capabilities in a data life cycle in the proposed system model,

which is defined as compromising the GKM access control scheme based on the active insider

and active outsider adversary models. Indeed, attacker A may be either an outsider who has no

access to any IoT device or an insider who attempts to increase the access possibility. In fact,

an insider attacker A such as a revoked user who no longer has access to future communication

and yet still tries to retrieve information on access policies to extend access scope. Moreover,

an outsider attacker A is an attacker that aims to extract sensitive information, such as the

encryption key, to break the current encryption scheme and get access to data without proper

permissions. Further, A may cooperate with other members in the system to derive keys that

he/she cannot obtain individually, which is known as a collision attack. Besides, the attacker

may also be a compromised device, where he/she may masquerade as a legitimate

communication partner before initiating communication with other participants in the network

to gain access to data. However, he/she cannot compromise or break the cryptographic

primitives.

4.4.3. System Requirements

A practical GKM scheme should respond to several requirements related to security and

efficiency [4] [150]. These requirements are explained in what follows:

 Security requirements

In a dynamic IoT environment, the security of the transmitted data is a primordial issue. In

particular, the forward secrecy security property, which is based on avoiding any leaving

member of any group from getting the future group key and decoding any exchanged messages

after her/his departure. Hence, this security feature also has an objective to prevent the collusion

attack. Furthermore, the backward secrecy security property that prevents any new member

joining an existing group from decrypting the group communication established before joining.

Forward/backward secrecy are accomplished through an efficient key updating process, where

all keys should be completely independent of each other to safeguard the key independence

security service.

 Efficiency requirements

The efficient functioning of key management protocols is justified by a minimum overhead

cost of different metrics. First, it should reduce the number of keys stored on both users and

IoT devices, which results in low storage overhead. Second, it needs to decrease the required

computation power from users, IoT devices, and servers, increasing efficiency by reducing the

system response time. Further, it should minimize the number of exchanged messages on the

system, which raises the overall system's flexibility and thus achieves a low communication

cost.

86

In addition, the group key management schemes should ensure the scalability capability to

handle variable group sizes and high membership changes. Indeed, this may guarantee that the

delay will not increase dramatically when the network size becomes large. Besides, key

management schemes suffer from the 1-affects-n phenomenon, where a failure of a single server

leads to the collapse of the whole system. Hence, it is essential to avoid this phenomenon and

assure availability in a large and scalable system.

4.5. DLGKM-AC Detailed Description

This section describes the proposed decentralized group key management for access control

(DGKM-AC) in IoT. Indeed, we start with an overview of its functionalities before detailing its

different phases, namely, system initialization, registration of IoT devices and users under the

system, and keys' update that explains how to handle members' joining and revocation events.

4.5.1. Overview

Our scheme is designed for a dynamic IoT environment, where users and IoT devices are

frequently dynamic and continuously change their subscriptions to IoT services. This makes

ensuring data confidentiality in the group communication as backward/forward secrecy a

challenging task. However, using symmetric keys by both publishers and subscribers can

provide a heavy solution. Indeed, the access control policies in our scheme are disseminated

using different and separate GKM mechanisms for users and IoT services. In the following, we

describe in detail the different architecture layers mentioned in Figure 4.2 and explain the

interactions of those entities.

Typically, in the current GKM schemes, users should maintain and update group information

to get the updated group key after the user’s leaves and join events. For that, we introduce

Master Token Encryption (MTE) to manage the communication within a group of users. The

main idea of MTE is adopted from the master encryption key (MEK) based Chinese Remainder

Theorem (CRT) [112], described in section 4.3.2. The MTE mechanism generates Master

Token (MT) and several valid slave tokens (STs) for a predefined period, which means that all

related slave tokens decrypt all messages encrypted by the master token during its lifetime.

Hence, each user in the group should only maintain a slave token to get the updated information

in the group, which improves the effectiveness of the communication within the user group.

More specifically, users in the proposed DLGKM-AC could subscribe to many device groups

(DGs) to get data. For this purpose, each user gets all traffic keys TEKs of DGs to which it is

subscribed. In fact, after each user joins/leaves the system, it is essential to update these TEKs,

which is ensured by MTE to reduce the rekeying cost.

In addition, to manage the group communication within IoT devices groups, we use two

different mechanisms: the LKH structure and OTP, described in the section 4.3.3 and 4.3.4.

Since multiple users may subscribe to the same IoT device group, it would be more efficient if

all these devices and all their subscribed users share a group key for encryption. Traffic

Encryption Key (TEK) is a traffic key used to encrypt data published by a device group to its

subscribers. This traffic key should be efficiently updated when a new user joins or an old one

leaves to ensure forward and backward secrecy. Moreover, to use the OTP mechanism, we

87

define a manager to control each device group DG. In particular, the manager is responsible for

outlining the permissions of access control for devices in the DG. Typically, we consider

managers as lightweight devices in our architecture, and all IoT devices registered in the system

are under the control of their group’s manager to which they belong. Once registered under the

control of the manager, this latter receives the authorization for the new IoT device based on

the group permission from the KDC. Furthermore, the manager maintains the keys of the access

list management and ensures the required updating of keys to maintain the security of the

system.

KDC is the central server that relates publishers to the rest of the system, and it manages the

keys’ update process within DGs. Further, KDC has a backup server that maintains the last

updated version of keys in the system, which is sent to the backup periodically after the rekeying

process. Besides, SKDCs manage the group communication within UGs, where users

frequently join and leave the system. Hence, the decentralized aspect of the controller, where

SKDCs are used, allows reducing the load on the KDC. Multiple user groups are under the

control of one SKDC depending on users’ localization, which solves the problem of single-

point of failure (SKDC failure) and ensures the scalability of the system. Besides, we assume

that the decentralized KDC can establish a one-time secure channel with users and devices,

which can be used to authenticate and configure a newly joined user/device (e.g., by installing

a shared secret key) before sharing with them the encryption keys.

We can summarize the different encryption keys in our scheme into two main categories: (i)

Traffic Encryption Key (TEK) and (ii) Key Encryption Key (KEK). The traffic keys are used

to encrypt/decrypt data, while the key-encryption keys are used to encrypt/decrypt traffic keys

to distribute them securely, as mentioned in Table.4.2.

Table 4. 2: Keys’ description

Traffic Encryption Keys

(encrypt data)

 TEK: encrypts data of DG

 DK: encrypts data of one device

Key Encryption Key (encrypt

traffic key)

 KEK & GK encrypt and distribute TEK within a DG

 MT encrypts updated TEK keys to users in SKDC

 ST decrypts updated TEK keys in UG

After presenting, in general, the global functioning of our scheme, we detail in what follows

its effective working. Table.4.3 summarizes the main used notations in the following sections,

and we start with explaining the initialization phase in the next subsection, which is primordial

to the system setup.

4.5.2. Initialization of the System

During this phase, the group key manager performs the initialization and the setup of the

system parameters, which will be used in the eventual registration and rekeying phases. We

note that the KDC and at least one SKDC run the initialization phase, which is presented in

what follows:

88

 KDC generates a master key and several salve keys by running the master key

generation MkeyGen Algorithm 1 based on the GCRT scheme (presented in section

4.3.2) [112]. In fact, MkeyGen Algorithm 1 takes as input N safe prime numbers and

computes a set of corresponding pair keys (𝒆𝒊, 𝒅𝒊) based on the theorem1, where all

these pairs’ keys are slave keys that verify the equation with the unique solution of

(𝒆𝑴, 𝒅𝑴). In our scheme, KDC uses the master key encryption cryptography to

communicate with the SKDCs under its control. Indeed, after each new SKDC is added

to the system, KDC has to run the MkeyGen algorithm to generate a slave key for the

new SKDC and update its master key. In particular, KDC creates groups of devices DGs

and groups of users UGs (depending on their subscription to devices). Finally, KDC

assigns UGs to the corresponding SKDC. Furthermore, KDC establishes a secure

channel with devices and users through sharing secret keys. In Figure.4.3, we illustrate

the system architecture with 4 DGs and 6 UGs.

 In our system, the SKDC manages many groups of users; Thus, SKDC needs to run the

same algorithm master key generation MkeyGen, where we consider N to be the

maximum number of slave keys provided by SKDC. Indeed, the SKDC generates a

master key (𝒆𝑴, 𝒅𝑴) and a set of N public-private key pairs, named slave keys, 𝑆𝐾 =

{(𝒆𝒊, 𝒅𝒊); 𝟏 ≤ 𝒊 ≤ 𝑵} through MkeyGen. Furthermore, SKDC defines a function f

which maps a key pair from a set of slave keys to {0, 1}as follows:

𝑓: 𝑆 {0,1}, where:

𝑓: {
f ((𝐞𝐢, 𝐝𝐢)) = 1 , ((𝐞𝐢, 𝐝𝐢) is assigned to a user)

f ((𝐞𝐢, 𝐝𝐢)) = 0 , ((𝐞𝐢, 𝐝𝐢)is not assigned to any user)
 (4.3)

Table 4. 3: Summary of symbols and their description

Symbol Description

TEK Traffic Encryption Key

KEK

M

N

Key Encryption Key

Total number of Device Groups

Total number of Slave Keys under SKDC

(eM,dM) Master Key

(ei,di)

MT, ST

DGy

DKj

UGx

UKi

Slave Key i

Master Token, Slave Token

Device Group y

Shared secret key between device j and KDC

User Group x

Shared secret key between user i and SKDC

GKy

PKt

Group Key for device group y

Path Key

h(.),[.]K Hash Function, Encryption function using encryption key K.

Table 4. 4: Summary of symbols and their description

Symbol Description

TEK Traffic Encryption Key

KEK

M

N

Key Encryption Key

Total number of Device Groups

Total number of Slave Keys under SKDC

(eM,dM) Master Key

(ei,di)

MT, ST

DGy

DKj

UGx

UKi

Slave Key i

Master Token, Slave Token

Device Group y

Shared secret key between device j and KDC

User Group x

Shared secret key between user i and SKDC

GKy

PKt

Group Key for device group y

Path Key

h(.),[.]K Hash Function, Encryption function using encryption key K.

89

After that, SKDC initializes all key pairs using (4) as follows: 𝟏 ≤ 𝒊 ≤ 𝑵,𝑓((𝒆𝒊, 𝒅𝒊)) = 0.

4.5.3. Registration Phase

During this phase, the user and the IoT devices are registered under our system in order to

get the corresponding access keys. In particular, the groups of IoT devices and users are

established through this phase. We detail this phase for both the user and IoT devices in the

next two subsections.

4.5.3.1. Device Groups Registration

In order to manage the communication with a group of devices, the KDC creates many

groups of IoT devices, DG, based on similar devices’ attributes (location, functionalities...),

according to the two different mechanisms:

 A binary LKH tree for the universe of devices in each devices group, for the publisher

IoT devices.

 A modified structure of One-Time Pad (OTP) in each devices group, for the subscribers

IoT devices.

Algorithm 1 Master Key Generation MKeyGen

Inputs: A set of safe prime numbers 𝒑𝟏, 𝒑𝟐, … , 𝒑𝑵, 𝒒𝟏, 𝒒𝟐, … , 𝒒𝑵.

Output: One master key 𝒆𝑴 and N slave public-private key pairs 𝑺 =

 {(𝒆𝒊, 𝒅𝒊) ; 𝟏 ≤ 𝒊 ≤ 𝑵}

1: 𝑺 = { };

2: 𝑭𝒐𝒓 𝒊 = 𝟏 𝒕𝒐 𝑵

𝝋𝒊 = (𝒑𝒊 − 𝟏) × (𝒒𝒊 − 𝟏);

𝒙𝒊 = (𝒑𝒊– 𝟏)/𝟐;

𝒚𝒊 = (𝒒𝒊 – 𝟏)/𝟐;

𝒆𝒊 = 𝟒 × 𝑹𝒂𝒏𝒅𝒐𝒎 + 𝟏;

𝒅𝒊 = 𝒆𝒊
𝟐(𝒙𝒊 −𝟏)(𝒚𝒊 −𝟏) − 𝟏 𝒎𝒐𝒅 𝟒𝒙𝒊𝒚𝒊;

𝑺 = 𝑺 + {(𝒆𝒊, 𝒅𝒊)};

 𝑬𝒏𝒅 𝑭𝒐𝒓

3: 𝒑𝒓𝒐𝒅𝒖𝒄𝒕 = 𝟏;

4: 𝑭𝒐𝒓 𝒊 = 𝟏 𝒕𝒐 𝑵

𝒑𝒓𝒐𝒅𝒖𝒄𝒕 = 𝒑𝒓𝒐𝒅𝒖𝒄𝒕 × (𝒙𝒊𝒚𝒊);

 𝑬𝒏𝒅 𝑭𝒐𝒓

5: 𝑭𝒐𝒓 𝒊 = 𝟏 𝒕𝒐 𝑵

𝑴[𝒊] = 𝒏/(𝒙𝒊𝒚𝒊);

𝑵[𝒊] = 𝑴[𝒊](𝒙𝒊 − 𝟏)(𝒚𝒊 − 𝟏) − 𝟏 𝒎𝒐𝒅 (𝒙𝒊𝒚𝒊);

 𝑬𝒏𝒅 𝑭𝒐𝒓

6: 𝒆𝑴, 𝒅𝑴 = (𝟎, 𝟎);

7: 𝑭𝒐𝒓 𝒊 = 𝟏 𝒕𝒐 𝑵

𝒆𝑴 = (𝒆𝑴 + (𝒆𝒊 × 𝑴[𝒊] × 𝑵[𝒊]));

𝒅𝑴 ≡ (𝒅𝑴 + (𝒅𝒊 × 𝑴[𝒊] × 𝑵[𝒊]))

 𝑬𝒏𝒅 𝑭𝒐𝒓

Algorithm 1 Master Key Generation MKeyGen

Inputs: A set of safe prime numbers 𝒑𝟏, 𝒑𝟐, … , 𝒑𝑵, 𝒒𝟏, 𝒒𝟐, … , 𝒒𝑵.

90

i. LKH Mechanism:

To define the groups of devices, the KDC sets a binary LKH tree for the universe of devices

in each DG, which will be used to distribute updated keys to devices. In the tree, each

intermediate node holds a KEK. A set of KEKs on the path nodes from a leaf to the root are

called Path Keys (PKt), as described in section 4.3.3. The LKH tree is constructed by KDC as

follows:

 KDC generates key encryption keys (KEKs) for the intermediate node in each DG.

 Devices in DG are assigned to the leaf nodes of the tree, and random keys DKj are

generated and assigned securely to each leaf node.

 The root node holds group key GK to communicate with devices and TEK to encrypt

data of DG.

 Each device Dj in DG receives the path keys PKt from the root node to the parent node

of the tree, using the shared secret key DKj.

 Then, the path of keys is used as KEKs to encrypt the group key by the KDC in each

rekeying process and to distribute updated encryption keys to leaf nodes.

ii. OTP Mechanism:

In practice, IoT devices may also subscribe to other IoT devices to get access to data. In fact,

to manage the communication between groups of devices, we present a modified structure of

One-Time Pad (OTP). Firstly, KDC defines a manager for each group device, as described in

section 4.3.4; We define M as the set of managers Mx, GK as the set of group keys GKx of each

DG, and TEK as the set of traffic encryption keys TEKx used to encrypt data controlled by each

manger Mx. Furthermore, ID is the set of devices identity IDj of each device under the control

of Mx manger, and DK is the set of secret shared device key between each device and manager.

Based on the OTP, KDC defines:

 An array A for each DG, used to distribute and broadcast information useful for updating

group key GK. A is presented where 𝐴 [𝑖] = ∑ 𝐷𝐾𝑗⨁𝐼𝐷𝑖
𝑛
𝑗=1
𝑗≠𝑖

 corresponds to the device

with identity IDi.

 A group key GKx for each DGx is generated; 𝐺𝐾𝑥 = ∑ ⊕𝐷𝐾𝑗
𝑛
𝑗=1 .

Finally, once all group devices and their managers are successfully registered, KDC sends

for each manager the list of permission access keys, which are defined with the traffic keys as

follows: TEKx->Resource={TEKx->y ;y Є Resource}, where TEKx->y refers to the subscription of

DGx to DGy. After the registration phase, each device in DGx has (IDi, DKi, A[i], GKx), and

controlled by the manager (GK, A, ID, TEKx, TEKx->R).

4.5.3.2. User Groups Registration

In this phase, multiple user groups UGK are constructed, and we assume that each UGK

accommodates rk users with the same interest for a period T. Each user Ui in UGK is

91

authenticated before joining the system and shares a secret key UKi with SKDC. The SKDC

assigns a user group ID based on the following definition:

Definition: Let 𝑈 = {𝑈1, 𝑈2, … , 𝑈𝑛}, 𝑛 ≤ 𝑁 be the universe of users controlled by one SKDC.

Each user in a network can subscribe to one or more services of device groups DGs among a

total of M (DG) denoted by {𝐷𝐺1, 𝐷𝐺2, … , 𝐷𝐺𝑀}. Let 𝑈𝐺 ⊂ 𝑈 be the set of users who subscribe

to the same set of DGs during the same time T. Let {𝑈𝐺1, 𝑈𝐺2, … , 𝑈𝐺𝑢} be the set of user groups

UGs. Here, each UGk possesses an 𝐼𝐷𝑈𝐺𝐾defined as described in equation 4.4:

𝐼𝐷𝑈𝐺𝐾 = {

𝐴𝑗,𝑏 | 1 ≤ 𝑗 ≤ 𝑀| 𝑏 𝜖 [0,1]

, where

𝐴𝑗,0 = 0 , 𝑈𝐺𝐾 is not subscribed to the 𝐷𝐺𝑗
𝐴𝑗,1 = 1, 𝑈𝐺𝐾 is subscribed to the 𝐷𝐺𝑗

}, (4.4)

Where j defines the device group DGj, and b outlines the user group subscription to this

corresponding DGj.

At that point, the SKDC needs to generate the necessary keys to communicate with the group

of users. Indeed, we proposed a new master key encryption algorithm, which reduces the

communication and computational complexities as it supports efficient key updating named

Algorithm 2 Master Token Generation MTokenGen

Inputs: Number of user r, Time T, 𝐞𝑴, S

Output: 𝑴𝑻𝑲Master Token of 𝑼𝑮𝑲 and list 𝑺𝑲

1: 𝐞𝑴𝑲 = 𝐞𝑴 ;

2: 𝑪𝒐𝒎𝒑 = 𝟎;

3: 𝑺𝑲 = { };

 // Select a list of slave keys for 𝑼𝑮𝑲, 𝑺𝑲 = {𝒆𝒊
𝟏𝑲, 𝒆𝒊

𝟐𝑲, … , 𝒆𝒊
𝒓𝑲 }.

 //𝒆𝒊
𝟏𝑲 = 𝒆𝒊 assigned to user in 𝑼𝑮𝑲

4: While (Comp <r) do

 Select a random (𝒆𝒊, 𝒅𝒊) from 𝑺 = {(𝒆𝒊, 𝒅𝒊) | 𝟏 ≤ 𝐢 ≤ 𝐍}

5: If 𝒇((𝒆𝒊, 𝒅𝒊)) == 𝟎

Then

𝑺𝑲 = 𝑺𝑲 + {(𝒆𝒊, 𝒅𝒊)};

𝒇((𝒆𝒊, 𝒅𝒊)) = 𝟏;

𝒄𝒐𝒎𝒑 + +;

 End if

 End while

6: For i = 1 to N

If 𝒆𝒊 ∉ 𝑺𝑲 = {𝒆𝒊
𝟏𝑲, 𝒆𝒊

𝟐𝑲, … , 𝒆𝒊
𝒓𝑲 }

Then

𝐞𝑴𝑲 = 𝐞𝑴𝒌 − 𝐞𝒊 𝐌[𝐢] 𝑵[𝒊] ;

End if

 End For

7: 𝑴𝑻𝑲 = (𝒆𝑴𝑲 + 𝑻)

Algorithm 2 Master Token Generation MTokenGen

Inputs: Number of user r, Time T, 𝐞𝑴, S

92

MTokenGen. Therefore, MTokenGen (algorithm 2) is designed to generate a master token

MTK, which has the role of group key and a set SK of slave tokens STs for the corresponding

users’ group UGK. Then, each user member Ui in UGK receives a ST through a secure unicast.

Finally, the SKDC adds users’ group information (𝐼𝐷𝑈𝐺𝐾 , 𝑀𝑇𝐾 , 𝑆𝐾, 𝑟𝐾, 𝑇) to the list of active

users’ groups.

 At this level, we confirm that the DLGKM-AC is successfully initialized, the users and IoT

devices are effectively registered under our system. Hence, we can see, as mentioned in Figure

4.3, the different disseminated keys at each level of our architecture, including the devices'

groups, KDC, SKDC, and users' groups. Besides, the subscribers to different IoT services

change their interest over time. Therefore, maintaining security in a dynamic IoT environment

involves an effective rekeying procedure, which is the next subsection's main subject.

4.5.4. Key Update Scenarios

Users and IoT devices join and leave the communication session over time. In fact, the

dynamic feature of membership affects the security of the system. Hence, the keys should be

changed after each user/device “join” and “leave” event to ensure backward and forward

secrecy, which are detailed in the following.

4.5.4.1. User joins/leaves Events Scenarios

The key updating scheme for users is illustrated according to two events: the join user event

and the leave user event. In order to describe the keys’ update process of DLGKM-AC, and for

simplicity, we consider the case shown in Figure 4.4 of a user who joins/leaves the user group

UG1, where users are subscribed to DG1, DG2, and DG4.

Figure.4. 3: Key distribution in our system model

Figure 4. 3: Key distribution in our system model

93

i. When a User Joins a Group

Consider a user Ujoin, registered to SKDC after being authenticated, who is joining an existing

group UGK. Hence, SKDC conducts the join key update Algorithm 3 “JoKeyUpdate” to update

the group key (MTK, eM,) and generates a new slave token ST for the new user Ujoin. To this end,

the SKDC searches for a slave token not affected to any user by mapping the f

function 𝒇((𝒆
𝒊
, 𝒅𝒊)) = 𝟎, as explained in Algorithm 3. Furthermore, our scheme ensures that the

existing users in the joined UGK still can decrypt the recently sent messages, encrypted with the

new MTK, using their previous STs.

After that, SKDC runs the join key distribute Algorithm 4 named “JoKeyDistribute” to

disseminate the necessary rekeying messages occurring in the system when Ujoin joins the group

UGK. We explain the necessary steps below:

 SKDC shares secret key UKjoin with the new joined user Ujoin securely, using a unicast

message.

 Then, SKDC notifies the KDC about the joining event, and all existing users

subscribed to the same device groups through a multicast message to update the

corresponding traffic key TEKj.

 Consequently, old users update TEKj by using a hash function to minimize the

system's communication overhead. Hence, the new user cannot access previous

exchanged data.

Algorithm 3 JoKeyUpdate

Inputs: 𝑼𝑮𝑲 information (𝑰𝑫,𝑴𝑻𝑲, 𝑺𝑲, 𝒓𝑲, 𝑻)and (𝒆𝑴, 𝑺).
Output: updated 𝑴𝑻′𝑲, 𝑺′𝑲, 𝒓′𝑲, 𝒆′𝑴 and 𝑺′.
A new user joins the UGK

1: Find 𝒆𝒊 from 𝑺 = {(𝒆𝒊, 𝒅𝒊) | 𝟏 ≤ 𝐢 ≤ 𝐍} where 𝒇((𝒆𝒊, 𝒅𝒊)) = 𝟎

//𝒆𝒊
{𝒋𝒐𝒊𝒏}𝑲 = 𝒆𝒊, 𝐢𝐬 𝐚𝐝𝐝𝐞𝐝 𝐭𝐨 𝑺𝑲

2:𝑺′𝑲 = {𝒆𝒊
𝟏𝑲, 𝒆𝒊

𝟐𝑲, … , 𝒆𝒊
𝒓𝑲 } + {𝒆𝒊

{𝒋𝒐𝒊𝒏}𝑲}

3:𝒓′𝑲 = 𝒓𝑲 + 𝟏;
4:𝒆𝑴𝑲 = (𝑴𝑻𝑲 − 𝑻);

5:𝐞′𝑴𝑲 = 𝐞𝑴𝒌 + 𝒆𝒊
{𝒋𝒐𝒊𝒏}𝑲 𝐌[𝐢] 𝑵[𝒊] ;

6:𝑴𝑻′𝑲 = (𝒆′𝑴𝑲 + 𝑻);

Algorithm 3 JoKeyUpdate

Inputs: 𝑼𝑮𝑲 information (𝑰𝑫,𝑴𝑻𝑲, 𝑺𝑲, 𝒓𝑲, 𝑻)and (𝒆𝑴, 𝑺).
Output: updated 𝑴𝑻′𝑲, 𝑺′𝑲, 𝒓′𝑲, 𝒆′𝑴 and 𝑺′.
A new user joins the UGK

1: Find 𝒆𝒊 from 𝑺 = {(𝒆𝒊, 𝒅𝒊) | 𝟏 ≤ 𝐢 ≤ 𝐍} where 𝒇((𝒆𝒊, 𝒅𝒊)) = 𝟎

//𝒆𝒊
{𝒋𝒐𝒊𝒏}𝑲 = 𝒆𝒊, 𝐢𝐬 𝐚𝐝𝐝𝐞𝐝 𝐭𝐨 𝑺𝑲

2:𝑺′𝑲 = {𝒆𝒊
𝟏𝑲, 𝒆𝒊

𝟐𝑲, … , 𝒆𝒊
𝒓𝑲 } + {𝒆𝒊

{𝒋𝒐𝒊𝒏}𝑲}

3:𝒓′𝑲 = 𝒓𝑲 + 𝟏;
4:𝒆𝑴𝑲 = (𝑴𝑻𝑲 − 𝑻);

5:𝐞′𝑴𝑲 = 𝐞𝑴𝒌 + 𝒆𝒊
{𝒋𝒐𝒊𝒏}𝑲 𝐌[𝐢] 𝑵[𝒊] ;

6:𝑴𝑻′𝑲 = (𝒆′𝑴𝑲 + 𝑻);

Algorithm 4 JoKeyDistribute

Inputs: TEKs, DKs, MT

Output: new and updated keys ST, Ui, MT’, TEKs’, DKs’

1: SKDC
𝐮𝐧𝐢𝐜𝐚𝐬𝐭
→ User i: establish a shared secret key with user i Ui

2: SKDC
𝐦𝐮𝐥𝐭𝐢𝐜𝐚𝐬𝐭
→ All: Notify KDC, old users of the joined group and other user groups

which subscribed to the same DG to update TEK’=h(TEK).

3: KDC
𝐦𝐮𝐥𝐭𝐢𝐜𝐚𝐬𝐭
→ Devices: update their key DK’=h(DK)

4: SKDC: update MT of this group joined

5: SKDC
𝐮𝐧𝐢𝐜𝐚𝐬𝐭
→ User: [STi, DKs, TEK]UKi

Algorithm 4 JoKeyDistribute

Inputs: TEKs, DKs, MT

Output: new and updated keys ST, Ui, MT’, TEKs’, DKs’

94

 Finally, SKDC sends the required updated keys to the new user Ujoin through a unicast

message, including his slave token ST generated through Algorithm 3.

An illustrative example of a user joining a user group

Suppose a new user U4 that wants to get access to DG1, DG2, and DG4, as shown in

Figure.4.4. Hence, U4 needs to get the corresponding traffic keys TEK1, TEK2, TEK4. For

that, after being authenticated and authorized, U4 requests to join UG1. Thus, SKDC

creates a shared secret key UK4 with U4; Then, it multicasts a notification based on the

identities of user groups subscribed to the same devices groups to update the TEK1, TEK2,

TEK4, so that the new user cannot access to previous exchanged data.

Besides, SKDC updates the group key MT1’ of UG1 as mentioned in JoKeyUpdate

algorithm to protect previous communications between the existing users and SKDC

from intruders, and generates a new ST for U4, while existing users of UG1 still be able

to decrypt data of new group key MT1’. Moreover, devices of DG1, DG2, and DG3

update TEK’1=h(TEK1), TEK’2=h(TEK2), TEK’4=h(TEK4). Finally, SKDC sends, in

unicast, to the new user U4 the slave token ST and the updated TEK’1, TEK’2, TEK’4 keys.

ii. When a user leaves a group

In this phase, we assume that a user Uleave wants to leave a user group UGK, thus he is not

allowed to obtain the exchanged messages after his revocation. To secure a user’ leaving event,

we detail a description designed to afford the forward secrecy. At this level, SKDC conducts

the leave key update Algorithm 5 named “LeKeUpdate” to update the master token of the

group (MTK, eM), and users group’s information. Actually, the updating of the master token MTK

is ensured by deleting the ST of the leaving user, while the remaining users still could get access

and decrypt data of the new updated MTK using their previous slave tokens.

Figure.4. 4 : Structure inside UG1 when U4 joins

Figure 4. 4: Structure inside UG1 when U4 joins

U4

joins

U4

joins

95

At this level, SKDC runs the leave key distribute Algorithm 6 named “LeKeyDistribute”

to disseminate the necessary rekeying message in the whole network after user Uleave leaves the

UGK. The algorithm executes some steps as described below:

 Firstly, the user Uleave announces his willing to leave the system to SKDC, which verifies

the request and unicasts a message to KDC to signal a leave event.

 Then, KDC updates all TEKj to which Uleave was subscribed according to the group

identity 𝐼𝐷𝑈𝐺𝐾 by generating new TEKj based on the updating method (TEKj |random

processes of KDC), and broadcasts the new TEKs to SKDCs.

 At that point, SKDC enforces an access control level for the user group using its identity

IDUG; [𝑇𝐸𝐾𝑗
𝑛𝑒𝑤, ∀ 𝑗 |𝐴𝑗,𝑏 = 1 𝑜𝑓𝑈𝐺𝐾]. Thus, according to IDUG, SKDC encrypts the

updated 𝑇𝐸𝐾𝑗
𝑛𝑒𝑤 using the corresponding master token MT of each user group UG and

encrypts the results with the master key of SKDC. Consequently, the message is

broadcasted to all corresponding users. Notice that only users with a valid ST can

decrypt the new 𝑇𝐸𝐾𝑗
𝑛𝑒𝑤.

Algorithm 5 LeKeyUpdate

Inputs: 𝑼𝑮𝑲 information (𝑰𝑫,𝑴𝑻𝑲, 𝑺𝑲, 𝒓𝑲, 𝑻)and system information(𝒆𝑴, 𝑺).

Output: updated 𝑴𝑻′𝑲, 𝑺′𝑲and 𝒓′𝑲.

The ith user leaves the UGK

1:𝒇(𝒆𝒊
{𝒍𝒆𝒂𝒗𝒆}𝑲) = 𝟎

2:𝒆𝒊
{𝒍𝒆𝒂𝒗𝒆}𝑲𝐢𝐬 𝐫𝐞𝐯𝐨𝐤𝐞𝐝 𝐟𝐫𝐨𝐦 𝑺𝑲

3:𝑺′𝑲 = {𝒆𝒊
𝟏𝑲, 𝒆𝒊

𝟐𝑲, … , 𝒆𝒊
𝒓𝑲 } ∖ {𝒆𝒊

{𝒍𝒆𝒂𝒗𝒆}𝑲}

4:𝒓′𝑲 = 𝒓𝑲 − 𝟏;

5:𝐞′𝒊 = 𝒆𝒊
{𝒍𝒆𝒂𝒗𝒆}𝑲 = 𝟒 × 𝑹𝒂𝒏𝒅𝒐𝒎+ 𝟏 ;

6:𝒆𝑴𝑲 = (𝑴𝑻𝑲 − 𝑻);

7:𝐞′𝑴𝑲 = 𝐞𝑴𝒌 − 𝒆𝒊
{𝒍𝒆𝒂𝒗𝒆}𝑲 𝐌[𝐢] 𝑵[𝒊] ;

8:𝐞′𝑴 = 𝐞𝑴 − 𝐞𝒊 𝐌[𝐢] 𝑵[𝒊] + 𝐞
′
𝒊 𝐌[𝐢] 𝑵[𝒊];

9:𝑴𝑻′𝑲 = (𝒆′𝑴𝑲 + 𝑻);

Algorithm 5 LeKeyUpdate

Inputs: 𝑼𝑮𝑲 information (𝑰𝑫,𝑴𝑻𝑲, 𝑺𝑲, 𝒓𝑲, 𝑻)and system information(𝒆𝑴, 𝑺).

Output: updated 𝑴𝑻′𝑲, 𝑺′𝑲and 𝒓′𝑲.

The ith user leaves the UGK

1:𝒇(𝒆𝒊
{𝒍𝒆𝒂𝒗𝒆}𝑲) = 𝟎

2:𝒆𝒊
{𝒍𝒆𝒂𝒗𝒆}𝑲𝐢𝐬 𝐫𝐞𝐯𝐨𝐤𝐞𝐝 𝐟𝐫𝐨𝐦 𝑺𝑲

3:𝑺′𝑲 = {𝒆𝒊
𝟏𝑲, 𝒆𝒊

𝟐𝑲, … , 𝒆𝒊
𝒓𝑲 } ∖ {𝒆𝒊

{𝒍𝒆𝒂𝒗𝒆}𝑲}

4:𝒓′𝑲 = 𝒓𝑲 − 𝟏;

5:𝐞′𝒊 = 𝒆𝒊
{𝒍𝒆𝒂𝒗𝒆}𝑲 = 𝟒 × 𝑹𝒂𝒏𝒅𝒐𝒎+ 𝟏 ;

6:𝒆𝑴𝑲 = (𝑴𝑻𝑲 − 𝑻);

7:𝐞′𝑴𝑲 = 𝐞𝑴𝒌 − 𝒆𝒊
{𝒍𝒆𝒂𝒗𝒆}𝑲 𝐌[𝐢] 𝑵[𝒊] ;

8:𝐞′𝑴 = 𝐞𝑴 − 𝐞𝒊 𝐌[𝐢] 𝑵[𝒊] + 𝐞
′
𝒊 𝐌[𝐢] 𝑵[𝒊];

9:𝑴𝑻′𝑲 = (𝒆′𝑴𝑲 + 𝑻);

Algorithm 6 LeKeyDistribute

Inputs: TEKs, DKs, MT

Output: new generated keys MT’, TEKs’, DKs’

1: SKDC updates MT of the group UG has been left

2: SKDC
𝐮𝐧𝐢𝐜𝐚𝐬𝐭
→ KDC: notify that UG has been left

3: KDC
𝐦𝐮𝐥𝐭𝐢𝐜𝐚𝐬𝐭
→ SKDCs: (TEK’| DK’)MK

4: KDC
𝐦𝐮𝐥𝐭𝐢𝐜𝐚𝐬𝐭
→ Devices: (TEK’)GK

5: SKDC
𝐦𝐮𝐥𝐭𝐢𝐜𝐚𝐬𝐭
→ user groups UG: ((TEK’)MT)MK

Algorithm 6 LeKeyDistribute

Inputs: TEKs, DKs, MT

Output: new generated keys MT’, TEKs’, DKs’

1: SKDC updates MT of the group UG has been left

96

An illustrative example of a user leaving a user group:

Suppose the user U3 leaves the group UG1, as shown in Figure.4.5. Meanwhile, she/he

unsubscribes from DG1, DG2, and DG4, which leads to losing the access privilege to those

DGs. Since the data of DG1, DG2, and DG4 should not be visible to this user anymore,

traffic keys TEK1, TEK2, TEK4 are updated to meet the requirements of the forward secrecy

[5].

For that, SKDC first updates the master token MT1’’ of the UG1, as shown in Figure.4.5,

while all users of this left group still get access with their previous STs. Then, KDC

generates a new TEKs and broadcasts it via an encrypted message (TEK”i, DKj’|update

methods, i=1,2,4)MK to SKDCs. After that, SKDC transmits updated traffic keys TEK”1,

TEK”2, TEK”4 encrypted with the new master token MT1’’ securely to all members of the

UG, based on the user group identity. The remaining users still could decrypt, with their

previous STs, the message to handle the updated information. Finally, devices in groups

DG1, DG2, and DG4 get the new TEKs keys encrypted with the conforming KEKs and GK

keys, sent in multicast by the KDC, which prevent a leaving user from obtaining additional

data.

4.5.4.2. IoT Devices Joins/Leaves Events

To describe the update key process of DLGKM-AC during IoT device join/leave events, we

consider the two cryptography mechanisms named LKH and OTP, described at section 4.3.3

and 4.3.4. In what follows, we detail the rekeying mechanisms for IoT devices groups after each

join and leave events.

i. LKH Cryptography Mechanism

The binary LKH tree is used for grouping the universe of devices that are only publisher of

data in our IoT system. Otherwise, these publishers are added and deleted from the IoT system

over time, damaging the security. Therefore, a rekeying process after each joins and leaves

event is primordial, as explained in follows:

Figure.4. 5: Structure inside UG1 when U3 leaves

Figure 4. 5: Structure inside UG1 when U3 leaves

U3

leaves

U3

leaves

97

a. When an IoT Device Joins a Group

During this event, we consider an IoT device Djoin is joining a DGy. Therefore, the KDC runs

the distribute join key update Algorithm 7 named “DeJoKeUpdate”, to disseminate the

rekeying keys. Thus, few steps are conducted:

 KDC shares a secret key with Djoin that joins the device group DGy.

 Then, KDC updates the necessary part of the LKH tree in which the device resides.

 After, KDC multicasts to the existing devices in the DGy a notification to upgrade their

group key GK.

 Finally, KDC send in unicast to Djoin the path key PKt and the traffic key TEK of the

DGy.

b. When an IoT device leaves a group

When a device Dleave leaves a DG, the KDC rearranges the LKH tree structure in the group

and runs the distribute leave key update Algorithm 8 named “DeLeKeUpdate” to multicast an

updated group key GK’ to the remaining devices. This group key is encrypted with the

corresponding KEKs, which defines the LKH tree of the leaved DGy. Then, KDC broadcasts a

message to announce that Dleave is no longer a valid device.

Algorithm 8 DeLeKeUpdate

Inputs: KEKs, GK

Output: new keys KEKs’, GK.’

1: KDC
𝐛𝐫𝐨𝐚𝐝𝐜𝐚𝐬𝐭
→ All: “leaving device j is no longer available.”

2: KDC
𝐦𝐮𝐥𝐭𝐢𝐜𝐚𝐬𝐭
→ DG: update GK’ and KEK’s.

Algorithm 7 DeJoKeUpdate

Inputs: KEKs, GK

Output: new and updated keys DK, Dj, KEKs’, GK’

1: KDC → device Dj: establish a shared secret key with the new device (Dj)

2: KDC
𝐦𝐮𝐥𝐭𝐢𝐢𝐜𝐚𝐬𝐭
→ old devices in DG: update group key GK’= h(GK)

3: KDC
𝐮𝐧𝐢𝐜𝐚𝐬𝐭
→ devices: update KEK’ encrypted either by secret keys or shared

KEK

Algorithm 7 DeJoKeUpdate

Inputs: KEKs, GK

Output: new and updated keys DK, Dj, KEKs’, GK’

1: KDC → device Dj: establish a shared secret key with the new device (Dj)

2: KDC
𝐦𝐮𝐥𝐭𝐢𝐢𝐜𝐚𝐬𝐭
→ old devices in DG: update group key GK’= h(GK)

3: KDC
𝐮𝐧𝐢𝐜𝐚𝐬𝐭
→ devices: update KEK’ encrypted either by secret keys or shared

KEK

98

An illustrative example of an IoT device joining and leaving a device group:

In this example, we consider the device group DG1 composed initially of three devices

D1, D2, and D3. Firstly, we suppose a new device D4 joining the system, which is assigned

to the device group DG1 as shown in Figure.4.6. KDC notifies the devices in DG1 to

update GK’1=h(GK1) and creates a shared secret key D4 with device 4 to send necessary

information TEK’1, GK’1, KEK2 encrypted with the secret key D4 through a unicast

communication. Finally, KDC sends KEK2 to D3.

At this stage, we suppose device D2 leaves the group DG1, as shown in Figure.4.7,

thus, KDC makes a new device group key (GK1’’|update method) and multicasts it to the

remaining devices in the group, namely D1, D3, and D4.

ii. OTP Cryptography Mechanism

In practice, an IoT device does not only collect data but also may read data from other

devices. For that, an IoT device could also subscribe to other devices and get access to data.

Since the subscribers change their interest very frequently, we introduce a modified OTP key

distribution structure suitable for very constrained resource devices to ensure the desired

Figure.4. 6: Examples of LKH structure updates for device join.

Figure 4. 6: Examples of LKH structure updates for device join.

Figure.4. 7: Examples of LKH structure updates for device leave.

D4 Joins the

group DG1

D4 Joins the

group DG1

D2 leaves the

group DG1

D2 leaves the

group DG1

99

security level and the efficiency of our scheme. We present in this subsection a full description

of the rekeying operations of DLGKM-AC after an IoT device joins/leaves a group as below:

a. When an IoT Device Joins a Group

A new joining IoT device to an existing IoT device group should not learn anything about

exchanged group communication before joining. Therefore, to guarantee backward secrecy, it

is crucial to handling a rekeying process and update the group key. Indeed, we propose an

improved OTP protocol to update the group key among the IoT device group securely. The

different steps of the OTP based protocol are defined and presented in Figure 4.8 as follows:

 The manager of the device group establishes a secret key DKj with the new device Dj

and generates a random long-term key s chosen from a large set of bits and computes

the related information 𝑢 of the new IoT device 𝑢 = 𝐷𝐾𝑗⨁𝑠, necessary to update the

old group key 𝐺𝐾𝑜𝑙𝑑.

 Then, the manager encrypts u with the current group key and broadcasts it securely to

the existing IoT devices in the group under its control.

 All existing IoT devices can decrypt this data u encrypted with the 𝐺𝐾𝑜𝑙𝑑, except the

new one as it does not hold the 𝐺𝐾𝑜𝑙𝑑. Then the existing IoT devices could update the

group key through computing 𝐺𝐾𝑛𝑒𝑤 = 𝐺𝐾𝑜𝑙𝑑⨁𝑢.

 After, the manager updates the old group key 𝐺𝐾𝑜𝑙𝑑 and finally generates an identity

𝐼𝐷𝑗, computes the 𝐴[𝑗] = ∑ 𝐷𝐾𝑖⨁𝐼𝐷𝑗
𝑛
𝑖=1
𝑖≠𝑗

 for further updating group key, and sends to

the newly joined device.

Figure.4. 8: Rekeying procedure based on OTP when a device joins a group

100

b. When an IoT Device Leaves a Group

When an IoT device wants to leave a group to which it belongs, it should not be able to

learn any more about future keys after its departure. This is achieved as follows: Let Dj the node

that leaves the group DGx. The manager Mx of DGx securely and randomly generates the key

value s’ and computes the corresponding one-time-pad value 𝑢′ = 𝑠′ ⨁𝐷𝐾𝑗 . Then it updates

𝐴[𝑖] = 𝑠" ⨁ 𝐼𝐷𝑖 for each IoT device Di still in DGx, while 𝐴[𝑗] of the left device is set to Null.

After that, the manager broadcasts updated group information 𝐴, and each legitimate IoT device

in the group recovers 𝑠" and derives the new 𝐺𝐾𝑛𝑒𝑤. The protocol steps are figured in

Figure.4.9.

In the proposed scheme, users are not affected by IoT device movement (join/leave) in a

group, which is explained by the use of a manager for each device group. The manager

maintains the traffic key TEK to encrypt data of the group to subscribers during DG life.

Otherwise, only when a DGx is deleted, KDC broadcasts to the subscribers that the

corresponding traffic key TEKx is no longer useful.

4.6. Security Analysis

In this section, we prove the effectiveness of the proposed scheme DGKM-AC in terms of

forward, backward secrecy and resistance to the collusion attack.

Figure.4. 9: Rekeying procedure when a device leaves a group

Figure 4.3: Rekeying procedure when a device leaves a group

101

4.6.1. Forward Secrecy

In the proposed DGKM-AC scheme, we provide the forward security property to both users

and IoT devices. We detail and analyze through proofing the two theorems as follow:

 Theorem 1: The proposed group key management scheme between SKDC and users

provides forward security against an adversary. In other words, the revoked user cannot

get access to the ongoing communication.

Proof: Consider the case that the key pair (𝑒𝑗 , 𝑑𝑗) should be revoked when user Uj leaves the

group UGK. The SKDC updates its master key 𝑒𝑀 and the corresponding master token 𝑒𝑀𝐾 . At

this level, the master token of the left user group UGK satisfies equations 4.1 and 4.2:

𝑃𝑒𝑀𝐾
′

 ≡ 𝑃𝑒𝑖 𝑚𝑜𝑑 (𝑝𝑖𝑞𝑖) (4.1)

 𝐶𝑑𝑀𝐾
′

 ≡ 𝐶𝑑𝑖 𝑚𝑜𝑑 (𝑝𝑖𝑞𝑖); ∀ 𝑖 𝜖 [1, 𝑟𝐾], 𝑖 ≠ 𝑗 (4.2)

Besides, the data source specifically the plaintext P is encrypted using the master key

encryption: 𝑃𝑒𝑀𝐾
′

 𝑚𝑜𝑑 (∏ ∅(𝑝𝑖𝑞𝑖)
𝑁
𝑖≠𝑗=1) = 𝐶∗. After receiving the new ciphertext 𝐶∗, each

user in the group can decrypt it with its individual private key 𝐶∗𝑑𝑖 𝑚𝑜𝑑 (𝑝𝑖𝑞𝑖) = 𝑃 , ∀ 𝑖 ≠ 𝑗.

Although the left user from UGK knows the old keys (𝑒𝑗 , 𝑑𝑗), he/she cannot obtain the correct

plaintext from the ciphertext 𝐶∗through the old keys and get a false plaintext different from the

sent plaintext 𝐶∗𝑑𝑗 𝑚𝑜𝑑 (𝑝𝑗𝑞𝑗) = 𝑃
∗ ≠ 𝑃.

 Theorem 2: The proposed group key management scheme between KDC and IoT

devices provides forward security against an adversary. In other words, the revoked IoT

device cannot get access to the current communication.

Proof: At this level, we suppose 𝐴1 be an adversary who colludes with the left IoT device Dj in

the device group DGK. In particular, the adversary 𝐴1may obtain all information stored in left

IoT device (𝐷𝐾𝑗 , 𝐺𝐾𝐾, 𝑇𝐸𝐾,𝐾𝐸𝐾𝑠) and wants to derive the current group key, 𝐺𝐾𝐾
′ . After the

IoT device is revoked, KDC is responsible for updating the LKH tree of DGk, similarly updating

the path key from the revoked leaf node to the root node {𝐾𝐸𝐾𝑖 𝜖 𝑃𝐾𝑡 𝑜𝑓 𝐷𝑗}, which are used

to encrypt and broadcast the new group key 𝐺𝐾𝐾
′ to the remaining devices. However, 𝐴1 cannot

decrypt the rekeying messages and get 𝐺𝐾𝐾
′ , as all key encryption keys are updated in the LKH

tree.

Furthermore, based on the OTP mechanism, after an IoT device leaves a group DGk. the

manager updates the OTP value and the array. In fact, it computes the new 𝐴[𝑖] = 𝑠" ⨁ 𝐼𝐷𝑖 for

each IoT device Di still in DGx, while 𝐴[𝑗] of the left device is set to Null. Hence, an adversary

𝐴1, who wants to collude data with the left IoT device, using the value 𝐴[𝑗] cannot compute the

new 𝐺𝐾𝐾
′ . Thus, a left node cannot compromise the whole network and learn about future

communications, which proves that our protocol provides forward secrecy in DG.

102

4.6.2. Backward Secrecy

In this section, we analyze the backward security property to both users and IoT devices

through proofing the two theorems below:

 Theorem 3: The proposed group key management scheme between SKDC and users

provides backward security against an adversary. In other words, the newly joined user

cannot get access to previous communications.

Proof: Suppose a new user Uj is joining a group UGK with the key pair (𝑒𝑗 , 𝑑𝑗). The previous

data source P is encrypted as follows using the master token 𝑃𝑒𝑀𝐾 𝑚𝑜𝑑 (∏ ∅(𝑝𝑖𝑞𝑖)
𝑁
𝑖≠𝑗=1) = 𝐶,

where ∀ 𝑖 𝜖 [1, 𝑟𝐾] 𝑎𝑛𝑑 𝑖 ≠ 𝑗, the master token satisfies equation (4.1 and 4.2):

𝑃𝑒𝑀𝐾 ≡ 𝑃𝑒𝑖 𝑚𝑜𝑑 (𝑝𝑖𝑞𝑖), and 𝐶
𝑑𝑀𝐾 ≡ 𝐶𝑑𝑖 𝑚𝑜𝑑 (𝑝𝑖𝑞𝑖);

After the new user joining the system, the SKDC updates its master key 𝑒𝑀 and the

corresponding master token 𝑒𝑀𝐾 of UGK, where ∀ 𝑖 𝜖 [1, 𝑟𝐾] and 𝑖 = 𝑗, 𝑒𝑀𝐾
′ satisfies:

𝑃𝑒𝑀𝐾
′

≡ 𝑃𝑒𝑖 𝑚𝑜𝑑 (𝑝𝑖𝑞𝑖), 𝐶
𝑑𝑀𝐾
′

 ≡ 𝐶𝑑𝑖 𝑚𝑜𝑑 (𝑝𝑖𝑞𝑖);

At this level, the user joining the group UGK with the keys pair (𝑒𝑗 , 𝑑𝑗), cannot obtain the

correct previous plaintext from the ciphertext 𝐶 through the new keys as:

𝐶𝑑𝑀𝐾𝑚𝑜𝑑 (∏ ∅(𝑝𝑖𝑞𝑖)
𝑁
𝑖≠𝑗=1) = 𝑃 , ∀ 𝑖 𝜖 [1, 𝑟𝐾] 𝑎𝑛𝑑 𝑖 ≠ 𝑗

 𝐶𝑑𝑗 𝑚𝑜𝑑 (𝑝𝑗𝑞𝑗) ≡ 𝐶
𝑑𝑀𝐾
′

𝑚𝑜𝑑 (∏ ∅(𝑝𝑖𝑞𝑖)
𝑁
𝑖=1) = 𝑃∗ ≠ 𝑃 , ∀ 𝑖 𝜖 [1, 𝑟𝐾] 𝑎𝑛𝑑 𝑖 ≠ 𝑗

We conclude that our scheme offers the backward secrecy security property when a new user

joins the system.

 Theorem 4: The proposed group key management scheme between KDC and IoT device

provides backward security against an adversary. In other words, the joined IoT device

cannot get access to the previous communication.

Proof: Suppose a new IoT device Dj joining the device group DGK and has the new keys

(𝐷𝐾𝑗 , 𝐺𝐾𝐾
′ , 𝑇𝐸𝐾, 𝐾𝐸𝐾𝑠′). After that, the KDC updates the LKH tree of DGk, similarly updating

the path key from the joined leaf node to the root node {𝐾𝐸𝐾𝑖 𝜖 𝑃𝐾𝑡 𝑜𝑓 𝐷𝑗}, which are used to

encrypt and broadcast the new group key 𝐺𝐾𝐾
′ to the existing devices. Meanwhile, knowing the

secret key, the new 𝐺𝐾𝐾
′ , and path keys, the newly joined device cannot derive anything about

the previous group keys.

Furthermore, using the OTP mechanism, the manager computes a new OTP value 𝑢 and

sends it for the existing IoT devices encrypted with the previous group key 𝐺𝐾𝑜𝑙𝑑. At this point,

each existing IoT device could decrypts the OTP value 𝑢 and computes the new group key as

follows: 𝐺𝐾𝑛𝑒𝑤 = 𝐺𝐾𝑜𝑙𝑑⨁𝑢, while the new one gets only the new information of the group

key. Thus, knowing the new group key 𝐺𝐾𝑛𝑒𝑤 , 𝐼𝐷𝑗 and the corresponding A[j] =

103

∑ DKi⨁IDj
n
i=1
i≠j

, the new joined IoT device could not compute 𝐺𝐾𝑜𝑙𝑑 as the OTP value 𝑢 is

encrypted with 𝐺𝐾𝑜𝑙𝑑.

We hence prove that our scheme offers the backward secrecy security property when a new

IoT device is joining the system for both LKH and OTP mechanisms.

4.6.3. Collusion Attack Analysis Using Random Oracle Model

In this section, we analyze the resistance of our solution to the collusion attack, and we

prove that using the Random Oracle Model (ROM) standard [157].

 Theorem 5: The proposed GKM is secure against collusion attack.

Proof: Let 𝐺𝑐𝑟be the adversarial game for collusion resistance. This game is played between

two adversaries: one acts as the challenger 𝐶𝑐𝑟 who interacts with the adversary 𝐴𝑐𝑟 trying to

win 𝐶𝑐𝑟. It is worth noting that 𝐶𝑐𝑟 can simulate all the oracles 𝑂𝑗𝑜𝑖𝑛, 𝑂𝑙𝑒𝑎𝑣𝑒, 𝑂𝑐𝑖𝑝ℎ𝑒𝑟𝑡𝑥𝑒𝑡and

𝑂𝑑𝑒𝑐𝑟𝑦𝑝𝑡 functions and output signed messages as a real signer. 𝐺𝑐𝑟 consists of the following

phases:

Setup: 𝐶𝑐𝑟runs the MTokenGen algorithm for a random choice of ID by 𝐴𝑐𝑟. Rekeying

operation is simulated after that, and the timeline is started (t=0).

Queries: It can query the oracle 𝑂𝑗𝑜𝑖𝑛, 𝑂𝑙𝑒𝑎𝑣𝑒, 𝑂𝑐𝑖𝑝ℎ𝑒𝑟𝑡𝑥𝑒𝑡 and 𝑂𝑑𝑒𝑐𝑟𝑦𝑝𝑡 to control group

dynamicity.

Challenge: 𝐴𝑐𝑟 issues one challenge query to 𝐶𝑐𝑟 at time 𝑡𝑐ℎ𝑎𝑙𝑙𝑒𝑛𝑔𝑒 (which is the choice of the

𝐴𝑐𝑟). Before responding to the challenge, 𝐶𝑐𝑟 retrieves the set challenge Schallenge from the list

Ls, and forms the list of leaving members Lg, for all ID ∉ Schallenge. Then, for each identity ID ∉

Schallenge, 𝐶𝑐𝑟issues the query 𝑂𝑒𝑥𝑡𝑟𝑎𝑐𝑡(ID) to obtain SID. Besides, 𝐶𝑐𝑟encrypts (TEK, ST,

Schallenge) to get (Ai,b’, TEK’), where Ai,b’ defines the authorized receivers of TEK challenged

with 𝐶𝑐𝑟. After, 𝐶𝑐𝑟 chooses a bit b ∈ {0, 1} at random and sets Kb to TEK’ and Kb-1 to a random

TEK from the key space. Finally, it challenges with (Ai,b’, K0, K1).

Guess: 𝐴𝑐𝑟outputs a bit b’ ∈ {0,1} as its guess. 𝐶𝑐𝑟passes on b’ as its guess to 𝐴𝑐𝑟.

The adversary advantage in winning the game is defined as 𝐴𝑑𝑣𝐺𝐾𝑀
𝑐𝑟 = |𝑝𝑟[𝑏′ = 𝑏] −

1

2
|;

Hence, we can see that the advantage that 𝐴𝑐𝑟 breaks the collision resistance of GKM is the

same that 𝐶𝑐𝑟 breaks chosen-ciphertext attack (CCA), meanwhile, breaks the encrypted

messages. Thus, if there exists no adversary who can break CCA security with non-negligible

advantage, then there cannot be any adversary 𝐴𝑐𝑟, who can break the collision resistance of

GKM with non-negligible probability.

104

4.7. Performance Analysis and Evaluation

In this section, we analyze the proposed DLGKM-AC scheme's performance in terms of

storage overhead, computation overhead, and communication overhead. Then, we compare the

results with existing methods in the literature. We also discuss the time complexity to renew

the master token and revoke the slave token of the proposed MTE algorithm for communication

with users in the same group.

4.7.1. Performance Analysis

In this subsection, we present the performance analysis of the proposed DLGKM-AC for

IoT environment. We ensure the analysis in terms of different metrics such as storage,

computation, and communication overhead. In order to guarantee generality, we assume that

IoT devices are equally distributed in each device group, and the LKH structures are all

balanced binary trees.

4.7.1.1. Storage Overhead

The storage overhead is an expensive metric of any access control scheme in the IoT

environment as it is based on the memory capacity required to store the keys. In the proposed

scheme, the storage overhead is formulated at each user in UGx and each device in DGy.

A user belonging to the user group UGx has a slave token ST, an Asymmetric Key (AK),

many traffic keys TEKs, Symmetric Keys (SK) equal to the number of DGs for which UGx is

subscribed, and his secret key shared with SKDC. Hence, we can calculate the storage of keys

for each user in UGx using equation 4.5:

𝑆𝑂𝑈∈𝑈𝐺𝑥 = 𝐴𝐾 + (∑ 𝐴𝑖,𝑏
𝑀
𝑖=1 + 1)𝑆𝐾 (4.5)

In addition, the analysis of a single d-degree key tree accommodating n member requires the

tree depth denoted by 𝑓𝑑(𝑛). It is known that 𝑓𝑑(𝑛) is either L0 or L0 +1, where 𝐿0 = 𝑙𝑜𝑔𝑑(𝑛).

The authors of [112] made useful inequality (4.6) in order to analyze the storage overhead for

key trees:

𝐸[𝑓𝑑(𝑛)] ≤ 𝐸[𝑙𝑜𝑔𝑑(𝑛)] + 1 ≤ 𝑙𝑜𝑔𝑑𝐸[𝑛] + 1, (4.6)

where the expectation, E[.], is taken over the distribution of n devices and the length of the

branches on the key trees.

A device belonging to DGy, containing n devices, has a traffic key TEK, a group device key

GK, and as many symmetric keys, including the KEKs and the individual key, as the length of

the branch. Since we consider that devices are distributed in binary trees, we can calculate the

number of keys for each device in DGy using equation 4.7:

𝑆𝑂𝐷∈𝐷𝐺𝑦 = (log2 𝑛 + 3) × 𝑆𝐾 (4.7)

With regard to storage using the OTP mechanism, each node needs only to store its private

IDi, DKi pair, the corresponding array entry A[i] and the group key GKx. These are all n-bit

sequences, which are easy to save even on devices with limited storage capacity.

105

4.7.1.2. Computation Overhead

The computation overhead can be measured as the total time consumption for encryption

and decryption cost and processing requirements. We can measure the cost of computation on

the server, user as well as on the device sides, after each member (user/ IoT device) joining or

leaving events. We explain the different necessary computation operations as follows:

 When a user joins a subgroup UGx: The SKDC assigns a slave token to the new

joining user Ujoin and updates the master token of UGx and its master key. The new user needs

one symmetric decryption to gain the slave token ST, new TEK, and all DKs of the devices in

the device groups to which he is subscribed. An existing user needs to do one hash function to

update TEK. Finally, the devices need to perform one hash function to update their TEK and

another hash function to derive their new device keys DK.

 When a user leaves a subgroup UGx: The SKDC needs to update the master token of

UGx and its master key in order to send TEK securely to users. The remaining users need to

perform one asymmetric decryption and one symmetric decryption to gain the updated

information. Devices, to which user groups are subscribed, need to do one symmetric

decryption to obtain the update information TEK and DK.

 When a device joins a device group DGy: The existing devices of the left device group,

based on the LKH structure, require to do one hash function to update the device group key

GKy. Moreover, the LKH tree structure will change, and some devices need to decrypt O(log(n))

KEK updated messages. Besides, the new device needs only to decrypt one message sent from

KDC to obtain KEKs. In contrast, when using the OTP mechanism, the existing devices require

to do XOR operation to get the new group key, and update the array. Finally, users subscribed

to the group joined by the new device require to decrypt the message sent by KDC to gain the

new device key.

 When a device leaves a device group DGy: The remaining devices execute one

symmetric decryption to gain the new group key in the LKH structure, while they need only

XOR operations to get the new group in OTP mechanism. Moreover, users subscribed to the

leaving groups, do not need to perform extra computation.

4.7.1.3. Communication Overhead

The encrypted data and keys should be transmitted to the users and/or IoT devices after each

join/leave event. In this context, the communication overhead is mainly associated to the

number of transmitted messages during the dissemination keys process. We analyze the

communication overhead of the new DLGKM-AC for the IoT environment, as shown in

Table.4.4:

Table 4. 5: Communication analysis.

Events Communication cost

User leave’s event
SKDC broadcasts the new TEK and DK to subgroups

KDC sends log(n) messages to devices

User join’s event
SKDC unicasts a message to the new user

SKDC notifies all users to update TEK

Device join’s event LKH KDC unicasts a message to the new device

106

4.7.2. Performance Evaluation

In this section, we present the experimental results of DLGKM-AC scheme developed on

MATLAB. We evaluate DLGKM-AC performances in terms of storage, computation, and

communication costs caused by rekeying process. The rekeying transmission overhead

corresponds to the additional signaling load after each join/leave event. For that, we compare

the new proposed DLGKM-AC scheme with two other key management solutions designed for

access control between subscribers and publishers; a centralized scheme that supports groups

of publishers (GroupIT [113]) and a decentralized scheme that does not support groups of

publishers (SMGKM [123]).

4.7.2.1. Storage Costs

The storage cost of the proposed scheme is formulated at both sides, user and IoT devices.

In order to achieve a comparable security strength, we assume the symmetric

encryption/decryption key length to AES-256 bits, the ECC-512 decryption key length to 512

bits. We consider computing the storage cost at the user side through two different scenarios:

 Scenario 1: in this scenario, we vary the number of publishers DGs to which users are

subscribed while fixing the number of users per user group to 20 users for example.

Through Figure.4.10, we notice that, unlike existing solutions such as GroupIT [113] and

SMGKM [123], our scheme is less affected by the increase of DGs number to which users are

subscribed. Indeed, the user in our scheme DLGKM-AC requires less memory storage, even if

the number of IoT devices to which the user is subscribed is high. In fact, comparing to the

GroupIT [113] scheme, we proposed a decentralized architecture in which keys are less stored

on IoT devices, while SKDCs take the responsibility of keeping traffic keys. Besides, compared

to SMGKM [123], our DLGKM-AC ensure the grouping of IoT devices, where users need only

to store the traffic key of all the group, not all the traffic keys of each IoT device.

KDC broadcasts the subscribers with the new DK

OTP

Manager unicasts access keys information to new device

Manager broadcasts OTP value to existing devices in

group

Device leave’s event

LKH

KDC notifies the subscribers that the leaving device is no

longer available.

KDC multicasts log(n) messages for the remaining

devices to update group key.

OTP

Manager notifies the subscribers that the leaving device is

no longer available.

Manager broadcasts the new array A to remaining devices

in group

107

 Scenario 2: in this scenario, we vary the number of users in each UG and consider the

number of DGs set to 4 and the number of devices set to 20 IoT devices per group DG.

Figure.4.11 shows that, in GroupIT [113] and SMGKM [123] schemes, when the number of

users per group increases, the storage on users rises too, explaining that the rekeying in user

group affects all users. In particular, the larger the number of users in each UG, the more these

schemes incur users’ storage overhead. In our scheme, we ensure the dissemination of keys in

the user group through the proposed MTE mechanism, which is not sensitive to the number of

users in each UG. Hence, the total number of users in the user group UG does not affect the

storage on each user and can reduce the storage overhead per-user more efficiently.

Figure.4. 10: Users’ storage overhead while varying the number of devices

Figure 4.5: Users’ storage overhead while varying the number of devices

Figure 4. 10: Users’ storage overhead while varying the number of devices

Figure 4.6: Users’ storage overhead while varying the number of devices

Figure.4. 11: Users’ storage overhead while varying the number of users

108

At this level, we study the storage on devices when varying the number of devices. As

mentioned in the analysis section, our proposed scheme is not affected either by the number of

users or by the number of devices in other different DGs because devices are considered as data

publishers in the LKH structure, while they are only affected by the number of devices of their

group. Figure.4.12 shows that SMGKM and our scheme have mainly the same storage.

Otherwise, GroupIT does not hold the notion of grouping the devices (publishers), and the

storage on devices (publisher) is not affected by the number of devices in the same group.

4.7.2.2. Computation Cost

We simulate the cryptographic operations with Miracle Library [158], which is a

cryptographic library designed for use in constrained environments in terms of computational

power [120]. All simulations are implemented on a computer with the following features: an

Intel i5-4200 CPU@ 2.5 GH with a physical memory of 8 GB; and Ubuntu 12.04 OS over

VMware workstation 15. We provide the time cost for different cryptographic operations. As a

result, we define Th = 2,445µs be the time for one hashing operation using SHA-256 function

on a 64-byte block. Then, TEnc=TDec=2,7µs be respectively the time for one

encryption/decryption operation using symmetric cryptography AES-256 encryption on a 64-

bytes, and TECC=365,63µs represents the time for one elliptic curve cryptographic operation.

Since our protocol is designed for a dynamic IoT environment, the computational cost is

measured based on leave and join operations of both users and devices. We detail the

computation on users as well as on IoT devices and servers in the following subsections. We

start by the computational costs triggered by user leave/join events before comparing the

rekeying’s cost triggered by device join and leave operations.

Figure.4. 12: Devices storage overhead

109

4.7.2.2.1. When a User Leaves a Group

Consider a user U leaving the user group UGK. At this moment, the left user is not allowed

to obtain the rekeying message no more to ensure the forward secrecy. In particular, we compare

the computation cost through different cases on the remaining users and on the SKDC as

follows:

 Computation cost on the remaining users’ side:

We consider two cases:

 Case 1: In the first case, we vary the number of publishers DGs to which users are

subscribed, while fixing 20 users per UG.

Figure.4.13 depicts that our scheme is not hugely impacted with the number of DGs to

which users are subscribed compared to the state of the art solutions. More specifically,

when a user leaves a user group, the remaining users need to update the traffic key of

the data. In fact, in our proposed scheme each SKDC is responsible to update this key

and disseminate it to users through MTE mechanism. At this level, these remaining users

need only to decrypt one message to get the new traffic key. Thus, we can ensure that a

decentralized architecture reduces the computation overhead resulting after a leave

event such an IoT environment.

 Case 2: In the second case, we modify the number of users in each UG and consider the

number of DGs is fixed to four and the number of devices per group DG is fixed to 20.

Figure.4. 13: Remaining user computation overhead varying devices’ number (user leave)

110

Similarly, in Figure.4.14, we plot the computation cost on remaining users after a

user leaving the group with varying the number of users. In this figure we note that the

more the number of users in each UG is large, the more the computation overhead is

high for GroupIT and SMGKM schemes. This explains that each user depends on all

other users in the same group, while users in the proposed scheme are not affected with

the number of users. The proposed MTE algorithm, managing communication within

user groups, guarantees that users in the same group can get the updated group key with

only one decryption. This explains why our proposed system has low computational

cost while having a high number of users in UG.

 Computation on the server-side:

At this level, we consider the group key updating time of SKDC to prove the efficiency of

our master token encryption MTE for updating keys compared to traditional master key

encryption mechanisms. Figure.4.15 shows that, compared to the traditional master key

encryption MKE algorithm, our solution consumes less time for the key updating when a user

is revoked. In fact, the traditional MKE needs to repeat all the steps of Algorithm 1 when

updating the master key. Otherwise, the MTE algorithm proposes only two operations to get

the newly updated master token.

Figure.4. 14: Remaining user computation overhead varying users’ number (user leave)

Figure 4.7:

111

4.7.2.2.2. When a User Joins a Group

Assume a user U is joining a user group UGK. As the new user U should not be allowed to

access previous communications, the rekeying operation is triggered. Hence, we compare the

updating overhead when a user joins a group as follows:

 Computation cost on old users’ side:

We also consider two cases:

 Case 1: In the first case, we vary the number of publishers DGs to which users of UG

are subscribed while fixing 20 users per UG.

In Figure.4.16, we present a comparison of the computation cost for the existing users

in the joined user group UG while varying the number of devices to which UG is

subscribed. The results show that the centralized architecture requires more rekeying

operations compared to the decentralized architecture. Besides, Figure.4.16 shows that

the computation cost of DLGKM-AC varies very slowly with the number of the

publisher compared to the literature GroupIT and SMGKM. In fact, when a user joins a

group, the existing users need only to update the traffic keys TEK of the corresponding

publishers. In contrast, the other schemes need to update the keys of the user group. This

outcome is mainly explained by using subgroup controllers SKDCs to manage the key

updating process for each user group and thus reducing computation for end-users.

Figure.4. 15: Server time update on the user-leaving event

Figure 4. 15: Server time update on the user-leaving event

112

 Case 2: In the second case, we vary the number of users in each user group UG and

consider four devices groups DGs and 20 devices per group DG.

Similarly, the Figure.4.17 depicts the comparison of the computation cost on the

existing users, but when varying the number of users per group. Indeed, we notice that

the number of users in the same group does not affect the existing user in the group in

our proposed scheme. However, the shape of the other schemes, GroupIT and SMGKM,

is increasing with the number of users. It is evident that the new joining user affects all

members of the user group, which is explained through using an LKH structure in

Figure.4. 17: Old user computation overhead varying the users’ number (join)

Figure.4. 16: Old user computation overhead varying the devices’ number (user join)

Figure 4. 16: Old user computation overhead varying the devices’ number (user join)

113

GroupIT and SMGKM while using MTE as key management for user groups in

DLGKM-AC.

 Computation cost on new users’ side:

At this level, we analyze the new user’s computation cost in Figure.4.18. Actually, when a

new user joins a group of users, the computation cost of our DLGKM-AC and SMGKM is

almost negligible compared to GroupIT. These results are explained by the fact that the new

user needs only to decrypt received messages to get necessary information. While in GroupIT,

a new user needs to compute the device keys to which he/she is subscribed.

 Computation cost on the server-side:

In order to prove the efficiency of the proposed master token algorithm, we plot in

Figure.4.19 the average time to update keys when there is a user joining operation. More

specifically, the time needed to execute the JoKeyUpdate algorithm when varying the number

Figure.4. 18: New user computation overhead varying devices

Figure 4. 18: New user computation overhead varying devices

Figure.4. 19: Server time update on the joining event

114

of users per group. Unlike the traditional master key encryption MKE, the execution time of

our scheme increases slowly with the increase of the number of users per group.

4.7.2.2.3. When an IoT Device Joins a Group

Figure.4.20 plots the computation cost triggered by a device joining a device group when

varying the number of IoT devices in the group. In fact, we measure the overhead on both the

existing devices and the new device sides. We notice that the computation cost of the existing

devices in our scheme is less impacted than GroupIT by the number of IoT devices. In contrast,

the new device in DG has the same cost to get the updated keys. Moreover, the SMGKM is not

impacted by varying devices in the group, as they do not consider grouping devices.

4.7.2.2.4. When an IoT Device Leaves a Group

Figure.4.21 shows the computation cost when a device leaves a DG, varying the number of

IoT devices per group. The cost is measured on both the group's remaining devices and the

users subscribed to the DG. In our scheme, the users' computation cost is not affected by the

leaving device's operation, while, in SMGKM, it increases with the number of devices. The

advantage of grouping devices explains this result. Moreover, the remaining devices in our

scheme have less computation cost compared to GroupIT, which is explained through using a

decentralized scheme, where KDC reduces the load on devices.

Figure.4. 20: Computation cost: device join

115

4.7.2.3. Communication Cost

The communication cost of DLGKM-AC for the IoT environment is evaluated based on the

number of updating keys messages transmitted during user joins/leaves events. Figure.4.22 (a)

and (b) plot the communication cost after the user joins and leaves events when varying the

number of IoT devices to which the user is subscribed. It is evident from Figure.4.22 that

GroupIT and SMGKM schemes are affected by the number of devices, and it causes many

rekeying messages when a user joins/leaves a user group. Therefore, our scheme incurs much

less communication overhead, which is explained by grouping the devices and introducing

MKE for grouping users. In particular, regarding the use of the master token encryption

methodology for communication with groups of users, our scheme DLGKM-AC decreases the

(a) After user join event (b) After user leave event

Figure.4. 22: Communication costs

Figure.4. 21: Computation overhead: device leave

Figure 4. 21: Computation overhead: device leave

116

unnecessary rekeying operations. Indeed, the proposed DLGKM-AC maintains the lowest

communication cost.

4.8. Conclusion

The main objective of this chapter is to define a scalable, generic, and lightweight group key

management (GKM) for access control in the IoT environment. For that, we introduced a new

access management architecture DLGKM-AC, which alleviates the problem of managing

numerous constrained IoT objects. The proposed solution is fully decentralized, which is based

on different and separate GKM for users and IoT devices. Besides, a new master token

encryption algorithm has been introduced to ensure members’ Independence in highly dynamic

group communication. Subsequently, we presented an optimized notion of the logical key

hierarchy and one-time pad (OTP) to enable a secure group communication within IoT devices.

This fusion makes our solution lightweight as it offers the best performance on the user and IoT

device side compared to the realized benchmarking studies.

Therefore, DLGKM-AC solution can be perfectly adapted to IoT applications, where devices

typically have constrained computational power. Additionally, we handle smoothly the

mobility, where both the backward and forward secrecy are ensured with a few keys’ updates.

Moreover, our solution alleviates the 1-affects-n issue, which is explained when users can

always get access to data even if one SKDC is affected. Furthermore, extensive security

analyses covering a wide range of desired security properties have also been provided.

Additionally, performance analyses show that our proposed scheme offers better performances

by reducing storage, communication, and computation overheads. Finally, adopting a

decentralized architecture with different GKM makes our scheme more suitable for a dynamic

IoT environment, where subscribers change their interest over time frequently. However, even

we ensure flexible access control and smooth changing updates, subscribers always need to be

authenticated with all IoT devices before joining the system. In the next chapter, we propose a

distributed group authentication for subscribers, which offers subscribers a flexible

authentication with the ability to choose to non-re-authenticate in the system.

117

5.1. Introduction

As thoroughly discussed in the previous chapter, new types of group-based applications have

been presented due to the increasing diffusion of the IoT networks. Specifically, many new IoT

applications and services are introduced, such as smart hotels, smart grids, and industrial

automation based on group communication. However, this may lead to a set of new challenges

and concerns. Although an access control for group-based applications scheme is achieved to

safeguard IoT data from tampering and unauthorized access, efficient authentication is required

for the group-based applications. More specifically, these environments pose a challenge for

defining a global standard authentication protocol in IoT networks [159]. Due to the diverse

heterogeneous architectures and environments that support IoT devices, there exist numerous

authentication mechanisms [52], such as key-based authentication (e.g., public/private key)

[160] and knowledge-based authentication (e.g., password) [161][162]. All these user

authentication schemes are a one-to-one type of authentication. Hence, users who subscribe to

multiple IoT devices will have to store as many authentication data as the number of IoT

devices. Therefore, the increase of IoT network communication explains the engagement of IoT

network in group-based communication [163].

In this context, a few group-based authentication schemes have been studied. Some of them

ensure the group authentication of participants that belong to the same group [164]. Others

[165] achieve authentication of one user with a group of IoT devices. In a subscribe-publish

IoT system, users may subscribe to many IoT services, where an IoT service is a group of IoT

devices. Thus, it is difficult for the user to be authenticated quickly due to an unbounded number

of devices and the centralized Trust Third-Party (TTP) authority server [160]. Therefore, the

IoT users will suffer from authentication signaling congestion and high network access latency.

Besides, this will increase the communication delay and the response time of the authority

server. Furthermore, the existing mechanisms manage their databases by a single manager,

DiGABlock: Distributed Group
Authentication based on Blockchain

Technology

Chapter 5

Chapter 1

118

making them potentially vulnerable to collusion attacks from malicious nodes who want to

infiltrate the system. Consequently, a secure and efficient group authentication that

authenticates users with multiple groups of IoT devices minimizes the interaction with the

authority server and meets the scalability issue is required.

Numerous distributed authentication mechanisms have been proposed in the literature [166]

[174] [175] [176] [177] to respond to the scalability issue required in the IoT environment. In

fact, these distributed schemes, based on distributed trust, increase the computation overhead

and require multiple interactions among the system with the trusted authorities, causing high

communication delays. Furthermore, they cannot resolve the non-repudiation identity problem

since it is easy for anyone to set up the so-called trusted identity provider. Recently, few

researchers have introduced Blockchain technology for authentication mechanisms [167],

which emerged as a prominent solution for IoT security in trustless environments. Blockchain

is a distributed ledger composed of many nodes used to protect data information against

damaging attacks and alleviate the signaling congestion on the TTP, thus improving the system

efficiency. Hence, this technology is especially suitable for delay-sensitive and large distributed

IoT applications. All these mentioned features are motivating to explore blockchain technology

and design a new authentication scheme. Therefore, we propose a new distributed

authentication mechanism named Distributed Group Authentication system based on

Blockchain technology (DiGABlock) to build a secure and efficient authentication system in

the IoT environment composed of many IoT devices’ groups defining many IoT services.

The main idea of DiGABlock is to design a distributed group authentication protocol to

allow the users to authenticate within many groups of IoT devices in a distributed manner

efficiently and simultaneously. Hence, users who subscribe to numerous groups of IoT devices

could perform a full authentication process only once with a group of IoT devices. After that,

the user needs only to send requests to be authenticated and access the remaining groups of IoT

devices. In particular, DiGABlock avoids the redundant actions of exchanging authentication

data and protects users from identity vulnerability. In fact, thanks to the Blockchain technology,

DiGABlock is qualified with another significant advantage related to a distributed group

authentication mechanism because it resists the distributed denial of service attack (DDoS).

Furthermore, DiGABlock is designed to enhance IoT network resources’ availability and

guarantees users’ activity tractability and efficient authentication. Thus, DiGABlock improves

the system response time by minimizing the communication overhead caused by the redundant

authentication process. Likewise, it reduces the overhead computation time as well as the

energy consumption during the users’ authentication.

The remainder of this chapter is organized as follows: we briefly describe the related work to

group-based authentication and distributed based authentication. Then, we discuss the

necessary background related to our scheme. After that, we present the overall system

architecture, the attacker model, and the different system requirements. Then, we detail the

proposed solution DiGABlock. Finally, we summarize its security and performance analysis in

terms of communication, computation overheads and energy consumption.

119

5.2. Related Works

To secure communication in IoT environments, authentication between two communicating

parties is an essential security requirement. Meanwhile, users and devices in IoT must be

authenticated for privileged access to IoT services. In the literature, many solutions for

authentication and key agreement in IoT environment have been proposed. The diversity of

solutions is mainly due to the diverse and heterogeneous underlying architectures and

environments that support IoT devices. Authors in [52] surveyed the different existing

authentication techniques in the IoT environment. Table 5.1 summarizes a comparison between

these authentication schemes according to various criteria. Thus, some authentication schemes

are based on: (i) a centralized server authority, while others use a distributed mechanism based

on Blockchain technology. These schemes designed different (ii) types of encryption and (iii)

key generation mechanisms to ensure secure authentication, which is mainly (iv) an end-to-end

authentication or group authentication. Further, we present some of their security features as

they almost guarantee mutual authentication and resist the well-known attacks, and we

enumerate their weaknesses related to the efficiency and scalability issues.

Authentication is a fundamental security issue in IoT to authenticate the communication

between two parties. Indeed, many schemes have proposed a lightweight and secure

authentication protocol for one-to-one scenarios in the literature [58]. However, since the

continuous growth of the number of connected IoT devices leads to many group applications,

one-to-one scenario authentication is costly for these applications and causes new security

challenges. Therefore, designing secure authentication for group applications should be

addressed to enhance efficiency and flexibility.

Li et al. [170] proposed a group-based authentication protocol based on an aggregate

signature scheme, which enables the group leader to aggregate several signatures from distinct

group members to a single signature. In addition, the authors of [77] and [78] proposed a

threshold authentication protocol to support secure and privacy-preserving communications in

VANETs. The protocol uses a group signature scheme for achieving threshold authentication,

anonymity, and traceability during vehicles' communication. However, the aggregation

signature method is too costly. Lai et al. [76] proposed a group-based lightweight authentication

scheme for resource-constrained machine-to-machine communication (GLARM), which is

based on defining each member in the group with a code of authentication, and then aggregating

the message authentication codes of all members in the group. However, this protocol presents

a single point of failure since it needs a group leader to send and respond to messages with the

server: if the group leader is unavailable, then the authentication process fails. Lein Harn [171]

proposed an improved group authentication scheme (GAS). This scheme exploits Shamir’s

secret sharing scheme [172] to issue a private token to each group member who participates in

the group authentication without the leader. However, an attacker can launch several trials

before the secret is recovered to get both the system secrets and the group members’ secret

tokens. Chien [173] improves GAS by publishing simple public data to the group members.

Their scheme creates and publishes tokens through the elliptic curve cryptography and bilinear

pairing.

120

All the discussed works are limited to authenticating one group at once. In particular, these

works authenticate only one group of participants through a centralized authentication

architecture. Otherwise, as more as the IoT applications are extensive, users would get access

to many IoT services, which require a new group authentication mechanism. In addition, the

use of one trusted authority requires multiple interactions with users for authentication. Hence,

the redundant data exchange during the authentication process may lead to exploiting the

authentication mechanism and make the system vulnerable to attacks. Besides, these presented

works shortage flexibility and scalability. Therefore, with the prevalence of digital

cryptocurrency, Blockchain is introduced as a promising solution to provide a scalable and more

trusted authentication services with low interactions.

Several Blockchain-based distributed authentication mechanisms have been proposed. Zehui

et al. [174] analyzed the advantages of Blockchain in future IoT systems. The authors of [175]

proposed an authentication scheme for IoT systems based on Blockchain called Bubbles-of-

Trust. This scheme uses the public Blockchain implemented with Ethereum to validate the

communication between different devices. Wang et al. [176] introduced a Blockchain-based

cross-domain authentication model named BlockCAM to ensure the safety and the efficiency

of accessing resources in different domains. Yao et al [177] proposed an improved cross-

domain authentication that achieves the non-interactivity feature. Although these schemes

ensure data security, they are costly ones. The authors of [178] addressed this problem by

designing an efficient Blockchain-based distributed authentication system using the ECC

cryptography mechanism.

Nevertheless, the existing solutions for IoT authentication based on Blockchain have

achieved numerous security requirements like anonymity, resisting DDoS attacks [176], and

increasing authentication efficiency. However, these schemes do not achieve efficient

authentication for group communications, where a user needs to authenticate with multiple IoT

services composed of many groups of IoT devices. Hence, in the following, we propose a

distributed group authentication mechanism based on Blockchain technology DiGABlock. We

also use Blockchain edge nodes to define an IoT service, which can offer an edge group

authentication and minimize the interactivity caused by the authentication process.

 Table 5. 1 : Comparison of existing Authentication Schemes

Schemes Environment

Key generation

mechanism

Authentication

type
Strength(+) /weakness(-)

[58]
IoT

Environment

Hash & XOR

operations and

Symmetric

cryptography

Centralized

authentication

mechanism

One-to-one &

Single

authentication

 Secure against many

attacks

 Mutual authentication

- Limited scalability

- High communication

overhead for a large IoT

environment

121

5.3. Background

In this section, we briefly present the background and the main mechanisms used in our

approach. We first describe the Elliptic Curve Cryptography (ECC) asymmetric cryptography

technique. Then, we present the Shamir Shared secret scheme SS that is used for sharing a

secret. Finally, we briefly present the Blockchain technology and the different consensus types.

5.3.1. Elliptic Curve Cryptography (ECC)

ECC, based on the algebraic structure of elliptic curves over finite fields, is an approach used

for public-key cryptography. ECC ensures security depending on the ability to compute a point

multiplication with a random point, as well as the inability to figure out a multiplicand given

the original curve and product points. ECC guarantees the same level of security afforded by

an RSA-based system with a larger key [179].

[164][165]
IoT

Environment

Hash function

Symmetric and

ECC

cryptography

Centralized

Group

authentication

 Group IoT device

authentication

 Resilience against DoS

attack

- Limited scalability

- Does not support multiple

group authentication

[77][19][76] VANETs

Aggregation

signature &

Asymmetric

cryptography

Centralized

Group

authentication

 Group signature for

threshold authentication

 Data anonymity &

traceability

- High computation overhead

- Limited scalability

[171][173]
IoT

Environment

Shamir ’ shared

secret &

Asymmetric

cryptography

Centralized

Group

authentication

 Multiple IoT users

authentication

 Resist insider collusion

attack

- Does not support multiple

group authentication

- High communication

overhead

- Limited scalability

[176][177] VANETs

Hash function &

Asymmetric

cryptography &

ECC signature

Distributed

Single

authentication

 Cross domain distributed

authentication

 Minimize the interactivity

feature

- High communication

overhead

- Heavy computational cost

[178]
IoT

Environment

Hash function &

Asymmetric

cryptography &

ECC signature

Distributed

Single

authentication

 Distributed mutual

authentication

 Ensure the data integrity

- High communication and

computation overhead for

group application IoT

environment

- Vulnerable to insider

collusion attack

122

An elliptic curve E is a plane curve over a prime finite field Ep, where all points of the curve

E and the infinity point O (obtained when a point of E is multiplied by 0) form a cyclic group

G, which is often defined by equation 5.1:

 𝑦 𝑚𝑜𝑑 𝑝 = 𝑥3 + 𝑎𝑥 + 𝑏 𝑚𝑜𝑑 𝑝 (5.1)

In a cyclic group, if two E points are added or an E point is multiplied by an integer, the

result is another E point from the same cyclic group. In particular, consider two cyclic groups

𝐺1 and 𝐺2with the same prime order, q. 𝐺1 is an additive cyclic group and 𝐺2 is a multiplicative

cyclic group. We define the pairing map: 𝑒 ∶ 𝐺1 × 𝐺1 → 𝐺2 with basic properties of bilinear

map for the security proofs as follow:

 Non-degeneracy: for every 𝑃 ∈ 𝐺1 there exist Q such that 𝑒 (𝑃, 𝑄) ≠ 1.

 Bi-linearity: 𝑒 (𝑃 + 𝑅, 𝑄) = 𝑒 (𝑃, 𝑄) . 𝑒 (𝑅, 𝑄) and 𝑒 (𝑎𝑃, 𝑏𝑄) = 𝑒(𝑃, 𝑄)𝑎𝑏 ,

∀ 𝑎, 𝑏 ∈ 𝑍𝑞
∗ , ∀ 𝑃, 𝑄, 𝑅 ∈ 𝐺1.

 Computability: It is efficient to compute 𝑒 (𝑃 + 𝑅, 𝑄); ∀ 𝑃, 𝑄 ∈ 𝐺1.

Through this chapter, we mainly use the two next properties of ECC:

 The first property, called Elliptic Curve Diffie-Hellman (ECDH), is an anonymous key

agreement protocol that allows two parties that have elliptic curve public-private key

pairs to establish a shared secret over an insecure channel [179]. Let G be an additive

cyclic group consisting of points on the elliptic curve, and its order is prime integer q.

Let P be a generator of G. Given, 𝑃, 𝑥𝑃, 𝑦𝑃 ∈ 𝐺; (𝑥, 𝑦 ∈ Ζ𝑞
∗) calculating the product of

𝑥𝑦𝑃 is a hard problem.

 The second property is called Elliptic Curve Discrete Logarithm Problem (ECDLP): Let

G be an additive cyclic group consisting of points on the elliptic curve, and its order is

prime integer q. P is a generator of G. It is noted that knowing 𝑥𝑃 ∈ G 𝑎𝑛𝑑 𝑃,

calculating x is hard.

5.3.2. Review on Shamir’s Secret Sharing Scheme

In cryptography, secret sharing refers to a method for distributing a secret amongst a group

of participants by giving each one of them a part of that secret. These parts are called shares.

The distributed secret can be reconstructed if a subset of shares is combined. Otherwise,

individual shares are of no use on their own. Since the collection of at least k different points

can reconstruct a polynomial of degree (k-1), Adi Shamir [172] proposed a scheme for

cryptographic systems based on the secret sharing enabling the reconstruction of a parameter

from a set of secret shares. Shamir defined a (𝑘, 𝑛) threshold scheme, where a secret D is

divided into n pieces 𝐷1, 𝐷2, … , 𝐷𝑛, and can be recovered by only k pieces (k<n) taken randomly

from the n pieces. The Shamir’s scheme defines a polynomial function 𝑓(𝑥) with degree (𝑘 −

1):

𝑓(𝑥) = 𝑎0 + 𝑎1𝑥 +⋯+ 𝑎𝑘−1𝑥
𝑘−1 (5.2)

123

where 𝑎0is the secret D and the n pieces are defined as 𝐷𝑖 = 𝑓(𝑖), 𝑖 = 1, . . 𝑛. Shamir guarantees

to recover the secret D with a subset of 𝑘 ≠1 pieces, through a polynomial Lagrange

interpolation [180], which can rebuild the polynomial 𝑓(𝑥) function through a set of k points

(𝑥1, 𝑓(𝑥1)),… , (𝑥𝑘 , 𝑓(𝑥𝑘)) as given in equation 5.3:

𝑓(𝑥) = ∑ 𝑓(𝑥𝑖)
𝑘

𝑖=1
 ∏

𝑥−𝑥𝑗

𝑥𝑖−𝑥𝑗

𝑘
𝑗=1;𝑗≠𝑖 (5.3)

5.3.3. Blockchain - Practical Byzantine Fault Tolerance Consensus

Algorithm (PBFT)

The Blockchain is used as a distributed ledger that realizes a decentralized storing of data

elements, where each data element is called a block. These blocks are linked in a chronological

order to form a chain that is secured using cryptography [181] (each block contains a hash of

the previous one). Current Blockchain systems are categorized roughly into three types [182]:

 Public Blockchain is an open network, where anyone can download the protocol and

read, write or participate in the network.

 Private Blockchain allows different levels of permissions for users, so access can be

restricted, and information can be encrypted to protect confidentiality.

 Consortium Blockchain is permissioned that provides an additional level of security

over typical Blockchain systems, as they require an access control layer.

In this contribution, we use the consortium Blockchain to establish a distributed group

authentication system. The consortium Blockchain is semi-decentralized since only some nodes

would be selected to participate in the consensus and validate the block. In fact, in the context

of the blockchain network, the consensus is a distributed process where several nodes cooperate

to validate a block of transactions. Indeed, numerous consensus algorithms have been designed

for distributed systems [183][184]. Examples are shown in Table 5.2; Proof of Stake (PoS),

delegated PoS (dPoS), Casper, Proof of Elapsed Time (PoET) and Practical Byzantine Fault

Tolerance (PBFT) [177]. These consensus algorithms have mainly three phases:

 Verifying identity,

 Selecting primary peers,

 Synchronizing data in the Blockchain.

Table 5. 2: Comparison of consensus algorithms [27]

Algorithm PoS DPoS Casper PoET PBFT

Decentralized complete complete complete semi semi

Tokens yes yes yes no no

Evil number 51% 51% 51% 51% 33%

Performance relatively high high relatively high high high

Technical maturity mature mature not applied not applied mature

124

Only the PBFT algorithm assumes fewer malicious nodes compared to other algorithms, less

than a third of total nodes. A selected leader orders the transactions and ensures the consensus

with the blockchain node (peers) to add blocks to the chain. The PBFT protocol can work in

malicious environment where no more than third of total nodes of the consensus are dishonest.

In fact, the goal of PBFT is that all the honest nodes, composing the consortium network,

communicate with each other to help in reaching a consensus regarding the state of the system

through the majority. The important advantage of PBFT is its significant performances in terms

of energy consumption reduction. In this context, we use an optimized PBFT to improve

authentication efficiency, where the selection of the leader peer is based on round robin than

computing complex puzzles, which can alleviate the computation burden on the Blockchain

network. The consensus algorithm is executed to store the user information such as the identity

and subscription lists and authentication logs in the Blockchain network. Thus, it may prevent

data tampering and achieve data traceability.

5.4. System Model

In this section, we introduce the overall system architecture of the proposed DiGABlock

scheme, which offers secure and fast user authentication with numerous groups of IoT devices.

Furthermore, we present the adaptability of the DiGABlock with a smart hotel use case. Then,

we present the attacker model and enumerate the security system requirements.

5.4.1. System Architecture

The system architecture, shown in Figure 5.1, is composed of four different layers: (i) IoT

devices services layer, (ii) End-users layer, (iii) Blockchain edge layer, and (iv) Blockchain

network layer. In what follows, we explain the different components of our architecture:

Figure.5. 1: Network model of the proposed scheme

125

 IoT devices services layer: outlines a large number of IoT devices that collect and publish

data. These IoT devices form many groups that define different IoT services, where each

service is mapped to a service manager. The IoT devices are assumed limited in their

processing power, memory, and energy availability.

 End-users layer: comprises the subscribed users to the existing IoT services in the

Blockchain network. In fact, the users choose a list of the desired IoT services and subscribe

under the smart contract of the Blockchain network. Then, the subscribers will authenticate

to the selected IoT devices through the corresponding and the nearby service manager to

them.

 Blockchain edge layer: is composed of service managers (SM) nodes. Each service

manager node is responsible for controlling a group of IoT devices. Besides, the SM

ensures users' authentication with IoT devices and then sends authentication results to the

Blockchain network. The SM proposes user authentication transactions (described in the

next section) and contributes to committing a block into the blockchain network. The

service managers are established in our proposed group authentication system to provide a

group edge authentication service and synchronize authentication data to supervise users'

activity as blockchain clients.

 Blockchain network layer: comprises the peers’ nodes that store users' information in a

distributed manner. In fact, they contain the distributed ledger recording the user

authentication information. Each peer has a smart contract useful to verify the transactions

and adding blocks into the blockchain network. Together with the service manager nodes,

the peer nodes form a consortium Blockchain network through the Practical Byzantine Fault

Tolerance (PBFT) for consensus establishment. Further, they are responsible for verifying,

endorsing transactions, creating blocks, and committing the authentication results to the

ledger. Our Blockchain network provides distributed services of storing users'

authentication information over Hyperledger Fabric, a customizable consortium blockchain

platform that supports smart contracts called "chaincode" [178].

5.4.2. Adaptation to the Smart Hotel Scenario

We can easily adapt DiGABlock solution to the smart hotel use case (see figure 5.2),

presented in the previous chapters 3 and 4 (in the context of PARFAIT project [7]). In fact, a

smart hotel which is composed of hundreds of rooms and offers various hospitality services,

needs to define an efficient authentication system for different users. For that, we can define a

service manager for the different services in the hotel, such as room service for each room,

accommodation service, tourism service, and entertainment service. The users could be the

hotel guests, the hoteliers, and the hotel staff. In this scenario, guests’ smartphones should be

authenticated before getting access to the room service. Also, they need authentication to access

accommodation services like the restaurant, food distributors, etc. A regular change of user

might be problematic as the number of requesting authentication is important. Thus, a service

manager is a unit control that controls a group of IoT devices, defining one of the mentioned

services and plays the role of a gateway between the user and the concerned IoT devices. These

126

service managers present the edge part of the Blockchain network, installed to ensure an edge

authentication to enhance the system response, and characterized with a high computing

capacity. The Blockchain network is composed of servers that might be running on the physical

hardware present inside the hotel, or they may be a cloud service provided for the hotels.

5.4.3. Threat Model

In this section, we consider adversaries targeting the authentication process, where

several attacks are commonly employing the consortium Blockchain, such as:

 Denial of service attacks in which attackers aim to render the blockchain network or

IoT network unavailable. Attackers may eavesdrop on data transferred from

Blockchain edge nodes and try to fabricate a false signature without having access

to the respective private signer key. At this level, the attackers proceed to transfer

the valid authentication results signed with the false signature to the Blockchain.

The alliance peers should discard this message, as it is unreliable even if the

authentication results are valid.

 A forgery attack in which attackers may falsify users' identity to access the edge

nodes and obtain confidential content or infect the authentication data. Further, they

could also attempt to fabricate the edge nodes' identity and steal or modify the users’

information, leading to the destruction of the authentication process. To produce a

forgery attack, they need to eavesdrop delivered messages by the legitimate edge

node and compute cryptographic keys and then tamper the delivered messages to

the blockchain network or terminals with forgery signatures.

 A man-in-the-middle attack may occur during messages transmission between users

and the edge nodes. Indeed, the attackers could block the delivered messages

Figure.5. 2: IoT environment of a Smart Hotel

Figure 5.10:

Figure 5. 2: IoT environment of a Smart Hotel

Figure 5.11:

127

between edge nodes and users, modify, and send them maliciously to destroy the

system.

5.4.4. Security Goals

As discussed in the previous subsection, the attackers may attempt to destroy the

communication of the system. Hence, it is essential to meet the security requirements of an

authentication mechanism based on Blockchain technology. Besides, the proposed DiGABlock

scheme should achieve the following security goals:

 Group authentication and secure key agreement, including confidentiality and integrity.

Each user must be authenticated successfully with all requested IoT devices through the

Blockchain network. Once successfully authenticated, a secure channel is established

between users and all corresponding IoT devices. Hence, the adversary can neither

decrypt nor tamper any transmitted message.

 Anonymity through hiding the users’ identities in regular exchanged messages during the

authentication process.

 Traceability by guaranteeing that smart contracts can trace all illegal users in case of any

doubtful situation.

 Non-interactivity by allowing users to authenticate only once in the system and then get

a secure access through the service manager without a full authentication process.

Consequently, reducing the number of transmitted messages and enhancing the system

response.

 Non-frameability that guarantees that the users’ information is not abused by the single

trusted entity (alliance peers and service manager) during the authentication process. The

trusted entities should cooperate with the user to reveal the authentication information.

5.5. DiGABlock Description

In this section, we describe the proposed DiGABlock scheme that achieves a distributed

group authentication and avoids congestion in IoT environment. Our system includes mainly

six phases: namely, (i) Blockchain setting up, (ii) initialization, (iii) user registration, (iv) group

authentication, (v) consensus, and (vi) service delivery phases. The setting up of the Blockchain

network and the initialization phases are done only once during the system establishment, while

the rest of phases are repeated through the authentication process. Figure 5.3 presents the last

four phases:

128

The main idea of our solution is to authenticate a user with many IoT devices with less

interaction with the system. Hence, the user should register himself to the system through the

Certification Authority, CA, to get the necessary authentication credentials described in the

registration phase. During the registration, the user chooses a list of IoT services to which he/she

wants to subscribe. The corresponding service managers of the requested IoT services get the

registrations’ update from CA. This action allows any service manager from the subscription

list to authenticate the user at the edge of the network. Therefore, the user should perform a first

full authentication to one of the service managers to verify his/her identity. Mutual

authentication is achieved between the user and the corresponding service manager, as well as

between the user and a group of IoT devices under the control of this service manager during

the first authentication. This full authentication aims to provide the user with some information

that allows him/her to get access to the remaining IoT services of the subscription list without

re-authenticating with the system. After verifying the user’s legitimacy, the service manager

generates transactions containing the user information. The service manager then sends a

request to the Blockchain node to add a block for the new user and chain it in the Blockchain

network. We note that we use a consortium blockchain network in our solution, which permits

tracking the user in the system. Once the consensus is finished and the user’s block is chained

in the blockchain network, the user could access any IoT services from his/her subscription list

securely through the service delivery phase.

Figure.5. 3: Workflow model of the proposed scheme

Figure 5. 3: Workflow model of the proposed scheme

129

5.5.1. Setting up the Blockchain Network

During this phase, we setup the blockchain network with the edge nodes and peers registered

under the CA of the Hyperledger Fabric. Besides, in each edge node and blockchain node, smart

contracts are deployed to maintain an updated ledger with the user authentication information.

In addition, the edge node of the blockchain network named the service manager defines an IoT

service and controls a group of IoT devices.

Let N be the number of all IoT devices in our system; we denote 𝐷 = {𝐷1, 𝐷2, … , 𝐷𝑁} the set

of IoT devices, 𝜒 = {𝑥1, 𝑥2, … , 𝑥𝑁} the set of public information related to them, and 𝑆 =

{𝑆1, 𝑆2, … , 𝑆𝐾} the set of IoT services. We define each IoT device 𝐷𝑗 ∈ 𝐷 at the smart contract

with a unique identity and a group of IoT devices with an IoT service under the control of the

Service Manager, SM. Let 𝑆𝑀 = {𝑆𝑀1, 𝑆𝑀2, … , 𝑆𝑀𝐾} be the set of service managers used to

control groups of IoT devices in our system, where 𝐾 < 𝑁. In fact, each 𝑆𝑀𝑗 , where 1 ≤ 𝑗 ≤

𝐾, contains a subscription list 𝜁𝑗 of legitimate subscribed users to the associated IoT service 𝑆𝑗.

Further, the subscription list is updated after each new successful user registration. We also

adopt a revocation list 𝜗 of the revoked users in the network. Finally, we outline that the

Blockchain nodes called alliance peers 𝐴𝑃 = {𝐴𝑃1, 𝐴𝑃2, … , 𝐴𝑃𝑀} collaborate with the edge

nodes to verify, endorse transactions, and commits blocks to the ledger containing the

successful user authentication results. The notations used in this section are summarized in

Table 5.3.

Table 5. 3: List of acronyms

Notations Description

𝑺𝒋 The service j

𝑺𝑴𝒋 The service manager of the 𝑺𝒋

𝜻𝒋 A subscription list of the 𝑆𝑀𝑗

𝑫𝒊 The device i

𝒙𝟏 Public information of the 𝐷𝑖
𝑨𝑷 Alliance peers

𝑺𝑪 Smart contract

𝑺𝑲𝑿 The secret key of X

𝑷𝑲𝑿 The public key of X

𝒆(. , .) Pairing function

5.5.2. Initialization Phase

In this phase, we initialize the system parameters that will be used in the eventual registration

and authentication phases. Thus, the certification authority of the Hyperledger Fabric performs

some operations to prepare the environment for the upcoming phases. In what follow, the CA

is running this phase:

 CA generates two large secure prime numbers p and q, where 𝑝 > 𝑞 + (𝑁 + 1)𝑞2

(condition for securing group authentication from outsider attackers, discussed in

section 5.5.3).

130

 CA picks an elliptic curve additive cyclic group G with order q and a generator P of G.

It also selects a random 𝑆𝑖𝑔𝐾𝑒𝑦 ∈ Ζ𝑞
∗ as a private signature key and deduces the master

public signature key 𝑃𝑆𝑖𝑔𝐾𝑒𝑦 = 𝑆𝑖𝑔𝐾𝑒𝑦 × 𝑃.

 CA declares the secure Hash functions useful in our scheme defined as follows:

o 𝐻0: 𝐺 → {0,1}
∗,

o 𝐻1: {0,1}
∗ × 𝐺 → Ζ𝑞

∗ ,

o 𝐻2: 𝐺 × {0,1}
∗ × 𝐺 → Ζ𝑞

∗ ,

o 𝐻3: 𝐺 × 𝐺 → Ζ𝑞
∗ ,

Then, CA keeps 𝑆𝑖𝑔𝐾𝑒𝑦 secret and publishes the system

parameters {𝑃, 𝐹𝑝, 𝐹𝑞 , 𝑃𝑆𝑖𝑔𝐾𝑒𝑦,𝐻0, 𝐻1, 𝐻2, 𝐻3}.

5.5.3. User Registration Phase

Users should register under our system, as shown in Figure 5.4, to subscribe to the different

required IoT services. For clarity, we assume, for example, that a user Ux wants to subscribe to

the set {𝑆𝑥, 𝑆𝑎, 𝑆𝑏} of IoT services. Note that each IoT service comprises a group of IoT devices

controlled by a service manager, 𝑆𝑀, and we consider n is the total number of IoT devices,

{𝐷1, 𝐷2, … , 𝐷𝑛} to which the user is subscribed. In fact, during the registration phase the user

𝑈𝑥 registers himself with the certification authority CA of the Hyperledger Fabric by requesting

the IoT services {𝑆𝑥, 𝑆𝑎, 𝑆𝑏}. In particular, to secure communication between the user and edge

nodes, a lightweight symmetric cryptographic protocol is designed.

Once receiving the user request, including the identity, the IoT services, and the timestamp

< 𝐼𝑑𝑈𝑥, 𝑇𝑈𝑥 , 𝑆𝑥,, 𝑆𝑎, 𝑆𝑏 >, the CA proceeds to register the user under the system for further

secure communication with IoT service. Otherwise, since an IoT service is defined with a group

of IoT devices in our scheme, a secret sharing protocol is designed to secure communication

between the user and IoT devices. We consider, based on the Shamir scheme, n IoT devices,

and the user compose the set of n+1 shareholders {𝐷1, 𝐷2, … , 𝐷𝑛, 𝑈𝑥}, with respective public

information {𝑥1, 𝑥2, … , 𝑥𝑛} and user 𝐼𝑑𝑈𝑥, and the (t+1) is the threshold of the shared secret.

At this level, CA executes the following steps of registration by:

 Select a random polynomial f(x) in Ϝ𝑃, where the degree is fixed to the minimum number

of IoT devices per group t, such that:

𝑓(𝑥) = 𝑎0 + 𝑎1𝑥 +⋯+ 𝑎𝑡𝑥
𝑡 𝑚𝑜𝑑 (𝑝),

where 𝑎𝑘 ∈ Ϝ𝑃, for 𝑘 = 0,1, … , 𝑡, 𝑎𝑡 ≠ 0 𝑎0 ∈ Ϝ𝑞

 Choose a shared secret that defines the user who wants to communicate with the n IoT

devices: 𝑆𝑒𝑐𝑈 = 𝑓(0) = 𝑎0 ; 𝑆𝑒𝑐𝑈 < 𝑝.

 Compute the shares for the requested IoT devices corresponding to the IoT services

{𝑆𝑥, 𝑆𝑎, 𝑆𝑏}:

131

𝑓(𝑥𝑖) ← 𝑎0 +∑𝑎𝑘. 𝑥𝑖
𝑘 𝑚𝑜𝑑(𝑝)

𝑘=𝑡

𝑘=1

 Compute the user's share useful to ensure the legitimacy of the user among the group of

IoT devices:

𝑓(𝐼𝑑𝑈𝑥) ← 𝑎0 +∑𝑎𝑘𝐼𝑑𝑈𝑥
𝑘 𝑚𝑜𝑑(𝑝)

𝑘=𝑡

𝑘=1

 Generate a random number 𝑟𝑈𝑥𝜖 Ϝ𝑃 , to compute the user's shared secret key: 𝑆𝐾𝑈𝑥 =

𝐻1(𝐼𝑑𝑈𝑥 , 𝑟𝑈𝑥).

 Compute the user registration data convenient to ensure secure communication with the

edge nodes:

𝑙𝑈𝑖
∗ = 𝐻3(𝑓(𝐼𝑑𝑈𝑥) ∥ 𝐻1(𝐼𝑑𝑈𝑥 , 𝑟𝑈𝑥))⊕ 𝐻1(𝑆𝐾𝐶𝐴 ∥ 𝐼𝑑𝑈𝑥)

At this level, the user identity, the required IoT devices information, and the hash value

of the user secret 〈𝐼𝑑𝑈𝑥, 𝑓(𝑥𝑖), 𝑖 ≤ 𝑛 𝑎𝑛𝑑 𝐻0(𝑆𝑒𝑐𝑈)〉 are sent to the matching service

manager 𝑆𝑀𝑗 for updating their subscription list 𝜁𝑗 , where the user is identified with an

identity 𝐵𝑙𝑜𝑐𝑘𝑈𝑖𝑑 .

 Send to the user over a secure channel:

 𝐶𝐴
 <𝑺𝑲𝑼𝒙 ,𝒇(𝑰𝒅𝑼𝒙),𝑩𝒍𝒐𝒄𝒌𝑼𝒊𝒅 ,𝑯𝟏(𝑺𝑲𝑪𝑨∥𝑰𝒅𝑼𝒙)>

→ 𝑈𝑥

 Finally, once receiving registration information, the user stores it in its memory

〈𝑆𝐾𝑈𝑥 , 𝑓(𝐼𝑑𝑈𝑥), 𝐵𝑙𝑜𝑐𝑘𝑈𝑖𝑑 , 𝐻1(𝑆𝐾𝐶𝐴 ∥ 𝐼𝑑𝑈𝑥)〉.

Once the user is registered successfully, he/she could ensure a group authentication with the

required n IoT devices. Based on the Shamir’s Secret sharing SS, Harn et. al. [171] proposed a

group authentication scheme named (t,m,n) GAS t-secure m-user n-group. (t,m,n) GAS limits

the number of users participating in the communication. Hence, GAS defines t the threshold of

the shared secret, m the number of users participating in the authentication procedure, and n the

number of members in the group. Besides, the selected secret is divided into n pieces, and then

it is distributed to n users. Then, GAS guarantees that with only m users participating in the

authentication to recover the Shamir’s secret through Lagrange polynomial interpolation.

For that, we define a new concept of group authentication scheme based on GAS and Shamir

shared secret as follows:

Definition 1: t-minSecure, d-IoT devices, m-maxSecure, n-Group Authentication (t, d, m, n)-

GA

 let t, d, m, n be four positive integers where 𝑡 ≤ 𝑑 ≤ 𝑚 ≤ 𝑛.

 t-minSecure defines the minimum number of IoT devices per group,

 d-IoT devices participating in the group authentication,

132

 m-maxSecure is the maximum number of IoT devices per group,

 n-Group is the number of all IoT devices to which the user is subscribed.

The (t, d, m, n)-GA can resist up to (t +1) colluded group members, for a group of d IoT

devices, and then, the (t, d, m, n)-GA determine whether a user is authenticated to n IoT

devices or not.

In (t, d, m, n)-GA, a user could ensure authentication with a group of IoT devices. For that,

a secret 𝑆𝑒𝑐𝑈 is selected, and tokens are computed for the group with (n+1) members

composed of n IoT devices and the user during the user's registration. These tokens are used

to retrieve the shared secret 𝑆𝑒𝑐𝑈 that define the legitimate user who wants to communicate

with the IoT group. In particular, the (t, d, m, n)-GA, as shown in Figure 5.4, allows the user's

authentication to a group of n IoT devices, where only d IoT devices, under the control of

SM, and the user participate in the group authentication. The service manager is responsible

for retrieving the shared secret using IoT devices' tokens and the user's token distributed

during the authentication phase.

The (t, d, m, n)-GA algorithm can only detect nonmembers' existence but cannot identify

them. The advantage of (t, d, m, n)-GA is that the user is authenticated with all IoT devices at

once, while the user is authenticated by one IoT device in conventional user authentication.

The (t, d, m, n)-GA Algorithm

Input: public information of the user and IoT devices, the random polynomial f(x)

Output: generating tokens for user and IoT devices, Lagrange component and the shared secret.

Token generation:

Select:

 A random polynomial f(x) in Ϝ𝑃, of degree t such that:

Figure.5. 4: Secret shared authenticator recovering

Figure 5. 4: Secret shared authenticator recovering

133

𝑓(𝑥) = 𝑎0 + 𝑎1𝑥 +⋯+ 𝑎𝑡𝑥
𝑡 𝑚𝑜𝑑 (𝑝), where 𝑎𝑘 ∈ Ϝ𝑃 , for 𝑘 = 0,1,… , 𝑡, 𝑎𝑡 ≠

0 𝑎0 ∈ Ϝ𝑞

 A secret 𝑆𝑒𝑐𝑈 = 𝑓(0) = 𝑎0 ; 𝑆𝑒𝑐𝑈 < 𝑝.

Compute the corresponding tokens for n IoT devices:

 For each device 𝐷𝑖; 𝑖 = 1. . 𝑛 (𝑜𝑓 𝑝𝑢𝑏𝑙𝑖𝑐 𝑖𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝑥𝑖) do

 𝑓(𝑥𝑖) ← 𝑎0 + ∑ 𝑎𝑘 . 𝑥𝑖
𝑘 𝑚𝑜𝑑(𝑝) 𝑘=𝑡

𝑘=1

 End for

Compute the user token:

 𝑓(𝐼𝑑𝑈𝑥) ← 𝑎0 + ∑ 𝑎𝑘𝐼𝑑𝑈𝑥
𝑘 𝑚𝑜𝑑(𝑝) 𝑘=𝑡

𝑘=1

Distribute the tokens of IoT devices and user and the hash value of the secret 𝐻0(𝑆𝑒𝑐𝑈)

Group authentication:

The SM computes all Lagrange component of the d requested IoT devices using the tokens:

𝑐𝑗 = (𝑓(𝑥𝑗) × ∏
−𝑥𝑣

𝑥𝑗−𝑥𝑣

𝑑
𝑣=1,𝑣≠𝑗

−𝐼𝑑𝑈𝑥
𝑥𝑗−𝐼𝑑𝑈𝑥

+ 𝑟𝑗𝑞)𝑚𝑜𝑑 , where 𝑗 = 1…𝑑

The user computes the corresponding Lagrange component using his/her token:

𝑐𝑈 = (𝑓(𝐼𝑑𝑈𝑥) ×∏
−𝑥𝑣

𝐼𝑑𝑈𝑥 − 𝑥𝑣

𝑑

𝑣=1

 + 𝑟0𝑞)𝑚𝑜𝑑 𝑝

After receiving all the Lagrange components, the SM retrieve the shared secret:

𝑠 = (∑𝑐𝑗

𝑗=𝑑

𝑗=1

+ 𝑐𝑈 𝑚𝑜𝑑 𝑝) 𝑚𝑜𝑑 𝑞;

Then, SM verifying the validity of the retrieved shared:

𝐻0(𝑆𝑒𝑐𝑈) == 𝐻0(𝑠)

Hence, the user and all IoT devices are authenticated. Otherwise, the user is not legitimate.

We verify the validity of (t, d, m, n)-GA through proving the following properties:

 Correctness: the shared secret is reconstructed successfully only if the user and IoT

devices are acting honestly by realizing their Lagrange components. Indeed, if the user

is non-legitimate, he/she has a non-valid token, and thus the released Lagrange

component is illegal. The recovered secret will not match the correct secret at this stage,

and the authentication is rejected.

 Efficiency: the communication overhead is minimal in (t, d, m, n)-GA. Indeed, the user

needs to release the computed Lagrange component to the SM, while IoT devices under

this SM's control should maintain the shared keys that verify their legitimacy. Thus, the

overhead cost is only deriving from the most consuming operation to compute the

Lagrange component. The SM is also responsible for verifying the members of the

group communication, which minimizes the computation cost related to retrieving the

secret.

134

 Security: regarding the generation of the tokens are achieved by polynomials of a

degree (t), thus (t, d, m, n)-GA resists up to (t) colluded inside adversaries trying to

recover the selected polynomial. For the outsider attackers trying to participate in the

group authentication, they could not compute the tokens protected unconditionally with

the Lagrange component. Therefore, any outsider adversary cannot also derive the user

token from the Lagrange component sent to the SM during the authentication. In fact,

the Lagrange component is a linear function of 𝑘(𝑡 + 1) coefficients of polynomials,

with each polynomial having a degree t. Thus, since 𝑘(𝑡 + 1) > 𝑛 (the total number of

required IoT devices), an outside adversary cannot forge the valid Lagrange component

when the user token is released asynchronously.

5.5.4. Distributed Group Authentication Phase

At this level, the user 𝑈𝑥 can authenticate with all the IoT devices to which he/she is

subscribed in the registration phase, as presented in the Figure 5.5. Indeed, the user requests to

access one of the IoT services {𝑆𝑥, 𝑆𝑎, 𝑆𝑏}, for the first time. We consider that the user 𝑈𝑥wants

to communicate with the IoT service 𝑆𝑥, which is composed of d IoT devices {𝐷1, 𝐷2, … , 𝐷𝑑}.

To ensure the authentication of the user 𝑈𝑥 with the d requested IoT devices, a group

authentication is guaranteed at the edge of the network through the corresponding service

manager 𝑆𝑀𝑥. For that, it is important to secure the communication between the user and the

edge node firstly, which is achieved as follows:

 Selects a random number 𝑟0𝜖 ℤ𝑝
∗

,

 Generates time stamp 𝑇𝑈𝑥 ,

 Computes the necessary authentication information using the data of the registration

phase:

o 𝑅0 = 𝑟0 × 𝑃;

o 𝑅𝑈 = 𝑅0 × 𝑓(𝐼𝑑𝑈𝑥);

o 𝑙𝑈𝑥 = 𝐻0(𝑓(𝐼𝑑𝑈𝑥) ∥ 𝑠𝑘𝑈𝑥) ⊕ 𝐻1(𝑆𝐾𝐶𝐴 ∥ 𝐼𝑑𝑈𝑥) ;

o 𝑐𝑈 = (𝑓(𝐼𝑑𝑈𝑥) × ∏
−𝑥𝑣

𝐼𝑑𝑈𝑥−𝑥𝑣

𝑑
𝑣=1 + 𝑟0𝑞)𝑚𝑜𝑑 𝑝; The user Lagrange

component 𝑐𝑈 to contribute to the computing of the Shamir secret.

o 𝑡𝑜𝑘𝑒𝑛𝑈𝑥 = 𝐸𝑛𝑐𝑦(𝑐𝑈, 𝑃𝐾𝑆𝑀𝑥);

o 𝐴𝑢𝑡ℎ𝑈𝑥 = 𝐻2(𝑅0 ∥ 𝐵𝑙𝑜𝑐𝑘𝑈𝒊𝒅 ∥ 𝑇𝑈𝑥 ∥ 𝑙𝑈𝑥); User information to authenticate

the user mutually.

 Sends the authentication request to the corresponding service manager 𝑆𝑀𝑥:

 𝑈𝑥
 <𝑨𝒖𝒕𝒉𝑼𝒙 ,𝒓𝟎,𝒕𝒐𝒌𝒆𝒏𝑼𝒙 ,𝑻𝑼𝒙 ,𝑩𝒍𝒐𝒄𝒌𝑼𝒊𝒅 >
→ 𝑆𝑀𝑥

After receiving the user authentication request, the 𝑆𝑀𝑥 starts the authentication process

as follows:

135

 Selects the time stamp 𝑇1 and verifies weather |𝑇𝑈𝑥 − 𝑇1| < Δ𝑇 ; if it holds, it

continues the authentication, else the request is declined,

 Fetches the user information identified with 𝐵𝑙𝑜𝑐𝑘𝑈𝑖𝑑 in the registration user list in

local database and gathers tokens 𝑓(𝑥𝑗) of all requested IoT devices under its control.

 Computes the authentication value of the user:

𝐴𝑢𝑡ℎ𝑈𝑥
∗ = 𝐻2(𝑟𝑈. 𝑃𝐾𝑈𝑥 ∥ 𝐵𝑙𝑜𝑐𝑘𝑈𝑖𝑑 ∥ 𝑇𝑈𝑥 ∥ 𝑙𝑈𝑥

∗)

and compares it with the received value from the user: 𝐴𝑢𝑡ℎ𝑈𝑥
∗ == 𝐴𝑢𝑡ℎ𝑈𝑥. If the

value is correct, an authentication is achieved between the user and the 𝑆𝑀𝑥 . Then

𝑆𝑀𝑥 decrypts the user token; 𝑑𝑒𝑐𝑟𝑦𝑝𝑡(𝑡𝑜𝑘𝑒𝑛𝑈𝑥 , 𝑆𝐾𝑆𝑀𝑥) to retrieve the user’s

Lagrange component 𝑐𝑈 useful to ensure the group authentication with the group of

IoT devices. Otherwise, 𝑆𝑀𝑥 tears down the connection.

 Computes all Lagrange component of the d requested IoT devices under its control

using the registration information:

𝑐𝑗 = (𝑓(𝑥𝑗) × ∏
−𝑥𝑣

𝑥𝑗−𝑥𝑣

𝑑
𝑣=1,𝑣≠𝑗

−𝐼𝑑𝑈𝑥

𝑥𝑗−𝐼𝑑𝑈𝑥
+ 𝑟𝑗𝑞)𝑚𝑜𝑑 , where 𝑗 = 1…𝑑

 Retrieves the shared secret corresponding to the user:

𝑠 = (∑𝑐𝑗

𝑗=𝑑

𝑗=1

+ 𝑐𝑈 𝑚𝑜𝑑 𝑝) 𝑚𝑜𝑑 𝑞;

 Computes 𝐻0(s) and compares it with the received value during the registration phase:

𝐻0(𝑠) == 𝐻0(𝑆𝑒𝑐𝑈)?. If it is true, we confirm that the user 𝑈𝑥 is legitimate and can

get a secure access to the all IoT devices under the 𝑆𝑀𝑥 control. Otherwise, the user

authentication request is declined, and the service manager proceeds to update the

revocation list.

At this level, to secure the further user communication with the rest of SM to which he/she

is subscribed, the 𝑆𝑀𝑥 designs an asymmetric cryptographic algorithm based on ECC. In fact,

the 𝑆𝑀𝑥 produces a master signature for the user useful in the service delivery phase when user

requests a new IoT service and does not need to re-authenticate:

 Selects a random number 𝑣𝑥 𝜖 ℤ𝑞
∗

, and computes the user master signature useful for

further authentication:

o 𝑉𝑥 = 𝑣𝑥 . 𝑃, ℎ𝑥 = 𝐻3(𝐼𝑑𝑥 ∥ 𝑉𝑥 ∥ 𝑃𝐾𝑆𝑀𝑥), and 𝛿𝑥1 = (𝑣𝑥 +

(ℎ𝑥 . 𝑠𝑖𝑔) 𝑚𝑜𝑑) 𝑞
−1. 𝑃

 Sends the signature to the user: 𝑆𝑀𝑥
 < 𝑽𝒙,𝜹𝒙𝟏>
→ 𝑈𝑥 and broadcast the public

information to the edge nodes.

The user verifies the legitimacy of the service manager 𝑆𝑀𝑥 by verifying if equation 5.4

holds:

𝑒(𝛿𝑥1, 𝑉𝑥 + ℎ𝑥 . 𝑃𝐾𝑆𝑀𝑥) == 𝑒(𝑃, 𝑃) (5.4)

136

Hence, if equation 5.4 holds, the user 𝑈𝑥 confirms the reliability of received messages and

stores the signature for further communication with IoT services.

Algorithm 1: User group authentication

Input: 𝒇(𝒙𝒊)of d requested IoT devices and 𝒇(𝑰𝒅𝑼𝒙) of the user

Output: master signature for the authenticated user, update subscription and revocation list

1:

2:

3:

4:

5:

6:

7:

8:

9:

10:

11:

12:

13:

14:

15:

16:

17:

18:

19:

User: - selects a random number 𝑟0𝜖 ℤ𝑝
∗

 - Generates time stamp 𝑇𝑈𝑥

 - Computes: 𝑅0 = 𝑟0 × 𝑃;

 𝑅𝑈 = 𝑅0 × 𝑓(𝐼𝑑𝑈𝑥);

 𝑙𝑈𝑥 = 𝐻0(𝑓(𝐼𝑑𝑈𝑥) ∥ 𝑠𝑘𝑈𝑥) ⊕ 𝐻1(𝑆𝐾𝐶𝐴 ∥ 𝐼𝑑𝑈𝑥) ;

𝑐𝑈 = (𝑓(𝐼𝑑𝑈𝑥) × ∏
−𝑥𝑣

𝐼𝑑𝑈𝑥−𝑥𝑣

𝑑
𝑣=1 + 𝑟0𝑞)𝑚𝑜𝑑 𝑝

 𝑡𝑜𝑘𝑒𝑛𝑈𝑥 = 𝐸𝑛𝑐𝑦(𝑐𝑈 , 𝑃𝐾𝑆𝑀𝑥);

 𝐴𝑢𝑡ℎ𝑈𝑥 = 𝐻2(𝑅0 ∥ 𝐵𝑙𝑜𝑐𝑘𝑈𝒊𝒅 ∥ 𝑇𝑈𝑥 ∥ 𝑙𝑈𝑥);

User sends to the corresponding service manager: 𝑈𝑥
 <𝑨𝒖𝒕𝒉𝑼𝒙 ,𝒓𝟎,𝒕𝒐𝒌𝒆𝒏𝑼𝒙 ,𝑻𝑼𝒙 ,𝑩𝒍𝒐𝒄𝒌𝑼𝒊𝒅 >
→ 𝑆𝑀𝑥

𝑆𝑀𝑥 executes the following steps:

Select the time stamp 𝑇1

If |𝑇𝑈𝑥 − 𝑇1| < Δ𝑇 Then

 Fetch in the local database the user information identified with 𝐵𝑙𝑜𝑐𝑘𝑈𝑖𝑑

 Gather shared secrets 𝑓(𝑥𝑗) of all devices under 𝑆𝑀𝑥

Else

 Request declined

End if;

Compute 𝐴𝑢𝑡ℎ𝑈𝑥
∗ = 𝐻2(𝑟𝑈 . 𝑃𝐾𝑈𝑥 ∥ 𝐵𝑙𝑜𝑐𝑘𝑈𝑖𝑑 ∥ 𝑇𝑈𝑥 ∥ 𝑙𝑈𝑥

∗)

If 𝐴𝑢𝑡ℎ𝑈𝑥
∗ == 𝐴𝑢𝑡ℎ𝑈𝑥 Then

 𝑑𝑒𝑐𝑟𝑦𝑝𝑡(𝑡𝑜𝑘𝑒𝑛𝑈𝑥 , 𝑆𝐾𝑆𝑀𝑥) and retrieve 𝑐𝑈

Else

 Tear down the connection.

End if;

Execute the Lagrange interpolation formula, the service manager run the following steps:

Compute the Lagrange component of requested IoT devices under the control of 𝑆𝐾𝑆𝑀𝑥

For j= 1 to d do

 𝑐𝑗 = (𝑓(𝑥𝑗) × ∏
−𝑥𝑣

𝑥𝑗−𝑥𝑣

𝑑
𝑣=1,𝑣≠𝑗

−𝐼𝑑𝑈𝑥

𝑥𝑗−𝐼𝑑𝑈𝑥
+ 𝑟𝑗𝑞)𝑚𝑜𝑑 𝑝

End For

Retrieve the shared secret;

 𝑠 = (∑ 𝑐𝑗
𝑗=𝑑
𝑗=1 + 𝑐𝑈 𝑚𝑜𝑑 𝑝) 𝑚𝑜𝑑 𝑞;

Compute 𝐻0(s);

If 𝐻0(𝑠) == 𝐻0(𝑆𝑒𝑐𝑈) Then

 𝑈𝑥 is authenticated

 𝑆𝑀𝑥 selects a random number 𝑣𝑥 𝜖 ℤ𝑞
∗

, computes the master signature:

 𝑉𝑥 = 𝑣𝑥 . 𝑃

 ℎ𝑥 = 𝐻3(𝐼𝑑𝑥 ∥ 𝑉𝑥 ∥ 𝑃𝐾𝑆𝑀𝑥)

 𝛿𝑥1 = (𝑣𝑥 + (ℎ𝑥 . 𝑠𝑖𝑔) 𝑚𝑜𝑑) 𝑞
−1. 𝑃

 𝑆𝑀𝑥
 < 𝑽𝒙,𝜹𝒙𝟏>
→ 𝑈𝑥

Else

 𝑈𝑥 is NOT authenticated, and the authentication request is denied

 Update the revocation list

 Break;

End if.

User verify the legitimacy of the 𝑆𝑀𝑥

If 𝑒(𝛿𝑥1, 𝑉𝑥 + ℎ𝑥 . 𝑃𝐾𝑆𝑀𝑥) == 𝑒(𝑃, 𝑃) Then

 User 𝑈𝑥 confirm the reliability of received messages;

 User 𝑈𝑥 stores the signature for further communication with IoT services;

End if

137

Once the authentication is successfully finished, the user should be added to the blockchain

network. For that, the 𝑆𝑀𝑥, based on the user information and the authentication results,

generate transactions proposal of the new user 𝑈𝑥. These transactions involve the user

authentication information, including the identity, the signature, the requested IoT services, the

type of authentication, and the transmitted data are presented as follow:

 𝑇𝑋1𝑈𝑥 = 𝐻𝑎𝑠ℎ1(𝐼𝑑𝑈𝑥 , 𝛿𝑥1, 𝑆𝑥, 𝑆𝑎, 𝑆𝑏 , 𝐴𝑢𝑡ℎ, 𝑆𝑥)

Figure.5. 5: Authentication & Service delivery phases

138

 𝑇𝑋2𝑈𝑥 = 𝐻𝑎𝑠ℎ2(𝐼𝑑𝑈𝑥 , 𝛿𝑥2, 𝑆𝑥, 𝑆𝑎, 𝑆𝑏 , 𝐷𝑒𝑙𝑖𝑣, 𝑆𝑥)

 𝑇𝑋3𝑈𝑥 = 𝐻𝑎𝑠ℎ3(𝐼𝑑𝑈𝑥 , 𝛿𝑥3, 𝑆𝑥, 𝑆𝑎, 𝑆𝑏 , 𝐷𝑒𝑙𝑖𝑣, 𝑆𝑎)

 𝑇𝑋4𝑈𝑥 = 𝐻𝑎𝑠ℎ4(𝐼𝑑𝑈𝑥 , 𝛿𝑥3, 𝑆𝑥, 𝑆𝑎, 𝑆𝑏 , 𝐷𝑒𝑙𝑖𝑣, 𝑆𝑏)

Those transactions are computed using the hash-256 function and are stored using the Merkle

tree [167], a data structure tree where each non-leaf node is a hash of its respective child nodes.

Since updating the blockchain network's ledger requires the consent of the peers in the

network, the 𝑆𝑀𝑥 initiates a consensus mechanism by sending a request for public alliance peers

APs to ensure that the 'block' recording information will be 'chained' in the Blockchain network

through calling the consensus algorithm 2, which is the subject of the next part.

5.5.5. Consensus Phase

In this phase, we consider an optimized PBFT consensus algorithm to form the public ledger

and store authentication results and logs to promote certification efficiency. In our case, the

PBFT algorithm is executed in collaboration between the edge nodes SMs and M alliance peers

𝐴𝑃𝑖 , 1 ≤ 𝑖 ≤ 𝑀. In fact, SM sends the request to the primary peer, which is selected in a round-

robin manner, while alliance peers 𝐴𝑃𝑖 write the authentication results into the public ledger

through the optimized PBFT. For each round of consensus making, and given h the height of

the current block (the block height is an expression of the total number of individual blocks that

are a part of the blockchain), an 𝐴𝑃𝑖 is nominated as the speaker of the consensus by using

equation 5.5 where 𝑀 is the number of alliance peers:

𝑠𝑝𝑒𝑎𝑘𝑒𝑟 = (ℎ 𝑚𝑜𝑑 𝑀) + 1 (5.5)

While the other peers are congressmen. Once the block is generated, the speaker signs it and

broadcasts it to all congressmen:

< 𝑃𝑟𝑒_𝑝𝑟𝑒𝑝𝑎𝑟𝑒, ℎ𝑒𝑖𝑔ℎ𝑡, 𝐴𝑃𝑥 , 𝑏𝑙𝑜𝑐𝑘, 𝑆𝑖𝑔𝐴𝑃𝑥(𝑏𝑙𝑜𝑐𝑘) >

Moreover, to save the time of selecting speakers, the nominated one can host the consensus

process M times, as it does not influence the consensus results. The detailed procedure is

explained in algorithm 2.

At this level, alliance peers receive the speaker request, verify it, and update their local states.

Then, each alliance peer participating in the consensus computes the Prepare messages and

sends them to other alliance peers and the speaker:

< 𝑃𝑟𝑒𝑝𝑎𝑟𝑒, ℎ𝑒𝑖𝑔ℎ𝑡 , 𝐴𝑃𝑖 , 𝑏𝑙𝑜𝑐𝑘, 𝑆𝑖𝑔𝐴𝑃𝑖(𝑏𝑙𝑜𝑐𝑘) >

This action is finished when all peers and the speaker receive a number greater than 2𝑓 + 1

of Prepare messages, where 𝑓 = (𝑀 − 1) /3 is the maximum number of malicious nodes in

the blockchain network. Now, all peers and the speaker could update their local states and

broadcast Commit messages among them:

< 𝐶𝑜𝑚𝑚𝑖𝑡, ℎ𝑒𝑖𝑔ℎ𝑡 , 𝐴𝑃𝑖 , 𝑏𝑙𝑜𝑐𝑘, 𝑆𝑖𝑔𝐴𝑃𝑖(𝑏𝑙𝑜𝑐𝑘) >

139

Once all peers and the speaker receive at least a number greater than 𝑓 + 1 of Commit

messages, they respond to the corresponding service manager 𝑆𝑀𝑥 with the result. Besides, all

peers and the speaker update their local state, and the speaker confirms that the consensus is

finished.

After the consensus phase is achieved successfully, a block recording the user information

is chained in the Blockchain network. As shown in Figure 5.6, the data block structure of an

authenticated user contains all associated transactions and the header block that includes the

previous hash, the nonce, the timestamp, and the hash Merkle root. The transactions included

within this block are hashed as part of the Merkle tree leading to the Merkle root that is stored

in the block header. Besides, these transactions involve the user authentication information,

including the identity, the signature, the requested IoT services, the type of authentication, and

the transmitted data.

Figure.5. 6: User authentication data block

140

 Algorithm 2: Consensus phase

Input: user authentication results log to be added,

Output: a consensus is achieved, and user information is added to the

Blockchain

1:

2:

3:

4:

5:

/ ∗ Request

𝑆𝑀𝑥 broadcasts authentication results to alliance peers 𝐴𝑃𝑖
Repeat

 / ∗ Pre-prepare

 Given h the height of the current block;

 Define t the interval time of generating a block;

 Select the speaker of the consensus, 𝑠𝑝𝑒𝑎𝑘𝑒𝑟 = (ℎ 𝑚𝑜𝑑 𝑀) + 1;

 If interval t has expired, then

 A block is generated;

 Speaker broadcasts to all congressmen:

 < 𝑃𝑟𝑒_𝑝𝑟𝑒𝑝𝑎𝑟𝑒, ℎ𝑒𝑖𝑔ℎ𝑡, 𝐴𝑃𝑥, 𝑏𝑙𝑜𝑐𝑘, 𝑆𝑖𝑔𝐴𝑃𝑥(𝑏𝑙𝑜𝑐𝑘) >;

 End if

 If request is received & is valid then

 Alliance peers record the request;

 Alliance peers update local states;

 End if

 round ← 0;

 While round ≤ 𝑀 do

 / ∗ Prepare

 If the local state is updated, then

 ∀𝑖, 𝐴𝑃𝑖 computes the Prepare messages;

 Repeat

 ∀𝑖, 𝐴𝑃𝑖 sends Prepare messages to other alliance peers and to the

speaker

 < 𝑃𝑟𝑒𝑝𝑎𝑟𝑒, ℎ𝑒𝑖𝑔ℎ𝑡 , 𝐴𝑃𝑖, 𝑏𝑙𝑜𝑐𝑘, 𝑆𝑖𝑔𝐴𝑃𝑖(𝑏𝑙𝑜𝑐𝑘) >;

 Until all peers and speaker receive ≥ 2𝑓 + 1 Prepare messages

 End if

 / ∗ Commit

 If all peers and speaker receive ≥ 2𝑓 + 1 then

 All peers and speaker update their local states;

 Repeat

 All 𝐴𝑃𝑖 & speaker broadcast Commit messages among them

 < 𝐶𝑜𝑚𝑚𝑖𝑡, ℎ𝑒𝑖𝑔ℎ𝑡 , 𝐴𝑃𝑖, 𝑏𝑙𝑜𝑐𝑘, 𝑆𝑖𝑔𝐴𝑃𝑖(𝑏𝑙𝑜𝑐𝑘) >;

 Until peers receive ≥ 𝑓 + 1 Commit messages

 Else
 block is discarded;

 round ← round +1;

 Break;

 End if

 / ∗ Reply

 If peers & speaker receive ≥ 𝑓 + 1 Commit messages

 All 𝐴𝑃𝑖 & speaker response the 𝑆𝑀𝑥with its result;

 All 𝐴𝑃𝑖 & speaker update local state;

 The speaker confirm that a consensus is finished;

 Break;

 Else
 block is discarded;

 round ← round +1;

 Break;

 End if

 End while

Until consensus is finished

Algorithm 2: Consensus phase

Input: user authentication results log to be added,

Output: a consensus is achieved, and user information is added to the

141

5.5.6. Service Delivery Phase

At this point and as shown in Figure 5.5, the user who is registered under our system for a

list of IoT services {𝑆𝑥, 𝑆𝑎, 𝑆𝑏} and who has proceeded with the first authentication, could get

permission access to a new IoT service from the subscription’s list without re-authentication.

We consider that the user requests another IoT service 𝑆𝑎 from the corresponding service

manager, 𝑆𝑀𝑎, thus the user 𝑈𝑥 computes a digital signature as follows:

 Given that 𝑆𝐾𝑈𝑥 = ℎ(𝐼𝑑𝑈𝑥 , 𝑟𝑈𝑥) the user private key; the user computes his

corresponding public key 𝑃𝐾𝑈𝑥 = 𝑆𝐾𝑈𝑥 . 𝑃.

 Computes the request: 𝑋𝑢 = 𝐻2(𝑃𝐾𝑈𝑥 ∥ 𝐵𝑙𝑜𝑐𝑘𝑈𝑖𝑑 ∥ 𝑉𝑥 ∥ 𝑃𝑆𝑖𝑔𝐾𝑒𝑦 ∥ 𝑆𝑎).

 Signs the request: 𝛿𝑥2 = (𝑋𝑢 . (𝑣𝑥 + ℎ𝑥 . 𝑆𝑖𝑔𝐾𝑒𝑦 𝑚𝑜𝑑 𝑞) + 𝑆𝐾𝑈𝑥)
−1. 𝑃

 Submits the access requests by delivering a digital signature to the corresponding

service manager 𝑆𝑀𝑎 of the requested IoT services 𝑆𝑎:

𝑈𝑥
𝐴𝑐𝑅𝑒𝑈𝑥=(𝑋𝑢,𝛿𝑥2,𝑇𝑈𝑥

′)
→ 𝑆𝑀𝑎

At this level, the service manager 𝑆𝑀𝑎 invokes the smart contract functions to query the

user’s information in the blockchain ledger, in particular it queries the transaction information

related to the IoT service 𝑆𝑎. Once retrieved, the service manager 𝑆𝑀𝑎:

 Proves that the user public key 𝑃𝐾𝑈𝑥 is not in the revocation list.

 Verifies the transactions’ data in the user’s block data(𝑇𝑋𝑈𝑥) == 𝑆𝑎

 Validates the received signature by verifying if equation 5.6 holds.

𝑒(𝛿𝑥2, 𝑋𝑢 . (𝑉𝑥 + ℎ𝑥 . 𝑃𝑆𝑖𝑔𝐾𝑒𝑦) + 𝑃𝐾𝑈𝑥) == 𝑒(𝑃, 𝑃) (5.6)

If the result is successful, the service manager 𝑆𝑀𝑎 confirms that the user 𝑈𝑥 is authentic

and responds to the user with the requested IoT service 𝑆𝑎. Otherwise, the 𝑆𝑀𝑎declines the

request. Algorithm 3 describes the detailed process of service delivery phase.

Algorithm 3: Service delivery phase

Input: user information 𝒔𝒌𝑼𝒙 , 𝜹𝒙𝟏, requested service 𝑺𝒂

Output: service access permission or denied permission

1:

2:

3:

4:

The user prepares request of the IoT service 𝑆𝑎 from 𝑆𝑀𝑎 by

computing :

 The public key 𝑃𝐾𝑈𝑥 = 𝑆𝐾𝑈𝑥 . 𝑃;

 𝑋𝑢 = 𝐻2(𝑃𝐾𝑈𝑥 ∥ 𝐵𝑙𝑜𝑐𝑘𝑈𝑖𝑑 ∥ 𝑉𝑥 ∥ 𝑃𝑆𝑖𝑔𝐾𝑒𝑦 ∥ 𝑚);

 𝛿𝑥2 = (𝑋𝑢 . (𝑣𝑥 + ℎ𝑥 .𝑆𝑖𝑔𝐾𝑒𝑦 𝑚𝑜𝑑 𝑞) + 𝑆𝐾𝑈𝑥)
−1. 𝑃 ;

The user 𝑈𝑥 submits the access request through delivering a digital

signature to 𝑆𝑎: 𝑈𝑥
𝐴𝑐𝑅𝑒𝑈𝑥=(𝑋𝑢,𝛿𝑥2,𝑇𝑈𝑥

′)
→ 𝑆𝑀𝑎

𝑆𝑀𝑎 invokes the smart contract functions to get the user information

registered in the blockchain network;

142

5:

6:

7:

8:

9:

 If 𝑈𝑥 is in revocation list then

 𝑆𝑀𝑎 refuses to provide the service;

 𝑆𝑀𝑎 informs the Blockchain network;

 Break;

 Else

 Read transaction data of the block related to the user 𝑈𝑥

 If data(𝑇𝑋𝑈𝑥) == 𝑆𝑎 & 𝑡𝑦𝑝𝑒(𝑇𝑋𝑈𝑥) == 𝐷𝑒𝑙𝑖𝑣 then

 𝑆𝑀𝑎 verifies the signature of the user;

 If 𝑒(𝛿𝑥2, 𝑋𝑢 . (𝑉𝑥 + ℎ𝑥 . 𝑃𝑆𝑖𝑔𝐾𝑒𝑦) + 𝑃𝐾𝑈𝑥) == 𝑒(𝑃, 𝑃) then

 User 𝑈𝑥 is authentic;

 𝑆𝑀𝑎 responds the user with the requested IoT service 𝑆𝑎;

 Break;

 Else

 𝑆𝑀𝑎 refuses to provide the service;

 𝑆𝑀𝑎 adds the user to the revocation list;

 𝑆𝑀𝑎 notifies the Blockchain network;

 End if;

 Else

 𝑆𝑀𝑎 refuses to provide the service;

 𝑆𝑀𝑎 adds the user to the revocation list;

 𝑆𝑀𝑎 notifies the Blockchain network;

 End if

 End if

5.6. Security Evaluation

In this section, we evaluate the security features of DiGABlock through the correctness proof

of the formal security analysis and the informal security features:

5.6.1. Correctness Proof

The correctness proof ensures that the decryption of an encrypted message returns the original

plaintext. To prove the correctness of the proposed DiGABlock scheme, we need to verify that

the following equations concerning the group authentication and the distribution of

authentication user data are true:

 The Shamir secret: 𝑠 = 𝑆𝑒𝑐𝑈

 The pairing function to verify the service manager legitimacy during the authentication

phase:

𝑒(𝛿𝑥1, 𝑉𝑥 + ℎ𝑥 . 𝑃𝐾𝑆𝑀𝑥) = 𝑒(𝑃, 𝑃)

 The pairing function to verify the user legitimacy during the service delivery phase:

𝑒(𝛿𝑥2, 𝑋𝑢 . (𝑉𝑥 + ℎ𝑥 . 𝑃𝑆𝑖𝑔𝐾𝑒𝑦) + 𝑃𝐾𝑈𝑥) = 𝑒(𝑃, 𝑃)

143

The details of the proof correctness are as follow:

(i) 𝑠 = (∑ 𝑐𝑗
𝑗=𝑑
𝑗=1 + 𝑐𝑈 𝑚𝑜𝑑 𝑝) 𝑚𝑜𝑑 𝑞

 = (∑ (𝑓(𝑥𝑗) × ∏
−𝑥𝑣

𝑥𝑗−𝑥𝑣

𝑑
𝑣=1,𝑣≠𝑗

−𝐼𝑑𝑈𝑥

𝑥𝑗−𝐼𝑑𝑈𝑥
+ 𝑟𝑗𝑞)

𝑗=𝑑
𝑗=1 𝑚𝑜𝑑 𝑝 + (𝑓(𝐼𝑑𝑈𝑥) ×

∏
−𝑥𝑣

𝐼𝑑𝑈𝑥−𝑥𝑣

𝑑
𝑣=1 + 𝑟0𝑞)𝑚𝑜𝑑 𝑝)𝑚𝑜𝑑 𝑞

 = ∑(𝑓(𝑥𝑗) × ∏
−𝑥𝑣
𝑥𝑗 − 𝑥𝑣

𝑑

𝑣=1,𝑣≠𝑗

−𝐼𝑑𝑈𝑥
𝑥𝑗 − 𝐼𝑑𝑈𝑥

+ 𝑟𝑗𝑞)

𝑗=𝑑

𝑗=1

𝑚𝑜𝑑 𝑝 𝑚𝑜𝑑 𝑞

+ (𝑓(𝐼𝑑𝑈𝑥) ×∏
−𝑥𝑣

𝐼𝑑𝑈𝑥 − 𝑥𝑣

𝑑

𝑣=1

 + 𝑟0𝑞)𝑚𝑜𝑑 𝑝 𝑚𝑜𝑑 𝑞

 = (𝑓(0) +∑(𝑟𝑗𝑞)

𝑗=𝑑

𝑗=1

) 𝑚𝑜𝑑 𝑞 + (𝑟0𝑞)𝑚𝑜𝑑 𝑞

 = (𝑓(0) +∑(𝑟𝑗𝑞)

𝑗=𝑑

𝑗=1

 + (𝑟0𝑞))𝑚𝑜𝑑 𝑞

 = 𝑓(0) = 𝑆𝑒𝑐𝑈

(ii) 𝑒(𝛿𝑥1, 𝑉𝑥 + ℎ𝑥 . 𝑃𝐾𝑆𝑀𝑥) = 𝑒 ((𝑣𝑥 + (ℎ𝑥 . 𝑆𝐾𝑆𝑀𝑥)𝑚𝑜𝑑 𝑞)
−1
. 𝑃 , 𝑉𝑥 + ℎ𝑥 . 𝑃𝐾𝑆𝑀𝑥)

 = 𝑒 ((𝑣𝑥 + (ℎ𝑥 . 𝑆𝐾𝑆𝑀𝑥)𝑚𝑜𝑑 𝑞)
−1
. 𝑃 , 𝑣𝑥 . 𝑃 + ℎ𝑥 . 𝑆𝐾𝑆𝑀𝑥 . 𝑃)

 = 𝑒 ((𝑣𝑥 + ℎ𝑥 . 𝑆𝐾𝑆𝑀𝑥)
−1
. 𝑃 , 𝑣𝑥 . 𝑃 + ℎ𝑥 . 𝑆𝐾𝑆𝑀𝑥 . 𝑃)

 = 𝑒(𝑃, 𝑃)(𝑣𝑥 + ℎ𝑥 .𝑆𝐾𝑆𝑀𝑥)
−1
.(𝑣𝑥+ℎ𝑥 .𝑆𝐾𝑆𝑀𝑥)

 = 𝑒(𝑃, 𝑃).

(iii) 𝑒(𝛿𝑥2, 𝑋𝑢 . (𝑉𝑥 + ℎ𝑥 . 𝑃𝑆𝑖𝑔𝐾𝑒𝑦) + 𝑃𝐾𝑈𝑥) = 𝑒((𝑋𝑢 . (𝑣𝑥 + ℎ𝑥 . 𝑆𝑖𝑔𝐾𝑒𝑦 𝑚𝑜𝑑 𝑞) +

𝑆𝐾𝑈𝑥)
−1. 𝑃 , 𝑋𝑢 . (𝑉𝑥 + ℎ𝑥 . 𝑃𝑆𝑖𝑔𝐾𝑒𝑦) + 𝑃𝐾𝑈𝑥)

= 𝑒((𝑋𝑢 . (𝑣𝑥 + ℎ𝑥 . 𝑆𝑖𝑔𝐾𝑒𝑦) + 𝑆𝐾𝑈𝑥)
−1. 𝑃 , 𝑋𝑢 . (𝑣𝑥 . 𝑃 + ℎ𝑥 . 𝑆𝑖𝑔𝐾𝑒𝑦 . 𝑃) + 𝑃𝐾𝑈𝑥 . 𝑃)

= 𝑒((𝑋𝑢 . (𝑣𝑥 + ℎ𝑥 . 𝑆𝑖𝑔𝐾𝑒𝑦) + 𝑆𝐾𝑈𝑥)
−1. 𝑃 , (𝑋𝑢 . (𝑣𝑥 + ℎ𝑥 . 𝑆𝑖𝑔𝐾𝑒𝑦) + 𝑆𝐾𝑈𝑥). 𝑃)

= 𝑒(𝑃, 𝑃)(𝑋𝑢 .(𝑣𝑥+ℎ𝑥 .𝑆𝑖𝑔𝐾𝑒𝑦) +𝑆𝐾𝑈𝑥)
−1.(𝑋𝑢 .(𝑣𝑥+ℎ𝑥 .𝑆𝑖𝑔𝐾𝑒𝑦)+𝑆𝐾𝑈𝑥) = 𝑒(𝑃, 𝑃).

144

To sum up, our proposed scheme satisfies the correctness. Since the shares are generated by

a polynomial having degree(𝑡 + 1), this scheme can resist up to colluded (𝑡) inside adversaries

trying to recover the polynomial secret 𝑓(0) selected by the CA initially. Otherwise, any

outside adversary participating in the group authentication, needs to solve the discrete logarithm

to derive each Lagrange component 𝑐𝑈, from each shared value, which is computationally

infeasible.

5.6.2. Security Analysis

In this section, we conduct an informal security analysis to prove that our group

authentication solution ensures the expected security requirements, and we outline its capacity

to resist against the following well-known attacks: Forgery, DoS, MiM, Replay, User

impersonation, and perfect forward/backward Secrecy.

5.6.2.1. Forgery Attack

Attackers may forge the identity of the Blockchain edge nodes (the service manager SM) to

destroy the authentication mechanism and steal or modify the user’s information. For that, an

attacker selects a random number 𝐸𝑟𝑟𝑥, computes (𝐸𝑟𝑟𝑥 . 𝑃) to eavesdrop or compute parameters

delivered by the legal service manager SM using equations 5.7 and 5.8:

ℎ𝐸𝑟𝑟 = 𝐻3(𝐼𝑑𝑥 ∥ 𝐸𝑟𝑟𝑥. 𝑃 ∥ 𝑃𝐾𝑆𝑀𝑥) (5.7)

 𝛿𝐸𝑟𝑟 = (𝐸𝑟𝑟𝑥 + (ℎ𝑥 . 𝑠𝑖𝑔) 𝑚𝑜𝑑) 𝑞
−1. 𝑃 (5.8)

Otherwise, once the user receives these messages, he proceeds to compute the ECC pairing

and verifies the request of A. At this level, the request of the attacker A will be rejected since A

gives a false signature, and the user could detect that attack through computing the pairing ECC:

𝑒(𝛿𝐸𝑟𝑟 , 𝐸𝑟𝑟𝑥. 𝑃 + ℎ𝑥 . 𝑃𝐾𝑆𝑀𝑥) ≠ 𝑒(𝑃, 𝑃).

Hence, it is computationally infeasible to calculate correct private keys and public

parameters generated by ECC, and we can confirm that our scheme prevents forgery attacks.

5.6.2.2. Denial of Service Attack:

During the authentication of the user with the service manager for the first time, a malicious

user may launch a DoS attack on Blockchain edge node SM, and tries to forge the exchanged

message of request authentication< 𝐴𝑢𝑡ℎ𝑈𝑥 , 𝑟0, 𝑡𝑜𝑘𝑒𝑛𝑈𝑥 , 𝑇𝑈𝑥 , 𝐵𝑙𝑜𝑐𝑘𝑈𝑖𝑑 >. The SM can detect

the forged message through checking 𝐵𝑙𝑜𝑐𝑘𝑈𝑖𝑑 and comparing 𝐴𝑢𝑡ℎ𝑈𝑥, hence eliminate all

illegal access requests. Otherwise, during the service delivery of the user with the remaining

SMs to which it is subscribed, the authentication process is based on the signature verification

and the result is broadcasted among SMs. If a malicious user interrupts the authentication

messages distributed from SM and sings them with a fake key, alliance peers can detect the

contaminated messages through the PBFT algorithm. More specifically, the consensus

algorithm can be re-executed after each failing for N Time. Hence, the DoS attack may take

145

place only when messages delivered from all SM are contaminated, which is a difficult task

regarding to the widespread of SM. Therefore, the proposed scheme resists the DoS attack.

5.6.2.3. Man-in-The-Middle Attack

Attackers may try to sniff exchanged authentication messages between the user and the

service manager SM. For that, they need to guess the user’s private key or the SM ‘s private key

𝑆𝐾𝑈𝑥. Nevertheless, they cannot forge the SM’s or users' identity, as mentioned above in the

DoS attack. Moreover, attackers may be able to catch the transferred data, they cannot use them

against the network even they re-send it without modifying it, and then the attack does not

influence the authentication system. However, all authentication messages are embedded with

a timestamp, which prevents to reuse them. Thus, we conclude that this attack will fail since

the probability of guessing the user’s private key or the SM’s private key in a limited time T

is negligible.

5.6.2.4. Replay Attack

In our scheme, throughout the authentication mechanism and service delivery between the

user and the service manager SM, we mark the released time of each message with a timestamp.

More specifically, every received message is assigned with a time threshold T. Hence, upon

receiving the exchanged messages, the data consumer (user or service manager) will check the

freshness of the timestamp before executing the other steps of the authentication process. In

this way, the user and the service manager could detect easily if the message is reused, and then

prevent the replay attack.

5.6.2.5. User Impersonation Attack

An attacker A may intend to impersonate a legitimate user through eavesdropping data flow

between a user and the corresponding SM. However, A cannot get the Lagrange component of

the user 𝑐𝑈, since 𝑐𝑈 is embedded in the 𝑡𝑜𝑘𝑒𝑛𝑈𝑥 . Moreover, A cannot decrypt the 𝑡𝑜𝑘𝑒𝑛𝑈𝑥 ,

since the unique session key of SM cannot be adequately generated without the conforming

private key of the user 𝑈𝑥. Furthermore, if A reuses the same 𝐵𝑙𝑜𝑐𝑘𝑈𝒊𝒅 to request the

authentication, the service manager SM can detect the adversary since the value of 𝐴𝑢𝑡ℎ𝑈𝑥will

not be matched. Moreover, only the legally authorized ones can access public ledgers such as

SMs, APs. In the service delivery phase, based on ECC, it is computationally infeasible to

calculate the correct key 𝑆𝐾𝑈𝑥 , thus even the attacker knows 𝐵𝑙𝑜𝑐𝑘𝒊𝒅 , A cannot sign the access

request correctly 𝐴𝑐𝑅𝑒𝑈𝑥 = (𝑋𝑢, 𝛿𝑥2, 𝑇𝑈𝑥
′). Besides, if A intercepts 𝐴𝑐𝑅𝑒𝑈𝑥 = (𝑋𝑢, 𝛿𝑥2, 𝑇𝑈𝑥

′),

and sends it in the next authentication procedure round, the timestamp , 𝑇𝑈𝑥
′ will prevent it from

being reused.

5.6.2.6. Perfect Forward and Backward Secrecy

In our scheme, we need to provide the perfect backward secrecy, which guarantees the

control of a new user who wants to get access to IoT services. Indeed, the user needs to perform

a full authentication procedure with at least one SM. In fact, a random polynomial is designed

for the new user, who joins the system with the desired IoT devices. Otherwise, each IoT device

146

𝐷𝑗 has a secret 𝑓𝑢(𝑥𝑗) corresponding only to the new user 𝑈𝑥, so that even if the new user 𝑈𝑥

can sniff the old packets of the group; he cannot decrypt them. Moreover, the forward secrecy

is guaranteed since the SM will revoke the user's binding relationship, who leave the system,

with the groups of IoT devices. Furthermore, all leaved users are added to a revocation list

tampered with and distributed in the Blockchain network so that the old user cannot get access

to the IoT devices after his leaves.

5.7. Performance Analysis and Evaluation

This section analyzes the performance of the proposed scheme DiGABlock compared to

direct authentication schemes, group authentication schemes PGA [160] & GBA [164], and

distributed authentication schemes BLA [169] & BMEC [168]. We analyze the computation

overhead on users at first and the response time of the service manager. Then, we study the

energy consumption caused by the authentication and service delivery phases on users.

Furthermore, we analyze the communication consumption and the improvement rate related to

the communication cost comparing to the existing schemes.

5.7.1. Experimental Settings

To evaluate the proposed DiGABlock scheme, we measure the primitive cryptography

operations by using the C/C++ Miracle Library, a cryptographic library designed for use in

constrained environments in terms of computational power [158]. Furthermore, we use the

HyperLedger Fabric platform [178] to measure the time of reaching PBFT consensus algorithm

in the Blockchain network.

The simulations are implemented and tested on a computer with the following features: an

Intel i5-4200 CPU@ 2.5 GH with a RAM of 8 GB. On the one hand, we use a virtual machine

on Ubuntu 16.04 OS over VM VirtualBox, and we provide the time cost for different

cryptographic operations. As a result, we define THash= 0,024ms be the time for one hashing

operation using the SHA-256 function on a 64-bytes block. Then, TEnc=TDec=0,047ms be

respectively the time for one encryption/decryption operation using symmetric cryptography

AES-256 encryption on a 64-bytes. Furthermore, the running time of one ECC point

multiplication is TM-ECC=0,365ms, ECC basing point adding TA-ECC=0,265ms, the pairing

operation TP-ECC=1,05ms, the map-to-point hash function is TH-ECC=0,442ms, and the Lagrange

Component is TLC=0,035ms.

On the other hand, we use Hyperledger Fabric version 1.4 of docker 18.06 container in

Ubuntu 16.04 over another virtual machine. HyperLedger Fabric uses Docker container

technology to run chaincode that contains the system application logic. Several nodes are

virtually hosted in a single machine, acting as alliance peers that reach the PBFT algorithm's

consensus. We assume four alliance peers in our Blockchain network, and each node is 2.5

GHz. As a result, we provide the time cost for node verification Tnv = 1ms and time for the

PBFT consensus commitment Tcons = 11ms when the number of peers is equal to four. Finally,

we evaluate the proposed DiGABlock scheme with MATLAB.

147

5.7.2. Computation Costs

The authentication procedure provides security but also causes an increase in computation

costs. Hence, it is essential to evaluate the computation overhead, which is the object of this

subsection. We discuss the evaluation of our DiGABlock solution's computation cost,

especially at the user level and the service manager level.

5.7.2.1. User Overhead

We calculate the user overhead by varying the list of subscriptions and fix the number of

IoT devices per group to evaluate the impact on the computation cost. In particular, we compare

the computation costs on users during the authentication process, for group-based

authentication schemes PGA [165], GBA [170], distributed authentication schemes BLA [177],

BMEC [178], and direct authentication scheme [58]. We consider three different cases varying

the number of IoT devices per group. At first, we ponder one device per group, and we can see

in Figure 5.7 (a) that the computation cost of our scheme and distributed schemes are lower

than PGA [165], direct authentication [58], and GBA [170]. The reason is that we need only to

authenticate once in a distributed mechanism, and hence the computation cost is not affected

(a). Number devices per group = 1 (b). Number devices per group = 5

(c). Number devices per group = 50 (d). Number devices per group = 100

Figure.5. 7: Computation overhead on users

148

when the total number of IoT devices increases like in PGA [165], direct authentication [58],

and GBA [170]. Furthermore, Figure 5.7 (b)-(d) show that our proposed scheme has the lowest

costs than the other schemes when the number of IoT devices per group is higher than one. We

can explain these results through exploiting the group-based authentication in a distributed

manner, which decreases the cost of computation radically.

5.7.2.2. System Response Time

To evaluate the system response and latency, we compare the computational overhead of the

service manager and the Blockchain network during the consensus phase. According to

computation time, we plot the system response in three cases, where the number of IoT devices

per group is equal to (= 1, 5, 50, and 100) and varying the number of groups of IoT devices.

Figure 5.8 (a), shows that the direct authentication scheme has the lowest computational

overhead when there is only one IoT device per group, which is explained by using simple

authentication operations. Otherwise, as shown in Figure 5.8 (b)-(d), when the number of IoT

devices increases per group, our scheme achieves lower computational overhead than other

schemes PGA, GBA, BLA, BMEC. This can be explained through achieving only one group

authentication instead of many group authentications with the requested IoT services. At this

(a). Number devices per group = 1 (b). Number devices per group = 5

(c). Number devices per group = 50 (d). Number devices per group = 100

Figure.5. 8: System Response Time

Table 5.2 : Energy costs

149

level, we confirm that adopting a distributed authentication mechanism to the group

authentication performs a quick authentication procedure for a large and distributed IoT

environment and present an evident improvement in the system response.

5.7.3. Energy Consumption

The energy is evaluated regarding the energy dissipation during the cryptography operations.

To evaluate the energy costs, we assume that the number of IoT devices’ groups and the number

of devices per group is variable. Table 5.4 shows the setting of parameters for evaluating energy

consumption. The values adopted were carefully chosen based on the values used by [185].

Table 5. 4: Energy costs

Type Energy

Key set-up 256 bits AES 9.92 µJ

Hashing 512 bits 48.64 µJ

Key generation -ECDH 276.7 Mj

Key exchange-ECDH 163.5 mJ

Signature creation ECDSA 134.2 mJ

Signature verifying ECDSA 196.2 mJ

It is clear from Figure 5.9 that the energy consumption increases with the number of IoT

devices’ groups and the total number of IoT devices for the state-of-the-art schemes PGA, direct

authentication, GBA, BLA, BMEC, while our proposed is less affected by the total number of

IoT devices. Hence, ensuring a group-based authentication in a distributed manner may

decrease the cryptographic operations efficiently. Furthermore, when authentication is needed,

our scheme DiGABlock ensures only once a complete group authentication and then delivers

Figure.5. 9: Energy consumption

150

the remaining IoT groups' services. Therefore, the running cryptographic algorithm of our

scheme DiGABlock can save energy consumption.

5.7.4. Communication Costs

To analyze the communication overhead, we calculate the sizes of the exchanged messages.

We assume a variable number of groups of IoT devices, and we study three different cases,

where the number of IoT devices per group is equal to 1, 5, 50, and 100. Table 5.5 shows the

parameters used to evaluate the communication overhead.

Table 5. 5: Communication Parameters

Parameters Bits Parameters Bits

Id 128 The ECDH key 192

The timestamp 17 The ECDH signature 320

Random value (nonce) 16 ECC point multiplication 163

Hash 512 ECC point addition 163

Lagrange Component 128 AES 256

The communication cost of our scheme DiGABlock and the state-of-the-art PGA [165], direct

authentication [58], GBA [170], BLA [177], BMEC [178], is computed using equations 5.9 and

5.10 where N is the number of exchanged messages.

𝐶𝑜𝑚𝑓𝑖𝑟𝑠𝑡 = ∑ |𝑀𝑒𝑠𝑠𝑎𝑔𝑒𝑖|
𝑁
𝑖=1 (5.9)

𝐶𝑜𝑚𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔 = ∑ |𝑀𝑒𝑠𝑠𝑎𝑔𝑒𝑖|
𝑁
𝑖=1 (5.10)

Where 𝐶𝑜𝑚𝑓𝑖𝑟𝑠𝑡 represents the communication cost of the first authentication of the user

with the requested IoT service, and 𝐶𝑜𝑚𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔 represents the communication overhead of

the authentication with the remaining IoT services, which is ensured in a distributed way in our

scheme.

In fact, during the first authentication, the user is invited to ensure a full authentication

process with a group of IoT devices in the proposed DiGABlock scheme. Thus, there are three

exchanged messages to achieve the first authentication phase:

𝐶𝑜𝑚𝑓𝑖𝑟𝑠𝑡 = ∑ |𝑀𝑒𝑠𝑠𝑎𝑔𝑒𝑖|
3
𝑖=1 where:

 𝑀𝑒𝑠𝑠𝑠𝑎𝑔𝑒1 = |𝐴𝑢𝑡ℎ𝑈𝑖| + |𝑡𝑜𝑘𝑒𝑛𝑈𝑖| + |𝑇𝑈𝑖| + |𝐵𝑙𝑜𝑐𝑘𝑖𝑑 | = 913 𝑏𝑖𝑡𝑠

 𝑀𝑒𝑠𝑠𝑠𝑎𝑔𝑒2 = |𝑉𝑥| + | 𝛿𝑥1| + |𝑇𝑈𝑖
∗ | = 529 𝑏𝑖𝑡𝑠

 𝑀𝑒𝑠𝑠𝑎𝑔𝑒3 = 𝑑 × |𝐿𝑐| = 128𝑑 𝑏𝑖𝑡𝑠

Further, after the first authentication, the user can choose not to re-authenticate by

proceeding with the service delivery phase in the proposed DiGABlock scheme. Besides, only

one message is exchanged to achieve the service delivery phase:

151

𝐶𝑜𝑚𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔 = 𝑀𝑒𝑠𝑠𝑠𝑎𝑔𝑒1 = |𝑋𝑢| + | 𝛿𝑥2| + |𝑇𝑈𝑖
′ | = 529 𝑏𝑖𝑡𝑠

At this level, the overall communication cost of DiGABlock for m groups of IoT services

and d devices per group is calculated as follow:

𝐶𝑜𝑚𝑡𝑜𝑡𝑎𝑙 = 𝐶𝑜𝑚𝑓𝑖𝑟𝑠𝑡 +𝑚 × 𝐶𝑜𝑚𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔

Figure 5.10 (a)-(c) plot the communication cost during the authentication procedure in each

scheme, varying the number of groups, while the number of IoT devices per group is set to 1,

5, 50, and 100. We notice that both our scheme and group-based authentication schemes do not

save the communication cost, when the number of IoT devices per group is limited to one,

compared to distributed and direct authentication ones. Otherwise, when the number of IoT

devices per group is more than one, we can see that our scheme is more effective than the others.

The reason is that our scheme achieves only one group authentication, which will be distributed

for all remaining IoT groups, instead of authenticating every IoT group, and distributing

authentication of every IoT device. Hence, our scheme achieves the lowest communication cost

when the number of IoT devices is significant.

(a). Number devices per group = 1 (b). Number devices per group = 5

(c). Number devices per group = 50 (d). Number devices per group = 100

Figure.5. 10: Communication costs

152

5.7.5. Improvement Rate of Communication Costs

To better visualize the communication costs enhancements accomplished by our proposed

DiGABlock scheme compared to PGA [165], direct authentication [58], GBA [170], BLA

[177], BMEC [178], we present an improvement rate (IR), as described in [186] and given by

equation 5.11.

𝐼𝑅 =
Comcostof the OTHER scheme−Com_cost of OUR scheme

Com_cost of the OTHER scheme
 (5.11)

Figure 5.11 shows the improvement rate for the communication cost of our scheme

compared to the group-based authentication schemes [165][170] and the distributed

authentication schemes [177][178]. We compare the IR for communication varying the number

of IoT devices to which a user is subscribed. We notice an improvement of 90% in the

communication cost (IR = 0.9) of DiGABlock compared to group-based authentication schemes

PGA and GBA when the number of devices is more than nearly five devices. We can explain

the results by using the SM to manage the communication with the IoT device group, which

reduces the exchanged messages resulting during the authentication procedure. Besides, the

DiGABlock IR compared to the distributed BLA and BMEC schemes is higher than 0.7, which

means an improvement of 70 % in the communication cost. The reason is that a distributed

scheme needs to distribute the authentication for each IoT device, while the proposed

DiGABlock scheme assures the distribution of the authentication for a group of IoT devices.

Hence, the communication cost of DiGABlock is slightly affected by increasing the network

size.

Figure.5. 11: Improvement Rate

153

5.8. Conclusion

Thanks to the recent technological advances, group-based applications in IoT networks are

currently merging as a versatile paradigm that can be used in different IoT environments such

as smart hotels, smart cities, smart grids, and smart buildings. However, the corresponding span

of applications requires very often efficient authentication with high security in a limited

amount of time. Nonetheless, on the one hand, due to the limited computation and energy

resources available within the IoT devices, time delay and energy consumption for these

constrained devices remain a significant challenge. On the other hand, the group IoT services

and the dynamic nature of these IoT environments, as seen in the previous chapter, provide new

authentication issues to mitigate these constrained devices and frequent subscribes’ interest

changing. This chapter introduces a novel distributed group authentication scheme based on

Blockchain technology for IoT environment named DiGABlock. A hierarchical authentication

architecture is adopted, composed of IoT devices layer, end-users layer, Blockchain edge layer,

and Blockchain network layer. DiGABlock is designed to authenticate users with many IoT

device groups efficiently, where users could perform only once a full authentication process

with many IoT device groups. Besides, DiGABlock is non-interactive which significantly

reduces the communication delay. Furthermore, our scheme achieves a trusted and efficient

authentication of users and reduces authentication signaling congestion. Indeed, the evaluation

of attack models proves that our scheme is attack-prevented. Additionally, we valued the

proposed authentication mechanism in terms of communication, energy, and computation costs.

Simulation results prove that DiGABlock offers enhanced performances.

154

6.1 Summary of the Contributions

The IoT is creating new opportunities to ameliorate the next generation of information

technologies such as smart homes, smart buildings, smart grids, intelligent transportation, and

smart cities. However, its extensive evolution through connecting billions of IoT devices

increases the attack surfaces. In particular, securing access to the devices taking into

consideration the scalability, heterogeneity, constrained resource nature, and dynamic structure

of the IoT, remains a significant challenge. Thus, despite the promising growth of the IoT,

numerous unconventional characteristics point out several security requirements that should be

addressed to define a secure IoT system. Throughout this thesis, we focused on designing a

secure IoT system that achieves the main security concepts, namely the authentication and the

authorization for a large-scale IoT environment. For this issue, we are dealing with providing

an effective and efficient secure IoT solution that achieves a tradeoff between the security

requirements and the network performance. Considering the IoT unconventional challenges,

including scalability, dynamic changes, limited resources, and heterogeneity, we proposed a

secure IoT system comprising three main pillars. The lightweight authentication scheme meets

the requirement of limited resources and the dynamic changes related to the one-to-one

scenarios. The authentication scheme is based on a token of identification to secure access for

a prefixed time interval. Then to share access between many users and devices in the IoT, a

decentralized access control mechanism was introduced using a decentralized group key

management to meet the scalability, heterogeneity, and dynamic changes issues. In particular,

this scheme controls the access permissions for extensive scale communications based on

groups. Therefore, the proposed authentication scheme for one-to-one scenarios is inefficient

for such group communication, which explains the third pillar subject. Indeed, a distributed

group authentication based on blockchain technology is adopted to our IoT system to meet the

requirement of a large-scale heterogeneous environment. We briefly conclude our contributions

in what follows:

Conclusion

Chapter 6

155

 Token-based Lightweight User Authentication scheme for IoT (TBLUA): in this

scheme, we designed an extra security layer in the authentication process. Indeed, using

the token of identification, we provide secure authentication for a predefined period and

meet the requirement of the dynamic changes in IoT. In fact, the proposed scheme

ensures mutual authentication between the communicating parties such as the user and

an IoT device. Throughout this scheme, we ensure a tradeoff between effectiveness and

efficiency, providing relatively more security features and high-security levels such as

anonymity, perfect forward secrecy, and resilience against the well-known attacks.

TBLUA also achieves a low computation and communication overhead compared to

benchmarking schemes.

 Designing a Smart Hotel use case prototype: We adopted the token-based

authentication scheme in a mockup representing a reservation system in a smart hotel.

Indeed, we considered a smart lock scenario, where a guest who has made a reservation

for accommodation in a hotel could use his/her smartphone to enter the reserved room.

For that, we reviewed the vulnerability of the smart hotel environment and analyzed the

risks that could happen. Then, we designed our architecture composed of a smart lock

communicating through NFC with the smartphone and through ZigBee with the server.

Besides, we successfully ensured a secure reservation that generates tokens for users to

open the smart lock.

 A Decentralized Lightweight Group Key Management for Access Control for IoT

environment (DLGKM-AC): This scheme is introduced to manage the access

permissions in a dynamic IoT environment. Indeed, users and IoT devices might want

to access the same IoT devices. Thus, regarding the large scale of the IoT environment

characterized by a dynamic nature, controlling access becomes challenging. Therefore,

we adopt a hierarchical architecture using one Key Distribution Center (KDC) and

several Sub KDC (SKDCs) for managing dissemination keys of access. The KDC

implements many Logical Key Hierarchical (LKH) tree to manage the broadcast and

update keys of groups of IoT devices publishing data, while SKDCs handle the direct

communication links between devices and users. Besides, a new master token

encryption algorithm has been designed to ensure members' independence in highly

dynamic group communication. Thus, the frequent users' join and leave events do not

impact the rekeying process in the whole system, which could alleviate the

communication overhead. In DLGKM-AC, mobility is smoothly handled as we provide

the backward and the forward secrecy with fewer rekeying operations. Furthermore, our

protocol mitigates the 1-affects-n issue. Indeed, users can always get access to data even

if one SKDC is affected. We prove that a wide range of desired security properties has

also been provided throughout an extensive security analysis. Additionally,

performance analyses show that the proposed scheme offers better performances by

reducing storage, communication, and computation overheads. Finally, adopting a

decentralized architecture increases scalability and reduces overhead for resource-

constrained devices.

156

 A Distributed Group Authentication scheme based on Blockchain technology for

IoT environment (DiGABlock): DiGABlock was introduced to ameliorate the

authentication and provide a fully distributed authentication with many groups of IoT

devices. Since the number of connected devices is growing, the number of offered IoT

services is essential. Therefore, to ensure a high-security level for the users requesting

many IoT services, DiGABlock responds to these requirements. Indeed, a hierarchical

authentication architecture is adopted, consisting of IoT devices layer, end-users layer,

Blockchain edge layer, and Blockchain network layer. DiGABlock is designed to

authenticate users with many IoT device groups efficiently, where users could perform

only once a full authentication process with an IoT device group. They can then choose

to non-re-authenticate when demanding access to the other IoT device groups by

performing the service delivery process. Besides, DiGABlock reduces the

communication delay significantly. Furthermore, our scheme achieves a trusted and

efficient authentication of users and reduces the authentication signaling congestion.

Indeed, the evaluation of attack models proves that our scheme is attack-prevented.

Additionally, we valued the proposed authentication mechanism in terms of

communication, energy, and computation costs. Simulation results demonstrate that

DiGABlock offers better performances compared to benchmarking works.

To sum up, the design of DiGABlock and DLGKM-AC for authentication and authorization

in IoT is ensured without relying on third-party authorities, which respond to the IoT

environment's scalability and heterogeneity characteristics. In addition, the proposed

architecture not only eliminates the dependence on the third party but also enhances the

flexibility of an IoT system characterized by a dynamic changing structure. Our work is open

to possible extensions to enlarge the treated challenges and face new emerging ones. Therefore,

we enumerate the possible enhancements, which is the aim of our future directions described

in the next section.

6.2 Future Research Directions

Regardless of the presented contributions provided during this thesis to enhance IoT system

security, some aspects can be additionally explored and extended for a more secure IoT system.

Therefore, we devote this section to identify and study some perspectives and possible future

research directions.

In the decentralized access control DLGKM-AC scheme, we need to build a threat detection

system to prevent malicious attacks and provide additional security guarantees. Indeed, to build

a secure smart IoT environment, preserving security and privacy is crucial. Since the

vulnerabilities of such an environment create many threats that affect the normal functioning of

IoT systems. Therefore, designing an intrusion detection system might be important to mitigate

the exploitation of these vulnerabilities. We can adopt the KDC as a point of intrusion detection

of IoT devices as it is responsible for devices' access activities while considering SKDCs as a

point of intrusion detection for users. In fact, SKDCs supervise the local access related to users'

activities in the system, which can help to describe each user's behavior and detect abnormal

157

activities. In addition, implementing an automatic detection intrusion system for access control

activities guarantees IoT security at the runtime of access control sessions and during the

rekeying process. These detection skills might avoid abusing the sensitive exchanged

information and penetrating smart devices. It can then effectively improve the security model

by detecting the known and unknown threats with an excellent level rate and low false positive

alarms.

TBLUA ensures mutual authentication between a user and IoT devices with respect to the

limited resource requirement of IoT devices. However, this scheme relies on a third party to

guarantee the authentication, which may lead to overload and congestion of the IoT system

when many users request the IoT devices. Therefore, and regarding the large-scale IoT

environment, we propose a distributed group authentication scheme based on the blockchain

technology DiGABlock that ensures a user group authentication in a distributed manner.

However, IoT devices could also request and subscribe to other IoT devices. Hence, we intend

to extend the distributed authentication protocol between IoT devices to secure exchanging

information. At this level, we should pay more attention to possible distributed denial of service

(DDoS) attacks that affect the IoT system's availability. Despite the blockchain mechanism

being used as a potential solution to avoid the DDoS, the DDoS can overload the blockchain

network by consuming the network's resources and making IoT services unreachable promptly.

Therefore, a blockchain network that cannot reach the consensus to deliver IoT services might

bring down the whole IoT system. Further studies need to be investigated to ameliorate the

security against DDoS attacks and ensure a high IoT system availability. Besides, the traditional

cryptography algorithms based on symmetric key and public-key are insufficient to maintain

the security among the blockchain network. Indeed, the rise of quantum computers can

breakdown the cryptography of the blockchain. Therefore, it is necessary to explore and

improve the cryptography algorithm security by using the blind signature, ring signature, and

aggregate signature [187]. Hence, advanced studies need to be handled at this level to keep the

security and the normal functioning of blockchain through the IoT environment.

158

Bibliography

[1] P. Bellavista, G. Cardone, A. Corradi and L. Foschini, "Convergence of MANET and WSN in IoT Urban

Scenarios," in IEEE Sensors Journal, vol. 13, no. 10, pp. 3558-3567, Oct. 2013.

[2] IoT trends to expect in 2021, https://krakul.eu/iot-trends-to-expect/, visited (12/02/2021).

[3] Pamela Cobb. German Steel Mill Meltdown: Rising Stakes in the Internet of Things. 2015. url:

https://securityintelligence.com/german-steelmill- meltdown- rising- stakes- in- the- internet- of- things/

visited (12/02/2021).

[4] Corero. The Mirai Botnet: All About the Latest Malware DDoS Attack Type | Corero. 2016. url:

https://www.corero.com/resources/ddos-attacktypes/mirai-botnet-ddos-attack.html, visited (12/02/2021).

[5] Catalin Cimpanu, "BrickerBot Dev Claims Cyber-Attack That Affected Over 60,000 Indian Modems",July

2017, [Online]. Available: www.bleepingcomputer.com/news/security/brickerbot-dev-claims-cyber-attack-

thataffected-over-60-000-indian-modems/, visited (12/02/2021).

[6] Wind River. "Security in the Internet of Things: Lessons from the Past for the Connected Future," 2015.

[7] European ITEA3 PARFAIT (Personal dAta pRotection FrAmework for IoT) project, https://itea3-parfait.com/

[8] Makhdoom, M. Abolhasan, J. Lipma n, R. P. Liu and W. Ni, "Anatomy of Threats to the Internet of Things,"

in IEEE Communications Surveys & Tutorials, vol. 21, no. 2, pp. 1636-1675, Secondquarter 2019.

[9] Sowmya Ravidas, Alexios Lekidis, Federica Paci, Nicola Zannone, Access control in Internet-of-Things: A

survey, Journal of Network and Computer Applications, Volume 144, 2019, Pages 79-101, ISSN 1084-8045,

https://doi.org/10.1016/j.jnca.2019.06.017.

[10] A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari, and M. Ayyash. Internet of things : A survey on

enabling technologies, protocols, and applications. IEEE Communications Surveys & Tutorials, 17(4) :2347–

2376, 2015.

[11] S. Wang, X. Zhang, Y. Zhang, L. Wang, J. Yang, and W. Wang. A survey on mobile edge networks:

Convergence of computing, caching and communications. IEEE Access, 5 :6757–6779, 2017.

[12] Q. Jing, A. V. Vasilakos, J. Wan, J. Lu, and D. Qiu, “Security of the internet of things: perspectives and

challenges,” Wireless Networks, vol. 20, no. 8, pp. 2481–2501, 2014.

[13] R. Khan, S. U. Khan, R. Zaheer and S. Khan, "Future Internet: The Internet of Things Architecture, Possible

Applications and Key Challenges," 2012 10th International Conference on Frontiers of Information

Technology, Islamabad, 2012, pp. 257-260

[14] M. Wu, T. J. Lu, F. Y. Ling, J. Sun, and H. Y. Du, "Research on the architecture of Internet of Things," 2010

3rd International Conference on Advanced Computer Theory and Engineering (ICACTE), Chengdu, 2010,

pp. V5-484- V5-487

[15] L. Tan and N. Wang, "Future internet: The Internet of Things," 2010 3rd International Conference on

Advanced Computer Theory and Engineering (ICACTE), Chengdu, 2010, pp. V5-376-V5-380.

[16] Lauren Horwitz, IoT Trends 2021, online 7th January 2021, https://www.iotworldtoday.com/2021/01/07/iot-

trends-2021-a-focus-on-fundamentals-not-nice-to-haves/

[17] J. Liu, Y. Xiao, S. Li, W. Liang, and C. P. Chen. Cyber security and privacy issues in smart grids. IEEE

Communications Surveys & Tutorials, 14(4) :981–997, 2012.

[18] F. Dalipi and S. Y. Yayilgan. Security and privacy considerations for iot application on smart grids: Survey

and research challenges. In 2016 IEEE 4th International Conference on Future Internet of Things and Cloud

Workshops (FiCloudW), pages 63–68. IEEE, Aug 2016.

[19] Y. Leng and L. Zhao. Novel design of intelligent internet-of-vehicles management system based on cloud-

computing and internet-of-things. In Proceedings of 2011 International Conference on Electronic Mechanical

Engineering and Information Technology, volume 6, pages 3190–3193. IEEE, Aug 2011

[20] M. Gerla, E. K. Lee, G. Pau, and U. Lee. Internet of vehicles: From intelligent grid to autonomous cars and

vehicular clouds. In 2014 IEEE World Forum on Internet of Things (WF-IoT), pages 241–246. IEEE, March

2014.

[21] X. Yue, H. Wang, D. Jin, M. Li, and W. Jiang. Healthcare data gateways: found healthcare intelligence on

blockchain with novel privacy risk control. Journal of medical systems, 40(10) :218, 2016.

https://krakul.eu/iot-trends-to-expect/
https://www.corero.com/resources/ddos-attacktypes/mirai-botnet-ddos-attack.html
https://itea3-parfait.com/
https://doi.org/10.1016/j.jnca.2019.06.017
https://www.iotworldtoday.com/2021/01/07/iot-trends-2021-a-focus-on-fundamentals-not-nice-to-haves/
https://www.iotworldtoday.com/2021/01/07/iot-trends-2021-a-focus-on-fundamentals-not-nice-to-haves/

159

[22] A. Zanella, N. Bui, A. Castellani, L. Vangelista, and M. Zorzi. Internet of things for smart cities. IEEE Internet

of Things Journal, 1(1) :22–32, Feb 2014.

[23] A.-R. Sadeghi, C. Wachsmann, and M. Waidner. Security and privacy challenges in industrial internet of

things. In 2015 52nd ACM/EDAC/IEEE on Design Automation Conference (DAC), pages 1– 6. IEEE, June

2015.

[24] C. Wang, Z. Bi and L. D. Xu, "IoT and Cloud Computing in Automation of Assembly Modeling Systems," in

IEEE Transactions on Industrial Informatics, vol. 10, no. 2, pp. 1426-1434, May 2014.

[25] D. Uckelmann, “Performance measurement and cost benefit analysis for RFID and Internet of Things

implementations in logistics,” in Quantifying the Value of RFID and the EPCglobal Architecture Framework

in Logistics. New York, NY, USA: Springer-Verlag, 2012, pp. 71–100

[26] Satamraju KP, B M. Proof of Concept of Scalable Integration of Internet of Things and Blockchain in

Healthcare. Sensors (Basel). 2020;20(5):1389. Published 2020 Mar 3. doi:10.3390/s20051389

[27] M. Roopaei, P. Rad and K. R. Choo, "Cloud of Things in Smart Agriculture: Intelligent Irrigation Monitoring

by Thermal Imaging," IEEE Cloud Computing, vol. 4, no. 1, pp. 10-15, 2017

[28] S. Lanzisera, A. R. Weber, A. Liao, D. Pajak and A. K. Meier, "Communicating Power Supplies: Bringing

the Internet to the Ubiquitous Energy Gateways of Electronic Devices," IEEE Internet of Things Journal, vol.

1, no. 2, pp. 153-160, April 2014.

[29] D. Macedo, L. A. Guedes and I. Silva, "A dependability evaluation for Internet of Things incorporating

redundancy aspects," Proceedings of the 11th IEEE International Conference on Networking, Sensing and

Control, Miami, FL, 2014, pp. 417-422.

[30] H. Lamaazi, N. Benamar, A. J. Jara, L. Ladid and D. El Ouadghiri, "Challenges of the Internet of Things:

IPv6 and Network Management," 2014 Eighth International Conference on Innovative Mobile and Internet

Services in Ubiquitous Computing, Birmingham, 2014, pp. 328-333.

[31] S. Choi and S. Koh, "Use of Proxy Mobile IPv6 for Mobility Management in CoAP-Based Internet-of-Things

Network, IEEE Communications Letters, vol 20, no.11, pp2284-2287, Nov 2016

[32] F. Ganz, R. Li, P. Barnaghi and H. Harai, "A Resource Mobility Scheme for Service-Continuity in the Internet

of Things," 2012 IEEE International Conference on Green Computing and Communications, Besancon, 2012,

pp. 261-264.

[33] A. Dunkels, J. Eriksson, and N. Tsiftes, “Low-power interoperability for the IPv6-based Internet of Things,”

10th Scandinavian Workshop Wireless ADHOC, Stockholm, Sweden, 2011, pp. 10–11.

[34] S. Sicari, A. Rizzardi, L. A. Grieco, and A. Coen-Porisini,”Security, privacy and trust in internet of things:

The road ahead,” Computer Networks, 76:146–164, 2015.

[35] K. T. Nguyen, M. Laurent, and N. Oualha. “Survey on secure communication protocols for the internet of

things,” Ad Hoc Networks, 32:17–31, 2015

[36] B. Miller and D. Rowe,”A survey scada of and critical infrastructure incidents,” 1st Annual conference on

Research in information technology,ACM, 2012, pp 51–56.

[37] Sabrina Sicari et al. “A Secure and Quality-Aware Prototypical Architecture for the Internet of Things.”

Information Systems, vol. 58, 2016, pp. 43–55.

[38] Djamel Eddine Kouicem, Abdelmadjid Bouabdallah, Hicham Lakhlef. Internet of things security: A top-down

survey. Computer Networks, Elsevier, In press, 141, pp.199-221.

[39] El Mouaatamid, O.; Lahmer, M.; Belkasmi, M. Internet of Things Security: Layered classification of attacks

and possible Countermeasures. Electron. J. Inf. Technol. 2016, 9, 24–37.

[40] Abomhara, M.; Koien, G.M. Cyber Security and the Internet of Things: Vulnerabilities, Threats, Intruders and

Attacks. J. Cyber Security. Mobil. 2015, 4, 65–88

[41] Tuhin Borgohain, Uday Kumar, and Sugata Sanyal. “Survey of Security and Privacy Issues of Internet of

Things,” 2015

[42] ITU-T. ITU-T Recommendation Y.2060 Overview of the Internet of Things, Series Y: Global Information

Infrastructure, Internet Protocol Aspects and Next-Generation Networks. 2012.

[43] Michael J. Covington and Rush Carskadden. “Threat Implications of the Internet of Things.” Cyber Conflict

(CyCon), 2013 5th International Conference On. IEEE, 2013

[44] David Evans and David M. Eyers. “Efficient Data Tagging for Managing Privacy in the Internet of Things.”

Proceedings of the 2012 IEEE International Conference on Green Computing and Communications

(GreenCom). IEEE, 2012, pp. 244–248.

160

[45] Kim, H. Securing the Internet of Things via Locally Centralized, Globally Distributed Authentication and

Authorization. UC Berkeley. ProQuest ID: Kim_berkeley_0028E_17305. Merritt ID: ark:/13030/m5ng9mkk.

[46] H. Noura. Adaptation of Cryptographic Algorithms According to the Applications Requirements and

Limitations: Design, Analyze and Lessons Learned. HDR dissertation, UNIVERSITY of PIERRE MARIE

CURIE -Paris VI, 2016.

[47] R. Mahmoud, T. Yousuf, F. Aloul, and I. Zualkernan. “Internet of things (iot) security: Current status,

challenges and prospective measures”. 2015 10th International Conference for Internet Technology and

Secured Transactions (ICITST), December 2015.

[48] X. Zhu, “Building a secure infrastructure for IoT systems in distributed environments”, these de doct.,

Universit´e de Lyon, 2019

[49] A. Banks and R. Gupta, MQTT version 3.1.1, OASIS Standard,

http://docs.oasisopen.org/mqtt/mqtt/v3.1.1/mqtt-v3.1.1.html, 2014.

[50] El-hajj, M.; Chamoun, M.; Fadlallah, A.; Serhrouchni, A. Analysis of authentication techniques in Internet

of Things (IoT). In Proceedings of the 2017 1st Cyber Security in Networking Conference (CSNet), Rio de

Janeiro, Brazil, 18–20 October 2017; pp. 1–3.

[51] El-hajj, M.; Chamoun, M.; Fadlallah, A.; Serhrouchni, A. Taxonomy of authentication techniques in Internet

of Things (IoT). In Proceedings of the 2017 IEEE 15th Student Conference on Research and Development

(SCOReD), Putrajaya, Malaysia, 13–14 December 2017; pp. 67–71.

[52] El-hajj M, Fadlallah A, Chamoun M, Serhrouchni A. A Survey of Internet of Things (IoT) Authentication

Schemes. Sensors. 2019; 19(5):1141. https://doi.org/10.3390/s19051141

[53] Brian, A.L.A.; Arockiam, L.; Malarchelvi, P. An IOT based secured smart library system with NFC based

book tracking. Int. J. Emerg. Technol. Comput. Sci. Electron. 2014, 11, 18–21.

[54] Kumar, P.; Lee, S.G.; Lee, H.J. E-SAP: Efficient-Strong Authentication Protocol for Healthcare Applications

Using Wireless Medical Sensor Networks. Sensors 2012, 12, 1625–1647.

[55] Y. Sharaf-Dabbagh and W. Saad, “On the authentication of devices in the internet of things,” 2016 IEEE 17th

International Symposium on A World of Wireless, Mobile and Multimedia Networks (WoWMoM), June

2016, pp. 1–3.

[56] Ashibani, Y., Mahmoud, Q.H. Design and evaluation of a user authentication model for IoT networks based

on app event patterns. Cluster Comput (2020). https://doi.org/10.1007/s10586-020-03156-5

[57] Alizai, Z.A.; Tareen, N.F.; Jadoon, I. Improved IoT Device Authentication Scheme Using Device Capability

and Digital Signatures. In Proceedings of the 2018 International Conference on Applied and Engineering

Mathematics (ICAEM), Taxila, Pakistan, 4–5 September 2018; pp. 1–5.

[58] M. Wazid, A. K. Das, V. Odelu, N. Kumar, M. Conti and M. Jo, "Design of Secure User Authenticated Key

Management Protocol for Generic IoT Networks," IEEE Internet of Things Journal, vol. 5, no. 1, pp. 269-282,

Feb. 2018.

[59] Sadhukhan, D., Ray, S., Biswas, G.P. et al. A lightweight remote user authentication scheme for IoT

communication using elliptic curve cryptography. J Supercomput 77, 1114–1151 (2021).

https://doi.org/10.1007/s11227-020-03318-7

[60] M. Malik, M. Dutta and J. Granjal, "A Survey of Key Bootstrapping Protocols Based on Public Key

Cryptography in the Internet of Things," in IEEE Access, vol. 7, pp. 27443-27464, 2019, doi:

10.1109/ACCESS.2019.2900957.

[61] M. Schukat and P. Cortijo, "Public key infrastructures and digital certificates for the Internet of things," 2015

26th Irish Signals and Systems Conference (ISSC), Carlow, 2015, pp. 1-5.

[62] F. Forsby, M. Furuhed, P. Papadimitratos, and S. Raza, ‘‘Lightweight X. 509 digital certificates for the Inte

rnet of Things,’’Interoperability, Safety and Security in IoT. Springer, 2017, pp. 123–133.

[63] P. Porambage, P. Kumar, A. Gurtov, M. Ylianttila and E. Harjula, Certificate Based Keying Scheme for DTLS

Secured IoT (Work in Progress), Jun. 2013.

[64] P. Porambage, C. Schmitt, P. Kumar, A. Gurtov and M. Ylianttila, "Two-phase authentication protocol for

wireless sensor networks in distributed IoT applications", Proc. IEEE Wireless Commun. Netw. Conf.

(WCNC), pp. 2728-2733, Apr. 2014.

[65] . P. Porambage, C. Schmitt, P. Kumar, A. Gurtov and M. Ylianttila, "PAuthKey: A pervasive authentication

protocol and key establishment scheme for wireless sensor networks in distributed IoT applications", Int. J.

Distrib. Sensor Netw., vol. 10, no. 7, 2014.

http://docs.oasisopen.org/mqtt/mqtt/v3.1.1/mqtt-v3.1.1.html
https://doi.org/10.3390/s19051141
https://doi.org/10.1007/s10586-020-03156-5
https://doi.org/10.1007/s11227-020-03318-7

161

[66] Chae, C.J.; Choi, K.N.; Choi, K.; Yae, Y.H.; Shin, Y. The Extended Authentication Protocol using E-mail

Authentication in OAuth 2.0 Protocol for Secure Granting of User Access. J. Internet Comput. Serv. 2015,

16, 21–28

[67] Emerson, S.; Choi, Y.K.; Hwang, D.Y.; Kim, K.S.; Kim, K.H. An OAuth based authentication mechanism

for IoT networks. In Proceedings of the 2015 International Conference on Information and Communication

Technology Convergence (ICTC), Jeju, Korea, 28–30 October 2015.

[68] Blazquez, A.; Tsiatsis, V.; Vandikas, K. Performance evaluation of openid connect for an iot information

marketplace. In Proceedings of the 2015 IEEE 81st IEEE Vehicular Technology Conference (VTC Spring),

Glasgow, UK, 11–14 May 2015; pp. 1–6.

[69] C. Neuman, T. Yu, S. Hartman, and K. Raeburn, The Kerberos network authentication service (V5), RFC

4120, IETF, Jul. 2005

[70] M. Koschuch, M. Hudler, H. Eigner and Z. Saffer, "Token-based authentication for smartphones," 2013

International Conference on Data Communication Networking (DCNET), Reykjavik, 2013, pp. 1-6.

[71] Timothy Claeys, Franck Rousseau, Bernard Tourancheau. Securing Complex IoT Platforms with Token Based

Access Control and Authenticated Key Establishment. International Workshop on Secure Internet of Things

(SIOT), Sep 2017, Oslo, Norway. ffhal-01596135f

[72] Mukhopadhyay, D. PUFs as Promising Tools for Security in Internet of Things. IEEE Des. Test 2016, 33,

103–115.

[73] Wallrabenstein, J.R. Practical and Secure IoT Device Authentication Using Physical Unclonable Functions.

In Proceedings of the 2016 IEEE 4th International Conference on Future Internet of Things and Cloud

(FiCloud), Vienna, Austria, 22–24 August 2016

[74] Xu, H.; Ding, J.; Li, P.; Zhu, F.; Wang, R. A Lightweight RFID Mutual Authentication Protocol Based on

Physical Unclonable Function. Sensors 2018, 18, 760

[75] Gope, P.; Lee, J.; Quek, T.Q.S. Lightweight and Practical Anonymous Authentication Protocol for RFID

Systems Using Physically Unclonable Functions. IEEE Trans. Inf. Forensics Secur. 2018, 13, 2831–2843

[76] Lai, C.; Lu, R.; Zheng, D.; Li, H.; Shen, X.S. GLARM: Group-based lightweight authentication scheme for

resource-constrained machine to machine communications. Comput. Netw. 2016, 99, 66–81

[77] Shao, J.; Lu, R.; Lin, X.; Zuo, C. New threshold anonymous authentication for VANETs. In Proceedings of

the 2015 IEEE/CIC International Conference on Communications in China (ICCC), Shenzhen, China, 2–4

November 2015.

[78] Shao, J.; Lin, X.; Lu, R.; Zuo, C. A Threshold Anonymous Authentication Protocol for VANETs. IEEE Trans.

Veh. Technol. 2016, 65, 1711–1720.

[79] Fu, A.; Lan, S.; Huang, B.; Zhu, Z.; Zhang, Y. A Novel Group-Based Handover Authentication Scheme with

Privacy Preservation for Mobile WiMAX Networks. IEEE Commun. Lett. 2012, 16, 1744–1747

[80] P. Porambage, A. Braeken, C. Schmitt, A. Gurtov, M. Ylianttila and B. Stiller, "Group Key Establishment for

Enabling Secure Multicast Communication in Wireless Sensor Networks Deployed for IoT Applications,"

IEEE Access, vol. 3, pp. 1503-1511, 2015.

[81] Zhang, L.; Wu, Q.; Domingo-Ferrer, J.; Qin, B.; Hu, C. Distributed Aggregate Privacy-Preserving

Authentication in VANETs. IEEE Trans. Intell. Transp. Syst. 2017, 18, 516–526

[82] Zhang, L.; Hu, C.; Wu, Q.; Domingo-Ferrer, J.; Qin, B. Privacy-preserving vehicular communication

authentication with hierarchical aggregation and fast response. IEEE Trans. Comput. 2016, 65, 2562–2574

[83] Sudhakaran, P. and C. Malathy. “Energy efficient distributed lightweight authentication and encryption

technique for IoT security.” International Journal of Communication Systems (2019).

[84] K. A. R. Rehiman and S. Veni, "A trust management model for sensor enabled mobile devices in IoT", Proc.

Int. Conf. I-SMAC (IoT Social Mobile Anal. Cloud) (I-SMAC), pp. 807-810, Feb. 2017

[85] Arvind Narayanan, Joseph Bonneau, Edward Felten, Andrew Miller, and Steven Goldfeder. 2016. Bitcoin and

Cryptocurrency Technologies: A Comprehensive Introduction.

[86] Rui Zhang, Rui Xue, and Ling Liu. 2019. Security and Privacy on Blockchain. ACM Comput. Surv. 1, 1,

Article 1 (January 2019), 35 pages.

[87] S. Bouzefrane, A. F. B. Mostefa, F. Houacine, and H. Cagnon. Cloudlets authentication in nfc-based mobile

computing. In 2014 2nd IEEE International Conference on Mobile Cloud Computing, Services, and

Engineering, pages 267–272. IEEE, 2014.

162

[88] Satoshi Nakamoto. Bitcoin: A Peer-to-Peer Electronic Cash System. 2008. url:

http://www.cryptovest.co.uk/resources/Bitcoin%20paper% 20Original.pdf

[89] C. Cachin and M. Vukolic. Blockchain consensus protocols in the wild. arXiv preprint arXiv :1707.01873,

2017

[90] M. Castro, B. Liskov, et al. Practical byzantine fault tolerance. In OSDI, volume 99, pages 173–186, 1999.

[91] A. Bahga and V. K. Madisetti. Blockchain platform for industrial internet of things. Journal of Software

Engineering and Applications, 9(10) :533, 2016.

[92] K. Christidis and M. Devetsikiotis. Blockchains and smart contracts for the internet of things. IEEE Access,

4 :2292–2303, 2016.

[93] Y. Yao, X. Chang, J. Mi, V. B. Mi, and L. Li, "BLA: Blockchain Assisted Lightweight Anonymous

Authentication for Distributed Vehicular Fog Services," IEEE Internet of Things Journal, 2019, DOI:

10.1109/JIOT.2019.2892009.

[94] Intel. 2017. Sawtooth Lake. https://intelledger.github.io/. (2017).

[95] Benhadj Djilali H., Tandjaoui D. Efficient Distributed Authentication and Access Control System

Management for Internet of Things Using Blockchain. In: Renault É., Boumerdassi S., Leghris C., Bouzefrane

S. (eds) Mobile, Secure, and Programmable Networking. MSPN 2019. Lecture Notes in Computer Science,

vol 11557. Springer, Cham. https://doi.org/10.1007/978-3-030-22885-9_5

[96] S.-C. Cha, J.-F. Chen, C. Su, and K.-H. Yeh, “A blockchain connected gateway for BLE-based devices in the

internet of things,” IEEE Access, vol. 6, pp. 24 639–724 649, 2018.

[97] Mostafa Yavari, Masoumeh Safkhani, Saru Kumari, Sachin Kumar, Chien-Ming Chen, "An Improved

Blockchain-Based Authentication Protocol for IoT Network Management", Security and Communication

Networks, vol. 2020, Article ID 8836214, 16 pages, 2020.

[98] Muhammad Tahir & Muhammad Sardaraz & Shakoor Muhammad & Muhammad Saud Khan, 2020. "A

Lightweight Authentication and Authorization Framework for Blockchain-Enabled IoT Network in Health-

Informatics," Sustainability, MDPI, Open Access Journal, vol. 12(17), pages 1-1, August.

[99] Sethi, P.; Sarangi, S.R. Internet of things: Architectures, protocols, and applications. J. Electr. Comput. Eng.

2017, 2017, 9324035

[100] Barka E., Mathew S.S., Atif Y. Securing the web of things with role-based access control. International

Conference on Codes, Cryptology, and Information Security. Springer, New York, NY, USA: 2015, pp. 14–

26.

[101] J. A. Stankovic, "Research Directions for the Internet of Things," in IEEE Internet of Things Journal, vol. 1,

no. 1, pp. 3-9, Feb. 2014

[102] J. Herranz, "Attribute-based encryption implies identity-based encryption," in IET Information Security, vol.

11, no. 6, pp. 332-337, 11 2017.

[103] J. Park, R. Sandhu, Towards usage control models: beyond traditional access control, 7 th ACM Symp. Access

Control Model. Technol. - SACMAT ’02, New York, New York, USA, 2002, p. 57

[104] J.L.Hernández-Ramos& al.“Towards a Lightweight Authentication and Authorization Framework for Smart

Objects ,” IEEE Journal on Selected Areas in Communications, vol. 33, no. 4, pp. 690-702, April 2015.

[105] Aafaf Ouaddah, Hajar Mousannif, Anas Abou Elkalam, Abdellah Ait Ouahman, Access control in the Internet

of Things: Big challenges and new opportunities, Computer Networks, Volume 112, 2017, Pages 237-262,

ISSN 1389-1286,

[106] Sandhu, the typed access matrix model, in: Proc. 1992 IEEE Comput. Soc. Symp. Res. Secur. Priv., IEEE

Comput. Soc. Press, 1992, pp. 122–136, doi: 10. 1109/RISP.1992.213266.

[107] A. Arfaoui S. Cherkaoui, A. Kribeche, SM. Senouci, M. Hamdi, “Context-Aware Adaptive Authentication

and Authorization in Internet of Things”, IEEE ICC’2019, China, 20-24 May 2019.

[108] H. Harney Group Key Management Protocol (GKMP) Architecture, Network Working Group,

https://tools.ietf.org/html/rfc2094

[109] H. Harney and E. Harder, “Logical key hierarchy protocol,” Internet draft, Tech. Rep., 1999

[110] Balenson, D., D. McGrew and A. Sherman. “Key Management for Large Dynamic Groups: One-Way

Function Trees and Amortized Initialization.” (2000).

[111] L. Veltri, S. Cirani, S. Busanelli, and G. Ferrari, “A novel batch-basedgroup key management protocol

applied to the internet of things,”AdHoc Networks, vol. 11, no. 8, pp. 2724–2737, 2013.

https://doi.org/10.1007/978-3-030-22885-9_5
https://ideas.repec.org/a/gam/jsusta/v12y2020i17p6960-d404579.html
https://ideas.repec.org/a/gam/jsusta/v12y2020i17p6960-d404579.html
https://ideas.repec.org/a/gam/jsusta/v12y2020i17p6960-d404579.html
https://ideas.repec.org/s/gam/jsusta.html

163

[112] M.-H. Park, Y.-H. Park, H.-Y. Jeong and S.-W. Seo, “Key management for multiple multicast groups in

wireless networks,” IEEE Transactions on Mobile Computing, vol. 12, no. 9, pp. 1712–1723, 2013

[113] Y. Kung and H. Hsiao, "GroupIt: Lightweight Group Key Management for Dynamic IoT Environments,"

in IEEE Internet of Things Journal, vol. 5, no. 6, pp. 5155-5165, Dec. 2018.

[114] C. Boyd, “On key agreement and conference key agreement,” In Proceedings of the Information Security and

Privacy: Australasian Conference, Lecture Notes in Computer Science vol. 1270. Springer-Verlag, New York,

pp. 294-302, 1997.

[115] O. Rodeh, K. Birman, and D. Dolev, “Optimized group rekey for group communication systems,” In Network

and Distributed System Security, San Diego, Calif., Feb. 2000.

[116] L. Dondeti, S. Mukherjee, and A. Samal, “A distributed group key management scheme for secure many-to-

many communication,” Tech. Rep. PINTL-TR-207-99, Department of Computer Science, University of

Maryland, 1999

[117] Y. Kim, A. Perrig, and G. Tsudik, “Simple and fault-tolerant key agreement for dynamic collaborative

groups,” In Proceedings of the 7th ACM conference on Computer and Communications security, pp. 235-

244, 2000

[118] M. Waldvogel, G. Caronni, D. Sun, N. Weiler, and B. Plattner, “The VersaKey framework: Versatile group

key management,” IEEE J. Sel. Areas Commun. , vol. 17, no. 9, pp. 1614- 1631, Sept. 1999. 41. C.K. Wong,

M. Gouda,

[119] S. Tang, L. Xu, N. Liu, X. Huang, J. Ding and Z. Yang, "Provably Secure Group Key Management Approach

Based upon Hyper-Sphere," in IEEE Transactions on Parallel and Distributed Systems, vol. 25, no. 12, pp.

3253-3263, Dec. 2014, doi: 10.1109/TPDS.2013.2297917.

[120] Abdmeziem M.R., Charoy F. (2018) Fault-Tolerant and Scalable Key Management Protocol for IoT-Based

Collaborative Groups. In: Lin X., Ghorbani A., Ren K., Zhu S., Zhang A. (eds) Security and Privacy in

Communication Networks. SecureComm 2017. Lecture Notes of the Institute for Computer Sciences, Social

Informatics and Telecommunications Engineering, vol 239. Springer, Cham

[121] R a f a e l i, S., D. H u t c h i s o n. A Survey of Key Management for Secure Group Communication. – ACM

Computing Surveys, Vol. 35, September 2003, pp. 309-329.

[122] M. R. Abdmeziem, D. Tandjaoui, and I. Romdhani, “A decentralized batch-based group key management

protocol for mobile internet of things (dbgk),” 2015 IEEE International Conference on Computer and

Information Technology.

[123] T. T. Mapoka, S. J. Shepherd and R. A. Abd-Alhameed, "A New Multiple Service Key Management Scheme

for Secure Wireless Mobile Multicast," in IEEE Transactions on Mobile Computing, vol. 14, no. 8, pp. 1545-

1559, 1 Aug. 2015.

[124] Zhong, H., Luo, W., and Cui, J. (2017) Multiple multicast group key management for the Internet of

People. Concurrency Computat.:doi: 10.1002/cpe.3817

[125] A. Arfaoui, A. Kribeche, O. Merad Boudia, SM. Senouci, M. Hamdi "Context-Aware Access Control and

Anonymous Authentication in Wireless Body Area Networks", Computers & Security, 2019.

[126] M. A. Ferrag, L. A. Maglaras, H. Janicke, J. Jiang, and L. Shu, "Authentication Protocols for Internet of

Things: A Comprehensive Survey," Security and Communication Networks, vol. 2017.

[127] O. O. Bamasag and K. Youcef-Toumi. "Towards Continuous Authentication in Internet of Things Based on

Secret Sharing Scheme", In Proceedings of the WESS'15: Workshop on Embedded Systems Security

(WESS'15). ACM, New York, NY, USA.

[128] S. Challa, M. Wazid, A. K. Das, N. Kumar, A. G. Reddy, E. J. Yoon, and K. Y. Yoo, "Secure Signature-Based

Authenticated Key Establishment Scheme for Future IoT Applications," IEEE Access, vol. 5, pp. 3028– 3043,

2017.

[129] K. H. M. Wong, Yuan Zheng, Jiannong Cao and Shengwei Wang, "A dynamic user authentication scheme

for wireless sensor networks," IEEE International Conference on Sensor Networks, Ubiquitous, and

Trustworthy Computing (SUTC'06), Taichung, 2006, pp. 8 pp.-.

[130] M. L. Das, "Two-factor user authentication in wireless sensor networks," in IEEE Transactions on Wireless

Communications, vol. 8, no. 3, pp. 1086-1090, March 2009.

https://doi.org/10.1002/cpe.3817

164

[131] H. F. Huang, Y. F. Chang and C. H. Liu, "Enhancement of Two-Factor User Authentication in Wireless Sensor

Networks," 2010 Sixth International Conference on Intelligent Information Hiding and Multimedia Signal

Processing, Darmstadt, 2010, pp. 27-30.

[132] T.H. Chen, W.K. Shih, "A robust mutual authentication protocol for wireless sensor networks", ETRI Journal,

vol. 32, Issue5, Oct. 2010, pp. 704-712.

[133] M.K. Khan, K. Alghathbar, "Cryptanalysis and security improvements of two-factor user authentication in

wireless sensor networks", Sensors journal 2010, vol 10, pp.2450–2459.

[134] DJ He, Y. Gao, S. Chan, C. Chen, J.J. Bu, "An enhanced two-factor user authentication scheme in wireless

sensor networks", Journal of Information Security and Applications, vol. 20, Issue C, February 2015, pp. 37-

46.

[135] A.K. Das, P. Sharma, S. Chatterjee, J.K. Sing, "A dynamic password-based user authentication scheme for

hierarchical wireless sensor networks", Journal of Network and Computer Applications, vol. 35, Issue 5,

September 2012, pp. 1646-1656.

[136] M. Turkanovic, B. Brumen, and M. Holbl, "A novel user authentication and key agreement scheme for

heterogeneous ad hoc wireless sensor networks, based on the Internet of Things notion," Ad Hoc Networks,

vol. 20, pp. 96 – 112, 2014.

[137] C. C. Chang and H. D. Le, "A Provably Secure, Efficient and Flexible Authentication Scheme for Ad hoc

Wireless Sensor Networks," IEEE Transactions on Wireless Communications, vol. 15, no. 1, pp. 357–366,

2016.

[138] C.-T. Li, M.-S. Hwang, and Y.-P. Chu, "A secure and efficient communication scheme with authenticated key

establishment and privacy preserving for vehicular ad hoc networks," Computer Communications,vol. . 31,

no. 12, pp. 2803 – 2814, 2008

[139] P. Gope and T. Hwang, "A Realistic Lightweight Anonymous Authentication Protocol for Securing Real-

Time Application Data Access in Wireless Sensor Networks," in IEEE Transactions on Industrial Electronics,

vol. 63, no. 11, pp. 7124-7132, Nov. 2016.

[140] N. Khalil, M. R. Abid, D. Benhaddou, and M. Gerndt, "Wireless sensors networks for Internet of Things," in

IEEE Ninth International Conference on Intelligent Sensors, Sensor Networks and Information Processing

(ISSNIP), Singapore, 2014, pp. 1–6.

[141] "Advanced Encryption Standard (AES)," FIPS PUB 197, National Institute of Standards and Technology

(NIST), US Department of Commerce, November 2001. http://csrc.nist.gov/publications/fips/fips197/fips-

197.pdf.

[142] Y. Lu, L. Li, H. Peng, et al. "An Energy Efficient Mutual Authentication and Key Agreement Scheme

Preserving Anonymity for Wireless Sensor Networks," Sensors, vol. 16, no. 6, article no. 837, 2016.

[143] T. S. Messerges, E. A. Dabbish, and R. H. Sloan, "Examining smart-card security under the threat of power

analysis attacks," IEEE Transactions on Computers, vol. 51, no. 5, pp. 541–552, 2002.

[144] "Secure Hash Standard," FIPS PUB 180-1, National Institute of Standards and Technology (NIST), US

Department of Commerce, April 1995.

[145] T. Team et al. Avispa v1. 1 user manual. Information Society, Technologies Programme (June 2006), http

://avispa-project. org, 2006.

[146] AlMajed, H.N.; AlMogren, A.S. Simple and Effective Secure Group Communications in Dynamic Wireless

Sensor Networks. Sensors 2019, 19,

[147] A. Mehdizadeh, F. Hashim, and M. Othman, “Lightweight decentralized multicast–unicast key management

method in wireless ipv6 networks,” Journal of Network and Computer Applications, vol. 42, 2014.

[148] Zhu, B.; Susilo, W.; Qin, J.; Guo, F.; Zhao, Z.; Ma, J. A Secure and Efficient Data Sharing and Searching

Scheme in Wireless Sensor Networks. Sensors, 2019, 19, 2583.

[149] Tan, H.; Chung, I. A Secure and Efficient Group Key Management Protocol with Cooperative Sensor

Association in WBANs. Sensors 2018, 18, 3930

[150] Cheikhrouhou O. Secure Group Communication in Wireless Sensor Networks: A survey. Journal of Network

and Computer Applications.

[151] I.-C. Tsai, C.-M. Yu, H. Yokota, and S.-Y. Kuo, “Key management in internet of things via kronecker

product,” in Dependable Computing (PRDC), 2017 IEEE 22nd Pacific Rim International Symposium on.

IEEE, 2017.

165

[152] W. Ding et al., "An Extended Framework of Privacy-Preserving Computation with Flexible Access Control,"

in IEEE Transactions on Network and Service Management. TNSM.2019.

[153] M. Nabeel, N. Shang and E. Bertino, "Privacy Preserving Policy-Based Content Sharing in Public Clouds,"

in IEEE Transactions on Knowledge and Data Engineering, vol. 25, no. 11, pp. 2602-2614, Nov. 2013.

[154] X. Wang, J. Zhang, E. M. Schooler, and M. Ion, “Performance Evaluation of Attribute-Based Encryption:

Toward Data Privacy in the IoT,” in IEEE ICC, 2014.

[155] S. Sciancalepore, A. Capossele, G. Piro, G. Boggia, and G. Bianchi, “Key management protocol with implicit

certificates for iot systems,” in Proceedings of the 2015 Workshop on IoT challenges in Mobile and Industrial

Systems. ACM, 2015, pp. 37–42.

[156] Y. Tseng, C. Fan and C. Wu, "FGAC-NDN: Fine-Grained Access Control for Named Data Networks,"

in IEEE Transactions on Network and Service Management, vol. 16, no. 1, pp. 143-152, March 2019.

[157] Karuturi, N. N., Gopalakrishnan, R., Srinivasan, R., & Rangan, C. P. (2008). Foundations of Group Key

Management-Framework, Security Model and a Generic Construction. IACR Cryptology EPrint.

[158] https://github.com/miracl/MIRACL

[159] LEVINE, D. “IIoT Challenges and Promises.” Machine Design, vol. 88, no.7,pp.20-23,July2016.

[160] M. Khari, A. K. Garg, A. H. Gandomi, R. Gupta, R. Patan and B. Balusamy, "Securing Data in

Internet of Things (IoT) Using Cryptography and Steganography Techniques," in IEEE

Transactions on Systems, Man, and Cybernetics: Systems, vol. 50, no. 1, pp. 73-80, Jan. 2020

[161] Lu, J.Z.; Chen, T.; Zhou, J.; Yang, J.; Jiang, J. An enhanced biometrics-based remote user

authentication scheme using smart cards. In Proceedings of the 2013 6th International Congress on

Image and Signal Processing (CISP), Hangzhou, China, 16–18 December 2013

[162] Zhu, H.; Lin, X.; Zhang, Y.; Lu, R. Duth: A user-friendly dual-factor authentication for Android

smartphone devices. Secur. Commun. Netw. 2014, 8, 1213–1222.

[163] Su, W.T.; Wong, W.M.; Chen, W.C. A survey of performance improvement by group-based

authentication in IoT. In Proceedings of the 2016 International Conference on Applied System

Innovation (ICASI), Okinawa, Japan, 26–30 May 2016; pp. 1–4

[164] Park, Y.; Park, Y. A Selective Group Authentication Scheme for IoT-Based Medical Information

System. J. Med. Syst. 2017, 41, 48.

[165] Anxi, W; Jian, S; Leiming Yan Yongjun Ren Qi Liu Year: 2018 A Practical Group Authentication

Scheme for Smart Devices in IoT IOT EAI DOI: 10.4108/eai.5-3-2019.156719

[166] T. Salman, M. Zolanvari, A. Erbad, R. Jain, and M. Samaka, ‘‘Security services using Blockchains:

A state of the art survey,’’ IEEE Commun. Surveys Tuts., to be published, doi:

10.1109/COMST.2018.2863956

[167] Chaudhary R, Jindal A, Aujla, et al. “BEST: Blockchain-based secure energy trading in SDN-

enabled intelligent transportation system,” Computers and Security, vol. 85, pp. 288-299, August

2019

[168] P. K. Sharma, M. Chen and J. H. Park, “A Software Defined Fog Node Based Distributed

Blockchain Cloud Architecture for IoT,” in IEEE Access, vol. 6, pp. 115-124, 2018

[169] Z. Zhou, B. Wang, M. Dong and K. Ota, "Secure and Efficient Vehicle-to-Grid Energy Trading in

Cyber Physical Systems: Integration of Blockchain and Edge Computing," in IEEE Transactions on

Systems, Man, and Cybernetics: Systems, vol. 50, no. 1, pp. 43-57, Jan. 2020,

[170] J. Li, M. Wen and T. Zhang, "Group-Based Authentication and Key Agreement With Dynamic

Policy Updating for MTC in LTE-A Networks," in IEEE Internet of Things Journal, vol. 3, no. 3,

pp. 408-417, June 2016, doi: 10.1109/JIOT.2015.2495321.

[171] L. Harn, "Group Authentication" in IEEE Transactions on Computers, vol. 62, no. 09, pp. 1893-

1898, 2013. doi: 10.1109/TC.2012.251

[172] A. Shamir, “How to Share a Secret,” Comm. ACM, vol. 22, no. 11, pp. 612- 613, 1979.

https://github.com/miracl/MIRACL

166

[173] Chien, H.Y. Group Authentication with Multiple Trials and Multiple Authentications. Secur.

Commun. Netw. 2017, 2017, 3109624.

[174] Z. Xiong, Y. Zhang, D. Niyato, et al. “When Mobile Blockchain Meets Edge Computing,” IEEE

Communications Magazine, vol. 56, no. 8, pp. 33-39, Aug 2018

[175] Hammi, M.T.; Hammi, B.; Bellot, P.; Serhrouchni, A. Bubbles of Trust: A decentralized

Blockchain-based authentication system for IoT. Comput. Secur. 2018, 78, 126–142.

[176] Wentong Wang, Ning Hu, Xin Liu. "BlockCAM: A Blockchain-based cross-domain authentication

model." In 2018 IEEE Third International Conference on Data Science in Cyberspace (DSC), pp.

896-901. IEEE, Jun. 2018.

[177] Y. Yao, X. Chang, J. Mišić, V. B. Mišić and L. Li, "BLA: Blockchain-Assisted Lightweight

Anonymous Authentication for Distributed Vehicular Fog Services," in IEEE Internet of Things

Journal, vol. 6, no. 2, pp. 3775-3784, April 2019, doi: 10.1109/JIOT.2019.2892009.

[178] S. Guo, X. Hu, S. Guo, X. Qiu and F. Qi, "Blockchain Meets Edge Computing: A Distributed and

Trusted Authentication System," in IEEE Transactions on Industrial Informatics, vol. 16, no. 3, pp.

1972-1983, March 2020, doi: 10.1109/TII.2019.2938001.

[179] V. Gupta, S. Gupta, S. Chang, and D. Stebila, "Performance analysis of elliptic curve cryptography

for SSL." pp. 87-94.

[180] R. Jiang, J. Luo, F. Tu, and J. Zhong, “LEP: a lightweight key management scheme based on ebs

and polynomial for wireless sensor networks,” in Proceedings of the IEEE International Conference

on Signal Processing, Communications and Computing (ICSPCC ’11), pp. 1–5, Xi’an, China,

September 2011

[181] Yuan Zhang, Xiaodong Lin, Chunxiang Xu. "Blockchain-based secure data provenance for cloud

storage." In International Conference on Information and Communications Security, pp. 3-19.

Springer, Cham, Oct. 2018

[182] S. Wang, L. Ouyang, Y. Yuan, X. Ni, X. Han and F. Wang, "Blockchain-Enabled Smart Contracts:

Architecture, Applications, and Future Trends," in IEEE Transactions on Systems, Man, and

Cybernetics: Systems, vol. 49, no. 11, pp. 2266-2277, Nov. 2019

[183] Zhonglin Chen, Shanzhi Chen, Hui Xu, Bo Hu. "A security authentication scheme of 5G ultra-dense

network based on block chain." IEEE Access 6 (2018): 55372-55379.

[184] Aggelos Kiayias, Alexander Russell, Bernardo David, Roman Oliynykov. "Ouroboros: A provably

secure proof-of-stake Blockchain protocol." In Annual International Cryptology Conference, pp.

357-388. Springer, Cham, Aug. 2017.

[185] Raheem A Beyah, Cherita L Corbett, Janise Mcnair, Book Security in Ad-hoc And sensor Networks

[186] R. Jiang, C. Lai, J. Luo, X. Wang, H. Wang, EAP based group authentication and key agreement

protocol for 624 machine type communication, International Journal of Distributed Sensor

Networks. (2013). 625 (doi.org/10.1155/2013/304601)

[187] Zheng, X.; Zhu, Y.; Si, X. A Survey on Challenges and Progresses in Blockchain Technologies: A

Performance and Security Perspective. Appl. Sci. 2019, 9, 4731. https://doi.org/10.3390/app9224731

167

Appendix

Appendix 1

A. Transaction Process of the Blockchain

We describe the process of the transaction from generation until validation in the blockchain

presented by the hyperledger fabric platform [87]:

 Client initiates the transaction carried out by a client application.

 Endorsing peers verify signature and execute the transaction.

 Client assembles endorsements into a transaction.

 Client disseminates the block to leader peers.

 Peers nodes validate and commit transaction.

 Peers nodes update their ledger.

 Peers nodes notify client with the update.

Figure A.1 illustrates the life cycle of the transaction process of the hyperledger fabric

technology.

Figure. A.1: A life cycle of transaction process

168

B. Blockchain Types

The blockchain is classified into three categories:

 A public blockchain (also known as permissionless) is open for anyone to read,

send or receive transactions and allows any participant to join the consensus

procedure of deciding which blocks contain correct transactions and get added to the

blockchain [86].

 A consortium blockchain placed certain constraints on write permissions such that

only a pre-selected set of participants in the network can influence and control the

consensus process, even though read is open to any participant in the network [86].

 Private blockchain, allows different level of writing permissions for users, so

access is restricted strictly to some participant, even though its read permissions are

open to the public or constrained to a subset of participants in the network [86].

Table A.1 summarizes these three categories:

Types Scenarios Describe

Trusted

authority

number

Speed of

consensus

A public

blockchain

Anyone can participate, and it is

accessible worldwide

0 Slow

A consortium

blockchain

Controlled by pre-selected

nodes within the consortium
≥ 1 Slight fast

A private

blockchain

An organization controls writing

rights
1 Fast

Table A.1: Blockchain types

C. Consensus Protocols of the Blockchain

All blockchain types rely on consensus protocols to synchronize replicas across the network.

In what follows, we detail the three most known consensus protocols [89] :

 Proof of Work (PoW): is a consensus protocol designed for Bitcoin [88], aiming to

reach a collective consensus on the bitcoin transaction's validity. This consensus is

achieved by a subset of powerful nodes called the miners through solving a heavy

mathematical puzzle. The rate of creating a new block to the blockchain is about 10

minutes, which is related to the time spent solving the proof of work challenge and the

difficulty of the challenge. In the PoW is challenging and time consuming to predict the

correct nonce for the appropriate hash target, while it is extremely easy to validate the

hash result, which confirms the resilience to tampering attacks. However, the PoW

protocol suffers from a too high computation complexity and a low probability of

successful work proof generation.

169

 Proof of State: represents an alternative type of distributed consensus protocol, where

only nodes who have locked up their capital as deposits (stake) are qualified to be chosen

as miners or validators. In particular, the nodes that hold the highest stake are more

likely to be selected for validating transactions and creating new blocks to add to the

blockchain. Furthermore, all validators have known identities to allow the network to

keep track of all legitimate validators. These identities are stable addresses in Ethereum.

PoS breaks the dependency on rewards for security by promoting penalties-based

solutions [86].

 Practical Byzantine Fault Tolerance (PBFT): is defined as an algorithm for practical

BFT proposed to solve the problem of Byzantine generals [90]. PBFT achieves sub-

millisecond increases in latency by processing thousands of requests per second. This

protocol can work in a hostile environment as it tolerates Byzantine faults up to 1/3

faults. In fact, it aims to reach a consensus by the collaboration of all honest nodes. The

advantage of the PBFT protocol compared to PoW is reducing energy consumption.

This protocol is very efficient, especially in private blockchains, as there is no need to

perform heavy computations during the validation process, and it is legally distributed

compared to the PoS protocol. However, the heavy communication overhead makes the

classical PBFT only work with small consensus group sizes which affects the scalability

issue.

Abstract :

The Internet of Things (IoT) represents the interconnection between the Internet and physical objects, places and

environments. However, this extensive connectivity of IoT can be hampered by malicious interventions from cyber

attackers. Thus, ensuring security for users and IoT devices remains a challenge, especially authentication and authorization,

which are essential building blocks of the security process. This is due to the unconventional IoT characteristics, including

scalability, heterogeneity, interoperability, and dynamic changes, which make the existing security measures inadequate.

Indeed, these characteristics bring up several security requirements to consider when defining a secure IoT system. Thus,

this dissertation focuses on designing a secure IoT system that achieves the main security concepts, namely the

authentication and the authorization for a large-scale IoT environment. This IoT system provides an effective and efficient

secure IoT solution that achieves a tradeoff between the security requirements and the network performance. To this end,

we proposed a lightweight authentication scheme that meets the need for limited resources and the dynamic changes related

to the one-to-one scenarios. This scheme is based on a token of identification to secure access during a prefixed

predetermined time interval. We both developed a prototype of this solution for a smart hotel use case, and conducted

experiments and simulations to show its effectiveness. Besides, to protect the sharing access between many users and

devices, a decentralized access control mechanism was introduced using a decentralized group-key management to meet the

scalability, heterogeneity, and dynamic changes issues. Furthermore, to ensure security for an extensive scale of

communications based on groups, a distributed group authentication based on blockchain technology is adopted in order to

meet the requirement of a large-scale heterogeneous environment. The blockchain provides our secure IoT system with a

trustless, immutable, and distributed ledger that records users’ information and traceability. Further, it facilitates the design

of a distributed group authentication protocol without relying on a third party and eliminates the user re-authenticating

process.

Keywords: Internet of things, authentication, authorization, cyber security, dynamic IoT, token, blockchain,

decentralized system, distributed system.

Résumé :

L'Internet des objets (IoT) représente l'interconnexion entre l'Internet et des objets, des lieux et des environnements

physiques. Cependant, cette connectivité étendue de l'IoT peut être entravée par des interventions malveillantes émanant de

cyber attaquants. Ainsi, garantir la sécurité des utilisateurs et des appareils IoT reste un défi, en particulier l'authentification

et l'autorisation, qui représentent des briques essentiels du processus de sécurité. Ceci est dû aux caractéristiques non

conventionnelles de l'IoT, notamment la scalabilité, l'hétérogénéité, l'interopérabilité et les changements dynamiques, qui

rendent les mesures de sécurité existantes inadaptées. En effet, ces caractéristiques font émerger plusieurs exigences de

sécurité à prendre en compte lors de la définition d’un système IoT sécurisé. Ainsi, cette thèse se focalise sur la conception

d'un système IoT sécurisé réalisant les principaux concepts de sécurité, à savoir l'authentification et l'autorisation pour un

environnement IoT à grande échelle. Ce système IoT fournit une solution sécurisée efficace et efficiente qui réalise un

compromis entre les exigences de sécurité et les performances réseau. Pour ce faire, nous avons premièrement proposé un

schéma d'authentification léger qui répond au besoin de ressources limitées et aux changements dynamiques liés aux

scénarios one-to-one. Ce schéma est basé sur un jeton d'identification pour sécuriser l'accès pendant un intervalle de temps

prédéterminé. Nous avons à la fois élaboré un prototype de cette solution pour un cas d'utilisation d'hôtel intelligent, et mené

des expériences et des simulations afin de monter son efficacité. En outre, pour protéger le partage d'accès entre de nombreux

utilisateurs et appareils, un mécanisme de contrôle d'accès décentralisé a été introduit en utilisant une gestion décentralisée

de clé de groupe afin de répondre aux problèmes de scalabilité, d'hétérogénéité et de changements dynamiques. De plus,

pour garantir la sécurité pour des communications à grande échelle basées sur des groupes, une authentification de groupe

distribuée basée sur la technologie blockchain est adoptée dans notre système IoT afin de répondre à l'exigence d'un

environnement hétérogène à grande échelle. La blockchain fournit à notre système sécurisée un registre, immuable et

distribué qui enregistre les informations et la traçabilité des utilisateurs. Entre autre, la blockchain facilite la conception du

protocole d'authentification de groupe distribué sans dépendre d’un tiers et élimine le processus de réauthentification des

utilisateurs.

Mots clés : Internet des objets, authentification, autorisation, cyber sécurité, IoT dynamique, jeton, blockchain, système

décentralisé, système distribué.

