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1.1. Context and Motivation 

The Internet of Things (IoT) is a global new paradigm that considers connecting objects, 

intelligent systems, and applications in order to gather data from the physical world and offer 

IoT services to IoT consumers [42]. The IoT has emerged as a prominent solution that allows 

anyone to access anything from anywhere and anytime. In particular, it enables several physical 

objects prepared to collect data through the sensing and actuation capabilities, process, and 

exchange  this data over the network transparently and seamlessly. The communication through 

the IoT network provides an entirely connected smart world in which objects collaborate to 

achieve a high-level new service dimension. Thus, the capacity to monitor and manage things 

in the physical world develops the spectrum of IoT applications that directly impacts the 

economics’ increasing and the quality of our daily life.  IoT supports numerous and massive 

IoT applications, including smart home, smart manufacturing, smart building, smart 

transportation, smart grid, and smart healthcare [1]. According to the published study [2], the 

anticipated number of connected IoT devices during this year, 2021, will reach 27.1 billion IoT 

devices. Despite the attractive promises of the developing IoT network, security presents a real 

issue that hinders its full deployment. In fact, IoT security is not efficiently established as it has 

not gained sufficient attention proportional to the IoT growth. The US Intelligence Community 

classifies the IoT as a significant cyber technology that can endanger data privacy, data 

integrity, and service availability. Besides, the IoT network's open nature makes it composed 

of many heterogeneous smart devices and characterized by a dynamic structure. Thus IoT 

security could be a disaster and more severe than traditional security problems in the Internet.  

Moreover, IoT intensifies existing cyber-security issues and introduces a whole new degree 

of potential threats. We give in the following the some well-known attacks that occurred 

recently in the IoT network: (i) In December 2014, attackers penetrated a German steel mill 

facility by using booby-trapped emails to steal logins and obtained control access to the mill's 

control systems. Through this attack, they lead to a furnace explosion [3]. (ii) In October 2016, 

the Mirai [4] launched a malicious program that infected numerous IoT devices by taking 

control of connected objects such as surveillance cameras and routers and then initiated massive 
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distributed denial of service attacks (DDoS) by flooding servers. This attack leads to a botnet, 

which results in transforming the large-scale Internet network paralyzed. (iii) In 2017, a medical 

malware named BrickerBot damaged the healthcare application. Indeed, attackers used the 

brute force password and compromised medical IoT devices [5], destroyed their memory, and 

deleted their data. This attack has dangerous consequences on users of healthcare IoT 

applications.  

To sum up, the IoT's attractiveness by the massive number of connected devices into IoT 

systems increases the attack surface and the hackers' possibilities to get unauthorized access 

and damage these systems. Therefore, adequate security mechanisms should be deployed to 

mitigate risks and respond to the dynamic environment's security requirements.  

1.2. Opportunities and Challenges 

Despite the encouraging advances of the IoT environment in our daily life, security and 

privacy challenge the way of its full development. Even though the IoT networks present the 

same security concerns with the Internet as the 4/5G security, WiFi security, and Internet 

Protocol (IP)-based security, the traditional security solutions cannot be directly implemented 

for the IoT environment [6].  Indeed, IoT's ability to connect billions of smart things, collecting 

sensitive and personal data, creates new degrees of security and privacy issues, especially 

authentication and authorization problems. According to the massive number of connected 

objects, IoT network records high volume communication traffic of exchanged/collected data 

that potentially threaten IoT. Therefore, this environment, characterized by high scalability, 

should apply an effective security solution to mitigate attackers' exploitation. Furthermore, 

another crucial challenge is related to the diversity in security requirements and resource 

availability. Explicitly, the potential number of communication standards and information 

system technologies with heterogeneous security configuration requirements will generate a 

complex networking model and impact the IoT systems' security. Besides, the remote access 

mechanisms and the sensitive exchanged data over the wireless channel attract many intruders' 

attention through physical and wireless access and increases the probability of threats. In 

particular, IoT systems are susceptible to denial-of-service (DoS) and distributed DoS (DDos), 

in which an adversary may exploit network protocols with massive traffic [47] and degrade the 

system's availability. Adding to the fundamental illustrated challenges, the IoT environment is 

likely to face other silent challenges that stand in the way of its deployment. The resource 

constrained IoT devices cannot support the excessive computational requirements in 

cryptography and will be subject to high energy consumption. Besides, with the distributed 

and the high heterogeneity nature of an IoT environment, many IoT services are offered. 

However, devices may be added and removed, and users may subscribe and unsubscribe from 

these IoT services dynamically. 

Consequently, dynamically unstable situations may impact authentication/authorization in 

IoT systems. The current preventive and security countermeasures solutions are inadequate and 

insufficient to successfully address these characteristics and mitigate threats. In fact, most of 

the designed authentication and authorization schemes rely on a centralized trusted third party, 

which might lead to a bottleneck in the IoT system due to the scalability issue and the dynamic 
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changes. Moreover, using a server-client model establishing one-to-one connections is not 

scalable with broadcasting communications and leads to repeated requests or authentication and 

access authorization. Therefore, frequent authentication and authorization require a more 

appropriate authentication and authorization architecture model with dynamic defense to 

address the security requirements. Some distributed authentication trusted frameworks were 

proposed to handle the scalability issue and eliminate the third party's load and trust. However, 

these mechanisms suffer from the necessity of having distributed trusted servers that are a great 

point of attackers' attraction. Hence, blockchain technology-based on trustless distributed nodes 

might be beneficial to deal very well with scalability and heterogeneity issues. However, since 

blockchain technology is energy and time-consuming due to the proof of work mechanism, it 

become important to think how to take advantage of this technology while taking into account 

resource-limited IoT devices. 

In addition to authentication, granting the corresponding permissions with the dynamic IoT 

environment is a high challenge that needs to be addressed. The exiting solutions for access 

control are not suitable for a large dynamic environment and limited resources IoT 

environments. They need to rely on a connected third party to get access permissions 

continuously. Moreover, regarding the continuous growth of connected objects in IoT, group-

based applications have emerged. Thus, authorization frameworks should also address the 

group security requirement to control the permissions' assignment. The Group Key 

Management (GKM) has been used as a prominent solution to achieve a secure and efficient 

access control in IoT. The group members in a heterogeneous IoT network could subscribe to 

IoT services and then change their subscriptions dynamically. In this context, members join and 

leave the IoT services group (subscribe/unsubscribe to an IoT service).  Therefore, the group 

key must be changed whenever a member leaves or joins the group to ensure secure group 

communication, especially both forward and backward secrecy with respect to the resources 

and capacity of IoT objects.  

1.3. Dissertation Scope and Methodology 

According to the previously discussed IoT challenges and the security requirements, we 

introduce in this section how to build a secure IoT system to address the earlier mentioned 

issues. The large IoT environment connecting billion of things enumerates many security 

challenges that need to be overcome to deploy the IoT system efficiently. More specifically, 

authentication and authorization are essential security features for building a secure IoT 

environment. In this thesis, we focus on proposing authentication and access control protocols 

for IoT environments with respect to the dynamic nature of group communication, the security 

requirements, and the constrained features of IoT devices. We summarize in what follows our 

research objectives:  

 Design a mutual lightweight authentication for a period of time that responds to the 

users' dynamic changes in the IoT environment and the resource-limited IoT devices.  
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 Deploy an efficient access control system using group key management that responds 

to the dynamic changes features and the group communications requirements and 

eliminates the third-party load. 

 

 Design a distributed group authentication protocol for authenticating the user with many 

IoT services to eliminate the trust in the third-party using a trustless environment, meet 

the requirement of a large scale and heterogenous environment, and ensure a secure and 

efficient authentication for the group-based communication.  

 

To design our secure IoT system regarding the security requirements, including scalability, 

heterogeneity, dynamic changes, automated authentication, limited resources, and security 

features, we summarize the adopted approaches in Table 1.1.  

Table 1.1: Methodology of building our IoT secure system 

Requirement Design Principle Approach Chapter 

Scalability 

Distributed group authentication 

architecture 

Blockchain 

5 Edge server 

Shamir secret sharing  

A decentralized access control 

architecture 
Group Key Management 4 

Heterogeneity 
Ubiquitous network with 

heterogeneous entities  

GKM for users  
4 

GKM for IoT devices  

Dynamic 

changes 

Dynamic access control 

Logical key Hierarchical  

4 Master Token Encryption  

One Time Pad encryption 

Periodic authentication Token of identification 3 

Automated 

authentication  

Distributed authentication for 

users with many IoT services  

Trustless environment 

based on Blockchain  
5 

Limited 

resources 

Considering the consumption 

from computation, Storage, 

Bandwidths, and Power  

Lightweight 

authentication protocol 

3 

5 

Security & 

Privacy 

Confidentiality 

Secure Authentication 

and Access Control 

Management  

3 

4 

5 

Integrity 

Availability 

Non-repudiation 

Authentication 
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1.4. Thesis Structure and Contributions Overview 

We addressed two crucial security features in the IoT environment all over this thesis, 

including authentication and authorization. These security services are challenging regarding 

the peculiar characteristics of the progressing IoT network. To be more practical, we describe 

in the following a storyline scenario that uses our secure IoT system. We adopt a smart-hotel 

scenario equipped with various modern IoT technologies that make the guests’ stay more 

comfortable, lower the energy consumption, and help the staff and management with their tasks. 

Our system gives the freedom for guests to choose a smart room or a standard room. Suppose 

two different guests named Bob and Jenny, where Jenny wants to book a smart room and Bob 

wants to book a standard room.  

Bob, the first smart-hotel guest, passes by our smart hotel rapidly and wants to book a room 

at a low price for five days. After checking the hotel’s availability on the given days, Bob uses 

the TBLUA system (chapter 3) to make a reservation. The hotel booking system uses TBLUA 

that generates a token of identification, which uses high-security standards to authenticate the 

guest during his accommodation and open the reserved room’s smart lock. At Bob’s arrival, 

Bob has not to pass by the reception for the check-in. Indeed, Bob uses his smartphone to 

connect to the hotel application, uses the received token and then opens his room by 

approaching his smartphone to the smart lock. During Bob’s stay, his friend has joined him, 

and he preferred to stay with him in the same room. Therefore, Bob’s friend needs to get access 

to Bob’s room at any time during the accommodation. At this level, it is essential to share the 

entrance to the same room securely between Bob and his friend. The hotel ensures a secure 

share of access by using the DLGKM-AC system (chapter 4). In particular, the DLGKM-AC 

system controls the access to the same room and gives another token for Bob’s friend, who 

could enter the room freely. At Bob’s departure, the DLGKM-AC system updates Bob’s room’s 

smart lock by revoking the two tokens used during the last reservation.  

Jenny is the second guest, who is impressed by the advanced technology of nowadays, has 

preferred a reservation to a smart room with full smart objects. Besides, after checking the 

hotel’s availability on the given days, Jenny chooses to book a full smart room with many other 

IoT services offered by the hotel (smart cleaning, smart food operations, smart tourism, etc.). 

The hotel system uses DiGABlock (chapter 5) to reserve the room and register Jenny for the 

requested hotel services. At Jenny’s arrival, the environment in the room is prepared on her 

preferences (such as the temperature, lighting, etc.), and Jenny needs to get access to her room 

and all objects in the room. Therefore, DiGABlock authenticates Jenny by making a full 

authentication to secure access to the smart room. At this level, Jenny’s information is stored 

in the hotel’s blockchain network to be used during her stay and for her next visit. During 

Jenny’s accommodation, she enjoyed the offered IoT services, which are accessible based on 

her reservation request. In fact, DiGABlock ensures rapid and secure access to these IoT 

services through delivering these services without the need to re-authenticate. For instance, 

Jenny gets access to the cleaning robots and programmed them with her non-presence in the 

room. Thus, if Jenny is not in the room, robots could clean it.  Knowing that Jenny has two kids 

with her, aged 10 and 18, the hotel uses the DLGKM-AC system to securely share the access 

between Jenny and her kids. Indeed, Jenny and her kids have different access permissions, they 
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all could access the room, but only Jenny and the adult kid could control the heater and all 

room’s accessories, while only Jenny could program the robots to clean the room. Once Jenny 

and her kids check out the hotel, the DLGKM-AC updates all IoT devices used during the 

accommodation. Furthermore, the blockchain network store all information related to Jenny 

and her kids about their access to all IoT services and their preferences that are useful for 

further reservation.  

The rest of this dissertation is organized as follows, as illustrated in Figure 1.1, representing 

our dissertation's diagram. Chapter 2 reviews the existing security solutions in the IoT 

environment based on the unconventional characteristics and the IoT security challenges, 

including heterogeneity, scalability, dynamic changes, and limited resources. Chapter 3 

describes a lightweight authentication protocol to meet IoT's resource-constrained requirements 

and design a proof-of-concept representing a smart hotel use case. Chapter 4 addresses the 

problem of granting permissions access to users and IoT devices for a large-scale environment. 

Chapter 5 improves the authentication process in such a large-scale environment through 

designing distributed group authentication based on blockchain technology. Conclusions and 

future directions of the research are presented in Chapter 6. More details and contributions of 

each chapter are given in the following: 

 Chapter 2:  

Chapter 2 surveys the most prominent literature related to authentication and access control 

in IoT environments. Throughout this chapter, we first provide a detailed study of the IoT 

network by presenting its architecture and the challenges standing in the way of its deployment. 

Then, we point out the security challenges and requirements related to its development. We 

continue by presenting the existing solutions that address the fundamental security 

requirements, including the IoT authentication and access control schemes. We also give an 

overview of the different approaches used to handle the selected security requirements, such as 

blockchain, token, group key management, etc.  

 Chapter 3:  

This chapter proposes a new lightweight mutual authentication for a one-to-one scenario in 

IoT. In fact, using passwords or pre-defined keys is insufficient to authenticate legitimate users 

in a dynamic environment. For instance, in the smart hotel application that involves different 

IoT devices, the users dynamically change their reservation status. Meanwhile, the users who 

reserve the IoT services in the smart hotel should get authenticated only during their 

accommodation. Hence, a temporary authentication is required to give access to the hotel during 

the reservation period. In this context, and  to enhance the robustness of authentication, the 

chapter proposes a new protocol named Token-Based Lightweight User Authentication 

(TBLUA). This protocol is achieved by adding a new security layer using the software token 

of identification mechanisms. In fact, adding to the password and the login, the token is used to 

identify the legitimate user during a specific period securely. This token is mainly designed to 

respond to the limitation of the resources of IoT devices. Both security and performance 

analysis show that the proposed scheme is a strong competitor among existing ones for user 
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authentication in IoT environments. Furthermore, we describe the smart hotel use case 

reservation system composed of one smart lock and study its vulnerability.  

 Chapter 4:  

In addition to the authentication requirement described in the previous chapter, it is crucial 

to give adequate permissions to legitimate users and IoT devices. In particular, in a large-scale 

dynamic IoT environment characterized by subscribers (users/IoT devices) that frequently 

change interest to IoT services, it is significant to maintain secure data distribution to legitimate 

subscribers. Therefore, we elaborate a novel Decentralized Lightweight Group Key 

Management architecture for Access Control in the IoT environment (DLGKMP-AC) that 

manages the dissemination of keys of access control and secure data distribution. This solution 

aims to address the scalability challenge introduced by the massive scale of IoT devices and the 

increased number of subscribers. This, thanks to a hierarchical architecture composed of one 

Key Distribution Center (KDC) and several Sub Key Distribution Centers (SKDCs), enhancing 

subscribers' management' groups, and alleviating the rekeying overhead on the KDC. 

Furthermore, the solution removes the dependency of symmetric group keys per subgroup 

communication, which is inefficient when managing access control for subscribers with highly 

dynamic behavior. Hence, a new master token management protocol was introduced through 

this chapter to succeed in keys dissemination across a group of subscribers. This protocol 

reduces storage, computation, and communication overheads during join/leave events. 

Likewise, DLGKM-AC guarantees secure group communication by preventing collusion 

attacks and ensuring backward/forward secrecy. Simulation results and analysis show 

considerable resource gain in storage, computation, and communication overheads.  

 Chapter 5:  

The growing IoT environment offers many IoT services that might be composed of many 

IoT devices allowing group-based communication. Indeed, we can recognize that controlling 

unauthorized access to group communication is achieved through our solution in the previous 

chapter 4. However, before granting permission access, users need to authenticate themselves 

with all requested IoT services by authenticating with each IoT device composing these IoT 

services. These frequent and redundant authentication actions may lead both to exploit 

exchanged data of authentication mechanisms by intruders and signaling congestion. Therefore, 

to secure the communication in an environment with a large number of devices, we propose a 

novel Distributed Group Authentication system based on Blockchain technology (DiGABlock) 

to build an efficient and secure distributed group authentication system in an IoT environment 

based on group communication. In particular, we design a group authentication algorithm based 

on the threshold secret sharing technique through the Blockchain edge layer to allow users to 

authenticate securely within many groups of IoT devices in a distributed manner. In fact, users 

have to achieve only one full authentication process with an IoT service (a group of IoT 

devices), and then they need to complete a service delivery process to get authenticated with 

the rest of the required IoT services. Security analysis shows that DiGABlock resists man-in-

the-middle and DDoS attacks. Furthermore, simulation results show that DiGABlock 
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outperforms exiting schemes by 75%-80% in terms of communication costs and conducts a 

considerable computation and energy consumption gain. 
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2.1 Introduction  

As we deliberated in the introduction chapter, the Internet of Things (IoT) has witnessed a 

tremendous evolution with the significant increase in the number of smart devices. These 

intelligent devices around us are increasingly becoming ubiquitous to enable new IoT 

applications in our daily life, including smart homes, smart grid, smart cities, intelligent 

transportation, smart healthcare, etc. [1]. Within this progress, designing IoT security solutions 

is a challenging task. Indeed, IoT devices and users need to be authenticated and authorized to 

access IoT services. Furthermore, the IoT, with its intrinsic characteristics, including 

heterogeneity, constrained resources, and large-scale network infrastructure, has given birth to 

different security requirements and challenges, such as scalability, interoperability, and 

dynamicity. All these security challenges can be considered as a significant barrier to the 

deployment of a secure IoT system. Therefore, to build a secure IoT system, we conducted a 

survey on IoT solutions over the past years, and the selection of the research works in the 

literature is based on the criteria mentioned below:  

i. The surveyed research should be designed for IoT environments, such as a wireless 

network, sensors network, or other connected IoT objects. 

ii. The surveyed IoT solutions should mainly study one of the following indispensable 

security features: the authentication and the authorization. 

iii. These studies should consider one of the advanced features of the IoT environment, 

such as scalability, heterogeneity, dynamic changes, group communication, and 

limited resources.   

As previously mentioned, the IoT network aims to connect everything, including people, 

devices, organizations, applications, services data, etc., leading to a massive amount of 

extensive data that should be secured. Thus, any disclosure of the exchanged and transmitted 

data impacts the IoT system's security and functionality, which leads to many serious risks [8]. 

Authentication and Access Control in IoT 
Environment 

Chapter 2 
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Since the security issue is primordial for the IoT environment, especially the authentication1 

and authorization2 mechanisms, we classified these IoT solutions into two main categories to 

handle these security features while addressing the previous IoT unconventional characteristics, 

specifically scalability, heterogeneity, dynamic changes, group communication, and limited 

resources. In this context, we analyze the exiting authentication solutions in the literature that 

tried to adapt the security solutions proposed for wireless sensor networks (WSNs) to the 

context of IoT. Throughout our analysis of these selected solutions, we can highlight that some 

of the authentication approaches relying on a centralized architecture, make their 

implementation in IoT applications much more complicated because of the high number of IoT 

objects. Hence, they cannot handle the peculiar characteristics of a distributed IoT environment. 

Besides, we reviewed some distributed approaches that are considered beneficial to handle the 

scalability issues but causing an important overhead. At this level, we can observe that is 

essential to build a secure and efficient IoT system addressing the security requirements, 

explicitly, confidentiality, integrity, availability, and privacy. For that reason, we surveyed the 

authentication and the access control in the literature [9] [10] [51] [52] [98] [104], and it turns 

out challenges about how to manage authentication and the access control permissions for a 

large number of IoT devices delivering many IoT services. Furthermore, it points out the 

importance of eliminating the dependence on a connected third party to protect IoT devices and 

IoT users' security and privacy and ensure IoT availability over the various attacks. 

Throughout this chapter, we first provide a comprehensive presentation of the IoT 

environment and highlight its deployment challenges. In particular, we specify the security 

issues and the requirements of unconventional IoT characteristics. Then, we investigate the 

recent studies and survey the authentication and authorization solutions. Finally, we point out 

specific approaches to build a secure IoT system.  

 

2.2  Internet of Things (IoT) 

The Internet of Things (IoT) is the future of the Internet, enabling a fully connected "smart" 

world to provide various services to Information Technology (IT). More specifically, the IoT 

concept is based on interconnecting "things" and devices that take the form of wearables, 

sensors, actuators, mobiles, computers, meters, or even vehicles, which communicate through 

the Internet, as shown in Figure.2.1. These inter-networked “things” interact and cooperate to 

achieve a common goal by sensing, transmitting, and processing valuable data [10], which 

define the emerging homes applications and the buildings automation, smart cities and 

infrastructure, smart industries, and smart-everything.  

Besides, the IoT network is a dynamic system connecting digital devices based on 

interoperable communication and characterized by self-configuration capabilities such as 

identities, physical attributes, and virtual personalities. Therefore, the IoT paradigm transforms 

the physical objects from being conventional to smarter ones by exploiting communication 

technologies' advancement, which expands the communication from human-human to human-

                                                           
1 The authentication is responsible for verifying legitimate communicating parties in peer-to-peer networks.  
2 The authorizations framework prescribes rules to the users and IoT objects for interacting with each other and 

ensures the availability of the IoT system.  
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device or even device-device (D2D). This vision of the IoT has introduced a new dimension to 

information and communication technologies, where physical objects allow users' connection 

to the Internet from anywhere and anytime. However, these connected IoT objects' security 

plays a centric role and brings new challenges due to low memory, energy, and computation 

capacity. In the following, we first present the IoT architecture model and the IoT ecosystem's 

main layers. Then, we discuss IoT applications and the main challenges facing them.  

 
Figure.2. 1: Internet of Things 

2.2.1 IoT Architecture 

The high level of IoT applications explains the varieties of generic and horizontal IoT 

architectures proposed by many known groups and consortiums, such as  M2M (Machine-to-

Machine), ETSI (European Telecommunications Standards Institute), ATIS (Alliance for 

Telecommunications Industry Solutions ), TIA (Telecommunications Industry Association). A 

typical IoT architecture is proposed by ETSI which is composed by three main layers, including 

the M2M domain layer, network layer, and application layer [9]. According to the recent 

literature [11], other models, including the five-layer model, have been proposed to improve 

the basic three-layers models and support the IoT's scalability. Consequently, the five-layer 

model is the most suitable model for IoT applications among the proposed models, as presented 

in Figure 2.2. In what follows, we briefly describe and define the different layers of IoT 

architecture.  

2.2.1.1 Perception Layer 

This layer is composed of the physical devices, such as sensors, actuators, intelligent 

terminals, and RFID systems required to implement the IoT environment. The features of this 

layer would be the sensing, actuating, and communication capabilities. In particular, it collects 

and gathers information about the IoT environment, such as querying location, temperature, 

patient health state, pressure, weight motion, vibration, acceleration, humidity, etc. These 

of  

https://cts.businesswire.com/ct/CT?id=smartlink&url=https%3A%2F%2Fwww.tiaonline.org%2F&esheet=51927280&newsitemid=20190117005438&lan=en-US&anchor=Telecommunications+Industry+Association&index=1&md5=bd3c839ae4ad9e5f6c45a989711435b4
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collected data are useful for performing various functionalities, such as identification and 

information storage, information processing using embedded edge processors, 

communications, control, and actuation. More specifically, these components composing the 

perception layer can be divided into two categories, named perception nodes and perception 

network [12]. The perception nodes, including the sensors, controllers, perform data acquisition 

and control, while the perception network, defining the communication interface of the 

perception nodes, transmits the collected data to the gateway. Thanks to the huge amounts of 

data created at this layer, the perception layer is the entry point of what we commonly call Big 

Data. 

2.2.1.2 Network Layer 

The network layer is responsible for transmitting the sensed data of the perception layer to 

the service management layer. Indeed, the sensed data is transmitted through various networks 

 Figure.2. 2: IoT 5-layers architecture [11] 
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such as wireless, 3G, LTE, LAN, LoRaWAN, 5G, Bluetooth RFID, and NFC. In particular, this 

layer includes various devices, such as switching, internet gateways, and cloud computing 

servers that can perform local analysis and routing messages to the service management layer. 

This layer is introduced as an intermediate layer to manage the tremendous number of objects 

through aggregating, filtering, and transmitting data and support sensitive IoT applications by 

adopting several communication technologies [11].  

2.2.1.3 Service Management Layer 

This layer comprises M2M platforms, middleware, API of M2M applications, and cloud 

computing technologies useful for managing the perception layer's data. In particular, the 

service management layer has features of information storage, analytics, and processing of the 

data to enable the IoT application developers to deliver high-level applications independent of 

any physical platform. Besides, this layer's features allow handling the received data by the 

vendors to provide various kinds of IoT services.  

2.2.1.4 Application & Business layers 

The application layer's main feature is to provide specific services based on the application 

type to the user through application protocols, such as HTTP, MQTT, CoAP, etc. At this layer, 

all required software is installed to evaluate, analyze the received data, and then afford high-

quality services that meet final customers' requirements. These designed applications also 

answer many markets' needs in different fields such as smart building, transportation, industry, 

smart grids, and healthcare [13][14][15]. Furthermore, these applications should satisfy a good 

quality of service and ensure an adequate reliability level to final users. At this level, a business 

layer is defined on the top of the application layer to manage the entire IoT system, especially 

the business and profit models, in a user-friendly way with privacy. More specifically, this 

business layer is responsible for complex data processing, such as restructuring, cleaning, and 

combining to develop more effective business models, predict customer behaviors, and show 

high-level metrics, graphs, and flowcharts. This processing data process may be in the context 

of performing big data analytics to transform data and information into actions to support 

decision-making processes.  

2.2.2 IoT Applications 

The IoT revolution has emerged with a remarkable potential to cover a wide range of 

applications in various domains. These domains deal with almost every area of our daily lives, 

such as smart homes, smart buildings, intelligent transportation, smart healthcare, smart grid, 

and other industrial applications. More specifically, the IoT paradigm combines some features 

(sensing, communication, networking, identification, and computing) to provide ubiquitous IoT 

services for users anytime and anywhere.  In this context, the latest 2020 economic analysis of 
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IoT-based services have recorded considerable growth [16]. Figure 2.3 shows the various IoT 

applications where some of them are briefly describe in the following subsections. 

2.2.2.1 Smart Home 

The smart home is one of the most known IoT applications as it is considered as a promising 

solution to enhance personal lifestyle. The smart home deploys various sensors and actuators 

to control / monitor home appliances remotely (e.g., microwave, lights, heating, ventilation, 

and air-conditioning – HVAC systems) and perform security surveillance. Moreover, it enables 

owners to configure time schedules to control costs and be more energy-efficient (e.g., green 

homes).  

2.2.2.2 Smart Grid 

One of the most attractive IoT applications that has a considerable industrial value is the 

Smart Grid. In particular, this technology plays an essential role in economic development as 

in modern cities we use IT technologies to optimize electricity production and improve the 

energy consumption of houses and buildings. This technology is a data communications 

network integrated with the power grid, called the advanced metering infrastructure (AMI), 

installed between the electricity production centers and the end customers to collect, analyze, 

monitor, and coordinate energy production and consumption customers' needs. The smart grid's 

primary goal is to improve final customers' quality of experience, increase efficiency, and 

optimize electricity production. To better understand in detail how IoT can improve electricity 

production in smart grids, the reader is referred to [17][18]. 

2.2.2.3 Transportation Systems 

The future generation of transportation is mainly presented by the intelligent transportation 

system (ITS). In fact, due to the development of the embedded systems and communication 

technologies, this system aims to link people, roads, and intelligent vehicles & infrastructures. 

This intelligent system employs four main components, namely: the vehicle on-board unit 

(OBU), the station subsystem that represents the roadside unit (RSU), the ITS monitoring 

Figure.2. 3: IoT main applications 
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center, and the security subsystem [19]. Connected vehicles use four types of communications: 

Vehicle to Vehicle (V2V), Vehicle to Infrastructure (V2I), Vehicle to Cloud (V2C) and Vehicle 

to Pedestrian (V2P). A new type of communication has recently emerged, called Vehicle to 

Grid (V2G), which has a primary goal to ensure electrical Vehicles charging based on the smart 

grid's energy electricity distribution [17]. 

2.2.2.4 Healthcare 

Smart Healthcare has emerged as a prominent IoT application due to the technological 

advancement in biomedical sensing, signal processing, and wireless communication. In fact, 

healthcare IoT applications are based on embedding sensors and actuators in patients' bodies to 

monitor their physiological statuses. In particular, IoT-based healthcare equipped with the 

embedded sensors aims to collect information directly from the patient's body area, analyze and 

transmit information to healthcare providers. This latter guarantees real-time monitoring of the 

patient state and make the right decision at the right time. Healthcare-based IoT applications 

currently have gained significant interest as they hugely impact society mainly due to the aging 

population and the cost related to medical treatment. In this context, adopting new IoT based 

technologies to monitor the patients in real-time is indispensable [21] [125]. 

2.2.2.5 Smart Cities 

Smart cities are considered one of the emerging paradigm applications in IoT. Indeed, the 

smart city aims to enhance public resource usage, improve information sharing and 

coordination, and increase service quality to citizens [22]. In this perspective, a smart city 

environment is composed of smart devices deployed all over the roads, buildings, smart cars, 

etc., which can better manage the traffic, adapt to the weather, lighting follows the sun's 

position. Furthermore, it can avoid domestic incidents with alarms and thus enhance the comfort 

and security of citizens.   

2.2.2.6 Manufacturing and Industrial IoT 

Automation in manufacturing using IoT has emerged as a prominent role in the industry. In 

fact, it is considered a promising solution to enhance productivity and efficiently monitor and 

control the production chain. The Industrial IoT (IIoT) deploys new technologies such as 

Machine-to-Machine (M2M) communication, Wireless Sensor Networks (WSN), automation 

technologies as well as Big Data to produce an intelligent industrial ecosystem [23]. More 

specifically, it ensures an accurate, fast, and reliable production process based on four elements 

[24]: transportation, processing, sensing, and communication to provide better control of final 

products. 

2.2.3 IoT Challenges 

The IoT has appeared as a significant industry that provides many new opportunities and 

benefits to end-users and manufacturing. Indeed, it accentuates a considerable positive impact 

while enabling various applications in our daily life. However, these benefits address several 

complicated challenges and issues, including availability, reliability, mobility, network 
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performance, security & privacy, energy, consumption, and management. In fact, recent 

contributions demonstrate that the increasing number of connected objects causes high traffic 

demands enabling new traffic models. Therefore, it is essential to deal with these issues, leading 

to various practical and efficient IoT services [25]. We enumerate in the following the main 

challenges that IoT faces: 

 Scalability:  

Scalability is mainly about a system's ability to ensure flexibility that achieves and responds 

to the growth required works. Its principal aim is to enable adaptability to the changing 

environment and technology, leading to seamless connectivity and supporting dynamic 

topology changes. Therefore, the scalability's fundamental challenge is to support a massive 

number of heterogeneous connected objects using various hardware platforms and 

communications protocols and meet people's needs. Scalability is considered as an absolute 

necessity to provide a good functioning of the IoT environment and save the available resources 

[26]. Two different scalability types are defined in the context of IoT, namely vertical scalability 

and horizontal scalability. The vertical scalability is referred to as the ability to increase 

resources in terms of hardware or software by adding more processing memory and storage 

capability. The horizontal one is achieved by increasing the capacity by connecting multiple 

hardware and software to work together. To enhance the IoT applications' scalability, highly 

scalable cloud-based platforms, called Cloud of things [27], have been introduced as an 

effective architecture. Some other solutions based on fog/edge computing are used to extend 

cloud services, be closer to the connected objects, and improve the computing network 

capability. Furthermore, 5G, the new radio system, is being envisaged for massive IoT (mMTC 

- massive Machine Type Communication) applications that will allow the connection of very 

densely distributed objects, necessary for the exponential increase in the number of connected 

objects.  

 Limitation of resources and energy consumption: 

Most of the IoT devices are characterized by a limited capacity of storage and computation. 

Consequently, it is a critical challenge to integrate the embedded devices with the required 

computation process. The authors in [28] studied the challenge of improving the devices' 

capabilities (e.g., computation and communication) with low-cost terminal and low power 

consumption. However, it is mandatory to design lightweight protocols to meet the resource 

limitation and the customers' requirements 

 Reliability:  

Reliability is a critical issue in the IoT environment, especially in emergency scenarios 

where an appropriate time response should be provided, such as critical applications like 

manufacturing, transportation, and healthcare applications [11]. Indeed, as it refers to the 

system functionality, unreliable perception, data collection, transmission, and processing may 

cause long delays, loss of data, and eventually wrong decisions. Therefore, this may cause huge 

damages or life-threatening conditions. It is essential to design reliable systems transversely to 
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all the IoT architecture layers that work correctly under any circumstances and then build an 

efficient IoT system.  

 Availability: 

The availability is about maintaining the availability of services' IoT systems over time and 

delivering the requested services for authorized connected objects anywhere and anytime. 

Indeed, it is as critical as information protection to properly handle the IoT systems. Therefore, 

the connected objects need to be compatible with the IoT system requirements to maintain the 

availability and connectivity. Moreover, the communication channels of the IoT network could 

be vulnerable to availability issues. Thus, the IoT system should also guarantee services' 

continuity even in availability threats, topology changes, and consumers' mobility [29].  

 Management and Self-configuration: 

One of the biggest and challenging IoT tasks is managing the Fault, Configuration, 

Accounting, Performance, and Security aspects (FCAPS) of the complex and heterogenous 

interconnected IoT environment. In this context, to provide adequate IoT services, it is 

mandatory to design real-time, lightweight, and secure management protocols. Specifically, the 

data management mechanisms should ensure several functionalities, including data 

aggregation, data analytics, and security aspects that meet the system requirements. Besides, 

the large-scale network infrastructure of connected devices must also be managed by 

monitoring the high traffic load and the quality-of-service requirements. Consequently, this 

type of management could handle the IoT environment's dynamic nature and the network 

elements [30].  

 Mobility: 

Mobility is a critical challenge in the IoT environment, where IoT services' consumers are 

mobile. Meanwhile, the challenge is about connecting users continuously with the requested 

IoT services with respecting their requirements. In this context, some existing works in the 

literature [31][32] managed to solve this issue by implementing efficient mobility management 

mechanisms to guarantee service continuity.   

 Interoperability: 

Interoperability is the capability of many heterogeneous systems, platforms, and devices to 

communicate and intercorporate together. Specifically, the IoT ecosystem comprises 

heterogeneous devices with different standards and technologies, which is the origin of the 

interoperability problem. For instance, there is still no standard for the IoT network that 

supports the interconnection of all heterogeneous IoT systems [11]. Therefore, interoperability 

in IoT systems should be achieved over the varied connected objects and the communication 

protocols such as IPv6, IPv4, IPv6 Routing Protocol (RPL), Constrained Application Protocol 

(CoAP), ZigBee, WiFi, Bluetooth, RFID, etc. Besides, there is an absolute requirement to 

support the heterogeneity aspects to build IoT applications and services that can be extended 

and integrated with other IoT systems easily [33]. In fact, the PARFAIT project [7] that defines 



18 
 

the context of this thesis, is designed to ensure the IoT interoperability through integrating 

different communication protocol including NFC, Bluetooth, and ZigBee.  

 Security and privacy:  

Security and privacy are the most critical challenges in the IoT environment. As 

communication in such environments is ensured through wireless channels, IoT architecture is 

vulnerable to various security risks, such as eavesdropping, unauthorized access, data 

modification, and privacy issues. Therefore, the design of adequate security countermeasures 

is necessary to secure the IoT network and ensure ubiquitous connectivity. Significantly, the 

existing cryptography algorithms and protocols are claimed unsuitable for constrained IoT 

devices [18] [21]. Additionally, IoT applications are characterized by their distributed nature 

and large-scale connected devices that impose more security and privacy challenges [34][35]. 

More other security and privacy challenges are related to definite IoT applications, including 

transportation systems, industrial automation systems, smart cities, and healthcare systems [36]. 

At this level, the challenges are carried out independently and prudently to meet each 

application's requirements.  

 

In Table 2.1, we highlight a summary of the leading security challenges related to some IoT 

applications. Specifically, we present the severity of each issue in the different IoT applications. 

In the next section, we detail security issues in the IoT environment. 

2.3  Security in the Internet of Things  

Regarding the high presence of the IoT in the industry and our daily lives and the previously 

mentioned IoT challenges, we must sort out the security requirement to design a secure IoT 

system. In particular, securing IoT systems is based on several fundamental and specific 

Table 2. 1: Main security issues vs. Applications 

Applications vs.  

Challenges 

Smart 

Home 

Intelligent 

Transportation 

Industrial 

Automation 

Smart 

Healthcare 

Smart 

Grid 

Smart 

City 

Resource 

constraints 
High Not applicable Low  High Low  Medium 

Mobility Low  High Low  Medium 
Not 

applicable  
High 

Scalability High High Medium Medium High High 

Availability High High High High High High 

Interoperability Medium Medium Medium Medium Medium High 

Management 

and 

configuration 

Medium Medium Medium Low  Medium High 
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security requirements, from the CIA of information security (confidentiality, integrity, and 

availability), to the five pillars of information assurance (confidentiality, integrity, availability, 

authenticity, and non-repudiation). Many researchers have discussed the security considerations 

related to IoT systems. For instance, authors in [37] figure out the IoT challenges like 

scalability, heterogeneity, and mobility and review the importance of the security and privacy 

considerations, including CIA and trust. Besides, other authors [38] classified the required 

security services for the different IoT applications regarding their importance, such as in the 

smart grid, availability is the most critical service, while for healthcare, authentication is a more 

serious service. Consequently, the IoT paradigm imposes many concerns over data security due 

to economic espionage, infection of sensitive computer systems, identity theft, etc. At this level, 

secure IoT infrastructures should provide reusable security services such as confidentiality, 

integrity, authentication, authorization, availability, and privacy. In the following, we describe 

the properties of the mentioned security services:   

Confidentiality 

It prevents unauthorized persons, entities, or processes 

from retrieving sensitive data [39].  For that reason, 

confidentiality should be addressed on two crucial 

security mechanisms, including the authentication and 

the authorization processes. Furthermore, 

confidentiality should also be operated through the 

different layers of an IoT architecture [39]. 

Particularly, it considers protecting data in IoT devices 

and in IoT applications concerning specific users from 

disclosure and tampering. Furthermore, data stored at 

the third-party service providers require 

confidentiality service that avoids malicious attackers 

to steal sensitive information. Otherwise, these 

centralized service providers are straightforward to 

many intruders.  

Integrity 

It is mainly about ensuring the truth, honesty, and 

reliability of the data. Indeed, it is the assurance that 

the transferred data is not modified by a third-party 

accidentally or intentionally [40]. Therefore, as the 

number of connected devices and IoT consumers are 

becoming very high, providing reusable security 

services, such as integrity, becomes a core issue 

regarding IoT security. In fact, integrity in IoT devices 

guarantees that these devices are trusted and not 

hijacked by malicious attackers [41]. Besides, 

ensuring integrity through the network layer evades 

signaling data and then avoids denial of service attacks 

[42]. Likewise, at the application layer, integrity 

concerns the users’ data protection.  

Non-repudiation 

Non-repudiation guarantees the sender of the message 

in IoT systems. Therefore, the sender cannot deny 

being the author of a transmitted message [41]. The 

non-repudiation aims to protect against false denial of 

involvement in a communication. Attackers can 

manipulate an IoT system by forging the identifying 

credentials that threaten the origin of service data 

providers and the user data. Hence, a non-repudiation 

service is an effective security service that should be 

implemented and built on IoT to provide genuine high 

confidence in the transmitted data. 

Availability 

It implicates that all IoT services and devices of the 

IoT system are accessible for authentic users and 

resistant to several malicious attacks. Indeed, 

availability highlights the IoT security systems at 

runtime, where systems can deliver services to others. 

Otherwise, the availability of services has no meaning. 

Due to the highly distributed nature of the IoT 

environment, availability could ensure the 

interconnectivity and accessibility of IoT systems' 

services. In contrast, systems with low availability 

could incur many security concerns such as attacks on 

reliability. In fact, malicious intruders can control IoT 

systems by gaining control of IoT systems, such as 

capture attacks and impersonation attacks [43]. In 

particular, maintaining the availability in the devices 

layer aims to prevent physical attacks and DoS attacks. 
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Besides, availability guarantees the accessibility of the 

networks, services, and applications. 

Privacy 

It concerns principally the users and particularly the application layer. Indeed, a privacy mechanism gives users 

the ability to control their personal data and determine the amount of information to reveal to others [42]. 

Moreover, it ensures the non-traceability of the user's behaviors and performed actions in the system. Therefore, 

privacy, defined as individuals, groups, and institutions' rights, is considered a severe security issue. For 

example, the RFID tag tracking attack and the eavesdropping attack are all about the individuals. At this level, 

intruders may misuse the hidden RFID to retrieve sensitive data like credit card information [25]. It is evident 

that privacy-preserving goals to protect users' sensitive information like identity, location, mobility trace, etc., 

[38, 17]. 

At this level, we confirm that designing authentication and authorization mechanisms are 

indispensable to meet the cited security services requirements. Indeed, authentication is the 

process of verifying the genuine and originality of the sender and validating whether a given 

identity fits the pretended IoT entity [8]. In particular, authentication is necessary to prevent 

illegal access and tampering related to IoT devices, while at the network layer, authentication 

is about protecting signaling data to avoid the DoS attacks. Similarly, the authentication 

operates over the service layer to provide the key management and access control policies. 

Finally, authentication identifies, authenticates, and authorizes users in the IoT environment at 

the application layer. Furthermore, authorization is about granting the required access 

permissions to the authenticated user identity [9]. The authorization is achieved after the 

successful authentication of the trusted identity user.  At this level, the IoT system can give the 

user the corresponding right to get data or service from the IoT environment. Consequently, 

establishing efficient authentication and identity mechanisms and protocols are needed for 

authorization protocols. These protocols operate over the service and application layers and are 

imposed at the device layer.  

To design the previously mentioned security services and respond the limited resources IoT 

requirement, several cryptographic mechanisms are used through the literature [38] and Table 

2.2 shows some of these mechanisms.  

 

Table 2. 2:Security services 

SECURITY 

SERVICES 

SECURITY 

MECHANISMS  

CRYPTOGRAPHY 

EXAMPLES  

CONFIDENTIALITY 
Message encryption /  

message signature 

 Symmetric cryptographic 

mechanisms (AES, CBC, 

etc) ; asymmetric mechanisms 

(RSA, DSA, IBE, ABE, etc). 

INTEGRITY 
Hash functions, message 

signature 

 Hash functions 

(SHA, MD5, etc) ; 

Message Authentication 

Codes (HMAC) 



21 
 

AUTHENTICITY 
Chain of hash, Message 

Authentication Code 

 HMAC, CBC-MAC, 

ECDSA 

NON-REPUDIATION Message signature  ECDSA, HMAC 

AVAILIBILITY 

Pseudo-random frequency 

hopping, Access control, 

Intrusion prevention systems, 

firewalls 

 Signature-Based Intrusion 

Detection, Statistical 

anomaly-based intrusion 

detection 

PRIVACY 

Pseudo-anonymity, 

unlinkability, 

k-anonymity, Zero Knowledge 

Proof (ZKP) 

 EPID, Pedersen 

Commitment 

In the following subsection, we firstly explore the security challenges in IoT and point out 

the critical security requirements. Then, we survey the existing authentication and authorization 

solutions in the context of IoT.  

2.3.1 IoT Security Challenges and Security High Requirements  

In addition to the previously mentioned security services in the IoT environment, we still 

have to sort other security requirements to build a secure IoT infrastructure. In fact, as the 

number of connected objects in the IoT is continuously increasing, the current state-of-the-art 

network security solutions cannot address some security IoT challenges [8]. The challenges of 

IoT environment presented previously, lead to many critical security challenges in such 

environment. We highlight in what follows these security challenges:  

 Heterogeneity: It refers to the diversity in security requirements and resource 

availability. In particular, the potential number of communication standards and 

information system technologies having heterogeneous security configurations requires 

service management, which will impact IoT systems' security.  Consequently, due to the 

IoT network components heterogeneity, the reuse of the current network protocols is 

inadequate in the IoT environment, and it is necessary to provide security standards that 

work with different IoT platforms and protocols [45][38]. 

 Support for scalability issues: The distributed nature of the IoT environment imposes 

scalability security challenges for the IoT network. In fact, the large scale of connected 

IoT devices and users define a high volume of communication traffic, including one-to-

many traffic patterns such as broadcasting or publish-subscribe protocols such as MQTT 

[45] [49]. Hence, the management of the security of the presented device and traffic 

communication introduces several challenges. For instance, applying efficient updates 

and security patches over the distributed environment characterized by high 

heterogeneity is challenging. This environment with great scalability should build 

effective key management protocols to secure the communication through the wireless 

network [46]. Otherwise, attackers can exploit IoT devices' interconnection to disclose 

private information and reveal criminal activities such as a man-in-the-middle attack, 

etc.  
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 Vulnerability related to communication systems: It refers to the increasing risks 

caused by the communication in the IoT environment where adversaries have physical 

and wireless access to IoT devices. Indeed, the remote access mechanisms and the 

sensitive exchanged data over the wireless channel raise the probability of attacks. Thus, 

IoT systems are susceptible to some of these attacks considering IP spoofing, injection, 

DoS/DDoS in which an adversary may exploit network protocols with massive traffic 

[47]. Further, the attacker may violate the communication based on traffic analysis, 

eavesdropping, and passive monitoring, implying an efficient security requirement for 

M2M communication.   

 Dynamic changes in IoT systems and environments: The characteristic of dynamic 

changes in the IoT environment is mainly a fundamental property of the IoT. The 

dynamic changes are particularly related to the IoT devices' behavior over time, such as 

started and standby, sleeping and waking up, leaving and joining networks [48]. 

However, since the number of connected devices is continuously increasing, it causes a 

very dynamic IoT environment due to the continually changing status and thus emerging 

of many threats. For instance, a publish-subscribe based IoT system characterized with 

a high changing network topology and unbounded network size is an attractive area for 

many threats and attacks [40]. Consequently, a secure IoT infrastructure needs to resist 

to these dynamic changing environments and afford effective security services 

(authentication and authorization).  

 Frequent authorization and authentication: Regarding the dynamic changes in the 

IoT environment resulting from the changing states, such as connected / disconnected 

and the context of devices including speed and location, specific authentication and 

authorization mechanisms are needed. Furthermore, dynamically varying situations may 

also include the IoT users resulting from changing interest over time, which may change 

their authorization access to the IoT devices. Therefore, frequent demands of 

authorization require a continuous management for access control, which can avoid and 

limit the dynamic feature of IoT environment.   

 Automated distributed mutual authentication: Due to the IoT network's scalability 

approaches, including the publish-subscribe protocols [49], it is excessive for users to 

remember passwords for a large number of devices. Thus, the IoT devices must be able 

to authenticate themselves without user intervention to keep the practical functionality 

of the IoT system.  

 Dynamic registration of IoT entities: Distinct from traditional Internet 

communication, the IoT includes devices with shorter life cycles and users with various 

interest over time (subscription to IoT services for a shorter time). Meanwhile, devices 

may be added and removed, and users may subscribe and unsubscribe from 

authentication/authorization systems dynamically. Therefore, managing the adding and 

removing entities in IoT should be operated strongly to build a secure IoT architecture.  

 Consideration for resource constraints: Designing robust security measures requires 

developing strong cryptographic protocols, which are based on many computing 

operations. Nevertheless, some IoT devices suffer from the limited resources of 

computation and storage, and thus an excessive energy consumption can harm their 
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availability.  At this level, the authentication and authorization security services should 

be lightweight to save energy consumption with respect to the security requirements.  

 Locality: authentication and authorization services should be maintained and not 

impacted by the internet connections and remote server operations. For that, the IoT 

security measure must be enhanced with edge services. Designing the previously 

mentioned security services in the edge network of the IoT environment, could 

guarantee an improved authentication and authorization services for IoT users.  

To sum up, the IoT environment with high scalability, heterogeneity, and dynamic changes 

constitute new security challenges and requirements. Adding to essential security services the 

confidentiality, integrity, availability, non-repudiation, and privacy it is necessary to address 

the security challenges related to a large-scale distributed IoT environment. Table 2.3 presents 

a classification of previous research works that cope with the different challenges: 

Table 2. 3:Security IoT challenges 

IoT security challenges Research area 

Heterogeneity 

IoT platforms and architectures [73] [98] [99] 

Device management [68] [69] 

Network management [66] [96] 

Data management [94] [95] 

Scalability 

Large-scale issues [71] [72] [97] 

Low power communications [63] [64] [65] 

Availability and reliability of IoT applications and 

services [56] [57] [77] [81] [85] ̶ 

Continuous connectivity [78] [79] [80] 

Infrastructure reliability [82] [83] [84] ̶ 

Vulnerability related to 

communication systems 

QoS and QoE evaluation [80-82]  ̶

Traffic models and loads [61] [62] 

Application layer protocols [89] [90] ̶ 

Network layer protocols [66] [86-72]  ̶

Link layer protocols [85-71] [87-73] 

Security issues [97-99] ̶ 

Privacy issues [94-96] 
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Dynamic changes 
̶ Mobility management of smart devices [58] [59] 

[60] 
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2.3.2 Authentication in IoT 

As discussed previously, authentication is the fundamental security in the IoT environment. 

Furthermore, authentication should be operated over the different IoT architecture layers. 

Therefore, various authentication techniques in the literature concerning IoT applications have 

been proposed. We summarized, as shown in Figure.2.4, these techniques in a taxonomy of IoT 

authentication schemes categorized into several criteria selected in the literature [44] [45].  

 

IoT
Authentication 

IoT
Authentication 

IoT architectureIoT architecture

Centralized Centralized 

Flat Flat 

HierachicalHierachical

DistributedDistributed

FlatFlat

HierachicalHierachical

Authentication 
factor

Authentication 
factor

Context Context 

Physical Physical 

Behavioral Behavioral 

Identity Identity 

Hashing Hashing 

SymmetricSymmetric

Asymmetric Asymmetric 

Certificate-based Certificate-based 

ExplicitExplicit

ImplicitImplicit

Group-basedGroup-based

Group signatureGroup signature

Group-identity Group-identity 

PolynomialPolynomial

Token based Token based 

Yes Yes 

NoNo

HW-basedHW-based

ImplicitImplicit

TRNGTRNG

PUFPUF

ExplicitExplicit TPMTPM

Figure.2. 4: Taxonomy of IoT authentication schemes 



26 
 

Related to the discussed metrics of IoT characteristics and the previously mentioned security 

requirements (section 2.2), we mainly evaluate in the following the authentication in IoT 

according to the two authentication architectures: (i) centralized and (ii) distributed. We review 

IoT systems for each architecture in compliance with classified categories presented in the 

taxonomy.  

2.3.2.1 Centralized IoT Authentication Architecture  

The centralized authentication architecture is based on a centralized server or a trusted third 

party to manage and disseminate the credentials useful for the authentication process. The 

centralized architecture can also be hierarchical, where it uses multi-level architecture to handle 

the authentication process or flat without using the hierarchical feature to deal with the 

authentication procedure. Authentication is basically based on verifying legitimate users 

(identities) and IoT devices. Therefore, when an IoT system wants to check the communicating 

component's identity ID, it first must trust the issuer of this identity, like a national government. 

In incoming subsections, we review and discuss research works based on a centralized 

authority, which are classified as follows: (i) Multi-factor authentication (MFA), (ii) 

Certificate-based authentication (CBA), (iii) Token-based authentication, (iv) Group-based 

authentication, and (v) Hardware authentication. 

 Multi-factor authentication  

Multi-factor authentication is mainly achieved through two attributes: identity and context. 

The identity defines one party to be authenticated with another party of communication [50]. 

Furthermore, the identity-based authentication schemes are designed with one or a combination 

of hash, symmetric, or asymmetric cryptographic algorithms. Otherwise, the context can be 

physical, which is defined by the biometric information based on physical characteristics of an 

individual, e.g., fingerprints, hand geometry, retinal scans, etc. Besides, the context can also be 

behavioral, which is explained by an individual's biometric behavioral features, e.g., keystroke 

dynamics (the model and time of the person's rhythm during typing), gait analysis (the process 

used to measure the way we walk or run), voice ID (voice-print of the voice authentication), 

etc., [52]. 

The multi-factor technique is widely used in the literature. Authors in [53] proposed a two-

factor authentication scheme to authenticate the user. The two-factor used are the smartphone 

with Near Field Communication (NFC) feature and fingerprint of the user. Their scheme uses 

a database library to verify the embedded personal data in the NFC tag with the fingerprint, and 

then authenticate the user and give him/her access to the internal library network. In [54], the 

authors provided a two-factor authentication protocol called E-SAP (Efficient-Strong 

Authentication Protocol) for hierarchical wireless sensor networks for healthcare applications. 

The proposed protocol, using smart card and password as two-factor, involves hash and XOR 

operations to ensure lightweight feature and make it highly suitable for resource-constrained 

devices. Besides, it guarantees mutual authentication between sensors, confidentiality, the 

ability to change passwords, and resilience against several attacks using symmetric 

cryptography. Furthermore, authors in [55] combine a unique contextual attribute fingerprint, a 

physical biometric, to succeed in IoT object authentication. This scheme guarantees that each 
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object is identified through a unique fingerprint referring to numerous characteristics, including 

location, physical state, or transmitter state. In fact, authors have based on the transfer learning 

technique to authenticate devices, which is useful to separate the regular changes related to the 

environmental effects from the malicious changes caused by intruders. The proposed 

authentication methodology accomplishes improved performance results than conventional 

authentication techniques. Besides, authors in [56] discussed a behavioral-based authentication 

mechanism to authenticate the user. Their approach is based on the network traffic patterns 

generated during the user access to the IoT application, using a small amount of information 

extracted from end-user devices, such as smartphones. This scheme ensures a high degree of 

accuracy concerning the security requirement. Moreover, the authors of [57] used a new factor 

called the device capability to present a two-factor device authentication scheme. This factor is 

a mathematical challenge or even a cryptographic-based puzzle solved by the device. 

Combining this factor with a digital signature helps achieve mutual authentication between an 

IoT device and the server. Indeed, the device sends a request to communicate with the server, 

this latter responds with a nonce encrypted with its private key and the timestamp to avoid 

replay attacks. At this level, once the device receives the responses, it solves the nonce with the 

functional operation to finalize the mutual authentication with the server.  

To achieve stronger authentication with a remote user, using a password and another factor 

is still vulnerable to security attacks. Therefore, in [58], the authors proposed a novel 

authentication protocol using three-factor: the user smart card, personal biometrics, and a 

password to authenticate a remote user as authentication attributes. The scheme ensures various 

security properties like mutual authentication and sensing node anonymity. However, it costs 

in terms of computation and communication overhead as it uses the fuzzy fingerprint function.  

Therefore, authors in [59] designed a lightweight remote user authentication for IoT 

communication using elliptic curve cryptography. The scheme is a three-factor remote user 

authentication based on ECC that ensures mutual authentication between the user and the 

gateway and between the gateway and the sensor node. The scheme's performance analysis 

proves its efficiency and effectiveness regarding the communication and computation overhead 

as it applies only cryptographic hash functions along with the symmetric encryption/decryption. 

Also, it considers several security issues such as data confidentiality, integrity, and availability.  

 Certificate-based authentication 

A certificate-based authentication technique involves a third trusted party, known as the 

Certificate Authority (CA), responsible for registering and generating certificates to the various 

entities. Also, a Registration Authority (RA) is defined to ensure the validity and the correctness 

of the registration process. The digital certificates issued by the CA are verified and signed by 

the CA. Thus, every entity in the network can verify the certificate through the CA's signature. 

This certificate has mainly three elements, including the identification data, a public key, and a 

digital signature to identify the user. Besides, the certificate's use might be implicitly or 

explicitly, where explicit certificates are managed and signed by a trusted third party (a CA), 

while the implicit is a variant of a public key certificate [60].   

The most widely used certificate standard is X.509 that identifies the format of the public 

key certificates. In [61], the authors used the explicit X.509 certificate in the IoT by combining 
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the identity and certificate to reduce the storage overhead introduced when using multiple 

certificates. In addition, an improved use of the explicit certificate X.509 for the IoT was 

designed in [62]. Indeed, this scheme eliminates the fields not used and required from the 

certificate and compresses the useful fields, which improves the system's efficiency. The 

exploitation of implicit certificates in the IoT was presented in [63] and [64]. The authors 

propose a two-way authentication protocol in these works, namely the certificate registration 

and the authentication, using the Datagram Transport Layer Security (DTLS). However, it is 

noticed that their schemes are not compliant with the DTLS standard. Hence, the authors solved 

this problem in [65] by proposing the PAuthKey (Pervasive Authentication Protocol and Key 

establishment) protocol, which relies on the link layer's security IEEE 802.15.4. 

 Token-based authentication 

In contrary to the certification-based authentication that uses a set of asymmetric keys, the 

token-based authentication are essentially based on symmetric keys. A token-based 

authentication concerns the creation of a piece of data by a server called an identification token. 

This identification token is used to authenticate the user or the IoT device in the IoT. The widely 

known servers responsible for creating the token are OAuth2 [66] [67] or open ID [68]. 

Otherwise, a non-token-based authentication implicates the regular use of credentials, such as 

username and password, when there is a need to exchange data.  

The Kerberos authentication system [69], a widely used approach based on a centralized 

trusted third party, uses temporary tokens called tickets to authenticate users and servers to get 

access from services. The authors of [70] implemented a prototype on an Android smartphone 

and an MSP430 based MCU of an authentication token. This token permits a fast authentication 

procedure without the need for additional user action. The authors of [71] suggest an 

authentication framework for the IoT that exploits the security model of OAuth 1.0a. Their 

scheme ensures the self-securing tokens that provide an independent security stack from all the 

network using signatures on the token. This work uses the basic functionalities of Public Key 

Infrastructure PKI to enhance the trust between the devices. Therefore, simplifying the 

exchange of tokens and enhancing the level of security for IoT devices.   

 Hardware-based authentication 

The design of authentication protocol might require using the physical characteristics of the 

hardware or the hardware itself. We find two types: implicit hardware-based, built with the 

physical characteristics embedded on the hardware to enhance the security, such as Physical 

Unclonable Function (PUF) or True Random Number Generator (TRNG), and explicit 

hardware-based, established by the use of a Trusted Platform Module (TPM) [52]. The current 

trend of hardware security is using the PUF regarding its advantages over software security 

approaches. Indeed, a combination of software solutions (lower cost) and hardware solutions 

(more secure) should be considered. The authors of [72] designed a new hardware-based 

authentication approach, using a hardware fingerprint to authenticate IoT devices with their 

Physical Unclonable Functions (PUF). In fact, the PUF exploits the random physical factors to 

create a unique identifier for each IoT object. The authentication is achieved by applying 

machine learning-based to avoid modeling-based attacks on PUF and hence developing a 
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software model on the PUF. In [73], authors implement PUF-based algorithms for IoT devices 

using elliptic curves for enrollment, authentication, decryption, and digital signature. 

Otherwise, due to the variations of the physical IoT environment, it affects the usage of the PUF 

when using error correction codes. Thus, the authors combined the PUF with ECC to encrypt 

generated key and handle the machine-learning attacks. In [74], the authors proposed a 

lightweight authentication protocol for RFID tags based on PUF. The protocol is achieved 

through three transactions: tag recognition, verification, and update. The first transaction 

consists of recognizing the tag reader, while the second is the mutual authenticity verification 

between the tag and the reader. The third transaction concerns the update process, where each 

one should keep the last recent used key. To provide anonymous authentication for RFID 

systems, the authors of [75] presented a PUF-based authentication scheme for classic RFID 

tags. Indeed, the scheme suggests an improved authentication protocol for a noisy PUF 

environment. However, this scheme does not consider updating the server with the new 

Challenge-Response Pair (CRP) once the exiting pool becomes empty, which vulnerable the 

system.  

 Group-based authentication 

Due to the large number of IoT devices requiring access to the network, the authenticating 

server is overloaded. Therefore, it is essential to design a new authentication type to enhance 

the IoT system's effectiveness concerning the security requirement. For that reason, a group-

based authentication has been introduced to meet the system requirement and the IoT devices' 

requirements. According to that, authors in [76] proposed a group based lightweight 

authentication and key agreement scheme called GLARM to attain mutual authentication and 

secure key agreement for resource-constrained devices. This scheme consists of two essential 

phases: the identification phase and the second one, a group authentication and key-agreement 

phase. This work uses a combination of message authentication code of a group of devices to 

achieve the authentication of a group of devices. The performance results also prove this 

scheme's efficiency in terms of the system's communication and response time. In [77] [78], the 

authors provided a threshold authentication protocol to support secure and privacy-preserving 

communications in VANETs. This work uses a group signature scheme that accomplishes the 

threshold authentication, anonymity, and traceability during vehicles' communication. 

Furthermore, to allow remote users access to the internet services, authors in [79] introduced a 

new technique to afford secure roaming for anonymous users through the group signature 

method. This scheme ensures mutual authentication and privacy-preserving features. Indeed, it 

also offers devices to move between the access points without the need to re-authenticate. This 

fact is achieved by transmitting the roaming members' information to the Base Station (BS) 

after a first authentication. A group manager is responsible for collecting and aggregating all 

group members' information to send them back to the BS. This work removes the complication 

of certificate management in signature cryptography. Moreover, a multicasting key 

establishment scheme was provided in [80] to enable sensor nodes to join a multicasting group. 

This scheme uses an ECC secret key and Elliptic Curve Digital Signature Algorithm (ECDSA) 

to verify that a sensor node belongs to the multicasting group. The advantage of using ECDSA 

is mainly about avoiding the DoS attack, the man-in-the-middle attack, and the replay attack. 
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This work guarantees high efficiency and effective performance compared to other 

benchmarking approaches. 

To sum up the centralized authentication architecture is based on a centralized trusted third 

party. This trusted third party is responsible for managing and disseminating the credentials to 

succeed the authentication process. Nevertheless, the number of connected devices and users 

consuming the IoT services is increasing progressively, which causes a bottleneck and 

congestion problems. Thus, distributed IoT authentication architectures are proposed to handle 

with these problems, which is the subject of the next section.  

2.3.2.2 Distributed IoT Authentication Architecture 

A distributed authentication architecture in IoT is defined within distributed trust 

communicating parties, where the participants coordinate autonomously to build further trust 

[52]. A distributed architecture could be hierarchical, where the authentication procedure is 

achieved through using multi-level architecture or flat, where no hierarchical architecture is 

required to deal with the authentication procedure. There is no central trusted third party in 

distributed authentication architecture schemes that can evade the problem related to a 

centralized authority, including congestion signaling leading to a single point of failure [52]. In 

particular, IoT systems that rely on a centralized third party cannot handle the unconventional 

security requirements, particularly scalability and dynamic changes in IoT. However, the 

distributed trusted systems still suffer from the non-repudiation identity problem since anyone 

can establish a trusted identity provider. Consequently, it is necessary to trust all service 

providers, which might lead to interoperability issues. Therefore, trustless distributed identity 

providers in peer-to-peer networks are beneficial to handle with all previously mentioned 

security requirements. In the following, we discuss the distributed trusted authentication IoT 

architecture and the trustless distribution authentication IoT architecture based on Blockchain 

technology.  

2.3.2.2.1 Distributed Trusted Authentication IoT 

Infrastructure 

A distributed trust authentication architecture requires that every trusted authority needs to 

verify the legitimacy of communicating members. In this context, the authors in [81] suggested 

an authentication protocol referred to as distributed aggregate privacy-preserving authentication 

(DAPPA). This work is built to ensure the vehicle system's authentication using multiple trusted 

authorities and the one-time identity-based aggregate signature techniques. Indeed, this scheme 

allows each vehicle to verify many messages once time and aggregate the related signatures 

into one message. At this level, the data collator and the vehicle save storage space in their 

memory needed for the authentication procedure. Regarding the previously mentioned scheme's 

benefits, the authors of [82] also introduced an authentication protocol using identity-based 

aggregate signatures to secure communication for vehicular ad-hoc networks.  

A distributed trust lightweight authentication protocol was proposed in [83] to ensure a fast 

authentication and authorization. This work uses the token technique to ensure an energy-

efficient distributed lightweight authentication and encryption system for IoT. The token 

generation relies on the devices' trustworthiness, where the receiver generates a token for each 
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sender. Then, token expiration time might be concluded based on each sender's trust value, 

while the sleep period of the receiver radio is determined based on its remaining energy. 

Furthermore, this scheme applies Cipher Block Chaining‐Message Authentication Code to 

encrypt exchanged messages. This proposed distributed scheme achieves mutual authentication 

between users and IoT devices and ensure higher resilience against node capture attack. 

However, IoT objects using the proposed encryption and token generation strategy cannot store 

trust values in limited storage memory. 

To manage the storage of the trust value among sensor-enabled mobile devices in the IoT 

environment, the authors of [84] provided a trust management mechanism. This scheme 

introduces a security manager to initiate a request to authenticate the devices that cannot hold 

the security. The security manager is responsible for establishing communication between two 

nodes that want to exchange information or services from each other. At this level, the 

authentication of the node is ensured by verifying the request sent to the security manager. This 

work provides a confidentiality security service by adopting a public key for the two 

communicating nodes during every communication among nodes. Furthermore, this approach 

provides users with confidentiality, authentication, and integrity based on the encryption used. 

However, the performance is uncertain and theoretical evaluation is insufficient to prove the 

effectiveness of the proposed model.  

2.3.2.2.2 Distributed Authentication Architecture Based on 

Blockchain 

The distributed trust infrastructure insists that every trusted entity is responsible for 

evaluating and maintaining the trust among the communicating parties. In general, these 

schemes' security is more resilient than centralized schemes, and it handles the unconventional 

security requirement such as the scalability issue. Otherwise, the trusted distributed schemes 

are more vulnerable to collusion attacks as it is harder to keep track of the whole system. 

Furthermore, the overhead of an individual entity is higher than centralized approaches. 

Therefore, the Blockchain technology is introduced to achieve a distributed trustless 

authentication concerning security requirements.  

2.3.2.2.2.1 Blockchain Overview  

Blockchain is a recent effective technology of secure computing without relying on the 

centralized authority in an open system. Furthermore, according to the data management 

viewpoint, a blockchain is a distributed database, where transaction records are held and 

organized into a chain of blocks [85]. Besides, referring to the security perspective, the 

blockchain is a peer-to-peer network secured by using intelligent cryptography with crowd 

computing [86]. Consequently, as a secure ledger, the blockchain contains all the transaction 

records made by all the participating entities to constitute the expanding chain of blocks. 

Basically, the nodes constituting the blockchain network do not trust any other node while 

trusting the whole blockchain network. These nodes carry on a pair of cryptographic keys used 

to generate transactions for blocks. A block maintains information about transaction records, 

the hash value of the entire block itself, and the hash value of its preceding block, which serves 

as a cryptographic linkage to the previous block in the blockchain. Such a block's commitment 
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in the network is achieved through a consensus procedure enforced by the network (a 

classification of the consensus is given in the appendix 1). The consensus procedure controls 

the admission of new blocks into the blockchain, the read protocol for secure verification of the 

blockchain, and the consistency of the data content of transaction records included in each copy 

of the blockchain maintained on each node [86]. As a result, the transaction is immutable and 

cannot be altered and tampered with by hindsight. Therefore, a blockchain is a secure and 

distributed ledger that archives all transactions between any two parties of an open networked 

system effectively, persistently, and in a verifiable manner (the transaction procedure is 

presented in the appendix 1) 

Blockchain offers appropriate features that would enhance security in the IoT environment. 

Indeed, new emerging IoT applications are taking advantage of the security transaction 

messaging. In particular, these features include tamper resistance, distributed ledgers, 

cryptography secured records, and resilience to a single-point failure [91]. In addition, 

blockchain consists of an efficient way to automate business and create smart contacts among 

smart devices without referring to central entities. A smart contract is a kind of digital rules 

forming the terms of contact [92]. Concretely, a smart contract consists of a computer program 

that is automatically executed by smart objects and defines a set of rules and conditions based 

on the terms of the contract. Blockchain could help to ensure the smooth running of the contracts 

in a distributed way. The benefits that blockchain technology can add to the security domain in 

IoT are [86]:  

 Blockchain security aims to make data tampering infeasible by storing data copies at as 

many possible locations.  

 The blockchain system is characterized by decentralization, and the distributed nature 

of the ledger provides availability and integrity.  

 Blockchain is supposed to run on untrusted distributed devices without a central 

authority. 

Some blockchain-based solutions have recently been proposed to solve security and privacy 

issues in IoT in the literature, especially authentication, which is the subject of the next 

subsection.  

2.3.2.2.2.2 Authentication in IoT based on Blockchain  

According to the existing IoT authentication solutions, the distributed model could improve 

the IoT systems' scalability and ensure high-level security and privacy for users compared with 

centralized architecture, where users and devices have to trust a third party. Nevertheless, these 

distributed systems suffer from the non-repudiation identity problem since anyone can involve 

a trusted identity provider. Therefore, the blockchain technology emerges as a prominent 

perspective to design IoT security solutions in distributed trustless environments. Taking 

advantage of this feature, many researchers proposed distributed authentication solutions for 

IoT based on blockchain.  

In [93], the authors provided a distributed lightweight anonymous authentication protocol 

for vehicular fog services based on blockchain. Their scheme is a consortium blockchain that 

adopts the Practical Byzantine Fault Tolerance (PBFT) consensus algorithm to validate new 
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blocks. This work also introduces service manager nodes responsible for ensuring cross-data 

authentication and the blocks' validation. Furthermore, the authors guarantee the anonymity of 

the client by generating a pseudonym with every authentication. The blockchain's use offers 

vehicle clients the possibility to choose to non-reauthenticate with the system when changing 

the location. However, in the designed scheme, the blockchain is not deployed for keeping 

authentication keys but for storing authentication results, while the keys are generated in a 

corporation with a fully trusted authority. In addition, mutual authentication between vehicles 

and services managers is not achieved, which is an essential feature in the authentication 

protocol. Hence, the authors of [94] extended this work to resolve these problems. Indeed, they 

used elliptic curve cryptography (ECC) to provide mutual authentication between vehicles and 

service manager. However, the key generation still depends on a fully trusted authority. This 

scheme is more efficient than [93] in terms of computation and communication overhead and 

safer in terms of security. 

The authors of [95] proposed an efficient distributed authentication and access control 

management for the IoT. This scheme uses a set of validators to apply a distributed consensus 

protocol and agree with an IoT device's admission using predefined rules. The blockchain nodes 

maintain the full IoT device's information and the corresponding certificates gathered from 

authorities. Furthermore, blockchain provides the integrity and validity of IoT devices' 

information, leading to easy and secure access from anywhere. In particular, the IoT device  no 

longer needs to send its  certificate to the system to be authenticated. Otherwise, the 

authentication is ensured by checking the public key of the IoT devices used to sign its request 

in the valid status stored in the blockchain. Their scheme has considerably reduced both the 

communication and computation overheads associated with the use of certificates. 

It is noticed that changing some parts of the blockchain network costs much more than 

building a new network. As a result, the cost of upgrading the IoT system is very high. For this 

reason, the authors of [96] have presented an authentication scheme for the IoT using 

blockchain. Their protocol allows users to access and manage IoT device information with 

respect to the privacy-preserving. In addition, this work can establish a secure authentication in 

IoT applications. However, this scheme is vulnerable to various attacks such as secret 

disclosure, traceability, and replay attacks, impacting privacy and trust. The authors of [97] 

provided an enhanced version of this protocol in terms of security and cost. 

Moreover, to ensure user integrity, a lightweight authentication and authorization framework 

for the Blockchain-enabled IoT network was proposed [98]. The proposed protocol consists of 

two services named, applications and networks. The IoT applications are cloud-based services, 

like public mobility assistance, offering seamless mobility for users to interact. This 

characteristic ensures a reasonable availability of the system. Otherwise, the network service 

concerns the sensed data transferred in the network by a user who needs to forward into the 

cloud via the predefined path. These data are stored continuously to be available for all entities 

in the network, such as gateway cloud services. Every entity in the network is defined and 

attached with a public-key certificate to authenticate the entire service information and get data 

access. Experimental results analysis show that this framework is robust and highly secure, and 

reliable compared to others. 
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To sum up, authentication is the process of confirming and ensuring the identity of objects. 

In the IoT context, each object should have the ability to identify and authenticate all other 

objects in the system. Once authenticated, an IoT object needs to get permission to access 

another IoT entity or have something [38]. In the following section, we explain the access 

control mechanisms in the IoT environment. 

2.3.3 Access Control in IoT  

Access control or authorization is a fundamental element to address IoT security, and mainly 

it concerns regulating who can access what kind of resources or services. Indeed, an effective 

access control system satisfies the main security requirements of availability by assuring data 

access by legitimate users when requested, integrity by preventing resources from being 

modified without authorization resources, and confidentiality by avoiding unauthorized data 

exposure. Furthermore, to address a successful authorization, the following phases are required: 

first is about defining a security policy by setting rules, the second concerns selecting an access 

model to encapsulate the defined rules, then applying the model with the access policy [9]. 

Various access control models are designed through the literature in IoT to handle the growing 

security requirements, which are discussed in the next subsections.  In the following, we discuss 

the traditional access control solutions adopted for the IoT network and then present the access 

control solutions based on the group key management technique.  

2.3.3.1 Traditional Access Control Solutions 

Role-based Access Control (RBAC) is an access control approach and framework applied 

to control and restrict user access privilege to resources based on roles. The RBAC model 

comprises four different components: the core RBAC, the hierarchical RBAC, the static 

separation of duty relations, and the dynamic separation of duty relations. Each component 

assigns various functionalities to the RBAC. In fact, this model alleviates the effort of managing 

access rules by assigning roles to permissions instead of granting access rights directly to users 

[9]. RBAC approach was introduced to the access rights to the smart things that are managed 

via the Web [100].  The integration with the Web has the purpose of performing a mapping 

between RBAC entities: Users, Permissions, Objects, Authorization policies, Session, and the 

different components of the Web of Thing. However, RBAC is unsuitable for distributed 

networks such as IoT, as this kind of access model is not flexible and scalable enough. Indeed, 

the user should have access to credentials and profiles on every device he/she owns, which is 

an issue of scalability. At this level, we could confirm that RBAC cannot handle millions or 

even billions of devices, where each one has a specific role to access and many users to 

administrate, which makes it unsuitable for a large IoT environment.  

Another access control solution, named Attribute-Based Access Control (ABAC), is more 

flexible and scalable comparing to RBAC. ABAC model access is established according to 

various attributes presented by a subject. This subject is identified through the attributes 

associated with some characteristics [101] [102]. Besides, access policy rules specify conditions 

over a set of attributes under which access is authorized or denied. Indeed, when a subject 

initiates an access request to accomplish operations on objects, this request could be denied or 

granted according to the attributes defining the object and the subject. Therefore, the ABAC 
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model facilitates the assignment of rules and the definition of an access control list. In fact, 

instead of defining the access permission for each system entity, the attributes authorities are 

responsible for managing and distributing the set of attributes to proper users. Consequently, 

access management is effectively simplified, considering the number of attributes less than the 

system's number. Many works have been suggested in the literature using the ABAC model in 

IoT. Recently, the authors of [102] have proposed an efficient authentication and access control 

scheme for the perception layer of the IoT. This scheme adopted the ABAC-based authorization 

method for access control policy based on ECC. This work designed an efficient mutual 

authentication based on secure key establishment protocol.  Moreover, the access to the data in 

this approach is based on user attribute certificates that ensure fine-grained access control. 

Nevertheless, this model involves complex management, where each entity should update the 

attributes to maintain a continuous authorization before, during, and after the access execution 

permission, which is not suitable to be applied to constrained devices.  

An advanced access control model named the Usage Control (UCON) proposed by [103] 

introduces numerous novelties compared to traditional access control such as RBAC and 

ABAC. In particular, it is composed of eight components, including authorizations, obligations, 

conditions, continuity, and mutability. As the traditional models, UCON uses the notion of 

subjects and objects associated with their attributes. Specifically, the subject can be an entity in 

a system and is represented by several properties and capabilities related to its attributes, while 

the object is associated with object attributes. The subjects hold rights on objects, which leads 

to grant access or usage of an object. Both subject and object attributes can be mutable at this 

level, which means that the value can be modified only by administrative action and not by its 

user's activity.  Moreover, UCON handles the changing of access attributes while the access is 

in progress, which avoids dissatisfaction with the security policy. Also, it solves the problem 

of continuous authorization before, during, and after the access execution permission. Even 

though the UCON model's claimed novelties, UCON still a conceptual approach, and only 

theoretic experiments have been conducted. Thus, practical feasibility and the construction of 

this model in IoT should be carried out.  

Capability-Based Access Control (CapBAC) was introduced to address an appropriate 

authorization model for the IoT environment requirements. The concept of CapBAC is based 

on using a cryptographic token, ticket, or key that permits to grant access rights and privileges. 

Many CapBAC approaches were presented in the literature, citing the [105], where the authors 

used the Access Control Matrix (ACM), and [106] that use Access Control List (ACL) to build 

capability-based access control models.  Actually, CapBAC might be classified as a centralized 

and distributed model adopted in many large-scale projects [107] and is widely used in the IoT 

field. Indeed, the centralized model provides interoperability, reduces computation complexity, 

and enhances memory efficiency. However, this mechanism is also susceptible to a single point 

of failure as the access decision's delegation depends on a central entity. The distributed 

approach assigns access control logic to smart devices [104]. However, the IoT environment is 

characterized by resource-constrained devices that are easily compromised. Consequently, 

CapBAC is unsuitable to address a secure access control mechanism in untrustworthy IoT 

environments. 
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We summarize these traditional access control solutions in the Table 2.4 as follow: 

Table 2. 4: Access Control Solutions Comparison  

Factors RBAC ABAC UCON CapBAC 

Access Control to 

Information 
Through roles 

Through 

attributes 

Through object 

attributes 
Through ACL  

Access Control 

Based on 

Classification 

of roles 

Evaluation of 

attributes 

Evaluation of 

subjects and 

objects 

Classification 

of roles 

Flexibility for 

Accessing 

Information 

High High Very high High 

Access Revocation 

Complexity 
Easy Easy Very easy Very easy  

Support for 

Multilevel 

Database System 

Yes Yes Yes Yes 

With the advent of the IoT environment, these access control models designed for centralized 

systems become obsolete due to the rapid growth of roles and policies. In practice, ensuring 

protection for IoT systems is a great challenge due to the IoT environment's dynamic nature. 

Indeed, IoT devices should maintain the connection to the Internet because of the access control 

configuration and satisfy particular needs. Consequently, it becomes easier to compromise IoT 

devices that are issue to cyber-security risks and attacks with severe impacts. Besides, more and 

more factors and parameters should also be considered when designing access control solutions 

to meet the requirement of scalable decentralized IoT systems, and day-to-day access control 

decisions are becoming a group key management (GKM) responsibility. 

2.3.3.2 Group Key Management Solutions in IoT  

Regarding the continuous growth of connected objects in IoT, group-based applications have 

emerged the communication in the IoT environment. In these group communications, numerous 

members are participating in exchanging and sharing information. Thus, securing group 

communication among members should be taken into consideration, including authentication 

and authorization. For that reason, implementing a system to control the assignment of 

permission system must be built. The Group Key Management (GKM) has been emerged as a 

prominent solution to achieve the access control and assignment of permissions [108]. The 

GKM is a peer-to-peer access control mechanism for IoT applications. Indeed, GKM provides 

its access control based on signed permission certificates. Furthermore, since the group 

members in a heterogeneous network like IoT are characterized with a high dynamicity, where 

members can join and leave the group, managing a secure group communication is difficult.  

Therefore, the group key must be changed whenever a member leaves or joins the group to 

ensure forward and backward secrecy. Figure.2.5 shows the taxonomy of Group Key 
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Management Protocols, which are classified into three categories: centralized, decentralized, 

and distributed to be discussed in what follows:  

 

Figure.2. 5: Group Key Management Taxonomy 

 Centralized GKM: 

The centralized group key management operates with a single entity for controlling the group 

communication. The group key is requested from a central server. This central server handles 

the request by creating and disseminating the key to the appropriate group members. Various 

encryption mechanisms are used in the centralized key management to setup a secure group 

communication. Indeed, it adopts the symmetric keys, asymmetric keys, and the secrets to 

manage key distribution.  

Various are the works that have provided centralized group key management mechanisms, 

the two-fundamental centralized GKM approaches are the Logical Key Hierarchy (LKH) [109] 

and the One-way Function Tree (OFT) [110]. Both methods design a hierarchical key tree based 

on symmetric keys, including traffic keys and encryption keys. The traffic keys are designed to 

encrypt the data among the group, while the encryption keys are used to encapsulate and 

distribute the updated group key and traffic keys. In contrast to LKH, all the OFT 

implementations suffer from collusion attacks and increase devices’ computational overhead 

for obtaining group keys. Hence, OFT is far from ideal in an IoT environment, where the 

communicating devices may have limited computational power. Indeed, in the LKH, upon a 

join and leave events, the key distribution center engenders OLog(n) complexity to reach the 

group key to all group members, making this protocol more suitable for small groups.  

In order to reduce the impact of rekeying operations, the authors of [111] have introduced 

an interval-based centralized protocol. This scheme suggested a mechanism that can predict the 

time of a member leaving the group. In fact, when a member first joins the group, the key 
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distribution center transmits the needed rekeying materials according to the period for the 

member's intention to be part of the group. Once this period expires, the member leaves the 

group without any triggering of rekeying events.  Nevertheless, this approach has numerous 

drawbacks as predicting leaving members' time is not practical for highly dynamic networks.  

Moreover, remaining for a long time in the group may risk increasing the storage in IoT 

constrained devices. Hence, this protocol cannot meet the requirement of dynamic IoT 

environments with a high number of unpredictable leaving events.  

All previously mentioned schemes are designed for single multicast groups. Authors of [112] 

accommodate various services' groups to ensure many multicast groups. Their scheme 

addressed rekeying in the wireless mobile environment, based on a centralized architecture and 

an LKH mechanism to manage multiple communications. Besides, taking advantage of the 

construction proposed by [112], authors in [113] established a two-tier centralized system, 

where groups run the LKH method to handle updates of keys efficiently. This scheme addresses 

the requirement of dynamic nature in the IoT environment. However, communication within 

user groups is based on symmetric keys, increasing the centralized center's rekeying operations 

costs.  

The centralized GKM presents several problems, including the latencies caused by the 

central server's workload. In fact, the procedure of creating key groups, defining keys for access 

considering the permissions, and disseminating keys to group members takes time and effort. 

Due to the growing number of groups on the IoT network, the number of group members grows. 

Consequently, the workload at that central server quickly reaches capacity, which can lead to a 

single point of failure. 

 Distributed GKM: 

A distributed key management mechanism has no explicit key distribution center KDC. 

Furthermore, the group key is generated either in a collaborating manner between group 

members or by one member. Hence, all members might perform the access control decisions 

and then contribute with information to create a shared group key. Besides, each group member 

should maintain and keep track of the other members to make robust and secure communication 

among the group. Various cryptographic mechanisms are adopted to securely achieve 

distributed key management, classified into three categories, including ring-based cooperation, 

broadcast cooperation, and hierarchical cooperation.  

Some typical distributed key management schemes known in the literature include 

Conference Key Agreement [114], Distributed Logical Key Hierarchy [115], Distributed One-

way Function Tree [116], Diffie-Hellman Logical Key Hierarchy [117], and Distributed Flat 

Table [118]. Recently researchers and references paid more attention to collaborative group key 

agreement. In fact, the authors of [119] provided a completely distributed approach for group 

key management based on distributed hash tables. In this approach, key management is not 

controlled by any central authority. Indeed, anyone can create groups and principles by 

collaborating with members. This protocol is characterized to set with various applications. 

Furthermore, it enhanced the security and privacy level after removing the central authority. 

However, the member group should keep a hash table of all members to ensure the security 

requirements. Hence, this approach is very costly in terms of computation and storage for each 
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group member, which is not suitable for the devices' dynamic nature and the constrained 

resources character in the IoT environment.  

The authors of [120] provided a distributed key management scheme to decrease the 

communication overhead by adopting a Distributed Batch-based Group Key. Their work is 

based on polynomial to set up and generate the group key for collaborative groups in the IoT 

environment. It also studies the heterogeneity of the devices with multiple capabilities under 

IoT enabled sensing networks. Nevertheless, this scheme is limited to manage the 

communication in one group, and it does not consider multiple communications among 

different groups. Also, a large group's dynamicity with the join and leave events makes the 

system more vulnerable to attacks, while it is crucial to protect the backward and forward 

secrecy.  

However, for large groups collecting a contribution from every member, the distributed key 

management approach is time processing-consuming and capacity power-consuming [120]. 

Likewise, the scalability issue imposed by the IoT environment is not fulfilled.   

 Decentralized GKM: 

The decentralized group key management mechanisms split the network of a large group 

into several smaller subgroups. Each subgroup is associated with the group manager responsible 

for creating and distributing keys among the group members. This group manager tries to 

reduce the problem of concentrating the work on a single server, which can avoid the single 

point failure issue. Besides, the decentralized key management mechanisms meet the 

unconventional security requirement, including scalability and reliability in a dynamic IoT 

environment. Indeed, they offer beneficial solutions that secure multicast communication by 

restricting the impact caused by the membership change in one group. Also, in the decentralized 

solutions, the group member should not keep track of the other members, which reduces the 

overhead. The decentralized key management techniques are classified depending on rekeying 

operations, which concerns updating the group keys regarding some conditions: rekeying 

basing on time and rekeying based on membership.  

Protocols like Scalable Multicast Key Distribution (SMKD) [121], Intra-domain Group Key 

Management Protocol (IGKMP), Hydra fall under the membership-driven category [116], 

Kronos, MARKS [112], and Dual-Encryption Protocol (DEP) [120], are examples of 

decentralized key management solutions. Recently, a Decentralized Batch-based Group Key 

(DBGK) scheme was suggested in [122]. This scheme involves several sub-groups managed by 

the area key management server, while the general keying server manages the whole group. In 

this work, the group key is composed of long-term and short-term keys. Similarly, security 

credentials are shared with member nodes in the group, ensuring the availability of resources. 

Also, it achieves and enhances the efficiency of the system, including storage, computation, 

and residual energy. 

Likewise, in [123], the authors proposed an enhanced decentralized key management using 

a distribution list of the session key and key update slot for each subgroup. This list is centrally 

managed by a node called the area key distributor. The proposed protocol alleviates the 1-affect-
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n phenomenon and transmission overhead of the core network, but it does not ensure forward 

secrecy. Hence, the authors of [124] extended the proposed scheme [123] to another protocol 

called area based multiple GKM that securely provides services when users migrate to different 

wireless networks, ensuring forward secrecy. Nonetheless, its high overhead, due to revocation 

events, makes it unsuitable for dynamic IoT environments.  

Although the benefits that accord the decentralized schemes compared to the other GKM 

model, some challenges should be considered while building the decentralized GKM. The first 

one is about ensuring efficient communication between different group key management 

schemes to distribute keys among member subgroups securely. The second is about establishing 

a trust communication between the third parties involved in a decentralized manner. Then, to 

ensure the authentication of members participating in the session group even if they belong to 

the same or different network.  

2.4 Summary & Discussion  

To design a secure IoT system in a peer-to-peer network, we studied and reviewed the 

existing IoT solutions in the literature in compliance with the established security requirements 

of the developing IoT environment. Throughout our analysis of the selected research works, we 

notice that authentication and authorization are the IoT environment's principal security 

requirements. Indeed, we observe that the traditional security solutions, which are mainly based 

on cryptographic techniques, were improved for IoT applications. These solutions are generally 

efficient in terms of storage, communication, and computation. However, they cannot handle 

and fulfill the new IoT environment security requirements, including scalability, heterogeneity, 

interoperability, dynamic changes, etc. Although we highlighted some beneficial approaches to 

handle some of IoT's unconventional security requirements, some of the existing approaches 

are still closely associated with the previous major security paradigms. In fact, distributed 

authentication trusted frameworks are useful to handle the scalability issue and eliminate the 

load and trust on a third party, but the distributed trusted server brings more attacks' attention.  

Therefore, the blockchain technology-based on trustless distributed nodes might be beneficial 

to deal very well with scalability and heterogeneity issues. However, blockchain technology is 

energy and time consuming due to the consensus mechanism to validate transactions. For that 

reason, it is not suitable to implement blockchain for constrained resource devices. However, it 

is essential to take advantage of the trustless secure infrastructure of the blockchain, which can 

significantly preserve the security of a distributed IoT environment and enhance users' security.  

Furthermore, we also surveyed and outlined the exiting access control and key management 

solutions, which are the sources and origin for designing authorization solutions. We illustrated 

various access control models, including Role-based Access Control (RAC), Attribute-based 

Access Control (ABAC), Capability-based Access Control (CapBAC), and Relationship-based 

Access Control (RBAC). However, all of them are not suitable for a large dynamic environment 

and limited resources IoT environments. In fact, they need all to rely on a connected third party 

to provide the access permissions continuously to the demanding objects or users. Otherwise, 

key management techniques eliminate the dependency on an online third party. Considering 

IoT characteristics such as scalability, heterogeneity, dynamicity, and security, we provided the 
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shortages of traditional key management solutions in the context of a multi-services IoT 

environment. Therefore, we are experiencing impressive challenges to secure and protect large 

dynamic IoT environment due to the significant increase in the attack surface.  

2.5 Conclusion 

Throughout this chapter, we surveyed a comprehensive overview of the IoT by presenting 

the IoT architecture and the different challenges related to its continuous progressing. This IoT 

revolution has emerged with a remarkable potential to cover a wide range of applications in 

various domains, such as smart homes, smart industry, smart healthcare, smart cities, and 

intelligent transportation. The tremendous number of connected objects transmitting data and 

supporting sensitive IoT applications makes IoT environment vulnerable to many attacks. We 

investigated reviewing security solutions proposed for IoT, and we identified the security 

inherent challenges and limitations. For that reason, we enumerated the basic security service, 

including confidentiality, integrity, availability, non-repudiation, and privacy. To meet all these 

security services, designing authentication and authorization are fundamental for any IoT 

application.  However, in addition to these security services, IoT environments have reached a 

remarkable development; therefore, they are facing many new security challenges and issues 

that need to be resolved for effective deployment. Thus, we listed these security requirements 

in this chapter, namely scalability, heterogeneity, limited resources of objects, interoperability, 

and dynamicity related to high changes of connected objects and users of the IoT environment. 

For that, we discussed the existing IoT solutions to handle the mentioned issues, such as 

blockchain technology, which builds a trustless distributed infrastructure. Moreover, we 

presented the group key management technique used to ensure a robust authorization and 

handle the group communication issue in IoT environment. Despite the presented security 

solutions that take care of the context in which IoT applications involve, there are still a lot of 

open issues to be addressed, such as scalability and dynamism issues, mainly because IoT is 

becoming an Internet of Everything where humans, data, processes, and objects are developing 

together in a highly dynamic and complex system. Therefore, throughout this thesis, we 

investigated to design a secure IoT solution to fit these issues, including the scalability, dynamic 

changes, and limited resources IoT environment through achieving the two primary security 

features, namely authentication, and authorization. In our first contribution, presented in the 

next chapter of this manuscript, we design a new lightweight mutual authentication based on 

the token concept. In this work, we added a new security layer for the authentication protocol 

to meet the IoT applications' security requirements (such as the reservation Smart hotel system) 

by combining the user credential with the token to identify legitimate users for a predefined 

period.  
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Token-based Lightweight Authentication 
for IoT environment 

 

3.1. Introduction 

As presented in the previous chapter, the rapid growth of the Internet of things has given rise 

to many different applications related to environmental sensing and industrial areas (e.g., smart 

city, smart hotel, smart office) [35]. This huge number of connected objects brought more 

security challenges to IoT environments concerning data protection, access control, and 

authentication between the user and smart devices. In particular, authentication is becoming 

more challenging with the new IoT platforms [126], where the user needs to be authenticated 

for a predefined fixed interval of time with a list of smart devices. Nevertheless, most IoT 

devices are resource-constrained devices, where the computation capacity and energy 

consumption are limited. Indeed, the authentication process should be adequately adapted to 

deal with these challenges and save power consumption to increase IoT devices battery lifetime.   

Throughout the literature, different user authentication solutions were investigated in IoT 

environments. Researchers in [127] have introduced a continuous user authentication in IoT 

based on a secret shared scheme to prove the user's legitimacy for a predefined interval of time. 

However, their solution is based on a password mechanism only and hence considered as a 

heavy solution and vulnerable to many security attacks. In particular, as IoT devices 

communicate over insecure communication channels, the probability of an illegal user 

(attacker) that can break the security and gain access to the smart device increases during 

communication. Hence, the security mechanism should adopt a firm policy, such as multi-factor 

authentication and encryption [128] [58]. The authors in [58] have proposed a three-factor user 

authentication in the IoT environment to enhance security during communication. However, 

compromising one secret key in their scheme, an attacker may deduce any previous session 

key, which represents a severe threat. For this purpose, it is essential to ensure the perfect 

forward secrecy, which represents a fundamental security property for session key-based 

authentication.  

To overcome the important issues mentioned above, we have proposed in this chapter a new 

efficient and secure user authentication protocol named Token-Based Lightweight User 

Chapter 3 

 

Chapter 3 
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Authentication (TBLUA) to reach a robust security and ensure the perfect forward secrecy for   

such IoT environment. In this context, we have introduced a software token-based 

authentication as an efficient solution to create a strong binding between the users and the 

smart devices. Indeed, we generated an additional security layer of authentication by adopting 

a software token technique that offers access to a specific resource for a predefined fixed 

interval of time. Furthermore, we used only lightweight computation operations such as XOR 

and hash functions as cryptography techniques to authenticate the user with IoT devices. To 

this end, we guarantee a remarkable decrease in computation time and saving energy of IoT 

devices during the authentication process, while preventing the most widespread security 

attacks and ensuring the known security properties, especially perfect forward secrecy. We 

evaluated the robustness of our solution in terms of security using AVISPA as a formal 

verification tool. Results have shown that the proposed TBLUA is secure under various kinds 

of attacks. We also evaluated its performances, and results have shown its efficiency in terms 

of computation and communication. Finally, we conducted a proof of concept that describe the 

smart hotel use case in the context of the PARFAIT project.   

The rest of the chapter is structured as follows. We briefly present a survey of various 

existing IoT authentication schemes proposed in the literature. Then, we give an overview of 

the cryptography background used in this chapter. After, we present a general description of 

the network and the threat models. Later, we give a detailed description of the proposed scheme 

TBLUA for user authentication in IoT environments. After that, informal security analysis and 

formal security evaluation using AVISPA tools are presented. To prove our approach's 

effectiveness, we achieve a performance comparison with the existing relevant schemes through 

providing a simulation analysis, results, and discussions. Finally, we present a description of 

the smart hotel use case, studying the vulnerabilities of such environment and giving the 

accomplished simulation. 

3.2. Related Works 

IoT environments are exposed to their potential users in general and IoT devices 

communicate through the Internet. Therefore, adversaries can easily access those devices which 

makes IoT environments vulnerable to various security threats. Consequently, authentication 

becomes a fundamental mechanism for the user to be first authorized to the Gateway (GW) as 

well as the smart device (IoT device) before granting access to the real-time data. In this section, 

we study existing authentication solutions in IoT presented in the literature. Indeed, to achieve 

user authentication, Wong et al [129] proposed a lightweight hash-based user authentication 

scheme, but Das [130] found out that is vulnerable to replay attack and stolen-verifier attack. 

Subsequently, Das [130] presented a two-factor authenticated key establishment scheme for 

WSNs, which claimed to provide strong authentication and resist to various kinds of attacks. 

However, many articles [9-13] pointed out that Das's scheme [130] is still vulnerable to 

privileged insider attacks and parallel session attacks. Although the abovementioned schemes 

[9-13] have much better performance than Das' scheme [130], they still have various defeats 

such as smart card loss attacks and forgery attacks.  In 2012, Das et al. [135] presented a better 

scheme than the previous two-factor authentication to solve these weaknesses. Unfortunately, 
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the security of this new scheme was not satisfactory due to its vulnerability to some attacks 

such as privileged insider attack and stolen smart card attack [15-17]. Turkanović et al. [136] 

designed a lightweight user authentication protocol for wireless sensor networks (WSN) 

tailored for an IoT environment. Their protocol is based on symmetric key encryption, hash and 

XOR computations that tends to save both computation and communication resources. 

However, it has also several security flaws, as it does not protect privileged insider, offline 

password guessing, user impersonation attacks and untraceability [128].  

Chang and Le [137] recently designed smartcard-based user authentication protocols P1 and 

P2 with the help of user password: P1 is greatly lightweight since it is based only on bitwise 

XOR and hash functions; P2 is not lightweight as it applies ECC along with bitwise XOR and 

hash functions. Unfortunately, Das et al. [138] found out that both P1 and P2 are insecure 

against offline password guessing and session specific temporary information attacks. In 

addition, P1 is also insecure against session key breach attack. Most recently in 2016, Gope and 

Hwang [139] designed a practical authentication scheme, which ensure mutual authentication, 

user anonymity and perfect forward secrecy. Nevertheless, the protocol causes the 

desynchronization attack in the communication between the gateway and the smart device 

because the hash chain value is updated after each successful session. In 2017, Wazid et al. [58] 

proposed a three-factor authentication scheme that ensures various kinds of imperative security 

properties like, mutual authentication, sensing node capture, impersonation, and privileged 

insider attacks. Unfortunately, it requires more communication and computation costs 

compared to other schemes. Furthermore, it does not ensure perfect forward secrecy, which is 

an indispensable security property for authenticated schemes.  

Table 3. 1: Evaluation of IoT Authentication Schemes 

Scheme Environment 
Authentication 

technique 
Strength(+)/Weakness(-) 

[129] 

Wireless Sensor 

Network (WSN) 

environment 

Single Factor 

authentication uses: 

Hashing/ XOR 

functions 

 Resilience to the insider attack. 

 Low computation and communication 

overhead. 

- Vulnerable to replay attack and stolen-

verifier attack. 

- Perfect forward secrecy not considered. 

[130] 
Wireless Sensor 

Network environment 

Two-Factor 

authentication uses: 

Hashing/XOR 

functions 

 Low computation and communication 

overhead. 

 Resist against the replay attack, and denial 

of service attack. 

- Vulnerable to privileged insider attacks and 

parallel session attacks. 

- Cannot ensure mutual authentication and 

session key verification. 

[132] 
Wireless Sensor 

Network environment 

Single Factor 

authentication uses: 

 Low computation and communication 

overhead. 
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Hashing/XOR and 

Symmetric key 

Encryption functions 

 Anonymous authentication for remote 

users. 

- Vulnerable to the insider attack problem. 

- Perfect forward secrecy not considered. 

[133] 
Wireless Sensor 

Network environment 

Two-Factor 

authentication uses: 

Hashing/XOR 

 Protection against Gateway node bypassing 

attack. 

 Mutual authentication between GW and 

sensor nodes. 

- Vulnerable to smart card loss attacks and 

forgery attacks. 

- No backward and no forward secrecy are 

considered.   

[134] 

Internet of Things 

(IoT) 

Environment  

Three-Factor 

authentication uses: 

Elliptic Curve 

Cryptosystem  

 

 Ensuring user anonymity and forward 

secrecy.  

 Resist to impersonation, replay and 

dictionary attack. 

- Backward secrecy not considered.   

- High communication and computation cost.  

[136] 

Internet of Things 

(IoT) 

Environment 

Single Factor 

authentication uses: 

Hashing/XOR and 

Symmetric key 

Encryption functions 

 Saving both computation and 

communication. 

 Resilience against Denial of Service attack. 

- Vulnerable to insider attack, stolen smart 

card and offline password guessing attacks. 

- Vulnerable to session key disclosure. 

[137] 
Wireless Sensor 

Network environment 

Single Factor 

authentication uses: 

ECC along with 

bitwise XOR and hash 

functions 

 Mutual authentication is achieved. 

 Ensuring the perfect forward secrecy 

 Resilience against DoS attack.  

- High communication and computation 

overhead. 

- Vulnerable session key breach attack. 

[139] WSN environment 

Single Factor 

authentication uses: 

Hashing/XOR and 

Symmetric key 

Encryption functions 

 Anonymous authentication.  

 Low complexity. 

 Ensure perfect forward secrecy.  

- Vulnerable to session key disclosure 

- Vulnerable to the desynchronization attack 

in the communication between the GW and 

the smart device 

[128] 

Internet of Things 

(IoT) 

Environment 

Three-Factor 

authentication uses: 

ECC along with 

bitwise XOR and hash 

functions 

 Anonymity and untraceability in the 

authentication. 

 Resilience to several security attack such as 

DoS, replay attack, and man-in-the-middle 

attack.  

- Heavy computational cost. 

- No backward and no forward secrecy are 

considered.   
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[58] 

Internet of Things 

(IoT) 

Environment 

Three-Factor 

authentication uses: 

Hashing/XOR and 

Symmetric key 

Encryption functions 

 Ensuring mutual authentication. 

 Resilience sensing node capture, 

impersonation and privileged insider 

attacks. 

- It requires more communication and 

computation. 

- Perfect forward secrecy is not provided.  

 

To the best of our knowledge and as it is presented in Table 3.1, most of the authentication 

schemes have several security limitations especially in providing the perfect forward secrecy3 

feature, which is a basic and important security property for authentication in IoT environment.  

Some schemes [139] attempt to achieve this issue using the one-time hash chain technique. 

However, this latter causes desynchronization attack. Moreover, most schemes present high 

communication and computation costs in order to provide several security services. Besides, 

with the growth of IoT environment and applications (smart hotel, smart office, etc.), new 

security challenges emerged, where authentication is necessary for different predefined periods. 

Motivated by the above fact, we construct a new efficient authentication scheme for IoT 

environment based on token technique to insure a secure and lightweight mutual authentication 

between the user, the gateway, and the smart device. Token is used to enhance the 

authentication scheme and to offer access to a specific resource for a predefined period. Thus, 

using this mechanism, each communication will be valid only for a fixed period, which reduces 

risks of stolen identity. 

3.3. Background  

In this section, we provide a brief description about the one-way hash function mechanism 

and the symmetric key cryptography mechanism, which serve as techniques to design our 

solution. 

3.3.1. One-way Hash Function 

A cryptographic one-way hash function is a powerful cryptography technique that accepts a 

variable length block of data as input and outputs a fixed-size bit string, known as the hash 

value or message digest. The hash function is used to provide data integrity to check whether 

an adversary has modified the message in transit from the source to the destination. 

Furthermore, the hash technique is a lightweight mechanism as its execution time is very low 

compared to other cryptography mechanisms.  

Considering the one-way hash function ℎ: {0, 1}∗ → {0, 1}𝑙 takes an arbitrary length input 

𝑥 ∈ {0, 1}∗, and produces a fixed length (say, l-bits) output ℎ(𝑥)  ∈  {0, 1}𝑙 hash value. The 

hash function has the following properties: 

 h can be applied to a data block of all sizes. 

                                                           
3 Forward secrecy: when an adversary compromises the secret key of one session, then he/she can learn any 

previous session key, which is a serious threat. 



47 
 

 For any given input x, the message digest h(x) is easy to operate, enabling easy 

implementation in software and hardware. 

 The output length of the message digest h(x) is fixed. 

 Deriving the input x from the given message digest 𝑦 = ℎ(𝑥) and the given hash 

function ℎ(. ) is computationally infeasible. This property is called the one-way 

property. 

 For any given input x, finding any other input 𝑦 ≠  𝑥 so that ℎ(𝑦)  =  ℎ(𝑥) is 

computationally infeasible. This property is known as weak-collision resistant 

property.  

 Finding a pair of inputs (𝑥, 𝑦), with 𝑥 ≠ 𝑦 so that ℎ(𝑥)  =  ℎ(𝑦) is computationally 

infeasible. This property is referred to as strong-collision resistant property.  

 

3.3.2. Symmetric Key Cryptography  

The symmetric key encryption mechanism uses a single key for encryption/decryption.  

Consider the model of symmetric encryption shown in Figure 3.1. Before the secure 

communication takes place, both the sender, denoted S, and the receiver, denoted R, share the 

same secret key k. Hence, S can encrypt a plaintext with the key k using the encryption function 

when he/she wants to communicate securely with R. Indeed, S produces a ciphertext using the 

symmetric encryption function and sends it to R over a public channel (insecure channel). At 

this level, R can recover the original plaintext by decrypting the ciphertext using the same secret 

key k. 

Since the channel is public, an adversary A can eavesdrop, modify, or delete the messages from 

the channel. In this model, A can try to derive the secret key and the plaintext with the help of 

the eavesdropped ciphertext. This kind of attack is known as ciphertext-only attack. 

3.4. System Model and Security Requirements 

In this section, we present the proposed system model that ensures a token-based lightweight 

authentication for IoT environment and the related threat model.   

 

Figure.3. 1: Symmetric key cryptography 
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3.4.1. System Model 

The system model, depicted in Figure 3.2, is composed of the following components:  

 The Reservation Server (RS) responsible of generating reservation tokens for users 

and distributing them to the registration authority.  

 The Registration Authority (RA) is a trust server responsible for registering all smart 

devices and gateway securely.  

 The Gateway (GW) node, which is more powerful than smart devices, is used as the 

trusted third-party entity to help establishing the mutual authentication and key 

agreement [58].  

 The End user, who wants to access data from smart devices for a predefined interval 

of time, registers himself/herself at the trusted RS.  

 The Smart devices representing the IoT devices that collect and publish data to the 

legitimate user during the prefixed interval time.  

Moreover, we assume that all the heterogeneous devices (i.e., GW, users with their smart 

phones and smart IoT devices) are synchronized with their clocks and agree (mutually) on a 

maximum transmission delay (ΔT) to protect replay attacks in the proposed scheme [140]. 

 

Figure.3. 2: Proposed Network model 
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The main idea of our solution is to generate an additional security layer of authentication by 

adopting a software token technique that offers access to a specific resource for a predefined 

fixed interval of time. As mentioned in Figure 3.3, the authentication process is guaranteed 

through the login, password, and a lightweight token defined for a period.   

 

3.4.2. Security and Threat Model   

We have used the Dolev-Yao threat model [131], in which two communicating parties 

interact over insecure channel. According to this model, the endpoint entities such as user Ui 

and smart device SDj are not considered as trustworthy. An adversary A can eavesdrop the 

exchanged messages, and thus modify or delete the messages during transmission. Furthermore, 

smart devices are not tamper-resistant and thus, some smart devices can be physically 

compromised by A. Therefore, A can extract sensitive information stored in those nodes using 

the well-known power analysis attacks [143]. Nevertheless, we assume that the GW in the 

proposed scheme is a trusted node and is not compromised under any circumstances; otherwise, 

the whole network is compromised [58].  Furthermore, RA and RS are also fully trusted and 

cannot be compromised by an adversary. Finally, the user's smart phone SP can be lost/stolen 

by A and the stored sensitive information, such as the token of identification, can also be 

extracted from its memory using the power analysis attacks [143].  

3.5. Proposed Token Based Lightweight Authentication for 

IoT Environment (TBLUA) 

After introducing the system model and the threat model, we describe in more detail the 

proposed authentication and key agreement protocol (TBLUA) that secures data transmission 

after a successful reservation. In Table 3.2, we define the most important notations used in this 

chapter.  

 

 

 

Figure.3. 3: Security model 

 

 

 

Figure 3. 2: Security model 
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Table 3. 2: Symbols and their descriptions 

Symbols Descriptions 

RS. 

RA 

Ui 

GW 

SDj 

PWi 

IDi 

SP 

IDSDj 

K 

KUG 

KSG 

TIDi 

R1 

R2 

R3 

EK(·)/DK(·) 

NS 

T 

ΔT 

h(·) 

ǁ 

⊕ 

Reservation Server 

Registration Authority 

User i 

Gateway node 

Smart device node j 

Password of Ui 

Identity of Ui 

User's Smart Phone 

Identity of SDj 

Secret key of GW. 

Shared key between User U and GW. 

Shared key between SD and GW. 

Temporary identity generated by GW for Ui 

Random nonce created by Ui 

Random nonce created by GW. 

Random nonce created by SDj 

Symmetric encrypt/decrypt using key K 

Sequence number 

Current timestamp 

Maximum transmission delay 

Cryptographic one-way hash function 

Concatenation operation 

Bitwise XOR operation 

To design TBLUA, we develop the following phases, which we detail in the subsequent 

subsections:  

1) Offline smart device and GW registration phase,  

2) User reservation or registration phase,  

3) Token distribution between GW and smart devices phase,  

4) Login, authentication, and key establishment phase, 

5) Password change phase.  

 

3.5.1. Offline Smart Device and GW Registration phase  

During this phase, the registration authority server (RA) is responsible for registering smart 

devices and gateway nodes. More specifically, the RA manages the request for the initial 

enrolment from IoT devices, the gateway, and the user by generating the necessary keys and 

identities for them.  

In fact, RA selects a unique identity IDSDj for each deployed smart device SDj , then generates 

a unique random 160-bits secret shared key, KSG, between the GW and SDj, where 1 ≤ j ≤ n (n 

is the number of smart devices) and produces the initial sequence numbers for the smart device, 



51 
 

NSDj,  and the gateway, NSGj respectively, NSDj  =  NSGj  =  0. Subsequently, the RA stores 

{𝐼𝐷𝑆𝐷𝑗 , 𝑁𝑆𝐷𝑗 , 𝐾𝑆𝐺} into the smart device SDj memory, and {𝐼𝐷𝑆𝐷𝑗 , 𝑁𝑆𝐺𝑗 , 𝐾𝑆𝐺} into the GW 

memory. We adopt the concept of sequence number to counter the desynchronization attack 

and promote the authentication process.  

The RA further randomly generates a unique GW's identity IDGW, and a unique random 1024-

bit gateway secret key K. Then, depending on the localization and the IoT service, the RA 

defines the different groups of SDj composing the system, which is identified by 𝐺𝑖 =

{𝑆𝐷𝑗;  1 < 𝑗 <  𝑁, N is the number of SDj in 𝐺𝑖}. Each group is associated and controlled by a 

gateway. After that, RA computes the corresponding smart device secret information 𝑆𝑗 =

 ℎ (𝐼𝐷𝑆𝐷𝑗|| 𝐺𝑖 || 𝐾) for each SDj and finally RA updates the SDj node information's table entry 

with <  𝐼𝐷𝑆𝐷𝑗 , 𝑆𝑗 , 𝑁𝑆𝐺𝑗 , 𝐾𝑆𝐺 , 𝐺𝑖  > in the GW memory. At the end of this phase, the system is 

designed with many groups of IoT devices controlled with a gateway. 

3.5.2. User Registration Phase 

In this phase, the user Ui needs to register himself with the RA and get the necessary 

information for authentication to access securely to the services of a particular smart device 

SDj. As depicted in the Figure.3.4, many steps are carried out by the mentioned components: 

the user Ui, the reservation server RS, and the registration authority RA as follow:  

 Step1: The user picks an identity IDi, a password PWi, computes the masked password: 

𝑀𝑃𝑊𝑖 = ℎ (𝐼𝐷𝑖⊕  𝑃𝑊𝑖 ) and sends a request message containing < 𝐼𝐷𝑖 , 𝑀𝑃𝑊𝑖 > to 

the reservation server securely using either the TLS (Transport Layer Security) protocol 

or in an offline mode. 

 Step2: The reservation server RS reserves a group of smart devices Gi from the existing 

groups defined in the system to the user. Then, RS generates a reservation token for this 

user basing on the user and the gateway's identities, the selected devices group, and the 

time of reservation 𝑇𝑜𝑘𝑒𝑛𝑢 =  𝐸𝐾(𝐼𝐷𝑖 , 𝐼𝐷𝐺𝑊 , 𝐺𝑖, 𝑇𝑒), where Te is the expiration time 

of the token. Then, RS sends the 𝑇𝑜𝑘𝑒𝑛𝑢 to the RA through secured channels. 

 Step3: After receiving the 𝑇𝑜𝑘𝑒𝑛𝑢, RA generates a unique random 128-bits number n 

and computes a shred secret key with the user 𝐾𝑈𝐺 = ℎ(𝐼𝐷𝑖||𝑛) ⊕ 𝐼𝐷𝐺𝑊 . Subsequently, 

RA also generates a random number Ri to hide the masque password and selects a 

different temporary identity TIDi for the user Ui in each session that ensure the user's 

anonymity and untraceability. At this level, RA computes the necessary information for 

the user to be used during the authentication phase as follow: 

 𝑅𝑒𝑔𝑖 = ℎ(𝐼𝐷𝑖||𝑅𝑖 ||𝑀𝑃𝑊𝑖 ||𝐾𝑈𝐺)  Ensure a mutual authentication between 

the user and the gateway.  

 𝐴𝑖 = 𝑅𝑖⊕𝑀𝑃𝑊𝑖,  

 𝑇𝐾𝑈𝑖 = 𝑇𝑜𝑘𝑒𝑛𝑢⊕  ℎ(𝐼𝐷𝑖⊕𝑅𝑖⊕𝑀𝑃𝑊𝑖⊕𝐾𝑈𝐺)  

 𝐷𝑖 = 𝑅𝑖⊕ℎ(𝑇𝐼𝐷𝑖||𝐾𝐺𝑊).  

Finally, RA stores the couple < 𝑇𝐼𝐷𝑖, 𝐷𝑖 > into the GW memory for further use and 

forwards to the user Ui the registration information <  𝑇𝐼𝐷𝑖 , 𝑅𝑒𝑔𝑖, 𝐴𝑖, 𝑇𝐾𝑈𝑖 , 𝐾𝑈𝐺 > 

through a secured channel. 
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 After receiving <  𝑇𝐼𝐷𝑖 , 𝑅𝑒𝑔𝑖, 𝐴𝑖 , 𝑇𝐾𝑈𝑖 , 𝐾𝑈𝐺 >, the smart phone of the user updates the 

shared secret key 𝐾𝑈𝐺
∗ = 𝐾𝑈𝐺⊕ℎ(ℎ(𝐼𝐷𝑖) ⊕ ℎ(𝑃𝑊𝑖 )) to ensure the perfect forward 

secrecy, and then stores in its memory < 𝑇𝐼𝐷𝑖 , 𝑅𝑒𝑔𝑖, 𝐴𝑖, 𝑇𝐾𝑈𝑖 , 𝐾𝑈𝐺
∗ >.  

 

3.5.3. Token Distribution Between GW and Smart Device Phase 

After a successful reservation phase, the GW distributes the generated Token of the user Ui 

to the selected group of smart devices. This phase is presented in the Figure.3.5, and detailed 

as follows: 

 Step1: 𝐺𝑊 → 𝑆𝐷𝑗: {𝐷1, 𝐷2, 𝑡1}. 

The RA sends the 𝑇𝑜𝑘𝑒𝑛𝑢securely to the GW Then, the GW decrypts first the token using its 

secret key K; decrypts 𝐷𝐾(𝑇𝑜𝑘𝑒𝑛𝑢)𝐾  =  (𝐼𝐷𝑖, , 𝐺𝑖, 𝑇𝑒, 𝐼𝐷𝐺𝑊 ) and retrieves all identities' smart 

devices IDSDj of the group Gi. Then, for each smart device SDj, the GW generates a random 

number rj and Timestamp t1, and forms a request to authenticate the SDj by computing: 

 𝐷1 = ℎ(𝐾𝑆𝐺𝑗 ||𝑟𝑗|| 𝐼𝐷𝑆𝐷𝑗||𝑡1),  

 

Figure.3. 4: User registration phase 
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 𝐷2 = 𝑟𝑗⊕ℎ(𝐾𝑆𝐺𝑗).  

Finally, the GW forwards the authentication request < 𝐷1, 𝐷2, 𝑡1 > to the selected smart device 

SDj.  

 Step2: 𝑆𝐷𝑗 → 𝐺𝑊: {𝐷3, 𝐷4, 𝑡2}. 

After receiving the request from GW, SDj checks the timestamp |𝑡1
∗ − 𝑡1| < 𝛥𝑇: if it matches 

the smart device SDj computes the challenge 𝑟𝑗
∗ = 𝐷2⊕ℎ(𝐾𝑆𝐺𝑗), and the device's information  

𝐷1
∗ = ℎ(𝐾𝑆𝐺𝑗||𝑟𝑗

∗||𝐼𝐷𝑆𝐷𝑗||𝑡1). If equation 𝐷1
∗ = 𝐷1 holds, SDj authenticates its gateway and 

generates a random number sj and timestamp t2, computes the following messages D3 and D4 to 

authenticate in return the gateway:  

 𝐷3 = ℎ(𝐼𝐷𝑆𝐷𝑗||𝐾𝑆𝐺||𝑟𝑗
∗ ||𝑠𝑗|| 𝑡2),  

 𝐷4 = 𝑠𝑗⊕ℎ(𝐾𝑆𝐺)  

Then, the smart device SDj sends its response < 𝐷3, 𝐷4, 𝑡2 > to the GW Otherwise, if 𝐷1
∗ ≠ 𝐷1, 

this phase breaks immediately. 

 Step3: 𝐺𝑊 → 𝑆𝐷𝑗: {𝐹, 𝑇𝑥, 𝑡3}. 

The GW checks first the timestamp|𝑡2
∗ − 𝑡2| < 𝛥𝑇: if it holds, the GW verifies the received 

message through computing: 

 𝑠𝑗
∗ = 𝐷4⊕ℎ(𝐾𝑆𝐺𝑗),  

 𝐷3
∗ = ℎ(𝐼𝐷𝑆𝐷𝑗 ||𝐾𝑆𝐺𝑗|| 𝑟𝑖 ||𝑠𝑗

∗|| 𝑡2),  

Subsequently, the GW compares D3* and D3. If 𝐷3
∗ = 𝐷3 holds the device is authenticated, 

thus, the GW continues this phase and generates timestamp t3. Afterward, the GW computes a 

factor F to identify SDj with the corresponding token 𝐹 = ℎ(𝑇𝑜𝑘𝑒𝑛𝑢||𝐾||𝐼𝐷𝑆𝐷𝑗), calculates 

the expiration time 𝑇𝑥 = 𝑇𝑒 ⊕ ℎ(𝐾𝑆𝐺𝑗) and updates the shared secret key with the smart 

device, 𝐾𝑆𝐺𝑛𝑒𝑤 = ℎ(𝐼𝐷𝑆𝐷𝑗||𝐾𝑆𝐺𝑗). Finally, the GW sends the user token under the factor F, the 

time expiration 𝑇𝑥, and the timestamp parameter < 𝐹, 𝑇𝑥, 𝑡3 > to the corresponding SDj. 

Otherwise ( 𝐷3
∗ ≠ 𝐷3) the GW breakdowns the communication. 

 Step 4: the smart device SDj, after receiving < 𝐹, 𝑇𝑥, 𝑡3 >, updates the shared secret 

key with the GW. 𝐾𝑆𝐺𝑛𝑒𝑤 = ℎ(𝐼𝐷𝑆𝐷𝑗||𝐾𝑆𝐺𝑗) and stores the factor F and the 𝑇𝑥 

parameter.  
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3.5.4. Login, Authentication, and Key Agreement Phase  

Once the registration process is completed, a user Ui is now ready to login into the system 

proceeding as follows (step 1 in Figure.3.6): 

 Step1: 𝑆𝑃𝐺𝑊: {𝑇𝐼𝐷𝑖 , 𝐶𝐼𝐷𝑖 , 𝐶𝐼𝐷𝑆𝐷𝑗 , 𝑀1, 𝑅0, 𝑇1} 

Ui enters his/her IDi and PWi into his smart phone SP. Then, SP computes the MPW and Regi to 

verify the legitimacy of the user as follows:  

 𝑀𝑃𝑊𝑖
∗ = ℎ(𝐼𝐷𝑖⊕𝑃𝑊𝑖),  

 𝑅𝑖
∗ = 𝐴𝑖⊕𝑀𝑃𝑊𝑖

∗,  

 𝐾𝑈𝐺 = 𝐾𝑈𝐺
∗ ⊕ℎ(ℎ(𝐼𝐷𝑖

∗) ⊕ ℎ(𝑃𝑊𝑖
∗)),  

 𝑅𝑒𝑔𝑖
∗ = ℎ(𝐼𝐷𝑖||𝑅𝑖

∗||𝑀𝑃𝑊𝑖
∗||𝐾𝑈𝐺),  

 

Figure.3. 5: Token distribution phase 
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Besides, SP aborts the login request if 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 𝑅𝑒𝑔𝑖
∗ = 𝑅𝑒𝑔𝑖  does not hold. Otherwise, 

SP proceeds for further operations. At that moment, the user enters the identity IDSDj of the 

smart device with which he/she wants to communicate; after that, the SP produces a random 

nonce R1 and a current timestamp T1. Further, SP forms a login message basing on the 

registration information, with his identity, registration token, and the smart device's identity. In 

fact, SP calculates CIDi and CIDSDj to hide the real identities and ensure the anonymity. 

Moreover, it computes the message M1 to authenticate with the gateway: 

 𝑇𝑜𝑘𝑒𝑛𝑢
∗ = 𝑇𝐾𝑈𝑖 ⊕ℎ(𝐼𝐷𝑖

∗||𝑅𝑖
∗||𝑀𝑃𝑊𝑖

∗||𝐾𝑈𝐺),  

 𝐶𝐼𝐷𝑖 = 𝐼𝐷𝑖⊕ℎ(𝑇𝐼𝐷𝑖||𝐾𝑈𝐺||𝑅𝑖
∗||𝑇1),  

 𝑅0 = ℎ(𝐾𝑈𝐺||𝑅𝑖
∗) ⊕ 𝑅1,  

 𝐶𝐼𝐷𝑆𝐷𝑗 = 𝐼𝐷𝑆𝐷𝑗⊕ℎ(𝑇𝑜𝑘𝑒𝑛𝑢
∗ ||𝐾𝑈𝐺||𝑅𝑖

∗||𝑇1),  

 𝑀1 = ℎ(𝐼𝐷𝑖||𝑅1||𝑇𝑜𝑘𝑒𝑛𝑢
∗ ||𝐾𝑈𝐺||𝑇1) 

Finally, the SP sends < 𝑇𝐼𝐷𝑖, 𝐶𝐼𝐷𝑖 , 𝐶𝐼𝐷𝑆𝐷𝑗 , 𝑀1, 𝑅0, 𝑇1 > to GW through a public channel. At 

this level, an authentication process begins among the user, the gateway, and the smart devices, 

which leads to establishing a session key between the user and the smart device. The 

authentication and key agreement are executed through the steps expressed below and shown 

in Figure.3.6:  

 Step2: 𝐺𝑊𝑆𝐷𝑗: {𝑀𝟐, 𝑀3, 𝑀4, 𝑁𝑆𝐺𝑗 , 𝑇2} 

The GW checks the legitimacy of the user once receiving the login request. Thus, the GW 

checks if |T1* – T1 | < ΔT to resist the replay attack: if so, the GW searches the temporary 

identity TIDi in its memory to retrieve the corresponding Di from the couple< 𝑇𝐼𝐷𝑖 , 𝐷𝑖 >. At 

this level, GW verifies the user identity through computing the necessary information to ensure 

the user's legitimacy using the message M1:   

 𝑅𝑖
∗ = 𝐷𝑖⊕ℎ(𝑇𝐼𝐷𝑖||𝐾),  

 𝐼𝐷𝑖
∗ = 𝐶𝐼𝐷𝑖⊕ℎ(𝑇𝐼𝐷𝑖||𝐾𝑈𝐺||𝑅𝑖

∗||𝑇1), 

  𝑅1
∗ = 𝑅0⊕ℎ(𝑅𝑖

∗||𝐾𝑈𝐺),  

 𝑀1
∗ = ℎ(𝐼𝐷𝑖

∗|𝑅1
∗||𝑇𝑜𝑘𝑒𝑛𝑢||𝐾𝑈𝐺||𝑇1).  

Now, if equation 𝑀1
∗ = 𝑀1 holds, the GW assumes that the message sent by Ui is authentic; 

otherwise, it discontinues the protocol's operations. After that, the GW verifies the time 

expiration of the token, hence the GW decrypts (𝑇𝑜𝑘𝑒𝑛𝑢)𝐾 = (𝐼𝐷𝑖 , 𝐼𝐷𝐺𝑊 , 𝐺𝑖 , 𝑇𝑒), generates a 

current timestamp T2. If equation Te >T2 does not hold, the GW dismisses this phase. Otherwise, 

the token has not expired and the GW verifies the SDj's identity chosen by the user by 

computing: 

 𝐼𝐷𝑆𝐷𝑗 = 𝐶𝐼𝐷𝑆𝐷𝑗⊕ℎ(𝑇𝑜𝑘𝑒𝑛𝑢||𝐾𝑈𝐺||𝑅𝑖
∗||𝑇1),  

 𝑆𝑗
∗ = ℎ(𝐼𝐷𝑆𝐷𝑗

∗ ||𝐺𝑖 ||𝐾)  

Besides, the GW checks whether 𝑆𝑗
∗ = 𝑆𝑗 holds, to ensure the validity of the requested devices, 

otherwise, this phase is corrupted. 

After verifying the legitimacy of the user Ui and the time expiration of the token, the GW 

generates a random nonce R2 to prepare the user request to the corresponding smart device. For 

that, the GW calculates M2 including the user information that ensure the authentication 
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between the user and the smart device. In addition, GW should authenticate the smart device 

through computing M3 and M4, and then updates the sequence number 𝑁𝑆𝐺𝑗  to maintain the 

synchronization with the smart device: 

 𝑀2 = ℎ(ℎ(𝐼𝐷𝑖||𝐼𝐷𝑆𝐷𝑗
∗ ||𝑅1

∗||𝑅2)||ℎ(𝑇𝑜𝑘𝑒𝑛𝑢||𝐾||𝐼𝐷𝑆𝐷𝑗)||𝐾𝑆𝐺𝑗||𝑅2||𝑁𝑆𝐺𝑗||𝑇2),  

 𝑀3 = ℎ(𝐼𝐷𝑖||𝐼𝐷𝑆𝐷𝑗||𝑅1
∗||𝑅2) ⊕ 𝐾𝑆𝐺𝑗 ,  

 𝑀4 = 𝑅2⊕  ℎ(𝐾𝑆𝐺𝑗) 

 𝑁𝑆𝐺𝑗 = 𝑁𝑆𝐺𝑗 + 1. 

Finally, the GW forwards < 𝑀2, 𝑀3, 𝑀4, 𝑁𝑆𝐺𝑗 , 𝑇2 > to SDj through the public network. 

 Step3: 𝑆𝐷𝑗  𝐺𝑊: {𝑀6, 𝑀7, 𝑇3} 

Once receiving the request from the GW, the SDj checks first if |𝑇2
∗ − 𝑇2| < 𝛥𝑇, and verifies 

whether 1 ≤ 𝑁𝑆𝐺𝑗 − 𝑁𝑆𝐷𝑗 ≤ N, where N is a threshold, which is set according to the specific 

applications requirements. If they do not hold, SDj terminates the session. Otherwise, SDj 

retrieves the nonce R2 from the M4 and prepares the session key through M5:  

 𝑅2
∗ = 𝑀4⊕ℎ(𝐾𝑆𝐺𝑗),  

 𝑀5 = 𝑀3⊕𝐾𝑆𝐺𝑗 ,  

 𝑀2
∗ = ℎ(𝑀5||ℎ(𝑇𝑜𝑘𝑒𝑛𝑢||𝐾 ||𝐼𝐷𝑆𝐷𝑗) ||𝐾𝑆𝐺𝑗||𝑅2

∗||𝑁𝑆𝐺𝑗 − 1||𝑇2).  

Afterward, if equation 𝑀2
∗ = 𝑀2 holds the user is authentic, the SDj generates a random number 

R3 and the current timestamp T3, and computes 𝑇𝑒 = 𝑇𝑥 ⊕ ℎ(𝐾𝑆𝐺𝑗) to check if the token is 

expired. If 𝑇𝑒 > 𝑇3 does not hold, this phase ends. Else, the SDj computes the session key and 

calculates the response to the GW:  

 𝑆𝐾 = ℎ(𝑀5||𝑅2
∗||𝑅3||𝑇3),  

 𝑀6 = ℎ(𝑆𝐾||𝑅3||𝐾𝑆𝐺𝑗||𝑁𝑆𝐺𝑗||𝑇3),  

 𝑀7 = 𝑅3⊕ℎ(𝑅2).  

Finally, the SDj derives a new shared secret key with the GW, 𝐾𝑆𝐺𝑗 = ℎ(𝐾𝑆𝐺𝑗||𝐼𝐷𝑆𝐷𝑗), 

updates its shared secret key 𝐾𝑆𝐺𝑗
∗ ← 𝐾𝑆𝐺𝑗 to ensure the perfect forward secrecy, updates the 

sequence number 𝑁𝑆𝐷𝑗 ← 𝑁𝑆𝐺𝑗 to maintain the synchronization and forwards  

< 𝑀6, 𝑀7, 𝑇3 > to the GW through the public network. 

 Step4: 𝐺𝑊 𝑈𝑖: {𝑀7, 𝑀8, 𝑀9, 𝑀10, 𝑇4} 

After receiving < 𝑀6, 𝑀7, 𝑇3 >, the GW checks if |𝑇3
∗ − 𝑇3| < 𝛥𝑇; if it holds, the GW retrieves 

the challenge of the smart device R3 using 𝑀7, the session key to compute M6: 

 𝑅3
∗ = 𝑀7⊕ℎ(𝑅2),  

 𝑆𝐾∗ = ℎ(ℎ(𝐼𝐷𝑖||𝐼𝐷𝑆𝐷𝑗||𝑅1
∗||𝑅2)||𝑅2||𝑅3

∗||𝑇3), 

 𝑀6
∗ = ℎ(𝑆𝐾∗||𝑅3

∗||𝐾𝑆𝐺𝑗||𝑁𝑆𝐺𝑗||𝑇3), 

Besides, the GW checks whether 𝑀6
∗ = 𝑀6 holds to ensure the legitimacy of the smart device. 

If it is incorrect, the GW abandons the connection. Otherwise, the GW generates a timestamps 

T4 and a new temporary identity 𝑇𝐼𝐷𝑖
∗ ≠ 𝑇𝐼𝐷𝑖. Then, the GW calculates a response to the user 

Ui including the session key:  
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 𝑀8 = 𝑅2⊕ℎ(𝐼𝐷𝑖|||𝑅1),  

 𝑀9 = ℎ(𝐼𝐷𝑖||𝑆𝐾
∗||𝑅3

∗||𝐾𝑈𝐺),  

 𝑀10 = 𝑇𝐼𝐷𝑖
∗⊕ℎ(𝑅2⊕𝑅3

∗),  

After, the GW updates its memory by a new-shared secret key with the user 𝐾𝑈𝐺𝑛𝑒𝑤 =

ℎ(𝐾𝑈𝐺||𝐼𝐷𝑖)  and with the smart device 𝐾𝑆𝐺𝑛𝑒𝑤𝑗 = ℎ(𝐾𝑆𝐺𝑗||𝐼𝐷𝑆𝐷𝑗), which ensure the perfect 

forward secrecy. Finally, the GW sends the response message < 𝑀7, 𝑀8, 𝑀9, 𝑀10, 𝑇4 > to the 

user Ui through the public channel. 

 Step5: After receiving < 𝑀7, 𝑀8, 𝑀9, 𝑀10, 𝑇4 > Ui checks the timeliness of T4: if equation 

 |𝑇4
∗ − 𝑇4| < 𝛥𝑇 holds, the SPs of the user retrieves the smart device and the GW challenges 

R2 and R3 from 𝑀8, 𝑀7 and the temporary identity using 𝑀10 to compute the session key and 

𝑀9: 

 𝑅2
∗ = 𝑀8⊕ℎ(𝐼𝐷𝑖||𝑅1),  

 𝑅3
∗ = 𝑀7⊕ℎ(𝑅2

∗), 

 𝑇𝐼𝐷𝑖
∗ = 𝑀10⊕ℎ(𝑅2

∗⊕𝑅3
∗), 

 𝑆𝐾∗ = ℎ(ℎ(𝐼𝐷𝑖||𝐼𝐷𝑆𝐷𝑗)||𝑅𝟏|𝑅2
∗)||𝑅2

∗||𝑅3
∗||𝑇3), 

 𝑀9
∗ = ℎ(𝐼𝐷𝑖||𝑆𝐾

∗||𝑅3
∗||𝐾𝑈𝐺), 

Then, the SP's user checks whether 𝑀9
∗ matches with the received 𝑀9. If it is correct, Ui 

considers that all the received message < 𝑀7, 𝑀8, 𝑀9, 𝑀10, 𝑇4 > is valid and then transmits 

a confirmation message to the GW, which confirm a session key is established successfully. 

The SP now updates the old 𝑇𝐼𝐷𝑖  with the new 𝑇𝐼𝐷𝑖
∗ and also updates the shared secret key 

with the GW. 𝐾𝑈𝐺𝑛𝑒𝑤 = ℎ(𝐾𝑈𝐺||𝐼𝐷𝑖) to preserve the perfect forward secrecy. Similarly, 

the GW computes a new value 𝐷𝑖
∗ = 𝑅𝑖⊕ℎ(𝑇𝐼𝐷𝑖

∗||𝐾) and replaces < 𝑇𝐼𝐷𝑖 , 𝐷𝑖 > with  

< 𝑇𝐼𝐷𝑖
∗, 𝐷𝑖

∗ >. Otherwise, if the 𝑀9
∗ is different from 𝑀9, the authentication fails. 

3.5.5. Password Change Phase 

During this phase, we offer the user the possibility to update periodically his password 

without the help of the GW. The required updates are explained in the following: 

 Step1: Ui inputs IDi and PWi into his smart phone SPs. Then, SP calculates: 

  𝑀𝑃𝑊𝑖
∗ = ℎ(𝐼𝐷𝑖⊕𝑃𝑊𝑖), 

  𝑅𝑖
∗ = 𝐴𝑖⊕𝑀𝑃𝑊𝑖

∗, 

 𝐾𝑈𝐺 = 𝐾𝑈𝐺
∗ ⊕ℎ(ℎ(𝐼𝐷𝑖

∗) ⊕ ℎ(𝑃𝑊𝑖
∗)), 

 𝑅𝑒𝑔𝑖
∗ = ℎ(𝐼𝐷𝑖||𝑅𝑖

∗||𝑀𝑃𝑊𝑖
∗||𝐾𝑈𝐺), 

Afterward, the SP verifies whether the condition 𝑅𝑒𝑔𝑖
∗  = 𝑅𝑒𝑔𝑖  holds. If it is not valid, 

SP ends the password change phase; otherwise, the SP retrieves the corresponding 

Token 𝑇𝑜𝑘𝑒𝑛𝑢
∗ = 𝑇𝐾𝑈𝑖⊕ℎ(𝐼𝐷𝑖⊕𝑅𝑖⊕𝑀𝑃𝑊𝑖  ⊕ 𝐾𝑈𝐺) and proceeds for further 

computations. 

 Step2: After verifying the legitimacy of Ui, the SP requests the user Ui to enter a new 

password. 
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 Step3: The user Ui inputs a new password 𝑃𝑊𝑖−𝑛𝑒𝑤, then the SP calculates: 

 𝑀𝑃𝑊𝑖−𝑛𝑒𝑤 = ℎ(𝐼𝐷𝑖⊕𝑃𝑊𝑖−𝑛𝑒𝑤), 

 

Figure.3. 6: Login, authentication and key agreement phase 
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 𝑅𝑒𝑔𝑖−𝑛𝑒𝑤 =  ℎ(𝐼𝐷𝑖||𝑅𝑖
∗||𝑀𝑃𝑊𝑖−𝑛𝑒𝑤||𝐾𝑈𝐺), 

  𝐴𝑖−𝑛𝑒𝑤 = 𝑅𝑖
∗⊕𝑀𝑃𝑊𝑖−𝑛𝑒𝑤, 

 𝑇𝐾𝑈𝑖−𝑛𝑒𝑤 =  𝑇𝑜𝑘𝑒𝑛𝑢
∗ ⊕ℎ(𝐼𝐷𝑖⊕𝑅𝑖⊕𝑀𝑃𝑊𝑖−𝑛𝑒𝑤⊕𝐾𝑈𝐺), 

 𝐾𝑈𝐺_𝑛𝑒𝑤
∗ = 𝐾𝑈𝐺⊕ℎ(ℎ(𝐼𝐷𝑖) ⊕ ℎ(𝑃𝑊𝑖−𝑛𝑒𝑤)). 

 

Finally, the SP's user drops the existing user information related to the old password  

< 𝑅𝑒𝑔𝑖, 𝐴𝑖, 𝑇𝐾𝑈𝑖 , 𝐾𝑈𝐺
∗ > and stores < 𝑅𝑒𝑔𝑖−𝑛𝑒𝑤, 𝐴𝑖−𝑛𝑒𝑤, 𝑇𝐾𝑈𝑖−𝑛𝑒𝑤 , 𝐾𝑈𝐺_𝑛𝑒𝑤

∗ > into its 

memory. Thus, the Ui can easily change the password without involvement of the GW. 

3.6. Security Evaluation 

In this section, we evaluate the security of the proposed scheme TBLUA, and show that it 

ensures many security properties and withstands most popular security attacks. For that, we 

analyze TBLUA security and provide formal verification using the AVISPA tool [145].  

3.6.1. Security Analysis  

In this section, we present a discussion about the main security analysis and the proof of 

properties that our proposed TBLUA protocol ensures. 

(i)  Anonymity of the User and the Smart Device 

An outsider person may try to guess the identities IDi and IDSDj. For that, we suppose that an 

adversary A traps all exchanged messages between user, GW and SDj. After the login phase, 

the user sends the login message, and we assume that A traps <

𝑇𝐼𝐷𝑖, 𝐶𝐼𝐷𝑖 , 𝐶𝐼𝐷𝑆𝐷𝑗 , 𝑀1, 𝑅0, 𝑇1 >. He cannot compute IDi and IDSDj from CIDi, M1 and CIDSDj 

without knowing 𝑅𝑖,  < 𝑇𝑜𝑘𝑒𝑛𝑢, 𝑅1, 𝐾𝑈𝐺 > and < 𝑇𝑜𝑘𝑒𝑛𝑢, 𝑅𝑖, 𝐾𝑈𝐺 >, respectively. During the 

authentication and key agreement phase, the GW hides IDi and IDSDj to compute the message 

< 𝑀2, 𝑀3, 𝑀4, 𝑇3 >. Consequently, the extraction of IDi and IDSDj using these information is 

computationally infeasible owing to property of hash function h(·). Furthermore, the identity 

IDi of Ui and IDSDj of smart device are not directly involved in < 𝑀6, 𝑀7 >, A cannot derive IDi 

and IDSDj when A traps < 𝑀6, 𝑀7 > during the protocol run. In addition, the GW hides IDi and 

IDSDj in < 𝑀7, 𝑀8, 𝑀9, 𝑀10 , 𝑇4 >, where the identities IDi and IDSDj are protected by h(·), thus 

the extraction is computationally infeasible and the probability of guessing is negligible. We 

can claim that A is unable to break the anonymity of the proposed protocol using public 

messages. 

(ii) Mutual Authentication Property  

In client-server communication model, mutual authentication is an extremely essential 

security aspect of any authentication protocol. In Step 2 of the login and authentication phase 

(step2 in Figure.3.5), the GW first ensures the legitimacy of the user Ui before starting further 

computation. In Step3, the SDj checks if the condition 𝑀2
∗ = 𝑀2 to authenticate the user Ui and 

the GW This latter checks the legitimacy of the smart device through verifying the condition 

𝑀6
∗ = 𝑀6 in Step4. Finally, after receiving < 𝑀7, 𝑀8, 𝑀9, 𝑀10 , 𝑇4 > the Ui authenticates GW 
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and SDj in Step 5 by checking the received 𝑀9. Hence, the authentication is ensured mutually 

between all the participants during the authentication phase in all the exchanged messages. 

(iii) Perfect Forward Secrecy  

The perfect forward secrecy (PFS) feature prevents the leakage of any prior session key even 

if the secret key is revealed. In the proposed scheme, let suppose the adversary has obtained the 

long-term shared secret keys between both the (user, gateway) and the (smart device, gateway) 

that are KUG and KSG, respectively. After each transaction, both the user and the GW update the 

keys KUG; KUG.
∗ = h(KUG.||𝐼𝐷𝑖), and the smart device and the GW update the shared secret keys 

KSG; KSG.
∗ = h(KSG.||𝐼𝐷𝑆𝐷𝑗) by one-way hash function. Under this assumption, if the adversary 

compromises a smart device or the smart phone, he can manage only KSG.
∗ and KUG

∗ . Since the 

hash function is one way, the adversary cannot obtain KUG. and KSG. from KUG.
∗

 and KSG
∗ . 

Therefore, as the identities of the user and the smart device are hidden the adversary cannot 

obtain the future shared keys. Thus, the perfect forward secrecy is retained in our proposed 

protocol TBLUA. 

(iv) Mobile Device Stolen Attack 

In this attack, an adversary A attempts to extract confidential information and then tries to 

misuse this information. We assume that A has got the mobile device of a legal user Ui and 

extracted all the information < 𝑇𝐼𝐷𝑖 , 𝑅𝑒𝑔𝑖, 𝐴𝑖 , 𝑇𝐾𝑈𝑖 , 𝐾𝑈𝐺
∗ > with the help of the power analysis 

attack [143]. Note that 𝑅𝑒𝑔𝑖 is protected by one-way hash function h(.). Therefore, A is not 

capable to extort any information from 𝑅𝑒𝑔𝑖 owing to the one-way property of h(·).The 

probability of guessing IDi and 𝑃𝑊𝑖 using 𝑅𝑒𝑔𝑖 is negligible. In addition, A is unable to 

compute 𝑀𝑃𝑊𝑖  without knowing 𝑅𝑖. The confidential information in the mobile device is 

𝑇𝑜𝑘𝑒𝑛𝑢, which is used to compute 𝑇𝐾𝑈𝑖, but the adversary A cannot compute Tokenu without 

knowing < 𝐼𝐷𝑖 , 𝑅𝑖, 𝑀𝑃𝑊𝑖, 𝐾𝑈𝐺𝑖 >. In addition, computing 𝑅𝑖is not feasible without knowing 

the secret key of the GW, which makes the proposed protocol withstand this attack. 

(v)  User Impersonation Attack  

In an impersonation attack, an adversary A makes efforts to impersonate the identity of a 

legitimate user Ui. In our scheme, to forge a user, the adversary A must generate a valid value 

< 𝑇𝐼𝐷𝑖 , 𝐶𝐼𝐷𝑖 , 𝐶𝐼𝐷𝑆𝐷𝑗 , 𝑀1, 𝑅′0, 𝑇′1 > by incorporating a new random number and timestamp to 

be accepted by the GW. However, to compute 𝐶𝐼𝐷𝑖, 𝐶𝐼𝐷𝑆𝐷𝑗, and 𝑀1, he needs the correct 

identities IDi, IDSDj, the secret shared key KUG, and Tokenu. Besides, the identities and the token 

are not transmitted in the public channel clearly, and the shared secret key KUG is updated after 

each transaction. Therefore, our proposed scheme can resist the user impersonation attack. 

(vi) Offline Password Guessing Attack 

Offline password guessing attack is the most damaging threat, where an adversary chooses 

a password from a dictionary to guess the sensitive information of the user. We suppose that A 

has got the mobile device of Ui and extracted the stored information in its memory 
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< 𝑇𝐼𝐷𝑖 , 𝑅𝑒𝑔𝑖, 𝐴𝑖 , 𝑇𝐾𝑈𝑖 , 𝐾𝑈𝐺
∗ >. In the proposed protocol, 𝑃𝑊𝑖 is used to compute the masque 

password 𝑀𝑃𝑊𝑖  =  ℎ(𝐼𝐷𝑖⊕  𝑃𝑊𝑖). Otherwise, using the mobile device information, A may 

guess 𝑃𝑊𝑖 from (𝑅𝑒𝑔𝑖 = ℎ(𝐼𝐷𝑖||𝑅𝑖 ||𝑀𝑃𝑊𝑖 ||𝐾𝑈𝐺), and 𝐴𝑖 = 𝑅𝑖⊕𝑀𝑃𝑊𝑖); however, the 

probability to get the true 𝑃𝑊𝑖 is negligible in polynomial time. Therefore, A cannot guess the 

password PWi, and our scheme resist the offline password guessing attack.  

(vii) Desynchronization Attack 

Our scheme employs different shared keys between the user, GW and smart devices and 

one-time hash function techniques to provide PFS. Furthermore, an additional synchronization 

method is essential to maintain the consistency of several one-time values between the GW and 

the smart device. Hence, we use the sequence number to resist the desynchronization attack. If 

an adversary A blocks the message flow between the smart device and the GW, the 

synchronization will be lost, and the hash chain values of the two participants will not match 

each other. For that, we use a sequence number 𝑁𝑆𝐺𝑗  and 𝑁𝑆𝐷𝑗 to record the updated number 

of hash chain, where NSGj is the sequence number of the GW side. Thus, after the GW sends 

the message flow, the value of hash chain 𝑁𝑆𝐺𝑗  in GW side must be updated. Besides, the SDj 

receives the message < 𝑀2, 𝑀3, 𝑀4, 𝑁𝑆𝐺𝑗 > and synchronizes the one-time hash chain value 

through performing the operation below 𝑁𝑆𝐺𝑗 − 𝑁𝑆𝐷𝑗 time hash functions. 

(viii) Physical Node Capture Attack 

Capturing node attack enables an adversary to extract sensitive information stored in those 

captured smart devices to compromise a secure communication among non-compromised smart 

devices in the network. Let’s assume that SDj is a compromised smart device, where an 

adversary A can extract the secret key KSGj and even the session key SK, established between 

the compromised node SDj and a legitimate user Ui. In the proposed authentication protocol, 

we use distinct shared secret keys between the gateway and each smart device SDi. Thus, SDi 

establishes a distinct session key with Ui, which is different from all other session keys in the 

network. Therefore, all non-compromised smart devices can still communicate with the 

legitimate user Ui with higher secrecy. Hence, our proposed scheme withstands smart device 

capture attacks. 

(ix) Node Impersonation Attack  

An impersonation attack means that a malicious attacker may try to masquerade as a valid 

smart device SDj. If an attacker wants to impersonate as a smart device SDj node, he/she will 

need to forge the message < 𝑀6, 𝑀7, 𝑇3 >, sent to the GW. For that, the adversary needs to 

know both identities IDi and IDSDj to calculate the session key embedded in 𝑀6 and the 

corresponding shared secret key KSG of SDj. However, it is computationally hard for adversary 

A to get the true value as its information is protected by the one-way hash function. Hence, we 

can declare that our protocol resists the node impersonation attack. 
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(x)   Token Impersonation Attack 

In this attack the adversary A tries to create a new token and duplicates an existing token, 

where 𝑇𝑜𝑘𝑒𝑛𝑢 =  𝐸𝑘 (𝐼𝐷𝑖 , 𝐼𝐷𝐺𝑊 , 𝐺𝑖 , 𝑇𝑒). If adversary A intercepts the messages exchanged 

between user, GW and SDj node, he cannot guess both identities IDi and IDGW, which are 

protected with the one-way hash function h(.). In addition, A cannot create a token without prior 

knowledge of the GW's long-term secret key K, which confirm that our scheme is resistant to 

this attack. 

(xi) Token Modification Attack 

An attacker may generate a fake token or modify the token contents (such as the expiration 

time or the list of the identity of SDj) of an existing token. Thus, a malicious client may modify 

the assertion to gain access to information that they should not be able to view. It can be 

observed that the token is protected with a symmetric cipher function using the secret key of 

GW. Hence, A cannot either modify or delete any information of the token. Therefore, our 

scheme resists against this attack. 

(xii)  Token Replay Attack 

Under this attack, an attacker attempts to use an expired token that has already been used 

with a user in the past to get access in the future. However, A cannot reuse a token, as each 

token is characterized by an expiration time parameter, and the use of this token is limited for 

a prefixed time. 

3.6.2. Formal Verification Using AVISPA Tool 

We described our protocol using the AVISPA's High-Level Protocol Specification Language 

(hlpsl) [145]. The AVISPA tool allows the designers of security protocols to detect potential 

attacks and verify if their protocols meet the attended security services. In our protocol, we 

defined three roles in the HLPSL language, named: the gateway (GW), the smart device (SD), 

and the user (U) roles, which correspond to the different agents of our system. Specifically, we 

modeled a channel (dy) in our specifications based on Dolev-Yao intruder model, which means 

that all the exchanged messages between all the agents (GW, SD, U) are intercepted by the 

intruder. This last can analyze, modify the intercepted messages, or eventually decrypts them if 

he knows the required keys. In our protocol, we examine some security properties, which are 

specified in the goal section of HLPSL specifications, through verifying the following 

properties: 

 GW authenticates U on ℎ(𝐼𝐷𝑖||𝑅1||𝑇𝑜𝑘𝑒𝑛𝑢
∗ ||𝐾𝑈𝐺||𝑇1): U generates a nonce value 

𝑅1 and sends the challenge 𝑅0 = ℎ(𝐾𝑈𝐺||𝑅𝑖
∗) ⊕ 𝑅1. If GW is able to construct 

ℎ(𝐼𝐷𝑖||𝑅1||𝑇𝑜𝑘𝑒𝑛𝑢
∗ ||𝐾𝑈𝐺||𝑇1) from the challenge 𝑅0, GW authenticates U.  

 

 SD authenticates GW on ℎ(𝑀5||ℎ(𝑇𝑜𝑘𝑒𝑛𝑢||𝐾 ||𝐼𝐷𝑆𝐷𝑗) ||𝐾𝑆𝐺𝑗||𝑅2
∗||𝑁𝑆𝑗0 − 1||𝑇2): GW 

generates a nonce value 𝑅2 and sends the challenge 𝑀4 = 𝑅2⊕  ℎ(𝐾𝑆𝐺𝑗). If the SD is 

able to construct ℎ(𝑀5||ℎ(𝑇𝑜𝑘𝑒𝑛𝑢||𝐾 ||𝐼𝐷𝑆𝐷𝑗) ||𝐾𝑆𝐺𝑗||𝑅2
∗||𝑁𝑆𝑗0 − 1||𝑇2) from the 

challenge 𝑀4, SD authenticates GW.  
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 GW authenticates SD on ℎ(𝑆𝐾||𝑅3||𝐾𝑆𝐺𝑗||𝑁𝑆𝑗0||𝑇3): SD generates a nonce value 

𝑅3 and sends the challenge 𝑀7 = 𝑅3⊕ℎ(𝑅2). If GW is able to construct 

ℎ(𝑆𝐾||𝑅3||𝐾𝑆𝐺𝑗||𝑁𝑆𝑗0||𝑇3), from the challenge 𝑀7, GW authenticates SD. 

 

 U authenticates SD on ℎ(𝐼𝐷𝑖||𝑆𝐾
∗||𝑅3

∗||𝐾𝑈𝐺): SD generates a nonce value 𝑅3 and sends 

the challenge 𝑀7 = 𝑅3⊕ℎ(𝑅2). If U is able to construct ℎ(𝐼𝐷𝑖||𝑆𝐾
∗||𝑅3

∗||𝐾𝑈𝐺), from 

the challenge 𝑀7, U authenticates SD. 

 

We performed the test through AVISPA tools using the On-the-fly Model-Checker (OFMC) 

that executes protocol falsification and bounded verification by exploring the transition system. 

Besides, the backend OFMC ensures an automatic verification of security properties.  We can 

see clearly in figure 3.7 the obtained results on OFMC that prove the security of our TBLUA 

protocol. 

 

 

Figure.3. 7: Results reported by the OFMC backend 
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3.7. Performance Analysis 

In this section, we analyze the performance of our scheme TBLUA regarding the 

functionality features, communication, and computation costs. In fact, we compare our 

proposed scheme with four prior related works [58][136][137][142]. Furthermore, we only 

concentrate on comparing communication and computation costs during login and 

authentication phases since the registration phase, token distribution phase, and password 

update phase are not used frequently. 

3.7.1. Functionality Comparison 

In this subsection, we present a comparison of the functionality features between the existing 

schemes and the proposed scheme in Table 3.3. We consider many security features such as 

mutual authentication, user anonymity, offline password guessing, and perfect forward secrecy, 

etc. In addition, we present many possible attacks for such an environment, especially we 

consider token attacks, where an attacker may abuse the token to compromise a communication. 

As shown in table 3.3, our proposed scheme can resist against various kinds of known attacks 

and fulfill the desirable security features particularly the perfect forward secrecy. Thus, the 

proposed scheme is more secure compared to other schemes.  

Table 3. 3: Functionality Features Comparison 

Properties [16] [18] [23] [5] TBLUA 

Mutual Authentication - + + + + 

Key agreement + + + + + 

Intractability - - + + + 

User anonymity - - + + + 

SD. anonymity - - + + + 

Off line PW guessing - - + + + 

User impersonation - - + + + 

GW impersonation - - + + + 

SD impersonation - - + + + 

Privileged-insider - - + + + 

Perfect Forward Secrecy  - + - - + 

Replay attack - - + + + 

Man-in-the-middle - - + + + 

Stolen verifier + - + + + 

De-synchronization - - - - + 

GW bypassing - - + + + 

Node capture - - + + + 

Token impersonation N/A N/A N/A N/A + 

Token replay N/A N/A N/A N/A + 

Token modification N/A N/A N/A N/A + 
Note: N/A: Not Aplicable, (+): resists, (-): does not resist 
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3.7.2. Computation Costs Comparison 

In the computation comparison, we study the evaluation of our proposed scheme in terms of 

the number of executions of cryptographic operations such as encryption, decryption, and hash 

functions with respect to the number of performed actions. We consider the notations Th=0.5ms 

to be the time for one hashing operation (usage of SHA-256 hash function). Furthermore, 

TEnc=TDec=8.7ms be respectively the time for one encryption/decryption using symmetric 

cryptography operations, and TECC=TFE=63.075ms represent the time for one elliptic curve 

cryptography and one fuzzy extraction operation [128][58] respectively. Besides, we omit XOR 

operation due to its negligible computational cost. In Table.3.4, we provide computation cost 

separately for user, gateway node, and smart device during the login and authentication phase. 

Table 3. 4: Computation Costs Comparison 

Scheme User GW Smart Device 

[136] 7Th= 3.5ms 5Th= 2.5ms 7Th= 3.5ms 

[137] 2TECC+7Th= 129,6ms 9Th=4,5ms 2TECC+5Th= 128,6ms 

[142] 7Th+TDec+TEnc= 20ms 
11Th+2*TDec+2* TEnc= 

40.3ms 

4Th+TDec+TEnc= 

19.4ms 

[58] 
TFE+13Th+TDec+ TEnc= 

87.0ms 
5Th+2TDec+2TEnc= 37.3ms 

4Th+TDec+TEnc= 

19.4ms 

TBLUA 16Th= 8ms 19Th+TDec= 18.2ms 7Th= 3.5ms 

For the smart device and the user, we notice that our protocol minimizes the number of 

encryption/decryption operations against increasing the number of hash computations. 

However, the cost of a hash function is negligible compared to the high cost of 

encryption/decryption operations. Indeed, our scheme TBLUA offers a lower computation cost 

compared to the other schemes, which proves that a TBLUA is a lightweight solution. Figure.3.8 

plots the computation costs of our scheme compared to existing methods [58][136][137][142] 

presented in Table.3.4. Actually, the computation cost on the smart device presents less value, 

which is explained by using the hash function operation to achieve the authentication process. 

Besides, the cost on the user's smartphone and the gateway is less than the cost in 

[58][137][142] schemes but higher than in [136] scheme. In fact, as shown in the table.3.3, we 

can see that [136] fulfill only key agreement security feature, which explains that their solution 

is not secure. Finally, we confirm that TBLUA presents a better computation cost with respect 

to the security issues in such an environment.  
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Figure.3. 8: Computation costs 

3.7.3. Communication Costs Comparison 

In the communication comparison, we evaluate our scheme in terms of the number of 

messages exchanged during the login and authentication phase execution. We assume 160 bits 

as the length of the user identity and 32 bits as the length of the smart device's identity. 

Furthermore, we consider the size of the challenge equal to 128 bits, while the timestamp is 

equal to 32 bits, and the size of the sequence number is set to 64 bits. In addition, the length of 

each hash value is set to160 bits (i.e., if SHA-1 hashing algorithm is applied [144]), and the size 

of symmetric encryption/decryption block size is set to 128 bits (i.e., if we use AES-128 

algorithm [141]). For elliptic curve cryptography (ECC) operations, we assume each ECC 

value's length is equal to 160-bit. 

During the authentication phase, the user in our scheme needs only to transmit the request of 

authentication below: {𝑇𝐼𝐷𝑖 , 𝐶𝐼𝐷𝑖, 𝐶𝐼𝐷𝑆𝐷𝑗 , 𝑀1, 𝑅0, 𝑇1}. In fact, the communication cost can be 

calculated as follow:  

𝑢𝑠𝑒𝑟𝑐𝑜𝑚𝑚 =  𝑠𝑖𝑧𝑒 (𝑇𝐼𝐷𝑖 +  𝐶𝐼𝐷𝑖 + 𝐶𝐼𝐷𝑆𝐷𝑗 + 𝑀1 + 𝑅0 + 𝑇1) 

𝑢𝑠𝑒𝑟𝑐𝑜𝑚𝑚 = 160 + 160 + 32 + 160 +  128 + 32 =  672 bits = 84 𝐵𝑦𝑡𝑒𝑠  

In addition, the smart device should only response to the authentication request to the 

gateway {𝑀6, 𝑀7, 𝑇3}, where 𝑀6 = ℎ(𝑆𝐾||𝑅3||𝐾𝑆𝐺𝑗||𝑁𝑆𝑗0||𝑇3),  and 𝑀7 = 𝑅3⊕ℎ(𝑅2). 

Hence, we can conclude the communication's cost of the smart device is:  

𝑠𝑚𝑎𝑟𝑡_𝑑𝑒𝑣𝑖𝑐𝑒𝑐𝑜𝑚𝑚 =  𝑠𝑖𝑧𝑒 ( 𝑀6 +𝑀7 + 𝑇3) 

𝑠𝑚𝑎𝑟𝑡_𝑑𝑒𝑣𝑖𝑐𝑒𝑐𝑜𝑚𝑚 = 160 + 160 + 32 = 352 bits = 44 𝐵𝑦𝑡𝑒𝑠 

Finally, the gateway, which is the relay between the user and the smart device, transmits these 

messages during the authentication phase: 𝐺𝑊𝑆𝐷𝑗: {𝑀𝟐, 𝑀3, 𝑀4, 𝑁𝑆𝑗0, 𝑇2}, and 

𝐺𝑊 𝑈𝑖: {𝑀7, 𝑀8, 𝑀9, 𝑀10, 𝑇4}. Thus, the GW communication cost is calculated as follow:  
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𝐺𝑊𝑐𝑜𝑚𝑚 =  𝑠𝑖𝑧𝑒 ( 𝑀2 +𝑀3 +𝑀4 + 𝑁𝑆𝑗0 + 𝑇2 +𝑀7 +𝑀8 + 𝑀9 +𝑀10 + 𝑇4) 

𝐺𝑊𝑐𝑜𝑚𝑚 = 7 × 160 + 2 × 32 + 64 = 1248 𝑏𝑖𝑡𝑠 = 156 𝐵𝑦𝑡𝑒𝑠  

The Figure.3.9. plots the communication cost comparison with benchmarking schemes. Indeed, 

we can see that our scheme presents an enhancement in the communication cost compared to 

[136] [137] [58]. Otherwise, TBLUA presents a desirable communication costs compared to 

[142] scheme. In fact, as presented in the Table.3.3, [142] scheme does not ensure the perfect 

forward secrecy and cannot resist the desynchronization attack. Whereas, TBLUA achieves the 

perfect forward secrecy through updating the shared secret keys after each transaction and 

transmitting a sequence number that resists to desynchronization attack, which explain the 

communication cost of TBLUA comparing to the [142] scheme. We conclude that our proposed 

scheme offers a tradeoff between the security and the communication costs.  

 
Figure.3. 9: Communication costs 

3.8. Proof of Concept Within Smart Hotel Use Case 

The smart hotel is an intelligent system with a range of IoT objects working together to make 

the guests' stay more comfortable, lower the energy consumption, and help the staff and 

management with their tasks. The high density of guests with a regular change of reservation 

status might be problematic in such an intelligent environment. Thus, securing communication 

in such a smart system is primordial. In what follow, we present the architecture of the smart 

hotel use case used in the context of PARFAIT project [7]. Then, we study the possible 

vulnerabilities and the risk in the corresponding use case. Finally, we describe the designed 

prototype and the different performed simulation  

3.8.1. Smart Hotel Use Case 

To secure a smart hotel, we design and create an architecture of an intelligent control system 

that can be used in the hotel environment in the context of the PARFAIT project, such as shown 
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in Figure.3.10. Our architecture is composed of a reservation smart hotel server responsible for 

generating the token of authentication for guests based on the period of accommodation and the 

availability of rooms in the hotel, and for the employers basing on their tasks. The reservation 

server communicates with the registration authority server to sign the users' initial enrollment 

requests with the smart hotel. These servers may be locally or maintained in the cloud. At this 

level, the registration authority, after receiving requests, registers the user under the smart hotel 

system and issues certificated tokens to the corresponding users.  

The smart hotel comprises an extensive range of IoT objects that communicates via the 

Internet through the ZigBee gateway. This latter is maintained to connect the IoT objects to the 

external world network. In particular, the smart lock receives the token of identification through 

the gateway node to access the legitimate user during the accommodation. All the necessary 

information about the guest is loaded into the system from the registration phase previously 

filled. Consequently, the room environment, such as temperature or lighting, is prepared before 

the guest's arrival based on his/her preferences. At the guest's arrival, he/she could unlock the 

doors using the sensors on his/her smartphone, such as NFC. We can confirm that the smart 

hotel is also beneficial for the hotel staff as the information about the guest's preferences can 

save time if they have special requests.  

 
Figure.3. 10: Smart Hotel architecture 
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3.8.2. Risk Management and Vulnerability 

Smart hotel based on IoT network contains several critical components required for the proper 

functioning of guest and hotel staff, prone to several vulnerabilities and threats. These vulnerabilities 

allow a malicious entity to attack the IoT devices and threaten security goals. It is essential to understand 

the vulnerabilities and possible attacks at the different communication stack layers in this context. Table 

3.5 shows the principal vulnerabilities that can be exploited in the smart hotel environment reporting 

different attacks that menace the smart hotel's main different components.  

Table 3. 5: Vulnerability analysis of a smart hotel  

Vulnerability exploited Attack \ threat Consequence(s) 

Communication network  

Vulnerabilities in the initial 

handshake between a user's 

smartphone and the smart 

lock. 

Man-in-the-middle attack 

The adversary can eavesdrop on the 

communication and inject fake 

messages. 

Weak link-layer 

authentication and lack of 

anti-replay protection 

Denial of Service (DoS) 

attack 

Smart hotel unavailability and 

connection interruption 

Lack of network access 

control. 
Eavesdropping attack 

The intercepted messages may contain 

sensitive data information related to user 

accommodation. 

Weak authentication and 

anti-replay protection. 
Spoofing attack 

The adversary can transmit fabricated 

data to a smart lock from a fake source. 

Authentication packets 

shortage protection 
Data tampering 

The adversary can delete or replace part 

or all of eavesdropped information. 

Weak anti-replay protection. Replay attack 
The adversary could reuse the guest 

request to get access to the room 

Sensitive traffic to identify 

the session token is not 

protected. 

Hijacking attack 
The adversary can use the token to make 

a request as a user 

Weak authentication 

process: manipulation of 

unknown data. 

Desynchronization attack 

Interrupting communication between 

guest and smart lock to cause a sequence 

of retransmissions 

Mobile application  

Insufficient knowledge and 

lack of awareness. 
Phishing attacks 

An adversary can gain access to guest's 

accommodation information using 

phishing mail techniques such as 

fraudulent notification that contains 

malware. 

SLack of encryption, and 

unprotected communication 

network. 

Sniffing attack 

An adversary could get guest personal 

data such as his/her name, identity, and 

password. 
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Misconfigure the smart 

hotel's application on guest's 

smart phone. 

Software attacks (malware, 

viruses, worms, etc.) 

Software configuration updates and 

changes in guest monitoring devices can 

lead to a system malfunctioning. 

Limited resources Data flooding attack 

Exhausted memory resources and the 

guest could not make a request to access 

the room.  

Weak authentication and 

access control mechanisms. 
Impersonation attack 

The adversary masquerading as a 

legitimate guest can control and access 

the smart lock. 

Server 

Insufficient knowledge and 

lack of awareness. 
Social engineering attack 

An adversary can gain access to guest's 

accommodation information using social 

engineering techniques that contains 

malware. 

Weak application and 

network layer security 

Denial of Service (DoS) 

attack 

Guest cannot access to their 

accommodation information and smart 

hotel reservation server cannot perform 

any operation. 

Manufacturing fault. -

Unprotected interfaces. -

Weak application and 

network layer security. 

Hardware failure 

The guest cannot access to their 

reservation information, and all the 

smart hotel services 

Smart lock  

Insufficient cryptography of 

authentication factor 
Brute force attack  

An adversary could get the guest 

password and then get access and 

control to the guest room  

Limited resources Data flooding attack 

Exhausted memory resources and the 

lock could not respond to the guest 

request 

3.8.3. Design of a Smart Lock Prototype 

This section illustrates the implementation of the smart lock prototype designed to 

authenticate users in the context of the PARFAIT project [7]. In fact, our testbed, as shown in 

Figure 3.11, contains (A) the smartphone, (B) the server, and (C) the smart lock; the smart lock 

comprises two communicating interfaces: an NFC module to communicate with the smartphone 

and a ZigBee module to communicate with the server. Besides, the server is composed of two 

main parts; the first one is connected to the Internet responsible for interconnecting smartphones 

to our system, while the second part is joined through the ZigBee to the smart lock.  
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Figure.3. 11: Smart Hotel prototype 

The smart hotel use case involves three main phases detailed hereafter, including the (i) 

reservation phase, (ii) token generation and distribution, and (iii) user access phase.  

 The reservation phase:  

The user needs to connect to the smart hotel application by creating an account with his/her 

name and password. On the reservation application page, the user fills in the necessary 

information (name_identity, start_date, depart_date, room_number) to make a room 

reservation. All filled information are organized to prepare a request to the server.  

                                    

Figure.3. 12 : Reservation phase 
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 The token generation and distribution phase:  

Once the server receives the smartphone's reservation request, it starts to process token 

generation according to the request's validity. Indeed, the server verifies the dates of 

accommodations and their availability in the smart hotel. At this level, if the dates are valid, the 

server proceeds to generate a software token of identification based on AES (Advanced 

Encryption System), using the user identity, the smart lock identity, and the period of the 

accommodation, as shown in Figure 3.13:  

𝑇𝑜𝑘𝑒𝑛 =  𝐸𝑛𝑐𝑟𝑦(𝐼𝐷𝑖, 𝐼𝐷𝑆𝐿 , 𝑇𝑒), Te is the period of the accommodation 

 

Figure.3. 13: Token generation 

After successfully generating the token, the server stores the user credentials in its database 

MySQL and transmits the generated token securely to the user through the Internet with a PIN 

access code. Besides, the server transfers the token to the corresponding smart lock through the 

ZigBee interface. This data transmission involves different random challenges to ensure the 

smart lock's legitimacy, as mentioned in section 3.5.3. 

 The User Access phase:  

Throughout this phase, a lightweight authentication is achieved between the user and the 

smart lock, as shown in section 3.5.4, and two scenarios are possible: authorized access or a 

denied access.  



73 
 

 Authorized access: through using the smart hotel application, a legitimate user fills the 

access page with the PIN code and then, after activating the NFC shield, approaches the 

smartphone to the smart lock. At this moment, an authentication request is sent to the smart 

lock with the valid token. After receiving the request, the smart lock verifies the received 

access token's legitimacy and expiration time. Once the data validation is completed 

successfully, a session key is established between the user and the smart lock for secure 

access, and the smart lock is opened as figured in Figure. 3.14: 

 Denied access: through this scenario, we verified that only a user with a valid token, 

including the time expiration, the user's identity, could access the smart lock. In fact, we 

tried the access using a false token with an expired period, and then the request was rejected. 

Besides, with a non-expired token but a wrong user's identity, the smart lock stills locked 

and refuse the request, as mentioned in Figure. 3.15.  

 

Figure.3. 15: Unauthorized access 

Figure.3. 14: Authorized access 
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All information of the user access phase is sent to the local server promptly through the 

ZigBee wireless communication. Besides, in the context of the PARFAIT project, our local 

server communicates this data securely to the Ericsson MQTT broker. A successful access to 

the smart lock sent to Ericsson MQTT is shown in Figure 3.16 (a) and the unsuccessful access 

is shown in Figure 3.16(b). 

 

(a) 

 

(b) 

Figure.3. 16: (a) Successful access and (b) Unsuccessful access 

To sum up, the authentication procedure using a smartphone that communicates via the NFC 

works correctly. The user needs to download our smart hotel's application, and then he/she 

could ensure the reservation by choosing the date of reservations and the room number. Besides, 

a PIN code will be sent to the user after a successful reservation. Finally, using the delivered 

code PIN, the user could get access to the corresponding room during the reservation dates 

securely, and all access information is sent promptly to the local server, as well as to the 

Ericsson MQTT server.   

3.9. Conclusion  

In this chapter, we have proposed a lightweight authentication protocol based on token 

concept to ensure authentication for a period of time and response to the needs of modern IoT 

applications (smart hotel, smart office, etc.). Therefore, the proposed protocol, TBLUA, could 

be adopted in any system reservation to ensure mutual authentication between the 

communicating parties (User, GW, smart device). In particular, the concept is based on adding 

a new security layer through adopting the software token, which enhances the security level. In 
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fact, the user could gain access securely to any smart device for a predefined interval of time 

with respect to the efficiency capability. Furthermore, we demonstrated the tradeoff between 

the effectiveness and efficiency of the proposed TBLUA. Indeed, the security analysis, using 

the AVISPA toolkit, showed that our protocol is robust against various attacks and provides 

relatively more security features such as anonymity and perfect forward secrecy. Moreover, we 

have demonstrated through performance analysis that TBLUA has a low computation and 

communication overhead compared to benchmarking schemes. Finally, a proof of concept is 

conducted, where we designed the smart hotel use case that ensure a successful authentication 

through the smart lock prototype.  

In the next chapter, we address the problem of allowing many users access to the group of 

IoT devices. We propose a novel decentralized group key management for access control in an 

IoT environment that aims to control and manage users' access according to their subscriptions.  
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4.1. Introduction 

As shown in the previous chapter, user authentication is the primary security issue in the IoT 

environment as the IoT network is progressively permeating every aspect of our daily lives and 

is widely used in various kinds of applications (e.g., smart city/hotel/office) [154]. Recently, a 

new productive ground for developing a new type of group-based applications has been 

presented due to the increasing number of connected objects in the wireless networks. Mostly, 

we cite, for example, the wireless sensor networks [146], mobile ad-hoc networks [147], and 

IoT environment [80]. In fact, in the IoT environment, which is characterized by a large scale 

of connected devices, IoT objects (data subscribers) could request to communicate with the 

same IoT devices (data publishers). Thus, grouping communication might alleviate the IoT 

network, but it produces new security challenges. To safeguard IoT data from tampering and 

unauthorized access, designing an appropriate access control for group-based applications is 

the most critical and necessary security issue than ever. To ensure this, group key management 

(GKM) is one promising approach, which would be used to provide access control to data 

streams for legitimate users only [80]. GKM consists of creating a group key shared between a 

devices' group and its current subscribers, such that the device can encrypt its data, and only 

the subscribers can decrypt it. This encryption-based access control mechanism is suitable for 

large IoT environments characterized by a dynamic structure, where IoT users change their 

interest frequently over time. Indeed, GKM needs to disseminate permission keys when new 

members join, or old ones leave the system. Therefore, it does not require a continuously 

connected server to manage the access control.  

Besides, the limited capabilities of IoT devices and the frequent and dynamic changes of the 

network had given birth to new challenges in the IoT domain. Given that, whenever a new user 

or IoT node is granted to join or leave the network, a new shared key should be distributed to 

DGKM-AC: Decentralized Group Key 
Management for Access Control in IoT 

Chapter 4 

 

Chapter 4 



77 
 

authorized users in the network, which can cause a severe problem with rekeying overhead. 

Several generic solutions, based on the centralized structures [80] and symmetric pre-shared 

key framework [146], have been introduced throughout the literature. However, these schemes 

are not entirely applicable to all IoT environments, as IoT networks are composed mainly of 

resource-constrained devices. Additionally, the current GKM schemes for access control in IoT 

networks are not suitable for a scalable and dynamic IoT network with frequent changes. 

In fact, many users can subscribe to numerous services offered by different IoT devices and 

change their interests frequently over time. Thus, maintaining an efficient GKM in a dynamic 

IoT environment remains a challenging issue due to the rekeying process that affects all 

members in the same group for joining/leaving events. Therefore, all members should update 

their shared group access keys. Hence, an efficient group key mechanism should be introduced 

to reduce the rekeying dependence of members in the same group, and thus reducing the 

overhead. 

To solve the rekeying dependence, minimize resulting overhead and achieve scalable access 

management in a dynamic IoT environment, this chapter introduces a new Decentralized 

Lightweight Group Key Management Architecture for Access Control  named DLGKM-AC. 

We consider the smart hotel use-case mentioned in the previous chapter, in the context of the 

European project PARFAIT [7]. In this scenario, key cards and smartphones might be 

interchangeably used to give guests access permissions in different rooms. They can also be 

used to control the usage of various facilities according to room classes’ and purchased services. 

When a guest checks out and the room becomes vacant, devices should stop sending the room’s 

information, like temperature, cleaning status, hotel services status, etc., and deny access to the 

room by blocking the smart lock for this guest.  

The main idea of DLGKM-AC is to create an efficient and flexible mechanism to secure 

the distribution of content to eligible subscribers. In particular, DLGKM-AC is a hierarchical 

scheme comprising a central Key Distribution Center (KDC) and several Sub Key Distribution 

Centers (SKDCs) to manage permission keys’ dissemination .  

The remainder of this chapter is structured as follows: First, we briefly present the related 

work in the literature. Then, we discuss some background necessary to understand the proposed 

scheme before presenting the overall system architecture, attacker model, and system 

requirements. Subsequently, we detail the proposed DLGKM-AC scheme before analyzing its 

security and its resistance to various attacks. Finally, we study its performance in terms of 

storage, communication, and computation overheads.  

4.2. Related Works 

GKM is essential for group communication to secure group data. More specifically, GKM 

guarantees access control in the group communication, where the group members share a group 

key to define the access permissions. In particular, the dynamic nature of group 

communications in IoT environments makes safeguarding data from unauthorized access a 

significant challenge. Indeed, it leads to a rekeying process, which causes significant network 
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resource consumption. Hence, it is crucial to reduce the overhead when updating shared keys 

among subscribers and publishers. 

Table 4.1 summarizes and classifies existing GKM solutions based on different attributes 

and criteria as follows: (i) Environment of its application, such as wired Internet [146], wireless 

sensor networks (WSN) [80][148][112], ad hoc networks [147], wireless body area networks 

(WBAN) [149] and IoT environment [113][122]. (ii) Network model of the GKM access 

control that could be centralized, decentralized, or distributed. (iii) Used cryptography types. 

Then, we enumerate for each scheme its weaknesses and strengths. We deal with the essential 

security services backward secrecy and forward secrecy, where shared keys need to be updated 

whenever a new member joins or an existing one leaves its group. The key Independence 

permits to alleviate the rekeying process where updating group keys do not affect all the keys 

in the group. The vulnerability to collusion attack (the collaboration of adversaries to 

compromise a communication) for which rekeying is important to maintain security. Moreover, 

the rekeying process may cause a lot of key management overhead and leads to a single point 

of failure, especially in a scalable environment that supports multiple group services and is 

composed of dynamic publishers and dynamic subscribers. Hence, ensuring subscribers’ 

Independence makes subscribers of one group independent from the entire group in the 

rekeying process of the group key after a join/leave event in this group.  

In [150], the authors surveyed numerous key distribution schemes over wireless networks 

and classified them into centralized, decentralized, and distributed schemes. Centralized 

schemes use only one server known as the key distribution server (KDC) to create and distribute 

encryption keys. Distributed schemes do not have a specific KDC; they instead generate group 

keys either in a collaborative manner between the group members or by one member. Moreover, 

each member must keep track of the other members to make robust communication. Besides, 

membership change events (join/leave) cause high processing and communication overheads 

[157], leading to a congestion problem in a dynamic IoT environment. In contrast, decentralized 

schemes divide the system into several subgroups, thus, reducing the load on the KDC and 

offering a solution to scalability issues. Furthermore, a subgroup manager is responsible for 

keeping track of the group’s members, reducing computation and storage overhead on 

members. 

The distribution of encryption keys in the different cited GKM architectures is further 

ensured by using two main cryptographic types (symmetric and asymmetric). Two fundamental 

and efficient GKM schemes were proposed: The Logical Key Hierarchy (LKH) [109] and the 

One-way Function Tree (OFT) [110] based on symmetric keys (traffic key and encryption key) 

to distribute the updated encryption keys. In contrast to LKH, all the OFT implementations 

suffer from collusion attacks and increase devices’ computational overhead for obtaining group 

keys. Hence, OFT is far from being ideal in an IoT environment, where the communicating 

devices may have limited computational power. Additionally, [152] [153] schemes provided 

fine-grained access control Attribute-Based Encryption (ABE) to manage keys’ update. 

However, ABE is a cumbersome mechanism that relies on asymmetric cryptography, unsuitable 

for running on resource-constrained IoT devices [154]. Besides, asymmetric encryption 

mechanisms are also used in key management schemes [155] [156]. Specifically, Porambage 
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et al. [80] proposed a group key establishment protocol for multicast communication using the 

Elliptic Curve Cryptographic (ECC) operations. Even though their solution is suitable for 

resource-constrained devices, it does not efficiently manage the rekeying process. 

Furthermore, all previously mentioned schemes are designed for single multicast groups, but 

users may subscribe to multiple services. To ensure many multicast groups, Park et al. [112] 

accommodate various services groups. Their scheme addressed rekeying in the wireless mobile 

environment based on a centralized architecture and an LKH mechanism to manage multiple 

communications. Likewise, Mapoka et al. [123] proposed using a distribution list of the session 

key and key update slot for each subgroup. This list is centrally managed by a node called the 

area key distributor. The proposed protocol alleviates the 1-affect-n phenomenon and 

transmission overhead of the core network, but it does not ensure forward secrecy. Hence, 

Zhong et al. [124] proposed another protocol called area-based multiple GKM that securely 

provides services when users migrate to different wireless networks, ensuring forward secrecy. 

Nonetheless, its high overhead, due to revocation events, makes it unsuitable for dynamic IoT 

environments.  

Besides, for addressing the IoT environment's rekeying process, Tsai et al. [151] proposed a 

lightweight symmetric key establishment based on the Kronecker product. However, their 

protocol does not consider the key update when users or devices join or leave the system, which 

lacks forward and backward secrecy. Furthermore, Abdmeziem et al. [122] proposed a 

decentralized batch-based group key that includes several subgroups managed by key servers. 

This scheme considered long-term and short-term keys per group, which are common to all 

nodes. Nevertheless, it does not ensure communication between multiple groups, and it requires 

large storage and computation resources. Thus it was enhanced to decrease the communication 

overhead by adopting a Distributed Batch-based Group Key [120]. It is based on polynomial 

cryptography to set up the key for collaborative groups in the IoT environment. However, these 

schemes are limited to managing communications in one group and do not consider 

communications between different groups and services. Kung et al. [113] took advantage of the 

Chinese Remainder Theorem (CRT) based construction proposed by Park et al. [112] to 

accommodate multiple device groups. They established a two-tier centralized system, KDC, 

where each group (devices or users) runs LKH to handle updates of keys efficiently. However, 

communication within a user group is based on the symmetric group key, which leads to the 

dependence between members. Therefore, after each event (triggered by a join/leave user 

operation), the rekeying process induces all the members in the entire group to update their 

group key, increasing the computation overhead.  

In summary, and as mentioned in Table 4.1, existing GKM solutions do not support 

members' Independence in the same group, where each member needs to update its key after 

every join/leave event. Specifically, they focus only on the symmetric group key per subgroup 

communication. Consequently, the rekeying performance is decreased when the number of 

subscribers is high and varies frequently. Moreover, lesser attention is paid to achieve efficient 

and scalable GKM for access control among a dynamic IoT environment, where many users 

(subscribers) can subscribe to different IoT services and frequently change their interests over 

time. Hence, throughout this chapter, we propose a flexible access management protocol that 
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is based on the GKM mechanism. Therefore, we suggest a new decentralized GKM to secure 

group communication, which offers the scalable feature in a dynamic IoT environment, 

alleviates the rekeying overhead caused by the member changes, and reduces the load on the 

KDC. 

Table 4. 1: Comparison of existing GKM Schemes 

Schemes Environment Network model 
Cryptography 

type 
Strength(+) /weakness(-) 

[149] 
Wireless Body 

Area Network 

Centralized key 

distribution 

architecture 

Symmetric 

cryptography & 

polynomial 

cryptography 

 Backward secrecy 

 Forward secrecy 

- Does not support multiple 

group services.  

- Not scalable.  

[112] [148] 
Wireless Sensor 

Network 

Centralized key 

distribution 

architecture 

Symmetric & 

Asymmetric 

cryptography & 

LKH 

mechanism  

 Support multiple group 

services  

 key Independence 

- Does not achieve the 

forward secrecy.  

- Subscribers are dependent to 

each other.  

[152] [153] 

[154] 

Cloud 

Computing 

Centralized key 

distribution 

architecture 

Attribute Based 

Encryption ABE 
& Asymmetric 

cryptography 

 Backward secrecy 

 Forward secrecy 

- Vulnerable to collusion 

attack  
- Does not ensure key 

Independence 

[113] 
Internet of Thing 

environment 

Two tier-
Centralized key 

distribution 

architecture 

Symmetric & 

Asymmetric 

cryptography & 

LKH 

mechanism 

 Support publishers’ 

dynamism  

 Support multiple group 

services.  

- Does not support 

subscribers’ Independence.  

- Vulnerable to collusion 

attack 

[123] [124] 
Wireless Sensor 

Network 

Decentralized 

key distribution 

architecture 

Symmetric & 

Asymmetric 

cryptography 

 High scalability 

 Alleviate 1 affect n 

phenomenon   

- Does not support publisher 

dynamism.  

- High overhead due to 

dynamic environment  

[147] 
IPv6 Ad Hoc 

Networks 

Decentralized 

key distribution 

architecture 

Symmetric 

cryptography 

 Resist collusion attack 

 Support multiple group 

services.  

- Key Independence.  

- Moderate scalability. 

[122] 
Internet of Thing 

environment  

Decentralized 

key distribution 

architecture 

Symmetric 

cryptography,  

 Alleviate 1 affect n 

phenomenon key 

Independence. 

- Large storage and 

computation resources.  

- Limited  scalability. 

[157] [120] 
Internet of Thing 

environment 

Distributed key 

distribution 

architecture 

Asymmetric 

cryptography & 

polynomial 

cryptography 

 Backward secrecy  

 Forward secrecy 

- does not support multiple 

group services. 

- Limited  scalability. 
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4.3. Background 

In this section, we briefly present the background and the main mechanisms used in our 

approach. We first define the Group Key Management (GKM), then we present the techniques 

used in our scheme for GKM. We detail the Master Key Encryption (MKE) based Generalized 

Chinese Remainder Theorem (GCRT) that is used for managing multiple user groups (UGs) 

and various users. Then, we describe the Logical Key Hierarchy (LKH) and One-Time Pad 

(OTP) schemes used for efficient key management of different device groups (DGs). 

4.3.1. Group Key Management (GKM) 

Group key management (GKM) is a cryptographic technique used to ensure access control 

for group communications. It secures one-to-many or many-to-many group communication by 

encrypting the group's data using a traffic encryption key (TEK). In particular, GKM supports 

establishing and preserving these keys, where only members of a group (called subscribers) 

could decrypt the data. Besides, due to the dynamic group of members, who change their 

membership frequently for various kinds of service demands, GKM accomplishes a rekeying 

process to maintain security among the group members. The rekeying procedure should be 

ensured with regard to the backward and forward secrecy. Indeed, a new joining member should 

be prevented from computing the joined group's old group key and learning the previous 

exchanged data to meet the backward secrecy requirement. A member who leaves a group 

should be prohibited from calculating the future group key and knowing the upcoming 

exchanged data to respond to the forward secrecy requirement. Therefore, for a large-scale 

environment such as the IoT with a highly dynamic group of members, designing an efficient 

GKM is essential to maintain and enforce access control.  

4.3.2. Master Key Encryption (MKE) 

The concept of MKE is defined as a key management scheme based on the Group Chinese 

Remainder theorem (GCRT). MKE permits multiple decryption keys to decrypt the same 

message encrypted by an encryption key [112]. The main idea of the master key encryption 

scheme is to generate one master key and several slave keys, where the master key encrypts a 

message that can be decrypted by each legitimate slave key. The MKE scheme can alleviate the 

rekeying cost resulting from symmetric cryptography. Hence, Park et al. [112] have proposed 

a general MKE algorithm to minimize the rekeying cost of the group key using a master key 

based on the following theorem:  

 Theorem 1: Let {p1, p2,… , pN, q1, q2,…,qN} a set of safe prime numbers and {e1, e2…eN} 

a set of corresponding public keys. If all public keys satisfy the following condition, 

𝑒1  ≡  𝑒2  ≡ ⋯  ≡ 𝑒𝑁 𝑚𝑜𝑑(4), then there exists a unique master key, 𝑒𝑀 modulo 

4𝑥1𝑦1𝑥2𝑦2… 𝑥𝑁𝑦𝑁, where 𝑥𝑖 = (𝑝𝑖 − 1)/2 and 𝑦𝑖 = (𝑞𝑖 − 1)/2, 1 ≤ i ≤ N.  

Theorem Proof: to explain the computation of slave keys and the master key, we consider there 

are N public/private slave key pairs (𝑒𝑖, 𝑑𝑖), 𝑖 ≤ 𝑁 with (𝑝𝑖, 𝑞𝑖) being the ith safe prime number 

pair, and one master key pair(𝑒𝑀, 𝑑𝑀). For simplicity, we now consider the modulus of the 
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prime pairs ∅(𝑝𝑖𝑞𝑖) = (𝑝𝑖 − 1)(𝑞𝑖 − 1) are mutually prime to each other. For a plaintext P and 

a ciphertext C, the master key should satisfy:  

                           𝑃𝑒𝑀  ≡  𝑃𝑒𝑖  𝑚𝑜𝑑 (𝑝𝑖𝑞𝑖)                         (4.1) 

                   𝐶𝑑𝑀  ≡  𝐶𝑑𝑖  𝑚𝑜𝑑 (𝑝𝑖𝑞𝑖), 1 ≤ 𝑖 ≤ 𝑁              (4.2) 

According to Euler’s theorem, the necessary condition for the equation above is: 

𝑒𝑀  ≡  𝑒𝑖 𝑚𝑜𝑑 (∅(𝑝𝑖𝑞𝑖)) ,   𝑑𝑀  ≡  𝑑𝑖 𝑚𝑜𝑑 (∅(𝑝𝑖𝑞𝑖)) 

The set of safe prime numbers, presenting the slave key, satisfies the following condition: 𝑒1  ≡

 𝑒2  ≡ ⋯  ≡ 𝑒𝑁 𝑚𝑜𝑑(4). Then, there exists a unique master key, 𝑒𝑀mod(4𝑥1𝑦1𝑥2𝑦2… 𝑥𝑁𝑦𝑁), 

where 𝑥𝑖 = (𝑝𝑖 − 1)/2 and 𝑦𝑖 = (𝑞𝑖 − 1)/2, 1 ≤ i ≤ N, solution of a system congruence that 

can be calculated by the GCRT as follows: 

𝑒𝑀 = ∑  𝑒𝑖  𝑀[𝑖] 𝑁[𝑖]
𝑁
𝑖=1 , Where 𝑀[𝑖] = (∏ 𝑥𝑗𝑦𝑗

𝑁
𝑗=1 ) ∕ 𝑥𝑖𝑦𝑖 and 

 𝑁[𝑖] is an integer such that 𝑀[𝑖] 𝑁[𝑖]  ≡ 1𝑚𝑜𝑑(4𝑥𝑖𝑦𝑖). 

Based on Theorem 1, [112] proposes a general MKE algorithm, which generates and 

modifies the master key and the key pairs, respectively. Our proposed scheme takes advantage 

of this algorithm and proposes an optimized algorithm for membership renewal and revocation. 

This algorithm is described in the DLGKM-AC scheme section 4.5.3.2.  

4.3.3. Logical Key Hierarchy (LKH) 

The LKH mechanism is used to handle the rekeying issue efficiently in a secure group 

communication. This method minimizes communication costs by reducing the number of 

transmissions in rekeying as well as storage requirements. In fact, LKH is presented through a 

 

Figure.4. 1: The logical key hierarchy tree structure 
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binary tree (as shown in Figure.4.1) structure to manage keys' distribution. Indeed, the tree 

structure is composed of the root node that holds the group key (GK), the internal nodes that 

hold the Key Encryption Keys (KEK), and the leaf nodes. Each leaf node shares a secret key 

with the root and maintains the subtree rooted with the corresponding internal nodes. In 

particular, the constructed subtree composes a path key (PKt) with the internal KEKs that are 

used later to update the GK efficiently. The binary LKH tree structure guarantees an 

enhancement in the storage and communication overhead compared to other tree structures 

(section 4.2). Indeed, in a complete tree with n devices on leaf nodes, each leaf node stores 

log(2n+1) keys [109], while the rekeying procedure requests multicasting O(log(n)) KEKs for 

these n devices instead of multicasting O(n) KEKs. 

4.3.4. One-Time Pad (OTP) key 

The One-Time Pad key encryption mechanism is a strong encryption technique that cannot 

be damaged. In particular, while the proof of OTP security does not depend on any hardness 

assumptions, OTP is considered a perfectly secure mechanism. The OTP encryption is achieved 

by using a pre-shared key with the same size or longer to the exchanged messages. Fix an 

integer 𝑙 >  0, a message space 𝑀, space of key 𝐾, and ciphertext space 𝐶 can all be a set of l-

bit strings. The key generation is ensured by selecting an l-bit key randomly and is never reused, 

which makes OTP entirely secure [33]:  

 Encryption works as follows: given a key 𝑘 ∈{0,1}𝑙, and a message 𝑚 ∈ {0,1}𝑙, output 

𝑐 =  𝐸𝐾(𝑚) = 𝑚 ⊕  𝑘, where ⊕ is the “exclusive OR” operator. 

 

 Decryption works as follows: given a key 𝑘 ∈ {0,1}𝑙, and a ciphertext 𝑐 ∈ {0,1}𝑙, output 

𝑚 =  𝐷𝐾( 𝑐)  =  𝑐 ⊕  𝑘. 

 

4.4. DLGKM-AC General Overview 

This section briefly describes the proposed decentralized group key management scheme, 

where we introduce the system architecture, the attacker model, and the system requirements.  

4.4.1. System Architecture 

We propose a new decentralized architecture for access control in group communication based 

on group key management. Indeed, the proposed DLGKM-AC illustrates a typical three-tier 

scheme composed of three essential layers, as shown in Figure.4.2. Two layers, named 

publisher and subscriber layers, defining groups of IoT devices (DGs) and users (UGs). In 

addition, the middle layer defines the decentralized controller, which is responsible for key 

management between and within groups. All these layers are described hereafter:  

 Publisher layer: is the layer composed of constrained IoT devices with limited 

computational power, memory, or energy availability, such as smart door locks or IP 

cameras, collecting and sending data to subscribers. In our architecture DLGKM-AC, 

we use many groups of IoT devices, which are grouped related to their functionalities, 
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localization, and security requirements. Therefore, a new joining IoT device is assigned 

to precisely one of the device groups (DG).  

 

 Subscriber layer: is the layer composed of users communicating with their 

smartphones to retrieve data from the publisher layer. A user can be a device owner with 

legitimate, full, and permanent control or an IoT device with only limited access. 

Consequently, users and IoT devices subscribe to different DGs related to their wishes 

and desires. Then, a group of users UG is created based on the user’s interest and 

reservation period.  

 

 Decentralized group key manager layer: is the layer responsible for maintaining the 

purpose of security by generating the system parameters and managing group members 

by providing required encryption keys used to control data access. In particular, this 

layer presents a decentralized architecture of servers, and it is composed of a KDC, a 

KDC backup, and several SKDCs. The number of SKDC is not fixed and depends on 

the IoT application needs. More specifically, the number of SKDC is influenced by the 

characteristics of SKDC like storage, computation capacities, and the number of 

registered users. 

 

The intended approach considers a dynamic reservation system in an IoT environment, 

where both the number of users and IoT devices might frequently change over time. Indeed, a 

user may join or leave at any time. Likewise, an IoT device can be introduced in or removed 

 

Figure.4. 2: Proposed system model 

 

 

Figure 4.1: Proposed system model 
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from the system at any time. Thus, it is crucial to managing the distribution of encryption keys 

to secure both group communication and data transmission from possible threats that will be 

defined in the next subsection. 

4.4.2. Threat Model 

Consider the adversaries' capabilities in a data life cycle in the proposed system model, 

which is defined as compromising the GKM access control scheme based on the active insider 

and active outsider adversary models. Indeed, attacker A may be either an outsider who has no 

access to any IoT device or an insider who attempts to increase the access possibility. In fact, 

an insider attacker A such as a revoked user who no longer has access to future communication 

and yet still tries to retrieve information on access policies to extend access scope. Moreover, 

an outsider attacker A is an attacker that aims to extract sensitive information, such as the 

encryption key, to break the current encryption scheme and get access to data without proper 

permissions. Further, A may cooperate with other members in the system to derive keys that 

he/she cannot obtain individually, which is known as a collision attack. Besides, the attacker 

may also be a compromised device, where he/she may masquerade as a legitimate 

communication partner before initiating communication with other participants in the network 

to gain access to data. However, he/she cannot compromise or break the cryptographic 

primitives. 

4.4.3. System Requirements 

A practical GKM scheme should respond to several requirements related to security and 

efficiency [4] [150]. These requirements are explained in what follows: 

 Security requirements  

In a dynamic IoT environment, the security of the transmitted data is a primordial issue. In 

particular, the forward secrecy security property, which is based on avoiding any leaving 

member of any group from getting the future group key and decoding any exchanged messages 

after her/his departure. Hence, this security feature also has an objective to prevent the collusion 

attack. Furthermore, the backward secrecy security property that prevents any new member 

joining an existing group from decrypting the group communication established before joining.  

Forward/backward secrecy are accomplished through an efficient key updating process, where 

all keys should be completely independent of each other to safeguard the key independence 

security service. 

 Efficiency requirements  

The efficient functioning of key management protocols is justified by a minimum overhead 

cost of different metrics. First, it should reduce the number of keys stored on both users and 

IoT devices, which results in low storage overhead. Second, it needs to decrease the required 

computation power from users, IoT devices, and servers, increasing efficiency by reducing the 

system response time. Further, it should minimize the number of exchanged messages on the 

system, which raises the overall system's flexibility and thus achieves a low communication 

cost.  
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In addition, the group key management schemes should ensure the scalability capability to 

handle variable group sizes and high membership changes. Indeed, this may guarantee that the 

delay will not increase dramatically when the network size becomes large. Besides, key 

management schemes suffer from the 1-affects-n phenomenon, where a failure of a single server 

leads to the collapse of the whole system. Hence, it is essential to avoid this phenomenon and 

assure availability in a large and scalable system.  

4.5. DLGKM-AC Detailed Description 

This section describes the proposed decentralized group key management for access control 

(DGKM-AC) in IoT. Indeed, we start with an overview of its functionalities before detailing its 

different phases, namely, system initialization, registration of IoT devices and users under the 

system, and keys' update that explains how to handle members' joining and revocation events.  

4.5.1. Overview 

Our scheme is designed for a dynamic IoT environment, where users and IoT devices are 

frequently dynamic and continuously change their subscriptions to IoT services. This makes 

ensuring data confidentiality in the group communication as backward/forward secrecy a 

challenging task. However, using symmetric keys by both publishers and subscribers can 

provide a heavy solution. Indeed, the access control policies in our scheme are disseminated 

using different and separate GKM mechanisms for users and IoT services. In the following, we 

describe in detail the different architecture layers mentioned in Figure 4.2 and explain the 

interactions of those entities.  

Typically, in the current GKM schemes, users should maintain and update group information 

to get the updated group key after the user’s leaves and join events. For that, we introduce 

Master Token Encryption (MTE) to manage the communication within a group of users. The 

main idea of MTE is adopted from the master encryption key (MEK) based Chinese Remainder 

Theorem (CRT) [112], described in section 4.3.2. The MTE mechanism generates Master 

Token (MT) and several valid slave tokens (STs) for a predefined period, which means that all 

related slave tokens decrypt all messages encrypted by the master token during its lifetime. 

Hence, each user in the group should only maintain a slave token to get the updated information 

in the group, which improves the effectiveness of the communication within the user group. 

More specifically, users in the proposed DLGKM-AC could subscribe to many device groups 

(DGs) to get data. For this purpose, each user gets all traffic keys TEKs of DGs to which it is 

subscribed. In fact, after each user joins/leaves the system, it is essential to update these TEKs, 

which is ensured by MTE to reduce the rekeying cost.  

In addition, to manage the group communication within IoT devices groups, we use two 

different mechanisms: the LKH structure and OTP, described in the section 4.3.3 and 4.3.4. 

Since multiple users may subscribe to the same IoT device group, it would be more efficient if 

all these devices and all their subscribed users share a group key for encryption. Traffic 

Encryption Key (TEK) is a traffic key used to encrypt data published by a device group to its 

subscribers. This traffic key should be efficiently updated when a new user joins or an old one 

leaves to ensure forward and backward secrecy. Moreover, to use the OTP mechanism, we 
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define a manager to control each device group DG. In particular, the manager is responsible for 

outlining the permissions of access control for devices in the DG. Typically, we consider 

managers as lightweight devices in our architecture, and all IoT devices registered in the system 

are under the control of their group’s manager to which they belong. Once registered under the 

control of the manager, this latter receives the authorization for the new IoT device based on 

the group permission from the KDC. Furthermore, the manager maintains the keys of the access 

list management and ensures the required updating of keys to maintain the security of the 

system.  

KDC is the central server that relates publishers to the rest of the system, and it manages the 

keys’ update process within DGs. Further, KDC has a backup server that maintains the last 

updated version of keys in the system, which is sent to the backup periodically after the rekeying 

process. Besides, SKDCs manage the group communication within UGs, where users 

frequently join and leave the system. Hence, the decentralized aspect of the controller, where 

SKDCs are used, allows reducing the load on the KDC. Multiple user groups are under the 

control of one SKDC depending on users’ localization, which solves the problem of single-

point of failure (SKDC failure) and ensures the scalability of the system. Besides, we assume 

that the decentralized KDC can establish a one-time secure channel with users and devices, 

which can be used to authenticate and configure a newly joined user/device (e.g., by installing 

a shared secret key) before sharing with them the encryption keys.  

We can summarize the different encryption keys in our scheme into two main categories: (i) 

Traffic Encryption Key (TEK) and (ii) Key Encryption Key (KEK). The traffic keys are used 

to encrypt/decrypt data, while the key-encryption keys are used to encrypt/decrypt traffic keys 

to distribute them securely, as mentioned in Table.4.2.  

Table 4. 2: Keys’ description  

Traffic Encryption Keys 

(encrypt data) 

 TEK: encrypts data of DG 

 DK: encrypts data of one device 

Key Encryption Key (encrypt 

traffic key) 

 KEK & GK encrypt and distribute TEK within a DG 

 MT encrypts updated TEK keys to users in SKDC 

 ST decrypts updated TEK keys in UG 

After presenting, in general, the global functioning of our scheme, we detail in what follows 

its effective working. Table.4.3 summarizes the main used notations in the following sections, 

and we start with explaining the initialization phase in the next subsection, which is primordial 

to the system setup. 

4.5.2. Initialization of the System 

During this phase, the group key manager performs the initialization and the setup of the 

system parameters, which will be used in the eventual registration and rekeying phases. We 

note that the KDC and at least one SKDC run the initialization phase, which is presented in 

what follows: 
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 KDC generates a master key and several salve keys by running the master key 

generation MkeyGen Algorithm 1 based on the GCRT scheme (presented in section 

4.3.2) [112]. In fact, MkeyGen Algorithm 1 takes as input N safe prime numbers and 

computes a set of corresponding pair keys (𝒆𝒊, 𝒅𝒊) based on the theorem1, where all 

these pairs’ keys are slave keys that verify the equation with the unique solution of 

(𝒆𝑴, 𝒅𝑴). In our scheme, KDC uses the master key encryption cryptography to 

communicate with the SKDCs under its control. Indeed, after each new SKDC is added 

to the system, KDC has to run the MkeyGen algorithm to generate a slave key for the 

new SKDC and update its master key. In particular, KDC creates groups of devices DGs 

and groups of users UGs (depending on their subscription to devices). Finally, KDC 

assigns UGs to the corresponding SKDC. Furthermore, KDC establishes a secure 

channel with devices and users through sharing secret keys. In Figure.4.3, we illustrate 

the system architecture with 4 DGs and 6 UGs.  

 

 In our system, the SKDC manages many groups of users; Thus, SKDC needs to run the 

same algorithm master key generation MkeyGen, where we consider N to be the 

maximum number of slave keys provided by SKDC. Indeed, the SKDC generates a 

master key (𝒆𝑴, 𝒅𝑴) and a set of N public-private key pairs, named slave keys, 𝑆𝐾 =

{(𝒆𝒊, 𝒅𝒊);  𝟏 ≤ 𝒊 ≤ 𝑵} through MkeyGen. Furthermore, SKDC defines a function f 

which maps a key pair from a set of slave keys to {0, 1}as follows: 

𝑓: 𝑆 {0,1}, where: 

𝑓: {
f ((𝐞𝐢, 𝐝𝐢)) = 1 ,              ((𝐞𝐢, 𝐝𝐢)  is assigned to a user)

f ((𝐞𝐢, 𝐝𝐢)) = 0 , ((𝐞𝐢, 𝐝𝐢)is not assigned to any user)
    (4.3) 

 

Table 4. 3: Summary of symbols and their description 

Symbol Description 

TEK Traffic Encryption Key 

KEK 

M 

N 

Key Encryption Key 

Total number of Device Groups 

Total number of Slave Keys under SKDC 

(eM,dM) Master Key 

(ei,di) 

MT, ST 

DGy 

DKj 

UGx 

UKi 

Slave Key i 

Master Token, Slave Token 

Device Group y 

Shared secret key between device j and KDC 

User Group x 

Shared secret key between user i and SKDC 

GKy 

PKt 

Group Key for device group y 

Path Key  

h(.),[.]K Hash Function, Encryption function using encryption key K. 

 

 

 

Table 4. 4: Summary of symbols and their description 

Symbol Description 

TEK Traffic Encryption Key 

KEK 

M 

N 

Key Encryption Key 

Total number of Device Groups 

Total number of Slave Keys under SKDC 

(eM,dM) Master Key 

(ei,di) 

MT, ST 

DGy 

DKj 

UGx 

UKi 

Slave Key i 

Master Token, Slave Token 

Device Group y 

Shared secret key between device j and KDC 

User Group x 

Shared secret key between user i and SKDC 

GKy 

PKt 

Group Key for device group y 

Path Key  

h(.),[.]K Hash Function, Encryption function using encryption key K. 
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After that, SKDC initializes all key pairs using (4) as follows: 𝟏 ≤ 𝒊 ≤ 𝑵,𝑓((𝒆𝒊, 𝒅𝒊)) = 0. 

4.5.3. Registration Phase 

During this phase, the user and the IoT devices are registered under our system in order to 

get the corresponding access keys. In particular, the groups of IoT devices and users are 

established through this phase. We detail this phase for both the user and IoT devices in the 

next two subsections. 

4.5.3.1. Device Groups Registration 

In order to manage the communication with a group of devices, the KDC creates many 

groups of IoT devices, DG, based on similar devices’ attributes (location, functionalities...), 

according to the two different mechanisms: 

 A binary LKH tree for the universe of devices in each devices group, for the publisher 

IoT devices. 

 A modified structure of One-Time Pad (OTP) in each devices group, for the subscribers 

IoT devices. 

Algorithm 1 Master Key Generation MKeyGen 

Inputs: A set of safe prime numbers 𝒑𝟏, 𝒑𝟐, … , 𝒑𝑵, 𝒒𝟏, 𝒒𝟐, … , 𝒒𝑵. 

Output: One master key 𝒆𝑴 and N slave public-private key pairs 𝑺 =

 {(𝒆𝒊, 𝒅𝒊) ;  𝟏 ≤  𝒊 ≤  𝑵} 

1: 𝑺 =  { }; 

2: 𝑭𝒐𝒓 𝒊 =  𝟏 𝒕𝒐 𝑵 

𝝋𝒊  =  (𝒑𝒊 − 𝟏) × (𝒒𝒊 − 𝟏);  

𝒙𝒊  =  (𝒑𝒊–  𝟏)/𝟐; 

𝒚𝒊  =  (𝒒𝒊 –  𝟏)/𝟐; 

𝒆𝒊  =  𝟒 ×  𝑹𝒂𝒏𝒅𝒐𝒎 +  𝟏; 

𝒅𝒊  =  𝒆𝒊
𝟐(𝒙𝒊 −𝟏)(𝒚𝒊 −𝟏)  − 𝟏 𝒎𝒐𝒅 𝟒𝒙𝒊𝒚𝒊; 

𝑺 = 𝑺 + {(𝒆𝒊, 𝒅𝒊)};  

    𝑬𝒏𝒅 𝑭𝒐𝒓  

3: 𝒑𝒓𝒐𝒅𝒖𝒄𝒕 =  𝟏; 

4: 𝑭𝒐𝒓 𝒊 =  𝟏 𝒕𝒐 𝑵 

𝒑𝒓𝒐𝒅𝒖𝒄𝒕 =  𝒑𝒓𝒐𝒅𝒖𝒄𝒕 × (𝒙𝒊𝒚𝒊);  

     𝑬𝒏𝒅 𝑭𝒐𝒓  

5: 𝑭𝒐𝒓 𝒊 =  𝟏 𝒕𝒐 𝑵 

𝑴[𝒊]  =  𝒏/(𝒙𝒊𝒚𝒊);  

𝑵[𝒊]  =  𝑴[𝒊](𝒙𝒊 − 𝟏)(𝒚𝒊 − 𝟏) − 𝟏 𝒎𝒐𝒅 (𝒙𝒊𝒚𝒊);  

    𝑬𝒏𝒅 𝑭𝒐𝒓  

6: 𝒆𝑴, 𝒅𝑴  = ( 𝟎, 𝟎); 

7: 𝑭𝒐𝒓 𝒊 =  𝟏 𝒕𝒐 𝑵 

𝒆𝑴  =  (𝒆𝑴  +  (𝒆𝒊  × 𝑴[𝒊]  ×  𝑵[𝒊]));  

𝒅𝑴  ≡  (𝒅𝑴 + (𝒅𝒊  × 𝑴[𝒊]  ×  𝑵[𝒊]))  

    𝑬𝒏𝒅 𝑭𝒐𝒓  
 

 

 

Algorithm 1 Master Key Generation MKeyGen 

Inputs: A set of safe prime numbers 𝒑𝟏, 𝒑𝟐, … , 𝒑𝑵, 𝒒𝟏, 𝒒𝟐, … , 𝒒𝑵. 
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i. LKH Mechanism:  

To define the groups of devices, the KDC sets a binary LKH tree for the universe of devices 

in each DG, which will be used to distribute updated keys to devices. In the tree, each 

intermediate node holds a KEK. A set of KEKs on the path nodes from a leaf to the root are 

called Path Keys (PKt), as described in section 4.3.3. The LKH tree is constructed by KDC as 

follows: 

 KDC generates key encryption keys (KEKs) for the intermediate node in each DG.  

 Devices in DG are assigned to the leaf nodes of the tree, and random keys DKj are 

generated and assigned securely to each leaf node.  

 The root node holds group key GK to communicate with devices and TEK to encrypt 

data of DG. 

 Each device Dj in DG receives the path keys PKt from the root node to the parent node 

of the tree, using the shared secret key DKj. 

 Then, the path of keys is used as KEKs to encrypt the group key by the KDC in each 

rekeying process and to distribute updated encryption keys to leaf nodes. 

 

ii. OTP Mechanism:  

In practice, IoT devices may also subscribe to other IoT devices to get access to data. In fact, 

to manage the communication between groups of devices, we present a modified structure of 

One-Time Pad (OTP). Firstly, KDC defines a manager for each group device, as described in 

section 4.3.4; We define M as the set of managers Mx, GK as the set of group keys GKx of each 

DG, and TEK as the set of traffic encryption keys TEKx used to encrypt data controlled by each 

manger Mx. Furthermore, ID is the set of devices identity IDj of each device under the control 

of Mx manger, and DK is the set of secret shared device key between each device and manager. 

Based on the OTP, KDC defines:  

 An array A for each DG, used to distribute and broadcast information useful for updating 

group key GK. A is presented where 𝐴 [𝑖] =  ∑ 𝐷𝐾𝑗⨁𝐼𝐷𝑖
𝑛
𝑗=1
𝑗≠𝑖

 corresponds to the device 

with identity IDi.  

 A group key GKx for each DGx is generated; 𝐺𝐾𝑥 = ∑ ⊕𝐷𝐾𝑗
𝑛
𝑗=1 .  

Finally, once all group devices and their managers are successfully registered, KDC sends 

for each manager the list of permission access keys, which are defined with the traffic keys as 

follows: TEKx->Resource={TEKx->y ;y Є Resource}, where TEKx->y refers to the subscription of 

DGx to DGy. After the registration phase, each device in DGx has (IDi, DKi, A[i], GKx), and 

controlled by the manager (GK, A, ID, TEKx, TEKx->R).  

4.5.3.2. User Groups Registration 

In this phase, multiple user groups UGK are constructed, and we assume that each UGK 

accommodates rk users with the same interest for a period T. Each user Ui in UGK is 
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authenticated before joining the system and shares a secret key UKi with SKDC. The SKDC 

assigns a user group ID based on the following definition: 

Definition: Let 𝑈 = {𝑈1, 𝑈2, … , 𝑈𝑛}, 𝑛 ≤ 𝑁 be the universe of users controlled by one SKDC. 

Each user in a network can subscribe to one or more services of device groups DGs among a 

total of M (DG) denoted by {𝐷𝐺1, 𝐷𝐺2, … , 𝐷𝐺𝑀}. Let 𝑈𝐺 ⊂ 𝑈 be the set of users who subscribe 

to the same set of DGs during the same time T. Let  {𝑈𝐺1, 𝑈𝐺2, … , 𝑈𝐺𝑢} be the set of user groups 

UGs. Here, each UGk possesses an 𝐼𝐷𝑈𝐺𝐾defined as described in equation 4.4: 

𝐼𝐷𝑈𝐺𝐾 = {

𝐴𝑗,𝑏 | 1 ≤ 𝑗 ≤ 𝑀| 𝑏 𝜖 [0,1]
 

, where

𝐴𝑗,0 = 0 , 𝑈𝐺𝐾 is not subscribed to the 𝐷𝐺𝑗
𝐴𝑗,1 = 1, 𝑈𝐺𝐾 is subscribed to the 𝐷𝐺𝑗

}, (4.4) 

Where j defines the device group DGj, and b outlines the user group subscription to this 

corresponding DGj.  

At that point, the SKDC needs to generate the necessary keys to communicate with the group 

of users. Indeed, we proposed a new master key encryption algorithm, which reduces the 

communication and computational complexities as it supports efficient key updating named 

Algorithm 2 Master Token Generation MTokenGen 

Inputs: Number of user r, Time T, 𝐞𝑴, S 

Output: 𝑴𝑻𝑲Master Token of 𝑼𝑮𝑲 and list 𝑺𝑲 

1: 𝐞𝑴𝑲 = 𝐞𝑴 ; 

2: 𝑪𝒐𝒎𝒑 = 𝟎;  

3: 𝑺𝑲 = { };   

     // Select a list of slave keys for 𝑼𝑮𝑲,  𝑺𝑲 = {𝒆𝒊
𝟏𝑲, 𝒆𝒊

𝟐𝑲, … , 𝒆𝒊
𝒓𝑲 }.  

     //𝒆𝒊
𝟏𝑲 = 𝒆𝒊 assigned to user in 𝑼𝑮𝑲 

4: While (Comp <r) do  

     Select a random (𝒆𝒊, 𝒅𝒊) from 𝑺 = {(𝒆𝒊, 𝒅𝒊) | 𝟏 ≤ 𝐢 ≤ 𝐍}   

5: If 𝒇((𝒆𝒊, 𝒅𝒊))  ==  𝟎  

Then  

𝑺𝑲 = 𝑺𝑲  +  {(𝒆𝒊, 𝒅𝒊)};  

𝒇((𝒆𝒊, 𝒅𝒊))  =  𝟏;   

𝒄𝒐𝒎𝒑 + +;  

    End if 

    End while 

6: For i = 1 to N    

If  𝒆𝒊  ∉  𝑺𝑲 = {𝒆𝒊
𝟏𝑲, 𝒆𝒊

𝟐𝑲, … , 𝒆𝒊
𝒓𝑲 }  

Then  

𝐞𝑴𝑲 = 𝐞𝑴𝒌  − 𝐞𝒊 𝐌[𝐢] 𝑵[𝒊] ; 

End if 

    End For 

7: 𝑴𝑻𝑲 = (𝒆𝑴𝑲 +  𝑻)  

 

 

Algorithm 2 Master Token Generation MTokenGen 

Inputs: Number of user r, Time T, 𝐞𝑴, S 
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MTokenGen. Therefore, MTokenGen (algorithm 2) is designed to generate a master token 

MTK, which has the role of group key and a set SK of slave tokens STs for the corresponding 

users’ group UGK. Then, each user member Ui in UGK receives a ST through a secure unicast. 

Finally, the SKDC adds users’ group information (𝐼𝐷𝑈𝐺𝐾 , 𝑀𝑇𝐾 , 𝑆𝐾, 𝑟𝐾, 𝑇) to the list of active 

users’ groups. 

 At this level, we confirm that the DLGKM-AC is successfully initialized, the users and IoT 

devices are effectively registered under our system. Hence, we can see, as mentioned in Figure 

4.3, the different disseminated keys at each level of our architecture, including the devices' 

groups, KDC, SKDC, and users' groups. Besides, the subscribers to different IoT services 

change their interest over time. Therefore, maintaining security in a dynamic IoT environment 

involves an effective rekeying procedure, which is the next subsection's main subject.  

4.5.4. Key Update Scenarios 

Users and IoT devices join and leave the communication session over time. In fact, the 

dynamic feature of membership affects the security of the system. Hence, the keys should be 

changed after each user/device “join” and “leave” event to ensure backward and forward 

secrecy, which are detailed in the following. 

4.5.4.1. User joins/leaves Events Scenarios  

The key updating scheme for users is illustrated according to two events: the join user event 

and the leave user event. In order to describe the keys’ update process of DLGKM-AC, and for 

simplicity, we consider the case shown in Figure 4.4 of a user who joins/leaves the user group 

UG1, where users are subscribed to DG1, DG2, and DG4. 

 

 

 
Figure.4. 3: Key distribution in our system model 

 

 

 

 

 
Figure 4. 3: Key distribution in our system model 
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i. When a User Joins a Group 

Consider a user Ujoin, registered to SKDC after being authenticated, who is joining an existing 

group UGK. Hence, SKDC conducts the join key update Algorithm 3 “JoKeyUpdate” to update 

the group key (MTK, eM,) and generates a new slave token ST for the new user Ujoin. To this end, 

the SKDC searches for a slave token not affected to any user by mapping the f 

function 𝒇((𝒆
𝒊
, 𝒅𝒊)) = 𝟎, as explained in Algorithm 3.  Furthermore, our scheme ensures that the 

existing users in the joined UGK still can decrypt the recently sent messages, encrypted with the 

new MTK, using their previous STs.  

After that, SKDC runs the join key distribute Algorithm 4 named “JoKeyDistribute” to 

disseminate the necessary rekeying messages occurring in the system when Ujoin joins the group 

UGK. We explain the necessary steps below: 

 SKDC shares secret key UKjoin with the new joined user Ujoin securely, using a unicast 

message.  

 Then, SKDC notifies the KDC about the joining event, and all existing users 

subscribed to the same device groups through a multicast message to update the 

corresponding traffic key TEKj. 

  Consequently, old users update TEKj by using a hash function to minimize the 

system's communication overhead. Hence, the new user cannot access previous 

exchanged data.  

Algorithm 3 JoKeyUpdate 

Inputs: 𝑼𝑮𝑲 information (𝑰𝑫,𝑴𝑻𝑲, 𝑺𝑲, 𝒓𝑲, 𝑻)and (𝒆𝑴, 𝑺). 
Output: updated 𝑴𝑻′𝑲, 𝑺′𝑲, 𝒓′𝑲, 𝒆′𝑴 and 𝑺′. 
A new user joins the UGK 

1: Find 𝒆𝒊  from 𝑺 = {(𝒆𝒊, 𝒅𝒊) | 𝟏 ≤ 𝐢 ≤ 𝐍}  where 𝒇((𝒆𝒊, 𝒅𝒊)) = 𝟎  

//𝒆𝒊
{𝒋𝒐𝒊𝒏}𝑲 = 𝒆𝒊, 𝐢𝐬 𝐚𝐝𝐝𝐞𝐝 𝐭𝐨 𝑺𝑲  

2:𝑺′𝑲 = {𝒆𝒊
𝟏𝑲, 𝒆𝒊

𝟐𝑲, … , 𝒆𝒊
𝒓𝑲 } + {𝒆𝒊

{𝒋𝒐𝒊𝒏}𝑲}   

3:𝒓′𝑲 = 𝒓𝑲 + 𝟏;  
4:𝒆𝑴𝑲 = (𝑴𝑻𝑲 −  𝑻);  

5:𝐞′𝑴𝑲 = 𝐞𝑴𝒌 + 𝒆𝒊
{𝒋𝒐𝒊𝒏}𝑲 𝐌[𝐢] 𝑵[𝒊] ;  

6:𝑴𝑻′𝑲 = (𝒆′𝑴𝑲 +  𝑻);  

 

 

Algorithm 3 JoKeyUpdate 
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{𝒋𝒐𝒊𝒏}𝑲 = 𝒆𝒊, 𝐢𝐬 𝐚𝐝𝐝𝐞𝐝 𝐭𝐨 𝑺𝑲  

2:𝑺′𝑲 = {𝒆𝒊
𝟏𝑲, 𝒆𝒊

𝟐𝑲, … , 𝒆𝒊
𝒓𝑲 } + {𝒆𝒊

{𝒋𝒐𝒊𝒏}𝑲}   

3:𝒓′𝑲 = 𝒓𝑲 + 𝟏;  
4:𝒆𝑴𝑲 = (𝑴𝑻𝑲 −  𝑻);  

5:𝐞′𝑴𝑲 = 𝐞𝑴𝒌 + 𝒆𝒊
{𝒋𝒐𝒊𝒏}𝑲 𝐌[𝐢] 𝑵[𝒊] ;  
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Algorithm 4 JoKeyDistribute 

Inputs: TEKs, DKs, MT  

Output: new and updated keys ST, Ui, MT’, TEKs’, DKs’ 

1: SKDC 
𝐮𝐧𝐢𝐜𝐚𝐬𝐭
→     User i: establish a shared secret key with user i Ui 

2: SKDC 
𝐦𝐮𝐥𝐭𝐢𝐜𝐚𝐬𝐭
→       All: Notify KDC, old users of the joined group and other user groups 

which subscribed to the same DG to update TEK’=h(TEK). 

3: KDC 
𝐦𝐮𝐥𝐭𝐢𝐜𝐚𝐬𝐭
→      Devices: update their key DK’=h(DK) 

4: SKDC: update MT of this group joined  

5: SKDC 
𝐮𝐧𝐢𝐜𝐚𝐬𝐭
→     User: [STi, DKs, TEK]UKi  

 

 

Algorithm 4 JoKeyDistribute 

Inputs: TEKs, DKs, MT  

Output: new and updated keys ST, Ui, MT’, TEKs’, DKs’ 
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 Finally, SKDC sends the required updated keys to the new user Ujoin through a unicast 

message, including his slave token ST generated through Algorithm 3.  

 

An illustrative example of a user joining a user group 

Suppose a new user U4 that wants to get access to DG1, DG2, and DG4, as shown in 

Figure.4.4. Hence, U4 needs to get the corresponding traffic keys TEK1, TEK2, TEK4. For 

that, after being authenticated and authorized, U4 requests to join UG1. Thus, SKDC 

creates a shared secret key UK4 with U4; Then, it multicasts a notification based on the 

identities of user groups subscribed to the same devices groups to update the TEK1, TEK2, 

TEK4, so that the new user cannot access to previous exchanged data. 

 

Besides, SKDC updates the group key MT1’ of UG1 as mentioned in JoKeyUpdate 

algorithm to protect previous communications between the existing users and SKDC 

from intruders, and generates a new ST for U4, while existing users of UG1 still be able 

to decrypt data of new group key MT1’. Moreover, devices of DG1, DG2, and DG3 

update TEK’1=h(TEK1), TEK’2=h(TEK2), TEK’4=h(TEK4). Finally, SKDC sends, in 

unicast, to the new user U4 the slave token ST and the updated TEK’1, TEK’2, TEK’4 keys.  

ii. When a user leaves a group 

In this phase, we assume that a user Uleave wants to leave a user group UGK, thus he is not 

allowed to obtain the exchanged messages after his revocation. To secure a user’ leaving event, 

we detail a description designed to afford the forward secrecy. At this level, SKDC conducts 

the leave key update Algorithm 5 named “LeKeUpdate” to update the master token of the 

group (MTK, eM), and users group’s information. Actually, the updating of the master token MTK 

is ensured by deleting the ST of the leaving user, while the remaining users still could get access 

and decrypt data of the new updated MTK using their previous slave tokens.  

               

Figure.4. 4 : Structure inside UG1 when U4 joins 

 

 

 

                 

 

               

Figure 4. 4: Structure inside UG1 when U4 joins 
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At this level, SKDC runs the leave key distribute Algorithm 6 named “LeKeyDistribute” 

to disseminate the necessary rekeying message in the whole network after user Uleave leaves the 

UGK. The algorithm executes some steps as described below:  

 Firstly, the user Uleave announces his willing to leave the system to SKDC, which verifies 

the request and unicasts a message to KDC to signal a leave event.  

 

 Then, KDC updates all TEKj to which Uleave was subscribed according to the group 

identity 𝐼𝐷𝑈𝐺𝐾  by generating new TEKj based on the updating method (TEKj |random 

processes of KDC), and broadcasts the new TEKs to SKDCs.  

 

 At that point, SKDC enforces an access control level for the user group using its identity 

IDUG; [𝑇𝐸𝐾𝑗
𝑛𝑒𝑤, ∀ 𝑗 |𝐴𝑗,𝑏 = 1 𝑜𝑓𝑈𝐺𝐾  ]. Thus, according to IDUG, SKDC encrypts the 

updated 𝑇𝐸𝐾𝑗
𝑛𝑒𝑤 using the corresponding master token MT of each user group UG and 

encrypts the results with the master key of SKDC. Consequently, the message is 

broadcasted to all corresponding users. Notice that only users with a valid ST can 

decrypt the new 𝑇𝐸𝐾𝑗
𝑛𝑒𝑤. 

 

Algorithm 5 LeKeyUpdate 

Inputs: 𝑼𝑮𝑲 information (𝑰𝑫,𝑴𝑻𝑲, 𝑺𝑲, 𝒓𝑲, 𝑻)and system information(𝒆𝑴, 𝑺). 

Output: updated 𝑴𝑻′𝑲, 𝑺′𝑲and 𝒓′𝑲. 

The ith user leaves the UGK 

1:𝒇(𝒆𝒊
{𝒍𝒆𝒂𝒗𝒆}𝑲) = 𝟎  

2:𝒆𝒊
{𝒍𝒆𝒂𝒗𝒆}𝑲𝐢𝐬 𝐫𝐞𝐯𝐨𝐤𝐞𝐝 𝐟𝐫𝐨𝐦 𝑺𝑲  

3:𝑺′𝑲 = {𝒆𝒊
𝟏𝑲, 𝒆𝒊

𝟐𝑲, … , 𝒆𝒊
𝒓𝑲 } ∖ {𝒆𝒊

{𝒍𝒆𝒂𝒗𝒆}𝑲}   

4:𝒓′𝑲 = 𝒓𝑲 − 𝟏;  

5:𝐞′𝒊 = 𝒆𝒊
{𝒍𝒆𝒂𝒗𝒆}𝑲 =  𝟒 × 𝑹𝒂𝒏𝒅𝒐𝒎+ 𝟏 ;   

6:𝒆𝑴𝑲 = (𝑴𝑻𝑲 −  𝑻);  

7:𝐞′𝑴𝑲 = 𝐞𝑴𝒌  − 𝒆𝒊
{𝒍𝒆𝒂𝒗𝒆}𝑲 𝐌[𝐢] 𝑵[𝒊] ;  

8:𝐞′𝑴 = 𝐞𝑴  − 𝐞𝒊 𝐌[𝐢] 𝑵[𝒊] + 𝐞
′
𝒊 𝐌[𝐢] 𝑵[𝒊];  

9:𝑴𝑻′𝑲 = (𝒆′𝑴𝑲 +  𝑻);  
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𝒓𝑲 } ∖ {𝒆𝒊

{𝒍𝒆𝒂𝒗𝒆}𝑲}   

4:𝒓′𝑲 = 𝒓𝑲 − 𝟏;  
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7:𝐞′𝑴𝑲 = 𝐞𝑴𝒌  − 𝒆𝒊
{𝒍𝒆𝒂𝒗𝒆}𝑲 𝐌[𝐢] 𝑵[𝒊] ;  
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′
𝒊 𝐌[𝐢] 𝑵[𝒊];  

9:𝑴𝑻′𝑲 = (𝒆′𝑴𝑲 +  𝑻);  

 

Algorithm 6 LeKeyDistribute  

Inputs: TEKs, DKs, MT  

Output: new generated keys MT’, TEKs’, DKs’ 

1: SKDC updates MT of the group UG has been left 

2: SKDC  
𝐮𝐧𝐢𝐜𝐚𝐬𝐭
→    KDC: notify that UG has been left 

3: KDC 
𝐦𝐮𝐥𝐭𝐢𝐜𝐚𝐬𝐭
→       SKDCs: (TEK’| DK’)MK 

4: KDC 
𝐦𝐮𝐥𝐭𝐢𝐜𝐚𝐬𝐭
→       Devices: (TEK’)GK 

5: SKDC 
𝐦𝐮𝐥𝐭𝐢𝐜𝐚𝐬𝐭
→       user groups UG: ((TEK’)MT)MK  

 

 

Algorithm 6 LeKeyDistribute  

Inputs: TEKs, DKs, MT  

Output: new generated keys MT’, TEKs’, DKs’ 

1: SKDC updates MT of the group UG has been left 
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An illustrative example of a user leaving a user group: 

Suppose the user U3 leaves the group UG1, as shown in Figure.4.5. Meanwhile, she/he 

unsubscribes from DG1, DG2, and DG4, which leads to losing the access privilege to those 

DGs. Since the data of DG1, DG2, and DG4 should not be visible to this user anymore, 

traffic keys TEK1, TEK2, TEK4 are updated to meet the requirements of the forward secrecy 

[5].  

For that, SKDC first updates the master token MT1’’ of the UG1, as shown in Figure.4.5, 

while all users of this left group still get access with their previous STs. Then, KDC 

generates a new TEKs and broadcasts it via an encrypted message (TEK”i, DKj’|update 

methods, i=1,2,4)MK to SKDCs. After that, SKDC transmits updated traffic keys TEK”1, 

TEK”2, TEK”4 encrypted with the new master token MT1’’ securely to all members of the 

UG, based on the user group identity. The remaining users still could decrypt, with their 

previous STs, the message to handle the updated information. Finally, devices in groups 

DG1, DG2, and DG4 get the new TEKs keys encrypted with the conforming KEKs and GK 

keys, sent in multicast by the KDC, which prevent a leaving user from obtaining additional 

data.  

4.5.4.2. IoT Devices Joins/Leaves Events 

To describe the update key process of DLGKM-AC during IoT device join/leave events, we 

consider the two cryptography mechanisms named LKH and OTP, described at section 4.3.3 

and 4.3.4. In what follows, we detail the rekeying mechanisms for IoT devices groups after each 

join and leave events.  

i.  LKH Cryptography Mechanism  

The binary LKH tree is used for grouping the universe of devices that are only publisher of 

data in our IoT system. Otherwise, these publishers are added and deleted from the IoT system 

over time, damaging the security. Therefore, a rekeying process after each joins and leaves 

event is primordial, as explained in follows:  

                               

Figure.4. 5: Structure inside UG1 when U3 leaves 

 

 

 

                

 

                               

Figure 4. 5: Structure inside UG1 when U3 leaves 
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a. When an IoT Device Joins a Group 

During this event, we consider an IoT device Djoin is joining a DGy. Therefore, the KDC runs 

the distribute join key update Algorithm 7 named “DeJoKeUpdate”, to disseminate the 

rekeying keys. Thus, few steps are conducted:  

 KDC shares a secret key with Djoin that joins the device group DGy.  

 Then, KDC updates the necessary part of the LKH tree in which the device resides.  

 After, KDC multicasts to the existing devices in the DGy a notification to upgrade their 

group key GK.  

 Finally, KDC send in unicast to Djoin the path key PKt and the traffic key TEK of the 

DGy.  

b. When an IoT device leaves a group 

When a device Dleave leaves a DG, the KDC rearranges the LKH tree structure in the group 

and runs the distribute leave key update Algorithm 8 named “DeLeKeUpdate” to multicast an 

updated group key GK’ to the remaining devices. This group key is encrypted with the 

corresponding KEKs, which defines the LKH tree of the leaved DGy. Then, KDC broadcasts a 

message to announce that Dleave is no longer a valid device. 

 

 

 

 

 

Algorithm 8 DeLeKeUpdate 

Inputs: KEKs, GK  

Output: new keys KEKs’, GK.’ 

1: KDC 
𝐛𝐫𝐨𝐚𝐝𝐜𝐚𝐬𝐭
→       All: “leaving device j is no longer available.”  

2: KDC 
𝐦𝐮𝐥𝐭𝐢𝐜𝐚𝐬𝐭
→      DG:  update GK’ and KEK’s. 

Algorithm 7 DeJoKeUpdate 

Inputs: KEKs, GK  

Output: new and updated keys DK, Dj, KEKs’, GK’ 

1: KDC → device Dj: establish a shared secret key with the new device (Dj) 

2: KDC 
𝐦𝐮𝐥𝐭𝐢𝐢𝐜𝐚𝐬𝐭
→      old devices in DG: update group key GK’= h(GK) 

3: KDC 
𝐮𝐧𝐢𝐜𝐚𝐬𝐭
→    devices: update KEK’ encrypted either by secret keys or shared 

KEK 

 

 

Algorithm 7 DeJoKeUpdate 

Inputs: KEKs, GK  

Output: new and updated keys DK, Dj, KEKs’, GK’ 

1: KDC → device Dj: establish a shared secret key with the new device (Dj) 

2: KDC 
𝐦𝐮𝐥𝐭𝐢𝐢𝐜𝐚𝐬𝐭
→      old devices in DG: update group key GK’= h(GK) 

3: KDC 
𝐮𝐧𝐢𝐜𝐚𝐬𝐭
→    devices: update KEK’ encrypted either by secret keys or shared 

KEK 
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An illustrative example of an IoT device joining and leaving a device group: 

In this example, we consider the device group DG1 composed initially of three devices 

D1, D2, and D3. Firstly, we suppose a new device D4 joining the system, which is assigned 

to the device group DG1 as shown in Figure.4.6. KDC notifies the devices in DG1 to 

update GK’1=h(GK1) and creates a shared secret key D4 with device 4 to send necessary 

information TEK’1, GK’1, KEK2 encrypted with the secret key D4 through a unicast 

communication. Finally, KDC sends KEK2 to D3.  

At this stage, we suppose device D2 leaves the group DG1, as shown in Figure.4.7, 

thus, KDC makes a new device group key (GK1’’|update method) and multicasts it to the 

remaining devices in the group, namely D1, D3, and D4.  

ii. OTP Cryptography Mechanism 

In practice, an IoT device does not only collect data but also may read data from other 

devices. For that, an IoT device could also subscribe to other devices and get access to data. 

Since the subscribers change their interest very frequently, we introduce a modified OTP key 

distribution structure suitable for very constrained resource devices to ensure the desired 

                                          

Figure.4. 6: Examples of LKH structure updates for device join. 

 

 

 

 

                                       

Figure 4. 6: Examples of LKH structure updates for device join. 

 

 

                                           

Figure.4. 7: Examples of LKH structure updates for device leave. 
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security level and the efficiency of our scheme. We present in this subsection a full description 

of the rekeying operations of DLGKM-AC after an IoT device joins/leaves a group as below:  

a. When an IoT Device Joins a Group 

A new joining IoT device to an existing IoT device group should not learn anything about 

exchanged group communication before joining. Therefore, to guarantee backward secrecy, it 

is crucial to handling a rekeying process and update the group key. Indeed, we propose an 

improved OTP protocol to update the group key among the IoT device group securely. The 

different steps of the OTP based protocol are defined and presented in Figure 4.8 as follows:  

 The manager of the device group establishes a secret key DKj with the new device Dj 

and generates a random long-term key s chosen from a large set of bits and computes 

the related information 𝑢 of the new IoT device 𝑢 = 𝐷𝐾𝑗⨁𝑠, necessary to update the 

old group key 𝐺𝐾𝑜𝑙𝑑.  

 Then, the manager encrypts u with the current group key and broadcasts it securely to 

the existing IoT devices in the group under its control.  

 All existing IoT devices can decrypt this data u encrypted with the 𝐺𝐾𝑜𝑙𝑑, except the 

new one as it does not hold the 𝐺𝐾𝑜𝑙𝑑. Then the existing IoT devices could update the 

group key through computing 𝐺𝐾𝑛𝑒𝑤 = 𝐺𝐾𝑜𝑙𝑑⨁𝑢. 

  After, the manager updates the old group key 𝐺𝐾𝑜𝑙𝑑 and finally generates an identity 

𝐼𝐷𝑗, computes the 𝐴[𝑗] =  ∑ 𝐷𝐾𝑖⨁𝐼𝐷𝑗
𝑛
𝑖=1
𝑖≠𝑗

 for further updating group key, and sends to 

the newly joined device. 

 
Figure.4. 8: Rekeying procedure based on OTP when a device joins a group 
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b. When an IoT Device Leaves a Group 

When an IoT device wants to leave a group to which it belongs, it should not be able to 

learn any more about future keys after its departure. This is achieved as follows: Let Dj the node 

that leaves the group DGx. The manager Mx of  DGx securely and randomly generates the key 

value s’ and computes the corresponding one-time-pad value 𝑢′ = 𝑠′ ⨁𝐷𝐾𝑗 . Then it updates 

𝐴[𝑖] = 𝑠" ⨁ 𝐼𝐷𝑖 for each IoT device Di still in DGx, while 𝐴[𝑗] of the left device is set to Null. 

After that, the manager broadcasts updated group information 𝐴, and each legitimate IoT device 

in the group recovers 𝑠" and derives the new 𝐺𝐾𝑛𝑒𝑤. The protocol steps are figured in 

Figure.4.9.  

In the proposed scheme, users are not affected by IoT device movement (join/leave) in a 

group, which is explained by the use of a manager for each device group.  The manager 

maintains the traffic key TEK to encrypt data of the group to subscribers during DG life. 

Otherwise, only when a DGx is deleted, KDC broadcasts to the subscribers that the 

corresponding traffic key TEKx is no longer useful.  

4.6. Security Analysis 

In this section, we prove the effectiveness of the proposed scheme DGKM-AC in terms of 

forward, backward secrecy and resistance to the collusion attack.  

 

 

 
Figure.4. 9: Rekeying procedure when a device leaves a group 

 
 

 

Figure 4.3: Rekeying procedure when a device leaves a group 
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4.6.1. Forward Secrecy 

In the proposed DGKM-AC scheme, we provide the forward security property to both users 

and IoT devices. We detail and analyze through proofing the two theorems as follow: 

 Theorem 1: The proposed group key management scheme between SKDC and users 

provides forward security against an adversary. In other words, the revoked user cannot 

get access to the ongoing communication. 

Proof: Consider the case that the key pair (𝑒𝑗 , 𝑑𝑗) should be revoked when user Uj leaves the 

group UGK. The SKDC updates its master key 𝑒𝑀 and the corresponding master token 𝑒𝑀𝐾 . At 

this level, the master token of the left user group UGK satisfies equations 4.1 and 4.2: 

𝑃𝑒𝑀𝐾
′

 ≡  𝑃𝑒𝑖  𝑚𝑜𝑑 (𝑝𝑖𝑞𝑖)          (4.1)               

 𝐶𝑑𝑀𝐾
′

 ≡  𝐶𝑑𝑖  𝑚𝑜𝑑 (𝑝𝑖𝑞𝑖); ∀ 𝑖 𝜖 [1, 𝑟𝐾], 𝑖 ≠ 𝑗    (4.2)  

Besides, the data source specifically the plaintext P is encrypted using the master key 

encryption: 𝑃𝑒𝑀𝐾
′

  𝑚𝑜𝑑 (∏ ∅(𝑝𝑖𝑞𝑖)
𝑁
𝑖≠𝑗=1 ) = 𝐶∗. After receiving the new ciphertext 𝐶∗, each 

user in the group can decrypt it with its individual private key 𝐶∗𝑑𝑖  𝑚𝑜𝑑 (𝑝𝑖𝑞𝑖) = 𝑃 , ∀ 𝑖 ≠ 𝑗. 

Although the left user from UGK knows the old keys (𝑒𝑗 , 𝑑𝑗), he/she cannot obtain the correct 

plaintext from the ciphertext 𝐶∗through the old keys and get a false plaintext different from the 

sent plaintext 𝐶∗𝑑𝑗  𝑚𝑜𝑑 (𝑝𝑗𝑞𝑗) = 𝑃
∗ ≠ 𝑃. 

 Theorem 2: The proposed group key management scheme between KDC and IoT 

devices provides forward security against an adversary. In other words, the revoked IoT 

device cannot get access to the current communication. 

Proof: At this level, we suppose 𝐴1 be an adversary who colludes with the left IoT device Dj in 

the device group DGK. In particular, the adversary 𝐴1may obtain all information stored in left 

IoT device (𝐷𝐾𝑗 , 𝐺𝐾𝐾, 𝑇𝐸𝐾,𝐾𝐸𝐾𝑠) and wants to derive the current group key, 𝐺𝐾𝐾
′ . After the 

IoT device is revoked, KDC is responsible for updating the LKH tree of DGk, similarly updating 

the path key from the revoked leaf node to the root node {𝐾𝐸𝐾𝑖 𝜖 𝑃𝐾𝑡 𝑜𝑓 𝐷𝑗}, which are used 

to encrypt and broadcast the new group key 𝐺𝐾𝐾
′  to the remaining devices. However, 𝐴1 cannot 

decrypt the rekeying messages and get 𝐺𝐾𝐾
′ , as all key encryption keys are updated in the LKH 

tree.  

Furthermore, based on the OTP mechanism, after an IoT device leaves a group DGk. the 

manager updates the OTP value and the array. In fact, it computes the new 𝐴[𝑖] = 𝑠" ⨁ 𝐼𝐷𝑖 for 

each IoT device Di still in DGx, while 𝐴[𝑗] of the left device is set to Null. Hence, an adversary 

𝐴1, who wants to collude data with the left IoT device, using the value 𝐴[𝑗] cannot compute the 

new  𝐺𝐾𝐾
′ . Thus, a left node cannot compromise the whole network and learn about future 

communications, which proves that our protocol provides forward secrecy in DG.  
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4.6.2. Backward Secrecy 

In this section, we analyze the backward security property to both users and IoT devices 

through proofing the two theorems below:  

 Theorem 3: The proposed group key management scheme between SKDC and users 

provides backward security against an adversary. In other words, the newly joined user 

cannot get access to previous communications. 

Proof: Suppose a new user Uj is joining a group UGK with the key pair (𝑒𝑗 , 𝑑𝑗). The previous 

data source P is encrypted as follows using the master token 𝑃𝑒𝑀𝐾  𝑚𝑜𝑑 (∏ ∅(𝑝𝑖𝑞𝑖)
𝑁
𝑖≠𝑗=1 ) = 𝐶, 

where ∀ 𝑖 𝜖 [1, 𝑟𝐾] 𝑎𝑛𝑑 𝑖 ≠ 𝑗, the master token satisfies equation (4.1 and 4.2):  

𝑃𝑒𝑀𝐾 ≡ 𝑃𝑒𝑖  𝑚𝑜𝑑 (𝑝𝑖𝑞𝑖), and   𝐶
𝑑𝑀𝐾  ≡  𝐶𝑑𝑖  𝑚𝑜𝑑 (𝑝𝑖𝑞𝑖); 

After the new user joining the system, the SKDC updates its master key 𝑒𝑀 and the 

corresponding master token 𝑒𝑀𝐾  of UGK, where ∀ 𝑖 𝜖 [1, 𝑟𝐾] and 𝑖 = 𝑗, 𝑒𝑀𝐾
′ satisfies: 

𝑃𝑒𝑀𝐾
′

≡ 𝑃𝑒𝑖  𝑚𝑜𝑑 (𝑝𝑖𝑞𝑖), 𝐶
𝑑𝑀𝐾
′

 ≡  𝐶𝑑𝑖  𝑚𝑜𝑑 (𝑝𝑖𝑞𝑖);  

At this level, the user joining the group UGK with the keys pair (𝑒𝑗 , 𝑑𝑗), cannot obtain the 

correct previous plaintext from the ciphertext 𝐶 through the new keys as: 

𝐶𝑑𝑀𝐾𝑚𝑜𝑑 (∏ ∅(𝑝𝑖𝑞𝑖)
𝑁
𝑖≠𝑗=1 ) = 𝑃 , ∀ 𝑖 𝜖 [1, 𝑟𝐾] 𝑎𝑛𝑑 𝑖 ≠ 𝑗 

 𝐶𝑑𝑗  𝑚𝑜𝑑 (𝑝𝑗𝑞𝑗) ≡  𝐶
𝑑𝑀𝐾
′

𝑚𝑜𝑑 (∏ ∅(𝑝𝑖𝑞𝑖)
𝑁
𝑖=1 ) = 𝑃∗ ≠ 𝑃 , ∀ 𝑖 𝜖 [1, 𝑟𝐾] 𝑎𝑛𝑑 𝑖 ≠ 𝑗 

We conclude that our scheme offers the backward secrecy security property when a new user 

joins the system.  

 Theorem 4: The proposed group key management scheme between KDC and IoT device 

provides backward security against an adversary. In other words, the joined IoT device 

cannot get access to the previous communication. 

Proof: Suppose a new IoT device Dj joining the device group DGK and has the new keys 

(𝐷𝐾𝑗 , 𝐺𝐾𝐾
′ , 𝑇𝐸𝐾, 𝐾𝐸𝐾𝑠′). After that, the KDC updates the LKH tree of DGk, similarly updating 

the path key from the joined leaf node to the root node {𝐾𝐸𝐾𝑖 𝜖 𝑃𝐾𝑡 𝑜𝑓 𝐷𝑗}, which are used to 

encrypt and broadcast the new group key 𝐺𝐾𝐾
′  to the existing devices. Meanwhile, knowing the 

secret key, the new 𝐺𝐾𝐾
′ , and path keys, the newly joined device cannot derive anything about 

the previous group keys.  

Furthermore, using the OTP mechanism, the manager computes a new OTP value 𝑢 and 

sends it for the existing IoT devices encrypted with the previous group key 𝐺𝐾𝑜𝑙𝑑. At this point, 

each existing IoT device could decrypts the OTP value 𝑢 and computes the new group key as 

follows: 𝐺𝐾𝑛𝑒𝑤 = 𝐺𝐾𝑜𝑙𝑑⨁𝑢, while the new one gets only the new information of the group 

key. Thus, knowing the new group key 𝐺𝐾𝑛𝑒𝑤 , 𝐼𝐷𝑗  and the corresponding A[j] =
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∑ DKi⨁IDj
n
i=1
i≠j

, the new joined IoT device could not compute 𝐺𝐾𝑜𝑙𝑑 as the OTP value 𝑢 is 

encrypted with 𝐺𝐾𝑜𝑙𝑑.  

We hence prove that our scheme offers the backward secrecy security property when a new 

IoT device is joining the system for both LKH and OTP mechanisms.  

4.6.3. Collusion Attack Analysis Using Random Oracle Model 

In this section, we analyze the resistance of our solution to the collusion attack, and we 

prove that using the Random Oracle Model (ROM) standard [157]. 

 Theorem 5: The proposed GKM is secure against collusion attack.  

Proof: Let 𝐺𝑐𝑟be the adversarial game for collusion resistance. This game is played between 

two adversaries: one acts as the challenger 𝐶𝑐𝑟 who interacts with the adversary 𝐴𝑐𝑟 trying to 

win 𝐶𝑐𝑟. It is worth noting that 𝐶𝑐𝑟 can simulate all the oracles 𝑂𝑗𝑜𝑖𝑛, 𝑂𝑙𝑒𝑎𝑣𝑒, 𝑂𝑐𝑖𝑝ℎ𝑒𝑟𝑡𝑥𝑒𝑡and 

𝑂𝑑𝑒𝑐𝑟𝑦𝑝𝑡 functions and output signed messages as a real signer. 𝐺𝑐𝑟 consists of the following 

phases:  

Setup: 𝐶𝑐𝑟runs the MTokenGen algorithm for a random choice of ID by 𝐴𝑐𝑟. Rekeying 

operation is simulated after that, and the timeline is started (t=0).  

Queries: It can query the oracle 𝑂𝑗𝑜𝑖𝑛, 𝑂𝑙𝑒𝑎𝑣𝑒, 𝑂𝑐𝑖𝑝ℎ𝑒𝑟𝑡𝑥𝑒𝑡 and 𝑂𝑑𝑒𝑐𝑟𝑦𝑝𝑡 to control group 

dynamicity.  

Challenge: 𝐴𝑐𝑟 issues one challenge query to 𝐶𝑐𝑟 at time 𝑡𝑐ℎ𝑎𝑙𝑙𝑒𝑛𝑔𝑒 (which is the choice of the 

𝐴𝑐𝑟). Before responding to the challenge, 𝐶𝑐𝑟 retrieves the set challenge Schallenge from the list 

Ls, and forms the list of leaving members Lg, for all ID ∉ Schallenge. Then, for each identity ID ∉ 

Schallenge, 𝐶𝑐𝑟issues the query 𝑂𝑒𝑥𝑡𝑟𝑎𝑐𝑡(ID) to obtain SID. Besides, 𝐶𝑐𝑟encrypts (TEK, ST, 

Schallenge) to get (Ai,b’, TEK’), where Ai,b’ defines the authorized receivers of TEK challenged 

with 𝐶𝑐𝑟. After, 𝐶𝑐𝑟 chooses a bit b ∈ {0, 1} at random and sets Kb to TEK’ and Kb-1 to a random 

TEK from the key space. Finally, it challenges with (Ai,b’, K0, K1).  

Guess: 𝐴𝑐𝑟outputs a bit b’ ∈ {0,1} as its guess. 𝐶𝑐𝑟passes on b’ as its guess to 𝐴𝑐𝑟.  

The adversary advantage in winning the game is defined as 𝐴𝑑𝑣𝐺𝐾𝑀
𝑐𝑟 = |𝑝𝑟[𝑏′ = 𝑏] −

1

2
|; 

Hence, we can see that the advantage that 𝐴𝑐𝑟 breaks the collision resistance of GKM is the 

same that 𝐶𝑐𝑟 breaks chosen-ciphertext attack (CCA), meanwhile, breaks the encrypted 

messages. Thus, if there exists no adversary who can break CCA security with non-negligible 

advantage, then there cannot be any adversary 𝐴𝑐𝑟, who can break the collision resistance of 

GKM with non-negligible probability.  
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4.7. Performance Analysis and Evaluation 

In this section, we analyze the proposed DLGKM-AC scheme's performance in terms of 

storage overhead, computation overhead, and communication overhead. Then, we compare the 

results with existing methods in the literature. We also discuss the time complexity to renew 

the master token and revoke the slave token of the proposed MTE algorithm for communication 

with users in the same group. 

4.7.1. Performance Analysis 

In this subsection, we present the performance analysis of the proposed DLGKM-AC for 

IoT environment. We ensure the analysis in terms of different metrics such as storage, 

computation, and communication overhead. In order to guarantee generality, we assume that 

IoT devices are equally distributed in each device group, and the LKH structures are all 

balanced binary trees.  

4.7.1.1. Storage Overhead 

The storage overhead is an expensive metric of any access control scheme in the IoT 

environment as it is based on the memory capacity required to store the keys. In the proposed 

scheme, the storage overhead is formulated at each user in UGx and each device in DGy.  

A user belonging to the user group UGx has a slave token ST, an Asymmetric Key (AK), 

many traffic keys TEKs, Symmetric Keys (SK) equal to the number of DGs for which UGx is 

subscribed, and his secret key shared with SKDC. Hence, we can calculate the storage of keys 

for each user in UGx using equation 4.5: 

𝑆𝑂𝑈∈𝑈𝐺𝑥 = 𝐴𝐾 + (∑ 𝐴𝑖,𝑏
𝑀
𝑖=1 + 1)𝑆𝐾                     (4.5) 

In addition, the analysis of a single d-degree key tree accommodating n member requires the 

tree depth denoted by 𝑓𝑑(𝑛). It is known that 𝑓𝑑(𝑛) is either L0 or L0 +1, where 𝐿0 = 𝑙𝑜𝑔𝑑(𝑛). 

The authors of [112] made useful inequality (4.6) in order to analyze the storage overhead for 

key trees:  

𝐸[𝑓𝑑(𝑛)] ≤  𝐸[𝑙𝑜𝑔𝑑(𝑛)] + 1 ≤ 𝑙𝑜𝑔𝑑𝐸[𝑛] + 1,         (4.6) 

where the expectation, E[.], is taken over the distribution of n devices and the length of the 

branches on the key trees. 

A device belonging to DGy, containing n devices, has a traffic key TEK, a group device key 

GK, and as many symmetric keys, including the KEKs and the individual key, as the length of 

the branch. Since we consider that devices are distributed in binary trees, we can calculate the 

number of keys for each device in DGy using equation 4.7: 

𝑆𝑂𝐷∈𝐷𝐺𝑦 = (log2 𝑛 + 3) × 𝑆𝐾                (4.7) 

With regard to storage using the OTP mechanism, each node needs only to store its private 

IDi, DKi pair, the corresponding array entry A[i] and the group key GKx. These are all n-bit 

sequences, which are easy to save even on devices with limited storage capacity.  
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4.7.1.2. Computation Overhead  

The computation overhead can be measured as the total time consumption for encryption 

and decryption cost and processing requirements. We can measure the cost of computation on 

the server, user as well as on the device sides, after each member (user/ IoT device) joining or 

leaving events. We explain the different necessary computation operations as follows:   

 When a user joins a subgroup UGx: The SKDC assigns a slave token to the new 

joining user Ujoin and updates the master token of UGx and its master key. The new user needs 

one symmetric decryption to gain the slave token ST, new TEK, and all DKs of the devices in 

the device groups to which he is subscribed. An existing user needs to do one hash function to 

update TEK. Finally, the devices need to perform one hash function to update their TEK and 

another hash function to derive their new device keys DK.  

 When a user leaves a subgroup UGx: The SKDC needs to update the master token of 

UGx and its master key in order to send TEK securely to users. The remaining users need to 

perform one asymmetric decryption and one symmetric decryption to gain the updated 

information. Devices, to which user groups are subscribed, need to do one symmetric 

decryption to obtain the update information TEK and DK.  

 When a device joins a device group DGy: The existing devices of the left device group, 

based on the LKH structure, require to do one hash function to update the device group key 

GKy. Moreover, the LKH tree structure will change, and some devices need to decrypt O(log(n)) 

KEK updated messages. Besides, the new device needs only to decrypt one message sent from 

KDC to obtain KEKs. In contrast, when using the OTP mechanism, the existing devices require 

to do XOR operation to get the new group key, and update the array. Finally, users subscribed 

to the group joined by the new device require to decrypt the message sent by KDC to gain the 

new device key.  

 When a device leaves a device group DGy: The remaining devices execute one 

symmetric decryption to gain the new group key in the LKH structure, while they need only 

XOR operations to get the new group in OTP mechanism. Moreover, users subscribed to the 

leaving groups, do not need to perform extra computation. 

 

4.7.1.3. Communication Overhead 

The encrypted data and keys should be transmitted to the users and/or IoT devices after each 

join/leave event. In this context, the communication overhead is mainly associated to the 

number of transmitted messages during the dissemination keys process. We analyze the 

communication overhead of the new DLGKM-AC for the IoT environment, as shown in 

Table.4.4: 

Table 4. 5: Communication analysis. 

Events Communication cost  

User leave’s event 
SKDC broadcasts the new TEK and DK to subgroups 

KDC sends log(n) messages to devices 

User join’s event 
SKDC unicasts a message to the new user  

SKDC notifies all users to update TEK 

Device join’s event LKH KDC unicasts a message to the new device 
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4.7.2. Performance Evaluation 

In this section, we present the experimental results of DLGKM-AC scheme developed on 

MATLAB. We evaluate DLGKM-AC performances in terms of storage, computation, and 

communication costs caused by rekeying process. The rekeying transmission overhead 

corresponds to the additional signaling load after each join/leave event. For that, we compare 

the new proposed DLGKM-AC scheme with two other key management solutions designed for 

access control between subscribers and publishers; a centralized scheme that supports groups 

of publishers (GroupIT [113]) and a decentralized scheme that does not support groups of 

publishers (SMGKM [123]). 

4.7.2.1. Storage Costs 

The storage cost of the proposed scheme is formulated at both sides, user and IoT devices. 

In order to achieve a comparable security strength, we assume the symmetric 

encryption/decryption key length to AES-256 bits, the ECC-512 decryption key length to 512 

bits.  We consider computing the storage cost at the user side through two different scenarios:  

 Scenario 1: in this scenario, we vary the number of publishers DGs to which users are 

subscribed while fixing the number of users per user group to 20 users for example.  

Through Figure.4.10, we notice that, unlike existing solutions such as GroupIT [113] and 

SMGKM [123], our scheme is less affected by the increase of DGs number to which users are 

subscribed. Indeed, the user in our scheme DLGKM-AC requires less memory storage, even if 

the number of IoT devices to which the user is subscribed is high. In fact, comparing to the 

GroupIT [113] scheme, we proposed a decentralized architecture in which keys are less stored 

on IoT devices, while SKDCs take the responsibility of keeping traffic keys. Besides, compared 

to SMGKM [123], our DLGKM-AC ensure the grouping of IoT devices, where users need only 

to store the traffic key of all the group, not all the traffic keys of each IoT device.  

KDC broadcasts the subscribers with the new DK  

OTP 

Manager unicasts access keys information to new device 

Manager broadcasts OTP value to existing devices in 

group  

Device leave’s event 

LKH 

KDC notifies the subscribers that the leaving device is no 

longer available. 

KDC multicasts log(n) messages for the remaining 

devices to update group key. 

OTP 

Manager notifies the subscribers that the leaving device is 

no longer available. 

Manager broadcasts the new array A to remaining devices 

in group 
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 Scenario 2: in this scenario, we vary the number of users in each UG and consider the 

number of DGs set to 4 and the number of devices set to 20 IoT devices per group DG.  

Figure.4.11 shows that, in GroupIT [113] and SMGKM [123] schemes, when the number of 

users per group increases, the storage on users rises too, explaining that the rekeying in user 

group affects all users. In particular, the larger the number of users in each UG, the more these 

schemes incur users’ storage overhead. In our scheme, we ensure the dissemination of keys in 

the user group through the proposed MTE mechanism, which is not sensitive to the number of 

users in each UG. Hence, the total number of users in the user group UG does not affect the 

storage on each user and can reduce the storage overhead per-user more efficiently. 

 

Figure.4. 10: Users’ storage overhead while varying the number of devices 

 

 

Figure 4.5: Users’ storage overhead while varying the number of devices 

 

 

 

 

 

Figure 4. 10: Users’ storage overhead while varying the number of devices 

 

Figure 4.6: Users’ storage overhead while varying the number of devices 

 

 

 

Figure.4. 11: Users’ storage overhead while varying the number of users 
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At this level, we study the storage on devices when varying the number of devices. As 

mentioned in the analysis section, our proposed scheme is not affected either by the number of 

users or by the number of devices in other different DGs because devices are considered as data 

publishers in the LKH structure, while they are only affected by the number of devices of their 

group. Figure.4.12 shows that SMGKM and our scheme have mainly the same storage. 

Otherwise, GroupIT does not hold the notion of grouping the devices (publishers), and the 

storage on devices (publisher) is not affected by the number of devices in the same group. 

4.7.2.2. Computation Cost 

We simulate the cryptographic operations with Miracle Library [158], which is a 

cryptographic library designed for use in constrained environments in terms of computational 

power [120]. All simulations are implemented on a computer with the following features: an 

Intel i5-4200 CPU@ 2.5 GH with a physical memory of 8 GB; and Ubuntu 12.04 OS over 

VMware workstation 15. We provide the time cost for different cryptographic operations. As a 

result, we define Th = 2,445µs be the time for one hashing operation using SHA-256 function 

on a 64-byte block. Then, TEnc=TDec=2,7µs be respectively the time for one 

encryption/decryption operation using symmetric cryptography AES-256 encryption on a 64-

bytes, and TECC=365,63µs represents the time for one elliptic curve cryptographic operation.   

Since our protocol is designed for a dynamic IoT environment, the computational cost is 

measured based on leave and join operations of both users and devices. We detail the 

computation on users as well as on IoT devices and servers in the following subsections. We 

start by the computational costs triggered by user leave/join events before comparing the 

rekeying’s cost triggered by device join and leave operations. 

 

 

Figure.4. 12: Devices storage overhead 
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4.7.2.2.1. When a User Leaves a Group 

Consider a user U leaving the user group UGK. At this moment, the left user is not allowed 

to obtain the rekeying message no more to ensure the forward secrecy. In particular, we compare 

the computation cost through different cases on the remaining users and on the SKDC as 

follows:  

 Computation cost on the remaining users’ side:  

We consider two cases:   

 Case 1: In the first case, we vary the number of publishers DGs to which users are 

subscribed, while fixing 20 users per UG.  

Figure.4.13 depicts that our scheme is not hugely impacted with the number of DGs to 

which users are subscribed compared to the state of the art solutions. More specifically, 

when a user leaves a user group, the remaining users need to update the traffic key of 

the data. In fact, in our proposed scheme each SKDC is responsible to update this key 

and disseminate it to users through MTE mechanism. At this level, these remaining users 

need only to decrypt one message to get the new traffic key. Thus, we can ensure that a 

decentralized architecture reduces the computation overhead resulting after a leave 

event such an IoT environment. 

 Case 2: In the second case, we modify the number of users in each UG and consider the 

number of DGs is fixed to four and the number of devices per group DG is fixed to 20.  

 

Figure.4. 13: Remaining user computation overhead varying devices’ number (user leave) 
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Similarly, in Figure.4.14, we plot the computation cost on remaining users after a 

user leaving the group with varying the number of users. In this figure we note that the 

more the number of users in each UG is large, the more the computation overhead is 

high for GroupIT and SMGKM schemes. This explains that each user depends on all 

other users in the same group, while users in the proposed scheme are not affected with 

the number of users. The proposed MTE algorithm, managing communication within 

user groups, guarantees that users in the same group can get the updated group key with 

only one decryption.  This explains why our proposed system has low computational 

cost while having a high number of users in UG. 

 Computation on the server-side: 

At this level, we consider the group key updating time of SKDC to prove the efficiency of 

our master token encryption MTE for updating keys compared to traditional master key 

encryption mechanisms. Figure.4.15 shows that, compared to the traditional master key 

encryption MKE algorithm, our solution consumes less time for the key updating when a user 

is revoked. In fact, the traditional MKE needs to repeat all the steps of Algorithm 1 when 

updating the master key. Otherwise, the MTE algorithm proposes only two operations to get 

the newly updated master token. 

 

Figure.4. 14: Remaining user computation overhead varying users’ number (user leave) 

 

 

Figure 4.7:  
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4.7.2.2.2. When a User Joins a Group 

Assume a user U is joining a user group UGK. As the new user U should not be allowed to 

access previous communications, the rekeying operation is triggered. Hence, we compare the 

updating overhead when a user joins a group as follows:  

 Computation cost on old users’ side:  

We also consider two cases: 

 Case 1: In the first case, we vary the number of publishers DGs to which users of UG 

are subscribed while fixing 20 users per UG.  

In Figure.4.16, we present a comparison of the computation cost for the existing users 

in the joined user group UG while varying the number of devices to which UG is 

subscribed. The results show that the centralized architecture requires more rekeying 

operations compared to the decentralized architecture. Besides, Figure.4.16 shows that 

the computation cost of DLGKM-AC varies very slowly with the number of the 

publisher compared to the literature GroupIT and SMGKM. In fact, when a user joins a 

group, the existing users need only to update the traffic keys TEK of the corresponding 

publishers. In contrast, the other schemes need to update the keys of the user group. This 

outcome is mainly explained by using subgroup controllers SKDCs to manage the key 

updating process for each user group and thus reducing computation for end-users. 

 

Figure.4. 15: Server time update on the user-leaving event 

 

 

 

 

 

 

 

 

Figure 4. 15: Server time update on the user-leaving event 

 

 

 

 



112 
 

 Case 2: In the second case, we vary the number of users in each user group UG and 

consider four devices groups DGs and 20 devices per group DG.  

Similarly, the Figure.4.17 depicts the comparison of the computation cost on the 

existing users, but when varying the number of users per group. Indeed, we notice that 

the number of users in the same group does not affect the existing user in the group in 

our proposed scheme. However, the shape of the other schemes, GroupIT and SMGKM, 

is increasing with the number of users. It is evident that the new joining user affects all 

members of the user group, which is explained through using an LKH structure in 

 
Figure.4. 17: Old user computation overhead varying the users’ number (join) 

 

 
 

 

 

 

 

Figure.4. 16: Old user computation overhead varying the devices’ number (user join) 

 

 

 

 

 

 

 

 

Figure 4. 16: Old user computation overhead varying the devices’ number (user join) 
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GroupIT and SMGKM while using MTE as key management for user groups in 

DLGKM-AC. 

 Computation cost on new users’ side:  

At this level, we analyze the new user’s computation cost in Figure.4.18. Actually, when a 

new user joins a group of users, the computation cost of our DLGKM-AC and SMGKM is 

almost negligible compared to GroupIT. These results are explained by the fact that the new 

user needs only to decrypt received messages to get necessary information. While in GroupIT, 

a new user needs to compute the device keys to which he/she is subscribed.  

 Computation cost on the server-side:  

In order to prove the efficiency of the proposed master token algorithm, we plot in 

Figure.4.19 the average time to update keys when there is a user joining operation. More 

specifically, the time needed to execute the JoKeyUpdate algorithm when varying the number 

 
Figure.4. 18: New user computation overhead varying devices 

 
 
 

 

 

 
Figure 4. 18: New user computation overhead varying devices 

 
 

 

 

Figure.4. 19: Server time update on the joining event 
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of users per group. Unlike the traditional master key encryption MKE, the execution time of 

our scheme increases slowly with the increase of the number of users per group.  

4.7.2.2.3. When an IoT Device Joins a Group  

Figure.4.20 plots the computation cost triggered by a device joining a device group when 

varying the number of IoT devices in the group. In fact, we measure the overhead on both the 

existing devices and the new device sides. We notice that the computation cost of the existing 

devices in our scheme is less impacted than GroupIT by the number of IoT devices. In contrast, 

the new device in DG has the same cost to get the updated keys. Moreover, the SMGKM is not 

impacted by varying devices in the group, as they do not consider grouping devices.  

4.7.2.2.4. When an IoT Device Leaves a Group 

Figure.4.21 shows the computation cost when a device leaves a DG, varying the number of 

IoT devices per group. The cost is measured on both the group's remaining devices and the 

users subscribed to the DG. In our scheme, the users' computation cost is not affected by the 

leaving device's operation, while, in SMGKM, it increases with the number of devices. The 

advantage of grouping devices explains this result. Moreover, the remaining devices in our 

scheme have less computation cost compared to GroupIT, which is explained through using a 

decentralized scheme, where KDC reduces the load on devices.  

 

 

 

 

 
Figure.4. 20: Computation cost: device join 
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4.7.2.3. Communication Cost  

The communication cost of DLGKM-AC for the IoT environment is evaluated based on the 

number of updating keys messages transmitted during user joins/leaves events. Figure.4.22 (a) 

and (b) plot the communication cost after the user joins and leaves events when varying the 

number of IoT devices to which the user is subscribed. It is evident from Figure.4.22 that 

GroupIT and SMGKM schemes are affected by the number of devices, and it causes many 

rekeying messages when a user joins/leaves a user group. Therefore, our scheme incurs much 

less communication overhead, which is explained by grouping the devices and introducing 

MKE for grouping users. In particular, regarding the use of the master token encryption 

methodology for communication with groups of users, our scheme DLGKM-AC decreases the 

  

(a) After user join event  (b) After user leave event  

Figure.4. 22: Communication costs 

 

 

 

 

Figure.4. 21: Computation overhead: device leave 

 

 

 

 

 

 

Figure 4. 21: Computation overhead: device leave 
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unnecessary rekeying operations. Indeed, the proposed DLGKM-AC maintains the lowest 

communication cost.  

4.8. Conclusion 

The main objective of this chapter is to define a scalable, generic, and lightweight group key 

management (GKM) for access control in the IoT environment. For that, we introduced a new 

access management architecture DLGKM-AC, which alleviates the problem of managing 

numerous constrained IoT objects. The proposed solution is fully decentralized, which is based 

on different and separate GKM for users and IoT devices. Besides, a new master token 

encryption algorithm has been introduced to ensure members’ Independence in highly dynamic 

group communication. Subsequently, we presented an optimized notion of the logical key 

hierarchy and one-time pad (OTP) to enable a secure group communication within IoT devices. 

This fusion makes our solution lightweight as it offers the best performance on the user and IoT 

device side compared to the realized benchmarking studies.   

Therefore, DLGKM-AC solution can be perfectly adapted to IoT applications, where devices 

typically have constrained computational power. Additionally, we handle smoothly the 

mobility, where both the backward and forward secrecy are ensured with a few keys’ updates. 

Moreover, our solution alleviates the 1-affects-n issue, which is explained when users can 

always get access to data even if one SKDC is affected. Furthermore, extensive security 

analyses covering a wide range of desired security properties have also been provided. 

Additionally, performance analyses show that our proposed scheme offers better performances 

by reducing storage, communication, and computation overheads. Finally, adopting a 

decentralized architecture with different GKM makes our scheme more suitable for a dynamic 

IoT environment, where subscribers change their interest over time frequently. However, even 

we ensure flexible access control and smooth changing updates, subscribers always need to be 

authenticated with all IoT devices before joining the system. In the next chapter, we propose a 

distributed group authentication for subscribers, which offers subscribers a flexible 

authentication with the ability to choose to non-re-authenticate in the system. 
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5.1. Introduction 

As thoroughly discussed in the previous chapter, new types of group-based applications have 

been presented due to the increasing diffusion of the IoT networks. Specifically, many new IoT 

applications and services are introduced, such as smart hotels, smart grids, and industrial 

automation based on group communication. However, this may lead to a set of new challenges 

and concerns. Although an access control for group-based applications scheme is achieved to 

safeguard IoT data from tampering and unauthorized access, efficient authentication is required 

for the group-based applications. More specifically, these environments pose a challenge for 

defining a global standard authentication protocol in IoT networks [159]. Due to the diverse 

heterogeneous architectures and environments that support IoT devices, there exist numerous 

authentication mechanisms [52], such as key-based authentication (e.g., public/private key) 

[160] and knowledge-based authentication (e.g., password) [161][162]. All these user 

authentication schemes are a one-to-one type of authentication. Hence, users who subscribe to 

multiple IoT devices will have to store as many authentication data as the number of IoT 

devices. Therefore, the increase of IoT network communication explains the engagement of IoT 

network in group-based communication [163]. 

In this context, a few group-based authentication schemes have been studied. Some of them 

ensure the group authentication of participants that belong to the same group [164]. Others 

[165] achieve authentication of one user with a group of IoT devices. In a subscribe-publish 

IoT system, users may subscribe to many IoT services, where an IoT service is a group of IoT 

devices. Thus, it is difficult for the user to be authenticated quickly due to an unbounded number 

of devices and the centralized Trust Third-Party (TTP) authority server [160]. Therefore, the 

IoT users will suffer from authentication signaling congestion and high network access latency. 

Besides, this will increase the communication delay and the response time of the authority 

server. Furthermore, the existing mechanisms manage their databases by a single manager, 

DiGABlock: Distributed Group 
Authentication based on Blockchain 

Technology  

Chapter 5 

 

Chapter 1 
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making them potentially vulnerable to collusion attacks from malicious nodes who want to 

infiltrate the system. Consequently, a secure and efficient group authentication that 

authenticates users with multiple groups of IoT devices minimizes the interaction with the 

authority server and meets the scalability issue is required. 

Numerous distributed authentication mechanisms have been proposed in the literature [166] 

[174] [175] [176] [177] to respond to the scalability issue required in the IoT environment. In 

fact, these distributed schemes, based on distributed trust, increase the computation overhead 

and require multiple interactions among the system with the trusted authorities, causing high 

communication delays. Furthermore, they cannot resolve the non-repudiation identity problem 

since it is easy for anyone to set up the so-called trusted identity provider. Recently, few 

researchers have introduced Blockchain technology for authentication mechanisms [167], 

which emerged as a prominent solution for IoT security in trustless environments. Blockchain 

is a distributed ledger composed of many nodes used to protect data information against 

damaging attacks and alleviate the signaling congestion on the TTP, thus improving the system 

efficiency. Hence, this technology is especially suitable for delay-sensitive and large distributed 

IoT applications. All these mentioned features are motivating to explore blockchain technology 

and design a new authentication scheme. Therefore, we propose a new distributed 

authentication mechanism named Distributed Group Authentication system based on 

Blockchain technology (DiGABlock) to build a secure and efficient authentication system in 

the IoT environment composed of many IoT devices’ groups defining many IoT services.  

The main idea of DiGABlock is to design a distributed group authentication protocol to 

allow the users to authenticate within many groups of IoT devices in a distributed manner 

efficiently and simultaneously. Hence, users who subscribe to numerous groups of IoT devices 

could perform a full authentication process only once with a group of IoT devices. After that, 

the user needs only to send requests to be authenticated and access the remaining groups of IoT 

devices. In particular, DiGABlock avoids the redundant actions of exchanging authentication 

data and protects users from identity vulnerability. In fact, thanks to the Blockchain technology, 

DiGABlock is qualified with another significant advantage related to a distributed group 

authentication mechanism because it resists the distributed denial of service attack (DDoS). 

Furthermore, DiGABlock is designed to enhance IoT network resources’ availability and 

guarantees users’ activity tractability and efficient authentication. Thus, DiGABlock improves 

the system response time by minimizing the communication overhead caused by the redundant 

authentication process. Likewise, it reduces the overhead computation time as well as the 

energy consumption during the users’ authentication.  

The remainder of this chapter is organized as follows: we briefly describe the related work to 

group-based authentication and distributed based authentication. Then, we discuss the 

necessary background related to our scheme. After that, we present the overall system 

architecture, the attacker model, and the different system requirements. Then, we detail the 

proposed solution DiGABlock. Finally, we summarize its security and performance analysis in 

terms of communication, computation overheads and energy consumption.  
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5.2.  Related Works 

To secure communication in IoT environments, authentication between two communicating 

parties is an essential security requirement. Meanwhile, users and devices in IoT must be 

authenticated for privileged access to IoT services. In the literature, many solutions for 

authentication and key agreement in IoT environment have been proposed. The diversity of 

solutions is mainly due to the diverse and heterogeneous underlying architectures and 

environments that support IoT devices. Authors in [52] surveyed the different existing 

authentication techniques in the IoT environment. Table 5.1 summarizes a comparison between 

these authentication schemes according to various criteria. Thus, some authentication schemes 

are based on: (i) a centralized server authority, while others use a distributed mechanism based 

on Blockchain technology. These schemes designed different (ii) types of encryption and (iii) 

key generation mechanisms to ensure secure authentication, which is mainly (iv) an end-to-end 

authentication or group authentication. Further, we present some of their security features as 

they almost guarantee mutual authentication and resist the well-known attacks, and we 

enumerate their weaknesses related to the efficiency and scalability issues. 

Authentication is a fundamental security issue in IoT to authenticate the communication 

between two parties. Indeed, many schemes have proposed a lightweight and secure 

authentication protocol for one-to-one scenarios in the literature [58]. However, since the 

continuous growth of the number of connected IoT devices leads to many group applications, 

one-to-one scenario authentication is costly for these applications and causes new security 

challenges. Therefore, designing secure authentication for group applications should be 

addressed to enhance efficiency and flexibility.  

Li et al. [170] proposed a group-based authentication protocol based on an aggregate 

signature scheme, which enables the group leader to aggregate several signatures from distinct 

group members to a single signature. In addition, the authors of [77] and [78] proposed a 

threshold authentication protocol to support secure and privacy-preserving communications in 

VANETs. The protocol uses a group signature scheme for achieving threshold authentication, 

anonymity, and traceability during vehicles' communication. However, the aggregation 

signature method is too costly. Lai et al. [76] proposed a group-based lightweight authentication 

scheme for resource-constrained machine-to-machine communication (GLARM), which is 

based on defining each member in the group with a code of authentication, and then aggregating 

the message authentication codes of all members in the group. However, this protocol presents 

a single point of failure since it needs a group leader to send and respond to messages with the 

server: if the group leader is unavailable, then the authentication process fails. Lein Harn [171] 

proposed an improved group authentication scheme (GAS). This scheme exploits Shamir’s 

secret sharing scheme [172] to issue a private token to each group member who participates in 

the group authentication without the leader. However, an attacker can launch several trials 

before the secret is recovered to get both the system secrets and the group members’ secret 

tokens. Chien [173] improves GAS by publishing simple public data to the group members.  

Their scheme creates and publishes tokens through the elliptic curve cryptography and bilinear 

pairing.  
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All the discussed works are limited to authenticating one group at once. In particular, these 

works authenticate only one group of participants through a centralized authentication 

architecture. Otherwise, as more as the IoT applications are extensive, users would get access 

to many IoT services, which require a new group authentication mechanism.  In addition, the 

use of one trusted authority requires multiple interactions with users for authentication. Hence, 

the redundant data exchange during the authentication process may lead to exploiting the 

authentication mechanism and make the system vulnerable to attacks. Besides, these presented 

works shortage flexibility and scalability. Therefore, with the prevalence of digital 

cryptocurrency, Blockchain is introduced as a promising solution to provide a scalable and more 

trusted authentication services with low interactions. 

Several Blockchain-based distributed authentication mechanisms have been proposed. Zehui 

et al. [174] analyzed the advantages of Blockchain in future IoT systems. The authors of [175] 

proposed an authentication scheme for IoT systems based on Blockchain called Bubbles-of-

Trust.  This scheme uses the public Blockchain implemented with Ethereum to validate the 

communication between different devices. Wang et al. [176] introduced a Blockchain-based 

cross-domain authentication model named BlockCAM to ensure the safety and the efficiency 

of accessing resources in different domains. Yao et al [177] proposed an improved cross-

domain authentication that achieves the non-interactivity feature. Although these schemes 

ensure data security, they are costly ones. The authors of [178] addressed this problem by 

designing an efficient Blockchain-based distributed authentication system using the ECC 

cryptography mechanism.  

Nevertheless, the existing solutions for IoT authentication based on Blockchain have 

achieved numerous security requirements like anonymity, resisting DDoS attacks [176], and 

increasing authentication efficiency. However, these schemes do not achieve efficient 

authentication for group communications, where a user needs to authenticate with multiple IoT 

services composed of many groups of IoT devices. Hence, in the following, we propose a 

distributed group authentication mechanism based on Blockchain technology DiGABlock. We 

also use Blockchain edge nodes to define an IoT service, which can offer an edge group 

authentication and minimize the interactivity caused by the authentication process. 

 Table 5. 1 : Comparison of existing Authentication Schemes 
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overhead for a large IoT 

environment  
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5.3. Background 

In this section, we briefly present the background and the main mechanisms used in our 

approach. We first describe the Elliptic Curve Cryptography (ECC) asymmetric cryptography 

technique. Then, we present the Shamir Shared secret scheme SS that is used for sharing a 

secret. Finally, we briefly present the Blockchain technology and the different consensus types.   

5.3.1. Elliptic Curve Cryptography (ECC) 

ECC, based on the algebraic structure of elliptic curves over finite fields, is an approach used 

for public-key cryptography. ECC ensures security depending on the ability to compute a point 

multiplication with a random point, as well as the inability to figure out a multiplicand given 

the original curve and product points. ECC guarantees the same level of security afforded by 

an RSA-based system with a larger key [179].  

[164][165] 
IoT 

Environment 

Hash function 

Symmetric and  

ECC 

cryptography 

Centralized 

Group 

authentication 

 Group IoT device 

authentication  

 Resilience against DoS 

attack 

- Limited  scalability 

- Does not support multiple 

group authentication  

[77][19 ][76] VANETs 

Aggregation 

signature & 

Asymmetric 

cryptography  

Centralized 

Group 

authentication  

 Group signature for 

threshold authentication  

 Data anonymity & 

traceability 

- High computation overhead  

- Limited  scalability 

[171][173] 
IoT 

Environment 

Shamir ’ shared 

secret & 

Asymmetric  

cryptography 

Centralized 

Group 

authentication  

 Multiple IoT users 

authentication 

 Resist insider collusion 

attack  

- Does not support multiple 

group authentication 

- High communication 

overhead 

- Limited  scalability 

[176][177] VANETs 

Hash function & 

Asymmetric 

cryptography &  

ECC signature  

Distributed 

Single 

authentication  

 Cross domain distributed 

authentication 

 Minimize the interactivity 

feature  

- High communication 

overhead 

- Heavy computational cost 

 

[178] 
IoT 

Environment 

Hash function & 

Asymmetric 

cryptography &  

ECC signature 

Distributed 

Single 

authentication 

 Distributed mutual 

authentication 

 Ensure the data integrity 

- High communication and 

computation overhead for 

group application IoT 

environment  

- Vulnerable to insider 

collusion attack 
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An elliptic curve E is a plane curve over a prime finite field Ep, where all points of the curve 

E and the infinity point O (obtained when a point of E is multiplied by 0) form a cyclic group 

G, which is often defined by equation 5.1: 

                                   𝑦 𝑚𝑜𝑑 𝑝 = 𝑥3 + 𝑎𝑥 + 𝑏 𝑚𝑜𝑑 𝑝                              (5.1)   

In a cyclic group, if two E points are added or an E point is multiplied by an integer, the 

result is another E point from the same cyclic group. In particular, consider two cyclic groups 

𝐺1 and 𝐺2with the same prime order, q. 𝐺1 is an additive cyclic group and 𝐺2 is a multiplicative 

cyclic group. We define the pairing map: 𝑒 ∶ 𝐺1 × 𝐺1 → 𝐺2 with basic properties of bilinear 

map for the security proofs as follow:  

 Non-degeneracy: for every 𝑃 ∈  𝐺1  there exist Q such that 𝑒 (𝑃, 𝑄)  ≠ 1. 

 Bi-linearity: 𝑒 (𝑃 +  𝑅, 𝑄) =  𝑒 (𝑃, 𝑄) .  𝑒 (𝑅, 𝑄) and 𝑒 (𝑎𝑃, 𝑏𝑄) =  𝑒(𝑃, 𝑄)𝑎𝑏 ,

∀ 𝑎, 𝑏 ∈ 𝑍𝑞
∗ , ∀ 𝑃, 𝑄, 𝑅 ∈  𝐺1.   

 Computability: It is efficient to compute 𝑒 (𝑃 +  𝑅, 𝑄); ∀ 𝑃, 𝑄 ∈  𝐺1. 

Through this chapter, we mainly use the two next properties of ECC:  

 The first property, called Elliptic Curve Diffie-Hellman (ECDH), is an anonymous key 

agreement protocol that allows two parties that have elliptic curve public-private key 

pairs to establish a shared secret over an insecure channel [179]. Let G be an additive 

cyclic group consisting of points on the elliptic curve, and its order is prime integer q. 

Let P be a generator of G. Given, 𝑃, 𝑥𝑃, 𝑦𝑃 ∈ 𝐺; (𝑥, 𝑦 ∈ Ζ𝑞
∗) calculating the product of  

𝑥𝑦𝑃 is a hard problem.  

 

 The second property is called Elliptic Curve Discrete Logarithm Problem (ECDLP): Let 

G be an additive cyclic group consisting of points on the elliptic curve, and its order is 

prime integer q. P is a generator of G. It is noted that knowing 𝑥𝑃 ∈ G 𝑎𝑛𝑑 𝑃, 

calculating x is hard. 

 

5.3.2. Review on Shamir’s Secret Sharing Scheme  

In cryptography, secret sharing refers to a method for distributing a secret amongst a group 

of participants by giving each one of them a part of that secret. These parts are called shares. 

The distributed secret can be reconstructed if a subset of shares is combined. Otherwise, 

individual shares are of no use on their own. Since the collection of at least k different points 

can reconstruct a polynomial of degree (k-1), Adi Shamir [172] proposed a scheme for 

cryptographic systems based on the secret sharing enabling the reconstruction of a parameter 

from a set of secret shares. Shamir defined a (𝑘, 𝑛) threshold scheme, where a secret D is 

divided into n pieces 𝐷1, 𝐷2, … , 𝐷𝑛, and can be recovered by only k pieces (k<n) taken randomly 

from the n pieces. The Shamir’s scheme defines a polynomial function 𝑓(𝑥) with degree (𝑘 −

1):  

𝑓(𝑥) = 𝑎0 + 𝑎1𝑥 +⋯+ 𝑎𝑘−1𝑥
𝑘−1              (5.2) 
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where 𝑎0is the secret D and the n pieces are defined as 𝐷𝑖 = 𝑓(𝑖), 𝑖 = 1, . . 𝑛. Shamir guarantees 

to recover the secret D with a subset of 𝑘 ≠1 pieces, through a polynomial Lagrange 

interpolation [180], which can rebuild the polynomial 𝑓(𝑥) function through a set of k points 

(𝑥1, 𝑓(𝑥1)),… , (𝑥𝑘 , 𝑓(𝑥𝑘)) as given in equation 5.3: 

𝑓(𝑥) = ∑ 𝑓(𝑥𝑖)
𝑘

𝑖=1
 ∏

𝑥−𝑥𝑗

𝑥𝑖−𝑥𝑗

𝑘
𝑗=1;𝑗≠𝑖               (5.3) 

5.3.3. Blockchain - Practical Byzantine Fault Tolerance Consensus 

Algorithm (PBFT)  

The Blockchain is used as a distributed ledger that realizes a decentralized storing of data 

elements, where each data element is called a block. These blocks are linked in a chronological 

order to form a chain that is secured using cryptography [181] (each block contains a hash of 

the previous one). Current Blockchain systems are categorized roughly into three types [182]:  

 Public Blockchain is an open network, where anyone can download the protocol and 

read, write or participate in the network.  
 

 Private Blockchain allows different levels of permissions for users, so access can be 

restricted, and information can be encrypted to protect confidentiality.  
 

 Consortium Blockchain is permissioned that provides an additional level of security 

over typical Blockchain systems, as they require an access control layer. 

 

In this contribution, we use the consortium Blockchain to establish a distributed group 

authentication system. The consortium Blockchain is semi-decentralized since only some nodes 

would be selected to participate in the consensus and validate the block. In fact, in the context 

of the blockchain network, the consensus is a distributed process where several nodes cooperate 

to validate a block of transactions. Indeed, numerous consensus algorithms have been designed 

for distributed systems [183][184]. Examples are shown in Table 5.2; Proof of Stake (PoS), 

delegated PoS (dPoS), Casper, Proof of Elapsed Time (PoET) and Practical Byzantine Fault 

Tolerance (PBFT) [177]. These consensus algorithms have mainly three phases:  

 Verifying identity,  

 Selecting primary peers,  

 Synchronizing data in the Blockchain.  

Table 5. 2: Comparison of consensus algorithms [27] 

Algorithm PoS DPoS Casper PoET PBFT 

Decentralized complete complete complete semi semi 

Tokens yes yes yes no no 

Evil number 51% 51% 51% 51% 33% 

Performance relatively high high relatively high high high 

Technical maturity mature mature not applied not applied mature 
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Only the PBFT algorithm assumes fewer malicious nodes compared to other algorithms, less 

than a third of total nodes. A selected leader orders the transactions and ensures the consensus 

with the blockchain node (peers) to add blocks to the chain. The PBFT protocol can work in 

malicious environment where no more than third of total nodes of the consensus are dishonest. 

In fact, the goal of PBFT is that all the honest nodes, composing the consortium network, 

communicate with each other to help in reaching a consensus regarding the state of the system 

through the majority. The important advantage of PBFT is its significant performances in terms 

of energy consumption reduction. In this context, we use an optimized PBFT to improve 

authentication efficiency, where the selection of the leader peer is based on round robin than 

computing complex puzzles, which can alleviate the computation burden on the Blockchain 

network.  The consensus algorithm is executed to store the user information such as the identity 

and subscription lists and authentication logs in the Blockchain network. Thus, it may prevent 

data tampering and achieve data traceability.  

5.4. System Model 

In this section, we introduce the overall system architecture of the proposed DiGABlock 

scheme, which offers secure and fast user authentication with numerous groups of IoT devices. 

Furthermore, we present the adaptability of the DiGABlock with a smart hotel use case. Then, 

we present the attacker model and enumerate the security system requirements.  

5.4.1. System Architecture 

The system architecture, shown in Figure 5.1, is composed of four different layers: (i) IoT 

devices services layer, (ii) End-users layer, (iii) Blockchain edge layer, and (iv) Blockchain 

network layer. In what follows, we explain the different components of our architecture:  

 
Figure.5. 1: Network model of the proposed scheme 
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 IoT devices services layer: outlines a large number of IoT devices that collect and publish 

data. These IoT devices form many groups that define different IoT services, where each 

service is mapped to a service manager. The IoT devices are assumed limited in their 

processing power, memory, and energy availability. 

 

 End-users layer: comprises the subscribed users to the existing IoT services in the 

Blockchain network. In fact, the users choose a list of the desired IoT services and subscribe 

under the smart contract of the Blockchain network.  Then, the subscribers will authenticate 

to the selected IoT devices through the corresponding and the nearby service manager to 

them.  

 

 Blockchain edge layer: is composed of service managers (SM) nodes. Each service 

manager node is responsible for controlling a group of IoT devices.  Besides, the SM 

ensures users' authentication with IoT devices and then sends authentication results to the 

Blockchain network. The SM proposes user authentication transactions (described in the 

next section) and contributes to committing a block into the blockchain network. The 

service managers are established in our proposed group authentication system to provide a 

group edge authentication service and synchronize authentication data to supervise users' 

activity as blockchain clients. 

 

 Blockchain network layer: comprises the peers’ nodes that store users' information in a 

distributed manner. In fact, they contain the distributed ledger recording the user 

authentication information. Each peer has a smart contract useful to verify the transactions 

and adding blocks into the blockchain network. Together with the service manager nodes, 

the peer nodes form a consortium Blockchain network through the Practical Byzantine Fault 

Tolerance (PBFT) for consensus establishment. Further, they are responsible for verifying, 

endorsing transactions, creating blocks, and committing the authentication results to the 

ledger. Our Blockchain network provides distributed services of storing users' 

authentication information over Hyperledger Fabric, a customizable consortium blockchain 

platform that supports smart contracts called "chaincode" [178]. 

 

5.4.2. Adaptation to the Smart Hotel Scenario  

We can easily adapt DiGABlock solution to the smart hotel use case (see figure 5.2), 

presented in the previous chapters 3 and 4 (in the context of PARFAIT project [7]). In fact, a 

smart hotel which is composed of hundreds of rooms and offers various hospitality services, 

needs to define an efficient authentication system for different users. For that, we can define a 

service manager for the different services in the hotel, such as room service for each room, 

accommodation service, tourism service, and entertainment service. The users could be the 

hotel guests, the hoteliers, and the hotel staff. In this scenario, guests’ smartphones should be 

authenticated before getting access to the room service. Also, they need authentication to access 

accommodation services like the restaurant, food distributors, etc. A regular change of user 

might be problematic as the number of requesting authentication is important. Thus, a service 

manager is a unit control that controls a group of IoT devices, defining one of the mentioned 

services and plays the role of a gateway between the user and the concerned IoT devices. These 
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service managers present the edge part of the Blockchain network, installed to ensure an edge 

authentication to enhance the system response, and characterized with a high computing 

capacity. The Blockchain network is composed of servers that might be running on the physical 

hardware present inside the hotel, or they may be a cloud service provided for the hotels.  

5.4.3. Threat Model 

In this section, we consider adversaries targeting the authentication process, where 

several attacks are commonly employing the consortium Blockchain, such as: 

 Denial of service attacks in which attackers aim to render the blockchain network or 

IoT network unavailable. Attackers may eavesdrop on data transferred from 

Blockchain edge nodes and try to fabricate a false signature without having access 

to the respective private signer key. At this level, the attackers proceed to transfer 

the valid authentication results signed with the false signature to the Blockchain. 

The alliance peers should discard this message, as it is unreliable even if the 

authentication results are valid.  

 A forgery attack in which attackers may falsify users' identity to access the edge 

nodes and obtain confidential content or infect the authentication data. Further, they 

could also attempt to fabricate the edge nodes' identity and steal or modify the users’ 

information, leading to the destruction of the authentication process. To produce a 

forgery attack, they need to eavesdrop delivered messages by the legitimate edge 

node and compute cryptographic keys and then tamper the delivered messages to 

the blockchain network or terminals with forgery signatures. 

 A man-in-the-middle attack may occur during messages transmission between users 

and the edge nodes. Indeed, the attackers could block the delivered messages 

 

Figure.5. 2: IoT environment of a Smart Hotel 

 

 

Figure 5.10:  

 

 

 

 

Figure 5. 2: IoT environment of a Smart Hotel 

 

Figure 5.11:  
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between edge nodes and users, modify, and send them maliciously to destroy the 

system.   

 

5.4.4. Security Goals 

As discussed in the previous subsection, the attackers may attempt to destroy the 

communication of the system. Hence, it is essential to meet the security requirements of an 

authentication mechanism based on Blockchain technology. Besides, the proposed DiGABlock 

scheme should achieve the following security goals:  

 Group authentication and secure key agreement, including confidentiality and integrity.  

Each user must be authenticated successfully with all requested IoT devices through the 

Blockchain network. Once successfully authenticated, a secure channel is established 

between users and all corresponding IoT devices. Hence, the adversary can neither 

decrypt nor tamper any transmitted message.  

 

 Anonymity through hiding the users’ identities in regular exchanged messages during the 

authentication process.  

 

 Traceability by guaranteeing that smart contracts can trace all illegal users in case of any 

doubtful situation.   

 

 Non-interactivity by allowing users to authenticate only once in the system and then get 

a secure access through the service manager without a full authentication process. 

Consequently, reducing the number of transmitted messages and enhancing the system 

response.  

 

 Non-frameability that guarantees that the users’ information is not abused by the single 

trusted entity (alliance peers and service manager) during the authentication process. The 

trusted entities should cooperate with the user to reveal the authentication information.  

 

5.5.  DiGABlock Description 

In this section, we describe the proposed DiGABlock scheme that achieves a distributed 

group authentication and avoids congestion in IoT environment. Our system includes mainly 

six phases: namely, (i) Blockchain setting up, (ii) initialization, (iii) user registration, (iv) group 

authentication, (v) consensus, and (vi) service delivery phases. The setting up of the Blockchain 

network and the initialization phases are done only once during the system establishment, while 

the rest of phases are repeated through the authentication process. Figure 5.3 presents the last 

four phases:  
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The main idea of our solution is to authenticate a user with many IoT devices with less 

interaction with the system. Hence, the user should register himself to the system through the 

Certification Authority, CA, to get the necessary authentication credentials described in the 

registration phase. During the registration, the user chooses a list of IoT services to which he/she 

wants to subscribe. The corresponding service managers of the requested IoT services get the 

registrations’ update from CA. This action allows any service manager from the subscription 

list to authenticate the user at the edge of the network. Therefore, the user should perform a first 

full authentication to one of the service managers to verify his/her identity. Mutual 

authentication is achieved between the user and the corresponding service manager, as well as 

between the user and a group of IoT devices under the control of this service manager during 

the first authentication. This full authentication aims to provide the user with some information 

that allows him/her to get access to the remaining IoT services of the subscription list without 

re-authenticating with the system. After verifying the user’s legitimacy, the service manager 

generates transactions containing the user information. The service manager then sends a 

request to the Blockchain node to add a block for the new user and chain it in the Blockchain 

network. We note that we use a consortium blockchain network in our solution, which permits 

tracking the user in the system. Once the consensus is finished and the user’s block is chained 

in the blockchain network, the user could access any IoT services from his/her subscription list 

securely through the service delivery phase.    

 

 
Figure.5. 3: Workflow model of the proposed scheme 

 
 
 

 

 

 
Figure 5. 3: Workflow model of the proposed scheme 
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5.5.1. Setting up the Blockchain Network 

During this phase, we setup the blockchain network with the edge nodes and peers registered 

under the CA of the Hyperledger Fabric. Besides, in each edge node and blockchain node, smart 

contracts are deployed to maintain an updated ledger with the user authentication information. 

In addition, the edge node of the blockchain network named the service manager defines an IoT 

service and controls a group of IoT devices.   

Let N be the number of all IoT devices in our system; we denote 𝐷 = {𝐷1, 𝐷2, … , 𝐷𝑁} the set 

of IoT devices, 𝜒 = {𝑥1, 𝑥2, … , 𝑥𝑁} the set of public information related to them, and 𝑆 =

{𝑆1, 𝑆2, … , 𝑆𝐾} the set of IoT services. We define each IoT device 𝐷𝑗 ∈ 𝐷 at the smart contract 

with a unique identity and a group of IoT devices with an IoT service under the control of the 

Service Manager, SM. Let 𝑆𝑀 = {𝑆𝑀1, 𝑆𝑀2, … , 𝑆𝑀𝐾} be the set of service managers used to 

control groups of IoT devices in our system, where 𝐾 < 𝑁. In fact, each 𝑆𝑀𝑗 , where 1 ≤ 𝑗 ≤

𝐾, contains a subscription list 𝜁𝑗  of legitimate subscribed users to the associated IoT service 𝑆𝑗. 

Further, the subscription list is updated after each new successful user registration. We also 

adopt a revocation list 𝜗 of the revoked users in the network. Finally, we outline that the 

Blockchain nodes called alliance peers 𝐴𝑃 = {𝐴𝑃1, 𝐴𝑃2, … , 𝐴𝑃𝑀} collaborate with the edge 

nodes to verify, endorse transactions, and commits blocks to the ledger containing the 

successful user authentication results. The notations used in this section are summarized in 

Table 5.3. 

Table 5. 3: List of acronyms  

Notations  Description 

𝑺𝒋 The service j 

𝑺𝑴𝒋 The service manager of the 𝑺𝒋 

𝜻𝒋 A subscription list of the 𝑆𝑀𝑗 

𝑫𝒊 The device i 

𝒙𝟏 Public information of the 𝐷𝑖 
𝑨𝑷 Alliance peers 

𝑺𝑪 Smart contract  

𝑺𝑲𝑿 The secret key of X  

𝑷𝑲𝑿 The public key of X 

𝒆(. , . ) Pairing function 

5.5.2. Initialization Phase 

In this phase, we initialize the system parameters that will be used in the eventual registration 

and authentication phases. Thus, the certification authority of the Hyperledger Fabric performs 

some operations to prepare the environment for the upcoming phases. In what follow, the CA 

is running this phase:  

 CA generates two large secure prime numbers p and q, where 𝑝 > 𝑞 + (𝑁 + 1)𝑞2 

(condition for securing group authentication from outsider attackers, discussed in 

section 5.5.3).  
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 CA picks an elliptic curve additive cyclic group G with order q and a generator P of G. 

It also selects a random 𝑆𝑖𝑔𝐾𝑒𝑦 ∈ Ζ𝑞
∗  as a private signature key and deduces the master 

public signature key 𝑃𝑆𝑖𝑔𝐾𝑒𝑦 = 𝑆𝑖𝑔𝐾𝑒𝑦 × 𝑃.  

 CA declares the secure Hash functions useful in our scheme defined as follows: 

o 𝐻0: 𝐺 → {0,1}
∗,  

o 𝐻1: {0,1}
∗ × 𝐺 → Ζ𝑞

∗ , 

o 𝐻2: 𝐺 × {0,1}
∗ × 𝐺 → Ζ𝑞

∗ , 

o 𝐻3: 𝐺 × 𝐺 → Ζ𝑞
∗ ,  

Then, CA keeps 𝑆𝑖𝑔𝐾𝑒𝑦 secret and publishes the system 

parameters {𝑃, 𝐹𝑝, 𝐹𝑞 , 𝑃𝑆𝑖𝑔𝐾𝑒𝑦,𝐻0, 𝐻1, 𝐻2, 𝐻3}. 

 

5.5.3. User Registration Phase 

Users should register under our system, as shown in Figure 5.4, to subscribe to the different 

required IoT services. For clarity, we assume, for example, that a user Ux wants to subscribe to 

the set {𝑆𝑥, 𝑆𝑎, 𝑆𝑏} of IoT services. Note that each IoT service comprises a group of IoT devices 

controlled by a service manager, 𝑆𝑀, and we consider n is the total number of IoT devices, 

{𝐷1, 𝐷2, … , 𝐷𝑛} to which the user is subscribed. In fact, during the registration phase the user 

𝑈𝑥 registers himself with the certification authority CA of the Hyperledger Fabric by requesting 

the IoT services {𝑆𝑥, 𝑆𝑎, 𝑆𝑏}. In particular, to secure communication between the user and edge 

nodes, a lightweight symmetric cryptographic protocol is designed.  

Once receiving the user request, including the identity, the IoT services, and the timestamp 

< 𝐼𝑑𝑈𝑥, 𝑇𝑈𝑥 , 𝑆𝑥,, 𝑆𝑎, 𝑆𝑏 >, the CA proceeds to register the user under the system for further 

secure communication with IoT service. Otherwise, since an IoT service is defined with a group 

of IoT devices in our scheme, a secret sharing protocol is designed to secure communication 

between the user and IoT devices. We consider, based on the Shamir scheme, n IoT devices, 

and the user compose the set of n+1 shareholders {𝐷1, 𝐷2, … , 𝐷𝑛, 𝑈𝑥}, with respective public 

information {𝑥1, 𝑥2, … , 𝑥𝑛} and user 𝐼𝑑𝑈𝑥, and the (t+1) is the threshold of the shared secret. 

At this level, CA executes the following steps of registration by:   

 Select a random polynomial f(x) in Ϝ𝑃, where the degree is fixed to the minimum number 

of IoT devices per group t, such that: 

𝑓(𝑥) = 𝑎0 + 𝑎1𝑥 +⋯+ 𝑎𝑡𝑥
𝑡  𝑚𝑜𝑑 (𝑝),  

where 𝑎𝑘 ∈  Ϝ𝑃, for 𝑘 = 0,1, … , 𝑡, 𝑎𝑡 ≠ 0 𝑎0 ∈  Ϝ𝑞 

 Choose a shared secret that defines the user who wants to communicate with the n IoT 

devices: 𝑆𝑒𝑐𝑈 = 𝑓(0) = 𝑎0 ; 𝑆𝑒𝑐𝑈 < 𝑝. 

 Compute the shares for the requested IoT devices corresponding to the IoT services 

{𝑆𝑥, 𝑆𝑎, 𝑆𝑏}: 
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𝑓(𝑥𝑖) ← 𝑎0  +∑𝑎𝑘. 𝑥𝑖
𝑘  𝑚𝑜𝑑(𝑝) 

𝑘=𝑡

𝑘=1

 

 Compute the user's share useful to ensure the legitimacy of the user among the group of 

IoT devices:  

𝑓(𝐼𝑑𝑈𝑥) ← 𝑎0  +∑𝑎𝑘𝐼𝑑𝑈𝑥
𝑘 𝑚𝑜𝑑(𝑝) 

𝑘=𝑡

𝑘=1

 

 Generate a random number 𝑟𝑈𝑥𝜖 Ϝ𝑃 , to compute the user's shared secret key:  𝑆𝐾𝑈𝑥 =

𝐻1(𝐼𝑑𝑈𝑥 , 𝑟𝑈𝑥). 

 Compute the user registration data convenient to ensure secure communication with the 

edge nodes:  

𝑙𝑈𝑖
∗ = 𝐻3(𝑓(𝐼𝑑𝑈𝑥) ∥ 𝐻1(𝐼𝑑𝑈𝑥 , 𝑟𝑈𝑥))⊕ 𝐻1(𝑆𝐾𝐶𝐴 ∥ 𝐼𝑑𝑈𝑥) 

At this level, the user identity, the required IoT devices information, and the hash value 

of the user secret 〈𝐼𝑑𝑈𝑥, 𝑓(𝑥𝑖), 𝑖 ≤ 𝑛 𝑎𝑛𝑑 𝐻0(𝑆𝑒𝑐𝑈)〉 are sent to the matching service 

manager 𝑆𝑀𝑗 for updating their subscription list 𝜁𝑗 , where the user is identified with an 

identity 𝐵𝑙𝑜𝑐𝑘𝑈𝑖𝑑 . 

 Send to the user over a secure channel: 

 𝐶𝐴
 <𝑺𝑲𝑼𝒙 ,𝒇(𝑰𝒅𝑼𝒙),𝑩𝒍𝒐𝒄𝒌𝑼𝒊𝒅 ,𝑯𝟏(𝑺𝑲𝑪𝑨∥𝑰𝒅𝑼𝒙)> 

→                                 𝑈𝑥 

 Finally, once receiving registration information, the user stores it in its memory 

〈𝑆𝐾𝑈𝑥 , 𝑓(𝐼𝑑𝑈𝑥), 𝐵𝑙𝑜𝑐𝑘𝑈𝑖𝑑 , 𝐻1(𝑆𝐾𝐶𝐴 ∥ 𝐼𝑑𝑈𝑥)〉.  

Once the user is registered successfully, he/she could ensure a group authentication with the 

required n IoT devices. Based on the Shamir’s Secret sharing SS, Harn et. al. [171] proposed a 

group authentication scheme named (t,m,n) GAS t-secure m-user n-group. (t,m,n) GAS limits 

the number of users participating in the communication. Hence, GAS defines t the threshold of 

the shared secret, m the number of users participating in the authentication procedure, and n the 

number of members in the group. Besides, the selected secret is divided into n pieces, and then 

it is distributed to n users. Then, GAS guarantees that with only m users participating in the 

authentication to recover the Shamir’s secret through Lagrange polynomial interpolation.  

For that, we define a new concept of group authentication scheme based on GAS and Shamir 

shared secret as follows:  

Definition 1: t-minSecure, d-IoT devices, m-maxSecure, n-Group Authentication (t, d, m, n)-

GA 

 let t, d, m, n be four positive integers where 𝑡 ≤ 𝑑 ≤ 𝑚 ≤ 𝑛.   

 t-minSecure defines the minimum number of IoT devices per group,  

 d-IoT devices participating in the group authentication,  
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 m-maxSecure is the maximum number of IoT devices per group,  

 n-Group is the number of all IoT devices to which the user is subscribed.  

The (t, d, m, n)-GA can resist up to (t +1) colluded group members, for a group of d IoT 

devices, and then, the (t, d, m, n)-GA determine whether a user is authenticated to n IoT 

devices or not. 

In (t, d, m, n)-GA, a user could ensure authentication with a group of IoT devices. For that, 

a secret 𝑆𝑒𝑐𝑈 is selected, and tokens are computed for the group with (n+1) members 

composed of n IoT devices and the user during the user's registration. These tokens are used 

to retrieve the shared secret 𝑆𝑒𝑐𝑈 that define the legitimate user who wants to communicate 

with the IoT group. In particular, the (t, d, m, n)-GA, as shown in Figure 5.4, allows the user's 

authentication to a group of n IoT devices, where only d IoT devices, under the control of 

SM, and the user participate in the group authentication. The service manager is responsible 

for retrieving the shared secret using IoT devices' tokens and the user's token distributed 

during the authentication phase.  

The (t, d, m, n)-GA algorithm can only detect nonmembers' existence but cannot identify 

them. The advantage of (t, d, m, n)-GA is that the user is authenticated with all IoT devices at 

once, while the user is authenticated by one IoT device in conventional user authentication.  

The (t, d, m, n)-GA Algorithm 

Input: public information of the user and IoT devices, the random polynomial f(x) 

Output: generating tokens for user and IoT devices, Lagrange component and the shared secret. 

Token generation: 

Select: 

 A random polynomial f(x) in Ϝ𝑃, of degree t such that: 

 

Figure.5. 4: Secret shared authenticator recovering 

 

 

 

 

 

 

Figure 5. 4: Secret shared authenticator recovering 
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𝑓(𝑥) = 𝑎0 + 𝑎1𝑥 +⋯+ 𝑎𝑡𝑥
𝑡 𝑚𝑜𝑑 (𝑝), where 𝑎𝑘 ∈  Ϝ𝑃 , for 𝑘 = 0,1,… , 𝑡, 𝑎𝑡 ≠

0 𝑎0 ∈  Ϝ𝑞 

 A secret 𝑆𝑒𝑐𝑈 = 𝑓(0) = 𝑎0 ; 𝑆𝑒𝑐𝑈 < 𝑝.  

Compute the corresponding tokens for n IoT devices:  

         For each device 𝐷𝑖; 𝑖 = 1. . 𝑛 (𝑜𝑓 𝑝𝑢𝑏𝑙𝑖𝑐 𝑖𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝑥𝑖 )  do  

                      𝑓(𝑥𝑖) ← 𝑎0  + ∑ 𝑎𝑘 . 𝑥𝑖
𝑘  𝑚𝑜𝑑(𝑝) 𝑘=𝑡

𝑘=1   

         End for  

Compute the user token:  

         𝑓(𝐼𝑑𝑈𝑥) ← 𝑎0  + ∑ 𝑎𝑘𝐼𝑑𝑈𝑥
𝑘 𝑚𝑜𝑑(𝑝) 𝑘=𝑡

𝑘=1   

Distribute the tokens of IoT devices and user and the hash value of the secret 𝐻0(𝑆𝑒𝑐𝑈) 

Group authentication: 

The SM computes all Lagrange component of the d requested IoT devices using the tokens:  

𝑐𝑗 = (𝑓(𝑥𝑗) × ∏
−𝑥𝑣

𝑥𝑗−𝑥𝑣

𝑑
𝑣=1,𝑣≠𝑗  

−𝐼𝑑𝑈𝑥
𝑥𝑗−𝐼𝑑𝑈𝑥

+ 𝑟𝑗𝑞 )𝑚𝑜𝑑 , where 𝑗 = 1…𝑑   

The user computes the corresponding Lagrange component using his/her token: 

𝑐𝑈 = (𝑓(𝐼𝑑𝑈𝑥) ×∏
−𝑥𝑣

𝐼𝑑𝑈𝑥 − 𝑥𝑣

𝑑

𝑣=1

 + 𝑟0𝑞)𝑚𝑜𝑑 𝑝 

After receiving all the Lagrange components, the SM retrieve the shared secret: 

𝑠 = (∑𝑐𝑗

𝑗=𝑑

𝑗=1

+ 𝑐𝑈 𝑚𝑜𝑑 𝑝)  𝑚𝑜𝑑 𝑞; 

Then, SM verifying the validity of the retrieved shared:  

𝐻0(𝑆𝑒𝑐𝑈) == 𝐻0(𝑠)  

Hence, the user and all IoT devices are authenticated. Otherwise, the user is not legitimate.  

We verify the validity of (t, d, m, n)-GA through proving the following properties:  

 Correctness: the shared secret is reconstructed successfully only if the user and IoT 

devices are acting honestly by realizing their Lagrange components. Indeed, if the user 

is non-legitimate, he/she has a non-valid token, and thus the released Lagrange 

component is illegal. The recovered secret will not match the correct secret at this stage, 

and the authentication is rejected.  

 

 Efficiency: the communication overhead is minimal in (t, d, m, n)-GA. Indeed, the user 

needs to release the computed Lagrange component to the SM, while IoT devices under 

this SM's control should maintain the shared keys that verify their legitimacy. Thus, the 

overhead cost is only deriving from the most consuming operation to compute the 

Lagrange component. The SM is also responsible for verifying the members of the 

group communication, which minimizes the computation cost related to retrieving the 

secret.  
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 Security:  regarding the generation of the tokens are achieved by polynomials of a 

degree (t), thus (t, d, m, n)-GA resists up to (t) colluded inside adversaries trying to 

recover the selected polynomial. For the outsider attackers trying to participate in the 

group authentication, they could not compute the tokens protected unconditionally with 

the Lagrange component. Therefore, any outsider adversary cannot also derive the user 

token from the Lagrange component sent to the SM during the authentication. In fact, 

the Lagrange component is a linear function of 𝑘(𝑡 + 1) coefficients of polynomials, 

with each polynomial having a degree t. Thus, since 𝑘(𝑡 + 1) > 𝑛 (the total number of 

required IoT devices), an outside adversary cannot forge the valid Lagrange component 

when the user token is released asynchronously. 

 

5.5.4. Distributed Group Authentication Phase 

At this level, the user 𝑈𝑥 can authenticate with all the IoT devices to which he/she is 

subscribed in the registration phase, as presented in the Figure 5.5. Indeed, the user requests to 

access one of the IoT services {𝑆𝑥, 𝑆𝑎, 𝑆𝑏}, for the first time. We consider that the user 𝑈𝑥wants 

to communicate with the IoT service 𝑆𝑥, which is composed of d IoT devices {𝐷1, 𝐷2, … , 𝐷𝑑}.  

To ensure the authentication of the user 𝑈𝑥 with the d requested IoT devices, a group 

authentication is guaranteed at the edge of the network through the corresponding service 

manager 𝑆𝑀𝑥. For that, it is important to secure the communication between the user and the 

edge node firstly, which is achieved as follows:  

 Selects a random number  𝑟0𝜖 ℤ𝑝
∗

, 

 Generates time stamp  𝑇𝑈𝑥 , 

 Computes the necessary authentication information using the data of the registration 

phase: 

o 𝑅0 = 𝑟0 × 𝑃;  

o 𝑅𝑈 = 𝑅0 × 𝑓(𝐼𝑑𝑈𝑥);     

o 𝑙𝑈𝑥 = 𝐻0(𝑓(𝐼𝑑𝑈𝑥) ∥ 𝑠𝑘𝑈𝑥) ⊕ 𝐻1(𝑆𝐾𝐶𝐴 ∥ 𝐼𝑑𝑈𝑥) ;  

o 𝑐𝑈 = (𝑓(𝐼𝑑𝑈𝑥) × ∏
−𝑥𝑣

𝐼𝑑𝑈𝑥−𝑥𝑣

𝑑
𝑣=1  + 𝑟0𝑞)𝑚𝑜𝑑 𝑝;   The user Lagrange 

component 𝑐𝑈  to contribute to the computing of the Shamir secret.  

o  𝑡𝑜𝑘𝑒𝑛𝑈𝑥 = 𝐸𝑛𝑐𝑦(𝑐𝑈, 𝑃𝐾𝑆𝑀𝑥);  

o  𝐴𝑢𝑡ℎ𝑈𝑥 =  𝐻2(𝑅0 ∥ 𝐵𝑙𝑜𝑐𝑘𝑈𝒊𝒅 ∥ 𝑇𝑈𝑥 ∥ 𝑙𝑈𝑥);  User information to authenticate 

the user mutually. 

 Sends the authentication request to the corresponding service manager 𝑆𝑀𝑥:  

 𝑈𝑥
 <𝑨𝒖𝒕𝒉𝑼𝒙 ,𝒓𝟎,𝒕𝒐𝒌𝒆𝒏𝑼𝒙 ,𝑻𝑼𝒙 ,𝑩𝒍𝒐𝒄𝒌𝑼𝒊𝒅 > 
→                             𝑆𝑀𝑥 

After receiving the user authentication request, the 𝑆𝑀𝑥 starts the authentication process 

as follows: 



135 
 

 Selects the time stamp 𝑇1 and verifies weather |𝑇𝑈𝑥 − 𝑇1| < Δ𝑇 ; if it holds, it 

continues the authentication, else the request is declined, 
 

 Fetches the user information identified with 𝐵𝑙𝑜𝑐𝑘𝑈𝑖𝑑  in the registration user list in 

local database and gathers tokens 𝑓(𝑥𝑗) of all requested IoT devices under its control.  
 

 Computes the authentication value of the user: 

𝐴𝑢𝑡ℎ𝑈𝑥
∗ = 𝐻2(𝑟𝑈.  𝑃𝐾𝑈𝑥 ∥ 𝐵𝑙𝑜𝑐𝑘𝑈𝑖𝑑 ∥ 𝑇𝑈𝑥  ∥ 𝑙𝑈𝑥

∗) 

and compares it with the received value from the user: 𝐴𝑢𝑡ℎ𝑈𝑥
∗ == 𝐴𝑢𝑡ℎ𝑈𝑥. If the 

value is correct, an authentication is achieved between the user and the 𝑆𝑀𝑥 .  Then 

𝑆𝑀𝑥  decrypts the user token; 𝑑𝑒𝑐𝑟𝑦𝑝𝑡(𝑡𝑜𝑘𝑒𝑛𝑈𝑥 , 𝑆𝐾𝑆𝑀𝑥  ) to retrieve the user’s 

Lagrange component  𝑐𝑈 useful to ensure the group authentication with the group of 

IoT devices. Otherwise, 𝑆𝑀𝑥 tears down the connection.  
 

 Computes all Lagrange component of the d requested IoT devices under its control 

using the registration information:  

𝑐𝑗 = (𝑓(𝑥𝑗) × ∏
−𝑥𝑣

𝑥𝑗−𝑥𝑣

𝑑
𝑣=1,𝑣≠𝑗  

−𝐼𝑑𝑈𝑥

𝑥𝑗−𝐼𝑑𝑈𝑥
+ 𝑟𝑗𝑞 )𝑚𝑜𝑑 , where 𝑗 = 1…𝑑   

 Retrieves the shared secret corresponding to the user:       

𝑠 = (∑𝑐𝑗

𝑗=𝑑

𝑗=1

+ 𝑐𝑈 𝑚𝑜𝑑 𝑝)  𝑚𝑜𝑑 𝑞; 

 Computes 𝐻0(s) and compares it with the received value during the registration phase: 

𝐻0(𝑠) == 𝐻0(𝑆𝑒𝑐𝑈)?. If it is true, we confirm that the user 𝑈𝑥 is legitimate and can 

get a secure access to the all IoT devices under the 𝑆𝑀𝑥 control. Otherwise, the user 

authentication request is declined, and the service manager proceeds to update the 

revocation list. 

At this level, to secure the further user communication with the rest of SM to which he/she 

is subscribed, the 𝑆𝑀𝑥 designs an asymmetric cryptographic algorithm based on ECC. In fact, 

the 𝑆𝑀𝑥 produces a master signature for the user useful in the service delivery phase when user 

requests a new IoT service and does not need to re-authenticate:  

 Selects a random number  𝑣𝑥 𝜖 ℤ𝑞
∗

,  and computes the user master signature useful for 

further authentication: 

o 𝑉𝑥 = 𝑣𝑥  . 𝑃, ℎ𝑥 = 𝐻3(𝐼𝑑𝑥 ∥ 𝑉𝑥 ∥ 𝑃𝐾𝑆𝑀𝑥), and 𝛿𝑥1 = (𝑣𝑥  + 

(ℎ𝑥  . 𝑠𝑖𝑔) 𝑚𝑜𝑑) 𝑞
−1. 𝑃 

 Sends the signature to the user: 𝑆𝑀𝑥
 < 𝑽𝒙,𝜹𝒙𝟏> 
→        𝑈𝑥 and broadcast the public 

information to the edge nodes. 

The user verifies the legitimacy of the service manager 𝑆𝑀𝑥 by verifying if equation 5.4 

holds:  

𝑒(𝛿𝑥1, 𝑉𝑥 + ℎ𝑥 . 𝑃𝐾𝑆𝑀𝑥  ) ==  𝑒( 𝑃, 𝑃) (5.4) 
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Hence, if equation 5.4 holds, the user 𝑈𝑥 confirms the reliability of received messages and 

stores the signature for further communication with IoT services.  

Algorithm 1: User group authentication  

Input: 𝒇(𝒙𝒊)of d requested IoT devices and 𝒇(𝑰𝒅𝑼𝒙) of the user 

Output: master signature for the authenticated user, update subscription and revocation list 

1:           

2:  

3:           

4: 

5: 

6: 

7:           

8: 

9:   

         

10:           

11:       

  

 

 

 

 

12:           

13:        

 

 

 

14:         

15:          

 

 

 

16:  

 

17: 

18: 

 

 

 

 

 

 

 

 

 

19: 

 

 

 

User:  - selects a random number  𝑟0𝜖 ℤ𝑝
∗  

           - Generates time stamp  𝑇𝑈𝑥 

           - Computes:  𝑅0 = 𝑟0 × 𝑃;  

                    𝑅𝑈 = 𝑅0 × 𝑓(𝐼𝑑𝑈𝑥);     

                    𝑙𝑈𝑥 = 𝐻0(𝑓(𝐼𝑑𝑈𝑥) ∥ 𝑠𝑘𝑈𝑥) ⊕ 𝐻1(𝑆𝐾𝐶𝐴 ∥ 𝐼𝑑𝑈𝑥) ;  

𝑐𝑈 = (𝑓(𝐼𝑑𝑈𝑥) × ∏
−𝑥𝑣

𝐼𝑑𝑈𝑥−𝑥𝑣

𝑑
𝑣=1  + 𝑟0𝑞)𝑚𝑜𝑑 𝑝  

                    𝑡𝑜𝑘𝑒𝑛𝑈𝑥 = 𝐸𝑛𝑐𝑦(𝑐𝑈 , 𝑃𝐾𝑆𝑀𝑥); 

                    𝐴𝑢𝑡ℎ𝑈𝑥 = 𝐻2(𝑅0 ∥ 𝐵𝑙𝑜𝑐𝑘𝑈𝒊𝒅 ∥ 𝑇𝑈𝑥 ∥ 𝑙𝑈𝑥);   

User sends to the corresponding service manager:  𝑈𝑥
 <𝑨𝒖𝒕𝒉𝑼𝒙 ,𝒓𝟎,𝒕𝒐𝒌𝒆𝒏𝑼𝒙 ,𝑻𝑼𝒙 ,𝑩𝒍𝒐𝒄𝒌𝑼𝒊𝒅 > 
→                            𝑆𝑀𝑥 

𝑆𝑀𝑥 executes the following steps:  

Select the time stamp 𝑇1  

If  |𝑇𝑈𝑥 − 𝑇1| < Δ𝑇 Then  

   Fetch in the local database the user information identified with 𝐵𝑙𝑜𝑐𝑘𝑈𝑖𝑑   

   Gather shared secrets 𝑓(𝑥𝑗) of all devices under 𝑆𝑀𝑥 

Else  

  Request declined 

End if; 

Compute 𝐴𝑢𝑡ℎ𝑈𝑥
∗ = 𝐻2(𝑟𝑈 .  𝑃𝐾𝑈𝑥 ∥ 𝐵𝑙𝑜𝑐𝑘𝑈𝑖𝑑 ∥ 𝑇𝑈𝑥  ∥ 𝑙𝑈𝑥

∗)  

If 𝐴𝑢𝑡ℎ𝑈𝑥
∗ == 𝐴𝑢𝑡ℎ𝑈𝑥  Then  

    𝑑𝑒𝑐𝑟𝑦𝑝𝑡(𝑡𝑜𝑘𝑒𝑛𝑈𝑥 , 𝑆𝐾𝑆𝑀𝑥 ) and retrieve 𝑐𝑈  

Else  

    Tear down the connection.  

End if; 

Execute the Lagrange interpolation formula, the service manager run the following steps: 

Compute the Lagrange component of requested IoT devices under the control of 𝑆𝐾𝑆𝑀𝑥 

For j= 1 to d do 

     𝑐𝑗 = (𝑓(𝑥𝑗) × ∏
−𝑥𝑣

𝑥𝑗−𝑥𝑣

𝑑
𝑣=1,𝑣≠𝑗  

−𝐼𝑑𝑈𝑥

𝑥𝑗−𝐼𝑑𝑈𝑥
+ 𝑟𝑗𝑞 )𝑚𝑜𝑑 𝑝  

End For 

Retrieve the shared secret;  

       𝑠 = (∑ 𝑐𝑗
𝑗=𝑑
𝑗=1 + 𝑐𝑈  𝑚𝑜𝑑 𝑝) 𝑚𝑜𝑑 𝑞; 

Compute 𝐻0(s); 

If 𝐻0(𝑠) == 𝐻0(𝑆𝑒𝑐𝑈) Then  

       𝑈𝑥 is authenticated  

       𝑆𝑀𝑥 selects a random number  𝑣𝑥 𝜖 ℤ𝑞
∗

,  computes the master signature: 

        𝑉𝑥 = 𝑣𝑥 . 𝑃   

         ℎ𝑥 = 𝐻3(𝐼𝑑𝑥 ∥ 𝑉𝑥 ∥ 𝑃𝐾𝑆𝑀𝑥)  

         𝛿𝑥1 = (𝑣𝑥  + (ℎ𝑥 . 𝑠𝑖𝑔) 𝑚𝑜𝑑) 𝑞
−1. 𝑃   

         𝑆𝑀𝑥
 < 𝑽𝒙,𝜹𝒙𝟏> 
→        𝑈𝑥  

Else  

       𝑈𝑥 is NOT authenticated, and the authentication request is denied  

       Update the revocation list 

       Break; 

End if. 

User verify the legitimacy of the 𝑆𝑀𝑥  

If 𝑒(𝛿𝑥1, 𝑉𝑥 + ℎ𝑥 . 𝑃𝐾𝑆𝑀𝑥  ) ==  𝑒( 𝑃, 𝑃) Then  

    User 𝑈𝑥 confirm the reliability of received messages;  

    User 𝑈𝑥 stores the signature for further communication with IoT services; 

End if 



137 
 

Once the authentication is successfully finished, the user should be added to the blockchain 

network. For that, the 𝑆𝑀𝑥, based on the user information and the authentication results, 

generate transactions proposal of the new user 𝑈𝑥. These transactions involve the user 

authentication information, including the identity, the signature, the requested IoT services, the 

type of authentication, and the transmitted data are presented as follow:  

 𝑇𝑋1𝑈𝑥 = 𝐻𝑎𝑠ℎ1(𝐼𝑑𝑈𝑥 , 𝛿𝑥1, 𝑆𝑥, 𝑆𝑎, 𝑆𝑏 , 𝐴𝑢𝑡ℎ, 𝑆𝑥)  

 
Figure.5. 5: Authentication & Service delivery phases 
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 𝑇𝑋2𝑈𝑥 = 𝐻𝑎𝑠ℎ2(𝐼𝑑𝑈𝑥 , 𝛿𝑥2, 𝑆𝑥, 𝑆𝑎, 𝑆𝑏 , 𝐷𝑒𝑙𝑖𝑣, 𝑆𝑥) 

 𝑇𝑋3𝑈𝑥 = 𝐻𝑎𝑠ℎ3(𝐼𝑑𝑈𝑥 , 𝛿𝑥3, 𝑆𝑥, 𝑆𝑎, 𝑆𝑏 , 𝐷𝑒𝑙𝑖𝑣, 𝑆𝑎) 

 𝑇𝑋4𝑈𝑥 = 𝐻𝑎𝑠ℎ4(𝐼𝑑𝑈𝑥 , 𝛿𝑥3, 𝑆𝑥, 𝑆𝑎, 𝑆𝑏 , 𝐷𝑒𝑙𝑖𝑣, 𝑆𝑏) 

Those transactions are computed using the hash-256 function and are stored using the Merkle 

tree [167], a data structure tree where each non-leaf node is a hash of its respective child nodes. 

Since updating the blockchain network's ledger requires the consent of the peers in the 

network, the 𝑆𝑀𝑥 initiates a consensus mechanism by sending a request for public alliance peers 

APs to ensure that the 'block' recording information will be 'chained' in the Blockchain network 

through calling the consensus algorithm 2, which is the subject of the next part. 

5.5.5. Consensus Phase 

In this phase, we consider an optimized PBFT consensus algorithm to form the public ledger 

and store authentication results and logs to promote certification efficiency. In our case, the 

PBFT algorithm is executed in collaboration between the edge nodes SMs and M alliance peers 

𝐴𝑃𝑖  , 1 ≤ 𝑖 ≤ 𝑀. In fact, SM sends the request to the primary peer, which is selected in a round-

robin manner, while alliance peers 𝐴𝑃𝑖 write the authentication results into the public ledger 

through the optimized PBFT. For each round of consensus making, and given h the height of 

the current block (the block height is an expression of the total number of individual blocks that 

are a part of the blockchain), an 𝐴𝑃𝑖 is nominated as the speaker of the consensus by using 

equation 5.5 where 𝑀 is the number of alliance peers:  

𝑠𝑝𝑒𝑎𝑘𝑒𝑟 = (ℎ 𝑚𝑜𝑑 𝑀) + 1  (5.5) 

While the other peers are congressmen. Once the block is generated, the speaker signs it and 

broadcasts it to all congressmen: 

< 𝑃𝑟𝑒_𝑝𝑟𝑒𝑝𝑎𝑟𝑒, ℎ𝑒𝑖𝑔ℎ𝑡, 𝐴𝑃𝑥 , 𝑏𝑙𝑜𝑐𝑘, 𝑆𝑖𝑔𝐴𝑃𝑥(𝑏𝑙𝑜𝑐𝑘) > 

Moreover, to save the time of selecting speakers, the nominated one can host the consensus 

process M times, as it does not influence the consensus results. The detailed procedure is 

explained in algorithm 2. 

At this level, alliance peers receive the speaker request, verify it, and update their local states. 

Then, each alliance peer participating in the consensus computes the Prepare messages and 

sends them to other alliance peers and the speaker:  

< 𝑃𝑟𝑒𝑝𝑎𝑟𝑒, ℎ𝑒𝑖𝑔ℎ𝑡 , 𝐴𝑃𝑖 , 𝑏𝑙𝑜𝑐𝑘, 𝑆𝑖𝑔𝐴𝑃𝑖(𝑏𝑙𝑜𝑐𝑘) > 

This action is finished when all peers and the speaker receive a number greater than 2𝑓 + 1 

of Prepare messages, where 𝑓 = (𝑀 − 1) /3 is the maximum number of malicious nodes in 

the blockchain network. Now, all peers and the speaker could update their local states and 

broadcast Commit messages among them:  

< 𝐶𝑜𝑚𝑚𝑖𝑡, ℎ𝑒𝑖𝑔ℎ𝑡 , 𝐴𝑃𝑖 , 𝑏𝑙𝑜𝑐𝑘, 𝑆𝑖𝑔𝐴𝑃𝑖(𝑏𝑙𝑜𝑐𝑘) > 



139 
 

Once all peers and the speaker receive at least a number greater than 𝑓 + 1 of Commit 

messages, they respond to the corresponding service manager 𝑆𝑀𝑥 with the result. Besides, all 

peers and the speaker update their local state, and the speaker confirms that the consensus is 

finished.  

After the consensus phase is achieved successfully, a block recording the user information 

is chained in the Blockchain network. As shown in Figure 5.6, the data block structure of an 

authenticated user contains all associated transactions and the header block that includes the 

previous hash, the nonce, the timestamp, and the hash Merkle root. The transactions included 

within this block are hashed as part of the Merkle tree leading to the Merkle root that is stored 

in the block header. Besides, these transactions involve the user authentication information, 

including the identity, the signature, the requested IoT services, the type of authentication, and 

the transmitted data. 

 

 

Figure.5. 6: User authentication data block 

 

 



140 
 

 Algorithm 2: Consensus phase  

Input:    user authentication results log to be added,  

Output: a consensus is achieved, and user information is added to the 

Blockchain  

1:         

 

    

2:               

  

 

 

 

 

 

 

 

 

 

 

 

 

 

   

3:         

 

 

 

 

 

 

 

 

 

4: 

    

  

 

 

 

 

 

 

 

 

 

5: 
 

 

 

 

 

 

 

 

/  ∗  Request 

𝑆𝑀𝑥 broadcasts authentication results to alliance peers 𝐴𝑃𝑖 
Repeat  

  /  ∗  Pre-prepare  

  Given h the height of the current block; 

  Define t the interval time of generating a block; 

  Select the speaker of the consensus, 𝑠𝑝𝑒𝑎𝑘𝑒𝑟 = (ℎ 𝑚𝑜𝑑 𝑀) + 1; 

  If interval t has expired, then  

    A block is generated; 

    Speaker broadcasts to all congressmen: 

 < 𝑃𝑟𝑒_𝑝𝑟𝑒𝑝𝑎𝑟𝑒, ℎ𝑒𝑖𝑔ℎ𝑡, 𝐴𝑃𝑥, 𝑏𝑙𝑜𝑐𝑘, 𝑆𝑖𝑔𝐴𝑃𝑥(𝑏𝑙𝑜𝑐𝑘) >;     

  End if  

  If request is received & is valid then  

    Alliance peers record the request; 

    Alliance peers update local states; 

  End if  

  round ← 0; 

  While round ≤ 𝑀 do 

    /  ∗  Prepare  

    If the local state is updated, then  

      ∀𝑖,  𝐴𝑃𝑖 computes the Prepare messages; 

      Repeat 

        ∀𝑖, 𝐴𝑃𝑖 sends Prepare messages to other alliance peers and to the 

speaker 

        < 𝑃𝑟𝑒𝑝𝑎𝑟𝑒, ℎ𝑒𝑖𝑔ℎ𝑡 , 𝐴𝑃𝑖, 𝑏𝑙𝑜𝑐𝑘, 𝑆𝑖𝑔𝐴𝑃𝑖(𝑏𝑙𝑜𝑐𝑘) >;     

      Until all peers and speaker receive ≥ 2𝑓 + 1 Prepare messages 

    End if 

    /  ∗  Commit  

    If all peers and speaker receive ≥ 2𝑓 + 1 then  

      All peers and speaker update their local states; 

      Repeat 

        All  𝐴𝑃𝑖 & speaker broadcast Commit messages among them 

        < 𝐶𝑜𝑚𝑚𝑖𝑡, ℎ𝑒𝑖𝑔ℎ𝑡 , 𝐴𝑃𝑖, 𝑏𝑙𝑜𝑐𝑘, 𝑆𝑖𝑔𝐴𝑃𝑖(𝑏𝑙𝑜𝑐𝑘) >; 

      Until peers receive ≥ 𝑓 + 1 Commit messages 

    Else  
      block is discarded; 

      round ← round +1; 

      Break;  

    End if  

    /  ∗  Reply  

    If peers & speaker receive ≥ 𝑓 + 1 Commit messages 

      All  𝐴𝑃𝑖 & speaker response the 𝑆𝑀𝑥with its result; 

      All  𝐴𝑃𝑖 & speaker update local state; 

      The speaker confirm that a consensus is finished; 

      Break; 

    Else  
      block is discarded; 

      round ← round +1; 

      Break;  

    End if 

  End while 

Until consensus is finished 

 

 

Algorithm 2: Consensus phase  

Input:    user authentication results log to be added,  

Output: a consensus is achieved, and user information is added to the 
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5.5.6. Service Delivery Phase 

At this point and as shown in Figure 5.5, the user who is registered under our system for a 

list of IoT services {𝑆𝑥, 𝑆𝑎, 𝑆𝑏} and who has proceeded with the first authentication, could get 

permission access to a new IoT service from the subscription’s list without re-authentication. 

We consider that the user requests another IoT service 𝑆𝑎 from the corresponding service 

manager, 𝑆𝑀𝑎, thus the user 𝑈𝑥 computes a digital signature as follows:  

 Given that 𝑆𝐾𝑈𝑥 = ℎ(𝐼𝑑𝑈𝑥 , 𝑟𝑈𝑥) the user private key; the user computes his 

corresponding public key 𝑃𝐾𝑈𝑥 = 𝑆𝐾𝑈𝑥  . 𝑃. 

 Computes the request: 𝑋𝑢 = 𝐻2( 𝑃𝐾𝑈𝑥 ∥ 𝐵𝑙𝑜𝑐𝑘𝑈𝑖𝑑 ∥ 𝑉𝑥 ∥ 𝑃𝑆𝑖𝑔𝐾𝑒𝑦 ∥ 𝑆𝑎 ). 

 Signs the request: 𝛿𝑥2 = (𝑋𝑢 . (𝑣𝑥 + ℎ𝑥 . 𝑆𝑖𝑔𝐾𝑒𝑦  𝑚𝑜𝑑 𝑞)  + 𝑆𝐾𝑈𝑥)
−1. 𝑃  

 Submits the access requests by delivering a digital signature to the corresponding 

service manager 𝑆𝑀𝑎  of the requested IoT services 𝑆𝑎:  

𝑈𝑥
𝐴𝑐𝑅𝑒𝑈𝑥=(𝑋𝑢,𝛿𝑥2,𝑇𝑈𝑥

′ ) 
→                𝑆𝑀𝑎 

At this level, the service manager 𝑆𝑀𝑎 invokes the smart contract functions to query the 

user’s information in the blockchain ledger, in particular it queries the transaction information 

related to the IoT service  𝑆𝑎. Once retrieved, the service manager 𝑆𝑀𝑎: 

 Proves that the user public key 𝑃𝐾𝑈𝑥 is not in the revocation list.  

 Verifies the transactions’ data in the user’s block data(𝑇𝑋𝑈𝑥) ==  𝑆𝑎  

 Validates the received signature by verifying if equation 5.6 holds. 

𝑒(𝛿𝑥2, 𝑋𝑢 . (𝑉𝑥 + ℎ𝑥 . 𝑃𝑆𝑖𝑔𝐾𝑒𝑦) + 𝑃𝐾𝑈𝑥) ==  𝑒( 𝑃, 𝑃) (5.6) 

If the result is successful, the service manager 𝑆𝑀𝑎  confirms that the user 𝑈𝑥 is authentic 

and responds to the user with the requested IoT service 𝑆𝑎. Otherwise, the 𝑆𝑀𝑎declines the 

request. Algorithm 3 describes the detailed process of service delivery phase. 

Algorithm 3: Service delivery phase  

Input: user information 𝒔𝒌𝑼𝒙 , 𝜹𝒙𝟏, requested service 𝑺𝒂 

Output: service access permission or denied permission  

1:  

 

 

         

2: 

 

 

3: 

4: 

The user prepares request of the IoT service 𝑆𝑎 from 𝑆𝑀𝑎 by 

computing :  

       The public key 𝑃𝐾𝑈𝑥 = 𝑆𝐾𝑈𝑥  . 𝑃; 

       𝑋𝑢 = 𝐻2( 𝑃𝐾𝑈𝑥 ∥ 𝐵𝑙𝑜𝑐𝑘𝑈𝑖𝑑 ∥ 𝑉𝑥 ∥ 𝑃𝑆𝑖𝑔𝐾𝑒𝑦 ∥ 𝑚 ); 

      𝛿𝑥2 = (𝑋𝑢 . (𝑣𝑥 + ℎ𝑥  .𝑆𝑖𝑔𝐾𝑒𝑦 𝑚𝑜𝑑 𝑞)  + 𝑆𝐾𝑈𝑥)
−1. 𝑃 ; 

The user 𝑈𝑥  submits the access request through delivering a digital 

signature to 𝑆𝑎: 𝑈𝑥
𝐴𝑐𝑅𝑒𝑈𝑥=(𝑋𝑢,𝛿𝑥2,𝑇𝑈𝑥

′ ) 
→                𝑆𝑀𝑎  

𝑆𝑀𝑎 invokes the smart contract functions to get the user information 

registered in the blockchain network; 
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5: 

 

6: 

 

7: 

 

 

 

8: 

 

 

 

 

 

9:  

 

 

 

  If 𝑈𝑥 is in revocation list then 

      𝑆𝑀𝑎 refuses to provide the service; 

      𝑆𝑀𝑎 informs the Blockchain network; 

      Break; 

  Else  

     Read transaction data of the block related to the user 𝑈𝑥 

      If data(𝑇𝑋𝑈𝑥) ==  𝑆𝑎 &  𝑡𝑦𝑝𝑒(𝑇𝑋𝑈𝑥) ==  𝐷𝑒𝑙𝑖𝑣 then  

        𝑆𝑀𝑎 verifies the signature of the user; 

        If  𝑒(𝛿𝑥2, 𝑋𝑢 . (𝑉𝑥 + ℎ𝑥  . 𝑃𝑆𝑖𝑔𝐾𝑒𝑦)  + 𝑃𝐾𝑈𝑥) ==  𝑒( 𝑃, 𝑃) then 

           User 𝑈𝑥  is authentic; 

           𝑆𝑀𝑎 responds the user with the requested IoT service 𝑆𝑎; 

        Break; 

        Else  

         𝑆𝑀𝑎 refuses to provide the service; 

         𝑆𝑀𝑎 adds the user to the revocation list; 

         𝑆𝑀𝑎 notifies the Blockchain network;        

        End if; 

      Else  

         𝑆𝑀𝑎 refuses to provide the service; 

         𝑆𝑀𝑎 adds the user to the revocation list; 

         𝑆𝑀𝑎 notifies the Blockchain network; 

      End if 

 End if  

5.6. Security Evaluation 

In this section, we evaluate the security features of DiGABlock through the correctness proof 

of the formal security analysis and the informal security features:  

5.6.1. Correctness Proof 

The correctness proof ensures that the decryption of an encrypted message returns the original 

plaintext. To prove the correctness of the proposed DiGABlock scheme, we need to verify that 

the following equations concerning the group authentication and the distribution of 

authentication user data are true: 

 The Shamir secret: 𝑠 = 𝑆𝑒𝑐𝑈 

 The pairing function to verify the service manager legitimacy during the authentication 

phase:  

𝑒(𝛿𝑥1, 𝑉𝑥 + ℎ𝑥  . 𝑃𝐾𝑆𝑀𝑥  ) =  𝑒( 𝑃, 𝑃) 

 The pairing function to verify the user legitimacy during the service delivery phase:  

𝑒(𝛿𝑥2, 𝑋𝑢 . (𝑉𝑥 + ℎ𝑥  . 𝑃𝑆𝑖𝑔𝐾𝑒𝑦)  + 𝑃𝐾𝑈𝑥) =  𝑒( 𝑃, 𝑃) 
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The details of the proof correctness are as follow: 

(i) 𝑠 = (∑ 𝑐𝑗
𝑗=𝑑
𝑗=1 + 𝑐𝑈 𝑚𝑜𝑑 𝑝) 𝑚𝑜𝑑 𝑞  

    = (∑ (𝑓(𝑥𝑗) × ∏
−𝑥𝑣

𝑥𝑗−𝑥𝑣

𝑑
𝑣=1,𝑣≠𝑗  

−𝐼𝑑𝑈𝑥

𝑥𝑗−𝐼𝑑𝑈𝑥
+ 𝑟𝑗𝑞 )

𝑗=𝑑
𝑗=1 𝑚𝑜𝑑 𝑝 + (𝑓(𝐼𝑑𝑈𝑥) ×

∏
−𝑥𝑣

𝐼𝑑𝑈𝑥−𝑥𝑣

𝑑
𝑣=1  + 𝑟0𝑞)𝑚𝑜𝑑 𝑝)𝑚𝑜𝑑 𝑞  

 

   = ∑(𝑓(𝑥𝑗) × ∏
−𝑥𝑣
𝑥𝑗 − 𝑥𝑣

𝑑

𝑣=1,𝑣≠𝑗

 
−𝐼𝑑𝑈𝑥
𝑥𝑗 − 𝐼𝑑𝑈𝑥

+ 𝑟𝑗𝑞 )

𝑗=𝑑

𝑗=1

𝑚𝑜𝑑 𝑝 𝑚𝑜𝑑 𝑞 

+ (𝑓(𝐼𝑑𝑈𝑥) ×∏
−𝑥𝑣

𝐼𝑑𝑈𝑥 − 𝑥𝑣

𝑑

𝑣=1

 + 𝑟0𝑞)𝑚𝑜𝑑 𝑝 𝑚𝑜𝑑 𝑞  

  = (𝑓(0) +∑(𝑟𝑗𝑞 )

𝑗=𝑑

𝑗=1

)  𝑚𝑜𝑑 𝑞  + ( 𝑟0𝑞)𝑚𝑜𝑑 𝑞 

  = (𝑓(0) +∑(𝑟𝑗𝑞 )

𝑗=𝑑

𝑗=1

 +  ( 𝑟0𝑞))𝑚𝑜𝑑 𝑞 

 = 𝑓(0) = 𝑆𝑒𝑐𝑈  

(ii) 𝑒(𝛿𝑥1, 𝑉𝑥 + ℎ𝑥 . 𝑃𝐾𝑆𝑀𝑥  ) = 𝑒 ((𝑣𝑥  + (ℎ𝑥  . 𝑆𝐾𝑆𝑀𝑥)𝑚𝑜𝑑 𝑞)
−1
. 𝑃  , 𝑉𝑥 + ℎ𝑥  . 𝑃𝐾𝑆𝑀𝑥  ) 

  = 𝑒 ((𝑣𝑥  + (ℎ𝑥 . 𝑆𝐾𝑆𝑀𝑥)𝑚𝑜𝑑 𝑞)
−1
. 𝑃  , 𝑣𝑥 . 𝑃 + ℎ𝑥  . 𝑆𝐾𝑆𝑀𝑥 . 𝑃 )  

  = 𝑒 ((𝑣𝑥  + ℎ𝑥 . 𝑆𝐾𝑆𝑀𝑥)
−1
. 𝑃  , 𝑣𝑥 . 𝑃 + ℎ𝑥  . 𝑆𝐾𝑆𝑀𝑥 . 𝑃 )  

  = 𝑒(𝑃, 𝑃)(𝑣𝑥 + ℎ𝑥 .𝑆𝐾𝑆𝑀𝑥)
−1
.(𝑣𝑥+ℎ𝑥 .𝑆𝐾𝑆𝑀𝑥)  

  = 𝑒(𝑃, 𝑃). 

(iii) 𝑒(𝛿𝑥2, 𝑋𝑢 . (𝑉𝑥 + ℎ𝑥 . 𝑃𝑆𝑖𝑔𝐾𝑒𝑦) + 𝑃𝐾𝑈𝑥) = 𝑒((𝑋𝑢 . (𝑣𝑥 + ℎ𝑥 . 𝑆𝑖𝑔𝐾𝑒𝑦 𝑚𝑜𝑑 𝑞)  +

𝑆𝐾𝑈𝑥)
−1. 𝑃 , 𝑋𝑢 . (𝑉𝑥 + ℎ𝑥  . 𝑃𝑆𝑖𝑔𝐾𝑒𝑦) + 𝑃𝐾𝑈𝑥)  

= 𝑒((𝑋𝑢 . (𝑣𝑥 + ℎ𝑥  . 𝑆𝑖𝑔𝐾𝑒𝑦 )  + 𝑆𝐾𝑈𝑥)
−1. 𝑃 , 𝑋𝑢 . (𝑣𝑥 . 𝑃 + ℎ𝑥  . 𝑆𝑖𝑔𝐾𝑒𝑦 . 𝑃) + 𝑃𝐾𝑈𝑥 . 𝑃)  

= 𝑒((𝑋𝑢 . (𝑣𝑥 + ℎ𝑥  . 𝑆𝑖𝑔𝐾𝑒𝑦 ) + 𝑆𝐾𝑈𝑥)
−1. 𝑃 , (𝑋𝑢 . (𝑣𝑥 + ℎ𝑥  . 𝑆𝑖𝑔𝐾𝑒𝑦 ) + 𝑆𝐾𝑈𝑥). 𝑃)  

= 𝑒(𝑃, 𝑃)(𝑋𝑢 .(𝑣𝑥+ℎ𝑥 .𝑆𝑖𝑔𝐾𝑒𝑦 ) +𝑆𝐾𝑈𝑥)
−1.(𝑋𝑢 .(𝑣𝑥+ℎ𝑥 .𝑆𝑖𝑔𝐾𝑒𝑦 )+𝑆𝐾𝑈𝑥) = 𝑒(𝑃, 𝑃). 



144 
 

To sum up, our proposed scheme satisfies the correctness. Since the shares are generated by 

a polynomial having degree(𝑡 + 1), this scheme can resist up to colluded (𝑡) inside adversaries 

trying to recover the polynomial secret  𝑓(0) selected by the CA initially. Otherwise, any 

outside adversary participating in the group authentication, needs to solve the discrete logarithm 

to derive each Lagrange component 𝑐𝑈, from each shared value, which is computationally 

infeasible. 

5.6.2. Security Analysis 

In this section, we conduct an informal security analysis to prove that our group 

authentication solution ensures the expected security requirements, and we outline its capacity 

to resist against the following well-known attacks: Forgery, DoS, MiM, Replay, User 

impersonation, and perfect forward/backward Secrecy. 

5.6.2.1. Forgery Attack 

Attackers may forge the identity of the Blockchain edge nodes (the service manager SM) to 

destroy the authentication mechanism and steal or modify the user’s information. For that, an 

attacker selects a random number 𝐸𝑟𝑟𝑥, computes (𝐸𝑟𝑟𝑥 . 𝑃) to eavesdrop or compute parameters 

delivered by the legal service manager SM using equations 5.7 and 5.8: 

ℎ𝐸𝑟𝑟 = 𝐻3(𝐼𝑑𝑥 ∥ 𝐸𝑟𝑟𝑥. 𝑃 ∥ 𝑃𝐾𝑆𝑀𝑥)                     (5.7) 

 𝛿𝐸𝑟𝑟 = (𝐸𝑟𝑟𝑥   + (ℎ𝑥  . 𝑠𝑖𝑔) 𝑚𝑜𝑑) 𝑞
−1. 𝑃                (5.8) 

Otherwise, once the user receives these messages, he proceeds to compute the ECC pairing 

and verifies the request of A. At this level, the request of the attacker A will be rejected since A 

gives a false signature, and the user could detect that attack through computing the pairing ECC:  

𝑒(𝛿𝐸𝑟𝑟 , 𝐸𝑟𝑟𝑥. 𝑃 + ℎ𝑥 . 𝑃𝐾𝑆𝑀𝑥  ) ≠ 𝑒( 𝑃, 𝑃). 

Hence, it is computationally infeasible to calculate correct private keys and public 

parameters generated by ECC, and we can confirm that our scheme prevents forgery attacks.  

5.6.2.2. Denial of Service Attack:  

During the authentication of the user with the service manager for the first time, a malicious 

user may launch a DoS attack on Blockchain edge node SM, and tries to forge the exchanged 

message of request authentication< 𝐴𝑢𝑡ℎ𝑈𝑥 , 𝑟0, 𝑡𝑜𝑘𝑒𝑛𝑈𝑥 , 𝑇𝑈𝑥 , 𝐵𝑙𝑜𝑐𝑘𝑈𝑖𝑑 >. The SM can detect 

the forged message through checking 𝐵𝑙𝑜𝑐𝑘𝑈𝑖𝑑 and comparing 𝐴𝑢𝑡ℎ𝑈𝑥, hence eliminate all 

illegal access requests. Otherwise, during the service delivery of the user with the remaining 

SMs to which it is subscribed, the authentication process is based on the signature verification 

and the result is broadcasted among SMs. If a malicious user interrupts the authentication 

messages distributed from SM and sings them with a fake key, alliance peers can detect the 

contaminated messages through the PBFT algorithm. More specifically, the consensus 

algorithm can be re-executed after each failing for N Time. Hence, the DoS attack may take 
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place only when messages delivered from all SM are contaminated, which is a difficult task 

regarding to the widespread of SM. Therefore, the proposed scheme resists the DoS attack.  

5.6.2.3. Man-in-The-Middle Attack  

Attackers may try to sniff exchanged authentication messages between the user and the 

service manager SM. For that, they need to guess the user’s private key or the SM ‘s private key 

𝑆𝐾𝑈𝑥. Nevertheless, they cannot forge the SM’s or users' identity, as mentioned above in the 

DoS attack.  Moreover, attackers may be able to catch the transferred data, they cannot use them 

against the network even they re-send it without modifying it, and then the attack does not 

influence the authentication system. However, all authentication messages are embedded with 

a timestamp, which prevents to reuse them. Thus, we conclude that this attack will fail since 

the probability of guessing the user’s private key or the SM’s private key in a limited time T 

is negligible. 

5.6.2.4. Replay Attack 

In our scheme, throughout the authentication mechanism and service delivery between the 

user and the service manager SM, we mark the released time of each message with a timestamp. 

More specifically, every received message is assigned with a time threshold T. Hence, upon 

receiving the exchanged messages, the data consumer (user or service manager) will check the 

freshness of the timestamp before executing the other steps of the authentication process. In 

this way, the user and the service manager could detect easily if the message is reused, and then 

prevent the replay attack. 

5.6.2.5. User Impersonation Attack  

An attacker A may intend to impersonate a legitimate user through eavesdropping data flow 

between a user and the corresponding SM. However, A cannot get the Lagrange component of 

the user 𝑐𝑈, since 𝑐𝑈 is embedded in the  𝑡𝑜𝑘𝑒𝑛𝑈𝑥 . Moreover, A cannot decrypt the 𝑡𝑜𝑘𝑒𝑛𝑈𝑥 , 

since the unique session key of SM cannot be adequately generated without the conforming 

private key of the user 𝑈𝑥. Furthermore, if A reuses the same 𝐵𝑙𝑜𝑐𝑘𝑈𝒊𝒅 to request the 

authentication, the service manager SM can detect the adversary since the value of 𝐴𝑢𝑡ℎ𝑈𝑥will 

not be matched. Moreover, only the legally authorized ones can access public ledgers such as 

SMs, APs. In the service delivery phase, based on ECC, it is computationally infeasible to 

calculate the correct key 𝑆𝐾𝑈𝑥 , thus even the attacker knows 𝐵𝑙𝑜𝑐𝑘𝒊𝒅 , A cannot sign the access 

request correctly 𝐴𝑐𝑅𝑒𝑈𝑥 = (𝑋𝑢, 𝛿𝑥2, 𝑇𝑈𝑥
′ ). Besides, if A intercepts 𝐴𝑐𝑅𝑒𝑈𝑥 = (𝑋𝑢, 𝛿𝑥2, 𝑇𝑈𝑥

′ ), 

and sends it in the next authentication procedure round, the timestamp , 𝑇𝑈𝑥
′ will prevent it from 

being reused. 

5.6.2.6. Perfect Forward and Backward Secrecy 

In our scheme, we need to provide the perfect backward secrecy, which guarantees the 

control of a new user who wants to get access to IoT services. Indeed, the user needs to perform 

a full authentication procedure with at least one SM. In fact, a random polynomial is designed 

for the new user, who joins the system with the desired IoT devices. Otherwise, each IoT device 
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𝐷𝑗  has a secret 𝑓𝑢(𝑥𝑗) corresponding only to the new user 𝑈𝑥, so that even if the new user 𝑈𝑥 

can sniff the old packets of the group; he cannot decrypt them. Moreover, the forward secrecy 

is guaranteed since the SM will revoke the user's binding relationship, who leave the system, 

with the groups of IoT devices. Furthermore, all leaved users are added to a revocation list 

tampered with and distributed in the Blockchain network so that the old user cannot get access 

to the IoT devices after his leaves.  

5.7. Performance Analysis and Evaluation 

This section analyzes the performance of the proposed scheme DiGABlock compared to 

direct authentication schemes, group authentication schemes PGA [160] & GBA [164], and 

distributed authentication schemes BLA [169] & BMEC [168]. We analyze the computation 

overhead on users at first and the response time of the service manager. Then, we study the 

energy consumption caused by the authentication and service delivery phases on users. 

Furthermore, we analyze the communication consumption and the improvement rate related to 

the communication cost comparing to the existing schemes.   

5.7.1. Experimental Settings 

To evaluate the proposed DiGABlock scheme, we measure the primitive cryptography 

operations by using the C/C++ Miracle Library, a cryptographic library designed for use in 

constrained environments in terms of computational power [158]. Furthermore, we use the 

HyperLedger Fabric platform [178] to measure the time of reaching PBFT consensus algorithm 

in the Blockchain network.  

The simulations are implemented and tested on a computer with the following features: an 

Intel i5-4200 CPU@ 2.5 GH with a RAM of 8 GB. On the one hand, we use a virtual machine 

on Ubuntu 16.04 OS over VM VirtualBox, and we provide the time cost for different 

cryptographic operations. As a result, we define THash= 0,024ms be the time for one hashing 

operation using the SHA-256 function on a 64-bytes block. Then, TEnc=TDec=0,047ms be 

respectively the time for one encryption/decryption operation using symmetric cryptography 

AES-256 encryption on a 64-bytes. Furthermore, the running time of one ECC point 

multiplication is TM-ECC=0,365ms, ECC basing point adding TA-ECC=0,265ms, the pairing 

operation TP-ECC=1,05ms, the map-to-point hash function is TH-ECC=0,442ms, and the Lagrange 

Component is TLC=0,035ms. 

On the other hand, we use Hyperledger Fabric version 1.4 of docker 18.06 container in 

Ubuntu 16.04 over another virtual machine. HyperLedger Fabric uses Docker container 

technology to run chaincode that contains the system application logic. Several nodes are 

virtually hosted in a single machine, acting as alliance peers that reach the PBFT algorithm's 

consensus. We assume four alliance peers in our Blockchain network, and each node is 2.5 

GHz. As a result, we provide the time cost for node verification Tnv = 1ms and time for the 

PBFT consensus commitment Tcons = 11ms when the number of peers is equal to four. Finally, 

we evaluate the proposed DiGABlock scheme with MATLAB. 

 



147 
 

5.7.2. Computation Costs 

The authentication procedure provides security but also causes an increase in computation 

costs. Hence, it is essential to evaluate the computation overhead, which is the object of this 

subsection. We discuss the evaluation of our DiGABlock solution's computation cost, 

especially at the user level and the service manager level.  

5.7.2.1. User Overhead 

We calculate the user overhead by varying the list of subscriptions and fix the number of 

IoT devices per group to evaluate the impact on the computation cost. In particular, we compare 

the computation costs on users during the authentication process, for group-based 

authentication schemes PGA [165], GBA [170], distributed authentication schemes BLA [177], 

BMEC [178], and direct authentication scheme [58]. We consider three different cases varying 

the number of IoT devices per group. At first, we ponder one device per group, and we can see 

in Figure 5.7 (a) that the computation cost of our scheme and distributed schemes are lower 

than PGA [165], direct authentication [58], and GBA [170]. The reason is that we need only to 

authenticate once in a distributed mechanism, and hence the computation cost is not affected 

    

(a). Number devices per group = 1 (b). Number devices per group = 5 

  

    

(c). Number devices per group = 50 (d). Number devices per group = 100 

  

Figure.5. 7: Computation overhead on users 
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when the total number of IoT devices increases like in PGA [165], direct authentication [58], 

and GBA [170]. Furthermore, Figure 5.7 (b)-(d) show that our proposed scheme has the lowest 

costs than the other schemes when the number of IoT devices per group is higher than one. We 

can explain these results through exploiting the group-based authentication in a distributed 

manner, which decreases the cost of computation radically. 

5.7.2.2. System Response Time 

To evaluate the system response and latency, we compare the computational overhead of the 

service manager and the Blockchain network during the consensus phase. According to 

computation time, we plot the system response in three cases, where the number of IoT devices 

per group is equal to (= 1, 5, 50, and 100) and varying the number of groups of IoT devices. 

Figure 5.8 (a), shows that the direct authentication scheme has the lowest computational 

overhead when there is only one IoT device per group, which is explained by using simple 

authentication operations. Otherwise, as shown in Figure 5.8 (b)-(d), when the number of IoT 

devices increases per group, our scheme achieves lower computational overhead than other 

schemes PGA, GBA, BLA, BMEC. This can be explained through achieving only one group 

authentication instead of many group authentications with the requested IoT services. At this 

    

(a). Number devices per group = 1 (b). Number devices per group = 5 

  

    

(c). Number devices per group = 50 (d). Number devices per group = 100 

  

Figure.5. 8: System Response Time 

 

Table 5.2 : Energy costs    
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level, we confirm that adopting a distributed authentication mechanism to the group 

authentication performs a quick authentication procedure for a large and distributed IoT 

environment and present an evident improvement in the system response.  

5.7.3. Energy Consumption 

The energy is evaluated regarding the energy dissipation during the cryptography operations. 

To evaluate the energy costs, we assume that the number of IoT devices’ groups and the number 

of devices per group is variable. Table 5.4 shows the setting of parameters for evaluating energy 

consumption. The values adopted were carefully chosen based on the values used by [185]. 

Table 5. 4: Energy costs 

Type Energy 

Key set-up 256 bits AES 9.92 µJ 

Hashing 512 bits 48.64 µJ 

Key generation -ECDH 276.7 Mj 

Key exchange-ECDH 163.5 mJ 

Signature creation ECDSA 134.2 mJ 

Signature verifying ECDSA 196.2 mJ 

It is clear from Figure 5.9 that the energy consumption increases with the number of IoT 

devices’ groups and the total number of IoT devices for the state-of-the-art schemes PGA, direct 

authentication, GBA, BLA, BMEC, while our proposed is less affected by the total number of 

IoT devices. Hence, ensuring a group-based authentication in a distributed manner may 

decrease the cryptographic operations efficiently. Furthermore, when authentication is needed, 

our scheme DiGABlock ensures only once a complete group authentication and then delivers 

 

Figure.5. 9: Energy consumption 
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the remaining IoT groups' services. Therefore, the running cryptographic algorithm of our 

scheme DiGABlock can save energy consumption.   

5.7.4. Communication Costs 

To analyze the communication overhead, we calculate the sizes of the exchanged messages. 

We assume a variable number of groups of IoT devices, and we study three different cases, 

where the number of IoT devices per group is equal to 1, 5, 50, and 100. Table 5.5 shows the 

parameters used to evaluate the communication overhead.  

Table 5. 5: Communication Parameters 

Parameters Bits Parameters Bits 

Id 128 The ECDH key 192 

The timestamp 17 The ECDH signature 320 

Random value (nonce) 16 ECC point multiplication 163 

Hash 512 ECC point addition 163 

Lagrange Component 128 AES 256 

The communication cost of our scheme DiGABlock and the state-of-the-art PGA [165], direct 

authentication [58], GBA [170], BLA [177], BMEC [178], is computed using equations 5.9 and 

5.10 where N is the number of exchanged messages. 

𝐶𝑜𝑚𝑓𝑖𝑟𝑠𝑡 = ∑ |𝑀𝑒𝑠𝑠𝑎𝑔𝑒𝑖|
𝑁
𝑖=1      (5.9)                                                                           

𝐶𝑜𝑚𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔 = ∑ |𝑀𝑒𝑠𝑠𝑎𝑔𝑒𝑖|
𝑁
𝑖=1   (5.10) 

Where 𝐶𝑜𝑚𝑓𝑖𝑟𝑠𝑡 represents the communication cost of the first authentication of the user 

with the requested IoT service, and 𝐶𝑜𝑚𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔 represents the communication overhead of 

the authentication with the remaining IoT services, which is ensured in a distributed way in our 

scheme.   

In fact, during the first authentication, the user is invited to ensure a full authentication 

process with a group of IoT devices in the proposed DiGABlock scheme.  Thus, there are three 

exchanged messages to achieve the first authentication phase: 

𝐶𝑜𝑚𝑓𝑖𝑟𝑠𝑡 = ∑ |𝑀𝑒𝑠𝑠𝑎𝑔𝑒𝑖|
3
𝑖=1  where: 

 𝑀𝑒𝑠𝑠𝑠𝑎𝑔𝑒1 = |𝐴𝑢𝑡ℎ𝑈𝑖| + |𝑡𝑜𝑘𝑒𝑛𝑈𝑖| + |𝑇𝑈𝑖| + |𝐵𝑙𝑜𝑐𝑘𝑖𝑑 | = 913 𝑏𝑖𝑡𝑠 

 𝑀𝑒𝑠𝑠𝑠𝑎𝑔𝑒2 = |𝑉𝑥| + | 𝛿𝑥1| + |𝑇𝑈𝑖
∗ | = 529 𝑏𝑖𝑡𝑠  

 𝑀𝑒𝑠𝑠𝑎𝑔𝑒3 = 𝑑 × |𝐿𝑐| = 128𝑑 𝑏𝑖𝑡𝑠 

Further, after the first authentication, the user can choose not to re-authenticate by 

proceeding with the service delivery phase in the proposed DiGABlock scheme.  Besides, only 

one message is exchanged to achieve the service delivery phase: 
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𝐶𝑜𝑚𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔 = 𝑀𝑒𝑠𝑠𝑠𝑎𝑔𝑒1 = |𝑋𝑢| + | 𝛿𝑥2| + |𝑇𝑈𝑖
′ | = 529 𝑏𝑖𝑡𝑠 

At this level, the overall communication cost of DiGABlock for m groups of IoT services 

and d devices per group is calculated as follow: 

𝐶𝑜𝑚𝑡𝑜𝑡𝑎𝑙 = 𝐶𝑜𝑚𝑓𝑖𝑟𝑠𝑡 +𝑚 × 𝐶𝑜𝑚𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔                    

Figure 5.10 (a)-(c) plot the communication cost during the authentication procedure in each 

scheme, varying the number of groups, while the number of IoT devices per group is set to 1, 

5, 50, and 100. We notice that both our scheme and group-based authentication schemes do not 

save the communication cost, when the number of IoT devices per  group is limited to one, 

compared to distributed and direct authentication ones. Otherwise, when the number of IoT 

devices per group is more than one, we can see that our scheme is more effective than the others. 

The reason is that our scheme achieves only one group authentication, which will be distributed 

for all remaining IoT groups, instead of authenticating every IoT group, and  distributing 

authentication of every IoT device. Hence, our scheme achieves the lowest communication cost 

when the number of IoT devices is significant. 

                  

(a). Number devices per group = 1 (b). Number devices per group = 5 

                   

(c). Number devices per group = 50 (d). Number devices per group = 100 

  

Figure.5. 10: Communication costs 
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5.7.5. Improvement Rate of Communication Costs 

To better visualize the communication costs enhancements accomplished by our proposed 

DiGABlock scheme compared to PGA [165], direct authentication [58], GBA [170], BLA 

[177], BMEC [178], we present an improvement rate (IR), as described in [186] and given by 

equation 5.11. 

𝐼𝑅 =
Comcostof the OTHER scheme−Com_cost of OUR scheme

Com_cost of the OTHER scheme
       (5.11) 

Figure 5.11 shows the improvement rate for the communication cost of our scheme 

compared to the group-based authentication schemes [165][170] and the distributed 

authentication schemes [177][178]. We compare the IR for communication varying the number 

of IoT devices to which a user is subscribed. We notice an improvement of 90% in the 

communication cost (IR = 0.9) of DiGABlock compared to group-based authentication schemes 

PGA and GBA when the number of devices is more than nearly five devices. We can explain 

the results by using the SM to manage the communication with the IoT device group, which 

reduces the exchanged messages resulting during the authentication procedure. Besides, the 

DiGABlock IR compared to the distributed BLA and BMEC schemes is higher than 0.7, which 

means an improvement of 70 % in the communication cost. The reason is that a distributed 

scheme needs to distribute the authentication for each IoT device, while the proposed 

DiGABlock scheme assures the distribution of the authentication for a group of IoT devices. 

Hence, the communication cost of DiGABlock is slightly affected by increasing the network 

size.  

 

Figure.5. 11: Improvement Rate 
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5.8. Conclusion 

Thanks to the recent technological advances, group-based applications in IoT networks are 

currently merging as a versatile paradigm that can be used in different IoT environments such 

as smart hotels, smart cities, smart grids, and smart buildings. However, the corresponding span 

of applications requires very often efficient authentication with high security in a limited 

amount of time. Nonetheless, on the one hand, due to the limited computation and energy 

resources available within the IoT devices, time delay and energy consumption for these 

constrained devices remain a significant challenge. On the other hand, the group IoT services 

and the dynamic nature of these IoT environments, as seen in the previous chapter, provide new 

authentication issues to mitigate these constrained devices and frequent subscribes’ interest 

changing. This chapter introduces a novel distributed group authentication scheme based on 

Blockchain technology for IoT environment named DiGABlock. A hierarchical authentication 

architecture is adopted, composed of IoT devices layer, end-users layer, Blockchain edge layer, 

and Blockchain network layer. DiGABlock is designed to authenticate users with many IoT 

device groups efficiently, where users could perform only once a full authentication process 

with many IoT device groups. Besides, DiGABlock is non-interactive which significantly 

reduces the communication delay. Furthermore, our scheme achieves a trusted and efficient 

authentication of users and reduces authentication signaling congestion. Indeed, the evaluation 

of attack models proves that our scheme is attack-prevented. Additionally, we valued the 

proposed authentication mechanism in terms of communication, energy, and computation costs. 

Simulation results prove that DiGABlock offers enhanced performances.  
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6.1 Summary of the Contributions  

The IoT is creating new opportunities to ameliorate the next generation of information 

technologies such as smart homes, smart buildings, smart grids, intelligent transportation, and 

smart cities. However, its extensive evolution through connecting billions of IoT devices 

increases the attack surfaces. In particular, securing access to the devices taking into 

consideration the scalability, heterogeneity, constrained resource nature, and dynamic structure 

of the IoT, remains a significant challenge. Thus, despite the promising growth of the IoT, 

numerous unconventional characteristics point out several security requirements that should be 

addressed to define a secure IoT system. Throughout this thesis, we focused on designing a 

secure IoT system that achieves the main security concepts, namely the authentication and the 

authorization for a large-scale IoT environment. For this issue, we are dealing with providing 

an effective and efficient secure IoT solution that achieves a tradeoff between the security 

requirements and the network performance. Considering the IoT unconventional challenges, 

including scalability, dynamic changes, limited resources, and heterogeneity, we proposed a 

secure IoT system comprising three main pillars. The lightweight authentication scheme meets 

the requirement of limited resources and the dynamic changes related to the one-to-one 

scenarios. The authentication scheme is based on a token of identification to secure access for 

a prefixed time interval. Then to share access between many users and devices in the IoT, a 

decentralized access control mechanism was introduced using a decentralized group key 

management to meet the scalability, heterogeneity, and dynamic changes issues. In particular, 

this scheme controls the access permissions for extensive scale communications based on 

groups. Therefore, the proposed authentication scheme for one-to-one scenarios is inefficient 

for such group communication, which explains the third pillar subject. Indeed, a distributed 

group authentication based on blockchain technology is adopted to our IoT system to meet the 

requirement of a large-scale heterogeneous environment. We briefly conclude our contributions 

in what follows:  

Conclusion    

Chapter 6 
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 Token-based Lightweight User Authentication scheme for IoT (TBLUA): in this 

scheme, we designed an extra security layer in the authentication process. Indeed, using 

the token of identification, we provide secure authentication for a predefined period and 

meet the requirement of the dynamic changes in IoT. In fact, the proposed scheme 

ensures mutual authentication between the communicating parties such as the user and 

an IoT device. Throughout this scheme, we ensure a tradeoff between effectiveness and 

efficiency, providing relatively more security features and high-security levels such as 

anonymity, perfect forward secrecy, and resilience against the well-known attacks. 

TBLUA also achieves a low computation and communication overhead compared to 

benchmarking schemes. 

 

 Designing a Smart Hotel use case prototype: We adopted the token-based 

authentication scheme in a mockup representing a reservation system in a smart hotel. 

Indeed, we considered a smart lock scenario, where a guest who has made a reservation 

for accommodation in a hotel could use his/her smartphone to enter the reserved room. 

For that, we reviewed the vulnerability of the smart hotel environment and analyzed the 

risks that could happen. Then, we designed our architecture composed of a smart lock 

communicating through NFC with the smartphone and through ZigBee with the server.  

Besides, we successfully ensured a secure reservation that generates tokens for users to 

open the smart lock.  

 

 A Decentralized Lightweight Group Key Management for Access Control for IoT 

environment (DLGKM-AC): This scheme is introduced to manage the access 

permissions in a dynamic IoT environment. Indeed, users and IoT devices might want 

to access the same IoT devices. Thus, regarding the large scale of the IoT environment 

characterized by a dynamic nature, controlling access becomes challenging. Therefore, 

we adopt a hierarchical architecture using one Key Distribution Center (KDC) and 

several Sub KDC (SKDCs) for managing dissemination keys of access. The KDC 

implements many Logical Key Hierarchical (LKH) tree to manage the broadcast and 

update keys of groups of IoT devices publishing data, while SKDCs handle the direct 

communication links between devices and users. Besides, a new master token 

encryption algorithm has been designed to ensure members' independence in highly 

dynamic group communication. Thus, the frequent users' join and leave events do not 

impact the rekeying process in the whole system, which could alleviate the 

communication overhead. In DLGKM-AC, mobility is smoothly handled as we provide 

the backward and the forward secrecy with fewer rekeying operations. Furthermore, our 

protocol mitigates the 1-affects-n issue. Indeed, users can always get access to data even 

if one SKDC is affected. We prove that a wide range of desired security properties has 

also been provided throughout an extensive security analysis. Additionally, 

performance analyses show that the proposed scheme offers better performances by 

reducing storage, communication, and computation overheads. Finally, adopting a 

decentralized architecture increases scalability and reduces overhead for resource-

constrained devices.  
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 A Distributed Group Authentication scheme based on Blockchain technology for 

IoT environment (DiGABlock): DiGABlock was introduced to ameliorate the 

authentication and provide a fully distributed authentication with many groups of IoT 

devices. Since the number of connected devices is growing, the number of offered IoT 

services is essential. Therefore, to ensure a high-security level for the users requesting 

many IoT services, DiGABlock responds to these requirements. Indeed, a hierarchical 

authentication architecture is adopted, consisting of IoT devices layer, end-users layer, 

Blockchain edge layer, and Blockchain network layer. DiGABlock is designed to 

authenticate users with many IoT device groups efficiently, where users could perform 

only once a full authentication process with an IoT device group. They can then choose 

to non-re-authenticate when demanding access to the other IoT device groups by 

performing the service delivery process. Besides, DiGABlock reduces the 

communication delay significantly. Furthermore, our scheme achieves a trusted and 

efficient authentication of users and reduces the authentication signaling congestion. 

Indeed, the evaluation of attack models proves that our scheme is attack-prevented. 

Additionally, we valued the proposed authentication mechanism in terms of 

communication, energy, and computation costs. Simulation results demonstrate that 

DiGABlock offers better performances compared to benchmarking works.  

To sum up, the design of DiGABlock and DLGKM-AC for authentication and authorization 

in IoT is ensured without relying on third-party authorities, which respond to the IoT 

environment's scalability and heterogeneity characteristics. In addition, the proposed 

architecture not only eliminates the dependence on the third party but also enhances the 

flexibility of an IoT system characterized by a dynamic changing structure. Our work is open 

to possible extensions to enlarge the treated challenges and face new emerging ones. Therefore, 

we enumerate the possible enhancements, which is the aim of our future directions described 

in the next section. 

 

6.2 Future Research Directions  

Regardless of the presented contributions provided during this thesis to enhance IoT system 

security, some aspects can be additionally explored and extended for a more secure IoT system. 

Therefore, we devote this section to identify and study some perspectives and possible future 

research directions.  

In the decentralized access control DLGKM-AC scheme, we need to build a threat detection 

system to prevent malicious attacks and provide additional security guarantees. Indeed, to build 

a secure smart IoT environment, preserving security and privacy is crucial. Since the 

vulnerabilities of such an environment create many threats that affect the normal functioning of 

IoT systems. Therefore, designing an intrusion detection system might be important to mitigate 

the exploitation of these vulnerabilities. We can adopt the KDC as a point of intrusion detection 

of IoT devices as it is responsible for devices' access activities while considering SKDCs as a 

point of intrusion detection for users. In fact, SKDCs supervise the local access related to users' 

activities in the system, which can help to describe each user's behavior and detect abnormal 
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activities. In addition, implementing an automatic detection intrusion system for access control 

activities guarantees IoT security at the runtime of access control sessions and during the 

rekeying process. These detection skills might avoid abusing the sensitive exchanged 

information and penetrating smart devices. It can then effectively improve the security model 

by detecting the known and unknown threats with an excellent level rate and low false positive 

alarms.  

TBLUA ensures mutual authentication between a user and IoT devices with respect to the 

limited resource requirement of IoT devices. However, this scheme relies on a third party to 

guarantee the authentication, which may lead to overload and congestion of the IoT system 

when many users request the IoT devices. Therefore, and regarding the large-scale IoT 

environment, we propose a distributed group authentication scheme based on the blockchain 

technology DiGABlock that ensures a user group authentication in a distributed manner. 

However, IoT devices could also request and subscribe to other IoT devices. Hence, we intend 

to extend the distributed authentication protocol between IoT devices to secure exchanging 

information. At this level, we should pay more attention to possible distributed denial of service 

(DDoS) attacks that affect the IoT system's availability. Despite the blockchain mechanism 

being used as a potential solution to avoid the DDoS, the DDoS can overload the blockchain 

network by consuming the network's resources and making IoT services unreachable promptly. 

Therefore, a blockchain network that cannot reach the consensus to deliver IoT services might 

bring down the whole IoT system. Further studies need to be investigated to ameliorate the 

security against DDoS attacks and ensure a high IoT system availability. Besides, the traditional 

cryptography algorithms based on symmetric key and public-key are insufficient to maintain 

the security among the blockchain network. Indeed, the rise of quantum computers can 

breakdown the cryptography of the blockchain. Therefore, it is necessary to explore and 

improve the cryptography algorithm security by using the blind signature, ring signature, and 

aggregate signature [187].  Hence, advanced studies need to be handled at this level to keep the 

security and the normal functioning of blockchain through the IoT environment.  
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Appendix 

Appendix 1  

A. Transaction Process of the Blockchain  

We describe the process of the transaction from generation until validation in the blockchain 

presented by the hyperledger fabric platform [87]:  

 Client initiates the transaction carried out by a client application.  

 Endorsing peers verify signature and execute the transaction. 

 Client assembles endorsements into a transaction.  

  Client disseminates the block to leader peers. 

 Peers nodes validate and commit transaction. 

 Peers nodes update their ledger. 

 Peers nodes notify client with the update.  

 
Figure A.1 illustrates the life cycle of the transaction process of the hyperledger fabric 

technology.  

  

 

Figure. A.1: A life cycle of transaction process  
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B. Blockchain Types 

The blockchain is classified into three categories: 

 A public blockchain (also known as permissionless) is open for anyone to read, 

send or receive transactions and allows any participant to join the consensus 

procedure of deciding which blocks contain correct transactions and get added to the 

blockchain [86].  

 A consortium blockchain placed certain constraints on write permissions such that 

only a pre-selected set of participants in the network can influence and control the 

consensus process, even though read is open to any participant in the network [86].  

 Private blockchain, allows different level of writing permissions for users, so 

access is restricted strictly to some participant, even though its read permissions are 

open to the public or constrained to a subset of participants in the network [86]. 

Table A.1 summarizes these three categories: 

  

Types Scenarios Describe 

Trusted 

authority 

number 

Speed of 

consensus 

A public 

blockchain 

Anyone can participate, and it is 

accessible worldwide 

0 Slow 

A consortium 

blockchain 

Controlled by pre-selected 

nodes within the consortium 
≥ 1 Slight fast 

A private 

blockchain 

An organization controls writing 

rights 
1 Fast 

Table A.1: Blockchain types  

 

C. Consensus Protocols of the Blockchain  

All blockchain types rely on consensus protocols to synchronize replicas across the network. 

In what follows, we detail the three most known consensus protocols [89] :  

 Proof of Work (PoW): is a consensus protocol designed for Bitcoin [88], aiming to 

reach a collective consensus on the bitcoin transaction's validity. This consensus is 

achieved by a subset of powerful nodes called the miners through solving a heavy 

mathematical puzzle. The rate of creating a new block to the blockchain is about 10 

minutes, which is related to the time spent solving the proof of work challenge and the 

difficulty of the challenge. In the PoW is challenging and time consuming to predict the 

correct nonce for the appropriate hash target, while it is extremely easy to validate the 

hash result, which confirms the resilience to tampering attacks. However, the PoW 

protocol suffers from a too high computation complexity and a low probability of 

successful work proof generation.  
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 Proof of State: represents an alternative type of distributed consensus protocol, where 

only nodes who have locked up their capital as deposits (stake) are qualified to be chosen 

as miners or validators. In particular, the nodes that hold the highest stake are more 

likely to be selected for validating transactions and creating new blocks to add to the 

blockchain. Furthermore, all validators have known identities to allow the network to 

keep track of all legitimate validators. These identities are stable addresses in Ethereum. 

PoS breaks the dependency on rewards for security by promoting penalties-based 

solutions [86]. 

 

 Practical Byzantine Fault Tolerance (PBFT): is defined as an algorithm for practical 

BFT proposed to solve the problem of Byzantine generals [90]. PBFT achieves sub-

millisecond increases in latency by processing thousands of requests per second. This 

protocol can work in a hostile environment as it tolerates Byzantine faults up to 1/3 

faults. In fact, it aims to reach a consensus by the collaboration of all honest nodes. The 

advantage of the PBFT protocol compared to PoW is reducing energy consumption. 

This protocol is very efficient, especially in private blockchains, as there is no need to 

perform heavy computations during the validation process, and it is legally distributed 

compared to the PoS protocol. However, the heavy communication overhead makes the 

classical PBFT only work with small consensus group sizes which affects the scalability 

issue. 

 

 

  



 

  
 

Abstract :   

The Internet of Things (IoT) represents the interconnection between the Internet and physical objects, places and 

environments. However, this extensive connectivity of IoT can be hampered by malicious interventions from cyber 

attackers. Thus, ensuring security for users and IoT devices remains a challenge, especially authentication and authorization, 

which are essential building blocks of the security process. This is due to the unconventional IoT characteristics, including 

scalability, heterogeneity, interoperability, and dynamic changes, which make the existing security measures inadequate. 

Indeed, these characteristics bring up several security requirements to consider when defining a secure IoT system. Thus, 

this dissertation focuses on designing a secure IoT system that achieves the main security concepts, namely the 

authentication and the authorization for a large-scale IoT environment. This IoT system provides an effective and efficient 

secure IoT solution that achieves a tradeoff between the security requirements and the network performance. To this end, 

we proposed a lightweight authentication scheme that meets the need for limited resources and the dynamic changes related 

to the one-to-one scenarios. This scheme is based on a token of identification to secure access during a prefixed 

predetermined time interval. We both developed a prototype of this solution for a smart hotel use case, and conducted 

experiments and simulations to show its effectiveness. Besides, to protect the sharing access between many users and 

devices, a decentralized access control mechanism was introduced using a decentralized group-key management to meet the 

scalability, heterogeneity, and dynamic changes issues. Furthermore, to ensure security for an extensive scale of 

communications based on groups, a distributed group authentication based on blockchain technology is adopted in order to 

meet the requirement of a large-scale heterogeneous environment. The blockchain provides our secure IoT system with a 

trustless, immutable, and distributed ledger that records users’ information and traceability. Further, it facilitates the design 

of a distributed group authentication protocol without relying on a third party and eliminates the user re-authenticating 

process.  

Keywords: Internet of things, authentication, authorization, cyber security, dynamic IoT, token, blockchain, 

decentralized system, distributed system.  

 

 

Résumé :  

L'Internet des objets (IoT) représente l'interconnexion entre l'Internet et des objets, des lieux et des environnements 

physiques. Cependant, cette connectivité étendue de l'IoT peut être entravée par des interventions malveillantes émanant de 

cyber attaquants. Ainsi, garantir la sécurité des utilisateurs et des appareils IoT reste un défi, en particulier l'authentification 

et l'autorisation, qui représentent des briques essentiels du processus de sécurité. Ceci est dû aux caractéristiques non 

conventionnelles de l'IoT, notamment la scalabilité, l'hétérogénéité, l'interopérabilité et les changements dynamiques, qui 

rendent les mesures de sécurité existantes inadaptées. En effet, ces caractéristiques font émerger plusieurs exigences de 

sécurité à prendre en compte lors de la définition d’un système IoT sécurisé. Ainsi, cette thèse se focalise sur la conception 

d'un système IoT sécurisé réalisant les principaux concepts de sécurité, à savoir l'authentification et l'autorisation pour un 

environnement IoT à grande échelle. Ce système IoT fournit une solution sécurisée efficace et efficiente qui réalise un 

compromis entre les exigences de sécurité et les performances réseau. Pour ce faire, nous avons premièrement proposé un 

schéma d'authentification léger qui répond au besoin de ressources limitées et aux changements dynamiques liés aux 

scénarios one-to-one. Ce schéma est basé sur un jeton d'identification pour sécuriser l'accès pendant un intervalle de temps 

prédéterminé. Nous avons à la fois élaboré un prototype de cette solution pour un cas d'utilisation d'hôtel intelligent, et mené 

des expériences et des simulations afin de monter son efficacité. En outre, pour protéger le partage d'accès entre de nombreux 

utilisateurs et appareils, un mécanisme de contrôle d'accès décentralisé a été introduit en utilisant une gestion décentralisée 

de clé de groupe afin de répondre aux problèmes de scalabilité, d'hétérogénéité et de changements dynamiques. De plus, 

pour garantir la sécurité pour des communications à grande échelle basées sur des groupes, une authentification de groupe 

distribuée basée sur la technologie blockchain est adoptée dans notre système IoT afin de répondre à l'exigence d'un 

environnement hétérogène à grande échelle. La blockchain fournit à notre système sécurisée un registre, immuable et 

distribué qui enregistre les informations et la traçabilité des utilisateurs. Entre autre, la blockchain facilite la conception du 

protocole d'authentification de groupe distribué sans dépendre d’un tiers et élimine le processus de réauthentification des 

utilisateurs. 

Mots clés : Internet des objets, authentification, autorisation, cyber sécurité, IoT dynamique, jeton, blockchain, système 

décentralisé, système distribué.  

 

 


