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need for Intrusion Detection Systems (IDSs) to accu-rately detect threats, while the latter involves achiev-ing time efficiency and early threat detection.This dissertation represents the culmination of our re-search findings on investigating the aforementionedchallenges of AI-based IDSs in 5G systems in gen-eral and 5G-V2X in particular. We initiated our in-vestigation by conducting a comprehensive review ofthe existing literature. Throughout this thesis, we ex-plore the utilization of Fuzzy Inference Systems (FISs)and NNs, with a specific emphasis on the latter. Weleveraged state-of-the-art NN learning, referred to asDeep Learning (DL), including the incorporation of re-current neural networks and attention mechanisms.These techniques are innovatively harnessed to mak-ing significant progress in addressing the concernsof enhancing the effectiveness and efficiency of IDSs.Moreover, our research delves into additional chal-lenges related to data privacy when employing DL-based IDSs. We achieve this by leveraging and exper-imenting state-of-the-art federated learning (FL) algo-rithms.

Université Bourgogne Franche-Comté32, avenue de l’Observatoire25000 Besançon, France



To my beloved parents, Kaddour and Wahiba;
To my sisters and brothers;

And to my Aunt Farida.





Acknowledgements

I would like to start by giving absolute praise and glory to God. I consider myself blessed and
fortunate to witness the successful completion of this dissertation.

A special thanks to my supervisor, Pr. Sidi-Mohammed Senouci, for granting me the opportu-
nity to pursue my doctorate and for his consistent guidance and contributions.

I’m also deeply grateful to Pr. Yacine Ghamri-Doudane, my co-supervisor, and to Dr. Bouziane
BRIK and Dr. Abdelwahab Boualouache, my advisors, for their encouragement and invaluable
insights. Your guidance has been indispensable.

I extend sincere thanks to the esteemed members of the thesis commitee Prof. Samia Saad-
Bouzefrane , Prof. Mohamed Mosbah , Prof. André-Luc Beylot and Prof. Soufiene Djahel for
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Introduction

Thesis Context

Over the years, humanity has decisively overcome many obstacles and constraints related to time,
space, and security in the field of information and communication. Technological advancements and
progress in nearly all equipment and devices reflect the evolution of human needs and requirements.
Thus, means of communication and networking have evolved from one era to another in order to
meet these needs.

Presently, we are entering a new era enabled by modern mobile networks, known as ’connecting
everything, anywhere’. This encompasses communication on the ground, in the air, and even in
space, thereby paving the way for innovative applications in diverse domains, including smart cities,
intelligent transportation systems, e-health services, and immersive augmented and virtual reality
experiences. These advancements are made possible by the fifth generation of cellular networks,
known as 5G, which provides a robust framework capable of meeting the networking demands that
earlier generations could not fulfill. Ongoing research into future generations like 6G promises to
further enhance 5G networks, ensuring continued progress in our increasingly connected world.

One sector that garners significant attention from both academia and industry is the intelligent
transportation sector. It covers various transportation-related applications that leverage vehicular
communications, which are facilitated by 5G networks, referred to as 5G Vehicle-to-Everything
(5G-V2X) communications. The ’X’ in Vehicle-to-Everything (V2X) encompasses communications
between road users, including vehicles, road infrastructure, and pedestrians, as well as communi-
cation with network-hosted applications. The primary aim of this sector is to advance road safety,
improve transport efficiency, and reduce environmental impacts, all with the vision of achieving
fully autonomous vehicles and transportation systems.

While the potential benefits of 5G-V2X communications in the intelligent transportation sector
are immense, security remains a paramount concern. As vehicles become increasingly connected
and reliant on these networks, they become vulnerable to cyber-attacks and privacy breaches, which
could compromise the availability and integrity of vehicular applications and services, potentially
leading to disastrous accidents and endangering human lives. This goes against the intended use
of these vehicular applications. Moreover, breaches in confidentiality pose significant problems,
including the exposure of private data concerning drivers and business owners.

To preserve the Confidentiality, Integrity, and Availability (C-I-A) proprieties within the realm
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of 5G-V2X networks and their applications, a variety of preventive security measures need to be
deployed. These measures include encryption and authentication techniques, as well as network
and control measures designed to prevent external attackers from compromising the network. Ad-
ditionally, Intrusion Detection Systems (IDSs) play a central role. IDSs operate by monitoring the
behavior of internal network nodes trying to identify and detect cyber-attacks initiated by internal
’malicious’ nodes that have evaded the preventive security measures.

An IDS can monitor behavior at various levels. It can operate at the physical (or virtual) hosts
level, including entities such as vehicles, servers, or virtual machines running applications. This type
of IDS is known as Host-based Intrusion Detection System (HIDS). HIDS monitors network data
and host resources to detect potential threats. There is also a subclass of HIDS called Application-
based Intrusion Detection System (AIDS), which focuses specifically on monitoring applications at
the host level. On the other hand, there is another type of IDS known as Network-based Intrusion
Detection System (NIDS). A NIDS is responsible for protecting a set of hosts by detecting attacks
at the network level, before they reach the hosts.

In recent years, the effectiveness of IDSs has seen substantial improvement thanks to the in-
tegration of Artificial Intelligence (AI) and Deep Learning (DL). AI-powered IDS models provide
an intelligent approach to address cybersecurity threats. Notably, DL models have demonstrated
impressive abilities in recognizing intricate patterns, greatly aiding IDS in the detection process.

Researchers have long been exploring the task of developing reliable IDSs. This quest persists
today. Yet, in the era of 5G-V2X, characterized by the widespread adoption of connected vehi-
cles and the evolving landscape of cybersecurity threats, the demand for reliable IDSs becomes
even more imperative. When considering the specific case of 5G-V2X, it offers two communication
options: SideLink (SL) communications for direct communication between road entities and the
infrastructure-based communication via the 5G network components. Therefore, it is essential to
deploy HIDS (and eventually AIDS) monitoring systems at the vehicle level to monitor communi-
cations and applications not routed via the 5G network infrastructure. Additionally, at the level of
the 5G network, both HIDS(/AIDS) and NIDS are to be deployed as a complement to protect the
5G network and Application Servers (ASs).

Thankfully, AI-driven models offer the promise of delivering reliable IDSs. Within this context,
this thesis is aligned with this trend, with its contributions centered on IDSs within the realm of
5G-V2X and beyond.

Objectives and Research Questions

This thesis explores the intersection between 5G(-V2X), AI and IDS. Our research interest centers
around the question: (RQ)’How can AI be effectively and efficiently leveraged to secure 5G-V2X
(and beyond) networks?’ This question revolves around two key aspects: effectiveness and efficiency.
We aspire for AI-based IDS models to excel in the detection process, as evidenced by various
performance metrics. Additionally, these models must exhibit time efficiency, given the context
of vehicular networks requiring low-latency communication. The AI model should not introduce
significant overhead that could compromise the low-latency property of these networks.
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Based on RQ, three research sub-questions have been developed and addressed in this thesis as
follows:

• (RQI) How can AI ensure the integrity and reliability of transmitted messages in 5G-V2X
communications?

• (RQII) How can AI facilitate real-time early-stage threat detection in 5G(-V2X)?

• (RQIII) How can AI techniques, particularly data-driven ones, be implemented while guar-
anteeing user and business privacy in 5G(-V2X)?

RQI focuses on the various types of transmitted messages in the context of 5G-V2X communica-
tions. The aim is to investigate how AI can ensure the reliable delivery and integrity of transmitted
messages, whether they are between vehicles or via the 5G network. Any compromise of this secu-
rity property should be detected with a high degree of confidence. RQII pertains to the efficiency
of these AI-based detection models. Specifically, these models should be capable of identifying po-
tential cyber attacks as soon as signs of such attacks appear within the network. RQIII addresses
a specific challenge within data-driven AI models that utilize data as their knowledge base: how to
deliver these models without compromising the privacy of various network users.

Within our contributions, we aim to address and provide solutions to these three sub-questions,
while all our research findings are geared towards answering the central research query (RQ).

Thesis Contributions

Motivated by the need to address the traced research questions, we propose approaches to advance
the state of the art in AI-based intrusion detection systems in the era of 5G and beyond V2X
networks.

Our contributions can be categorized into two main categories: (1) HIDSs deployed at the vehicle
level to monitor potential threats primarily initiated through SL communications, and (2) NIDSs
positioned at the level of the 5G network. HIDSs, which should be implemented at the cloudified
5G level, including those HIDSs protecting 5G Network Functions (NFs), as well as servers and
virtual machines that support the 5G infrastructure, are not covered in this thesis.

Following this categorization, the contributions are grouped into two parts. In Part II, we ad-
dress the issues related to jamming attacks in SL communications (Chapter 4) and the problem of
message forgery in V2X (Chapter 5). As for Part III, we focus on early network intrusion detection
(Chapter 6) and the challenge of privacy in distributed DL model learning in 5G networks (Chapter
7). One should note that we begin this thesis by presenting the key concepts and backgrounds in
Part I, which comprises three chapters (Chapter 1, Chapter 2, and Chapter 3).

To better position our research works, we can align other taxonomies for our contributions.
From the perspective of attack nature and the C-I-A proprieties, attacks targeting availability are
addressed in chapters 4, 6, and 7, while attacks targeting integrity are addressed in chapter 5.
Chapter 6 also contains some attacks on confidentiality, such as port scanning. Furthermore, chap-
ter 7 intervenes to further preserve confidentiality propriety by addressing data privacy concerns.
Regarding the Open Systems Interconnection (OSI)1 networking layers, in chapter 4, we delve into

1conceptual framework used to standardize and describe the functions of a networking system
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attacks against the physical layer. Chapter 5 is dedicated to addressing attacks against the appli-
cation layer, while Chapter 6 and 7 focuse on tackling attacks against the transport layer protocols.

Furthermore, each contribution will provide responses to the research questions. Table 1 sum-
marizes the relationship between the chapters, research questions, C-I-A proprieties, OSI model and
publications in this thesis. The following paragraphs provide a concise overview of the contributions
of this thesis.

In our first research contribution, presented in Chapter 4, we addressed a vulnerability that
is present in 5G-V2X SL communications. The used protocol, named Semi-Persistent Scheduling
(SPS), specifies that a vehicle must autonomously reserve radio resources to transmit Cooperative
Awareness Messages (CAMs), which serve as the foundation for numerous vehicular applications.
These reserved resources are held for a certain amount of time. We found that this protocol is
vulnerable to adversarial radio resource selection attacks, where the attacker exploits information
about resource reservation to interfere with that resource, preventing the vehicle from sending
its messages. This attack directly affects the reliability of vehicular applications, which is closely
related to our research sub-question RQI, where we aim to leverage AI to ensure the reliability
property. This chapter’s contribution focuses on two steps: proposing and developing an HIDS for
attack detection, and enhancing the HIDS with resilience mechanisms. While the detection mech-
anism relies on a feedback approach, the resilience mechanism employs a technique that enables
attack evasion. We utilized Fuzzy Inference System, an appropriate AI mechanism for decision-
making and adaptive systems, to enhance the SPS protocol, rendering it adaptive and resilient to
the aforementioned attack. Our findings demonstrate that when a vehicle is under attack, 85% of
its CAMs fail to be properly transmitted to the vehicles, leaving only 10% to 15% correctly received
with suitable reception. Our HIDS effectively improves this rate to 60%.

Chapter 5 addresses the issue of message forgery attacks, where malicious vehicles exhibit mis-
behaving behavior and alter their CAMs to disrupt the system. Detecting these attacks is typically
accomplished through an AIDS that checks the consistency of CAMs. This is where AI play a cru-
cial role in addressing this complex task. However, a sub-problem arises due to the stringent latency
requirements of these systems. The proposed AI model for detecting these attacks must operate in
real-time and avoid introducing computational overhead that could compromise latency property.
The cited problems are directly related to RQI, which focuses on the integrity of transmitted mes-
sages, and RQII, which addresses the efficiency and real-time detection of the proposed AIDS. In
this second contribution, we propose an AIDS that utilizes Recurrent Neural Networks (RNNs), an
advanced class of Neural Networks (NNs) adept at handling sequential data, enabling it to incorpo-
rate the historical behavior of nodes and effectively analyze longer CAMs sequences for consistency
checks. Additionally, we emphasize the evaluation of computational overhead by providing theorit-
ical complexity analysis of the proposed DL model. Our contributions reveal noteworthy findings,
we demonstrate that longer CAMs sequences analyzed lead to enhanced performance, while related
approaches rely on fixed-length sequences. Furthermore, we showcase that our proposed method
exhibits the computational complexity of a single inference at each CAM inspection, while related
works necessitate analyzing the entire ”fixed-length” sequence for each CAM inspection.

The contribution chapter 6 addresses NIDSs aiming to secure 5G ASs (vehicular applications).
Current approaches analyze network traffic packets, where they collect a sequence of packets, called
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a Network Flow, aggregate it into one data point, and analyze it AI/DL models. We found that
this approach requires the Network Flow to be terminated before the analysis can be performed,
which may delay detection time. This limitation is related to RQII, requiring AI based NIDSs to
perform early attack detection, given that attack traces may appear before the session ends. In this
third contribution, we will exploit the sequential property of Network Flows, which is overlooked in
current approaches that aggregate Network Flows into single data points. Our proposed NIDS will
utilize RNNs to capture the sequential nature of Network Flows, and it will be equipped with an
attention mechanism, an advanced mechanism that enhances the capabilities of RNNs in dealing
with sequential data. This mechanism allows our NIDS to focus on the specific packets within a
Network Flow that are most likely to indicate an intrusion. We demonstrate that our approach
reduces the number of packets required for intrusion detection and significantly decreases the time
needed for detection. These findings hold significant promise for enhancing NIDSs.

The contribution in Chapter 7 addresses an issue related to DL based NIDS which require
substantial data to be effective. To achieve this, service and application providers need to collaborate
and pool their data to train their DL models. However, due to privacy concerns, they cannot directly
exchange their raw data. Therefore, they rely on a distributed approach called Federated Learning
(FL), which enables them to collaboratively train their DL models without sharing their raw data.
The commonly used FL approach, FedAvg, faces a challenge when dealing with heterogeneous
data from different business partners, as is often the case in 5G networking data. This challenge,
known as statistical heterogeneity, needs to be addressed to provide answers to RQIII. In this
fourth contribution, we explore novel state-of-art algorithms in FL, specifically FedProx, FedPer and
SCAFFOLD, and evaluate their effectiveness in addressing the challenge of statistical heterogeneity
in the context related to 5G-V2X. Our findings demonstrate that these state-of-the-art algorithms
enable effective collaborative distributed DL, even in the presence of statistical heterogeneity, unlike
the commonly used FedAvg algorithm.

Thesis Organisation and Outline

The paragraphs in this section provide an outline of the thesis structure.

Chapter 1: 5G V2X and Beyond This chapter delves into the essential components of 5G,
including its key technologies, from 5G-V2X communications to the various applications of V2X,
all aimed at providing a comprehensive understanding of the main aspects of 5G-V2X.

Chapter 2: some backgrounds on Artificial Intelligence This chapter serves as an intro-
duction to AI and provides essential background information on the two AI methods used in this
thesis, namely, Fuzzy Inference System and Neural Networks, which readers can refer to while
reading the contributions.

Chapter 3: Intrusions and Intrusion Detection in 5G-V2X This chapter summarizes
network intrusions in 5G-V2X, defines IDSs, provides taxonomies for the types of IDSs, explains
the nature of the data used, and discusses the different used models. Furthermore, it presents
state-of-the-art approaches in IDSs in the context of 5G-V2X.
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Chapter 4: Coping with adversarial radio resource selection in SideLink V2X com-
munications In this chapter, we present our solution to counter adversarial resource selection
attacks. We introduce our HIDS that leverages a Fuzzy Inference System (FIS) to effectively detect
and mitigate these attacks. Additionally, we present detailed results and performance analyses to
demonstrate the effectiveness of our proposed HIDS.

Chapter 5: Detecting message forgery attacks in V2X communications This chapter
delves into message forgery attacks in V2X and SL communications. We introduce our novel RNN-
based AIDS capable of effectively detecting these integrity attacks. Additionally, we conduct a
thorough analysis and comparison of the time complexity of our approach, showcasing its efficiency.

Chapter 6: Early network intrusion detection in 5G networks This chapter tackles the
challenge of early intrusion detection in NIDSs. We propose a novel approach that utilizes attention
mechanisms and RNNs to achieve earlier and more accurate intrusion detection. Additionally, we
conduct extensive evaluation to assess the efficiency of our approach on various performance metrics.

Chapter 7: Distributed DL-Based NIDSs in 5G networks This chapter delves into state-of-
the-art FL algorithms to enable privacy-preserving DL based NIDSs. We evaluate these algorithms
on their ability to address the challenge of statistical heterogeneity and discuss our findings.

Finally, the thesis concludes with the Conclusion, and Future Research chapter, which sum-
marizes and discusses our research findings and outlines directions for future contributions and
improvements.

Author’s Guidance for a More Effective Reading Experience

Thank you for your interest in our work. To help you navigate through this manuscript, we provide
some essential information:

• Glossary for Key Definitions: To assist you in understanding the technical terms and
concepts used in the manuscript, we have provided a comprehensive glossary section. Fur-
thermore, validation metric formulas used in our contributions are detailed in the extended
glossary section.

• PyTorch Integration: Throughout the different Neural Networks (NNs) model training
process, we conducted our experiments using the PyTorch framework. Furthermore, when
explaining NNs and DL, it is presented in the PyTorch tensor style. You can find more
information about PyTorch on their official website pytorch.org.

• Hardware Configuration: Our system, which is used throughout this thesis for the assess-
ment of AI models, has the following configuration: Intel Core i7-10700 processor, 32GB of
RAM, and Nvidia RTX 3070 graphics card.
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Chapter 1

5G V2X and Beyond

Introduction

As previously mentioned in the Introduction chapter, our thesis explores the dynamic intersection
of three domains, namely 5G-Vehicle-to-Everything (V2X), Artificial Intelligence (AI), and Intru-
sion Detection Systems (IDSs). In this part of the manuscript, we aim to provide a comprehensive
context and introduction to these fundamental concepts starting first, in this chapter, by exploring
the essential components of 5G and 5G-V2X, which encompass their key technologies, 5G-V2X
communications, and the diverse range of V2X applications.

The remainder of this chapter is organized as follows: Section 1.1 provides a historical review of
vehicular networks and the technologies adopted in the evolution of vehicular networks over time.
Section 1.2 delves into 5G networks, detailing their architecture and key technologies, which include
SDN, NFV, and the Network Slicing paradigm. Section 1.3 explores vehicular communication within
the 5G-V2X framework and its various applications.

1.1 Historical Review

Vehicular networks are a class of wireless networks wherein the communicating nodes consist of
vehicles and road users, all equipped with wireless devices. These networks play a crucial role
in the development of intelligent transportation systems, facilitating the exchange of real-time
information among various transportation nodes. Their primary objective is to enhance road safety
through driving assistance, enabling cooperative awareness, and supporting collision avoidance.
Furthermore, vehicular networks help optimize transport efficiency, improve the driving experience,
and reduce energy consumption and environmental impacts.

Vehicular networks have a history dating back to the early 2000s. These networks relied on
Dedicated short-range communication (DSRC) technology, which uses an amended WiFi version,
the IEEE 802.11p protocol. The DSRC standards and regulations are known as European Telecom-
munications Standards Institute (ETSI) ITS-G5 in Europe and Wireless Access in Vehicular Envi-
ronments (WAVE) in the United States [Li12].

DSRC technology offered considerable potential for enhancing safety features in transportation
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systems. It gained substantial interest from diverse automotive industries. However, it is unfor-
tunate that its widespread utilization has not been realized as expected. In 2016, the European
Commission acknowledged that vehicular network technologies ”are far from being used at their
full potential despite the benefits they could bring” [16].

In 2017, a novel vehicular network technology appeared in 3rd Generation Partnership Project
(3GPP) Release 14 [3GP17]. This technology, termed as Cellular Vehicle-to-Everything (C-V2X)
utilizes cellular networks in place of WiFi for communication, that time, the C-V2X used the
4G Long-Term Evolution (LTE) network hence its name was Long-Term Evolution Vehicle-to-
Everything (LTE-V2X). C-V2X holds the potential to revolutionize vehicular communications by
offering an extended and more ubiquitous communication range compared to DSRC. Furthermore,
one of its key advantages is the ability to enable communication between vehicles, even in scenarios
where direct line-of-sight communication is obstructed.

The choice between adopting C-V2X or DSRC technology has triggered debates, with regulatory
authorities, automotive industry players, and telecommunications stakeholders not arriving at a
unanimous agreement on the preferred option [18].

In 2019, 3GPP released Release 16 [20], which proposed that V2X networks would rely on
5G technology, known as 5G Vehicle-to-Everything (5G-V2X) or New Radio Vehicle-to-Everything
(NR-V2X). The communication performance of 5G surpasses that of LTE and DSRC. It is designed
to offer reliable, ultra-low latency communication—a pivotal requirement in V2X communications,
enabling the emergence of ambitious vehicular use cases, including remote driving and autonomous
driving.

With the emergence of 5G-V2X technology, a significant portion of stakeholders in the trans-
portation and telecommunications industries are transitioning towards embracing C-V2X commu-
nications, i.e., V2X based on 5G and beyond. Hence, numerous articles in journals and magazines
dating back to 2019 discuss the transition to 5G and beyond technologies in the transportation sec-
tor [MA20]. Indeed, 5G is revolutionary, and the technologies it brings are laying the groundwork
for future networks like 6G.
In the following sections, we present the underlying concepts of 5G networks, as well as 5G-V2X
and beyond.

1.2 5G and Beyond: Key technologies

5G is the 5th generation of cellular mobile networks, designed to offer an adaptable and customizable
network platform that supports a wide array of services extending far beyond the realm of trans-
portation systems. This vision encompasses the integration of smart cities, e-health services, and
immersive augmented and virtual reality experiences, all with the ambition of enabling ubiquitous
connectivity—the ’everything, anywhere’ paradigm.

The heterogeneous requirements of the aforementioned services and applications necessitate the
mobile network to demonstrate lower latency, higher speeds, and the capacity to accommodate
more connected devices compared to existing network technologies. 5G fulfills these requirements,
thanks to the technologies employed and an innovative paradigm known as Network Slicing. In the
next subsections, we will first explain the components of the 5G network and then delve into the
concept of Network Slicing and its key enablers.
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1.2.1 5G Components

Mobile networks are composed of two parts: the Radio Access Network (RAN) and the Core
Network (CN). With the advent of 5G, advancements have been introduced to the technologies
employed in preceding generations. While reading the rest of this chapter, please refer to Figure
1.1, which illustrates the architecture of 5G components, Network Slices (NSs), and V2X commu-
nications in the context of 5G.

RAN refers to the set of radio technologies and protocols used by mobile devices and network
base stations to enable wireless connectivity. Specifically, the 5G RAN enables more efficient use of
spectrum and improved coverage. It incorporates technologies like massive Multiple Input Multiple
Output (MIMO) antennas, beamforming, and full duplex trasmissions [LL21].

On the other hand, the CN is responsible for access and session management, authentication,
security, and network traffic routing/forwarding. It implements a set of Network Functions (NFs)
designed to accomplish the tasks mentioned above, e.g., the User Plane Function (UPF) in 5G CN
is in charge of the data plane and is responsible mainly for traffic routing and forwarding. The 5G
CN introduced new NFs that did not exist previously, enabling novel capabilities. For instance, the
NetWork Data Analytics Function (NWDAF) was introduced to gather data from user equipment
and network functions. This data can be utilized for analytics aimed at enhancing Quality of Service
(QoS). The NFs are standardized in the 3GPP technical specifications [20].

Figure 1.1: 5G-V2X architecture

1.2.2 Network slicing

The Network Slicing paradigm is considered a pivotal enabler for 5G. It stands as one of the most
innovative technologies within the realm of 5G and future networks. According to 3GPP and ETSI
[17; 22], Network Slicing is a paradigm in which logical network partitions are created with specific
network capabilities and characteristics to serve and support particular services. A NS (or partition)
can be defined as an independent network deployed, either fully or partially, on shared resources.
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These resources may include components such as computing, storage, networking resources, and
spectrum.

A NS tailors the functionalities of both the CN and RAN to precisely meet the distinctive
demands posed by various applications and services. The primary enablers of Network Slicing are
Network Function Virtualization (NFV) and Software Defined Networking (SDN):

• NFV leverages the concept of network softwarization, where NFs formerly deployed in ded-
icated devices are replaced by software. This eliminates the dependency between the NF
and the hardware on which it is deployed. These NFs are designed to run as virtual ma-
chines/containers1 on standard servers or cloud platforms. The NFs in 5G CN are virtualized
and deployed as Virtual Network Functions (VNFs). Similarly, NFV is also applied to the
RAN, where baseband functions are executed as Virtual Radio Access Networks (vRANs).

• SDN is an emerging technology that aims to simplify networking and make networks pro-
grammable. In the context of sliced 5G networks, the key role of SDN is to ensure, through
its controller, VNF chaining paths and responding to network outages.

Thanks to NFV and SDN, the deployment of NSs is automated, customized and made reliable.
The revolution of 5G is here, where 5G has brought advancements not only in new RAN and
CN technologies but also in its function as an orchestration platform. The orchestration in 5G is
responsible for performing several functions within the NS. These functions include instantiating
the NS, replicating the number of VNFs to scale the NS, placing the VNF either in the cloud or
at the edge near the end user, to reduce latency. All of these functions are aimed at fulfilling the
requirements of the delivered service. These service requirements might be dynamic, meaning that
they may need to change over time and across different geographical locations to ensure optimal
performance and resource utilization.

5G and beyond networks enhance the traditional roles of network operators but also reshape the
collaborative dynamics involving cloud providers and business customers. In this evolved ecosystem,
enterprises no longer passively receive connectivity; instead, they actively participate in shaping
their network environment. A NS concerns a business customer, and the technical requirements of
the service offered [Ela+19]. As such, 5G introduces standardized NS types, covering:

1. Enhanced Mobile Broadband (eMBB) for services requiring high data rates,

2. Massive Machine-Type Communications (mMTC) for services supporting a large number of
connected devices,

3. Ultra-Reliable Low Latency Communications (uRLLC) for services having stringent latency
and reliability requirements.

Moreover, a single service may exhibit varying requirements across these three categories. The
service type defines the technical parameters for the NS, also known as the ”slice blueprint”. For
instance, the blueprint may include details such as the required number of replications of a certain
NF and the utilization of edge computing in specific regions. Furthermore, the hosted Application
Server (AS) (service) is integrated within the 5G NS, operating as a VNF that becomes a component
of the NS’s architecture. This integration extends to the orchestration procedures. This approach

1executable software packages that encapsulate an application and its dependencies. Unlike virtual machines,
containers share the host operating system’s kernel and are more lightweight.
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is termed End-to-End (E2E) Network Slicing, signifying that the NS encompasses the RAN, CN,
and AS.

An illustrative scenario where the network is sliced according to business/technical requirements
is described in the following. This one deliberately concerns V2X—a sector of particular interest
to us. Consider an enterprise offering two transportation-related services: one involving eMBB
(e.g., music and video streaming) and the other focusing on uRLLC (e.g., remote driving). In this
situation, the enterprise would be required to create two distinct NSs having blueprints suitable for
the uRLLC and eMBB services, respectively. In a parallel scenario, another enterprise might offer
the same uRLLC service. This second enterprise would deploy its own NS with the same technical
requirements as the first one (uRLLC slice).

In the following subsection, we go further into V2X communications and their applications.

1.3 V2X Communications and Applications

As we stated in the Introduction chapter, the X in V2X signifies the intercommunication between
vehicles and all entities present in the road environment and beyond, in the network. This in-
cludes interactions with fellow vehicles Vehicle-to-Vehicle (V2V), pedestrians and cyclists Vehicle-to-
Pedestrian (V2P), the road infrastructure such as Road Side Units (RSUs) Vehicle-to-Infrastructure
(V2I), and vehicles consuming internet services Vehicle-to-Network (V2N). These communications
can be achieved via the cellular network infrastructure. One of the new technologies brought to
mobile cellular networks by LTE is the support of Proximity Services (ProSe), allowing for device-to-
device communication directly through a SideLink (SL) air interface. This technology is an enabler
for C-V2X at the time it was introduced. By leveraging this technology, the latency in communi-
cation among neighboring road users (such as vehicles, pedestrians, and infrastructure) gets sig-
nificantly reduced compared to the conventional approach, where communication between vehicles
necessitates a multi-step process involving the cellular network (vehicle-to-network-to-vehicle).

As a result, C-V2X (including LTE, 5G, and future generations) supports two modes of com-
munication:

• Direct Communications (SL communications): This mode is commonly used for (V2V, V2P,
V2I) communications. For this SL communication, vehicles use an interface called PC5.

• Communication via Network (V2N): This mode operates via the Uu interface.

A Vehicular application employs either one or both of these modes, depending on its required
specifications. Moreover, each application appears as a NS in a 5G and beyond V2X environment.

In parallel to the network technology evolution, with the advent of 5G, vehicular applications
have seen significant development. This has opened up new business opportunities for vehicle man-
ufacturers and transportation-related businesses. 3GPP [3GP20] categorizes vehicular applications
into two categories: Safety-related apps and Non-safety-related apps.

Safety-related applications Safety apps offer enhanced safety for drivers, vehicles, pedestrians,
and all road users. A plethora of services are offered, such as assisting the driver in situations
with limited visibility, like driving in foggy conditions or executing emergency braking after a turn.
Furthermore, as transportation systems evolve, autonomous driving can also be included in the
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realm of safety apps since it has to ensure safe driving. The messages used in these applications
are standardized to ensure that all vehicles can understand and respond appropriately to these
messages, regardless of their model. Here are examples of these messages:

• Cooperative Awareness Message (CAM): These messages are broadcasted periodically by
vehicles to indicate their status, such as direction, speed, and heading.

• Decentralized Environmental Notification Messages (DENM): are event-based messages, asyn-
chronously used to inform about specific events, such as the occurrence of an accident.

• Signal Phase and Timing (SPAT): These messages are transmitted by the infrastructure and
include information about traffic light states and the time remaining until a traffic light
changes.

Non-safety-related applications Non-safety-related services include those that aim to enhance
the driving experience, traffic efficiency, and environmental friendliness. The applications in this
category are not standardized and may use safety-related messages to provide the proposed ser-
vices. Vehicle manufacturers can offer convenience services such as remote support and automated
parking to vehicle owners. Other applications can be proposed by service providers other than
the manufacturers, which are attractive to vehicle drivers or passengers. These may include traf-
fic optimization, gas consumption reduction, listening to music, playing video games, or watching
videos.

Conclusion

This chapter explained the concepts of 5G and beyond vehicular networks, with a particular em-
phasis on the paradigm of Network Slicing. This paradigm enables the creation of customized ”vir-
tual” networks known as NSs, which host transportation-related applications and services enabled
through vehicular communications. These NSs are customized to meet the stringent requirements
of such applications, including low latency and reliability. Additionally, this chapter discussed the
use of 5G for V2X.
The next chapter of this part will explain the second keyword of the concepts that we emphasize,
which is Artificial Intelligence. AI is a cornerstone not only in this thesis but also in many aspects
of future network design, including 5G.
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Chapter 2

Artificial Intelligence

Introdution

During the past decades, researchers have aimed to showcase AI’s capacity to successfully address
various tasks. Presently, we are witnessing the appearance of several applications relying on AI,
including those related to computer vision and natural language processing; Additionally, ongoing
research persists in these fields and various other domains where the full potential has yet to be
realized. Notably, network management and security hold particular interest for us.
In this context, this chapter will provide a concise introduction to AI and its techniques. Section 2.1
will delve into AI techniques in general, while Section 2.2 will focus on explaining Fuzzy Inference
Systems. In Section 2.3, we will turn our attention to Neural Networks, with a particular emphasis
on the learning aspect of Neural Networks.

2.1 Artificial Intelligence in a nutshell

AI, a concept that emerged in the early 1960s, is defined in [Kur00] as:

The art of creating machines that perform functions, and which require intelligence when
performed by people

Thus, AI is considered as the research field that attempts to understand how humans think and build
intelligent entities, referred to as computers or agents, that can ’think and act humanly’[RN09].
This includes problem-solving, knowledge representation and reasoning and learning [Ric17].

AI involves the utilization of various techniques contributing to its advancement. These tech-
niques span across various fields within AI including:

• Problem-solving: This consists of solving problems by searching through numerous possible
solutions, especially when the search space becomes vast and an exhaustive search is not
feasible. AI techniques for this purpose include heuristics, evolutionary algorithms (meta-
heuristics), and game theory techniques.

• Knowledge representation and reasoning: Reasoning involves finding a path from premises to
conclusions using a chain of deduction rules. This includes the use of formal logic to represent
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information and various types of logical inference, such as fuzzy inference and probabilistic
inference, as reasoning systems.

• Learning (a.k.a Machine Learning (ML)): involves automatically learning to recognize complex
patterns and making decisions based on data. Techniques used in ML include Deision Trees
(DT), Random Forest (RF), Naive Bayes (NB), Support Vector Machines (SVM), K-Nearest
Neighbors (KNN), and Neural Networks (NNs).

We will not cover all of the AI techniques in depth; instead, we will focus on techniques that
we used in our contributions. We will be providing comprehensive insights into Fuzzy Inference
Systems (FISs) and NNs, with a special focus on the latter.

2.2 Fuzzy Inference Systems

Linguistic statements are the tools humans employ to depict a wide array of objects and scenarios.
However, these statements often incorporate imprecise and ambiguous notions. For instance, de-
termining whether 20 km/h qualifies as ”high” speed or ”slow” speed demonstrates the difficulty
of precise formalization. This poses a challenge for representing such notions using Boolean logic1,
which fails to represent this nuanced ”knowledge”.

In response to these complexities, fuzzy logic emerged as a solution in the field of AI, introduced
in [Zad65]. Fuzzy logic offers a framework to handle concepts characterized by uncertainty and
imprecision. Unlike the binary nature of boolean true/false values, fuzzy logic permits the flexibil-
ity to represent partial truth, allowing for an accurate reflection of the real-world ambiguities that
linguistic statements often encapsulate [Ric17; Rut08]. Fuzzy logic is utilized in various fields, in-
cluding intrusion detection and prevention, as a framework that helps in making decisions involving
security threats. It enables the system to make decisions such as determining whether an attack is
occurring or not and selecting appropriate mitigation strategies.

Fuzzy logic is based on fuzzy set theory, which consists of elements possessing a degree of
membership to a fuzzy set within a continuous range between 0 and 1. This is in contrast to crisp
sets, where membership is binary (either 1 or 0), denoting the membership (or non-membership)
of elements to the set.

Membership functions form the Fuzzy Sets; a membership function µA maps the values of the
universe of discourse (U) – representing the range of possible values of a fuzzy concept (e.g., speed)
– to their degree of membership in the fuzzy term A (for instance, ”high”, ”slow”).

µA : U → [0, 1] (2.2.1)

The membership functions have various graphical representations, including triangular, trape-
zoidal, and Gaussian forms. Additionally, there is the singleton membership function, which exclu-
sively assigns a value of 1 to a single point within U , and all other points as 0.

A FIS represents an intelligent decision-making technique [Sin+13] that takes crisp inputs be-
longing to different fuzzy concepts and processes them using a collection of fuzzy rules, resulting in
crisp outputs. FIS comprise four main modules:

1Boolean logic is a system of formal logic that operates on binary values (true/false), using operations like AND,
OR, and NOT.
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• Fuzzifier: fuzzification consists of transform transforming an input crisp value into corre-
sponding fuzzy membership values associated with the fuzzy terms within a given concept.
The fuzzifier applies this fuzzification process to all inputs crisp values.

• Fuzzy rules: a set of combinatorial rules that encapsulate the relationships between fuzzy input
variables and fuzzy outputs. Formulated by domain experts, these rules form the knowledge
base of the inference system.

• Inference Engine: involves applying the relevant fuzzy rules to the fuzzy input and then
aggregating them to infer the fuzzy output.

• Defuzifier: converts the fuzzy output from the inference engine into a crisp output.

The summary of the process in FISs, which encompasses these four modules, is depicted in Figure
2.1.

Figure 2.1: Fuzzy Inference System process.

2.3 Neural Networks

NNs, currently one of the most prominent topics in AI, involve the creation of ’artificial’ neurons
designed to simulate the information processing of the human brain. NNs are a subset of ML that
specifically focuses on modeling complex patterns and relationships in data. In the following sub-
sections, we will describe the backgrounds and the process of training and evaluating NNs.

A perceptron, an artificial neuron, is a computational entity that takes an input, applies weights
to them, and produces an output based on an activation function. A perceptron unit is a function
that calculates a single scalar value. Several perceptron units can be combined to compute complex
functions, thus constituting a perceptron with many inputs and potentially multiple outputs [Ric17].
The output calculated by a perceptron is computed as follows:

ŷ = g(θ⊤ ∗ ⟨1, x⟩) (2.3.1)

where:

• ŷ is the output vector of dimension/shape (dout,) where dout ≥ 1.

• ⟨1, x⟩ is the input vector preceded by a bias element set to one, which enables an additional
adjustable parameter in the perceptron unit known as the bias. The input vector x has a
shape of (din,), thus the final shape of ⟨1, x⟩ is (din + 1,).
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• θ is the weight matrix with a shape of (din + 1, dout),

θ =


b1 b2 · · · bdout

w1,1 w1,2 · · · w1,dout

...
...

. . .
...

wdin,1 wdin,2 · · · wdin,dout

 =

[
b
W

]

where bj is the bias weight for the perceptron unit j. The weighted sum (σ = ⟨σj⟩) is
calculated by the multiplication θ⊤ ∗ ⟨1, x⟩, which is equal to:

σj =

din∑
i=1

xi ∗ wi,j + bj

• g is the activation function. The basic activation function is the positive/negative function,
which outputs (for the perceptron unit j) 1 if the weighted sum (σj) is positive, and zero
otherwise. We distinguish several other element-wise2 functions, which could be linear or
non-linear, such as tanh, sigmoid and Rectified Linear Unit (relu).

After mathematical simplification to isolate the bias, we can express the formula 2.3.1 as follows:

ŷ = g(W⊤x+ b) (2.3.2)

Where W and b have the shapes of (din, dout) and (dout,), respectively.

Figure 2.2 illustrates graphically a perceptron with multiple outputs, in this case, 2.

Figure 2.2: Illustration of a perceptron with multi outputs.

A NN is set of perceptrons connected together to form a network, we distinguish two ways to
do that, named Feed-Forward Neural Networks (FFNNs), and Recurrent Neural Networks (RNNs).
which we explain in the following two subsections.

2A function that is performed separately on each element of a data structure, such as an array or a matrix
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2.3.1 Feed-Forward Neural Networks

A FFNN is a unidirectional network, which means that data exclusively flows from the network’s
ingress towards its egress. The basic perceptron, discussed earlier, follows this feed-forward archi-
tecture. Moreover, an advanced version of the perceptron exists, known as a Multi-Layer Perceptron
(MLP). Unlike the ’single-layer’ perceptron, an MLP consists of multiple layers that participate in
generating the output, enabling the network to compute more complex functions. The architecture
of MLP consists of three distinct perceptron layers: the input layer, one or more hidden layers, and
the output layer. The output of MLP is calculated as follows—note that the perceptron formula
(Equation 2.3.1) is represented as f(x, θ).

ŷ = fn(· · · f1(f0(x, θ0), θ1) · · · , θn) (2.3.3)

where f0 is the input perceptron, f1 · · · fn−1 are the hidden perceptron layers and fn is the output
layer.

2.3.2 Recurrent Neural Networks

A RNN, which is another variant of NNs, operates by feeding its outputs back into its own inputs.
This recurrence property signifies that the output generated at each step depends on the information
from the preceding step. This recursive mechanism empowers the NN to handle the sequential
characteristics that may be present in the data.

The input (x) of a RNN is a sequence of length (L), sequences have different lengths; x =
[xt1 · · ·xtL ], (xtt) have the shape of (din,) each element of a sequence (xtt) is passed to a RNN cell
to produce the output (ŷtt).

The RNN has a memory vector, known as the hidden state at time t, with shape (dout,) and an
initial value ht0 of zero. The formula for calculating the hidden state htt is as follows:

htt = tanh(W⊤ ∗ xtt + bx + V ⊤ ∗ htt−1
+ bh) (2.3.4)

Where W and V are weight matrices of shapes (din, dout) and (dout, dout), respectively. bx and bh
are the bias vectors of shape (dout,). The output vector is obtained by passing the htt through a
FFNN, which may have one or multiple layers.

ŷtt = f(htt , θ) (2.3.5)

Note that the shape of the output ŷtt can be different from the output dout of the RNN cell.

An RNN model may include multiple layers of RNN cells. In such a model, each layer (i, i ≤ m),
except for the first layer (i = 1), takes the output hi−1

tt of the previous layer as input, and the weight
matrix W i of the layer has a shape of (dout, dout). The calculation of ŷtt involves using the output
of the final layer hm

tt , where m is the total number of layers in the model.

Several variants of the RNN have been proposed, including the Long Short-Term Memory
(LSTM) and Gated Recurrent Unit (GRU) models, which enhance the capabilities of the ’basic’
RNN.
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LSTM The LSTM, first proposed in [HS97], has a more complex architecture that involves a new
state named the cell state, which serves as the long-term memory of the network. The cell Ctt is
updated based on the output of four gates: the input gate itt , forget gate ftt , cell gate gtt , and
output gate ott . These gates serve as control gates that regulate the flow of information in the
cell; for more details please refer to [SSB14]. With the introduction of Ctt , the hidden state htt is
updated as follows:

itt = σ(W⊤
i ∗ xtt + bix + V ⊤

i ∗ htt−1
+ bih) (2.3.6)

ftt = σ(W⊤
f ∗ xtt + bfx + V ⊤

f ∗ htt−1
+ bfh) (2.3.7)

gtt = tanh(W⊤
g ∗ xtt + bgx + V ⊤

g ∗ htt−1 + bgh) (2.3.8)

ott = σ(W⊤
o ∗ xtt + box + V ⊤

o ∗ htt−1
+ boh) (2.3.9)

Ctt = ftt ⊙ Ctt−1
+ itt ⊙ gtt (2.3.10)

htt = ott ⊙ tanh(Ctt) (2.3.11)

⊙ denotes element-wise multiplication, σ denotes the sigmoid activation function, where Wi,f,g,o

and Vi,f,g,o are weight matrices of shapes (din, dout) and (dout, dout), respectively. bix,fx,gx,ox and
bih,fh,gh,oh are the bias vectors of shape (dout,). The calculation of the output vector ytt remains
the same as described in equation 2.3.5.

GRU GRU was introduced in 2014 as an alternative to the complex LSTM architecture [Chu+14].
GRU has simpler structure and fewer parameters than LSTM, and it can still handle long-term
dependencies. GRU also has gates that control the flow of information named reset gate rtt , update
gate ztt , and new gate ntt . The htt is calculated as follows:

rtt = σ(W⊤
r ∗ xtt + brx + V ⊤

r ∗ htt−1 + brh) (2.3.12)

ztt = σ(W⊤
z ∗ xtt + bzx + V ⊤

z ∗ htt−1 + bzh) (2.3.13)

ntt = tanh(W⊤
n ∗ xtt + bnx + rt ∗ (V ⊤

n ∗ htt−1
+ bnh)) (2.3.14)

htt = (1− ztt) ∗ ntt + ztt ∗ htt−1 (2.3.15)

It is worth mentioning that both LSTM and GRU models can handle multi-layer networks.

Later in this manuscript, we will frequently make use of the term ’model’. By this, we are
referring to the NN architecture and its associated properties. These properties encompass its type,
the number of layers, the quantity of perceptron units within each layer, the activation functions
employed in each layer, as well as the entirety of its weights (θ matrix).

2.3.3 Learning in Neural Network

The NN learning process in NNs, also referred to as Deep Learning (DL), where the term ’deep’
signifies that the NN consists of multiple layers. DL involves adjusting the model’s parameters
(weights) to better approximate the desired function using input data. This weight optimization
task can be described as a minimization problem:

min
w
Lx(W ), x ∈ X,w ∈ θ (2.3.16)
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Where L is the Loss function, it serves to assess how closely the model’s output value (ŷ =
f(x, θ)) matches the actual target value (y) associated with the input data (x). Various functions
can be used for this purpose, such as mean squared error Mean Squared Error (MSE), Mean
Absolute Error (MAE), and Cross-Entropy.

The objective is to minimize the loss function. To achieve this, a NN uses the Gradient Descent
(GD) optimization algorithm to find the optimal set of weights for the NN model. This process
involves iteratively adjusting the weights using the gradient of the loss function. At each iteration,
the adjusted weights are calculated as follows:

wnew = wold − η ×∇L(W ) (2.3.17)

Where ∇L(W ) is the gradient of the Loss function, and η is the Learning Rate (LR), which is a
constant. At the first iteration, the weights are initialized randomly.

There are three types of GD. Batch gradient descent uses the mean of all individual losses for
each weight update iteration. On the other hand, Stochastic Gradient Descent (SGD) uses one
instance at each iteration. Mini-batch gradient descent uses small sets of instances called mini-
batches of fixed size.

Furthermore, to calculate the gradient of the Loss function, especially in the hidden layers, we
employ the Backpropagation (BP) algorithm. This algorithm propagates errors backward through
the network, utilizing the partial derivatives of the gradient in the last layer (starting from the
output layer) to calculate the gradient for the preceding layer. This process is repeated recursively
until the input layer is reached. For RNNs, a related algorithm called Backpropagation Through
Times (BPTTs) is used. This algorithm involves unrolling the RNN through time and than apply-
ing ’standard’ BP.

It is worth noting that there exist other paradigms in deep learning, such as transfer learning
and Federated Learning, which we will explain when we use them in Chapter 7.

The learning process implies the specification of several hyperparameters, including the Loss func-
tion (L), LR η, the mini-batch size (B), and the number of learning iterations, which we commonly
refer to as epochs (E).

The BP algorithm facilitates weight adjustments, enabling the model to accurately produce
target values for various input scenarios, making it well-suited for both classification and regression
tasks. To assess the model’s performance, the dataset X is divided into training Xtrain and testing
Xtest datasets. Xtrain is used during the learning phase, while Xtest is employed to evaluate the
model’s generalization performance on unseen data during training. Various metrics, including
True Positive (TP), True Negative (TN), False Positive (FP), False Negative (FN), Accuracy, True
Positive Rate (TPR), False Positive Rate (FPR), True Negative Rate (TNR), Negative Predictive
Value (NPV), False Negative Rate (FNR), Positive Predictive Value (PPV), and F1Score, are
defined in the extended glossary of the manuscript, along with their corresponding formulas.

Conclusion

In this chapter, we introduced the concept of Artificial Intelligence and its various fields. We dis-
cussed the techniques we use in our contributions, which are FISs and NN techniques. Additionally,
we provided the mathematical background for these topics. We recommend that the reader refer
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back to this chapter as we will make references to it in various parts of the thesis contributions.
The next chapter will be the last one in Part I and will delve into the topic of Intrusion Detection
Systems, which is our third keyword of focus.
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Chapter 3

Intrusions and Intrusion Detection
in 5G-V2X

Introduction

In this chapter, we explore the landscape of Network Intrusions and Intrusion Detection Systems
(IDSs), providing a taxonomy of IDS categories and discussing current approaches. The chapter is
organized into three sections: Section 3.1 introduces Network Intrusions, offering examples within
the context of 5G. Section 3.2 highlights and presents a taxonomy of IDSs. In Section 3.3, we
investigate the diverse approaches to IDSs focusing on those leveraging AI, all in the context of
detecting Network Intrusions within 5G(-V2X) networks.

3.1 Network Intrusions in 5G-V2X

The principles of Confidentiality, Integrity, and Availability (C-I-A) are essential requirements that
network systems must ensure. They serve to guarantee that data and resources can only be viewed,
modified, and accessed by authorized parties. Network Intrusions or cyberattacks, on the other
hand, represent malicious activities that attempt to compromise these C-I-A properties.

In the context of 5G-V2X, Network Intrusions target both the road nodes (vehicles and in-
frastructure) and the 5G network elements (RAN, CN, and AS). Some of these attacks exploit
vulnerabilities specific to V2X communications and vehicular applications, while others target the
5G network components. Thus, cyberattacks can be executed by attackers or malicious nodes
through direct V2X SL communications or via V2N communications.

In the following paragraphs, we will provide examples of attacks categorized according to the
C-I-A triad.

Availability Denial-of-Service (DoS) attacks are notable for targeting the availability of a re-
source, achieved by overwhelming it with a flood of network traffic or disruptive requests. The
attack exploits specific weaknesses in the system or network protocols. For example, crashing an
HTTP server by sending a massive number of HTTP requests, thus preventing legitimate users
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from accessing it. Another scenario occurs in 5G NSs and can exploit vulnerabilities or misconfigu-
rations related to isolation properties in a multi-tenancy1 environment, where a malicious NS owner
exhausts its own resources to affect other NS that share the same infrastructure with this malicious
NS. Denial-of-Service (DoS) attacks executed through V2X SL communications can lead to the de-
pletion of vehicle resources. Additionally, DoS attacks through cellular communications, including
V2N, or the internet can strain the 5G infrastructure, including cloud resources and servers hosting
the CN and RAN, as well as NS (VNFs, SDN controller), and even the AS.

Radio jamming is a form of DoS attack characterized by intentional interference with the wire-
less medium, which prevents access to various services. Both direct V2X communications and V2N
communications are vulnerable to this attack. These attacks can be executed through various meth-
ods, including inducing interference and dropping packets by employing adversarial radio resource
selection.

Distributed Denial-of-Service (DDoS) attacks involve a distributed DoS approach, wherein at-
tackers collaborate to leverage the largest possible number of machines, including compromised
ones, to carry out the attack.

Confidentiality Attacks on confidentiality encompass various threats, including sniffing, which
involves eavesdropping on communications to illicitly collect private data from direct V2X and V2N
communications. Another method is port scanning, which is employed to identify open ports and
running services.

Integrity Integrity attacks primarily focus on the integrity of vehicular application messages.
These attacks include message forgery, where malicious vehicles can alter transmitted messages
(e.g., CAM) to mislead other vehicles within the transportation systems. Attackers may also con-
duct Sybil attacks by creating fake identities to transmit deceptive messages.

It’s worth noting that an attack may consist of a combination of malicious activities. For ex-
ample, it is possible to realize a DoS attack through code injection. Therefore, the list of attacks
cited above is not exhaustive but rather includes common attacks.

To detect and mitigate Network Intrusions, several defense mechanisms and protocols exist.
Notably, firewalls and encryption play crucial roles as the first layer of defense. They function
as preventive measures, either allowing or blocking users’ access to the network or system and
preventing certain actions. Nonetheless, the network system remains vulnerable to infiltration
by both malicious insiders and potential outsiders seeking to impersonate authorized users. The
effectiveness of the initial security layer proves inadequate in detecting and countering these threats
[PP18]. Thus, IDSs represent the secondary line of defense to detect these evolving threats. The
following sections will introduce IDS and discuss the various approaches to IDS in 5G-V2X.

3.2 Intrusion Detection Systems

IDSs actively monitor the activities of users who have successfully passed through the initial defense
layer [PP18]. IDS are defined in [Bac99] as:

1the capability of an infrastructure instance to serve multiple tenants, which can be applications or NSs, while
maintaining isolation between them.
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Intrusion detection is the process of monitoring the events occuring in a computer
system or network, analyzing them for signs of security problems.

This definition encompasses three elements: the act of monitoring, the events under observation,
and the subsequent analysis. Building upon these elements, a taxonomy of IDSs can be dressed.
This taxonomy is summarized in Figure 3.1.

Figure 3.1: Intrusion Detection Systems taxonomy.

When determining what to monitor, IDS are categorized into three categories: network-based,
host-based, and application-based IDS.

• Host-based Intrusion Detection System (HIDS) protect a single host machine, virtual machine,
or container. They monitor various aspects, including the host’s ingress and egress network
traffic, the host’s operating system logs, and the host’s resources (CPU, RAM, disk).

• Network-based Intrusion Detection System (NIDS) monitors the network traffic in an entire
network (several hosts) and can be deployed in routers, switches, and gateways.

• Application-based Intrusion Detection System (AIDS), is a sub-category of HIDS that focuses
on protecting specific applications or services. They rely on monitoring the activity logs
generated by the application.

The information and raw data collected, whether from a host, a network, or an application, are
used to generate events, which are categorized as follows:

• Single data point events, such as one network packet, an observed Central Processing Unit
(CPU) consumption value, or a user changing their password.

• Collection of data points events, which can be a sequence of exchanged packets, CPU con-
sumption history, or a user’s sequence of activities (e.g., logging in, changing passwords,
requesting confidential data). It’s important to note that a collection of data points can be
aggregated and then interpreted as a single data point event.

Lastly, these events undergo analysis, which involves detecting potential security issues within
them. This process has two approaches:
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• Signature-Based IDS: This method involves comparing and matching the event against a
predefined set of known malicious patterns or signatures. For example, it identifies a packet
containing specific characters or observes CPU consumption exceeding a predefined threshold
within a certain time frame.

• Model-Based IDS: This approach focuses on identifying events that deviate from the expected
’normal’ behavior model, categorizing them as anomalies. For instance, it can detect a user
logging in from a location different from their usual one. Furthermore, this method can be
extended to recognize models of known malicious activities.

In recent decades, researchers have delved into the application of AI methods for IDSs, in con-
junction with manually designed security policies by experts. The integration of AI contributes to
enhance the effectiveness of intrusion detection, whether employing a signature-based or a model-
based approach.

In the context of signature-based IDS, various approaches have leveraged fuzzy logic and FISs
for the design and generation of signature rules. [MK20] reviewed articles have explored these
approaches. Additionally, other proposed solutions also make use of frequent pattern mining algo-
rithms [Siv+23] and decision trees [KT03].

On the other hand, model-based IDS primarily rely on learning AI tachniques (ML). In the
literature, we find the use of ML techniques such as KNN, SVMs, and NNs. The article [HSB16]
reviewed the use of these techniques in the context of IDS.

Figure 3.2: IDS stats [Lav+22]

The year 2016 marked a significant increase in research articles focused on IDS, as depicted
in Figure 3.2. This rise in interest can be attributed to the emergence of DL. DL, known for its
exceptional generalization capabilities, is employed to improve detection quality by reducing false
positives in intrusion classification. Ongoing research is dedicated to achieving zero-day2 intrusion

2are Network Intrusions that take advantage of undisclosed vulnerabilities, the targeted system have no mechanism
to defend against
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detection. Additionally, addressing the efficiency challenge in IDS, chapter 6 in this manuscript will
focus on early detection.

IDS are also influenced by the concept of NFV. Initially, they were implemented as ”physi-
cal” components, but now they are virtualized and deployed as VNFs in modern networks like
cloud environments or 5G and beyond networks. The management and orchestration of IDS NFs
also heavily depend on AI to enhance resource allocation and overall efficiency, optimizing their
placement.

3.3 Overview of IDS Existing Approaches

In the following, we will list the approaches used to design IDSs with a particular focus on the
context of 5G-V2X and approaches using AI techniques. These approaches are grouped according
to the taxonomy described above, which includes the Host/Network/Application IDS, the nature
of the events monitored, and the detection analysis approach.

NIDS NIDSs are used for network-based attacks, and their effectiveness in detecting threats at
lower Transmission Control Protocol (TCP)/Internet Protocol (IP) stack levels, such as flooding
DoS/Distributed Denial-of-Service (DDoS) attacks and port scanning, has been demonstrated. In
the context of 5G-V2X, NIDSs can be deployed near the UPF when the objective is protecting
the AS. Similarly, they can also be placed alongside the SDN controller when safeguarding NS
components, such as NFs.

NIDSs rely on network packets, where the packets are analyzed individually using techniques
such as Deep Packet Inspection (DPI) to detect patterns indicative of malicious activity. This ap-
proach presents two drawbacks: first, payload encryption makes it challenging to perform effective
analysis [AMA+11]; and second, analyzing the payload takes considerable time, resulting in signif-
icant computational overhead. As a result, this approach may not be the ideal choice for real-time
monitoring but it can be highly effective for passive network analysis and auditing.

Flow-based NIDSs, unlike the previous approach, do not analyze each packet individually. In-
stead, they construct a sequence of exchanged packets between a source and a destination, referred
to as a Network Flow. This approach aligns with IDS that treat and analyze network events as col-
lections of data points (as mentioned in paragraph 3.2). In many proposed research works [BM16;
Sar+20; IA19; BB23], Network Flows are commonly aggregated into single data points that con-
tain statistical information about the packets within the Network Flow. This information includes
statistics on packet counts, arrival time, length, direction, and flags.

NIDSs employ both signature-based analysis and model-based methods. Signatures are com-
monly used in DPI techniques where the database of known attack signatures is continuously
updated. Additionally, signatures can also be applied to aggregated Network Flow attributes for
malicious flow detection purposes. In contrast, model-based methods are commonly employed in
flow-based NIDS. Previous research has explored various ML algorithms, including SVM, KNN, and
NNs. However, current research focuses on NNs and DL [Sho+18; AMK17; Yan+23], proposing
modern and complex architectures to enhance the effectiveness and efficiency of flow-based NIDSs.

These ML/DL models are used as binary classifiers, distinguishing between ”normal” and ”at-
tack” traffic, or as multi-class classifiers, categorizing traffic as ”normal” or identifying the specific
type of attack if present. In academic research, these models are trained using publicly available
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datasets, such as NSL KDD [Tav+09], UNSW NB 2015 [MS15], CICIDS 2017 [SLG18], CICIDS
2019 [Sha+19], 5G NNIDS[Sam+22]. These datasets consist of aggregated Network Flow data,
with each data point comprising numerous attributes derived from statistical analysis. In terms of
attacks, these datasets encompass a diverse range of attack types.

HIDS The term ”host” can encompass various elements, including the vehicle (and generally the
different users’ devices) and the various components of the 5G network, such as base stations, cloud
infrastructure, virtual machines, containers, and servers. This highlights the diverse array of data
and resources that can be monitored at the host level.

The host has access to network data from both IP-based communications and non-IP-based
communications (V2X SL communications). Similar techniques used in NIDSs can be applied
to the host’s IP network data. Additionally, physical layer data can be effectively utilized to
identify radio jamming attacks in both direct V2X and V2N communications, as outlined in the
works[NGU+20; Hus+23]. Application layer data typically find applications in AIDS, and some
approaches incorporate physical layer data within AIDS for enhanced detection capabilities.

HIDS also monitors resource utilization. For instance, during a DoS attack, CPU usage can be
significantly affected. Detecting such attacks involves resource monitoring. HIDS monitors various
resources such as CPU, memory, and I/O devices. In the context of 5G-V2X, this type of IDS is
deployed at the vehicle level and at the NS level. Furthermore, infrastructure providers can also
use it to monitor their physical resources to detect multi-tenancy-related attacks, this concept is
exemplified in a this work [SM19] . The strategies employed include predefined threshold-based
rules, with some already integrated into the operating system. More modern approaches involve
model-based methods that learn ”normal” resource consumption patterns of processes and detect
deviations from these norms.

Additionally, the monitoring of operating system call logs constitutes another technique em-
ployed in HIDSs. These logs are leveraged to identify commands attempting to exploit system
vulnerabilities, as reviewed in [Liu+18]. This category of HIDS often employs signature-based
approaches.

AIDS are primarily designed to utilize application data and detect application-level anomalies.
Techniques such as application log analysis are employed to monitor applications and services (e.g.,
VNF logs analysis). In the context of V2X applications, [Hei+19] has reviewed the approaches to
AIDS and categorized them into two types: node-centric and data-centric. The former type analyzes
a vehicle’s behavior by verifying its compliance with protocol and use case specifications. The latter
focuses on application data, ensuring its plausibility and consistency. Both approaches can interpret
single data points, sequences of messages, or statistical data inferred from a sequence. They are
commonly employed to analyze a node’s behavior and the trustworthiness of its messages, such as
CAMs. For enhanced detection effectiveness, these approaches may incorporate network data, such
as using RSSI of received messages to infer distance and comparing it with the distance calculated
from the sender’s position in the CAM. Current research is focused on data-centric approaches for
detecting attacks, such as message forgery and sybil attacks, with an emphasis on AI-based model
solutions.
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Conclusion

This chapter has provided an exploration of Network Intrusions and IDSs. It introduced the concept
of IDSs and offered a taxonomy based on three categorizations. These categorizations are based on
where monitoring is placed (Host, Network, Application), how data is treated (single data point or
collection of data points), and how the monitoring analyses the data.
This chapter serves as the concluding segment of Part I of this manuscript, effectively bridging
the preceding chapters on 5G-V2X and AI. Within this context, IDSs approaches are discussed,
highlighting the intersection between three core concepts: 5G-V2X, AI, and IDSs.

Next, we will proceed to part II of this manuscript, where we will begin addressing the research
questions introduced in the manuscript’s Introduction. This part encompasses our contributions to
Host-based Intrusion Detection Systems (HIDSs).
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Chapter 4

Coping with adversarial radio
resource selection in SideLink V2X
communications

Introduction

In this chapter, we present the first contribution of the second part of our manuscript, which
is dedicated to Host-based Intrusion Detection Systems. The contribution in this chapter is an
attempt to address a specific type of distributed jamming attack that occurs in V2V SideLink (SL)
communications, which is adversarial radio resource selection attack. To achieve this, we propose
a HIDS with a collaborative approach for detecting the occurrence of this attack. Additionally, we
present a mitigation scheme to alleviate its impact.

The subsequent sections of this chapter are structured as follows: The next Section reminds
the communication protocol used in V2V SL communications and discusses the vulnerabilities
of the Semi-Persistent Scheduling (SPS) protocol to adversarial resource selection attacks, and
Section 4.2 summarizes our contribution. Section 4.3 reviews related works. Section 4.4 discusses
the methodology in three steps: first exploring the attacker’s strategy and the intuitive solutions
to it, then explaining the proposed HIDS, and finally the mitigation strategy that leverages Fuzzy
Inference Systems (FISs). Section 4.5 discusses the simulation results before concluding the chapter.

4.1 Context

The allocation of radio resources for SideLink (SL) communications can occur through two distinct
approaches, namely centralized and distributed allocation, as documented in [Har+21].
In centralized mode, formerly referred to as Mode 3 in LTE-V2X and currently denoted as Mode
1 in 5G-V2X, the cellular base station is responsible for managing radio resource allocations for
vehicles direct communications. However, this mode is not commonly used in practice due to the
limited cellular coverage in certain areas.

Furthermore, the signaling process between the vehicle and the base station for resource alloca-
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tion introduces an additional delay that may not align with the stringent latency demands of the
V2X environment [AKG18]. On the contrary, in the distributed mode, designated as Mode 2 in
5G-V2X (and formerly referred to as Mode 4 in LTE-V2X), vehicles take on the responsibility of
allocating their radio resources. This mode can operate even when cellular coverage is unavailable.
It allows for self-radio resource allocation without reliance on a base station, thus helping to reduce
the additional communication delay associated with centralized modes.

This distributed resource assignment is performed using the sensing-based algorithm named
Semi-Persistent Scheduling (SPS) [3GP19]. The SPS algorithm leverages information about neigh-
boring vehicles’ resource usage patterns to allocate radio resources. Once a vehicle identifies an
available resource, it reserves that specific frequency resource for transmitting a certain number of
consecutive messages, such as CAMs. In such a context, the resource reservation duration depends
mainly on both Resource Reservation Interval (RRI) and Re-selection Counter (RC) [Gar+21].

The RRI is the time interval between two consecutive messages (packets); for instance, the RRI is
set at 100 ms during the exchange of CAMs. RC represents the number of transmissions a vehicle is
permitted before being required to select a new Ressource Unit (RU). It is a value randomly chosen
from the range of 5 to 15 before each resource reservation. After each transmission, the value of
RC decrements until it reaches zero. In this case, either the reserved resource will be kept (with a
probability pk), or a new resource reservation procedure will be initiated. [MG17]. The described
resource scheduling procedure is illustrated in Figure 4.1.

Figure 4.1: Resource scheduling procedure.

Utilizing the resource reservation patterns of neighboring nodes can significantly reduce com-
munication packet collisions1, especially in the context of distributed allocation. However, it’s
important to be aware that malicious nodes, can also exploit this aspect to launch adversarial
resource selection attacks, which are a type of jamming attack that compromises the availability
property. The scenario of this attack is illustrated in Figure 4.2.
A malicious vehicle may intercept resource reservation information from a nearby vehicle and use
it to transmit on the same resource. This information can be readily deduced from the SL Control
Information (SCI) header associated with the transmitted packets, as depicted in the left part of

1occurs when two or more packets collide and interfere with each other as they attempt to transmit over the same
RU, leading to data corruption or loss.
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Figure 4.2. Consequently, the victim vehicle becomes unable to send its subsequent messages to its
neighbors, as shown in the right part of Figure 4.2. This results in isolating the victim vehicle from
its neighbors, all without the victim being aware that it’s under attack. Moreover, if dropped pack-
ets include emergency and alarm information (DENMs), the adversarial resource selection attack,
may cause devastating effects in the vehicular network and lead to accidents and fatalities.

Figure 4.2: Adversarial resource selection jamming attacks.

4.2 Contribution Summary

We propose an enhanced SPS scheme designed to defend against adversarial resource selection
attacks. Our approach addresses attacks initiated by single nodes as well as distributed attacks
carried out through the cooperation of multiple smart attackers.
The proposed detection mechanism functions as a HIDS since it is deployed at the vehicle level.
Detection is accomplished collaboratively with neighboring vehicles through a feedback mechanism
that informs vehicles about collisions.
Uniquely within this particular contribution, as opposed to others, we introduce a mitigation strat-
egy aimed at preventing an attack once it has been detected. We leverage a Fuzzy Inference System
(FIS) to devise an effective defense policy [Ben+19; Tam+20]. Specifically, we dynamically adjust
the RU reservation time (RC) based on the context, i.e., being attacked or not.
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4.3 Related Works

In [Xu+04], the authors proposed two defense mechanisms to avoid interference and jamming at-
tacks in wireless networks: channel surfing and spatial retreat. The former relies on continuously
switching the channel when being attacked, while the latter is suitable for mobile nodes that can
move to a safe place outside the interference zone. However, spatial retreat is not suitable for
vehicular networks due to the constrained mobility of vehicles.

Existing works can be classified into three main categories: (i) works exploring jamming at-
tacks in wireless networks [Xu+04]; (ii) works studying channel surfing approaches against these
attacks in vehicular networks [NGU+20; YK21]; (iii) works addressing how to reduce packet colli-
sions [JCK19; WS20].

To mitigate jamming attacks in vehicular networks, the authors of [NGU+20] suggested random
channel switching among available service channels, without considering attack detection in this
channel surfing-based approach. Similarly, the authors in[YK21] introduced an evasive approach to
counter adversarial ressource selection attacks. Their detection mechanism relies on feedback from
the first neighboring vehicle using a RU in the same frequency domain as the victim, indicating
collisions in the SCI. Upon detecting an attack, the victim switches to a random sub-frame within
the same sub-channel for its RU. This reduces the attacker’s ability to predict the victim’s resource
usage but increases the occurrence of legitimate collisions, as an unreserved RU is chosen each time.
Moreover, this approach does not account for the possibility of multiple attackers; another attacker
could impersonate the feedback provider and disrupt the detection process.

Other works aimed to enhance and improve the distributed mode in V2X SL communications.
In [JCK19], the authors proposed a method to reduce continuous collisions by reserving and al-
ternating between multiple resources. In [WS20], the authors presented a mechanism to reduce
collisions by allowing vehicles to provide explicit feedback on channel conditions and acknowledge
successfully decoded radio resources. Additionally, they designed a candidate resource selector to
extend the sensing range and minimize hidden terminal situations.

Our specific focus is on adversarial radio resource selection jamming attacks in 5G-V2X. Unlike
the works mentioned earlier, we address both the detection and mitigation of these attacks in
scenarios involving single and multiple smart jammers.

4.4 Methodology

In this section, we outline our effective defense strategy for countering adversarial resource selection
jamming attacks. We begin by considering the attackers’ strategy for maximum damage. Next,
we introduce a feedback-based detection strategy as the initial step of our defense, followed by our
approach to mitigate these attacks.

4.4.1 Attacker strategy and intuitive solutions

The primary goal of adversarial resource selection attacks is to maximize consecutive packet colli-
sions against a victim, preventing nearby vehicles from decoding the victim’s messages. An attacker,
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being an internal node, has all the necessary information for a successful attack through gathered
information from SCI and CAMs.

Through the received CAMs, an attacker targets a nearby vehicle that is taking the same road.
Once the target is selected, the attacker tries to keep the victim in range by matching its speed
and following it. The attacker senses the used resource and reservation time from SCI and then
schedules its CAMs on it. The attacker continues to sense the victim’s information to detect any
changes in the victim’s resource allocation (for re-selection or evasion). When such a change occurs,
the attacker switches to the newly allocated resource. An attack can last for a duration equivalent
to the entire reservation time, precisely RC−1, during which the victim is only able to successfully
transmit the first CAM, as shown in Figure 4.2.

In the case of multiple attackers, they ensure that the victims are distinct. So, the number
of jammed nodes is equal to min(Nattackers, Nlegitimates). Consequently, there are Nlegitimates-
Nattackers legitimate nodes transmitting messages correctly (except for some normal occurrences of
legitimate collisions). Despite the potential harm posed to the targeted vehicles, attackers are often
categorized as non-aggressive jammers. This classification is based on the belief that their impact
on the system is relatively minor. The rationale for this categorization is further elucidated in later
sections, with supporting evidence presented in the simulation results, as illustrated in Figure 4.5.

The first intuitive solution is to empower targeted vehicles to choose a new RU after each
transmitted CAM. This approach sets the value of the RC equal to 1. By doing so, we effectively
thwart attackers from identifying the RU employed by victims, rendering the attack ineffective and
futile. Unfortunately, this solution does come with the drawback of increased legitimate packet
collisions since there is no resource reservation step. Another approach is to make the RC adaptive.
When a vehicle comes under attack, it initiates multiple consecutive RU re-selections after each
period. In this case, the attacker may attempt to compete and locate the victim but will struggle
to keep up and will eventually give up. To further reduce legitimate collisions, the victim can
gradually increase its reservation period. However, if a new attack is detected, it repeats the
process once more.

4.4.2 Attack detection strategy

In the context of broadcast 5G-V2X transmissions, a blind re-transmission approach is employed to
enhance reliability, as recommended in [3GP20]. This technique is particularly useful for managing
packet collisions. However, it’s important to note that the RU utilized is included in the SCI. As
a result, the network remains susceptible to adversarial resource selection, which can impact the
system’s security.

Another vulnerability in SL communications is the inability of the victim to detect attacks due
to the half-duplex mode and the broadcast nature of communication. This limitation prompted
the development of our feedback mechanism for collision (or attack) detection. In cases of packet
collisions, neighboring nodes may detect the transmitted CAM due to a high received signal on the
Reference Unit RU, but they may fail to decode it, making the transmitter (Tx) unknown. Thanks
to the reservation mechanism, neighboring vehicles can consult the table of recently received CAMs.
If the RU was reserved prior, Tx can be easily and confidently identified. Subsequently, the close
neighboring vehicles within communication range of the victim need to provide feedback reporting
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the occurrence of the collision to Tx.

Figure 4.3: Communication diagram: feedback sending.

We assume that the feedback is sent in unicast mode (supported by 5G-V2X). However, the
feedback is aborted if it is considered obsolete, i.e., the RU was not or is no longer used by the
vehicle receiving the feedback. We also assume that the feedback is always correctly received.

If the feedback ratio of a transmitted CAM is greater than a threshold (ϕ), the vehicle will
consider the packet as dropped and initiate an immediate resource re-selection. The feedback ratio
is calculated by dividing the number of received feedback on the number of neighboring vehicles
(which is the number of the last received CAMs). As shown in steps 3 and 5 of Algorithm 1, the
threshold is used both to reduce false positive alarms resulting from infrequent legitimate collisions
and to address trust concerns arising from potential malicious nodes injecting false feedback (this
type of attacker is not considered in this contribution).

Algorithm 1 FeedBackListener

Input: fb: FeedBackMessage
number feedback: Array[][]
number close neighbors : Integer

Output: number feedback
1: if Check RU(fb.RUid) then
2: number feedback[fb.RUid,fb.t] ++

3: α ← number feedback[fb.RUid, fb.t]

number close neighbors
4: if α > ϕ then
5: RC ← 0
6: end if
7: end if
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4.4.3 Attack mitigation strategy

After detecting an attack, the victim vehicle must update its RC value to select a new radio
resource. To accomplish this, we have developed a FIS that determines the reservation period for
each subsequently selected RU. This innovative resource reservation scheme is detailed in Algorithm
2 where, in step 4 of the algorithm, the RC value is updated according to our designed FIS.

Algorithm 2 Ressource Reservation

Require: RC == 0
{SPS Scheme}

1: channelSensing()
2: RU ← ressourceSelection()
3: cbr ← calculateCBR()
{Updating RC}

4: RC ← fis(number feedbacks[:,t-Λ:t],cbr)

The remaining paragraphs in this sub-section will explain our FIS. For the fuzzifier, we consider
two inputs that we deem relevant for the corresponding output (RC value). The fuzzy sets are
shown in Figure 4.4.

41



CHAPTER 4. COPING WITH ADVERSARIAL RADIO RESOURCE
SELECTION IN SIDELINK V2X COMMUNICATIONS

(a) Number of dropped packets (b) CBR

(c) RC

Figure 4.4: Fuzzy sets.

• Number of Dropped Packets: the number of dropped packets in the observation interval
([t-Λ, t]), helps classifying the collisions as legitimate or malicious, through three fuzzy terms:
low, medium, and high.

• Channel Busy Ratio (CBR): represents the time ratio the channel is sensed as busy on the
total observation time, as defined in SPS scheme. The higher the CBR is, the more vehicles
will struggle to find a RU, and hence the channel congestion. CBR depends mainly on vehicle
density.

• RC value: represents the output of our FIS. We distinguish four fuzzy terms: One (fuzzy
singleton), Low, Normal, and High. One is used when trying immediately to escape from
the attacker, Low represents the gradual increase towards the Normal state as defined in the
standards [Har+21], High RC values are greater than 10.

Our strategy is to enable vehicles to escape by sequentially changing resources. However, our
goal is also to prevent constant resource reselection when legitimate collisions occur. This typically
happens in congested traffic situations where either CBR is high or the change of RU is frequent.

As for the inference engine, we have established a set of fuzzy rules for decision-making, which
were validated through tests. Table 4.1 illustrates the set of fuzzy rules we developed. These rules
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are designed to help our inference system strike the right balance between the need to sequentially
change RU to escape attacks and the need to remain on the same RU when legitimate collisions
occur.

If the number of packets dropped by the vehicle is considered high, it definitely indicates an
ongoing attack, regardless of the CBR value. In this case, the only solution is to set RC to one in
order to evade the attacker. However, if the number of packets dropped by the vehicle is considered
medium, it is challenging to determine whether they are being dropped due to an attack or due to
legitimate collisions. In such cases, it is necessary to check the CBR value to devise the optimal
strategy:

• High CBR: Changing RC will likely cause collisions with other neighboring vehicles since the
probability of finding an available RU is low.

• Medium CBR: The available RUs will allow the vehicle to escape the attack or avoid legitimate
collisions by gradually diminishing RC to increase the rate of re-selection.

• Low CBR: The system will not suffer any side effects, therefore it is better to put RC to one
in order to clear out any kind of collisions (malicious or legitimate).

In the case of a low number of packets dropped, the value of RC remains normal unless the
CBR is low. In such a scenario, a higher value is assigned to RC, which, in turn, slows down the
re-selection procedure.

Inputs Output
Dropped Packets CBR RC

HIGH - ONE
MEDIUM HIGH NORMAL
MEDIUM LOW ONE
MEDIUM MEDIUM LOW
LOW HIGH NORMAL
LOW MEDIUM NORMAL
LOW LOW HIGH

Table 4.1: List of fuzzy rules.

For de-fuzzification, we used the centroid method which is calculated as follows:

x∗ =

∫
µ(x)xdx∫
µ(x)dx

where:

• x∗ the output value;

• µ(x) is the RC membership value for the point x.

43



CHAPTER 4. COPING WITH ADVERSARIAL RADIO RESOURCE
SELECTION IN SIDELINK V2X COMMUNICATIONS

4.5 Simulation and Results

To validate the proposed scheme and analyze its performances, we used LTE-V2V simulator [Cec+17].
It implements the sensing-based SPS scheme used in LTE-V2X mode 4, which is similar to 5G-V2X
mode 2. We performed the simulation over 20 seconds on a 2 km road of 3 lanes per direction. The
vehicles follow Poisson distribution in their positioning with a density ρ ∈ {50, 75, 100, 125, 150}
vehicles per km. The vehicles send CAMs packets at 10Hz frequency with a transmission power of
23 dBm. Two main 2 sub-channels per sub-frame are used by vehicles to send their packets and
hence 200 RU.
We compared our scheme performance to the SPS scheme according to the Packet Reception Ratio
(PRR). PRR represents the ratio between the number of vehicles that correctly received CAMs and
the total number of vehicles within the communication range of the transmitter vehicle. We set the
number of attackers to Nattackers ∈ {0, 1, 5, 10} in each scenario, where the number of victim nodes
is equal to the number of attackers. A packet is presumed to be dropped if ϕ ≥ 0.3. We found
that this value is effective in managing the false alarm rate. However, in this contribution, we will
not delve into further details, as we do not cover cases where attackers are capable of sending false
feedback. The observation period λ is set to 20 sub-frames.

Figure 4.5 shows the impact of the adversarial resource selection jamming attacks on the average
PRR value when varying both vehicle density (ρ) and the number of attackers. It is noteworthy that
in the case of zero attackers, the reduction in PRR is primarily attributed to legitimate collisions.
However, we observe minimal differences in PRR values between scenarios with no attackers and
scenarios with a single attacker. This contrast becomes noticeable only in low-density scenarios,
ranging from 50 to 75 vehicles. Furthermore, we notice a consistent decrease in PRR as vehicle
density increases across all tested cases.

In high-density scenarios, the disparities in PRR become negligible, with an approximately 2%
difference between scenarios with 0 and 5 attackers and a 4% difference between scenarios with
0 and 10 attackers in each case. Remarkably, the average PRR value remains above 87% for all
considered scenarios, regardless of vehicle density. These findings clearly emphasize the limited
effectiveness of these attacks on the overall system, which is why they are called non-aggressive.
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Figure 4.5: Impact of adversarial resource selection attacks on PRR.

To assess the effectiveness of our proposed approach, we conducted an experiment in a scenario
with a vehicle density of ρ = 150 vehicles/km. We analyzed the PRR for three different vehicles:(i)
vehicle A: safe (unattacked), (ii) vehicle B: subjected to attacks and did not implement our ap-
proach, and (iii) vehicle C: Under attack but implemented our approach.

The results are presented in Figure 4.6, which shows the Cumulative Distribution Function
(CDF) of PRR for each CAM sent by the different vehicles.

The findings reveal a significant disparity in PRR among the three vehicles. Vehicle B, which
did not employ our approach, exhibited poor performance, with only 10% of its packets achieving
a PRR of one. This contrasts with Vehicles A and C, which achieved PRR values of 60% and 55%,
respectively.

Vehicle B was severely affected by the attacks, with 85% of its packets experiencing a PRR below
20%, effectively isolating the vehicle from the network. In contrast, Vehicle C, which implemented
our approach, achieved a PRR similar to that of a safe vehicle (Vehicle A). Impressively, 65% of
Vehicle C’s packets achieved a PRR greater than 80% (compared to 77% for safe vehicles).
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Figure 4.6: CDF of PRR.

Figure 4.7 compares the SPS scheme to our approach across different attack scenarios. Re-
gardless of the number of attackers, our approach consistently achieves a higher PRR compared to
the SPS scheme, demonstrating its effectiveness in defending against adversarial resource selection
attacks.

Even in scenarios with no attackers (Figure 4.7d), we observe an improvement in PRR. This
enhancement is a result of the reduction in consecutive legitimate collisions, achieved through the
feedback mechanism that triggers re-selection in vehicles. Additionally, the improved adaptability
of the RC, which now considers congestion situations, contributes to this performance improvement.
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(a) 1 attacker scenario (b) 5 attackers scenario

(c) 10 attackers scenario (d) no attacker scenario

Figure 4.7: SPS vs. our defending approach.

Conclusion

In this chapter, we proposed a HIDS that addresses adversarial resource selection jamming at-
tacks. Additionally, we introduced a mitigation algorithm based on FIS to counter these attacks,
demonstrating the effectiveness of the detection protocol. We also demonstrated how our proposed
solutions improve the SPS algorithm by minimizing the number of legitimate collisions, thus ensur-
ing better availability.
The next chapter will delve into the integrity property of CAMs, where we will develop our AIDS
to deal with message forgery attacks in V2V communications.
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Chapter 5

Detecting message forgery attacks
in V2X communications

Introduction

The previous contribution aimed to ensure the reliability of CAMs against jamming attacks. In this
chapter, our focus shifts to awareness messages integrity. Indeed, CAMs can be altered, and for
safety reasons, when a vehicle receives these awareness messages, it should be able to detect their
legitimacy. To address this issue, this chapter proposes an Application-based Intrusion Detection
System (AIDS) that inspects CAMs and detects message forgery attacks. Our approach leverages
RNNs and incorporates historical data to analyze the behavior of vehicles for effective detection.
Furthermore, it approach guarantees low computational overhead to ensure efficient detection. We
will demonstrate these two findings in this chapter.

The remainder of this chapter is organized as follows. Section 5.1 provides more context and
details about the attack. Section 5.2 summarizes our contributions. Section 5.3 comprehensively
reviews existing approaches to AIDS that deal with message forgery. The considered attack scenario,
as well as the dataset used, are described in Section 5.4. We detail our designed RNN-based
approach in Section 5.5. Section 5.6 presents and discusses the performance of our approach, and
then we conclude the chapter.

5.1 Context

Cooperative Awareness Messages (CAMs), as introduced in Section 1.3, constitute the fundamen-
tal component of various safety applications in 5G-V2X and beyond, where vehicles periodically
exchange information regarding their position, velocity, heading, and other mobility details with
surrounding vehicles, pedestrians, and road infrastructure [ADC21]. These messages necessitate
a 90% reliability rate and require a maximum latency of 100 ms [TM21]. Given these stringent
requirements, the direct (SL) communication mode (V2V/V2I/V2P) is employed [Sed+23].

In a previous section of this manuscript (Section 3.1), we discussed message forgery in vehicular

49



CHAPTER 5. DETECTING MESSAGE FORGERY ATTACKS IN V2X
COMMUNICATIONS

network attacks, which are attacks on the integrity property. In such attacks, a malicious node can
manipulate its CAMs, potentially leading to confusion or misinformation among nearby vehicles,
pedestrians, or infrastructure entities. The malicious node can have various motivations, including
economic gain, disruption of road traffic, or even causing road accidents. This specific type of attack
is often referred to as false information injection, as documented in [ASJ19].

Real-time detection of message forgery is primordial for vehicular networks, given that CAMs
arrive at a frequency of 10Hz, and needs to be analyzed in time by the vehicles. The detection
system needs to accurate and precise in identifying the type of fake received messages to enable
effective mitigation policies.

5.2 Contributions summary

To address the previously mentioned challenges of real-time and accurate intrusion detection, we
propose a novel AIDS that relies on a data-centric approach, performing consistency checks (refer
to Section 3.3 for details about AIDS approaches). The proposed approach leverages DL, specifi-
cally RNNs, to perform a classification task on received CAMs, distinguishing between benign and
tampered messages.

RNNs can embed historical knowledge into their hidden states and convey it over time, allowing
the AIDS to infer the class of the received CAM, while taking into account the past behavior of
the vehicle; it is demonstrated through experiments that including historical data improved the
performances of the proposed detection model. The longer the historical data sequence considered,
the better the performance of the model. Furthermore, the AIDS keeps track of the hidden states
and performs one RNN cell feed per received CAM. This allows for a more efficient detection process.
The main contributions of this chapter are summarized as follows:

1. An innovative RNN-based model to detect misbehavior in 5G-V2X networks, utilizing either
LSTM or GRU. The performance of the model is extensively evaluated by varying meta-data
such as the number of layers and the dimension of the RNN cell,

2. A review of the effect of incorporating historical data in AIDSs deployment in 5G-V2X,
providing insights into how this can enhance the effectiveness of attacks detection.

3. Extensive discussions on the effectiveness of the proposed model, including theoretical com-
plexity analysis and comparison with existing approaches.

5.3 Related works

Various AIDS approaches have been employed in the literature utilizing different algorithms and
classifiers like rules-based classifiers and ML-based approaches (e.g., SVM, RF, NB, DL) [ASJ19]. As
mentioned in the introduction section, AIDS in this context can be categorized into two categories:
node-centric and data-centric. For the scope of this contribution, we will focus on data-centric
approaches and emphasize the ML/DL techniques due to their potential and high performance in
various related fields. Data-centric based models are fed with plausibility or consistency inputs
to perform the classification task more accurately. Plausibility checks ensure the correctness of an
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input based on drawn evidences, while consistency checks verify the absence of contradiction among
a set of inputs.

Authors in [Sin+19] proposed a binary-class ML algorithm for message forgery detection in
vehicular networks. Their model takes input in the form of received coordinates, received speed,
relative coordinates between the sender and receiver, and relative speed on the 3D plan X,Y,Z.
The proposed approach is plausibility-based AIDS, where each received message is classified as
normal or malicious. The authors investigated two classifiers: SVM and logistic regression, they
concluded their paper by stating that SVM achieved better performance than logistic regression.
[SL21] proposed a data-centric ML-based approach. The authors introduced two plausibility checks,
namely location plausibility and movement plausibility. The location plausibility is determined by
investigating the acceleration, and the movement plausibility verifies if the vehicle remains idle.
These two plausibility checks are then aggregated with the received position and fed to the ML
model. The authors implemented several ML classifiers, including SVM, RF and NB. The results
demonstrated that, due to the incorporation of plausibility checks, their proposed approach can
achieve high-quality detection.

In the context of consistency checks in AIDS, [Gro+21] proposed a semi-supervised1 approach
to a binary classification of received messages in the context of V2I communication, where detection
is performed at the infrastructure, or RSU, level. The approach leverages edge computing, and the
detection model is based on a RNN, specifically LSTM. The model takes a fixed-length sequence of
CAMs, considering both position and velocity. The model tries to regenerate the sequence of the
positions and is trained only on legitimate data; the aim was to learn the legitimate behavior pattern.
After training the LSTM network, the authors determined the reconstruction error threshold in
a supervised2 manner. They used a test dataset containing both normal and malicious CAM
sequences to select this threshold. The opted threshold is then used by AIDS to classify the received
CAMs sequence as either normal or abnormal. This approach is limited to binary classification.
Additionally, the fixed-length sequences used by the RNN model can be a drawback, as it only
allows for learning consistency within this specific time window, and not across the entire original
sequence. The approaches in the literature that aim to verify the coherence of sequences are mainly
based on the idea of reconstruction of sequences as in [Gro+21]. In [All+21; HCT22], the input
sequence is first passed through a Convolutional Neural Network (CNN) layer, which captures the
spatial relationships between inputs, and then through the RNN layers. However, this approach has
additional drawbacks, including the need for all sequence classification after each received message,
which causes more computational overhead. Thus it may not meet time-sensitive requirements.

Compared to existing literature, our research work aims to perform CAMs classification while
considering the historical data to ensure the integration of consistency verification. Moreover, our
approach overcomes the limitation of fixed-length sequences, allowing the use of the entire sequence
for classification. Another advantage of our approach is its low computational cost, as we only need
to use one RNN cell fed per received CAM. Thus, our approach represents a significant improvement
over existing methods.

1ML/DL model is trained on a combination of labeled and unlabeled data.
2ML/DL model is trained on a labeled dataset, where the input data is paired with corresponding output labels.
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5.4 Attack scenario and Dataset

This section explains the attacker model and describes the dataset constructed for the proposed
AIDS.

5.4.1 Attack scenario

The 5G-V2X scenario involves multiple moving vehicles that communicate with each other using a
PC5 interface [Gar+21] since our focus is SL communications. Additionally, vehicles are equipped
with a Global Positioning System (GPS) sensor that continuously provides position and velocity
information in the X, Y, and Z planes. This information is used to generate CAMs, which are
periodically broadcasted via the PC5 interface to neighboring vehicles [Baz+21]. Moreover, vehicles
also receive CAMs sent by surrounding vehicles. Misbehaving vehicles, acting as attackers, are
part of the vehicular network that is being studied. A misbehaving vehicle claims in its CAMs
information that contradicts the ground-truth information obtained through GPS. We consider the
attack scenarios as defined in [HLK18]. The misbehaving vehicle is able to perform four different
types of misbehavior:

• Constant : Predefined position coordinates are used,

• Constant offset : A predefined offset is added to the position coordinates,

• Random: Random position coordinates are generated,

• Random offset : A random offset is added to the position coordinates,

• Eventual stop: The vehicle initially behaves normally but eventually stops and repeatedly
transmits its current position.

The Vehicular Reference Misbehavior (VeReMi) dataset is a reference dataset used in the litera-
ture for detecting misbehavior in vehicular networks. It was simulated using the Vehicular Network
Simulation (VEINS) simulator within the Luxembourg SUMO Traffic (LuST) scenario. The dataset
includes the five attacks described above. The data is generated after several repetitions of each
simulation scenario. A simulation scenario is defined by the attack type, vehicle density, and density
of malicious vehicles within the simulation. As a result, the data generated through one simulation
contains both legitimate (normal) and malicious data. VeReMi dataset contains three types of data:

• GPS data (type2 ) in the dataset: the position and speed on the plane X,Y,Z received by
vehicle (vid) through the GPS,

• Generated CAM (type4) or ground-truth data: a received CAM is identified by the concate-
nated key (sid,message id), where sid represents the sender’s ID, the CAM message contains
the data generated in (type2). type4 messages contains also the nature of the sender vehicle:
legitimate or malicious, and the specific type of malicious behavior,

• Received CAM (type3): a received CAM is identified by the concatenated key (sid,message id,rid),
where sid and rid represent the sender and receiver ids, respectively. The (sid,message id) is
the message generated in (type4 ); in case of a misbehaving vehicle, the sent data is altered
and forged. The type3 message also includes the Received Signal Strength Indicator (RSSI),
which is a measure of the signal power received by (rid) vehicle.
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5.4.2 Dataset Construction

Our work aims to utilize sequential data. The generated sequences allow capturing the temporal
dynamics in the raw data contained in VeReMi. Therefore, we made certain modifications to the
raw VeReMi dataset. In the constructed dataset, a data point xtt is defined in Equation 5.4.1.

xtt :<3 t, 3 rid, 3 sid, 3 m id, 3 posx,y, 3 spdx,y, 3 rssi,

2 posx,y, 2 spdx,y, 4 tag >
(5.4.1)

The prefix {1,2,3} represents the source type of data in raw VeReMi; the data point xtt is
created using type 3 data, 3 t is the receiving time, (3 rid, 3 sid, 3 m id) are the sender id, receiver
id, and the message-id, respectively. 3 posx,y, 3 spdx,y is the received CAM, contains the sender’s
(s id) claimed position and speed on X,Y. 3 rssi is the RSSI value. 2 posx,y, 2 spdx,y are the
receiver’s current position and speed. This is the recent data that r id received through GPS. 4 tag
represents the type of the sending vehicle, obtained from the type 4 data for the key (sid,m id).

A vehicle with the ID sid broadcasts CAMs to its neighboring vehicles in a simulation. If a
vehicle with the ID rid is within the communication range of vehicle sid, it will receive a sequence
of consecutive CAMs for a certain period of time in the interval ([t0, tL]), where t0 is the time of
the first received message, and tL is the time of the last received message before rid is no longer in
communication range of sid. We define this sequence of messages as the communication sequence
between vehicles sid and rid. The communication sequence is then transformed to form a sequence
x of time-ordered xtt , where x = {xtt/t ∈ [0, L]}, L is the length of the sequence, and each xtt

represents a data point defined above. The constructed dataset (X) contains a set of x sequences.
For the VeReMi dataset, we observed that the maximum sequence length was 100.

5.5 Methodology: RNN-based AIDS for 5G-V2X and Be-
yond

In this research approach, we describe the proposed DL-based AIDS model designed to be deployed
at the vehicle (host) level. This model is responsible for analyzing the receiving message before it is
processed by the receiving vehicle. To achieve this, the model takes into consideration the history
of CAMs received from the same sender that precedes the currently received message. By doing so,
the model is able to analyze the consistency of the sender’s CAMs, which is made possible using
an RNN model.

Figure 5.1 illustrates how the model classifies each received CAM from the sender, while also
taking into account the history of CAMs embedded in the hidden state of RNN. This enables the
model to detect inconsistencies quickly and efficiently.

The DL model takes an input (xtt) a representation of the tth received CAM and produces its
class label as an output (ptt). The class label corresponds to either a legitimate CAM or one of
the five defined attacks in the attacker model: Constant, Constant offset, Random, Random offset,
and Eventual stop.
The input xtt is the features vector:

< posx,posy, spdx, spdy, rssi,dst >

The features posx,posy, spdx, and spdy represent the claimed position and speed of the sender
along the X and Y planes, while dst denotes the Euclidean distance between the receiver and the
sender’s reported position.
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Figure 5.1: Inference process.

The input vector (xtt) is projected using a FFNN with the aim of mapping it to a higher-
dimensional space. The projected input may reveal more complex patterns and relationships that
were not visible in the original input space. The projected input (x̂tt) has the shape (din,), and is
calculated as follows:

x̂tt = W⊤ ∗ xtt + b (5.5.1)

W is a learnable weight matrix of shape (||xtt ||, din) where ||xtt || = 6 and b is the bias vector of
shape (din,). The input x̂tt is fed to an RNN network along with its previous hidden state (htt−1).
The RNN model can be either a GRU or LSTM and have m layers (m ≥ 1). After the feeding
process, the model will produce the output ytt and htt the hidden state produced by the RNN cells.
The hidden state htt generated at time t is used for generating the prediction at t+ 1.

The decoder’s output vector has a shape of (k,), where k is the number of classes, and each
element of the output vector ŷtt represents the probability of the input xtt belonging to the corre-
sponding class i. The predicted class ptt is the arg(max(ŷtt)) which is the index of the maximum
value of the vector ŷtt . The architecture of the proposed model is shown in Figure 5.2.

To train our model and minimize the Loss function, we employed SGD as a learning Optimiser.
Cross-Entropy is used as a Loss function. To optimize the convergence, we adopted a LR (η)
scheduling technique. The scheduling technique adjusts the η during training, η is decayed by
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Figure 5.2: RNN(LSTM/GRU) Model Architecture.

a factor of γ every step size iterations. Furthermore, we opted for mini-batch GD in which the
training data is divided into small batches of size (B), and the model parameters are updated after
each batch. Since the sequences in the dataset have varying lengths, they are left-padded with zeros

(x0 =
−→
0 ) within each batch to match the maximum sequence length in that batch; when calculating

the Loss, the padded values are ignored. The explained model training process is repeated for (E)
iterations.

5.5.1 Data pre-processing

We used the dataset constructed as described in Subsection 5.4.2. However, to facilitate the training
process, we split a subset from the larger original dataset. As 80% of the data represents legitimate
behavior, we took steps to address the potential impact of imbalanced data during the training
phase. Specifically, we ensured that we sampled data classes with identical distributions to avoid
the dominance of one class over the other.

This data (X) is divided into two sets, with 80% of the data allocated for training (Xtrain) and
20% allocated for testing (Xtest). The total number of sequences and data points are displayed
in Table 5.1. Additionally, this table provides this information for each class label. Note that the
number of data points corresponds to the sum of sequences lengths.

55



CHAPTER 5. DETECTING MESSAGE FORGERY ATTACKS IN V2X
COMMUNICATIONS

Table 5.1: Train/Test data distribution

Label Train Test
sequences data points sequences data points

Benign 11166 197570 2800 39031
Constant 11679 207007 2995 42565
Constant offset 11784 207244 2934 41433
Random 11778 206289 2935 42213
Random offset 11764 206457 2889 41241
Eventual stop 11731 206199 2917 39424
Total 69902 984859 17470 245907

Table 5.2: Training hyper-parameters

parameter value

DL model

||xtt || 6
d in 256
d out 256
m 1
k 6

LR
η 1 ∗ 10−1

γ 5 ∗ 10−2

step size 50

Train

Optimiser SGD
Loss Cross-Entropy
B 32
E 150

Each xtt ∈ x, where x is a sequence from the constructed dataset. The dst is calculated as the
Euclidean distance between 3 posx,y and 4 posx,y.

Furthermore, based on the VeReMi dataset, the X and Y coordinates fall within the range of
(Xmin, Ymin) to (Xmax, Ymax), where Xmin = 2300, Ymin = 5200, Xmax = 6400, and Ymax = 6400.
The positions’ coordinates in xtt are re-scaled to the interval [0,K],K ∈ N, and this is calculated

as follows: (posx = 3 posx−Xmin

Xmax−Xmin
∗K) and (posy =

3 posy−Ymin

Ymax−Ymin
∗K), we set K to 10. The process

of re-scaling ensures efficient computations and numerical stability.

5.5.2 Model training

The training hyper-parameters are summarized in Table 5.2. Furthermore, to demonstrate the
effectiveness of RNN-based approaches, we have included a MLP model as a baseline. The MLP
model takes the data points xtt as input to perform the classification task. The MLP model
comprises five hidden layers with dimensions of 32, 64, 128, 64, and 32, respectively. The remaining
training parameters for the MLP model are similar to those used in Table 5.2.
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Figure 5.3: Training Loss curve.

5.6 Results

This section presents the performance evaluation of our approach, including an analysis of the
impact of sequential data and a discussion of the theoretical complexity3.

5.6.1 AIDS classification performances

Figure 5.3 displays the train/test loss curves for three models: GRU, LSTM, and MLP. The GRU
and LSTM models show a similar convergence pattern, with their training and testing losses de-
creasing steadily over time without showing any signs of over-fitting. They ultimately achieve good
results with a loss value of approximately 0.15. On the other hand, the MLP model appears to
have difficulty learning the task, as indicated by its oscillating loss curves and higher loss value
(approximately 1.15).

Figure 5.3 also shows the benefits of using LR scheduling. The implementation of LR scheduling
helped the model to converge to a better solution, as evidenced by the results obtained at epochs
50 and 100, with the most significant improvement observed at epoch 50. In fact, we can see a
decrease in the loss at epoch 50 when the LR is decayed, indicating that the model was able to
learn more efficiently with the adjusted η value.

The results of the training history provide valuable insights into the performance of models.
Figure 5.4 illustrates the accuracy of the models mentioned above on the test dataset during the
training epochs. It can be observed that the GRU and LSTM models converge to produce high
accuracy, whereas the MLP model does not. The accuracy metric confirms that the GRU and
LSTM models are capable of effectively learning the patterns in the data and producing accu-
rate predictions (approximately 95%), while the MLP model appears to struggle in capturing the

3refers to the computational resources (time or space), required by an algorithm.
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Table 5.3: GRU, LSTM and MLP classification performances on train data.

Label
GRU LSTM MLP

TPR TNR PPV NPV FPR FNR F1Score TPR TNR PPV NPV FPR FNR F1Score TPR TNR PPV NPV FPR FNR F1Score
Benign 0.89 0.97 0.84 0.98 0.03 0.11 0.86 0.89 0.97 0.84 0.98 0.03 0.11 0.86 0.64 0.89 0.53 0.93 0.11 0.36 0.58
Constant 1.00 1.00 0.99 1.00 0.00 0.00 0.99 1.00 1.00 0.99 1.00 0.00 0.00 0.99 0.67 0.92 0.62 0.93 0.08 0.33 0.64
Constant offset 0.99 0.99 0.97 1.00 0.01 0.01 0.98 0.99 0.99 0.96 1.00 0.01 0.01 0.98 0.64 0.84 0.45 0.92 0.16 0.36 0.53
Random 1.00 1.00 1.00 1.00 0.00 0.00 1.00 1.00 1.00 1.00 1.00 0.00 0.00 1.00 0.94 0.96 0.83 0.99 0.04 0.06 0.88
Random offset 0.94 1.00 0.99 0.99 0.00 0.06 0.97 0.94 1.00 0.99 0.99 0.00 0.06 0.96 0.10 0.97 0.42 0.84 0.03 0.90 0.16
Eventual stop 0.84 0.98 0.88 0.97 0.02 0.16 0.86 0.84 0.98 0.88 0.97 0.02 0.16 0.86 0.22 0.85 0.23 0.84 0.15 0.78 0.22

complexity of the data, achieving a reduced accuracy of only 55%. In addition to the accuracy
metric, there are several other metrics that we may consider when evaluating the performance of
the classifier DL models. These metrics include TP, TPR, PPV, and the F1Score. These metrics
are measured for each class label and are summarized in Table 5.3. A F1Score close to 1 indicates
high precision and recall, which means that the model has correctly identified most of the positive
instances and correctly rejected most of the negative instances. We notice that the RNN (LSTM
and GRU) models have succeeded and performed well for all the class labels, guaranteeing high
TPR and F1Score.

Figure 5.4: Testing Accuracy curve.

Figure 5.5a displays the Loss curves of GRU and LSTM models with varying the number of
layers (m = {1, 3}). The models with m = 3 (dashed lines) minimize the loss more effectively than
those with m = 1 (solid lines). As the depth of the model increases, the performance improves; the
finding aligns with the accuracy curves already demonstrated in Figure 5.5b.
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(a) Loss (b) Accuracy

Figure 5.5: Loss and Accuracy, Impact of the number of layers (m) parameter.

Figure 5.6 illustrates the effect of varying dimensions of the hidden state vector. The Loss curves
and accuracy of both GRU and LSTM are shown in Figure 5.6b and Figure 5.6a, respectively. The
role of the hidden states is to embed historical knowledge, and increasing their size improves the
model’s ability to remember more information. The larger the models, the better performance.

(a) GRU (b) LSTM

Figure 5.6: Loss and Accuracy, Impact of (d out) parameter.

5.6.2 Impact of sequential data

To demonstrate the necessity of incorporating historical data in the deployment of consistency-based
AIDS, we assess the performance of our model in classifying the tth received CAM. To accomplish
this, we utilized our test dataset and calculated the F1Score for each class on the data points
received at time t for each CAM. Since the maximum observed sequence length was 100, the value
of t varies between 1 and 100.

Figure 5.7 summarizes the obtained results. The lines in the graph depict the average F1Score
for each RNN model, while the colored contour indicates the confidence interval of the F1Score,
which is calculated as the average F1Score plus or minus the standard deviation4 of the F1Score
for the six class labels. The figure illustrates that at t = 1, the classification quality is low, similar

4statistical measure that quantifies the amount of variation or dispersion in a set of data points.
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Figure 5.7: F1Score, Classifying tth received CAM.

to the performance obtained by the MLP. This is because both the MLP and RNN models, in this
case, perform a data point classification without taking any previous data points into account. As
time progresses, the F1Score for both RNN models increases rapidly, and the confidence interval
becomes narrower. This is because the RNN models analyze the consistency of the received CAMs
over time, resulting in more accurate classification. When t > 60, it can be observed that the
RNN achieves an F1Score of 1, indicating that the model is able to achieve perfect classification
with 100% accuracy and 0% false positive rate. The performance improved linearly over time and
reached a perfect model performance after approximately 60.

These findings demonstrate the effectiveness of RNN models in detecting legitimate/malicious
CAMs by analyzing the consistency over time.

On the one hand, the study indicates that including longer historical data improves model
performance significantly. On the other hand, related works frequently adopt windowing approaches
in which the model analyzes only a limited number of messages (windows with a fixed length, Wsize),
and this length is generally short (24, 20 and 20 in [Gro+21],[All+21] and [HCT22] respectively).
Nonetheless, we believe that using the windowing approach limits by disregarding historical data
(older than Wsize) that could provide insight for the classification of CAMs.

5.6.3 AIDS time complexity analysis

5G-V2X systems require stringent latency, especially when it comes to cooperative awareness ap-
plications. Vehicles receive CAMs at a high frequency and from multiple neighboring vehicles.
The transmission capabilities introduced in 5G and beyond networks can meet these requirements.
However, deploying security-related mechanisms is generally costly and is not exempt from this.
In fact, analyzing CAMs creates additional computation overhead and thus increases the vehicle’s
end-to-end latency.
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To demonstrate the efficiency of the suggested models, analyzing their theoretical time complex-
ity is the most effective method. It offers valuable insights and enables a fair comparison among
different approaches.

To determine the precise complexity of the models, we assume that scalar addition, multiplica-
tion, as well as calculating the exponential and hyperbolic tangent functions (tanh), are all consid-
ered primitive operations belonging to O(1). Additionally, it should be noted that d in = d out = d
and m = 1 (refer to Table 5.2).

Complexitymodel gru = d[12d+ 2x+ 2k + 9] (5.6.1)

Complexitymodel lstm = d[16d+ 2x+ 2k + 13] (5.6.2)

The computational complexity of classifying a data point (CAMt) using GRU and LSTM models
can be determined using Equations (5.6.1) and (5.6.2), respectively. The details are provided in
Appendix A. Both models belong to O(1), making them computationally efficient. However, GRU
has fewer gates and requires fewer primitive operations (4d2+d) than LSTM, which is advantageous
in latency-sensitive domains like V2X. Therefore, we have chosen the GRU model as it can provide
lower end-to-end latency due to its simple architecture. Compared to works cited in related works,
that rely on sequence classification, where they used the window sliding approach and pass it
through a CNN layer, then a RNN network to reconstruct the sequence and finally calculate the
reconstruction error, we will calculate the time complexity.

We aim to compare the computational efficiency of our method to approaches cited in related
works ([All+21; HCT22]). The approaches rely on sequence classification using a window sliding
approach, a CNN layer, and an RNN network to reconstruct the sequence and calculate the recon-
struction error. To simplify, we will replace the CNN layer with a concatenation of the projected
data points within the window, where the window has a length of Wsize. Therefore, the computa-
tional complexity can be expressed as Wsize ∗Complexitygru/lstm, plus the complexity of calculating
the reconstruction error, both of which have a time complexity of O(Wsize). As a result, the
overall time complexity is also O(Wsize).

It is worth noting that a constant time complexity, O(Wsize), is considered efficient in most
cases. However, our proposed approach offers an even greater efficiency with a time complexity
that is Wsize times less than approaches proposed in [All+21; HCT22], making it suitable for AIDS
deployment in the context of 5G-V2X networks.

Conclusion

In this contribution, we introduced a novel data-centric AIDS designed for 5G and beyond vehic-
ular networks. Our model is based on RNNs allowing for consistency verification by gradually
integrating the entire historical data sequence for classification. We have demonstrated that longer
historical sequence lengths lead to better performance. This is particularly an interesting finding
because existing approaches rely on fixed-length sequences, which may limit their performance.
Furthermore, our proposed approach has the advantage of low computational cost, as it only re-
quires one RNN cell per received CAM. We have proven this through theoretical time complexity
analysis. As a result, we believe that the approach proposed in this chapter represents a significant
improvement over existing methods.

This chapter marks the culmination of Part II, summarizing our contributions to HIDSs im-
plemented at the vehicular level in the context of 5G-V2X. Our contributions have encompassed
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enhancing both the reliability and integrity aspects of these systems. Moving forward, the sub-
sequent part will delve into Network-based Intrusion Detection Systems (NIDSs) in 5G networks,
focusing on safeguarding Application Servers (ASs).
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Chapter 6

Early network intrusion detection
in 5G networks

Introduction

This chapter discusses our contribution to Network-based Intrusion Detection Systems (NIDSs) in
5G and beyond networks. The contribution aims to protect Application Servers (ASs) at the NS
level, which can include vehicular applications or any other services. Our NIDS is deployed at the
gateway level (UPF) and inspects malicious traffic.
Furthermore, and more importantly, our contribution addresses the issue of delays in network in-
trusion detection in the current approaches. Thus, we propose a novel approach capable of early
intrusion detection. Our proposed model incorporates DL techniques, utilizing RNNs, along with
attention mechanisms. This architecture takes advantage of the sequential nature of packets within
Network Flows to enable early attack detection.

The remainder of this chapter is organized as follows, the following section discusses the context,
and then the contributions are summarized. Section 6.3 provides a comprehensive review of existing
approaches in the field of NIDSs. Section 6.4 presents the proposed approach, including the prepa-
ration of data, a detailed description of the proposed Attention RNN model, and an explanation
of the training phase. Section 6.5 presents the datasets utilized in the research. The classification
performances of the proposed model are also demonstrated. Additionally, this section examines the
early detection capabilities of the model.

6.1 Context

In Section 3.3 we introduced approaches of NIDSs, the aim is to analyze incoming and outgoing
traffic in real-time, looking for patterns and behaviors that may indicate suspicious activities. NIDSs
trigger alerts so that the mitigation component takes the appropriate countermeasures to prevent
the intrusion.

The Network Flow starts when the source sends its first packet and has two termination condi-
tions: either a termination signal is sent in the packet, or a timeout is reached [USB17]. Commonly
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in research works, the sequence is then aggregated into a single data point that contains statistical
information about the packets, such as their arrival time, length, direction, and flags. Flow-based
NIDS, which will be referred to in this chapter as conventional flow-based NIDS, perform the clas-
sification task only when the Network Flow termination condition is met.

However, a Network Flow can potentially expose some abnormal traffic traces before its ter-
mination. Therefore, the flow type can be inferred early, which makes waiting for its termination
unnecessary and results in delayed detection. This can further harm the network. In another case,
if the last packet of a Network Flow is sent after a certain amount of time, before reaching the
timeout and not including a termination signal, the NIDS ignores the termination of the flow and
must wait until the timeout is reached to perform the classification. This introduces more delay
in taking appropriate action against the malicious user, which gives them more time to carry out
further malicious activities.

The scenarios described above underscore a significant challenge that, to the best of our knowl-
edge, remains inadequately addressed in the existing literature. This challenge concerns the efficacy
of NIDSs in detecting malicious traffic at the earliest possible stage.
A NIDS must detect suspicious traffic in its nascent form to proactively prevent the persistence of
malicious traffic flows in the network. Therefore, we believe that future research efforts should focus
on developing preemptive approaches that minimize the time required to detect malicious traffic in
the context of flow-based NIDS.

6.2 Contribution Summary

Sequence-based classifiers, such as RNNs and attention mechanisms, can help address the afore-
mentioned challenge. These techniques are particularly advantageous for handling sequential data,
as they can process and identify sequential patterns within a sequence. Incorporating RNNs into
NIDS can significantly improve flow classification accuracy by preserving the temporal (sequential)
dimension.

RNN-based NIDS can better capture temporal dependencies of network packets within a Net-
work Flow, thereby enhancing its ability to detect and respond to malicious behavior. Furthermore,
attention mechanisms allow the RNN to selectively focus on parts of the input sequence that are
most relevant to sequence classification task [NZY21]. This is done by assigning a weight to each
packet header of the input flow, which reflects its importance to the current flow class. By allowing
the RNN to focus on the most relevant parts of the input sequence at each time step, attention
mechanisms have the potential to improve the performance of RNNs.

In this contribution, we present a novel approach for flow-based NIDS. Our approach utilizes
packet headers and incorporates the sequential nature of packets within Network Flows. We propose
an attention-based RNN model, which we demonstrate to be highly effective in achieving high
classification accuracy. Furthermore, we showcase the remarkable capabilities of our proposed
models in addressing the challenge of early attack detection. To the best of our knowledge, our
contribution is the first to tackle this aspect in the literature, making it a significant contribution
to the field of network security.
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6.3 Related Works

Table 6.1: Summary of Related Works
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The problem of NIDS has been a topic of great interest to researchers, and its development is
still ongoing. Researchers constantly strive to develop new techniques and architectures to address
the challenges and issues related to NIDSs.

Some NIDS treat each network packet as a separate data point that must be analyzed and clas-
sified. This analysis can be based on the packet’s header or payload. Many existing NIDS methods
use signatures, which typically involve testing whether the packet matches a header, port, or payload
attack condition using regular expressions, please refer to [Kum] for details about signatures-based
NIDS. Recent works use advanced techniques, especially DL/ML based approaches. [Far+22] ex-
perimented ML for a packet classification task, the authors have proposed a tool that parses packet
payloads into a fixed-size byte vector. The resulting payload vector is then labeled and tested
using several ML algorithms, including RF, KNN, Adaboost, MLP, and CNN. In the same context,
[Has+22] proposed a novel approach for packet classification inspired by techniques used in natural
language processing. The approach utilizes an embedding technique that learns a vector represen-
tation of the payload. A NN is trained to learn byte embedding from the surrounding bytes in the
same payload. The packet payload bytes are then aggregated to obtain a payload embedding for
the packet, which is passed to a KNN model for final packet classification. However, packet-based
approaches have several drawbacks. Firstly, payload encryption makes it difficult to perform effec-
tive analysis. Secondly, analyzing the payload takes considerable time. Moreover, these methods do
not take any contextual information into account, which means they may fail to detect abnormal
traffic that consists of a set of packets where each packet separately is benign, but the whole traffic
is malicious.

To overcome these limitations, the new NIDSs are based on Network Flows. A Network Flow is a
continuous packet stream representing a communication session between a source and a destination.
A Network Flow begins when the source sends its first packet and terminates when one of two
conditions is met: either a termination signal is sent in the packet, such as the FIN signal in TCP,
or a timeout is reached. Usually, the timeout period is set to 60 seconds [23a].

Most flow-based NIDSs utilize packet headers to extract relevant information. The data ex-
tracted from packet headers is then consolidated into a single data point containing statistical in-
formation about the packets. This statistical information includes the packet’s arrival time, length,
direction, and flags. The aggregated vector may contain over 100 features. In the context section
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(Section 6.1), we referred to this type of NIDS as conventional NIDS.
In the literature, a variety of models and classifiers have been developed for flow based intrusion

detection, and recent research has focused on utilizing advanced ML/DL techniques. ML techniques
are employed in various ways, including supervised learning. In binary-class supervised NIDS, the
classifier is trained to learn and predict whether the flow is benign or malicious [BM16; Sar+20;
IA19]. In contrast, in multi-class supervised NIDS, the classifier is trained to predict the type of
attack [Sho+18; AMK17; Yan+23; BB23]. Another approach is semi-supervised learning, where the
ML/DL model is trained only on benign traffic and is then used to determine whether a given flow
belongs to the benign class. Any flow that does not fit this class is considered as an attack [Zİ20;
Min+21].

Conventional flow-based NIDSs rely on flow termination conditions. As stated in the introduc-
tion, it is important to note that these approaches can result in increased delays. Moreover, when
aggregating the Network Flow (sequence of packets) into a single data point, there is a loss of the
temporal dimension inherent in the sequence. This loss of temporal information can impact the
performances of the model [Sun+20; Han+23].

It is worth noting that certain sequence-based DL models like RNNs and transformers2 have
been misused in some flow-based NIDS works. Approaches discussed in [Wu+22; Jia+20; Tan+19b;
WL21; Kha21; UM22; NAS20] treat the flow aggregated vector as a sequence and feed it into a
sequence-based DL model. We strongly believe that these approaches are conceptually flawed and
should be reconsidered.

Recent proposals for flow-based NIDS have suggested leveraging time-series data instead of flow
aggregation to enhance performance. The authors of [Sun+20] proposed a model that processes
flow packets, including both the header and payload, in a 2D format consisting of a sequence of
packets and their corresponding features. The model then passes this input to a CNN layer, with
the resulting output being fed into a LSTM layer for flow classification. Additionally, [Han+23]
proposed a transformer-based model for flow classification, which considers both the header and
payload of a packet. The payload is a vector containing the frequency counts of its bytes. The
sequence of packets in the flow is fed to a transformer model for classification. [Sun+20; Han+23]
demonstrated the effectiveness of using sequence-based deep learning models, with [Han+23] in
particular highlighting the advantages of using transformers, which rely on attention mechanisms
to improve performance. However, both approaches rely on packet payload, making them prone to
computational overhead and payload encryption issues.

[Tan+19a] attempted to address the detection time issue and highlighted that relying on ter-
mination timeouts for flows can cause delays in the detection process. The authors have proposed
a framework that continuously monitors the state of the network to determine if it is experiencing
any anomalies. The proposed approach periodically checks various network parameters to identify
potential deviations from expected network behavior. The authors have considered 55 features,
including statistics related to the number and length of packets, as well as the active flows in the
network. The NIDS performs inference every 0.5 seconds to detect anomalies in the behaviour.
The framework leverages a transformer model, which performs binary classification to determine
whether the current network behavior is normal or not. The model considers the network’s pre-
vious states during the last 5 seconds. Through comparison with other models, the authors have
demonstrated the effectiveness of their transformer-based approach. The proposed framework is
effective in detecting the presence of an attack in the network, but it does not provide information
about the attacker’s identity or attack type. Additionally, the approach cannot determine whether

2type of NN architecture that uses attention mechanisms.
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there is only one attack or multiple attacks being performed, nor can it identify whether there is
a single attacker or multiple attackers involved. These limitations can make it challenging for the
mitigation module to take the appropriate actions.

Table 6.1 presents a comprehensive overview of the works discussed earlier. It encompasses key
information such as the ML/DL models utilized, classification type (binary or multi-class), and the
datasets employed. Furthermore, the table provides a concise summary of the limitations associated
with each of the works.

To overcome the aforementioned limitations, we introduce a flow-based NIDS that focuses on
packet headers and considers the sequential nature of Network Flows. Our approach capitalizes on
the benefits offered by attention mechanisms, showcasing their effectiveness in early flow classifica-
tion.

6.4 Methodology

In this section, we provide an overview of our proposed flow-based NIDS. We delve into the various
components and steps involved in its implementation. We cover the data processing phase, the
utilization of RNNs and attention mechanisms, as well as the DL-model training process.

6.4.1 Transformation of the network traffic data to network flows

Network security and monitoring data is collected and stored in the form of pcap files. Packet CAP-
ture (PCAP) represents a file format used to store network traffic data that has been captured by a
network sniffer tool. These pcap files serve as repositories for detailed information about individual
network packets, including their headers and payloads. The pcap files are processed by various tools
to extract aggregated flows and convert them into CSV format. Examples of such tools include
Argus3, NetFlow4, CiCFlowmeter5. These tools are commonly employed in different open-source
datasets for network analysis. However, the aforementioned tools primarily focus on providing ag-
gregated flow-level information from pcap files. Although these tools are widely used in the literature
for flow-based NIDSs, they are not suitable for NIDSs that rely on packet sequentiality within flows.

Given the importance of processing packet-level sequentiality for flow-based NIDS, we have cre-
ated a Python-based tool called py flows. This tool segments the fully captured raw network traffic
files (provided in many open-source datasets), into individual network traffic files. Each segmented
file contains the packet sequences associated with their respective flow.

A flow session is uniquely identified by the source IP address and port, destination IP address
and port, and the protocol used. Traditionally, when flows surpass the timeout period, they are
subdivided into multiple sub-flows. However, in our work, we take a different approach by preserving
the entire session flow without splitting it.

The flow labeling is conducted in a semi-manual manner. Open-source network intrusion
datasets provide metadata on how the datasets were generated. These metadata include attack
information such as the attacker’s IP address, the victim’s IP address, the type of attack, and the

3openargus.org
4cisco.com
5github.com/ahlashkari/CICFlowMeter
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time when the attack was initiated. The dataset’s metadata are utilized for labeling the flow files
generated by the py flows tool. These labels serve the purpose of identifying, whether a flow is
tagged as benign or corresponds to a specific type of attack. The dataset containing the labeled
flows can be used to train NIDS classifiers.

6.4.2 Data preparation and pre-processing

The data set generated from the previous step consists of a collection of labeled flows in pcap
format. In our approach, we used ScaPy6 library to read the packets within each flow and extract
the header data. The extracted features are:

• Packet relative time: represents the arrival time of a packet (xtt) relative to the first packet
(xt1) in the flow. This feature is expressed in seconds and calculated as time(xtt)−time(xt1),

• Inter arrival time, refers to the time interval between the arrival of a packet (xtt) and its
preceding packet (xtt−1

) in the flow sequence,

• Packet direction, can be categorized as either forward or backward. Forward (fwd) packets
are the ones sent by the flow initiator, determined by the source of the first packet in the
sequence. Conversely, backward (bwd) packets refer to the ones sent by the destination,

• Destination port: the flow destination port,

• Packet length,

• Packet payload length,

• Time-To-Live (TTL), a field in the IP header specifing the number of routers that a packet
can pass through before it is discarded,

• Protocol: IP protocol, TCP or User Datagram Protocol (UDP),

• TCP flags, which are control bits found in the TCP packet header. There are 8 flags
(PSH,SYN,RST,FIN,ACK,URG,ECE,CWR) and please refer to [Edd22] for details on TCP/IP
networking.

After extracting features from pcap files, they are saved in a csv file, with each file representing
a labeled sequence of the extracted features.

To prepare the data for the model training, we performed encoding and normalization techniques
on the features. We used the Z score function to normalize the packet length and packet payload
length. Additionally, since the TTL field is an integer ranging from 0 to 255, we normalized it
using the min-max function to scale it within the range of 0 to 1. Regarding the destination port,
which is a categorical type field, we decided to retain only the commonly used destination ports
found in the dataset, such as 22, 80, 8080, and 5353. It is important to note that these ports may
vary depending on the testbed used to generate the data and the servers/services deployed. After
identifying the common ports, we proceeded to encode them. As for the remaining ports that were
not part of the common set, we assigned them a default code. Due to the variable lengths of packets

6scapy.net
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in flow sequences, we adopted a simplification approach by truncating the sequences to a maximum
length, denoted as MAX LENGTH (= 128).

At this stage, the data is prepared as input to the NIDS model. The dataset consists of a collec-
tion of Network Flows, where each flow is represented as a tuple < x, label >. In this representation,
x = {xtt}/t ∈ [1, L] is the sequence of packet headers belonging to the flow, L is the length of the
flow (number of packets) L = ||P ||/L ∈ [1,MAX LENGTH]. A packet header, denoted as xtt , has
the following structure:

xtt :<rt, iat, fwd,bwd,d port, len p, len payload, ttl,

proto, fp, fs, fr, ff , fa, fu, fe, fc >

(rt), (iat), (len p), (len payload), (ttl) represents the packet’s relative time, inter arrival time, packet
length, payload length and the time-to-live, respectively. fwd and bwd are boolean variables that
represent the packet’s direction, proto represents the type of IP protocol (TCP or UDP), The flags
fp, fs, fr, ff , fa, fu, fe and fc are boolean variables that indicate control bits of the TCP packet
header. If the packet is a UDP packet, then these flags are set to false.

6.4.3 Deep Learning Model

This subsection provides a description of our DL model, which consists of three key modules: a
projection layer, an encoder module using an RNN with attention mechanism, and a decoder layer.
The model’s architecture overview is illustrated in Figure 6.1.

Projection Layer

The model operates by accepting a sequence x as its input. To start, each individual input xtt ∈ x
is projected through a FFNN layer.

The FFNN layer is followed by a dropout() function, serving as a regularization technique that
aim to prevent over-fitting. The dropout layer randomly sets a fraction of the input tensor elements
to zero, during training with a specified dropout probability, denoted as pdropout.

The primary objective of this projection is to map the inputs to a higher-dimensional space,
enabling richer representation and capturing more complex patterns. The projected input (x̂tt) has
the shape (d,), and is calculated as follows:

x̂tt = dropout(W⊤
projector ∗ xtt + b) (6.4.1)

Wprojector is a learnable weight matrix of shape (||xtt ||, d) and bprojector is the bias vector of shape
(d,).

AttnRNN Encoder

The purpose of this block is to process the projected packets within the flow sequence and encode
it in the form of a latent representation, extracting meaningful and important information from
the flow sequence. This representation will then be used by the decoder layer to classify the input
sequence effectively. Our encoder building block consists of RNN layers and an attention module,
which we detail in the subsequent paragraphs.
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Figure 6.1: AttnRNN Model Architecture.

RNN block The RNN component, depicted in blue in Figure 6.1, maintains an internal hidden
state that enables it to retain and use information from previous data points within a sequence.

The RNN cell accepts as input a projected input x̂tt with shape (d,). The formula for calculating
the hidden state htt is as follows:

htt = tanh(W⊤ ∗ x̂tt + bx + V ⊤ ∗ htt−1 + bh) (6.4.2)

Where W and V are learnable weight matrices of shapes (d, d). bx and bh are the bias vectors of
shape (d,). Please note that in this contribution, we set din = dout = d for the RNN cell shapes.

In this contribution, we will utilize LSTM and GRU, both LSTM and GRU rely on the con-
cept of hidden states, they also incorporate additional gates and internal states to facilitate their
functioning. Please refer to Section 2.3.2 for further details on these LSTM and GRU.

Attention module Attention mechanisms are designed to improve the performance of neural
networks when processing sequential data. When applied to a DL-based NIDS model, attention
mechanisms enable the DL model to assign weights to the packets in the flow sequence, which helps
to selectively focus on the most important and relevant packets during the classification process.
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The key idea behind attention is to create a context vector (c) and provides it as an additional
input to the decoder. This context vector is calculated by combining the hidden states of the
encoder hm, which represent the input flow sequence, with attention weights that determine the
importance of each hidden state hm

i . The context vector is calculated as follows:

c = (α ∗ hm)⊤ (6.4.3)

α is the vector of the attention weights, it has the shape of (1,L) where L is the flow sequence
length, and its calculation is shown in Equation 6.4.4; hm is the hidden states of the RNN’s last
layer (m), hm = {hm

tt /t ∈ [1, L]}. The context vector c has shape of (d,).

α = {softmax(αtt)/t ∈ [1, L]} (6.4.4)

αtt is the attention weight of the input xtt , it quantifies its importance and the relevance
to predicted flow. There are several methods for calculating attention weights in the context
of attention mechanisms. the commonly used methods include content base attention, additive
attention, location attention, general attention, dot product attention, and scaled dot product
attention, refer to [Wen18] for further details.

Our DL model utilizes additive attention, a technique that was first introduced in [BCB16].
This approach is robust in handling sequences of varying lengths and provides interpretable weight
scores. The attention weights are parameterized by a FFNN layer, which is jointly trained with the
other components of the model. The attention weight αtt of the packet xtt is calculated as follows:

αtt = v⊤attn ∗ tanh(Wattn[h
m
tL ;h

m
tt ]

⊤) (6.4.5)

Where vattn and Wattn are learnable weight matrices of shapes (d, 2d) and (d,), respectively.

Decoder Layer

The last stage of the classification process involves decoding the encoded representation of the flow
and inferring the flow’s class. The output of the encoder building block, denoted as outencoder, is
passed through a FFNN layer, the final output vector ŷ is computed as follows:

ŷ = U⊤ ∗ outencoder + by (6.4.6)

Where U is a learnable weight matrix and by is the bias vector.

In the case where the encoder does not include the attention module, outencoder corresponds
to the last hidden state hm

L of the RNN. On the other case, if the encoder does have an attention
module, then outencoder is obtained by concatenating the RNN’s output and the context vector (c),
resulting in outencoder = [hm

L , k]. Consequently, the shape of U is either (d, k) or (2d, k), depending
on the specific configuration of the model, where k represents the number of classes.

The output vector y has a shape of (k,). Each element ŷz in the output vector corresponds
to the probability of the input flow belonging to the corresponding class z. The predicted class
(predicted label), is determined by the NIDS based on the index (z) that corresponds to the highest
probability value in the vector ŷ.
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6.4.4 DL Model Training

To train our NN model, we used the backpropagation algorithm to compute gradients and update
the model’s learnable parameters θ (including Wprojector, bprojector, W

j , V j , vattn, Wattn, U , and
by). We employed SGD as our optimization algorithm. Cross-Entropy is used as a Loss function.
Additionally, to address the issue of gradient explosion that can occur in RNNs, we used the gra-
dient clipping technique. Gradient clipping promotes more stable updates and aids in preventing
the occurrence of infinity values in the gradients (pytorch NaN7).

Given that the sequences in the dataset have different lengths, we apply right-padding with zeros

(x0 =
−→
0 ) within each batch to align them with the maximum sequence length present in that batch.

When computing the attention context vector, we apply a masking technique to ignore the
padded values (x0) in the flow sequence. As a result, these padded points do not contribute to the
calculation of attention weights for the context vector. Similarly, during the calculation of the Loss,
the padded values are also disregarded and not taken into account. The explained model training
process is repeated for (E) iterations.

6.5 Performances Analysis

This section explains the datasets used in our approach, the DL training environment, performance
metrics such as Accuracy, and discusses the early detection capabilities of our attnRNN NIDS.

Table 6.2: CIC-IDS2017 dataset overview

Label N. of packets N. of flows
Benign 5628248 248587 56.71%
Portscan 217530 107692 24.57%
DDoSLOIT 1265657 45168 10.30%
DoSHulk 2137508 14108 3.22%
DoSGoldenEye 106177 7574 1.73%
DoSSlowhttptest 37924 4212 0.96%
FTP-Patator 110256 3958 0.90%
DoSslowloris 45510 3835 0.87%
SSH-Patator 136073 2464 0.56%
Botnet 9862 735 0.17%

6.5.1 Datasets

In order to showcase the strength and effectiveness of our proposed approach, we selected two
modern and up-to date intrusion detection datasets that provide full network packet capture records
and the corresponding labels. These datasets are CIC-IDS2017 [SLG18] and 5G-NIDD [Sam+22].
For both datasets, we followed the process outlined in sub-section 6.4.1 to extract the flow sequences

7stands for Not a Number, a special value that represents undefined numbers
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Table 6.3: 5G-NIDD dataset overview

Label N. of packets N. of flows
BENIGN 624154 75625 40.51%
Goldeneye 900385 27467 14.71%
TCPConnect 20341 20032 10.73%
UDPScan 15921 15890 8.51%
Torshammer 555319 15837 8.48%
SYNscan 10064 10014 5.36%
SYNScan 10054 10009 5.36%
SYNflood 26458 7566 4.05%
Slowloris 61916 4247 2.27%

from the packet capture records. The labeling phase varies depending on the nature of the available
metadata. To prepare the labeled flow sequences for model input, we proceeded to pre-process them
as outlined in sub-section 6.4.2. Tables 6.2 and 6.3 present the labels, as well as the number of
packets in the original dataset and the extracted flows for datasets CIC-IDS2017 and 5G-NIDD,
respectively. Each dataset (X) is divided into two sets, with 80% of the data allocated for training
(Xtrain) and 20% allocated for testing (Xtest).

CIC-IDS2017

The CIC-IDS2017 dataset was proposed by the Canadian Institute of Cybersecurity and has gained
significant popularity in the literature. It has been referenced over 1000 times and is widely re-
garded as a reference dataset in the field of network intrusion detection. The CIC-IDS2017 dataset
encompasses both benign network traffic and various types of attacks, such as Bot, DDoS, DoS,
Patator, PortScan, Web Attack, Heartbleed, and Infiltration. Due to the limited representation
of certain classes in the dataset, some of these classes were excluded from this contribution. The
website of the dataset provides the necessary metadata for labeling, which includes information
such as the attack lunch time and IP addresses of the attackers.

5G-NIDD

The 5G Network Intrusion Dataset (5G-NIDD) is a recently developed dataset designed for intrusion
detection in 5G networks. This dataset was generated using the 5G Test Network at the University
of Oulu in Finland. The data in this dataset is collected from the gateways deployed in two
base stations. It consists of various types of network traffic, including benign traffic and different
types of attacks: ICMP Flood, UDP Flood, SYN Flood, HTTP Flood, Slowrate DoS, SYN Scan,
TCP Connect Scan, and UDP Scan. The dataset is organized in such a way that each attack is
represented by a separate (.pcap) file. Additionally, the IP address of the attacker is (10.41.150.68).
This metadata was utilized to accurately label the extracted flow sequences within the dataset.

6.5.2 Model Training Environment

The training hyper-parameters are summarized in Table 6.4.
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Table 6.4: Training hyper-parameters

parameter value
DL model d 128

m 1
k 10 CIC-IDS2017/ 9 5G-NIDD
pdropout 0.2

LR η 1 ∗ 10−3

Train

Optimiser SGD
Loss Cross-Entropy
B 32
E 10

(a) CIC-IDS2017 Dataset

(b) 5G-NIDD Dataset

Figure 6.2: NIDS Classification accuracy on test data

6.5.3 Classification Accuracy

Figure 6.2a presents the test accuracy of various experimented models, including LSTM, LSTM
with Attention, GRU, and GRU with Attention, on the CIC-IDS2017 dataset. The corresponding
results for the 5G-NIDD dataset can be found in Figure 6.2b. It is evident from both datasets that
the models achieved remarkably high accuracy rates (99%), which aligns with previous findings in
the literature. Furthermore, the inclusion of attention mechanisms in the models resulted in slight
performance enhancements. The utilization of attention context vector aided the learning process,
contributing to these improvements. The GRU with Attention model demonstrated superior perfor-
mance on the CIC-IDS2017 dataset, whereas the LSTM with Attention model outperformed others
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on the 5G-NIDD dataset. Therefore, we will select these respective models to conduct further
evaluations on each dataset.

Figure 6.3: Visualizing a Network Flow, its predicted class, and the attention weights.

6.5.4 Visualizing Attention

Figure 6.3 illustrates a flow sequence extracted from the CIC-IDS2017 dataset. This particular flow
is a TCP flow, with a destination port of 80. It consists of nine (9) packets, and each packet within
the flow is represented by its header. The total duration of the flow is 2.52 seconds. Notably, the
LSTM attention model accurately classified this flow, assigning it the label DDoSLOIT. The figure
also depicts the attention weights (α). These weights are used to calculate the context vector (c)
as shown in Equation 6.4.3.

The context vector (c) is then concatenated with the LSTM output of the last packet (ht9).
This concatenated representation is subsequently fed into the decoder for the classification task.

We observe that the forth and fifth packet (xt4 , xt5) possesses the highest attention weights
among all the packets in the flow. This particular observation suggests that xt4 and xt5 signifi-
cantly influenced the decoder’s classification decision, leading to the assignment of the DDoSLOIT
label. This finding suggests that the presence of (xt4 , xt5) in the flow may contain crucial informa-
tion related to the underlying attack. Additionally, the high attention weights observed in the flow
can be interpreted as an indication of the presence of hidden traces of the attack within in these
specific packets.

Figure 6.4: Step-by-step predicted class of a Network Flow

To further explore the notion that some packets in the flow contains relevant traces of the
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produced labels, we employ a step-by-step classification. For each packet in the flow, denoted as xtt

where t ≤ L, we feed the hidden state (htt) and the context vector (c) calculated using the attention
weights (αtj ) up to the t-th packet to the decoder ŷ. This step-by-step classification allows us to
observe how the encoder progressively represents the flow, and see how the decoder decodes this
representation.

In this specific case, the observed flow analysis reveals interesting behavior. At the beginning
of the flow, the NIDS initially classified the flow as Benign. The decoder indicated that the traffic
appeared to be normal with a high level of confidence. This initial classification is expected since the
first three packets contain the TCP handshake exchange, making it difficult to infer any attack solely
from these packets. Therefore, the benign classification is reasonable given the limited information
available in the initial packets. However, a shift occurred when the 5th packet (xt5) was observed.
At this point, the NIDS reevaluated the flow and reclassified it as DDoS LOIT. Initially, the
classification confidence was 89%, indicating a fair level of certainty. As the analysis progressed
with each subsequent packet, the NIDS became increasingly confident in its classification, reaching
a high confidence level of 99%.

These observations are consistent with our previous analysis of attention weights. When exam-
ining the attention weights across all the packets, we found that the 4th and 5th packets has the
highest attention weight, indicating its significance in determining the label DDoSLOIT. The DL
model successfully generated this label by decoding the information utilizing ht5 and the context
vector c obtained through the attention mechanism, which incorporates the attention weights αtj

for j ≤ 5.

Our model successfully detected the attack immediately following the occurrence of packet (xt5).
Early detection of the attack can be achieved if an alert is triggered after (xt5). As a result, the
remaining four packets (from packet xt6 to xt9) of the flow would not take place. Additionally,
the analyzed flow represents a TCP connection that is closed with a FIN flag. Conventional flow-
based NIDS can only analyze this flow once it has been terminated, as indicated by the event
(xt9) approximately 2.52 seconds after the initiation of the flow. In contrast, our approach enables
detection to be carried out much earlier, precisely right after (xt5), at approximately 0.001 seconds.

6.5.5 Early detection capabilities

The previous sub-section highlighted the early flow detection capabilities in comparison to conven-
tional NIDS from two perspectives: the requirement of fewer packets for attack detection and the
ability to classify flows at an earlier stage. In this sub-section, we will generalize these observations
based on the experimental datasets.

Packets required for attack classification

Figure 6.5 provides an overview of the performance concerning sufficient initial successive packets
required for correct attack flow classification.

The x-axis represents the flow length, which corresponds to the number of packets in each flow.
Each element on the x-axis groups flows of the same length together. On the other hand, the y-axis
represents the number of initial packets required for the NIDS to detect an attack.

Conventional flow based ids analyses the flow using all its packets, hence its graph is repre-
sented by the diagonal line. The dashed lines represents the RNN model while the continuous line
represents the RNN model with attention mechanism. The RNN model is GRU for CIC-IDS2017
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(a) CIC-IDS2017

(b) 5G-NIDD

Figure 6.5: Number of initial packets required for correct attack classification. AttnRNN (orange
line), RNN (blue line), Conventional flow-based NIDS (green line)

(a) CIC-IDS2017

(b) 5G-NIDD

Figure 6.6: Number of initial packets required for correct attack classification of a selected attack
classes. AttnRNN (orange line), RNN (blue line), Conventional flow-based NIDS (green line)

(displayed in 6.5a), and LSTM for 5G-NIDD (displayed in 6.5b), these were the selected models
based on the accuracy metric as shown in figure1.

In both scenarios, both the RNN and AttnRNN models demonstrated the capability to achieve
early classification. The plots representing their respective results clearly illustrate data points
positioned below the diagonal line, indicating their advancements compared to conventional flow-
based IDS. Moreover, the Attn RNN model demonstrated a slight improvement over the RNN
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(a) CIC-IDS 2017 (b) 5G-NIDD

Figure 6.7: Overall Attack Detection Time. AttnRNN (orange bars), Conventional flow-based
NIDS (green bars)

model, highlighting the effectiveness of attention mechanisms in enhancing performance.
In figure 6.5, the green-colored area represents the remaining skipped packets, which signifies the

number of packets that were ignored in consequence of early attack detection. The green-colored
packets represent malicious traffic that can be prevented from occurring within the network. The
green area appears narrower in 6.5a compared to 6.5b. This observation indicates that in the 5G-
NIDD dataset, attacks were more readily classified at an early stage where the attack patterns were
relatively easier to identify.

Figure 6.6 highlights attack labels, the sub-figures provide further evidence that the proposed
models (RNN and AttnRNN) can enable early detection; certain attacks are detected earlier than
others, this observation suggests that the characteristics of the attack and its corresponding traces
vary depending on the specific type of attack. One interesting attack label worth noting is the
udpscan. Our models demonstrate similar performance to the conventional model in detecting
this type of attack. The udpscan attack, characterized by only two packets, is passive in nature.
Interestingly, proposed models cannot infer the attack based on the first packet, possibly due to its
resemblance to normal traffic behavior. Consequently, both our RNN and attnRNN models require
the two packets of the flow to identify the udpscan attack.

Detection time

Figure 6.7 illustrates the detection time, which refers to the moment at which the model identifies
a flow as an attack. It is important to note that the model inference time has not been taken
into account in this representation. The x-axis represents flows as data points, while the bars
represent the duration of each flow. The green bars depict the detection time of the conventional
flow-based IDS, while the orange bars represent the attnRNN model. Sub-Figure 6.7a showcases
the performance results on the CIC-IDS2017 dataset, and Sub-Figure 6.7b displays the performance
on the 5G-NIDD dataset.

The conventional flow-based NIDS performs detection once the flow is terminated, which occurs
under two conditions: either when the FIN flag is sent or when the timeout period (60s) is reached.
In both datasets (represented by sub-figures 6.7a and 6.7b), AttnRNN demonstrates a reduced
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(a) CIC-IDS2017

(b) 5G-NIDD

Figure 6.8: Attack Detection Time for a set of Labels. AttnRNN (orange bars), Conventional
flow-based NIDS (green bars) of a selected attack classes

detection time. This figure highlights the effectiveness of AttnRNN in minimizing the needed time
(in seconds) to classify an attack flow. Minimizing the attack detection time can effectively limit
the duration of an attacker’s presence within the network.

Figure 6.8 presents the detection results for specific attack labels from both datasets. Although
AttnRNN successfully reduces the number of packets in the doshulk (shown in sub-figure 6.7a)
attack compared to conventional NIDS, both approaches show similar detection times. This is
primarily due to the extremely short flow duration (around 1 second) and the small inter-arrival
time between packets within the flow.

In the case of a UDP scan (shown in sub-figure 6.7b), conventional NIDS systems wait for the
timeout period as the flow is UDP. As mentioned previously, all approaches require two packets of
the flow for accurate detection. However, AttnRNN demonstrates the ability to detect the UDP
scan immediately after the occurrence of the second packet, whereas conventional NIDS systems
have to wait until the end of the flow, resulting in a significantly longer detection time ( around 60
seconds compared to just a few milliseconds).

To summarize this subsection, our proposed model is capable of promptly classifying malicious
flows as soon as an attack trace emerges. As discussed in paragraph 6.5.5, our model can reduce
the number of packets that need to be analyzed. Additionally, as shown in paragraph 6.5.5, our
model significantly decreases the time required for flow detection. These findings related to our
model capabilities offer multiple advantages, including minimizing the impact of attacks, reducing
computational overhead associated with analyzing skipped packets, improving attack response time,
and preventing further malicious activities within the network.

Conclusion

In this chapter, we addressed the challenge of early detection of network intrusions. We proposed
a NIDS that utilizes packet headers. Our proposed NIDS incorporates attention mechanisms and
RNNs to leverage the sequential nature of Network Flows. We evaluated the effectiveness of our
approach by conducting experiments on two up-to-date network intrusion datasets. Furthermore,
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we discussed the ability of our model for early detection and demonstrated its advantages from two
perspectives: (i) our approach reduces the number of initial required packets to classify the flow,
(ii) it reduces the time needed for detection compared to existing flow-based NIDS approaches.
The proposed NIDS shows great promise in enhancing the security and resilience of networks across
different environments, including 5G and beyond networks.

In this contribution, the proposed NIDS is trained and deployed on a per NS basis. This means
that each NS owner is responsible for training and deploying its own model. However, in a scenario
with a massive deployment of NSs, it becomes evident that collaboration among NSs is necessary
to construct a model that can learn from data across different NSs. Unfortunately, sharing data for
this purpose is not feasible due to privacy and business concerns. The next chapter will delve into
this problem, exploring the challenges of training NIDS collaboratively without sharing data.
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Chapter 7

Distributed DL-Based NIDSs in
5G networks

Introduction

In this chapter, we delve into the collaboration of 5G NSs owners to develop a global DL-based
NIDSs without the need to share NS data due to privacy reasons. Fortunately, Federated Learning
(FL) offers this possibility. However, this approach presents challenges when dealing with hetero-
geneous networks, where local NS data exhibits Non-Independent and Non-Identically Distributed
(Non-IID) distributions. This chapter aims to conduct comprehensive experiments, evaluating
state-of-the-art Federated Learning (FL) algorithms under both Independent and Identically Dis-
tributed (IID) and Non-Independent and Non-Identically Distributed (Non-IID) data distribution
scenarios. The considered FL algorithms include Federated Average (FedAvg), Federated with the
Proximal term (FedProx), Federated Personalizing (FedPer), and SCAFFOLD.
We will compare these FL models against both centralized and locally trained models. Through this
comparative analysis, we will draw meaningful conclusions and engage in a discussion to provide
insights for building collaborative IDSs.

The rest of this chapter is organized as follows. Section 7.1 provides more details about the
problematic of using of FL in heterogeneous networks. Section 7.2 summarizes our contributions.
Section 7.3 explains the FL aggregation algorithms. Section 7.4 provides an overview of related
works on using FL for NIDSs. Section 7.5 outlines our methodology, details the dataset used, and
its partitioning for the IID/Non-IID scenarios, and specifies the DL models, including centralized,
FL, and local models. The experimental evaluations of these models are presented in Section 7.6.
Finally, we conclude the chapter.

7.1 Context

Service owners in 5G and beyond networks must manage their Network Slices (NSs) and design
security mechanisms for their NSs. This responsibility is inherited from the shared responsibility
model used in the cloud computing, where the physical infrastructure owner is responsible for the
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underlying infrastructure, and the cloud client (in our context, the NS owner) is responsible for
their data and applications.

To design a DL based NIDS, NS owners should contribute their data to construct a global
dataset used for training the DL model, this method is known as centralized training.
In practice, however, the centralized approach has proven inconceivable because the Network Flows
dataset contains sensitive information about companies and NS users. This raises serious pri-
vacy issues, which are further regulated by legislation (e.g., General Data Protection Regulation
(GDPR) [VB17]), and labeled datasets can disclose that an attack has occurred within the NS, and
NS owners are reluctant to share this information. Therefore, sharing the data to build a global
dataset is resisted by individual NS owners. Even so, NSs must collaborate in order to deploy ef-
fective NIDS; unfortunately, DL models trained independently at the NS level using local NS data
may miss relevant samples of malicious and benign traffic, resulting in a decrease in the effectiveness
of the learning model.

To deal with this challenge, the community has been considering distributed techniques to
perform training, without requiring data sharing across NS. The advent of Federated Learning
(FL) [McM+16], a framework that allows decentralized training, has been a catalyst for NIDS
research [Lav+22].

FL consists of performing local training for different clients, with the clients communicating just
their local model parameters to a coordinator, this approach ensures privacy since local data is not
shared. The coordinator performs an aggregation procedure, then this aggregated model is returned
back to clients; the training process is repeated until convergence. In [McM+16], the federated av-
erage (FedAvg) aggregation function was introduced; it simply averages the clients’ models weights
in the aggregation phase, to obtain the global model at each training round. However, FL faces a
number of challenges that impede its use in the industry, including concerns about statistical hetero-
geneity (non iid-ness), communication efficiency, and security and privacy. The authors in [Li+20;
Rah+21; Wah+21; Ma+22] reviewed these challenges and possible solutions found in the literature.

To recap, the main objective of FL is to deliver a DL model with similar performances to
the centralized one. Statistical heterogeneity concern compromises this objective, and the FedAvg
aggregation function has shown its limitation in this realistic scenario, suffering from a weight di-
vergence from an optimal model that leads to unstable convergence[Kar+19].

In light of these challenges, new aggregation methods have been introduced, including Fed-
Prox[Li+18] and SCAFFOLD[Kar+19] as two novel aggregation techniques, that solve the high
weight divergence caused by Non-IID data by using controlling mechanisms in client updates. The
FedPer[Ari+19] aggregation approach tackles the issue, by personalizing DL models via transfer
learning.

7.2 Contribution Summary

In order to contribute to the development of FL-based NIDS capable of addressing the aforemen-
tioned issue, this study investigates FL and the aggregation methods by which it can be utilized to
enable collaborative DL-based NIDS in a 5G and beyond slicing environment.
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The contribution in this chapter aims to delve into state-of-the-art FL algorithms, namely Fed-
Prox, FedPer, and SCAFFOLD, designed to address the challenge of weight divergence in heteroge-
neous networks. It focuses on two primary settings: one where data is uniformly distributed across
NSs (IID), and another, more realistic scenario where data distribution is non-uniform (Non-IID)
among NSs. In this context, this chapter explores situations where malicious traffic may manifest
in one NS while being absent in another. The chapter also conducts a comparative analysis of
the performance of these models in comparison to locally trained models and centralized global
models, a comparison that has been overlooked in existing research works. Furthermore, within
this chapter, we present a framework for the training and deployment of FL-based NIDSs within
the context of 5G and beyond networks. The experimental study reveals that FL can be viewed
as a ”curse” because the exchanging models involve communication overhead but do not improve
detection Accuracy and performance compared to locally trained models. Fortunately, state-of-art
approaches could overcome convergence problems in Non-IID data, a ”blessing” for future FL-based
models to enable effective distributed learning.

7.3 Background: Federated Learning

Federated Learning is a distributed DL approach with the aim of building a single global model
from data stored on multiple end devices (or entities); devices are referred as clients. The model
training is conducted at the client level, and only model weights are exchanged across clients.

The learning of FL was formulated in [McM+16] as a minimization function:

min
w

K∑
k=1

nk

n
Lx(W ), x ∈ Xk (7.3.1)

Where K is the number of clients, Lx(w) represents the Loss function of input x where the
output is predicted by the model having θ = w, Xk is the client’s k local dataset with nk = |Xk|
and n =

∑
nk.

FL was initially designed to reduce the communication overhead [McM+16]. This commu-
nication efficiency is achieved by sharing model weights, rather than client-generated large-sized
raw data. Additionally, FL can guarantee more data privacy since the client’s local data will
always reside at the client level. However, one of the primary objectives of FL is to show clas-
sification/prediction results comparable to models trained in a centralized fashion. This can be
challenging because a single set of client data is not supposed to reflect the distribution of data in
the domain.

Starting from an initial DL model, the process begins by training separate models locally for a
certain number of iterations (E), each client using its own data. These respective models are then
communicated to a central node, and aggregated using an aggregation function to obtain a global
model. This process is called a round. At the end of each round, clients receive the aggregated
model, and the process is repeated for a certain number of rounds (R). The majority of FL models
rely on client-server architecture, in which the server (or coordinator) is in charge of initializing the
model and performing aggregation at each round. However, other topologies, such as peer-to-peer
architecture, are also possible. Algorithms 3, 4 summarize the FL training procedure for both the
server-side (coordinator-) and client-sides, respectively. Regarding the client procedure (Algorithm
4), η represents the LR, ∇L is the gradient of the Loss function (Lx(w)).
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In the next sub-sections, we will explore four aggregation algorithms, namely FedAvg, FedProx,
FedPer, and SCAFFOLD [Li+18; Ari+19; Kar+19].

Algorithm 3 FL Server (Coordinator)

Input: clients,r
Output: wr

1: w0 ← init()
2: for t = 1 to r do
3: wk

t ← clients.local train(t,wt−1) // Executed in parallel
4: wt ← aggregate(wk

t )
5: end for
6: return wr

FedAvg

Federated Average (FedAvg) is the first averaging algorithm proposed in [McM+16]. The approach
consists of simply averaging the weights of the different models communicated by the clients. As
shown in (Equation 7.3.2), the global model wt at round t is calculated by averaging nkw

k
t , this

line will replace the line 4 in algorithm 3.

wt ←
1

n

K∑
k=1

nkw
k
t (7.3.2)

FedProx[Li+18]

Federated with the Proximal term (FedProx) was suggested to deal with heterogeneous networks;
seeking to encounter FedAvg’s limitations in Non-IID situations. FedProx changed the objective
function on the client side, by adding a proximal term (µ) to regulate the direction of weights at
the client level, and prevent the client’s model to deviating from the global model communicated,
by the coordinator at the beginning of the round. The line 5 in algorithm 4 will be:

wk
t ← wk

t + η(∇Lx(w
k
t ) +

µ

2
||wk

t − wt−1||2) (7.3.3)

Where wt−1 is the global aggregated model of the previous round (t − 1), µ is the proximal term
and ||wk

t −wt−1||2 is an L2 norm which measures the distance between the model during the local
training and the previous global model communicated.

SCAFFOLD[Kar+19]

Stands for the stochastic controlled averaging algorithm. Its main aim is to reduce the client
variance induced by heterogeneity in client updates. In this approach, both the clients and server
(coordinator) procedures are updated and are shown in algorithms 5 and 6. The server’s model
and all the clients’ models are equipped with control variates, c and ck, respectively, the difference
(ck-c) estimates client (k)’s weight drift, and used to control the client update (line 6 in algorithm
6).
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Algorithm 4 FL Client Local Train

Input: t,wt−1,X
k,E,B

Output: wk
t

1: X ← getBatches(Xk,B)
2: wk

t ← wt−1

3: for e = 1 to E do
4: for χ in X do
5: wk

t ← wk
t + η∇Lx(w

k
t ) , x ∈ χ

6: end for
7: end for
8: return wk

t

Algorithm 5 SCAFFOLD Server

Input: clients,r
Output: wr

1: w0 ← init()
2: c0 ← 0
3: for t = 1 to r do
4: (∆wk

t ,∆ckt )← clients.local train(t,wt−1,ct−1)

5: (∆wt,∆ct)← 1
K

∑K
k=1(∆wk

t ,∆ckt )
6: wt ← wt−1 + γ∆wt

7: ct ← ct−1 +∆ct
8: end for
9: return wr

FedPer[Ari+19]

Federated Personalizing (FedPer) is a transfer learning-inspired approach. It involves modifying the
training process of FL by integrating transfer learning technique. This approach is compatible with
various FL aggregation algorithms, including FedAvg and FedProx. In Federated Personalizing
(FedPer), the model is divided into the following: base and personalized layers. Only the base
layers are communicated and aggregated in the server, while the personalized layers are trained
locally; the architecture is shown in Fig. 7.1.
Consequently, the FedPer aggregation updates the algorithm executed at the client level; at the
first round the clients initialize their local weights, and during the training the used model is the
concatenation of base and personalized layers. The algorithm 7 showcases the procedure.

7.4 Related Works

Given the success of DL-based models in performing various decision and prediction tasks in commu-
nication and networking systems, the industry began thinking about collaborative ML techniques
to break down the data sharing barrier. In this context, FL has been welcomed as an alternative
framework to deliver global models trained in a distributed way, without data exchange.

Besides, following the emergence of DL, which significantly increased research interest in IDSs,
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Algorithm 6 SCAFFOLD Client Local Train

Input: t,wt−1,ct−1,X
k,E,B

Output: ∆wk
t ,∆ckt

1: if (t = 1) then ck0 ← 0 // Init
2: X ← getBatches(Xk,B)
3: wk

t ← wt−1

4: for e = 1 to E do
5: for χ in X do
6: wk

t ← wk
t + η(∇Lx(w

k
t )− ckt−1 + ct−1) , x ∈ χ

7: end for
8: end for
9: ckt ← ∇Lx(wt−1) , x ∈ Xk

10: (∆wk
t ,∆ckt )← (wk

t − wt−1, c
k
t − ckt−1)

11: return ∆wk
t ,∆ckt

Algorithm 7 Federated Personalizing (FedPer) Client Local Train

Input: t,wt−1,X
k,E,B

Output: wk
t

1: if (t = 1) then
2: wpk0 ← init()
3: end if
4: X ← getBatches(Xk,B)
5: tempkt ← (wt−1, wp

k
t−1)

6: for e = 1 to E do
7: for χ in X do
8: tempkt ← tempkt + η∇Lx(tempkt ) , x ∈ χ
9: end for

10: end for
11: (wk

t , wp
k
t )← tempkt

12: return wk
t
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Cl i ent  1

Cl i ent  k

Cl i ent  K

Ser ver
( Coor di nat or )

Figure 7.1: Federated Personalizing (FedPer) aggregation algorithm: layers in blue are the base
layers wt, the other colours represent the personalized layers wpkt . The server knows only base
layers.

the appearance of FL in 2018 stimulated research efforts in collaborative NIDS [Lav+22]. Hence,
a wide range of works have been proposed, addressing the integration of FL to NIDS were proposed.

In [Mot+22], the authors have proposed a RNN (LSTM and GRU) trained in a federated
fashion to detect anomalies in Internet of Things (IoT) networks, using the ModBus network
dataset [RM21]. Seven different models were trained while varying the window size of their time-
series data; then these models were combined using a decision tree vote-based scheme to classify
the traffic with high confidence.
Attack detection in wireless edge-enabled networks using FL, while minimizing communication
costs and ensuring high detection performance was discussed in [Che+20b]. The authors leveraged
attention mechanisms applied to GRU-based ML models in their FL training process. The use of
attention is meant to increase the weight of important devices (clients) in the training phase.
In [Mot+22; Che+20b], they stated that FL models outperform the centralized approach. Con-
versely, in our study, the centralized model is assumed to be the optimal model with the best
performances, and the experiments showed that (see section7.6), and we are attempting to get
similar results using FL. In [Zha+21], the authors proposed a FL-based framework for NIDS in the
IoT context. They used a semi-supervised scheme, where auto-encoders based models are trained
using the FedAvg algorithm, across different IoT devices. The authors presented a method for
calculating a global reconstruction error threshold for the traffic classification task. The authors
used the NB-IoT dataset [Mei+18] for the experiments, where data is collected from 9 IoT devices
attacked with mainly the same attacks. The FL approach outperformed the local approach, while
having nearly the same performances as the centralized one, thanks to the introduced global recon-
struction error threshold approach.
The authors in [Fan+20] expressed the need of personalizing distributed DL-based model, in the
context of 5G IoT, due to IoT devices’ heterogeneity. The authors presented a similar approach to
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FedPer, by leveraging personalized layers, that are learned via transfer learning. At each training
round, each client performs a train with a public shared dataset, communicates the model weights
to the server to perform the aggregation (FedAvg). Then, the server returns the aggregated model
to the clients, and each client performs a training epoch with its local data, on its personalized
layers. The process is repeated for all training rounds. Furthermore, by utilizing a public dataset,
that is shared by all clients, the approach is somehow inspired by knowledge distillation in FL.
Four separate clients are simulating four different networks for the experimental phase; the authors
used both IoTDataset [Kan+19] and NSLKDD [Tav+09] datasets for the clients’ data, and CI-
CIDS [SLG18] dataset for the public dataset. The authors revealed the good results obtained by
their approach; nevertheless, the generalization aspect of each separate model is missing, as well as
comprehensive comparison with models trained on local data only.
The authors in [Rah+20] investigated the implementation of IDS DL models, whether central-
ized, local, or based on FL. They evaluated the NSLKDD dataset in IID and Non-IID partitioning
settings. The authors reported that FedAvg obtained comparable Accuracy to the centralized ap-
proach, while outperforming the on-device models. Besides, under Non-IID settings, FedAvg was
marginally higher than on-device, and significantly exceeded by the centralized approach. In addi-
tion to their investigation, our work includes a pathological Non-IID scenario as well as multi-class
DL models classifiers. Furthermore, we investigate various FL aggregation algorithms, that have
been proposed to address the limitations of FedAvg in heterogeneous networks.

7.5 Methodology

In this section, we detail our methodology to study the FL-enabled IDS performance involving the
use of DL, FL aggregation algorithms and the partitioning of IID and Non-IID datasets. Before we
proceed, we first introduce the sliced 5G architecture as well as the system model we considered in
our study.

7.5.1 Our Sliced 5G Architecture

In light of the success of DL in different decision-making tasks and the emergence of virtualization
in 5G and beyond networks, the NWDAF was created to support the deployment of ML models
pipeline in the network. NWDAF’s primary function is to provide analytics to 5G NFs, which in turn
make decisions based on the insights obtained from these analytic findings[Yua+22]. For intrusion
detection, the NWDAF gathers network packets and transforms them to Network Flows. The
Network Flow is then analyzed using the DL model, and the classification result is communicated
to the security VNF, in order to devise the appropriate policy, for example, in the event of an
attack.

One can imagine that the NS’s security engineers gather elaborated flows from the NWDAF; the
training is then performed after data labeling. The DL model training can be performed locally or
collaboratively with other NSs, which include centralized and federated methods. Finally, the DL
model is deployed at the NWDAF level, and the SecurityVNF will request the NWDAF to classify
future network traffic. Fig. 7.2 depicts and illustrates the whole process that can be summarized as
follows: 1. NWDAF collects traffic from UPF, 2. NWDAF generates Network Flows, 3. Security
engineer gathers the unlabeled flows, 4. Security engineer labels the flows and sends them back
to NWDAF, 5. Training phase: (i) Local training is done at the NWDAF level, (ii) Centralized
training: labeled flows are transmitted to the coordinator (5.a), which performs training (5.b)
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Figure 7.2: DL based NIDS in 5G and Beyond

and returns the final model (5.c), (iii) FL: for each round, model weights are transmitted to the
coordinator (5.a), which performs aggregation (5.b) and returns the aggregated model (5.c), 6.
SecurityVNF requests the NWDAF when new traffic arrives

In our system, we consider a set of K slices (or clients following the FL process), each slice ck
has a labeled Network Flow Xk dataset; where Xk = Xk

train ∪Xk
test, X

k
train and Xk

test refer to train
and test set for client k, respectively.

We also define Mcentralized as the centralized model, which has Xcentralized
train and Xcentralized

test as
training and test sets; where Xcentralized

train = X1
train ∪X2

train ∪ · · · ∪XK
train and Xcentralized

test = X1
test ∪

X2
test∪· · ·∪XK

test. For FL approaches, slices will act as clients, and we build three FL global models
using three different aggregation algorithms (Mfedavg, Mfedprox and Mscaffold), and K personalized
model Mk

fedper. Besides, Mk
local reflects the local models trained on Xk

train and Xk
test. In order

to evaluate the different ML models Mx, we also consider a validation dataset. We evaluate the
performance of the models (Mx) with this validation set, assumed as new traffic to evaluate future
use.
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Figure 7.3: NSLKDD label distribution. T: Train / V : Validation datasets

7.5.2 Dataset Description and Pre-processing

In our study, we used the NSLKDD dataset [Tav+09], since it was widely used by the research
community and is considered a reference dataset for flow-based NIDS. The primary data files of
NSLKDD are ”KDDTrain+” and ”KDDTest+”. The former will be used during the training
phase, while the latter will be kept for the validation phase. The purpose of utilizing the validation
dataset is to evaluate the performance of the various models using previously unseen data. The
results related to this validation data are depicted in Figures 7.8 and 7.12.

The training dataset has 148,517 records with 41 features and covers 23 different labels. The
dataset is mostly made up of normal and Neptune attack traffic, the latter is a flooding-based DoS
attack.

Fig. 7.3 displays the label distribution of NSLKDD dataset. Features’ nature is either Boolean,
real, or categorical. In regard to data pre-processing, we used min-max normalization to convert real
values to a range from 0 to 1. In our contribution, we assumed that the involved NSs communicate
their minimum local values to enable global min-max normalization.
The dataset has three categorical features: protocol type, service, and flag. The categorical features
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are encoded between 0 and 1 using the following encoding process, e.g. the protocol type has three
values: ’tcp’, ’udp’, and ’icmp’ and the corresponding value for each category equals to its order
count divided by the number of categories (3), given that the order of counting starts from zero.
Hence, the result is {0, 1

3 ,
2
3}. Flow labels are indeed encoded using one-hot encoding; at this stage,

we can expect the DL model to have 41 input and 23 output sizes. The ”KDDTest+” captured
17 new attack types. However, our research is limited to the 23 labels already present in the
training set, and the new attack labels are removed from the validation set. In fact, the new
attacks are convenient for binary classification (normal and abnormal), where researchers validate
the efficiency of their models, by having them learn normal behavior and label any new attack
pattern as abnormal. But, in our study, we seek to identify the type of attack, and for novel attack
labels, we cannot make such predictions since we do not currently have that knowledge during the
training phase.

The training dataset is partitioned into K subsets for the generating slices’ (clients’) data Xk.
Partitioning scenarios are discussed in the next subsection.

7.5.3 Partitioning Scenarios

In our study, we consider eight slices (K = 8), where ”KDDTrain+” dataset is partitioned according
to two different scenarios. We chose this number of clients (K = 8) due to practical reasons. The
NSLKDD dataset, although valuable, isn’t very large. Including more clients could have made the
dataset less representative. Thus, we decided that having eight clients would provide a manageable
dataset size, allowing us to explore diverse scenarios effectively. The labels distribution for both
scenarios are shown in Figs. 7.4 and 7.5.

IID Data-based scenario

In this scenario, the ”KDDTrain+” data is randomly partitioned across the clients using a uniform
distribution, assuming that each NS has known more or less the same nature of traffic, hence the
NSs undergo the same attacks and with the same frequency.

Non-IID Data-based scenario

This pathological Non-IID scenario, is more realistic, where the assumption that NSs undergo the
same type of attacks is not valid. So, in this scenario, we assume that normal traffic is more or less
collected with the same distribution across NSs. However, for attacks, we assume that the traces
of some attacks are only available in one NS and not in others.

7.5.4 NN Architecture and Training

Table 7.1 summarizes the NN architecture, which is used to build all the models Mx described
previously. The NN model has six layers, each followed by a ReLu activation function and a batch
normalization1 layer, while the output layer is succeeded by a dropout layer. In the FedPer approach
(Mk

fedper), the layers 5(*) and 6(*) are used as personalized layers as detailed in sub-section 7.3.

The majority of the rows in the training sets (Xk
train and Xcentralized

train ) are normal and neptune, as
seen in Figs. 7.4 and 7.5. To handle this unbalanced data situation, we used weighted Cross-Entropy

1A technique used in NNs to improve training stability and speed by normalizing the input of each FFNN layer
in a mini-batch to have zero mean and unit variance.
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Table 7.1: NN (Mx Architecture)

N Layers din
0 Linear 41 input layer
1 Linear 128

ReLu
BatchNorm 128

2 Linear 256
ReLu

BatchNorm 256
3 Linear 128

ReLu
BatchNorm 128

3 Linear 128
ReLu

BatchNorm 128
4 Linear 64

ReLu
BatchNorm 64

5(*) Linear 32
ReLu

BatchNorm 32
6(*) Linear 23 output layer

ReLu
dropout
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Figure 7.4: IID Scenario. Label distribution over K clients, (Xk
train,X

k
test)

Loss for the DL training function. We used SGD as the learning Optimiser, setting the LR (η) at
3e−4. Concerning the remaining training-related hyper-parameters, we set B to 64, the training
rounds (R) to 200, the number of local epochs learning (E) to 1, the proximal term for FedProx (µ)
to 0.3 and the step size for SCAFFOLD (γ) to 1. These hyper-parameters were selected following
a series of tests using a generate-and-test methodology for hyper-parameter tuning.
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Figure 7.5: Non-IID Scenario. Label distribution over K clients, (Xk
train,X

k
test)

7.6 Experimental Study and Results

This section presents experimental study and evaluates the performances of different DL models
MX on top of both IID and Non-IID scenarios and different aggregation algorithms.
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Figure 7.6: IID Loss.

7.6.1 IID-based Scenario

Fig. 7.6 depicts the training classification Loss, the weighted cross entropy as mentioned previously,
during each training round/epoch of the different DL models (Mx) for IID scenario, with the lines
and dashed lines in the graph representing the average Loss on the training (Xk

train) and test (Xk
test)

sets at each round/epoch, respectively. Furthermore, the colored contour shows the confidence
interval of the train Loss’ average. It is calculated as the average plus-minus the standard deviation
of the Loss in (Xk

train); this confidence interval presents insight about the Loss trend across all
clients. The four FL models in this scenario converge at the same pace, which is promising. Another
interesting aspect is that the confidence interval is so tight, that the Loss standard variation is ≈ 0.
This implies that at each round, the Loss value is approximately the same for all clients, simply
due to the similar distribution in this training scenario. We also remark that both centralized and
local models converge at around 25th epoch. But, they then started to over-fit to the training
data set, due to over-training of the model, which led to over-fitting of the common labels (normal
and Neptune). Another reason is the weighted Loss function, which penalizes the error on the non
dominant labels more. Furthermore, the centralized model outperforms the other models, despite
the fact that they all have the same distribution. This is because the centralized model has a
complete view of all the distinct traces of the different labels.

Fig. 7.7 displays the Mx’s Accuracy during the training process. We clearly observe that both
the centralized and local models provide the best results. The previously mentioned minor over-
fitting between train and test does not appear, because the Accuracy calculation is not weighted,
and non dominant labels have the least impact on this metric. In addition, most of the FL methods
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Figure 7.7: IID Accuracy.

progress toward the same acceptable Accuracy of 95 (≈ 95%); FedPer and SCAFFOLD converge
the slowest, however after a few rounds (25), they start to follow the converging tendency like other
FL approaches.

The models’ efficiency is evaluated by showing how they perform on a validation dataset.
Accuracy in validation data is shown in Fig. 7.8. The Accuracy values of the global models
(Mcentralised,Mfedavg, Mfedprox and Mscaffold) are identical throughout all clients, while for Fed-
Per and local models (Mk

fedper, M
k
local) they are proper to each client k. We can see that all models

achieved the same performances (≈ 80%). The federated techniques were able to deliver similar
results as the centralized approach, which is the purpose of federated learning. However, same
outcomes were also obtained by local training, putting into question the necessity of collaboration
in this scenario.

7.6.2 Non-IID-based Scenario

Similarly to the previous scenario, we elaborate the same evaluation/analyse for the Non-IID sce-
nario. The (Mx)s’ train/test Loss is presented in Fig. 7.9. The average Loss (represented in the
figure by the lines and dashed lines) for both FedAvg and FedProx stays unchanged at (≈ 2) and
does not decrease. Secondly, after 100 rounds, the average standard deviation values for these two
approaches are (≈ 0.8), indicating a large confidence interval. This signifies that the classification
Loss is not uniform across clients, with certain clients achieving good error scores, while others
do not. Meanwhile, SCAFFOLD shows lower train/test Loss rates (≈ 1) when compared to Fed-
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Figure 7.8: IID Accuracy on validation dataset.

Figure 7.9: Non-IID Loss.
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Figure 7.10: SCAFFOLD Vs FedProx Loss.

Prox and FedAvg. Additionally, it has the narrowest confidence interval, with an average standard
deviation of (≈ 0.17), indicating that Mscaffold achieves almost same error rate for all clients.

Fig. 7.10 displays the training Loss over the K clients for FedProx and SCAFFOLD and clearly
illustrates these findings. For SCAFFOLD, we can see that the Loss is descending equitably (to
≈ 1) for all clients, but FedProx is converging just for clients 1 and 2. However, the Loss sticks
and does not decrease for other clients, indicating that the learning is poor. Both clients 1 and 2
contain normal and Neptune labels; FedProx is forcing to converge to a model that fits these two
labels, while diverging from the optimal model that is expected to learn all labels.

FedPer has the lowest Loss when compared to other FL approaches. Each personalized model
achieves the minimum Loss on its train/test data, with an average Loss of less than 0.5. These
values were not previously obtained with other FL models. However, before the validation process,
it is too early to make any conclusions. Local models also provide good results, with a narrower
confidence interval than the centralized approach. This is because each client has a limited number
of labels, this makes it easier for Mk

local to learn labels of Xk
train/X

k
test. For example, client 1 must

learn just normal and Neptune. Also, for the same reasons indicated in the IID experiments (see
subsection 7.6.1), the centralized model produces the best performance.

The Accuracy graph (Fig. 7.11) aligns to the Loss graph. The Accuracy of both centralized
and local models is very close to 100%. Moreover, an interesting observation is that FedPer is
showing comparable performances. FedAvg and FEDProx both have a large confidence interval
and an Accuracy of approximately (80%); while SCAFFOLD reaches (90%) Accuracy with a small
confidence interval, it outperforms both FedAvg and FedProx.

In the next paragraphs, we present and discuss the validation phase. To begin, we investigate
personalized models (FedPer and local models). As shown in Fig. 7.12, Mk

fedper and Mk
local models

achieve the same Accuracy rates over all clientsK. M1,2
fedper andM1,2

local models learn well the Neptune
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attack since it is frequent in Tr1,2, but also in the validation dataset. This explains why M1,2
fedper

and M1,2
local have high Accuracy rates on the validation data (≈ 70%). Nonetheless, we notice that

employing FedPer does not lead in any knowledge sharing between the different Mk
fedper, as seen

by poor Accuracy rates for clients c3..c8. We find that the personalized layers (wpk) trained via
transfer learning force the Mk

fedper model to generate a model similar to the local one (Mk
local). This

finding also explains why FedPer performs better across the different Xk
train/X

k
test; each personalized

model Mk
fedper has lost its generalization ability and is over-fitting its locally known labels.

Table 7.2 contains the validation results for the remaining global models, including TP, TPR,
PPV, and F1Score metrics for each label in the validation dataset. The three FL models perform
well in learning the normal and Neptune labels, but only FedAvg and SCAFFOLD are able to
do so for the Nmap label (label 3 in Table 7.2). SCAFFOLD outperforms FedAvg and FedProx
for labels 4 to 7. For example, the Pod attack, which is not frequent in the training dataset,
SCAFFOLD is able to learn effectively. However, labels 8-13 are unfortunately not learned by the
FL models; while the centralized model identifies those labels adequately, the FL models ignore
them. This demonstrates the current limitations of FL approaches in dealing with pathological
Non-IID context.

Meanwhile, the centralized model fails to detect labels 14-20, which may be due to a variety
of reasons including the pre-processing and encoding processes, the quantity/quality of training
data, the DL architecture, etc. However, the purpose of this study is to compare the effectiveness
of FL models with the centralized approach. The centralized approach is assumed to be optimal
with satisfactory results (labels 1-13). In the previous paragraphs, we showed that SCAFFOLD
outperformed the other FL-based aggregation approaches, and may be a solution for a stable
convergence to an optimal model (which could be similar to the centralized). Even so, further
enhancement of the control mechanisms is required to overcome SCAFFOLD’s limitations (eg:
labels 8-13).

Conclusion

In this chapter, we suggest an architecture for NIDSs in the context of multi-slice 5G and beyond
networks, discuss and experiment with various state-of-the-art FL aggregation approaches to intru-
sion detection, and finally, emphasize the limitations of FL aggregation algorithms, namely FedAvg,
FedPer, FedProx, and SCAFFOLD, as it stands at present.

We showed that for IID scenario, FL algorithms performed effectively. However, similar results
were also obtained when each slice trained a model with only its local data. In reality, uniform
sampling gives the same label distribution throughout NSs, resulting in equivalent models for both
local and FL. The efficacy of FL, consequently, cannot be measured in this scenario.

In the second scenario, we considered a more realistic scenario in which the label distribution
is not identical across FL clients (Non-IID scenario). We revealed that FedAvg converged for a
limited number of clients’ data while diverging in others, asserting that the model was forced to
learn only a specific set of labels while ignoring the others. This results in poor Loss decreasing
during training. FedProx surpassed FedAvg; however, FedProx, like FedAvg, has the same previous
issue despite the fact that it has a controlling mechanism in place to deal with it. SCAFFOLD
was the only global model that provided stable convergence across the FL clients; SCAFFOLD
outperformed other FL approaches.

We also showed that FedPer training via transfer learning tends to replicate local models and
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Figure 7.11: Non-IID Accuracy.

Figure 7.12: Local and FedPer Accuracy on validation dataset in Non-IID scenario.
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Table 7.2: Detection metrics for FedAvg, FedProx, SCAFFOLD and Centralized models
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CHAPTER 7. DISTRIBUTED DL-BASED NIDSS IN 5G NETWORKS

over-fit the local data. This approach is not yet mature since it loses generalization potential.
Despite this, we can envision FedPer being a solution in cases where the same sample has different
labels for different clients. This requires further investigation to locate these reflective labels and
perform transfer learning to encounter this situation.

This chapter represents the culmination of our contribution to NIDSs. Next, we will delve into
the conclusion of the manuscript, where we will summarize our findings, discuss our responses to
the research questions posed at the beginning of this dissertation, and provide an overview of our
contributions.
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Conclusion, and Future Research

The research work in this thesis comprises research contributions aimed at advancing the knowledge
and state of the art in 5G-V2X Intrusion Detection Systems by leveraging AI. In this regard, we
have posed a primary research question (RQ) at the outset of this thesis, which revolves around
the effectiveness and efficiency of these AI models. We have also formulated three sub-questions
(RQI, RQII and RQIII) that we aim to answer satisfactorily.

We initiated our thesis by introducing fundamental concepts, specifically 5G-V2X and its as-
sociated key technologies, in Chapter 1. In Chapter 2, we also elucidated the background of the
AI techniques utilized in our research, namely the Fuzzy Inference Systems and Neural Networks.
Chapter 3 delves into network intrusions and IDSs in the context of V2X and 5G, as well as the
state-of-the-art techniques employed in IDSs. These three chapters were consolidated as Part I of
this thesis for organizational coherence.

Chapter 4 highlighted the vulnerability of the protocol used in SL communications to adversar-
ial radio resource attacks, which compromise the availability of the cooperative awareness vehicular
application. We demonstrated that this jamming attack can effectively isolate vehicles. This issue
aligns with our RQI, which concerns ensuring the reliability of V2X aspects to meet the ultra-
reliable communication requirements. Therefore, we have proposed a HIDS that performs both
attack detection and mitigation. The detection mechanism relies on feedback, while a rule-based
mitigation mechanism leverages Fuzzy Inference System. We demonstrated through simulations
that our approach can mitigate the impact of the attack, even in scenarios involving multiple intel-
ligent attackers collaborating to perform a distributed attack. This finding underscores the efficacy
of employing AI techniques to safeguard communication systems against reliability-related attacks,
and it opens the door for further exploration of AI methods like reinforcement learning in this
context. One possible approach is to replace the threshold-based detection mechanism and the FIS
resilience strategy deviser policy with a reinforcement learning model. This approach can be further
enhanced by employing deep reinforcement learning.

In Chapter 5, our objective was to enhance the existing approaches in the literature by propos-
ing an RNN-based method for detecting message forgery attacks in V2X SL communications. Our
contribution revealed interesting conclusions for improving the accuracy of detecting such attacks
through consistency checks. We found that integrating more information about vehicle behavior
(history) could be beneficial. This integration was made possible by RNNs (LSTM, GRU), which
can effectively capture long-term memory. These findings suggest that relying on relatively small
fixed-length information, as used in the literature, limits the model’s performance. This work can
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Conclusion

be extended to cover messages other than CAMs that are vulnerable to these types of attacks, such
as DENM and SPAT, and also to other information exchanged in various V2X applications. In
such cases, it would involve the deployment of an AIDS implemented at the 5G NS level.

The contributions in Chapter 4 and 5, which are organized within Part II of this thesis, offer
advanced attack detection and adaptive security measures. These enhancements aim to strengthen
existing security protocols designed to safeguard availability and integrity, thereby aligning with
our approach to addressing RQI.

Chapter 5 also illustrated our achievement in minimizing computational cost in contrast to ex-
isting works in the literature when it comes to addressing AIDS for message forgery attacks in the
context of V2X. We reached this conclusion through theoretical complexity analysis, an approach
that is often overlooked in favor of simulations these days. This low complexity is achieved by
utilizing RNN in an auto-regressive manner, in contrast to existing approaches, which analyze a
fixed-length sequence entirely at each step. This contribution raises awareness about optimization
and emphasizes the importance of theoretical complexity analysis, when dealing with IDSs and par-
ticularly latency-sensitive environments. This chapter’s contribution aligns with addressing RQII
by enabling efficient inference and attack detection for NN-based AIDSs.

In Chapter 6, we addressed a challenge in current Network Intrusion Detection Systems (NIDS)
approaches known as flow-based NIDS, which relies on network flow termination conditions. We
explained the drawbacks of relying on such approaches, as they can enable attackers to transmit
more malicious network packets and have more time to conduct potential cyber attacks on the net-
work. As a result, we achieved a high level of effectiveness in detection accuracy. More importantly,
we demonstrated the capabilities of our model in early detection. Furthermore, we showcased the
effectiveness of attention mechanisms, which are state-of-the-art mechanisms in NNs and work well
with RNNs like LSTM and GRU. We find that our approach advances research towards early-stage
detection of network intrusions, a critical need, especially in the era of 5G and beyond networks with
ubiquitous support for NSs and services. The contribution in this chapter have provided valuable
insights into RQII by highlighting the significant potential of modern architectures in early-stage
network intrusion detection. On the other hand, we believe that analyzing network intrusions by
examining network packet headers, as we did in our approach, provides a more standardized method
for comparing NIDSs research works in academia. This is in contrast to commonly used aggregated
flows, where the definition of aggregated features may vary between different approaches or datasets.

Chapter 7 is dedicated to responding to RQIII, which investigates the use of FL for the de-
velopment of NIDSs in multi NSs 5G networks. This research is based on NNs while ensuring the
privacy of data within each NS. In this chapter, we addressed the limitations of current mechanisms
and aggregation methods, particularly in cases of statistical heterogeneity. Such heterogeneity is
common in 5G networks, reflecting the diversity of data that can be gathered from NSs. Our find-
ings indicate that approaches like FedAvg, which are widely used in the literature, fail to converge
in situations involving statistical heterogeneity. Furthermore, we observed that FedPer, which is
based on transfer learning, tends to replicate local models and overfit the local slice data, thereby di-
minishing its generalization potential. Among the various FL approaches we explored, SCAFFOLD
emerged as the only global model that consistently achieved stable convergence across different NSs
and outperformed other FL methods.
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However, it is essential to acknowledge that data-driven model-based NIDSs, in contrast to
signature-based systems where signatures are shared among NSs owners without exposing any pri-
vacy data, present a significant challenge. Therefore, the sharing of knowledge in model-based
data-driven IDS remains a significant and unresolved challenge. Fortunately, SCAFFOLD offers
promising potential in this regard, thanks to its control mechanisms. The findings and results of
our experimental studies are intended to raise awareness about the utility of FL, particularly in the
context of IDS models.

In conclusion, this thesis has presented a pathway to address the proposed challenges related to
network security in the context of 5G-V2X, and more broadly, within the framework of 5G networks
where services are deployed in the form of NSs. Our research work encompasses host/application
and network IDS, all of which leverage AI and DL techniques. Our contributions have shed light
on the effectiveness and efficiency of our models, highlighting the advantages of transitioning to
AI-based models for such tasks. All of this work has been aimed at attempting to solve the research
questions posed in RQI,RQII and RQIII, thereby providing a response to the main research
questions (RQ).

Limitations and Future Research

We can identify a common limitation in our research works and current literature. At this stage,
these approaches are considered prototypes intended to demonstrate the potential of AI/DL in 5G
networks. However, for models that are commercially viable and ready for deployment, a substan-
tial amount of realistic data is required. Obtaining such data from commercial network operators in
academia is challenging due to regulations and the sensitive nature of the data. As a result, we have
turned to open-source datasets generated using testbeds to simulate the behavior of network users.
While these datasets are useful, they do not perfectly replicate the characteristics of a realistic 5G
dataset. To address these current limitations and fulfill the need for a realistic and up-to-date open-
source dataset in this context, we have developed a testbed named DRIVE-B5G [Dja+22d] that
emulates a 5G-V2X environment. This testbed enables to generate data and validate approaches,
and we plan to utilize it in our future works.

Zero-day attacks remain a challenge in DL-based IDSs and are a well-known problem that sev-
eral research works are addressing. These attacks involve detecting new attack types that were
not previously known, often referred to as ’unknown unknowns’. Unfortunately, our research has
shown that FL is currently struggling with sharing knowledge to classify the ’known unknowns’,
i.e., it faces difficulties in handling attacks that are known in one network slice, but not in another.
We believe that the current limitations of FL to enable cognitive knowledge in realistic scenarios
are not limited to cybersecurity applications, but may be present in all areas intended to rely on
FL in 5G and beyond networks. Therefore, we argue that further studies are needed to improve
FL aggregation approaches, which is an interesting research area for the future. One promising
approach is FL aggregation based on control systems like SCAFFOLD.

Regarding improvements in our work, we have not yet tackled the aspect of prevention in the
context of monitoring network intrusions, which comes after the detection phase. In preventing
network intrusions, approaches extend beyond simply banning malicious nodes from the network.
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Conclusion

In the context of message forgery attacks in SL communication, it becomes necessary to address
false position messages to prevent road incidents. To achieve this, we propose an avenue for ex-
ploration: the correction of altered messages. This concept takes inspiration from computer vision
algorithms, where NNs models can rectify corrupted portions of an image. A similar approach could
be applicable in our context.

In our future work, we also plan to delve into the monitoring and orchestration of NIDSs within
5G NS. These NIDSs are deployed as Virtual Network Functions following the principles of NFV.
Our objective is to optimize their placement and replication. These improvements will provide more
comprehensive responses to our research questions.

The research work and the directions for future work are in alignment with the new vision
of cellular networks, including 5G and beyond networks, such as the Zero touch network & Ser-
vice Management (ZSM)2 initiative proposed by ETSI. The aim of this initiative is to design fully
autonomous networks capable of monitoring and optimizing NSs without requiring human interven-
tion. This vision predicts the widespread deployment of 5G NSs in various sectors, including V2X,
which will lead to an increase in the overall complexity of network management and orchestration.

In this visionary paradigm, it becomes increasingly evident that AI will serve as the cornerstone
for virtually every facet. However, it is imperative to acknowledge that, from an attacker standpoint,
the rise of AI also portends a transformation in the strategies employed by adversaries. Attackers
may use AI to counter devised IDS and discover new vulnerabilities and attack vectors. We believe
that in the future, there will be an ongoing game between AI agents, akin to a ”whack-a-mole”
game, where humans play a role in continually proposing new AI architectures and mechanisms to
counteract attackers.

3

2www.etsi.org/technologies/zero-touch-network-service-management
3Source: istockphoto.com
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Appendix A

Complexity formulas (Chapter 5)

This appendix provides additional information on the computational calculations discussed in Sec-
tion 5.6. It is assumed that scalar addition, multiplication, as well as calculating the exponential
and hyperbolic tangent functions, are all considered primitive operations belonging to O(1).

The proposed model architecture consists of three parts: the projector, the RNN cell (GRU or
LSTM), and the decoder. Therefore, the computational complexity of the proposed model is the
sum of the computational complexity of each part, named Complexityprojector, Complexitylstm/gru,
Complexitydecoder.

Projector complexity

The projector performs two computations (refer to Equation (5.5.1)):

• The product of two matrices with shapes (din, ||xtt ||) and (||xtt ||,) respectively. The compu-
tational complexity of this operation is din ∗ (2 ∗ ||xtt || − 1).

• An element-wise vector sum of length din, which requires din operations to be performed.

The final computational complexity of the projector is:

Complexityprojector = 2 ∗ din ∗ ||xtt || (A.0.1)

Decoder complexity

The computational complexity of computing the output vector (indicated in Equation (2.3.5)) with
the f() function being a linear function can be expressed as:

Complexitydecoder = 2 ∗ dout ∗ k (A.0.2)

RNN Complexity

The equation (2.3.4), has the form of f(W ∗ xt + bx + V ∗ ht−1 + bh), where W and V have shapes
(din, dout) and (dout, dout), respectively, and b has shape (dout,). In the case of a multi-layer RNN,
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APPENDIX A. COMPLEXITY FORMULAS (CHAPTER 5)

the shape of W becomes (dout, dout). By taking the complexity of f as dout, the complexity of
Equation (2.3.4) is:

Complexityrnn =2dout[dout + din + 1]+

(m− 1)[2dout(2dout + 1)]
(A.0.3)

LSTM complexity Equations (2.3.6), (2.3.7), (2.3.8), and (2.3.9) have the same format as
Equation (2.3.4). Therefore, the computational complexity equals Complexityrnn. In Equation
2.3.10, two vector products and a vector sum are performed, where the vectors have a length of
dout. Hence, the computational complexity of this equation is 3dout. Similarly, in Equation 2.3.11,
a product and a tanh function are performed. Thus, the computational complexity of this equation
is 2 ∗ dout. The complexity of LSTM is then:

Complexitylstm =4 ∗ Complexityrnn+

m ∗ (3 ∗ dout)+
m ∗ (2 ∗ dout)

(A.0.4)

GRU complexity Equations (2.3.12) and (2.3.13), similarly to Equation (2.3.4) have complex-
ity of Complexityrnn. The complexity of Equation (2.3.14) is expressed as dout(2 ∗ din + 2 ∗ dout +
3) + (m − 1)[dout ∗ (4dout + 3)], and the complexity of Equation (2.3.15) is m ∗ (4 ∗ dout). The
complexity of GRU is then:

Complexitygru =2 ∗ Complexityrnn+

dout(2 ∗ din + 2 ∗ dout + 3)+

(m− 1)[dout ∗ (4dout + 3)]+

m ∗ 4 ∗ dout

(A.0.5)
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Glossary

C-I-A The CIA proprieties, known as security triad, ensures that data and resources can only be
viewed, modified, and accessed by authorized parties. xiii, 1, 25

dropout A regularization technique used in NNs to prevent overfitting by randomly deactivating
a fraction of neurons during each training iteration. 72, 95, 96

Fuzzy Set A concept that represents a set where each element has a degree of membership, ranging
between 0 and 1. 18

Loss A mathematical function (L()) that quantifies the error between the model outputed value
and the actual target value. This function is intended to be minimized during the training of
NN models. xi, xii, xxi, 23, 54–59, 75, 77, 87, 97, 99–103, 113

Network Flow A sequence of exchanged network packets between a source host and a destination.
xi, 5, 29, 30, 65–70, 72, 78, 82, 86, 92, 93

Network Intrusion or cyberattack, represents malicious activity that attempt to compromise
these C-I-A properties. 25, 26, 28, 31

Network Slicing A technology that allows the creation of logical network partitions (known as
Network Slices) with specific network capabilities and characteristics to serve and support
particular services. 11–16

Optimiser Algorithm used to minimize the Loss function during the training process by adjusting
the model’s parameters, BP is commonly used as an optimization algorithm. 54, 56, 77, 97

Z score A statistical calculation used to determine how many standard deviations a particular
data point is from the mean of a dataset. 71
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Extended Glossary

Accuracy A metric that measures the proportion of correct predictions or classifications made by
a model out of the total predictions or classifications. = TP+TN

TP+TN+FP+FN . xii, 23, 75, 87, 92,
99–104

Cross-Entropy A loss function that measures the difference between predicted and actual proba-
bilities using the formula L = −

∑c
i (y

i ∗ log(ŷi)) where c is the number of classes. 23, 54, 56,
75, 77, 95

F1Score A metric that combines both precision (PPV) and recall (TPR) to provide a single value
that balances the trade-off between the two. = PPV∗TPR

PPV∗TPR . xi, 23, 58–60, 103, 105

FN A false negative is an outcome where the model incorrectly predicts a specific class as negative
when it is actually positive among multiple classes. 23

FNR The ratio of false negative predictions among all actual positive instances = FN
TP+FN . 23

FP A false positive is an outcome where the model incorrectly predicts a specific class as positive
when it is actually negative among multiple classes. 23

FPR or fall out. The ratio of false positive predictions among all actual negative instances =
FP

TN+FP . 23

MAE A loss function that averages the absolute value of the errors, L = 1
B∗dout

∑B
1

∑
|y − ŷ|

where B is the batch size. 23

MSE A loss function that averages the squares of the errors, L = 1
B∗dout

∑B
1

∑
(y − ŷ)2 where B

is the batch size. 23

NPV The proportion of true negative predictions among all negative predictions. = TN
TN+FN . 23

PPV or precision. The proportion of true positive predictions among all positive predictions.
= TP

TP+FP . 23

relu is an activation function used in NNs. The function takes an input and outputs the input itself
if it is positive, and zero otherwise. Its formula is calculated as follows: relu(σj) = max(0, σj),
where σj is the output of perceptron j. 20
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Extended Glossary

sigmoid is a non-linear mathematical function used as an activation function in NNs. Its formula
is calculated as follows: tanh(σj) =

1
1+e−σj

, where σj is the output of perceptron j. 20

tanh known as the hyperbolic tangent function, it is a mathematical function used as an activation

function in NNs. Its formula is calculated as follows: tanh(σj) =
eσj −e−σj

eσj +e−σj
, where σj is the

output of perceptron j. 20, 61

TN A true negative is an outcome where the model correctly predicts all other classes as negative
for a specific class. 23

TNR or specificity. The proportion of true negative predictions among all actual negative instances
= TN

TN+FP . 23

TP A true positive is an outcome where the model correctly predicts a specific class as positive
among multiple classes. 23

TPR or recall, sensitivity. The proportion of true positive predictions among all actual positive
instances = TP

TP+FN . 23
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