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0.1. ACRONYM LIST 1

0.1/ ACRONYM LIST

UAV - Unmounted Aerial Vehicle
PTZ - Pan Tilt Zoom
AGP - Art Gallery Problem
NP-Hard - Non Polynomial Hard
NP-Complete - Non Polynomial Complete
WSN - Wireless Sensor Network
WSAN - Wireless Sensor and Acutor Network
PSO - Particles Swarm Optimization
VSN - Visual Sensor Network
BIP - Binary Integer Programming
EA - Evolutionary Algorithm
SA - Simulated Annealing
CMA-ES - Covariance Matrix Adaptation Evolution Strategy
BFGS - Broyden-Fletcher-Goldfarb-Shanno (Quasi-Newton method)
MAGA - Multi-Agent Genetic Algorithm
HEA - Hybrid Evolutionary Algorithms
PCB - Printed Circuit Board
PI-PSO - Probability Inspired binary PSO
CR-PSO - Craziness based PSO
CPP - Coverage Path Planing
WRP - Watchman Route Problem
TSP - Travelling Salesman Problem
PNWCC - Novel Previous-Next Waypoints Coverage Constraint
DNA - DeoxyriboNucleic Acid
MOEA - Multi Objective Evolutionary Algorithms
MOP - Multi Objective Problem
SGA - Simple Genetic Algorithm
MOEA/D - Multi Objective Evolutionary Algorithms decomposed
NSGA - Non-dominated Sorting GA
NSGA-II - Non-dominated Sorting GA II
BMPGA - Bi-objective Multi Populations GA
QGA - Quantum-inspired GA
DoF - Degree of Freedom
RS - Random Selections
DoE - Design of Experiments
GT - Ground Truth
NW - Number of Waypoints
GAPSO - Genetic Algorithm Particles Swarm Optimization
FoV - Field of View
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1
INTRODUCTION

The project of self camera organization has been initiated by a partnership between the
CISIR and the previously called Le2i and since January 2019 ImVia. The project aims
to develop a smart system composed by camera mounted on UAVs. The system has
to be available to self-organize and auto-adapt to a dynamic environment. Concretely
the system should act as a base to perform cooperation work between UAVs, to detect
security issues in a complex and dynamic environment. This initial project is ambitious
and contains numerous technical locks. To be realistic, this project must be resized and
the research have to be focused.

The project start with a basic idea to develop a smart system composed by a camera
mounted on a UAV. The first step, is to manage the different positions of a UAV, inside
the area to control. The goal here is to find the best viewpoints for the surveillance. To
monitor correctly the area, the viewpoints selected must cover the quasi totality of the
environment.
It is important to find the relevant waypoints and create a shorter path passing by all of
them in order to efficiently control and monitor a given zone. Our concern here is to find
the strategic positions for the waypoints in order to control the area despite the environ-
mental constraints. The constraints can be various as discussed in details in the following
sections (the shape of the area, the UAV limitations, the image quality requirements, are
some example of constraints). Estimating efficiently the path plan with strategic way-
points poses is an important technical constraint to create a complete and autonomous
system of smart cameras mounted on UAVs. So far, no optimal solution has been found.
Nevertheless, some solutions have been applied (see Section 2) depending on different
constraints, but all of those proposed in the literature are imperfect and can be upgraded.
In order to propose a novel approach for estimating the best path planning for UAV un-
der constraints, the proposed solutions are taking this complex problem and split it into
sub-parts.

The first sub-part is the estimation of the position of each waypoints and the second part
is the computation of a path going through all the waypoints previously deduced. Despite
the apparent simplicity of the proposed solution, numerous problems appears such as
the difficulty to find the optimal position for all the waypoints.
Estimating the best waypoint positions is finally similar to cameras positioning. The major
part of this topic is focused on finding the best cameras positionning (or waypoints) which
is an open challenge. The path planning passing by the waypoints is addressed with
inclusion of the estimated number of waypoints. The results presented in this thesis were
published for peer-review in international conferences such as URAI 2016 and IV 2017.
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8 CHAPTER 1. INTRODUCTION

1.1/ CAMERA POSITIONING

The first step of the problem is to solve the camera positioning, i.e. how to estimate
an optimal viewpoint selection to ensure an acceptable coverage. It is known that an
efficient camera positioning is a bottleneck in many applications, as for example in the
video surveillance field [1, 2, 3, 4, 5], where an efficient camera positioning is essential to
monitor correctly an area. The following section will deal with the questions:

- What is a good position and orientation for a camera (i.e. a good camera pose)?

- What are the purposes of the application requiring camera positioning?

These questions have already been investigated and some solutions have been proposed
in the literature.

1.1.1/ EFFICIENT POSE IN A CAMERA NETWORK: CHALLENGES AND OBJEC-
TIVES

The first point to address is the definition of camera poses (or set of cameras). In com-
puter vision, the pose of a camera is composed of its position in space and orientation
(or viewing direction), i.e. 3 translations and 3 rotations in a world coordinate frame. The
second point to be addressed is how to define a ”good” or ”optimal” camera pose(s)?
To do so, it is essential to identify the purposes, tasks and priorities of the application:

- What is the final goal?

- What are the important features for the application (e.g. to track an object, to have
a high-resolution mapping, etc.)?

- What are the shooting conditions and physical constraints?

All of these aspects will have an incidence on the definition and formalization of a ”good
camera pose”. For instance, in [6], the purpose is to detect tags placed on people torso
which forces the camera to be positioned at a certain height with a viewing direction
almost parallel to the ground; on the contrarily, in [7], a camera is mounted on a UAV to
monitor a vast outdoor area, which forces the viewing direction almost perpendicular to
the ground.

These two articles share the same objective, i.e. to get the best possible coverage of an
area. But because of the constraints and secondary objectives (e.g. number of cameras,
resolution, luminosity, tracking, etc.), it leads to different formulations and approaches.

The next sections of this thesis focuses on positioning the camera to maximize the
viewing areas. The viewing area or coverage rate of the area is directly related to the
estimated position of each camera and their orientation. To get the best coverage, it
is essential to find the best pose for each camera, depending on the constraints and
possible secondary goals.

The camera positioning for maximizing the coverage rate is an open challenge studied
this last decade and still open. In the following chapters we will introduce the problem
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and some of the most interesting solutions studied in the literature. The research of the
last decades shows the complexity of the problem in its plurality and the solutions that
have been proposed.
Thanks to the literature, the problem complexity and the multiplicity of constraints is an
open problem. In fact it will reveal the importance of the constraints depending on the
solution proposed and the importance of well defined constraints for the problem formu-
lation and the solutions adopted.
Based on state of the art in the chapter 2, a precise problem formulation is proposed
adapted to the UAVs constraints in the chapter 4 and the algorithms proposed will be
explained in the chapter 3.
The last chapters of this thesis is dedicated to our proposed solution and the experimental
results obtained by simulations of complex area; first for waypoints positioning in chapter
5, followed by the coverage path planning in the chapter 6.
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The surveillance and control domain is a wide field of research which contains a lot of as-
pects such as: object tracking, object recognition, 3D mapping and area coverage among
others. Our work focused specifically on the latter, i.e. finding a procedure which allows
to capture a minimal number of images of a given area maximizing the coverage of the
area. This can be achieved using a set of visual sensors. Many parameters have thus
to be taken into account: size and shape of the area itself, field of view of the cameras,
number of cameras (or views) to name a few. The following chapter will survey the dif-
ferent methods and techniques proposed in the literature to solve this problem. Keeping
in mind that our final goal is to find out a technique that works both indoor and outdoor,
flexible enough to handle two scenarios: (1) a set of cameras observing simultaneously
the area; (2) a single camera moving along a pre-computed path to cover the area.

2.1/ CAMERA POSITIONING

The first step for solving the area coverage problem is the camera positioning, i.e. how
to estimate an optimal viewpoint selection to ensure an acceptable coverage. It is known
that an efficient camera positioning is a bottleneck in many applications, as for example in
the video surveillance field [1, 2, 3, 4, 5], where an efficient camera positioning is essential
to monitor correctly an area. The following section will deal with the question of:

- What is a good position and orientation for a camera (i.e. a good camera pose)?

- What are the purposes of the application requiring camera positioning?

These questions have already been investigated and some solutions have been proposed
in the literature.

• Object coverage:
In Hoppe et al. [8] a good coverage is defined by the ability to have full 3D

reconstruction of an object (in their 3 dimensions) with no occlusion. In this
work, some prior knowledge on the object is exploited such as a rough surface
description (mesh). The camera follows a trajectory ”around” the object and its
viewing direction is oriented towards the center of the mesh (see Figure 2.1). Since
it is a matter of covering the 3D surface of an object, in a next-best-view strategy,
this application remains too far from the one we wish to implement. It is therefore
barely applicable to our problem.

• Path to cover:
The point here is to observe the entire trajectory commonly taken by users (car,

pedestrians, . . . ). When the area to cover is a known place, the main trajectory
taken by the users can be estimated or extracted [10]. If the area to cover is a road,
for instance, then the trajectory of the driver is known [11]. In this condition, the
aim is to cover the common trajectory of the user as presented in [11, 10, 12, 9]
(see the Figure 2.2). The path coverage is interesting due to the restricted area to
cover: not an entire area, but only a path within a given area, that can be seen as a
priority sub-area.
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Figure 2.1: Full coverage of an object in the 3D space. The cover-
age is made by selecting a set of adapted waypoints. The coverage
must be good enough to enable reconstruction of the 3D shape of
the object without any occlusion. Result here are obtained by the
method of Hoppe et al. [8].

Figure 2.2: Illustration of ”path to cover” of Nikolaidis et al. [9]. The
aim is to focus on covering a road (walking path) in a small room
by using only 3 cameras.

• Coverage priority:
A natural way of defining the coverage in a context of insufficient number of

cameras, is to define as priorities. In [5, 13, 14], some pre-defined regions are
set as ”priority” and called respectively ”region of interest”, ”crucial sub-area”
(see Figure 2.3) and ”importance space weighting”. In the proposed solutions by
[5, 13, 14], the camera poses are in priority affected to this specific and restricted
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Figure 2.3: Map of an area to cover with crucial sub-area (region
of interest), the normal sub-area and obstacle. This map is an
example of area coverage introduced in Jiang et al. [13].

region which has the effect to neglect the other parts of the area.
If the environment is composed of some regions of interest, there should be also
”normal” sub-areas. These ”normal sub-areas” should be covered, but with lower
priority. Furthermore, some sub-areas can be defined as ”no interest”, which
mean ”not to be covered”. In [13, 14] for example, the obstacles are defined as
”no interest” regions with also the consequence to be occluding area. The idea is
to keep a maximum of freedom in the camera network positioning and allow the
system to handle local priority and constraints.

• Inside or outside area:
Another important feature to define the coverage is related to indoor/outdoor
scenes. The area to cover can be typically a room with walls (indoor). Each wall
must be a considered as an obstacle occluding the camera field of view, which re-
sults in having to manage the visibility of the environment according to these obsta-
cles and to the position of the cameras. For outdoor scenes, it is often necessary to
take into account the size of the environment according to the reduced field of view
of the camera. This has the effect of increasing the number of required cameras (or
views) and leveraging the combinatory.

2.1.1/ ADDITIONAL CONSTRAINTS

The common points in all the examples discussed is the aim of maximizing the coverage
rate. The positioning of the cameras, and its effects on the coverage rate, is thus
constrained by the application itself, the context and the type of observed scenes.
Of course, additional constraints can have also a significant impact on the camera pose.
Some of the more common constraints found in the literature are listed below:

• The numbers of cameras:
In many cases, the number of cameras used for the coverage should be minimised
such as in [4, 14, 6]. Limiting the number of cameras is primordial to decrease
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(a) Initial coverage for 5 cameras dedicated to detect the input
of target.

(b) The covered area when the objective have to track several
targets.

Figure 2.4: Illustration of an covered area for tracking target. Experiment from Ding et al.
[3]

the computation time and the bandwidth. It also reduces the cost of the setup
[15]. Reducing the number of cameras and optimizing their poses to get an optimal
coverage are closely related tasks, not necessarily competing. Too few cameras
can shrink the coverage rate by leaving black-holes in some areas of the scene.
Too many cameras can result in too much overlaps and unnecessary redundancies.

• Object tracking:
Constraints can arise by the objective of detecting and localising a given target

[3, 2, 16, 17, 18, 6]. In such a case, camera poses must be estimated in order
to track one or more targets, and possibly, be dynamically adapted. These
applications very often requires an adaptation of the camera orientation (viewing
direction) more than its position. This is the reason why previous work used PTZ
cameras (Pan, Tilt and Zoom) as in [3, 19, 2] (see Figure [3]). Keeping a full
area covered and at the same time tracking efficiently one or more targets can
be contradictory. The solution is then the result of a trade-off between coverage
and tracking, as in [3] and [19]. In Liu et al. [19], target tracking in a wide area
is decomposed in two steps: detection and localization. Each of these steps
is performed independently on each camera. Area coverage is essential to
detect the targets, less for localization as the priority is, in this step, to track a
target previously detected within the covered area. In the entire camera network
used, one camera may be in detection mode while another is in location mode.
Obviously, by adding target tracking as a constraint, camera poses and coverage
are usually less efficient because of the sub set of cameras assigned to the tracking.
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• Luminosity and environmental setup:
Intrinsic image quality is also a constraint that can guide area coverage. The quality
of an image can result in sufficient brightness or an almost uniformly distributed
histogram. In other words, the captured images must be such that they guarantee a
usable signal. For example, Reddy et al. [20] addressed first the coverage problem
of a complex area and in second time, target localization. In order to decide which
target must be tracked, the quality of the image is taken into account to avoid
dark areas where the target is hardly detectable. In this case, the tracking and
coverage trade-off discussed in the previous paragraph is ruled by the image quality.

• Energetic cost:
Authors suggests to estimate camera positioning or path planning by minimizing
a cost function that represents the energy consumption, such as in [19, 21]. For
instance, in Lui et al. [19], the objective is to cover most of an area to detect whether
a target is entered in the scene or not. Secondly, the target is tracked by smart and
autonomous cameras of the network. The camera set is randomly distributed in the
area and the coverage problem represents, in this case, the selection of the best
cameras in order to detect the target. The selection of the cameras is estimated by
both maximizing the area coverage and minimizing the energy consumption. The
consumption can be consequently reduced by restricting the number of cameras
set in detection mode. Indeed, the cameras are more or less power-consuming
depending on the activated mode (which can be ”detection”, ”tracking” or ”sleep”).
If we consider now path planning, the energy cost can be represented by the
distance between two cameras or views and energy minimization is equivalent to
finding the shortest path [22, 23].

• Multi coverage:
Among the numerous possible constraints, the multi-coverage is interesting (as for
example in [24, 4, 25, 26, 27]). It can be seen as a coverage problem where one or
a few specific sub-areas must be covered by a minimum of k cameras at the same
time, that is why it is also called k-coverage. Multi-coverage does not necessarily
mean priority: a sub-area which have to be covered by several cameras is not
necessarily a sub-area which must be covered in priority (more details in Section
4.1.1.5). However, mobilizing multiple cameras in a given sub-area means that
fewer cameras can be used to cover the rest of the overall area. This effect can be
compensated by adding cameras, if allowed. Contrarily, full-coverage of the area
and k-coverage of some sub-areas will conflict and lead to a trade-off.

• Resolution:
In order to keep or increase the quality of the captured images, a minimum resolu-
tion threshold or value can be fixed and used as a constraint [10, 20, 14, 25, 28].
The focal length, the size of the pixel grid or the camera-target distance can serve
as a measure for the resolution. However, in many applications, it is easier to adapt
the distance than changing the focal length (which can be fixed and affect the cali-
bration) or, of course, changing the size of the pixel grid. In most of the previously
cited works, the distance from the target to the camera along the optical axis is
therefore used as a measure for the resolution.
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Full coverage will tend to move the cameras at the farther distance (or higher ele-
vation) in order to maximize the field of view. Resolution constraint will impose the
cameras to be positioned at a certain range of distance or elevation. Full coverage
and resolution constraint will lead to a trade-off between guaranteeing most of the
area to be covered and a sufficient image resolution. The trade-off is particularly
beneficial when the number of cameras is more important than the optimal need, in
this case, the distance will be reduced and the resolution subsequently increased.
In [20] the problem has been formalized by using a Gaussian function in order to
define the proper distance between the cameras and the target to keep an accept-
able resolution for the application.
Here, the depth of view is used to define the range of distances. The focus point
and the aperture of the camera will define the optimal distance and range in which
the target is optimally focused [29]. Constraining the positioning with the depth of
view can be seen somehow as a constraint on the resolution itself.

The constraints are numerous and varied, we just introduced a few of them which seems
interesting to us and related to our work. Among them, some are closely related and can
be interconnected, they can even be combined as in [20], where the targets coverage,
luminosity, resolution, are all associated to find the best camera positions maximizing the
area coverage and the tracking target with good visibility condition.
One interesting point to study is the impact of these constraints on the full coverage itself
as we have seen that they introduce a trade-off between their own particular goal and the
main goal of area coverage but also between themselves. No need to say thus, that the
constraints have to be chosen carefully and accordingly weighted as in any multi-objective
problems.

2.1.2/ ART GALLERY PROBLEM

The Art Gallery Problem (AGP) is a theoretical and historical problem closely related to
the camera positioning. The AGP is commonly cited in the literature as a source of the
problem for camera positioning (for full coverage). It is also commonly used to estimate
the complexity of the task (notably due to the room shape) and as starting point to find
an appropriate solution. The problem of cameras positioning can be formulated as the
AGP paradigm (as example [30, 31, 24]). For these reasons, the AGP has to be well
understood before going further.

In the following sections a definition of the AGP is given with a brief history. After a
more general introduction to AGP, we will describe some interesting solutions found in
the literature and discuss their limitations.

2.1.2.1/ DEFINITION OF THE PARADIGM

The art gallery problem is a geometrical problem introduced by Victor Klee in 1973. The
problem was the estimation of the number and the position of useful guards to cover an
art gallery. The particularity of an art gallery is the complexity of the room shape, with
many walls to place the paintings. The shape complexity of the room make the estimation
of guards number even more difficult.
In order to formulate properly the problem, the room is assimilated as a polygon P, com-
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Figure 2.5: Illustration of the AGP. The gallery is covered
by 4 guards (x1; ...; x4) for a polygon composed by n vertice
(v1; ...; vn).

posed of n vertices (v1; v2; . . . vn). The vertices are linked by n edges (v1v2; . . . ; vn−1vn) to
make the shape of the Polygon P (or room).

A guard x is inside the room x ∈ P. A guard x can cover or see any point y ∈ P if the
segment xy is not intersected by one of the boundaries (walls) of the polygon P, in order
to have xy ⊆ P. The polygon P is considered as fully covered when for any position of the
point y in the polygon, at least one guard can see it .
A guard x can have a 360◦ field of view to cover all around him, with no depth of field
limitation (except the wall obstacles). Clearly that means the guard can see and monitor
the entire room from one side to the other side if there is no obstacles around to occlude
its vision. For example, if the shape of the room is a triangle, quadrilateral or another
simple polygon, at any position taken by one guard, this guard can monitor all the area
despite the size of the art gallery (see Figure 2.5).

When the polygon is more complex, it is necessary to estimate the minimum number g
of guards x and the position of the guards in polygon P. The set of minimum number of
guards are listed in X. Where X contains the useful x to fully cover the polygons P, with
g the minimums number of guard in order to have a set of points X = {x1. . . xi. . . .xg}. So
that every point y in P are cover by at least on guard x of the set of X.
The AGP in addition to estimating the numbers of guards, is also interested in finding the
optimal position of this restricted number of guards. These two questions can be solved
at the same time by using one of the solutions proposed.
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2.1.2.2/ SOLUTIONS

The advances on the AGP since its formulation in 1973 are numerous. The following
paragraphs present some of the main proposals and contributions..
The first, and one of the most important, is the proof given by Chvàtal in 1975 [30]. The
proposed polygon must be covered by a minimum of guards, the proof of Chvàtal links
the minimum number of guards g to the number of vertices n. A polygon composed by n
vertices need in the worst case a minimum number of guards equal at n/3. The Chvàtal
proof is based on the triangulation of the polygon. The triangulation is made based on
the vertices of the polygon.
The proof given by Chvàtal is also confirmed by the work of Fisk few years later (1978).
The work of Fisk is also based on triangulation and colouring node. It is probably the
easiest way to understand and also give a solution to estimate the pose of each guard. It
is recommended to begin by the Fisk proof before the Chvàtal one, despite the chronol-
ogy order as it is recommended in [32]. The book of O’Rourke et al. [32] is an early
work about the AGP with the formulation, proofs and advancement of the field clearly
explained.
After the important work of Chvàtal which enable the estimation of the minimum number
of guards in the worst case consequently fix a limit to the AGP. Thus, the research has
been oriented toward the optimal guard positioning. The goal is to find the best algorithms
to solve the AGP for all kind of polygon while reducing the complexity in time (reducing
the O(...)).
In perspective, the work of Toussaint and Avis (in 1981) is the reference and propose a
solution working in O(nlogn). This work has been followed and upgraded until the solu-
tion of Couto, Resend and Souza 2011 [33]. The solution finally proposed reduce the
complexity to O(n3) in the worst case.

2.1.2.3/ LIMIT OF AGP AND CAMERA COVERAGE RELATION

The AGP can be considered as a reduction of the best camera poses estimation to max-
imize the coverage of a complex area. Based on the algorithms developed to solve the
AGP and the strong relation between AGP and the cameras positioning (for maximum
coverage problem), loigically, some proposed algorithms have been developped. They
try to extend the AGP to the problem of camera positioning as example in [34, 20, 28].
The algorithms developed for AGP cannot be applied directly on the problem of cameras
positioning for maximum coverage. The main reasons are the cameras limitations such
as the field of view and the depth of field (see [15, 35]). The cameras limitations makes
unreadable the algorithm proposed to solve the AGP; because the AGP is considering the
guard with no limitations for the depth of field and field of view. Due to these differences,
the geometric model of AGP may not be applicable for perspective cameras.

Also another reason that could make the AGP solution not applicable for the camera po-
sitioning is the diversity of cameras in the same system (as perspective cameras with
different focal length or associate to non-perspective cameras such as omnidirectional
camera). The AGP may have many guards, they are all interchangeable. The inter-
changeability is due to the guards ability (or skill) to monitor the area. Contrarily, it is
possible for a camera network to have different kind of cameras with different lenses. Fi-
nally the perfect assumption for the AGP formulation create important weakness when it
is time to replace the guards by cameras. These weaknesses make the algorithms form
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AGP not adapted for our problem, as it is shown in [9, 14].

However, some part of the AGP formulation and especially some proofs are still of im-
portance, as the proof of Chvàtal [30] or the NP-hard complexity proof. In fact, the AGP
formulation as a NP-hard problems is available in the book of O’Rourke section 9.2[32].
NP-hard means that the problem cannot be solved in a deterministic manner with a rea-
sonable time. In order to demonstrate the AGP NP-hard, the first part to be considered is
the reduction of the problem to another well-known problem for this complexity. The rela-
tion is made by reducing the AGP with a polygon composed by holes to another standard
problem: in the demonstration, the 3SAT is used to be exact. The 3SAT is a restriction of
the SAT problem with atleast 3 literals in each clause (example of 1 clause with 3 literals
(x ∨ ¬y ∧ z)) , the SAT has to satisfy a boolean expression written with only AND ∧, OR
∨, NOT ¬) by assigning the appropriate value to the variable of the boolean expression
(True or False).
Once the AGP is reduced to 3SAT (see [36]) and because 3SAT is an NP-complete prob-
lem, the AGP is also considered as NP-complete or NP-hard but under conditions: the
room have to be composed of holes. In addition, another work of Lee and Lin 1986 proved
the complexity of AGP without hole also by reducing the AGP to another well known prob-
lem (for more explication see the book of O’Rourke section 9.3 [32]). Despite the limit of
AGP, numerous articles are based on it to formulate the problem as in [28, 31]. For exam-
ple in [28] a similar approach to AGP is used in order to estimate the occluded regions.
As explained earlier the cameras positioning can be reduced as an AGP [31], notably by
removing most of the constraints due to the camera properties (as depth of field and field
of views).

In the literature numerous articles uses the AGP as reference to explain the complexity
of the problem of camera positioning, for example [37, 30, 24, 4]. The problem of camera
positioning for maximum coverage is at least NP-hard or NP-complete as stated above.
The complexity of the problem will have an impact on the solution tested to solve and
optimize it.
Another impact of AGP in the problem of camera positioning is the shape of the rooms.
In [35, 14, 20, 28], the shape of the room to cover is similar to the definition of an art
gallery (in AGP). The art gallery room is a complex polygon composed by many vertices
which may occlude the view (as explain in Section 2.1.2.1 and as in the Figure 2.5). This
phenomenon can be imputed to the link made between the number of vertices and the
effective number of guards to cover it. In addition, the occlusion formulation made for the
AGP is commonly used. The occlusion in AGP is defined by a segment xy 1 P where
x ∈ P is the guard position y ∈ P is a point in the room P. Moreover the usage of a complex
room inspired by AGP is therefore a good choice in order to verify the effectiveness of the
algorithms developed for the cameras positioning in a complex environment.

The AGP can be interpreted as the historical source of the cameras positioning and give
a beginning of a solution about the problem, its formulation and its complexity. Despite
that, the AGP is not the only source to refer about the cameras positioning for maximizing
the coverage. Some clue and algorithms can be found in other related fields.

2.1.3/ WIRELESS SENSOR NETWORK

The Wireless Sensor Network (WSN) can be, as the AGP, considered like an inspiration
for the problem of cameras positioning to maximize the coverage. The WSN is an active
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field of research related in many aspects to camera positioning. These sections are
focused on the WSN and its relation with the cameras positioning.

What is the Wireless Sensor Network (WSN)?

The WSN is a distributed network of sensors or in some cases actuators. It can also be
called WSAN (Wireless Sensors and Actuators Network). Each sensor of the network
acts as a relay for the information to the rest of the network. The sensors are at the same
time the nodes and the relay for the network. The node has the purpose to transmit the
information to the other node. The information can be centralized or not :

• When the system is centralized, the information has to be transmitted node to node
up to the centralized agent. The computation and the decision about the network is
taken by the centralized agent before the transmission back to the node.

• Otherwise, the node is the sensor, collects information and decides to communi-
cate with the other nodes depending on the situation (example when the target is
detected in their field). The node manage itself or with its neighborhood the infor-
mation and computation before reacting in consequences.

The information collected by the sensors are vast depending on the final application and
the capacities of the sensors ability. The WSN is used in different fields for various appli-
cations such as Telecom with antenna positioning [38], military surveillance field [19, 39],
airport surveillance [40], video surveillance and tracking [19], environmental monitoring
[21] etc. Consequently, the sensors is able to collect numerous type of informations de-
pending the need: temperature, movements, images, song and also some actuator can
be used as radio frequency for example.
The applications of WSN are wide, especially since the WSN can be exploited in many
applicative fields. The WSN tries to optimize a network of sensors in different aspects, for
example [17] focus on an adapted architecture efficient enough for data transfer (here the
data are images) ; otherwise in [18] the WSN are dedicated to adapt the network around
static nodes and energetic resources in order to keep the network connected.
In our case, the most interesting aspect of the WSN, is the coverage of an area with
constraints. The other disciplines of the WSN such as the network optimization will not
be addressed in the following document. Only the problem of coverage is studied: the
other discipline are not considered as the first or main objective but can be some sec-
ondary objectives after the problem of coverage which has to be taken in account for the
optimization.

2.1.3.1/ SENSOR AT 360

The WSN refers commonly to sensors or actuators with no restriction in the view angle,
considered to own a 360◦ field of view. The sensor field of view can be represented as a
circle in a 2D plan like in [41, 26, 42] (as illustrated in the Figure 2.6) and in some case a
spherical shape for the 3D environment examples in [27, 38].
Each sensor have a position x in the area and a power range. From the sensor power,
the radius r of the circle is deduced from x the center (see Figure 2.6). This circle gives
the area covered by a sensor in the simplest case. The simplest case correspond to a
flat area without any obstacle as shown in [41, 26] (see the Figure 2.7). In addition, more
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Figure 2.6: An omnidirectional sensor centred on
x, with a radius r for the range.

complex solutions can be used. A more complex solution but also more realistic is the
one proposed by Wang et al. [38] where the obstacles reflief is taken into account in the
process. In Zhang et al. [26], more complex model have been developed where, despite
of a flat ground without obstacle, each sensor is represented by a perception radius and a
communication radius. The communication radius a bit bigger than the perception radius.
These two radius with the same center corresponds, first to area covered by one antenna
(sensors for the perception) and the second radius to the distance of emission/reception
of the data (actuators for the transition). To have an efficient coverage of the area, the
antennas must be placed in order to have connections with other antenna but without too
much overlap of the perceptive field.

The solution proposed in order to optimize the positioning of the WSN for a circular sen-
sors can be numerous. Mostly two different ways are applied for the sensor which have
circular angle of view or spherical.

• The first solution use a heuristic based on geometry construction as in Medhi et
al. [27]. This approach gives a good coverage solution but is usually greedy and
can be quickly limited due to an important number of sensors required. Moreover if
some external constraints are added. For example in Zhang et al. [26] the greedy
solution was tested and optimized by using a ”partition and shifting” strategy in
order to upgrade the result. The limit of this solution is this greediness of the
process. In addition, it is not applicable to the problem of cameras positioning due
to the reduced field of view of a camera.

• The second solution intends to find an efficient and quick solution to optimize initial
random position, for each sensor of the network. This solution includes many differ-
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Figure 2.7: Illustration fo a simple wireless sensor network
with omnidirectional sensor centred on x, with a radius r.

ent families of algorithms focused on optimization. Among the family of algorithms,
the evolutionary algorithms (disused in detailed in Chapter 3) is commonly used as
in [41, 38], and [42].
These solutions propose to optimize the position in order to maximize the coverage
depending on constraints. The method of optimization have to be adapted to the
problem. In Chakrabarty et al. [42] the integer linear programming is chosen in or-
der to maximize the coverage with two types of sensor. One standard with a smaller
area coverage but with a smaller cost (100m radius for 150$) and the other sensors
can cover a wider region ( 200m radius for 200$) . The objective is to cover the
region while reducing the financial cost using integer linear programming adapted
to the problem of coverage optimization.
In [38] and [41] the solutions proposed are based on two different evolutionary algo-
rithms in order to optimize the sensors positioning. In Kulkarni et al. [41] the camera
positioning with a multi-coverage is solved by using an evolutionary algorithm called
Particles Swarm Optimization (PSO). The objective is to optimize the position of the
sensor in order to have an efficient coverage of the area and also enough redun-
dancy to keep the network workable if one or few sensors fail. In Wang et al. [38],
an evolutionary algorithms is also used to optimize the position of antennas. The
objectives in this paper is to give the best coverage of an area with taking in count
the relief of the area. The relief make the coverage estimation of each sensor even
more complex and costly in terms of time computation. The genetic algorithm is
used in order to find quickly a position for each antenna of the network.

Among the solutions proposed, the second, based on optimization of a set of sensors
position depending on the constraints is the most intersting and the more flexible to the
addition of new additional constraints (and secondary objectives).
The following sections is dedicated to validate if these solutions are applicable to the
problem of positioning a camera set despite the camera constraints.

2.1.3.2/ VISUAL SENSORS

Positioning visual sensor can be, by numerous aspect, closely related to AGP and the
WSN. These previous methods must be even more constrained to enable the usage of
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Figure 2.8: Illustration of the area coverage with visual
sensors. The area is covered at 47%. Experiment form
Jiang et al. [13]

a perspective camera due to the limited field of view. Visual sensors embed different
types of cameras and modalities, even though the most commonly used and studied is
the perspective camera such as in [24, 26, 29, 21, 13] (see Figure 2.8). These constraints
makes the camera positioning relatively more complex, as it is necessary from AGP point
of view (see Section 2.1.2) to pass from guards to cameras. Contrarily, WSN already
takes into account the limited depth of field which makes it more suited to perspective
cameras.

Heuristic-based solutions applied to omnidirectional sensors cannot be deployed for per-
spective cameras (which would require the definition of new heuristics and not only an
adaptation), however optimization-based solutions can be adapted to it by only adjusting
the constraints. The following sections will discuss such kind of techniques and solutions.

2.2/ SOLUTIONS NOT BASED ON EVOLUTIONARY METHODS

The algorithms used to estimate the pose of a camera set in order to maximize the
coverage are numerous. Two main classes can be defined: the first one, which is called
”constructive”, is a step-by-step positioning of the cameras, one after the other; the
second one comprises the optimization-based solutions. Most of these approaches fall
under either the AGP paradigm or the WSN paradigm, or even a combination of both.

2.2.1/ THE CONSTRUCTIVE SOLUTION

The camera positioning can be done by a progressive construction, i.e. a deterministic
method is applied to locate iteratively one camera after another or to adjust their positions
based on an initial set-up.
For instance, in Liu et al. [19], a constructive solution is applied in order to select the
smart cameras of a network. Each smart camera is a node of the network transmitting
information and images. The smart cameras are fully autonomous in terms of energy and
decision-making (no central master). The nodes can be set to three different modes:
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- Sleepy mode. It is used in order to save the energy consumption. The camera
is turned off which means no computation tasks are performed but the network is
listened at regular intervals to wait for the wake-up call.

- Detection mode. In this mode, the camera is turned on, but with a low frame rate.
Just a few computations are done to detect if a target enters the field of view. Some
information may be transmitted by the network. This mode consumes more energy
than the previous one, however the smart cameras can still stay in this mode for a
long time.

- Tracking mode. This mode is the more active, thus the more energy consumer. The
camera is turned on with a high frame rate and numerous computations are done to
track and localize the targets. Also more informations have to be transmitted by and
to the network. Localizing and tracking a target is a collaborative and distributed
task between several smart cameras of the network.

The objectives in [19] are multiple, depending on the state of the cameras. The most
interesting for our application is to keep under control the area as long as possible, for
target detection. Numerous smart cameras are randomly distributed in the area (as an
air-drop in a battlefield) and the aim would be to select the minimal number of cameras
which allows to maximize the coverage by setting them in detection mode. The solution
proposed by Liu et al. in [19] rely in the usage of a constructive algorithm. The network
of cameras self-organize itself after a ”discussion”. Also each smart camera is able to
estimate precisely its own localization: this is a key information to select the cameras to
set up in detection mode. The solution proposed is directly inspired by the distributed
network communication protocol.
All the sensors are in sleepy mode at first. The cameras wakes up regularly and send a
call at the neighborhood: if they receive no reply, this means no other camera is awake
around and the camera switches to the detection mode. If a few replies are received (the
threshold must be set up), this means that the required density of the camera around is
not reached yet. Thus the camera switches or keeps on detection mode. Otherwise the
camera switches back on sleepy mode until the next wake-up (in this case, the density
threshold is reached). Each smart camera follows this protocol but the sleeping time is
inherent to each camera to avoid they all wake-up simultaneously. After a certain time,
the network is well enough organized to cover the area in detection mode. The area is
considered covered when the density of camera is good enough.
The method introduced by Liu et al. in [19] is efficient. The solution proposed has the
advantage to work in wide areas and to be dynamic. For example, if a camera does not
have any more power, the network will self-reconfigure. But it suffers also from some
drawbacks. First, it requires a high number of cameras with some of them being ”use-
less” because of the sleepy mode. Also this method is really dependent on the network
communication and the capability to localize accurately each camera. Finally, extracting
a sub-set of cameras among a randomly distributed network (in which the cameras are
static) does not give a sufficiently accurate localization to allow a appropriately satisfying
coverage (see Figure 2.9).

Another cameras pose estimation by construction is proposed by Höster et al. [14]. The
solutions proposed is based on a greedy search heuristic. The objective is to find the
positions and orientations for a camera set with a fixed pan, in the environment inspired
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Figure 2.9: Illustration of the area coverage with smart
cameras and a target tracking objective. The smart cam-
eras can be in 3 modes (sleepy, detecting , locating). Ex-
periment made in Liu et al. [19]

by the AGP.
In [14], a first greedy search solution has been presented before another algorithm which
extend the greedy solution. The algorithms developed in [14] is called Dual Sampling.
The dual sampling is an incremental method. First step, is the initialization of the position
for all the cameras. A random initialization for the position and the orientation must be
appropriate.
Second step, is the selection of one point of the area that is not covered yet. The area
is discretized by several points, with each point that must be covered by at least one
camera. Around the selected point, several positions and orientations are tested for the
cameras nearby. The possible position are obtained by sampling the area around the
point to cover. Finally the best cameras position and orientation is kept. The best cam-
eras positions and orientations depends on the number of other points globally covered
in the area. The second step is repeated and the set of uncovered control points are re-
duced at each iteration. This procedure is applied until the stopping criterion is reached.
Which means, enough points of the area are covered.
The constructive solution have some inconvenient, notably in terms of efficiency. Indeed
this solution is limited by the number of cameras and size of the area due to the exponen-
tial difficulty.

In Nikolaidis et al. [9], the cameras placement is studied to cover a basic mobile robot
trajectory. The trajectory of the mobile robot is modelled as the regions of interest, with a
gradually decreasing interested from the trajectory center.
The solution applied in [9] lie in performing a local optimization one camera after another
with the “steepest decent method” (related to the gradient decent). If this local optimiza-
tion gives a better solution, the network of camera is modified, otherwise, the cameras
stays at the same place. This operation is repeated until the convergent arrangement is
obtained or if no more upgrade can be found. The result presented in the experiment
done by Nikolaidis in [9] are intresting despite the simplicity of the area and the very small
amount of cameras used (maximum four). The main limitation is due to the number of
steps required to optimize independently each camera of the network. Also a multitude
of local optimization is not obviously the same or better than a global optimization.
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Ma et al. [40] proposed a solution for the problem of finding the minimum camera barrier
coverage. The objective of the camera barrier is to cover only the boundary of an area,
to be able to detect target intrusion within the perimeter. The perimeter is relatively wide
and can be considered at some point as an area to cover composed by a big hole in its
center.
The region to cover is divided into numerous sub-regions which are inter-connected. Each
sub-region must be “full-view covered”. The full-view covering is defined as follows: re-
gardless of the direction in which the target is moving, there must be a camera to detect
his/her face - in the case, for example, of a video surveillance of a building.
The proposed solution is based on constructive solution with adapted heuristic. The
heuristic used is presented in details in [40]. The global idea is to divide the perimeter
in different sub-regions and apply the method proposed to have a full-view coverage at
each sub-region. Dividing the region into sub-regions allows to speed up the processing
time of the algorithm.
This solution is well suited for visual coverage of the perimeter but much less for coverage
of an entire surface, which is the case we would like to address. The first limitation is the
number of cameras used to cover the area. However, this method require a large number
of cameras, this definition implies many overlaps to have the full view coverage.

The previous solutions and algorithms presented in [19, 40, 9, 14] are based on con-
structive methods for the camera placement and their local optimization. The positioning
of the camera network is carried out camera per camera successively and iteratively.
This method has some consequence, notably, the fast increasing number of iterations
required to have a sufficiently accurate solution. The time complexity is even more prob-
lematic while increasing the size of the area and even more while increasing the number
of cameras. Also these solutions are extremely dependent on the formulation and the
constraints and cannot be easily adapted to other closely related problems (new con-
straints or modified objectives). The poor adaptability of the method is mostly due to the
use of heuristics designed for very specific problems.

2.2.2/ LINEAR PROGRAMMING OPTIMIZATION AND LIMITS

Different methods of linear optimization were applied and tested in the literature. Lin-
ear optimization, when based on a judiciously adapted formulation, can be very effective
on small convex areas which remains very restrictive This is the reason why linear opti-
mization is often used for comparison with more flexible and efficient methods more as a
research contribution (as in [4, 15]).

The following section will show the interest and the limitation of the linear programming
based on examples from the literature.

2.2.2.1/ LINEAR PROGRAMMING

The linear programming is applicable for the linear and convex problems in order to mini-
mize a linear and convex cost function.
The paper of Erdem et al. [28] is based on AGP and WSN by proposing a fusion of the
two paradigms. Some modifications have been proposed to impose a field of view limita-
tion which is not initially included in the AGP. On interesting aspect is how some camera
properties have been modelized to fit with the problem of AGP.
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In [28], PTZ cameras are set up with the task of zooming, 50mm or 35mm. The area
to cover and the cameras parameters are discretized. The solution proposed being us-
able using an omnidirectional camera or considering a PTZ as an omnidirectional camera
while performing an efficient angular sweeping. The omnidirectional cameras are simu-
lated by PTZ camera with a non-continue zoom as in the experimentation proposed in
[28]. Where the PTZ can have two focal lengths at 50mm and 35mm. Finally the solution
proposed is to discretize the area to cover and also the different possible parameters for a
camera (as: localization, orientation, focal...). In order to have a combinatorial formulation
of the problem. Thanks to this formulation close to the Binary Integer Programming (BIP)
and the application of a well-known method “Branch and Bound” in order to optimize the
cameras placement.
This solution proposes a good coverage with the minimum of cameras in a reasonable
time. The main limit of the solution is due to the use of omnidirectional or simile omnidi-
rectional cameras.

Zhao et al. [6] intended to find the optimal position for a camera set in order to maximize
an indoor area coverage (similar to an art gallery room). The coverage of an indoor area
is not the main objective, which is tag detection in the scene. The solution proposed for
the coverage is to adapt the number of points of interest which must be covered by the
camera depending on the coverage rate.
The area is discretized as a grid. The grid is composed of smartly selected points. Each
point of the grid represents a potential location of the target. Cameras are located in a
few fixed positions on the walls of the room. The adapted grid and the restricted camera
positioning are used to limit the size of the search space (as a number of possible solu-
tion). Thanks to this limited search space a linear optimization with the BIP can be used.
BIP is a popular method that has been widely used such as in [6, 28]. In [6], the solution
proposed is using BIP formulation, the smart sampling of the grid and branch and bound
from LP solve libraries to optimize the camera poses.

2.2.2.2/ LIMITATION OF LINEAR METHOD

The methods of linear optimization were applied and tested to solve the problem of cam-
era positioning for maximum coverage. In some cases, due to a well-adapted formulation
or a restricted area and camera number, this solution is efficient enough. In some other
cases, the methods were studied, but finally rejected because of their relatively bad per-
formances when the number of cameras is high, or the room size and so on, as example
[43, 4, 15]). Indeed, linear optimization is quickly challenged, or even failed, when the
complexity of the problem increases (the solution can then converge to a local minimum).

Wang et al. [44] proposes a solution with an atypical problem formulation. The solution
proposed in [44] will modulate the point sampling with respect to the room shape com-
plexity (more points on the boundaries or obstacles and less on the center or ”flat” areas).
The idea is to have an area discretized with precision by using the minimum number of
points.

The main advantage of this solution is to propose an area representation with enough
sharpness and a minimum number of points. Less points to describe the area to cover
mean also a gain in time efficiency during the camera poses estimation (solving the cost
function is faster). Despite this interesting solution, the results presented in the experi-
ments does not appear to be conclusive.
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The main problem of the linear optimization appears when the problem becomes too
complex. The complexity can come from the formulation and also from the additional
constraints. But, in many cases, the increased complexity comes from the increased
size of the search space. In practice, when the objective is to place a larger number of
cameras or when the number of positions and orientations is too large, linear optimization
may not work.

2.2.3/ GAME THEORY

Among all the possible solutions, an atypical method is to apply the game theory [45].
The game theory is used to optimize the viewing direction of the cameras as in [2, 3, 45,
46]. These articles are based on game theory to find an equilibrium (also named Nash
equilibrium) between two contradictory objectives. The objectives are, on one hand, to
maximize the camera resolution and, on the other hand, to perform a multi-target tracking.

Soto et al. [2] proposed a network containing a dozen of PTZ cameras. That means the
position of the cameras are fixed and the solution proposed found the best orientations
with the appropriate focal length to track most of the targets.
To do so, the camera are smart enough to communicate with the close neighbors and
adapt the pan, tilt and zoom depending on the objectives. The objectives have been de-
fined by an utility function (or local cost function). The goal is to track most of the targets
as possible with the better resolution. The cameras have reached the goal when they
obtained a desired image resolution for all the visible targets. The multi-target issue can
seem far from the coverage maximization we are interested in. But the number of tar-
gets may be higher than the number of cameras. The higher number of targets push the
camera tracking to be an interesting solution to maximize the coverage of an area. In
this case, the quality of the coverage will also depend on the number of targets and the
importance of the resolution constraint.
In [3] and [46], different experiments have been proposed with a number of targets which
increases progressively.
Furthermore, the decentralized solution (as proposed in [46] and [3]) is more adapted to
prevent the security issues such as wrong transmission and interceptions by hostile op-
ponents. Obviously the security and the integrity of the system are primordial key points
in the surveillance application. To have the decentralized system the cameras must have
some autonomy.
In the experiment proposed in [2] and [3, 46], each camera is smart enough to have its
own tracking and control module. Also the cameras are able to communicate with each
other, until a consensus is reached. The consensus is found when a Nash equilibrium is
found between the two contradictory objectives. In this case it is a win win situation for
both objectives.
So the objectives are not independently optimized, moreover the solution proposed have
to optimize the objectives simultaneously in order to reach a consensus. The consensus
is then also reached when it is no more possible to upgrade one of the objectives without
downgrading the other one.
In the experiments of [3, 46], the consensus is found thanks to the cameras communica-
tions. The cameras communications have to maximize numbers of target covered with
the higher resolution. The experiment is based on numerous targets moving freely in the
area. Also in [3], one of the target must be covered in priority with a high resolution. This
has an impact on the other camera positions. The results of the experiment as shown in
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Figure 2.10: Result of coverd area after the game theory optimization. The ob-
jective of the game therory is to maximize the tracking and the resolution. The
results shown are from the experiment made in [3].The images are representing
the iterative sequences for the targets tracking and maximized resolution.

Figure 2.10 from [3] shows a really efficient global coverage with almost all the targets
covered at every time-frame despite the movements of the targets.
The advantage of these solutions is the suitable result and the dynamic reconfiguration of
the system for a reasonable size of the area and a decentralized computations. The de-
centralized computation of the system allows to process directly the information on each
camera.
Otherwise this method has some limitations, as shown in the experiment, the area is rela-
tively restricted and numerous cameras with a fixed position are needed. A consequence
is that a sufficient and significant overlap is required. In this case the number of sensors
is not perfectly optimized to cover the area. Moreover to use properly this method for
maximum coverage, it requires a large number of simulated targets in the region to ob-
serve (there should be more targets than cameras). Finally this solution is more adapted
for a self-reorganization for a set of PTZ cameras.

2.2.4/ SUM-UP

In order to summarize the previous section, the Table 2.1 is proposed. It contains the main
related papers. The first column is for the references, the authors name and the year of
publication. The second column is dedicated to the best solution used. In fact some arti-
cles addresses few methods and only the best one is named here. The next columns are
dedicated to specify the optimized parameters. The 4 in the X and Y columns indicates
if the solutions proposed optimize the cameras position along the X and Y axis. The po-
sition of the camera in X and Y can be randomly posed on the areas, noted as ”random
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dispersion” in these column. Finally in the X and Y columns, the ”0” indicates the case
where the positions are not optimized or randomly placed.
The columns Pan, Tilt and Roll shows with a 4 the solutions which enable the optimiza-
tion of the rotation of the cameras. The 8th column is used to precise if the focal length is
optimized or fixed. When the focal length is optimized but with a discrete range of values,
the annotation ”(discrete)” appears. The 9th column shows the area representation. This
representation is manly effective on the grid design. The 10th column shows the maxi-
mum number of cameras placed and optimized during the experimentations presented in
the articles. The last columns are dedicated to specify the possible secondary objectives
which have to be optimized.
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2.3/ SOLUTION BASED ON EVOLUTIONARY METHODS

The solutions discussed here, formulate the problem of camera positioning for a maximum
coverage (as in the section 2.2) from various points of view. Until now the formulations
and solutions commonly used have not been approached yet. In numerous works the
cameras positioning for maximum coverage is assimilated to a problem of optimization.
Due to the complexity of the problem (as introduced in the AGP section 2.1.2), the linear
optimization or heuristic-based may not be appropriate. Other solutions could be the
application of some stochastic methods with an appropriate meta-heuristic. Among the
various possibilities the Evolutionary Algorithm (EA) often used. The following sections,
are focused on the different algorithms based on the EA. The EA family are commonly
used in the literature to optimize a set of cameras for maximum coverage depending on
different secondary objectives.

2.3.1/ AMONG THE EA ALGORITHMS

In this subsection different algorithms to solve the problem of camera positioning are
discussed. The algorithms presented attempts to optimize the coverage depending on
different specific constraints with different formulation adapted to the constraints.

The work of Zhao et al. [4] presents few solutions to optimize the position of the camera
set . Among the solutions proposed, a greedy algorithm with a local optimization, an
integer programming with a solver, a sampling algorithms and the Simulated Annealing
(SA) from the EA family have been compared. Also the SA is used to customize the sam-
pling mechanism in order to propose a new customized solution. In Zhao et al. [4], the
problem is formalized as a BIP (binary integer programming). The goal is to find among
a restricted number of possible positions and orientations the best pose for a set of cam-
eras. The best pose for the camera set should cover the area, despite of the obstacles
and the regions of interest.
Among the solutions proposed, the greedy algorithm has a good approximate solution,
as long as the number of cameras is relatively low. The problem of the greedy algorithm
and the integer programming solver is to have an important risk to get stuck in a local op-
timum (local minima). This risk increases proportionally with the size of the environment.
Otherwise, the sampling technique with the SA is more adapted to the problem with time
constraints and offer a satisfactory solution.
The solution proposed have some limitations: the major drawback is due to the experi-
ment proposed. In fact, the experiment is made in a very small room with only few poses
possible for each camera. Consequently, the solution proposed can appear better than
a real situation and could be quite worse in a bigger area (in terms of computation time
and pose optimization). The more interesting aspect in this work [4] is the usage of the
SA from the EA family which allows to have an efficient coverage much faster than the
integer programming solver for a similar result.

In the recent work of Akbarzadeh et al. [43], the cameras positioning for outdoor area
has been designed as an optimization problem with few algorithms tested. Among the
algorithms investigated, the SA and GA (Genetic Algorithm) both from the EA Family are
the more promising. The work of Akbarzadeh et al. [43] is interesting in many points.
The problem formulation is one of the interesting point. The goal is to cover an outdoor
area with multi-coverage (k−coverage discussed later in the section 4.1.1.5), the relief of
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the terrain and obstacles may generate potential occlusions. Due to several reliefs of the
considered maps, the cameras are always posed at the same distance from the ground
(size of a tripod). Consequently the altitude of the cameras is automatically deduced from
the relief. Moreover, depending on the position and orientation of the cameras, the relief
can be source of occlusions for the cameras and has to be taken in account. All these
elements combined make the problem formulation rather complete and realistic.
Among the solutions studied in [43], the non-linear has been tested with a quasi-Newton
optimization method (called BFGS see in [43] section C), the SA and the CMA-ES (Co-
variance Matrix Adaptation Evolution Strategy) from the EA family with some mechanisms
similar to a Genetic algorithm (see in [43] section D) have been tested too. The result of
the comparison gives a clear advantage to the algorithms from the EA family in term of
coverage rate with a fix number of cameras but also in term of time computation. The SA
gives a close coverage rate (sometime slightly better) than the CMA-ES and also the SA
has a better computation time. Otherwise the CMA-ES is more efficient in average with a
reasonable computation time close to SA. The advantage of the CMA-ES appears more
important in the bigger area. The quasi-newton and other algorithms tested are far away
in terms of time and coverage, compared to the EA solutions which are more appropriate
in this case. This work shows [43] the efficiency of the EA algorithm in a vast and realistic
environments.

Chrysostomou and Gasteratos [15] presented an optimization system for maximum cov-
erage with several constraints for two closely related problems. First of all, the goal is to
cover an indoor area inspired by the AGP with a minimum of cameras. The minimum is
fixed depending on a required coverage threshold rate. Secondly, the goal is to maximize
the coverage for a fix number of cameras. These two problems are relatively close and
just few elements have to be adapted to pass from one to another.
The coverage of the area is related to the camera visibility and few constraints have been
proposed to control it, such as the visibility, viewing angle, field of view, resolution, viewing
distance, and occlusions. The solution proposed to optimize the positions, orientations
and some of the camera parameters (as the focal length), is to apply an algorithm from
the EA family called Bee Colony. The Bee Colony is inspired by the Ant colony algorithm
and associated to the bee exploration in the nature. The Bee Colony is in this paper [15]
the more efficient of the two problems formulation (minimum of cameras and maximum
of coverage with a fixed number of cameras) after a brief comparison with a GA and a
branch and bound algorithms.
The experiment proposed is relatively limited. Only one room has been tested with only
one test per algorithm, which is not relevant for stochastic algorithm (due to the impor-
tance of randomness). Despite that, the results proposed are encouraging.

The works presented in this section has the common point to apply different algorithms
from the EA family to optimize the problem by maximizing the coverage for camera po-
sitioning. The algorithms from the EA family appear well adapted to the problem. To go
further in the EA some specific branch such as the GA have to be studied.

2.3.2/ SOLUTION USED GENETIC ALGORITHM OR CLOSE RELATED

Among the solutions applied from the EA to optimize the coverage area, the GA or algo-
rithms closely related have been studied, as in the following section with some examples.
In the solutions proposed such as [15, 20, 43], the GA has been applied as a comparator.
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The GA and solution strongly inspired by the GA are not only used as a comparator, but
it can appear more efficient as in [47, 39, 13, 25].

In Van et al. [47] the problem of camera positioning for video surveillance is studied. A
building with several floors is examined and should be covered by a set of camera. Sub-
sequently, the environment has to be considered in the three dimensions (3D) with the
ceiling occlusion. The solution proposed is to fix the altitude of the cameras for each level
of the building and considering each level as one independent room to optimize. The
optimization is based on a basic GA with a customized crossover and mutation in order to
fit the problems. For the crossover, a swap is done between two cameras from different
sets. For the mutation, a Gaussian distribution is used to mutate some parameters of
the cameras in a set. The GA is used with an elitists selection. All these parameters of
the GA are essential to have an appropriate optimization adapted to the problems and to
understand the performance of it (for more details about the GA and these parameters
see the next Section 3.3).
Finally the area is covered with 32 cameras (for 3 levels) with relatively good coverage,
few black hole and an acceptable level of overlapping. In this case, the GA is well appro-
priate and works efficiently.

In Jiang et al. [13] the solution for the coverage problem in a wide area with regions of
interest and obstacles have been optimized using a standard GA. In [13], the GA has
been tested for a wide area with numerous camera orientations. The goal is to find
the best orientations to maximize the coverage for a camera set randomly placed in the
space. The experiment has been performed in a vast area 400X300m2 with 60 cameras.
All the cameras are embedding similar characteristics i.e. the same depth and field of
view. The number of cameras is not enough to control the full area and choices must be
made among the different regions of interest. The GA proposed in this article offers the
best result with around 47% of coverage, with a minimum of overlapping.
The solution proposed with the GA is interesting and work well to optimize the orientation
of the cameras in a relatively big and complex area. The main element missing in the
solution proposed is an experiment with a number of cameras supposedly enough to fully
cover the area.

In Wang et al. [25] a variant of the classical GA has been used. The Multi-Agent Ge-
netic Algorithm (MAGA is from [48])) has been developed by the fusion of two algorithms,
the GA and the multi agents systems. The main advantage of this algorithm is that it
is supposed efficient on the optimization for a huge number of dimensions (Zhong et al.
estimate the efficiency range around 20 to 10 000 dimensions). In this case, the number
of dimensions means the number of parameters to optimize for a given problem.
MAGA is used in [25] to optimize the area coverage. The area to cover is a 3D space
area and most of the volumetric space has to be covered. Unlike the other articles, the
cameras have to be positioned in the 3 dimensions and the orientation as well. The con-
straints of volumetric space associated with the optimization of the position, orientation
and cameras property, increase greatly the size of the search space (also the number
of dimension to optimize). Despite this interesting solution, the experiment proposed are
not enough consistent to properly assess it, despite that, the MAGA appears promising
in term of potential increasing search space and solution quality.

The solution proposed by Topcuoglu et al. [39] is a Hybrid Evolutionary Algorithms
(HEA). The HEA is based on the GA with different modifications, notably on the oper-
ators. For instance, the crossover is redesigned in order to have two different parts of
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Figure 2.11: Illustration of the area coverage by a set of
cameras randomly scattered (a). The cameras orientation
has been optimized to maximize the area coverage (b).
Experiment made by Xu et al. [5]

it. One of the parts is a local crossover and the other is a more classical crossover.
The local crossover (called Proximity Based Crosover in Topcuoglu et al. [39]) is a
crossover modified to have just a small amount of genome modified. This extends to a
crossover with slight modifications and consequently a proximity between the solution
and its offspring. The HEA proposed in this article is relatively close to another EA
algorithms called the Mimetic algorithms. The solution applied in [39] is presented with
different experimentations dedicated to maximize the visibility and minimize the cost of
the sensors network. The experiments compare a simple random selection to the HEA.
The result of this experiment shows a real efficiency in terms of minimizing the number
of useful sensors and maximizing the total utility, where the utility is related to the other
objectives.

From the point of view of these articles, the GA appears appropriate for the optimization
of numerous cameras in a vast area as shown in [13]. The GA optimization can be
a good starting point to develop a new method by tuning and customizing the numerous
parameters as in [39, 25] or [47]. Also, despite the example presented, the GA is relatively
under-exploited according to its customizability and efficiency.

2.3.3/ SOLUTION USED PARTICLE SWARM OPTIMIZATION OR CLOSELY RELATED

To maximize the coverage under various constraints the EA family is commonly used with
different algorithms. One of those is the Particle Swarm Optimization (PSO) as refered
in [5, 49, 20, 50, 29, 51, 41]. In this following section, the usage of PSO and similar
algorithms is discussed for the problem of coverage optimization.

In Xu et al. [5], the PSO is used to optimize the orientation of several cameras (around
150). The cameras have been randomly positioned in the area. All the cameras have the
same properties and cannot change position, but may adjust orientation to any directions
(PTZ cameras). The area is designed in 2D and the viewing direction is described with
only one rotation in pan (around the z axis). Finally the PSO is used to optimize the
viewing directions in order to have the best coverage. The PSO optimize the cameras to
reach a coverage around 65% after 1000 iteration and 20 particles for each iteration. The
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benefit between the initial random dispersion and the optimized viewing direction (with
PSO) is around 12 points of percentage. The initial coverage (before the optimization)
in the experiment was around 53% after the random dispersion (see the result in Figure
2.11. In this case, the PSO provides a relatively quick optimization and more suitable
solution.

In Fu x et al. [51], the same problem as in [5] is discussed: the optimization of the
orientation for an important camera set (100 cameras) using PSO. The difference is the
number of parameters to optimize. In [51], the viewing direction is not only optimized on
pan but also on the tilt axis. The PSO is compared with other algorithms such as the
SA. Finally the PSO outperforms the other solutions experimented in this article despite
an important number of parameters to optimize (100 cameras with 2 parameters per
camera).

In Zhou et al. [49], the objective is to cover an indoor area inspired by the AGP to detect
targets. The room is represented by a set of possible target positions. The coverage of
the target is optimized for a fixed number of cameras. The experiments made in [49] show
the ability of PSO in term of efficiency and speed compares to a hierarchical method. The
proposed hierarchical approach is a greedy constructive heuristic (see more in [49] sec-
tion III). The experiment is made in a basic square room described by a grid of 81 possible
targets location which all have the same importance and have to be covered.
The result of the experiment in [49] showed the slight advantage of the hierarchical
method. In fact, the hierarchical method gives a better solution, but requires more com-
putation time. Otherwise the PSO provides an efficient solution close to the hierarchical
method. The solution proposed by the PSO is also time efficient, between 2 to 6 times
faster than the hierarchical method. The PSO combines result efficiently and fast compu-
tation time, consequently PSO appears more adapted to a realistic solution. Conversely
the experiment proposed can be considered as limited due to the poor number of possi-
ble target locations in a simple room and the low level of choice for the cameras poses.
An experiment in a bigger environment will probably show an even more important gap
between the PSO and the Hierarchical method.

Zhou et al. [49] and Reddy et al. [20] proposed a similar solution for a similar problem
formulation. The goal is to maximize the coverage depending on some target priority
which must maximize the resolution using PSO. Moreover the solution proposed in [20]
has been also taken into account the visibility parameters as depth of field and light
intensity. All these constraints affect greatly the coverage results. Finally the experiments
shows the efficiency of PSO for a small environment with few camera (around 7 cameras)
for a multi objectives problem. The advantage in [20] is the addition of more objectives
and constraints compared to [49]. Moreover the area has a better discretization which
allows the confirmation of the efficiency of PSO for the coverage with multi-objectives in
a small room.

Similarly in Fu y [29], the PSO is used to optimize the problem of maximum coverage.
The camera poses must cover the totality of a small square room. The orientation of the
camera has to be optimized in pan and tilt. In addition, all the cameras have an identical
focal length. It is a relatively basic objective with few common constraints. The interesting
part of this article [29] is the usage of PI-PSO knwon as Probability Inspired binary PSO.
To use this algorithm, the problem has to be adapted. This adaptation gives an original
formulation based on a combinatorial problems. Despite the atypical formulation, the
solution proposed is greedy in term of cameras in order to cover a small space without
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obstacles.

In the recent work of Maji et al.[50], the finality is different but the problem can be con-
sidered similar to the problem of cameras positioning. The objective is to position several
transistors in a rectangular Printed Circuit Board (PCB). The transistors must have a
rectangular shape with different sizes and ratios. Despite the apparent simplicity due to
the rectangular shape for the chips, some potential additional constraints, as the relation
dependence between chips, or the strict non-overlapping of the transistors, makes the
problem of positioning transistor becomes more complex. The solution is to optimize the
positions and orientations of the chips on the board using EA. The PSO is chosen and
more particularly the Craziness based PSO (CR-PSO). The interest of the CR-PSO is the
variety of possible solutions introduced during the optimization compared to a classical
PSO. The variety introduced during the optimization process by the CR-PSO helps to
pass over the several local minimas. The more interesting aspect is to use a PSO in a
similar problem as camera positioning which was commonly handled with a linear convex
optimization as in [52] and based on the work on the floor planning defined Boyd and
Vandenberghe in their book Convex optimization [53](8.8 page 438).

The solutions proposed based on PSO are promising. The PSO or closely related meth-
ods have numerous advantages as shown in the previous sections. The main advantages
lie in the efficiency and the fast optimization, as well as the fast implementation. In fact,
the PSO is relatively easy to implement and just few parameters need to be set-up to
obtain an efficient result. The simplicity of the implementation is due to the numerous
frameworks developed in all languages and the low numbers of parameters to set-up.
Among the few parameters to set-up mainly the number of particles and the global iner-
tia have an important impact (see more about PSO later in the Section 5.1.1). On the
other side, the PSO is not really efficient to optimize a lot of parameters at same time
(compared to other EA). The PSO can quickly be limited due to the increasing size and
complexity of the area. Due to this limit the PSO has been customized as in [50] and [51].
The popularity of the PSO is mostly due to the association of the quick implementation,
fast computation and efficient enough optimization for various problem as coverage opti-
mization.

2.3.4/ SUM-UP

In order to summarize the previous section, the Table 2.3.4 is proposed; which contains
the relevant articles. The first column is dedicated to the references, the author names
and years and the second is dedicated to the best algorithms. In these articles most
of the time, several solutions have been tested. The second column shows the best
algorithm among the algorithms tested. The third column notifies if the tested algorithms
are from the EA family. The 4th, 5th and 6th columns precises if the algorithm proposed
optimize respectively on x,y and z coordinates the position of the cameras. In some
cases the position on x and y are not optimized but randomly distributed. The 7th, 8th and
9th columns notifies if the algorithm proposed optimize respectively on pan, tilt and roll
rotations of the cameras (if no optimization, the orientation is fixed). The 10th column is
dedicated to mention if the focal length is optimized or fixed. The column for coverage
representation specifies whether the area to cover is designed in 2D or 3D (11th column).
In some cases, the 2D representation of the area is enriched (noted with a ”+” or ”+relief”).
The 12th column shows if the experiments proposed are indoor or outdoor (in, out). The
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13th column is dedicated to the maximum number of cameras tested in the experiments.
The last columns are dedicated to list the main secondary objectives and constraints.
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2.4/ COVERAGE PATH PLANNING

The coverage path planning has for objective to design the more efficient path to cover
an area. The path has to cover all or at least most of the area using the shortest path.
The solutions highlighted in the literature until now was about placing numerous cameras
or robotics cameras (as PTZ cameras and smart camera) for vast area composed by
multiple obstacles. The solutions proposed until now remains reliable only to monitor a
vast area continuously with several cameras. The disadvantage of positioning a camera
set appears quickly with the cost in computation time. The expensive cost is due to the
several cameras and the communication network required to centralize the collected im-
ages. All the images must be collected in a real time.
In fact, in some applications, the area needs to be controlled periodically. The periodic
control of the area does not require an installation for the set of fixed cameras. Until
now the installation was composed by a set of immovable cameras unlike the solution
presented in section see Section 2.3 and 2.2). The periodical control requirement can be
illustrated with some example : the cartographies of the area is need just one time and
can be completed with one fly over the area roughly bounded as in [54, 55], forest fire
detection which requires a periodic fly over specific and vast region as in [56], the hoover-
ing robots which needs to cover all the room with possibility some on-line computation
[23, 57, 58, 59] and the agriculture. About the agriculture application, a UAV needs to
fly over the field few times in a year in order to control by photography the hydration, the
maturity and anything else of the field as in [55, 60, 61, 62, 63, 64]. For all these applica-
tions, the area must be covered but does not need a coverage of all the area instantly and
continuously. The solution commonly proposed is the usage of only one sensor mounted
on a mobile robot. The Mobile robot need to be adapted to the task and the environment,
as flying [65], driving [12, 66], swimming [54].
The mobile robot with the sensor moves in the space to cover all the area. In this case,
the objective is to determine the best path for the mobile robot to cover the area. The
best path is dependent on the constraint of each problem. However, the common point
in theses papers is to obtain the shorter path. The following section is focused on finding
the best Coverage Path Planing (CPP) for a sensor mounted on a mobile robot. In most
cases, the sensor is a perspective camera. To estimate the best CPP, different algorithms
and methodologies have been applied in the literature to solve various problems.

The following sections are focused on the different algorithms and methodologies applied
to optimize the CPP problem. First, the watchman route problem is introduced to highlight
the origin of the CPP problem and the relation with the cameras positioning for optimal
coverage. In a second time, the more popular solutions are discussed.

2.4.1/ AGP TO WATCHMAN ROUTE PROBLEM

Before exploring the solutions proposed for the CPP, it is essential to understand the role
of the Watchman Route Problem (WRP). The WRP is closely related to the CPP and the
WRP has impacted the research about the CPP. The following sections are focused on
the definition of the WRP, the proposed solutions in order to solve it, and finally, a brief
discussion is drawn about the WRP .
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(a)

Figure 2.12: Watchman route problem answer illustration.

2.4.1.1/ DEFINITION OF THE WATCHMEN ROUTE PROBLEM

The Watchman Route Problem is introduced for the first time by Chin and Ntafos in 1987
[67]. The problem of the WRP can be summarized in one sentence :

”How to calculate a shortest route contained inside a polygon such that any points
inside this polygon is visible from at least one point of the route?”.

The guard has to cover an area represented by a polygon (see the illustration of the
problems in Figure 2.12). The guard is considered as perfect with no restriction in the
field of view (the guard can see at 360◦) and no restriction in the depth field (the guard
can see from on extremity of the room to another. The guard can see the opposite wall
excepted if an obstacle occludes the view). The guard abilities are directly inspired by the
AGP (see 2.1.2) The shape of the polygon is primordial and affect greatly the possible
solutions and the complexity to solve the WRP. The WRP problem is by many aspects
closely related to the AGP. The AGP (see Section 2.1.2) is commonly considered as the
root of the WRP. In fact, the WRP is not only focused on standing position, but on finding
an optimal path. The path has to be optimized to cover all the points which compose the
polygon and the path has to be as shorter as possible.

The next section will introduce the possible methods and algorithms applicable to solve
or atleast optimize a solution for a WRP.

2.4.1.2/ SOLUTIONS

The WRP problem can be solved under some conditions. The solutions to solve it are
applicable only if the polygon is simple. A polygon is considered as simple, when the
boundary of it are composed of continue straight lines that do not intersect between them.
To close this definition, it is important to precise the simple polygon does not have any
hole (see Figure 2.13).

To solve the WRP, few algorithms were developed. The algorithms proposed in the lit-
erature enables successively better algorithm to solve the problem. The first interesting
algorithm for the WRP with a simple polygon is the early work of Tan et al [68]. Tan et
al.[68] proposed an algorithm for a fast computation time. The solution proposed works
with a simple polygon composed by n vertices and its complexity belongs to polynomial
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(a) Example of simple polygons. (b) Example of complex polygons.

Figure 2.13: Few examples to illustrate the simple polygon shape.

time O(n5).
Others contribution about WRP were then proposed. Dror et al. [69] proposed a better
time complexity. In fact, in [69], the considered solution with a simple polygon is working
in O(n3logn) complexity. The deterministic solution applied is also usable in closely re-
lated problems of the WRT as the zoo-keeper problem and safari problem which makes
this contribution versatile and generic. Two other algorithms [68, 69], are usable only in
the case of simple polygons to deliver the optimal solution which is the shortest path for
a full room coverage.

To have a more general solutions for WRP, the proposition lie in having an efficient al-
gorithm working also with complex polygons. A possible solution could be to look for an
efficient approximation by optimizing the position of the guards and their respective paths.
An efficient approximation means a path acceptably short. In fact the path computed can
not be certified as the ”best path” but only as the shorter found.

Several efficient approximations have been proposed such as in [70] and [31].

In Packer [31], the algorithm proposed is based on splitting the problem into two sub-
problems. The first sub-problem consider the search of a set of points which can be good
enough to cover all the area despite a restricted visibility range. These points are called
waypoints. Once the set of waypoints to cover all the polygons are found, the second
sub-problem consider the creation of a path passing by all these points. This second
sub-problem is similar to a classic Travelling Salesman Problem (TSP). The TSP tries to
answer the questions asked by a travelling salesman ”What is the shortest path pass-
ing by each city only one time and return to the starting city?”. In the TSP, the cities
are the nodes on the interconnected map and the roads are the connections between
them. The TSP is a well known NP-hard and NP-complete problem when applied in
some conditions, as described in [71].
Finally the solution used for the TSP can be applied for the second sub-problem of WRT.
Subsequently, TSP can be applied for the second sub-problem of WRT solution proposed
by Packer [31].

In Faigl [70] a similar method to the one proposed by Packer [31] has been proposed to
approximate the shorter path. The problem is also split into two sub-problems. The first
is to optimize the position of the waypoints and the second is to schedule the position in
order to create a path planning (directly inspired by the TSP). Furthermore, the solution
proposed by Faigl in [70] is applicable to a watchman with a restricted visibility range i.e.
equivalent to a 360◦ field of view with a restricted depth of field. This restriction affects
greatly the waypoints positioning. Due to this constraint, more waypoints needs to be
placed to cover an area. Once the set of waypoints for the polygon coverage is found, the
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second sub-problem is to create a path passing by all these waypoints. The algorithms
proposed to perform such task are also inspired by the solution given for the optimization
of the TSP.

2.4.1.3/ LIMIT AND CONSEQUENCES

The methods proposed to solve the WRP are really interesting and gives a good solution
in some specific conditions. These conditions make his methods special cases. In fact
the optimal solution, i.e. the shortest path which covers all the area (polygon), are usable
only if the polygons observe some rules. The polygon must be simple and take into
account the guard ability (no viewing constraints).
When the polygon is more complex, the optimal solution cannot be reached. The methods
applied to solve the WRP for complex area are promising. Especially the problem splitting
into sub-problems. Despite this interesting aspect, the solutions proposed are most of
the time limited due to the area representation. This representation associated to the
geometric methodologies to find the waypoints gives a crucial importance to the number
of vertices inducing also the number of cameras.
A large number of vertices imply consequently that the first sub-problem may be difficult
and time-consuming to solve. Consequently this method is not the more appropriate for
vast and complex outdoor areas which would require numerous vertices to describe. The
biggest limit of the WRP is the ability of the watchmen. Indeed, in the original problem, the
watchmen are considered having a perfect visibility. The solution proposed solving the
WRP are not usable with the accumulation of new visibility constraints. In Faigl [70], the
WRP started to be extended by adding a constraint on the visibility. In this condition the
problem is slightly modified to shift from self-organizing map to coverage path planning.
But despite this addition of a restricted depth of field, the proposed solution based on
geometric heuristic do not allows the accumulation of more constraints.

The AGP then WRP extensively impacted the vision, the design of cameras coverage
problem and coverage path planning field. Among the solutions discussed in the previous
section, numerous articles are based and/or refers to the AGP and WRP. Our work is
consequently inspired by those formulations and will propose to extend it.

2.4.2/ CPP SOLUTIONS

To optimize the CPP problems many solutions were proposed. The different algorithms
and methodologies proposed are discussed in the following sections. The methodologies
proposed can be organized in several branches. The most important branch to optimize
the CPP corresponds to the usage of sweep associate to a cellular decomposition.

2.4.2.1/ CELLULAR DECOMPOSITION AND SWEEP

To solve the CPP problem, the most common solution is considered to be the cellular
decomposition. The cellular decomposition is by some aspects inspired by the method-
ologies presented in the WRP. To recall one of the interesting solution for the WRP, the
methodology starts by splitting the problem in two sub-problems and optimize those inde-
pendently. The first sub-problem solve the search of the best waypoints and the second
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(a)

Figure 2.14: Illustration of simple cell decomposition with sweep.

sub-problem corresponds to finding the shortest path passing by all the waypoints (like
the TSP). The Cellular decomposition also split the problem of CPP in two sub-problems.
The first sub-problem is focus on the decomposition of the complex area in several cells.
Each cell has to be a simple polygon (basically a rectangle or latter any quadrilateral
polygon). Inside each cell a sweeping has be applied in order to cover all the area (see
Figure 2.14). The second sub-problem is to find the path which can connect each sim-
ple polygon. The problem has to take in account, the sweep start and end to find the
global optimized shorter path. Where the global optimized shorter path take in account
the sweep trajectory of each simple polygon and the path between the simple polygons.

Finally the cellular decomposition is made by decomposing the complex area, choosing
the appropriate sweep and finding the shortest path to connect the cells.

Decomposition

The decomposition in cells has for objective to split a complex area in several sub-areas.
Each sub-area has to be simple in term of shape in order to apply a sweep. Since the
90s, numerous algorithms have been developed for the cellular decomposition. Among
the algorithms for cellular decomposition, 3 types of decomposition were deduced as
shown in the survey of Choset [72] and Galceran and al [54].

• Approximate: An approximate decomposition is based on discretization of the area.
The free space of the area is represented by a set of cases (grid). Each case of
the grid has to be covered by a mobile robot. A case is considered completely
covered if the robot is on the associated position. Which means that the frequency
of the grid is defined by the covered area of the mobile robot. The approximate
decomposition by cases is convenient to describe the area but is greatly limited
due to the low sampling frequency of the gird and the limited amount of possible
trajectories.

• Semi approximate: The semi approximate decomposition is partly based on
the discretization of the space. The idea is to create a set of large cells. The
width of the cells is fixed and the height is relative to the area boundaries (see
in [72]). The semi approximate cell decomposition allows to have cells with two
parallel sides with a fixed size (right and left) and the two other sides adapted to the
boundaries (up and down. See the illustration of a semi approximation in Figure
2.15). The width of the cells are chosen accordingly to half of the focal length
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(a)

Figure 2.15: Illustration of a semi approximate decomposition outcome from the survey
of Choset [72]. The 4 figures illustrates the trajectory of the robot over the time.

of the camera mounted on the mobile robot. The area is covered by following
the boundaries of the cells with sweep to cover cells after cells. The advantage
of the semi approximate decomposition is the ease to describe a vast area and
the low computation time required. Additionally, this decomposition can be made
on-line by the robot and do not requires a high level of knowledge of the area. The
disadvantage is the non-optimization of path due to the cells decomposition. The
simplicity of this decomposition can generate case where the robot have to cover
many times the same place. The semi approximate cellular decomposition do not
allow to have a well optimized path planning.

• Exact cellular decomposition: The exact cellular decomposition describe the area
by creating juxtaposed geometrical regions. The size of the regions (or cells) are
not depending on the robot ability contrarily to the previous decomposition. The
large size of the cells allows the mobile robot to do back and forth motion to cover
all the cells (also called sweep as in Figure 2.16). The cells have to be ordered to
conserve an efficient and short path going through all the cells. The global path dis-
tance have to be reduced by an appropriation of the path passing through cells. The
exact cellular decomposition became popular and numerous algorithms have been
proposed. The proposed algorithms can be a faster decomposition or a deduc-
tion of more appropriate shape depending on the basic rectangular cells. Among
the numerous exact cellular decomposition propositions: the trapezoidal decompo-
sition for its simplicity and historic importance, the Boustrophedon decomposition
and Morse-based Cellular Decomposition can be cited for their importance in the
construction of other exact cellular decomposition. These algorithms and other are
clearly summarized in the survey of Carreras and Galceran [54]. The exact cellu-
lar decomposition has been still studied since the survey of Carreras and Galceran
[54] and upgraded, as in [73], proposing a decomposition for concave or multiple
polygons.

Sweeps

The back and forth or sweep is an essential element of the CPP by cellular decomposi-
tion. The sweep has to cover the entirety of the cells. The cells are splitting the area in
relatively simple polygons (as shown in the paragraph 2.4.2.1 and the Figure 2.14). The
sweep needs to be adapted to the shape of the cells and also must start and finish in a ap-
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(a)

Figure 2.16: Illustration of the different sweeps and spirals.

propriate position taking into consideration the path to the next cells. For that the starting
point and the ending point of the sweep are crucial for the global path planning. In Torres
et al. [73], the sweep is function of a direction and can go clockwise or counter-clockwise
to have a start and end in the appropriate position for the transition. This enables to have
8 different applicable sweeps at each cells depending on the most appropriate start and
finish; according to the computed path. The sweeps are adapted depending on :

• The turn sides ( clockwise or counter-clockwise)

• The directions (horizontal or vertical)

• The finishing positions (start and stop from the same side or opposite side)

The sweep can be also alternatively switched for a spiral as proposed in Jimenez et al.
[74]. The proposed sweep and spiral are adaptable depending on the context. The sweep
can have two directions and for the spiral two turn sides (clockwise or counter-clockwise).
The different sweeps and spirals are illustrated in the Figure 2.16.

To have an adapted sweep, the footprint has to be defined depending on the camera
ability and the objectives. In [73], the size of the sweep is dependent on the area covered
by a camera and a considered sufficient amount of overlaps for the 3D reconstruction (see
also[22]). In Li et al. [7], the footprint of the camera with a small pan is considered. Due
to the pan, the camera projection is not a rectangle but a trapezoid. Consequently the
sweep size is adapted by taking the larger side of the trapezoid for the sweep dimension.
Also for the grid decomposition, the sweep size is directly related to the coverage ability
of the mobile robot (as example in [58, 75]).

One extra element necessary for the sweep can be in some cases the external element
such as the wind. In [58, 76], the external condition are taken into account in the cost
function and it influence the sweep.

To summarizes the sweeps requires to be adapted to the area and the relation between
cells. To choose the appropriate sweeps the following element have to be considered:

• The size of sweep have to be defined depending on the ability of the camera (foot-
print size).

• The direction (horizontal or vertical).

• The starting and finishing position (start and stop from the same side or opposite
side)
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To obtain the more appropriate sweep, it is primordial to know before the cells scheduling.
The cells scheduling are a crucial part of the path planning.

Path planning

The aim of the path planning is to find the short path going through all the cells. Finding
the best path planning passing by all the waypoints or in this case all the cells, is a
complex problem which can be formulated as a TSP. The path planning became even
more complex in the case of exact cellular decomposition or for any decomposition which
requires a sweeping inside each cells. Indeed, in this case, the goal is to have the shortest
path planning with taking into account each sweep and transition between cells. In the
previous paragraph 2.4.2.1, the different sweeps and spirals have been detailed. The start
and the end of the sweep are the crucial elements to consider during the path planning
computation. Obviously, to find the best scheduling between each cells, the algorithm
induces by the TSP are commonly used.

When the area is decomposed in cells, the goal is to schedule the right-of-way from one
cell to another in order to create an efficient path. The scheduling of the cells can be
optimized by using the paradigm of TSP with the same algorithms to have an acceptable
path planning. The TSP is a well known problem and is deeply studied from long time
ago. First is essential to remember the TSP is an NP-complete and NP-hard problem as
prooved in Karp in [71].

To optimize the TSP, numerous algorithms have been tested and some of them have
been specially applied to schedule the cells to have the shortest path. In An et al. [77],
two algorithms were tested before developping a third. The algorithms used are based
on branch and bound. The algorithm developed in [77] is called Novel Previous-Next
Waypoints Coverage Constraint (PNWCC). The algorithms presented in [77] proposes at
same time a schedule of each cells as well as a smooth trajectory without sharp edges
usable for non holonomic driving robots.

In the survey of Carreras et Galceran [54], the solutions proposed to solve the TSP are
asked to compute an exhaustive walk trough the adjacency graph. These solutions are
workable only for computingg small adjacency graph. The GA is popular to optimize the
TSP and is commonly used to evaluate the influence of parameters as in [78] [79]. About
the CPP problem, the GA is also used to optimize the TSP part as in Jimenez et al. [74],
where the GA is applied to find an optimized schedule retrospectively of an exact cellular
decomposition of a complex polygon.
The GA is announced to be appropriated to obtain an optimized solution for the TSP. In
some situations, a TSP is not realistic and some external constraints can be added such
as the wind effect, turbulence, or holonomy constraint as in [80, 81, 54]). The addition of
external constraints may leads to more complex scheduling of the cells.

2.4.2.2/ OTHER SOLUTIONS

Among the algorithms developed for the CPP, some interesting methods have to be stud-
ied. Some algorithms has been discussed in Choset [72] as approximate solution (see
Section 2.4.2.1).

The approximate cellular decomposition was briefly approached in the previous Section
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2.4.2.1. The approximate cellular decomposition was considered not interesting due to
the low sampling frequency of the grid. Conceptually, the works of [57, 59, 58] are going
further by using a higher sampling frequency of the area to cover. The solution based on
regular grid discretization may be compared to approximated cellular decomposition with
a high sampling frequency as in [23]. Due to the relatively fine grid decomposition which
engender an increased size of the cases number, the algorithms to optimize the path
passing by all the cases of the grid has to be adapted . Consequently, new navigation
strategy has been developed.

In Luo et al. [57], the goal is to have a complete coverage by visiting all the cases of a
grid. To visit all the cases of the grid, a neural-neighborhood analysis and neural dynamic
programming approaches are adapted to have an efficient CPP for the robots. In Simon
et Luo [59], they proposes an similar method with a neural network solution for dynamic
and non planar area.

The work of Lee et al. [58] proposes another solution based on smooth spiral path. The
idea is to propose to follow the boundaries of the room in order to fully cover and use a
smoothed spiral to cover the area. The solution proposed is compared to other methods.
The main advantage of these method is the on-line ability and the smoothed trajectory
(see also [75]).

Before to conclude about some of the algorithms usable to optimize the coverage path
planning the more elementary has to be discussed. In fact, among the algorithms pro-
posed until here the full random was not discussed. In Liu et al. [82], a really basic method
is developed to cover an area with a mobile robot (hover robot) for on-line path planning
in a dynamic environment. The algorithm proposed is based on random directions. The
basic idea is to move forward until the detection of an obstacle (ultrasonic or bumper).
When an obstacle is detected, the robot turns randomly. This solution is really basic and
is based on the idea saying that if the room is not too big or not specially complex, with
enough time, the mobile robot will cover all. Obviously this solution is not optimized and
not suitable in many cases.
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3.1/ DARWIN AND THE NATURAL SELECTION

The theory of evolution was introduced by Darwin and it inspired the computer science
for developing optimization algorithms. To understand the algorithm it is important to go
back to the origin. The following section is focused on the fundamental theories of the
natural selection and its history.

3.1.1/ DARWIN THEORY

Darwin has studied the differences between individuals from the same species and tried
to establish a classification of the different sub-species. It appeared some individuals
from the same species and from different countries had some slight differences. These
variations were studied and explained by the Darwin theories in The Origin of Species,
published in 1859.

51
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Figure 3.1: Finches from Galapagos archipelago extract od The Origin of
species by C.Darwin .

The origin of species details are grouped and classifier in the theory of evolution. This
theory uses the concept of adaptation introduced presciently by J.B. de Lamarck, and
deeply studied by Darwin. The adaptation explains the relation between the environment
of the individual and the differences generated by natural selection. This observation was
first made on birds, called geospiza, or finches, (chaffinch) from Galapagos archipelago.
Darwin noticed the difference of their beaks (see the Fig 3.1). The shape of the beak was
correlated of the specificity of each island. Finches with the biggest beak correspond to
the island with the biggest seeds.
This observation was formulated and explained by Darwin by the adaptation of the birds
in their environment.
The adaptation is partially due to the natural selection. Indeed the selection is done by
the reproduction of the strongest individuals.
The reproduction concerned 2 individuals (one male, one female). Each individual is
in competition with the other individuals of the same species. In its condition only the
stronger and the more adapted individuals have a chance to have a progeny (an off-
spring). Therefore generation, after generation, the more adapted individual itself repro-
duced and mute, while the species adapt to their environment. In this case, the strongest
finches is the one with an appropriate beak in order to eat more seeds.

3.1.2/ BIOLOGIC EVOLUTION

The Darwin theory of evolution was contested during long time until the confirmation by
the progress of biologic sciences, especially with the genetic progress. The progress in
this field was used to study the mechanism of the natural selection and evolution. One
of the important progress and confirmation of the theory is by using the analyze of DNA
code. DNA for DeoxyriboNucleic Acid contains all the useful information: growth, life and
reproduction of life.
The discovery of DNA code permits to confirm the genetic proximity between some
species. Moreover the DNA permitted the evaluation of their evolution and code mod-
ification in the same species from different location and several generation gap. Thanks
to the genetic and DNA the evolutionary process has been explained deeply and clearly.

In the biology, every living element is composed by cellular. Inside each cellular the DNA
code is stored. The DNA composes the chromosomes. The chromosomes have a central
role in the definition of one individual and in the reproduction process (see the Fig 3.2).
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Figure 3.2: Biologic representation, cell to chromosome
until DNA.

As introduced earlier, the evolution is possible by a natural selection. The selection
is done by survival and reproduction ability of the best individuals. Better mean more
adapted to the specific environment, like for the geospiza the size of the beaks depending
on the size of the seed from his island. In the island with the big seed the geopiza with
the small beaks was not the most adapted and had more difficulties to find food. This
weakness makes the geopiza with the bigger beaks in better position to reproduce and
the DNA of the individuals with biggest beak is transmitted to the next generation.
The understanding of the reproduction mechanism in term of succession and transfer of
the natural ability is primordial. It is explained in part by crossover in the cellular state.

Sexual reproduction. The living element, for example the geospiza, use sexual repro-
duction. The sexual reproductions assumes to merge part of the chromosome from the
two individuals to create their descendants. The selection is essential in order to keep
the more adapted individuals of the species.
Among the reproduction mechanism, the crossover and the mutation are the ones with
the biggest impact.
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Crossover. The crossover is the action of merging the chromosomes of two individuals
in order to have a new child.
It is an essential factor to preserve the individual ability of the geospiza. But the natural
selection and the crossover cannot be considered as the only useful element to evolve.

Gene The gene is a subset of the DNA code. Commonly, the DNA is cut in many
thousands genes where each gene can represent a specified function or ability.

Mutation. Contrary to the crossover which allows only the ability preservation from
one generation to another, the mutation introduces some “anomalies”. The anomalies
can become in some cases a biologic advantage. The mutation affects only rare
chromosomes of the individuals. The chromosomes affected are not fully mutated but
only one or two genes are affected.
The mutation changes the little piece of DNA code to introduce variety in the genetic
code by the small “anomalies”.
Most of the time the small mutations are not consequent for the individual but generation
after generation the mutation can be preserved and spread in the population.

The giraffe can be taken as an example:
In the arid environment, the giraffe with the longest neck has more chance to survive
due to its empowered ability to find food. The giraffe with a neck a bit longer than the
other, can become more attractive for the natural selection (in this case more food mean
stronger and then more attractive). The natural selection pushes the best individual to
reproduce together and by the crossover mechanism conserves the small advantage
given. The initial mutations giving at few giraffes a longer neck and by the process of
natural selection associate to the crossover allows this advantage from a small mutation
to become the norm. Mutation after mutation and generation after generation the giraffe
observe the average length of their neck increased. Finally the actual giraffe is the result
of a long and complex evolutionary process.
The mutation can also be the source of degenerate animals but in this case the natural
selection by the reproduction (and crossover) will not allow the preservation of the
individual and thereby the mutated chromosome will disappear.

3.2/ THE EVOLUTIONARY ALGORITHMS

The Evolutionary Algorithm (EA) is a big family of algorithms and include many meta-
heuristic used in the field of optimization and artificial intelligence.
The evolutionary algorithms are inspired by the biologic mechanism to design meta-
heuristics. The origin of the inspiration can be various such as the genetic, insect work,
animal behavior, . . . (see Table 3.1).
The biologic inspiration is not the only element used to define the evolutionary algorithms.
All the algorithms in this family are dedicate to optimize iteratively a population of solu-
tions. The EA family is not part of deterministic process and use a randomized function
in order to evolve.
To summarize, the EA has most of its attribute :
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Inspiration or group Algorithm
Based on memorization. Neuroevolution

Learning classifier system
Animal inspired and swarm al-
gorithms

Particle swarm optimization
(PSO)
Bee colony
Ant colony
Mimetic algorithm
Shuffle frog

Swarm algorithms Addaptatif dimensional search
Gaussian adaptation
Genetic Algorithm
simulated annealing

Combinatorial Harmony search
Genetic Genetic programing

Evolutionary programing
Evolutionary strategies
Evolutionary programing
DarwinTunes
Genetic Algorithm

Table 3.1: List of some basic EA.

• Bio inspired.

• Using randomness (not fully deterministic).

• Based on population.

• Evolving a set of solutions to optimize a given problem.

These definitions are not the strict characteristics for all the EA. They are rather the most
common element of the major part of the vast EA family.

3.2.1/ HISTORIC

The EA are relatively recent and do not have a fixed origin. It is the result of more than
a decade of research and improvements. The premise of the EA can be considered to
be the work of Robbins et al. [83] in 1951. More commonly, the beginning of the EA
are on the late 50s with the works of Bremermann [84], Friedberg [85], Box [86]. They
proposed different algorithms based on the evolving solutions to optimize solution for any
given problem.
During almost the three next decades, the research had slowly progressed and remained
rather unknown. Mostly due to the low computation power at this time and also to some
methodological short comings of those early approaches.
Despite of this difficulty, the fundamental works of Holland [87] and Fogel have been es-
sential to the progress and to popularize the EA.
In 90s, due to the fast increasing computation power, the EA became more popular and
numerous new algorithms from EA family have been designed as listed in the Table 3.1.
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About the applications of the EA, the engineering field (examples in [88]) and the multipli-
cation of the conferences in EA allowed the democratization of this family of algorithms.
The EA took profit of three main and independent methodologies; evolutionary program-
ming, evolution strategies and genetic algorithms (GA).

• The evolutionary programming, especially the work of Fogel is based on the
finite state machine. The goal is to predict events based on the inputs. It was one
of the premises of machine learning and classification.

• The evolution strategies, especially the work of Rechenberg ([89]), proposed a
strategies based on deterministic selection and random mutation. The goal was
to solve difficult experimental problems with discrete or continuous search space.
Rechenberg applied particular the evolutionary strategies for aerodynamic profile
design.

• The genetic algorithm, is probably the most polyvalent and tunable method
belonging to the EA family. The GA offers an adaptive processes to optimize a
solution. The GA will be precisely detailed in the Section 3.3.

The GA have more particularly attracted the interest of the research with the work of
Holland and Goldberg. The popularity of the GA is most probably due to the increasing
power of computation (in 80s, 90s) associated to fundamental progress and the numerous
possible applications in the optimization field.

Since the late 90s the research of EA have been focused on the Multi Objective Evolution-
ary Algorithms (MOEA) [90, 91, 92]. The MOEA is the logic extension of the EA to give
solution to problem more and more realistic which requires to manage different objectives
and constraints potentially contradictory. The MOEA is discussed in the Section 3.4

3.2.2/ GENERAL FORMULATION

Most of the EAs have to optimize one or several problems using an iterative process to
evolve towards an assumed optimal solution. The EA can be formulated as the optimiza-
tion of a given problem, in order to obtain the best possible solution. The possible solution
must be formalized as a input vector ~x. Where each element of the vector (~x) is one input
or a dimension (xi) to optimize the given problem.

~x = {x1, ...xn} ∈ Ω (3.1)

Where n the number of dimension to optimize (or number of inputs), and Ω is the search
space of the problem. The search space represents all the possible solution of the prob-
lem. Sometime, depending on the problem, the elements in the vector ~x are ordered. In
this case the value of xi is as important as its position i in the vector ~x. Consequently the
search space is even bigger.
Bigger is the search space, more the solution may be expensive to find in term of time
computation.
The goal of the EA family is to optimize a solution (~x), in order to have the best solution
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possible for the problem, where the best solution is defined by a cost function ( f (~x)). The
objective is to maximize the value of the cost function regarding an input solution (~x).

max f (~x) (3.2)

The EA maximizes work towards to the global optimum solution ~X.

max f (~x) ≤ f (~X) (3.3)

Where ~X is the global optimum solution.
Optimizing a solution ~x is not always enough to solve efficiently the problem. The pro-
posed solution has to observe the constraint linked to the problem. The constraint func-
tion can be various depending on the problem. As example, one naive constraint function
could be the boundary of the search space. To reach a set of m constraint function, E
must be taken into consideration :

E = {e1, ...em} (3.4)

Where e j is the jth constraint function of the set E. Thus, that means the cost function F
has to include the constraint set E and maximize the value of the cost function f ().

max F((~x)) = max f (~x) −min(
m∑

j=1

e j(~x)) (3.5)

F is the cost function, which includes the constraints, to evaluate a solution ~x to optimize
the problem.
The EA manage the optimization of the problem based on the cost function F(~x) by apply-
ing different meta-heuristics. The meta-heuristics use different methodologies to optimize
an initial solution. The optimization is more or less global depending on the algorithm ap-
plied. Mainly the optimization methods are based on the generate new sets of solutions.
The new sets is made by evolving the previous sets of solutions. A set of solutions is also
called population. Where a population is defined as pop = { ~x1, ..., ~xp} with p is the number
of individual in the population. The solution found by the EA is not necessarily the global
optimum and for some type of problem (as Np-hard) it is impossible to confirm the nature
of the solution (global or local).
The risk in this case could lead to an endless optimization. To avoid the infinite optimiza-
tion, the end has to be fixed depending on some stopping criterion.

3.2.3/ STOPPING CRITERION

To determine a stopping criteria , the proposed solutions in the following part are more
especially adapted to the algorithms like GA, PSO, ant colony, mimetic and other EA
working with a population to optimize.

The EA are mostly efficient in the problems with many local minimums. Nevertheless,
due to numbers and size of the local minimums, it can be difficult to ensure if a solution
is the global optimum. To know if the global optimum is reached, the method applied
must ensure that no other solution can be better. Therefore, the solution found must be
always exactly the same or equivalent in term of cost. The optimization process must be
repeatable (same input gives the same output).
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Only the deterministic method can insure to have a global optimum solution. The convex
problem has only one global optimal and no local minimum by definition.
The EA optimizes a solution to be as efficient as possible (not the optimum). Because the
uncertainty of the EA optimization, it is impossible to call a calculated solution as global
optimum.

Consequently, how to determine when the optimization has to be stopped? Because
at some points, it is pointless to continue the optimization, the best solution has been
reached or the optimization is locked in some deep local optimums.To determine the
stopping criteria, three possible ways are commonly used:

• Fixed time criterion: stops the algorithm after a fixed number of iterations or
time limit. The limit is measured in term of computation time, also the number of
iteration must be fixed by the user. The main interest of this method is to control the
computation time of the problem which requires a solution in a determined time.
The main risk of this method is represented by a stopping criteria reached before
an efficient solution computed.

• Update criterion: stops the algorithm (before the convergence) if no better solution
is found after a predefined number of iterations. This criteria can be useful for
complex problems or if many solutions can have the same quality. The advantage
of this stopping criteria is that it can stop before the convergence with a solution
close or identical to the one reached at the convergence. The inconvenient remains
in the concept of ”early shutdown”. In fact, if the update criteria is not properly
chosen, the optimization may stop at the beginning.
To usage of such stopping criterion a correct number of iterations has to be
selected. It must be sufficient to give time when the meta-heuristic is locked at a
local minimum. A long time lock in local minimum may append mostly at the early
time of the optimization due to a too sharp initialisation or in the late optimization
time (when the solution is already well optimized).

• Convergence criterion: stops the algorithm by waiting the convergence point. The
convergence is reached when the actual population is composed by a set of iden-
tical solutions. Which means that the same solution has been found by all the
individuals of the population.
The best solution found push the other to evolve in the same direction, by contagion
all the individual of the population evolves to reach the convergence point.
This solution found during the optimization process is supposed to be the best one.
In this case, the population has been converging to an supposed optimized solution.

The stopping criterion presented can be organized as a combination of the three methods
to have an efficient and flexible solution as presented in the following example :
The mixed stopping criteria has to combine a fixed time criteria and an update criteria.
The advantage of the fixed time criteria is to avoid the case of an almost infinite optimiza-
tion loop append, due to an impossible convergence.
Combined with the update criteria the other advantage is the ability to stop the optimiza-
tion before reaching the complete convergence and before reaching the time criteria limit.



3.3. GENETIC ALGORITHMS 59

The combination of these stopping criterion always provide a solution optimized in a rea-
sonable time (fast, efficient and time predictable for the worst case).

3.3/ GENETIC ALGORITHMS

Among the evolutionary algorithms, one is very close to the Darwin theory by reusing
the operating principle of natural selection and is also based on the genetics with the
influence of the crossover and mutation (see section 3.1.2). This algorithm is called
Genetic Algorithm (GA) and was introduced for the first time by Holland in 1962 [87].
The GA is one of the fundamental algorithms of the EA. The GA became popular at the
late 80s and early 90s, particularly with Goldberg works [93].Since the 90s, many details
were redefined and explored in the knowledge of genetics to have a huge set-up and
operator available for the GA.

The following sections will try to list the most promising aspects of the GA mechanisms.

3.3.1/ CHROMOSOMES

Like in the Biologic field, the chromosomes contains properties (with the genes and DNA)
of individuals. A primordial issue the goal is to optimize a problem involving the GA is to
define properly the chromosomes role, taking into account of different aspects of it.

The chromosome is used to design the problem and it has to represent a solution. To
do so, it is important to know the problem and identify clearly which parts of the problem
requires to be optimized and what is the range of the search area.
Depending on those previous facts, the coding can be direct or indirect.

• The direct coding: consists in direct mapping of the gene corresponding to the
elements of the solution. Using the direct coding may simplifies the output of the
optimization by returning it back to an element directly appropriate to use.

• The indirect coding: not directly appropriate for usage and needs conversion to
be used. One example of indirect coding is the willingness to introduce redundant
genes inside each chromosomes. The conversion must be done by a heuristic. The
interest of the method lie inn the ability to make a strong constraint adapted to the
problem as presented in [94, 95], where it is used to solve a complex scheduling
problem with many constraints.

To define the chromosome, direct or indirect coding is not the only element to be taken into
account. The coding structure is also important to the chromosomes design. The coding
structure has to encode the solutions in the chromosome like presented in [95] and [96].
Among the possible coding structures, foud main categories can be considered as basic
coding structures: the combinatorial coding, binary, the real coding (also alphabet) and
tree coding. Moreover the choices for the chromosomes must also take into account the
wanted solution in terms of number of dimensions to represent and their boundaries.

Binary Coding The binary coding offers the formatting of the chromosomes as a bit
string in which every genes of the chromosome can be coverted on pack of bits which is
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a boolean. This coding method was studied since the beginning of the GA by Goldberg
et al. [97] and also used in other EA like PSO in [98]. The binary coding is more efficient
in the small search space or when the size of the chromosome is not too big. The
advantage of the binary coding is the possibility to introduce lot of variety during the
process of optimization [99]. The variety is traditionally induced by the mutation but in
the case of the binary coding, the crossover introduce variety by the potential split of the
gene in 2 pack of bits.

The combinatorial The combinatorial coding is commonly applied in some specific
problems where the goal is to order all the elements. In this case, the position of the
gene in the chromosome is primordial as in [100]. It is characteristically used to the
problem as TSP [79] (Travelling salesman problem). When the combinatorial coding
is used for problem that aims to optimize the order the elements of the chromosomes.
With a combinatorial coding, each chromosome already has all gene of the answer.
An example, in the TSP, the aim is to order various cities (in the problem of TSP every
gene represents a city) and all the possible cities are included in the initial solution
(chromosome). In this case, the problem represents the optimization of the combination
of the elements composed by the initial solution. One evolution of the combinatorial
traditional coding is to add and remove some genes that obviously affect the size of the
chromosome, for example when the goal is to find the shortest distance in the tree [101].

Real Coding Real coding or integer coding is considering every genes of the chro-
mosome as a number to optimize. This number can be a real or an integer and may
have an infinity of possibilities. In fact, the value does not have an infinity of possibilities
because the constraint induces by the machine and limits of the problem itself too (size
of the search space). This coding is used when the search space is large and also can
be efficient when many dimensions need to be optimized. But most of the time a special
attention should be placed onto the operator, because in many cases the operator may
be adapted or redesigned depending on the problem such as in [78], where the operators
are adapted to look for close neighbors.

Tree coding The tree coding use the tree representation to take care of the hierarchy,
but this method is not really popular and not flexible to all cases. The advantage of tree
coding is this ability to go further than a combinatorial representation. An example in
[95], the tree coding is used with the GA to optimize new phone network or gas/ water
pipeline where the relations between the elements are primordial. In [95] is presented
the interest of tree coding for the intrusion detection system.
The four coding methods presented are not the only potential coding. There are the most
common and the roots of other coding . Many other have been developed and studied
with direct or indirect coding to fit with specific problem. Thereby, in literature, a survey
is dedicated to the encoding chromosome of the GA [94]. The survey [94] proposed an
explanation and a search for a robust coding usable depending on the problems.
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3.3.2/ COST FUNCTION

The cost function or the fitness function has an essential role in the optimization process.
The aim of this function is equivalent to quantify the quality of a solution. This is primarily
applied to the GA and in most of the optimization process uses meta-heuristic. The
cost Function is a compass for the meta-heuristic during the optimization. The cost
function is dependent on the problem and should be designed or redesigned depending
on each specific problems. Once the cost function is designed for a problem, it can be
used to test different other algorithms of optimization which requires also a cost function.
Because the cost function is exactly the same, it becomes easier to compare the results
from different algorithms as discussed in [102] and also in chapter 5.2.Once conceived,
the cost function is considered as a black box by the optimization algorithm and encloses
most of the complexity of the problem. Obviously, if the cost function is not designed
correctly with all the constraints and the objectives, the optimization will fail.

Multi objectives

The cost functions are traditionally made-up for problems with only one objective, but
in the recent years, several solutions have been adapted for multi-objective. The goal
is to optimize a problem with few sub-objectives included. These sub-objectives can be
at some points contradictory and a trade-off must be choosed during the optimization
process, based on the grading made by the cost function.
The cost function for Multi Objective Problem (MOP) is discussed in the survey of Zhou
et al. [90]. In Zhou et al. [90], one of the ways to solve the MOP is to adapt a classic
mono objective algorithm in multi by customizing the cost function. The customization of
the cost function proposes a way to evaluate a solution not depending on one objective
but with all of them combined in the same function instead of several cost functions.
Also, other solutions are discussed in [90], like using coefficients to order the objectives
priority or by reducing the problem into several sub-problems.

Constraints

The goal is to satisfy the objective(s) while taking into account the constraint(s). Conse-
quently the cost function has to take into account and subsequently integrate the con-
straints. Previously, in the chromosome (3.3.1), the strong constraint was established by
the coding, especially by imposing limits in the real coding or using indirect coding. But
it is feasible to impose some additional soft constraints to the system by adding rule in
cost function. The rule corresponding to the constraint is helping the optimization to move
towards a good choice not by imposing strong constraint but by affecting ”bad points” or
”good points” depending on the constraints.
The soft constraints can appear a bit irrelevant, but they can be a good trade-off between
two contradictory objectives and some other strong constraints. Indeed, a soft constraint
can be simpler to implement and faster in term of computation time compared to a hard
constraint.
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Optimization and time computation

The cost function should be designed carefully and have to pay special attention to the
computation time. Indeed, the high frequency call of the function may generate some
heavy slowdowns.
The cost function has a special importance in the optimization process with respect
to the rating of all the individuals at every generations. If we consider a GA with 100
individuals (it is a common number of individuals not to much and generally enough) and
a convergence after 100 generations (it is good minimum in order to avoid a premature
convergence), in this case the cost function will be called at minima 10 000 times. Due to
this important factor, it is primordial to carefully design the cost function as it is specified
in [103].
It is common to have several thousand or billion calls of the cost function during the
optimization process. Hence the importance to have a function timeliness and economic
in resources.
Even the cost of this function must be the most accurate, in some cases like in [104], a
complex calculation or noise can affect the reliability of the cost function which will be
impacted on the quality of optimized solution; but despite the noise and the weakness of
the cost function, the GA can optimize and give a solution. But it is advisable to have a
function accurate and as reliable as possible to have an efficient solution.
To conclude with,the importance of the cost function, it is notable that it is a major piece
of the GA and the choice of the design of cost function associate dto the chromosome
representation will affect the result but also the setup of the GA and can generate some
latches.

3.3.3/ POPULATION

The population gathers a number N of solutions (or individuals) from the same generation.
The individual can be represented into one or more chromosomes (instead of having
redundancy as in [94]). Commonly each individual is composed by one chromosome.
Therefore the two terms are regularly inverted in the literature.
At every generation most or all the population is renewed (by using the selection and
operator). Indeed the population can have an effect on the convergence and the result of
the EA and different strategy or set up exists. About the population, two main points needs
to be studied : the first is the initial population and the 2nd is the size of the population.

Initialization of the population Initialization of the population is one of the fundamental
questions that may affect the convergence of the problems. There are mainly two com-
mon proposed solutions with one using the full random generation or using efficient and
already approved heuristics.
The method based on heuristic involve a perfect knowledge of the problem and can not
be applied for all the problems. To briefly state about the advantage of using heuristic, it
can give very good starting individuals at the beginning the optimization and also using
the heuristic may give a solution more compliant according to the constraints of the prob-
lem, especially if the problem include many constraints hard to satisfy.
Although this advantage of using a heuristic to find the first generation of the population
can become a handicap and push the GA in the direction of the potential local minimum.
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Indeed, using one heuristic to build the first generation can have a population too similar
with not enough variety. The variety is essential to run through all the search space and
allows to not converge too fast in a local minimum (see [105]).
If using a heuristic to build the initial population is not always the good solution, another
solution, more versatile, is represented by the usage the randomness to find initial popu-
lation. The randomness generates each individual randomly in the search space. One of
the advantages is that the individual can be well distributed around the search space to
cover most of it if the size of the population is big enough. The random distribution allows
the algorithm to cover a wide part of the search space quickly during the first generation
and the spreading of the population is a good source of variety. The random initialization
is commonly used at the expense of the heuristic solution.

To initialize the population, the third method combine the full randomness with the one
based on heuristic. In this case, a random solution is applied before, the heuristic is used
to refine the initial solution. Otherwise, different heuristics are used randomly to generate
all individuals of the first population. Other combinations are possible: see [101] for more
details.

Population size Another key point remaining tis the consideration of the size of the
population. The size of the population and its effect on the convergence are studied in
many articles [105, 103, 106, 107, 97, 108]. The first point is to find the appropriated size
depending on the problem. Indeed if the size of the population is too small the variety of
the population can be too short and the algorithm can converge too fast [103]. Contrarily,
if the population is too large ,the waiting time may become too long. Like that, choosing
the appropriate size of the population is not trivial and remains a crucial step. To find the
best size of a static population, the unique procediure is to do several experiments and
compare the results, as performed in [106].

The population can also be adapted dynamically or auto-adapt its size during the opti-
mization. Commonly, the number of individuals in the population needs to be important
during the first generation but close to the convergence. The population can be reduced
to obtain time economy. In [109], the size is obtained using probability distribution. It
can also be fixed by a linear equation or even more complex, in function of the progress
of the cost function and the variety of solution as shown in [103]. The population have
an important contribution in the convergence computation, if the size of the population is
static, dynamic or auto adapted, the convergence can be faster with more or less quality
for the solution. The convergence is studied in the [108]. But the convergence is not only
linked by the population size but also the selection, the coding and the operator choice
are important aspects of the GA as shown in [106, 107].

3.3.4/ SELECTION MODE

The selection mode is the method used to select in a population the individuals the most
able to reproduce. It is an important key point corresponding to the natural selection in
the Darwin theory.
The choice of the selection mode is primordial and affect greatly the quality and the speed
of the optimization process. This choice needs to be done depending on the problem. A
selection mode applied on a specific problem can be efficient (in term of answer quality
and time convergence) but the same selection mode applied on a completely different



64 CHAPTER 3. GENETIC ALGORITHMS

problem can be inefficient for it. The selection mode must be selected or adapted for
each kind of problem. To choose the selection mode the testing of different method has
to be performed.
One of the objective of the selection mode is to keep enough variety in the population to
avoid an premature convergence. Also, too much variety in the population and especially
not a the beginning may artificially delay the convergence. A good selection mode has
to be a trade-off between too elitist selection (not enough variety) and a too permissive
selection (too much variety).
A multitude of selection mode have been developed during the time (few of them have
been listed in [96]). Making a choice among this wide list of possibility is difficult. The
selection mode among the most common or representative is presented below:

Elitist selection - The elitist selection is more like a subgroup of selection mode. His
particularity is the usage of a deterministic way to select the best individual depending
on the cost function. The best or some of the best are selected directly for the next
generation such that the best individual are preserved and there is no risk to lose a
good individual during the crossover, mutation and other operations. The few best
individuals selected are used to engender a new generation. This subgroup of selection
is studied in [110, 105] to estimate the efficiency of convergence using this selection
mode or in [92] applied in the multi-objective problem. It appeared on these article
that the elitist selection is efficient, converge quickly and the best individuals generated
are preserved for the next generation. But unseemly, it may sometime converge
prematurely because of the difficulty of keeping enough variety with this selection mode.
Consequently, some of the elitist selections have been customized to preserve the variety.

The roulette wheel - The roulette wheel selection is at the same time one of the older
selection mode used since 1989 but also one of most inspiring. The roulette wheel
gives many methods inspired by this one like for example remainder stochastic sampling
in [111]. The roulette wheel selection had a basic operating. Every chromosome is
represented in the wheel and the size of the wedge are depended them the quality of
the chromosome. This quality is computed from the fitness function. With this technique,
the chromosome with the best fitness function has the most luck (but not necessarily)
to be selected. Once the wheel was built by the random sampling can begin to select
the new individual of the generation for the next generation. The wheel turns until all
the individuals are selected. This method helps the better chromosomes to be more
represented in the next generation but also accepted to have some time more or less
bad individual conserve for keeping the variety. More the GA work more the size on the
wheel of the best solution will increase and help to converge.

Tournament selection - Tournament selection is one of the most used selection in this
last decade. It is working as a tournament. The first step consider a random creation of
few pools with all the individuals of the actual generation. When the pools are created,
the tournament can begin and the best chromosomes of each pool (depending on the
cost function) are selected to build the next generation. This selection by randomly
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Figure 3.3: The selection implyed by GA mechanism.

building the pool could preserve the ”lesser” individuals but the best chromosomes are
always used to build the next generation. The tournament selection is very efficient to
keep diversity and also give a chance to have a fast convergence as it is explained in
[105].
Obviously, the size of the pool has a really big influence on the convergence as is
studied in[105, 104]. The conclusion of these papers about the pool size is: bigger the
pool (4 or 5 individuals), less diversity; and the convergence goes faster, and can end
stuck in a local minimum due to a premature convergence. Contrarily, the small pool (2
chromosomes) keeps the variety but the convergence can be slower. Finally the size
of the pool is also one other parameter to take into account and the size of the pool is
also strongly linked to the population size. Among the selection mode presented, the
tournament selection is one of the most efficient to manage the variety and this behavior
explains its wide popularity to solve engineering problems.

The last element to consider about the selection mode is its frequency of application.
Indeed the selection of the individual may intervene at two occasions (see figure 3.3).
The first, the more conventional, corresponds to the selection of the parent with the ability
to reproduce. The second is the selection of the children good enough to be part of
the next generation. The key interest of this is to be able to generate new children until
the selection criteria are rich in order to have a population with acceptable children in
sufficient quantity (this method is more efficient on the problem with lot of hard constraint).

3.3.5/ OPERATORS

The operator have to aim the design of the next generation by generating the offspring.
Once the parent able of reproduction has been selected (using the selection mode saw
previously), it is time to engender a new children. The techniques to create a new pop-
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ulation are numerous. Among them, the most common are: the heritage (or selection),
random generation, the crossover and mutation.

Heritage or selection: The heritage or also called selection is a simple copy of the
best parents to the next generation with no modification. This operator is commonly
used to keep the best individual in order to ensure the salvation of the best solution
if no upgrade is made by the other children. Indeed the other operator may propose
degenerated children which is some time worst than parents and the heritage.
The crossover and mutation have a more interesting mechanism. They are also the basis
of many other customized operators and the understanding of the basic crossover and
mutation required to use it.

Crossover: The crossover operator is directly inspired by the biology. As two mammals
reproduce to have progeny. Half of the genetic material of the two parents are used to
create a child. The crossover operator is mixing two individuals to create a new child.
The aim of this is to merge two workable solutions to have another solution potentially a
bit better. To merge the two individuals, it is existing many way like studied in [101].

Mutation The mutation operator have to aim the addition of diversity by mutating some
random genes of the chromosome. This mutation must be randomly chosen and is im-
portant to keep the diversity of the population. As for the crossover, different mutation are
existing [101]. The mutation mechanism affect only rare gene in all the population. The
genes mutated are randomly selected and will be based on randomness also.

Customized operators This two principal operators need to be chosen carefully and
in most of the case redesigned. The redesign of the operator is essential in many occa-
sions. One of the first reason to redesign part of the operator is to fit well to the problem.
As an example, the mutation can be redesigned to explore the search space with a logic
of close neighborhood as shown in [78].
The second reason is the linkage of the chromosome coding. Depending on the chromo-
some coding chosen (binary, combinatorics, real, ...), the operator have to be adapted.
An possible example could be to modify the mutation and crossover to preserve the genes
in the real coding. The same operator can not be used for combinatory coding or binary.
The third is infrequent but in some cases the operator have to be adapted depending
on the selection mode chosen. An example is given in [112] with the crossover and the
mutation for an elitist selection.
Also another reason to redesign the operators is to have operator fitting to some of the
hard constraints linked to the problem. In order to have operator able to create children
considering to some hard constraints of the problem.

Operators rate Another important element to take into consideration after the choice
of the operator and their implementation is rate of each of them. The rate of an operator
corresponds to the usage percentage of the operator on the chromosome, the higher the
rate, the more this operator will be used at each generation. In the mutation, the rate
can be globally understood as a chance for one gene to be muted. Finding the best rate
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for every operators became a real challenge. The best solution to find the appropriate
operators and their associate rate for a specific problem unfortunately offers no other
choice then trying combinations as shown in [99, 106, 109].

To conclude on the operators, they are an important factor to evolve generation after
generation. The operator have to keep the diversity in order to have an efficient con-
vergence. The question of the diversity introduced by the operator has been studied in
[79, 104] [101]. It is revealing that a good static configuration to keep diversity [105] of
chromosome is to have crossover mutation with high rate of crossover and small rate of
mutation. But the rate of the operator can be adapted depending on the search space,
the convergence and other elements. Some research were proposed on dynamic adap-
tation of the rate of the operator depending on many external factor or using probability
as discussed in [100, 109, 113]

3.3.6/ SETTING AND SET-UP

The previous section introduced the different aspects of the GA and gives the key to
understand the different elements and the mechanisms of the genetic algorithm. Be-
sides the GA explication, it appears that many primordial choices to set-up properly the
algorithm are necessary. Part of these choices are interdependent and the connection
between the different parameters can make the set-up delicate. Also the GA have been
studied for decades and many variants were developed over the time to make the GA
more efficient giving even more choices but no general set-up formulated. To evaluate
the performance of a set-up, the quality of the solution found is used but also the speed
of convergence in term of number of generations, and also the variety of the chromo-
somes at each generation until the convergence. The variety is one of the factor relevant
to explain the convergence speed and the solution quality. The variety is almost opposed
to the convergence. It is when the chromosome are all very different in the same genera-
tion but also generation after generation. A high variety is ideal at the beginning because
this allows the optimization enlarge the search space and potentially help to avoids the
local minimum. As an example, if the final solution converged in a local minimum after a
too quick convergence, it means that not enough variety have been introduce during the
optimization.

During the choice of the ideal parameters for GA, the variety is an important element to
be preserved and more precisely at the beginning of the optimization to cover the search
space.

However the GA stay complex to configure because of all these parameters to have a
good answer quality in a reasonable period of convergence. Many aspect need to be
adapted depending to the problem, constraint, size of the search space and . . . .
Using the simple GA that mean configure a set of parameters. The parameters can be
formalized as a vector like in [106]. This formulation is especially efficient test numerous
settings. To set-up properly a GA few questions need to be posed as in the table 3.2 and
few settings must be tested as in [99, 106, 109].
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Inspiration or group Algorithm
Coding chromosome: Which coding choice? ( binary, combinatory, real,...)
Cost function: How to quantify the solution quality?
Population : What size?

Which initialization? (random or heuristic)
Selection mode: Which choice of selection mode?

And depending on the mode chosen which setup?
As for tournament selection the size pool, the wheel dis-
tribution for roulette wheel or the number of parent se-
lected for elitist...
Which operators?

operators: Which implementation (customized operator or not)?
Which rate for each operators?

Stopping criteria: Which stopping criteria to use?
If not by convergence what are the boundaries?

Table 3.2: Important clarifications for setting up a GA.

3.4/ GA TRENDS

Whether GA is a relatively recent algorithm, it was largely studied during many years and
has progressed tremendously. To follow the trends of the GA, the survey written by [114]
for the Simple Genetic Algorithm (SGA) is a good point to understand the progress prior
to 1994.

In this article [114] the authors explains the SGA and the signification of the natural se-
lection with the possible modification to cumulate. Also the GA improvement in terms of
performance is discussed. The SGA is customizable depending on the implementation.
This behavior gives a big importance to the problem formulation and the consequences
on the solution. This survey is relatively hold (from 1994) and other more recent are
rather focused on the Multi Objective Evolutionary Algorithms (MOEA), which includes
many different shapes of the customized GA to satisfy the multi objective problems [90].
Although, the papers are concerned about the multi objectives and many references are
made to highlight the recent advance on this field with different types of adaptation such
as the multi objectives evolutionary algorithm decomposition (MOEA/D) [115]. Key idea
is to decompose the problem into sub-problems and each sub-problems are weighted by
the neighboring relation between the sub-problems and then are aggregated.

It exists many other MOEA presented in this paper suchas Non-dominated Sorting GA
II ( NSGA-II) [110]. These algorithms are using an elitist selection to optimize efficiently
the problem without having to deal with sorting the different solutions depending on
the objectives. Some other MOEA as QGA for Quantum-inspired GA [110, 116, 117],
Non-dominated Sorting GA (NSGA) or BMPGA for Bi-objective Multi Populations GA,
are examined on this survey[110].
The GA have been studied for different objectives and optimization problems. These
surveys give a fast view of the GA formulation and specific customizations for GA
application field, as the following example.
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• In [118] are interested on the problem of clustering and use GA for have a non-
supervised clustering. Also in [118] show the different implementations and cus-
tomization of the GA, adapted to the problem of clustering.

• In [119], the GA is applied to the problem of pattern recognition. This problem is a
complex multi optimization problem. The GA is used to optimize the classification,
the training and the research of a set of efficient features.

• In [96], the GA is applied into security problems to control computer access in the
network and prevent attacks. In this case the GA can be used to optimize the
classification of the access and this way detects the legal and authorized access
then the hacking attempt.

GA have been well studied and the literature is vast about it. These last decades, the GA
have been used for multi-objectives problems, but its popularity has decreased in favor of
algorithm which requires less configuration or other algorithm more oriented on learning
with memorization.
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The following chapter is dedicated to the in details formulation of the problem of cameras
positioning . The objective here is to find the position for a camera set or waypoints. The
position of this set of waypoints has to be optimized in order to cover most of the area.
The area that has to be covered may be vast and composed of complex zones. A good
formulation is essential to design an efficient cost function. The cost function is used to
quantify the quality of the solutions. It is a crucial element for the optimization processes.
This chapter present a formal definition of the problem based on the literature as well as
our proposed formulation. The formulation proposed is adapted to optimize the problem
of cameras or waypoints positioning depending on many constraints such as a complex
and vast map or cameras mounted on UAVs.
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The following sections are focused on the estimation of the area coverage depending on
the camera parameters.

To estimate efficiently the area covered by a given camera set, some points needs to be
clearly defined. First of all the area itself. The question of ”How could we represent the
area?” is primordial. The camera definition with the question of ”How could we estimate
the camera projection?” is also an important part of the problem design. The third part
to take care is the constraints which must be added to the systems. These three parts
are discussed in the following sections. The area definition is discussed in the section 4.1
which focus on the grid design. The camera definition is discussed in the section 4.2 and
the third part about the constraints is addressed in the section 4.3.1.
Finally, when the problem is clearly defined, all the different elements are integrated to
obtain an efficient cost function operable for the optimization process in 4.3.3.

4.1/ THE MAP

The first part is equivalent to the estimation of the area that needs to be covered. Follow-
ing this direction, many methods have been developed and most of them are based on
an occupation grid G of the area. The occupation grid is a discretization of the area with
numerous points.

G =
[
g1...gi...gm

]
,m ∈ N (4.1)

Where m is equal to the number of points in the grid. The occupation grid is placed on the
area to cover. Each point gi of the grid G should be covered by a camera. In the Figure
4.1 the grid G and the points gi are represented, as well as one camera and this associate
projection on to the grid. Consequently some parts of the grid is covered (red dot in the
Figure 4.1).

∀gi ∈ G, B(gi) =

1, if gi is covered by at least one camera
0, otherwise

(4.2)

B is the set of grid points which associate the value ”1” if covered by at least one of the
camera. The size of B is relative to the size of G.
The design of the grid is an important element of the problem formulation. Many solutions
were proposed, with different advantages depending on the situation (constraints and
objectives).

4.1.1/ DESIGNING A GRID MAP

The following section is focused on the different grids design proposed in the literature.
The usage of grid to describe the area that must be covered is common and several
designs have been invented and used depending on the constraints and objectives.
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Figure 4.1: Camera projection onto a grid. The grid G is placed on the floor to discretize
the area covered with numerous grid points gi. The point covered by the camera, belong-
ing to B() are highlighted in red.

4.1.1.1/ SAMPLING FREQUENCY

The grid map is used to discretize the application area. The discretization of the area
may vary and the area can get a high or low level of discretization. The level of sampling
frequency has a bearing both on the problem formulation and on the optimization process.

High sampling frequency

The high level of discretization or the high sampling frequency of an area is characterized
by a big amount of point gi to describe an area. The big amount stands for having an
important density of point gi and consequently a high value of m.

The main advantage of this approach lies in having a better estimation of the coverage.
The more the area is finely discretized, the more the estimation of the coverage will be
sharp. In [14], an example of high frequency sampling is given in order to have sharp
estimation of the area.
The high sampling frequency allows the cameras position to be much more accurate and
requires smaller adjustments.
On the other side, a too high sampling frequency leads to high computation time. Rather
to refine the solution, a too high level of discretization of the area will make the optimiza-
tion longer and more complex. Indeed, to control the coverage, it is necessary to control
if each point of the grid is covered by a camera. The more the size of the grid, the more
unity test of coverage (see in Section 4.2) are necessary, and it impacts each step of the
optimization process. Consequently the size of the grid will greatly affect the computation
time.
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Also the high sampling frequency will affect the positioning of the cameras pose. In fact,
higher is the sampling frequency of the area, freer the pose estimation of each camera
will be.

Low sampling frequency

At the opposite, a lower sampling frequency can be a good solution to upgrade the
convergence speed of the optimization process as this behavior has been presented in
[49]. In Zhou et al [49], a small value of m is chosen to have a real time solution for small
areas with just few cameras (up to 20). On the other side, the low sampling frequency
may generate a bad estimation of the area covered due to the too low density of points in
the grid. The low density of points may give an approximate view of the covered area and
some uncovered areas (black hole) can appear between the points of the grid. These
uncovered areas can be too small to be detected due to the low density of points. In this
case, the optimization cannot take into account the uncovered area sand the solution
given after an optimization will be, in a real environment, of bad aspect. Concretely,
the difference between the coverage estimation of the discrete area and the coverage
estimation in continuous time must be high.

Low or high sampling frequency

Finally, the too low sampling frequency, instead of gaining computation time, may affect
the quality of coverage estimation. Contrarily, the impact of a too high sampling frequency
has consequences, as summarized in the Table A.1. The sampling frequency should be
carefully estimated.
The density of the grid has to be adjusted depending on the goal and the precision
required. One of the solutions proposed in Zhao et al [6] is a progressive refinement by
increasing the grid density. Zhao et al [6], despite a low density of points at the beginning,
proposef to increase the number of points slowly to obtain a better density and refined
results. Also the increasing points frequency is applied to refine the solution and add
more cameras at each step of the optimization leading to avoidance of uncovered area.

4.1.1.2/ CAMERAS POSE PRECISION

The sampling frequency of the grid is often linked to the pose precision of the camera as
discussed previously. In some cases, such as in [47, 42, 75, 98], the available position of
the cameras are strongly linked to the grid map and the sampling frequency. Increasing
the number of points in the grid will also increase proportionally the number of possible
positions for each cameras. More the area is finely defined more it is necessary to slightly
adjust the cameras positions. Consequently the possible camera positions and the search
space are increased to finally allow a more refined solution but also a more complex one.

On the other hand, the camera poses can be limited at some specified areas of the map.
In [14, 6], the cameras can be placed against the walls. In [6], every wall of the boundaries
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(a) Grid with uniform and regular distri-
bution.

(b) Random distribution for represent
the map.

Figure 4.2: Map representation using random distribution or uniform grid.

can hold a camera. In [14], the camera can be placed only on specified zone (as shown
in the Figure 4.3, the green wall shows the available position of the cameras).

The camera poses precision has a similar impact and consequence on the result as the
grid map. A to big number of possible poses allows an increased precision but greatly
increase the complexity, while a too small number of possible poses helps to converge
faster but will lead to lower precision.

4.1.1.3/ DISTRIBUTION

The distribution of the points over the grid, is an important factor to manage for the design
of an occupation grid.The points distribution can numerous and adapted to different spe-
cific case. Mainly two distribution are used. The grid pattern distribution is the more often
seen in the literature and in a lesser extent the random distribution. These two distribution
are illustrated in the Figure 4.2.

The random distribution is used to describe the area to cover as shown in [47, 14].
In Hoster et al [14], the points of the grid are randomly distributed to describe the area to
cover. The advantage of this article remains the usage of random distribution to manage
the density of points in some specific regions of the area. Especially, by increasing the
density of points on some specific zones of the area. The increased density allocates
more importance to these zones (see Figure 4.3).
Indeed, higher density will affect the optimization process. The area with more density
will be comparatively more profitable to a low density area. In these cases, the zones with
high density are covered in priority. This mechanism is even simplified due to the random
distribution.

Hengel et al [47] have tested the random distribution and the uniform grid pattern distribu-
tion before conclusing that the grid pattern and the random distribution proposes globally
observe the same result when there is no priority zones in the area. Based on this obser-
vation, authors (Hengel et al [47]) decided to use an uniform grid because of its simplicity
of implementation. A hybrid distribution is proposed in Zhao et al [6]. The idea is to re-
duce the number of points in the uniform grid when it has a to high density. To reduce
the number of points in the grid, a random selection is applied. This hybrid implementa-
tion of an uniform grid with a random selection to decrease the sampling frequency is an
example of hybrid distribution.
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Figure 4.3: Example of map that must be covered with a
randomized area sampling. Illustration from Horster et al
[14]
(a) Area to cover.
(b) Area with the random points of the grid to cover
(c) Importance weighting of the area (zone of the interest).
(b) allowed position for cameras position.

4.1.1.4/ SPATIAL MODELLING (3D OR 2D)

The spatial modelling has an important impact on the grid design. After imposing the
necessary density and the distribution of the grid, the position of the points gi in space
which composes the grid has to be discussed. Commonly, the occupation grid is placed
on the floor and calculate visibility only in 2D by computing the camera projection as in
[55, 42, 49, 35, 14, 6]. But depending on the context, the grid could have interest to
describe a 3D space. Hengel et al [47] calculated the visibility according to relevancy: for
example, on the upper torso or head of the possible target rather than on the floor. In
this case, a 2D grid is proposed inside the 3D space in order to characterize properly the
volume by placing the grid at a specific height.

In Chrysostomou et al [15] or also in [120], the grid is formalized in the full volumetric
space by numerous “control points” to control the area (illustrated in Figure 4.4). The
points of the grid are uniformly distributed along the axis of x, y and z. The grid are formu-
lated in the volumetric space by using an uniform 3D grid distribution. The uniform grid
distribution in a 3D space increases greatly the complexity due to the important augmen-
tation of control points (gi) and their respective dispersion. Its implementation is unusual
due to the increasing difficulty of the optimization process. To avoid the increasing com-
plexity, the 3D grid is replaced by a 2D grid in the beginning at a specific height to optimize
the coverage. Nevertheless, some solutions were discussed [43, 47] to take into account
the volume of the area that must be covered which cannot be only limited to an occupation
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Figure 4.4: 3D grid with uniform distribution of the grid
points. Illustration from [120]

grid along the axes x and y as if using a 2D grid.

In Hengel et al[47], the authors were focused on estimating the area to cover inside three
floors of a building. To estimate the coverage in the building, the grid was placed at each
floor. This solution is efficient in order to limit the number of grid points compared to a full
volumetric description of the area. Also, this design allows to keep the three dimensional
information by adding a layer at each level of the building (see Figure 4.5).

Another way to deal with a volumetric space while not using a greedy 3D grid distribution
lie into adaptation of the 2D grid onto the relief. Akbarzadeh et al[43] proposed a 2D grid
adapted to the relief of the area. This article is focused on covering a large outdoor area
with an important relief (hills and valleys). To estimate properly the area to cover, a grid
was placed following the altitude of the relief as shown in Figure 4.6. The spatial modeling
is traditionally a 2D grid at fixed altitude more or less equal to the floor ground. The 2D
grid distribution adapted to a 3D environment is the easiest and can be customize for
numerous problems which allows the reduction of the number of control points (gi) and
thus the computation time.

4.1.1.5/ ZONES OF INTEREST

Among the areas to cover, some zones may have a particular interest to be covered.
These zones can be discriminated by the grid design. Mainly three methods can be
discerned to highlight the zones of interest:

- The multi-coverage zones.

- The priority zones.

- Non-interesting zones.
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(a) Building view. (b) 1st floor.

(c) 2nd floor. (d) 3rd floor.

Figure 4.5: Illustration of a grid layer in three floor building from [47]. In the figure (b)
(d) (c) the uniform grid is visible with the black case of the grid representing the area
uncovered and the colored case for the covered area.

Figure 4.6: Relief grid used to discretize an area while
taking into account the relief. Illustration from [43]

The multi-coverage zones The aim of the multi-coverage zones is developed to
consider specific zones of the area controlled by numerous cameras. Multiple coverage
may be called k-coverage such as in [26]. Where k refers to the number of cameras
mandatory to cover the zones of interest. Each point of the grid G should be covered by
at least one camera and for some specific zones of the area by k cameras.
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∀gi ∈ G, B(k)(gi) =

1, if gi is covered by ki cameras, ki ∈ K
0, otherwise

(4.3)

Where ki is the number of cameras used to cover the point gi of the grid. K is the list of
ki associated to the number of points in the grid. The list K is initialized at one by default,
excepted for the multi-covered zones, where they have to be covered by k cameras as in
[15].

The priority zones The zones to cover in priority are used especially in the case where
the number of cameras are not sufficient to cover the entirety of the area. This priority of
coverage can be expressed by different ways.
One way is to express the priority with a grid uniformly distributed, where a weighting
on the points of the grid which needs to be covered in priority is applied, as in [43, 5].
This method was implemented in [43] to optimize the position of the camera on the road
passing through the area to cover.
Another way to express the weighting of the priority zone for the randomly distributed
points represents the increasing of the sampling frequency of the desired zones. Increas-
ing the sampling frequency of the priority zones is simplified due to the usage of a random
distribution as in Horster et al [14] and as illustrated in the Figure 4.3b. Using this method,
the zones of interest are more dense and this process push the optimization process to
cover this area in priority (more density means more important).
Otherwise, the priority zone in the uniform grid distribution can be formulated as:

∀gi ∈ G, B(p)(gi) =

1 ∗ pi, if gi is covered and pi is the weight, pi ∈ P
0, otherwise

(4.4)

Where pi is the weight of the point gi on the grid G. pi ∈ P is the list of pi which contain
the weighting of the area associate to the points of the grid gi which have to be covered
in priority.

Non-interesting zones Non-interesting zones are as its name suggests, the zones
without interest to be covered by the set of cameras, noted U. The set U is composed by
the list of points gi which have no interest to be covered. These zones are not strongly
prohibited. Which means, the zones considered as non-interesting can be covered but
their coverage or un-coverage has no impact on the coverage estimation of the area. In
the case of random grid, distribution of the non-interesting zones have a very low sam-
pling frequency or null as in [43]. For uniform grid distribution, the non-interesting zones
are removed from the list G in order to create a simplified list G′. This method is currently
used as shown in [6, 35, 43, 14, 5].

G′ = G − U , U = {gi|gi ∈ G, gi are the non intresting points} (4.5)

Instead of defining the non-interesting zones in a set G and excluding U to have a smaller
set G′, the non-interesting zones can be defined as priority zone with some p equal to 0
(in Equation 4.4). This way of defining the non-interesting zones is greedier in compu-
tation and consequently the formulation in Equation 4.5 is preferred to the 0 weight of p
(Equation 4.4).
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Figure 4.7: Observed regions from camera candidate.
Grid representation from [35].

Finally, these methods (Equation 4.5) used to design the zones of interest are not fully
independent and can be associated with the same model as expressed in [43, 14, 5]. The
combination of all these zones of interest can be formulated as :

∀gi ∈ G′, B(k,p)(gi) =

1 ∗ pi, if gi is covered by ki and pi is the weight, pi ∈ P and ki ∈ K
0, otherwise

(4.6)

Where G′ is the restricted list of point to cover which takes into account the removal of the
non-interesting zones (as in Equation 4.5). P and K are respectively the priority zones
and the multi-coverage zones.

4.1.1.6/ ATYPICAL DESIGNS

Previously, the method to set-up a classical occupation grid depending on the problem
has been discussed. Few other solutions, more atypical, have been developed. One solu-
tion coming from the field of wireless sensor network is the topologies grid. The topologies
grid is clearly explained in Chakraborty et al [42]. The interest of these methodologies is
the reduction of the number of points to cover. But in this case, the number of points is
not related to the resolution wished but to the sensor range. Indeed, the size between
the points of the grid has been defined by the size of the minimum sensors range. The
distance of the minimum sensor range is used as nodes for a topological relation.
Another atypical solution is the development of a grid composed by rectangles. Each
rectangle may have different sizes adapted to the obstacles in the area. A rectangle is
considered as covered if most of the area of the rectangle is covered by the cameras as
presented in [35]. This method is adapted to the area with few obstacles as is shown in
the Figure 4.7.

4.1.1.7/ GRID MAP DESIGN SUM-UP

The grid map may be used to represent different objectives and constraints of the prob-
lems. The map representation handles an crucial role in the area coverage. The design
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discussed previously are summarized in the Table 4.1. This table summarizes the more
important aspect of each grid representation in different papers.
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4.1.2/ OUR APPROACH

Based on the designs studied, the one finally adopted is a grid G as in Eq 4.1 with an
uniform distribution following the 2D grid pattern. The grid pattern has been selected
due to its facility of implementation and flexibility to additional constraints. The frequency
adopted is fixed depending on the size of the area, the precision required and the
cameras properties. The frequency adopted has to be considered as dense (high
sampling frequency). Also, due to the high sampling frequency, the 2D grid pattern is
more appropriate choice and allows a reasonable number of points to describe a complex
area. The grid is placed on the floor of the area to cover. Floor is always considered
as flat without relief. In our case, the zones of interest can be varied and may include
non-interesting zones, priorities zones and multi-coverage.
To possibly allow all these zones of interest features, the selected design of the grid
is based on the formulation from the Eq:4.6. During the experiments presented in the
following chapters, the priority zones and multi-coverage are not exploited. Consequently,
the k = 1 and p = 1. Although some brief tests were carried out with k-coverage and
priority zone constraints. The results obtained were considered irrelevant, hence the
choice to focus on constant priorities and single camera coverage for the entire area to
be covered.

4.2/ CAMERA COVERAGE

Once the area to cover is described by the grid, the next step is to verify for each point of
the grid if one or more cameras cover it, based on Eq: 4.6 with k = 1 and p = 1.
To verify if each points of the grid is covered by a camera. It is primordial to discuss the
camera properties and introduce the projection model.

4.2.1/ CAMERA DEFINITION

The perspective projection is often used to define a camera. The camera projection
has the advantage to be anamorphic Thus, the perspective projection is also the most
common and more especially in the field of area coverage as presented in examples
[39, 20, 49, 15, 6]. Other models of camera or vision sensors can be used such as for
example omnidirectional with a 360◦ field of view [28, 42, 26]. In the following chapters
,we are only focusing on the camera perspective due to its wide use and it is also the
most suitable to be embedded in UAVs for path planning.
The pinhole or in Latin the ”camera obscura” (see Figure4.8) is at the origin of the geom-
etry model for the perspective projection.
The pinhole model is commonly composed by a box (or a chamber) hermetically closed
to light, excepted by a small pinhole on the middle of the front side. All the ray of light
reflected by the objects of the world and passing by the small hole are projected onto the
back side of the box. Each ray of light passing by the hole is projected onto a plan ( the
back side of the inside box). This plan observes the reversed image of the world and can
be recorded by a film or a digital sensor. Due to the simplicity of the pinhole model, the
calibration and camera projection estimation is simplified. To estimate the projection, only
few elements has to be known:
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Figure 4.8: Pinhole camera model.

Figure 4.9: The rotation composed by three degrees of
freedom on pan tilt roll (α, β, γ).

• Three degrees of freedom for the camera position : (x, y, z);

• Three degrees of freedom for the camera orientation : pan, tilt, and roll angles:
(α, β, γ)

• Optical parameters including: the focal length f of the lens, u0 and v0 which would
be ideally in the conter of the image. σuv represents the skew coefficient between
the x and the y axes.

Among the parameters of the camera, only some of them are useful to estimate the
projection. They can be formalized as a vector:

v = (x, y, z, α, β, γ, f ) (4.7)

Each elements of the vector v are used to compute the camera projection on the dis-
cretized floor (the grid G).

4.2.1.1/ COVERAGE ESTIMATION IN THE LITERATURE

In order to compute the camera projection onto a grid, the pinhole model is used with the
parameters of the vector v, previously defined.
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The detail to estimate the camera projection onto the floor, based on the pinhole model
and the parameters (v), have been detailed numerous times such as in [29, 44, 13]. In
[29, 44, 13], the camera projection is used to estimate if a point gi of the grid is visible
by a given camera, and that for each point of the grid. These articles handles the classic
camera projection, with the six Degrees of Freedom (DoF) in [29] and five DoF in [44]).
Both are used to estimate the 2D projection of the camera onto the floor (as in Figure
4.1).
In [29], the camera projection have been computed for several rotations for all the DoF. In
this case, the projection can have numerous shapes (mostly parallelogram shapes).
In [44], the model of camera projection begins to be simplified by assuming some fixed
parameters. The fixed parameters allows more efficient estimation, by economizing part
of projection computation of the camera at each time. The fixed parameters allows the
pre-estimation all of part of the shape.
In [13], the model of camera projection is used to compute one time for a fixed pan and
roll in order to have a coverage estimation usage in a 2D map. The camera projection is
finally simplified by using a kind of triangular shape.
To go further, other models and formulations inspired by the pinhole model were proposed
[98, 43, 7, 51]. These models are inherited from the camera projection and adapted to fit
each relative problems.
In [98, 51], the camera is considered placed on the floor with a fixed pan (with the viewing
direction almost parallel to the floor). Therefore, the camera projection is simplified by an
isosceles triangle where the shape depends on the focal length.
In [43], the camera projection is also simplified to obtain a kind of isosceles triangle shape
while considering the depth of view of the camera. In this case, the camera projection
has a ”piece of pie” shape.
In [7], thanks to a fixed pan and focal length, the camera projection is simplified to have a
rectangular projection onto the ground. The sweep is designed consequently to the size
of the camera projection, in order to minimize the overlap and have full coverage of the
area.

One of the common point of the following papers [98, 43, 7, 51, 6, 20, 29, 44, 13] is the
computation of a camera projection onto a grid. The computation of the function f () which
has to estimate whether a point gi of the grid is covered by a cameras v j of the network,
is not considered as really greedy (in time). But the coverage estimation using f (gi, v j) for
a point gi by a camera v j requires to be performed for each points of the grid and for each
cameras of the network in order to estimate properly the complete area coverage.

Coverage Rate =

m∑
i=1

n∑
j=1

f (v j, gi) (4.8)

Where n, the number of cameras (v j) in the network; m the number of point in the grid (gi).
The solutions proposed until now to estimate the camera projection onto the grid (as in
Equation 4.8) do not take into account the occlusion made by potential obstacles. The
occlusion projected by the obstacles requires to be taken into account depending on the
camera projection. To detected the part of the area occluded by an object, the solution
commonly proposed (as is well explain in [44]) is to check the line made between a point
covered (gi ∈ Pc) and its camera. If this line is intersected by at least by one object in the
scene, the point gi cannot be considered anymore as covered.

To take into account the potential occlusion by an obstacle Ob jl, the Equation 4.8 can be
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extended :

Coverage Rate =

k∑
l=1

m∑
j=1

n∑
i=1

f (vi, g j,Ob jl) (4.9)

The function f (...), in charge of computing a camera projection, will be called for each
camera, each point of the grid and each obstacle, in order to evaluate the complete
coverage of the area (with the occluded part). This numerous calls will greatly increase
the computation time of the coverage. It is even more affected when numerous camera
projections requires to be computed at each turn of a long optimization process.
In these conditions, the efficiency of the function f (...) computing the coverage estimation,
is primordial due to the repeated calls.

4.2.1.2/ COVERAGE ESTIMATION OPTIMIZATION

To design an efficient cost function, it is necessary to reduce the computation time and
estimate the covered area . The camera projection model has to be simplified with some
basic assumptions relative to the problems.
Considering our case, a camera is fixed on a UAV with a viewing direction orthogonal to
the ground (without any rotation in α pan and β tilt). In this model, the camera projection
is always a rectangle as shown in Figure 4.10. In fact, the camera is placed on a UAV and
have a direct view onto the ground. The viewing direction of the cameras is perpendicular
to the floor, implying the rectangle projection. The area covered by the camera is defined
by the rectangle defined by Wr × Hr It is possible to compute the size of the covered
rectangle for a given altitude by one camera, based on these given parameters.

Based on the useful parameters from the camera ( f , S w × S h, z), the computation estimat-
ing the size of a camera projection (Wr,Hr) is :

Wr = (
1
f
.S w).z

Hr = (
1
f
.S h).z

(4.10)

When f represents the focal length, z the altitude of the cameras and S w, S h the sensor
size. Thanks to this model of camera projection drawing a simple rectangle, the size of
the rectangle projection is directly related to the altitude. The altitude is assuming to be a
coefficient of the Equation 4.10
All these simplifications helps the cost function to be fast and efficient. In fact, in
the Equation 4.10, the focal length parameters and the sensor size are fixed and do
not need to be recomputed for each camera position only the altitude A has to be updated.

4.2.2/ PARAMETERS TO OPTIMIZATION

By simplification presented previously, the parameter vector (see Equation 4.7) can be
reduced. The computation of one camera projection onto a grid (as in Section 4.1.1 and
the camera are placed in altitude with a viewing direction orthogonal to the floor. Based
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Figure 4.10: Camera projection onto a grid. The grid is placed on the floor to discretize
the area covered.

on the Equation 4.10, just few parameters are necessary as shown in Equation 4.10.
Thanks to the proposed assumption, Equation 4.7 can be reduced by keeping only the
position of the camera (x, y, z) and the roll (γ) as:

v = (x, y, z, γ) (4.11)

In our case, the roll γ can take two different states, portrait or landscape with respectively
a rotation of 0◦ or 90◦. Reducing the number of parameters, passing from the equation
4.7 and 4.11 reduces the number of parameters to optimize.

Until now, the camera projection estimation was addressed with only one camera. But we
want to compute the coverage for a camera set. The solution is based on the previous
estimation for the camera projection but adapts to the location of each cameras by po-
sitioning the rectangle projection to have the center at the x and y position and compute
the occupation grid.

In order to gain a bit of time, each point of the grid already covered by a camera are
not tested for the next cameras. Which means that in the equation 4.8, the value of
m decrease as i increase. More exactly the size of m decrease as the area coverage
increase.

Parameters representation
To represent the problem, we need a set of cameras. The previous notation can be

extended to have a set V of n cameras defined according to:
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V = v1, v2, ..., vn , n ∈ N∗

with vi = (xi, yi, zi, γi)
(4.12)

Where n is the given number of cameras in the network. The coordinates of a camera
vi which are the ith camera of the network is defined with xi, yi, zi, in a given room and
γi the roll rotation (portrait or landscape). The not contained parameters in V and used
to compute the cameras projection are identical for all the set V, and are fixed at the
beginning of the optimization.
Therefore, V represents a solution. V contains all individual positions and orientations of
the camera set for a predefined focal length, sensor size and related map depending on
the problem.Obviously, all the solutions V are not a ”possible solution” for our problem.
Some solutions V does not complies the set of constraints noted E. E represents the set
of constraints ( the set E is defined in details later).

In addition, the solution V should comply a set of constraints E (see Eq.4.13). Among the
constraints, few of them were already discussed, as the occlusion, the map restriction,
the k-coverage, or some constraints more specific to the problems (as shown in chapter
2).
The ”possible solution” V s must take in consideration with the set E as :

V s = V , iff E(V) =

1, iff Ei(v) = 1 , with i = 1...Nc
0, otherwise

(4.13)

Where Ei(V) is the function applied to verify the ith constraint of the set E on the solution
V. Nc is the number of constraints necessary to be satisfied to obtain an acceptable
solution. Among all the possible combinations of parameters V, only the one intersecting
the set of constraints E is a possible solution. If we are considering all the V and all the E
as two subsets, V s is defined as V s = V ⊂ E.

The problem of monitoring an area and more specifically the problem of area coverage
may contain many constraints depending of the environment and the context. As for
example: the room shape, minimizing the altitude, have the best resolution, orientation of
the camera, the possible occlusion,... All these constraints are included in the set E. The
constraints requires to be defined depending on the problem and the goal.

4.3/ COST FUNCTION

The cost function has to evaluate the quality of a given solution. To estimate the quality of
a solution one of the main criteria is the coverage rate. The previous section was focused
on the computation of the coverage rate.
To create an efficient cost function, other criterion has to be taken in to account as con-
straints. To establish the cost function, a list constraints require to be established. Each
constraint of this list does not have the same importance. In order to split the constraints
depending on their respective impacts on the problem, two types of constraints are intro-
duced in the following sections before discussion.
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4.3.1/ CONSTRAINT LIST

The constraints can be numerous and depends mainly on the problem formulation and
the context. Like that, few of them were briefly introduced in the previous section as in
chapter 2 and section 4.2.1.2,... This part is focused on the list of the constraints used in
our case and detail their design.

Fixed number of the cameras One of the first constraint represents the establishment
of number of cameras. This constraint, as some others (detailed latter), are useful to
simplify and restrict the possibility of the problem. This constraint allow us to focus on the
fine optimization (as in [6] where both are tested). The number of cameras is fixed at the
beginning of the optimization and no more camera will be added during the optimization
process.

Fixed parameters of camera and no rotations Fixed parameters of the cameras and
no rotations (α and β) has been introduced previously (section 4.2.2). These constraints
imposed by the use of an UAV are also an advantage for the optimization by simplifying
the coverage estimation and limit the number of parameters to optimize. The parameters
are fixed at each beginning of the optimization. Thanks to this constraint the optimization
has to focus on the precise cameras positioning.

Fixed altitude The fixed altitude is a constraint established in order to limit the number
of parameters to optimize. The usage of such constraint is linked to the reduction of the
difficulty by reducing the possible search space (see section 4.4). It is also useful for other
assumptions, like a camera on the celling or for a submarine [54]. This constraint is an
optional constraint and is not always used in the experiments presented in the following
sections.

The altitude boundaries When the altitude is not fixed, some limits must be chosen to
avoid the extremely high and low altitudes. The highest altitudes will be fixed depending
on the UAV ability and other restrictions as the legislation requires it. The lowest altitude
has to be fixed for the safety of the users under the UAV. In practice the altitude boundaries
are defined with an interval:

inf z ≤ z ≤ sup z (4.14)

Where sup A is the maximal altitude of the camera and inf A the minimum altitude. A is
the altitude between the camera and the grid.

The map boundaries The map boundaries represent a constraint similar to the altitude
boundary. Despite the shape of an area to cover, some maximum boundaries can be
established. In fact, for any shape, as complex as it is, it may be possible to encapsulate
it inside a rectangle. The rectangle map boundary is defined by a width W and height H.
The boundaries on x and y are:

0 ≤ x ≤ W
0 ≤ y ≤ H

(4.15)
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Figure 4.11: Map to cover with the map boundaries in red (W and H size) in
black. The sub-part have no interest to be covered.

By associating the altitude boundaries (from Eq4.14), cubic boundaries limits the position
of the camera in the three dimensional spaces.

0 ≤ x ≤ W
0 ≤ y ≤ H
inf z ≤ z ≤ sup z

(4.16)

Non rectangle map with possible holes The map to cover can be much more complex
than a simple rectangle and may take any shape with can be composed by holes. The
Figure 4.11 illustrates the map complexity. To take into account the complex shape map
The grid G is reduced in order to keep only the points in the white sub-part. In the example
(see Figure 4.11), each white pixel of the map is a point of the grid to cover. Concretely
this implementation by using a grid map has some advantages such as the flexibility of
the grid customization .
In addition, it allows the optimization to test some exotic solutions, as allowing the camera
position on the black sub-part or bordering the boundaries. Obviously, the exotic solution
with a camera position on the black side does not increase the coverage rate but with a
correct converge, the camera are not covering the black sub-part of the map (or small
part of it). The interest of leaving this freedom to the optimization is double. First, it
controls the quality of the the solution obtained,. Secondly, the variety introduced during
the exploration of the black sub-part of the map can be advantageous.

Resolution The resolution of the images is related to the sensor size (in px) and the
distance between the camera and the object. In our case, the sensor size is dependent
on the properties of the camera mounted on the UAV.The distance between the camera
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and the floor (or the object) is the altitude as defined in the Section 4.3.1.
The resolution constraint has to maximize the resolution. In order to maximize the
resolution during the optimization, the altitude criteria is modified in order to be as low as
possible.
Considering only the minimization of the average altitude of the cameras is harmful for
the coverage. Consequently, during the optimization process, a trade-off between the
altitude (with the related resolution) and the coverage rate have to be deduced. The
altitude of the cameras has to be minimized, the average of the altitude is used as an
index to estimate the resolution. In order to manage this trade off, the average altitude of
the cameras is included in the cost function and has to be minimized (see section 4.3.3).

4.3.2/ CONSTRAINT TYPES

Among the constraints listed, different priorities and restrictions exists. Indeed the con-
straints can be classified depending on their priorities and impact on the problems. The
constraint classes are considered mostly as hard or soft constraints.

Hard Constraint Hard constraints limits the possible solution by do not allowing the
solution which does not respect it. These hard constraints are directly used during the
optimization process to prohibit any solution to be out of these boundaries. These hard
constraints are integrated in the optimization process in order to not generate a solution
which does not complies it. Consequently the hard constraints may slow down the
generation of the individuals due to the specific generation and required test.
For example, the 3D boundary as defined in Equation 4.16 is a hard constraint. Improving
that, each camera must be inside the 3D boundary.

Soft Constraint The soft constraints represents the minimization of a set of errors. A
solution that does not fully respects the soft constraint can be considered as acceptable
if the amount of errors does not affect greatly the final answer. The soft constraint is
assimilated to acceptable error.
The soft constraint leaves the possibility during the optimization process to allow some
mistakes in order to learn about it. If the soft constraint is noted ε and the hard constraint
is noted ε′, the constraint set is E = ε + ε′.

max f (V s) −min ε ∀V s ⊂ ε′ (4.17)

The objective is to maximize the coverage of a set of cameras ( f (V s)) with respect the
hard constraints ε′ and minimize the error from the soft constraints ε. Concretely, the soft
constraints are commonly integrated in the Cost Function as can be the resolution or the
complex shape of the map thanks to the grid design.
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4.3.3/ THE COST FUNCTION IMPLEMENTATION

The cost function has for mission to estimate the quality of an answer. In our case, an
answer is the position of a camera set. The cost function is essential in the process of
optimization as it was introduced in the Section 3.3.2.

The cost function needs to estimate the area covered by a camera set. In order to do
that, the area is discretized by a grid as explained in Section 4.1.
The grid customization permits to introduce some of the soft constraints such as the
complex shape of the map by removing the points out of the area to cover.
The grid modification allows the camera positions to cover the area already covered and
removed from the grid. The consequence of it are the reduction of the coverage rate
possibility. The optimization have to minimize this error.

To evaluate the coverage of a camera set, it is essential to estimate the cameras projec-
tion of each, as detailed in the Section 4.2.1. The area cover by the j-th camera is noted
as in Equation 4.3 (where Pc ∈ G). By iterations, for each camera of the set, the full area
coverage is computed (as Equation4.8).

Based on the previous statements, the simplest cost function is the coverage estimation.

C(V s) =

∑n
i=1 B(k,p)(G′)

m
(4.18)

Where n is the number of cameras, m represents the number of points needed to describe
the grid G (as in Equation 4.1), V s is the solution with respect to the hard constraints. The
cost function C(V s) gives the quality of the solution V s.

This version of the cost function C(V s) does not take into account the resolution con-
straints. The resolution is strongly linked to the camera altitude z (as show in Section
4.3.1). A criteria must be added in the cost function formula of the Equation 4.18. The
average of the altitude z is used and have to be included in the cost function.

z =

∑n
i=1 zi

n
(4.19)

If the resolution is strongly related to the altitude, the average of it z can be considered as
a part of the soft constraints (ε) in the Equation 4.17 and the Equation 4.18 and may be
updated as :

C =

∑n
i=1 B(k,p)(G′)

m
−

∑n
i=1 zi

n
(4.20)

The Equation 4.20 is used in the cost function to add the resolution constraint. Conse-
quently, the optimization tries to minimize the average altitude and maximize the coverage
with no priority. Concretely, by just applying this Equation 4.20, the optimization will first
minimize the average altitude by positioning all the cameras at the minimum altitude (with
respect to the hard constraint of altitude boundary) and in second time try to maximize
the position (on x and y) of the cameras.

In order to have a priority between the coverage and the altitude, a weight has to be es-
tablished on the Equation 4.20. The weight requires to be chosen carefully. The weight
has to be auto-adaptable depending on area covered in order to give more priority to
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the coverage when the coverage rate is low and add importance to the resolution when
the area is already well covered. The coverage have to remains the priority, the resolu-
tion must be optimized in a second time. The best solution, is to link the weight of the
resolution criteria with the coverage rate.

σ ×

n∑
i=1

B(k,p)(G′) ×
∑n

i=1 zi

n
(4.21)

Where σ is a weighting coefficient at 0.06 to reduce the priority on the resolution criteria.
Based on it, the final cost function is:

C(V s) =

∑n
i=1 B(k,p)(G′) − σ ×

∑n
i=1 B(k,p)(G′) ×

∑n
i=1 zi

n

m
(4.22)

Thanks to this formula, a proposed answer V s can be evaluated and returns the quality
of the solution for the problem of the coverage maximization and the minimization of the
altitude in a second time. The cost function integrates all the soft constraints either by the
design of the grid or by the formula of the cost function C(...).

The cost function presented here is the final version; but the building of it was an
incremental work and numerous version was tested in terms of weights, priorities, and
constraints. The one presented here is the most balanced.
Despite that, some of the works presented in the following sections are made with
the basic cost function from the Equation 4.18. In this case, the element which com-
poses v can be reduced as only v = (x, y, γ) depending on the need of the experimentation.

The final and complete cost function C(V s) have as input a vector V s which is composed
of all the cameras position and orientation belonging to the network. It is also composed
by the map of the area to cover. Where G includes the soft constraints such as the room
shape. The constraint of resolution is added by using the average altitude in the equation
4.22. The value returned by the cost function C(V s) is the quality of a solution to our
problems of coverage using an UAV.

4.4/ OPTIMIZATION COMPLEXITY AND SEARCH SPACE

In spite of the simplification presented before, the problem remains complex. There exists
many positions for each camera to cover an area with a certain amount of UAV. This
number of position can be estimated for each camera as follows.
Each camera S p defined by the position on x, y, z and γ can be placed anywhere in the
search space:

S p = (W × H × (max(z) −min(z)) × 2) (4.23)

Where W and H are the size as width and height of the area to cover, max(z) − min(z) is
the range of possible altitude. Two is to define the roll γ, as the rectangle projection is
horizontal or vertical (landscape or portrait).

The problem of the search space is the propensity to increase rapidly as the area grows.
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This phenomena is accentuated by the number of cameras n.(
n

S p

)
=

S p!
n!(S p − n)!

= |V s| (4.24)

Where |V s| is the number of possible solutions for a set of n cameras in the worst case.
In fact the size of the search space of one camera ( as Eq. 4.23) associated to the set
of n cameras (as Eq.4.24) makes an exponential number of possible solutions depending
mainly on the size of the area and the number of the cameras in the network.
Obviously in the view of this behavior, the usage of a deterministic solution based on a
heuristic does not seem to be a good approach to have an efficient solution. In addition,
the number of possible solutions |V s| makes the computation of an optimal almost impos-
sible due to the numerous local minimum. The formulation of the problem is primordial
in order to reduce the size of the search space and gives a chance to the optimization to
reach convergence. The complexity of the problem of camera positioning is at least NP-
hard similarly to the AGP. In fact, if we consider the camera positioning as inherited from
AGP with some extra constraints (as field of view and depth of field). Also the literature is
unanimous about the NP-hard complexity as discussed in [28, 31, 52, 6, 121].

The size of the search space is even more important than the method applied. In fact, due
to the problem complexity and the numerous local minimum, the classical optimization
algorithms are not appropriate. The stochastic algorithms are efficient in this case due to
the wide search space that increases the difficulty to converge. The stochastic algorithms
are widely based on the optimized random solutions and bigger is the search space,
harder it is get optimized solution.

4.5/ OUR GENETIC ALGORITHMS

The GA is a complex set-up that an be made to optimize several kind of problems as
discussed in the chapter 3. Among the customizable parameters, the most important are
summarized in a Table 3.2. To optimize the waypoints positioning, an appropriate set of
parameters has to be established to have an efficient GA. The set-up used during our
experiments is summarized in the Table 4.2.
The set of parameters has been selected empirically based on several try and a deepened
knowledge of the problem and the GA. To have an efficient positioning for numerous
waypoints in wide areas and an important threshold rate of coverage, the GA needs to
explore efficiently and quickly a wide search space. To be efficient in wide search space,
the GA must introduce variety; and due to the numerous local minimum the elitist selection
is inappropriate.
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Important points for the GA Our implementation

Coding chromosome
Discreet representation. V s =

v×n when v complies the con-
straint as in Eq 4.17

Cost function C(V s) (see 4.21)
Population Size 100

Initialization Random
Selection mode Selection mode Tournament selection

Pool size 2
Used Operators Crossover and mutation

Operators
Implementation
choice

Crossover adapted to merge
only the corresponding genes
(as x with x)

Operators Rate
Mutation rate 1%; Crossover
rate 92%

Stopping criteria Convergence

Table 4.2: Parameters of GA for waypoints positioning.
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During the previous sections, the problem was discussed as an optimization problem.
The formulation and the complexity of the problem has been presented in the Section
4.4. The cameras positions needs to be optimized to offer the best waypoints for the
path planning. In fact, our approach has for objective to find the best path planning to
maximize the coverage by using the best cameras position as a waypoints for a path.
For the first experiment, different environments are proposed. The environments were
designed to have various shapes and sizes. The various shapes are used to estimate
the impact of such parameter on the proposed solution. The rooms are designed while
knowing the exact number of waypoints in order to have a known Ground Trough (GT).
The room sizes may have notable impacts on the optimization. The size of a room impact
proportionally the search space. A larger room means more possibilities to place way-
points. The increased number of waypoints logically raises-up the number of dimensions
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to optimize. The increasing number of dimensions is used to evaluate the robustness of
the algorithms.
The rooms finally used for the experimentation are proposed in the Figure 5.1.

In addition of the rooms parameters, the number of dimensions is also tested by adding
various possible altitudes for each waypoint. The waypoints can be in the simplest version
placed only on x and y coordinates. In a second time, z coordinate can be optimized inside
a given range of altitudes. Two sets of scenarios have been tested. One with a fixed value
of z and another set of scenarios with a range of z. All this allows the evaluation of the
impact of the altitude on the optimization process.

5.1/ OTHER ALGORITHMS USED

In order to compare carefully our proposed method, two other algorithms were introduced.
The following sections explains the two experimented algorithms. The Particles Swarm
Optimization (PSO) and the Random Selections (RS) are described in the following sec-
tions. The PSO is used due to its importance in the literature for similar problems and the
RS for its simplicity to evaluate the optimization. The RS acts as a reference point for the
other optimization.

5.1.1/ PARTICLES SWARM OPTIMIZATION

The PSO (Particle Swarm Optimization) is an algorithm dedicated to the optimization
problems. It is a stochastic algorithm from the family of evolutionary algorithms (see
Chapter 3). The PSO is relatively young compared to the other EA. It was developed by
Russel Eberhart and James Kennedy in 1995 [122].

To do so, the PSO is inspired by the behaviour of animals such as the birds flocking,
fish schooling and swarming theory which are working in group (or swarm) to seek food.
The direction to take is not decided by a leader, but by all individuals from the swarm,
by relaying few information such as which quantities of foods they found. The swarm
composed by numerous individuals becomes smarter and more efficient to reach their
objectives. The algorithm proposed by Russel Eberhart and James Kennedy in [122] are
directly inspired by these behaviours.

The methodology used here represents the examination of each individual, also called
particles, as a solution of the problems. The problem is optimized at each iteration. Fol-
lowing that, each solution must be comparable and quantifiable. At each iteration, each
particle has to be tested by a cost function in order to discriminate the best particles of the
swarm. The cost function used in our case has been designed and detailed in the Chapter
4. When the best particle is found at the end of an iteration, all other particles of swarm
tries to modify their initial directions to converge more or less quickly to the currently best
particle. In such a way that the other particles can converge towards the current best,
each particle have to adapt its direction according to its own velocity and previous direc-
tion. The change of direction is slowed down by the inertia of the system. Indeed the
strength of this algorithm is the acquisition of a very basic individuals behaviour to guide
the particles. Each particle is guided by three behaviours:

• Its own velocity Vk.
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• Its own best solution Pi.

• Its best solution from the swarm Pg.

Here, the velocity represents the valuable speed of the particle to converge to the best
solution. The higher the inertia, the more difficult it will be for the particle with a high
velocity to converge. The behaviour of the particles Xk are modelled by the following
equation to obtain the new position Xk+1 :

Vk+1 = ωVk + b1(Pi − Xk) + b2(Pg − Xk)

and
Xk+1 = Xk + Vk+1

(5.1)

Where ω is the inertia, b1 is a random value between 0 and φp and b2 is a random value
between 0 and φg. φg and φp are the scaling factors to search away from the particles.
These factors are also called learning coefficients and their role is to push to learn or
discover.

Thanks to this basic behaviour of the particles, the swarm can converge to a global solu-
tion. To have an efficient optimization, just few parameters must be set-up for the PSO.
The most important are the inertia of the particles, the size of the swarm and the initial
dispersion.

• The inertia will globally help the particles to keep their initial velocity. The conse-
quence of the high inertia, is the exploration of more the search space and therefore
the convergence will be longer/harder.

• The size of the swarm have an impact on the convergence time (as wall as the
number of iterations). Indeed a big amount of particles in the swarm means more
exploration of the search space at each iteration, but also more comparisons to find
the best particles. The comparison may have a non-negligible computation time.
The swarm size is commonly fixed but can be, as well as for the population in the
GA (see Section 3.3.3 ), dynamically adjusted during the optimization process as
presented in [123].

• The initial dispersion of the swarm can be as a decisive element as the population
for the GA (see in Section 3.3.3). For the PSO ,the usage of a heuristic to initial-
ize all the particles of the swarm is not recommended due to the important risk of
premature convergence in local minimum. The random dispersion appears as the
most appropriate initialization for a global optimization. On the other hand, the fast
convergence and the PSO ability to” climb small hills” to go out of the local minimum
can be used in order to refine another optimized solution. The main risk is repre-
sented by the optimization around the initial dispersion. It may not explore correctly
the search space.

Finally, to summarize, the PSO is efficient in terms of optimization despite a very basic
behaviour of each particle. Each particle has its own velocity defined randomly and con-
trolled by a global parameter: the inertia. The strength of PSO is at the same time its
efficiency to solve the optimization problem and its ease of use it. In fact, the PSO needs
at minima few elements to works properly: A cost function, an inertia parameter and the
size of the swarm. This efficiency and ease of use explain its popularity during the last
decades.
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(a) Simple room. (b) Room with high ratio.

(c) Room L. (d) Room L with high ratio.

Figure 5.1: For the experiments: (a), (b) the blue rectangle represents the field of view of
one camera projected onto the ground with z=1 (30 × 20px) and in the figure (c), (d) with
z=2 (60 × 40px).

5.1.2/ RANDOM SELECTION

The Random Selections (RS) is a very basic algorithm. It serves as a reference point
for the comparison of algorithms. The RS does not take a complex meta-heuristic and is
perfect to compare the efficiency of the other algorithms.

The random selection works by randomly generating numerous solutions. Among the
solutions randomly generated, the best solution is kept as the optimized global solution.
The RS allows to visualize through the search space by randomly try many possible
solutions. The search space exploration by the RS is only made by random sampling
without any other optimization method. Again, the RS is invoked as a reference points for
the other algorithms. If the RS gets a similar result with the same number of cost function
calls, the algorithm compared can be considered as efficient as a simple random solution.
To use the RS as reference point, several optimization requires to be performed to obtain
an average solution.

5.2/ ALGORITHM COMPARISON

To solve the problem of camera positioning (or waypoints positioning), the usable algo-
rithms are various as discussed in the Chapter 2 (see the sum-up Tables 2.1 and 2.3.4).
Among the algorithms studied in the literature, the EA family appears as the more suit-
able to have an appropriate solution despite the numerous constraints of our problem.
The EA is a vast family of algorithms. Among this family, the most used for our problem
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is the PSO (see Table 2.3.4). The PSO gives a good and fast result in many cases. In
the EA family, the GA is one of the founders and was one of the most popular due to its
great flexibility and efficiency. After more investigation, the GA is under-estimated for the
problem of camera positioning unlike the PSO (see [20, 49, 5, 50, 29, 51] as discussed in
section 2.3) .
The conscientious comparison of GA and PSO was proposed by Boeringer et al in [124].
The conclusions of this comparison in [124] is open. In fact Boeringer et al. [124] con-
cludes after several comparison applied to several optimization problems, Neither PSO
nor GA offers a solution that is objectively better in all cases. Due to the average similarity
of results between these two algorithms, this survey highlight the importance of evaluat-
ing them for each new problem. Therefore, there is no real tool to estimate the intrinsic
performance of such algorithms on a given problem. Consequently a set of experimenta-
tion has been performed to find the best algorithm for the problem of camera positioning
in complex environments.

5.2.1/ DESIGN OF EXPERIMENTS

To find the best solution to optimize the coverage of an area, many experiments have
been performed to compare PSO and GA. PSO is easier to implement and runs faster,
but GA is more flexible and generic thanks to the many tunable parameters. To compare
and evaluate their respective performances, we tested them in different scenarios. Each
algorithm was tested before having an appropriate set-up of the parameters. The com-
parison is applied on different scenarios listed below with different sizes and shapes of
the area and altitudes.

- z is the height of the camera (within the range [1/z; z]).

- Figure 5.1a is an area of size 120×80 (named Simple Room).

- Figure 5.1b is an area of size 240×160 (named Room with high ratio).

- Figure 5.1c is an area of size 120×80 (named Room L).

- Figure 5.1d is an area of size 240×80 (named Room L with high ratio).

The size of the room can be expressed by a ratio between the size of a camera projec-
tion (at z = 1) and the size of area. The biggest rooms called ”high ratio” needs more
waypoints to be covered and also the increased size of the area due to a wider sampling
allows more fine positions to place the waypoints.

The design of the experiments in Table 5.1 has been set-up to identify the most efficient
algorithm for the positioning of a camera set with maximum coverage depending on the
numerous cases. The Design of Experiments (DoE) has been made to take into account
shapes, sizes and constraints as well as the fixed altitude and various size for the set of
waypoints. The DoE has been established to highlight the impact of the constraints on
the optimization process with the GA and the PSO.

The Ground Truth (GT) is the minimum number of waypoints required to fully cover a
given area. The sizes and the shapes of the areas were selected so that the GT can
be determined. NW is the maximum Number of Waypoints (or cameras) used for the
experiments. For each experiment, a solution is computed for a number of cameras from
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z=1 GA / PSO / RS
GT NW

Room 120x80 16 20
240x160 64 70

Room L 120x80 12 20
1≤ z≤2 GA / PSO / RS

GT NW
Room 120x80 4 10

240x160 16 20
Room L 120x80 3 10

240x160 15 20

Table 5.1: Design of the experiment to compare the efficiency of PSO and GA in different
conditions. (GT is Ground Truth and NW is the maximum Number of Waypoints).

1 to NW. To compare the different algorithms fairly, only 10 000 calls of the cost func-
tion are allowed for each optimization (this procedure has been inspired by [124]). The
optimization has been executed eight times for each optimization process. The num-
ber eight has been chosen to have an operable average despite the potential of high
volatility of the algorithms tested. The volatility is due to the usage of randomness. The
eight has been fixed empirically due to a profound knowledge of the algorithms applied
to the problem and its is also recommended by a tutorial to make a appropriate DoE
( see http://3dc.asso-web.com/actualite-12-creer-un-plan-d-experience-methode-rapide-
et-efficace-sans-anova.html ).

5.2.2/ ANALYSIS OF THE RESULTS

In the experiments described in the Table 5.1, it appears that the GA and PSO algorithms
are close in performance in numerous cases (as shown in the Figure 5.2a, 5.2c, 5.2e
and 5.2g). Among several experiments of the DoE, some particularities appears despite
the globally close results between GA and PSO. Also, as expected, the RS is always the
worst solutions (cf. the blue line in Figure 5.2). In the following section, the experiments
are used to illustrate the interesting specificity and advantage between the GA and PSO
applied to our problem.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 5.2: Graph of experiments based on the DoE presented in Table 5.1. Each graph
represents the comparison result between GA PSO and RS.
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In the case of large search space and numerous dimension requires an optimization, the
GA appears globally more efficient as shown in Figure 5.2b (or in a lesser case in the
graph 5.2a and 5.2e when the number of cameras is over the 16 cameras). In these
cases, when the room with high ratio and z=1, the PSO gives a solution close to simple
RS which is not an acceptable solution. Instead, PSO is more effective for optimizing
small areas as shown in Figure 5.2f and 5.2d. In small rooms disposed as L shape with
a z between 1/2 and 2, the PSO reaches quickly (quicker than the 10’000 calls) to the
optimal solution. Where, here, the optimal solution is known and equal to GT (respectively
GT=4 and GT=3). In the same cases, the GA proposes an optimized solution (almost
comparable to the RS) but can still be considered far from the PSO performance.

This efficiency can be explained by the slight variation of the solution introduced by the
PSO. However, this slight variation is not enough to find an optimized solution in a big
search space which occurs when many cameras are required or when the local minimum
is deeper. The PSO appears really efficient in a relatively small search space while
the number of dimensions to optimize is not too high. On the other hand, the variety
introduced by the GA allows to shift from local minimum. This variety is valuable in the
big search space in order to explore quickly a wide part of it. The variety introduced by the
GA can as well become a handicap for a finer optimization. This explains the relatively
bad results obtained during the experiment in the small rooms. The variety of the GA
negatively affects the accuracy of the solutions and may require a further optimization
step to refine. To summarize the comparison, it is difficult to rank the two algorithms in
all the environments. GA and PSO have both advantages depending on the area and
the number of waypoints to estimate pose. GA is better in the vast search space and for
several dimensions to optimize. Whereas PSO is efficient to refined faster the solution. To
conclude, we cannot generalize the choice of algorithms for all types of problems. On the
other hand, experiments tend to promise better performance when the choice is indexed
to the type of problem to be solved.

5.3/ HYBRID GA PSO

Thanks to the experiments done and presented in the previous section (see Section 5.2),
the GA and PSO are two algorithms efficient and complementary to solve the problem of
camera positioning in complex and potentially vast areas. Thanks to the GA addressed
to optimize numerous dimensions in vast search space and PSO ability for have a refined
the results, the hybridization can be the key to optimize the cameras positions in all the
conditions. The hybridization aims to exploit the best of both algorithms.

5.3.1/ THE DIFFERENT HYBRIDIZATIONS

Different hybridizations of the GA and PSO can be made. Each hybridization of GA and
PSO has advantages and disadvantages. This following section is focused on the main
hybridization strategies of GA and PSO.
Premalatha al et [125] propose three different solutions to hybridize the GA and the PSO:

• GA and PSO are employed in parallel. The best solution between both algorithms
at each step is used into the other algorithm. For example, if the best solution at the
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end of the first generation is from PSO, this solution is used as a new individual for
the crossover on the GA. Or if the best solution is from the GA, this good individual
is employed in PSO as best particle for the next draw. This operation continues until
such time as the convergence of both algorithms.

• The GA is used to introduce variety on the PSO, when the PSO is stagnating. Stag-
nated states are reached when the algorithm isn’t able to find and upgraded solution
after a predefined number of iterations. In this case, the GA introduces variety by
proposing other solutions for PSO. This hybridization has to be managed carefully
due to its high risk of non convergence.

• The GA is used until the convergence point. When the GA converges to a solution,
the PSO is used to refine with one more optimization. This solution is costly in time
due to its double optimization and its double convergence. Finally, this hybridization
uses the GA optimization as an initialization for the PSO.

The last hybridization, using GA as initialization for PSO is one of the most suitable for
the problem of cameras positioning in a vast and complex area. The experiments made
until now (see Section 5.2.1) confirms the mechanism described by the last hybridization
of GAPSO. In fact, for our problem, GA is efficient to run through all the search space.
On the other hand, the PSO ability to refine the solution is also confirmed. In this case,
the GA can be a very good initial guess for the PSO.

In Shi et al. [107], the hybrid PSO GA (same as GA and PSO employed in parallel) was
studied for 6 problems listed as F1 to F6. The six problems have a known global optimal.
In this article [107], the different problems are used to demonstrate the efficiency of hybrid
PSO GA and search the appropriate set-up for their parameters. One of the interesting
aspects presented is the importance given to find the best set-up for each algorithms.
The set-up of the algorithms has to be adapted to the hybridization and the problem. As
ir was discussed in Shi et al [107], numerous tests have to be done to find the good set
of parameters for the algorithms.

In our case, the GAPSO is used within a first time then a GA and a PSO are performed
next to refine the solution. In this case, the GA has to introduce even more variety in
order to be more efficient. Consequently the GA has to be modified to have a mutation
ratio slightly higher.

5.3.2/ EXPERIMENTATIONS

To compare the efficiency of the hybridized GAPSO to the GA, one more experimenta-
tion is proposed. The experimentation followed the rule fixed during the comparisons as
shown in Table 5.1. Based on our knowledge and the future use (waypoint positioning in
vast area), it appears that the room in L shape with high ratio shown in Figure 5.1d is the
most suitable to test the hybridization. The L shape room proposes a big search space
which can require an important amount of cameras to cover it and the results obtained in
Figure 5.2b can be improved. Also the room in L shape is closer to a realistic configura-
tion. The proposed experiment uses the GA for a maximum of 100 generations and the
deduced solution as an initialization for the PSO. Also the PSO is locked at 100 iterations.
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Figure 5.3: Comparison between GA PSO and the hybridization of GAPSO.

The limit of number of generation is fixed to respect the 10’000 calls of the cost function
per algorithms.

The set-up of the GA has been slightly modified by increasing the mutation ratio and
the PSO is also adapted by reducing the inertia (by passing from 0.5 to 0.4). Before
the reduction of the inertia of the PSO, few tests were made, especially with a dynamic
inertia. A dynamic inertia can be efficient and allows the PSO to start with a bigger inertia
to explore more the search space at the beginning and time after time the reduction of it
helps the PSO to converge faster. In this case, a small decrease of the inertia is applied
at each iteration (around 0.001 at each iteration). Finally, this method does not provide
a significant gain. The dynamic inertia is finally not really useful in the context of hybrid
GAPSO. The solution preferred for the PSO set-up has a slightly lower inertia parameter
(around 0.4).

5.3.3/ RESULTS AND COMMENTS

The room in L shape with high ratio, where the comparison between simple GA and PSO
was performed, is also used to compare the GAPSO.

In the Figure 5.3, it is appearing that the hybridization of GA and PSO increases slightly
the percentage of coverage. This graphic can be separated into two parts, the left side
with a relatively low number of waypoints (or cameras) to estimate pose (until 15) and the
right part with more waypoints. In these experiments, each waypoint is defined according
to x, y and z. In example, for 15 waypoints to estimate pose, 45 dimensions have to be
optimized. Both sides of the graphic (Fig 5.3) highlights the different algorithms behaviour
and confirms the comparisons results obtained with GA and PSO (in Section 5.2). The
PSO is more efficient at first when the number of dimensions to optimize is reduced and
the GA is efficient in the big search space with an important amount of dimensions to
optimize. The GA became better than the PSO in the right part of the Graph 5.3. The
solution proposed by the GAPSO on the left side of the Graph 5.3 is slightly better than the
PSO. On the other side, GAPSO proposed a solution more refined than the simple GA.
This refinement is due to the PSO ability to optimize the solution from the first optimization
(GA).

Finally the main advantage of GAPSO is to propose at almost any time the best solu-
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tion.GAPSO can reduce the limitations of the GA and helps to go deeper in the optimiza-
tion process in order to have a refined solution. GAPSO is efficient despite the number
of dimensions to optimize and is more robust depending on the size of the search space.
The main drawback of the GAPSO is caused by the double convergence, leading to in-
creases in the computation time.

5.4/ GOING FURTHER, MORE EXPERIMENTS

The previous experiments made were focused on several simple area. The next step is
to increase the difficulty with more complex scenes investigated, by:

• Adding more non-interesting zones.

• Adding hole in the area.

• Increasing the size of the area.

• Increasing the search space by adding more parameters (such as the roll degree of
freedom).

The following sections presents the results obtained by increasing step by step the diffi-
culty. In the following section only the more significant steps will be presented.

5.4.1/ UNINTERESTING RECTANGULAR ZONES

The environments of these experiments tries to be more realistic, consequently the room
is designed with more ”obstacles”. Here the obstacles are the non-interesting zones
which haven’t interest to be covered. The non-interesting zones are added in the map
to cover in order to make the area more complex as explained in Section 4.3.1. The
following areas are designed to be more challenging and more realistic without a perfect
ground truth (GT is not an integer). The room presented until now has a shape designed
to have a known number of waypoints as shown in Figure 5.1 where the GT is given.

The simulated room is 15 × 14 m2 which corresponds more or less to a large lecture hall.
The areas in red (see Figure 5.4a) represents the zones which do not require coverage.
Every camera can cover a 4 × 3 m2, when z is equal to one. The z factor can be equal to
[0.5, 1, 1.5], and the cameras can turn at 90◦ to have the image in portrait or landscape.
All of these parameters are taken into account in order to compute the waypoints posi-
tion.The optimization of the waypoints position is made using only the GA, but this time it
is applied until the convergence (no limits in the number of cost function calls).

After running the single GA, a well optimized waypoints positioning is given (see Figure
5.4b). Not perfect but good enough with a limited number of cameras. At each waypoints,
an image is captured in order to offer a mosaic image of the scene with a restricted
number of small black holes (see Figure 5.4c). The solution obtained is comparable to
the experiments made previously (see Section 5.2.1) despite the increasing number of
non interesting zones and the increased size of the search space The GA converges to a
suitable solution. This confirms again the ability of adaptation of the EA optimization and
more exactly the single GA. These results encouraged us to go further.
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(a) Room in V-rep. (b) Poses of every image captured in
the room.

(c) Reconstructed room based on the
waypoints positions.

Parameters Value
z [0.5;1;1.5]
γ portrait or landscape
Size of the area 150x140 px
Maximum size of camera projection 30x22 px
Number of waypoints 22

Figure 5.4: Indoor area coverage using V-rep to simulate a realistic environment.

5.4.2/ UNINTERESTING RECTANGULAR ZONES WITH HOLES

The previous experiments shown the efficiency of the single GA despite numerous un-
interesting rectangular zones and slightly bigger room (room with a higher ratio between
size of the map and size of a camera projection). The following experiments try to push
a bit more the optimization process using a single GA. The increased complexity of map
were made by adding much more obstacles with some holes in the middle of the map.
In fact, until now, all the obstacles were added around the bounding of the area. Adding
obstacle in the middle to create a hole in the area will increase significantly the complex-
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(a) The area to covered taken from
satellite images.

(b) The mask of the area to cover.

(c) Area covered by the network of
cameras using the GA.

Parameters Value
z [0.5;1;1.5;1.75]
γ portrait or landscape
Size of the area 380x310 px
Maximum size of camera projection 42x54 px
Number of waypoints 75

Figure 5.5: Coverage area from satellite images with 75 cameras for a coverage of 76.39%
using the the GA.

ity of the coverage estimation. To simulate a realistic environment the map is designed
manually based on a satellite image (see Figure 5.5a). Each rectangular obstacle has
been placed to reproduce the buildings as shown in the satellite images.

The result obtained by the GA optimization (see Figure 5.5c) shows, one more time, the
adaptation power of the single GA to complex scene. The total coverage of the area is
around 76.5% for 75 waypoints. The answer proposed is not perfect and can be improved
in order to reduce some overlaps and black hole. The important number of dimensions
to optimize (75 due to the addition of z and γ) and the increased size of the area (twice
bigger than previously) highlight a limit of the simple GA optimization.
The most interesting aspect of this experiment is the highlight of the efficiency of the single
GA in a real complex environment. The solution proposed can be considered as good for
the purpose of the challenge (obstacle, hole, numerous waypoints to pose estimate, vast
area, etc.).
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(a) The area to cover taken from satel-
lite images.

(b) The mask of the area to cover.

(c) Area covered by the network of
cameras using the GA 90.76%.

(d) Area covered by the network of
cameras using the GAPSO 92.81%.

Parameters Value
z [1;1.5;1.75]
γ only portrait
Size of the area 278x214 px
Maximum size of camera projection 35x52 px
Number of waypoints 25

Figure 5.6: Coverage area from satellite images with 25 cameras for 90.76% of coverage
using the GA and 92.81% of coverage using the GAPSO.

5.4.3/ USING MASK TO DESCRIBE THE AREA

Based on the limitation of the map design and the necessity to go one step further, the
areas design has to evolve. The solution proposed representing the areas until now
was the addition of rectangles which represents uninteresting zones by removing the
corresponding points of the grid (as explained in Section 4.1.1.5). The primary advantage
of using uninteresting rectangular zones was impacting the coding implementation. It is
easier and fast to remove rectangular shape from the grid map. This facility becomes a
lock for more complex areas. In addition, it is revealed not ”user friendly”.
The solutions chosen for the following experimentation are using a binary mask of the
area to cover. The mask represents in white the area to cover and in black the non-
interesting zones (see Figure 5.6b). This solution is finally more ”user friendly” for the
complex and realistic area (the user just have to give a mask of the area to cover) and do
not change the fundamental concept of the grid map used until here. Each white pixel of
the mask is a point of the grid to cover.
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For this first experiment with the binary mask to describe the area to cover, a smaller area
is selected. A smaller area involve a smaller amount of similar waypoints necessary to
fully cover it. In the Figure 5.6a, the area to cover is extracted from a satellite images to
have a mask (see Figure 5.6b). The single GA is performed with 25 waypoints to estimate
pose. The solution obtained by the single GA is re-injected in the PSO. Each waypoint
has to be placed on x; y; z. In order to test this new paradigm, the rotation γ is removed
from the parameters to optimize.

To initialize, the single GA was performed. The results are visible in Figure 5.6c. The
optimized waypoints positioning cover 90.76% of the area with 25 waypoints and the single
GA converge after just 67 generations. The solution given by the single GA is already
good enough despite the complexity of the map. The solution obtained is conformed to
the expected result. The solution of the single GA gives a well optimized waypoints poses,
despite the new area design for complex map.

Among the experiments presented until now (see Sections 5.4.2 and 5.4.1), only the
single GA was employed for the optimization. On the last experiments (see Sections
5.4.2) with a bigger and more complex area composed by hole, the limitations of a single
GA appears slightly. This observation is confirmed and is getting bigger when addressing
more complex areas; more complex than the one designed according to the satellite
images with mask (as shown in Figure 5.6a and 5.6b). The solution proposed being
to apply a GAPSO. The PSO will allow the refinement of the GA solution. The PSO is
used with an initialization out-coming from the first optimization (using the GA solution).
Finally, the result presented in the Figure 5.6d shows a much more refined coverage with
significant reduction in the amount of black holes and overlaps (coverage is over 92.8%).

The overlaps of the camera projection is reduced by the use of GAPSO. In fact the cov-
erage with simple GA has an overlap of 26.43% of the area covered when the solution
obtained with GAPSO has 23.39% of overlapping.

The main result of this experiment was to evaluate if the area design modification have
a significant impact on the waypoints positioning. The conclusion of this experiment is
that the impact is significant, but it is compensated by the usage of GAPSO. Despite the
increased complexity due to the area shape (possibly also due to the mask), the usage
of the hybrid GAPSO permits to compensate it. The experiments allows also to evaluate
the improvements made by the GAPSO. The GAPSO hybridization is robust and flexible
despite the strong constraints due to the non-geometric area.

Thanks to these tries, the size of the area to cover and the number of waypoints can be
increased. The next experiment has to test the limitation of the GAPSO optimization in
terms of size and number of cameras using a mask to describe the area.

5.4.4/ USING MASK FOR AREA WITH HIGH RATIO

Based on the last experiment (see Section 5.4.3), a much bigger area with much more
waypoints that needs to be pose estimated are presented here. The goal of the following
sections is to see the limitation of the GAPSO optimization when the parameters of the
experiments are pushed to the maximum. The maximum in term of area size, number of
waypoints and shape complexity.
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(a) The area to cover taken from satel-
lite images.

(b) The mask of the area to cover.

(c) The result of the coverage with the
waypoints position.

(d) The final mosaic images.

Parameters Value
z [0.6;0,8;1]
γ portrait or landscape
Size of the area 895x502 px
Maximum size of camera projection 75x50 px
Number of waypoints 80

Figure 5.7: Optimization of the waypoints poses with a vast outside area and just a few
black holes.

5.4.4.1/ VAST AND COMPLEX OUTDOOR

In this experiment, a much bigger and complex area is presented. A bigger area involving
the increasing of the search space. In the following example shown in Figure 5.7b, the
satellite images are used to define the area to cover (in white). The size of the area has
been increased to have a grid composed by almost half million of points with nearly 200
thousands points to cover. The objective is to increase the difficulty in this experiment.
In addition to the increased size of the area to cover, the shape of it has become compli-
cated. To do that, an area with several sub-parts composed by small spaces and holes
has been selected.
During this experimentation, a high coverage rate is required. We expect more than 98%
of coverage rate. More than 95% of coverage rate is a high requirement and push the
optimization in term of precise positioning to the limit of the GAPSO. The risk to ask a
very high coverage rate is to need a lot of waypoints with several overlap and conse-
quently a long time before convergence. The convergence time is linked to the number of
dimension to optimize (80 × 4) and thus the size of the search space.

In order to cover the area with high ratio, the solution can be to use a bigger focal length
or higher altitude to have a wide area covered at each waypoint, thus keep few waypoints
to control the area. The other solution is to increase the number of waypoints. The
increased number of waypoints can be a source of difficulty for the optimization. Despite
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(a) The area to cover taken from satel-
lite images.

(b) The mask of the area to cover.

(c) The result of the coverage with the
waypoints position.

(d) The final mosaic images.

Parameters Value
z [1;1.5;1.75]
γ portrait or landscape
Size of the area 1113x848 px
Maximum size of camera projection 69x104 px
Number of waypoints 110

Figure 5.8: Optimization of the waypoints pose with a big outside area: (a) is the area to
cover taken from a satellite images,(b) is a mask of the area to cover, (c) is a result of the
coverage with the waypoints position, (d) is the representation of the black hole.

the difficulty to manage more waypoints, the GAPSO associated to the adapted cost
function allows to manage it as shown in example Figure 5.7c. In the Figure 5.7c and
5.7d, the area is covered by 80 waypoints for 98.48% of coverage. To reach this coverage
rate, the GA convergence is achieved after 4’856 generations. The important number of
necessary generation before the convergence of the GA and a similar increasing time
computation for the PSO, allows us to glimpse the limits of the GAPSO for the too big
search space with numerous waypoints to pose estimate. Despite these potential future
limitations, the solution of the GAPSO is relatively fast (4’856 generations) and efficient
(cover 98.48% of the area). The gain offered by the GAPSO compared to the simple GA is
0.079 which allows to perform from 98.40% to 98.48% of coverage. The overlap is 12.79%
for the ”all area” while the overlap is 30.59% for the covered area.
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5.4.4.2/ BIGGEST MAP WITH NUMEROUS WAYPOINTS

The previous experiments (see Section 5.4.4.1) showed the efficiency and flexibility of
the GAPSO to the big map with lot of waypoints in a really complex area. Despite an
important increasing computation time, the GAPSO can be used to go even more further
and try to touch the boundaries.

The grid is composed by almost 1 million of points, with more than 616 thousands points
to cover. The map proposed here is the biggest tested. The number of waypoints to cover
this vast area have been increased to reach the 110 waypoints. The number of waypoints
to estimate pose is among the most important compared to the literature as shown in
[49, 20, 15, 50, 4, 25, 13, 29, 44, 3]. The GAPSO is executed with success and the
final coverage is over 98.26%. The GAPSO allows to upgrade sightly the GA optimization
(98.19% of coverage) by increasing the coverage by 0.069 points. The overlap is 15.80%
for the ”all area” while the overlap is 24.74% for the covered area.

To reach this coverage rate, the GA optimization converge after 170’501 generations.
The important number of generations before reaching the convergence with the GA in a
first time, and proceeding to a PSO optimization for a second time, reveals a long time
computation before the final solution given by the GAPSO. This shows the great efficiency
of GAPSO to optimize the position for numerous waypoints in a big search space while
proposing a really good solution. This show the limit of the GAPSO due to the important
number of generations and consequently an important computations time (a few hours
with a core i7).

To nuance the really important time required reach the double convergence (GA and
PSO), the context of the experiment has to be highlighted. In Fact the area to cover is
important but also the coverage rate required is also an important factor because more
this coverage rate is important more a fine tuning of the numerous parameters of the
solution must be done. Reducing the coverage rate required and consequently the num-
ber of camera allows a much faster optimization. For example a similar experiment with
100 waypoints reach 92.659% of coverage with the GAPSO after only 16’545 generations
instead the 170’501 generations.

5.4.5/ WAYPOINTS POSITIONING LIMITATIONS

Among the numerous experiments performed, the GAPSO appears as a good solution
to optimize the positions and orientations of numerous waypoints (or cameras) in a vast
and complex map. In the first time, the GA appears efficient enough for the optimization
in rooms with high ratio (see Figure 5.4 or 5.5); but after more experimentation, the single
GA appears weak to finally refine the solution (see Figure 5.6). The contribution of PSO
was essential to have a more refined solution and also allows more flexibility especially
when the number of waypoints is restricted.
During the different experiments proposed ,some limitations appears. Among the limita-
tions, the most important is mostly the consequences of a high number of waypoints to
have a high coverage rate. The size of the area and moreover the number of waypoints
to estimate pose has an important impact on the time convergence of the GAPSO. This
time convergence increases even more when the number of waypoints is high to result in
a high coverage rate.
To illustrate this phenomenon, the GAPSO ran on the last experiment (same map) but
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with less waypoints(only 80). Consequently, the coverage rate is also smaller around
85.5% of coverage for 80 waypoints. In these conditions, the number of generation for the
GA before convergence is just around 200 generations. This 200 generations for the GA
and a similar number of iterations for the PSO appears giving a huge difference between
the 98.26% of coverage of the 110 waypoints in 170’501 generations. This huge difference
is due at the same time to the number of dimensions to optimize and the fine refinement
due to the high coverage rate. Thanks to these observations, it is appearing that the main
limitation of the GAPSO is not the big or complex area, but is mostly the high number of
waypoints (or number of dimension to optimize ) and the high coverage rate which involve
a fine refinement of each waypoints position.
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This chapter is devoted to the Coverage Path Planning (CPP) problem. The introduced
method uses GA and is followed by a more flexible GAPSO. These algorithms gives an
efficient result to estimate the pose of a set of fixed cameras. To find a solution to the
CPP problem, we propose for the first time to use the algorithms developed for the camera
positioning to find the set of useful waypoints, instead of the conventional methods based
on sweeping trajectory. The optimized poses of the cameras are considered as waypoints
of the complete path. The details of the proposed solution to optimize the CPP problem
and few experiments made are presented in these sections below. The sequential method
is proposed at first followed by experimentation in different environments. Finally a global
CPP method will be presented.

6.1/ SEQUENTIAL METHOD

To optimize the CPP problem, we perform a simple and innovative method called se-
quential method. The method can be decomposed into three principal interconnected
parts.

• Number of waypoints : A crucial step is to estimate the number of waypoints. A
wrong estimation of a too high or low number of waypoints will cause a bad area
coverage or a too long computation time.

117
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• Waypoints positioning : As already discussed numerous solutions has been studied
to optimize the pose of the cameras depending on several constraints. Based on
it and the experiments made until now, an efficient algorithm (GAPSO) has been
chosen and adapted to estimate pose for each waypoint (see Section 5.3).

• Path plan computation : When the number and the positions of the waypoints has
been computed, the last step is to find the shortest route passing by all the way-
points. The route must start and finish at the same position (similar to the TSP cf.
Paragraph 2.4.2.1).

The proposed method has the advantage of optimizing independently all the waypoints
and the path plan. This method is also not systematically based on sweep and allows
to have a shorter path adapted to a complex map. Contrary to the conventional solution
(based on sweep), our proposed algorithm offers the ability to return to the starting points.

6.1.1/ NUMBER OF WAYPOINTS ESTIMATION

It is difficult to estimate properly the minimum of waypoints which are necessary to cover
a complex area. To do so, a two-steps procedure has been implemented. The procedure
is based on the pose optimization for a fixed number of waypoints introduced in the
previous Chapter5. The first step is to find the minimum number of waypoints depending
on the area to cover like formulated in Equation 6.1.

Aroom −
∑n

i=1 Awalli

Acam
× Threshold Rate = NWayPoint (6.1)

With the parameters:

- Aroom : area of the Room

- AWall : area of the obstacle like walls

- ACam : area covered by the camera in the maximum size of z

- NWayPoint : number of waypoints

- Threshold Rate : objective threshold rate

- S : one solution of waypoints set

- evalCost : cost function

The second step is the computation of an optimization until the threshold is reached.
At the convergence of each optimization, if the threshold rate is not reached, one more
waypoint is added and a new optimization start with an extra waypoint. The algorithm
used to estimate the number of waypoints is explained in the ”Algorithm 1 Estimation of
the number of waypoints”.

- S : one solution of waypoints set

- evalCost : cost function
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Algorithm 1 Estimation of the number of waypoints

procedure NMBWAYPOINT(Aroom, AWall,Threshold Rate, ACam)
S ← 0
NWayPoint ← Aroom−

∑n
i=1 Awalli

Acam
× Threshold Rate (Equation 6.1)

while evalCost(S ) ≤ ThresholdRate do
S ← GA(NWayPoint)

6: NWayPoint ← NWayPoint + 1
return NWayPoint

(a) Every pose after the optimization of
the waypoint positioning.

(b) Path compute with GA multi objec-
tive for TSP.

Figure 6.1: Optimization of the path planning.

At the end of these steps, we have the number and a good set of waypoints poses from
the last GA convergence. The waypoints poses can be directly used, or can also be
refined with the GAPSO (as shown in the GAPSO part cf. 5.3). Once the number and the
efficient poses of the waypoints are found, the next step is to compute the path planning.
The path planning has to pass by all the waypoints found before returning to the starting
point.

6.1.2/ SORTED WAYPOINTS AND PATH PLANNING.

In the previous sections, the methods to obtain the list of waypoints positions to have
a desired coverage has been detailed. Now, the list of waypoints have to be sorted in
order to compute an efficient path with the shortest travelling distance passing by all the
waypoints. In order to create an efficient path passing by all optimized waypoints, the
problem is formalized as a TSP.

TRAVELING SALESMAN PROBLEM.

The sorted path can be formulated as Travelling Salesman Problem (TSP). The TSP is
inspired by a question asked by a salesman ”What is the shortest path passing by
each city only one time and returning to the starting city? Especially when i know
a list of cities and the distances between each pair of cities.”. The TSP problem
is a well known NP-Hard and NP-complete problem (see in [71]) and different solutions
exists to optimize it depending of the context. Ponnambalam et al [126] proposed to
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(a)

Figure 6.2: Extraction of the curve angle in the trajectory.

optimize the TSP by using a multi-objective GA. The GA proposed in [126] is given with
an appropriate set-up promoting high mutation rate and advocate the population size,
crossover and selection mode. Davies et al [80] proposed also to use the GA to solve
the TSP applied on robotic with obstacle constraints. The idea is to propose the shortest
path passing by all the given waypoints and avoiding the collision with obstacles.
Based on the literature, GA seems efficient to optimize the TSP problems, but it has
to be set-up properly depending on the specific TSP problem (see Section 3.3.6). The
know the more appropriate set-up to optimize the TSP, several studies has been made
as [78, 79, 127]. The conclusion of these studies is to use a simple GA for combinatory
problem. That mean the operator has to be adapted (using swap for example) with a high
mutation rate and a very elitist selection. To illustrate the GA ability, one example using
an adapted GA (high mutation rate, elitist selection and combinatory formulation) solution
is provided in the Figure 6.1.

COMPLEXITY OF TRAJECTORY.

Once the waypoints position estimated and the shortest path passing by all the waypoints
computed it is important to evaluate the trajectory complexity. The trajectory complexity
is a comparison between our solution and the more classical sweep trajectory.

To estimate the trajectory, two indicators are used to evaluate properly the path complex-
ity. The first indicator is the distance of the trajectory. The distance allows the evaluation
of the optimization when addressing the path planning part. This indicator is directly
included in the optimization process as discussed previously (see Section 6.1.2). To es-
timate the complexity in terms of curve for the UAV evolving in the 3D space, the angles
at each node are studied. The complexity of trajectory indicator is computed as follows:

Trajectory complexity =

∑size(α)
i=1 180 − αi

size(α)
(6.2)

Where αi is an angle of curve in the trajectory as shown in Figure 6.2.
S ize(α) is the number of curves in all the trajectories.
This method provides an idea of the global trajectory complexity despite its simplicity. The
two indicators presented (the distance and the trajectory complexity) are used during the
following sections to evaluate the advantages of the proposed method.
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(a) Room Coverage (b) Pose of every images with the path
planning

(c) Room in V-rep
Coverage rate Path length

(in px)
Trajectory complex-
ity (Eq.6.2)

Pattern Method 100% 1137px 97.81◦

Our Method 90% 881px 65.21◦

Figure 6.3: Optimization of the path planing

6.2/ EXPERIMENTS

The proposed method for the problem of CPP was tested during different experimenta-
tions. The experimentations brings out the advantages and the limits of the developed
methods. The experiments are structured in sections which will show the methods and
algorithms in more and more complex experimentations.

6.2.1/ RECTANGLE OBSTACLE

In order to experiment the proposed method for CPP, a simple indoor experiment is pro-
posed to begin. The experiments are made in a simulated room (15 × 14m2). The area to
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cover is shown in the Figure 6.3a. The camera parameters are the same, 4 × 3m2 when
z is equal to one and the z factor can have various range such as [0.5; 1; 1.5]. On the
other hand, the sweep is computed with the camera at the maximum altitude to have the
biggest area coverage possible.

Thanks to this first experiment, the path planning proposed appears much more appro-
priate (see Figure 6.3). Indeed the path planning proposed returns a shortest path, of
881 pixels length when the path by sweeping is at 1’137 pixels length. The path pro-
posed by the sweep is longer notably due to the return to the starting point, but not only.
The junction between the start and finish of the swept path is 245 pixels long (the path
without the return to the start is 892 pixels long).Moreover, the proposed path planning,
in addition to the shorter path proposes also a better trajectory complexity with 65.22◦

instead of 97.81◦ for the path with sweep. Finally the proposed solution allows a better
path planning thanks to its optimized waypoints. Despite a better path plan efficiency, few
points (gi) in the area are not covered contrarily to the traditional swept method.

6.2.2/ USING MASK TO DESCRIBE AREA.

The gain for the indoor area is important. The gain is mostly due to the well optimized po-
sition of the waypoints. The experiment must be extended for a bigger and more complex
area with a higher coverage rate requirement.

6.2.2.1/ VAST AND COMPLEX AREA.

The CPP and more precisely the path planning part is compared to a standard method
(the sweeping). We compared the CPP in terms of coverage, path plan distance and
trajectory complexity. The standard methods applied for CPP uses an adapted pattern to
cover an area. The patterned method application is based on several articles as [73, 22,
61, 54, 128]. In these articles, different kind of sweeps and spirals have been applied to
cover the basic area shape. To split the complex area in basic area shapes, the method
commonly used is the cellular decomposition (see in Section 2.4.2.1).

To focus on a bigger areas, the experiment for outdoor waypoints positioning in vast and
complex area using a mask is reused as in Section 5.4.4.1.

To compute the sweep, the area is firstly decomposed into cells to apply an appropriate
sweep. In the second time. The appropriate sweep is placed in each cell. The size
of the sweep has been designed for fixed altitude depending on the size of the camera
projection on to the floor.The path plan using a sweeping method is visible in the Figure
6.4a. In order to cover completely the area, several overlaps and non-interesting regions
(the black region in Figure 6.4a) has to be covered as well.

The solution proposed by optimizing in a first time the waypoints positions and in second
time the path passing by the waypoints is applied. The optimization is made for a set of
80 waypoints which must cover over the 98% of the area. This threshold is reached after
3’101 generations (see in 6.4b). Once the waypoints are optimized (in x; y; z and roll),
the path plan is computed using the method based on the TSP (presented in the Section
6.1.2). The final CPP is visible in the Figure 6.4c with the different altitudes represented
in colors.
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(a) Path planing using the pattern
method.

(b) 80 waypoints for 98.28% of cover-
age.

(c) Path with 80 waypoints for a dis-
tance of 4015.6 px.

Coverage rate Path length
(in px)

Trajectory complex-
ity (Eq.6.2)

Pattern Method 100% 4362.66px 82.14◦

Our Method 98.28% 4015.6px 65.78◦

Figure 6.4: Experimentation of coverage path planning in outdoor area.

One more time and despite the increased size and complexity of the map (which in-
creases greatly the complexity and the number of the waypoints optimization), the pro-
posed solution gives a better result. The path plan is shorter: 4’362px for the pattern
method while we obtain 4’015px for our method. The path is also easier to compute
in terms of trajectory 82.14◦ against 65.78◦. In fact, the optimization of the waypoints,
despite a not completely covered area, offers good waypoints for the path planning.

6.2.2.2/ BIGGEST MAP WITH NUMEROUS WAYPOINTS

To continue the experiments, a biggest area can be selected which requires much more
waypoints. The big area selected to test the coverage path planning is the same area
used in Section 5.4.4.2. The simple sweep path is computed based on the camera pro-
jection at the highest altitude (cf. Figure 6.5a). Our method is computed with 110 way-
points to estimate the poses. After 3’634 generations for a coverage area of almost 95%
(see Figure 6.5b), the path can be computed (as explained in the section 6.1.2). The final
CPP is shown in the Figure 6.5c.

The solution proposed gives a shorter path compared to the swept method (8’173px
against 8’582px) for a high level of waypoints coverage. The differences between the 2
paths are not so significant in term of distance. Nerveless the difference of trajectories
complexity gives an important advantage for the proposed method.
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(a) Path planing using the pattern
method.

(b) 110 waypoints for 94.862% of cov-
erage.

(c) Path with 80 waypoints for a dis-
tance of 4015.6 px.

Coverage rate Path length
(in px)

Trajectory complex-
ity (Eq.6.2)

Pattern Method 100% 8582px 90◦

Our Method 94.86% 8173px 69.75◦

Figure 6.5: Experimentation of coverage path planning in outdoor area.

Thanks to these experiments, the limit of our method begins to appear. The main limi-
tation is due to the difficulty to optimize numerous waypoints. The increased number of
waypoints associated to a high level of coverage rate required pushes the GAPSO opti-
mization to its limits. Numerous generations are necessary to reach convergence. On the
other hand, the path plan computation appears efficient despite the increased number of
waypoints and globally the solutions proposed gives a better CPP in terms of distance
and trajectories complexity for a higher coverage rate.

6.2.2.3/ CAMERA CONTRAINT BY THE TRAJECTORY

The previous indoor or outdoor simulations assumed to have an UAV with a camera stabi-
lization for the roll (portrait or landscape) independently of the UAV trajectory. During this
simulation, we assume the UAV not able to control the roll independently of the direction
and the UAV is sufficiently agile to follow the path. The solution proposed in this section is
adapted to the UAV trajectory to constrain the camera directions. In the following exper-
imentation, the roll and the altitude are fixed for the waypoints positioning. The camera
size is reduced as a 40x40px square shape projection onto the ground, corresponding
to the smaller side of the camera projections. The camera is represented as a reduced
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(a) 115 waypoints poses after optimiza-
tion for a coverage of 94.3%.

(b) Coverage path planning for 99.71%
of coverage with a distance of 4785px.

Waypoints
coverage rate

Stream cover-
age rate

Path length (in
px)

94.3% 99.7% 4785px

Figure 6.6: Outdoor simulation of the coverage path planning. The camera projection FoV
is 40 × 60px and fixed altitude(with a square projection of 40px wide for the positioning
optimization).

square used only for the optimization process. The reduction of the camera estimation,
the fixed roll and also a fixed altitude allows us to make a coverage at minima of the area.
The optimization of the waypoints are computed (as in Chapter 5) with these new con-
straints. Once the waypoints positioned the path planning can be computed as presented
in Section 6.1.2 to have the sorted waypoints.

To estimate the final coverage of the area with a fixed camera on the UAV, the UAV direc-
tion have to be estimated prior. Based on the path computed with the TSP formulation,
the UAV orientations are deduced by estimating the trajectory to go from one waypoint to
another. The next step is to estimate the coverage of the area with the camera stream
record and the cameras FoV oriented depending of the trajectories (see Figure 6.6b).
The final stream coverage estimation is done with the camera of size 60x40 pixel.
Obviously, the final coverage path planning is better than the estimation established dur-
ing the waypoints positioning, cf. the following example Figure 6.6a. The camera pro-
jection for the optimization is 40 pixel by 40 pixel with 115 waypoints for coverage pose
estimation of 94.3% and 99.71% for stream coverage of the full room with the simulation
of path planning and a camera projection to 40x60 pixel (see Figure 6.6b). This gain
is not taken into account during the phase of waypoints positioning optimization and in
consequence does not impact the number of waypoints.To confirm the gain of stream
coverage, another experiment has been made with a similar conditions but in a different
map. The experiment is made with the map introduced in Section 5.4.4.2 with the camera
projection of 70 pixel by 70 pixel with 110 waypoints for a coverage estimation at 88.38%
(see Figure 6.7a) and 98.64% (see Figure 6.7b) for the full room after the simulation of
fly.

This experiment demonstrates the ability of our proposed method to do coverage path
planning in a large area with a non convex shape with different constraints. The solution
proposed being adaptable and flexible to the different conditions. This experiment also
shown the non-negligible gain of coverage between the waypoints positioning optimiza-
tion and the final CPP with the stream coverage of the area.
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(a) 110 waypoints for 88.38% of cover-
age fixed altitude .

(b) Path planing using the pattern
method. Coverage path planning for
98.6% of coverage with a distance of
8114px.

Waypoints
coverage rate

Stream cover-
age rate

Path length (in
px)

88.38% 98.6% 8114px

Figure 6.7: Outdoor simulation of the coverage path planning. The camera projection
FOV is 40×60px and fixed altitude (with a square projection of 40px wide for the positioning
optimization).

6.3/ CPP GLOBAL OPTIMIZATION ATTEMPT

The experiments made previously were successful despite the different optimization
steps. Indeed to compute an efficient CPP, several optimization have been used (see
in Section 6.2). First, number of waypoints have to be estimated and the waypoints poses
have to be optimized. When the coverage rate is reached, the optimized waypoints can
be refined with a PSO to have an appropriate coverage. The final optimization lie in the
usage of the TSP paradigm to compute a path passing by all the waypoints.
Despite the success of this greedy method a logical improvement clue maybe to reduce
the number of successive optimizations. In the experiments proposed previously, the
waypoints positioning optimization shown some beginning of limits due to the too high
number of dimensions to optimize (see Section 5.4.5). In the experiment made for a
camera constrained by the UAV trajectory, the streamed coverage area increases signifi-
cantly compared to the waypoints coverage. This increased area covered was not taken
into account until now. The idea is to try to limit the number of waypoints by using a global
method to optimize the CPP problems.
The method explored in the following sections is merging the optimization of the way-
points positioning and the sorted waypoints process to have only one global optimization
for the CPP problem.

6.3.1/ ADAPTED FORMULATION

Until now, the waypoints positioning and the path planning computation were made by
using two different GA (and/or GAPSO) during two different optimization processes. The
idea here is to combine the cost function from the waypoints positioning and the path
planning computation to have an appropriate and global cost function. The cost function
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(a)

Figure 6.8: Covered area between waypoints following the path planning. Where Wr and
Hr are the size of the camera projection as defined in the Section 4.2.1.2.

requires:

1) Estimation of the covered area. The area has to take into account not only the
area covered by each waypoints but also the covered area during the path (stream
coverage).

2) Path distance estimation. The path distance was already used to estimate the path
passing by all the given waypoints during the path computation (as in Section 6.1.2).
In this case, it implies having beforehand the sorted waypoints for the path.

Coverage path plan estimation

To formulate properly the CPP problem, it is essential to estimate the area covered by the
UAV during the path passing by all the optimized waypoints. For that, the waypoints and
the path must be known. Once the path is known, the coverage estimation can start.
The idea is to consider all the points of the grid G (see Section 4.1 for the grid definition)
between two waypoints as covered. To compute the points covered during the fly between
two waypoints, the camera fixed on the UAV has to be known in terms of projection size
onto the floor and the direction. The direction is directly deducted from the waypoint
positions and the size of the camera projection from the camera parameters as its altitude.
Based on the projection size onto the floor, the area covered between the waypoints is
deduced as illustrated in Figure 6.8.

Which means that the roll of the camera is not optimized but taken into account depending
on the trajectory to follow. Moreover, in this case, the altitude of the UAV is fixed in order
to simplify the optimization computations and simplify the cost function.

The proposed methodology to estimate the area covered by the path requires to have
a ordered set of waypoints. In the previous algorithms, the TSP paradigms with a GA
optimization was used to order the waypoints, to have the shorter path passing by the set
of optimized waypoints. In this new method, the path has to be computed in the same
optimization step as the waypoints positioning. The idea is to use the position of each
genome inside the chromosome such that it is important in the estimation. In this case, a
genome is the set of parameters of a waypoint. Which means that the same genome at
different position in the chromosome does not have the same impact in the cost function.
Consequently the optimization is not only focused on finding the best coverage for a set of
waypoints but also find the sequence of waypoints positions. This formulation add some
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(a) ABCD (b) ABDC

Figure 6.9: Influence of the waypoints order in the new cost function

combinatory constraints inside each chromosome and particle. To illustrate, an example
is provided in the Figure 6.9 :
The solution shows ABCD (see Figure 6.9a) where A; B; C and D are the optimized po-
sitions of the waypoints. We display also another solution ABDC (see Figure 6.9b) which
has found the same waypoints but not in the same order. In the previously proposed
method, only the coverage at each waypoint was used to estimate the coverage. There-
fore, the cost function estimates the two solutions as identical. In this new estimation of
the coverage, by taking into account not only the coverage of a set of waypoints but the
entire path plan coverage the order of the position, gives the path to follow. Consequently
the solutions are completely different, ABCD (see Figure 6.9a) is much better due to its
shorter path for the equivalent coverage.

Finally, the new cost function will integrate the covered area by the path passing by all the
waypoints and the distance of this path. The goal is to have a cost function that maximizes
the area covered with the shortest path at same time. The proposed cost function can be
written:

f =

n∑
i=1

B(k,p)(G′) +

∑n
i=1 B(k,p)(G′)

( Distance
n ) × 5

(6.3)

Where
∑n

i=1 B(k,p)(G′) is the number of points cover by the path planning (as in Equation
4.6) and the Distance is the size of the path. The 0.5 is an empirical coefficient to minimize
the distance importance in favor of the coverage.

Optimization

Once the cost function is redefined to be able to take in account the coverage and the
path distance. One more time the GA is used associated to the PSO for the optimization
step. The GA was the best algorithms to solve the TSP problem and also well adapted
to the waypoints positioning (even more with an GAPSO). The last reasons are that the
knowledge grab about the GA PSO until now make the implementation fast and easy.
The solution adopted is to use the GAPSO as introduced in 5.3 associate to the newly
adapted cost function (see Paragraph 6.3.1).
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(a) Distance 818.31px for 5 Waypoints
with 74.83% of coverage. Optimized
with only GA.

(b) Distance 936.61px for 5 waypoints
with 93.76% of coverage. Optimized
with GAPSO.

(c) Distance 972.89px for 8 Waypoints
with 90.29% of coverage. Optimized
with only GA.

(d) Distance 1’101.64px for 8 way-
points with 96.94% of coverage. Op-
timized with GAPSO.

Figure 6.10: Path plan for maximizing the covered area with a camera projection equal to
40x60px. The area is covered with 5 and 8 waypoints

6.3.2/ RESULTS AND CONSEQUENCES

Based on the new problem formulation and the usage of an appropriate GAPSO directly
inherited from the waypoints positioning ,few experiments has been made. The experi-
ments proposed here are based on the map presented in the Section 5.4.3. Once the
map is selected, the optimization begins with three waypoints and the number of way-
points is slightly increased until reaching 8 waypoints. For each number of waypoints,
three optimizations have been made. In the Figure A.1, some result examples have been
shown with the GA followed by GAPSO. The results obtained offers a relatively high cov-
erage for a minimum of waypoints. Despite this good coverage, the path is worst than the
solution obtained by the method proposed earlier.

Experiments and discussions

The experiments made allowed to see the advantages and limits of this optimization.
The main advantage of this formulation is that it optimizes the CPP problem in a sin-
gle optimization and reduces the number of waypoints compared to optimizing waypoint
positioning. In fact, for the map proposed, only 5 waypoints are required to cover the
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area (see Figure A.1d) compared to the waypoints positioning optimization that requires
25 waypoints (see Figure 5.6d). Reducing the number of waypoints needed to cover an
area is essential to have a better and faster optimization process. The reducing amount
of number of waypoints is even more important when the problem is complicated by the
position order of the waypoints in a solution. On the other side, despite a good coverage
of the area, the path plan appears too long with many overflight (overlaps). Consequently,
and despite the good coverage, the path appears not optimized. About the optimization,
we can observe that the average number of generations of the GA required is around
47 generations for a set of experiment between 3 and 9. The average number of gen-
erations are comparable to the number of generations needed to optimize the waypoints
positioning ( see in Section 5.4.3), where for 25 waypoints to estimate pose, 67 gener-
ations was required. It shows also some limits by using the unique optimization for the
problem of CPP. In the other hand, the formulation despite the inconclusive but promising
result appears interesting and the cause of the inconclusive results are explored.

Why inconclusive results?

Despite inconclusive results during the first experiments made, it is an interesting track to
follow which must be more explored. The inconclusive results of the experiment can be
induced by :

• The algorithms: As that was previously introduced, the GAPSO with a similar set-up
as the previous experiment for the waypoints positioning are used. Few inconclusive
tests has been done to slightly modify the set-up of the GAPSO by adding more
mutation for example. The inconclusive preliminary result pushes to consider the
GAPSO proposed previously good enough.

• The cost function: The cost function presented in the Equation 6.3 is the
more appropriated due to our experiments (some summarized results are pre-
sented in the following Table 6.3.2) . Despite that, the cost function has some
coefficients which were applied empirically. The coefficients could be an inter-
esting track which must be meticulously set in order to reduce their uncertainty.

Cost function 3 4 5 6 7 9∑n
i=1 B(k,p)(G′) +

400×
∑n

i=1 B(k,p)(G′)
( Distance

n )×2.
/400 56.23%

458px
60.54%
652px

65.15%
817px

65.85%
1114px

69.41%
1077px

90.67%
1396px∑n

i=1 B(k,p)(G′) +
∑n

i=1 B(k,p)(G′)
( Distance

n )×5.
56.15%
444px

59.34%
645px

64.93%
859px

70.14%
1051px

76.59%
1001px

86.77%
1381px∑n

i=1 B(k,p)(G′) +
∑n

i=1 B(k,p)(G′)
( Distance

n )×0.1
57.78%
426px

58.33%
638px

61.84%
845px

70.96%
962px

69.64%
1099px

82.50%
1318px

• Complexity and search space: The last potential reason of the inconclusive results
obtained can be the increased size of the search space and complexity. The search
space estimation was made for the problem of optimizing the waypoints positions
and can be reused by part for the problem of CPP for a unique optimization. In this
case, the search space is simplified (see the equation of S p in eq: 4.23), only the
waypoints position in two axes are taken into consideration. In fact, the altitude is
fixed and identical for all the waypoints as wall as the pan and tilt. The roll of the
camera projection is depending on the trajectory thus this removal from the criteria
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to optimize is reducing the search space. Despite the important decreasing size
of the search space for each waypoint, the global search space for the CPP in-
creases dramatically due to the number of waypoints and the order constraint. The
global search space is defined as AS p

n =
S p!

(S p−n)! = |V s|. Where |V s| is the number
of possible solution for a set of n cameras. Due to the importance of the waypoints
order in the optimization process, the number of possible solutions increase signif-
icantly. Obviously, due to the complexity of the problem and the increased size of
the global search space for CPP problem, it can be one of the important reason of
the inconclusive result.

For all these reasons, the optimization of Coverage Path Planning in one optimization
by ordering the waypoints does not appear efficient enough and the solution proposed
before appears more much more efficient and flexible.
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7.1/ THE ORIGIN!

The initial project was a partnership between UBFC and UTP with the aim of developing
a smart system composed of cameras mounted on self-organized UAVs. Such project
can have applications to video surveillance of vast areas. Addressing such problem is
ambitious and requires a wide range of skills since it has numerous constraints as optimal
positioning, robust control or flying time limits. Among which we focus our work on the
maximization of area to be monitored.

7.2/ WHAT WAS DONE?

A vast area can be monitored in static, by ingeniously positioning a set of camera, or in
dynamic, by finding an efficient path plan. Both methods are similar in numerous points.
Especially on the minimization of the camera/ waypoints number or the path plan size
which is a real challenge.

In this thesis, coverage path planning problems are solved using new adaptive methods
based on all the work previously carried out. A naive approach for the coverage path
planning would have been to apply a sweeping over the area to cover. Even if it can
be efficient in numerous cases, it will have disadvantages as a longer path size or a
lower robustness to additional constraints. Indeed, sweeping based methods will provide
workable results yet not optimized and rigid to constraints.
The proposed solution is a two steps optimization, by splitting the problem of coverage
path planning into two sub-problems :
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• The waypoints positioning

• The path planning passing by previously found waypoints

7.2.1/ WAYPOINTS POSITIONING

The first sub-problem consists of finding the best waypoints positions to cover the area.
The best position for a set of waypoints can be led by several indicators and constraints
depending on the application. In our case, the main interest is the area coverage rate.
Based on it, a cost function has been developed to estimate the coverage rate and also
integrate some predefined constraints.
In the state of the art, the camera positioning, which is strongly related to waypoints
positioning, is mainly solved by applying different optimization algorithms. Among them,
the evolutionary algorithm family is the most commonly used and the most promising,
with notably the PSO (Particular Swarm Optimization) and the GA (Genetic Algorithms).
The PSO is offering a fast solution which is flexible and can easily be tuned for different
constraints. The GA is also providing fine results for our problems, yet has been
underestimated for the optimization of waypoints positioning. For this reason, it has been
extensively investigated during this thesis. The 2 algorithms have been compared under
several conditions to conclude on the advantage of using the GA when dealing with wide
and complex areas. On the other hand, for small areas, the PSO is faster and provides
a result close the optimal solution. To conclude, the best solution is obtained with a third
methods that combines the advantages of these two methods called GAPSO.

The GAPSO implies a longer computation time, but provide significant advantages such
as better efficiency and higher flexibility to the area size and to the number of camera to
optimize.

An innovative solution is introduced to improve optimization of the waypoints positioning
problem thus allow the first sub-problems to obtain a more efficient solution.

7.2.2/ PATH PLANNING

The second sub-problem is to find a path passing by all the waypoints positioned using the
GAPSO. The problem of estimating the shorter path passing by a set of given waypoints
is closely related to a well known problem. The TSP (Traveller Sell-man Problem) has the
same goal and numerous works have been done to find the best algorithms to solve it.
The TSP is one of the NP-complete problem and cannot be completely solved. The best
way to get an acceptable solution for the TSP is to use a GA for combinatory problem as
advocated in the literature. The idea is to find the good order to pass by all the waypoints
before to come back to the starting one, while minimizing the length path. In this thesis
this two sub-problems have been addressed and an efficient answer has been proposed.
The efficient answer for the path planning sub-problem is to apply the TSP formulation
and solution with a genetic algorithms adapted to combinatorial problem.
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7.2.3/ SOLUTION AND EXPERIMENTS

Finally, our main contribution is based on an original problem splitting to offer 2 indepen-
dent optimization phases. Where some advanced algorithm has been applied to solve
more efficiently the problem of waypoints (or cameras) positioning, an important work has
been made on the algorithms development to optimize the waypoints positioning. This al-
lows us to affirm that an appropriate GA is more efficient than the PSO for large spaces
and for a large number of waypoints despite previous works in the literature. Moreover
the GAPSO allows an even more robust solution to constraints and give more flexibility to
the proposed solution.
The proposed solution can design an efficient path planning and, at the same time, a
shorter and a more adaptable solution to the constraints. During the presented experi-
ments, few constraints have been added and the proposed solution has shown its adapt-
ability and efficiency. From the constraint studied, the size and the shape of the area have
crucial importance, as the altitude boundary and his consequences on the images res-
olution. The advantage of the solution proposed is the adaptability and flexibility to new
constraint. In fact the addition or removal of constraints do not much affect the obtained
results during the experimentations.

7.3/ FUTURE PROSPECTS

The obtained results are promising and can be a starting point for further research. The
solution proposed must be adapted on UAVs for smart agriculture and precision agricul-
ture. The advantage and flexibility provided by our algorithm can be useful for it. In this
case the next step is to work on the image acquisition from RGB or multi-spectral im-
ages, which can precisely characterize the fields and segment of the zone depending the
vegetation requirement.

Another prospective can be to use this work as preliminary work for a smart integrated
tracking system. In fact the efficiency of the GAPSO for waypoint positioning allows an
adequate coverage of an important area. This area can be covered by using several UAVs
which split the area. Few UAVs are executing the path plan efficiently computed by our
algorithms. The path plan can be split in sub-part for each UAV. Once a target is detected,
one of the UAV is dedicated to the target tracking. Consequently, the others have to
re-adapt the path to continue the area monitoring. In this prospective some unexplored
constraints can be added to the solution proposed. The one concerning the creation of the
path is probably the most interesting. Indeed, many constraints of trajectory can be added
to obtain an optimized path for different kind of UAVs. This type of constraints must be
added according to physical property of the UAVs used and deserve to be experimentally
validated by fly. The experimental validation is also an important track of research.

The novel optimization algorithm for coverage path planning proposed by this thesis can
be extended to various applications related to unmanned robots. The proposed solution,
even if is not optimal, allows flexibility and robustness to additional constraints that are
frequently met during real experiments.
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[73] Marina Torres, David A Pelta, José L Verdegay, and Juan C Torres. Coverage
path planning with unmanned aerial vehicles for 3d terrain reconstruction. Expert
Systems with Applications, 55:441–451, 2016.

[74] Paulo A Jimenez, Bijan Shirinzadeh, Ann Nicholson, and Gursel Alici. Optimal
area covering using genetic algorithms. In Advanced intelligent mechatronics, 2007
IEEE/ASME international conference on, pages 1–5. IEEE, 2007.

[75] Young-Ho Choi, Tae-Kyeong Lee, Sang-Hoon Baek, and Se-Young Oh. Online
complete coverage path planning for mobile robots based on linked spiral paths
using constrained inverse distance transform. In Intelligent Robots and Sys-
tems, 2009. IROS 2009. IEEE/RSJ International Conference on, pages 5788–5793.
IEEE, 2009.

[76] Ping-Min Hsu, Chun-Liang Lin, and Meng-Yao Yang. On the complete coverage
path planning for mobile robots. Journal of Intelligent and Robotic Systems, 74(3-
4):945–963, 2014.

[77] Vatana An and Zhihua Qu. A practical approach to coverage control for multiple
mobile robots with a circular sensing range. In Robotic and Sensors Environments
(ROSE), 2013 IEEE International Symposium on, pages 112–117. IEEE, 2013.

[78] Heinz Mühlenbein. Parallel genetic algorithms, population genetics and combina-
torial optimization. In Workshop on Parallel Processing: Logic, Organization, and
Technology, pages 398–406. Springer, 1989.



BIBLIOGRAPHY 143

[79] Martin Serpell and James E Smith. Self-adaptation of mutation operator and prob-
ability for permutation representations in genetic algorithms. Evolutionary Compu-
tation, 18(3):491–514, 2010.

[80] Trevor Davies and Amor Jnifene. Multiple waypoint path planning for a mobile robot
using genetic algorithms. In Computational Intelligence for Measurement Systems
and Applications, Proceedings of 2006 IEEE International Conference on, pages
21–26. IEEE, 2006.

[81] John Ware and Nicholas Roy. An analysis of wind field estimation and exploitation
for quadrotor flight in the urban canopy layer. In Robotics and Automation (ICRA),
2016 IEEE International Conference on, pages 1507–1514. IEEE, 2016.

[82] Yu Liu, Xiaoyong Lin, and Shiqiang Zhu. Combined coverage path planning for
autonomous cleaning robots in unstructured environments. In Intelligent Control
and Automation, 2008. WCICA 2008. 7th World Congress on, pages 8271–8276.
IEEE, 2008.

[83] Herbert Robbins and Sutton Monro. A stochastic approximation method. The an-
nals of mathematical statistics, pages 400–407, 1951.

[84] Hans J Bremermann. Optimization through evolution and recombination. Self-
organizing systems, 93:106, 1962.

[85] Richard M Friedberg. A learning machine: Part i. IBM Journal of Research and
Development, 2(1):2–13, 1958.

[86] George EP Box. Evolutionary operation: A method for increasing industrial produc-
tivity. Applied statistics, pages 81–101, 1957.

[87] John H Holland. Outline for a logical theory of adaptive systems. Journal of the
ACM (JACM), 9(3):297–314, 1962.

[88] Jarmo T Alander. An indexed bibliography of genetic algorithms papers of 1996 (in
proceedings). Technical report, Report 94-1-96PROC, University of Vaasa, Depart-
ment of Information Technology and Production Economics, 1995.(ftp://ftp. uwasa.
fics/report94-1/ga96PROCbib. ps. Z) ga96PROCbib, 1994.

[89] Ingo Rechenberg. Cybernetic solution path of an experimental problem. 1965.

[90] Aimin Zhou, Bo-Yang Qu, Hui Li, Shi-Zheng Zhao, Ponnuthurai Nagaratnam Sug-
anthan, and Qingfu Zhang. Multiobjective evolutionary algorithms: A survey of the
state of the art. Swarm and Evolutionary Computation, 1(1):32–49, 2011.

[91] Qingfu Zhang and Hui Li. Moea d a multiobjective evolutionary algorithm based on
decomposition. IEEE Transactions on evolutionary computation, 11(6):712–731,
2007.
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APPENDICES

A.1/ ADVANTAGE AND DISADVANTAGE OF SAMPLING FREQUENCY

The impact of the sampling frequency of the grid is of great importance to the computation
of the cost function and consequently on the optimization process. A sum-up table for the
impact of the low and high sampling frequencies for the grid map is proposed in A.1.

Advantage Disadvantage
High sampling
frequency Best estimation of the area to cover Time consuming

Give more precision on the cam-
eras poses

Low sampling
frequency Faster computation Bad coverage estimation

Table A.1: Sum-up of the low and high sampling frequency advantages or disadvantages.

155
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(a) Distance 5708px for 15 Waypoints
with 96.22% of coverage. Optimized
with GAPSO.

∑n
i=1 Pci +

400×
∑n

i=1 Pci

( Distance
N )×5

/400.

(b) Distance 2955px for 30 Waypoints
with 76.15% of coverage. Optimized
with GAPSO.

∑n
i=1 Pci +

400×
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i=1 Pci

( Distance
N )×5

(c) Distance 2074px for 30 Waypoints
with 73.08% of coverage. Optimized
with GAPSO.

∑n
i=1 Pci +

400×
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( Distance
N )×3

(d) Distance 2233px for 30 Waypoints
with 72.77% of coverage. Optimized
with GAPSO.
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N )×0.01

×100

Figure A.1: Path planning for maximizing the covered area. The area is covered with 15
and 30 waypoints and several cost functions have been tested
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Abstract:

The goal of this paper is to optimize the coverage of a vast and complex area such that its mosaic
image can be created. To find the best waypoints, two methods have been investigated: Particle
Swarm Optimization (PSO) and Genetic Algorithms (GA). Our investigation proved that GA is a better
method due to its performance and adaptability. After having performed experiments to compare the
algorithms, a hybridization of GA and PSO is investigated. The proposed method can be applied
on large areas with irregular shapes, such as agricultural fields, and it provides a minimized number
of waypoints that must be flown over by the Unmanned Aerial Vehicle (UAV). The experiments were
made to simulate the flight of the UAV in an indoor environment, and the images generated during
the simulated flight have been used to show the final mosaic. The proposed method is also applied in
the vast outdoor area using satellite images to visualize the final result of the coverage path planning.
The experiments validate the efficiency of the proposed method for finding the number and the poses
of the waypoints. The solution proposed to approach the problem of coverage path planning is
rather different than the state of the art by dividing the Coverage Path Planning on independent
sub-problems to optimize and then using GA and later on GAPSO.

Keywords: optimization, UAV, evolutionary algorithm, PSO, path planning, coverage
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