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How wonderful it is that nobody need wait a single moment before starting to improve the
world.

- Anne Frank



Chapter 1

Introduction

1.1 Motivation

Hybrid electric vehicle (HEV) have two or more propulsion power [1, 2, 3, 4], two or more
kinds or types of energy storages, sources or converters, and at least one of them can deliver
electric energy [2, 5]. Thanks to presence of reversible energy storage system (ESS) and electric
machines (EM) that offer capability of idle off, regenerative braking, power assist, and capability
of engine downsizing [6, 7], HEV appears as one of the most viable technologies with significant
potential to reduce fuel consumption within realistic economical, infrastructural, and customer
acceptance constraints [8].

The idle-off is the ability of the vehicle to turn off its engine when stopped, saving fuel and to
turn it back on in a short time when the vehicle starts to move again. The regenerative braking
is the ability of the car to recapture a part of the kinetic energy during braking and convert it
into electricity to be stored in the battery.

The HEV system has new degrees of freedom to deliver power [7, 8], because ESS gives the
possibility to store part of energy produced by engine and use it when needed. Besides that,
ESS possesses advantages of zero emissions, independance of crude oil, and low operating cost
[9]. On the other hand, EM utilisation covers inefficient operating range of internal combustion
engine (ICE) [10, 11] and is designed to handle transient power variations. Therefore, ICE
functions mostly at its optimal combination of speed and torque [12, 13] that helps constant ICE
operation, offers possibilities in fuel economy, less polluting exhaust emissions [8], and reduced
harmful emissions [10, 14, 15]. HEVs decrease emission of greenhouse gases and effect of global
warming, and fossil fuel still account 85% of world energy sources and is the least expensive
energy source [16].

HEV has great capabilities as new alternative means of transportation [13, 15, 17] for sus-
tainable mobility [4] and as super ultra low emissions vehicle (SULEV) [18]. Research on HEVs
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became important due to concerns about climate change [14], environment protection [3, 19, 20],
stricker legislation for a lower emissions [21], and environmental concerns over urban air contam-
ination caused by black smoke, hydrocarbons, and nitrogen oxides (NOx of diesel engine buses
and trucks) [4, 22].

It is also regarded as one of effective solutions for problem of the energy shortage [4, 21], ever
increasing demands on fossil fuel capacity as well as its price [3, 14, 21], and energy conservation
problem [20] since it has higher fuel efficiency [19] and can improve fuel economy [8, 9, 10, 12, 14,
15, 17]. HEV possesses better performance compared to conventional vehicles [14, 21]. Nowadays,
the trend of electric power consumption has increased and most of the electrical devices replace
mechanical or hydraulic components in vehicle and customers expect more performance [21, 23],
comfort and safety from this new system [23].

There are many advantages that a HEV system [24] can provide compared to conventional
vehicle. In conventional vehicle, the ICE design is heavier, it is sized for peak power demand,
its operation at highest efficiency is in a narrow range, its power curve is limited to a band of
speed, and mechanical brakes dissipate kinetic energy as heat [12]. But in HEV system, ICE is
smaller [12], lighter, more efficient, and sized for average power.

ICE can operate within range of highest efficiency and provide thus greater fuel economy,
reduce fuel consumption and air emissions that lead to improvement of human health. This
can reduce wear and tear on engine, and also reduce noise pollution caused by low speed engine
operation. EM power curve is better suited to variable speed and can provide greater torque
at low speed. EM in HEV can recapture part of kinetic energy and store it in batteries via
regenerative braking, thus reduce wear on brakes [12].

Eventhough, HEV is regarded as the best solution for the future mode of transportation.
It needs so much studies, experiments, and application of simulations for accurate sizing and
matching studies, as well as development of control algorithms [8], because control strategy and
component sizing do affect the vehicle performance [20]. HEV system has a complex architecture
[8], a high degree of control flexibility [10], a complicated power management [10, 20], and it
requires coordination of EM and ICE [18] to enhance fuel economy and reduce emissions [4].
Besides that, it results in high initial cost [9, 16] to build a system equipped with a combination
of battery, ICE, EM, inverters, fuel cell, or supercapacitor.

HEVs can meet consumers need and has an added value, but its losses of transfered energy
should be minimized from source to load [16]. And utilisation of a battery, as ESS, require a long
battery charging time and has a short autonomy range [9] because it cannot sustain the whole
trip [4] due to battery capacity that is limited to its weight and cost. The engine has frequent
starts and stops, and the average efficiency is affected by transients at the starting and ending
of its charging cycle [25].

There are great challenges for implementation in energy management and torque distribution.
The most important challenge is to meet driver’s torque demand while achieving satisfactory fuel
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consumption and emissions. At the same time, it has to maintain battery SOC at a satisfactory
level to enable effective torque delivery over a wide range of driving situations [9, 15]. Compared
to conventional ICE system, HEVs integrate more electrical apparatus in its system such as
electric machines, power electronics, electronic continuously variable transmissions, embedded
powertrain controllers, advanced energy storage devices and energy converters [16]. It has more
degrees of freedom that makes its energy management to be complicated and need a deep study
before it can be implemented in a real vehicle.

An appropriate energy management strategy (EMS) is necessary to coordinate multiple en-
ergy sources and converters [3] and maintain the battery health [4]. The EMS role is to find the
most efficient way of splitting the power demand between the engine and the ESS, and decide
how to split total power request between sources onboard [4, 7]. So, to obtain maximum energy
efficiency, besides of optimising prime mover operation, it has to improve the efficiency of electric
components or energy management [23] because improvement in fuel economy depends strongly
on its supervisory control strategy [26].

With the problems like global warming, harmful emissions from thermal engines, less fossil
fuel ressources, and the fuel price hike, we are still researching for ways to consume effectively
the ressources that we still have. But, these ressources will not last for a long time if no efforts
are made to slow down the present trend. A development of a new system or a new method
takes time to be adapted in an everyday life. With the utilisation of modeling and simulation
tools, this can be done quite rapidly for testing and rapid prototyping of a system. And this
maybe can allow us to explore new alternative to save fuel. With all effort has been given in all
sectors to reduce pollutant emissions and new legislation on emissions of vehicle, HEVs is one of
the best alternative to respond well to this expectation.

1.2 Objectives and Scopes

The work will rotates around four terms; hybrid electric vehicle, effective modeling, optimal
control strategy, and energy efficiency.

The main objectives of this work is to develop an effective modeling method for an easy
deployment of a control strategy, to review and study an optimal control strategy for a specific
application, and to analyse improvement that can be effectued to engine for better efficiency in
hybrid architecture.

The scopes of this work will include the simulation part of the studied system and its val-
idation with experimental results. Study cases are used to analyse optimization that can be
effectued to the original system. The optimization could be a control parameters optimization or
a replacement of some components in the system in order to obtain a better system efficiencies
through simulation.

Next, a more specific study on the method to improve the original control strategy of the
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system will be studied. A well established optimization tool will be chosen to optimize the actual
control strategy and becomes a benchmark of a new optimal control strategy to be deployed in
the system. A method to know energy consumption of the system will be developed in order to
obtain an optimal control suitable with the vehicle application.

The main components of the system will be studied for improvements of its energy efficiency.
In this work, the system energy sources are converted by ICE and stored in battery. Using the
developed model, analysis will be conducted to identify an optimal control strategy for a specific
utilisation. Improvements can be considered on certain zone of the engine operational area based
on analysis of engine recurrent working points. And, an optimal sizing of the battery packages
for another application can be easily found using the model.

1.3 Thesis Organisation

This thesis consists of four main contents besides of the introduction in the first chapter and
the conclusion and perspectives in the last chapter.

In chapter two, the overview of the vehicle types and architectures, the modelization tools,
and control strategies are presented.

The third chapter presents modelization method of the system and its validation. It begins
with a simple method of a quasi-static model and continues with a dynamic model using an
Energetic Macroscopic Representation (EMR) method. Then, a replacement of components of
the studied system through simulation is presented.

Chapter four explains about the optimization of the existing control strategy and prediction
method of the system energy consumption.

And finally, chapter five studies four widely used control strategies in HEV system and the
possible improvements through analysis of engine operation and its application to design a better
system for other vehicle applications.
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Start where you are. Use what you have. Do what you can.

- Arthur Ashe



Chapter 2

Review on Hybrid Vehicles

2.1 Introduction

HEV system is a complex system and it can be built in divers architectures, configurations,
and combinations. By identifiying its types and functions, the development of this system can be
easily performed and realised. But, HEV system is not just about the physical system, it needs
an effective energy management to control the power flow in its powertrain. This is known as
the control strategy of the system.

A review on the control strategy that has been employed in developed HEV will be presented
in one section of this chapter. This will help us to identify which control strategy is suitable
for a specific utilisation and configuration, and which step to take in order to obtain an optimal
control strategy that can be implemented in a real vehicle. And finally determining which control
is best suited for our developed system.

2.2 Vehicle Types and Architectures

2.2.1 Hybrid Types

A degree of hybridation (DOH) provides a quantitative measure of where power is flowing in
a hybrid vehicle ( 2.1). Pmax_ICE is the engine maximum power, Pmax_ESS1 and Pmax_ESS2

are the electric storage system maximum power value for the first energy storage system and the
second energy storage system and then the following. This helps a designer to decide what type
of control strategy to be used and components to be controlled.

DOH = 1 − Pmax_ICE

Pmax_ICE + Pmax_ESS1 + Pmax_ESS2 + ...
(2.1)

Zero DOH designates a vehicle system with engine only and a DOH of one a full electric
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vehicle like battery, fuel cell, or solar vehicle. In Figure 7.1 each type of vehicles use different
portion of energies from various sources depending on its propulsion system. Its application and
DOH become a factor to focus the optimisation; on the efficiency or the electrification.

DOH =0 DOH = 1

Figure 2.1: Schematic representation of HEV types with flow in power sources and design focus
(extract from iTEC 2012 short course on HEV Fundamentals by M. Zhang) [27].

Hybrid Electric Vehicle (HEV)

In automobile, there are different combination of hybrid vehicles, the most common is the
engine/battery hybrid, the other hybrids are a combination of components such as battery,
fuel cell, solar panel, super capacitor, or flywheel. It is possible that the combination consists
of more than two of the mentioned components or combined with the same components like
battery/battery hybrid.

The system is complex, it uses electic motor drives and ICE and has battery or supercapacitor
as its ESS. It requires only little changes in the energy supply infrastructure, less polluting and
has less fuel consumption than ICE vehicle while having the same range. HEVs extend greatly
the original EV driving range by two to four times and offer rapid refuelling of liquid gasoline or
Diesel [2, 16].

The engine of the HEV can always operate in its most efficient mode, yielding low emissions
and low fuel consumption. HEV can purposely be operated as an EV in the zero emission zone.
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It is regarded as a practical solution for commercialization of super-ultra-low-emission vehicles.
But, HEVs have drawbacks like loss of the zero emission concept and increased complexity [2].
And it has problems of managing the multiple energy sources, battery sizing, and its fuel economy
that depends on driving cycle [16].

The three DOH of HEVs are; mild hybrid, power assist hybrid, and full hybrid. The mild
HEV is like a conventional vehicle equipped with oversized starter motor to allow the engine
to turned OFF during coasting, braking or stop, then to restart quickly. The motor recaptures
braking energy and supplies auxillary power.

The power assist HEV has engine as prime mover. It cannot be run on electric power alone
and built with reduced size of battery. It needs a big EM to assist vehicle when it needs extra
power or for acceleration. The full HEV can run on just the engine, just the batteries, or both.
It needs high capacity of battery pack, consequently allows more flexibility in splitting power in
the drivetrain [24].

Plug-in HEV (PHEV)

PHEV is equipped with relatively higher battery capacity that can be recharged from external
electrical outlet, and can replace fuel by cheaper and cleaner electric grid energy [4, 9, 24, 28].
Therefore, it can achieve a better overall fuel economy and give smaller impact on environment
[28]. With a larger battery, plug-in hybrid is capable to run longer in electric only mode [24],
take advantage of regenerative braking [29], and sustain an all-electric range (AER) in urban
areas [4, 9, 21].

Its technology offers potential of fuel replacement and reduce dependance on crude oil by
diversifying energy sources for automobile fuels [30]. It possesses advantages of both system of
HEV and EV with small engine that operate efficiently [21, 29], lead to decrease fuel consumption
and emissions [9].

However, PHEV needs electric grid charging facilities [16] to access to the power grid through
external plug [9]. During AER mode, the electric energy is significantly cheaper, and electric drive
trains are more efficient. So, it is advantageous to operate the vehicle in electric mode whenever
possible, particularly during transient power demands since ICEs are particularly inefficient
during transients, but its performance is trip dependent [21].

State of charge (SOC) is used to describe in which mode the battery will operate, whether
in EV mode, charge depletion (CD) mode, or charge sustaining (CS) mode. EV mode is when
the vehicle operates in electric only mode using energy from the electric machine only until
it completes a predefined cycle or reaches a predefined SOC. The engine will turn on if the
electric machine cannot meet the load demands of the vehicle, forcing a mode switch. CD mode
is when the vehicle operates using energy primarily from the electric propulsion machine with
a net decrease in battery SOC. CS mode is when the vehicle is operating in a manner that
the propulsion is powered by the electric machine, the engine, or both, with the constraint of
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maintaining a constant battery SOC [21].
Commonly, PHEV use grid electricity to power the vehicle during initial driving range, the

CD mode and displaces a part of the fuel energy with electric energy [9, 21]. Then, it will choose
a blended-mode PHEV control strategy which is complex and multidimensional and will have
significant impacts on vehicle performance, driveability, and fuel consumption. The blended mode
has less powerful electric drive capability but it can achieve cruise and moderate acceleration in
EV mode, but engine utilisation is a must for either higher torque or higher power operations
[29].

The engine on-off operation is executed more effectively and efficiently in PHEV. By turning
the engine off rather than idle when it is not required for propulsion and turning it on only when
the required power is above a predefined value, it can avoid inefficient engine operation. It will
not need to start the engine unless the traction battery is depleted. It ensures smooth operation
of the vehicle by assigning an engine on and off minimum time interval, because the delay to
turn on the engine will increase the regenerative potential of the PHEV and further improve its
mileage [21].

Electric vehicle with range extender (EVRE)

Range extender (RE) is an auxillary power unit (APU) attached to a battery electric vehicle
in order to increase its driving range. The RE could be an engine combined with a generator, a
fuel cell stack system, or other energy sources.

The EVRE is capable to realize AER during initial driving condition, then sustain the charge
until the end of a trip. It is equipped with a full-sized traction motor powered by battery causing
an increase in system cost. It has a higher power loss at higher power operations [24].

Most of the time the architecture of this vehicle type is in series like the Chevrolet Volt and
the Noao racing car.

Electric vehicle (EV)

The definition of electric vehicle goes to a system that transfers electrical energy from its
sources to the wheels [16]. Normally, on the vehicle, the necessary energy is drawn from carbon-
free energy sources [16], and the system is usually equipped with whether solar panel, battery,
fuel cell, supercapacitor, flywheel or combination of those components. Except for a particular
fuel cell system that has an on-board fuel processor to reforme methanol to hydrogen. EV system
consists of an energy source, a power converter, an electric motor and a mechanical transmission,
in which the energy flow can be forward or backward during motoring and braking, respectively
[31].

It relies on battery technologies with efficient battery management and motor control systems
[18]. The batteries, capacitors and flywheels are energy storage systems in which electrical energy

14



is stored during charging, whereas the fuel cells are energy generation systems in which electricity
is generated by chemical reaction. Batteries is the major EV energy source because of their
technological maturity and reasonable cost [31].

In the well to wheels point of view, the advantage of EVs on energy conservation is that it offers
high energy efficiency with 12.5% crude oil to EV vehicles motion compared to 9.3% crude oil to
fuel powered vehicles motion [31]. It can convert the kinetic energy back to electricity through
regenerative braking. EVs allow energy diversification from fossil energy sources to renewable
energy, or generation of electricity by on board fuel cells. EVs enable load equalization of the
electric grid power system during non-peak hours [2, 18, 31]. By recharging EVs at night, the
power generation facilities can be effectively utilized the non-stockable energy at this time.

It holds benefit on environmental protection such as gain in air quality, show zero local and
minimal global exhaust emissions, operate quietly, and almost vibration-free [2, 18, 31, 32]. To
promote EVs, some governments have set aside emission-free zones and have enforced stricter
emissions regulations [31]. But, pure electric vehicles have demerits, such as a short driving
distance, long recharging time, and high cost, thus it is not a realistic solution for the time being
[22, 31].

Eventhough, EVs have improved their performance and made it suitable for commercial and
domestic use, it still has not achieved driving ranges as good as conventional vehicles [32, 33].
The development obstacle of EV technologies is the energy sources, in aspect of energy storage
and energy generation systems. If EV is composed of only one energy source, the system can
only achieve either high specific energy or high specific power. The feature of high specific energy
is favorable for long driving range, while the high specific power is desirable for high acceleration
rate and hill climbing capability [31].

The most common EV systems are the battery electric vehicle (BEV) and fuel cell electric
vehicle (FCEV). The BEV is suitable for small electric vehicle used in short range, low speed
community transportation, that will require it to be built with smaller battery size [34]. It is
characterized by an electric energy conversion chain upstream of the drive train system that
might be composed of battery, ultracapacitor, or solar panel [5, 35]. It features independance on
crude oils, high energy efficiency, zero emission, and already commercially available.

The battery is normally recharged from main electricity via a plug and a battery charging
unit that can either be carried onboard or fitted at the charging point [36]. Although, it only
needs electric grid charging facilities, it has problem in battery and battery management, lack of
high performance propulsion, short range autonomy, and has high initial cost [16]. On the other
hand, the FCEV has long term potential for future main stream vehicles, however the technology
is still in early development stage, and has costs and refueling system as the major concerns.
It needs battery or ultracapacitor to enhance power density for starting and acceleration. It is
independant from crude oil, has high energy efficiency, zero or ultra low emission, and have satis-
fying driving range. But, it has issues like high system costs, fuel cell cost, hydrogen production,
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transportation infrastructure, and fueling system [16].

2.2.2 Architectures

There are three main hybrid vehicle architectures; series, parallel, or series-parallel as shown in
Figure 2.2. An architecture that cannot be distinguish within the three classements is considered
as complex architecture.

Hydraulic link
Electrical link
Mechanical link

Hydraulic link
Electrical link
Mechanical link

Hydraulic link
Electrical link
Mechanical link

FT : Fuel tank FT : Fuel tank 
ICE : Internal combustion engineICE : Internal combustion engine
G : GeneratorG : Generator
B : BatteryB : Battery
PC : Power converterPC : Power converter
EM : Electric motorEM : Electric motor
T : TransmissionT : Transmission

EMB
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TPC

ICE G
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Figure 2.2: Diagrams of different HEV architectures, power flow, and power losses; a) Series, b)
Parallel, c) Series-parallel, d) Complex

Series

Series hybrid is the simplest kind of HEV [2] owing to its simple architecture [14] because it
has no mechanical connections between engine and wheels [7, 16] as can be seen in Figure 2.2 a).

ICE is not directly connected to the drive train [6, 24], series HEV couples the engine with
the generator to first convert the engine mechanical output into electricity for pure electric
propulsion. The converted electricity either charges the battery or can bypass the battery to
propel the wheels via the same electric motor and mechanical transmission [2, 12].

The power split is between electric generation and electrical storage path [37]. Traction power
delivered by EM depends on amount of given battery power for the driving force [12]. ICE does
not take part in the propulsion of vehicle, and during light load the excess power is stored in
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the battery pack [12]. Engine operates frequently at its maximum efficiency point so the fuel
efficiency improves and the carbon emission is less than in the other vehicle configurations [16].

The absence of clutches throughout the mechanical link has the definite advantage of flexibility
for locating the best operation points of engine-generator set [2]. The speed can be chosen from
values corresponding maximum efficiency for a given output power [7]. Due to lack of mechanical
link between engine and wheels, series hybrid is efficient in driving cycles that involves many
stops and starts such as urban driving [24].

It predominates as an urban transportation, thanks to its outstanding transient performance
and power response [14, 16], and is mostly used in heavy vehicles, military vehicles and buses
[16]. Other than that, it has advantages such as long operational life and simpler space pack-
aging compared to other architectures that are restricted by mechanical connection between
components [16].

This system can operate in two mode; EV and HEV [18]. For a large-sized vehicle applications,
series-type HEV have a considerable burden in electric machine size and vehicle weight to satisfy
the maximum power rating of the drivetrain [22]. It needs three propulsion devices - the engine,
and a separated generator and electric motor [2, 12, 24]. And if it is designed to climb a long
grade, all these propulsion devices need to be sized for the maximum sustained power [2].

The larger traction drive system, multiple energy conversions [16], higher operating system
voltage and bulky energy storage devices counteract the overall efficiency of this system [12].
But, the engine-generator set can adopt a lower power rating if it is only needed to serve short
trips as commuting to work and shopping [2].

Parallel

The parallel hybrid connects directly both power units in parallel; engine and electrical ma-
chines to mechanical transmission via drive shaft to propel the wheels [2, 12, 16, 24] (Figure 2.2
b)).

In this system, EM accompanies ICE providing the tractive force and acts as alternator to
convert mechanical energy to electrical energy [23]. A parallel HEV can operate in three modes;
the propulsion power supplied by the engine alone, by the electric motor alone or by both in
hybrid mode [18].

Parallel hybrids do not need a separate generator, because the traction motor can recuperate
braking energy or absorb power from the engine when its output is greater than the requested
power to drive the wheels [2] and storing them in batteries [12].

This type of hybrid needs only two propulsion devices, a smaller engine and a smaller electric
motor [2] because the size and weight of electrical components, such as the inverter and batteries,
can be reduced considerably according utilisation [22]. If it is build for long trip operation, only
the engine needs to be rated for the maximum sustained power, while only half of the maximum
power for the electric motor [2].
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Consumers can get the same or better performance as conventional vehicle, unless if the
battery is depleted [2]. Parallel hybrid is advantageous in economic gain and has cheaper initial
cost compared to other architectures, but the space packaging is complex [16].

Combined or Series-parallel

The series-parallel hybrid is a direct combination of both series and parallel hybrids [2] and
combines both features of the hybrid configurations [16].

It inherents advantages from both series and parallel HEVs, has more degrees of freedom in
selecting an operating point of an ICE of series HEVs, while having higher efficiency in power
transfer and relatively smaller EM than parallel HEVs [10]. But this type of HEV needs an
additional mechanical link compared to series hybrid and an additional generator compared to
parallel hybrid as shown in Figure 2.2 c) [2].

Series-parallel hybrid incorporates planetary gear set as power split devices that connects
two electric machines and the ICE, and allows power path flow from ICE to wheels. The engine
is linked to the planet carrier; the generator to the sun gear and the ring transmits the output
torque to the differential. The motor is also linked to the ring gear so that it is able to add
torque to the output shaft.

Owing to the connection of the sun gear and the planet gears, the speed of the engine can
simply be adjusted by varying the speed of the generator. It involves no gear changing, so the
engine operation is less transient than the parallel configuration and not as steady as the series
hybrid [16].

Although this system possesses advantageous features of both series and parallel HEVs, it is
relatively more complicated and costly [2, 16]. The control is complex and it has problems for
space packaging [16]. Nevertheless, with the advances in control and manufacturing technologies,
some modern HEVs prefer to adopt this system [2].

Complex

This hybrid can offer additional and versatile operating modes. It might be similar to the
series-parallel hybrid (Figure 2.2 d)), where the electric motor power flow is bidirectional and of-
fer flexibility in operating modes. Similar to the series-parallel HEV, the complex hybrid suffers
from higher complexity and costliness. Nevertheless, some newly introduced HEVs adopt this
system for dual axle propulsion which is parallel with transmission by road [2].

A system of hybrid electric vehicle or electric vehicle possess potentials to be developed as
a transportation technology that one day can replace conventional way of transportion. The
design path is already available and mass production of this system for particular consumer
has increased for the past few years. But, the cost of this system is still high and consumer
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are questioning the reliability of these systems in terms of security, driving sensation, and fuel
economy. Therefore, futher studies and experiments are needed to establish reliable foundation
for improvement of these systems. One of the important aspects that will affect the performance
of this system is its control strategy. There is so much research that have been carried out
relating EV and HEV control method. Through the next section we can see the effort made
to modelise the vehicle system and observe how the type and DOH of this system influence the
choice of a control strategy and objectives of the energy management.

2.2.3 Energy Sources Used in Hybrid Electric Vehicle Applications

A choice of energy sources used in HEV depends on its application and benefits of their
utilisation. Diesel engines are usually chosen for utilisation in heavy duty vehicles such as buses
and trucks because its significant gain in reducing harmful emissions. And a lithium-ion battery
pack is privileged because it has a bigger power to weight ratio compared to other types of
batteries. A list of the conducted researches is presented in table 2.1.

Table 2.1: Researches conducted on HEV system.
Institution Vehicle Architecture Engine Electrical sources
[38] Military UAV parallel gasoline Li-ion
[39] 6-wheel UAV gasoline 9.39 kW battery 25Ah
[30] Plug-in midsize SUV parallel gasoline 100 kW Li-ion 23Ah
[28] Plug-in midsize car parallel gasoline 120 kW Li-ion 21.5Ah
[40] SUV parallel Diesel 80 kw battery
[22] Bus parallel Diesel 9.420L battery 70Ah
[41] Car parallel Diesel 1.5L 60 kW battery NiMH 34Ah
[8, 42, 43] Navistar truck parallel Diesel 5.5L 157 kW Lead-acid battery 18Ah
[44] Car parallel Diesel 68 kW battery 6Ah
[45] Car parallel Diesel 1.9L 42kW Lead-acid 18Ah
[46, 47] Plug-in mid-size SUV series-parallel Diesel 1.9L 103kW Li-Ion 2.3Ah
[48] Hyper prototype complex Diesel 44 kW front wheel NiMH 6.5Ah rear wheel
[19] Military 4WD SUV series Diesel 88kW battery + supercapacitor 1.4MJ
[14, 49] Bus series Diesel 171kW Li-ion 90Ah
[26] Bus series Diesel 112kW Li-ion 70Ah
[50, 51] Car series microturbine NiMh battery 60Ah
[9] Plug-in sedan series microturbine Diesel 30kW Li-ion
[52] Nemo HEV series battery lead-acid, fuel cell PEM
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2.3 Modelisation Tools and Methods

Development in computer technology has lead to an explosion of a computer based modeling
to simulate and predict behavior of real machines or systems. Utilisation of simulation has
advantages of a rapid prototyping, fast design and implementation of a system, with a less
expensive development cost and a reduced development time.

Simulation model can be done by a component only model or a global model. Some models
are developed to design a real-time controller of a system. But, a simulation model is invalid
without a verification with its physical system. Normally this can be done by comparing its
results with experiment results from a testbench or to a hardware-in-the-loop (HIL) installation.

In simulation, three main types of modeling methods exist; steady-state method, quasi-static
method and dynamic method. The steady-state model is useful for system level analysis and
to assess long term behaviour of the vehicle [53]. Less computation time is required because it
neglects all transient states and utilises lookup tables to represent its experimental data [54].
An equivalent dynamic model added to a steady-state model forms a quasi-static model. It is
usually used in global optimization of energy management [54]. This approach has been used
to develop PSAT [30], ADVISOR [55], and QSS Toolbox [35, 40] for system analysis and design
methods of HEV drivetrains.

A dynamic model takes into account transient states and can study large load transients that
occur during gear shifting or fast acceleration [53, 54, 56]. The model is more accurate and
more complex causing an extended computation time, because it requires precise information on
characteristic and environment of the system [35, 53, 57, 58]. It can give in-depth information
about dynamic effects of sublevel components and facilitates performance measure to determine
effective control laws and the optimum powerplant or driveline combination [57, 58, 59, 60, 61, 62].
Dynamic simulation approaches like Energetic Macroscopic Representation (EMR) [63, 64, 65],
PSIM [66], and V-Elph [60] simulation packages are developed using this method.

2.4 Control Strategies

A control strategy is usually implemented in vehicle central controller, is defined as an algo-
rithm, a law regulating the operation of the drive train of the vehicle. Generally, it inputs the
measurements of the vehicle operating conditions such as speed or acceleration, requested torque
by the driver, current roadway type or traffic information, in-advance solutions, and even the
information provided by the Global Positioning System (GPS) [3].

The outputs of a control strategy are decisions to turn ON or OFF certain components, to
increase or decrease their power output, or to modify their operating regions by commanding local
component controllers [3, 17]. In a HEV system, control algorithms manage power distribution
between sources to reduce emissions and fuel consumption [67, 18, 26]. It is difficult to tune

20



parameters that minimize fuel consumption manually. The fuel economy of HEV depends on
many design parameters such as component sizes and control strategy parameters [30]. Likewise,
the selection of control strategy can affect autonomy range of EVs.

The main objectives of hybrid drivetrain energy management system are meeting the drivers
demand for the traction power, sustaining the battery charge, have less startups, cut running cost,
and optimization of drivetrain efficiency [50]. A good control strategy should satisfy a tradeoff
between them. Recently, achieving smooth gear shifting and minimizing excessive driveline
vibrations, known as drivability, are included in the drivetrain control strategy [3].

In HEV system, supervisory controller coordinates power control of the primary energy con-
verter like ICE and the electrical storage system through electric machine [1], so that the power
requirement and other constraints are satisfied [14]. It exploits power distribution between power
sources to minimize consumption, but its performance depends strongly to the information avail-
able [68].

A control strategy can integrate approaches to help in the decision process. The stochastic
approach can provide a random but predictable situation. It uses data of repeated road profile
if there is no future driving profile available [68]. The pattern recognition tools can help classify
driving modes and recognizes driver’s driving behaviour based on current and previous driving
condition, pattern learning, and proper classification [4, 69]. The prediction of future events
can inform and provide data of future driving conditions and road profile to forecast the power
demand and determine decision of control strategy. For the real time implementation purpose,
dynamic feedback control approach is easy to implement because it is based on the current and
previous operation [4].

R. Wang and S. M. Lukic [69] summarize the prediction tools that have been implemented on
EV and HEV systems. Three techniques are discussed for the control strategy to predict driving
cycle like prediction based on GPS [18, 70, 71, 44, 72, 73], Geographical Information Systems
(GIS) [44] and Intelligent Transportation Systems (ITS) [4], recognition based on statistic and
cluster analysis, and predictive control based on Markov chain [43, 74, 75, 76].

Prediction based on combined GPS and ITS can reduce uncertainty. The GPS acquires the
present driving information such as time, speed, trip distance, slope, acceleration, and decelera-
tion. And the ITS provides road conditions, speed limits, and traffic lights placement. Statistic
and cluster analysis utilizes historical data to recognize types of driving cycle (urban, suburban,
or highway) to measure power demand. Length and time window are imposed to collect and
process the data considering the computational burden and real time implementation facility.
To analyse the data, it can use the classification algorithms like Bayesian classifying algorithm,
decision tree, rough set theory, fuzzy clustering analysis [15, 77], neural network (NN) [78], and
support vector machine. The NN is first trained using known driving cycles to recognize current
driving condition and predict near future events. The Markov chain modelizes the power demand
and predicts the future driving condition, given the current one.

21



Three types of driving style are mild, normal, and aggressive driving. The classification
and recognition methods could be a set of questionaire, fuzzy classification, jerk analysis by
using a driving simulator platform, or a Gaussian mixture models. Studies show an agressive
driver contributes to poor fuel economy and propose to allocate less torque demand to avoid fuel
consumption due to transient engine operation. There are various methods and approaches to
determine decision of a controller. Two main methods are the rule based control strategy and
the optimisation method. Further explication on the control strategies that have been developed
and published regarding hybrid and electric vehicles can be found in the following sections.

2.4.1 Rule Based Method

Rule-based power management strategy is based on engineering intuition and simple analysis
of component efficiency tables or charts [42]. It is easy to implement [4] and effective in real-time
supervisory control of power flow in a hybrid drive train [3, 16]. The systems operate based on
a set of defined criteria. The goal is to operate the system at its highest efficiency point [21].

The rules are designed based on human expertise and even mathematical models and generally
without a priori knowledge of a predefined driving cycle [3]. ICE operating point is controlled
as close as possible to the optimal point of efficiency, fuel economy, or emissions at a particular
engine speed [21]. The EM is used in replenishing the battery based on measured SOC to
compensate difference between the driver power request and the power generated by ICE [3]. It
is close to load-leveling concept. If the best efficiency is needed for every instant in time during
the vehicle operation, the vehicle operation points will be forced in the vicinity of the best point
of efficiency at a particular engine speed [16] and maximizing regenerative potential.

Predefined rules are initially set based on desirable outputs and expectations without any
prior knowledge of the trip. Flowcharts and state diagrams are commonly used to represent the
power flow of a given driving schedule. Rule-based control strategies optimize the performance of
each component individually. However, it is a local optimization which has a major disadvantage
of not being able to find the global minimum [21]. The implementation is performed with
deterministic rule based method or fuzzy rule based method.

Deterministic Rule Based Method

The deterministic rule based controllers operate on a set of rules that have been defined and
implemented prior to actual operation. It utilises instantaneous operating conditions as inputs
for the decision-making process [21]. It is heuristic method which is based on analysis of power
flow in a hybrid drive train, efficiency or fuel or emission maps of an ICE, and human experiences
to design deterministic rules. The rules are generally implemented via lookup tables, to split
requested power between power converters [3, 16]. It can easily cause the balance of battery
charge highly sensitive to the drivers’ driving pattern, service route state, and load conditions
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[22].
A supervisory controller is designed by G. Rizzoni et al. [40] to distribute power of the

torque demand between the engine and the motor, so that the battery can sustain its charge by
regenerative braking or indirect loads from engine. The algorithm of the control is as follow: ICE
propels the vehicle if the torque needed is above a specified limit to avoid less efficient operation.
The EM provides needed power if it is below this limit. And, if the power needed exceeds the
limitations of ICE, the EM will be turned ON. At a suitable operating points, the battery will
be reloaded to recover the charge to its initial charge. The simulation result shows fuel reduction
and the comparison of efficiency tabulation between the conventional ICE and hybrid case as in
Figure 2.3.

a) Conventional case b) Hybrid case

Figure 2.3: Comparison of the ICE efficiencies; a) Conventional case, and b) Hybrid case [40].

A. M. Philips et al. [67] presents the state machine controller to coordinate two power sources
of a parallel hybrid vehicle system. The vehicle system controller (VSC) consolidated with a set
of ten vehicle operating modes; off, motor drive, regen-low velocity, regen-high velocity, engine
drive, boost, charging, engine stop, engine start, and bleed. The three reasons for the transitions
to occur are; a change in driver demand, a change in vehicle operating condition, and a system
or subsystem fault. Within any particular state, highest priority transitions are associated with
system faults. The next priority is the driver demand, except when the system performance is
being compromised like low battery SOC. By utilizing the proper dynamic algorithms, a smooth
control within and between the states is achieved.

C. Quigley and R. McLaughlin [18] exploit navigation information from global positioning
system (GPS) to give good information on vehicle location and routes to reduce EV and HEV
system energy usage using estimated journey information. The goal is to minimise the utilisation
of ICE by predicting energy requirement and regenerative energy. The SOC is depleted until its
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minimum threshold before recharged to a level of SOC so that it can complete the rest of the
journey in EV mode and reach the minimum SOC at the end of the trip (Figure 2.4 (a)) to reduce
emissions, have less startups, cut running cost by using more grid electricity, and have lower net
emissons. It allows a second lower limit to complete the journey if the first limit is reached and
if it remains a short distance. And, everytime the vehicle want to enter a ZEV zones, it will
recharge the battery until upper SOC to have enough charge. It will limit vehicle’s acceleration or
reduce auxiliaries power to complete a journey without running out of charge. The GPS vehicle
location information, departure time and place are used as a reference indicator to predict a
near future events. Then it calculates the required and recoverable energy with the road load
equation with assumption of no slope and predict patterns of regularly occuring journeys. Week
day journeys are predictable, but not on weekends (Figure 2.4 (b)). The duration and energy
requirement are repeatable for a regular occurring journeys distance and route information is
necessary to be able to estimate this energy requirements more accurately.

(a)  View of SOC during a journey under optimized control (b) The relationship between distance, duration and departure time

Figure 2.4: A simplified view of the optimized control; a) View of SOC during a journey under
optimized control, and b) The relationship between distance, duration, and departure time [18].

S. Barsali et al. [50] apply thermostat ON-OFF engine control and an algorithm to forecast
average power demand (Figure 2.5 a)) in order to maximize the vehicle efficiency while keeping the
emissions within predetermined limits to satisfy the required power from the propulsion system
(Figure 2.5 b)). It considers desired drive power, road slope, vehicle inertia, accelerator position,
forecast information, SOC, and time to fully recharge battery as inputs of the control. The load
forecasting approximates future behaviour of the power demand, Pd(t) by exploiting previous
values of Pd(t), traffic information, and road slopes. The implementation of the control strategy
consider two cases, one by neglecting energy losses in the battery and the other one by taking into
account the energy losses in the battery. For the first case, if the forecasted average drive power,
Pfad is lower than optimum value, Popt, the DC source will be turned ON when it reaches its
minimum level and work on its Popt, then turned OFF when it reach maximum battery storage
level. In this case, it considers an extra cost due to each startup in form of fuel consumption
(Figure 2.5 b)) and lifecycles. If Pfad is higher than Popt, the DC source will work as close as
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possible at its optimal operating points. For the second case, the control considers energy losses
in the battery by approximation of a constant Pd(t) on standard cycles. The control forecasts
average drive power to deliver power sources (Figure 2.5 c)) and results in reduced consumption.

a) Load forecasting and control logic

c) Result of case study on ECE-15 driving cycleb) The extra cost due to number of startups

Figure 2.5: The control method; a) Load forecasting and control logic, b) The extra cost due to
number of startups, and c) Result of case study on ECE-15 driving cycle [50].

Then in 2004, S. Barsali et al. [51] forecast the average power demand, Pda using the historic
value power demand, Pd and power request ripple to minimize fuel consumption of a series HEV.
The battery operates within two limits, the upper energy limit, Eu at SOCmax and the lower
energy limit, El at SOCmin to allow delivery of required peak power and avoid higher battery
losses. Its control algorithm updates the required DC source power and decides whether to keep
the generator ON, when to turn it ON and OFF, and how much power if it is in the ON state. It
considers a fixed amount of fuel, Csu for each startup to account for additional fuel consumption
and life costs of the prime mover. The instantaneous value of Pd(t) is filtered with Tf , the time
constant for the filtering function to be 300 s to avoid improper startup of six different drive
schedules. And, it is proven that the chosen Tf value can compensate a wrong choice of journey
type (urban or highway). The number of startup is optimal in most of the cases except for a
composite cycle of UDDS+HWDS.

J. A. MacBain et al. [55] implement thermostat control strategy to turn ON or OFF the
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engine based upon battery SOC two set points. The fuel converter will turn on when SOC drops
to its lower limit at 75% and will be only turned OFF if the SOC reachs its upper limit at 80%.
During this charging event, if regenerative braking occurs, the fuel converter torque will go to
zero to capture as maximum energy as possible due to the limited amount of power the battery
can absorb at a time. It considers SOC limits, valve regulator set point, DC/DC converter
values, and fuel converter operating points as its control parameters. The result shows a realistic
simulation for this system to predict fuel economy and performance as in Figure 2.6 under this
control strategy.

a) Fuel converter delivered torque

b) SOC evolution

c) Generator current

d) Generator voltage

Figure 2.6: Result shows; a) Fuel converter delivered torque, b) SOC evolution, c) Generator
current, and d) Generator voltage [55].

Y. Gao and M. Ehsani [79] discuss about the sizing design of an off-road series HEV and
its control to reach good vehicle performance such as acceleration, gradeability, maximum speed
and travel range in its five operation modes: genset traction, ESS traction, both traction, ESS
charging, and regenerative braking. The controller concept (Figure 2.7) of this ESS is an active
control, the battery load is controlled in a narrow region for smaller battery design and the
ultracapacitor will provide peaking power during acceleration. Also, the ultracapacitor can
absorb the peak charging power during regenerative braking. The desired energy power ratio,
R e

p
is defined by both the components specific energy and specific energy weight (( 2.2)). The

combination of batteries and ultracapacitors can reduce the volume and weight of the energy
storage, improving the battery cycle life, give fast power response, enhance the temperature
adaptability, and simplify battery management.

R e
p

=
WbEb + WcEc

WbPb + WcPc
(2.2)
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a) Time profile of the pulsed power and average power b) Hybrid energy storage active control

Figure 2.7: Conceptual illustration of; a) Time profile of the pulsed power and average power,
and b) Hybrid energy storage active control [79].

M. Gokasan et al. [80] use a control strategy based on two chattering-free sliding mode
controller (SMC) to restrict the operation of the engine to the optimal efficiency region Figure 2.8.
Two algorithms are developed for a series hybrid control to achieve maximum energy efficiency by
determining the generator ON/OFF period and to produce demanded torque when the generator
is ON. The engine torque is rewritten as a function of the throttle angle. One of the algorithms
is used for the derivation of the battery SOC, maximum power and losses, while the second
algorithm makes some forecasts of the system load as shown in Figure 2.9. The developped
model is compared with a prototype of a military vehicle and the control strategy is compared to
the original PSAT strategy available. As a result, the control strategy allows a larger fluctuations
because the engine is controlled in efficient region and it draws power from battery when engine
is OFF. However the final SOC is higher and it improves the overall efficiency. Operation points
outside optimal region occur less frequently. There are improvement in overall efficiency, engine
efficiency, fuel economy and emissions by adding the generator torque control in the 2-SMC
strategy.

In 2008, H. Yoo et al. [19] study a system integration and power flow management of a
four wheel driven series hybrid military purpose vehicle with three power sources; battery, su-
percapacitor and engine/generator (E/G) set to deal with military missions. The power flow
managements have two operation modes. The normal operation mode begin with a high SOC of
ESS, during engine idle, the supercapacitor or the battery will not be recharged until the engine
reaches its reference speed or the DC-link voltage is regulated. Once regulated, the engine power
reference is calculated based on load power requirement and SOC. During EV mode operation,
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Figure 2.8: Engine efficiency map showing the optimal operating line [80].

Figure 2.9: The block diagram of the auxiliary power unit (APU) controller based on two
chattering-free SMC [80].

the battery will regulate the DC-link and use the supercapacitor to improve the dynamic per-
formance if necessary, by boosting the acceleration and absorbing regenerative braking power.
Results from experiments show that the burden of the engine is reduced if the battery supple-
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ments power to the DC-link, and the supercapacitor has enhanced the dynamic performance by
coping well with power fluctuation.

Then in 2009, H. Yoo et al. [39] propose a power flow control method to regulate DC-bus
voltage with the variable speed E/G set, and the battery assists power for rapid load variation.
The objectives are to optimise fuel efficient operation, to maximize engine power utilisation, and
to regulate stable DC-bus voltage at ±15% of set-point. It controls the speed of the engine and
supplies as much power at transient state and steady state. Therefore, the battery lifetime can
be increased as well as the power system efficiency. It introduces three battery power reference
generation algorithms for the battery to provide supplementary power during rapid increasing
load power requirement. Simulation result shows that by implementing the third algorithm of the
inversed specific fuel consumption (SFC) map, the engine power increases when the load power
increases rapidly, and at the same time the battery provides the supplementary power. The
engine outputs its rated power at optimal operating point without degrading desired dynamic
performance.

L. Q. Jin et al. [81] analyse control strategies and cost analysis for a plug-in series HEV to
use the low price electric energy from grid effectively. The battery working condition is divided
into two stages, the charge depleting and the charge sustaining operation. They explain three
types of control strategy and finally choose the first all electric range (AER) strategy because
it is suitable for a series hybrid system. The AER strategy is a charge depletion operation and
then a charge sustaining operation. The other two strategies are based on consumption of both
energy sources during charge depletion operation, and are analysed to be more suitable for a
parallel hybrid. A simulation in Cruise shows that there is no fuel consumed on the initial range
of the driving cycle. Comparison between the cost of this system (1069 Yuan) and a full series
hybrid (2526 Yuan) presents a reduction by half of the overall cost per year vehicle use of 16000
km in China.

F. Martel et al. [52] study three recharging scenarios to reduce operating cost of the HEV
Nemo and prolonging its battery lifetime. It is equipped with an on-board power sources
(PEMFC and ICE) to recharge the battery between intervals of grid power. They develop a
battery degradation model in terms of lifetime prediction and performance degradation by using
weighted battery capacity in terms of Ampere-hour (Ah) approach. The first scenario, used as
reference, is the same operation as experienced by the vehicle in the original battery only Nemo.
The second scenario is by adding intervals to recharge the battery on the power grid. And, the
third scenario is similar to the second scenario, with additional recharge from ICE during use.
The total cost is the lowest on the third scenario with an expected battery lifetime of over 3
years.

M. Sorrentino et al. [72] implement a new rule-based (RB) approach to manage energy flow
in a hybrid solar vehicle (HSV) in order to determine ICE on-off scheduling. The HSV battery
can be charged during parking hours so that it can restore the initial SOC by end of the day
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and not by end of single driving path. The external task is to define the desired final SOCup at
end of each trip to capture a maximum solar energy during parking. And the internal task is to
estimate E/G average delivered power and average traction power produced by SOC deviation
(dSOC) of battery. These tasks rely on information of daily solar energy, Esun,day and the
average traction power, P̄tr. The start-stop strategy is described in Figure 2.10. It assumes the
SOC did not vary with time, initial SOCo equals to SOCf . The E/G will be turned ON if
SOClo = SOCf − dSOC, and will be turned OFF if SOCup = SOCf + dSOC. This step will be
repeated until the end of the cycle. The energetic constraints SOCup + ΔSOCpv < 1 is imposed
to allow solar energy recharging by ΔSOCpv. The control relies on the current SOC level and the
prediction of traction power demand over a trip with application of GPS information or model-
based forecasting tool. To ensure a safer battery operation and reducing battery losses, the E/G
works based on equation PEG = g(P̄tr) to have a lower charging power at low power demand
and PEG,opt at high road loads. The simulation demonstrates a significant performance of RB
to maximize energy saving through HSV, but this performance decreases in aggressive driving
schedules. The RB implements time horizon prediction, th model for on-line use and shows low
dependence on precise knowledge of future driving conditions. Besides that, simulations to assess
the impact of irradiation level on HSV fuel economies demonstrate higher contribution by solar
energy in urban driving.

a) The rule-based control strategy for on-board 
energy management of a series HSV powertrain

b) The description of external 
and internal task actions

Figure 2.10: Schematic representation of; a) The rule-based control strategy for on-board energy
management of a series HSV powertrain, and b) The description of external and internal task
actions [72].

B. Zhang et al. [29] design a control strategy for a blended mode plug-in HEV to deplete the
ESS to minimum SOC (where charge sustaining mode begins) from full charge of 1.0 to 0.3, by end
of vehicle travel distance. It determines the engine turn ON threshold and motor power based on
power demand. This power demand is calculated based on a constant vehicle speed, the electric
system loss characteristics, the total battery energy, and the vehicle trip distance. The system

30



is built in PSAT as parallel plug-in hybrid of sport utility vehicle (SUV). The control strategy
referred as optimal power strategy, utilises the electric power to drive the vehicle until reaching
a threshold power demand, Ps. Then, it turns the engine ON to meet desired output power,
Po together with electric system power from motor. A constant mechanical power Pem = Pc

is maintained while engine running until the end of the drive cycle as depicted in Figure 2.11
b). The method compares the simulation results of this proposed control strategy with an AER
control strategy and discovers better fuel savings as the power demand increases, especially if it
involves a higher power demand in transient drive cycles. The implementation of this control
strategy is feasible in real world application, since it requires information on the trip distance and
the battery energy content only before the trip. It can meet high power demand in aggressive
cycle and perform better in a longer trip distance than AER.

a) Electric power loss characteristics. b)  Pem segments of the trip.

c) Concept of energy management strategy. d)  Results in UDDS.

Figure 2.11: Illustration of the control strategy method; a) Electric power loss characteristics, b)
Pem segments of the trip, c) Concept of energy management strategy, and d) Results in UDDS
[29].

Fuzzy Rule Based Method

The fuzzy rule based controllers are ideal for nonlinear time-varying systems, such as a PHEV
drive train [1, 21, 16]. Fuzzy logic controllers are computationally efficient [7] and provide a higher
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level of abstraction to the controllers [21]. Looking into a hybrid powertrain as a multidomain,
fuzzy logic seems to be the most logical approach to the problem. It is effective to solve HEV
drivetrain complexity problems via heuristics and human expertise [15]. It can be adopted to
realize a real time and suboptimal power split [3].

The advantages of fuzzy rule-based methods are the robustness, since they are tolerant to
imprecise measurements and component variations [22, 3, 21, 7, 16]. It is adaptable to variations
as the fuzzy rules can be easily tuned, if necessary [3, 16]. Fuzzy logic is useful for decision making
of an uncertain and imprecise plant, it is not required to fix the precise critical points. The
linguistic states of the plant are converted into linguistic control values [22, 7]. Fuzzy rules based
control divides the actual driving conditions into different scenarios [4]. Decisions are determined
by sets of fuzzy rules by abstraction value of parameters, as fuzziness is a characteristic of human
thought and clasification, which is straight forward and intuitive [1]. However, the designed rules
are limited to designers knowledge of the system. And they are case sensitive and sometime
difficult to tune [39, 7].

H. D. Lee and S. K. Sul [22] propose a control strategy to extend battery life and have easy
maintenance of a parallel HEV bus system, which will not result in excessive battery discharge
and external recharge. The fuzzy logic control is used to balance the battery charge because
it is easy to implement, and need no fixed precise critical points on the speed and acceleration
pedal stroke. The logic generates the torque command factor based on rules for the torque and
battery recharging control. The results of the proposed strategy, D and E tests are compared
to those from deterministic method in A, B, and C tests (Figure 2.12). The final battery charge
balance in tests D and E are the same as initial value. And, there are 20% reductions of NOx

emission for the same vehicle performance and power produced, thus confirm the superiority of
this control strategy.

B. M. Baumann et al. [1] use a method of load leveling to force the ICE to act at or near
either its peak point of efficiency or its best fuel use at all times and the EM power contribution
is limited by the SOC of the battery pack. Whenever the torque and the engine speed are too
low, the gear ratio and accelerator will be increased to maintain a constant ICE power output
and the EM will operate as generator to absorb the excess torque. The distribution of this power
is made by fuzzy logic controller to assign an element not only to a set, but more or less of that
set depends on its degree of membership throught a membership function. The method considers
three inputs; desired power (accelerator and brake pedals), SOC, and EM torque to determine
the ICE torque and engine speed (Figure 2.13).

The Intelligent energy management agent (IEMA) consists of two parts. In [15], R. Langari
and J. S. Won describe the first part of the IEMA that incorporates driving situation identifier to
identify roadway type, driving style, and current driving mode and trend to enhance performance
of the vehicle. This IEMA is integrated in a fuzzy logic based torque distribution and SOC
compensation strategy (Figure 2.14). It identifies driving situation with its four identifiers. The
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a) Membership functions b) Results comparison of the battery charge balance

Figure 2.12: The fuzzy rules control strategy; a) Membership functions, and b) Results compar-
ison of the battery charge balance [22].

a) Inputs and outputs membership functions b) Operating points of fuel converter under the utilized strategy

Figure 2.13: Fuzzy logic controller; a) Inputs and outputs membership functions, and b) Oper-
ating points of fuel converter under the utilised strategy [1].
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driving information extractor (DIE) determine the roadway type, driving style of the driver,
driving trend, and characterize the driving situation. The driving situation identifier (DSII)
incorporates the roadway type identifier (RTI) to classify the current traffic situation in terms
of roadway type and traffic congestion level, driver style identifier (DSI), driving trend identifier
(DTI) to assess short term or transient features of a drive cycle, and driving mode identifier
(DMI) to determine the current vehicle’s operating mode. The fuzzy torque distributor (FTD)
determines the effective distribution of torque between the motor and the engine. The state of
charge compensator (SCC) extends driving range capability and guarantee the battery charge
sustainability throughout the journey. It implements learning vector quantization (LVQ) network
for RTI. The DSI identifies types of driving style such as calm, normal, or aggressive driving
because it is implied that it can affect the emissions rates and the fuel consumption.

In [77], J. S. Won and R. Langari explain the second part of the IEMA for the driving situation
identification unit, then torque distribution and energy sustenance strategies by establishing a
facility of roadway type based fuzzy rule sets. It also establishs operating modes of the strategy,
the hybrid mode and stop mode for the charge sustenance task. The goal of this control is
to minimize fuel consumption and pollutant emissions by operating ICE at its efficient region
and avoiding transient operations such as abrupt acceleration/deceleration and frequent stop-go.
Three out of six of the membership functions are to assess driving trends, two to assess driving
modes and the last one to assess the SOC. There are three facility specific rule sets: the low speed
cruise trend, high speed cruise trend, and acceleration/deceleration trend. The SOC compensator
(SCC) detects the current SOC to compare it with the target SOC and comprises four different
operation modes: battery charge operation, charge sustaining strategy in hybrid mode, and in
stop mode, and vehicle mode based charge operation in hybrid mode. The SCC task is to detect
the current SOC and compared it with the target SOC, and commanding whether additional or
subtractive torque from engine current torque is required (Figure 2.14). Results from simulation
show that the RTI is effective in classifying the roadway type, but if the DSI and DTI are off, the
fuzzy rule functions with only the DMI. The overall performance of this system can be improved
under IEMA supervision.

M. H. Hajimiri and F. R. Salmasi [71] proposes a control algorithm that takes into account
the future path information from GPS to generate a control signal. The predictive algorithm
(PA) uses fuzzy logic controller (FLC) to predict the vehicle future state, in order to improve the
fuel consumption, emissions, and performance of the vehicle. Then, it modifies the approach to
extend battery life by considering its state of health (SOH), known as predictive and protective
algorithm (PPA). The FLC’s first input is the difference between the predicted future speed and
the presently measured speed. And the second input is the difference between the future elevation
and the present vehicle position. The FLC outputs the battery charging and discharging reaction
towards the future state. More battery energy will be consumed in a slower traffic and higher
elevation. And, it will be discharged at present if the future traffic is smooth and has decreasing
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a) Driving situation identifier (DSII) b) Illustration of the charge sustenance operation

Figure 2.14: Architecture of IEMA; a) Driving situation identifier (DSII), and b) Illustration of
the charge sustenance operation [77].

elevation. Comparison of results between the power follower algorithm (PFA), the PA, and the
PPA show a lowest fuel consumption and emissions for the PA. The PPA which considers SOH
as its third input has a slight increase in fuel consumption and emissions compared to the PFA.
Because, the PPA intends to limit the battery maximum peak current and the number of battery
recharge cycles to improve battery SOH condition, thus lower battery power and use of more
power from engine.

In 2008, the same authors [82] have modified the power follower energy management system
of a series hybrid electric vehicles to extend battery life, consider emission reduction along with
prolonging of batteries lifetime. Optimisation by minimization of a new cost function ( 2.3)
in function of capacitance, resistance, voltage, charge, and current is made to obtain charging
current profile in order to decrease charging time and improve the battery lifetime. The control
algorithm known as power follower, operates engine/generator (E/G) intermittently to avoid
low output range operations with poor efficiency or emissions. A fuzzy logic controller is used
as the predictive and protective control by acquiring future vehicle’s path and SOH of battery
respectively. The predictive controller considers two inputs; the difference between present and
predicted future speed of the vehicle, and the difference of the elevation of the future and the
present vehicle position. A GPS acquires the knowledge of the obstacles that will be faced in
the near future, such as heavy traffic, or a steep grade. It has better tracing capability for
areas with variable road elevation. The rules are based on fuzzy logic to determine how the
vehicle should react to the future states as in Figure 2.15. The protective controller inputs
are the same as predictive controller, in addition of SOH. This approach proves that it can
reduce charge/discharge cycles during an interval and the SOH may restrict battery charging
and discharging pattern. However, it may increase the emissions and sacrifice fuel economy to
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extend battery life, if the SOH is in a critical condition. But, this is considerable because battery
is an important and expensive component of this system.

J =
∫ tt

0
{(VCbmax

− VCb)2Q1 + (Cb,max − Cbulk)2 + I2R}dt (2.3)

Figure 2.15: The concept of the predictive and protective control strategy [82].

In 2008 X. Liu et al. [83] design a fuzzy logic controller for a series hybrid electric campus
and gymnase bus, to keep the SOC working in a high and reasonable range (0.7) to provide a
relatively long electric range. Its aim is also to operate the engine in its high efficiency area to
minimise fuel consumption and emissions. When the SOC reaches the lower limit, the engine will
be turned ON until it reaches the SOC higher limit. And, to avoid over discharge of battery, the
engine turns ON if the power demand is high enough. It sets a minimum shutoff time to prevent
the engine turns ON frequently. It considers 4 inputs; SOC, ΔSOC, ΔP , and the variable
output, k. The controller is simulated through 5 times UDDS cycle, and shows the evolution of
different SOCinitial that eventually become 0.7. The consumption is higher if the SOCinitial is
lower than 0.7, and vice-versa to achieve the constant SOCfinal.

Then, in 2010 X. Liu et al. [84] use a fuzzy logic control strategy (FLCS) to regulate power
of a series hybrid bus, and maintains its SOC at high level and reasonable range (0.6-0.8) to
provide a relatively long clean range in electric-driving only mode at any time. It maintains the
SOC at expected value of 0.7. Using 5 times UDDS driving cycle, the FLCS realizes constant
SOC control quickly and steadily to 0.7 for the off-line simulations. Then, it implements ant
colony algorithm (ACA) to find power sequence to obtain a longer driving range with a low fuel
consumption as its optimisation algorithm. For this purpose, the engine/generator set output
power can possibly be 0 kW, 7.5 kW, 10 kW, 12.5 kW, and 15 kW. The resulting sequence
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depends on the predefined driving range, if the distance is long, the sequence will be composed
of higher APU output power. Comparing result to a thermostat control strategy, the vehicle has
a longer driving range for a same amount of fuel consumption after optimization.

A. Poursamad and M. Montazeri [85] propose a genetic fuzzy control strategy of a parallel
HEV to minimise consumption and emissions. The fuzzy parameters of membership functions
are tuned offline using genetic algorithm (GA) (Figure 2.16). The driving performance is imposed
as the constraint of the penalty function. The control strategy determines how to distribute the
drivers’ required torque between the ICE and EM. If torque request is positive, the sum of the
engine and motor torques should be equal to the drivers’ torque request. During braking, the sum
of the motor and brake torques would be equal to the drivers’ request. It is aimed to minimise
fuel consumption and exhaust emissions (HC, NOx, and CO) but these goals often conflict each
other. Besides that, it is to maintain and enhance the vehicle performance like gradeability and
acceleration. Another constraint is to sustain the charge by forcing the SOC to recover to its
initial level by the end of a driving cycle. Moreover, it also considers the engine torque limits,
motor torque limits, and battery power limits as constraints.

a) Concept of the FLC with GA as tuning tool

b) Initial MFs and tuned MFs for FC targeted optimization on TEH-CAR driving cycle c) Curves for different targeted optimization

Figure 2.16: The fuzzy logic controller (FLC); a) Concept of the FLC with GA as tuning tool,
b) Initial MFs and tuned MFs for FC targeted optimization on TEH-CAR driving cycle, and c)
Curves for different targeted optimization [85].

F. U. Syed et al. [86] propose a dynamic model of a power-split HEV system to operate
the engine at its most efficient point by managing power and coordinating operation state of
components to meet driver’s demand and provide the desired energy. During EV mode, the
vehicle is propelled by electric motor only. Then, during positive split mode, the generator will
transfer engine power output to drivetrain, and the electric motor varies according to power
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demand and engine/generator (E/G) response. When the vehicle is in parallel mode, generator
provides zero power, hence motor torque depends on engine torque output. In negative split
mode, the electric motor compensates power from generator instead of using power from engine
to improve fuel economy. The model presents reasonable accuracy and predicts the power train
response with reasonable accuracy and has a relatively high degree of fidelity and can therefore
be used as tool to develop advanced HEV control systems.

a) Architecture and controller configuration
b) Simulation results during acceleration and 
deceleration phases with the associated modes

Figure 2.17: The system; a) Architecture and controller configuration, and b) Simulation results
during acceleration and deceleration phases with the associated modes [86].

The same authors develop a fuzzy control approach adaptable to nonlinear behavior, in order
to control engine power and speed behavior in a power-split HEV system in [87]. It uses selective
minimal rule-based fuzzy gain-scheduling to determine appropriate gains for a proportional-
integral (PI) controller based on the system’s operating condition to reduce overshoots without
compromising system’s response and settling times. It determines desired speed, ωeng and torque,
Teng for engine operation under all conditions by evaluating the driver’s power request, Preq and
desired high-voltage (HV) battery power, Pbatt. The inputs like accelerator pedal position, brake
pedal, and the vehicle speed is calculated as Preq. Pbatt is determined based on battery SOC
and environmental conditions. During hybrid mode operation, Peng is calculated based on feed-
forward engine power, Pengff and HV battery feedback power, Pbattfb. It utilises a multiple-input
single-output Mamdani fuzzy gain-scheduling based PI controller. It compares experimental
results using this strategy with a classical PI controller resulting minimum overshoot in ωeng

which is reduced from over 600rpm to less than 100rpm. This smooth engine speed behavior
gives an acceptable and approriate vehicle drivability to driver. And, it shows no deterioration
in the engine speed rise time.
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Furthermore, in 2009, F. U. Syed et al. [88] utilise fuzzy logic to split power of a series parallel
HEV system efficiently. They use a fuzzy gain scheduling and a nonlinear proportional integral
approach to control engine power and speed behavior for better performance and maximum
total efficiency. The fuzzy gain schedule acts as a tool to determine appropriate gains for the PI
controller based on the systems’ operating conditions. Different from conventional PI controller
which only calculate the battery feedback power, the desired engine power is calculated as the
sum of desired feedforward engine power and battery feedback power (Figure 2.18). The control
strategy global stability is verified through extensive simulation and experiments. It results in
a fast rise time of the actual engine power. Battery power of a classical PI controller winds
up in imposed test conditions and results in engine speed and power overshoots, but this PI
controller can control unnecessary winding of its integrator. The fuzzy controller can ensure that
the actual battery power did not went below 0 kW during transient event, can enhance response
and controllability and provide smooth engine speed.

Figure 2.18: Illustration of control strategy decision process and the fuzzy rules [88].

39



2.4.2 Optimisation Method

The optimisation based control methods can be local, global, real-time, and parameter or
threshold optimisation. They can provide generality and reduce heavy tuning of control param-
eters [48]. Optimization based controllers main task is to minimize a cost function. This cost
function is derived based on the vehicle and component parameters and the performance expec-
tations of the vehicle [21]. Optimisation of overall system takes into account the efficiencies of all
devices and determines power distribution of each system [25]. Normally, these control strategies
intend to maximize the efficiency of the powertrain while minimizing the loss [16]. Optimization
also provides the ability to incorporate two variables, mileage and emission goals, as one cost
function that can be optimized [21]. The optimal reference torques for power converters and
optimal gear ratios can be calculated by minimization of a cost function generally representing
the fuel consumption or emissions [3, 16]. Having accurate trip information and component con-
ditions is vital in developing an optimum controller. Technological advances such as the GPS,
internet maps, and real-time traffic data have made trip planning a simpler task [21].

The optimisation control strategies use numerical and analytical method to optimise the
system operation globally or instantaneously. The numerical methods for global optimisation
assume that the knowledge of the entire driving cycle is known and find the global optimal control
numerically, by using dynamic programming (DP), genetic algorithm (GA), or other algorithms
to give optimal solution, but it is not implementable in real world application. The numerical
methods for local optimisation consider a short-term extending into the future, to enable it to
be implementable for online, but it will require a large computational capabilities, predictive
tool, stohastic DP, or statistical methods to predict the future driving cycle. The analytical
optimisation methods consider entire driving cycle and use analytical problem formulation to
provide an analytical formulation that makes the numerical solution faster, but sometime it risks
to over simplifying the solution. The example of this method is Pontryagin’s minimum principle
(PMP) and Hamilton-Jacobi-Bellman equation [7]. The instantaneous minimization methods
minimise cost function at each time step, for example the equivalent consumption minimisation
strategy (ECMS) has demonstrate result close to the global optimum [4].

Global optimal controller can find a global optimum solution over a fixed driving cycle,
but it is noncausal [3, 89]. Global optimisation needs to know future driving conditions or
scheduled driving cycle, and is not suitable for real time control [48]. It needs heavy computation
requirements and is therefore difficult to apply for real-time control and is usually used for offline
simulation applications [3, 14, 21, 16]. However, it might be a basis of designing rules for online
implementation or comparison for evaluating the quality of other control strategies. It is a good
design tool to analyze, assess, and adjust other control strategies [3, 16]. In HEV system, it can
search solutions to achieve performance targets by optimization of a cost function representing
efficiency and emissions over a drive cycle, yielding to global optimal operating points using
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knowledge of future and past power demands [16].
There are various algorithms that can yield global optimal solution. Linear Programming

(LP) and Sequential Quadratic Programming (SQP) use the derivative information to find the
local minimum solution, but it does not search the entire design space and cannot find the global
optimal solution. Algorithms such as Direct Rectangle (DIRECT), Simulated Annealing (SA),
Genetic Algorithm (GA), and Particle Swarm Optimisation (PSO) are non-derivative and can
work well for multi modal, noisy and discontinuous objective functions [30].

Dynamic programming (DP) is well known as a benchmark for the performance of other
strategies [8, 4, 89] with its global optimum solution [26]. The calculation is based on fixed driving
cycle and does not deal with the variability in the driving situation [15]. Dynamic optimization is
made within a time horizon, rather than for a fixed point in time [42]. Computational complexity
of every DP algorithm is exponential with the number of the states and inputs, thus needing
attention to minimize computational cost. DP can solve the optimal control of non-linear, time-
variant, constrained, discrete time approximations of continuous-time dynamic models of HEV
[89]. It can achieve absolute optimal fuel consumption for different system configurations, but it
needs all of the future conditions for inputs to be known a priori [89, 68]. Its not implementable in
real world due to their preview nature and heavy computation requirement [8, 42, 26], therefore
it is difficult to be applied in real time control [4, 26]. But, it can be used for offline simulations
and to compare performance of a real time controller [26]. DP is more accurate under transient
conditions, but computationally more intensive. It can be used as tool to analyze, assess, and
adjust other control strategies and extract implementable rules, as to improve intuition based
algorithm. DP main advantage is that it can easily handle the constraints and nonlinearity of the
problem while obtaining a global optimal solution. The overall dynamic optimization problem
can be decomposed into a sequence of simpler minimization problems [42] or use two scaled DP
to improve computation efficiency [4].

Real time optimisations minimize a cost function at each instant, recognised as an instanta-
neous cost function that depends only upon the system variables at the current time [48, 3]. This
optimization is a causal system that relies on real-time feedback to optimize a cost function that
has been developed using past information [48, 21]. The key difference is its ability to optimize
itself in real time. It attempts to optimize a cost function [21] by taking into account measures
of fuel consumption and SOC deviation [48], but it has limitation on knowledge of future driv-
ing conditions and the electrical path self-sustainability [48], because detailed knowledge of the
entire trip in advance is not available [10]. This can be solved by adding variations of the stored
electrical energy and include it as an equivalent fuel consumption to guarantee electrical self
sustainability [3, 16]. Of course, the solution of such a problem is not globally optimal, but this
instantaneous optimisation can be used for real-time implementation [3, 14].

The most common method is the equivalent consumption minimisation strategy (ECMS). The
advantage of the ECMS approach is that it does not rely on the practically unattainable global
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future vehicle driving power profile instead only the equivalence factor (EF) when solving the
global optimal control problem [9]. Usually, the strategy intend to maximize overall efficiency to
reduce consumption and emissions [26]. But, a single value of EF is not suitable for all situations
and conditions and needs to be adjusted according to one utilisation. Whereof, application and
adaptation tools are needed to estimate the EF best value. The adaptive ECMS can yield EF
based on current driving condition but it requires good tuning of parameters, which is depend on
current driving conditions, but only suitable for charge sustaining and not for charge depleting
strategy [4]. Stochastic approaches can consider a set of driving cycles which are difficult to cover
in real world driving situation. The optimisation is possible over a short horizon by prediction
of vehicle load in the near future. The performance of the optimisation that implement this
approach is directly related to the prediction accuracy. Model predictive control (MPC) approach
anticipates upcoming events according to available set of data, but its performance depends on
the quality of prediction information and length of the prediction. Trip prediction and modeling
approach is facilitated with ITS, GPS, and GIS. It can get information with wireless technology
of vehicle-to-vehicle and vehicle-infrastructure interaction, traffic flow monitoring systems, or
real time and historical traffic information from roadside sensors [4].

J(t, u) = ΔEf (t, u) + s(t)ΔEe(t, u) (2.4)

Global Optimisation

E. D. Tate and S. P. Boyd [90] introduce an application of a convex optimisation that is
assumed to be a large linear program (LP) to find a global optimal engine operation in a series
HEV. The objective is to minimise fuel consumption over a predefined trip and it can be extended
to reduce emissions. This approach is independent from any control law and it finds the minimum
fuel consumption with knowledge of past and future power demands. First, the problem is
imposed as a convex optimisation problem, then it is imposed as a linear program by converting
the problem into discrete time event before casted in a standard LP form. This method is
expected to be used for the components sizing requirements purpose and to evaluate a control
law performance.

F. G. Harmon et al. [38] build an optimization algorithm that generates optimised instan-
taneous energy for the system using a nonlinear control surface data that is generated offline.
This nonlinear efficiency maps are stored in tables and calculated by interpolation. It has three
operating strategies: electric only, charge depleting (allow SOC to decrease to maximize the use
of electrical energy) and charge sustaining (attempt to maintain the battery at a target SOC)
during flight. It is compared with a rule based controller (with charge depleting (CD) mode,
then charge sustaining (CS) mode) of two inputs: demanded torque and rotational speed. The
engine is operated on a line of maximum efficiency. The weighting factors penalize the amount
of electric energy used and the recharge depends on the missions: CD for short missions and CS
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for a longer missions.
D. Karbowski et al. [91] develop a Stateflow control strategy to minimise the cumulative

energy losses throughout a cycle. It considers two modes: blended and electric only mode. It
tries to delay the engine start to maximize regenerative braking energy and reaches the final SOC
value of 30% at the end of the cycle with an initial SOC of 90% (Figure 2.19). It uses the Bellman
Principle generic algorithm to determine command of the engine torque and gear number. The
engine ON time increases with the aggresiveness of the driving cycle. The real time controller is
based on two modes: charge depleting and charge sustaining mode. The engine ON pattern is
different for the first part of the trip to reach a low SOC, but then it is similar for the remainder
of a repeated cycles. The engine is used during acceleration and high speed.

Charge 
depleting 

mode

Charge sustaining mode

Blending mode

b) Engine ON frequency for three to six times NEDC repetitions c) The cumulative engine ON time according to total distance

a) Modes involved

Figure 2.19: The control strategy; a) Modes involved, b) Engine ON frequency for three to six
times NEDC repetitions, and c) The cumulative engine ON time according to total distance [91].

A. Konev and L. Lezhnev [92] implement a theory of probability and stochastic processes to
reduce fuel consumption and emission of a series HEV. This is done by controlling the engine
to work along or near the optimal operating points (OOP) line (Figure 2.20) to avoid aggressive
engine transients. This will limit the engine power fluctuations, make it gradual and have a
limited range. The controler employs the statistics learned on-line from the prior driving history,
and uses low pass filter (PID controller) for optimisation. It is sub-optimal, gives reduction
in calibration time and effort, improves robustness, has optimal engine operating line, ensures
gradual operation (slowly varying), and can be use for on-line implementation.

A. Rousseau et al. [30] utilize divided rectangle (DIRECT) algorithm to search optimal
solution by evaluating the objective function at the center point of the algorithm hypercube.
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Figure 2.20: The concept of the control; a) OOP-Line on BSFC map, and b) Results of EGU
power of developed algorithm for UDDS [92].

The algorithm divides the potentially optimal hyper-rectangles until termination of function
evaluation or convergence of objective value. In this case, it is used to optimise six parameters
of a parallel HEV system, which are the power thresholds and the moments: to turn the engine
ON and OFF, and also the maximum and minimum threshold of the battery SOC (Figure 2.21
a)). It was tested with different values of parameters and distances of driving cycle and resulting
in better fuel economy if the optimised parameters are yielded based on a longer distance but
used for a short distance driving (Figure 2.21 b)). The best compromise is to use the parameters
defined for the medium driving distance. This emphasizes that the method maximizes operating
condition not only on charge depleting mode, but also on charge sustaining mode.

M. Amiria et al. [17] develop a control strategy that implement genetic algorithm as its
evolutionary algorithm to reduce costs associated with loss of life cycle in batteries and man-
age their charge/discharge patterns to avoid deep discharging and frequent charging, since this
will cause the battery’s life to deteriorate dramatically. The thermostat on-off control method
together with the optimisation algorithm are implemented in a series architecture to distribute
the demanded power between the batteries and the E/G. This is multi-objective solution, which
proves that with the proposed algorithm, the battery lifetime will be improved, and it can reduce
fuel consumption and battery losses as demonstrated in Figure 2.22.

B. Zhang et al. [20] study the total optimization problem in a series HEV and apply evolu-
tionary algorithm to the multi-objective optimization problem to have a good trade-off solution.
It is designed to improve the vehicle fuel economy as well as to reduce its emissions such as
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a)  The parameters to be optimized b)  The results of SOC evolution under different optimized driving cycle repetitions 

Figure 2.21: DIRECT algorithm; a) The parameters to be optimised, and b) The results of SOC
evolution under different optimised driving cycle repetitions [30].

a) Concept of the thermostatic control c) Result of the thermostatic control

b) Result of the developed control

Figure 2.22: Comparison of the developed control strategy and the thermostatic control strategy;
a) Concept of the thermostatic control, b) Result of the developed control, and c) Result of the
thermostatic control [17].

hydrocarbons (HC), carbon monoxide (CO) and nitrous oxide (NOx) simultaneously. The Non-
dominated Sorting Genetic Algorithm (NSGA-II) generates a population of multiple trade-off
optimal solutions for thermostat on-off control strategy. The main task of a selection operator
is to emphasize good solutions of population by making multiple copies of them to replace bad
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solutions of the population. The task of a crossover operator is to exchange partial information
between two or more reproduced solutions and to create new offspring solutions. The task of a
mutation operator is to locally perturb the offspring solutions. The controller design variables
are as figured in Figure 2.23 (a). It compares the results of this method with a default ADVISOR
controller and presents less consumption and emissions as in Figure 2.23 (b).

a)  The controller design parameters to be optimized b) The fuel consumption and emission of the trade-off solutions

Figure 2.23: Multi-objective evolutionary algorithm; a) The controller design parameters to be
optimised, and b) The fuel comparison of emission of the trade-off solutions [20].

C. E. Nino-Baron et al. [25] propose a trajectory optimisation control strategy to satisfy
energy demand in a predetermined time interval of a series hybrid vehicle. The performance
function is to minimize the energy losses and allow the system to reach the final energy target as in
equation ( 2.5). On a combined efficiency map, the subsystem (E/G) moves to a point of highest
efficiency and stays until the energy requirement is satisfied (Figure 2.24). It explains three
modes for the real time implementation: low energy requirement with enough time (common,
at most efficient point, low losses), high energy requirement with enough time (higher power
but low efficiency, operation is kept in this area to produce requested energy), and fast energy
production (uncommon, at high torque and speed). The proposed method is proven to have
better overall efficiencies than the classical control strategy while satisfying energy requirements.

J = h1(WGEN − Wref )2 + h2(Wloss)2 (2.5)

S. Delprat et al. [93] apply optimal control theory as global optimisation solution for three
different parallel HEV arrangements; the parallel single-shaft, parallel single-shaft with reductor,
and parallel double-shaft. The control chooses an optimal pair of decisions at each sample time
to minimise the total fuel consumption over a driving cycle. To avoid battery discharge during
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a)  The control scheme b) The combined efficiency map contour of the engine and generator

Figure 2.24: The trajectory optimisation control strategy; a) The control scheme, and b) The
combined efficiency map contour of the engine and generator [25].

pure electric mode, it introduces a constraint of battery SOC and uses the classical Cardan’s
method to obtain the solution set.

In 2012, S. Kermani et al. [41] together with S. Delprat propose an approach based on Model
Predictive Control (MPC) to predict the future driving conditions efficiently and for a sufficient
long horizon. It implements minimum principle algorithm as its offline optimisation solution.
The MPC considers a constant setpoint or a reference trajectory and is designed for rejecting
disturbances. MPC has difficulties to be applied for HEV systems due to insufficient accuracy
over a long horizon prediction, it is difficult to prove its stability, and a constant SOC control
is not suitable for a short horizon. As solution, it proposes to comprise three controllers: the
first controller, SOC corrector to control the battery SOC. The second controller, Prediction and
Optimisation to compute the constant variable obtained with large sampling period. And the
third controller, Powertrain control to control powertrain according to the constant at actual
driving condition. The control is proven to be computationally efficient to be embedded in a real
time predictive algorithm.

Dynamic Programming

A. Brahma et al. [37] utilise dynamic programming (DP) to formulate optimal power split for
series HEV and optimise energy consumption. The optimal value function is taken as the least
energy consumption from the current node to the end of the process. And the objective function
is the overall energy consumed by the system in making a state transition. A tunable weighing
parameter is introduced to penalize the amount of the stored or consumed electrical energy in
each timestep which is equivalent to SOC deviation. If this parameter is 0 (no penalty), all
energy is drawn from battery. Through this penalty function, it can impose the global integral
charge sustaining constraint based on power flux in/out of the battery.
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C. C. Lin et al. [8] introduce a rule based control method and use dynamic programming
(DP) algorithm to compare the performance of the proposed control strategy. For the control
strategy, the optimal combined charging-discharging efficiency is obtained around 60% SOC.
The rule based algorithm has three modes (11 rules): normal mode (based on engine efficiency
map and always operate in this region), charging mode (charge sustaining strategy to ensure
SOC stay within lower/upper bound of 55-60%, engine will recharge the battery if SOC hits
lower bound until reaching the upper bound), and braking mode (the regenerative braking is
activated to absorb the braking power when the driver steps on the brake pedal). DP algorithm
minimises a cost function to optimise fuel consumption over the complete driving cycle. Results
show that the HEV system achieves earlier target speed of 0-60mph compared to a conventional
truck (Figure 2.25 a)). The DP method produces higher fuel economy by exploring the efficiency
of the whole system, has a smoother transition, but a lower SOCfinal (Figure 2.25 b)).

a) A conventional and a hybrid system acceleration b) Results of the DP control and the RB control

Figure 2.25: Comparison of; a) A conventional and a hybrid system acceleration, and b) Results
of the DP control and the RB control [8].

In 2003, C. C. Lin et al. [42] implement DP to minimise two cost functions for a fuel economy
only case and a fuel/emission case over a driving cycle, because a preliminary rule based strategy
improves fuel economy but increases NOx level. It defines the battery charging and discharging
efficiencies in function of power and SOC (Figure 2.26), then choose 55-60% SOC bounds to
prevent battery depletion or damage. It defines the three control modes according to the power
request (driver pedal): Braking Control (to capture as much regenerative energy, but the friction
brake will assist if Preq exceeds the regenerative capacity), Power Split Control (as in Figure 2.27,
ICE operates in high efficiency region, EM only if Preq is lower, ICE+EM if Preq is higher), and
Recharging Control (ICE provides additional power to propel vehicle and recharge battery with
a preselected power level, operation will become like a power split control if Preq + Pcharge is
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out of efficient region). The DP creates a family of optimal paths to reach desired SOCterminal

of 0.57, shows a new optimal gear shift map (Figure 2.27) and achieves minimal weighted cost
of fuel consumption and emissions. The tradeoff study provides information about the feedgas
emissions sensitivity of NOx and particulate matter (PM) due to fuel consumption. The results
from DP is then used to improve a new robust rule based control strategy called Power Split
Control (PSR).

a)  Discharging b)  Charging

Figure 2.26: The efficiencies of the lead acid battery in function of power and SOC; a) Disharging,
and b) Charging [42].

a) Power split control rules b) The gear operating points

Figure 2.27: The DP optimisation; a) Power split control rules, and b) The gear operating points
[42].

In 2004, C. C. Lin et al. [43] formulate an infinite horizon stochastic dynamic programming
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(SDP) optimisation, modeled as Markov random process to improve fuel economy and reduce
emissions. It interprets the driver throttle and brake pedal commands as power demand and input
of the controller. It utilises the standard driving cycle to determine the transition probabilities.
The sequence of observations is mapped into a sequence of quantized states by using nearest-
neighbour quantization to estimate the probability distribution of future and synthetic power
demands. The instantaneous cost is the weighted sum of the fuel consumption, NOx and PM

emissions, and a penalty for SOC deviation. Compared with a rule-based control strategy trained
based on deterministic dynamic programming (DDP), the SDP achieves better performance over
most of the test cycles. The solution is time-invariant state-dependent and has potentials to be
fully integrated as optimal design and control process.

The works of J. F. Bonnans et al. [94] apply an optimal control to minimise fuel consumption
along a dynamic trajectory. The optimisation problem is a bilevel optimisation. First, it com-
putes the optimal control by discretizing the Hamiltonian-Jacobi-Bellman equations. Then, it
optimises the design parameters by solving a nonconvex nonsmooth optimisation problem with a
bundle method. To solve the high level problem, it uses bundle methods to collect relevant data
along iterations in a bundle of information then, it generates the sequence of candidate points
to define the model and stability points or prox-centers where objective functions decrease suf-
ficiently. Candidate points are computed by solving a quadratic program. This is a convex
quadratic programming problem which is easier to solve than linear programs. The computa-
tional burden is reduced by compressing the bundle information using aggregation technique
which condenses it into one single data. Optimal control problem on the low level is solved
by discretization of the battery level as a single state variable, fuel used as running cost, and
penalization term as final cost.

M. Koot et al. [23] use DP to calculate the power setpoints for the alternator, and modify
the algorithm to reduce computations because DP computation time is too large for a practical
real-world application. It presents modifications such as using a simpler vehicle model, reducing
the problem formulation to quadratic programming (QP), and posing requirements for vehicle
information from the past and present. DP calculation can be done in acceptable time due to
simple dynamics, but time can easily increase with the driving cycle length and the grid density.
QP is used to decide the alternator setpoint, for the next time interval to achieve the smallest
objective value over a certain trajectory, while satisfying the constraints. If QP is convex and
by limiting the prediction length of the driving cycle, the global minimum can be achieved and
computation time will be shorter. Model Predictive Control (MPC) is used to predict the driving
cycle horizon. As results, the CO2, CO, and NOx emissions are reduced, but HC emission has
increased. The fuel consumption and exhaust emissions are lower, owing recoverable energy from
regenerative braking.

L. V. Perez et al. [95] implement DP to economize fuel consumption of a series hybrid vehicle
on a driving cycle known a priori. It prefers to perform acceleration and deceleration using mainly
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the electrical path, since it is reversible. Energy is consumed if PESS > 0, but energy conversion
is not perfectly efficient and have losses ( 2.6). Therefore, energy wasted during acceleration will
be recovered during braking and the system use ICE to compensate the energy. At the same time,
battery must not be depleted nor overcharged at any time to avoid irreversible damage. The
battery has to work with a charge value in the interval [Qmin, Qnom], with Qmin = 0.2Qnom. As
a result, ESS is operated in a safe region during the whole cycle, the engine will have to provide
part of the required power in the first stages. Then, it can be turned OFF and the ESS will
perform the rest of the cycle by itself. As the initial charge of the ESS is sufficiently high, the
solution indicates that the engine has only to be used when the demanded power is greater than
the bound PESSmax = 30kW (Figure 2.28).

f(PESS(t)) =

⎧⎨
⎩ ηESS(PESS)PESS if PESS < 0(

PESS

ηESS(PESS)

)
if PESS ≥ 0

(2.6)

a) Q0 = 60% case b) Q0 = 80% case

Figure 2.28: Results of power repartition of requested power (Preq), between PESS and PF T of
Qnom = 0.92 Ah for; a) Q0 = 60% case, and b) Q0 = 80% case [95].

In 2007, Q. Gong et al. [96] propose a two-scale DP based optimal power management
strategy with depletion mode for a plug-in HEV system. Firstly, the DP solves the macro-scale
trip model for the whole trip based on historical traffic data to obtain the global optimal SOC
profile, carried on off-line in advance by high capacity computational servers before transmitted
to vehicle through wireless communication devices. Then, the micro-scale DP optimises the trip
segments for a real-time optimisation by using vehicle on-board processors. The trip is divided
to nearly equal segments (Figure 2.29) to acquire its real-time traffic flow when the vehicle gets
close to a beginning of a segment. On-board wireless devices are used to obtain the real-time
traffic data information needed for trip modeling. The SOC trajectories for the target SOC of
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the whole trip, short range DP, and the actual feedback is shown in Figure 2.29. The whole
trip simulation using the average historic data of two weeks reveals a better consumption (3.81
L/100km) than using average data of a single day (5.37 L/100km). But, with the dual-scale
DP, the consumption is 4.23 L/100km which is better than a conventional SUV and rule-based
control. An analysis shows that after a segment size passing 20 points the fuel economy is
constant, but the computation time will increase 4s/point.

a) The two-scale DP b) The SOC trajectories for the whole trip

Figure 2.29: Comparison of; a) The two-scale DP, and b) The SOC trajectories for the whole
trip [96].

In 2008, they continued their research [4] by implementing DP optimisation method to control
the battery charge from its initial value of SOC highest healthy level of 0.8, to the lowest healthy
level of 0.3. The system dynamics are considered as constraints. The gas kinetic traffic model
is applied to model the driving cycle, leading to the trip model by deploying historical and real
time traffic data for local road and freeway situations. The trip model uses detected speed
values, interpolation, and a gas kinetic based traffic model considering on-or-off ramps. It is
based on a kinetic equation for the phase-space density. A two scale DP then uses the trip model
for optimisation that has show better computation efficiency and better fuel economy than a
compared global optimisation solution.

Then, in 2009 Q. Gong et al. [78] develop a neural network (NN) based trip model for a
highway portion using DP algorithm. The trip modeling considers two scenarios of local road
and freeway. This article enhances the trip modeling by using path-finding algorithms inside
the geographic information system (GIS) to search for the driving path and road information.
This research considers the effect of the on-ramp or off-ramp on the freeway of one lane situation
without lane changing. It proposes on field data-driven approach to record traffic data using
Multi-layer Perceptron (MLP) of neural networks type. It acquires the on/off ramp traffic data for
the target route from WisTransPortal agency to train the weights of neurons of back propagation
based neural network. The neural network is used as function fitting tool with 3 inputs and 2
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inputs. The pattern of traffic flow shows a slowed down traffic as it is approaching the on-ramp
due to the mixing of inflow, then accelerate gradually after passing the mixing segment. The new
approach of WisTransPortal with NN predicts the ramp flow on highway more close to the real
test data. It compares the SOC profiles obtained between three DPs of the real test data, power
splitting ratio (PSR), and PSR with NN. The DP PSR with NN (3.94 L/100km, 0.28) follows
more closely the results of the DP from the real traffic data (3.72 L/100km, 0.28) in terms of
fuel consumption and final SOC value than the DP PSR (4.49 L/100km, 0.37).

J. Liu and H. Ping [74] analyze two optimal controls, the stochastic dynamic programming
(SDP) and the equivalent consumption minimization strategy (ECMS). The SDP objective is
to find the optimal control policy π that defines the control decision of engine power demand,
PE based on SOC states, vehicle speed, and instantaneous power demand Pd. It uses power
demand statistics of multiple driving cycles and extracts Markov chain driver model optimal
control policy. The ECMS considers kinematic constraints imposed by electric machines and
weights SOC to achieve SOC regulation. It searches among feasible values of the optimal engine
power for each Pd, and then determines optimal engine power map for each vehicle speed offline.
The results show that the engine operates very close to the theoretical optimum points and
demonstrates continuous oscillation of the engine power commanded by ECMS as in Figure 2.30.
The power profile provided by DP and SDP strategies are nearly the same and smoother, which
is desirable from the drivability viewpoint.

a) Engine operational points SDP b) Engine operational points ECMS c) UDDS driving cycle

Figure 2.30: Results of the control strategies; a) Engine operational points SDP, b) Engine
operational points ECMS, and c) UDDS driving cycle [74].

O. Sundstrom and L. Guzella [89] explain step by step a Matlab function that efficiently solves
deterministic DP problems to achieve optimal control of non-linear, time-variant, constrained,
discrete-time approximations of continuous-time dynamic models. This problem is solved using
the Bellman’s DP to minimise the cost function. It represents final cost and an additional penalty
function to enforce a constraint on the final state. For the HEV system case study, it minimises
total mass of fuel consumed during J1015 driving cycle. The constraints is to have SOCinitial
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equal to SOCfinal of 0.55.
D. V. Ngo et al. [44] propose the path forecasting based control algorithm to optimize

charging and discharging of the vehicle’s battery whilst completing the preview route segment in
a predefined time length. An utilisation of onboard navigation system allows Global Positioning
System (GPS), Geographical Information System (GIS), and traffic information systems to help
driver gains traffic information of a route segment such as road characteristics, traffic conditions,
and speed limits. It uses Bellman’s optimality principle, a time consuming computation due to
its dimensionality criteria for the outer loop to find profile of optimal velocity. A gradient-based
optimisation method is used for the inner loop to compute instantaneous optimal value of the
control variable. The final optimal solution is expected to give the smallest value of cost function
over a boundary of feasible traveled distance profiles.

D. F. Opila et al. [56] study drivability of a series parallel HEV system and use the shortest
path stochastic dynamic programming (SP-SDP) in order to provide the approriate feedback
and command signals along a given drive cycle using a causal driver model which are directly
implementable in a real-time. The cost was a weighted sum of consumed fuel and drivability
penalties based on shift events and engine on-off events. A baseline controller is compared to three
SP-SDP and yield two possible design choices, an improved fuel economy with similar drivability
or a similar fuel economy with reduced drivetrain activity. The SP-SDP controller allows more
efficient ICE utilization and overall electrical propulsion, and also permits minimisation of friction
braking.

S. J. Moura et al. [76] use stochastic dynamic programming (SDP) to optimise power distri-
bution between energy sources and take into account the costs of those energies by controlling
the charge depletion over aggressive depletion and its charge sustenance phase. The optimisation
objective consists of two terms that define the costs of both energies with a coefficient to calculate
trade-offs between those energies. The fuel consumption is then calculated to be converted to
the battery’s internal energy rate of change to replenish the battery charge consumed during the
trip. To predict the future power demands, it uses a discrete time Markov chain-based drive
cycle model as its stochastic component to compute optimised cost by selecting a finite number
of sampled power demand and vehicle speed. It compares result of this fuel dominating cost
charge depleting charge sustenance (CDCS) approach with those from baseline blended control
strategy. The engine operation of both strategies is presented in Figure 2.31.

Real-Time Optimisation

A real-time optimisation can be implemented online because it has faster calculation time
and can give a near optimal solution. It exists a generalization in determining the equivalence
factor in ECMS. But this factor also has to be defined properly according to its operational
modes or patterns of the past operation.
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a)  The CDCS approach engine operating points b)  The blended approach engine operating points

Figure 2.31: Comparison of; a) The CDCS approach engine operating points, and b) The blended
approach engine operating points [76].

V. H. Johnson et al. [45] introduce a real time control strategy (RTCS) to optimise a parallel
HEV efficiency and emissions. The strategy continuously selects the operating point that is
the minimum of the cost function which is weighted by average fuel economy and emissions
performance. The control strategy balances the trade-offs between the energy used and the four
regulated emissions of HC, CO, NOx, and particulate matter (PM). The representations of this
emissions are as depicted in Figure 2.32. During regenerative braking, to capture a maximum
amount of braking energy, the motor will handle all the negative torque by considering constraints
imposed by the motor, the battery, the brakes, and vehicle stability. And if it is in torque assist
mode, the sum of driver’s power request is given by both torque from engine and motor. There
are six steps to implement this controller. First, it must define the range of candidate operating
points of acceptable motor torque for the current torque request. Secondly, it calculates the
factors constituent for optimisation. Then, these factors are normalized for each candidate
operating point. Next, the weighting is applied. In the fifth step, the performance target is
applied. And finally, it calculates the overall impact function for all candidate operating points.
The RTCS results in a significant drop of NOx and PM emissions with comparable energy
consumption.

P. Pisu et al. [97] present an energy management in a hybrid vehicle to assure an optimal
use and regeneration of the total energy to maintain charge in the energy storage system (ESS).
The objective is to operate the powertrain with maximum fuel economy over a given trip. It
assigns the future fuel savings and costs to the actual use of electric energy to sustain battery
charge. It presents the cost in terms of fuel and the average efficiency during discharging mode
and recharging mode of the ESS. Then, it explains a control for drivability to assure acceptable
drivability of a vehicle like smooth gear shifting and minimum excessive driveline vibrations.
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b) SI enginea) CIDI engine

Figure 2.32: Fuel economy and emissions tradeoffs for; a) CIDI engine, and b) SI engine [45].

J. Park et al. [10] develop a real time controller of a series parallel HEV to optimise choice
of engine intantaneous operating point. The system is equipped with an electrical continuous
variable transmission (E-CVT), which combines a planetary gear set and two electric machines.
The optimisation is divided into two stages, the determination of a target charge/discharge power
and the determination of ICE operating point. The average discharging efficiency is derived from
the total electrical energy loss and is used to estimate the future potential charging power. The
operating point of the ICE was determined based on the system efficiency map and SOC is
maintained the same over the driving cycle. Simulation shows that the ICE operates in an
efficient area, but it deviates a little from the optimal operation line (OOL). The controller
performance is validated through hardware in the loop simulation (HILS) and is executable in a
reasonable time limit.

G. Ripaccioli et al. [75] develop a stochastic model predictive control (SMPC) to optimise
the power split among its power sources i.e fuel power and battery power, while fulfilling bounds
on the battery SOC and the power availability. Markov chain model represents the driver power
request to optimise the distribution of future power demand at each sample time, given the
current one. The system stochastic description is constantly updated online which relates more
to a particular driver and daily use of vehicle. The model is used to generate an estimated
power request, which is assumed to take a finite number of values. It is defined by a transition
propability matrix, tij that characterizes specific driving-cycle estimated from known cycles
of past driving records and standard driving cycles. The SMPC approach uses the updated
information on the system state and on the Markov chain to build an optimisation tree consisting
nodes at every time step. The resulting control law allows only one control move for every node.
They compare the SMPC with the frozen-time MPC, and the precient MPC (PMPC). The
PMPC has the smoothest power trajectory and the best fuel consumption is used as benchmark.
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As a result, the SPMC improves the fuel consumption by 13.5%.
S. Stockar et al. in 2010 [46] propose an optimal control theory solved by Pontryagin’s

minimum principle (PMP) to produce an on-line solution. It takes into account the on-board
electricity consumption during vehicle operations and allows charge depleting operation. It
associates CO2 mass produced by the engine, mCO2,f

=κf .Pf (t) and consumption of the electric
energy on-board, mCO2,e

=κe.(Pbatt(t)/ηch). It assumes κf =0.294 kg/kWh for the Diesel engine,
κe=0.567 kg/kWh for the USA electricity production scenario, and ηch=0.86 for the battery grid
charging efficiency. The PMP converts a global optimal control problem into a local minimization
problem, thus requiring less computation and allowing it to be solved continuously. The optimal
control policy is minimised by Hamiltonian function at each time, t and is limited by some
conditions. One of this limitations is the Lagrange multiplier, μ to penalize battery utilisation if
state of energy (SOE) is at lower bound and to facilitate the use if the battery is fully charged.
The parameter λ0 and μ were chosen iteratively referring to a driving profile considered in this
study. The derivative of the battery efficiency, λ(t) is a function of the SOC. The initial SOE is
set at 0.9. Through simulation, a negative value of λ0 resulting a charge sustaining operation. If
the value is greater than 10, the SOE depletes until the lower limit, then switches automatically
to charge sustaining mode. With λ0=6, the charge is slowly depleted and reaches its lower bound
at the end of driving path, thereby resulting the best fuel economy.

Then in 2011, S. Stockar et al. [47] propose a supervisory energy management to deplete
battery charge of HEV system by considering the vehicle energy consumption from fuel and
electric grid. The cost function is to minimise the vehicle cumulative CO2 emissions and not
the fuel consumption over a mission because in plug-in HEV the energy of battery is supplied
by the grid. And the mass of CO2 produced relates the vehicle variables of specific CO2 content
in the fuel and electricity per kilowatthour. The control and state variables are subject to
constraints to prevent abuse and battery aging related issues. The method adapts the extended
Hamiltonian function to simplified the problem on defining inequal constraints. The strategy
is then implemented on a plug-in HEV simulator to evaluate its sensitivity through different
vehicle utilization and energy generation. It is proven to be low sensitive to the driving profile
characteristics such as energy demand or driving distance. But, it is very sensitive toward the
vehicle operating mode and a control parameter, λi that affects SOE profile. A higher sensitivity
is observed for energy generation characterized by a low CO2 content. This method is useful to
understand formalization of vehicle trajectory as guide to design a real-time energy management.

J. Cao et al. [33] design an EV system of a battery as a main source and an ultracapacitor
as an auxiliary source to increase driving range. Ultracapacitors that has a high specific power
are utilized as an auxiliary source to receive fast regeneration power and provide peak power,
because batteries have poor ability to recover energy from regenerative braking and a scarce
power capacity for a fast acceleration. To manage the power flow between both sources, an
optimal control strategy of μ synthesis robust controller is developed to improve the energy-
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regenerative efficiency. The operation of the system is as follows: during start-up process, both
energy sources drive the motor together. At normal speed, the batteries drive the motor alone
while recharging ultracapacitor as preparation for acceleration or climbing situation. The EV
driving control has uncertainty, Figure 2.33 shows the connections and relations of its nominal
model G0, the feedback structure Kd, the uncertainty model (z, p, u, y, d, e), and the performance
index. To enable the closed-loop system to be still and maintain stable in pertubated situation, a
stable controller Kd is to be found by selecting weighting functions of performance index, model
uncertainty, and input that gives the structure singular value, μ to be less than 1. Thereafter,
the control problem has to be transformed from an equivalent open-loop control system, to an
equivalent closed-loop control system after adding Kd, and finally to a closed-loop linear fractional
control system. As a result, μ is found to be 0.768. The system is proven to have strong robust
stability, good capacity of command signal tracking, anti-interference, and noise-suppression to
resist disturbance. The robust controller is proven to be efficient in recovering more energy and
lengthening batteries life. It also can enhance EV instanteneous performance, avoid batteries
being charged and discharged by big electric current, and reduce batteries charging times.

z - weighted control
p - perturbation
u - control variable
y - measurement input
d - disturbance
e - performance output

Figure 2.33: The EV driving control system with the uncertainty [33].

Equivalent Consumption Minimisation Strategy (ECMS)

A. Sciaretta et al. [48] evaluate the equivalence factor between fuel and electrical energy based
on system self-sustainability, and is valid for different system architectures. The cost function
J(t, u) is minimised to find the value of control variable u(t). The equivalence factor s(t) varies
with time, weighted the electricity energy used. If s(t) is too large then mfuel(t) increases, if
s(t) is small then electrical energy will be used. First, it introduces sdis and schg to evaluate the
equivalent fuel at the end of driving cycle, then it introduces a probability factor p(t) to choose
sdis or schg during cycle, and finally evaluates p(t) during real time. The ICE works on a steady
operating point. It prevents frequent engine starts/stops by evaluating an equivalence factor
Jss(u, t) that consider additional fuel energy related to this problem. It utilises sdis to weight
the required electrical energy use. This ECMS objectives help to minimize fuel consumption,
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minimize SOC deviation, and avoid frequent startups. It introduces λ as a constant ratio of free
energy Ēe0/Em over time. The ECMS result in term of fuel consumption and battery charge
sustainability are very close to those of global optimal solution. And, it is capable to reduce the
number of startups as shown in Figure 2.34.

a) ECMS control b) ECMS and prevention of frequent engine start/stops 

Figure 2.34: SOC evolution and number of startups before and after ΔJss modification results;
a) ECMS control, and b) ECMS and prevention of frequent engine start/stops [48].

C. Musardo et al. [70] propose an adaptive-ECMS (A-ECMS) to sustain battery SOC and
improve fuel economy over the vehicle trip. It estimates the equivalence factor according to the
current driving conditions. The control is instantaneous, subjected to integral constraints like
maintaining SOC, meeting driver demand, and respecting the components limitations. It assumes
that every variation in SOC will be compensated in the future. Firstly, the equivalent fuel rate
due to the battery energy use is represented with a pair of equivalence factors during discharge,
sdis and recharge, schg. The approach can provide optimal solution if the pair is tuned perfectly
according to driving cycle, known a priori. This means the pair should be properly tuned every
time the nature of the cycle changes. Thus, it builds an adaptive algorithm that updates the
control parameters for the current mission by combining past and predicted vehicle speed, and
data from GPS, and it determines an unique equivalence factor s, which is the average of the pair
to reduce computation problem. The fuel consumption is close to those from DP optimisation
for the standard driving schedules. SOCfinal is the same as SOCinitial, but when there are
significant changes in the cycle, the SOC deviates from the reference value of 0.7.

D. Ambuhl and L. Guzella [68] utilize the available information on the future driving profile
to compute a reference trajectory for the SOC to avoid regenerative energy to be wasted in the
conventional brakes (Figure 2.35). It identifies the changes in SOC reference trajectory as to
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respect the upper and lower bound of SOC. During free segments, the supervisory control can
control the SOC by penalizing or favorising the use of electric path, but during fixed segments,
the use of the electric path is determined by the driver or cycle where it can happen that SOC
violates its constraints whenever the powertrain is in boost mode or recuperation mode. The
controller identifies the future fixed segments from data of the navigation system, estimates the
recuperable energy and converted into the future SOC changes. It combines the nonpredictive
ECMS to lower the SOC before an important recuperation phase with its predictive reference
signal generator (pRSG-ECMS) to ensure recuperation of available energy and minimize con-
sumption. Comparison of results are made between DP, ECMS, and this control strategy. The
control strategy is proven to be effective in maximizing the amount of recuperated energy while
respecting constraints of battery SOC.

a) Block diagram

b) SOC trajectory reference for each recuperation phase
c) Estimated recuperation force and the resulting 
recuperated energy due to elevation changes

Figure 2.35: The concept of the pRSG-ECMS control strategy; a) Block diagram, b) SOC
trajectory reference for each recuperation phase, and c) Estimated recuperation force and the
resulting recuperated energy due to elevation changes [68].

J. Gao et al. in 2007 [49] compare between three control strategies for a series HEV namely
the thermostat on-off (TCS), the power follower (PFCS), and the equivalent fuel consumption
(EFCOCS). The controllers determine the power given by engine/generator set, Pg based on the
power requirement, Pr and SOC. The battery electric power, Pb is the remaining power needed
by the vehicle, Pb = Pr − Pg. The objectives of the control strategies are to determine the power
distribution between the prime mover (PM) and the ESS so that the power requirement and
other constraints are satisfied, and to minimize fuel consumption and harmful emissions. The
TCS turns ON and OFF the engine based upon SOC and operates the engine at its highest
efficiency point. The PFCS activates the engine/generator set all the time except during low
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power request and SOC higher than SOCu. It prevents on-off frequency of ICE. The EFCOCS
defines the constants of battery operation during charge, Cchg and discharge, Cdis to recharge the
battery with an equivalent fuel consumption. It limites the power output rate and the off-time
of ICE. As a result, EFCOCS has better fuel consumption than PFCS and TCS, with higher
SOCfinal, thus this article choses the EFCOCS that gives the best overall efficiency, eventhough
TCS can provide the best efficiency of engine/generator set, while PFCS can sustain SOC with
a stable bus voltage.

Then, in 2009, J. Gao et al. [14] state that charging and discharging the battery with high
current shall be avoided due to low charge and discharge efficiency which will reduce battery
life. It proposes an equivalent fuel consumption optimal control strategy (EFCOCS) to deter-
mine the power distribution between the primary energy converter and the renewable electrical
storage system. It proposes the equivalent fuel consumption to be used is determined by the fuel
economy coefficients Cch and Cdis during charging and discharging operations respectively. The
performance of this control strategy is compared with the thermostat control strategy (TCS)
and the power follower control strategy (PFCS). The TCS provides the best efficiency for the
engine/generator set, leading to good fuel economy performance under highway driving con-
ditions. The PFCS provides sustainable SOC regulation with a stable bus voltage, improves
the battery durability and that of other electrical components with good fuel economy perfor-
mance during urban driving. The EFCOCS provides a reasonable power distribution between
the engine/generator set and battery pack (Figure 2.36), leading to the best overall fuel economy
under both urban and highway driving conditions, and outcomes fuel economy close to the global
optimization data.

B. Geng et al. [73] study a power management for a micro-turbine (MT) of a plug-in hybrid
called T-ECMS that uses telemetry information and aims to minimise the vehicle driving cost as
in equation ( 2.7). Ts is the sampling time, the subscript K is a time index, N is the number of
sampling steps in the driving cycle, ηe is the electric grid charging efficiency, ξ1, ξ2 are the market
price of diesel and grid electricity, respectively. If Pelec is positive, it will charge an equivalent
electricity, and contrary will save an equivalent energy cost if Pelec is negative. The control
strategy permits the battery SOC to vary only within its limit range, SOClow ≤ SOC ≤ SOCup.
The solution is subjected to dynamic, state variable, and input constraints. The authors propose
a predictive on/off control to deplete from initial SOC of 0.8 to SOClow of 0.4 at the end fo a
driving cycle. It detects the vehicle location to the destination with an onboard GPS. It assumes
that the driving manner and traffic conditions remain unchanged. The distance the vehicle can
travel in one charge/discharge cycle is denoted as L. If the distance left of the cycle, L′ ≤ 0.95L

the MT will be switched on. The MT switch on time, ton = δcorr(EavgL′)/(PMT ηconv) is the
period to charge the battery at its peak power, with δcorr is the average electrical path efficiency.
Analysis on DC bus energy requirement against travelling distance shows an average energy
utilisation around 700 kJ/mile for the NEDCs, UDDSs, and WVUINTERs driving cycles. The
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a) TCS b) PFCS c) EFCOCS

Figure 2.36: The power distribution and the engine operating points comparison of the three
control strategies; a) TCS, b) PFCS, and c) EFCOCS [14].

fuel consumption and driving cost of this predictive on/off is close to that of DP, and better than
those of traditional ON/OFF control.

COST = ξ1Ts

N−1∑
K=0

ṁf,K(PMT,K) +
ξ2Ts

ηe

N−1∑
K=0

Pelec,K (2.7)

B. Geng et al. [9] use ECMS with Pontryagin minimum principle (PMP) to minimize driving
cost. The optimal controller T-ECMS defines the vehicle energy gap at time t represented by
the future energy use over the remaining part of the trip and the recovering energy saved after
a certain time during a cycle. The energy gap Êg(r) = L(1 − r)K(r) is approximated in real
time, with vehicle position r = l(t)/L where l(t) is a distance already travelled by the vehicle.
K(r) represents the energy gap reduction rate per unit driving distance. The energy ratio is
introduced to predict the equivalent factor (EF) in real time and regulate large battery SOC
trajectory problem. As shown in Figure 2.37, if the ratio is less than one, the system functions
as EV during the entire trip. If the energy gap is larger than onboard battery energy (energy
ratio is greater than one), EF increases to penalize battery energy usage. The energy ratio and
EF relationship does not change regardless of different driving cycle for a constant fuel price.
Comparison is made between this control strategy, DP, and electric vehicle control (EVC). As
a result, EF is adaptively changed with SOC feedback information, hence robust to control
parameter inaccuracy in T-ECMS. T-ECMS exhibits similar performance to DP in driving cost
and diesel consumption over both urban and highway cycles. The approach is insensitive to the
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selection of control parameters, K and κ, but as the driving distance increases, the driving cost
grows higher because the battery could not meet the total energy demand of the vehicle.

a) The relationship between energy ratios and its corresponding EFs b) Results comparison with DP and EVC

Figure 2.37: Schematic illustration of T-ECMS; a) The relationship between energy ratios and
its corresponding EFs, and b) Results comparison with DP and EVC [9].

V. Sezer et al. [26] design a novel ECMS for a series HEV to improve optimisation performance
by proposing a new approach to sustain battery charge. The approach changes the function of
SOC deviation with real SOC value as an optimisation constraint and not as penalty function
to avoid SOC draining or overcharging. It determines SOC upper and lower limit (selected
0.704 and 0.696 respectively) not to start or stop the genset, but as a region to optimise the
genset delivered power. Once the rated SOC is reached, the algorithm is relaxed for the search
to yield a more flexible and efficient performance. This method uses a combined cost map for
polluant emissions to reduce computational burden. The formulation of these maps are as in
equation ( 2.8) depending on weighted value, ki. Different maps can be built and used according
to control goal. It provides optimised control strategy for the genset power [10:0.5:104] kW.
Then the ECMS produces the reference genset power according to power demand. It is imposed
that the battery usage will be regained in the future operation considering battery efficiencies
in its cost calculation. It introduces three genset operation modes, the SOC increasing, the
SOC decreasing mode, and the free operation mode. The operation of this new SOC sustaining
algorithm is shown in Figure 2.38. Comparisons are made with an on-off control strategy, a
classic ECMS and a conventional mode. The results demonstrate a significant reduction in
CO2 emissions and fuel consumption, and a smaller reduction ratio for NOx and HC emissions
compared to other control strategies. The ICE operating points and SOC variations are compared
in Figure 2.39.

Cf (ω, T ) =
k1CCO + k2CCO2 + k3CF C + k4CNOx + k5CT HC

k1 + k2 + k3 + k4 + k5
(2.8)
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a) SOC pattern with algorithm modes b) New SOC sustaining algorithm

Figure 2.38: Schematic illustration of the new SOC sustaining ECMS algorithm; a) SOC pattern
with algorithm modes, and b) New SOC sustaining algorithm [26].

L. Serrao et al. [7] make a formalization of three ways of optimisation solution for HEV. It
decribes and analyzes dynamic programming (DP), Pontryagin’s minimum principle (PMP), and
equivalent consumption minimization strategy (ECMS). In a HEV system, the optimal control
finds the sequence of controls u(t) that leads to the minimization of the performance index J .
The optimisation is subjected to constraints like system dynamics, initial state value, terminal
state value, instantaneous state limitations, and instantaneous control limitations. It applies
these control methods on a series HEV, and the genset is operated along its maximum efficiency
line or optimal operating line (OOL). DP is based on Bellman’s principle of optimality, writen in
discrete form, and defines the cost-to-go as the cost incurred in moving from a time step to an end
of horizon. DP needs a backward procedure, the solution can only be found offline for a driving
cycle known a priori, and it has high computational load, thus it is not implementable online.
The PMP can be used to find candidates of solution by minimization of Hamiltonian function
at each instant, the solution is optimal if the function is a convex function of the control. It
has to define two-point boundary values of initial SOC using iterative procedure and final value
of the SOC that is defined at the final time. It can obtain convergence in few iterations, faster
than DP by using a bisection procedure. The ECMS solves the optimisation problem without
information about the future at each instant. The equivalence factor s is used to convert electrical
power into equivalent fuel consumption to sustain battery SOC. If the SOC is above SOCref

the battery will likely be discharged, and it will penalize fuel use if SOC is lower than SOCref .
It is represented as correction term p(x) as in Figure 2.40. Normally, the equivalence factor is
constant, but in particular cases it can be characterized by battery charge and discharge operation
or vehicle operating modes. The choice of s can affect SOC behaviour to charge depleting, charge
sustaining, or charge increasing trend. Therefore, for a trend chosen, s tuning is necessary for
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f)  New SOC sustaining ECMS Mode SOC Variation

a) b)

c)

d)

e)

Figure 2.39: Comparison of ICE operating points on a combined map of k1=0, k2=0.5, k3=0.5,
k4=0, and k5=0 for; a) Conventional mode, b) On-Off mode, c) ECMS mode, and comparison
of SOC variation between; d) On-Off control strategy, e) Classic ECMS mode, and f) New SOC
sustaining ECMS mode [26].

each type of driving cycle to minimize total fuel consumption. As results, the DP and PMP
provide the same solution which first increases the SOC, then decrease steadily during high-
power phase, and finally increases to reach desired terminal value (Figure 2.40). The ECMS
tends to react similar to the power demand trends and it needs more fundamental understanding
of the equivalence factor to be adapted for all driving cycle.

C. Zhang and A. Vahidi [28] deploy instantaneous real-time minimization strategy of equiv-
alent consumption minimisation strategy (ECMS) to enhance energy utilisation of plug-in HEV
by using terrain, traffic, and trip distance preview. This method relies on instantaneous power
demand, vehicle velocity, and battery SOC to reduce fuel use and sustain battery charge. In a
PHEV, the batteries can be depleted to their minimum allowable charge by the end of a trip
to achieve maximum energy efficiency. The combustion engine and electric motor utilisation are
blend throughout the trip to have an optimal solution, so that the battery is nearly depleted
when arrive at charging destination. This work optimises the decision to operate the PHEV in
blend charge-depleting (CD) mode or all-electric CD mode by using information of future driving
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a) b) Comparison of the three strategies on US06 cycle

Figure 2.40: New ECMS control; a) SOC correction term for ECMS, p(x), and b) Comparison
of the three strategies on US06 cycle [7].

conditions. It integrates long-horizon preview information by classifying four level knowledge of
future events: 1) full knowledge of distance, upcoming terrain profile and future velocity (use
DP and ECMS); 2) full knowledge of distance, upcoming terrain and estimated velocity (use
D-ECMS and E-ECMS); 3) knowledge of distance to the next charging station and elevation
changes (use B-ECMS); 4) no future information (use RB and DS-ECMS). In the first level,
the optimal control minimizes the cost function to maximize fuel economy, the dynamic pro-
gramming (DP) solves the problem according to Bellman’s optimality principles and the ECMS
finds the true value of equivalence factor, s(t) by using Pontryagin’s minimum principle. Second
level estimates the velocity using real-time traffic data streams or historical traffic data. The
D-ECMS calculates the cost-to-go of dynamic programming backward in time that depends on
future power demands, and the E-ECMS iterates s value that yields the present SOC by running
the ECMS backward and assuming final SOCf equals to desired SOCd (Figure 2.41). The third
level uses blend ECMS (B-ECMS) to discharges battery gradually that depends on parameters of
neutral equivalence factor s0, electric mode equivalence factor se, current SOC(t), and remaining
trip distance. The optimal control without preview implements depleting and sustaining ECMS
(DS-ECMS) with an equivalence factor increases if SOC decreases as shown in Figure 2.41. And
in the rule-based (RB) control of the system is initially operated in all-electric CD mode if the
power request is low, in blend mode if power request exceeds EM or battery capacity, and in
charge sustaining (CS) mode when SOC is near its minimum allowable charge. Simulation of
the control strategies show that DP can find the lowest energy cost and thus can be used as
benchmark. The B-ECMS performance is close to D-ECMS and E-ECMS for a long distance
route, but less performant at route with large elevation changes. The results show the advantages
of information preview for fuel saving and the proposed algorithm is implementable for real-time
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PHEV energy management.

b) CD stage c) CS stagea) Optimized SOC trajectories with the same terminal SOCf

Figure 2.41: E-ECMS different initial guesses (si); a) Optimized SOC trajectories with the same
terminal SOCf , and DS-ECMS estimated ŝ as a function of SOC at different stages; b) CD
stage, and c) CS stage [28].

The control strategy plays a huge role in EV and HEV system. The complexity of these
systems compared to a conventional ICE vehicle makes it important to manage its available
energies optimally. The two methods that have been applied are the rule based method and the
optimisation method. The rule based method is heuristic which is intuitive, and based on human
experience and expertise. It is robust and has less computational load that makes it suitable
for a real world application. It needs a good paremeter tuning to achieve optimal solution. The
two approaches of this method are the deterministic rules and the fuzzy rules. The optimisation
method tends to minimise a cost function globally or instantaneously. The global optimisation
needs knowledge of the whole driving cycle known a priori and a precise components modeling
of the system. It has huge computational burden and cannot be implemented online. It is
global optimal and usually used as benchmark of other control strategies in development. The
real time optimisation minimises a cost function instantaneously at each time step. It requires
a short calculation time, and can thus be employed in real vehicle that demonstrates a nearly
optimal behavior. The characteristics of each approaches are listed in table 2.2, the summary of
the carried out researches are listed on table 2.3, table 2.4, table 2.5, and table 2.6.

2.5 Conclusion

There are so many methods that can be applied as control strategy depending on its utilisa-
tion. As a general conclusion, we can state that the energetic factor has accelerate the develop-
ment of EV and HEV. Most of the objectives treated in the carried out researches are related
to the fuel economy. Thereafter, comes the environmental preoccupation of the emissions factor
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Rule-Based Method
Rules design is based on desirable outputs without any priori knowledge of a trip
Heuristics; based on engineering intuition and human expertise
Simple analysis on component efficiency tables
Easy to implement in real vehicle
Less computational load
Robust and effective
Not global optimal
Lack of formal generalization
Need a good parameter tuning

Optimisation Method
Can be local, global, real-time, parameter, or threshold optimisation
Use numerical and analytical method
Provide control design generality
Reduce control parameters heavy tuning
Consider all components efficiencies
Main task is to maximize or minimize a cost function

Table 2.2: Control strategies advantages and inconvenients.

Deterministic Rules
Operate on a set of rules, defined and implemented prior to actual operation
Utilize instantaneous operating condition as inputs
Based on analysis of power flow in a hybrid drive-train
The rules are implemented via lookup tables
The control response can be highly sensitive to inputs

[67], [18], [50], [51], [55], [79], [80], [19], [39], [81], [52], [72], [29]

Table 2.3: Deterministic rule based control strategies advantages and inconvenients.
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Fuzzy Rules
Provide abstraction value of parameters
Tolerant to imprecise measurements and components variation
Ideal for nonlinear time-varying systems and multi-domain of hybrid power-train
The rules designed are limited to designers knowledge
Case sensitive and sometime difficult to tune

[22], [1], [15], [77], [71], [82], [83], [84], [85], [86], [87], [88]

Table 2.4: Fuzzy rule based control strategies advantages and inconvenients.

Global Optimisation
Optimization for the whole trip
Global optimal over a fixed driving cycle
Need knowledge of the entire driving cycle
Need information of the past and future events
Accurately know component conditions
Used for offline simulation
Large computational burden
Not implementable in real world application
Technological advances (GPS, e-maps, traffic data) make this approach implementable in
real world application
Used as benchmark of other strategies

[90], [38], [91], [92], [30], [17], [20], [25], [93], [41], [37], [8], [42], [43], [94], [23], [95], [96], [4],
[78], [74], [89], [44], [56], [76]

Table 2.5: Global optimisation control strategies advantages and inconvenients.
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Real-time Optimisation
Minimize a cost function instantaneously, depend on the present variables
Have limited knowledge of future driving conditions and self-sustainability
Cost function is developed by past information
Adapt and optimize in real-time
Less computational burden
Can be applied in real vehicle
Solution nearly optimal

[97], [10], [75], [46], [47], [33], [48], [70], [68], [49], [14], [73], [9], [26], [7], [28]

Table 2.6: Real-time optimisation control strategies advantages and inconvenients.

Comparison criteria
1. Robustness
2. Optimality
3. Precision
4. Implementation
5. Calculation time
6. Deployment
7. Cost of deployment

1 2 3 4 5 6 7
Deterministic Rules 	 	 	 		 	 	 	 	 	 	 					 	 	 		 	 	 		

Fuzzy Rules 		 		 		 	 	 	 		 		 	 	 	

Global Optimisation 		 					 	 	 	 	 	 		 		

Real-time Optimisation 	 	 	 	 	 		 	 	 	 		 		 	 	 	 	 	 	

Table 2.7: Comparison of the methods.
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with the aim to reduce feedgas and particulate matter emitted by the engine. On the system
level, the motives are to achieve low running cost, have an optimal drive-train efficiency, and
to meet traction power demand. Good drivability and smooth transition have been a focus of
transmission systems for hybrid vehicles. The battery state of charge or health becomes one of
the important elements considered in energy management in a vehicle system equipped with a
relatively bigger battery capacity.

Controller design is different for each system, it depends on architecture, utilization, degree
of hybridization, and targeted objectives. As can be observed, a series hybrid vehicle and a fuel
cell/battery hybrid vehicle need a controller to manage power distribution between its power
sources in form of the electrical energy. Contrary in a parallel hybrid and a series-parallel
hybrid, the control is bounded to determine its torque split in form of mechanical energy to
deliver requested power at wheels.

A good controller should yield an optimal solution, can be used in real vehicle, has good
stability and sensitivity, can deliver demanded power, and can improve the efficiency of the
system. Through table 2.3, table 2.4, table 2.5, and table 2.6, the advantages and inconvenients
of each control strategy can be compared in order to choose a suitable controller according to the
application. The carried out researches present the necessary development in control strategies
due to up-to-date technological advance. These control methods are compared in table 2.7 to
better compare the common criterias.

The rule based method is easy to implement and robust, but it is not easy to tune its control
parameters manually to achieve an optimal solution. In most cases, simulation is conducted
offline to determine the optimal parameter thresholds to be applied in the real vehicle. This can
be done by using available standard cycles or past trip information. A good modeling of the
vehicle system can represent closely the behavior and interaction between subsystems. In the
global optimisation method, the complete trip/driving cycle must be known a priori to achieve
an optimal solution. Eventhough it is not suitable for real world application, it can be used to
optimise parameters or rules for other control strategies, or to compare the performance of a
control strategy in development.
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Challenges are what make life interesting and overcoming them is what makes life meaningful.

- Joshua J. Marine



Chapter 3

Modelisation Towards an
Effective Model for HEV Series

3.1 Introduction

Hybrid electric vehicle (HEV) is regarded as one effective solution for the problem of energy
shortage and demands to increase fossil fuel efficiency. The system which inherent advantages
of improved fuel economy and reduced pollutant emissions, has higher fuel efficiency and can
achieve better performance than a conventional vehicle [15, 14]. The presence of a reversible
energy storage system (ESS) offers new degrees of freedom to deliver power, possibility of engine
downsizing, idle-off, regenerative braking, and power assist that can increase the overall system
efficiency [8, 7].

The design of HEV system architecture is complex, and the power management is complicated
due to a high degree of control flexibility, as well as the use of non-linear and multi-domain
components. Determination of design parameters and coordination of the multiple energy sources
and converters to fully optimize its potential is cumbersome, time consuming, and expensive
[58, 8, 10, 62, 64, 65]. Modeling of HEV configurations and interactions between its components
becomes indispensable for rapid prototyping and analysis of HEVs.

HEV technology has been developed for many applications and different design combinations
like series, parallel, and series-parallel. Series hybrid is the simplest kind of HEV and predomi-
nates urban transportation thanks to its outstanding transient performance and power response
[14, 66, 15]. Low noise operation due to the use of electric motors alone for traction offers bene-
fits particularly in military operations, but larger drive system and multiple energy conversions
counteract the overall efficiency of this architecture [80].

HEV system models have been developed for diverse applications covering topics such as
optimal design problems [60, 40, 62], subsystems interactions [40, 53], controller development
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[58, 50, 98, 23, 80, 17], and system drivability [56]. Even if the models that can represent
accurately a series HEV system exists, a model development of this system that focuses on a
competition car is not yet available.

Two modeling methods will be utilised to model a hybrid race car called Noao. Results from
drive test on racing circuit of the real car system will be used to validate the models. Firstly, a
quasi-static model is developed to validate parameters and efficiency maps of the studied system,
which also will be used for control strategy optimisation of the system.

And then, a development of this car model using dynamic method will be necessary to assess
the performance of the car and to generate its driving cycle according to driver’s input. Besides
that, this type of model will be the platform to evaluate improvements due to changes that will
be effected to this system, and to test a new optimal control strategy suitable for this system.

3.2 Noao Car

The Noao car is a plug-in series hybrid racing car (Figure 3.14) equipped with an engine/generator
(E/G) set as range extender. This car is a result of collective work by experts and specialists of
racing car around Magny-Cours circuit industrial site for racing track competition application
[99, 100], where it becomes a reference for ongoing researches on HEV system.

The Association des Entreprises Pole de la Performance Nevers Magny-Cours and Magny-
Cours Circuit use their expertise and experiences to build the car shown in Figure 7.2 and heuris-
tically define its control algorithm.

The vehicle architecture is presented in Figure 7.3 with arrows direction correspond to power
flow in the system. The power-train is composed of an electric traction motor (EM), a power con-
verter (PC), a battery pack (B), and a set of range extender consisting of an internal combustion
engine (ICE) and a generator (G).

The vehicle component parameters are depicted in table 7.1. Detailed characteristics of this
car can be found in the website of the association [99]. The prime mover is a permanent magnet
synchronous machine (PMSM) electric motor, acts as motor during traction and as generator
during regenerative braking. The internal combustion engine is a gasoline engine with a 998 cm3

displacement volume.
Three identical battery packs serve as the reversible energy storage system (ESS), provide

most of the energy needed for propulsion and energy recuperation during regenerative braking.
The engine/generator (E/G) set generates power for the range extender path. Both power sources
are connected to an electric power bus which is connected to the electric motor power converter.
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Figure 3.1: Noao racing car.
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Figure 3.2: Architecture of the series hybrid.

Table 3.1: Vehicle parameters for Noao

Vehicle mass, mv 1200 kg
Front area, A 2 m2

Drag coefficient, Cx 0.35
Rolling resistance, μ 0.012
Wheel diameter, dw 0.62 m

Engine 3 cylinders 1.0 L, direct injection
Generator 54 kW at 4500 rpm, 120 Nm
Electric motor 280 kW peak power, 800 Nm
Battery 3 Lithium-ion batteries, 520 V
Transmission Simple, ratio 2.9, efficiency 0.95
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3.2.1 Actual Control Strategy

The energy management method used in the original car is a rule based control strategy,
chosen because of its simplicity and its large utilisation in demonstrator vehicles. It is a heuris-
tic method and the determination of its parameter thresholds are based on observation of the
requested power.

Based on a documentation of the range extender control [101], three subsystems control are
defined to control the range extender part; the mode control, the sequence control, and the speed
control through D-Space application.

The mode control handles the training, race, or fire-up mode which defines the conditions
to allow the range extender to start. This subsystem control takes car velocity, traction power,
SOC, and other fifteen parameters related to temperature and current as inputs to output the
target powers.

The outputs are then evaluated to define five states in the control sequence; off, cranking,
ramps up, charging, and ramp down to determine the mass of fuel to be injected in the engine
to produce the torque needed at both ICE and generator.

And then, using a feedforward PI controller, the speed control determines the requested
torque according to the speed target defined by the sequence control.

Like in its real system, similar parameters like the traction power needed at wheel and the
battery SOC will be taken as inputs of the range extender for simulations of this car system.

3.3 Quasi-static Model

A quasi-static model is a noncausal model, where its inputs and outputs are not fixed. This
kind of model consists of a steady-state model to which an equivalent dynamic model of the
system is added [54]. Like in an engine, it associates a map and a first-order of the system to
form the model.

In this study it is used to determine the systems component characteristics and parameters.
This is done by comparing the results from the experiments and the simulation component by
component. This model is useful in a numerical solution that has a big computation burden,
because it uses a bigger and slower timestep for the modelisation.

As can be seen in Figure 7.4, the power request is obtained starting from the driving cycle.
It is a backward simulation method [54], from a vehicle velocity up to engine and battery to
calculate the system’s energy consumption. The model is simple and easier to build, but it did
not represents exactly the behavior of the system like in its real system.

For the studied system, the equations used to model the whole system are based on a complete
documentation of [102]. Efficiencies of the power converters are presented in Figure 3.4 and
Figure 3.5, implemented via lookup tables in the simulation.
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In green - available data from experiment 
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Courant_bat 
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S = 2 m2 
r_w = 0.62 m 
C_d = 0.35 
μ = 0.012 

Gear ratio = 2.9 
ηgear = 0.95 
Ttrans- = T_wheel* ηgear /(6.5 * Gear ratio) 
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R ≈ 2 mΩ → f(mode,SOC) 
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scale_TEM = 11.5 
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ICE operational point in function of traction power 
Popt [kW] -250  -25  30  100  250 
wopt [rad/s] 462  466  470  473  477 
Topt [Nm] 20  50  95  100  100 

P_driveEM = Pgene_power + P_battery_power 

Figure 3.3: Modelisation of the Noao car using quasi-static modeling method.

The brake specific fuel consumption (BSFC) and the efficiency map of the engine is presented
in Figure 3.6. The method to obtain these maps is explained in the next subsection.

3.3.1 Energy Sources Modelisation

Battery Model

The primary energy source of this system is the battery. There are three identical lithium-ion
batteries with 520 V nominal voltage installed in this car. The batteries are identical to each
other in order to have the same SOC performance. They are connected in series and placed in
the vehicle to balance the weight distribution of the car [99, 100]. The model of the battery is
represented by ( 3.1), ( 3.2), ( 3.3), and ( 3.4).

Pbat = ibat · VΣbat (3.1)

SOC = SOCinitial −
∫

ibat · VΣbat

Ct
(3.2)

Pbat is the power to the battery in W, it is positive during discharge and negative if it is
recharged. SOC is defined as the index of the current energy available from a battery compared
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Figure 3.4: Electric motor efficiency map of the Noao car.
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Figure 3.5: Electric generator efficiency map of the Noao car.
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Figure 3.6: Internal combustion engine efficiency map of the Noao car.

to the battery capacity Ct (Wh). And the voltage of the battery package VΣbat (V) is the cell
voltage Vbat (V) times the number of cells in the battery pack, with the current of the battery
ibat in A.

VOC = −1.031 exp(−35SOC) + 3.685 + 0.2156SOC − 0.1178SOC2 + 0.321SOC3 (3.3)

Vbat = VOC − R · ibat (3.4)

The battery open circuit voltage Voc (V) and resistance R (Ω) are in function of SOC and
its mode i.e charge or discharge. Resistance of a lithium-ion battery is known to be the lowest
around 0.002 Ω which resistance values are shown in Figure 3.7 for one cell of this battery.

Internal Combustion Engine Model

The internal combustion engine (ICE) is the other main component inside the system, as it
will determine the fuel consumption of the vehicle. This fuel consumption is closely linked to the
ICE efficiency ( 3.5), ηi is defined as the ratio between the work transfer to the piston thanks to
the in-cylinder pressure and the theoretical energy available in the fuel. Pressure P is in Pa, dV

is the displaced volume in m3, and mfuel is in kg.

ηi =
∫ −PdV

mfuelLHV
(3.5)
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Figure 3.7: Resistance of the battery in function of SOC and its mode.

An approach of zero-dimensional single-zone thermodynamic model is used to determine the
ICE efficiency for this model [103, 104]. This approach can evaluate the influence of the engine
speed and load on the fuel indicated efficiency.

The cylinder is considered as an open system where pressure, temperature, and mixture
composition are homogeneous. The gas is supposed to be a constant mixture of fuel and air.
The model is governed by the conservation of mass and the conservation of energy. The cylinder
can only exchange mass through the intake and exhaust valves ( 3.6).

dm

dt
=

dmint

dt
+

dmexh

dt
(3.6)

where m is the mass inside the cylinder and dmint/dt (respectively dmexh/dt) is the mass
flow rate through the intake (respectively exhaust) valve.

The first law of thermodynamics is applied to the open system which exchanges heat through
the wall Qwall and receives heat thanks to a combustion model Qcomb. The work transfer through
the piston due to the change of in-cylinder volume, V is equal to −PdV/dt ( 3.7).

dmu

dt
=

dW

dt
+

dQ

dt
= −P

dV

dt
+

dQwall

dt
+

dQcomb

dt
(3.7)

where u is the internal energy.
Since, the unknowns are the pressure, the temperature and the mass inside the cylinder a

third equation is needed which is the ideal gas law in its derived form ( 3.8).

P
dV

dt
+ V

dP

dt
=

dm

dt
rT + m

dr

dt
T + mr

dT

dt
(3.8)

where r is the ideal gas constant r = R/M since the mixture composition is constant dr/dt =
0.
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Therefore, some models are needed in order to calculate the mass flow rate through the valve,
the heat exchange with the wall and the heat release from the combustion process.

The mass flow rate is calculated with the assumption of the quasi-steady adiabatic and
compressible flow. The flow is generated due to the difference in pressure between the upstream
(us) and the downstream (ds) if Pus ≥ Pds. Thus, mass flow rate depends on the upstream
conditions (pressure Pus, temperature Tus) and the downstream pressure, Pds ( 3.9).

dm

dt
= ACdPus

√
2γ

(γ − 1)rTus
(X

2
γ − X

γ+1
γ ) (3.9)

where

X =
Pds

Pus
≤ (

2
γ + 1

)
γ

γ−1 (3.10)

The heat exchange with the wall is considered to be forced convection ( 3.11) and the heat
transfert coefficient is calculated thanks to the correlation defined by Han et al. [105, 106].

dQwall

dt
= hS(T − Twall) (3.11)

Finally, the heat release rate, dQcomb/dt, is calculated thanks to the empirical burning law
defined by Wiebe [105, 106] which is commonly used [105] in internal combustion engines ther-
modynamic model. This law ( 3.12) considers an exponential evolution of the heat release from
the combustion, starting at θi crank angle degree before the top-dead-center with a combustion
duration of Δθ.

Qcomb = mfuelLHV (1 − e−a( θ−θ
Δθ )n+1

) (3.12)

Here, given a simplified approach capable to describe the approximative fuel consumption in
function of the cylindric volume Vd in m3, rotational speed N in rpm, and delivered power Pe

(W) as in ( 3.13).

ṁf =
Pe + (f + fpN) VdN

Rc60

ηi(ηc0 − A
B+N )LHV

(3.13)

with ṁf the mass flow of the fuel in kgs−1, f the friction factor assumed to be 100 kPa,
fp the friction factor of 20, the factor Rc equal to 1 for two-stroke motors and 2 for four-stroke
motors. The fuel indicated efficiency ηi is assumed to be constant 0.4, in reality this factor is
varying due to operating point. The combustion efficiency is evaluated using the constant term
ηc0 assumed to be 0.98 and A/(B + N) with A equal to 300 and B equal to 2000 respectively
and LHV (Jkg−1) is the lower heating value of the fuel used.
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3.3.2 Model Validation

Two different driving cycles obtained from drive tests of the Noao car are used to verify the
model. The results from these experiments are compared to the simulation results presented
in Figure 3.8 for the traction part comprising the wheel and electric motor, Figure 3.9 for the
battery, and Figure 3.10 for the electric generator and engine.

Referring to Figure 3.8, the first driving cycle at the beginning of the graph, noted as MC1
timed from 240 s to 850 s has a maximum speed of 42 ms−1 and the second driving cycle, MC2
time is from 1700 s to 2400 s with a maximum vitesse of 48 ms−1. There is a slight difference
in the wheel rotational speed because the comparison are made only with the left front wheel of
the vehicle. The MC1 and the MC2 are conducted at the same Grand Prix circuit but with a
higher given power for MC2 with 100 kW maximum power and 350 Nm maximum torque, while
it is only 82 kW and 300 Nm for MC1. But the limits for regenerative braking is 25 kW, same
for both MC1 and MC2.

Some current overshoot can be seen from the model in Figure 3.8. Nevertheless, the model is
quite accurate with errors are limited under 5 % for the current, voltage, and SOC of the battery.
A big difference in voltage and SOC occur during the no-current state.

In Figure 3.10, the range extender has to supply 40 kW during traction and down to 20 kW
whenever it is in regenerative braking mode for both driving cycles MC1 and MC2. The range
extender rotational speed is constant at 470 rads−1, the additional power is applied as torque
with 80 Nm for traction, and then 40 Nm during the recuperation energy. Fuel consumption of
the engine in liter is represented correctly by the model.

Eventhough this model is just a structural model in which inputs and outputs can be chosen
based on device to device association, this model development is important for a system level
global energy management to coordinate the power flow of each subsystems and in supervising
the whole system.

3.4 Dynamic Model

Dynamic models take into account transient states in a real time control of power flows.
A local energy management must be ensured in real time, so it is essential to understand the
function of each subsystems according to the physical causality like in a causal model to prevent
risk of damage and inefficient operation.

A causal model uses the principle of cause and effect to describe the system’s behavior. In
some devices, it has a fixed output which is an integral function of the input with an induced
delay time. There are many graphical formalisms that can be used to represent multiphysics and
complex system such as Bond Graphs, Power Oriented Graphs, Power Flow Diagrams, Causal
Ordering Graphs, and Energetic Macroscopic Representation.
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Figure 3.8: Verification of the traction model; chassis, wheel, and electric motor of the Noao car
using quasi-static modeling method.
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Figure 3.10: Verification of the engine and generator model of the Noao car using quasi-static
modeling method.

3.4.1 Energetic Macroscopic Representation

Energetic Macroscopic Representation (EMR) is a causal approach for dynamic simulation,
with the goal to develop control structures based on a separation of complex systems into sub-
blocks. This methodology has already been used successfully for multi machine applications
[107], fuel cell systems [108], but also electric vehicle traction [63, 64, 65, 109, 110].

The overall architecture of the EMR model including all components and control blocks for
the Noao racing series hybrid car is presented in Figure 7.6. The green oval blocks are the
source of energy, orange blocks are the converters, and the blue blocks are the control blocks. A
block with a croosbar is an element with energy accumulation and doubled block is a coupling
device [63, 65, 64, 111]. A monophysical domain converter is square and a multiphysical domain
converter is round. The recent synoptic of the EMR is included in [112].

All vehicle components are integrated together in a functional description based on the action
reaction principle of the power flow. EMR allows a system to be synthetically described. Model-
ing using this description allows us to develop a control structure and highlights the controllers,
pertubation rejections, and the necessary estimations [113].

EMR of this car is based on representation made in [110] where the battery and the power
converter are combined to form the equal electrical source (ESeq) for the traction part of the
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Figure 3.12: Energetic Macroscopic Representation of the car system and its control scheme with
the equivalent electrical source.

system. Before that, the appropriate representation is depicted in Figure 7.5.

Mechanical Source

The system environment is taken as the mechanical source (MS) of the system that gives
resistance or potential force towards the car movement, Fres.

This powertrain losses consist of the aerodynamic resistance Fa, the rolling resistance Fr, and
the hill climbing force due to a non-horizontal roads Fg ( 3.14). The hill climbing force Fg of the
vehicle is positive in uphill and negative if it is in downhill. For the Magny-Cours racing circuit,
this α ( 3.15) element can be included in the analysis by using the road elevation information
available for the circuit in [100] and as shown in Figure 3.13.

ESTORIL ADELAIDE 180o CHATEAU D’EAU
240 m
230 m
220 m
210 m
200 m

0 km 1 km 2 km 3 km 4 km

Figure 3.13: Road elevation of the Magny-Cours circuit.
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Fres = Fa + Fr + Fg (3.14)

=
1
2

ρACx + μmvg + mvgsin(α) (3.15)

Where the forces Fres, Fa, Fr, and Fg are in N, gravity g in ms−2, and the vehicle mass mv

in kg. A (m2) is the car front surface, air density ρ is in kgm−3, Cx is the drag coefficient, and
μ is the rolling coefficient.

Chassis Model

The longitudinal dynamic derived from Newton’s Second Law to determine the velocity of the
vehicle Vcar (ms−1) is described in ( 3.16). The force to accelerate the vehicle and the rotating
parts inside the vehicle is equal to the available driving force Fd, generated by prime mover minus
the total resistance forces Fres (Figure 3.14).

(mv + mr)
d

dt
Vcar = Fd − Fres (3.16)

Equivalent mass of rotating parts mr from the electric motor down to the wheels to determine
the inertial force to accelerate rotating parts inside this car [35] are detailed in ( 3.17) and added
into the mass of the vehicle during normal driving. Calculation reveals 185 kg rotational mass
for mechanical efficiencies ηf and ηt of 0.95, final gear ratio if of 1, transmission ratio it of 2.9,
and polar moment of inertia of 3.2 kgm2, 0.05 kgm2, and 1.8 kgm2, for the wheels Iw, propeller
shaft Ip, and electric motor Iem respectively.
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mr = (
1

rw
)2[Iw + Ipηf if

2 + Iemηt(if it)2] (3.17)

During braking, to slow down the car, an external negative braking torque is applied to the
wheel. It is the sum of the motor regenerative braking torque and the system supplementary
mechanical braking torque [62]. Driving force Fd is replaced by the braking force Fbr. The wheel
linear speed becomes less than the vehicle speed and creates an opposite force to the forward
motion. In this phase, the traction force caused by the friction between the road surface and
the tire surface, is the weight dynamic transfer times the adhesive coefficient μ [5, 62] expressed
in ( 3.18) and ( 3.19). The adhesive coefficient μ is a function of slip ratio λ under certain tire
condition and road conditions.

(mv + mr)
d

dt
Vcar = Fbr − Fres (3.18)

= μ(λ)mvg − Fres (3.19)

As for the studied system, the driving test is performed on a dry asphalt track. At acceler-
ation to braking transition illustrated in Figure 3.14, the rotating mass accelerate in the inverse
direction (aw) of the vehicle linear speed V , resulting less dynamic weight transfer to the vehicle
during this phase.

Lateral motion equation to calculate lateral force is not included because the exact steering
angle measurements are not available from the experiment. Only one wheel is taken into consid-
eration here, which eliminates the possibility to study drifting effects. A modeling of yaw rate
effect for a sport series HEV can be found in [114].

Wheel, Transmission, and Shaft Model

At wheel, the driving force Fd is a function of the transfered transmission torque Tt in Nm
and rwh, the wheel radius in m ( 3.20). And the wheel speed ωwh (rads−1) depends on Vwh

(ms−1), the linear speed of the wheel ( 3.21).

Fd = Tt/rwh (3.20)

ωwh = Vwh/rwh (3.21)

For a series hybrid configuration [65, 110, 63], TEM (Nm) ( 3.22) and the ωt (rads−1) ( 3.23)
is transfered through a fixed transmission ratio, with rg the gear ratio and ηt the transmission
efficiency.

Tt = ηtrgTEM (3.22)

ωt = rgωwh (3.23)
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The shaft rotational speed ωsh (rads−1) is obtained from torque value in Nm of the engine
TICE and the generator TEG. J is the shaft moment of inertia in kgm−2 and f is the shaft
friction coefficient.

J
d

dt
ωsh + fωsh = TICE − TEG (3.24)

Electric Motor and Electric Generator Model

Both the electric motor and the generator of the Noao are permanent magnet synchronous
machines (PMSM) described in order to apply vector control based on [115] by the following
approach:
The torque Te (Nm) developed by the machine is evaluated from system parameters and Park
transformed currents ( 3.25).

Te = 1.5p[λf iq + (Ld − Lq)idiq] (3.25)

where id is the direct axis component of the stator current (A) and iq is the quadrature axis
component. The inductances (H) of the stator is Ld for the direct axis and Lq for the quadrature
axis. Permanent magnet flux linkage is λf (Wb) and p is the stator pole pairs per phase. From
this, torque friction losses Tf (Nm) are excluded ( 3.26) based on method defined in [116].

TEM = TEG = Te − Tf (3.26)

The electromotive forces e (V) are evaluated according ( 3.27) and ( 3.28). Its angular fre-
quency ωe (rads−1) is equal to pωr, with ωr (rads−1) is the rotor speed.

ed = Lqiqpωr (3.27)

eq = (Ldid + λf )pωr (3.28)

And the link between current and electromotive force for direct and quadrature axis can be
explained by ( 3.29) and ( 3.30).

Ld
d

dt
id + Rid = vd + ed (3.29)

Lq
d

dt
iq + Riq = vq − eq (3.30)

Inverter and Rectifier Model

To drive the traction motor, a three phase inverter is used. It can be described by a simplified
approach including a modulation vector minv defined from the switching functions [117, 109]. It
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yields the output amplitude in function of the input amplitude and is transposed mt
inv for the

currents ( 3.31), ( 3.32).

uinv = minvVbat (3.31)

iinv = mt
inviEM (3.32)

The generator output is rectified in order to supply the ICE energy to the dc bus, therefore
a three-phase full bridge controllable rectifier is used in order to be able to adapt the output
voltage to the bus voltage as described in ( 3.33) and ( 3.34).

urect = mrectVbat (3.33)

irect = mt
rectiEG (3.34)

Lithium-Ion Battery Model

The battery is a crucial element inside a hybrid vehicle, its correct description is important
especially with regard to cooling [118] and aging [119]. In our case the focus is put on the
development of a global control structure. EMR methodology allows an upgrade of dedicated
sub-models, like the battery model, without the need to change the rest of the model.

In this model, the battery model is considered as an electrical source for the traction part
and is assumed to be the equivalent electrical source (ESeq) to the charge part [110]. Thus,
the battery current ibat (A) is considered as the total current entering or exiting the battery by
inverter iinv (A) and rectifier irect (A) ( 3.35). And the battery voltage Vbat (V) is Vconv (V)
( 3.36).

ibat = iconv = iinv − irect (3.35)

Vbat = Vconv (3.36)

Internal Combustion Engine Model

Finally, the torque TICE (Nm) can be evaluated from the value of the injected fuel ṁf (kgs−1)
and the efficiency ηi determined before in its quasi-static model ( 3.37).

TICE =
ηiṁf LHV − Pfr

ωsh
(3.37)

Where Pfr in W is the ICE friction loss, LHV in Jkg−1 is the lower heating value of the fuel
used, and ωsh in rads−1 is the shaft rotational speed.
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3.4.2 Inversion Based Control

The EMR goal is to provide a simple method to develop an inversion based control strategy for
complex, multi-physics systems. The control structure is developped by a block wise inversion of
the system model, where integral blocks and split or connection blocks require the most attention
[107, 64, 111].

Using IBC method, each EMR elements of the tuning chain are inversed to deduce the control
chain [110, 63]. The converter blocks like the transmission can be simply inverted ( 3.38), but a
criterion input is required for inversion of the coupling devices [109].

TEM_ref =
Tt_ref

ηtrg
(3.38)

During braking, the driving force becomes the braking force, where the torque on the wheels
has to be split between regenerative braking and mechanic braking due to limits of the regener-
ative system ( 3.39).

Tt_ref = Fd_ref rwh = Fbr_ref rwh (3.39)

Elements described by integral relationship such as the chassis ( 3.40), the electric motor or
the electric generator accumulator ( 3.41), ( 3.42), and the range extender shaft ( 3.43) require a
controller C to invert them.

Fd_ref = C[Vcar_ref − Vcar] + Fres (3.40)

vdqm_ref = C[idqm_ref − idqm] + edqm (3.41)

vdqg_ref = C[idqg_ref − idqg] + edqg (3.42)

TICE_ref = C[ωsh_ref − ωsh] + TEG (3.43)

The electric motor and generator converters are both controlled by a field oriented control
(FOC) [115, 109, 64, 116], requiring the measurement of the rotational speed and the actual
rotor position by a rotor position sensor to determine the rotor position θref and to deduce the
flux reference φr_ref . In ( 3.44) and ( 3.45), the quadrature axis current iq_ref is proportional
by k to the electromagnetic torque if the direct axis current id_ref is forced to zero.

idqm_ref =
TEM_ref

kφr_ref
(3.44)

idqg_ref =
TEG_ref

kφr_ref
(3.45)
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Inversion of the transformation function T yields the reference voltage uref from the dq

voltage ( 3.46), ( 3.47). This inversion need the θref to inverse the Park Transformation function.

uinv_ref = [T (θref )]−1vdqm_ref (3.46)

urect_ref = [T (θref )]−1vdqg_ref (3.47)

The continuous modulation functions m need measurement of the battery voltage Vbat ( 3.48),
( 3.49), and are converted to discrete variables using a pulse width modulation (PWM) in order
to define commutation orders of the switches [117, 109].

minv =
uinv_ref

Vbat
(3.48)

mrect =
urect_ref

Vbat
(3.49)

The charge management (CM) is determined by values of the car velocity Vcar ( 3.50), the
motor torque request TEM , and the estimated battery SOC like in its actual control strategy
[110, 64] as depicted in Figure 7.6. The SOC is used to weight the demanded power in order to
supply a constant power if the battery voltage drop when the charge depletes ( 3.51).

ωsh_ref = f(Vcar) (3.50)

TEG_ref = f(TEM , SOC) (3.51)

The amount of fuel to be injected in the engine ṁf in order to meet the range extender power
demand is controlled by the determination of the desired torque TICE_ref and instantaneous
value of the engine shaft speed ωsh ( 3.52) [104].

ṁf =
TICE_ref ωsh + Pfr

ηiLHV
(3.52)

3.4.3 Dynamic Model Validation

Model Validation

For validation, the model results are compared to experimental results obtained from mea-
surements obtained during drive test on the Magny-Cours Grand Prix race track of 610 s timed
from instant 240 to 850 s, for 4 laps of 4.411 km each, the MC1. The driving cycle as well as the
power and torque provided by the electric propulsion motor are presented in Figure 3.15.
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In general it can be seen, that the power and torque demand evaluated by the model is in
good accordance with the measured values, only high accelerations at the beginning of the race
lead to some overshoots.

The origin of these discrepancies are maybe caused by the frequence of the model chosen for
the simulation. In this simulation, the timestep taken is less than 0.005 s, and from observation
these disparities will be more if the timestep is smaller. This also maybe caused by the simplicity
of the model which only consider the basic formulation of the system without including any filter
method.
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Figure 3.15: Driving cycle and profiles of power and torque at the electric motor.

The data of battery validation are presented in Figure 3.16, they show good accordance of
the model with regard to the battery currents, voltages, and SOC. At abrupt load changes the
model underestimates the minimum currents for energy recovery, this discrepancy disappears if
the duration of the energy recovery is longer. Furthermore, it can be seen that the experimental
battery voltage seems to be limited to 520 V, this might be due to a battery management system,
that is not yet represented in the model.

The engine generator starts shortly after the beginning of the race and stays at a constant
high rotational speed. The torque is put to a constant high value, this value is reduced during
regenerative braking in order to respond to the maximum recharge current that can be accepted
by the battery (Figure 3.17). This behavior is correctly represented by the model as well as the
integrated fuel consumption.
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Figure 3.16: Results comparison of the current, voltage, and SOC evolution of the battery.

The fuel consumption is closely linked to the working points of the ICE, those working points
are presented in Figure 3.18 which distribution are close to that from the experiment.

Analysis and Study for Improvements

In order to evaluate the choice of the working points, the brake specific fuel consumption
(BSFC) and the optimal operating points (OOP) of the range extender combined efficiency are
presented in the same plot. It can be seen that the main working points of the ICE are at nearly
a constant rotational speed and variable torque, but not at the OOP line. This zone at speed of
470 rads−1 and torque ranged from 40 to 90 Nm is chosen for the actual control strategy because
it coincides with the generator optimum operating zone.

According to published researches, the engine generator component of series HEV should be
controlled to work at its best combined efficiency i.e. the OOP line to ensure a minimum fuel
consumption. But, this also depends on the control strategy defined for this car; the engine is
ON throughout this driving cycle and the battery outputs more power and depletes the SOC.

Since this rule based control method is proven to be effective to be used in a real time control,
an operation with the same power produced at the generator but at optimal working points is
studied. The results are presented in Figure 3.16 to show the same SOC evolution. Figure 3.17
shows the varying engine speed, the EG given power, and fuel consumption with and without
choosing the OOP line. Distribution of ICE working points along the optimal line is shown in
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Figure 3.17: Results comparison of shaft rotational speed, given power at the generator, and
integrated fuel consumption of the engine.

Figure 3.18.
In Figure 3.18, the concentration of the fuel consumption cannot be seen due to the superim-

posed operating points. So, it would be interesting to evaluate the fuel supply during start-up
or transient operation of the engine and the totality of the working points to be able to assess
its effect compared to its total fuel consumption.

The Figure 3.19 shows the tabulation in percentage of the fuel consumption for the actual
control parameters. The most recurrent point is at the 80 to 90 Nm and between 400 and 500
rads−1, with a fuel consumption of 1.368 kg, it represents 83% of the total 1.717 kg fuel used
throughout this driving cycle. During regenerative braking, the EG output power is fixed at 30
kW and represents 13% of the fuel used, with working points situated at torque of 70 to 80 Nm
and speed between 400 and 500 rads−1.

Fuel consumption during start-up and transient is insignificant compared to its overall con-
sumption for both cases. However in Figure 3.20, the most recurrent point shifts to speed between
500 and 600 rads−1 at 70 to 80 Nm torque with 78% of the total 1.652 kg fuel used. This con-
sumption is 3.8% less compared to its original control. In same proportion, 13% of fuel is used
during braking energy recovery, at the same speed range but it displaces its torque to a lower
load at 60 to 70 Nm.

Through simulation, an improvement of 1% of the range extender efficiencies at the most re-
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Figure 3.18: Engine operating points.

current points for both cases can reduce the fuel consumption by 26 g of each kilogram consumed
for the actual control parameters and 25 g for the optimal control. More details of the results
are presented in table 3.2.

Analysis on concentration of the fuel consumption on certain working points of the engine
indicates location of the recurrent operation that will result the biggest impact after refinement.
This approach can also be applied to species of pollutant emissions, by recognizing where the
highest volumes occur and then to reduce it accordingly.

This analysis method will help engineers to focus the optimisation at a specific engine working
points depending on the car utilisation. Moreover, in a hybrid system the engine operation is
usually concentrated on a particular zone like the OOP line in the studied case regardless the
type of the driving cycles. But this also depends on the control strategy and objective defined
for a system, because different system architecture or sizing will have its own constraints to be
respected. So, having a model that can show the system behavior close to the real system not
only is advantageous for its development in terms of cost and time, but it also can be used as a
tool to study and consider in advance any possible improvements of the system.
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3.5 Study to Replace Component of the Range Extender
by Fuel Cell

Environmental concerns has imposed a reduction of greenhouse gases emissions and energy
consumption limitation to ensure a stable energy supply. This has led to a rapid development of
alternative fuels and propulsion systems. Among all alternative drive systems, the fuel cell (FC)
electric propulsion system has the highest potential to compete with the internal combustion
engine [54, 53].

The fuel cell is one of the most promising converters able to use renewable energy. As it can
use hydrogen from renewable sources, it can be considered as green power. Fuel cell systems have
low emissions of nitrogen oxides and sulfur and at the same time they can operate with a very
low noise level. In addition, they can provide energy in a controlled way with higher efficiency
than a conventional power plant [120, 31].

Among the different existing technologies of fuel cells, the Proton Exchange Membrane (PEM)
can be considered a good alternative for the use in electric or hybrid vehicles in which high specific
power and rapid start-up at different temperatures have a significant importance [121, 122].

Recent development of fuel cell systems allows a significant reduction of weight and production
price of the fuel cell stack and subsystems [123, 124]. Hybridization of fuel cells with battery
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Figure 3.20: Percentage of the engine fuel consumption using the optimal control parameters.

or supercapacitors enables reduction of rated power of the stack and offers possibility to meet
power demand with a smaller battery pack [122, 125, 126, 127, 128]. Moreover, it can avoid
oxygen starvation and improve transient response due to a relatively slow dynamics of fuel cell
stack [129].

A proper control strategy allows the fuel cell to have stable operation and the battery and
or super capacitor to recover a maximum of energy from regenerative braking that can improve
the hydrogen economy [126, 130, 131].

The application of fuel cell systems in a vehicle is especially attractive in sectors like freight
and public transport because hydrogen storage place seems available and fuel cell system have a
limited refuelling infrastructure [132, 133]. For a race car application, refuelling of hydrogen can
be foreseen within the circuit infrastructure and there will be a room for the tanks in a single
pilot vehicle.

This work presents the way of replacing the range extender with the engine and generator
(EG) by a fuel cell range extender in the Noao racing car. The verified EMR model of this car
original system becomes the reference to develop EMR model of the new architecture. In the
first step, the same control strategy used in the original system are used to see the resulting
operation using fuel cell for this type of application. Driving cycles deduced from drive tests of
this car are used to analyse potentials of the fuel cell integration in this system.
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Table 3.2: Improvement of the fuel consumption
Control parameters Actual Optimal

Fuel consumption (kg) 1.717 1.652
Recurrent point, Speed (rad s−1) 400 - 500 500 - 600
Recurrent point, Torque (Nm) 80 - 90 70 - 80
Fuel at recurrent point (kg) 1.368 1.294
Fuel at recurrent point (%) 83 78
Fuel reduction (g) if ηICE +1% 45 41
Fuel reduction (%) if ηICE +1% 2.6 2.5

3.5.1 EMR Model Development for the Fuel Cell

In the original system, it is equipped with a range extender consisting of a three cylinders
direct-injection 1.0 L gasoline internal combustion engine (ICE) of 50 kW nominal power coupled
to a 54 kW permanent magnet synchronous generator and the hybridization is reassured using a
23 Ah Lithium-ion battery pack. It uses the parameters presented in table 7.1.

The ICE based range extender will be replaced by a PEM fuel cell system in order to build
a cleaner system and improve efficiency of the car. The vehicle original architecture is shown
in Figure 7.3. The modified fuel cell/battery vehicle architecture is presented in Figure 3.21.
Unlike the ICE/battery series hybrid system, which requires a permanent magnet synchronous
generator to convert mechanical power from the ICE into electric power, the new design can
deliver electric power directly to the power converter, thus reduces power losses due to power
conversion.

As can be observed in Figure 7.6 and Figure 3.22, the traction part of this system are similar.
But from the battery down to the secondary energy source i.e the charging part, the AC/DC
rectifier will be replaced by a DC/DC converter and the fuel cell stack is simply taken as the
charging source replacing the combined EG. The power supplied by the range extender is used
to assist the propulsion or to recharge the battery.

Traction Part

The car environment becomes the mechanical source (MS) that yields the resistance forces
Fres of the car. The force to accelerate the vehicle and the rotating parts inside the vehicle is
equal to the available driving force Fd generated by the prime mover to overcome Fres ( 3.53).

Mv
d

dt
V = Fd − (Fa + Fr + Fg) (3.53)
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Mv = mv − mEG + mF C (3.54)

Note that Mv is the total mass of the vehicle ( 3.54), and the fuel cell system weight mF C

depends on the selected maximum power of the fuel cell which will be used for the retrofit
solution. The engine and generator weight, mEG is directly proportional to its maximum power.
The proportional factor is 2.0 kgkW−1 according to [134].

This model has been validated through experiments performed at the Nevers Magny Cours
Grand Prix Racing Circuit as depicted in Figure 3.15 for the traction part. For this driving
schedule MC1, the maximum velocity is 42 ms−1 for a maximum prime mover power of 82 kW.

Three driving cycles will be used in this study (Figure 3.23), the first driving cycle MC1 and
the second driving cycle MC2 are conducted at the same Grand Prix circuit but with a higher
given power for MC2. The third driving cycle, MCsp is a driving schedule obtained from drive
test conducted at a smaller piste at this Magny Cours site.
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Figure 3.23: Driving cycles obtained from drive test of the racing car used for the case study;
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Converter Model

In the original system, a three-phase full bridge controllable rectifier is used to adapt the
output voltage to the bus voltage. In the new system, the fuel cell output is converted by a
DC/DC power converter in order to supply FC energy to the DC bus. This power converter will
have the same voltage level as the rectifier. The amplitude of the output will be in function of
the input amplitude and modulation scalar mconv ( 3.55) and ( 3.56).

uconv = mconvVbat (3.55)

iconv = mconviF C (3.56)

Lithium-Ion Battery Model

The battery model is considered as an electrical source for the traction part and is assumed to
be the equivalent electrical source (ESeq) to the charge part [110]. Thus, the battery current ibat

is considered as the total current entering or exiting the battery by inverter iinv and converter
iconv ( 3.57).
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ibat = iinv − iconv (3.57)

Fuel Cell Stack Model

For vehicle applications, the polymer electrolyte membrane (PEM) fuel cell, which operates
at high temperatures, has proved the most attractive option [53, 122, 127, 126]. In this system,
the membrane works both as a gas separator and electrolyte. This allows the hydrogen fuel
side to react with the oxidizer (oxygen-air) in a controlled manner and to produce power at the
electrodes, through the mediation of immobilized electro-catalysts bonded to the membrane.

This membrane-electrode assembly is referred to by the acronym MEA. Each MEA is in-
terconnected via bipolar plate which performs several functions including gas distribution, heat
dissipation and electrode current collection [126]. Furthermore, multiple single cells are con-
nected in series to form stack assemblies with higher voltage outputs. Those stacks can provide
a part of the energy needed by the vehicle through its controller.

The fuel cell chosen for the design is the proton exchange membrane (PEM) fuel cell that
operates at 80◦C [135]. As a design starting point, the fuel cell maximum power is set at 50 kW.
In automobile application, the weight to power ratio of fuel cell system varies from 1 kgkW−1

[123] to 3.7 kgkW−1 [134]. Therefore, in this study the mass of the vehicle is kept the same as in
the original system which means that in order to obtain a similar required power, the mass of the
fuel cell stack is equal to the replaced EG assembly with a weight to power ratio of 2 kgkW−1.

The fuel cell stack voltage VF C (V) is obtained by ( 3.58). For a given type of cell, the
resistance Rfc (Ω) is constant at a constant current operating conditions as well as specific
pressure, temperature, and humidity. The variable V0 (V) represents the open circuit voltage,
or the voltage at which the linearized curve intersects the abscissa at ifc (A), the normalized
voltage at no-current state. The active surface per cell Afc is 0.137 m2. And the number of cells
Ncell needed to form the fuel stack in series is 120 cells.

VF C = NcellVfc = Ncell(V0 − RfcAfciF C) (3.58)

The nominal voltage of the fuel cell stack is 65 V at maximum power. This is shown in the
polarisation curve in Figure 3.24. As a retrofit solution for the given application, the fuel cell
replaces the EG and acts as power assist to help the battery to deliver propulsion power.

iF C =
ṁH22F

MH2Ncell
(3.59)

Current iF C (A) is deduced from the reference hydrogen mass ṁH2 in kgs−1 calculated
through charge management (CM) of the system ( 3.59), with MH2 (kgmol−1) is the hydrogen
mass molar and F (Cmol−1) the Faraday constant.

101



0 100 200 300 400 500 600 700 800 900
60

70

80

90

100

110

120

Current (A)

V
ol

ta
ge

 (V
)

Polarization curve
Vfc vs Ifc MC1

Vfc vs Ifc MC2

Vfc vs Ifc MCsp

Figure 3.24: Polarization curve of the fuel cell stack and its operation points using the defined
control strategy for the studied driving cycles.

3.5.2 Control Structure

Inversion Based Control

Using IBC method, each EMR elements of the tuning chain are inversed to deduce the control
chain [110, 63]. The converter blocks can be simply inverted but a criterion input is required for
inversion of the coupling devices [109]. Elements described by integral relationship such as the
chassis, the electric motor accumulator, and the shaft require a controller C to invert them.

The continuous modulation functions m need measurement of the battery voltage Vbat ( 3.48),
( 3.60), and are converted to discrete variables using a pulse width modulation (PWM) in order
to define commutation orders of the switches [117, 109].

mconv =
uconv_ref

Vbat
(3.60)

The inversion of the other components like transmission, wheel, and electric motor have been
discussed before. The control of the wheel during braking depends on the regenerative braking
system limits. The electric motor is controlled by field oriented control (FOC) method and needs
measurement of the reference rotor position θref .

Charge Management

In order to minimise activation loss and increase current limit for the same voltage the fuel
cell is supposed to be heated to its operating temperature of 80◦C before the start of each race
[120, 136, 135]. At the same time, battery initial SOC is fixed at 0.9 and is expected to deplete
to a final SOC of 0.3 after a number of laps by the end of a race.

Fuel cells have the best efficiency at partial load [136]. The aim of the control strategy is to
distribute power so that the currents and voltages of the system operate within their safe limit
and comply to the imposed race limits.
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Due to its limited cycling capability, the fuel cell is less solicited during transient operations
[54, 137] and during a race the fuel cell will be put preferentially in nominal condition to avoid
start-up problems [133].

The charging part of the system considers the traction power needed at wheel and the es-
timated battery SOC as parameters to determine the reference recharging power for the range
extender which rules are implemented via lookup tables. Like in its original system in Fig-
ure 7.6, the same parameter of TEM , SOC, and Vcar are taken as the input of the fuel cell charge
management.

3.5.3 Results and Discussions

Results Analysis

The simulation results for the three driving cycles for the voltage of the fuel cell is shown in
Figure 3.25 and its operation points distribution on the polarization curve is given in Figure 3.24.
The fuel cell respected the voltage limits and operates mostly around 75 V for all three driving
cycles.

The power generated in the fuel cell PF C compared to the reference power Pref and the FC
output power PF Cout is presented in Figure 3.26 showing up to 76 kW PH2 for a 40 kW PF Cout.
The fuel cell stack contains heat losses and losses due to compressor utilisation, thus causing a
big difference between the generated power by the fuel cell and the power produced at the power
converter.

The SOC evolutions are presented in Figure 3.27 with initial SOC of 0.54. SOC depletion
MC1 EG belongs to the original system with EG. MC1 is about four laps of the Magny Cours
racing circuit and is only a part of an entire race. For virtually the same expected SOC depletion
for this racing car, the fuel cell hybrid can complete 26 laps, an extra of 10 laps compared to the
original system with only 16 laps for a 72.20 km autonomy.

Comparison of results between the system with the engine and generator and the system with
the fuel cell are documented in table 3.3. The MC2 has the highest velocity thus a highest energy
consumption, while MCsp consumes the lowest energy. This is not only due to the duration of
the driving schedule, but also because of the consumption rate (Figure 3.27) as revealed by the
value of the final SOC.

ηsysEG =
∫

Edrive∫
Ebat + mf LHVf

(3.61)

ηsysF C =
∫

Edrive∫
Ebat + mH2LHVH2

(3.62)

Equations ( 3.61) and ( 3.62) are used to determine the efficiency of the system. The lower
heating value of gasoline, LHVf is assumed to be 44 MJkg−1 and 120 MJkg−1 for the LHVH2
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Table 3.3: Vehicle system gain if hybridized with fuel cell

MC1 MC2 MCsp

Maximum velocity (ms−1) 41.61 48.04 42.62
Mean velocity (ms−1) 30.08 30.90 26.13
Distance (km) 18.05 21.10 12.39
Driving energy (MJ) 24.36 32.11 16.16
Distance for 1 hour (km) 108.30 110.89 93.90

Engine and Generator
Consumption battery (MJ) 10.43 14.80 4.79
Consumption fuel (kg) 1.71 1.93 1.31
System efficiency ( - ) 0.28 0.32 0.26
SOC final ( - ) 0.39 0.33 0.47
Autonomy if SOC 0.9 to 0.3 (km) 72.20 60.29 106.20
IMC ( - ) 38 34 39

Fuel Cell
Consumption battery (MJ) 6.35 10.72 1.81
Consumption hydrogen (kg) 0.34 0.40 0.26
System efficiency ( - ) 0.52 0.55 0.49
SOC final ( - ) 0.45 0.35 0.51
Autonomy if SOC 0.9 to 0.3 (km) 120.33 64.92 247.80
IMC ( - ) 69 59 77

of hydrogen [136]. Consequently, the hybridization with fuel cell is proven to be more efficient.
From simulation, the efficiencies of the EG based system are less than 32% whereas the efficiencies
for the fuel cell based system are more than 49% depending on the driving cycles.

The system efficiency is better when the system uses more energy from the battery. However,
this will cause a shorter autonomy for the intended SOC evolution from 0.9 to 0.3. And, the
improvement of the driving range is less for the MC2 if the system range extender is changed to
fuel cell.

Maybe, this is also because the defined control strategy is only optimised for the MC1 driving
cycle, makes it suitable for this driving profile and less for the other driving cycles in terms of
consumption, efficiency, and autonomy range. If possible, in some cases the control scheme is
adapted to the type of a driving cycle or just on a specific driving cycle to ensure its optimal
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Figure 3.25: Voltage of the fuel cell stack in the racing car system for MC1, MC2, and MCsp
driving cycles.

operation.
In the next section, improvements of the new architecture that will only concerns the MC1

cycle are further studied for a better integration of the new system.

3.5.4 System Improvements

Heure de Magny Cours

The Heure de Magny-Cours is a challenge open to all electric and hybrid vehicle with at least
two seats. The challenge is to run the biggest possible distance during one hour at the Magny-
Cours Grand Prix Racing track, a racing track with a length of 4411 m used for Formula 1 races.
After the completion of the challenge, the Magny-Cours Index of the vehicle is calculated using
( 3.63).

IMC =
Vm · D

y + z
(3.63)

Vm is the mean velocity in ms−1, with D the distance covered during the race in km, y

the chemical energy consumed during the race in MJ, and z the electrical energy consumed
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Figure 3.26: Comparison between the demanded reference power and the fuel cell power for
MC1, MC2, and MCsp driving cycles.

during the race in MJ. The Noao in its original configuration would be able to obtain an (Indice
Magny-Cours) IMC of 38.

Magny Cours Index

Based on the results of the simulation of the Noao with a fuel cell instead of the EG based
range extender, considering the same MC1 driving performances, the car would be able to drive
a distance of 26 laps. This new system reduces the SOC from 0.54 down to 0.45 and by using
0.34 kg hydrogen. This leads to a potential IMC of 69.

This is an increase of IMC of 31 points compared to the EG based solution, but it can
be expected to have a further increase of IMC as the retrofit allows reducing weight and thus
provides most probably a considerable gain in performance.

Weight Reduction

A fuel cell system with a 50 kW peak power for an automobile application is big, and its
initial and operational cost will be expensive. Its supervisory control also will be very complex
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Figure 3.27: SOC evolution of the battery by using the fuel cell stack as range extender in the
racing car system for MC1, MC2, and MCsp driving cycles.

Table 3.4: Study on the suitable fuel cell peak power

Peak power (kW) 50 45 40 35
FC stack mass (kg) 100 90 80 70
Number of cell ( - ) 120 108 96 84

System efficiency ( - ) 0.517 0.497 0.468 0.423
SOC final ( - ) 0.449 0.450 0.452 0.455
Autonomy if SOC 0.9 to 0.3 (km) 120 121 123 127

in order to put this system into the car. Since a FC system has a better efficiency, a peak power
reduction that can lead to the weight reduction of this system is studied. This study concerns
only the FC stack with the number of cells is reduced with regard to the resulting peak power.

The analysis is done by reducing the peak power from the preliminary power of 50 kW down
to 35 kW. For each designs, the same reference race driving cycle MC1 and the same presented
charge management are simulated.

The subcomponents size to form the fuel cell system package is considered identical. By refer-
ring to table 3.4, the system efficiency and final SOC will be higher in function of the increasing
peak power. And since the control parameters are kept the same, there are no significant gain
in the autonomy range for the reduced FC rated power.

In Figure 3.28, the peak power of the fuel cell stack down to 40 kW can be adapted for the
given application. Then, the fuel cell voltage will be saturated and reach its limits under this
value. An adaptation in the control parameters can push these limits to enable integration of a
lower FC rated power, which is not studied in this study. Thus, for the moment in this study
case a 40 kW fuel cell stack can be chosen to replace the EG based 50 kW range extender.
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Figure 3.28: Operation points of the fuel cell stack using the same control strategy for the MC1
driving cycle.

3.6 Conclusion

A complete series hybrid racing car system is modeled using EMR and IBC. Comparison
with simulation and experimental results shows that the system is correctly represented with
regard to the electric traction motor, the battery system, the internal combustion engine and
the electric generator, creating a valuable tool to further develop this system. Furthermore, the
model can be used as baseline to develop a better control strategy for this system using a rule
based approaches as well as optimisation approaches. Various improvements can be studied and
effectuated by utilizing this method and model, like an optimisation of ICE working points to
reduce consumption or hazardous emissions, an enhancement of the design parameters, or to
design a better management system for the battery or the electrical machines.

This model is then used to further develop this system for a new architecture with a fuel cell
stack at the charging part. Three race driving cycles are used to test potentials of the fuel cell
integration. It can be concluded that with the same amount of requested power from the range
extender, a hybrid fuel cell/battery race car is more efficient than the electric car hybridized
using an EG based range extender. Due to its higher efficiency, fuel cell will provide a longer
autonomy for the equivalent peak power of engine. The potential to improve the IMC from 38 to
69 that can be obtained by the vehicle due to better efficiency is shown. But, to avoid overdesign
and to have a lower operational cost and weight, a fuel cell system with 40 kW rated power will
fulfill the demands towards this specific racing car application. Even though the obtained results
are not yet accurate, this model and approach to deduce the control scheme can be used at the
first stage of component design and sizing of the fuel cell in the system.
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A person who never made a mistake never tried anything new.

- Albert Einstein

There is only one way to avoid criticism: do nothing, say nothing, and be nothing.

- Aristotle



Chapter 4

Optimal Adaptive Control
Strategy for a Racing Series
Hybrid Car

4.1 Introduction

In the previous chapter, the vehicle system models are validated with the experiment results
and some improvements can be effectuated to the car system to obtain a better efficiency. In
this chapter, the optimizations will be focused on the control strategy to better manage energies
available for the system.

The control strategy for HEV systems can be based on rule based method or optimization
method. The rule based (RB) power management strategy is based on engineering intuition and
simple analysis on component efficiency tables or charts [42, 138, 68]. It is robust and has less
computational load [23, 15, 3, 4, 16]. The RB control strategy is easy to implement for a real-time
supervisory control of power flow in a hybrid drive-train [8, 68, 23, 15, 4]. It can achieve near
optimal solution, but cannot be easily implemented to another vehicle or driving cycle due to
lack of formal optimization and generalization, thus may fail to fully exploit potentials of HEV
architecture [23, 4, 7, 21].

The optimization based control methods can be local, global, real-time, parameter or thresh-
old optimization. The optimization method can provide generality and reduce heavy tuning of
control parameters [48]. Its task is to minimize a cost function in real-time or offline based on
the vehicle and component parameters, as well as the performance expectations of the vehicle
[21].

Real-time optimization method minimizes a cost function at each instant that depends only
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upon the system variables at the current time which have been developed using the system’s
past information. It has limits on knowledge of future driving conditions and the electrical path
self-sustainability causing the solution to be not global optimal [48, 3, 21]. The common method
is the equivalence consumption minimization strategy (ECMS) [68, 14, 9]. The ECMS is mostly
utilized because it only relies on the equivalent factor (EF) to solve the optimization problem
[9].

Global optimization approach can find a global optimum solution over a fixed driving cycle
and known future driving conditions to determine power distribution of each system, it is un-
suitable for a real-time vehicle control [48, 3, 139, 25]. It requires heavy computation and is
usually used for offline simulation applications as a design tool to analyze, assess, and adjust
other control strategies for online implementation [3, 14, 21]. The example of this method is
Dynamic Programming (DP), Genetic Algorithm (GA), and Direct Algorithm.

In this work, DP optimization method is chosen to optimize the control strategy for this Noao
car. This method has been widely utilized to optimize energy management of hybrid vehicles,
and this time it will be used to optimize control strategy of a racing type vehicle system. The
difference is the driving schedule, it is obtained from experiments carried out at the Magny-
Cours racing circuit in France. A global optimization can be done because a precise specification
of all components is available. DP is chosen over other approaches because it has established a
reputation as the benchmark of other control strategies with its global optimum solution [8, 4, 4].
One of the interest of this study is to know how to implement this approach offline and then to
adapt it for a real-time application in order to optimize the system power distribution using a
predicted driving cycle.

4.2 Optimisation Using Dynamic Programming

DP can solve the optimal control of non-linear, time-variant, constrained, discrete time ap-
proximations of continuous-time dynamic models of HEV. It can achieve absolute optimal fuel
consumption for different system configurations, but it needs all of the future conditions of inputs
to be known a priori [139, 68].

DP is not implementable in real vehicle due to the preview nature and heavy computation
requirement, therefore is difficult to be applied in real time control. But it can be used for offline
simulations and to compare performance of a real time controller [8, 4, 26]. Stochastic DP has
been implemented by Opila et al. [56] and Moura et al. [76] to be used in a real vehicle by
selecting a finite number of sampled power demand defined using Markov-chain model.

The optimization of this car system has been included in our work to split power between
the power sources using dynamic programming (DP) approach [140] and will be used to adjust
control thresholds of the car.
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4.2.1 Bellman’s Principle of Optimality

In [141], Richard Bellman describes the Principle of Optimality: An optimal policy has the
property that whatever the initial state and initial decisions are, the remaining decisions must
constitute an optimal policy with regard to the state resulting from the first decisions.

Setting aside all future decisions, the first decision will be considered separately. The problem
will be equivalent to ( 4.1), if the future decisions are in brackets on the right.

max
a0

{
F (x0, a0) + β

[
max

{at}∞
t=1

∞∑
t=1

βt−1F (xt, at)

]}
(4.1)

Subjected to constraints ( 4.2):

a0 ∈ Γ(x0), x1 = T (x0, a0), at ∈ Γ(xt), xt+1 = T (xt, at), ∀t ≥ 1 (4.2)

For the Bellman equation, the problem is taken as a recursive definition of the value function
V (x) ( 4.3). The optimal action a(x) is obtained by finding the unknown value function of V (x).
V and a are in function of the state x.

V (x0) = max
a0

{F (x0, a0) + βV (x1)} (4.3)

It is subjected to constraints ( 4.4):

a0 ∈ Γ(x0), x1 = T (x0, a0) (4.4)

In order to solve the optimal control problem, the Bellman equation has been formulated for
four cases: the discrete deterministic process, the discrete stochastic case, the infinite stochastic
process, and the continuous deterministic process.

In HEV system, the optimal solution can be obtained for a known priori circumstances of a
vehicle using DP. The solution is either used as a benchmark to compare an optimality of other
control or as a reference to adjust an optimal control.

4.2.2 Analysis on the Actual Control Strategy

For this Noao car, the control target is to deplete the state of charge (SOC) of the battery
from its high initial SOC at the start of the race and reach a low limit of final SOC after a
number of laps at the end of a race.

A control method suitable for a plug-in HEV is a depletion of the battery charge from its
higher limit to its lower limit throughout a driving cycle to achieve the best efficiency [4]. For
a track competition car, the driving cycle will be the circuit driving schedule after a number of
laps. The control strategy of this car consists of always putting the engine in mode to assist the
car propulsion during races for longer autonomy.
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From the previous chapter, as can be observed from the vehicle architecture in Figure 7.3, the
generator transforms mechanical energy from the engine to electricity to recharge the battery or
assist the motor for propulsion. The traction load torque only concerns electric motor torque,
therefore the EG set can operate at its optimal working points at all times.

Also, the range extender controller has three subsystems to determine the rotational speed
and the torque reference. Maybe, one subsystem can be added to the controller that will be a
prediction component to determine the best thresholds for each type of driving cycle for this car
system.

4.2.3 Dynamic Programming Problem Formulation

The objective of the optimization is to split power of both power sources in order to minimize
the system power losses and improve energy efficiency through regenerative braking and power
assist. The results are then utilized to adjust the control parameters to achieve the objective
and improve the car endurance and enhance its performance.

The DP used for this car is based on the problem formulation discussed by Koot et al. [23],
Brahma et al. [37], and Perez et al. [95] for a series HEV architecture. The power request at
time t is the sum of both power sources ( 4.6), the power flow from the engine/generator and the
power flow of the ESS. The ESS power is positive if the power flowing away from the ESS. The
requested power here is defined as the amount of power needed at the electic motor.

Through optimization using quasi-static model formulated for this series hybrid car, the
system is optimised to achieve minimum system losses, J ( 4.5).

J =
∫ T

0

Pfuel

PEG
dt +

∫ T

0

Pbat

PESS
dt (4.5)

The system optimization is subjected to its physical constraints, ( 4.6) to ( 4.8). The maximum
power that can be delivered by the range extender is PEGmax . PESSmin is the limit of the power
recuperation and PESSmax

is the maximum power limitation of the battery.

PEM (t) = PESS(t) + PEG(t) (4.6)

0 ≤ PEG(t) ≤ PEGmax
∀t ε [0, T ] (4.7)

PESSmin
≤ PEM (t) − PEG(t) ≤ PESSmax

∀t ε [0, T ] (4.8)

The time-variant model takes battery SOC as its state variable x at each instance k and at
power split ratio u. The initial state x0 is the initial SOC and final SOC will be taken as the
final state xN .
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The dynamic programming model is implemented in Matlab function developed by [89] and
is modified to improve the power split factor, uk applied for this system.

Battery SOC, xk ( 4.9) ( 4.10) is the state variable at instance k, forms the time-variant model
that includes the known variables of the driving cycle. N is the number of the time steps Ts,
which defines LN , the length of the problem ( 4.11).

Throughout this paper, the initial and final state variables x0 and xN will be changed ac-
cording to optimizations carry out for this car.

xk+1 = fk(xk, uk) + xk k = 0, 1, ..., N − 1 (4.9)

xk ε [x0, xN ] (4.10)

N =
LN

Ts
+ 1 (4.11)

Optimization of the Actual Control

The rule based control strategy method implemented in the actual car decides the amount of
power that will be delivered by the battery and generated by the EG set to assist the propulsion
during traction and help recharging the battery during regenerative braking as can be observed in
Figure 4.1. For this experiment, the SOC decreases from 0.54 to 0.37 after four laps of the circuit
for the duration of 610 seconds. It chooses the operational points in function of the requested
power to operate the EG around its optimal operating region.

DP optimization is carried out for the same driving cycle to see improvement that can be
made on the system energy efficiency. It is because, it is possible for the EG to help recharging
the battery or to be idle during regenerative braking phase. The compared values are presented
in table 4.1.
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Figure 4.1: Magny Cours race driving cycle, MC1.
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Actual RB Method DP DP Endurance

SOC Initial 0.54 0.54 0.54
SOC Final 0.37 0.37 0.42
Σ Preq (MJ) 32.448 32.448 32.448
Σ PEG (MJ) 20.894 20.513 22.790
Σ Pfuel (MJ) 84.194 76.099 84.166
Average ηEG ( - ) 0.2482 0.2696 0.2708
Σ mfuel (kg) 1.914 1.729 1.913
Σ PESS (MJ) 11.554 11.935 9.6577
Σ Pbat (MJ) 11.599 11.769 9.6439
Average ηESS ( - ) 0.9961 1.0141 1.0014
Average ηsystem ( - ) 0.3387 0.3693 0.3459

Table 4.1: Results comparison of DP optimization for the MC1 driving cycle.

Optimization to Obtain a Longer Endurance

As stated before, the battery charge is expected to decrease to its lower limit by the end
of a target number of laps. And the existing defined control parameters can achieve 14 laps of
the circuit with SOC depletion from 0.9 to 0.3, assuming the depletion is constant between this
range.

The endurance of the car depends on the distance it can cover before the SOC falls to 0.3.
Considering the same assumption, the car is imposed to complete 20 laps in this DP optimization
to see its feasibility for a longer autonomy range. So, using the same driving cycle the state
constraint which is the final SOC value is changed to 0.42.

Optimization for a Higher Performance

The same approach is used to enhance the performance of this car by using a more aggressive
driving cycle for the same driving circuit. It is expected that it will have higher power consump-
tion, rapid battery discharge, and cause more losses. But, the vehicle can arrive in a shorter
time at the finish line which is essential for a racing car.

Experimental data obtained for this case study has higher limits of maximum power given
by the power sources of the system. It results in superior velocity than the previous power
configuration because it has more available power for acceleration as can be observed in Figure 4.2.

SOC depletes from 0.38 to 0.09 in 580 seconds to complete four laps of the circuit for this
experiment, which means only eight circuit turns for the targeted 0.9 to 0.3 SOC diminution.
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Figure 4.2: Magny Cours more aggressive race driving cycle, MC2.

After that, a higher SOC lower limit is set to see the maximum number of laps that can be
achieved for this power configuration. The results of this case study are presented in table 4.2.

Actual RB Method DP Performance Optimized Maximum

SOC Initial 0.38 0.38 0.38
SOC Final 0.09 0.09 0.14
Σ Preq (MJ) 38.342 38.342 38.342
Σ PEG (MJ) 19.276 17.829 21.498
Σ Pfuel (MJ) 72.600 66.483 79.377
Average ηEG ( - ) 0.2655 0.2682 0.2708
Σ mfuel (kg) 1.650 1.511 1.804
Σ PESS (MJ) 19.136 20.514 16.845
Σ Pbat (MJ) 19.063 19.354 16.073
Average ηESS ( - ) 0.9962 1.0600 1.0480
Average ηsystem ( - ) 0.4183 0.4467 0.4017

Table 4.2: Results comparison of DP optimization for MC2, a more aggressive drving cycle of
MC1.

4.2.4 Results and Discussions

Three study cases are highlighted in order to optimize the racing car system. As can be seen
in table 4.1 and table 4.2, DP approach enables the system to have a lower fuel consumption and
a better system efficiency compared to its actual utilized control parameters.
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Figure 4.3: Optimal operating points on the combined engine and generator efficiency map.

Refinement of the actual system gives result as can be observed in Figure 4.4. For the same
SOC trajectory, at the beginning of the driving cycle, DP optimization selects to use more power
from EG, and then reduces its consumption to utilize more energy from the ESS to finish the
rest of the cycle. As demonstrated in table 4.1, we can see that the optimization results in lower
fuel consumption, enhanced fuel power efficiency, and improved system efficiency. Recuperated
energy during regenerative braking has improve the ESS average efficiency which is simply taken
as the total ESS power divided by the total battery power of the system.

The second study case is to improve the vehicle endurance. The results of both power profiles
are presented in Figure 4.5 and the considered values are stated in table 4.1. As can be analyzed,
the EG outputs more power to compensate battery energy utilization and choose to generate
power during deceleration phase to help recharging the battery.

The Figure 4.8 shows the distribution points of the EG power in function of the power request
compared between the actual RB control, DP optimization, and DP optimization for longer
endurance. In the RB method, the points are concentrated at 40 kW EG power when the power
request for traction is more than 60 kW. But for DP, the threshold is at 40 kW power request.

The EG power of RB goes to 0 kW when the power request is in the range of -20 kW to
20 kW, and then scattered between 15 kW to 35 kW EG power during regenerative braking.
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Figure 4.4: DP optimisation of the MC1 driving cycle.

However during this phase, DP chooses to help recharging the battery at 35 kW.
In this chart Figure 4.8, we cannot see the difference between the DP solution and the DP

endurance, but we can study it further in Figure 4.4 and Figure 4.5. In the future these results
will be used to recalibrate the control parameters of the electric generation path i.e EG power
of the racing car for the regular (MC1) driving cycleof the circuit.

As shown in table 4.2, as expected in the last case study, the total power request is higher
for this aggressive driving cycle than in its regular driving cycle. The car can arrive about 7.5
seconds earlier for each laps but it decreases the battery charge rapidly and causing important
energy losses in the power train. In the real car, the system prefers to utilize energy from the
battery to achieve a better performance.

Through optimization, DP method can improve the system overall efficiency during this
condition. The fuel consumption is lower because it chooses to limit the EG power production
as in Figure 4.6 to give a way for the battery to supply a slightly more power for propulsion for
the same SOC trajectory like in the experiment.

In order to determine the maximum number of turns that can be completed by using this
power configuration, the final SOC is set at 0.26. But, it turns out to be unattainable due
to limitations and physical constraints of the system. And it gives 0.14 as the final SOC value
demonstrated in Figure 4.7 which means a shorter autonomy range for the optimal SOC depletion.
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Figure 4.5: DP optimisation of the MC1 driving cycle for a longer autonomy.

This corresponds to only 10 laps of the circuit even if the EG tries to give a maximum power to
recharge the battery during regenerative braking phase.

For the moment, even though this method is not applicable in the real vehicle, this approach
can be the reference to set the parameters of the power sources to boost the performance of the
vehicle optimally.

The simulations of the case studies are performed on a 32-bit Intel(R) Pentium Dual CPU
1.8 GHz with 2 GB RAM. The computational time for the calculation varies from 53 s to 65 s to
analyse about 20 millions points, which mean 330000 potential points per seconds to solve these
problems.

In the future, it is possible to consider the implementation of this method online by using
the results obtained in this study. Because the driving cycle can be recognized in advance given
the limitations determined for the power sources. The repeatable driving schedule during a
race allows a segmentation of the optimization that can reduce the computational burden of the
calculation. And the SOC trajectory is predictable through an offline optimization for the whole
period of any race. The SOC evolution can be checked every time the car passes the starting
point of the racing circuit and update its data for the next laps.

However, in this moment the DP for the online control of the actual control is still complicated
to implement because of the computational burden of the DP. In the control unit, other inputs
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Figure 4.6: DP optimisation of the MC2, a more aggresive driving cycle of MC1.

from measurement are more critical to be supervised and need a fast time response. Even if the
capacity of the computer is enough, DP deployment is still questionable in terms of the reliability
of the obtained values and the rapidity of the calculation.

4.2.5 Endurance and Performance Limits

The feasibility study of DP optimization in function of number of laps is shown in Figure 4.9.
It considers 0.9 as initial SOC and changes the target final SOC according to the number of
laps to be completed for the optimal SOC depletion. As can be seen from the illustrations, the
optimization for the normal driving cycle is feasible in the range of 6 to 18 laps and from 5 to 10
laps for the aggressive driving cycle. Below these ranges, it is better for the system to operate
in electric only mode for better efficiency. The targeted battery discharge is unattainable above
these ranges, except if the constraints are shifted.

On the range of optimal hybrid drive, the efficiency of the system decreases as the number
of laps increases, and the fuel consumption increases in function of the distance. And it can be
stated that more EG power will be needed to assist the propulsion to complete more laps, that
causing the drop of overall efficiency for this system.

These limits will be used as reference to design an optimal adaptive control for this vehicle
in function of the distance it has to cover.
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Figure 4.7: DP optimisation of the MC2, a more aggresive driving cycle of MC1 for a longer
autonomy.

4.3 Racing Car Real-Time Adaptive Control

From this point on, the optimization and its study for real-time control will only concern the
car operation of the first driving cycle on the Grand Prix racing circuit, MC1. The comparison
between data from the experiment, DP optimization results, and the model with the modified
control thresholds are presented in table 4.3 and in Figure 4.10.

In the actual car, a uniform EG power repartition is imposed along the battery SOC evolution
with a slight augmentation in function of SOC depletion as described in Figure 4.10. About half
of the power request is supplied by the EG with a threshold of 20 kW to 39 kW during braking
and accelerating respectively. Through DP optimization, the EG power is chosen to be 40 kW
maximum when the SOC is more than 0.5, and only 35 kW when the SOC drops under 0.5 with
sometimes EG power is below 20 kW during braking in order to improve the system efficiency.
This choice is probably caused by the resistance of the battery, different in function of SOC and
different during recharge and discharge of the battery.

In table 4.3, average EG efficiency, ηEG is simply taken as total power delivered at electric
motor by the range extender PEG divided by total theoretical power produced by the fuel Pfuel,
composed of the fuel indicated efficiency ηi, inefficiency due to engine friction, and the generator
efficiency ηG. Same assumption is made to the average ESS efficiency, ηESS , obtained by simply
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Figure 4.8: EG power in function of the power request.

calculating PESS/Pbat. ESS component is comprise of the battery and the power converter. This
value becomes more than 1 because the battery absorbs the regenerative power and EG power
during braking phase. For the system efficiency, it is calculated as the sum of powers to the
electric motor divided by the sum of powers provided by battery, fuel, and regenerative braking.

4.3.1 Optimal Adaptive Method

Before applying the modification of the control threshold onto the real vehicle, the adjusted
parameters are simulated in the model according to the results obtained by DP. Interpretation of
the results and simplification have to be done in order to be able to implement the new parameters
in function of the requested power and SOC. Therefore from observation of the requested power
from regenerative braking to traction, if SOC is more than 0.5 the EG should deliver from 30
kW to 40 kW, and then 30 kW to 35 kW if SOC is less than 0.5.

By simulation using the interpreted DP results in the model, modification of the thresholds
will cause a higher fuel consumption of 1.88 kg but a better system efficiency (0.3467) as can be
observed in table 4.3. This is because more power from the EG will be delivered to the battery
during regenerative braking, and SOC depletes slower to 0.4, whereas it was 0.37 before in the
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existed control strategy. No specific pattern can be deduced from DP for the EG power when it
is below 20 kW in function of the requested power or SOC.

The fuel consumption is lower, 1.88 kg compared to its actual control which consumes 1.914
kg, but less optimal than that one calculated using DP which is 1.729 kg. Nevertheless, the
driving range of this car using the adjusted parameter will be longer for a targeted SOC drop
from 0.9 to 0.3. Battery current comparison show nearly the same evolution for the three cases,
all are within the currents limits defined for this battery.

This study shows how to optimise the system operation by interpreting results from DP for a
fixed driving cycle with known future condition. Even if the exact future conditions are known,
DP results cannot be directly applied for the real-time controller of the car to split power because
a slight change of the car operation may cause the whole system to be not optimal.

In this study, the optimization is performed only on one driving cycle. It is expected that if it
is to be applied on the smaller circuit with the same power limit, the system operation will be less
efficient. The control strategy has to be tested on different driving cycles, and prediction method
that will be discussed next will allow creation of a multitude driving schedules for different racing
tracks and performances. Finally, the decision will be whether to use a specifically designed
control strategy for a particular case or to design an optimal control for all driving cycles.

Actual DP Adjusted
RB method optimization parameters

SOC Initial 0.54 0.54 0.54
SOC Final 0.37 0.37 0.40
Σ PEM (MWs) 32.448 32.448 32.795
Σ PEG (MWs) 20.894 20.513 20.320
Σ Pfuel (MWs) 84.194 76.099 82.710
Σ mfuel (kg) 1.914 1.729 1.880
Average ηEG (-) 0.2484 0.2696 0.2457
Σ PESS (MWs) 11.554 11.935 12.475
Σ Pbat (MWs) 11.599 11.769 11.889
Average ηESS (-) 0.9961 1.0141 1.0493
Average ηsystem (-) 0.3387 0.3693 0.3467

Table 4.3: Results comparison of the three control strategies: Actual RB method, DP optimiza-
tion, and the adjusted parameters for real-time control
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Figure 4.10: Comparison of SOC evolution and the systems power distribution for the experi-
ment, optimization using DP, and the adjusted controller.

4.4 Driving Cycles Prediction

In a simulation, driving cycle play an important role in the optimization of a vehicle control
algorithm. Besides of standard driving cycles, a multitude of driving cycles can be created using
a cycle generator based on experiment data and statistics method [142], by developing a traffic
flow model [4], adding the standard driving cycles with topographic profiles [68], or collecting
the real world traffic data with onboard electronic equipments [143].

Eventhough the utilisation of driving profile known a priori does not represent a real driving
situations, this non causal optimal solution can be used as benchmarks of the causal solution in
development [35]. Studies prove that it is possible to integrate previewed elements as controller
inputs via vehicle wireless technology [4], historical and on-line traffic information [23, 92, 4], or
driving situation identifier [15, 77].

Identification of future obstacles such as heavy traffic, steep grade, and even power demand
becomes easier using trip planning instruments like Geographical Information Systems (GIS) and
on-board Global Positioning Systems (GPS) [18, 50, 82, 72, 28]. Approaches based on Model
Predictive Control (MPC) can predict the future driving conditions efficiently for a sufficient long
horizon [41], while a stochastic component of discrete time Markov chain can predict the future
drive cycle by selecting a finite number of sampled power demand and vehicle speed [76, 56].

HEV system models have been developed for diverse applications covering topics such as
optimal design problems [60, 40, 62], subsystems interactions [40, 53], controller development
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[58, 50, 98, 23, 80, 17], and system drivability [56].
Even if the models that can represent accurately the series HEV system exist, a model

development of this system that focuses on a competition car meant to generate its driving cycle
is not yet available. A development of this car model depicted in Figure 4.11 to generate driving
cycle using dynamic method is necessary to assess the performance of the car, and to evaluate
its energy consumption and driving range during races.

The simulation has to include a module that emulates the behavior of the driver on pedal
like in the real propulsion system [35]. Experimental data obtained from driving tests performed
at Magny-Cours racing track are used to verify the accuracy of the model. Analysis of the track
map and driving actions on certain zones of the circuit will be used to create a pattern of the
driver behavior in function of distance.

This method will create a prediction tool to forecast inputs on car accelerator pedal position
for other race tracks, obtain the driving schedule and to further determine energy consumption
and battery state-of-charge (SOC) evolution of this car. As one of the objectives is to evaluate the
distance the car can complete before the charge depletes to its lower limit. This will maintain the
battery power capacity, prolong the battery lifetime and prevent the batteries from deteriorating
dramatically due to deep discharge and high battery peak current [82, 17]. Moreover, without
the need of car testing on the intended racing track, a database of racing driving schedules can
be created using this method which are useful to optimise the system.

4.4.1 Driving Cycle Model Development Method

In the studied system, the actual control strategy defines battery current and EG power
generation according to the command input from accelerator pedal as illustrated in Figure 4.11.
The existing rule based control strategy is used to determine power repartition for the propulsion
of the car.

During full throttle i.e maximum pedal angle, the algorithm will supply a predefined maxi-
mum power to wheels by compensating the drop of the battery charge with the power produced
by the range extender. Operation of battery is controlled so that current operates within safe
limits to prevent high battery peak current. This control strategy has been used to validate the
simulation model.

As race application is different from other vehicles applications, this car needs a driving cycle
database of its own for optimization purpose. This is because the existing standard driving
cycles do not correspond to the design, and its driving style is not the same like any passenger
car. This car has been tested on the real track of Magny-Cours Grand Prix racing circuit in
Figure 4.12, and a smaller circuit at site in Figure 4.13. The driving test results are then analysed
for further improvement of this car. A driving pattern is deducted by referring to the conducted
experiment results and observation on drivers actions on pedal at particular locations of the
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Figure 4.11: Energetic Macroscopic Representation of the car system to forecast driving cycles.

circuit. However, this driving cycle prediction method can only be realised if there is a good
vehicle dynamic model of the studied system.

4.4.2 Magny Cours Circuits Map Analysis

The Grand Prix circuit is shown in Figure 4.12, it is 4411 m long and has eight cornering
zones which can be distinguish in three categories; half turn, hairpin, and chicane. From the
starting point, the zones are numbered from 1 to 8 with marks corresponding to the turning
type. Zone 1 and 4 are the half turn, zone 2, 6, and 7 are the hairpin, and zone 3, 5, and 8
are the chicane. The characteristics of these zones are classified in table 4.4, but due to a tight
corner of the turning zone 4, it is classified under the hairpin turning type because its turning
angle is more than 90◦.

Distance from starting point is the distance of the location where braking and accelerating
actions are executed by the pilot and are marked in the circuit map. The apex point is the
closest point to the inside of a corner and usually will be hit by the car when turning.

The map of the smaller club circuit is shown in Figure 4.13, also with eight cornering zones
and a length of 2530 m. On this circuit, appears new category of cornering zone which is a
combination of the half turn and the chicane at zone 1, 3, and 7. These zones have a form of the
chicane, but with tighter angle and bigger gap between its apex points. Zone 2 and 5 are the
hairpin type and zone 4, 6, and 8 are the half turn type which details are given in table 4.4.
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Grand Prix Circuit

Distance from start ± 5 m
Zone Braking (m) Full throttle (m) Turn type
1o 445 570 half turn
2∗ 1850 1755 hairpin
3′ 2190 2300 chicane
4∗ 2490 2650 hairpin
5′ 3160 3265 chicane
6∗ 3460 3585 hairpin
7∗ 4055 4205 hairpin
8′ 4255 4315 chicane

Small Club Circuit

Distance from start ± 5 m
Zone Braking (m) Full throttle (m) Turn type
1o′ 300 440 half turn chicane
2∗ 615 715 hairpin
3o′ 1255 1395 half turn chicane
4o 1530 1600 half turn
5∗ 1910 2030 hairpin
6o 2255 2335 half turn
7o′ 2370 2430 half turn chicane
8o 2475 2515 half turn

Table 4.4: Magny-Cours circuits turning zones characteristics of the Grand Prix circuit and the
Club circuit.
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Figure 4.13: Map of the smaller Magny-Cours circuit with eight turning zones.

4.4.3 Drivers Action Analysis

Langari and Won [15] integrate a driving style identifier in the energy management agent and
classify three types of driving styles; calm driving, normal driving, and aggressive driving based
on average acceleration and its range specific standard deviation. In our case, driving style will
be aggressive driving style. The driver behavior depends on many factors and cannot be defined
with an exact mathematical model and it will not represent the real driving during competition
races. But this information is useful for the construction of the driving cycle and the system
maximum energy requirement.

The actions on the accelerator pedal are depicted in Figure 4.14 for the bigger circuit MC1
and in Figure 4.15 for the small circuit MCsp. The pedal acts on speed up and slow down of
the car with a minimum angle of 0◦ to maximum throttle angle that is tuned at 83◦ in the first
test and at 53◦ at the second test. Each braking action corresponds to a cornering zones of the
circuit, we can observe that braking is brief and rapid (2 to 3 seconds) at the chicane turning
zone. And the pedal is released more and longer (4 to 6 seconds) at the hairpin corners than the
half turn corner (3 to 4 seconds). Braking action like in the half turn corner are doubled at the
combined half turn chicane zone.

There are two apex points at the chicane zone, the car will brake until it arrives at the first
apex, start stepping on the accelerator and reaches full throttle at the second apex. There is only
one apex point at other cornering types which are specified by a long braking before entering
the corner and the car starts to accelerate just after passing the apex point.

Analysis of the drivers behavior comprise only the pedal action; the analysis of the driver on
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Figure 4.14: Comparison of the model with results from experiment for the Grand Prix circuit.

steering wheel is not included because the exact information of this element are not available
from the experiments.

4.4.4 Results Comparison

The experimental results of this car are obtained through driving tests conducted on the
Magny-Cours circuits. The test on the main circuit have been carried out for four laps of the
track and 0.54 to 0.37 SOC depletion. The profile of power at wheels and car velocity are shown
in Figure 4.14 and Figure 4.15 for the experiment and the model. The model is quite accurate
and follows closely the experiment for the power profile but it is less precise for the speed profile
with errors mostly at the cornering zones of the circuit.

This is because the vehicle dynamic model used in this paper is a single-wheel model and
it does not take into account the effect of yaw angle when turning. That is why there are
discrepancies in results of the velocity profile due to yaw motion, steering angle, skid effect, and
tire lateral forces. However the tire longitudinal force is related particularly to power flow of the
propulsive power, resulting a nearly same profile between the model and the experiment.

The power profile resembles the profile of the pedal with a maximum power of 70 kW at
full throttle and a regenerative power of 25 kW when braking on the main circuit. Under this
condition, the maximum velocity that can be attained by the car is 42 ms−1 (151.2 kmh−1). The
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Figure 4.15: Comparison of the model with results from experiment for the small club circuit.

performance of a car depends largely on the available propulsion maximum power. It is expected
that if the power limit is higher, the car will have more traction force as expressed in ( 3.53),
resulting in a shorter drivetime and a higher mean velocity i.e better performance of the car but
no longer the same driving cycle.

As can be observed in the results for the smaller circuit in Figure 4.15, the maximum power
for this driving test is limited to 86 kW. Two laps of the circuit discharge the battery from SOC
0.37 to 0.3. As deceleration is limited by the tire adherence, the recuperation limit is the same
for both cases. There are less occasions for long acceleration and this circuit is more difficult
with its successives corners.

This car can reach a maximum speed of 42 ms−1 from 18 ms−1 in 17 s, faster than it can do
at the bigger circuit which is from 30 ms−1 in 25 s. And a faster SOC diminution with a rate of
0.0138 per km on the club circuit compared to only 0.0096 per km for the Grand Prix circuit.
At these rates, if battery SOC trajectory is limited to deplete from 0.9 to 0.3, the distance that
can be completed at the small circuit will be only 43.5 km and 62.5 km on the Grand Prix racing
track.
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A compromise between its performance and driving range can be made by knowing the energy
consumption rate of this car at a particular driving circuit, in order to prevent the battery from
over discharged during races.

In this study, two racing tracks with different power limits have been analysed and simulated.
And it can be concluded that for the different racing track, driver’s pedal action on a particular
zone type will be the same. In spite of the pedal maximum tuned value, the drivers aggresivity
when pressing pedal will provide information of the power profile if simulated using a predefined
maximum power.

The circuit map can provide information on the difficulty level of the circuit and the occasions
this hybrid car will have for energy recuperation and acceleration. In order to obtain a new
driving cycle, simulation and discretization have to be executed part by part according to braking
and accelerating actions to match the drivetime with the distance completed.

As perspective, the precision of the generated driving schedules can be improved by using a
more detailed models like single-track or two-track vehicle dynamics model. Utilisation of these
models and analysis of a reference track and its curvature line can be used to predict steering
angle that will taken by the driver. Nevertheless, the model used in this simulation using pedal
as input can determine the maximum performance of the car, its drivetime, driving range, SOC
depletion, and energy consumption that are useful to design a better energy management for the
system.

The utilisation of this prediction method however will be limited offline, which means the
optimisation should be done before the car uses the optimised parameters on an intended racing
track. Or, the car can merge the results obtained from the prediction method and historical data
from drive tests to further improve the parameters used during races.

4.5 Conclusion

A DP optimization method is applied on Noao series hybrid racing car with an ICE range
extender. By using DP, the results from simulation show possible improvement in the fuel and
system efficiency for the same driving cycle and SOC depletion from experimental result of the
real car. The same approach of DP is used to study the possibility to increase the autonomy
range of the racing car and proven to be feasible. These results are then analyzed and will
be utilized to adjust the control parameters of the engine/generator power generation. Then,
the DP approach is implemented to a more aggressive driving cycle applied for the same racing
circuit. But the car has a shorter autonomy range under this condition. As perspectives, this
global optimization approach will be studied further to be used in the racing car online control
application. This approach can split power optimally only in certain driving range depending on
driving cycles.

Then an EMR dynamic model is developed to forecast driving cycles of this series hybrid
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racing car system and to test the adaptation of the optimized thresholds for a real-time applica-
tion. Single wheel vehicle dynamics model is utilised for simulation and it shows an acceptable
accuracy with the race car real behaviour on the studied racing circuits. Comparison between
actual rule based control strategy, DP optimization done for this car, and a developed model
with adjusted control thresholds based on DP results shows an improvement on system efficiency
compared to its actual power split control. For the same velocity profile and performance, the
car with adjusted control can achieve longer autonomy over a targeted SOC depletion.

An analysis on pattern of pedal action on particular zones in function of its distance is
presented for two different racing circuits and will be use as a prediction method to forecast
drivers pedal actions on other racing tracks. This method is useful to obtain velocity profile and
power profile of the car for determined power limits and create a multitude of driving cycles for its
optimization in terms of fuel consumption, system efficiency, drivetime, or SOC trajectory. In the
future, the model can also be used to redesign the parameters of the car components for a better
performance or driving range. Outside racing car application, this method can be extended to
predict driving cycles of busses or courier vehicles where the constraints will be similar; aggresive
driving style, nearly fixed pathway, and a limited time to finish the circuit. The implementation
will be different according to vehicle type, but the concepts of input utilisation will be the same
in order to predict driving cycle and energy utilisation.
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Measurement is the first step that leads to control and eventually to improvement. If you
can’t measure something, you can’t understand it. If you can’t understand it, you can’t control
it. If you can’t control it, you can’t improve it.

- H. James Harrington



Chapter 5

Engine Operational Points in
HEV Applications

5.1 Introduction

In the previous chapter, the method consists of the development of the system model and
its verification with the results from the experiment has been discussed. Through this chapter,
this model is then utilised to simulate four control strategies that have been widely used for the
system architecture which results will then be analysed for the ICE improvement as shown in
Figure 7.7.

Published works discuss and propose a method to control hybrid vehicle system and evaluate
its consumption, emissions, and implementation. In this chapter, the most utilised and proposed
energy management methods that have been proved efficient and applicable for this system are
tested through simulation and are further analysed. The analysis interprets the fuel consump-
tion and time spent at specific points of the engine in terms of percentage because it is more
representative for each driving cycles. Objectives of this analysis are:

• To identify the best and optimal control strategy suitable for this system and its application.
• To analyse the effect of different control strategy on the way of the energy sources consumed.
• To weigh the consumption at each operational points in the engine used for this system

architecture.
• To determine the range of speed and load that can be optimised as measures to improve

fuel economy for a hybrid system.
• To define the time spent on each working points in order to evaluate and reduce emissions

of green house gases.
• To measure possible reductions that can be realized by improving particular working points

of the engine.
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Figure 5.1: Process of the analysis.

This analysis method has not been conducted before because the development motive of this
system is mostly focused on its optimal energy management. It is also time and ressources
consuming for a real experimentation. By the time this model is developed there is still lack of
a complete dynamic simulation model that can represent closely a real hybrid vehicle.

Replacement by full electric vehicle is long and still expensive for the whole transportation
sectors. Instead of eliminating the use of engine, optimizing its utilisation can economise fuel
and reduce emissions. One of the possible alternative is by identifying and measuring the most
recurrent engine operation within this system that can give the biggest consequence after im-
provement.

5.2 Control Strategies

5.2.1 Actual Control Strategy

Tha actual control defined for this car imposes a constant rotational speed of engine generator
(EG) when it is on. While the EG torque is varied according to torque request at wheel and
weighted by SOC value to compensate battery voltage decrease. This control method is easy to
implement and is based on engineering experiences. But it is not optimal because at the chosen
speed the friction losses are high, however is advantageous at high load with minimum BSFC
that make this control strategy suitable for racing cycles and not for road cycles.
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5.2.2 DP Optimised Control Strategy

As discussed before, Dynamic Programming can be used as a tool to design an optimal control
strategy. And with a recent development in telecommunication technology, DP can be used in
real time over a predefined driving cycle. Known as a benchmark of other control strategies, DP
is used to determine optimal energy distribution and its implementation is studied in the model.

Such programmation like DP can shorten the lengthy trial and error process to have a same
initial and final SOC. In this control strategy, DP will choose an engine operation around the
optimal operating points (OOP) line with minimum BSFC at each 5 kW power, shown in Fig-
ure 5.9.

It is assumed that the car is equipped with a sufficient capacity to calculate the optimal
operation over fixed, known a priori, and did not change driving cycles which information can
be obtained from historical or telecommunication data. Using these data, DP will output the
profile of EG power that should be generated during the driving cycle.

This mean, each driving cycle will have its own different optimal generated power which will
be optimal for the intended driving cycle, and will become less optimal if there are changes on
the velocity or power request profile. It is expected that the battery charge will always depleted
for the racing cycles because of the engine limited power.

5.2.3 On-Off Optimal Control Strategy

This control strategy is one of the most optimal control strategy [50, 55, 80] proposed for this
vehicle architecture. Its objective is to have same initial and final SOC at the start and end of a
driving cycle. Each driving cycle will have its own on time, calculated based on its energy con-
sumption with an assumption that the car is equipped with predictive tools to calculate its total
energy consumption which information can be obtained from a historical or telecommunication
data.

Operation of the engine will be on one optimal operating point with minimum BSFC for
the road cycles and it will be on at a portion of the driving cycle where power request is high.
For the racing cycles, chosen initial and final SOC are like in DP solution and the engine is
on whenever the system is working. The EG working points for race cycles will be beyond the
minimum BFSC.

5.2.4 Optimal Torque Control Strategy

One of the optimal way to consume energy in a hybrid vehicle is by depleting the battery
charge during the cycle and then reload the charge after the route is finish. And one of the most
utilised control strategy in parallel and series-parallel architecture [81] is the optimal torque.
Using this method, EG rotational speed will be the same as the speed transmitted at EM while
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the engine is imposed to generate an optimal torque at the rotational speed. The engine will be
always ON and operates at the OOL.

This control strategy do not need information about the future driving cycles, but it will
need a set of rules for recharging the battery if SOC reach its lower limit. The recharge will start
after the cycle is finish at the most optimal point. Based on the vehicle parameters, there will be
a good speed and torque accordance for the racing cycles, and less optimal for the road driving
cycles because of the low rotational speed.

It has a good transient operation than other control strategies. The battery charge will
deplete rapidly for the racing cycles that will shorten its autonomy. System efficiency can be
improved by putting the engine off during low rotational speed. And a higher transmission ratio
can shift the operational points to a higher value and better efficiency.

5.3 Results and Analysis

The analysis is conducted on two types of driving cycles; race cycle and road cycle. Three
driving cycles considered for race type are obtained through drive test conducted at Magny-
Cours Grand Prix circuit, the MCNoao1 and MCNoao2, and at a smaller piste at this site, the
MCNoaosp. Velocity profile and its requested torque are depicted in Figure 5.2. MCNoao2 is a
more aggressive driving cycle of the cycle MCNoao1.

Road driving cycles selected for this analysis are the New European Driving Cycle (NEDC),
Assessment and Reliability of Transport Emission Models and Inventory Systems (ARTEMIS)
for the rural roads [144], and the global harmonized of World Light Test Cycle (WLTC) class 1,
2, and 3 that have been developed recently. A special analysis will be presented for the WLTC3
cycle since the car used for this study is a high power vehicle with power to weight ratio (PWr)
more than 34. ARTEMIS is the most aggressive driving cycles with frequent transient that
consumes more fuel and energy for the road cycles.

Analysis of the results cover comparison of the fuel consumption and the SOC trajectory
over different control methods implemented in this case study shown in table 5.1. The resulting
operation of each driving cycles are presented in Figure 5.4, Figure 5.5, Figure 5.6, and Figure 5.7
showing the battery current, SOC evolution, given EG power, and the integrated fuel consump-
tion.

The way of the energy consumed depends on objective of the control. The actual control
strategy depletes SOC for the race cycles, but increases it for the road cycles suggesting this
control mode is only suitable for competition purpose.

In DP, SOC depletes to a higher SOC than in the actual control strategy for race cycles,
causing a higher fuel consumption in order to achieve same initial SOC at 0.54. But, it is
unachievable due to a high energy consumption of the system and EG that has to assist the
propulsion during these cycles cannot produce enough energy to recharge the battery. SOC
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Figure 5.2: Race driving cycles (MCNoao1, MCNoao2, MCNoaosp) and its EM torque request.
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Figure 5.3: Road driving cycles (NEDC, ARTEMIS, WLTC1, WLTC2, WLTC3) and its EM
torque request.
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Table 5.1: Fuel consumption and SOC evolution of all cycles over different control strategies.
Fuel consumption Final SOC ( - )

Cycle Time Distance mfuel (kg) Initial SOC = 0.54
(s) (km) AC DP OP WT AC DP OP WT

MCNoao1 610 18.05 1.710 1.782 1.755 0.801 (1.652) 0.39 0.42 0.42 0.29
MCNoao2 700 21.10 1.927 1.987 2.054 0.938 (1.651) 0.32 0.35 0.35 0.24
MCNoaosp 500 12.39 1.313 1.260 1.248 0.544 (1.071) 0.46 0.47 0.47 0.40
NEDC 1220 10.93 0.955 0.650 0.698 0.423 (0.679) 0.58 0.54 0.54 0.50
ARTEMIS 1082 17.27 2.011 1.109 1.135 0.708 (1.146) 0.66 0.54 0.54 0.47
WLTC1 1023 8.09 0.511 0.328 0.381 0.290 (0.355) 0.56 0.54 0.54 0.53
WLTC2 1478 14.66 1.355 0.737 0.796 0.558 (0.775) 0.62 0.54 0.54 0.51
WLTC3 1800 23.26 2.164 1.551 1.619 0.936 (1.643) 0.61 0.54 0.54 0.43
Total 8413 125.76 11.947 9.404 9.684 5.198 (8.972)

increases then decreases to same initial SOC value at end of the road cycles. Its fuel consumption
is lower than the actual control strategy, theoretically this amount corresponds to the minimum
equivalent consumption to recharge the battery back to its initial charge.

On-off optimal controls final SOC to the same final value as in DP, resulting a slightly higher
fuel consumption than in the DP solution for all driving cycles except for the cycle MCNoao1
and MCNoaosp. SOC decreases then increases to a same SOC value at the end of road cycles.
In Figure 5.5, the constant EG power is about 37 kW during the system on period, and is 20 kW
in Figure 5.7 for the road cycles with an on time that varied depending on the cycles.

SOC depletes faster in the optimal torque control strategy, to a lower final SOC than in the
actual control strategy for the race cycles. Same case for the road cycles where SOC decreases
to a lower SOC value at end of these cycles with a lowest fuel consumption than other control
strategies. In table 5.1, the values in the bracket correspond to the total fuel consumption
to reload the battery charge to the same final SOC as in DP which outcomes the lowest fuel
consumption for the race cycles and the second best fuel consumption after DP for the road
cycles.

The Figure 5.8 and Figure 5.9 show the distribution of working points on its respective map,
BSFC for the engine load and the combined efficiency map for the given torque at EG. At
these maps, the impact points are interpose each other for all studied control methods making
the effect at each working points invincible. Usual practice is to mark them with colour tone
[14, 25, 145]. A better perspective to view this result is to analyse the proportion at specific
points by discretization and count them as presented in Figure 5.11, Figure 5.12, Figure 5.13, and
Figure 5.14.

The distribution of fuel consumption on different regions of the engine and the integrated
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Figure 5.4: Results comparison of the battery current and SOC evolution of the race cycles
(MCNoao1, MCNoao2, MCNoaosp) for all four control strategies.

instant past at these zones are presented in Figure 5.10 specifically for the WLTC3 cycle over
all four control strategies, Figure 5.11, Figure 5.12, Figure 5.13, Figure 5.14 for the two types of
driving cycle over each control strategies, and the overall analysis in Figure 5.15. The engine
working points are divided into 48 parts, discretized for six portions of rotational speed, ranged
from 0 to 600 rad/s, and eight load torque of 0 to 100 Nm with 0 to 30 Nm considered as one
portion.

WLTC3 cycle is the latest driving cycle created for the whole world car test which best
represent the power rate for this car. 89 % of fuel will be consumed at 400 to 500 rads−1 speed,
70 to 90 Nm torque load if using the actual control with only 37 % time spent. By using DP,
the most fuel used zone is at 200 to 400 rads−1 speed, and at 60 to 70 Nm with 45 % of time
is spent here. Only one point will be used for the on-off optimal point control strategy, which
is at 300 to 400 rads−1 speed and 60 to 70 Nm torque with 60 % spent time at this point. But
for the optimal torque control, there are four points with high percentage of fuel used as shown
in Figure 5.10 d). These four points consume about 85 % of the total fuel during 48 % of the
driving cycle time. But, Figure 5.10 d) do not show the consumption of the fuel to recharge the
battery back to its initial charge by using this last control strategy noted by brackets in table 5.1.

142



0 100 200 300 400 500 600
0

25

50

0 100 200 300 400 500 600
0

0.5

1

1.5
2

0 100 200 300 400 500 600 700
0

25

50

E
G

 P
ow

er
 (k

W
)

0 100 200 300 400 500 600 700
0

0.5
1

1.5
2

2.5

Fu
el

 C
on

su
m

pt
io

n 
(k

g)

0 100 200 300 400 500
0

25

50

Time (s)
0 100 200 300 400 500

0

0.5

1

1.5

Time (s)

AC DP OP WT

Figure 5.5: Results comparison of the EG power and fuel consumption of the race cycles (MC-
Noao1, MCNoao2, MCNoaosp) for all four control strategies.

Actual Control Strategy

As can be seen in Figure 5.11, the actual control strategy will concentrate on the engine
operational points at 80 to 90 Nm torque load and 400 to 500 rads−1 rotational speed with 71
% of time present at this zone for the racing cycles. It is 80 % of the fuel consumed while it is
only 24 % for the road cycles with 9 % spent time.

For the road cycles, 54 % of the fuel consumed is between 400 to 500 rads−1 at 70 to 80 Nm
torque load with only 21 % of time used at this zone. Most of the 61 % time, the EG will be off
with only 1 % fuel consumed at zone less than 400 rads−1 and torque less than 30 Nm.

If analysed for all cycles, 84 % of the fuel consumed is between 400 to 500 rads−1 at 70 to 90
Nm torque load with 50 % of time present at this zone. So, the engine to be used for this system
with the series configuration and this control strategy should be optimised at this zone.

DP Optimised Control Strategy

Using a DP optimised control strategy as depicted in Figure 5.12, the racing cycles will cause
87 % of the fuel consumed to be between 500 to 600 rads−1 at 70 to 80 Nm torque load with 77
% present time at this zone.

But for the road cycles, 40 % of the fuel consumed is between 200 to 400 rads−1 at 60 to
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Figure 5.6: Results comparison of the battery current and SOC evolution of the road cycles
(NEDC, ARTEMIS, WLTC1, WLTC2, WLTC3) for all four control strategies.

70 Nm torque load with only 8 % of time used at this zone. Most of the 88 % time, the EG
consumes 47 % of the fuel at zone less than 200 rads−1 and torque less than 60 Nm.

Combined, the recurrent points become three zones for all cycles. 33 % of the fuel consumed
is between 500 to 600 rads−1 at 70 to 80 Nm torque load with 13 % present time. And 26 % of
the fuel consumed is between 200 to 400 rads−1 at 60 to 70 Nm torque load with only 7 % time
present at this zone. Most of the 64 % time, the engine operates below 200 rads−1 at less than
60 Nm torque with 30 % of the fuel consumed.

There will be more transient operation for the EG power as can be seen in Figure 5.5 and
Figure 5.7 if using this method to control the engine/generator components. This effect is not
preferable for the drivability of the vehicle system. This is because, the calculation of the optimal
EG profile is based on a bigger timestep, while for a real-time control it is relatively small. One
of the alternative is to modify the objective cost to factors that can eliminate the engine frequent
high-low operation power.

On-Off Optimal Control Strategy

In an on-off optimal control strategy, the analysis is more about determining the percentage
of engine on time for each driving cycles as can be observed in Figure 5.13. The racing cycles
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Figure 5.7: Results comparison of the EG power and fuel consumption of the road cycles (NEDC,
ARTEMIS, WLTC1, WLTC2, WLTC3) for all four control strategies.

will need the engine to be on all time, but the road cycles on time can ranged from 25 % to 70
% of the driving cycles time.

Engine operations concentrated only on two operational points if using this control. The first
is at 60 to 70 Nm, 300 to 400 rads−1 and the second is at 70 to 80 Nm, 500 to 600 rads−1.
For the racing cycles, 99 % of the fuel consumed is between 500 to 600 rads−1 at 70 to 80 Nm
torque load with 95 % of time present at this zone. While for the road cycles, 100 % of the fuel
consumed is between 300 to 400 rads−1 at 60 to 70 Nm torque load with an average of 45 %
time used at this zone. Most of the 54 % time, the EG will be off.

Therefore, if it is to be analysed for all cycles, 62 % of the fuel consumed is between 300 to
400 rads−1 at 60 to 70 Nm torque load with 28 % of time present at this zone. 37 % fuel is
consumed between 500 to 600 rads−1 at 70 to 80 Nm torque load with 36 % present time. On
the other 35 % time, the engine will be off without consuming any fuel.

So, the engine to be used for this system with the series configuration and this control strategy
should be optimised at these two particular zones, at 60 to 70 Nm, 300 to 400 rads−1 and at 70
to 80 Nm, 500 to 600 rads−1.
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Figure 5.8: Working points of the engine on the BSFC map of all cycles under all four control
strategies.

Optimal Torque Control Strategy

The optimal torque control strategy operates the engine mostly at low rotational speed zone
below 400 rads−1 as presented in Figure 5.14. 84 % of the fuel consumed between 300 to 500
rads−1 at 60 to 70 Nm torque load with 73 % present time is the resulting operation by the
racing cycles.

For the road cycles, 60 % of the fuel consumed is between 100 to 200 rads−1 at 40 to 70 Nm
torque load with 40 % of time used at this zone. 25 % of the consumption is between 200 to 400
rads−1 at 60 to 70 Nm torque load with only 11 % time used at this zone. Most of 43 % time,
the EG consumes 16 % of the fuel at zone less than 100 rads−1 and torque less than 50 Nm.

Analyse using all cycles show that 50 % of the fuel consumed is between 200 to 500 rads−1 at
60 to 70 Nm torque load with 35 % of time present at this zone. 41 % fuel is consumed between
100 to 200 rads−1 at 40 to 70 Nm torque load with 32 % present time. On the other 33 % time,
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Figure 5.9: Distribution of speed and torque of the generator on the EG map of all cycles under
all four control strategies.

the engine operates below 100 rads−1 at less than 50 Nm torque with 10 % of the fuel consumed.
If HEV systems is to be designed want to use this control strategy, the engine to be installed

for this system should be optimised at zones near its OOP line.

5.3.1 Overall Analysis for All Four Control Strategies

In hybrid vehicles, operational points are predetermined around the engine optimal operating
region. It results in five zones which are distinguished in table 5.2:

It is seen that there exists some bias on certain zones because of the control strategy used.
For the racing cycles zone 5 consumes nearly half of the total consumption, and at zone 3 for the
road cycles. If the engine is optimised at these zones, each 1 % improvement will result about 50
g fuel economy per kg of fuel used. Same deduction can be applied for per kg of the pollutant
gases emission.
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Figure 5.10: Percentage of ICE points distribution of each control schemes for the WLTC3 in
terms of fuel consumption and time spent.

Table 5.2: Zones of the engine working points
Race cycles (%) Road cycles (%) All cycles (%)

Zone Speed (rad/s) Torque (Nm) mfuel time mfuel time mfuel time
1 0 to 100 0 to 50 0 5 8 53 5 29
2 100 to 200 40 to 70 3 4 24 21 13 12
3 200 to 400 60 to 70 21 18 43 17 31 17
4 400 to 500 50 to 90 26 24 25 9 25 17
5 500 to 600 70 to 80 47 43 0 0 23 22

In a hybrid vehicle system, the operational point can be concentrated on certain zones because
of its degree of freedom to distribute energy, compared to the conventional system with ICE only
where the powertrain is coupled directly to the engine and constrained to operate at less optimal
point. But hybrid system needs power converters that counteract the system overall efficiency.
The biggest portion of its losses comes from the engine which is 0.3 to 0.4, with power converters,
electric motor or generator, and transmission have about 0.9 efficiency. The analysis made based
on this study will allow an optimization of the engine at the most recurrent point before it is to
be installed in a system.

The regenerative capacity depends on the size of the battery and its energy management
system. The model utilised can be used to obtain the best sizing of the car components for
different application of the car. And this engine working points analysis can be used to determine
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Figure 5.11: Percentage of ICE points distribution for the actual control in terms of fuel con-
sumption and time spent.

the best control strategy for each applications together with its optimal sizing parameters.

5.3.2 Application of the Model and Analysis for Design Optimization

Previously, the analysis is conducted using the actual parameters of the Noao car, a car which
is built to fulfill requirement of a competition racing car.

And for the racing application, the best control method for this car is the on-off optimal
control strategy. With this control strategy, the car will have a good autonomy, less load for
battery, and a good fuel consumption. Also, the components actual parameters are suitable for
this application.

But for road application, the optimal torque control strategy is the best control method, it
has a good transient operation and low fuel consumption, but it needs some modifications such
as higher transmission ratio and a set of rules to limit torque production at low speed and to
recharge the battery because of a rapid depletion under this control strategy.

The components actual parameters are overdesigned for a passager car application. So,
a retrospective study on the sizing of the battery using the model and analysis method can
optimize the system design for road driving cycles application.

In the studied vehicle, the engine is suitable for a normal car utilisation, but the battery is
considered to be very big. The battery weight will be reduced if the battery capacity needed
for this car is to be reduced. Maybe, changes in the sizing of the car components will impose a
change in the control strategy parameters too.
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Figure 5.12: Percentage of ICE points distribution for the dynamic programming control in terms
of fuel consumption and time spent.

The next study will explain the modification method of the parameters using the most suitable
control strategy in order to optimize the vehicle architecture for a normal car application.

Retrospective Method

There are three battery packages in the Noao car. Battery weight is estimated to be 1 kg
every cells for a standard vehicle lithium-ion battery cell with 20x20x1 cm dimensions. The
number of cells chosen for this study are 141, 129, 117, 105, 93, 81, 69, 57, 45 cells, with a
reduction of 12 cells each time which is four cells reduction in each battery packages.

When the battery number of cells are changed, other parameters like the mass of the vehicle
and the PI controller parameters of the chassis will be changed as well. The range extender
control parameters are kept the same because eventhough the number of battery cells change,
for a same driving cycle, the power request will be the same.

A factor is added to the car velocity to define the rotational speed reference in order to
coincide more of the range extender operational points at the most efficient point. The value of
this factor is chosen to be 1.2 because like shown in the previous analysis using the optimal torque
control strategy, the engine maximum rotational speed is nearly 500 rads−1 and the maximum
speed of the range extender can reach until 600 rads−1.

NEDC, ARTEMIS, and WLTC3 driving cycles are chosen for this retrospective method. The
target autonomy range is about 100 km. For the simulation, the initial SOC is taken to be 0.54.
The autonomy range is calculated based on the distance the car can be driven with a battery
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Figure 5.13: Percentage of ICE points distribution for the on-off optimal control in terms of fuel
consumption and time spent.

charge depletion from 0.9 SOC to SOC of 0.3.

Results and Discussion

The results of the retrospective study are presented in table 5.3 concerning the final SOC
value, the fuel mass to recharge the battery back to its initial charge of 0.54, and the autonomy
range of the car under different number of cells of the battery packages.

Using the modified optimal torque control strategy, the fuel consumption for the NEDC cycle
is 0.528 kg, 0.876 kg for the ARTEMIS cycle, and 1.159 kg for the WLTC3 cycle. The final SOC
decreases when the number of cells are decreasing which causing the fuel mass to recover the
energy used during the driving cycles to be increasing in function of the reduced number of cells.

The autonomy range is shorter for a less number of battery cells. The number of cells that
can give more than 100 km autonomy for all three driving cycles is about 60 battery cells.

The reference EG power to be given by the range extender during all three cycles is depicted
in Figure 5.16. Under these driving cycles, the maximum EG power is only about 30 kW. A
piecewise control algorithm can be used to improve the power response using the parameters
defined for the control of the range extender power.

The voltage and current of the battery is shown in Figure 5.17 with different number of cells
for the NEDC, ARTEMIS, and WLTC3 driving cycles. The battery voltage will drop to a lower
rate for a fewer number of the battery cells. It is at 550 V when the battery have 141 cells but
only 180 V when it have 45 cells.
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Figure 5.14: Percentage of ICE points distribution for the optimal torque control in terms of fuel
consumption and time spent.

For this simulation, the battery current limit is imposed to be 100 A. But, it looks like this
limit can only be respected if the battery cells are more than 90 cells. The battery will need a
better battery management system if the cells to be reduced lower than 90 cells because there
will be current shot up during the ARTEMIS and WLTC3 cycles.

As stated before, the engine operational points will be the same for a same driving cycle
but different battery number of cells. They are presented in Figure 5.18 for each cycles and in
Figure 5.19 for the combined analysis.

In Figure 5.18, most of the fuel consumed is at the zone 3 of the working points for all three
driving cycles. But the most recurrent point is at zone 1 for the NEDC and WLTC3 cycles with
44 % and 28 % of the time respectively, which suggest the pollutant emissions at this point are
to be survey closely. Or, the operation at this point is easier to be reduced with a simple control
algorithm.

In Figure 5.19 the engine operational points is concentrated at the zone 1 during most of the
time. Zone 2 and zone 3 are the points with the most fuel consumed. But these points are not yet
coincide the optimal operating point with just 19 % of the fuel consumed and 7 % time present
at this point during the driving cycles. Maybe, if the fuel consumed to recharge the battery to
its initial SOC after the cycles are finish is taken into account, the optimal point will be the
point with the most fuel consumption.

In this part, the system is studied for another application of this vehicle with a lower rating
power. For a road usage, NEDC, ARTEMIS, and WLTC3 driving cycles are used to determine

152



0 to 30
40

50
60

70
80

90
100

0

5

10

15

20

25

0 to 100 200 300 400 500 600

20

0 0 0 0 0

6

0 0 0 0 0

3 5

0 0 0 0

0

6

0 0 1
0

0 1
6

11

2
0

0 0 0 0
4

22

0 0 0 0

10

0

0 0 0 0 0 0

ICE torque (Nm)

ʃ time (%)

EG rotational speed (rads-1)

0 to 30
40

50
60

70
80

90
100

0

10

20

30

40

0 to 100 200 300 400 500 600

37

0 0 0 0 0

10

0 0 0 0 0

6 9

0 0 0 0

0

10

0 0 1 0

0 2 4

13

1 0

0 0 0 0
5

0

0 0 0 0 2
0

0 0 0 0 0 0

ICE torque (Nm)

ʃ time (%)

EG rotational speed (rads-1)

a) Race cycles c) All cyclesb) Road cycles

0 to 30
40

50
60

70
80

90
100

0

10

20

30

40

50

0 to 100 200 300 400 500 600

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 2
0 0 1 0

0 1
8 13

2
0

0 0 0 0 3

47

0 0 0 0

20

0

0 0 0 0 0 0

ICE torque (Nm)

ʃ mfuel (%)

EG rotational speed (rads-1)

0 to 30
40

50
60

70
80

90
100

0

10

20

30

40

50

0 to 100 200 300 400 500 600

4
0 0 0 0 0

1 0 0 0 0 0

0 0 0 0 0 0

0 3
0 0 1 0

0 1
8 10

2
0

0 0 0 0 3

43

0 0 0 0

18

0

0 0 0 0 0 0

ICE torque (Nm)

ʃ time (%)

EG rotational speed (rads-1)

(Nm)
0 to 30

40
50

60
70

80
90

100

0

10

20

30

40

0 to 100 200 300 400 500 600

1
0 0 0 0 0

3
0 0 0 0 0

4 6

0 0 0 0

0

14

1 0 2
0

0 4
11

31

3
0

0 0 0 0

14

0

0 0 0 0
6

0

0 0 0 0 0 0

ICE torque (Nm)

ʃ mfuel (%)

EG rotational speed (rads-1)

(Nm)
0 to 30

40
50

60
70

80
90

100

0

5

10

15

20

25

0 to 100 200 300 400 500 600

1 0 0 0 0 0

2
0 0 0 0 0

2 3
0 0 0 0

0

8

0 0 1
0

0 2

9

22

3
0

0 0 0 0

8

23

0 0 0 0

13

0

0 0 0 0 0 0

ICE torque (Nm)

ʃ mfuel (%)

EG rotational speed (rads-1)

Figure 5.15: Percentage of ICE points distribution for all control strategies in terms of fuel
consumption and time spent.
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Figure 5.16: Given EG power for the three road cycles; NEDC, ARTEMIS, and WLTC3 under
the modified optimal torque control strategy.

the optimal number of battery cells suitable for this application. An adequate number of battery
cells is between 60 to 90 cells.

The engine to be used in this type of system, for this application, using this control strategy
should be optimised at zone 1, 2, and 3 like mentioned in table 5.2.

The analysis on the results of the retrospective method allow us to envisage the precautions
to take when resizing a component for a system of hybrid vehicles. Lighter and smaller battery
packages is less imposing and its thermal control is easier to design.
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Table 5.3: Results of the retrospective method.
Number of cells 141 129 117 105 93 81 69 57 45

NEDC
Final SOC ( - ) 0.520 0.516 0.514 0.512 0.509 0.505 0.500 0.492 0.481
Recharge mfuel (kg) 0.044 0.052 0.056 0.061 0.067 0.076 0.087 0.104 0.127
Autonomy (km) 323 274 253 233 210 187 162 136 111
ARTEMIS
Final SOC ( - ) 0.504 0.502 0.499 0.495 0.490 0.484 0.476 0.468 0.460
Recharge mfuel (kg) 0.077 0.083 0.090 0.098 0.108 0.121 0.137 0.155 0.174
Autonomy (km) 290 271 250 228 206 184 163 144 123
WLTC3
Final SOC ( - ) 0.476 0.471 0.465 0.458 0.449 0.436 0.420 0.398 0.373
Recharge mfuel (kg) 0.137 0.148 0.161 0.177 0.198 0.224 0.261 0.308 0.363
Autonomy (km) 219 203 187 170 153 135 116 98 84

5.4 Conclusion

In this chapter, four widely used control strategies for HEV systems have been identified
and tested on a dynamic model that have been developed in the previous chapter. The control
strategies are; the actual control strategy, the DP optimized control strategy, the optimal point
control strategy, and the optimal torque control strategy.

Race driving cycles and road driving cycles are the two types of driving cycles studied in the
analysis of the HEV operating points. It analyses the different ways to control a system and
how a system energy is consumed in order to identify the most suitable control strategy for each
applications and define its possible improvements.

The analyis consists of determining the amount of fuel at a particular zone and weighted
its impact for further engine improvements. The time spent at a particular points are also
quantified for further use to identify the zone of recurrent working points that will be useful to
reduce emissions of green house gases.

Then the model and the analysis method is used to determine an optimal control and sizing
for a normal car application. This is done by reducing the number of battery cells in the car.
The autonomy limit becomes one criteria to determine the optimal sizing of the battery.

If using the same control parameters to determine the torque and the speed reference of the
range extender, it will results in the same operating points for a same driving cycle eventhough
the battery cells are reduced. But this will cause the battery packages voltage to drop and its
current to increase in function of decreasing number of battery cells.

The analysis method and the retrospective method are useful to study and identify the most
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Figure 5.17: Battery voltage and current response for the three road cycles; NEDC, ARTEMIS,
and WLTC3 if the number of battery cells are reduced.

suitable control strategy, the modifications to be taken to the control algorithm, the right sizing
of the system’s components for a particular utilisation, and the improvements to be effectuated
on the engine operational zones that will give the biggest impact after optimization in order to
obtain a better energy efficiency of the system.
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Figure 5.18: Percentage of ICE points distribution for the three road cycles; NEDC, ARTEMIS,
and WLTC3 in terms of fuel consumption and time spent.
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Figure 5.19: Percentage of average ICE points distribution for the three road cycles in terms of
fuel consumption and time spent.
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Chapter 6

Conclusion and Perspectives

In the first chapter, a review on hybrid vehicles, the modelization method, and its control
strategies are documented in this part of thesis for the literature review. Since the first devel-
opment of HEV system, various architectures, energy sources, and control strategies have been
developped and tested in order to improve efficiencies of this system. And this will continue as
long as the whole world is concerned with the global warming and climate changes that are now
also affecting our routine life. With new technologies that can be used to predict vehicles journey
and energies consumption, an optimal energy management can be executed easily.

After the reviewing phase, comes the development of the vehicle model, started with a quasi-
static model, then a dynamic model that can well represent the real behavior of the system
like in its real system. The dynamic model is developed using EMR method according to the
system physical causality. Verification of models are made by comparing results obtained in the
experiments and drive tests carry on for this competition car on a real racing circuit. In the
first step, with the same control strategy, optimization is applied by changing the working point
of the engine and generator. Then, the model is used to test an integration of a fuel cell stack
system as a range extender of the hybrid car system which is still in study level for the system
to be build.

The next chapter is the control strategy optimization method and the development of a tool
to predict driving cycles of the car for competition purpose on racing tracks. DP is used to
optimized the actual control strategy of the system on the known driving cycle obtained from
experiments of the studied car. The driving cycle prediction method is deducted from the driver’s
actions on pedal on certain zone of a circuit. This will need the dynamic model to be simulated
part by part in order to match the distance covered and the time completed.

In the fifth chapter, the model is used to test and compare applicable and feasible control
strategies for the system through simulation. Analysis of the engine working points under dif-
ferent control strategies and its consumption trend for the studied system are analysed. Then, a
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retrospective method to design a same vehicle architecture but for other application is studied.
The advantages of this method is that it is done by using a well established model as reference to
design other architectures or control strategies. This model and analysis method can be applied
to design a better hybrid vehicle system in terms of the sizing, control strategy, and optimized
components.

As perspectives, the model developed can be used to study this system for a different racing
applications or to develop hybrid vehicle system with other architectures. The ICE can be
optimized by experts and specialists of engines development in order to obtain a better energy
efficiency and lower emissions of green house gases.

EMR is a good method to represent dynamic model and it can be used to modelize any
electromechanical machines. The implementation of EMR can be envisaged to model other
system than a vehicle system, like a renewable energy system, a new electro-mechanical system
or a robotic system.

In the past decades, thermal engines have been the most utilised power source used in vehicles
because of its compactness i.e power to weight ratio and power to volume ratio. Until now,
thermal engines for conventional vehicles have also been optimized and have reach a better
efficiency for present system and its utilisation will continue. But, due to environment concern,
focus has been given to the development of electric vehicles, but this type of system is still
expensive and have a long way to be adopted well by consumers. Maybe, the emerging HEV
system is not an end of the thermal engines utilisation, but it is just the beginning of an efficient
utilisation of the thermal engines for a better future of the environment if it is well collaborated
with other power sources and power converters.

159



Chapter 7

Resumé de la thèse en Français:
Modèle de simulation efficace et
nouvelle stratégie de contrôle
pour améliorer l’efficacité
énergétique dans les véhicules
hybrides électriques terrestres

160



Introduction

Motivation

Un véhicule électrique hybride (VHE) a au moins deux sources de propulsion [1, 2, 3, 4]ou
types de stockages d’énergie, des convertisseurs, avec au moins l’un d’entre eux pouvant fournir
de l’énergie électrique [2, 5]. Grâce à la présence d’un système réversible de stockage d’énergie
(ESS) et de machines électriques (ME), les VHEs offrent une capacité de freinage régénératif,
de la puissance assistée, et une réduction de la cylindrée [6, 7]. Le VHE apparaît comme l’une
des technologies les plus viables avec un potentiel important pour réduire la consommation de
carburant économiquement réaliste avec la contrainte des infrastructures et l’acceptation des
clients [8].

Le système VHE a de nouveaux degrés de liberté pour délivrer la puissance [7, 8], parce que
l’ESS offre la possibilité de stocker une partie de l’énergie produite par le moteur et de l’utiliser
en cas de besoin. En outre, l’ESS possède des avantages de zéro émission, d’indépendance du
pétrole brut, et un faible coût d’exploitation [9]. D’autre part, l’utilisation d’un moteur électrique
couvre une plage de fonctionnement inefficace du moteur à combustion interne (MCI) [10, 11] et
est conçu pour gérer les variations transitoires de puissance. Par conséquent, le MCI fonctionne
à sa combinaison optimale de vitesse et de couple [12, 13], ce qui permet un fonctionnement
du MCI constant, une possibilité d’économie de carburant, des émissions de gaz d’échappement
moins polluants [8] et une réduction des émissions nocives [14, 15, 10]. Le VHE peut diminuer les
émissions de gaz à effet de serre et l’effet du réchauffement climatique, alors que les combustibles
fossiles représentent encore 85 % des sources d’énergie dans le monde et est la source d’énergie
la moins cher [16].

Le VHE a de grandes capacités comme nouveau moyen de transport alternatif [17, 15, 13]
pour la mobilité durable [4] et est considéré comme un véhicule ayant les émissions les plus faibles
[18]. Les recherches sur les véhicules électriques hybrides sont devenues importantes en raison
de préoccupations concernant le changement climatique [14], la protection de l’environnement
[3, 19, 20], la législation de plus en plus stricte concernant les émissions carbones [21], et les
préoccupations environnementales sur la contamination de l’air urbain causés par la fumée noire,
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les hydrocarbures et les oxydes d’azote (NOx d’autobus et de camions à moteur diesel) [22, 4].
Ils sont également considérés comme l’une des solutions efficaces pour apporter une solution

au problème de pénurie d’énergie [4, 21], des éxigences croissantes sur la capacité de combustibles
fossiles ainsi que son prix [3, 14, 21]. Ils peuvent également apporter des solutions au problème
de la conservation de l’énergie [20] car ils ont une plus grande efficacité de carburant [19] et
peut améliorer l’économie de carburant [15, 9, 8, 10, 17, 14, 12]. Le VHE possède de meilleures
performances par rapport aux véhicules conventionnels [14, 21]. Aujourd’hui, la tendance de la
consommation d’énergie électrique a augmenté et la plupart des appareils électriques remplacent
les composants mécaniques ou hydrauliques dans le véhicule. Les clients attendant plus de
performance [23, 21], de confort et de sécurité de ces nouveaux systèmes [23].

Il y a de nombreux avantages qu’un système VHE [24] peut offrir par rapport à un véhicule
conventionnel. En véhicule conventionnel, la conception du MCI est plus lourd, il est dimensionné
pour la demande de puissance de pointe, son fonctionnement à une plus haute efficacité est dans
une fourchette étroite, sa courbe de puissance est limitée à une bande de vitesse et ses freins
mécaniques dissipent l’énergie cinétique sous forme de chaleur [12]. Dans un système VHE, le
MCI est plus petite [12], plus léger, plus efficace, et dimensionnés pour la puissance moyenne.

Le MCI peut fonctionner avec la plus haute efficacité et peut ainsi fournir une plus grande
économie de carburant et de réduction des émissions due à la consommation de carburant qui
mènent à l’amélioration de l’air et de la santé humaine. Cela peut réduire l’usure sur le moteur,
et la réduction de la pollution sonore causée par un fonctionnement du moteur à faible vitesse.
La courbe de puissance du ME est mieux adaptée à vitesse variable et peut donc fournir plus de
couple à basse vitesse. Le ME dans un VHE peut récupérer une partie de l’énergie cinétique et
la stocker dans les batteries via le système de récupération au freinage, donc de réduire l’usure
des freins [12].

Alors même que le VHE est considéré comme la meilleure solution pour le futur mode de
transport, il reste néanmoins des études àfaire, des expériences, des applications de simulations
pour un dimensionnement précis ainsi que le développement d’algorithmes de contrôle [8], parce
que la stratégie de contrôle et le dimensionnement de ses composants peuvent affecter les per-
formances du véhicule [20]. Le système VHE a une architecture complexe [8], un degré élevé
de flexibilité de contrôle [10], une gestion complexe de l’alimentation [20, 10], et il nécessite la
coordination des ME et MCI [18] pour améliorer l’économie de carburant et réduire les émissions
[4]. De plus, il en résulte un coût initial élevé [16, 9] pour construire un système équipé d’une
combinaison de batterie, MCI, EM, onduleurs, pile à combustible ou supercondensateur.

VHE peut parvenir le besoin des consommateurs et il a une valeur ajoutée, mais ses pertes
d’énergie transmise par des sources à ses charges doivent être minimisés [16]. Et l’utilisation d’une
batterie comme ESS, nécessite un long temps de charge et a une courte durée de l’autonomie
[9] parce qu’il ne peut pas supporter tout le trajet [4] en raison de la capacité de la batterie qui
est limitée à son poids et le coût. Le MCI doit démarré et s’arrêté fréquement, et son efficacité
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moyenne est affectée par des transitoires au début et de fin de son cycle de charge [25].
Il ya de grands défis pour la mise en œuvre de la gestion de l’énergie (EMS) et de la distribution

de couple du VHE. Le plus important est de répondre à la demande de couple du conducteur tout
en réalisant la consommation et les émissions de carburant satisfaisante. Dans le même temps,
il doit maintenir l’état de charge de la batterie (SOC) à un niveau satisfaisant pour permettre la
livraison effective de couple sur une large variation de situations de conduite [15, 9]. Par rapport
à un système classique de MCI, VHE intégre plus d’appareil électrique dans son système tels que
les machines électriques, électronique de puissance, les transmissions électroniques à variation
continue, les contrôleurs de groupes motopropulseurs intégrés, dispositifs de stockage d’énergie
de pointe et des convertisseurs d’énergie [16]. Il a plus de degrés de liberté qui rend la gestion de
son énergie compliquée et a besoin d’une étude approfondie avant de pouvoir être mis en œuvre
dans un véhicule réel.

Une stratégie de gestion de l’énergie appropriée est nécessaire pour coordonner les sources
d’énergie avec des multiples convertisseurs [3] et maintenir la santé de la batterie [4]. Le rôle
d’EMS est de trouver le moyen le plus efficace de diviser la demande de puissance entre le moteur
et l’ESS, et décider comment diviser cette demande de puissance totale entre les sources à bord
[7, 4]. Pour obtenir une efficacité énergétique maximale, et optimiser plus le fonctionnement du
moteur primaire, nous devons améliorer l’efficacité des composants électriques et/ou la gestion
de l’énergie [23] car l’amélioration de l’économie de carburant dépend fortement de sa stratégie
de contrôle [26].

Avec les problèmes comme le réchauffement climatique, les émissions nocives des moteurs
thermiques, moins de ressources de combustible fossile, et l’augmentation du prix du carburant,
nous sommes toujours en recherches de mèthodes de consommation efficaces des ressources na-
turelles. Mais, ces ressources ne dureront pas longtemps si aucun effort n’est fait pour ralentir la
tendance actuelle. Un développement d’un nouveau système ou une nouvelle méthode prend du
temps pour s’ancrer dans la vie de tous les jours. L’essai et le prototypage rapide d’un système
peut se faire assez rapidement avec l’utilisation d’outils de modélisation et de simulation. Et cela
peut nous permettre d’explorer de nouvelles alternatives pour économiser du carburant. Avec
tous les efforts qui ont été initier dans tous les secteurs pour réduire les émissions de polluants
et une nouvelle législation sur les émissions de véhicules, les véhicules électriques hybrides sont
l’une des meilleure alternatives à bien répondre à cette attente.

Objectifs et cadres

Le travail tourne autour de quatre mots clés : véhicule hybride électrique, modélisation
efficace, stratégie de contrôle optimale et efficacité énergétique.

Les principaux objectifs de ce travail sont de développer une méthode de modélisation efficace
pour un déploiement facile d’une stratégie de contrôle, examiner et étudier une stratégie de
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contrôle optimale pour une application spécifique, et analyser l’amélioration qui peut être effectué
au MCI pour une meilleure efficacité de l’architecture hybride.

Les cadres de ces travaux comprendront la partie de simulation du système étudié et sa valida-
tion avec les résultats expérimentaux. Les études de cas sont utilisées pour analyser l’optimisation
qui peut être effectuée au système d’origine. L’optimisation pourrait être une optimisation des
paramètres de contrôle ou d’un remplacement de certains composants du système afin d’obtenir
une meilleure efficacité du système grâce à la simulation.

Ensuite, une étude plus spécifique sur la méthode pour améliorer la stratégie de contrôle
d’origine du système sera étudiée. Un outil d’optimisation bien établi sera choisie pour optimiser
la stratégie de contrôle effective et deviendra un point de repère d’une nouvelle stratégie de con-
trôle optimale pour être déployé dans le système. Une méthode pour connaître la consommation
d’énergie du système sera développée afin d’obtenir un contrôle optimal adapté à la demande du
véhicule.

Les principales composantes du système seront étudiées pour des améliorations de l’efficacité
énergétique. Dans ce travail, les sources d’énergie du système sont converties par le MCI et
stockées dans la batterie. En utilisant le modèle mis au point, l’analyse sera menée pour identifier
une stratégie de contrôle optimale pour une utilisation spécifique. Des améliorations peuvent être
envisagées sur certaines zones de la zone opérationnelle de MCI basée sur l’analyse des points
de fonctionnement récurrents du moteur. Ensuite, un dimensionnement optimal des paquets de
batterie pour une autre application pourront facilement être trouvés en utilisant le modèle.

Organisation de la thèse

Cette thèse est composée de quatre chapitres principaux en plus de l’introduction (premier
chapitre) et la conclusion/perspectives (dernier chapitre).

Le deuxième chapitre fera état des différents types de véhicules et les architectures, les outils
de modélisation, et des stratégies de contrôle existantes.

Le troisième chapitre présentera la méthode de modélisation du système et de sa validation.
Il commence par une méthode simple d’un modèle quasi-statique et se poursuit avec un modèle
dynamique utilisant une méthode représentation énergétique macroscopique (REM). Ensuite, un
remplacement des composants du système étudié par la simulation est présentée.

Le chapitre quatre présentera une optimisation de la méthode de stratégie de contrôle et la
prévision actuelle de la consommation d’énergie du système.

Et enfin, le chapitre cinq étudiera quatre stratégies de contrôles largement utilisées dans le
système VHE et les améliorations possibles grâce à l’analyse du fonctionnement du MCI et son
application pour concevoir un meilleur système pour d’autres applications véhicules.
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Revue sur les véhicules hybrides

Introduction

Un système VHE est un système complexe qui peut être construit en diverses architectures,
configurations et combinaisons. Pour identifier ses types et fonctions, le développement de ce
système peut être facilement effectuée et réalisée. Mais, le système VHE n’est pas seulement un
système physique, il a besoin d’une gestion efficace de l’énergie pour contrôler le flux de puissance
dans son groupe motopropulseur. Ceci est connu comme la stratégie de commande du système.

Une bibliographie de la stratégie de contrôle qui a été employé dans le VHE développés sera
présenté dans une section de ce chapitre. Cela nous aidera à identifier quelles stratégie de contrôle
est adapté pour une utilisation et une configuration spécifique, et quelle mesure prendre pour
obtenir une stratégie de contrôle optimale qui peut être mise en œuvre dans un véhicule réel. Et
enfin déterminer quelle stratégie de contrôle est mieux adaptée à notre système développé.

Types de véhicules et d’architectures

Un certain degré d’hybridation (DOH) fournit une mesure quantitative de l’endroit où la
puissance circule dans un véhicule hybride. Cela permet à un concepteur de décider quel type
de stratégie de contrôle d’être utilisé et les composants à contrôler.

Zéro DOH désigne un système de véhicule avec seulement un CI et un DOH d’un un véhicule
électrique complet comme la batterie, la pile à combustible, ou d’un véhicule à panneau solaire.
Dans Figure 7.1 chaque type de véhicules utilise une partie différente des énergies provenant de
sources diverses en fonction de son sytème de propulsion. Son application et son DOH deviennent
un facteur important pour l’optimisation; l’efficacité ou l’électrification.

Sources d’énergie utilisées dans les applications pour véhicules hybrides
électriques

Un choix de sources d’énergie utilisées dans le VHE dépend de son application et les avantages
de leur utilisation. Les moteurs diesel sont généralement choisis pour une utilisation dans les
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DOH =0 DOH = 1

Figure 7.1: Représentation schématique de types de VHE avec écoulement dans les sources
d’énergie et de concentration de conception (extrait iTEC 2012 petit cours sur VHE Fundamen-
tals par M. Zhang) [27].

véhicules lourds comme les autobus et les camions. Et une batterie lithium-ion est privilégiée
car elle a une plus grande puissance au rapport de poids comparé à d’autres types de batteries.

Outils et méthodes de modélisation

Le développement de la technologie informatique a conduit à une explosion d’une modélisa-
tion sur ordinateur pour simuler et prédire le comportement de machines ou de systèmes réels.
L’utilisation de la simulation a des avantages d’un prototypage rapide, la conception rapide et
la mise en œuvre d’un système, avec un coût de développement moins coûteux et un temps de
développement réduit.

Un modèle de simulation peut être réalisé en un seul modèle de composant ou en un modèle
global. Certains modèles sont conçus pour concevoir un dispositif de commande en temps réel
d’un système. Mais, un modèle de simulation n’est pas valide sans vérification avec son sys-
tème physique. Normalement, cela peut être fait en comparant ses résultats avec des résultats
expérimentaux à partir d’un banc d’essai ou à une installation hardware-in-the-loop (HIL).

Dans la simulation, il existe trois principaux types de méthodes de modélisation; la méthode
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de létat stationnaire, la méthode quasi-statique et la méthode dynamique. Le modèle état
stationnaire est utile pour l’analyse au niveau du système et évaluer le comportement à long
terme du véhicule [53]. Moins de temps de calcul est nécessaire, car elle néglige tous les états
transitoires et utilise des tables de consultation pour représenter ses données expérimentales [54].
Un modèle dynamique équivalent ajoutée à un modèle à l’état stationnaire constitue un modèle
quasi-statique. Il est généralement utilisé dans l’optimisation globale de gestion de l’énergie [54].
Cette approche a été utilisée pour développer PSAT [30], ADVISOR [55], et QSS Toolbox [40, 35]
pour l’analyse des systèmes et la méthode de conception de VHE.

Un modèle dynamique tient compte des états transitoires et peut étudier de grandes tran-
sitions de charge qui se produisent au cours du changement de vitesse ou d’accélération rapide
[53, 54, 56]. Le modèle est plus précis et plus complexe provoquant un temps de calcul élargie,
car il nécessite des informations précises sur les caractéristique et l’environnement du système
[57, 58, 53, 35]. Il peut donner des informations détaillées sur les effets dynamiques de com-
posants subordonnés et facilite la mesure de la performance pour déterminer les lois de contrôle
efficaces et une combinaison de groupe motopropulseur optimale [57, 59, 58, 60, 61, 62]. La sim-
ulation dynamique comme les approches de Représentation Energétique Macroscopique (REM)
[63, 64, 65], PSIM [66], et V-Elph [60] logiciels de simulation sont développés en utilisant cette
méthode.

Stratégie de contrôle

Une stratégie de commande est habituellement mise en œuvre dans le contrôleur central
du véhicule, elle est défini comme un algorithme, une loi qui régit le fonctionnement du moto-
propulseur du véhicule. En général, il saisit les mesures des conditions de fonctionnement du
véhicule tels que la vitesse ou l’accélération, le couple demandé par le conducteur, le type de
la route actuelle ou des informations de trafic, des solutions d’avance, et même les informations
fournies par le Global Positioning System (GPS) [3].

Les principaux objectifs de la gestion de l’énergie du système hybride est de répondre à la
demande des pilotes pour la puissance de traction, le maintien de la charge de la batterie, le
moins d’allumages, diminuer les coûts de fonctionnement, et l’optimisation de l’efficacité du
groupe motopropulseur [50]. Une bonne stratégie de contrôle doit satisfaire un compromis entre
eux.

Une stratégie de contrôle peut intégrer des approches pour aider dans le processus de décision.
L’approche stochastique peut fournir une situation aléatoire mais prévisible. Elle utilise les
données de profil répétée de route s’il n’y a pas de futur profil de conduite [68]. Les outils de
reconnaissance peuvent aider à classer les modes de conduite en se basant sur la reconnaissance
du comportement de conduite du conducteur fondée sur la condition actuelle et précédente,
le modèle d’apprentissage, et la classification appropriée [4, 69]. La prédiction d’événements
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futurs peut informer et fournir des données de conditions de conduite futures et profil de la
route, de prévoir la demande d’énergie et de déterminer la décision de la stratégie de contrôle.
L’approche dynamique de commande de rétroaction est facile à mettre en œuvre car elle est basé
sur l’opération en cours et précédente [4].

R. Wang and S. M. Lukic [69] résument les outils de prévision qui ont été mis en œuvre sur les
systèmes de véhicules électriques et hybrides. Trois techniques sont discutés pour la stratégie de
contrôle de prédire le cycle de conduite comme prédiction basée sur GPS [18, 70, 71, 44, 72, 73],
Geographical Information Systems (GIS) [44] et Intelligent Transportation Systems (ITS) [4],
reconnaissance basée sur la statistique et de l’analyse de cluster, et la commande prédictive
basée sur Markov chain [43, 74, 75, 76].

La prédiction basée combiné sur GPS et ITS peut réduire l’incertitude. Le GPS acquiert les
informations de conduite présente comme le temps, la vitesse, la distance parcourue, la pente,
l’accélération et la décélération. Et les ITS fournissent les conditions routières, les limites de
vitesse et les placements de feux de circulation. La statistique et l’analyse de cluster utilisent
des données historiques pour reconnaître les types de cycle de conduite (urbain, suburbain ou
autoroute) pour mesurer la demande de puissance. La longueur et la fenêtre de temps sont
imposées pour collecter et traiter les données compte tenu de la charge de calcul et la facilité de
mise en œuvre en temps réel. Pour analyser les données, nous pouvons utiliser les algorithmes
de classification comme l’algorithme de classification de bayésien, l’arbre de décision, la théorie
des ensembles rugueux, l’analyse de la concentration floue [15, 77], neural network (NN) [78],
et le support de la machine de vecteur. Le NN est d’abord formé en utilisant des cycles de
conduite connus pour reconnaître les conditions de conduite actuelle et prévoir les événements
futurs proches. La chaîne de Markov modélise la demande de puissance et prédit les conditions
de conduite d’avenir, compte tenu de l’actuel.

Trois types de style de conduite sont définit : doux, normal, et conduite agressive. Les
méthodes de classification et de reconnaissance pourraient être un ensemble de questionnaire,
classification floue, l’analyse jerk en utilisant une plate-forme de simulateur de conduite, ou d’un
des modèles de mélange gaussien. Des études montrent qu’un conducteur agressif contribue à
moins d’économie de carburant et proposent d’allouer moins de demande de couple pour éviter la
consommation de carburant en raison de fonctionnement transitoire du moteur. Il existe diverses
méthodes et approches pour déterminer la décision d’un contrôleur. Deux méthodes principales
sont la stratégie de contrôle à base de règles et de la méthode d’optimisation.

Méthode basée sur les règles

La stratégie de contrôle à base de règles est basée sur l’intuition de l’ingénierie et la simple
analyse des tableaux de rendement des composants [42]. Elle est facile à mettre en œuvre [4]
et efficace en temps réel pour le contrôle de surveillance du flux de puissance d’un VHE [3, 16].
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Les systèmes fonctionnent et reposent sur un ensemble de critères définis. L’objectif est de faire
fonctionner le système à son plus haut point de rendement [21].

Les règles prédéfinies sont initialement configurés en fonction des sorties désirables et les at-
tentes sans aucune connaissance préalable du voyage. Des organigrammes et des diagrammes
d’états sont couramment utilisés pour représenter le flux de puissance d’un schéma de conduite
donnée. Les stratégies de contrôle à base de règles optimisent les performances de chaque com-
posant individuellement. Cependant, c’est une optimisation locale qui présente un inconvénient
majeur de ne pas être en mesure de trouver le minimum global [21]. La mise en œuvre est réalisée
avec la méthode fondée sur la règle déterministe ou la méthode fondée sur la règle floue.

Méthode d’optimisation

Les méthodes de contrôle à base d’optimisation peuvent être en temps réel, global, local,
l’optimisation de paramètre ou de seuil. Elles peuvent fournir une généralité et réduire le réglage
lourd des paramètres de contrôle [48]. Les contrôleurs basés sur cette optimisation ont la tâche
principale de minimiser une fonction de coût. Cette fonction de coût est calculée en fonction
des paramètres des véhicules, des composants et les attentes de rendement du véhicule [21].
L’optimisation de système global prend en compte l’efficacité de tous les appareils et détermine
la distribution de puissance de chaque système [25]. Normalement, l’intention de ces stratégies
de contrôle est de maximiser l’efficacité de la chaîne cinématique tout en minimisant les pertes
[16]. L’optimisation offre également la possibilité d’intégrer deux variables, les objectifs de kilo-
métrage et d’émission, comme une fonction de coût qui peut être optimisée [21]. Les couples de
référence optimaux pour les convertisseurs de puissance et les rapports de transmission optimaux
peuvent être calculées par minimisation d’une fonction de coût qui représente généralement la
consommation de carburant ou les émissions [3, 16]. Les conditions d’information sur le voyage et
les composants précis sont essentiels dans le développement d’un contrôleur optimal. Les progrès
technologiques tels que les GPS, les cartes et des données de trafic en temps réel ont simplifiés
les méthodes [21].

Conclusion

Il existe beaucoup de méthodes qui peuvent être appliquées comme stratégie de contrôle
en fonction de son utilisation. En conclusion générale, nous pouvons affirmer que le facteur
énergétique a accélérer le développement de véhicules électriques et hybrides. La plupart des
objectifs traités dans les recherches effectuées sont liées à l’économie de carburant. Ensuite,
vient la préoccupation environnementale et du facteur d’émission dans le but de réduire les gaz
carboniques et de particules émis par le moteur. Au niveau du système, les motifs sont de
parvenir à baisser le coût d’exploitation, avoir une efficacité optimale de motopropulseur, et de
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répondre à la demande de puissance de traction. La bonne conduite et les transitions en douceur
ont été au centre de recherche des systèmes de transmission pour véhicules hybrides. L’état de
charge ou la santé des batteries deviennet l’un des éléments importants pris en compte dans la
gestion de l’énergie dans un système de véhicule équipé d’une capacité de batterie relativement
plus importante.

La conception du contrôleur est différente pour chaque système, cela dépend de l’architecture,
de l’utilisation, du degré d’hybridation, et les objectifs ciblés. Comme nous pouvons l’observer, un
véhicule hybride en série et un véhicule hybride pile à combustible/batterie ont besoin d’un con-
trôleur pour gérer la distribution de la puissance entre ses sources d’énergie sous forme d’énergie
électrique. Contrairement à un hybride parallèle et un hybride série-parallèle, le contrôle est
limité pour déterminer sa répartition du couple sous forme d’énergie mécanique pour fournir la
puissance demandée aux roues.

Une bonne commande fournit une solution optimale, peut être utilisé dans un véhicule réel, a
une bonne stabilité et sensibilité, peut fournir la puissance demandée, et peut améliorer l’efficacité
du système. Les recherches effectuées présentent le développement nécessaire dans les stratégies
de contrôle en raison de l’avance technologique.

La méthode basée sur des règles est facile à mettre en œuvre et est robuste, mais elle n’est
pas facile dans ses réglages des paramètres de contrôle. Dans la plupart des cas, la simulation est
réalisée hors ligne pour déterminer les seuils des paramètres optimaux à appliquer dans le véhicule
réel. Cela peut être fait en utilisant des cycles standard disponibles ou des informations de voyage
passé. Une bonne modélisation du système du véhicule peut représenter le comportement et
l’interaction entre les sous-systèmes. Dans la méthode d’optimisation globale, le cycle complet
voyage ou de conduite doit être connue a priori pour atteindre une solution optimale. Même
si ce n’est pas approprié pour une application dans le monde réel, elle peut être utilisée pour
optimiser les paramètres ou les règles pour les autres stratégies de contrôle, ou de comparer la
performance d’une stratégie de contrôle en développement.
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Modélisation vers un modèle
efficace pour VHE série

Introduction

Un véhicule électrique hybride (VHE) est considéré comme une solution efficace au prob-
lème de la pénurie d’énergie et les exigences pour accroître l’efficacité des combustibles fossiles.
Le système a des avantages tels que l’économie de carburant et la réduction des émissions de
polluantes, une efficacité de carburant plus élevée et de meilleures performances qu’un véhicule
classique [15, 14]. La présence d’un système de stockage d’énergie réversible (ESS) offre de nou-
veaux degrés de liberté pour fournir la puissance, la possibilité de réduction de la cylindrée, la
marche au hors ralenti, de freinage récupératif, et de pouvoir aider la propulsion qui peuvent
augmenter l’efficacité globale du système [8, 7].

La conception de l’architecture du système de VHE est complexe, et la gestion de l’alimentation
est compliquée en raison d’un haut degré de flexibilité de contrôle, ainsi que l’utilisation de com-
posants non-linéaires et multi-domaine. La détermination des paramètres de conception et de
coordination des sources et des multiples convertisseurs d’énergie afin d’optimiser pleinement son
potentiel est fastidieux, lent et coûteux [58, 8, 10, 62, 64, 65]. La modélisation de configurations
de VHE et les interactions entre ses composants devient indispensable pour le prototypage et
l’analyse rapide des VHE.

La technologie VHE a été développée pour de nombreuses applications et différentes combi-
naisons de conception comme série, parallèle et série-parallèle. La configuration hybride série est
le type le plus simple du VHE et prédomine dans le transport urbain grâce à sa performance et
sa réponse de la puissance transitoire exceptionnelle [14, 66, 15]. Le faible niveau de bruit en
raison de l’utilisation de moteurs électriques seuls pour la traction offre des avantages en parti-
culier dans les opérations militaires, mais plus grand système d’entraînement et les conversions
énergétiques multiples contrecarrer l’efficacité globale de cette architecture [80].

Des modèles de systèmes VHE ont été développées pour diverses applications couvrant des
sujets tels que les problèmes de conception optimales [60, 40, 62], interactions sous-systèmes
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[40, 53], le développement de contrôleurs [58, 50, 98, 23, 80, 17], et la maniabilité du système
[56]. Même si les modèles qui peuvent représenter avec précision une série VHE système existent,
un développement du modèle de ce système qui se concentre sur une voiture de compétition n’est
pas encore disponible.

Deux méthodes de modélisation seront utilisées pour modéliser une voiture de course hybride
appelé Noao. Les résultats de test du système de vraie voiture de course sur le circuit seront
utilisés pour valider les modèles. Tout d’abord, un modèle quasi-statique est développé pour
valider les paramètres et les rendements du système étudié, qui sera également utilisé pour
l’optimisation de la stratégie de contrôle du système.

Et puis, un développement de ce modèle de voiture en utilisant la méthode dynamique sera
nécessaire pour évaluer la performance de la voiture et de générer son cycle de conduite en
fonction de l’entrée du conducteur. En outre, ce type de modèle sera la plate-forme pour évaluer
les améliorations dues à des changements qui seront effectués à ce système, et de tester une
nouvelle stratégie de contrôle optimale approprié pour ce système.

Voiture NOAO

La voiture Noao est un plug-in série voiture de course hybride (Figure 7.3) équipé d’un
MCI/génératrice (E/G) défini comme prolongateur d’autonomie. Cette voiture est le résultat
d’un travail collectif par des experts et des spécialistes de voiture de course autour de site indus-
triel circuit de Magny-Cours pour l’application de la compétition de la piste de course [99, 100],
où il devient une référence pour les recherches en cours sur le système de VHE.

L’Association des Entreprises Pôle de la Performance de Nevers Magny-Cours et Magny-
Cours Circuit utilisent leur expertise et leurs expériences pour construire la voiture indiqué dans
Figure 7.2 et de définir son algorithme de commande heuristiquement.

L’architecture du véhicule est présenté dans Figure 7.3 avec la direction des flèches corre-
spondent aux flux de puissance dans le système. Le groupe motopropulseur est composé d’un
moteur électrique de traction (EM), un convertisseur de puissance (PC), une batterie (B), et un
ensemble de prolongateur d’autonomie constitué d’un moteur à combustion interne (ICE) et une
génératrice (G) .

Les paramètres des composants du véhicule sont représentées en table 7.1. Les caractéristiques
de cette voiture peut être trouvé dans le site de l’association [99]. Le moteur électrique est
une machine synchrone à aimant permanent, agit comme moteur lors de la traction et comme
génératrice durant le freinage régénératif. Le moteur à combustion interne est un moteur à
essence avec un 998 cm3 volume de déplacement.

Trois batteries identiques sont utilisés comme système de stockage d’énergie réversible (ESS),
fournissent la plupart de l’énergie nécessaire à la propulsion et récupérer de l’énergie lors du
freinage régénératif. Le MCI/générateur (E/G) ensemble génère de l’énergie pour la partie
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prolongateur d’autonomie. Les deux sources d’énergie sont connectés à un bus d’alimentation
électrique qui est relié au convertisseur d’alimentation du moteur électrique.

Figure 7.2: Voiture de course NOAO.

Actuel stratégie de contrôle

La méthode de gestion de l’énergie utilisée dans la voiture originale est une stratégie de
contrôle à base de règles, choisi en raison de sa simplicité et sa grande utilisation dans les
véhicules de démonstration. C’est une méthode heuristique et la détermination de ses seuils de
paramètres sont basés sur l’observation de la puissance demandée.

Basé sur une documentation de la commande de prolongateur d’autonomie [101], trois sous-
systèmes de contrôle sont définis pour contrôler la partie prolongateur d’autonomie; la commande
de mode, le contrôle de séquence, et le contrôle de la vitesse grâce à l’application D-Space.

La commande de mode gère le mode de l’entraînement, de la course, ou de la feu-up qui

EMB

FT

TPC

ICE G

Generator 
Losses

Motor 
Losses

Transmission 
Losses

Battery 
Losses

Efficiency
Gasoline = 30 – 35 %

FT : Fuel tank 
ICE : Internal combustion engine
G : Generator
B : Battery
PC : Power converter
EM : Electric motor
T : Transmission

Figure 7.3: Architecture de l’hybride série.
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Table 7.1: Paramètres de NOAO

Masse véhicule , mv 1200 kg
Surface frontale, A 2 m2

Coefficient de traînée, Cx 0.35
Résistance au roulement, μ 0.012
Diametre de la roue, dw 0.62 m

Moteur à combustion interne 3 cylindres 1.0 L, injection directe
Génératrice 54 kW at 4500 tr/min, 120 Nm
Moteur électrique 280 kW puissance maximale, 800 Nm
Batterie 3 Lithium-ion batteries, 520 V
Transmission Simple, ratio 2.9, rendement 0.95

définit les conditions pour permettre l’allumage de la prolongateur d’autonomie. Ce contrôle
du sous-système prend la vitesse de la voiture, la puissance de traction, SOC, et quinze autres
paramètres liés à la température et courant comme entrées pour produire de la puissance ciblée.

Les sorties sont alors évalués pour définir cinq états de la séquence de contrôle; éteindre,
démarrage, rampe montée, charge, et rampe descente pour déterminer la masse de carburant à
injecter dans le moteur pour produire le couple nécessaire à la fois à la MCI et la génératrice.

Ensuite, en utilisant un régulateur PI à action directe, la commande de vitesse détermine le
couple requis en fonction de la consigne de vitesse définie par la commande de séquence.

Comme dans son système réel, des paramètres similaires tels que la puissance de traction
nécessaire à la roue et le SOC de la batterie seront prises comme entrées du prolongateur
d’autonomie pour les simulations de ce système de voiture.

Modèle quasi-statique

Un modèle de quasi-statique est un modèle non causale, où ses entrées et sorties ne sont
pas fixes. Ce genre de modèle se compose d’un modèle à l’état constant à laquelle un modèle
dynamique équivalente du système est ajouté [54]. Comme dans un moteur, il associe une carte
et un premier ordre du système pour former ce modèle.

Dans cette étude, il est utilisé pour déterminer les caractéristiques et les paramètres des
composants de systèmes. Ceci est réalisé en comparant les résultats des expériences et de la
simulation de chaque composants. Ce modèle est utile dans une solution numérique qui a un
lourd charge de calcul, car il utilise un pas de temps plus grand et plus lent pour la modélisation.
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In blue - component characteristics/data 
In green - available data from experiment 
 
 

 

P_drive [kW] 
NDrive_motor [rpm] 

Gear 
Vroue_A.. Vcar = v_car [m/s] 

slope = elevation/distance 

Battery_voltage 
Courant_bat 
P_battery_power [kW] 
SOC = SOCexp 

Pgene_power*100 [kW] 
Ngene_speed*π/30 = wgene_speed [rad/s] 

m_f = 1200 kg 
Inertia = 15 % 
S = 2 m2 
r_w = 0.62 m 
C_d = 0.35 
μ = 0.012 

Gear ratio = 2.9 
ηgear = 0.95 
Ttrans- = T_wheel* ηgear /(6.5 * Gear ratio) 

V_unit = 4.1 Volt 
n = 142 cells 
Cbat = 38 Ah 
R ≈ 2 mΩ → f(mode,SOC) 

Regime*π/30 = w_genset [rad/s] 
Papillon 
Avance 
Rich 

ConsoEss/100 = mConsoESS [Liter] 

scale_wEM = 1.5 
scale_TEM = 11.5 

scale_wEG = 2 
scale_TEG = 5 

Model ICE 
thermodynamic 
w_noao 
Ce_noao 
V_noao 

ICE operational point in function of traction power 
Popt [kW] -250  -25  30  100  250 
wopt [rad/s] 462  466  470  473  477 
Topt [Nm] 20  50  95  100  100 

P_driveEM = Pgene_power + P_battery_power 

Figure 7.4: Modélisation de la voiture NOAO utilisant la méthode de modélisation quasi-statique.

Comme on peut le voir sur Figure 7.4, la puissance demandée est obtenu à partir du cycle
de conduite. C’est une méthode de simulation vers l’arrière [54], de la vitesse du véhicule, au
moteur et puis à la batterie pour calculer la consommation d’énergie du système. Le modèle est
simple et facile à construire, mais il ne représente pas exactement le comportement du système
comme dans son système réel.

Modèle dynamique

Les modèles dynamiques tiennent en compte des états transitoires dans un contrôle des flux de
puissance en temps réel. Une gestion de l’énergie locale doit être assurée en temps réel, il est donc
essentiel de comprendre la fonction de chaque sous-systèmes en fonction de la causalité physique
comme dans un modèle causal pour prévenir les risques de dommages et de fonctionnement
inefficace.

Un modèle causal utilise le principe de cause à effet pour décrire le comportement du système.
Dans certains appareils, il possède une sortie fixe qui est une fonction intégrale de l’entrée avec
un temps de retard induit. Il existe de nombreux formalismes graphiques qui peuvent être
utilisés pour représenter un système multiphysique et complexe tels que Bond Graphs, Power
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Figure 7.5: Représentation énergétique macroscopique du système de voiture et de son système
de contrôle.

Oriented Graphs, Power Flow Diagrams, Causal Ordering Graphs, et Energetic Macroscopic
Representation.

Représentation énergétique macroscopique (REM)

La représentation énergétique macroscopique (REM) est une approche de causalité pour
la simulation dynamique, dans le but de développer des structures de contrôle basée sur la
séparation des systèmes complexes en sous-blocs. Cette méthodologie a déjà été utilisé avec
succès pour l’applications des machines multiples [107], systèmes de piles à combustible [108],
mais aussi la traction électrique du véhicule [63, 64, 65, 109, 110].

L’architecture globale du modèle REM y compris tous les composants et les blocs de com-
mande pour la voiture de course hybride série Noao est présentée dans Figure 7.6. Les blocs
ovales vert sont la source d’énergie, blocs orange sont les convertisseurs et les blocs bleus sont les
blocs de contrôle. Un bloc ayant une croosbar est un élément à accumulation d’énergie et le bloc
doublé est un dispositif de couplage [63, 65, 64, 111]. Un convertisseur de domaine monophysical
est carré et un convertisseur de domaine multiphysique est ronde. Le synoptique récente du
REM est inclus dans [112].

REM de cette voiture est basée sur la représentation faite en [110] où la batterie et le convertis-
seur de courant sont combinés pour former la source électrique équivalente (ESeq) pour la partie
de traction du système. Avant cela, la représentation appropriée est comme dans Figure 7.5.

Controlê sur la base d’inversion

L’objectif de REM est de fournir une méthode simple pour élaborer une stratégie de com-
mande sur la base d’inversion pour les systèmes complexes et multi-physiques. La structure de
commande est développé par une inversion du bloc du modèle, où des blocs intégrale et les blocs
de connexion nécessitent le plus d’attention [107, 64, 111].

Par cette méthode, chacun des éléments de REM de la chaîne de réglage sont inversées pour
déduire la chaîne de contrôle [110, 63]. Les blocs convertisseurs tels que la transmission peut être
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Figure 7.6: Représentation énergétique macroscopique du système de voiture et de son système
de contrôle à la source électrique équivalent.

simplement inversées, mais une entrée de critère est nécessaire pour l’inversion des dispositifs de
couplage [109].

Conclusion

Un système complet de voiture de course hybride série est modélisée en utilisant REM.
La comparaison avec la simulation et les résultats expérimentaux montrent que le système est
correctement représenté en ce qui concerne le moteur électrique de traction, le système de bat-
terie, le moteur à combustion interne et la génératrice électrique, crée un outil précieux pour le
développement de ce système. En outre, le modèle peut être utilisé comme base pour développer
une meilleure stratégie de contrôle de ce système en utilisant les approches basées sur des règles
ainsi que des approches d’optimisation. Des diverses améliorations peuvent être étudiés et effec-
tué en utilisant cette méthode et le modèle, comme une optimisation de points de travail de MCI
pour réduire la consommation ou les émissions dangereuses, une amélioration des paramètres
de conception, ou de concevoir un meilleur système de gestion de la batterie ou les machines
électriques.

Ce modèle est ensuite utilisé pour développer ce système pour une nouvelle architecture
aves les piles à combustible comme son prolongateur d’autonomie. Trois cycles de course
d’entraînement sont utilisés pour tester le potentiel de l’intégration de la pile à combustible.
Il peut être conclu que la même quantité d’énergie demandée au prolongateur d’autonomie, une
voiture de course hybride à pile à combustible/de la batterie est plus efficace que la voiture
électrique hybride utilisant un prolongateur d’autonomie MCI/génératice. En raison de sa plus
grande efficacité, la pile à combustible fournit une autonomie plus longue pour la puissance max-
imale de moteur équivalent. La possibilité d’améliorer l’IMC de 38 à 69 pouvant être obtenu par
le véhicule en raison d’une meilleure efficacité est montrée. Mais, pour éviter le surdimension-
nement et d’avoir un coût et le poids opérationnel inférieur, un système de pile à combustible
de 40 kW puissance nominale va répondre aux exigences à l’égard de cette demande de voiture
de course spécifique. Bien que les résultats obtenus ne sont pas encore précis, ce modèle et
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approche de déduire le système de contrôle peut être utilisé à la première étape de la conception
et le dimensionnement des composants de la pile à combustible dans le système.
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Stratégie de contrôle optimale et
adaptive pour une voiture
hybride série de course

Introduction

Dans le chapitre précédent, les modèles de systèmes du véhicule sont validés avec les résultats
de l’expérience et certaines améliorations peuvent être effectué au système de la voiture pour
obtenir une meilleure efficacité. Dans ce chapitre, les optimisations seront effectuées sur la
stratégie de contrôle pour mieux gérer les énergies disponibles pour le système.

La stratégie de contrôle pour les systèmes du VHE peut être la méthode basée sur le règle
ou la méthode d’optimisation. La stratégie basée sur le règle (RB) est faite sur l’intuition
de l’ingénierie et analyse simple sur les tables de rendement des composants ou des tableaux
[42, 138, 68]. Il est robuste et a moins de charge de calcul [23, 15, 3, 4, 16]. La stratégie de
contrôle de la RB est facile à mettre en œuvre pour un contrôle de surveillance en temps réel
du flux de puissance dans un véhicule hybride [8, 68, 23, 15, 4]. Il peut atteindre de près de la
solution optimale, mais ne peut pas être facilement mis en œuvre à un autre cycle de la conduite
ou véhicule en raison du manque d’optimisation formelle et la généralisation, donc ne peuvent
pas exploiter pleinement le potentiel de l’architecture de VHE [23, 4, 7, 21].

Les méthodes de contrôle à base d’optimisation peuvent être locales, global, en temps réel,
l’optimisation de paramètre ou de seuil. La méthode d’optimisation peut fournir généralité et
de réduire un tuning lourde des paramètres de contrôle [48]. Sa tâche est de minimiser une coût
fonction en temps réel ou en déconnecté sur la base des paramètres de véhicules et de composants,
ainsi que les attentes de rendement du véhicule [21].

Dans ce travail, la méthode d’optimisation DP est choisie pour optimiser la stratégie de
contrôle pour cette voiture NOAO. Cette méthode a été largement utilisée pour optimiser la
gestion énergétique des véhicules hybrides, et cette fois il sera utilisée pour optimiser la stratégie
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de contrôle d’un système de véhicule de type de course. La différence est le cycle de conduite, il est
obtenu à partir d’expériences menées sur le circuit de Magny-Cours en France. Une optimisation
globale peut être fait parce que une information spécifique et précise de tous les composants est
disponible. DP est choisi sur les autres approches parce qu’elle a établi une réputation comme
la référence d’autres stratégies de contrôle avec sa solution optimum global [8, 4, 4]. L’un des
intérêts de cette étude est de savoir comment mettre en œuvre cette approche hors ligne puis
de l’adapter pour une application en temps réel afin d’optimiser la répartition de puissance du
système en utilisant un cycle de conduite prévu.

Analyse sur la stratégie de contrôle actuelle

Pour cette voiture NOAO, le but de contrôle est d’épuiser l’état de charge (SOC) de la batterie
de son SOC initial plein au début de la course et d’atteindre une limite basse de la SOC finale
après un certain nombre de tours à la fin d’un course.

Une méthode de contrôle appropriée pour un plug-in VHE est un appauvrissement de la
charge de la batterie de sa limite supérieure à sa limite inférieure à travers un cycle de conduite
pour atteindre la meilleure efficacité [4]. Pour une voiture de compétition de piste, le cycle de
conduite sera le cycle de conduite sur un circuit après un certain nombre de tours. La stratégie
de contrôle de cette voiture consiste à mettre toujours le moteur en mode d’aider la propulsion
de la voiture pendant les courses pour plus d’autonomie.

Du chapitre précédent, on peut observer à partir de l’architecture du véhicule dans figref fig:
Archi, la génératrice transforme l’énergie mécanique du moteur à l’électricité pour recharger la
batterie ou d’aider le moteur pour la propulsion. Le couple de charge de traction ne concerne
que le couple du moteur électrique, donc l’ensemble E/G peut fonctionner à ses points de travail
optimales à tout moment.

En outre, le contrôleur de la prolongateur d’autonomie comprend trois sous-systèmes pour
déterminer la vitesse de rotation et la référence de couple. Peut-être, un sous-système peut être
ajouté au contrôleur qui sera un élément de prédiction pour déterminer les meilleurs seuils pour
chaque type de cycle de conduite pour ce système de voiture.

Conclusion

Une méthode d’optimisation DP est appliquée sur NOAO, une voiture de course hybride série
avec un prolongateur d’autonomie de MCI. En utilisant DP, les résultats de la simulation mon-
trent l’amélioration possible de la consommation de carburant et le rendement du système pour
le même cycle de conduite et de lépuisement SOC du résultat expérimental de la vraie voiture.
La même approche de la DP est utilisée pour étudier la possibilité d’augmenter l’autonomie de la
voiture de course et prouvé pour être réalisable. Ces résultats sont ensuite analysés et seront util-
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isées pour ajuster les paramètres de commande de la génération de puissance MCI/génératrice.
Ensuite, l’approche DP est mis en œuvre à un cycle de conduite plus agressive appliquée pour
le même circuit de course. Mais la voiture dispose d’une autonomie plus courte sous cette con-
dition. Comme perspectives, cette approche d’optimisation globale sera étudiée plus pour être
utilisés dans l’application de contrôle réel de voiture de course. Cette approche peut diviser la
puissance de façon optimale que dans certains practice en fonction de cycles de conduite.

Ensuite, un modèle dynamique REM est développé pour prévoir des cycles de conduite de
ce système de voiture de course hybride série et de tester l’adaptation des seuils optimisés pour
une application en temps réel. Un modèle dynamique de la roue unique du véhicule est utilisé
pour la simulation et il montre une précision acceptable avec la voiture de course réel sur les
circuits de course étudiés. Comparaison entre la stratégie de contrôle actuelle à base de règles,
l’optimisation DP fait pour cette voiture, et un modèle mis au point avec des seuils de contrôle
ajustés en fonction des résultats de l’optimisation DP montre une amélioration sur l’efficacité du
système par rapport à sa stratégie de contrôle actuelle de répartition de la puissance. Pour le
même profil et la performance de vitesse, la voiture avec la commande ajusté peut obtenir plus
d’autonomie sur une déplétion SOC prévue.

Une analyse sur lénchantillon de pédale sur les zones particulières en fonction de sa distance
est présenté pour deux circuits de course différentes et sera utiliser comme une méthode de
prédiction de prévoir les actions de pilotes sur le pédale sur d’autres pistes de course. Cette
méthode est utile pour obtenir le profil de vitesse et le profil de puissance de la voiture pour les
limites de puissance déterminés et créer une multitude de cycles de conduite pour son optimisation
en termes de consommation de carburant, l’efficacité du système, le temps de conduite, ou
SOC trajectoire. Dans l’avenir, le modèle peut également être utilisé pour redéterminer les
paramètres des composants automobiles pour une meilleure performance ou practice. En dehors
de l’application de voiture de course, cette méthode peut être étendue à prévoir les cycles de
bus ou véhicules de bureau de poste où les contraintes de conduite seront similaires; le style de
conduite agressif, un trajet prèsque fixe, et avoir peu de temps pour terminer le circuit. La mise
en œuvre sera différent selon le type de véhicule, mais les concepts d’utilisation d’entrée sera le
même pour prédire le cycle de conduite et l’utilisation de l’énergie.
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Points de fonctionnement du MCI
dans VHE applications

Introduction

Dans le chapitre précédent, la méthode consiste à l’élaboration du modèle de système et sa
vérification avec les résultats de l’expérience ont été discutés. Grâce à ce chapitre, ce modèle
est ensuite utilisé pour simuler quatre stratégies de contrôle qui ont été largement utilisés pour
l’architecture du système dont les résultats seront ensuite analysés pour l’amélioration de la MCI
comme indiqué dans Figure 7.7.

EMR Model Development

Dynamic Model Simulation

Validation

DP Optimized

Results and Analysis

Hybrid Vehicles Control Strategies

Actual Control Optimal Torque

ICE Improvement

On-off Optimal

Model and Analysis Application

Figure 7.7: Procédé de l’analyse.

Dans les articles publiés, ils discutent et proposent une méthode pour contrôler le système de
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véhicule hybride et d’évaluer sa consommation, émissions, et sa mise en œuvre. Dans ce chapitre,
les méthodes de gestion de l’énergie les plus utilisés et proposés qui ont été prouvées efficaces et
applicables pour ce système sont testés par simulation et sont analysés plus en détail. L’analyse
interprète la consommation de la combustible et le temps usé à des points spécifiques du moteur
en termes de pourcentage, car il est plus représentatif pour chaque cycles de conduite. Objectifs
de cette analyse sont les suivants:

• Pour identifier la meilleure stratégie optimale et de commande approprié pour ce système
et son application.

• Pour analyser l’effet de la stratégie de contrôle différent sur la façon des sources d’énergie
consommées.

• Pour pondérer la consommation à chacun des points opérationnels dans le moteur utilisé
pour cette architecture de système.

• Pour déterminer la plage de vitesse et de charge qui peut être optimisée comme des mesures
pour améliorer l’économie de carburant pour un système hybride.

• Pour définir le temps passé sur chacun des points operational du moteur afin d’évaluer et
de réduire les émissions de gaz à effet de serre.

• Pour mesurer les réductions possibles qui peuvent être réalisées en améliorant notamment
les points de fonctionnement du moteur.

Cette méthode d’analyse n’ont pas été menées avant parce que la motivation de développe-
ment de ce système est principalement axée sur la gestion optimale de l’énergie. Il est également
besoin beaucoup du temps et des ressources pour faire une réelle expérimentation. Au moment
où ce modèle est développé il ya toujours un manque d’un modèle de simulation dynamique
complet qui peut représenter le système près de la véritable véhicule hybride.

Remplacement par un véhicule entièrement électrique est encore longue et coûteuse pour les
secteurs entiers des transports. Au lieu d’éliminer l’utilisation du moteur, l’optimisation de son
utilisation peut économiser du carburant et réduire les émissions. Un de l’alternative possible est
en identifiant et en mesurant l’opération de moteur le plus récurrent dans ce système qui peut
donner le plus grand conséquence après l’amélioration.

Conclusion

Dans ce chapitre, quatre stratégies de contrôle largement utilisé pour les systèmes de VHE
ont été identifiées et testées sur un modèle dynamique qui ont été développés dans le chapitre
précédent. Les stratégies de contrôle sont; l’actuel stratégie de contrôle, la stratégie de contrôle
de DP optimisé, la stratégie de contrôle du point optimale, et la stratégie de contrôle de couple
optimale.

Les cycles de conduite de course et de conduite de route sont les deux types de cycles étudiés
dans l’analyse des points de fonctionnement du MCI dans un VHE. Il analyse les différentes façons

183



de contrôler le système et comment une énergie du système est consommée afin d’identifier la
stratégie de contrôle le plus approprié pour chaque application et de définir ses améliorations
possibles.

L’analyse consiste à déterminer la quantité de carburant à une zone particulière et pondéré
son impact pour i’améliorations du moteur. Le temps passé à un des points particuliers sont
également quantifié pour identifier la zone de points de travail récurrentes qui seront utiles pour
réduire les émissions de gaz à effet de serre.

Ensuite, le modèle et la méthode d’analyse est utilisée pour déterminer un contrôle optimal et
le dimensionnement pour une application automobile normale. Cela se fait en réduisant le nombre
de cellules de batterie dans la voiture. La limite d’autonomie est un critère pour déterminer le
dimensionnement optimal de la batterie.

Si l’on utilise les mêmes paramètres de commande pour déterminer le couple et la vitesse de
référence du prolongateur d’autonomie, elle se traduit par les mêmes points de fonctionnement
pour un même cycle de conduite même si les cellules de batterie sont réduits. Mais dans ce cas
la tension du pack de batterie tombe quand son courant augmente en fonction du nombre de
cellules de la batterie diminué.

La méthode d’analyse et la méthode rétrospective sont utiles pour étudier et identifier la
stratégie de contrôle la plus appropriée, les modifications à prendre pour l’algorithme de contrôle,
le bon dimensionnement des composants du système pour une utilisation particulière, et les
améliorations à effectuer sur les zones opérationnelles du MCI qui donneront le plus d’impact
après optimisation afin d’obtenir une meilleure efficacité énergétique du système.
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Conclusion et perspectives

Dans le premier chapitre, une revue sur les véhicules hybrides, la méthode de modélisation,
et ses stratégies de contrôle sont documentés dans cette partie de la thèse. Depuis le premier
développement du système VHE, différentes architectures, sources d’énergie, et les stratégies de
contrôle ont été développé et testé afin d’améliorer l’efficacité de ce système. Et cela continuera
tant que le monde entier est préoccupé par les changements de climat et réchauffement de la
planète qui sont maintenant affectent aussi notre vie quotidienne. Avec les nouvelles technologies
qui peuvent être utilisées pour prédire les trajets du véhicule et la consommation des énergies,
une gestion optimale de l’énergie peut être exécutée facilement.

Après la phase de revue, vient le développement du modèle de véhicule, commencé avec un
modèle de quasi-statique, puis un modèle dynamique qui peut bien représenté le comportement
réel du système comme dans son système réel. Le modèle dynamique est développé en utilisant la
méthode de REM en fonction de la causalité physique du système. Vérification des modèles sont
faits en comparant les résultats obtenus dans les expériences et les tests d’entraînement effectuer
pour cette voiture de la compétition sur un vrai circuit de course. Dans la première étape, avec la
même stratégie de contrôle, l’optimisation est appliquée en changeant le point de fonctionnement
moteur et de la génératrice. Ensuite, le modèle est utilisé pour tester l’intégration d’un système
de piles à combustible en tant que le prolongateur d’autonomie du système de véhicule hybride
qui est encore en niveau d’étude pour construire le système.

Le chapitre suivant est la méthode d’optimisation de la stratégie de contrôle et le développe-
ment d’un outil pour prévoir les cycles de la conduite automobile pour une compétition sur les
pistes de course. DP est utilisée pour optimiser la stratégie de contrôle effectif du système sur
le cycle de conduite connu, obtenue à partir d’expériences de la voiture étudiée. La méthode de
prévision de cycle de conduite est déduite des actions du conducteur sur la pédale sur certaine
zone d’un circuit. Cette méthode aura besoin du modèle dynamique pour simuler partie par
partie afin de égaler la distance parcourue et le temps terminée.

Dans le cinquième chapitre, le modèle est utilisé pour tester et comparer les stratégies de
contrôle applicables et réalisables pour le système grâce à la simulation. Analyse des points de
fonctionnement du MCI sous différentes stratégies de contrôle et sa tendance à la consommation
pour le système étudié sont analysés. Ensuite, une méthode rétrospective de concevoir une même
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architecture de véhicule, mais pour d’autres applications est étudié. Les avantages de cette
méthode est qu’il est fait en utilisant un modèle bien établi comme référence pour concevoir
d’autres architectures ou des stratégies de contrôle. Cette méthode d’analyse et de modèle peut
être appliqué à concevoir un meilleur système de véhicule hybride en termes de dimensionnement,
la stratégie de contrôle, et des composants optimisés.

Comme perspectives, le modèle développé peut être utilisé pour étudier ce système pour des
différentes applications de course ou pour développer un système avec d’autres architectures de
véhicule hybride. Le MCI peut être optimisée par des experts et des spécialistes du développe-
ment des moteurs afin d’obtenir une meilleure efficacité énergétique et de réduction des émissions
de gaz à effet de serre.

REM est une bonne méthode pour représenter un modèle dynamique et il peut être utilisé
pour modéliser des machines électromécaniques. La mise en œuvre de REM peut être envisagé
pour modéliser un autre système qu’un système véhicule, comme un système d’énergie renouve-
lable, un nouveau système électro-mécanique ou un système robotisé.

Dans les dernières décennies, les moteurs thermiques ont été la source d’alimentation le plus
utilisé dans les véhicules en raison de sa compacité c’est-à-dire le rapport poids-puissance et la
puissance par rapport au volume. Jusqu’à présent, les moteurs thermiques pour les véhicules
conventionnels ont également été optimisé et ont atteindre une meilleure efficacité pour système
d’aujourd’hui et son utilisation continuera. Mais, en raison des inquiétudes environnement, la
concentration a été accordée au développement des véhicules électriques, mais ce type de système
est encore cher et ont un long chemin à être bien adopté par les consommateurs. Peut-être, le
système de VHE émergents n’est pas une fin de l’utilisation des moteurs thermique, mais il
est juste le début d’une utilisation efficace des moteurs thermiques pour un meilleur avenir
de l’environnement s’il est bien collaboré avec d’autres sources d’énergie et convertisseurs de
puissance.
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Abstract:
The main objectives of this work is to develop an effective modeling method for an easy
deployment of a control strategy, to review and study an optimal control strategy for a specific
application, and to analyze improvement that can be effected to engine for better efficiency in
hybrid vehicle architecture. The scopes of this work include the simulation part of the studied
system and its validation with experimental results. Study cases are used to analyze
optimization that can be effected to the original system. A well established optimization tool is
chosen to optimize the actual control strategy and becomes a benchmark of a new optimal
control strategy to be deployed in the system. A predictive method to know energy
consumption of the system is developed in order to obtain an optimal control suitable with the
vehicle application. Using the developed model, analysis is conducted to identify an optimal
control strategy for a specific utilization. As perspectives, the main components of the system
can be studied for improvements of its energy efficiency. The Energetic Macroscopic
Representation (EMR) is a good method to represent dynamic model and it can be used to
model any electromechanical machines and can be envisaged to model other system than a
vehicle system, like a renewable energy system, a new electro-mechanical system or a
robotic system.

Keywords: hybrid electric vehicle, effective modeling, optimal control strategy, and energy
efficiency.

Résumé:
Les principaux objectifs de ce travail est de développer une méthode de modélisation
efficace pour un déploiement facile et rapide d'une stratégie de contrôle, d'examiner et
d'étudier cette stratégie pour une application spécifique, et d'analyser l'amélioration qui peut
être apporté à un moteur pour une meilleure efficacité dans les systèmes électrique et
hybride. Ce travail comprend une partie simulation du système étudié et sa validation avec
les résultats expérimentaux. Les études de cas sont utilisées pour analyser l'optimisation qui
peut être effectuée en comparaison au système d'origine (le véhicule étudié est la NOAO).
Un outil d'optimisation est choisie pour optimiser la stratégie de contrôle actuellement
déployée sur le véhicule. Cette outil nous a permis de développer une nouvelle stratégie de
commande optimisée prêt à être déployé dans le véhicule. Un procédé de prédiction pour
connaître la consommation d'énergie du système est mis au point en vue d'obtenir un
contrôle optimal adapté à la demande du véhicule et à une utilisation spécifique.
Comme perspectives, les principaux composants du système peuvent être étudiés et
modélisé afin d'améliorer l’efficacité énergétique du véhicule. La Représentation Energétique
Macroscopique (REM) est une bonne méthode pour représenter le modèle dynamique et
peut être utilisé pour modéliser des machines électromécaniques. Cette méthode est
également envisagé pour modéliser d’autre système que le système véhicule tel que les
systèmes énergies renouvelables, les systèmes électromécanique ou robotique.

Mot clés: véhicule électrique hybride, modélisation efficace, la stratégie de contrôle
optimale, et l’efficacité énergétique.


