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Abstract:

The crowd counting task is an important research problem.
Now more and more people are concerned about safety issues.
Considering the scenario of a crowded scene: a population
density system analyzes the crowds and triggers a warning to
divert the crowds when their population density exceeds a normal
range. With such a system, the incident of the Shanghai New
Year’s stampede will not happen again. The most difficult problem
of population counting at present: On the one hand, in the
densely populated area, how to make the model distinguish
human head features more finely, such as head overlap. The
second aspect is to find a small-scale local head feature in an
image with a wide range of population density. The most critical
aspect, in some public places, is that we can not install an
intelligent video surveillance system. So how do we estimate
the high-density crowd area to avoid crowd trampling accidents?
Facing these challenges, we propose implementation of real time
reconfigurable embedded architecture for people counting in a
crowd area. First, our work integrates the features of HOG
and LBP, which not only combines the effective identification
information of multiple features, but also eliminates most of the

redundant information, thereby realizing effective compression
of information, saving information storage space. Then, in
terms of crowd counting, we use multiple sources of information,
namely HOG, LBP and CANNY based filtering. These sources
provide separate estimates of the number of counts and other
statistical measures, through the support vector Machine SVM,
classification. At the same time, in order to effectively solve the
problem of extracting scale-related features in crowd counting.
We propose a new framework M-MCNN based on MCNN for
crowd counting on any single image. M-MCNN not only contains
the original three columns of convolutional neural networks with
different filter sizes, but replaces the fully connected layers with a
convolutional layer of 1*1 filters, so the input image of the model
can be of any size. Moreover, in a single individual sample, we
greatly improve the learning of sample features by extracting the
texture features of a single human head , and better use it for
datasets. Finally, we implement our new framework M-MCNN
through FPGA, and transplant it on the drone to estimate and
predict the high-density crowd area in real time. Our model
achieved good results in crowd counting.

Titre : Implementation of real time reconfigurable embedded architecture for people counting in a crowd
area
Mots-clés : Caractéristiques de texture, Détection de contours, M-MCNN, FPGA

Résumé :

Le comptage des foules est un sujet de recherche important.
De nos jours, la population est de plus en plus préoccupée par
les problèmes de sécurité. Lorsque la densité de population
atteint des pics élevés, les systèmes de comptage se mettent
en route et analyse les foules, afin de réorienter le surplus
de personnes lorsque le seuil normal est dépassé. Avec ce
genre de système, le piétinement du nouvel an de Shanghai ne
se reproduirait plus. Actuellement, le comptage de population
rencontre deux problèmes majeurs : l’analyse des foules dans
les zones à forte densité de population, ou comment faire
pour que le modèle distingue le plus finement possible les
caractéristiques d’une tête humaine d’une part; et comment
trouver une caractéristique de tête dans une image avec une
large gamme de densité de population d’autre part. L’aspect
le plus critique pour cette analyse est l’impossibilité d’installer
un système de vidéosurveillance intelligent dans certains lieux
publics. Dans ces conditions, comment pourrions-nous estimer
la densité de population dans ces zones afin d’éviter de
futurs accidents ? Face à ces défis, nous proposons la
mise en œuvre d’une architecture embarquée reconfigurable
en temps réel pour le comptage des personnes dans les
zones de regroupement. Premièrement, notre travail intègre les
fonctionnalités de HOG et LBP, qui non seulement combinent les
informations d’identifications de multiples caractéristiques, mais
également la plupart des informations redondantes, réalisant ainsi

une compression efficace des informations, économisant ainsi
de l’espace mémoire pour le stockage des données. Pour le
comptage de personnes dans une foule, nous utilisons plusieurs
sources d’informations, à savoir HOG, LBP et le filtrage de
CANNY. Ces sources fournissent des estimations distinctes du
nombre de personnes comptées et d’autres mesures statistiques
de classification, par le biais du vecteur de support machine
SVM. Dans le même temps, afin de résoudre efficacement le
problème d’extraction des fonctionnalités liées à l’échelle dans le
comptage de foules, nous proposons un nouveau environnement
M-MCNN basé sur MCNN utilisé pour le comptage de foules sur
une seule image. M-MCNN contient non seulement les trois
colonnes originales des réseaux de neurones convolutionnels
avec différentes tailles de filtres, mais aussi remplace les couches
entièrement connectées par une couche convolutionnelle de
filtre 1*1, de sorte que l’image d’entrée du modèle peut
être de n’importe quelle taille. De plus, pour un échantillon
individuel, nous améliorons considérablement l’apprentissage des
caractéristiques de l’échantillon en extrayant les caractéristiques
de texture d’une seule tête humaine et mieux l’utiliser pour les jeux
de données. Enfin, nous implémentons notre nouveau framework
M-MCNN sur un FPGA et l’installons sur un drone pour estimer
et prévoir la zone de foule à haute densité en temps réel. Notre
modèle a obtenu de bons résultats en comptage de personnes
dans une foule.
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1
BACKGROUND

China is a populous country. According to the population announced by the Bureau of
Statistics in 2019, the population of China is 1.397 billion. This is a huge number. Hence,
the problem that people care most about now is safety. Then, how can a security pre-
caution be made in a populous country? In the 21st century, people’s lives have become
more and more colorful: large-scale concerts, music and dance festivals, World Cup, New
Year’s fireworks and more. These entertainment activities bring us joy and make life more
exciting. On the contrary, do we know exactly the potential safety hazards that these en-
tertaining activities bring to people? How do we solve it? For example: December 31,
2014, the New Year’s Eve in Shanghai, was a day that impresses everyone. As it was
the New Year’s Eve, many tourists and citizens gathered on the Bund to celebrate the
upcoming new year. During the celebration, one person fell to the bottom of the walk-
way. Following this first incident, many others tripped and fell onto each other one after
another, eventually leading to large-scale crowding and stamping. If an alert could be
issued quickly, the crowd could be dispersed earlier which would prevent the Shanghai
New Year stampede from happening. Therefore, the research on crowd counting is be-
coming increasingly hot. If you can accurately estimate the crowd density of the current
scene, issue an alert, and arrange corresponding security measures, you can effectively
reduce or avoid such incidents.

Video surveillance is an important part of security protection, and the number of people
and crowd density are an important factor of concern for video surveillance. In order to
clearly introduce the development history of people counting and crowd density estima-
tion technology, we elaborate from the development of monitoring equipment.

Electronic surveillance systems began to appear in the 1970s, and the development of
video surveillance technology can be divided into three stages. The first generation is
the analog video surveillance system. In the 1970s, closed-circuit television monitoring
systems that depended on coaxial cable transmission began to appear. The image quality
transmitted by this generation of technology is poor, making it difficult to adapt to large-
scale surveillance. The second generation is the digital video surveillance system. In
the mid-1990s, thanks to advances in digital encoding technology and chip technology,
a digital video surveillance system was born. The image quality of this generation of
technology is good, and is suitable for city-level. The third-generation is the intelligent
video surveillance system. The second-generation is the digital video surveillance system
gave birth to large-scale video surveillance. The demand for video surveillance systems
is also increasing. There are questions that people are interested in, such as: Where
are you? what are you doing? The third-generation intelligent video surveillance system
analyzes the original video image based on a series of computer vision algorithms. Thus,

3



4 CHAPTER 1. BACKGROUND

it becomes possible to automatically answer these questions raised by people.

With the rising of people’s safety requirements and the improvement of economic con-
ditions, there are more and more surveillance cameras with wider coverage. Traditional
video surveillance systems require surveillance personnel to be on duty all the time. How-
ever, when the monitoring staff looks at the screen for a long time, it could cause visual
fatigue and it is difficult to respond to some emergencies in a timely manner. In order
to prevent crowd trampling accidents, researchers turned to computer vision-based pop-
ulation statistics and crowd density estimation. Automatic and reliable estimation of the
number of people or crowd density not only provides means of alert in cases of abnor-
mality, but also facilitates research in crowd simulation and behavioral analysis.

The birth of artificial intelligence video surveillance system, not only provides a large
amount of monitoring data, but also provides conditions for the development of deep
learning people counting and crowd density estimation technology. The development of
deep learning algorithms has also prompted video surveillance systems to become more
intelligent. Intelligent crowd density estimation and motion estimation can be used for
crowd monitoring and management, and can also be applied to commercial fields, such
as market research, traffic safety, and architectural design. They can directly or indirectly
improve the work efficiency and utilization of building facilities in the above-mentioned
occasions. Therefore, the study of population density estimation method has far-reaching
significance and broad prospects.



2
PROBLEM DEFINITION

Early population research focused on detection-based methods by using a sliding window
detector to detect the crowd in the scene and count the corresponding number of peo-
ple. Detection-based methods fall into two broad categories. One is based on the whole
detection, and the other is based on the detection of part of the body. Based on the
overall detection method: a classifier is trained to detect pedestrians using features such
as wavelets, HOG, and edges extracted from the pedestrian’s entire body. Algorithms
include SVM, boosting, and random forest methods. The method based on holistic de-
tection is mainly suitable for sparse crowd counting. With the increase of crowd density,
the occlusion between people becomes more and more serious. Therefore, a method
based on partial body detection is used to deal with the problem of counting people. It
mainly counts the number of people by detecting parts of the body, such as the head and
shoulders. This method has a slight improvement over the overall detection.

The regression-based method mainly learns the mapping between extracted features
and the number of people. These methods are mainly divided into two steps: the first
step is to extract low-level features, such as foreground features, edge features, texture
and gradient features; the second step is to learn a regression model. For example,
linear regression, piecewise linear regression, ridge regression, and Gaussian process
regression are used to learn the mapping relationship between a low-level feature and
the number of people.

In recent years, Deep learning (DL) based approach has been widely used in various
research fields: Computer vision, Natural language processing, etc. With its excellent
feature learning capabilities, deep learning is also used by researchers in the study of
population counting. Many corresponding data sets are established, such as Shang-
haiTect A and B, UCSD, Expo2010, Mall, UCF-CC-50 and UCF-QNRF. Different from
the traditional detection and regression-based methods, the prediction density map (DM)
method is used to obtain better prediction results for dense crowd areas in the image.
MCNN (CVPR 2016), due to the extremely uneven population density distribution in the
image, researchers have used Multi-column arrays of the Convolutional Neural Network
(CNN) to extract head features at different scales. The features of crowd images were
extracted by using three networks with different convolution kernel sizes, and finally the
features at 3 scales were fused by 1 × 1 convolution. This type of model using multiple
networks has many parameters and a large amount of calculation, so it cannot perform
real-time crowd counting prediction. Switch-CNN (CVPR 2017) uses the idea of three
sub-networks and classification to let patches of different density levels pass through the
corresponding sub-networks. CSRNet (CVPR2018) uses a pre-trained VGG16 network
followed by Dilated Convolution to obtain state-of-the-art results, making it easier to get
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6 CHAPTER 2. PROBLEM DEFINITION

head edge information.

The most difficult problem of population counting at present: On the one hand, in the
densely populated area, how to make the model distinguish human head features more
finely, such as head overlap.

For example: in the current tourist attractions, the staff will install surveillance cameras
on the necessary road sections to monitor the flow of crowds in real time to better diffuse
crowds and avoid trampling.

Here, we show a image of a crowd at a tourist attraction. We can observe from the image
that there is heavy occlusion and head overlaps among the crowds.

Head overlap

Head overlap Head overlap

Head overlap

Figure 2.1 – Severe occlusion of crowds in tourist attractions.

In this case, the places marked by the red arrow in the 2.1 crowd image pose challenges
for crowd density estimation due to severe occlusion between people. The main reason is
that occlusion is prone to cause wrong population density estimates. For example: When
two people in the image overlap each other, it is possible that we only count that there
is only one person. This is just an occlusion between 2 people. If there are many such
occlusion problems in the crowd image, it is a great challenge for us to estimate the crowd
density using an intelligent video surveillance system.

The second aspect is to find a small-scale local head feature in an image with a wide
range of population density.

Figure 2.2 – Crowd image of GOLDEN LANE in Prague, Czech Republic. The position
marked with blue dashed lines and squares in the image shows the part of the head that
is severely occlusion between people.

The image above is an image of the crowd from GOLDEN LANE in Prague, Czech Re-
public. We can clearly see that there are many tourists and local residents in the image.
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In this case, the places marked by the blue dashed lines and squares in the figure 2.2
crowd image pose challenges for crowd density estimation due to severe occlusion be-
tween people. So, in such a crowded image, how can we find local heads feature on a
smaller scale? We believe that an intelligent video surveillance system has also been
installed on this GOLDEN LANE to ensure people’s safety. Suppose in the image, a
mother walks with her child in the crowd, how about we quickly find this child through the
intelligent video surveillance system? How can we quickly find this child by her feature?
Again, this is a daunting challenge.

The third aspect is that in large sports halls, large concert venues, we can not install an
intelligent video surveillance system. So how do we estimate the high-density crowd area
to avoid crowd trampling accidents? The image below is an image of a concert crowd.

Figure 2.3 – An image of a concert crowd.

In the fourth aspect, how do we estimate and predict the high-density population area in
real time? Faced with these challenges, how do we solve these problems. In the following
chapters, we propose solutions.





3
PROPOSED APPROACHES

As discussed in the problem definitions, the most difficult problem with crowd counting
is in densely populated areas. How to make the model distinguish human features more
finely, thus accomplishing the task of counting people. The second problem is that in an
image with a wide population density, how to find a small-scale local feature head? The
third problem is how to achieve crowd density estimation and prediction where we cannot
install an intelligent video surveillance system. The fourth problem is how to estimate and
predict the high-density population area in real time. Therefore, the following methods
are proposed to solve these problems.

We propose a multi-feature fusion population count based on a multi-column convolu-
tional neural network. It is mainly divided into 3 parts.

The first part is: Multi-feature fusion technology. The main purpose is to find head fea-
tures. We extract image features from multiple information sources, and find head fea-
tures through texture feature analysis and crowd image edge detection. First of all, we
concatenate the HOG feature vector and the LBP feature vector in series to form a joint
feature vector followed by SVM. Here, in the classification process, the linearly insepara-
ble low-dimensional space is converted into a linearly separable high-dimensional space
mainly through SVM kernel functions , and the cross-validation method is used to select
the SVM optimal parameters, so that the classifier has the highest classification accuracy
of the input training samples. It is shown by the study of the human visual system, image
boundary is particularly important; often a rough outline of the line alone can be used
to identify an object. We were inspired by machine vision research, then, we optimize
the original canny operator to suppress false edges caused by noise, make target edges
thinner, and better obtain target edge features. Multi-feature fusion technology obtains
clear head contours by extracting target edge detection features and analyzing texture
features.

The second part is: A new framework M-MCNN based on multi-column convolutional
neural network is used for crowd counting on any single image. M-MCNN not only con-
tains the original three columns of convolutional neural networks with different filter sizes,
but replaces the fully connected layers with a convolutional layer of 1*1 filters, so the input
image of the model can be of any size. This avoids the need for image resizing which may
induce distortion. In a single individual sample, we use the first part to extract the texture
features of a single human head and detect the head edge features, greatly improving
the learning ability of sample features. At the same time, the loss of density map details
is also reduced, and it is better integrated with our convolutional neural network. We con-
ducted a large number of experiments on the ShanghaiTech, USCD, WorldExpo’10 and
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10 CHAPTER 3. PROPOSED APPROACHES

GCC datasets. Not only that, we have created a new dataset. This data set is called the
CHDP (high-density population) data set. It contains image of high-density people that we
collected from Google, Baidu, and other major websites. The size of each high-density
crowd image varies. Its purpose is to better detect the M-MCNN crowd counting algorithm
we have proposed. Our model outperforms the state-of-art crowd counting methods on
all data sets used for evaluation.

The third part, we implement the neural network architecture through FPGA hardware.
It is mainly designed and implements the key parts of the hardware implementation of
neural networks. The process of implementing the hidden layer is described in detail, and
the calculation process of each stage of the network is analyzed and simulated. From the
analysis of the experimental results, we can build a system that can well implement the
function of crowd counting and having higher accuracy and stability, so as to achieve the
experimental purpose. We carried it on a drone to estimate and predict the high-density
crowded area in real time.
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5
DISSERTATION OUTLINE

This manuscript is divided into nine parts:

The first part includes chapters 1 to 5:

In Chapter 1, we present current computational aspects of artificial intelligence. Re-
search in this area includes robotics, speech recognition, image recognition, and natural
language processing.

In Chapter 2, we define the problem to address.

In Chapter 3, we propose solutions to research topics.

In Chapter 4, we summarize our contributions.

In Chapter 5, dissertation outline.

The second part includes chapters 6 to 8:

In Chapter 6, we introduce the first contribution: Multi-feature fusion technology for target
edge detection and analysis.

In Chapter 7, we introduce the second contribution: Multi-feature counting of dense crowd
image based on convolutional neural network.

In Chapter 8, we introduce the third contribution: Implementation of real time reconfig-
urable embedded architecture for people counting in a crowd area.

The third part includes Chapter 9:

In Chapter 9, Conclusion and Perspectives.
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6
MULTI-FEATURE FUSION TECHNOLOGY

FOR TARGET EDGE DETECTION AND
ANALYSIS

6.1/ BACKGROUND

In the research of target detection technology, pedestrian detection has a huge market
prospect and a wide range of applications, such as banks, shopping malls, airports, rail-
way stations, and parking lots of security-sensitive occasions. Most of the researches are
aimed at improving the accuracy and speed of pedestrian detection.

6.2/ PEDESTRIAN DETECTION AND CROWD COUNTING

6.2.1/ PEDESTRIAN DETECTION

Pedestrian detection is the use of computer vision technology to determine the presence
of pedestrians in an image or video sequence and give precise positioning. This technol-
ogy can be combined with pedestrian tracking, pedestrian re-identification, etc. It can be
applied to artificial intelligence systems, intelligent robots, intelligent video surveillance,
human behavior analysis, intelligent transportation and other fields. Becasue pedestri-
ans are easily affected by clothing, scale, occlusion, posture, and perspective, pedistrian
detection has become a subject of research value in the field of computer vision.

• Wavelet Concept Features:

Papageorgiou and Poggio first proposed the concept of Haar wavelet. The detection
technique is based on a wavelet representation of an object class derived from a
statistical analysis of the class instances [53]. In 2001, Viola and Jones introduced
the concept of integral graphs. Based on the AdaBoost algorithm, face detection is
performed using Haar wavelet features and integral graph methods. They designed
more effective features for face detection and cascaded the strong classifiers trained
by AdaBoost [72]. When it comes to face recognition and detection, it is a hot
research area in computer technology. These include face tracking detection, night
infrared detection, and automatic adjustment of exposure intensity. For example, the

17
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DPM model proposed by Markus Mathias et al.[49], combined with a rigid template
detector, is well used in commercial and research systems. A method based on
K-Mean clustering, Bresenham algorithm, Graham Scan algorithm. With the help
of image morphology, the algorithm will detect the skin texture of the face [47].
A multi-task deep learning method called HyperFace, which can simultaneously
detect faces, locate landmarks, estimate head pose, and recognize gender [56].

• Texture feature : Then, in 2005, Dalal and Triggs proposed the concept of gradient
direction histogram (HOG). HOG is an edge feature, which uses the orientation
and intensity information of the edges by calculating the gradient orientation and
intensity at each point. It then forms a gradient direction distribution histogram of
all pixels in the grid. Finally, they are summarized to form the entire histogram
feature [12]. HOG features are well used for pedestrian detection[46]. Almost 100%
detection success rate was obtained on the pedestrian database provided by MIT,
it contains multiple changes of perspective, lighting and background. The INRIA
pedestrian database also achieved a detection success rate of approximately 90%.

• Global and local features and classifiers : Then, in 2007, Sabzmeydani and
Mori proposed a feature that can be obtained automatically using machine learning
methods [60], named Shapelet feature. The algorithm first extracts gradient infor-
mation in different directions of the picture of the training samples. These functions
focus on local areas of the image, and based on low-level gradient information that
can distinguish between pedestrian and non-pedestrian categories. By using the
AdaBoost algorithm for training, these wavelet features can be created as a combi-
nation of directional gradient responses. In the same year, a framework for detecting
and segmenting people with a large number of poses in crowded videos was pro-
posed [59]. The framework integrates local and global shape cues [65] by learning
a set of average pose clusters and a codebook of human body shape distribution
in various poses. It helps human segmentation and detection. In 2010, a combina-
tion of ISM model and joint occlusion analysis was used for individual segmentation
[28]. The advantage is that there is enough information in the current scene area,
and even individuals in dense areas can be processed. The other is that when the
contour of the current scene is not very accurate, the rough foreground area can
also be obtained as well. One year later, in 2011, Mikel Rodriguez et al. proposed
the use of information about the global structure of the scene and jointly solved all
detected problems [58]. In particular, they study the constraints imposed by crowd
density and formulate the detection of people into an optimization of a joint energy
function that combines crowd density estimation and personal positioning. This op-
timization of the energy function significantly improves the detection and tracking of
people in the crowd.

• FPGA based solutions : Fradi et al. [15] proposed a FPGA-based design for crowd
counting using low-level features. Use different circular patterns to process images
in parallel and detect human heads of different sizes. When detecting around the
head, the different features extracted are given to the tracking algorithm. They tar-
get image preprocessing and edge extraction on reconfigurable hardware. Tomasz
Kryjak et al. proposed a system for head and shoulder positioning in a video stream.
It is implemented on FPGA for head and shoulder detection and pedestrian count-
ing. For feature extraction, a local binary (LBP) texture descriptor is used. The main
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advantages of LBP descriptors are low computational complexity and invariant to
local illumination changes, and support vector machine (SVM) classification [39].
To reduce the probability of false positions, foreground object detection is used as
an additional verification criterion.

• Bayesian 3D Model : In 2010, Lu Wang et al. proposed a Bayesian 3D model-
based method to solve human detection in crowded scenes. Human candidates
are first specified by the head (modeled by ellipsoid), shoulder (modeled by the up-
per half of the ellipsoid), and torso (modeled by cylinder) detectors. After optimiza-
tion, the best configuration of the candidate and the corresponding shape model
are found [75]. In 2011, Matthias Butenuth et al. Proposed a general framework
for crowd analysis to detect and track pedestrians. By using the appearance-based
object detection method, fine objects are well detected. At the same time, iterative
Bayesian tracking method is used to focus on specific locations where danger may
exist [6]. In 2014, Hui Liu et al. Proposed a head detection method based on head
features and applied it to video pedestrian tracking based on the human head’s
similar round shape, and the unique color of hair. Here, the head vertex is used as
the feature point, and the head contour is sampled to complete the ellipse fitting.
Finally, the method of circle-like detection is used to realize the human head detec-
tion. Experimental results show that this method has a good effect when applied to
scenes with sparse crowds [32].

In recent years, through the method of motion features, the target’s motion information
is added to the pedestrian detection system and combined with other static features to
detect pedestrians. For example, as proposed by Viola et al., Haar-like features can be
calculated between images when the camera is stationary. Then the motion information
is combined with the gray-scale intensity of the image to construct a pedestrian detection
system. In detection method based on human body parts, the human body is divided into
several component parts, and then each part of the image is detected separately. Finally,
the detection results are integrated according to a certain constraint relationship to finally
determine whether there are pedestrians. Different detection methods are proposed for
better pedestrian detection.

6.2.2/ CROWD COUNTING

In the past ten years, with the continuous development of computer vision technology, a
large number of crowd counting methods have been proposed.

• HOG texture features : This corresponds to the head-shoulder shape based on
the HOG only inside the foreground region. Based on the joint HOG feature [8], the
Haar [53] [72] classifier is used for coarse filtering and the SVM cascade classifier is
used for accurate verification. Using the MID model, the HOG is based on the head
and shoulder detection, and the foreground segmentation estimates the number of
crowded scenes [41].

• LBP texture feature : A new method specific to LBP is used to calculate the co-
occurrence matrix on the LBP feature map. The cell-based method was used to
construct the LBPCM feature vector [79]. The Adaboost classifier with LBP features
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is used to optimize the foreground area of and perform head detection. Keju et al.
[35] track the target object by the mean shift algorithm, and use the crossing-line
method to determine whether the detected head is counted.

• Texture feature : Through a variety of texture classification, crowd patches are di-
vided into multiple different categories. Each class represents a predefined range of
population densities [51]. Vora create a set of multi-resolution density cells based on
a perspective projection model. The GLDM function provides vectors for each cell.
The function vector is fed back to the SVM training to solve the nonlinear regression
problem [80]. Depending on the method using texture features, the extraction uses
a Gabor filter and a least squares support vector machine [40].

• Adaboost’s algorithm and spectral texture features : Population density estima-
tion based on multi-class Adaboost algorithm and spectral texture features [36].

• Foreground and texture features : Through the foreground feature extraction and
detection of the crowd, the combined LK optical flow and GBM method is used to
eliminate background noise. Yang et al. [83] added new function of texture analysis
settings for crowd density estimation.

• Gray-level texture analysis : Humans perceive images through their attributes,
such as color, shape, size, and texture. Crowd surveillance is performed automat-
ically based on the texture information on the grayscale transition probability in the
digitized image. The crowd density estimation is based on the amount of texture
of the image and gives very low, low, medium, and high density. The number and
range of each estimation itself depends on the specific application and specific char-
acteristics of the surveillance area. The crowd density feature vector is extracted
from the digitized image for crowd estimation [48].

• Multiple sources : The count is estimated by fusing information from multiple
sources, namely: points of interest (SIFT), Fourier analysis, wavelet decomposi-
tion. In[4] GLCM function and low-confidence head detection are used to estimate
counts. The target detection and tracking algorithm are used to estimate the den-
sity population [23]. Based on local feature extraction, tracking, and kernel density
estimation, population density estimation are performed [15].

• Background subtraction and SVM : A method based on training classifier and
background subtraction. It further describes estimating the number of people in a
population relative to the results of head detection [68]. The background image is
automatically generated from the crowd video sequence and used as a reference
image for crowd density measurement [84]. A discrete cosine transform is used
to convert the motion state of the measurement area of the frequency domain to
identify the frequency distribution. Feature values are extracted based on differ-
ent frequency bands and different direction information for feature vectors used for
training and classification. Support vector machine is used to classify feature vec-
tors into multiple categories of population density [29].

• POI Features : In 2010, D. Conte et al. Proposed the establishment of a mapping
between scene features and number of people. By detecting the points of interest
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related to people, as well as the clustering of points of interest, the use of SURF
feature extraction and the use of SVR regressors estimate of crowd counts [11].
Two years later, Venkatesh bala subburaman et al. Proposed a new type of point of
interest detector based on gradient direction features. The top of the head area is
detected by this detector. They detect the head of the image, and find the points of
interest using the gradient information of the gray picture located approximately at
the top. Combining two different background subtraction methods further narrows
the search area, thereby simplifying the setting of background parameters. It helps
to better estimate the population from a single frame [69]. In 2013, Haroon Idrees
et al. used Fourier analysis with head detection and interest-based crowd counting
[33].

• Crowd density estimation framework, Random Projection Forest (RPF) : An
effective crowd density estimation framework is called Random Projection Forest
(RPF). This framework combines a random forest regression model with a random
projection method [81]. By using a random forest as a regression model, its tree
structure is essentially fast and scalable. It embeds random projections in the nodes
of the tree to overcome the interference of increasing dimensions at the same time.
It also introduces randomness into the tree structure to more accurately and effec-
tively describe the features and provide more reliable and accurate predictions of
people statistics.

With the continuous improvement of people’s living standards, there are more and more
various entertainment activities, so people also like to gather together to participate in
activities. Prediction of crowd density through video surveillance equipment.

• In 2003, Danny B. Yang et al. Proposed as an alternative method of directly esti-
mating the number of people [82]. In this system, groups of image sensor segment
foreground objects from the background. The contours generated by the network
aggregation and the plane projection of the scene’s visual shell are calculated. A
geometric algorithm is also introduced here to calculate the number of people in
each area of the projection after eliminating the phantom area. After that, crowd
counting was performed.

• In 2004, Ruihua MA et al. Proposed a population density estimation for video
surveillance based on pixel counting [45].

• A year later, X Liu et al. Proposed a video surveillance system, including visual
tracking, automatic calibration, crowd segmentation and counting, and event recog-
nition module [44]. This system is able to segment the population, while also count-
ing the number of people entering or leaving a particular site. This model-based
method can also make effective use of the spatial background to enable the system
to automatically detect certain events.

• In 2006, Xinyu Wu et al. Proposed a method for calculating population density using
density maps. In the initial stage, a set of multi-resolution density cells is created
by seeing through the model. After that, the GLDM function extracts vectors for
each cell. Finally, the function vector is fed back to the SVM training to solve the
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nonlinear regression problem. To a certain extent, this method makes use of cells
and search algorithms with multi-resolution scale changes, while also relying more
on the background [80].

• In 2009, for the problem of passenger flow detection in dense traffic scenarios, Keju
Zhu et al. Proposed a method based on support vector machine (SVM) multi-target
detection combined with Mean Shift tracking. First, an adaptive detection window
is used to extract the gradient direction histogram. After SVM classification and
clustering algorithm, the initial hypothesis of the head image are obtained. Then
the Mean Shift algorithm is used to track the head hypothesis to obtain a continuous
head image sequence. Finally, the overall image is judged by the SVM classifier to
obtain the passenger traffic information [35].

• In 2010, Donatello Conte proposed a new method of counting people for video
surveillance applications, which is divided into a direct and an indirect method. In
the direct method, the person is first detected and then counted. An indirect method
is used to establish a link between some easily detectable scene features and the
estimated number of people [10].

• In 2012, Zhong Zhang and others proposed an extended standard IVS system
framework. They use available video analysis data and camera calibration informa-
tion to provide accurate estimates of people count in crowded scenes [91]. In the
same year, Hajer Fradi et al. Proposed the advantage of merging a uniform motion
model into a Gaussian mixture model (GMM) background subtraction, thereby ob-
taining high-precision foreground segmentation. Crowd counting is based on fore-
ground measurement, where perspective normalization is performed and the angu-
lar density associated with crowd measurement is introduced into a single function
along with the number of foreground pixels. Then, the correspondence between the
characteristics of this frame and the number of people is learned through Gaussian
process regression [14].

• In 2013, Zhang Ma et al. Proposed a population counting method for integer pro-
gramming [46]. It is used to estimate the instantaneous number of pedestrians
crossing the line of interest in a video sequence. Through the line sampling pro-
cess, the video is first converted into a time slice picture. Next, they estimate the
sliding window where the number of people in a group overlaps with the time-sliced
image. Count by using a regression function mapped from local features. Integrate
over a specific time interval to get the number of pedestrians crossing the line.

• In 2014, Ayse Elvan et al. Proposed a population density classification method and
applied it to video population density estimation [23].

Population quantity and density are important attributes of population analysis. The meth-
ods mentioned above still have challenging problems in measuring high population den-
sity. At present, the most difficult problem is how to make the model distinguish human
features more precisely in densely populated areas, for example: the problem of over-
lapping heads. The other is how to find small-scale local feature heads in an image with
widely distributed population density. Next, we propose a new method to solve these two
problems.
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6.3/ FUSION OF TEXTURE FEATURE AND EDGE DETECTION FOR

PEOPLE COUNTING

To address the aforementioned challenges, we propose a population counting method
based on for feature fusion and edge detection. Each image undergoes multiple pipelines
including image feature extraction, texture feature analysis, and crowd head edge detec-
tion to estimate the count. We target people counting at potentially populous locations,
such as city bus and subway stations. Our method uses a still image taken by the camera
to estimate the count in the crowd density image, using multiple sources of information,
namely: HOG, LBP, and CANNY edge detector. These sources provides separate esti-
mates of the number of counts and other statistical measures, through the support vector
Machine SVM, classification, and regression analysis to obtain high-density populations.
Our method is shown in the Figure 6.1:

Canny based head edge detection

Extract Joint HOG-LBP feature vectors of the samples

Classify each window by the SVM classifier
Scan the frame 

image 
intensively

Create positive and 
negative image 

samples

The fusion of the target windows

Figure 6.1 – Head feature extraction.

6.3.1/ EDGE DETECTION

In the actual image edge detection problem, as a basic feature of the image, the edge
of the image is often used in higher-level image applications. It has a wide range of
applications in the fields of image recognition, image segmentation, image enhancement,
and image compression.

Because the image edge is one of the most basic features of the image, which often
carries most of the information of the image, we need a very important feature condition,
which requires us to detect and extract its edge. Edge detection has very important use
value in many aspects, so people have been working to study and solve the problem of
how to construct the edge detection operator which has good properties and good effect.
We can think of the singular points and the image edge points in the image. The gray level
changes can be reflected by the gradient of adjacent pixels. According to this feature, we
propose a variety of edge detection operators such as Sobel operator, Roberts operator,
Prewitt operator, Log operator, Laplace operator, Canny operator and so on. To achieve
the extraction of image edge and good effect has been achieved.

The edges of objects appear in the form of local discontinuities in the image, for example,
the abrupt changes in color and texture structure. Physically, edges often mean the end
of one area and the beginning of another. Image edge information is very important
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in image distribution and human vision. It is an important attribute for extracting image
features in image recognition.

6.3.1.1/ EDGE DETECTION AND EXTRACTION PROCESS

Basic steps of image edge detection:

(1) Filter: Edge detection is mainly based on derivative calculation, but it is affected by
the noise. Reducing noises often leads to the loss of edge strength.

(2) Enhancement: The enhancement algorithm will be in the neighborhood of the gray
level has a significant change of the points highlighted. Generally through the calculation
of the gradient amplitude.

(3) Check: But in some of the image gradient detection: in large amplitude and edge.
Edge detection is not simple is the gradient threshold determination.

(4) Positioning: Accurately determine the location of the edge.

Feature extraction is an important part of image edge detection, and many effective meth-
ods have been made available for it. These methods have been tested in real-life applica-
tions and some of them even have been standardized. The classic edge detection oper-
ators include: Sobel operator, Roberts operator, Prewitt operator, Log operator, Laplace
operator, canny operator, etc. These classic edge extraction operators use a pre-degined
edge model to locate the occurence of edges in an image.

6.3.1.2/ SOME EDGE DETECTION AND EXTRACTION OPERATORS

Sobel operator:

The convolution of the Sobel operator [22] is shown in Figure 6.2. Each pixel in the image
is used to do the convolution of the two kernel. The two kernel have the largest response
to the vertical and horizontal edges respectively. The maximum of the two convolutions is
used as the output bit of the point.

-1-1 -2 -1

0 0 0

1 2 1

-1 0 1

-2 0 2

-1 0 1

Figure 6.2 – Sobel edge operator.

Roberts operator:

The principle of gradient amplitude can be calculated according to the difference of any
pair of mutually perpendicular directions. Provides a simple approximation method for
gradient amplitude calculation, that is, the difference between two adjacent pixels in the
diagonal direction:
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∆x f = f (i, j) − f (i + 1, j + 1) (6.1)

∆y f = f (i, j + 1) − f (i + 1, j) (6.2)

Their convolution operators are:

∆x f =

[
1 0
0 −1

]
,∆y f =

[
0 1
−1 0

]
(6.3)

Difference scores will be interpolated point [i+1/2, j+1/2] office calculation, even if the
gradient of the Roberts, f(i, j), but it is worth noting that the Roberts operator is the point
of the gradient approximation, not the expected point (i, j) of the approximate value.

Roberts operator edge positioning is accurate, but it is sensitive to noise. It is suitable for
image segmentation with obvious edge and less noise, and it often uses Roberts operator
to extract the feature.

Prewitt operator:

Convolution of Prewitt operator as shown in Figure 6.3, each pixel in the image is used
to perform the convolution of the two kernels, the maximum value as the output, but also
produces an edge amplitude image.

-1-1 -1 -1

0 0 0

1 1 1

1 0 -1

1 0 -1

1 0 -1

Figure 6.3 – Prewitt edge operator.

The expression of the Prewitt operator is as follows:

S (x, y) =


∣∣∣[ f (x + 1, y − 1) + f (x + 1, y) + f (x + 1, y + 1)

]∣∣∣−∣∣∣[ f (x − 1, y − 1) + f (x − 1, y) + f (x − 1, y + 1)
]∣∣∣ +∣∣∣[ f (x − 1, y + 1) + f (x, y + 1) + f (x + 1, y + 1)
]∣∣∣−∣∣∣[ f (x − 1, y − 1) + f (x, y − 1) + f (x + 1, y − 1)
]∣∣∣

 (6.4)

Prewitt operator in one direction handles differentiation, and in another direction handles
smoothing, so the noise is relatively insensitive, as there is a noise suppression effect.
But the average pixel equivalent to the image of low pass filtering.

Log operator:

Laplacian of Gaussian operator is a kind of zero crossing point using the two order deriva-
tive of the image intensity. The algorithm is very sensitive to noise, so the noise is filtered
before the edge is enhanced.
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LOG operator is used in order to reduce the noise influence and to deal with detection of
image smoothing and smoothing function with normal distribution of Gaussian function g
(x, y, σ), namely:

G (x, y, σ) =
1

2πσ2 exp
(
−

x2 + y2

2σ2

)
(6.5)

G (x, y, σ) of image f (x, y) of the filter can be obtained by the following convolution:

g (x, y) = G (x, y, σ) ∗ f (x, y) (6.6)

The Laplace operator for edge detection can be otained by the following formula:

O2g (x, y) = O2 (G (x, y, σ) ∗ f (x, y)) = O2G (x, y, σ) ∗ f (x, y) (6.7)

O2G (x, y, σ) = k
(

x2 + y2 − 2σ2

σ4

)
exp

− x2+y2

2σ2

 (6.8)

Laplace operator:

It is a kind of two order derivatives edge detection operator of a continuous function f (x,
y) its position in the image (x, y), the Laplace value is defined as:

O2 f =
∂2 f
∂x2 +

∂2 f
∂y2 (6.9)

-10 1 0

1 -4 1

0 1 0

1 1 1

1 -8 1

1 1 1

Figure 6.4 – Laplace edge operator.

Commonly used Laplace is sensitive to noise, the Laplace operator has a drawback which
is its dual response to some of the edges in the image. So the image after smoothing,
usually the Laplace operator and smoothing operator combined to generate a new tem-
plate.

Canny operator:

Canny edge detection algorithm [3][26][55][64]:

Step1: Gauss filtering to smooth images;

Step2: Calculate the gradient magnitude and direction by finite first-order partial deriva-
tives of the filtred image;

Step3: non maximum suppression of amplitude of the gradient ;
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Step4: Use of dual threshold algorithm for edge detection and link edges.

• Advantages of Canny operator detection method: :

– Low Bit Error Rate (BER), rarely mistaken for non-edge edge points;

– The high positioning accuracy, which is precisely the edge location of
the biggest change in gray pixels;

– To suppress the false edge.

Select an ordinary person’s head picture, add Gaussian noise, and then use Matlab pro-
gramming language to compare and analyze the extraction results:

Original image                           Gray image                                   Sobel                                     Roberts 

    Prewitt                                        Log                                       Laplace                                      Canny

Figure 6.5 – Target image edge detection with different operators.

The results: The filter detected by using canny operator has the best quality. This is
because canny has the ability to diagnose and optimize the edge detection. It first uses a
two dimensional Gaussian function for noise filtering, then carries out the local maximum
value of the image gradient to determine the image edge.

In summary:

• Sobel operator: The Sobel operator performs better on gray-scale gradients and
images with more noise. Sobel operator is more accurate in positioning the edge. At
the same time, Sobel operator is also a weighted average operator. According to its
definition, the influence of neighboring pixels on the current pixel is not equivalent,
thus, pixels with different distances have different weights. In general, the further a
pixel is, the smaller its impact.

• Roberts operator: Roberts operator performs better on low-noise images. This
also shows that Roberts operator is very sensitive to noise. Roberts operator is
suitable for image segmentation with obvious edges and less noise. The resulting
edges by the Robert operator are not very smooth. Through analysis, the Robert
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operator usually produces a wider response in the area near the edge of the image.
Roberts operator uses edge image thinning processing. As a result, its accuracy
for edge positioning is not very high.

• Prewitt operator: The Prewitt operator is better for image processing with gray
gradient and noise. This shows that the Prewitt operator has a good effect on sup-
pressing noise. However, compared with Roberts operator, Prewitt operator is not
very accurate in positioning the edge of the image.

• Log operator: The Log operator is more sensitive to noise, hence it is rarely used to
detect image edges. Using the Log image edge detection algorithm with Gaussian
function filtering can suppress the noise, however at the cost of smoothing out low-
intensity image edges.

• Laplace operator: Laplace operator is very sensitive to noise. Laplace operator
tends to partially lose the direction information of an edge during image detection,
resulting in some discontinuous edge detection.

• Canny operator: The Canny operator is not easily affected by noise and can detect
weak edges of the image well. The advantage of the Canny operator is that it uses
two different thresholds to detect strong and weak edges, respectively. When the
weak and strong edges are connected, the weak edges are included in the output
image. Therefore, the Canny operator can detect true weak edges more easily, and
is better used in image edge detection.

6.3.2/ IMPROVEMENT OF CANNY

By analyzing the principle of Canny’s edge detection algorithm, we have conducted in-
depth research on the Gaussian filtering process in Canny operator [26]. We extend the
computation of gradients into 4 or more directions, effectively improving the accuracy of
Canny edge detection.

6.3.2.1/ IMPROVED METHOD OF CANNY OPERATOR

(1) First of all, denoising is done by using, Gaussian filtering. Its purpose is to smooth the
original image and remove or weaken the noise in the image.

Assuming two dimensional Gauss’s function [26][55]:

G (x, y) =
1

2πσ2 exp

−
(
x2 + y2

)
2σ2

 (6.10)

Gradient vector:

OG =

[
∂G/∂x

∂G/∂y

]
(6.11)

To improve the speed of decomposition method, the 2 filters at convolution template G is
decomposed into 2 one-dimensional filters:
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∂G (x, y, σ)
∂x

= kxe
x2

2σ2 e
y2

2σ2 = h1 (x) h2 (y) (6.12)

∂G (x, y, σ)
∂y

= kye
y2

2σ2 e
x2

2σ2 = h1 (y) h2 (x) (6.13)

Where k is a constant, and σ is Gaussian filter parameter. It controls the degree of
smoothing. Although the positioning accuracy is high for sigma, the signal to noise ratio
is low. So it is need to select the Gaussian filter parameter according to the requirement.

(2) The traditional canny algorithm through the neighborhood for finite difference to calcu-
late the amplitude of the gradient. We adopt a new 3x3 neighborhood in calculating the
gradient amplitude. The procedure is as follows:

The partial derivatives of the 4 directions are calculated at first. And then expand to
multiple directions.

Partial derivative along the X direction:

Px (x, y) = G (x, y + 1) −G (x, y − 1) (6.14)

Partial derivative along the Y direction:

Py (x, y) = G (x + 1, y) −G (x − 1, y) (6.15)

45 degree directional partial derivative:

P45 (x, y) = G (x − 1, y + 1) −G (x + 1, y − 1) (6.16)

135 degree directional partial derivative:

P135 (x, y) = G (x + 1, y + 1) −G (x − 1, y − 1) (6.17)

Difference in horizontal direction:

fx (x, y) = Px (x, y) +
[
P45 (x, y) + P135 (x, y)

]
/2 (6.18)

Difference in vertical direction:

fy (x, y) = Py (x, y) +
[
P45 (x, y) − P135 (x, y)

]
/2 (6.19)

The gradient magnitude is obtained:

M (x, y) =

√
fx (x, y)2 + fy (x, y)2 (6.20)

The gradient direction is:

Θ (x, y) = arctan
(

fx (x, y)
fy (x, y)

)
(6.21)
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The method takes into account the intensity changes along the diagonal direction, which
increases the pixels to compute the partial derivative direction, and improves the tradi-
tional canny operator in terms of accurate localisation of edges.

(3) Non maxima suppression of gradient amplitude.

For gradient "non-maximum suppression", it is not enough to determine the edge based
on the gradient magnitude of the image. In order to determine the edge, the roof ridge
band in the gradient magnitude image must be refined, so that a refined edge can be pro-
duced. “Non-maximum suppression” refines the gradient amplitude roof by suppressing
the gradient amplitude of all non-roof peaks in the gradient direction.

Firstly, this algorithm reduces the range of gradient directions to the one of the four sec-
tors, as shown in figure 6.6. The grades of the four sectors from 0 to 3. For the first pixel
(x,y), the sector along with the gradient directions is given by ξ (x, y), namely:

ξ (x, y) = S ector (θ (x, y)) , ξ (x, y) = 0, 1, 2, 3 (6.22)

In the 3*3 neighborhood of the pixel located at (x, y), each neighborhood pixel must be in
a sector. The center pixel (x, y) was compared between two neighborhood pixel gradient
amplitude and its gradient direction of the sector, where the gradient line is at the center
of the neighborhood by Sector ξ(x,y) value is given. If the gradient magnitude of the
central pixel (x, y) is smaller than that of two neighborhood pixels of the sector,

∣∣∣O f (x, y)
∣∣∣

is set to be zero. Otherwise
∣∣∣O f (x, y)

∣∣∣ at constant. This process not only obtains the
refinement of wide ridge, but also remains the maximum inhibition information in "non-
gradient" amplitude.

N
[
i, j

]
= NMS

(∣∣∣O f (x, y)
∣∣∣ , ξ (x, y)

)
(6.23)

Represents the non-maximum suppression process. A non-zero value in N[i, i] corre-
sponds to the contrast at which the image intensity changes stepwise. Although the
image is smoothed in the first step of edge detection, the non-maximized suppressed
amplitude image N[i, i] contains many false edge segments caused by noise and texture.
In practice, the contrast of false edge segments is generally very small.

(4) Dual threshold detection and edge linking:

The gradient amplitude array processed by "non maximum suppression" is thresholded.
A typical method to reduce the number of false edge segments is to use a threshold for
G (x, y). Zero all values below the threshold.

The first is the marginal discriminant: if the edge intensity is greater than the high thresh-
old value, it must be an edge point; if the edge strength is less than the low threshold
value, it must not be an edge point; if the edge strength is greater than the low threshold
value and less than the high threshold value, then whether there is an edge point in the
adjacent pixels of the pixel, if there is, it is an edge point; if not, it is not an edge point.

The second is connected edge: the double threshold algorithm applies two thresholds
T1 and T2 to the non maximum suppression image, so that two threshold edge images
G1(x, y) and G2(x, y) can be obtained.

In the experimental part, we select the optimal threshold by adjusting the parameters.
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Figure 6.6 – Quantification of the gradient directions.

6.3.2.2/ ADAPTIVE CANNY AND MEDIAN FILTERING.

• Adaptive Canny

An adaptive image edge detection algorithm based on canny operator is proposed in [85],
its purpose is in the original image smoothing, filtering to remove or reduce the noise in
the image. The image edge and noise are high frequency signal, the use of primitive
Gaussian functions, will make the image edge fuzzy degree increase, which will make
the subsequent detection process difficult. So, we proposed a modified Gaussian filtering
method. The algorithm according to image pixel gray value mutation characteristics and
the weights of the adaptive filter is changing, in smooth regions of the image edge sharp-
ening and better to solve the noise smoothing, edge sharpening the filtering technique in
the contradiction of, butt down edge detection to good pretreatment effect.

The calculation steps of adaptive filter are as follows:

(1) The K=0 iteration number is N, and set the value of the h parameter.

(2) Calculated gradient:

Gxk (x, y) and Gyk (x, y) (6.24)

Gxk (x, y) =
1
2

[
f k (x + 1, y) − f k (x − 1, y)

]
(6.25)

Gyk (x, y) =
1
2

[
f k (x, y + 1) − f k (x, y − 1)

]
(6.26)

(3) Weight coefficients of the filter:
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wk (x, y) = exp

−
[
Gk

x (x, y)2 + [Gk
y (x, y)2

]
2h2

 (6.27)

(4) Weighted average of F(k)(x, y):

f (k+1) (x, y) =

∑1
i=1

∑1
j=1 f (k) (x + i, y + 1) w(k) (x + i, y + i)∑1

i=1
∑1

j=1 w(k) (x + i, y + 1)
(6.28)

(5) if k=K, then the end of iteration; Otherwise k=k+1.

It can be known from the above that the basic idea of the proposed adaptive smooth-
ing filtering method is to iteratively convolve with the original image signal using a locally
weighted template (the number of iterations is generally fixed). The weighting coefficient
of each pixel point is changed at each iteration, and it is a gradient function of the pixel
point. At the same time, the weighting coefficient of the filter also depends on the pa-
rameter h, which controls the amplitude of the mutation points to be retained during the
iteration. This parameter guarantees the accuracy of image smoothing in different sit-
uations. In short, the weighting coefficient reflects the degree of continuity of the gray
value of the image. After multiple iterations, the output image of the filter is composed of
several uniform intensity regions. And there are good edges between these areas. There-
fore, adaptive smoothing has two obvious effects: 1. Sharpen the edges of the area. 2.
Smooth the inside of the area.

Simulation experimental results show that the smoothing effect of the adaptive filter is
slow and gradual, and edge sharpening is required after a few iterations can, can achieve
the desired smoothing, sharpening results. More iterative calculation will not have the
most obvious improvement of the image, and will increase the amount of calculation,
affect the efficiency. In this experiment, iteration number is set to 5, can achieve the
desired results.

• Median filtering Canny

From the analysis of the Canny algorithm can be seen using a canny edge extraction
operator, Gaussian filter, its purpose is to the original image smoothing, to remove or
reduce the noise in the image. Then we can try using median filter instead of Gaussian
filter to the noise.

The median filter [55] is based on the order statistics theory, a can effectively restrain
the noise of nonlinear signal processing technology. This filter has the advantages of
simple operation and fast speed, noise filtering shows excellent performance. Median
filter in filtering the noise at the same time can well protect the image edge and a good
restoration of the image. In addition, median filter is easy to adapt, which can further
improve the filtering performance. Therefore, it is very adapt to some linear filters cannot
be competent to digital image processing applications.

The basic principle of median filtering is: First, determine a to a pixel as the center of the
neighborhood, general square neighborhood, then in the neighborhood of each pixel of
the sort the gray value, take the middle value as the new value of the center pixel. The
neighborhood here we normally call from the window, when the window on the image
for moving around, using the median filter algorithm can well for image smoothing. The
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definition of median filtering algorithm in one dimension of the: When n is odd, the number
of N {x1,x2,. . . ,xn},the median is according to the numerical order of size in the middle
position number; When n is an even number, the average value of the definition of the
two intermediate numbers of median. The median is represented by the symbols med
{x1,x2,. . . ,xn}.

For example: Med (1,3,4,0,6)= 3. In the two-dimensional median filtering algorithm is
defined: Let Xi j be the gray value of each point in the digital image. Here (i,j) fetches a
certain subset of Z2. The filtering window is A, and its size is N = (2K + 1) · (2K + 1), and
yi j is the median value of window A in xi j. then [55]:

yi j = med (xi+r, j + s, (r, s) εA) (6.29)

The median filter is a neighborhood operation, which sorts the pixels in the neighborhood
by gray level, and then selects the intermediate value in the group as the output pixel
value.

Specific steps are as follows:

(1) Roam the template in the image, and overlap the center of the template with the
position of a pixel in the image.

(2) Read the next gray value of the template for the pixel.

(3) Line up these gray values from small to large.

(4) Find the middle one of these values.

(5) Assign this intermediate value of the pixel at the center of the corresponding template.

The relationship between visual and median filtering: the image needs to be observed,
to identify and understand. The image quality is closely related to the human eye’s sen-
sitivity. Because the human eye’s perception of the image is mainly based on the human
eye’s rod cells, the rod cells in the display image is a number of cells, the median filtering
of the image signal median filter, can be very good. To eliminate all kinds of random
noise in the image, and doesn’t affect the image to people’s feeling. In the process of
image transmission, external interference and system internal interference will bring a lot
of random noise interference, the use of median filter can remove the interference, and
the value of the image signal attenuation and the human eye does not affect the sense of
image.

• Conclusion:

There are two key points in image edge detection: on the one hand, it is important
to effectively reduce the influence of noise, and on the other hand, it is also crucial
to select the correct threshold. Choosing the optimal threshold can not only reduce
the influence of noise, but also has a good effect on the suppression of false edges.
If the threshold is set too high, the edge may be broken. If the threshold is set too
low, many false edges may appear in the extracted edges.

Defects of the Canny algorithm: The traditional Canny operator calculates the gradi-
ent amplitude value by calculating the finite difference mean in a 2 * 2 neighborhood.
It is more accurate for edge positioning, but too sensitive to noise. It is also easy to
detect false edges and lose some details of the real edges. Overall. experimental
results by Canny algorithm are poor.
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To address this issue, we developed an improved canny algorithm from the conven-
tional method. The proposed approach calculates the gradient amplitude by using
an 8-pixel’s neighborhood in the directions of X, Y, 135 degree and 45 degree as
well. It also extends to multiple directions to calculate the gradient amplitude of the
image. Not only that, we also choose the optimal threshold by adjusting the pa-
rameters and use it to judge whether the point is an edge point. In the following
experimental part, we use the improved gradient amplitude algorithm Canny oper-
ator to detect more edge details. It not only retains effective edge information, but
also obtains edge images very well. It has better performance than traditional gradi-
ent calculation methods. This method can effectively resist the interference of noise
with high accurate detection results.

We will use the optimized Canny operator for the edge detection of the target head
image. This is also based on the first information source we proposed to use multi-
ple information sources. Next, we use image feature extraction and texture feature
analysis to obtain more features of the target head image.

6.3.3/ APPROACHES BASED ON TEXTURE FEATURES

Texture is a visual feature that reflects homogeneity in an image. It reflects the surface
structure, organization and arrangement properties of the object surface with slow or
periodic changes. Texture has three major characteristics: a kind of continuous local
repetition, non-random arrangement, and a uniform body in the texture area [48][80].

Unlike image features such as grayscale and color, texture is represented by the grayscale
distribution of pixels and their surrounding spatial neighborhoods, that is, local texture in-
formation. In addition, the repetitiveness of local texture information to varying degrees
is the global texture information. While the texture feature reflects the nature of global
features, it also describes the surface properties of the scene corresponding to the image
or image area. Because the texture is only a characteristic of the surface of an object, it
does not fully reflect the essential attributes of the object. Therefore, it is impossible to
obtain high-level image content using only texture features. Unlike color features, texture
features are not pixel-based features, as they require statistical calculations in an area
containing multiple pixels. In pattern matching, such regional features have great ad-
vantages, and will not fail to match successfully due to local deviations. When retrieving
texture images with large differences in thickness, density, etc., using texture features is
an effective method. But when there is little difference between easily-resolved informa-
tion such as the thickness and density of textures, it is often difficult to accurately reflect
the differences between textures with different human visual perception. For instance,
reflections in the water and the effects of smooth metal surface reflections on each other
can cause changes in texture. Because these are not the characteristics of the object
itself, when applying texture information for retrieval, sometimes these false textures can
cause "Misleading" retrieval.

Pros and the cons related to texture features:

• Advantage :

– It performs statistical calculations in an area containing multiple pixels;

– It has rotation invariance;
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– It has strong resistance to noise.

• Disadvantages :

– When the resolution of the image changes, the calculated texture may
have a large deviation;

– The texture reflected from the 2-D image is not necessarily the true tex-
ture on the surface of the 3-D object;

– It may be affected by lighting and reflection conditions.

The extraction of texture features generally involves setting a certain size window and
then obtaining texture features from them. However, the choice of window has contradic-
tory requirements: (1) The need for setting large windows: texture is a regional concept,
which must be reflected by spatial consistency. The larger the observation window, the
stronger the ability to detect identity; otherwise, the weaker the ability; (2) The window
setting is small: because the boundaries of different textures correspond to the jump in
the texture identity of the region. Therefore, in order to accurately locate the boundary, a
smaller observation window is required; In this case, the difficulty will be: if the window
is too small, it will cause mis-segmentation within the same texture; while the analysis
window is too large, it will cause many mis-segmentations in the texture boundary area.

Here, we propose a texture feature fusion technique, namely HOG and LBP texture fea-
ture fusion. We apply texture, multi-feature fusion technology to solve these difficulties.

6.3.3.1/ HOG FEATURE BASED HEAD

Usually, we can use key points in the image for matching to detect objects in the image.
These types of algorithms are useful when you want to detect objects that have many
consistent internal characteristics and are not affected by the background. For example,
these algorithms can achieve good results in face detection because faces have many
consistent internal features that are not affected by the background of the image [57],
such as eyes, nose, and mouth. However, these types of algorithms do not work well
when trying to perform the more general object recognition, such as pedestrian detection
in images. The reason is that people’s internal characteristics are not as consistent as
faces [24], because everyone’s body shape and style are different. This means that
everyone will have a different set of internal characteristics, so we need something that
can describe a person more fully.

Detecting objects by the contours of an image is very challenging because we have to
deal with the difficulties caused by the contrast between the background and the fore-
ground. That’s why we need HOG, histograms of Oriented Gradients, which were first
proposed by Navneet Dalal and Bill Triggs in 2005 [12].

HOG represents the structural features of edges (gradients). It can not only describe the
local shape information, the quantification of position and direction space, but also can
suppress the effects of translation and rotation to a certain extent. Taking a normalized
histogram in a local area can partially offset the effects of lighting changes. Because the
effect of the color of the light on the image is ignored to a certain extent, the dimension of
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Figure 6.7 – HOG feature extraction flowchart.

the representation data required by the image is reduced. And because of its block-by-
block processing method, the relationship between the local pixels of the image can be
well represented.

Here, we introduce HOG texture features for human head image detection. First, we take
one target image and convert it into gray-scale image, and treat the target image as a
three-dimensional image (x, y, z).

In order to reduce the influence of illumination factors, the main purpose is to improve the
robustness of the detector to illumination. First, the entire image needs to be normalized.
In the texture intensity of the image, the proportion of local surface exposure contribution
is relatively large. Therefore, our compression process can effectively reduce the local
shadow and lighting changes of the image. Gamma compression formula [12]:

I (x, y) = I (x, y)Gamma (6.30)

When Gamma = 1, oblique 45° straight line, without correction, output = input; Gamma
is greater than 1, the curve is pushed down, the output value is less than the input value;
Gamma is less than 1, the curve is arched, the output value is greater than the input
value; here the Gamma effective value , we take 0.5.
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Then, we start to calculate the gradient value of the target image. We calculate the gra-
dient of the image’s abscissa and ordinate directions, and calculate the gradient direction
value of each pixel position. The derivative operation can not only capture contours,
silhouettes and some texture information, but also further weaken the influence of light-
ing. Here we have done a Gaussian smoothing. Image smoothing generally refers to
the process of highlighting the low-frequeny components of an image while supressing
noise which often correspond to high-frequency components. In this way, the image
is smoothed, where abrupt changes inside are reduced. Generally in order to remove
noise, we first use a discrete Gaussian smoothing template for smoothing, and the Gaus-
sian function performs smoothing operations on grayscale images at different smoothing
scales. Through experiments, the best human detection effect can be achieved without
Gaussian smoothing, which reduces the error rate by about double. The reason for not
doing the smoothing operation is that the image is edge-based. Smoothing will reduce
the contrast of the edge information, thereby reducing the signal information in the image.
The gradient of pixels (x, y) in the target image is:

Gx(x, y) = H(x + 1, y) − H(x − 1, y) (6.31)

Gy(x, y) = H(x, y + 1) − H(x, y − 1) (6.32)

where Gx,Gy represents the horizontal gradient, vertical gradient, and H(x, y) pixel values
at the pixel (x, y) in the input image.The gradient and gradient directions at the pixel (x, y)
are:

G(x, y) =

√
Gx(x, y)2 + Gy(x, y)2 (6.33)

Θ(x, y) = tan−1(
Gx(x, y)
Gy(x, y)

) (6.34)

Next, we are gradually changing the direction histogram for each cell. The purpose is to
provide an encoding for the local image area. At the same time, a weak sensitivity to the
pose and appearance of the human subject in the image can be maintained. We divide
the image into several "cells", each cell consisting of 8*8 pixels and each block consisting
of 2*2 cells. Here, we define the use of nine bin histograms to calculate 8*8 pixel gradient
information, as shown in the figure:

Figure 6.8 – The definition of a cell, a block and a bin.

We divide the gradient of the cell by 360° into nine directions. Due to changes in local
illumination and changes in the foreground and background contrast, the range of gradient
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intensity is very large. This requires normalizing the gradient intensity. Normalization can
further illuminate light, shadows, and edge compression. The approach we take is to
combine the individual cell units into large blocks and spatially connected intervals. We
normalize the HOG feature vector in the block and introduce v to represent a vector that
has not been normalized. It contains all histogram information for a given block, according
to the ||Vk|| standard [8], where k is 1 or 2, and e is a small constant. At this point, the
normalization factor can be expressed as follows:

L2 − norm, f =
v√

‖V‖22 + e2
(6.35)

Finally, we will detect all overlapping blocks in the window to collect HOG features, and
combine them into the final feature vector for classification.

6.3.3.2/ LBP FEATURE

LBP (Local Binary Pattern) is an operator used to describe the local texture features of an
image. The LBP feature has outstanding advantages such as gray invariance and rotation
invariance. It was proposed by T. Ojala, M. Pietikäinen, and D. Harwood in 1994 [52]. LBP
features are widely used in many fields of computer vision due to their simple calculation
and good results. Not only that, LBP features are also applied in face recognition and
target detection. Here, we apply it to head image detection.

LBP is a simple but very effective texture operator. It compares each pixel with its nearby
pixels and saves the result as a binary number. The most important advantage of LBP
is its robustness to changes in grayscale, such as illumination changes [7]. Its other
important feature is its simple calculation, which makes it possible to analyze the image
in real time. The basic LBP operator is defined as the 3*3 window [2]. Using the value
of the center pixel of the window as the threshold, the gray value of the adjacent 8 pixels
is compared with it. If the surrounding pixel value is greater than the central pixel value,
the pixel value of the location is marked as ’1’. Otherwise, it is ’0’. In this way, the 8
points in the 3*3 neighborhood can be compared to produce 8-bit binary numbers (usually
converted to decimal numbers [31]; there are 256 types of LBP codes), which is to get
the LBP value of the pixel in the center of the window, and use this value to reflect the
texture information of the area, for example: 00010011. Each pixel has 8 adjacent pixels,
and 28 possibilities.

The basic LBP feature for a given pixel is formed by thresholding the 3x3 neighbourhood
with the center pixel value as the threshold, where(Xc,Yc) is the center pixel, ic is the
intensity of the center pixel and in (n=0,1,2....7) pixel intensities from the neighborhood.
The LBP is given by:

LBP =

P−1∑
n=0

s (in − ic) ∗ 2n (6.36)

where: P is the number of sample points and:

s (x) =

{
1 i f x ≥ 0
0 else

(6.37)
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The LBP could be interpreted as an 8-bit integer. The basic LBP concept is shown in the
figure:

Figure 6.9 – Illustration of the standard LBP operator.

When the LBP operator is used for texture classification or face recognition, the statistical
histogram of the LBP mode is often used to express the image information. However,
more varieties in the pattern would require larger yet sparser histograms. Therefore, it
is necessary to reduce the dimension of the original LBP mode so as to best represent
the image information when considering efficient data usage. In order to solve the above
problem, we proposed a "Uniform Pattern" to reduce the dimension of LBP operator’s
pattern. In an actual image, most LBP patterns only contain at most two transitions from
’1’ to ’0’ or from ’0’ to ’1’. When a loop binary number corresponding to an LBP change
from ’0’ to ’1’ or from ’1’ to ’0’ at most twice, the binary corresponding to the LBP is called
an equivalent pattern class. For example, 00000000 (0 jumps), 00000111 (only one
transition from ’0’ to ’1’), and 10001111 (first jump from ’1’ to ’0’, then ’0’ to ’1’, thus two
jumps in total) are all equivalent modes class. The modes other than the equivalent mode
class are classified as another class, called a mixed model class, such as 10010111 (a
total of four transitions). With this improvement, the variety of binary patterns is greatly
reduced without losing any information. The number of modes is reduced from the original
2P to P (P-1)+2, where P represents the number of sampling points in the neighborhood
set. For the 8 sampling points in the 3*3 neighborhood, the binary pattern is reduced from
the original 256 to 58. This allows the feature vector to have fewer dimensions and can
reduce the effects of high-frequency noise.

For the original LBP feature, the gray value of the fixed neighborhood is used. Therefore,
when the scale of the image changes, the encoding of the LBP feature will be wrong.
The LBP feature will not correctly reflect the texture information around the pixels, and
we optimized it again. The biggest drawback of the basic LBP operator is that it only
covers a small area within a fixed radius, which obviously cannot meet the needs of
different sizes and frequency textures. In order to adapt to the texture features of different
scales, and to meet the requirements of intensity and rotation invariance, we extended
the 3*3 neighborhood to any neighborhood and replaced the square neighborhood with
a circular neighborhood. The improved LBP operator allows any number of pixels in a
circular neighborhood of radius R. Thus, an LBP operator containing P sampling points
in a circular region with a radius R is obtained as shown below:

We define the central point calculation formula:

xp = xc + Rcos
(
2πp

p

)
(6.38)

yp = yc − Rsin
(
2πp

p

)
(6.39)
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1
8LBP 2

8LBP 2
16LBP

Figure 6.10 – LBP operator for P sampling points.

Since xp and yp may not be integers, they may not correspond to any pixel in an image.
Here, we use bilinear interpolation. Bilinear interpolation extends from an interpolation
function with two variables. The core idea is to perform a linear interpolation in each
direction. Here we give an example, as shown below.

Given the red data points and the green points to be interpolated, here, the target is to
get the value of the unknown function f at point P = (x, y). Suppose we know the value
of the function f at four points Q11 = (x1, y1), Q12 = (x1, y2), Q21 = (x2, y1), and Q22
= (x2, y2). Then, we first perform linear interpolation in the x direction to obtain R1 and
R2, and then perform linear interpolation in the y direction to obtain the value of point P.
In this way, the desired result f (x, y) is obtained, in which the red points Q11, Q12, Q21,
Q22 are 4 known pixel points. The coordinates of the four known points are (0, 0), (0, 1),
(1, 0), and (1, 1), then the interpolation formula is:

f (x, y) = f (0, 0)(1 − x)(1 − y) + f (1, 0)x(1 − y) + f (0, 1)(1 − x)y + f (1, 1)xy (6.40)

The formula for bilinear interpolation is simplified as follows:

f (x, y) ≈ [1 − x x]
[

f (0, 0) f (0, 1)
f (1, 0) f (1, 1)

] [
1 − y

y

]
(6.41)

In this case, any value of point lying within Q1∼Q4 can be obtained via extrapolation.
Bilinear interpolation is very suitable for us to calculate the effective value of the sampling
point P. We get 8 sampling points. If the original LBP features are used, and the LBP
feature value modes are 256, the LBP feature vector dimension of an image is: 64 * 256
= 16384 dimensions. If we use the LBP feature of our optimized equivalent model, the
LBP value has 59 modes. The feature vector dimension is: 64 * 59 = 3776 dimensions.
It can be concluded that the dimensionality of the feature vector is greatly reduced using
the LBP feature of the optimized equivalent model. This means that the learning time
using machine learning methods will be greatly reduced, and the performance will not be
greatly affected. At the same time, the impact of high-frequency noise is also reduced.

Here, we are inspired by the statistical histogram of LBP features proposed by Ahonen et
al. The LBP feature image is divided into H local blocks, and a histogram of each local
block is extracted, and then these histograms are sequentially connected together to form
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Figure 6.11 – The bilinear interpolation method calculates the value of the unknown point
P.

a statistical histogram of LBP features, that is LBPH. Through the statistical histogram of
LBP features, we can make good use of finding head features.

6.3.3.3/ MY FIRST CONTRIBUTION: COMBINING EDGE DETECTION AND FEATURES EX-
TRACTION FOR IMAGE ANALYSIS

We propose a crowd counting method for multisource feature fusion. Image features
are extracted from multiple sources, and the population is estimated by image feature
extraction and texture feature analysis, along with for crowd image edge detection. We
count people in high-density still images. For instance, in the city’s squares, sports fields,
subway stations, etc. Our approach uses a still image taken by a camera on a drone to
appraise the count in the population density image, using a kind of sources of informa-
tion: HOG, LBP, CANNY. We furnish separate estimates of counts and other statistical
measurements through several types of sources. Support vector machine (SVM), classifi-
cation and regression analysis, along with obtaining a high density population, reasonable
early warning, to ensure the safety of the population. The procedure is as follows:

Canny based head 
edge detection

Extract Joint 
HOG-LBP feature 

vectors of the 
samples

Classify each window by the 
SVM classifier

Scan the 
frame image 
intensively

Create positive and negative image samples

The fusion of the 
target windows

Figure 6.12 – Crowd counting.

Feature extraction is one of the most critical aspects of human head detection [73]. Ex-
tracting features with distinguishing the significance plays an important role in the accu-
rate detection of the human head. Our work integrates the features of HOG and LBP,
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which not only combines the effective identification information of multiple features, but
also eliminates most of the redundant information, thereby realizing effective compres-
sion of information, saving information storage space, and facilitating the acceleration of
operations and real-time processing of information. Here we use a serial fusion approach,
as shown in Figure 6.13:

Figure 6.13 – Joint HOG-LBP Histogram.

Here we apply machine learning algorithms. It is an algorithm that automatically obtains
ruling from data and uses rules to predict unknown data. It involves a lot of statistical the-
ory and so on. A specific machine learning algorithms for pedestrian detection and head
and shoulder detection are: AdaBoost algorithm and support vector machine (SVM)[1].
Here, we compare AdaBoost algorithm and SVM, which one can be better applied to
head detection.

The first is the AdaBoost algorithm. Its basic principle is to combine multiple weak clas-
sifiers (weak single class decision trees are generally used) to make it a strong classifier
[92]. Adaboost uses an iterative idea. Each iteration trains only one weak classifier. The
trained weak classifier will participate in the use of the next iteration. That is to say, in the
Nth iteration, there are N weak classifiers in total, of which N-1 are previously trained, and
its various parameters are not changed, and the Nth classifier is trained this time. The
relationship between weak classifiers is that the Nth weak classifier is more likely to pair
the unpaired data of the first N-1 weak classifiers. The final classification output mainly
depends on the comprehensive effect of these N classifiers.

Adaboost generally uses a single-level decision tree as its weak classifier [13]. A single-
level decision tree is the most simplified version of a decision tree, with only one decision
point. In other words, if the training data has multi-dimensional features, a single-layer
decision tree can only select one-dimensional features to make a decision, and there is
another key point, the decision threshold needs to be considered.

The Adaboost algorithm includes two weights, one is the weight of the data, and the other
is the weight of the weak classifier. Among them, the weight of the data is mainly used
by the weak classifier to find the decision point with the smallest classification error. After
finding it, Adaboost uses this minimum error to calculate the weight of the weak classifier.
The larger the weight of the classifier, the weaker the classifier has the greater decision
power in the final decision. For example, for a total of 10 points, if the weight of each
point is 0.1, and a 1 error is added, then the error rate is increased by 0.1; Likewise, if
3 errors are added, then the error rate is 0.3. Let’s assume there are ten samples and
each has a different weight as follows: [0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01,
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0.01, 0.91]. If the first point is wrong, the error rate is 0.01. If the third point is wrong,
the error rate is 0.01. If the last point is wrong, the error rate is 0.91. In this way, when
selecting decision points, it is natural to try to pair the points with large weights as much
as possible to reduce the error rate.

In the Adaboost algorithm, we adjust the weight after each weak classifier is trained, and
the weight of the misclassified points in the previous round of training will increase. In
this round of training, due to the influence of weights, the weak classifiers in this round
will be more likely to pair the misclassified points from the previous round. If there is still
no pairing, the weight of the wrong points will continue to increase. Weak classifiers will
pay more attention to this point and try to pair them as much as possible. In this way,
the next classifier mainly focuses on the unpaired points of the previous classifier, and
each classifier has its own focus. Therefore, in Adaboost, we use each weak classifier to
find samples it classifies poorly. Each weak classifier only pays attention to a part of the
entire data set, so they must be combined together. When voting for the final decision,
weighted voting needs to be performed according to the weight of the weak classifier, and
the weight is calculated based on the classification error rate of the weak classifier. The
general rule is that the lower the error rate of a weak classifier, the higher its weight.

Like Adaboost, SVM also has a same effect. SVM was first proposed by Vapnik et al
[70]. It shows many unique advantages in solving small samples, nonlinear and high-
dimensional pattern recognition, and can be applied to other machine learning problems
such as function fitting.

The SVM method is based on statistical theory. It finds the best balance between model
complexity and learning ability based on limited sample information. Complexity includes
the learning accuracy of a specific training sample, and the learning ability is the ability to
accurately identify any sample. The SVM method uses a non-linear mapping p. It works
by mapping the sample space into a high-dimensional or even infinite-dimensional feature
space. The non-linearly separable problem in the original sample space is transformed
into a linearly separable problem in the feature space. To put it simply, it is dimensionaliza-
tion and linearization. Dimension-raising is to map samples to high-dimensional space.
Generally, the computational complexity will increase, so it is rarely used this way. SVM
solves this problem through the expansion of kernel functions and calculation theory. At
the same time, different kernel functions can be selected to generate different SVMs. The
commonly used kernel functions are the following 4 equations as proposed by Vapnik et
al [70].

The first is a linear kernel function:

K (x, y) = x · y (6.42)

The second is a polynomial kernel function:

K (x, y) =
[
(x · y) + 1

]
· d (6.43)

The third is the radial basis function:

K (x, y) = exp
(
− |x − y|2 /d2

)
(6.44)

The fourth is the kernel function of the two-layer neural network:

K (x, y) = tan (a (x · y) + b) (6.45)
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The main idea of SVM can be summarized as two points:

The first point: analysis of linearly separable cases. In the case of linear inseparability, a
linearly inseparable sample of the low-dimensional input space is transformed into a high-
dimensional feature space to make it linearly separable by using a nonlinear mapping
algorithm. This makes it possible to perform a linear analysis of the nonlinear features of
the samples using a linear algorithm in the high-dimensional feature space.

Second point: Based on the theory of structural risk minimization, an optimal segmen-
tation hyperplane is constructed in the feature space, so that the learner is globally opti-
mized.

The goal of SVM is mainly based on the principle of structural risk minimization. SVM
constructs an objective function to distinguish the two types of patterns as much as pos-
sible. There are usually two cases: linearly separable and linearly inseparable.

Comparison between two different classifiers: AdaBoost and SVM: In the former, a new
weak classifier is added each round until a predetermined sufficiently small error rate is
reached. At the same time, the wrong samples from the previous classifier are used to
train the next classifier. In terms of training speed, AdaBoost algorithm is slower. In the
latter case, the SVM method has good generalization. SVM can solve the problem of
sample learning well. And it is an ideal method for the class two image classification.

Here, we use support vector machines to achieve the optimal classification of linearly
separable data. For a linear SVM with the training samples ((xi, yi)) , 1 6 i 6 N}, where
xi is the ith instance sample, yi is the corresponding category labels (i.e.,the expected
response), its decision surface equation can be expressed as [70]:

ω · x + b = 0 (6.46)

Where x is the input vector, ω is the dynamically variable weight vector,and b is the offset.
In essence to find an optimal classifier is to find an optimal hyper plane, according to
formula (5.51), which can not only separate two classes correctly but also maximize the
intra-class distance. Here, the optimal hyperplane is the plane with the largest distance
from the vector of each type of data. We obtain it through the second optimization:

minΦ (W) =
1
2
‖W‖2 (6.47)

Here, the constraints satisfied are:

yi (W · xi + b) ≥ 1, i = 1, 2, 3, ..., n. (6.48)

When the number of features is particularly large, this quadratic programming problem
can be transformed into a dual problem:

maxW (a) =

n∑
i=1

ai −
1
2

n∑
i, j=1

aia jyiy j
(
xi · x j

)
(6.49)

W∗ =

n∑
i=1

aiyixi (6.50)
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b
′

= yi − w · xi (6.51)

Here, it meets the constraints:

n∑
i=1

aiyi = 0, ai≥0, i = 1, 2, 3, ...n. (6.52)

Here a = (a1, a2, .... an) is a Lagrange multiplier, W∗ is the normal vector of the optimal
hyperplane, and b

′

is the offset of the optimal hyperplane. Then, in the solution and
analysis of this type of optimization problem, its solution must satisfy:

ai {yi (w · x + b) − 1} = 0, i = 1, 2, ...., n. (6.53)

It can be known from formula (6.53) that those samples with ai = 0 have no effect on
classification, and only those samples with ai> 0 have effect on the classification. These
samples are called support vectors.

Accordingly, support vectors refer to the training sample points located in the classification
boundaries, which are the key elements of the training sample set. Based on these
theories and concepts, the following formula is used to classify the input samples [70]:

f (x) = sgn

 n∑
i=1

aiyi (xi · x) + b

 (6.54)

where ai is the weight coefficient corresponding to the support vector xi.

The next step, we connect the sample HOG feature vector and the LBP feature vec-
tor in series to form a joint feature vector as input to SVM. Here, in the classification
process, the linearly inseparable low-dimensional space is converted into a linearly sep-
arable high-dimensional space mainly through SVM kernel functions. Cross-validation
method is used to select the SVM optimal parameters, so that the classifier has the high-
est classification accuracy of the input training samples. In accordance with the above
method, the training process for joint HOG-LBP SVM classifiers are shown in Figure 6.14:

Extract Joint HOG-LBP feature vectors of the samples

Classify each window by the SVM classifier
Scan the frame 

image 
intensively

Create positive and 
negative image 

samples

The fusion of the target windows

Extract LBP feature vectors of the samplesExtract HOG feature vectors of the samples

Figure 6.14 – Training process for joint HOG-LBP SVM classifiers.

• Conclusion: HOG features have gradient characteristics, resulting in high fea-
ture dimensions, too much redundant information, and poor description of gradi-
ent space characteristics. The binary coding strategy of LBP feature improves its
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robustness to scale, rotation, illumination and noise. The algorithm complexity of
the nonlinear kernel SVM classifier is large, and the real-time detection needs to
be improved. Therefore, based on the Joint HOG + LBP algorithm framework, we
have separately improved the HOG and LBP features analyzed above, and jointly
improved the features. At the same time, based on the classifier with relatively low
complexity and better real-time performance, relevant research on the method of
extracting head features has been carried out. First, we introduce the technique
of extracting head features from three aspects: research background, research
significance and research status. Based on the framework of the head detection
algorithm, the feature extraction algorithm and classifier are introduced and sum-
marized respectively. Then, the rotation invariance and scale invariance of LBP
features need to be improved and the HOG feature dimension contains too much
redundant information. We have proposed feature serial fusion technique, which is
Joint HOG + LBP SVM technique. Through feature serial fusion technique, we con-
struct the final feature vector of the image that is more robust to rotation and scale,
has higher utilization of texture information, and has lower dimensions. At the same
time, combined with SVM classifier, a multi-feature fusion head feature detection
algorithm based on dimension reduction is designed. In order to verify the effec-
tiveness of the extracted features and feature dimensionality reduction, we explain
in detail in the experimental part. The results of the experimental part prove that
the head detection algorithm based on the Joint HOG + LBP feature classifier has
overall superiority. Here, HOG and LBP are also the second and third information
sources we proposed to use multiple information sources. Our work integrates the
features of HOG and LBP, which not only combines the effective identification infor-
mation of multiple features, but also eliminates most of the redundant information,
thereby realizing effective compression of information, saving information storage
space. In terms of crowd counting, we use multiple sources of information, namely
HOG, LBP and CANNY. These sources provides separate estimates of the number
of counts and other statistical measures, through the support vector Machine SVM,
classification, and regression analysis to obtain high-density populations. In the ex-
perimental part, we have a detailed introduction and comparison of experimental
data to prove the superiority of our method.

6.4/ EXPERIMENT

Our experiment is mainly divided into three parts: the first part is pedestrian detection,
the second part is the optimized Canny operator; and the third part is counting the crowd
in images.

The first part of the experiment:

The training set we used contains 5000 head face images clipped manually and enough
non-head face images from several sample sets including INRIA, PETS2000, and MIT.
During training, negative samples can be selected automatically from the background
images. The test set contains 500 images with or without pedestrians, including about
1,500 apparent head faces and covering various scenes, angles, postures, and clothing,
etc. The algorithm is implemented in a program developed with Matlab 2017a function
library.
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Extract sample HOG and LBP features:

Sample HOG feature calculation steps: For each positive and negative sample set, each
corresponds to a 32*32 grayscale image (in this case, the grayscale picture is used to
reduce computation cost by 3 while retaining fine detection when compared to color im-
ages, and it does not alter the final detection result significantly), and the rectangular
HOG feature is calculated. New paragraph: The set cell size is 8*8, the size of the block
is 16*16, and the slide step size is the width of a Cell. The specific process of HOG
feature calculation is as follows: To reduce the influence of lighting, the sample is first
Gamma standardization of images. We then calculate the gradient of x and y directions
for each pixel in the grayscale image, and use the [-1,0,1] template to calculate the di-
rection and amplitude of the gradient. In each Cell, we set the projection direction to 9
bins, and use the gradient magnitude of each pixel as the weight, and vote to count the
weighted histograms of gradient directions of each Cell. The dimension of this histogram
is 9. Four cells in a Block (with overlaps between blocks) are normalized using L2-norm,
and the gradient histograms of four cells are counted, resulting in a dimension of 36. Fi-
nally, all blocks in the image are concatenated, and the dimension of the obtained HOG
feature vector is calculated.

Sample LBP feature calculation steps: For each positive and negative sample set, each
size is a 32*32 grayscale image, and LBP feature extraction based on a sliding window is
used. The general description of the sliding window for the image algorithm is as follows:
In an image of size W*H, the w*h window (W»w, H»h) is moved according to a certain
rule, and a pixel in the window is performed. In the series operation, the window moves
one step to the right or down after the operation is completed, until the entire image is
processed. Set the size of the window to 16*16, and set the window’s horizontal and ver-
tical sliding steps to half the width of the window. The specific process of the LBP feature
calculation is as follows: For one pixel in each window, an LBP feature value is calculated
using an operator LBP (representing a radius 1, a ring containing 8 neighborhoods, a
uniform mode). According to the LBP eigenvalue calculated in the window, the histogram
of each window is calculated, that is, the number of occurrences of each LBP eigenvalue,
and then L2-norm is used for normalization. The statistical histograms of all windows in
the tandem image, the dimensions of the resulting LBP eigenvectors.

Finally, the sample HOG feature vector and the LBP feature vector are connected in se-
ries to form a joint feature vector. We use the SVM classifier to transform the linearly
inseparable, low-dimensional space into a linearly separable, high-dimensional space by
using a kernel function. The cross-validation method is used to select the optimal SVM
parameters so that the classifier pairs the input training samples. The highest classifica-
tion accuracy. The experimental test image size is 384*288. The algorithm is modified
based on Matlab 2017a and runs on an Inter Core i5-5250 (1.60 GHz), 4 GB RAM com-
puter. The experimental results are shown in table 6.1.

Table 6.1 – Algorithm performances shown by 3 experiments.

Detection algorithm Test sequence False number Detection rate
Dalal HOG 1 39 92.2%
T.Ojala LBP 2 32 93.6%

Joint HOG+LBP 3 17 96.6%
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The second part of the experiment:

Here, we implement the adaptive filtering to optimize the Gaussian filtering, and the me-
dian filtering replaces the Gaussian filtering and we propose to optimize Canny operator.
At the same time, we also added the noise factor to the target image. We conducted
comparisons of different sets of experimental data. The results are as follows figure 6.15:

Adaptive Canny：

Median filtering Canny：

                     Gaussian                               Sobel                       Maximum inhibition     Threshold determination

Improvement of Canny :

Figure 6.15 – Edge detection using different operators and comparison with the Canny
operator.

Through the experimental results: the optimization of the new Canny operator is pro-
posed. By performing Gaussian filtering, the purpose is to smooth the original picture to
remove or reduce noise in the image. Then, the first order partial derivative of finite differ-
ence to calculate the gradient magnitude and direction of the expansion, the calculation
of four directions, effectively improve the canny edge detection accuracy. Then, non-
maxima suppression through inhibition of gradient direction on all non-roof peak gradient
magnitude to refine the gradient magnitude. Finally, non-maxima suppression process-
ing after the gradient amplitude array threshold value of the high and low threshold edge
points, reduce the false edge segments Number, get the image. we can see that the
improved canny algorithm has a better edge detection effect compared to the traditional
canny algorithm. It has a certain improvement in the image target extraction. It can im-
prove the performance of canny operator in extracting image edge detail information and
suppressing false edge noise. The obtained edge contour map has a high signal-to-noise
ratio and good connectivity. Experiments prove that this is a better improved algorithm.

The third part of the experiment:

Here, we cite the data set of Experiment 1: HOG, LBP samples. At the same time, we also
extract sample CANNY head contour edge detection. We use high and low thresholds to
find edge points, reduce the number of false edge segments, and get the sample head
contour image.

Firstly, we add CANNY edge detection to extract the outline of the head. Then, the
sample HOG feature vector and the LBP feature vector are connected in series to form
a joint feature vector. We use the SVM classifier to transform the linear indivisible, low-
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dimensional space into a linearly separable, high-dimensional space by using a kernel
function. The cross-validation method is used to select the optimal SVM parameters so
that the classifier pairs the input training samples for a higher classification accuracy. At
the same time, we also use Sobel, Roberts, Prewitt, Log, Laplace instead of the optimized
canny operator to extract the head contour and compare the experimental results. The
experimental test image size is 384×288. The experimental results are shown in Table
6.2:

Table 6.2 – Comparison of experimental results based on joint different edge detection
operators.

Detection algorithm Test sequence False number Detection rate
Joint HOG+LBP+Sobel 1 69 86.6%

Joint HOG+LBP+Roberts 2 75 85.1%
Joint HOG+LBP+Prewitt 3 96 80.9%

Joint HOG+LBP+Log 4 112 78.1%
Joint HOG+LBP+Laplace 5 108 78.1%
Joint HOG+LBP+CANNY 6 14 97.2%

Through the comparison of experimental data, we can find that Joint HOG+LBP+CANNY
has a very good effect on the detection and extraction of head features. Then, we once
again compare the HOG human detection proposed by Dalal et al. And the LBP human
detection proposed by T. Ojala et al. The experimental results are shown in Table 6.3:

Table 6.3 – Algorithm performances shown by 4 experiments.

Detection algorithm Test sequence False number Detection rate
Dalal HOG 1 39 92.2%
T.Ojala LBP 2 32 93.6%

Joint HOG+LBP 3 17 96.6%
Joint HOG+LBP+CANNY 4 14 97.2%

We divided the images of the tested crowd into different regional patches. For example,
for a group of 256*512 pixel crowd pictures, we can set each area module as: 16 * 16
pixels, 32 * 32 pixels, 64 * 64 pixels and 128 * 128 pixels, as shown in the figure 6.16:

The crowd density is between 0-500 people, we have tried many times and got the results
given in Table 6.4. In the table 6.4 are given the number of people detected, number of
people actually present in the scene, the difference between the detected number of
people and the actual number of people and time. Based on the above results, the
precision calculated is 92.85%.

Then, we once again test the crowd density image between 500-1500 people.
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16*16 pixels

32*32 pixels

64*64 pixels

128*128 pixelsFigure: The test crowd image.

Figure 6.16 – This figure shows the size of different pixel blocks used in these experi-
ments.

Table 6.4 – The experimental result of the crowd density is between 0-500 people.

Test sequence Number of people detected Actual Difference Time Detection rate
1 220 280 60 6.13s 78.57%
2 231 280 49 8.56s 82.50%
3 260 280 20 14.25s 92.85%
4 257 280 23 13.13s 91.78%
5 245 280 35 9.51s 87.50%

Table 6.5 – The experimental result of the crowd density is between 500-1500 people.

Test sequence Number of people detected Actual Difference Time Detection rate
1 536 829 293 7.13s 64.65%
2 889 1256 367 10.28s 70.78%
3 938 1480 542 11.38s 63.37%
4 624 963 339 8.23s 64.79%
5 689 1045 356 9.25s 65.93%

Through the experimental results, we can clearly see that as the number of people in-
creases, the detection accuracy rate decreases. This shows that our algorithm has
achieved good results in the crowd density image of 0-500 people. For high-density
crowd images, when 500-1500 people, our detection rate is decreasing.

6.5/ CONCLUSION

Image feature extraction and texture feature analysis methods, data obtained from multi-
ple sources are used to count people in the crowd. Therefore, we use multiple sources
of information, namely, HOG, LBP and Canny’s edge detector to extract such features.
These sources provide separate estimates and other combinations of statistical measure-
ments. Using the support vector machine (SVM) classification technique, and regression
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analysis, we count the density crowd. The approach adopted is easy and fast in process-
ing.

Our experiments show that when the crowd density is 0-500 people, this method has
a good effect in crowded scenes. When the crowd density is 500-1500 people, as the
number of people increases, the detection accuracy rate decreases. Next, we propose a
convolutional neural network based method to achieve high-density crowd counting.
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7
MULTI-FEATURE COUNTING OF DENSE

CROWD IMAGE BASED ON
MULTI-COLUMN CONVOLUTIONAL

NEURAL NETWORK

The concept of deep learning stems from the study of artificial neural networks. Multi-
layer perceptron with multiple hidden layers is a deep learning structure. Deep learning
forms a more abstract high-level representation attribute category or feature by combin-
ing the underlying features to discover the distributed feature representation of the data.
The concept of deep learning was proposed by Hinton et al. In 2006. Based on the
Deep Belief Network (DBN), an unsupervised greedy layer-by-layer training algorithm is
proposed, which brings hope for solving optimization problems related to deep structures,
and then they proposed a multi-layer autoencoder deep structure. In addition, the convo-
lutional neural network proposed by LeCun et al. is also the first true multi-layer structure
learning algorithm, which uses spatial relative relationships to reduce the number of pa-
rameters to improve training performance.

In the field of deep learning, algorithms that have established great progress include deep
convolutional networks (DNN) and recursive networks (RNN). Great success has been
achieved in the areas of image recognition, video recognition, and speech recognition. It
is precisely these successes that can contribute to the current deep learning boom. In
the field of deep learning research, the most popular are production network architectures
such as AutoEncoder, RBM, and DBN. For example, the application of AutoEncoder in
the field of image and video search, and the processing of unstructured data by RBM.
The DBN network combines the two major schools of connectionism and symbolism in
the field of artificial intelligence, and they have great prospects.

7.1/ DEFINITION OF DEEP LEARNING

Convolutional neural networks (CNN) is one of the most successful areas for the applica-
tion of deep learning algorithms. Convolutional neural networks include 1-D, 2-D and 3-D
variants. One-dimensional convolutional neural networks are mainly used for sequence-
type data processing. Two-dimensional convolutional neural networks are often used for
2D conv net should be generic enough for general images recognition. Three-dimensional
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convolutional neural networks are mainly used for medical image and video data recog-
nition.

So what is a neural network? The neural network here, also referred to as Artificial Neural
Networks (ANNs), is an algorithmic mathematical model that mimics the behavior char-
acteristics of biological neural networks. It consists of neurons, nodes and connections
(synapses) between nodes, as shown below:

Dendrite

Nucleus

Cytosome

Marrow sheath

Cellular knot

Schwann cells

Synapse

Figure 7.1 – Neural Networks.

The mathematical model abstracted by each neural network unit is as follows, also known
as a perceptron, which receives multiple inputs (x1, x2, x3 ...) and generates an output,
which is like the nerve endings feeling various external environmental changes (eg, ex-
ternal stimuli), and then generate electrical signals to facilitate transduction to nerve cells
(also called neurons). An example is shown below:

Figure 7.2 – Output of the neural network unit.

A single perceptron can constitute a simple model. However, in the real world, the actual
decision-making model is much more complicated, often a multi-layer network composed
of multiple perceptrons, as shown in the figure below. This is also a classic neural network
model. It consists of an input layer, a hidden layer, and an output layer, as shown on
Figure 7.3:
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Figure 7.3 – Classic neural network model.

Artificial neural networks can map arbitrarily complex non-linear relationships, have
strong robustness, memory ability, self-learning capabilities, and have a wide range of
applications in classification, prediction, and pattern recognition.

7.2/ CONVOLUTIONAL NEURAL NETWORK

Convolutional neural networks have been developed in recent years and have attracted
widespread attention as an efficient identification method. In the 1960s, Hubel and
Wiesel, while studying neurons in the cerebral cortex of cats for local sensitivity and
direction selection, found that their unique network structure can effectively reduce the
complexity of feedback neural networks [61]. Therefore, a convolutional neural network
(CNN) was proposed. Now, CNN has become one of the research hotspots in many
scientific fields, especially in the field of pattern class. Because the network avoids com-
plex preprocessing of the image and can directly input the original image, it has been
more widely used. The new recognition machine proposed by K. Fukushima in 1980
was the first implementation of a convolutional neural network [16]. Subsequently, more
researchers have improved the network.

It sounds like a strange combination of biology and mathematics, but these networks have
become one of the most influential innovations in computer vision. 2012 was the first year
of the growth of neural networks. Alex Krizhevsky used them to win the ImageNet com-
petition of the year, reducing the classification error record from 26% to 15%. Since then,
many companies have been doing deep learning with service at the core. Facebook uses
an auto-tagging algorithm based on neural networks, Google’s photo search, Amazon’s
product recommendations, and Instagram’s search infrastructure.

Generally, the basic structure of a CNN includes two layers, one of which is a feature
extraction layer. The input of each neuron is connected to the local receptive field of the
previous layer, and the local features are extracted. After the local feature is extracted, the



58CHAPTER 7. MULTI-FEATURE COUNTING OF DENSE CROWD IMAGE BASED ON MULTI-COLUMN CONVOLUTIONAL NEURAL NETWORK

positional relationship between it and other features is also determined. The second is a
feature mapping layer. Each computing layer of the network consists of multiple feature
maps, and each feature map is a plane. All neurons in the plane have equal weight. The
feature map structure uses the sigmoid function with a small influence function kernel as
the activation function of the convolution network, so that the feature map has displace-
ment invariance. In addition, because the neurons on a mapping surface share weight,
the number of free parameters of the network is reduced. Each convolutional layer in
a convolutional neural network is followed by a calculation layer used to find local aver-
ages and secondary extractions. This unique feature extraction structure reduces feature
resolution.

CNN is mainly used to identify two-dimensional graphics with the invariance of displace-
ment, scaling, and other forms of distortion. This part of the function is mainly imple-
mented by the pooling layer. Since the CNN feature detection layer learns from the train-
ing data, when using CNN, explicit feature extraction is avoided, and learning is implicitly
performed from the training data. Furthermore, because the neurons on the same fea-
ture map have the same weight, the network can learn in parallel, which is also a great
advantage of the convolutional network over the network of neurons connected to each
other. Convolutional neural networks have unique advantages in speech recognition and
image processing due to their special structure of local weight sharing. Its layout is closer
to the actual biological neural network, and the weight sharing reduces the complexity of
the network. In particular, the feature that multi-dimensional input vectors can be directly
input to the network avoids the complexity of data reconstruction during feature extraction
and classification.

7.2.1/ CONVOLUTION

It is more intuitive when seeing a small block randomly selected from a large image. For
example, 8x8 is used as a sample, and some features are learned from this small sample.
At this time, we can use the features learned from this 8x8 sample as a detector and apply
it to any place in this image. In particular, we can use the features learned from the 8x8
sample to convolve with the original large-size image, so as to obtain an activation value
for a different feature at any position on the large-size image.

As shown in the figure below, we show the process of a 3 * 3 convolution kernel doing
convolution on a 5 * 5 image. Each convolution is a feature extraction method. It is like a
sieve, filtering out the eligible parts of the image.

7.2.2/ POOLING LAYER

A feature of the pooling layer is feature invariance, which is the scale invariance of fea-
tures that we often mention in image processing. The operation of the pooling layer is to
adjust the size of the image. For example: the size of an image of a person has been
reduced by a factor of two, we can still recognize that this is a photo of a person. This
shows that the most important features of the character are still retained in this image,
and we judge that the person is drawn in the image. The information removed during
pooling is only some irrelevant information, and the remaining information is a feature
with scale invariance, which is also the feature that can best express the image.
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Figure 7.4 – Convolution feature example diagram.

Another feature of the pooling layer is feature dimensionality reduction. We know that an
image contains a lot of information and many features, but some information is not useful
or repetitive for our image tasks. We can remove this kind of information and extract the
most important features, which is also a big role in the pooling operation.

7.2.2.1/ COMBINATION OF CONVOLUTIONAL LAYER AND POOLING LAYER

The figure below shows a typical CNN model structure.

As can be seen from the figure above, each node in the convolutional and pooling layers
of the CNN is only connected to some nodes in the previous layer. The input of each node
of the convolution layer is only a small block in the previous layer. The size of this small
block is determined by the window size of the convolution kernel. In general, the node
matrix processed by the convolution layer will become deeper, and the specific depth is
determined by the number of convolution kernels in the convolution layer. The parameter
of the convolution kernel is that sharing can make the content of the image independent
of the position. At the same time, sharing the parameters of the convolution kernel can
greatly reduce the parameters in the network model and reduce the complexity of the
operation.

The input of each node of the pooling layer is also a small piece of the previous layer
(usually a convolutional layer). The size of this small block is determined by the window
size of the pooling kernel. The pooling layer does not change the depth of the node ma-
trix, but it can change the size of the matrix. In general, for image processing, the pooling
operation in the pooling layer can be understood as converting a high-resolution picture
into a low-resolution picture. Common pooling operations include maximum pooling, av-
erage pooling, and so on. After the convolution layer and the pooling layer, the number of
parameters in the network model can be further reduced. Let us analyze how CNN can
reduce the parameters in the network model.

7.2.2.2/ DIMENSIONAL CHANGE PROCESS

Convolutional layers are one of the important concepts in CNN. We perform the convolu-
tion operation on the previous layer through the convolution kernel to complete the feature
extraction. Here, we mainly analyze the dimensional change process of the convolutional
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Figure 7.5 – Typical CNN model structure diagram.

layer and the pooling layer. When using all 0 padding (if the stride size is 1, the size of
the node matrix can be prevented from changing after passing through the convolutional
layer), the output dimension calculation formula of the convolutional layer and the pooling
layer is:

outlongth =

[
inlength

stridelength

]
(7.1)

outwidth =

[
inwidth

stridewidth

]
(7.2)

out (height) represents the length of the output matrix of the convolution layer. It is equal
to the rounded value of the input layer matrix length divided by the stride size in the height
direction. out (width) represents the width of the output matrix of the convolution layer,
which is equal to the rounded value of the input layer matrix width divided by the stride
size in the width direction.

If you do not use all 0 padding, the output dimension of the convolution layer and pooling
layer is calculated as:

outlength =

[
inlength − f ilterlength + 1

stridelength

]
(7.3)

outwidth =

[
inwidth − f ilterwidth + 1

stridewidth

]
(7.4)

filter (height) represents the size of the convolution kernel/pooling kernel in the height
direction, and filter (width) represents the size of the convolution kernel/pooling kernel in
the width direction.

We assume that the dimensions of the input layer matrix are 32 * 32 * 1, 1 represents a
grayscale image, the size of the first layer of the convolution kernel is 5 * 5, and the depth
is 6 (that is, there are 6 convolution kernels), without all 0 padding and with a step size
of 1. The output dimension of the convolution layer is (32-5+1=28), and the parameters
of the convolution layer are 5 * 5 * 1 * 6 + 6 = 156. Here we can find that the number of
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parameters of the convolution layer has nothing to do with the size of the picture, it is only
related to the size of the convolution kernel, the depth, and the depth of the node matrix of
the current layer. This allows CNN to be extended to image data of any size. The output
dimension of the convolution layer is the input dimension of the next layer (usually the
pooling layer) with 28 * 28 * 6 = 4704 nodes. The pooling kernel size of the pooling layer
is 2 * 2, the step size is 2, the output dimension of the pooling layer is (28-2+1)/2=13.5,
and the rounding result is 14. The pooling layer does not affect the depth of the node
matrix, so the output dimension of the pooling layer is 14 * 14 * 6.

7.2.3/ ACTIVATION FUNCTION RELU (RECTIFIED LINEAR UNITS)

The role of the activation function is to add non-linear factors and make the output of the
convolution layer a non-linear mapping. ReLU is common in convolutional layers.

Figure 7.6 – Activation function Relu.

In convolutional neural networks, the activation function generally uses ReLU, which is
characterized by fast convergence and simple gradient calculation. The calculation for-
mula is also very simple, max (0, T), that is, if the input is negative, the output is then all
0; if the input is positive or 0, the output remains.

7.2.4/ FULLY CONNECTED LAYER

A fully connected layer in a convolutional neural network is equivalent to a hidden layer in
a traditional feedforward neural network. The fully connected layer is located at the last
part of the hidden layer of the convolutional neural network, and only transmits signals to
other fully connected layers. Feature maps lose their spatial topology in fully connected
layers; instead, they are expanded into vectors and pass activation functions.

The convolutional layer and pooling layer in the convolutional neural network can perform
feature extraction on the input data. The role of the fully connected layer is to perform
a nonlinear combination of the extracted features to obtain the output, that is, the fully
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connected layer itself is not expected to have feature extraction capabilities, but tries to
use the existing high-order features to complete the learning goal.

In some convolutional neural networks, the function of the fully connected layer can be re-
placed by global mean pooling. Global mean pooling averages all values of each channel
in the feature map. That is, if there is a 7 * 7 * 256 feature map, the global mean pooling
will return a 256 vector. Then each of these elements is 7 * 7, the step size is 7, and the
mean is pooled without padding.

7.2.5/ LOCAL RECEPTIVE FIELD

If a classic neural network model is used, we need to read the entire image as the input to
the neural network model (that is, the fully connected way). When the size of the image is
larger, its connected parameters will become more, which results in a very large amount
of calculation.

Convolutional neural networks have two modes to reduce the number of parameters. The
first mode is called a local receptive field. It is generally believed that people’s perception
of the outside world is from local to global, and the spatial relationship of the image is also
close to the local pixels, while the pixels with longer distances are weaker. Therefore, it is
not necessary for each neuron to perceive the global image, only the local area. Then at
a higher level, the local information is integrated to obtain the global information. The idea
that the network is connected is also inspired by the visual system structure in biology.
Neurons in the visual cortex receive information locally (that is, these neurons respond to
stimuli in only certain areas), as shown in the following figure:

Figure 7.7 – The left picture is full connection, and the right picture is partial connection.

In the upper right figure, if each neuron is only connected to 10*10 pixel values, the weight
data is 1000000*100 parameters, which is reduced to one ten thousandth of the original.
The 10*10 parameters corresponding to the 10*10 pixel values are actually equivalent to
the convolution operation.

7.2.6/ MULTI-CONVOLUTION KERNEL

When there are only 100 parameters mentioned above, it means that there is only one
10 * 10 convolution kernel. Obviously, feature extraction is insufficient. Then we can add
multiple convolution kernels, such as 32 convolution kernels, which can learn 32 features.
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Each convolution kernel generates an image as the result of applying a particular pattern
template. For example, two convolution kernels can generate two images, and these two
images can be regarded as different channels of an image.

7.2.7/ MULTIPLE CONVOLUTIONAL LAYERS

In practical applications, multi-layer convolution is often used, followed by fully connected
layers. The purpose of multi-layer convolution is that the features learned by one layer
of convolution are often local. The higher number of layers, the more global the learned
features.

Convolutional networks are essentially an input-to-output mapping that can learn a large
number of mappings between inputs and outputs. It does not require any precise math-
ematical expression between input and output. As long as the convolutional network is
trained with a known pattern, the network has the ability to map between input and output.

A very important feature on CNN is that the more inputs the smaller the weight, the more
outputs the larger the weight. It takes the form of an inverted triangle. This is a good way
to avoid gradient loss too quickly during back propagation.

7.3/ CONVOLUTIONAL NEURAL NETWORK APPLIED TO COMPUTER

VISION

With the progress of global urbanization, intelligent monitoring has gradually become a
research focus in the field of computer vision. Crowd counting is one of the core prob-
lems of intelligent monitoring. It is of great significance in application scenarios such as
crowd flow restriction and drainage. Great progress has been made in the research of
population counting. However, in different scenarios, the research on solving the problem
of inconsistent scales of crowd images still has great challenges. In recent years, deep
convolutional neural networks have achieved outstanding results in the field of computer
vision research. It has outstanding performance in image feature extraction and model
generalization, and effectively solves the problem of feature extraction for crowd counting
under complex backgrounds. In order to extract scale-related features [87], current crowd
counting neural network models have adopted a multi-column or multi-network structure.

7.3.1/ CROWD COUNTING BASED ON CONVOLUTIONAL NEURAL NETWORK

The crowd counting task is an important research problem. Now more and more people
are concerned about safety issues. When the population density reaches a very high
peak, the population density counts, the alarm is sent out, and the crowds are diverted.

7.3.1.1/ MCNN METHOD

In 2016, Zhang et al. Proposed a single-image crowd counting method using a multi-
column convolutional neural network [90].
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Figure 7.8 – Multi-column convolutional neural network framework [90].

This model estimates the number of people without segmenting the foreground. It needs
to comprehensively utilize features of different scales to accurately estimate the number
of people in different images, and the model can automatically learn effective features.
Here, why is multi-coumn convolution used? The reason is that due to perspective dis-
tortion, pictures often contain human heads of different sizes, and only one kind of con-
volution kernel is not enough. So multiple columns of different convolutions are proposed
to accommodate multiple sizes. The network uses a convolutional layer to turn the multi-
channel tensor into a plane, replacing the original fully connected layer. In this way, the
size of the input picture can be arbitrarily selected, which makes the network model most
widely used.

• Conclusion: Zhang et al proposed a Multi-column Convolution Neural Network
which can estimate crowd number accurately in a single image from almost any
perspective. To better evaluate performances of crowd counting methods under
practical conditions, they have collected and labelled a new dataset named Shang-
haitech which consists of two parts with a total of 330,165 people annotated. The
three major contributions of the MCNN model. (1) Created a new ShanghaiTech
dataset. (2) A multi-column full convolutional network is proposed to count and the
performance is improved. (3) Use 1x1 convolution kernel instead of a fully con-
nected layer, so that the input image size can be any size.

7.3.1.2/ CNNS METHOD

In 2017, Vishwanath A. Sindagi and Vishal M. Patel proposed a cascade multi-task learn-
ing method based on CNN’s advanced prior and density estimation [66] [76]. By merging
a high-level prior with the network [30] [89], Sam learn a model that meets various density
levels in the data set. The high-level prior is divided into different labeled groups accord-
ing to the number of people in the picture [67]. Then, using tags, through this high-level
prior, the number of people in the entire picture can be roughly estimated without being
affected by scale changes [54]. As a result, the network can learn more discriminat-
ing global features. The high-level prior and CNN network [25] are used to estimate the
density map together.
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So here, this network inputs an image of task size and outputs a crowd density map. The
network consists of two parts, the first part learns high-level prior, and the second part
estimates density maps. The first part contains a set of convolutional layers, a pyramid-
shaped pooling layer, and a fully connected layer. The second part consists of a set of
convolutional layers, followed by a small-step convolutional layer, which is used to up-
sample the output of the previous layer to compensate for the loss of detail caused by the
early pooling layer.

Figure 7.9 – Cascaded architecture for learning high-level prior and density estimation
[66].

• High-level prior part:

Dividing the population into groups is much easier than classifying or regressing the entire
image directly [74] [86], because not much training data are needed. Therefore, here we
quantify the crowd count into 10 groups and learn a crowd count group classifier. The
classifier also performs the task of incorporating high-level priors into the network. The
high-level prior part accepts the feature maps obtained previously as input. This part
contains 4 convolutional layers, each of which uses PReLU as the activation function.
After starting the two convolutional layers, there is a maximum pooling layer with a step
size of 2. Finally, it includes 3 fully connected layers, while the activation function is still
PReLU, and the number of neurons respectively is 512, 256, and 10. To be able to train
with images of any size, Spatial Pyramid Pool (SPP) is used because it eliminates the
fixed size constraints of deep networks containing fully connected layers. The SPP layer
combines the features of the convolutional layer to produce a fixed-size output and can
provide it to a fully connected layer. The cross-entropy error serves as a loss layer at this
stage.

The cross-entropy loss function of the high-level prior part is:

Lc = −
1
N

N∑
i=1

M∑
j=1

[(
yi = j

)
Fc (Xi, θ)

]
(7.5)

N represents the number of training examples, θ is a set of network parameters, Xi is
the ith training example, FC (Xi, θ) represents the classification of the output, yi is the
groundtruth classification, and M is the number of categories.

• Density estimation:
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This part of the network still contains 4 convolutional layers. After each layer there is a
PReLU function as the activation function. After the first two layers, there is a maximum
pooling layer with a step size of 2. The first convolution layer is 7*7, 20 channels. The
second convolution layer is 5*5, 40 channels. The third is 5*5, 20 channels. The fourth
layer is 5*5 with 10 channels. The output of this network is combined with the output
of the high-level prior through two convolutional layers and two small-step convolutional
layers. The first two convolutional layers are 3*3, 24 and 32 channels, and the small step
convolutional layers are 16 and 18 channels. In addition to integrating the priors, these
small-step convolutional layers can also promote feature maps to the original input size
[5]. The reason for this is to recover details that were lost by the largest pooling layer
before. The use of these layers has increased the upsampling rate of CNN output by 4
times. This enables regression on a full-resolution density map. Standard Euclidean loss
is used as the loss layer.

The density estimation loss function is:

Ld =
1
N

N∑
i=1

‖Fd (Xi,Ci,Θ) − Di‖2 (7.6)

Fd is the estimated density map, Di is the true density map, and Ci is the feature map
obtained from the last convolutional layer at the advanced prior stage. Then the total loss
function is:

L = λLc + Ld (7.7)

• Conclusion: Vishwanath A. Sindagi and Vishal M. Patel proposed a multi-task cas-
caded CNN network for jointly learning crowd count classification and density map
estimation. By learning to classify the crowd count into various groups, they are
able to incorporate a highlevel prior into the network which enables it to learn glob-
ally relevant discriminative features thereby accounting for large count variations in
the dataset. Additionally, they employed fractionally strided convolutional layers at
the end so as to account for the loss of details due to max-pooling layers in the ear-
lier stages there by allowing them to regress on full resolution density maps. The
entire cascade was trained in an end-to-end fashion.

7.3.1.3/ SWITCH-CNN NETWORK ARCHITECTURE

In the same year, D.B Sam and others proposed switch convolutional neural networks
[62]. The network uses changes in crowd density in the image to improve the accuracy
and localization of predicted crowd counts. First, several CNNs with different convolution
kernel sizes are used as regression maps for density map prediction, and then a trained
selection classifier is used to select the optimal CNN regressor for each input image, and
the results are used as the final results.

The Switch-CNN network structure includes three CNN regressors with different struc-
tures and a classifier that selects the optimal regressor. For each input picture, first cut it
into 9 parts that do not overlap each other, and each part is 1/3 length and width of the
original image. The purpose is to make the input small picture be regarded as a single
unit of density, scale, and perspective as the smallest unit for the selective regressor.
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The CNN regressor selects the network structure in MCNN. Each column includes 4
convolutional layers and 2 pooling layers. The convolution kernels in the three columns
have different sizes.

The classifier uses a VGG-16-based structure, removing the last fully-connected layer,
replacing it with a global average pooling layer (GAP), two smaller fully-connected lay-
ers, and a softmax classification layer. The result of the softmax layer is the selected
regressor. The procedure is as follows:

Figure 7.10 – Swith-CNN architecture [62].

Regarding the use of true density maps, the labeled images in the data set are repre-
sented in the form of points, so a method is needed to convert the labeled points into a
density image. Here they cite the method of geometric adaptive kernel in MCNN network
architecture by setting the parameters of the Gaussian transformation as the average dis-
tance from the labeled points to the k nearest neighbors. This method can better simulate
the perspective information. For denser populations, a geometrically adapted Gaussian
kernel is used, while for sparse populations a fixed Gaussian transform is used.

Switch-CNN training is divided into three steps: pre-training, differential training, and
integrated training. In the pre-training phase, the three CNN regressors are first trained
separately, and the loss function is the Euclidean distance between the real density image
and the predicted image. This is followed by the difference training phase, where the
results obtained from each of the three regressors trained on each training picture are
evaluated. D.B Sam select the regressor with the smallest total number of errors to train
the image again [62]. The effect of this process is that all training pictures are divided
into three groups, and each group is fitted with a network. In this way, when the obtained
test picture is correctly classified, a more accurate density image can be calculated by a
regressor that best matches the picture characteristics. In order to improve the training
effect, the process of differential training and training of the classifier is alternated.

• Conclusion: D.B Sam et al proposed a novel crowd counting model that maps
a given crowd scene to its density. Crowd analysis is com-pounded by myriad of



68CHAPTER 7. MULTI-FEATURE COUNTING OF DENSE CROWD IMAGE BASED ON MULTI-COLUMN CONVOLUTIONAL NEURAL NETWORK

factors like inter-occlusion between people due to extreme crowding, high similar-
ity of appear-ance between people and background elements, and large variability
of camera view-points. Current state-of-the art approaches tackle these factors by
using multi-scale CNN architectures, recurrent networks and late fusion of features
from multi-column CNN with different receptive fields. They propose switching con-
volutional neural network that lever-ages variation of crowd density within an image
to improve the accuracy and localization of the predicted crowd count. Patches from
a grid within a crowd scene are relayed to independent CNN regressors based on
crowd count predic-tion quality of the CNN established during training. The inde-
pendent CNN regressors are designed to have different receptive fields and a switch
classifier is trained to relay the crowd scene patch to the best CNN regressor. The
Switch-CNN network architecture solves the mutual occlusion among people, the
high similarity the high similarity in appearance among people and background ele-
ments caused by extremely crowded environments.

7.3.1.4/ CSRNET ARCHITECTURE

In 2018, Li et al. Proposed a network for crowded scene recognition called CSRNet. A
way to understand highly crowded scenarios by providing data-driven deep learning. This
allows accurate count estimates and constructs high-quality density maps [42].

The CSRnet network model is mainly divided into front-end and back-end networks. Here,
they use VGG-16, which removes the fully connected layer as the front-end network of
the CSRnet to extract the features of the image. The size of the output density map is 1/8
of the original input image. A hollow convolutional neural network is used as the back-
end network to expand the receptive field while maintaining the resolution to generate a
high-quality crowd distribution map. Its network structure is as follows figure 7.11:

Figure 7.11 – CSRNet architecture [42].

Li et al. Mainly used a VGG-16 network excluding the fully connected layer, and used a 3
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× 3 convolution kernel. Through experiments, it can be obtained that for the same size of
the receptive field, the smaller the convolution kernel, the more the number of convolution
layers is, the better the model is. To balance accuracy and resource overhead, the VGG-
16 network here uses a combination of 10 convolutional layers and 3 pooling layers. The
back-end network uses six layers of hole convolution layers with the same hole ratio.
Finally, a layer of 1 × 1 ordinary convolution layer is used to output the results.

• Conclusion: Li et al. Proposed a network for Congested Scene Recognition called
CSRNet to provide a data-driven and deep learning method that can understand
highly congested scenes and perform accurate count estimation as well as present
high quality density maps. The proposed CSRNet is composed of two major com-
ponents: a convolutional neural network (CNN) as the front-end for 2D feature ex-
traction and a dilated CNN for the back-end, which uses dilated kernels to deliver
larger reception fields and to replace pooling operations. CSRNet is an easy-trained
model because of its pure convolutional structure. They demonstrate CSRNet on
four datasets (ShanghaiTech dataset, the UCF CC 50 dataset, the WorldEXPO’10
dataset, and the UCSD dataset). In the ShanghaiTechPart_B dataset, CSRNet
achieves 47.3% lower Mean Absolute Error (MAE) than the previous state-of-theart
method.

7.3.1.5/ SFCN NETWORK STRUCTURE

In 2019, Junyu Gao et al. Proposed two performance methods that use synthetic data to
improve population counting [77]. First, a supervising strategy is used to reduce overfit-
ting. Specifically, a large-scale synthetic data are first used to pre-train a crowd counter,
which is a spatial full convolutional network (SFCN). The actual counter was then used
to correct the counter. This method can effectively improve the performance of actual
data. Some layers in traditional models have random initialization or regular distribution.
Compared with them, the SFCN network structure can provide more complete and better
initialization parameters.

Secondly, Junyu Gao et al. Proposed a domain adaptive crowd counting method which
improves cross-domain transfer capabilities. Through a SSIM embedded (SE) loop GAN,
it can effectively transform the synthesized crowd scene into a real scene. During the
training process, they introduced the Structural Similarity Index (SSIM) loss. This is a
loss between the original image and the image reconstructed by the two generators.
Compared with the original circular GAN, this method effectively retains the local pattern
and texture information, especially in crowded areas and certain backgrounds. Finally, the
synthesized data are converted into a realistic image. Based on this data, they trained a
crowd counter without real data labels, which works well in the wild. The following figure
7.12 shows two flow charts of the proposed SFCN network:

• Conclusion: The three major contributions of the SFCN model. (1) This is the first
data collector and tagger to manually develop crowd counting. It can automatically
collect and annotate images without any labor costs. By using them, the first large-
scale, comprehensive, and diverse population counting data set was created. (2)
A new pre-training method is proposed to improve the performance of the original
method of real data. At the same time, compared with the random initialization and
ImageNet model, it can reduce the estimation error more effectively. (3) A crowd
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Figure 7.12 – SFCN network structure [77].

counting method based on adaptive field. This method does not use any labels for
real data. By designing the SE loop GAN, the domain gap between synthetic data
and actual data can be significantly reduced.

7.3.2/ MULTI-FEATURE COUNTING OF DENSE CROWD IMAGE BASED ON MULTI-
COLUMN CONVOLUTIONAL NEURAL NETWORK

Here, in order to effectively solve the problem of extracting scale-related features in crowd
counting, we propose a new framework M-MCNN based on MCNN for crowd counting on
any single image. M-MCNN not only contains the original three columns of convolutional
neural networks with different filter sizes, but replaces the fully connected layers with a
convolutional layer of 1*1 filters , so the input image of the model can be of any size to
avoid distortion. Moreover, in a single individual sample, we greatly improve the learning
of sample features by extracting the texture features of a single human head , and better
use it for datasets.

Given an image, we use M-MCNN to estimate the number of people. Here we use the
population density map of the output (how many people per square meter), and then we
use the total number of points.

The main reason is that the density map retains more information. The density map gives
the spatial distribution of the population in a given image compared to the total number of
people, and such distribution information is useful in many applications. For example, if
the density of a small area is much higher than the density of other areas, it may indicate
that some anomalies have occurred there, promptly alerting and evacuating the crowd.

When passing through M-MCNN model density map, the filter is more adaptable to
the heads of different sizes and is therefore more suitable for any input with significant
changes in perspective. These filters have more semantics and also improve the accu-
racy of crowd counting.

M-MCNN was mainly inspired by the success of MCNN in image classification. Each
column of the M-MCNN network has the same depth of parallel sub-networks, but the
filters are different in size (large, medium, and small) and can capture the characteristics
of different sizes of human heads. Here we also incorporate texture features and target
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Figure 7.13 – The structure of the proposed multi-feature multi-column convolutional neu-
ral network for density map estimation.

edge detection to further refine the head features. Finally, the feature maps of the three
columns of subnetworks are linearly weighted (completed by 1x1 convolution) to obtain
the population density map of the image, following the concept of feature fusion.

7.3.2.1/ TEXTURE FEATURE AND TARGET EDGE DETECTION

• First part : Feature extraction.

The number of extracted local HOG features depends on our definition of the image
size of each person, whose feature image can extract hundreds of local features through
dense sampling. HOG performs the same processing on each element of the person’s
feature image. The directional gradient histogram is actually a feature vector. Next, we
will use these HOG features to train the classifier. For the image of the head size and
direction of the crowd, further processing is performed to summarize the set of local
features into concise feature vectors to describe the characteristics of the crowd.

The LBP operator is calculated pixel by pixel.Here we perform pixel extraction of different
sizes for each person’s head feature , compare it to neighboring pixels and then follow
neighboring pixels clockwise or counterclockwise. If other values are greater than the
center pixel, we record "1". If not, we record "0". When passing through all the neighbors
around, we can get 8-bit binary numbers. We convert it to decimal. The histogram is then
normalized. Finally, the obtained statistical histograms of each region are connected into
a feature vector.

Through Chapter 6, we put forward a kind of improved algorithm based on Canny algo-
rithm, that is, first of all with the edge of the keep combined with filtering and anisotropic
partial differential equation smoothing filter adaptive edge preserving filtering instead of
the traditional Canny algorithm of Gaussian filtering method, which can for subsequent
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Canny algorithm to detect edge linking to do a good job in basic, of image is good to the
effect of noise reduction while preserving image edges.

Research on the human visual system has shown that image boundaries are particu-
larly important, and that objects can often be identified by simply their outlines. This
fact provides important insights for machine vision research, that is, the objects available
the boundary represented by the grayscale image discontinuous points consisting of ba-
sic original carrying the original image of the most useful information. Here, we obtain
clear head contours by edge detection, and fuse LBP and HOG texture feature analysis,
thereby getting more head feature details.

7.3.2.2/ STRONG FEATURES AND DENSITY MAPS

• Second part : Output of strong features and density maps.

We use the method of HOG, LBP, CANNY, SVM feature fusion to get the head features.
Here we define it as a strong feature. Then, through a fully connected layer, the output
is a feature map of 3 channels. The purpose is also to prepare for the construction of
M-MCNN network.

7.3.3/ M-MCNN NETWORK MODEL CONSTRUCTION

Here, we will integrate the training results of HOG, LBP, CANNY and SVM classifiers
into the MCNN model to construct a new M-MCNN model. First, we input the image
and add our fusion feature extraction and texture feature analysis. Then we make a fully
connected layers, in order to make the network learn the importance of fusion features.
The output is merged with MCNN’s 3-column subnetwork, each parallel sub-network of
MCNN can capture the characteristics of different sizes of human heads. A newly added
fusion feature (texture feature and edge feature) can be regarded as a strong feature-
assisted network learning with manual extraction. Finally, the feature map of the four-
column sub-network is linearly weighted (completed by 1x1 convolution) to obtain the
population density map of the image.

7.3.3.1/ CROWD COUNT BASED ON DENSITY MAP

Multi-feature fusion convolutional neural network (M-MCNN) works by estimating the
number of people in a given image. It has two configurations. One is that the input is
a picture and the output is an estimated number of people. In fact, in this part, we did a
lot of algorithm deduction and experiments in the multi-feature fusion part of Chapter 6 of
this article. Then, the other is to output the density map of the population, and then obtain
the number of people through integration. Here, we choose the output as a population
density map. There are several reasons for this:

The first reason is that the density map retains more information. By comparing the total
number of people, the density map can give the spatial distribution of the people in a
given image. Such distribution information is useful in many applications. For example, if
the density of a small area is much higher than the density of other areas, it may indicate
that anomalies have occurred there.
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For the second reason, we obtained strong features of the human head through multi-
feature fusion technology. Then through the fully connected layer, a feature map of 3
channels is outputted. This part not only allows us to get all the features of a single per-
son’s head image, but also greatly improves the resolution. It is more helpful to integrate
MCNN network structure.

The third reason is in learning the density map via an M-MCNN, the learned filters are
more adapted to the heads of different sizes, hence more suitable for arbitrary inputs
whose perspective effect varies significantly. Thus the filters are more semantic mean-
ingful, and consequently improves the accuracy of crowd counting.

7.3.3.2/ DENSITY MAP VIA GEOMETRY ADAPTIVE KERNELS

To generate a density map, we use a pulse function convolution Gaussian kernel to define
the density map. Here, we briefly introduce the impulse function and Gaussian kernel
function.

• Impulse function :

The impulse function was proposed by British physicist Dirac in the 1920s and was used
to describe a physical quantity in a moment or a geometric point in space [63]. For exam-
ple, instantaneous impact forces, pulse currents or voltages, and other rapidly changing
physical quantities, as well as mass distributions of point masses, point-to-point radial
charge distributions, and other physical quantities that are highly concentrated in space
or time. The impulse function is also called δ function. If placed in a dimensional space,
the independent variable is a function δ(t) of time t, which satisfies two conditions [63]:

δ (t) =

{
+∞, t = 0,
0, t , 0;

(7.8)

∫ +∞

−∞

δ (t) dt = 1. (7.9)

Then, a function that satisfies the above two conditions is called δ function, and it is
written as δ(t). The δ function is a generalized function and can also be extended to
multi-dimensional space. This is also one of the main reasons why we choose the pulse
function. Its exact meaning should be understood under the integral operation: its inte-
gration curve height is "infinite height" and its width is "infinite narrow". The area under
the curve is equal to 1. Therefore, the δ function has the following relationship:

∫ b

a
δ (t) dt =

{
1, a < 0 < b,
0, other.

(7.10)

Several basic properties of the δ function are given directly below, and they are also used
in our subsequent calculations.

The first is the screening property. Let f (t) be a bounded function defined on the real
number domain and continuous at t0, then [63]:
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∫ +∞

−∞

δ (t − t0) f (t) dt = f (t0) (7.11)

In particular, when t0 = 0, then:

∫ +∞

−∞

δ (t) f (t) dt = f (0) (7.12)

The second property: the δ function is an even function, that is,

δ (−t) = δ (t) . (7.13)

The third property, when u (t) is a unit step function, that is,

u (t) =

{
1, t > 0,
0, t < 0.

(7.14)

Then: ∫ t

−∞

δ (t) dt = u (t) ,
du (t)

dt
= δ (t) (7.15)

According to the screening properties of the δ function, we can get the Fourier transform
of the δ function as:

F [δ (t)] =

∫ +∞

−∞

δ (t) e− jwtdt = e− jwt|t=0 = 1. (7.16)

That is, δ(t) and F (w) = 1 constitute a Fourier transform. According to the Fourier integral
formula:

1
2π

∫ +∞

−∞

e jwtdw = δ (t) . (7.17)

This is an important formula for the δ function. The Fourier transform of δ(t) is a general-
ized Fourier transform. In engineering technology, there are many functions that do not
meet the conditions of absolute integrability, such as symbolic functions, unit step func-
tions, and sine and cosine functions. However, using the δ function can find their Fourier
transform. From this perspective, we can also see the importance of the δ function.

• Gaussian kernel :

A Gaussian kernel function, in simple terms, is used to map finite-dimensional data to
high-dimensional space. It is usually defined as a monotonic function of the Euclidean
distance between any point x in space and some center point x

′

. Here, we can write it as
k(||x − x

′

||), and its effect is often local. When x is larger, the value of the function is small
[90].

Defined as:
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k
(
x, x

′
)

= e−
||x−x

′
||2

2σ2 (7.18)

x
′

is the center of the kernel function, and ||x − x
′

|| is the Euclidean distance between the
vectors x and x

′

. As the distance between the two vectors increases, the Gaussian kernel
function decreases monotonically. σ controls the range of the Gaussian kernel function.
The larger its value, the larger the local influence range of the Gaussian kernel function.
Of course, σ cannot be too small, otherwise it is easy to overfit in the classification task.

Gaussian kernel functions have several typical characteristics. These properties make
it particularly useful in image processing. These characteristics show that the Gaussian
smoothing filter is a very effective low-pass filter in both the spatial and frequency do-
mains, and has been effectively used by engineers in practical image processing. These
qualities are:

First, the two-dimensional Gaussian function has rotational symmetry, that is, the degree
of smoothness of the filter in all directions is the same. Generally, we don’t know the
direction of the edges of an image at first. Therefore, it is impossible to determine that
one direction requires more smoothing processing than the other direction before filtering.
Rotational symmetry means that the Gaussian smoothing filter will not be biased in any
direction in subsequent edge detection.

Second, the Gaussian kernel function is a single-valued function. This shows that the
Gaussian filter replaces the pixel value of the point with the weighted average of the
pixel neighborhood. Therefore, the weight of each neighborhood pixel monotonously
increases or decreases with the distance between the point and the center point. This
trait is important because the edges are a local feature of the image. If the smoothing
operation still has a great effect on pixels that are far away from the center of the operator,
the smoothing operation will distort the image.

Third, the Fourier transform spectrum of the Gaussian kernel function is a single-lobed.
Images are often disturbed by high-frequency signals, including: noise and fine textures.
Image features, such as image edge features, contain both low-frequency and high-
frequency components. The single lobe of the Fourier transform of the Gaussian ker-
nel function means that the smooth image is not disturbed by unwanted high-frequency
signals. At the same time, most of the required signals are retained.

Fourth, the width of the Gaussian filter determines the degree of smoothing. It is char-
acterized by the parameter σ, and the relationship between σ and smoothness is very
simple. The larger σ, the wider the band of the Gaussian filter and the better the smooth-
ness. By adjusting the smoothness parameter σ, a better effect can be obtained between
image features that are too blurred and excessive smoothness caused by noise and fine
texture in smoother images.

Finally, the separability of Gaussian kernel functions. Two-dimensional Gaussian function
convolution can be performed in two steps. First, the image is convolved with a one-
dimensional Gaussian kernel function, and then the same one-dimensional Gaussian
kernel function whose convolution result is perpendicular to the direction is convolved.
The results show that the amount of computation of the two-dimensional Gaussian filter
increases linearly with the width of the filter template, rather than squared.

Here, we assume that the position of the label point is xi, then a label with N heads can
be expressed as:
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H (x) =

N∑
i=1

δ (x − xi) . (7.19)

Here, we convolve it with a Gaussian function into a continuous function. However, this
density function assumes that each xi is independent in image space. In fact, each xi is a
sample of the crowd density on the ground in a 3D scene. Due to the effect of perspective
distortion, the pixels associated with different samples xi correspond to regions of differ-
ent sizes in the scene. In order to estimate the population density more accurately, we
need to consider perspective transformation. We assume that the density of the crowd is
uniform around a head area, and its nearest neighbor gives a reasonable estimate of the
geometric deformation. In order to make the density map better correspond to images
with different perspectives (head sizes of different sizes) and dense crowds, we have im-
proved the traditional Gaussian kernel-based density map and proposed a geometrically
adapted Gaussian kernel-based density map. It is expressed by the following formula
[90]:


F (x) =

∑N
i=1 δ (x − xi) ∗Gσi(x),

σi = βd̃i.

d̃i = 1
m

∑m
j=1 .

(7.20)

In fact, the density map is obtained by convolving the δ pulse function with a Gaussian
function. Here, the convolution is performed before the sum.

Here xi represents the pixel position of the human head in the image, δ(x − xi) represents
the pulse function of the human head position in the image, N represents the total number
of human heads in the image, di

j is the average distance between the m head closest to
the head of xi and the head at that point. Usually, the size of the head is related to the
distance between the centers of two adjacent people in a crowded scene. d̃i is approx-
imately equal to the size of a human head in a crowded situation. Through subsequent
experiments, the variance of the density map generated in this way is scattered or con-
centrated in the Gaussian kernel at large or small positions of the human head. This can
better represent the characteristics of human head size.

In Equation 7.19, the δ function is an impulse function. The integral sum value within the
range is 1, and then the N heads are summed to obtain the N head labels.

For the xi point of each head, the average value di of the k nearest neighbor distances is
given. Then, the pixel related to xi corresponds to a region on the ground in the scene.
The radius of this area is proportional to di. Therefore, in order to estimate the crowd
density around the pixel xi, we need to convolve H(x) with an adaptive Gaussian kernel.
The variance σi of this Gaussian kernel is variable and proportional to di.

Here, we convolve the label H with a Gaussian kernel function of an adaptive kernel. The
variance of this Gaussian kernel function is a product of the average distances between β
and xi’s K nearest neighbors. The implementation of the subsequent program is to extract
xi points from the ground truth and perform the Gaussian convolution.

In order to map the feature map to the density map, we set a filter with a size of 1 × 1.
The difference between the estimated density map and the ground truth is measured by
using the Euclidean distance. The loss function is defined as follows:
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L (Θ) =
1

2N

N∑
i=1

‖F (Xi,Θ − Fi)‖22 . (7.21)

Where θ is the network parameter to be optimized, and N is the total number of training
images. Here, Xi is the image we need to enter, and Fi expresses the ground truth density
map of image Xi. F(Xi; θ) stands for the estimated density map generated by M-MCNN
architecture, which is parameterized with θ for sample Xi. Definition L expresses the loss
difference between the estimated density map and the ground truth density map.

7.3.3.3/ OPTIMIZATION OF M-MCNN ARCHITECTURE

We optimize the M-MCNN structure from two aspects.

On the one hand: We optimize batch-based stochastic gradient descent and backpropa-
gation through a loss function. We use a loss function to evaluate the degree of difference
between the model’s predicted and true values. In addition, the loss function is also an
optimized objective function of the neural network. The process of neural network training
or optimization is the process of minimizing the loss function. The smaller the loss func-
tion, the closer the predicted value of the model to the true value, the higher the accuracy
of the model.

Here, we introduce the cross-entropy loss function [66]. The definition of the cross-
entropy loss function is as follows :

Li = −
[
y(i)logŷ(i) +

(
1 − y(i)

)
log

(
1 − ŷ(i)

)]
(7.22)

Take the binary classification problem as an example. For models such as logistic regres-
sion and neural networks, the real sample labels are [0,1], which represent negative and
positive classes, respectively. Our model M-MCNN will finally pass a Sigmod function to
output a probability value. This probability value reflects the probability that the prediction
is positive: the larger the probability value, the more likely the sample is positive.

The expression of the Sigmod function is as follows:

g (s) =
1

1 + e−s (7.23)

In Equation 7.23, s is the output of the layer above the model. The characteristics of the
Sigmod function are: when s is 0, g (s) = 0.5; when s � 0, g≈1. When s � 0, g≈0.
Obviously, g (s) maps the linear output of the previous stage to a numerical probability
between [0,1]. Here g (s) is the model prediction output in cross entropy. The model
prediction output characterizes the probability that the current sample is positive (that is,
the label value is 1):

ŷ = P (y = 1| x) (7.24)

Therefore, the probability that the current sample is negative can be expressed as:

1 − ŷ = P (y = 0| x) (7.25)
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We put the two situations above together:

P (y|x) = ŷy ∗ (1 − ŷ)1−y (7.26)

Here we look at it from another perspective:

When the real sample label is y = 0, the first term of the above formula is 1, and the
probability equation is transformed into:

P (y = 0|x) = 1 − ŷ (7.27)

When the real sample label is y = 1, the second term of the above formula is 1, and the
probability equation is transformed into:

P (y = 1|x) = ŷ (7.28)

In fact, the probability expression in both cases is exactly the same as before. We put the
two situations together. Let’s look at the probability expression after integration. What we
want is that the larger the value of probability P(y|x), the better. First, we introduce the
log function to P(y|x), because the log operation does not affect the monotonicity of the
function itself. When P(y|x) is maximized, logP(y|x)is also the largest. As follows:

logP (y|x) = log
(
ŷy ∗ (1 − ŷ)1−y

)
= ylogŷ + (1 − y) log (1 − ŷ) (7.29)

Instead, we need the smaller the negative value of logP(y|x). Then we introduce the loss
function, let loss=-logP(y|x), and the resulting loss function is:

Loss = −
[
ylogŷ + (1 − y) log (1 − ŷ)

]
(7.30)

We calculate the loss function of a single sample. If we want to calculate the total loss
function of N samples, we only need to combine the N losses:

Loss = −
∑[

ylogŷ + (1 − y) log (1 − ŷ)
]

(7.31)

In fact, we generally use the cross entropy function instead of the mean square error in
classification problems. On the other hand, in regression problems, we often use mean
square error (MSE) as the loss function [66], the formula is as follows:

loss =
1

2m

m∑
i=1

(yi − ŷi) (7.32)

Because regression problems require fitting real numeric values, and the error between
the predicted and actual values is measured by MSE. Then, it can be optimized by gra-
dient descent. When we face the classification problem, we need a series of activation
functions, such as: sigmod, softmax to map the predicted value to 0-1. When using MSE
at this time, we need to think carefully. Because of the activation function, the gradient
of the loss function with respect to the parameters becomes complicated, and the use of
MSE brings difficulty to the optimization. The process is as follows:
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∂C
∂ω

= (a − y)σ
′

(z) x (7.33)

∂C
∂b

= (a − y)σ
′

(z) (7.34)

It can be seen from the above formula that the gradients of w and b are proportional to
the gradient of the activation function. The larger the gradient of the activation function,
the faster the resizing of w and b, and the faster the training convergence.

Recalculate the gradient: In this way, the partial derivative of the loss function with respect
to the parameters no longer contains the derivative of the sigmod function. It has the
difference between the value of sigmod and the actual value, which also satisfies the
larger error we said before, the faster the decline. This is why in the classification problem,
we use the cross entropy loss function instead of MSE!

Here we make a small summary. Because neural networks, logistic regression, etc. gen-
erally have sigmod functions as activation functions, if MSE is used as the loss function,
the derivative of sigmod will appear in the derivative of the loss function with respect
to the parameter to be obtained. The derivative of the sigmod function is a quadratic
function about the original function. When σ(z) is the independent variable, the deriva-
tive is σ (z) (1 − σ (z)). This complicates the partial derivative and is not conducive to the
parameter update.

When using cross-entropy derivation, due to the existence of the log function, the cor-
responding quadratic term will appear on the scorer. After elimination, the gradient is a
linear function about y-ŷ. That is, the larger the error, the greater the magnitude of the
parameter update.

It can be more intuitively understood that the difference (y-a) between the predicted value
and the true value is A. When y=1 is taken as an example, then σ

′

(z)=σ(z)(1-σ(z)) is
converted into A(1-A). So the gradient (a-y) σ

′

(z)x of the one-sample loss function is
transformed into a function A2(1-A)x about the error A. It is a cubic function about A. The
larger A cannot be achieved, the larger the gradient. In contrast, the gradient of cross
entropy is proportional to A. The larger the A, the larger the gradient, and the faster the
parameter update. Therefore, we incorporate the cross-entropy loss function.

On the other hand: We add deep neural network training based on the M-MCNN struc-
ture. By optimizing the network structure, smaller errors can be obtained from the signifi-
cantly increased depth of the neural network, improving accuracy.

When deeper networks can begin to converge, the degradation problem has been ex-
posed. As deeper network levels increase, the relative accuracy decreases rapidly. This
degradation is not caused by overfitting, but adding more layers to the appropriate depth
model results in higher training errors.

First, we have to solve the problem of degradation. Here, we introduce a deep residual
network [27]. If the layers behind the deep network are identity mappings, the model
degenerates into a shallow network. So, what we have to solve is to learn the identity
mapping function. It is however more difficult for some layers to directly fit a potential
identity mapping function H (x) = x. This may be the reason why deep networks are
difficult to train. However, if the network is designed as H (x) = F (x) + x, as shown in the
figure 7.14 below, we can convert to learning a residual function F (x) = H (x)− x. As long



80CHAPTER 7. MULTI-FEATURE COUNTING OF DENSE CROWD IMAGE BASED ON MULTI-COLUMN CONVOLUTIONAL NEURAL NETWORK

as F (x) = 0, an identity map H (x) = x is formed. Then, fitting the residuals is definitely
easier.

Figure 7.14 – Residual learning [27].

F is the network map before the summation, and H is the network map from the input
to the summation. Here, we take an example to map 2 to 2.1, then it is F

′

(2) = 2.1
before introducing the residual. After introducing the residual is H (2) = 2.1, H (2) =

F (2) + 2,F (2) = 0.1. Here F
′

and F both represent the network parameter mapping.
The mapping after the introduction of residuals is more sensitive to changes in output.
For example, the output of s changed from 2.1 to 2.2, and the output of the mapping
increased by 2%. For the residual structure output from 2.1 to 2.2, the mapping F is from
0.1 to 0.2, an increase of 100%. Obviously, the output change of the latter has a greater
effect on weight adjustment, and the effect is better. The idea of the residual is to remove
the same main part, so as to highlight the small changes.

This residual learning structure can be implemented by a forward neural network + short-
cut connection. First, the shortcut structure connection is equivalent to simply performing
the equivalent mapping without generating additional parameters and without increasing
the computational complexity. Second, the entire network can still be trained through
port-to-port backpropagation. Here, we briefly introduce the shortcut structure.

The idea of the shortcut structure was introduced in order to solve the problem of gradi-
ent divergence and difficult training in deep networks. We know that for the original CNN
model (called "plain networks", which does not specifically refer to a certain model frame-
work), there is only a connection between two adjacent layers. As shown in the figure
below, x and y are two adjacent layers, connected by WH, and a deep network is formed
by concatenating multiple such layers back and forth. The relationship between adjacent
layers is as follows [27]:

y = H (x,WH) (7.35)

Where H represents the transformation in the network.

In order to solve the problem of gradient divergence of deep networks, we have added a
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Figure 7.15 – A simple network structure.

shortcut structure between the two layers. The structure between the two layers is shown
below:

Figure 7.16 – Shortcut structure.

The relationship between x and y is as follows:

y = H (x,WH) ∗ T (x,WT ) + x ∗C (x,WC) (7.36)

Among them we set C = 1-T, which can be rewritten as:

y = H (x,WH) ∗ T (x,WT ) + x ∗ (1 − T (x,WT )) (7.37)

Here, we call T a "transform gate" and C a "carry gate". The input layer x is connected to
the output layer y by a weight of C. Through the improvement of this connection method,
the problem of gradient divergence in deep networks is alleviated.

Our deepened residual network can be more easily optimized than a deep network pro-
duced by a simple overlay. Moreover, because of the increase in depth, the later experi-
mental results have been significantly improved.

7.4/ EXPERIMENT

We evaluated our M-MCNN model on five different datasets compared with most MCNN-
based methods in the literature, the proposed M-MCNN model is not only convenient to
construct, but also integrates multiple feature source information. Above all, our proposed
method has a competitive advantage and usually have superior performance when tested
on the provided datasets.

We evaluate the performance via the mean absolute error (MAE) and mean square error
(MSE) commonly used in previous works.
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Table 7.1 – Statistics of the five real-word datasets

Dataset Resolution Num Max Min Ave Total
UCSD 158*238 2000 46 11 24.9 49885

WorldExpo’10 576*720 3980 253 1 50.2 199923
GCC 1080*1920 15212 3995 0 501 7625843

Shanghaitech Part_A different 482 3139 33 501.4 241677
Part_B 768*1024 716 578 9 123.6 88488

CHDP different 11585 19083 0 587 6800395

MAE =
1
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N∑
1
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′

i
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where N is total number of test images, wi is the actual number of people detected in the
ith image, and w′i is the estimated number of people in the ith image. So here, the MAE
we use represents the accuracy of the estimate, and the MSE represents the robustness
of the estimate.

7.4.1/ SHANGHAITECH DATASET

Here, we have introduced a large-scale population count dataset to test the assessment
of crowd counting tasks. The Shanghai dataset, which contains 1,198 annotated images,
totals 330, with 165 heads annotated. The dataset is mainly composed of two parts: 482
images in Part_A are randomly selected from the Internet, and 716 images in Part_B are
taken from the bustling streets of Shanghai. Table 6.1 gives the statistics of Shanghaitech
dataset and its comparison with other datasets.

At the same time we increase the training set of M-MCNN for training. We use the texture
feature (HOG, LBP) to randomly crop each input image according to a 32×32 pixel block
with BLOC. All patches are used to train our M-MCNN model. For Part_A, since the pop-
ulation density is very high, we use our geometric adaptive kernel to generate a density
map and calculate the predicted density of the overlap region by averaging. For Part_B,
because the population is relatively sparse, we use the same distribution in the Gaussian
kernel to generate a density map.

We compare our method with the work of Zhang et al. they proposed a method uses
MCNN for crowd counting and achieved state-of-the-art accuracy at the time. We added
a fusion feature based on the original MCNN, which can be regarded as the stronger
feature-assisted learning of artificial extraction. The image of the head edge is found
by image target detection. Then we use the texture feature (HOG, LBP) to analyze the
characteristics of each head target and statistics. Here, we divide the detected head
image into small cells. Each cell size is 1 ∗ 1 pixels, and the gradient histogram of each
cell (the number of different gradients) is counted, and each cell is composed into a block
(3∗3 cells/block). The characteristics of all cells in a block are connected in series to obtain
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HOG and LBP header features. Then, we integrate the training results of the combined
HOG, LBP, CANNY, and SVM classifiers into our M-MCNN model. The output is merged
with MCNN’s three-column sub-network, and each parallel sub-network of MCNN can
capture different sizes of human head’s characteristics. Finally, the feature map of the
four-column sub-network is linearly weighted (completed by 1x1 convolution) to obtain
the population density of the image.

In this figure, we compare the MCNN population count method on the Shanghaitech
dataset.

Crowd image MCNN

Crowd image MCNN

M-MCNN

M-MCNN

Crowd image

Ground truth 
density map

Ground truth 
density map

Ground truth 
density map

Count：23 Estimated：32.72 Estimated：22.90

Estimated：168.63 Estimated：161.65Count：163

MCNN

Estimated：273.94Count：269

M-MCNN

Estimated：267.52

Figure 7.17 – Comparison of estimated density map of MCNN and our method of three
test images in part_B.

• Conclusion: By comparing MCNN’s dataset in Shanghai Part_B, we can find some
details in the pictures of the people tested. For example, the first crowd test picture,
this picture was taken on a pedestrian street, the actual number is 23 people. The
density map obtained through the MCNN network architecture shows that the esti-
mated number of people is 32.72, which is approximately equal to 33 people, which
is 10 people different from the actual number. From the density map obtained from
MCNN, it can be found that some places without people are also counted by wrong
estimates. Compared with the density map obtained by our proposed M-MCNN net-
work architecture, the estimated number of people is 22.9, which is approximately
equal to 23 people, which is the same as the actual number of people. From the
density map obtained from M-MCNN, we can find that the characteristics of each
person counted are well preserved in the density map. Through a lot of experiments,
our architecture M-MCNN better preserves the details of the generated density map.
This will allow us to better count the crowd and get better results.
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7.4.2/ UCSD DATASET

We also evaluated our approach on the UCSD dataset. The UCSD data set is the first
dataset created for statistical population. The dataset is collected from the camera of the
pedestrian channel, which consists of a frame of 238 x 158 frames of 2,000 x 158 from
the video sequence and a ground truth annotation for each pedestrian in every fifth frame.
For the remaining frames, linear interpolation is used to create annotations. An area of
interest is also provided to ignore unnecessary moving objects, such as trees, telephone
pole and so on. The dataset contains a total of 49,885 pedestrian instances and is divided
into training and test sets. The training set contains frames with an index of 601 to 1400,
while the test set contains the remaining 1200 images. The population of the dataset is
relatively low, with an average of about 20 people in a frame.The dataset provides the
ROI of each video frame. The pixel intensity outside the ROI is set to zero, and we also
use the ROI to modify the final convolutional layer. Table 7.2 shows the results of our and
other methods on this dataset.

Table 7.2 – Comparing results of different methods on the USCD dataset.

Method MAE MSE
MCNN [90] 1.07 1.35

CSRNet [42] 1.16 1.47
Swith-CNN [62] 1.62 2.10

M-MCNN (proposed) 1.02 1.23

• Conclusion: The UCSD dataset has a relatively low-density crowd, with an average
of about 20 people in a frame, and because the dataset is collected from a single
location, the perspective of the scene in the image has not changed. We evaluate
the effectiveness of our model through MSE (Mean Squared Error) and MAE (Mean
Absolute Error). MAE is the sum of absolute values of the difference between the
target value and the predicted value. MSE can evaluate the degree of change of
data. The smaller the value of MSE, the better the accuracy of the prediction model
in describing experimental data. Here, the values of MAE and MSE that we obtained
through experiments are lower than MCNN, CSRNet, Switch-CNN models. We
proposed M-MCNN model is superior to foreground segmentation and background
subtraction than CNN and MCNN-based methods. This indicats that our model
can not only estimate a very dense population images, but also estimate relatively
sparse population images.

7.4.3/ WORLDEXPO’10 DATASET

WorldExpo’10 dataset includes 3980 frames, which are from the Shanghai 2010 World-
Expo. The dataset contains 1132 annotated video sequences that are captured by 108
surveillance cameras. In this dataset, 199923 pedestrians are annotated in the center
of their heads. 3380 frames are used as training while the rest is taken as a test. The
test set includes five different scenes , each with 120 frames. Regions of interest (ROI)
are provided in each scene so that crowd counting is only conducted in the ROI in each
frame. Some statistics of this dataset can be found in Table 7.3.
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Table 7.3 – Mean absolute errors of the WorldExpo’10 crowd counting dataset.

Method Sence1 Sence2 Sence3 Sence4 Sence5 Average
MCNN[[90]] 3.4 20.6 12.9 13.0 8.1 11.6

Zhang et al.[[86]] 9.8 14.1 14.3 22.2 3.7 12.9
Using our solution 3.2 19.2 11.5 11.9 7.2 10.6

• Conclusion: As demonstrated in Table 7.3, our method achieves state-of-the-art
performance with respect to the average MAE of five scenes. Specifically, our model
gets the lowest MAE in Scene 1, in Scene 3 and Scene 4, which are the three most
challenging scenes in the testing set.

7.4.4/ GCC DATASET

Here we use the large-scale synthetic dataset GCC. GCC is a virtual game dataset.
The GCC dataset contains 15,212 images with a resolution of 1080×1920 and contains
7,625,843 people. Compared to existing datasets, GCC is a larger population count
dataset in terms of number of images and number of people. GCC is more diverse than
other real-world datasets, GCC dataset consists of 400 different scenes, for example:
convenience store, pub, mall, street, plaza, stadium and so on.

Figure 7.18 – Example for the GCC dataset

Not only that, we also added weather factors in the dataset, for exemple : clear, clouds,
rain, foggy, thunder, overcast and extra sunny.

Table 7.4 reports the performance of our M-MCNN and three popular methods (MCNN
[90] and CSRNet[42] and SFCN[77]) on the proposed GCC dataset.

• Conclusion: In the still crowd image, our model M-MCNN is used for testing in
different environments. First, in the case of very few people (e.g., 2-3 people) then,
in a very dense group, hundres and even thousands of people. Then, weather
factors, such as: sunny, cloudy, rain, fog, etc. Finally, 400 different scenes, such
as: streets, squares, casinos and other crowded places. Our model has achieved
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Figure 7.19 – The statistical histogram of crowd counts in different aeras.
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Figure 7.20 – The weather condition distribution on GCC dataset.

Table 7.4 – The results of our proposed M-MCNN and the three classic methods on GCC
dataset.

Method MAE MSE
MCNN[[90]] 100.9 217.6

CSRNte[[42]] 38.2 87.6
SFCN[[77]] 36.2 81.1

M-MCNN(proposed) 35.5 79.3

good results in all test datasets used for evaluation. The GCC dataset is a multiple
dataset, and our model has achieved good results in the GCC test dataset.

7.4.5/ CHDP DATASET

This data set is called the CHDP (high-density population) data set. It contains image
of high-density people that we collected from Google, Baidu, and other major websites.
The size of each high-density crowd image varies. Its purpose is to better detect the M-
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MCNN crowd counting algorithm we have proposed. At the same time, we have added
several existing data sets, which include: ShanghaiTech, USCD, WorldExpo’10 and GCC
datasets. So as to make this composite data set more abundant. Of course, here we
also introduced PSNR and SSIM image quality evaluation indicators [78]. Here we briefly
introduce these two image quality evaluation indicators.

• PSNR (Peak Signal-to-Noise Ratio):

Given a clean image I and a noise image K of size m × n, the mean square error
MSE is defined as [78]:

MS E =
1

mn

m−1∑
i=0

n−1∑
j=0

[
I (i, j) − K (i, j)

]2 (7.40)

Then PSNR (dB) is defined as:

PS NR = 10 · log10

 MAX2
I

MS E

 (7.41)

Where MAX2
1 is the maximum possible pixel value of the image. If each pixel is

represented by 8-bit binary, then it is 255. Generally, if the pixel value is represented
by B-bit binary, then MAXI = 2B-1. Generally, for unit8 data, the maximum pixel value
is 255; for floating-point data, the maximum pixel value is 1.

The above is the calculation method for grayscale images. If it is a color image,
there are usually three methods to calculate it.

(1) Calculate the PSNR of the three RGB channels separately, and then take the
average.

(2) Calculate the MSE of the RGB three channels, and then divide by 3.

(3) Convert the picture to YCbCr format, and then calculate only the Y component,
which is the PSNR of the luminance component.

Among them, the second and third methods are more common. For hyperspectral
images, we need to calculate PSNR separately for different bands, and then take
the average value, this indicator is called MPSNR.

• SSIM (Structural SIMilarity):

The SSIM formula is based on three comparative measures between the samples
x and y: luminance, contrast and structure.

l (x, y) =
2µxµy + c1

µ2
x + µ2

y + c1
(7.42)

c (x, y) =
2σxσy + c2

σ2
x + σ2

y + c2
(7.43)

s (x, y) =
σxy + c3

σxσy + c3
(7.44)

Here, we generally take c3 = c2/2. µx is the mean of x, µy is the mean of y, σ2
x is the

variance of x, σ2
y is the variance of y, σxy is the covariance of x and y, c1=(k1L)2 and
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c2=(k2L)2 are two constants, in order to avoid division by zero. L is the range of pixel
values: 2B − 1, k1 = 0.01, k2 = 0.03 are the default value.

Then:
S S IM (x, y) =

[
l (x, y)a · c (x, y)β · s (x, y)γ

]
(7.45)

Set α, β, γ to 1, you can get [78]:

S S IM (x, y) =

(
2µxµy + c1

) (
2σxy + c2

)(
µ2

x + µ2
y + c1

) (
σ2

x + σ2
y + c2

) (7.46)

Each time we calculate, we take an N * N window from the image. Then continu-
ously sliding the window for calculation, and finally take the average as the global
SSIM.

Of course, for hyperspectral images, we need to calculate SSIM separately for dif-
ferent bands, and then take the average. This indicator is called MSSIM.

The following figure shows the results of data comparison between M-MCNN and
multiple crowd counting algorithms in a composite data set.

Participation Methods:

• CSRNet [42]: Congested Scene Recognition Network. CSRNet is a classical and
efficient crowd counter, proposed by Li et al. in 2016. The authors design a Dilata-
tion Module and add it to the top of the VGG-16 backbone. This network significantly
improves performance in the field of crowd counting.

• PCC Net [17]: Perspective Crowd Counting Network. It is a multi-task network,
which tackles the following tasks: densitylevel classification, head region segmen-
tation, and density map regression. The authors provide two versions, a lightweight
from scratch and VGG-16 backbone.

• MCNN [90]: Multi-Column Convolutional Neural Network. In 2016, it is a classical
and lightweight counting model, proposed by Zhang et al.

• SCAR [18]: Spatial-/Channel-wise Attention Regression Networks. SCAR utilizes
the self-attention module on the spatial and channel axis to encode the large-range
contextual information. The well-designed attention models effectively extracts dis-
criminative features and alleviates mistaken estimations.

• CANNet [43]: Context-Aware Network.CANNet combines the features of multiple
streams using different respective field sizes. It encodes the multi-scale contextual
information of the crowd scenes.

• Our method M-MCNN: Multi-feature multi-column convolutional neural network. A
new framework M-MCNN based on MCNN for crowd counting on any single im-
age. M-MCNN not only contains the original three columns of convolutional neural
networks with different filter sizes, but replaces the fully connected layers with a
convolutional layer of 1*1 filters , so the input image of the model can be of any
size. To avoid distortion. Moreover, in a single individual sample, we greatly im-
prove the learning of sample features by extracting the texture features of a single
human head , and better use it for datasets.
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Figure 7.21 – The six groups of visualization results of some selected methods on the
validation set.

• Conclusion: Here, we list the counting performance and density quality of all par-
ticipation methods in Table 7.5. For evaluating the quality of the density map, two
popular criteria are adopted, Peak Signal-to-Noise Ratio (PSNR) and Structural
Similarity in Image (SSIM) [78]. In the calculation of PSNR, the negative samples
are excluded to avoid zero denominators.

Table 7.5 – Six methods of counting performance and density quality.

Method Overall
MAE MSE PSNR SSIM

CSRNet [42] 115.76 458.19 21.52 0.928
PCC Net [17] 102.76 589.12 20.42 0.877
MCNN [90] 225.83 732.65 19.48 0.865
SCAR [18] 93.86 490.57 21.22 0.913

CANNet [43] 95.58 514.36 21.01 0.895
M-MCNN 89.63 433.43 21.76 0.932

From the table, we find M-MCNN attains the best counting performance, MAE of
89.63 and MSE of 433.43. At the same time M-MCNN produces the most high-
quality density maps, PSNR of 21.76 and SSIM of 0.932.

7.5/ CONCLUSION

We propose a multi-feature multi-column convolutional neural network that can count the
number of people. We extract feature maps from different layers and simultaneously re-
size them to have the same output dimension. After that, we fuse features so that the
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fused features can be used to generate the density map. We also used texture features
and target edge detection to reduce the loss of density map detail to better integrate with
our convolutional neural network. We have performed a lot of experiments on Shang-
haiTech, USCD, WorldExpo’10, GCC and CHDP datasets. Our model, M-MCNN is su-
perior to other new population counting methods in the five datasets used to evaluate
population counts.

Not only that, our model M-MCNN solves the serious occlusion problem between people
well. Moreover, our model distinguishes human head features more finely, so as to better
achieve high-density population counting. At the same time, we face another challenge.
When some venues cannot be equipped with an intelligent video surveillance system,
how can we estimate the high-density crowd area and avoid crowd trampling accidents?
Then, we propose to use drones to estimate and predict high-density crowd areas in real
time. In the next chapter, we detail its implementation process.
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8
IMPLEMENTATION OF REAL TIME

RECONFIGURABLE EMBEDDED
ARCHITECTURE FOR PEOPLE
COUNTING IN A CROWD AREA

In recent years, FPGAs have been increasingly used in areas such as speech recogni-
tion, machine learning, and cloud computing. This is due to the FPGA’s powerful parallel
computing capabilities and lower power consumption compared to general-purpose pro-
cessors. However, these applications are mainly concentrated on large-scale FPGA clus-
ters, which have extremely powerful processing capabilities to perform a large number of
matrix or convolution operations. We will use a multi-column multi-feature crowd counting
algorithm to implement its function through the FPGA.

8.1/ FPGAS

The FPGA is the field programmable gate array. It is the product of further development
on the basis of programmable devices such as PAL, GAL, CPLD. It appears as a semi-
custom circuit in the field of application-specific integrated circuits (ASIC), which not only
solves the shortcomings of custom circuits, but also overcomes the shortcomings of the
limited number of gate circuits of the original editable device.

Circuit design is completed by hardware description language Verilog or VHDL. It can go
through the simple synthesis and layout and quickly test on FPGA. It is the mainstream
technology of modern IC design verification. These editable elements can be used to
implement some basic logic gate circuits, such as: AND, OR, XOR, NOT, or more complex
functions such as decoders or mathematical equations. In most FPGAs, these editable
components also contain memory components, such as Flip−flop or other more complete
memory blocks. System designers can connect logic blocks inside the FPGA through
editable connections as needed, as if a circuit test board was placed on a chip. The
logic blocks and connections of a finished FPGA after leaving the factory can be changed
according to the designer, so the FPGA can complete the required logic functions.

When the world ’s first FPGA product, XC2064, was born in 1985, PCs destined to use a
large number of chips had just stepped out of Silicon Valley laboratories and entered the

93
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commercial market. The Internet was just a mysterious link for communication between
scientists and government agencies. Wireless phones are as heavy as bricks. In the
future, Bill Gates is struggling for livelihoods. Innovative programmable products seem to
have little use.

This is indeed the case. Initially, FPGAs was only used for glue logic (Glue Logic), from
glue logic to algorithm logic to digital signal processing, high-speed serial transceivers,
and embedded processors. FPGA really changed from a supporting role to the protago-
nist. The idea that every electronic device will have a programmable logic chip in the next
ten years is becoming a reality.

The FPGA uses the concept of logic cell array (LCA), which includes three parts: Con-
figurable Logic Block (CLB), Input Output Block (IOB), and Interconnect. An FPGA is
a programmable device. Compared with traditional logic circuits and gate arrays, such
as PAL, GAL, and CPLD devices, FPGAs have different structures. FPGA uses a small
lookup table 16*1RAM to implement combinational logic. Each lookup table is connected
to the input of a D flip-flop. The flip-flop then drives other logic circuits or drives I/O, thus
forming a combinational logic function, and can realize the basic logic unit module of se-
quential logic function. These modules are connected to each other or to I/O modules
using metal wiring. The logic of the FPGA is implemented by loading programming data
into the internal static storage unit. The value stored in the memory unit determines the
logic function of the logic unit and the connection mode between modules or between
modules and I/O. And finally researchers decided the function that the FPGA can realize,
FPGA allows unlimited programming.

The main advantages of FPGA are:

• Advantage :

– High programmable flexibility;

– Short development cycle;

– Parallel programming is highly programmable.

FPGA and ASIC circuits are different. ASICs are fully custom circuits, while FPGAs is
semi-custom circuits. In theory, if the gate circuit provided by FPGA can be satisfied,
any logic function of ASIC and DSP can be realized by programming. In addition, the
content of programming can also be changed repeatedly according to requirements. It
is not like the programming of ASIC design cannot be modified after curing. Therefore,
the application of FPGA is also more flexible. In actual programming design, FPGA has
programmable performance, which allows developers to use software upgrade packages
to run on the chip through software upgrade packages. At the same time, the original
program of the chip is modified, thereby avoiding the replacement of the hardware chip.
More convenient is the FPGA, which can also be upgraded remotely via the Internet.
The parallel computing efficiency possessed by FPGAs is very high. The FPGA uses
an algorithm that can execute multiple instructions in parallel at one time. Hence, the
ASIC, DSP and CPU chips used in general life use serial computing. They can only
process instructions individually. If you need to accerlerate the operation of ASIC and
CPU in circuit design, a rule of thumb is to increase the frequency. Although the general
frequency of FPGAs is typically low, for some special requirements designs, having a
large number of relatively low-speed parallel units is more efficient than having a few of
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high-efficiency units. The method of processing the final result is very similar to the effect
of ASIC, so the execution efficiency is greatly improved.

8.1.1/ FPGA RECONFIGURATION

Reconfiguration technology is a design method for real-time reconfiguration of some or all
logic resources on a programmable device during system operation. This technology can
effectively improve the applicability of the FPGA hardware platform to system functions.
While ensuring system performance and flexibility, it significantly reduces the cost of the
system.

Reconfiguration computing technology depends on the editability of the device. This
makes it easier to customize the device to the functional components needed for the
computing task during the calculation. So, the programming technology of FPGA in the
common configuration computing system mainly includes antifuse, Flash and SRAM.

First: The anti-fuse FPGA is programmed by a dedicated editor based on the anti-fuse
array of the configuration data given by the design. It has the advantages of fast speed
and good performance. However, its disadvantage is that it has only one-time program-
ming capability.

Second: Flash’s FPGA integrates SR-type storage structure. SRAM is used to control
the system when the device is working normally. Flash is used to save configuration
information. This type of FPGA makes full use of the reconfigurability of Flash, but it is
not particularly ideal in terms of configuration speed.

Third: Each configuration point in the SRAM FPGA is connected to the SRAM. In fact,
the configuration process is the programming process of these SRAM storage bits. This
type of FPGA has the ability to be reprogrammed and is fast to configure. It is most widely
used in the field of reconfiguration computing.

8.1.1.1/ CLASSIFICATION OF RECONFIGURATION SYSTEMS

In terms of FPGA configuration, the reconfiguration system is divided into:

(1) Global reconfiguration, that is, reconfiguration of the entire FPGA can change the
operating logic.

(2) Partial reconfiguration, that is, while part of the logic unit of the FPGA is running, it
can configure the logic unit of the other part without affecting the running part.

From the perspective of FPGA configuration, reconfigurable systems are divided into:

(1) Being reconfigured, that is, the system controls the initialization of files and the occur-
rence of reconfiguration by external signals.

(2) Self-reconfiguration, that is, the system itself controls the occurrence of reconfigura-
tion.

(3) Mix reconfiguration, a reconfiguration mode that combines the above two modes.



96CHAPTER 8. IMPLEMENTATION OF REAL TIME RECONFIGURABLE EMBEDDED ARCHITECTURE FOR PEOPLE COUNTING IN A CROWD AREA

8.1.1.2/ STRUCTURE OF THE RECONFIGURATION SYSTEM

An architecture of the reconfiguration computing system is composed of one or more
microprocessors, special processing modules, and reconfiguration modules. The dedi-
cated processing module communicates with the microprocessor through a shared bus
or some special internal network connection. Microprocessors and specialized process-
ing modules may use some on-chip memory as a local cache. In addition, since the
programmable logic device can support dynamic reconfiguration, the dedicated the dedi-
cated processing module can be changed dynamically. Therefore, corresponding control
and management components are needed to deal with those specialized modules that
can be dynamically added or deleted. At the same time, it handle internal communication
issues after reconfiguration. This tightly coupled architecture is shown below:

Communication 
Management Module

Storage unit

Microprocessor core

Reconfiguration 
Management Module

Reconfiguration area

Dedicated processing 
module

FPGA

Figure 8.1 – Basic structure of the reconfiguration system.

8.1.1.3/ FPGA RECONFIGURATION TECHNOLOGY

Xilinx company first proposed to reconfigure computing technology in FPGA. At present,
there are three types of reconfiguration technologies proposed by Xilinx: System ACE
technology, ICAP technology, and the combination of System ACE and ICAP technology.
From the aspect of reconfiguration, the first one belongs to global reconfiguration, and
the other two belong to local reconfiguration.

System ACE technology:

System ACE technology can be used to solve the problem of dynamic reconfiguration of a
single-chip FPGA system. The system consists of a System ACE controller and a general
commercial CF card. The System ACE controller reads different configuration files stored
on the CF card through its configuration address CFGADD [0 -2]. Global reconfiguration
of the target FPGA device through the JTAG port. From a configuration perspective, this
technology is reconfigured. Because there are only three configuration address lines, the
System ACE controller can only support up to eight different configuration schemes at
the same time. The specific process can be divided into 3 stages:

(1) Use a synthesis tool to synthesize different configuration schemes into a BIT file.

(2) Use the impact tool to convert the BIT file into a System ACE file, and then burn the
System ACE file with the ace extension to the CF card.

(3) System ACE controls the occurrence of reconfiguration through an external controller.
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ICAP technology:

ICAP (Internal Configuration Access Port) is an internal configuration interface provided
on the FPGA chip on Virtex-II. The ICAP interface is a hard module, and its position
on the FPGA chip is fixed in the lower right corner of the entire array. The FPGA internal
logic implements reading and writing of configuration memory through the module’s 32-bit
input data bus and 32-bit output data bus.
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FPGA

Reconfiguration section
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core
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Control logic

Dual-port 
BRAM
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Figure 8.2 – System structure of ICPA self-reconfiguration technology.

The process of ICAP technology to achieve the local dynamic reconfiguration is as fol-
lows: the microprocessor communicates with the control logic through the communication
bus. A program running on a microprocessor makes a request to read in certain configu-
ration data. The reconfiguration control module reads the configuration data back into the
dual-port block RAM through the ICAP element. When the readback is completed, the
microprocessor modifies it appropriately. The modified configuration data is then written
back to the device via the ICAP element. The microprocessor can be an internal proces-
sor of the FPGA or an external processor. If it is an internal processor, ICAP technology
is a self-reconfiguration mode. If it is an external processor, ICAP technology belongs to
the reconfigured mode.

System ACE and ICAP combined technology:

System ACE and ICAP combine the advantages of both reconfiguration technologies.
Through static configuration generation, module-level reconfiguration features and local
reconfiguration features are combined. This is a hybrid reconfiguration. When the system
is powered on, the System ACE controller automatically reads the ACE file stored in
the large-capacity CF card. Configure the target FPGA and start the hard core of the
microprocessor embedded in the FPGA. Then use the microprocessor core to complete
the partial reconfiguration of the target FPGA through the ICAP interface. System ACE
technology, ICAP technology and System ACE, ICAP fusion technology can complete the
reconfiguration of the FPGA. All three technologies have different characteristics. System
ACE technology controls the occurrence of reconfiguration by external signals, which is
suitable for systems with static configuration generation. Its advantage is that the control
is simple, but the configuration takes a long time. ICAP technology can quickly complete
the partial reconfiguration of the FPGA. The advantage of ICAP technology is that it is
fast to configure. The disadvantage is that the controls are particularly complex. System
ACE and ICAP fusion technology combine the advantages of the former two, which is
more convenient and faster.
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Figure 8.3 – System structure of ICAP reconfiguration mode.
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Figure 8.4 – System ACE and ICAP technology system structure.

8.1.1.4/ APPLICATION OF RECONFIGURATION TECHNOLOGY

FPGA reconfiguration computing technology can flexibly meet multiple functional require-
ments by changing the device configuration. This allows a single reconfiguration device
to meet different design needs. Therefore, the reconfiguration technology has real-time
processing capabilities, adaptive capabilities, and fault tolerance. At the same time, it can
effectively reduce energy consumption, which has great advantages in terms of perfor-
mance and flexibility.

Internet remote reconfiguration technology:

Internet remote reconfiguration technology is a new FPGA design concept proposed by
Xilinx. Its core idea is to use reconfiguration technology to upgrade, debug, and monitor
the hardware design and software programs of remote devices through the network. In
the internet environment, it access the remote target machine through a browser, and
implement data and file transfer through HT-TP, FTP protocol, Java Applet, and CGI. This
design concept enables remote updates and dynamic reconfiguration of the software and
hardware of the target system via the Internet.

Multi-bus standard bridging technology:

At present, in the automotive field, electronic systems have multiple bus standards, such
as: LIN, CAN, 1394, and so on. The technical parameters of different standard buses
are very different. The multi-bus standard bridging technology mainly uses reconfigu-
ration technology to reconfigure the on-board vehicle electronic system. This makes it
possible to flexibly implement bridging between various standard buses without changing
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hardware resources. At present, the cost of in-vehicle electronic system accounts for an
increasing proportion of the entire manufacturing cost, and the multi-bus standard bridge
technology can very well improve the repeatability of the hardware platform.

FPGA self-healing technology:

In certain environments, logic circuits can be easily damaged or altered. As a result, the
logic circuits in this area cannot operate normally. The FPGA self-healing technology is
to relocate the logic structure of the faulty chip by using dynamic reconfiguration technol-
ogy based on locating the logic circuit where the error occurred. At the same time, the
configuration data corresponding to this part of the logic circuit function are configured to
other valid FPGA areas through relocation technology. Hence, it skip the damaged part
and continue working normally. FPGA self-healing technology can make the reconfigu-
ration device self-adaptive and self-healing through dynamic reconfiguration, effectively
extending the life of the chip.

FPGA reconfiguration technology can reconfigure logic functions at any time during sys-
tem operation. It achieves the reuse rate of logical resources and also improves the
utilization of resources. Reconfiguration technology combines the high performance of
hardware with the flexibility of software. For computationally intensive applications, the
reconfiguration technology further reflects the advantages of development parallelism.
The development of very large-scale integrated circuits, a large number of high-speed
and low-consumption FPGAs are used in various fields. The function of the embedded
central processing unit in FPGA is getting stronger and stronger, and the reconfiguration
technology has been more widely used.

8.1.2/ VIVADO: DESIGN TOOL FOR XILINX FPGA

Xilinx is a well-known developer, and vivado is the mainstream tool for Xilinx developer.
We next introduce an overview of the process that Xilinx vivado uses to develop.

8.1.2.1/ VIVADO DEGISN FLOW

The guide provides an overview of working with the Vivado® Design Suite to create a new
design for programming into a Xilinx® device. It provides a brief description of various
use models, design features, and tool options, including preparing, implementing, and
managing the design sources and intellectual property (IP) cores.

The Vivado Design Suite offers multiple ways to accomplish the tasks involved in Xilinx
device design, implementation, and verification. We can use the traditional register trans-
fer level (RTL)-to-bitstream FPGA design flow, as described in RTL-to-Bitstream Design
Flow. We can also use system-level integration flows that focus on intellectual property
(IP)-centric design and C-based design, as described in Alternate RTL-to-Bitstream De-
sign Flows.

Design analysis and verification is enabled at each stage of the flow. Design analysis fea-
tures include logic simulation, I/O and clock planning, power analysis, constraint definition
and timing analysis, design rule checks (DRC), visualization of design logic, analysis and
modification of implementation results, programming, and debugging.

RTL Design
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Chapter 1: Vivado System-Level Design Flows

Design Flows
Figure 1-1 shows the high-level design flow in the Vivado Design Suite. Xilinx Design Hubs 
provide links to documentation organized by design tasks and other topics. On the Xilinx 
website, see the Design Hubs page.
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Figure 1-1: Vivado Design Suite High-Level Design Flow
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Figure 8.5 – High-level design flow in the Vivado Design Suite.

We can specify RTL source files to create a project and use these sources for RTL code
development, analysis, synthesis and implementation. Xilinx supplies a library of recom-
mended RTL and constraint templates to ensure RTL and XDC are formed optimally for
use with the Vivado Design Suite. Vivado synthesis and implementation support multiple
source file types, including Verilog, VHDL, SystemVerilog, and XDC.

The UltraFast Design Methodology Guide for the Vivado Design Suite (UG949) focuses
on proper coding and design techniques for defining hierarchical RTL sources and Xilinx
design constraints (XDC), as well as providing information on using specific features of the
Vivado Design Suite, and techniques for performance improvement of the programmed
design.

High-Level Synthesis C-Based Design

The C-based High-Level Synthesis (HLS) tools within the Vivado Design Suite enable us
to describe various DSP functions in the design using C, C++, and SystemC. We create
and validate the C code with the Vivado HLS tools. Use of higher-level languages allows
us to abstract algorithmic descriptions, data type, specification, etc. We can create “what-
if” scenarios using various parameters to optimize design performance and device area.

HLS lets us simulate the generated RTL directly from its design environment using C-
based test benches and simulation. C-to-RTL synthesis transforms the C-based design
into an RTL module that can be packaged and implemented as part of a larger RTL
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design, or instantiated into an IP Integrator block design.

IP Design and System-Level Design Integration

The Vivado Design Suite provides an environment to configure, implement, verify, and
integrate IP as a standalone module or within the context of the system-level design. IP
can include logic, embedded processors, digital signal processing (DSP) modules, or C-
based DSP algorithm designs. Custom IP is packaged following IP-XACT protocol and
then made available through the Vivado IP catalog. The IP catalog provides quick access
to the IP for configuration, instantiation, and validation of IP. Xilinx IP utilizes the AXI4
interconnect standard to enable faster system-level integration. Existing IP can be used
in the design either in RTL or netlist format.

Xilinx Platform Board Support

In the Vivado Design Suite, we can select an existing Xilinx evaluation platform board as a
target for us design. In the platform board flow, all of the IP interfaces implemented on the
target board are exposed to enable quick selection and configuration of the IP used in your
design. The resulting IP configuration parameters and physical board constraints, such
as I/O standard and package pin constraints, are automatically assigned and proliferated
throughout the flow. Connection automation enables quick connections to the selected
IP.

Synthesis

Vivado synthesis performs a global, or top-down synthesis of the overall RTL design.
However, by default, the Vivado Design Suite uses an out-of-context (OOC), or bottom-up
design flow to synthesize IP cores from the Xilinx IP Catalog and block designs from the
Vivado IP integrator. We can also choose to synthesize specific modules of a hierarchical
RTL design as OOC modules. This OOC flow lets us synthesize, implement, and analyze
design modules of a hierarchical design, IP cores, or block designs, out of the context
of, or independent from the top-level design. The OOC synthesized netlist is stored and
used during top-level implementation to preserve results and reduce runtime. The OOC
flow is an efficient technique for supporting hierarchical team design, synthesizing and
implementing IP and IP subsystems, and managing modules of large complex designs.

The Vivado Design Suite also supports the use of third-party synthesized netlists, includ-
ing EDIF or structural Verilog. However, IP cores from the Vivado IP Catalog must be
synthesized using Vivado synthesis, and are not supported for synthesis with a third-
party synthesis tool. There are a few exceptions to this requirement, such as the memory
IP for 7 series devices.

Placement and Routing

When the synthesized netlist is available, Vivado implementation provides all the features
necessary to optimize, place and route the netlist onto the available device resources of
the target part. Vivado implementation works to satisfy the logical, physical, and timing
constraints of the design.

For challenging designs the Vivado IDE also provides advanced floorplanning capabilities
to help drive improved implementation results. These include the ability to constrain spe-
cific logic into a particular area, or manually placing specific design elements and fixing
them for subsequent implementation runs.
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8.1.2.2/ VIVADO ENVIREMENT

The Vivado Design Suite also has specific versions of the HL system version, HL design
version, and HL WebPACK ™ version. The HL System Edition and HL Design Edition
support functions are almost the same. However, HL System Edition only supports Sys-
tem Generator for DSP. In addition, Vivado HL Design Edition and HL System Edition
include Vivado® Design Suite HLx versions, including partial reconfiguration, with the
advantage of avoiding additional costs.

The new Vivado® Design Suite HLx release provides the tools and methodologies re-
quired by design teams. It leverage C-based design and optimization reuse, IP subsys-
tem reuse, integrated automation and accelerated design completion when combined
with the UltraFast ™ High-Level Productivity Design Methodology Guide. This particular
combination is proven not only to help designers work in a high-level abstraction, but also
to promote reuse, which can accelerate productivity.

8.2/ MULTI-COLUMN MULTI-FEATURE CONVOLUTIONAL
NEURAL NETWORK CROWD COUNTING ARCHITEC-
TURE IMPLEMENTED IN REAL-TIME RECONFIG-
URABLE EMBEDDED SYSTEM

FPGA chip is a logic gate circuit element with programmable function. It has power-
ful parallel processing data capabilities and advantages. Convolutional neural networks
have powerful feature extraction capabilities, making them widely used in image classi-
fication and recognition, target tracking and other fields. Next, we implemented a crowd
counting algorithm based on a multi-column multi-feature convolutional neural network
that was implanted on the FPGA chip. We ues an FPGA to realize real-time crowd count-
ing function.

8.2.1/ FPGA-BASED CROWD DETECTION AND ESTIMATION

Here, we mainly study the application of FPGA in the field of video image processing.
Video image processing is a hot technology in the multimedia field. The amount of data
processed by video images is increasing. Based on this large amount of data, it can
be divided into two categories: video codec and target recognition. One of our main re-
search directions is target recognition. Object recognition is mainly used to extract related
information, such as image edge extraction. Crowd detection and counting functions are
implemented via FPGA.

FPGA implements the detection of certain parts of a person’s body, such as the
detection of the head, shoulders and other parts of the body:

In 2007, Gardel et al. proposed real-time head detection based on an embedded vision
module [19]. The main process is divided into the following steps: 1. Dynamic background
extraction and object detection. 2. Edge feature extraction. 3. Introduce a Huff counter
by applying a pattern with a set of ring patterns. 4. Pass the candidate matching and
tracking framework.
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Images are processed in parallel through different ring patterns, and head features of
different sizes are detected simultaneously. The developed system uses hardware pro-
cessing and uses almost 100% of Spartan3 (1.5Mgates) resources [71]. Detection of
human head features is achieved through a very low cost circuit design.

In 2012, Tomasz Kryjak et al. proposed a system for implementing head and shoulder
detection in FPGAs [39]. It performs feature extraction based on local binary patterns and
classification based on support vector machines. To reduce false alarm rates, foreground
object detection is used as an additional verification criterion.

On the one hand: in a system for head and shoulder detection, for feature extraction, a
local binary mode is used, and texture descriptors and support vector machines (SVM)
are applied for classification. Additional background generation and foreground objects
use the segmentation module. In the final implementation of the head and shoulders
detection, only the objects that effectively reduce the false detection rate are performed
in the foreground.

On the other hand: used in hardware systems for head and shoulder detection, it mainly
contains three modules: NRULBP function, SVM classification and foreground object
detection. Everything is integrated into a single FPGA device and implemented on a Xilinx
ML605 evaluation board with Virtex 6 FPGA devices. The system processes video stream
with resolution of 640x480 pixels @ 60fps. The described design can be incorporated
within a video surveillance system, a PC accerlerator, or embedded into a smart camera.

In 2015, Megalingam and others proposed an FPGA-based solution for automatic nav-
igation of indoor electric wheelchairs [50]. Here, the house is divided into virtual grids,
and each grid is assigned specific coordinates. Through experiments, a predefined path
is implanted into the system. The system runs faster when it arrives from the departure
point to the destination. Instead, the limitation of this system is that it can only follow a
fixed path.

Implementation of people counting function in FPGA:

In 2010, Gasparini et al. proposed an integrated camera processor node through which
people are detected and counted [21]. They plan each frame segment as a feature model
used in statistics. This camera-contrast based implementation is described as an inde-
pendent counter for people crossing the gate. This simple application highlights the main
functions of the sensor and provides examples of integration with the processing unit. All
of these new features can be easily accommodated in current Flash-FPGA implementa-
tions.

During the following year, in 2011, Gasparini et al. Proposed the implementation of a
person counter based on Dijkstra’s algorithm on an FPGA [20]. The development ap-
plication is a personnel counter based on Dijkstra’s algorithm and on an FPGA-based
node. The clock frequency is 10 MHz, and it has good classification performance when
acquiring images at 30 fps. Despite the inherent complexity of the application, the node
consumes only 5mW. The most critical factor is to hire a smart vision sensor that can
perform pre-processing chips directly on the sensor. They use its inherent multi-tasking
FPGA to implement an internally efficient architecture. This results in better counting of
people.

In 2019, Ahmad et al. proposed an implementation based on an improved gradient his-
togram (HOG), support vector machine (SVM), and a new person counting system [1].
The proposed system is based on a new image processing technology with a simple
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architecture. The algorithm is based on HOG and optimized SVM classifier. They use
SVM classifier to classify between human and non-human. SVM is a training-based clas-
sifier, which means that it can be trained for various situations. After the algorithm was
implemented on the PC, they adopted the architecture of the Vertex 6 series FPGA for
testing. Because of the extensive pipeline design, the clock rate is 196.2MHz. With this
high-definition frame rate video stream with a clock frequency of 6 frames per second,
the experimental results reflect a reduction in resource usage and use only 3% slices and
49% bounded IOBs. The personnel counting function is well implemented on FPGA.

8.2.2/ MULTIPLE HARDWARE IMPLEMENTATIONS OF DEEP LEARNING ALGO-
RITHMS

The development of artificial intelligence is getting faster and faster. Deep learning has
played a very important role in its development. In spite of its powerful simulation pre-
diction capabilities, deep learning still faces the problem of huge computational load. At
the hardware level, GPUs, ASICs, and FPGAs are the first solutions to solve the huge
computational load.

8.2.2.1/ CPU HARDWARE

In 2006, people still used serial processors to deal with machine learning problems. At
that time, Mutch and Lowe developed a tool FHLib (feature hierarchy library) to deal with
the hierarchical models. For the CPU, it requires less programming and has the benefit of
migration. But the characteristics of serial processing have become its shortcomings in
the field of deep learning, and this shortcoming is fatal. It is 2020 now, the development of
integrated circuits in the past decade still follows Moore’s Law, and the performance of the
CPU has been greatly improved. However, this did not get the CPU into the perspective
of deep learning researchers again. Although the CPU can perform a certain amount of
computing power on small data sets, and multiple cores enable it to process in parallel, it
is still not enough for deep learning.

8.2.2.2/ GPU HARDWARE

GPUs have also come into sight of researchers. Compared to the CPU, the number
of GPU cores has greatly increased. This also allows it to have more powerful parallel
processing capabilities, and it also has more powerful ability to control data flow and
store data. In 2008, Chikkerur carried out the difference between the CPU and the GPU
in processing target recognition capabilities [9]. The final GPU processing speed is 3-10
times that of the CPU.

8.2.2.3/ APPLICATION SPECIFIC INTEGRATED CIRCUIT CHIP (ASIC)

Application Specific Integrated Circuit Chip (ASIC) due to its customized characteristics,
is a more efficient method than the GPU. But its customization also determines its low
portability. When dedicated to a well-designed system, migration to other systems is not
possible. Moreover, its high cost and long production cycle make it unconsidered in the
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current research. Of course, its superior performance can still be used in some areas. In
2010, Kim, J. Y. et al. Applied ASIC to a bio-heuristic neural perception engine processor
for real-time multi-target recognition. The recognition rate can reach 60 frames/second in
a 640*480 pixel image [37].

8.2.2.4/ FPGA HARDWARE

FPGAs make a good trade-off between GPU and ASIC. FPGAs take into account pro-
cessing speed and control capabilities. On the one hand, the FPGA is programmable
reconfigurable hardware, so it has more powerful controllability than the GPU. On the
other hand, the increasing gate resources and memory bandwidth make it have more
design space. More conveniently, FPGA also eliminates the tape-out process required in
the ASIC solution. One disadvantage of FPGAs is that they require users to be able to
program them using a hardware description language. However, technology companies
and research institutes have developed easier-to-use languages such as Impulse Accel-
erated Technologies Inc. They have developed C-to-FPGA compilers to make FPGAs
more user-friendly. Yale’s E-Lab developed the Lua scripting language [34]. These tools
have shortened the researcher’s development time limit to a certain extent, and made the
research easier and more convenient.

8.2.2.5/ THE ADVANTAGES AND DISADVANTAGES OF FPGA IMPLEMENTATION OF DEEP

LEARNING

Computational power is generally characterized by two parameters:

• Peak GOPs

• Real GOPs measured performance (for specific networks)

The FPGA can achieve high Real GOPs / Peak GOPs in the inference process.

• FPGA computing power advantages:

– Low latency during inference, especially when batch size is 1.
The advantages of GPUs are block processing, batch data, and batch comput-
ing. This can use his massive computing unit, as well as external storage. But
when inference, the batch size is 1. The advantage of FPGA pipeline design
is obvious.

– Customized calculation engine.
This refers to the array-style, reconfigurable data flow engine (weighting, data
inflow, reasonable coordination of calculations). With the design of a large
number of distributed RAM, FPGAs can be adapted to specific neural net-
works. The Real GOPs / Peak GOPs ratio for application scenarios is high.
In comparison, the Real Gops of FPGAs in some neural networks may indeed
exceed GPUs.
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– Continuously promoted software and hardware fusion technology.
The algorithm optimizes the compression network, compression weights, and
the adaptive NPU structure.

• Disadvantages of FPGA devices:

– FPGA devices are not suitable for floating-point operations. The training
process is basically floating-point arithmetic.
The arithmetic unit inside the FPGA is mainly DSP (no floating point unit),
which is suitable for fixed-point calculation. If the accuracy is intercepted in
the iterative calculation process, then in the back propagation process, the
calculation error is accumulated layer by layer. The deeper the depth, the
greater the cumulative error. The propagated weight parameter will either tend
to be zero or saturated, which will cause training failure.

– There are many types of calculations required during the training pro-
cess, and FPGAs are expensive to implement certain operations.
The normalization of the middle node of the during the training process, the
root operation in ADAM, and so on. If only the forward propagation multiply-
add operation is placed in the FPGA, the reverse gradient calculation is placed
on the CPU. Each iteration will cause a large number of parameters and inter-
mediate calculation results to be repeatedly transferred between the CPU and
FPGA, thereby offsetting the advantages obtained by hardware acceleration.

8.2.3/ FPGA DEVELOPMENT BOARD

Currently, artificial intelligence and neural networks are finding new uses in many appli-
cations. The biggest and fastest growing of them is computer vision. Zynq UltraScale+
ZCU102 is one of the best platforms for developing embedded vision applications today
for the following reasons: It has an HDMI input and HDMI output, and it has an FPGA ar-
chitecture that can be used for hardware-accelerated image processing algorithms. Here,
we use the Zynq UltraScale+ ZCU102 FPGA development board to implement a crowd
counting algorithm based on a multi-column multi-feature convolutional neural network.

8.2.3.1/ INTRODUCTION TO ZYNQ ULTRASCALE+ ZCU102

The ZCU102 Evaluation Kit enables designers to jumpstart designs for automotive, indus-
trial, video, and communications applications. This kit features a Zynq® UltraScale+™
MPSoC with a quad-core Arm® Cortex®-A53, dual-core Cortex-R5F real-time proces-
sors, and a Mali™-400 MP2 graphics processing unit based on Xilinx’s 16nm FinFET+
programmable logic fabric. The ZCU102 supports all major peripherals and interfaces,
enabling development for a wide range of applications.

• Key Features & Benefits

– Optimized for quick application prototyping with Zynq UltraScale+ MP-
SoC
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– DDR4 SODIMM – 4GB 64-bit w/ ECC attached to processing system (PS)

– DDR4 Component – 512MB 16-bit attached to programmable logic (PL)

– PCIe® Root Port Gen2 x4, USB3, Display Port, and SATA

– 4x SFP+ interfaces for Ethernet

– 2x FPGA Mezzanine Card (FMC) interfaces for I/O expansion, including
16 16.3Gb/s GTH transceivers and 64 user-defined differential I/O signals
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Figure 8.6 – Zynq UltraScale+ ZCU102.

Here we simple introduce the memory and communication network design of Zynq Ultra-
Scale+ ZCU102.

• Memory

– PS 4GB DDR4 64-bit SODIMM w/ ECC

– PL 512MB DDR4 component memory ([256 Mb x 16] devices) at 1200MHz
/ 2400Mbps DDR

– 8KB IIC EEPROM

– Dual 64MB Quad SPI flash

– SD card slot



108CHAPTER 8. IMPLEMENTATION OF REAL TIME RECONFIGURABLE EMBEDDED ARCHITECTURE FOR PEOPLE COUNTING IN A CROWD AREA

• Communication & Networking

– RGMII communications at 10, 100, or 1000 Mb/s. Serial GMII interface-
supports a 1 Gb/s SGMII interface

– 4x SFP+ cage

– SMA GTH support (4x SMA Tx/Rx connectors)

– UART To USB bridge

– RJ45 Ethernet connector

– SATA (1 x GTR)**

– PCIe Gen2x4 Root Port**

8.2.3.2/ VIVADO HLS

The programming language we use here is Vivado HLS. The Vivado High-Level Synthesis
compiler enables C, C++ and SystemC programs to be directly targeted into Xilinx devices
without the need to manually create RTL. Vivado HLS is widely reviewed to increase
developer productivity, and is confirmed to support C++ classes, templates, functions
and operator overloading.

8.2.3.3/ FRAMEWORK SPOONN

Framework spooNN is based on C and Vivado HLS programming language. It provides
basic convolution operation modules such as image to matrix, matrix multiplication, max-
pool, batch normalization, etc. Zhang et al. ranked second in the 2018 and 2019 DAC
object detection network competition, delivering the highest FPS at lowest power con-
sumption for object detection [88].

8.2.4/ EXPERIMENT

8.2.4.1/ EXPERIMENT DESIGN

Through previous experiments, the time for each high-density crowd image tested in our
strong feature part is between 7-9 seconds, while the time for each high-density crowd
image tested in the multi-column neural convolutional network part is about 20 seconds.
Due to the long running time of the high-density crowd counting part of the multi-column
convolutional neural network, the overall architecture runs too slow. In this case, we
recommend using a parallel structure to speed up the calculation, that is, the heavier
part of the algorithm (Multi-column neural convolutional network) runs in the accelerator.
The number of layers of the multi-column convolutional neural network is uniformly set to
(16.32.16.8), in order to better cooperate with the FPGA algorithm implementation without
losing accuracy, while the other parts run in the CPU.
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• Coefficient codage

In the experimental part, we use 16 bits integer to represent each value in the image.
Compared with 32 bits floating-point, using 16 bits integer under appropriate circum-
stances will not observe the lost of the accurary visible to the naked eye [38], and the
model will be doubled. For exemple, the model that was able to run with 24GB of video
memory now requires 12GB of video memory and is fast. We use the post-training quanti-
zation method proposed in TensorFlow [38] to quantize the well-trained fully floating-point
network. According to our experiments, the accuracy of the quantization network reaches
97.2%. Compared with 32-bit floating point networks, the loss of accuracy is negligible.
Not only can the size of the model be reduced, but also the latency of the CPU and hard-
ware accelerator can be increased, and the accuracy of the model will hardly be reduced.

• Hardware design

We use spoonn as the fpga programming framework [88]. Figure 8.7 shows the overall
layout of the accelerator. At the beginning of the calculation, the cpu writes the weight
into the fpgq through the channel. When the weight is written, the cpu resizes and pre-
processes the image, and sends the image to the accelerator through the channel.

framework for training.

We use convolutional weights that are pre-trained on Dark-
net Reference Model [2] as the initialization of weights.
The size of the image is varied during the training by Dark-
net [2]. Darknet also randomly adjusts the exposure and
saturation of the image by up to a factor of 1.5 in the HSV
color space. Throughput training we use a batch size of
128, a momentum of 0.9 and a decay of 0.0005. The learn-
ing rate is fixed to 1e − 5. We have trained the networks
upto 80K batches.
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Figure 3: IOU along the training
batches: The value plotted in the Y
axis is the IOU value over a test
dataset with 416x416 resolution,
and X-axis plots the number of
batches

The hardware platform for training is composed of 12 IBM
Power server compute nodes. Each node has 4 Tesla P100
GPU, with 3584 CUDA cores inside. We use 3 nodes which
include 12 GPU to training 12 mixed tiny YOLO at the same
time. Each training task is affined to one exclusive GPU
(GPU not shared by others). It takes about 180 hours to
train 80000 batches of images. The main evaluation cri-
teria in object detection problem is IOU (Intersection Over
Union), shown as Figure 2.

We can see examples of IOUs of the objects detected in
Figure 1. The IOU along the training batches are shown
in Figure 3. The figure does not contain architecture 1 and
architecture 9 which binarize the input image in first layer.
Since their IOUs are close to 0 until 35000 batches, we
abandon the training. The IOU of architecture 12 is close
to baseline. In fact, it is reduced by 10.5% compared to
baseline. Moreover, it can be seen in Figure 3 that this loss
may be reduced if we continue to train. At the same time,
because of using XNOR layers in 7th and 8th layers, which
are the most computationally intensive, it greatly reduces
computation time. The architecture 6,7,8 that use XNOR in
later layer also get relatively good IOUs.
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Figure 4: Overall Hardware Architecture

Accelerator Architecture
Our accelerator architecture is suitable for computing one
convolutional layer followed by a maxpooling layer at a time.
Figure 4 depicts the overall architecture. As shown in Fig-
ure 5 the convolutions are not directly computed, but are
converted to a multiplication of the matrix. This is a stan-
dard method in all GPU implementations and some accel-
erators [9]. The equivalent tensor of an input feature map or
image with C channels of dimension (H × W × C) is con-
verted to a 2D matrix with rows of size (fh × fw × C), and
H × W rows. fh and fw are the filter height and weight,
respectively. Similarly, the Cout weights for a convolutional
layer are arranged into a (fh ×fw ×C)×Cout matrix where
each column contains distinct weights of filter. The matrix
multiplication results in an image/feature map of same width
& height as the input but with Cout channels.

Hardware/Software Partitioning
Figure 4 presents the overall system architecture. The de-
vice driver running on the processor handles the tasks of

Figure 8.7 – Overall Hardware Architecture.

First, we perform image processing. We use images with a resolution of 512*512. The
image is expressed using the RGB three-color method. Therefore, the size of the input
matrix vector is 512*512*3. Here we use half floating point, which means using 16 bits
floating-point, to represent each value in the image. Therefore, each pixel will be ex-
pressed using 3x16 bits. We use the axis stream with width = 512 bits to communicate
between the CPU and the FPGA device. Therefore, we compress the value of the same
pixel in 48 bits. Every time we send 8 pixels, that is 384 bits, a total of 512 * 512/8 =
32768 batches are sent.

The neural network uses 12 convolutional layers. The 12 convolutional layers are divided
into three branches (branch), we named the branches: A, B, C. Set column A to use
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large-scale convolution kernels: 9 * 9, 7 * 7, 7 * 7, 7 * 7, column B to use medium-scale
convolution kernels: 7 * 7, 5 * 5, 5 * 5, 5 * 5. Column C uses small-scale convolution
kernels: 5 * 5, 3 * 3, 3 * 3, 3 * 3. In the branch, the output of the previous convolution can
be used as the input of the latter convolution. Each convolutional layer does not interfere
with each other, and a pipeline architecture can be used to accelerate the operation of
the neural network. This architecture is very suitable for FPGA. Therefore, we try to use
FPGA to run the neural network.
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Figure 6: The accelerator architecture

16x higher performance. We have plotted the points cor-
responding to the last layer (most compute intensive) on
the roofline. The FHWH-2 architecture is limited by memory
bandwidth as for each MAC operation we have to stream
66 bytes of data. For the FHWH-1 architecture the weights
(2 bytes) are stored on chip, but in practice it is only pos-
sible for the first layer with few weights. Both FHWB-1 and
FHWB-2 can achieve the performance limit but we prefer
to store the weights on chip to reduce power consumption.
Similarly FBWB-1 with on-chip storage can achieve the per-
formance limit but FBWB-2 is limited by memory bandwidth.
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Figure 7: Architectural Choices
and their explanation with roofline.

Experiments & Results
Table 4: Tiny YOLO parameters used in experiments

# Conv. H W fh × fw C Cout Nlanes Niter

1 416 416 3x3 3 16 32 1
2 208 208 3x3 16 32 32 1
3 104 104 3x3 32 64 32 2
4 52 52 3x3 64 128 32 4
5 26 26 3x3 128 256 32 8
6 13 13 3x3 256 512 32 16
7 13 13 3x3 512 1024 32 32
8 13 13 3x3 1024 1024 32 32
9 13 13 1x1 1024 90 32 3

We conducted our experiments on the PYNQ-Z1 board.
Due to resource constraint on the FPGA, the image-to-
matrix transformation part is carried out in the processor.
As the number of convolutional lanes are limited to 32, for
each layer we need to do a few iterations. These are de-
tailed in Table 4.

The 68.8% of the multiplication is in the 7th and 8th layers.
Therefore, we analyze the architecture 8 and 12, which bi-
narize the 7th and 8th layers. Figure 8 shows the detailed
execution time for each layer of baseline and architecture 8
and 12 as well as the IOU with 80K batches images trained.
Figure 8(d) shows the total execution time for the three ar-
chitectures. We can see that the IOU of architecture 12 is
close to baseline. In fact we can see that for architecture 12
a 1.68x speedup is achievable with 10.5% loss of IOU.

Related Work
The two very well known deep learning accelerators are
the tensor processing unit from Google [9] and Eyeriss [6,
5]. The TPU and a majority of deep learning accelerators
use Systolic Arrays [14]. In Figure 9 we compare our archi-
tecture with a systolic array implementation. We assume

Figure 8.8 – Detailed architecture of one convolutional layer .

Figure 8.8 shows how we deal with each convolutional layer. The input feature map
matrix for a convolutional layer is streamed into the accelerator in row major format. There
is a configurable image-to-matrix transformation module to reorder the input image, the
mechanism of image-to-matrix is shown as figure 8.9. By this module, the convolution is
converted into matrices multiplication. Then the matrices generated by image-to-matrix
is sent to the conv-lane subsequently. That is a module to calculate the dot product of
two vector, which is the fundamental operator for matrix multiplication. In other words,
the multiplication-accumulation (MAC) operator in convolutional layer is computed in this
module. There are N conv-lane which means N MAC operators can be processed in
parallel. The output of matrix multiplication is also the result of convolution. At the end
of convolutional layer, a module implementing activation function and a max-pools are
followed according to the configuration. Then the convolutional layer is completed and
the output of these module is sent to the next layer.

Figure 8.9 – Image to Matrix Transformation.
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8.2.4.2/ EXPERIEMNTS RESULTS

The experiment is conducted in Zynq UltraScale+ ZCU102, and running at 100 MHz.
We have built 16 conv-lane for each layer. The conv-lane for first layer in each branch
can calculate 3 MAC, while 16 MAC can be calculated in parallel in other layers. That
means 48 or 256 multiplication can be processed in parallel for convolutional layers. The
utilization of resources is shown in Table 8.1:

Table 8.1 – The utilization rate of FPGA resources.

Name BRAM_18K DSP48E FF LUT URAM
DSP - - - - -
Expression - - 0 156 -
FIFO - - - - -
Instance 1235 2244 47577 225910 -
Memory 464 - 0 0 -
Multiplexer - - - 10962 -
Register - - 2382 - -
Total 1699 2244 49959 237028 0
Available 1824 2520 548160 274080 0
Utilization(%) 93 89 9 86 0

The main limiting factor is the on-chip memory. Because of this limitation, these three
branches share the same memory block for weights and other parameters. Therefore, the
branches execute sequential. This caused the implementation of the other two branches
idle when one branch was being calculated. This wastes computing resources. We will
optimize it in the future work. Even if some branches are idle, this design still achieved
the calculation of Multi-feature multi-column convolutional neural network within 0.85s
seconds. Compared with CPU(Intel Core i5-5250u (1.60 GHz), 4 GB RAM computer.), it
achieves 23.5x speed up and the accuracy of the model will hardly be reduced.

Table 8.2 – Comparison of experimental data between CPU and FPGA.

Detection algorithm Detection rate Time
CPU 97.2% 20.25s

FPGA 96.6% 0.85s

Compared with Gasparini and Ahmad, They proposed an integrated camera processor
node through which people are detected and counted [1][21]. Most of the existing al-
gorithms only detect and count a single target person. On the contrary, our network
(M-MCNN) architecture can detect and count not only a single target person, but also
high-density people. At the same time, we have also achieved good experimental results.
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8.2.5/ CONCLUSION

In this chapter, we implement the multi-column convolutional neural network part of the M-
MCNN high-density crowd counting algorithm. Comparing the performance of M-MCNN
on CPU, FPGA: Compared with CPU, FPGA has a good running energy efficiency ra-
tio. The FPGA is more flexible from a design perspective. As long as the internal logic
structure is defined by Verilog or other description languages, the hardware accelerator
function can be realized.
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9.1/ CONCLUSION

The rapid development of FPGA-based virtual hardware accelerators facilitates neural
network operations. We propose a real-time reconfigurable embedded architecture to
implement a multi-column multi-feature convolutional neural network crowd counting al-
gorithm. FPGAs provide higher computing performance and lower power consumption.

Artificial neural networks are an important component of artificial intelligence. With the
advent of the age of artificial intelligence, more and more enterprises and scientific re-
search units have invested in the research and development of intelligent products and
tools. This helps companies and individuals by making convenient and efficient tools
available. Neural networks have been widely used for their advantages of high speed and
high accuracy. For example, continuous breakthroughs have been made in applications
such as pattern recognition, information processing, and robotics. At present, the imple-
mentation of neural networks mostly uses traditional general-purpose computers. The
traditional general-purpose computer uses a serial computing method. This processing
method prohibits efficent operations for neural networks. Therefore, it is important to
adopt a better method to implement neural network. And because of FPGA (Field pro-
grammable gate array) being hardware programmable, highly parallel computing charac-
teristics, FPGA can effectively make up for the serial limitation of neural networks, and
can provide a new way for the realization of artificial neural networks. The method of
implementing neural networks through FPGA hardware is of great significance in solving
crowd counting.

In this thesis we proposed a combination of software and hardware to achieve crowd
counting:

In the first part, we use multi-feature fusion technology. The main purpose is to find
head features. We extract image features from multiple information sources. And find the
head features through texture feature analysis and crowd image edge detection. First, we
connect the HOG function vector and LBP feature vector in series to form a feature vector
through texture features. Then the feature vector is inputted into the SVM classifier. Here,
in the classification process, linearly separable low-dimensional space is transformed into
linearly separable high-dimensional space, passed the SVM kernel function and used
cross-validation. The method of selecting the best parameters of the SVM so that the
classifier has the highest input classification accuracy training sample. Next, we optimized
the original canny operator to suppress false edges caused by noise, make target edges
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thinner, and better obtain target edge features. Multi-feature fusion technology obtains
clear head contours by extracting target edge detection features and analyzing texture
features.

In the second part, we proposed a new framework M-MCNN based on multi-column multi-
feature convolutional neural network for crowd counting on any single image. M-MCNN
not only contains the original three columns of convolutional neural networks with different
filter sizes, but also uses 1*1 filter convolution layers instead of fully connected layers.
Therefore, the input image of the model can be of any size, avoiding distortion. And
in a single individual sample, we use the first part to extract the texture features of a
single human head, and detect the edge features of the head, which greatly improves the
learning ability of the sample features. At the same time, the loss of details of the density
map is also reduced, and it is better integrated with our convolutional neural network.
We performed a lot of experiments on ShanghaiTech, USCD, WorldExpo’10 and GCC
datasets. Our model M-MCNN outperforms the latest crowd counting methods on all
data sets used for evaluation.

In the third part, we implemented the neural network architecture through FPGA hard-
ware. It is mainly designed and implements the key parts of the hardware implementation
of neural networks. The process of implementing the hidden layer is described in detail,
and the calculation process of each stage of the network is analyzed and simulated. From
the analysis of the experimental results, we can build a system that can well implement
the function of crowd counting. And has higher accuracy and stability, so as to achieve
the experimental purpose.

9.2/ PERSPECTIVES

In the past ten years, artificial intelligence has reached a stage of rapid development.
Deep learning has played an important role in its development. In spite of its powerful
simulation prediction capabilities, deep learning still faces the problem of huge computa-
tional load. At the hardware level, GPUs, ASICs, and FPGAs are all solutions to the huge
computational load. Real-time reconfigurable embedded architecture is implemented us-
ing FPGAs for counting people in densely crowded areas. We also encountered a number
of challenges.

Software aspect: we propose a multi-feature multi-column convolutional neural network
that can count the number of people. We extract feature maps from different layers and
simultaneously resize them to have the same output dimension. After that, we fuse fea-
tures so that the fused features can be used to generate the density map. We also used
texture features and target edge detection to reduce the loss of density map detail to bet-
ter integrate with our convolutional neural network. At the same time, the problem is also
coming. The crowd high-density image we obtained from the M-MCNN structure con-
sumes a long time. There is no doubt that the M-MCNN framework needs to be improved
in terms of time and detection rate.

Hardware aspect: we implement the M-MCNN crowd counting algorithm through FPGA.
The main limiting factor is the on-chip memory. Because of this limitation, these three
branches share the same memory block for weights and other parameters. Therefore, the
branches execute sequential. This caused the implementation of the other two branches
idle when one branch was being calculated. This wastes computing resources. We will
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optimize it in the future work.

In future work, we will further optimize the convolutional neural network crowd counting
algorithm. And transplant it in drone to realize its function. It includes crowd counting,
crowd detection and so on.
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