UNIVERSITE DE BOURGOGNE

Faculté des Sciences de l'Education Ecole doctorale Langages, Idées, Sociétés, Institutions, Territoires IREDU (UMR CNRS 5225)

THÈSE

Pour obtenir le grade de DOCTEUR DE L'UNIVERSITÉ DE BOURGOGNE Discipline : Sciences de l'éducation (CNU 70)

par

Aurélie LECOCQ

le 21 Mai 2012

GENÈSE ET ÉVOLUTION DES COMPÉTENCES DES ÉLÈVES À LA FIN DE L'ÉCOLE MATERNELLE

Eléments d'analyse à partir de données de panel et d'une expérimentation musicale

Directeur de thèse: Bruno Suchaut

Jury

M. Jonathan Bolduc, Professeur agrégé, Université d'Ottawa, Rapporteur

M. Michel Fayol, Professeur, Université de Clermont-Ferrand

M. Philippe Guimard, Professeur, Université de Nantes, Rapporteur

Mme Sophie Morlaix, Professeur, Université de Bourgogne

M. Bruno Suchaut, Professeur, Université de Bourgogne, Directeur de thèse

M. Frédéric Tupin, Professeur, Université de la Réunion,

REMERCIEMENTS

Cette thèse a pu voir le jour grâce à la confiance accordée par Bruno Suchaut qui, en acceptant sa direction, m'a permis de développer mes intérêts pour la recherche en sciences de l'éducation. Son suivi et sa disponibilité pour lire mes divers écrits, éclaircir des points de méthodologie, ses remarques avisées et constructives, nos discussions sur mes tournures de phrases, ne sont que quelques motifs expliquant ma profonde reconnaissance et gratitude. Je pense avoir énormément appris à son contact, j'ai sincèrement apprécié travailler avec lui et lui suis reconnaissante pour le temps qu'il m'a consacré et toutes les opportunités qu'il m'a données au cours de cette thèse.

Je tiens à exprimer ma gratitude à M. Jonathan Bolduc, Professeur à l'Université d'Ottawa, et M. Philippe Guimard, Professeur à l'Université de Nantes pour avoir accepté les rôles de rapporteur. Je suis reconnaissante envers M. Michel Fayol, Professeur à l'Université de Clermont-Ferrand, à Mme Sophie Morlaix, Professeur à l'Université de Bourgogne et à M. Frédéric Tupin, Professeur à l'Université de la Réunion, d'avoir accepté de participer au jury de cette thèse. En acceptant de m'accorder un temps précieux, vous manifestez un intérêt pour mon travail de recherche dont je ne peux que me réjouir. Je mesure le privilège que vous m'accordez en évaluant mon travail.

Cette thèse n'aurait pu voir le jour sans le soutien financier du Haut Commissariat à la Jeunesse, et je tiens à remercier Laurent Cros pour l'intérêt qu'il a montré. Je remercie aussi l'IREDU, le laboratoire qui m'a accueilli dans des conditions matérielles extrêmement favorables. Ma reconnaissance la plus sincère à ses directeurs, Bruno Suchaut et Jean-François Giret, ainsi qu'à Fabienne et Michèle. Grâce à l'appui financier dont j'ai bénéficié, j'ai eu la chance de participer à des colloques au Canada et en Angleterre, et ainsi enrichir mes recherches. Si je remercie également tous mes collègues que je ne citerai pas de peur d'en oublier, je tiens à souligner la disponibilité de Jean Bourdon qui a toujours su prendre de son temps pour me donner de précieux conseils méthodologiques, que j'ai tenté d'appliquer.

Beaucoup d'autres personnes ont travaillé au bon déroulement de l'expérimentation, en tout premier lieu Jean Zermatten, inspecteur de l'Education Nationale, et Jean-Marie Krosnicki (inspecteur de l'Education nationale, adjoint à l'Inspecteur d'Académie), qui nous ont autorisés à travailler en Haute-Savoie sur un sujet qui les intéresse. Je remercie également les auteurs de « Musique au quotidien », tout particulièrement Annie Bachelard et Daniel Coulon, pour leur disponibilité et leur gentillesse, ainsi qu'Alexandre et Denis pour avoir mis en place des sessions de formation et assuré le suivi pédagogique du programme expérimental. Je souligne également le sérieux de tous les professeurs des écoles qui ont pris part à l'expérimentation, aussi bien dans le groupe témoin que dans le groupe expérimental, et tous les conseillers pédagogiques qui ont fait passer les tests. Je les remercie tous chaleureusement d'avoir pris part à ce travail.

J'ai eu la chance tout au long de ces trois années et demie d'être aidée par des personnes extrêmement efficaces et qui m'ont rendu la vie plus agréable. Merci beaucoup à la très sportive Rose et à son équipe de néo-retraités pour l'implication dans le travail de passation et de collecte de données. Je remercie particulièrement Marion Pineau, avec qui j'ai eu la chance de travailler sur l'élaboration des tests musicaux, pour tous les précieux conseils et l'expertise qu'elle m'a donnée, ainsi que pour sa disponibilité et sa gentillesse. Enfin, je remercie Carme et sa famille pour l'accueil chaleureux que j'ai reçu lors de mes déplacements à Annecy, et pour m'avoir montré une autre facette de mon directeur.

Je remercie également tous mes amis et ma famille car supporter une thésarde (surtout à la fin) n'est pas toujours chose aisée. Certains ont partagé mes doutes et mes joies avec plus d'intensité car ils vivent la même situation ou partagent le même bureau, tandis que d'autres pensent que je suis une bête étrange éternellement étudiante. Un grand merci à Thomas pour m'avoir supporté durant 3 années, à Aline et Elodie pour les bières en terrasse, les autres moments de détente et le soutien infaillible qu'elles m'ont apporté.

Enfin, mes derniers remerciements s'adressent à Mehdi, qui a endossé le rôle ingrat de relecteur avec beaucoup de sérieux. Merci de m'avoir encouragé avec tendresse et soutenu malgré tes propres moments d'incertitude, c'est ce qui m'a permis d'aller jusqu'au bout. Merci aussi d'avoir supporté avec patience et aplomb les changements d'humeur occasionnés par ce travail colossal, la force de l'expérience peut-être. Sache qu'aucun mot ne serait suffisant pour t'exprimer ma plus profonde gratitude.

TABLE DES MATIÈRES

	1
TIE 1: GENÈSE ET ÉVOLUTION DES COMPÉTENCES DANS LES CONTEXTES SOCIAUX ET SCOLAIRES	
CHAPITRE 1. LE CADRE DE L'ANALYSE : DESCRIPTION DES DONNÉS DU PANEL D'ÉLÈVES 1997	
1.1. Présentation du panel 1997	
1.1.1. Le cadre général	
1.1.2. Les objectifs du panel	
1.1.3 L'architecture générale du panel 97	
1.2. La collecte des informations	
1.2.1. La participation des directeurs d'école	
1.2.2. Le rôle des enseignants	
1.2.3. Le questionnaire famille	
1.2.4. : La mesure des performances scolaires	
1.3. Présentation générale des données mobilisées	
1.3.1. L'échantillon	
1.3.2. : Les scores moyens aux épreuves au début du CP	
1.3.2.1. Définition et mesure des compétences attendues	
1.3.2.2. Les scores moyens par domaines	
1.3.3. Le score global	
CHAPITRE 2. L'ANALYSE DES RÉSULTATS DES ÉLÈVES AU CP	
2.1. Description des caractéristiques socio-économiques et scolaires des élèves et de leur effet br	ut sur
2.1. Description des caractéristiques socio-économiques et scolaires des élèves et de leur effet br	ut sur
2.1. Description des caractéristiques socio-économiques et scolaires des élèves et de leur effet br scores	rut sur
2.1. Description des caractéristiques socio-économiques et scolaires des élèves et de leur effet br scores	ut sur
2.1. Description des caractéristiques socio-économiques et scolaires des élèves et de leur effet br scores	ut sur
2.1. Description des caractéristiques socio-économiques et scolaires des élèves et de leur effet br scores	ut sur
2.1. Description des caractéristiques socio-économiques et scolaires des élèves et de leur effet br scores	rut sur
2.1. Description des caractéristiques socio-économiques et scolaires des élèves et de leur effet br scores	rut sur
2.1. Description des caractéristiques socio-économiques et scolaires des élèves et de leur effet br scores	rut sur
2.1. Description des caractéristiques socio-économiques et scolaires des élèves et de leur effet br scores	rut sui
2.1. Description des caractéristiques socio-économiques et scolaires des élèves et de leur effet br scores	ut sur
2.1. Description des caractéristiques socio-économiques et scolaires des élèves et de leur effet br scores	sut sur
2.1. Description des caractéristiques socio-économiques et scolaires des élèves et de leur effet br scores	s
2.1. Description des caractéristiques socio-économiques et scolaires des élèves et de leur effet br scores	s
2.1. Description des caractéristiques socio-économiques et scolaires des élèves et de leur effet br scores	s
2.1. Description des caractéristiques socio-économiques et scolaires des élèves et de leur effet br scores 2.1.1. Le niveau socio-économique des parents 2.1.1.1. La nationalité 2.1.1.2. La profession des parents 2.1.1.3. Composition de la famille 2.1.2. Les facteurs scolaires : la durée de scolarisation en maternelle 2.1.3. Les facteurs démographiques 2.1.3.1. Le mois de naissance 2.1.3.2. Le genre 2.1.4 : Synthèse 2.2. Analyse des effets nets des caractéristiques socio-économiques et scolaires sur les scores des différents domaines au CP 2.2.1. Score global 2.2.2. Connaissances générales 2.2.3. Familiarité avec l'écrit et avec l'oral	s
2.1. Description des caractéristiques socio-économiques et scolaires des élèves et de leur effet br scores. 2.1.1. Le niveau socio-économique des parents. 2.1.1.1. La nationalité 2.1.1.2. La profession des parents 2.1.1.3. Composition de la famille. 2.1.2. Les facteurs scolaires: la durée de scolarisation en maternelle 2.1.3. Les facteurs démographiques 2.1.3.1. Le mois de naissance 2.1.3.2. Le genre 2.1.4: Synthèse 2.2. Analyse des effets nets des caractéristiques socio-économiques et scolaires sur les scores des différents domaines au CP 2.2.1. Score global 2.2.2. Connaissances générales 2.2.3. Familiarité avec l'écrit et avec l'oral 2.2.4. Les compétences en lecture	s
2.1. Description des caractéristiques socio-économiques et scolaires des élèves et de leur effet br scores	s
2.1. Description des caractéristiques socio-économiques et scolaires des élèves et de leur effet br scores. 2.1.1. Le niveau socio-économique des parents. 2.1.1.1. La nationalité 2.1.1.2. La profession des parents 2.1.1.3. Composition de la famille. 2.1.2. Les facteurs scolaires: la durée de scolarisation en maternelle 2.1.3. Les facteurs démographiques 2.1.3.1. Le mois de naissance 2.1.3.2. Le genre 2.1.4: Synthèse 2.2. Analyse des effets nets des caractéristiques socio-économiques et scolaires sur les scores des différents domaines au CP 2.2.1. Score global 2.2.2. Connaissances générales 2.2.3. Familiarité avec l'écrit et avec l'oral 2.2.4. Les compétences en lecture	s
2.1. Description des caractéristiques socio-économiques et scolaires des élèves et de leur effet br scores	s

2.4. Les acquis des élèves en début de CP les plus prédictifs pour la scolarité ultérieure	93 -
2.4.1. L'organisation des domaines au CP	94 -
2.4.2. Les relations entre les scores de CP et de CE2	95 -
2.4.3. Les relations entre les scores de CP et de 6 ^{ème}	99 -
2.4.4. Relations implicatives entre domaines de compétences	105 -
CHAPITRE 3. L'IMPACT DES FACTEURS SOCIO-COGNITIFS SUR LES PERFORMANCES DES ÉLÈVES AU CP	109 -
3.1. Relation entre les facteurs sociaux et le comportement des élèves	112 -
3.1.1. Image de soi et comportement de l'élève : description des données	
3.1.2. La structure des items de comportement	
3.1.3. Influences des facteurs socio-économiques et scolaires sur le score global de comportement	121 -
3.1.4. Influences des facteurs socio-économiques et scolaires des élèves sur les items de confiance en sc	i 125 -
3.2. Etude des relations entre les scores par domaine (CP) et le score global de comportement	
3.2.1. Relation entre les scores des acquisitions scolaires et les comportements des élèves	
3.2.2. Impact du score de comportement et des variables individuelles sur les scores de performances	
3.2.3. Impact de la confiance en soi et des variables individuelles sur les scores de performances	134 -
PARTIE 2 : ENSEIGNEMENT MUSICAL, APPRENTISSAGES SCOLAIRES ET CAPACITÉS COGNITIVES	139 -
CHAPITRE 1 : L'ÉDUCATION MUSICALE	143 -
1.1 Approche historique de l'éducation musicale à l'école	
1.1.1 Les finalités de l'éducation musicale à travers la philosophie : de Platon à Euler	
1.1.2 L'enseignement de la musique à l'école : une lente évolution	
1.1.3 L'éducation musicale aujourd'hui : quelle considération ?	150 -
1.2 Approche institutionnelle de l'éducation musicale	
1.2.1 Les programmes et leurs objectifs	
1.2.1.1 A l'heure actuelle, les objectifs attendus en maternelle	
1.2.1.2 Les objectifs de l'éducation musicale à l'école élémentaire	
1.2.2 Quelle didactique de la musique ?	
1.2.3 La diversité des pratiques enseignantes	
1.2.3.1 Les formations	
1.2.3.2. Le temps consacré aux activités musicales	160 -
1.3 L'apprentissage de la musique : un processus cognitif	
1.3.1. Comprendre la perception de la musique	
1.3.1.1 : Comment entend-t-on : éléments essentiels de la phychoacoustique	
1.3.1.2. De la perception du son à perception de la musique	
1.3.2. L'apprentissage de la musique	
1.3.2.1. La part d'inné et la part d'acquis ?	
1.3.2.2. Apprentissage implicite et explicite	174 -
CHAPITRE 2. MUSIQUE ET DÉVELOPPEMENT DES CAPACITÉS COGNITIVES	176 -
2.1. La méthodologie de l'expérimentation	177 -
2.1.1. Les principes de base de l'expérimentation	178 -
2.1.2. Validité de l'expérimentation	
2.1.3. La guestion de l'éthique dans les recherches expérimentales en psychologie	186 -

2.2. Impact de l'enseignement musical sur les capacités cognitives et scolaires	190 -
2.2.1. La première étude et ses conséquences : l'effet Mozart	190 -
2.2.2. La musique et le développement des capacités cognitives	
2.2.2.1. La pratique de la musique accroît-elle les capacités cognitives ?	193 -
2.2.2.2. La mémoire et l'attention	
2.2.2.3. Les relations entre la musique et les capacités spatio-temporelles	
2.2.3. Musique et performances scolaires	
2.2.3.1. La musique, le développement de la conscience phonologique et de la reconnaissance des mot	
2.2.3.2. Musique et autres performances de type scolaires	
2.2.4. La question du temps d'exposition et de la durabilité de l'effet.	203 -
CHAPITRE 3: LE CADRE DE LA RECHERCHE: UNE EXPÉRIMENTATION D'UN PROGRAMME MUSICAL EN	
MATERNELLE	- 207 -
W/ () E ((\delta E E E E E E E E E E E E E E E E E E E	207
	207
3.1. Présentation de l'expérimentation	
3.1.1. Le cadre de l'expérimentation	
3.1.2. Hypothèses et objectifs de la recherche	
3.1.2.1. Les objectifs	
3.1.1.2. Les hypothèses	
3.1.3. L'architecture de l'expérimentation	212 -
3.2. Les modalités de l'expérimentation	213 -
3.2.1. Bref rappel des principes méthodologiques	213 -
3.2.2. Principe d'échantillonnage	214 -
3.2.3. Présentation du programme musical	216 -
3.2.3.1. Les activités	217 -
3.2.3.2. L'organisation des séances	219 -
3.2.4. Le respect du protocole de l'expérimentation	223 -
3.3. Les instruments de mesure	224 -
3.3.1. Les questionnaires des élèves	
3.3.2. Les épreuves standardisées	
3.3.2.1. Le test initial	
3.3.2.2. Le test intermédiaire	238 -
3.3.2.3. Le test final	239 -
3.3.4. Le test sonore	244 -
PARTIE 3 : LES EFFETS DE L'EXPÉRIMENTATION MUSICALE SUR LES CAPACITÉS COGNITIVES ET LES	
COMPÉTENCES SCOLAIRES	252
COWIFE I ENCES SCOLAIRES	255 -
CHAPITRE 1 : LE CADRE GÉNÉRAL DE L'ANALYSE : PRÉSENTATION DE L'ÉCHANTILLON ET DES DONNÉES	
MOBILISÉES	- 256 -
1.1.1.0.0000000000000000000000000000000	256
1.1. Les caractéristiques des élèves	
1.1.1. Les caractéristiques individuelles de l'élève	
1.1.2. L'élève et sa famille	
1.1.3. L'élève à l'école	
1.1.4. Groupe témoin et groupe expérimental	260 -
1.3. Présentation des principaux résultats aux tests pour l'ensemble des élèves	265 -
1.3.1. Le test initial NBA1-T	265 -
1.3.2. Le test intermédiaire NBA2-T	269 -
1.3.3. Le test musical	272 -
1.3.4. Les tests de fin de CP	
1.3.5. Pertinence des scores globaux	275 -
1.3.5.1. Les relations entre les différents domaines	
1.3.5.2. La fidélité	279 -

CHAPITRE 2: L'INFLUENCE DES CARACTÉRISTIQUES INDIVIDUELLES ET SCOLAIRES SUR LES ACQUISITIO	NS DES
ÉLÈVES EN GRANDE SECTION DE MATERNELLE ET AU COURS PRÉPARATOIRE	282 -
2.1. Les résultats des élèves au test initial	282 -
2.1.1. Les scores moyens au test initial NBA1	
2.1.2. Analyse de l'impact net des variables socioéconomiques sur les scores initiaux cognitifs	285 -
2.2. Les résultats des élèves en fin de grande section de maternelle : le test intermédiaire	
2.2.1. Les scores moyens au test intermédiaire NBA2	
grande section de maternellegrande section de maternelle	
2.2.3. Influence des performances des élèves au test initial sur les acquis cognitifs de fin de maternelle	
2.3. Les performances des élèves au test musical	309 -
2.4. Les performances des élèves au CP	312 -
2.4.1. Les scores moyens au test de CP	
2.4.2. Les relations entre les scores de CP et de maternelle	
2.4.3. Analyse de l'impact net des variables socioéconomiques sur les scores de français, mathématique mémoire des élèves en CP	
CHAPITRE 3: LES EFFETS DE L'EXPÉRIMENTATION	
3.1. Effet de l'expérimentation sur les scores du test musical	
3.1.1. Comparaison des moyennes des scores du test musical en fonction de l'appartenance aux groupe 3.1.2. Les effets nets sur le score de musique	
3.2. Effet de l'expérimentation sur les scores cognitifs	332 -
3.2.1. Les effets bruts de l'expérimentation sur les performances cognitives	
3.2.2. Les effets nets de l'expérimentation sur les scores des élèves au test NBA2 : analyse par régression	on 337 -
3.2.3 L'analyse en différence de différences : principes méthodologiques et résultats	
3.2.4 Les apports du modèle de réponse à l'item pour vérifier la validité des items et de l'échantillon	347 -
3.3. Les effets de l'expérimentation sur les scores de CP	354 -
3.3.1. Comparaisons de moyennes des scores en CP	
3.3.2. L'estimation par régression	
3.3.3. L'apport du modèle d'Heckman	359 -
Conclusion générale	
Bibliographie	373 -
Annexes	407 -
Table des illustrations	- 591 -

INTRODUCTION GÉNÉRALE

Les premiers mots du rapport du Haut Conseil de l'Education de 2007 rappellent une réalité parfois occultée ou inconnue, un chiffre préoccupant qui révèle les lacunes de l'école primaire. Si l'école primaire forme correctement la majorité des écoliers, chaque année, 25% des écoliers quittent le CM2 avec des acquis fragiles et insuffisants en lecture, écriture et calcul et 15% souffrent de difficultés plus profondes, puisqu'ils ne maîtrisent pas les compétences de base du socle commun (HCJ, 2007). Ces élèves ne sont pas en mesure de mobiliser certaines compétences de français et de calcul pourtant indispensable pour poursuivre une scolarité sans heurts, ils éprouvent de grandes difficultés dans de multiples domaines : orthographique, lexical, grammatical, mais aussi déchiffrement et compréhension en lecture, sans oublier les mathématiques. Ces lacunes, présentes à la fin du primaire, sont tellement importantes qu'elles ont un impact sur la scolarité secondaire. En effet, il existe une forte corrélation entre le niveau d'acquisition des élèves en fin du primaire et leur réussite au secondaire. Dès le début de la scolarisation secondaire, la lecture autonome constitue une propédeutique indispensable à tout apprentissage, tout comme le travail personnel de l'élève. Or, plongés dans un nouvel environnement scolaire, les élèves ayant les acquis les plus fragiles vivent mal cette transition entre le primaire et le secondaire et s'enfoncent un peu plus profondément dans la difficulté scolaire, les lacunes initiales ne faisant que s'accroître. Si ces difficultés scolaires ne sont pas comblées, ces élèves sortiront probablement du système éducatif précocement, sans diplôme, ni qualification professionnelle. Pourtant, un élève rencontre ses premières difficultés scolaires bien avant le CM2. Le niveau de compétences des élèves à l'orée de la scolarisation élémentaire est fortement corrélé avec son niveau scolaire en 6ème et la probabilité d'accéder au collège à l'heure. Il est alors pertinent de s'interroger sur la mise en place d'actions précoces, dès l'école maternelle.

Un élément central, qui reviendra de manière récurrente dans cette thèse et qui demande à être défini est la notion de compétence. Nous focalisant sur la genèse des compétences, nous nous concentrerons essentiellement sur les compétences de base que

doivent maîtriser les élèves durant leurs premières années de scolarisation. La notion de compétence et sa conceptualisation continuent à faire couler beaucoup d'encre en sciences de l'éducation et en psychologie. Il n'existe pas une définition unique de cette notion, mais on retrouve toujours certains aspects communs dans la littérature. La première définition que l'on peut donner d'une compétence est celle de Le Boterf (1995, 2001) qui développe la conceptualisation théorique de ce terme. Il présente une compétence comme la mobilisation ou l'activation de plusieurs savoirs, dans une situation et un contexte donné pour résoudre un problème. Il élargit considérablement la notion de compétence qui se bornait alors à l'addition de savoirs, de savoir-faire et de savoir-être. La compétence est un savoir-agir qui combine plusieurs savoirs en situation de travail, dont les savoirs théoriques, les savoirs procéduraux, les savoir-faire procéduraux, les savoir-faire expérientiels, les savoir-faire sociaux (savoir se comporter) et les savoirs-faires cognitifs (savoir traiter l'information). Cette définition est partagée par Allal (1999) qui décrit une compétence comme un réseau fonctionnel constitué de composantes cognitives, affectives, sociales, sensorimotrices, susceptible d'être mobilisé en actions finalisées face à une famille de situations. L'auteur différencie ainsi les compétences des performances, car si un élève maîtrise une compétence, il y a parfois des situations dans lesquelles il n'arrive pas à la mobiliser. Ainsi, une compétence est composée, entre autres, de savoirs. Ces savoirs sont d'ordres théoriques, scolaires, cognitifs, c'est ce que l'élève va apprendre à l'école et tenter de comprendre et mémoriser. Ce sont ces savoirs, les connaissances, qui sont fréquemment l'objet d'évaluation, et non les compétences des élèves. Une compétence mobilise également des savoir-faire méthodologiques et Le Boterf (1995) différencie à ce propos les savoirs procéduraux des savoir-faire procéduraux. Il y a en effet une distinction entre savoir comment procéder en théorie et savoir effectivement procéder en pratique. Dans la littérature et dans les instructions officielles du Ministère de l'Education Nationale (MEN), la notion de compétence revêt généralement une forte connotation normative. Une compétence correspond à un sous-ensemble de performances préalablement définies et retenues, ce qui occulte parfois d'autres savoirs potentiels car les compétences énoncées font rarement l'objet d'une énumération exhaustive des différents savoirs qui la compose, même si la situation a évolué récemment avec la mise en place du socle commun et l'utilisation des Livrets Personnalisés de Compétences.

Le Ministère de l'Education Nationale définit par le décret du 11 juillet 2006 l'ensemble des connaissances et compétences de bases indispensables, que l'élève doit maîtriser à la fin de la scolarisation obligatoire. Ce socle commun s'organise autour de 7 piliers : la maîtrise de la langue française, la pratique d'une langue étrangère, les mathématiques, la maîtrise des techniques d'information et de communication, la culture humaniste, les compétences sociales et civiques et enfin, l'autonomie et l'initiative. Les compétences se rapportant à ces points s'acquièrent de manière progressive, à partir de la scolarisation maternelle. Cependant, toutes ne correspondent pas aux premières compétences acquises au début de la scolarisation et renvoient à des compétences plus complexes, accessibles à partir de la fin de l'école primaire et au collège, c'est pourquoi elles ne seront pas abordées dans cette thèse¹. En premier lieu se situe la maîtrise de la langue française : savoir lire, savoir écrire, savoir parler et savoir écouter. Il s'agit de s'exprimer de manière claire et précise à l'orale comme à l'écrit. L'acquisition de ces compétences débute dès l'école maternelle par un enrichissement quotidien du vocabulaire, des connaissances des règles syntaxiques et orthographiques, l'écriture et la lecture de quelques mots simples. Les premières compétences d'ordre scientifique s'acquièrent elles aussi dès l'école maternelle. L'élève doit être capable de faire des calculs, ce qui repose sur la connaissance des nombres, et de mobiliser et d'appliquer les principes mathématiques de base à la vie quotidienne. Les deux compétences suivantes ne sont pas des savoirs scolaires, mais des comportements que l'école doit transmettre. L'école maternelle prépare les élèves à vivre ensemble, à connaître, comprendre et respecter des règles de vie collective, ainsi qu'à évaluer les conséquences de leurs actes. Enfin, l'autonomie est la dernière compétence du socle commun à acquérir. Il s'agit d'une condition sine qua non de la réussite scolaire, l'élève doit être capable d'apprendre par lui-même, en s'appuyant sur une méthodologie de travail développée en classe, et de s'auto-évaluer. L'école doit alors chercher à développer la motivation de l'élève et sa confiance en lui. Ainsi, les compétences à développer au cours de la scolarité sont multiples et complexes car derrière une compétence se cachent en réalité plusieurs concepts à acquérir.

-

¹ Il s'agit de la maîtrise d'une langue étrangère, la maîtrise des techniques d'information et de communication et la culture humaniste

Il est important d'identifier et de comprendre comment se construisent ces compétences et quels sont les déterminants de la réussite ou de l'échec scolaire, qu'ils soient d'ordre socioéconomiques, démographiques ou scolaires. C'est une question qui a beaucoup animé les débats et recherches en sciences de l'éducation. Les parcours scolaires dépendent d'une multitude de facteurs, que l'on peut catégoriser en trois groupes. Certains facteurs correspondent à l'environnement socioéconomique de l'élève, il s'agit de son milieu social et culturel d'origine, qui peut être appréhendé entre autres par le niveau de scolarisation des parents, leur profession et leur revenu. D'autres sont directement associés à l'élève, comme ses capacités cognitives, ou ses caractéristiques démographiques (sexe et mois de naissance). Enfin, une dernière catégorie de facteur réside dans le contexte scolaire, c'est-à-dire l'école elle-même, par la qualité de son enseignement et son organisation pédagogique. Ces facteurs exercent tous un impact sur la réussite scolaire de l'élève (Duru-Bellat, 2002 ; Mingat et Suchaut, 1994).

Le milieu socioéconomique de l'élève joue un rôle important dans sa scolarisation puisque l'on constate que les élèves les plus performants sont généralement ceux qui vivent dans des familles aisées et éduquées. En effet, la profession des parents, celle de la mère en particulier, a un impact particulièrement fort sur les parcours scolaires des enfants, qu'il s'agisse de leurs performances, de leurs orientations, ou du redoublement. Par exemple, les écarts de performance entre les enfants de cadre et d'ouvrier sont déjà observables au CP et ne font que s'accroître au cours de la scolarité : les enfants d'ouvriers sont 44% à avoir redoublé au moins une fois leur 6^{ème} ou leur 5^{ème}, contre seulement 5% pour les enfants de cadres, et ils ont moins fréquemment accès aux filières post-baccalauréat que les enfants de cadres (Caille et Rosenwald, 2006).

Les déterminants individuels ont également un impact sur les performances des élèves. Dès le début de la scolarisation obligatoire, on constate des écarts de performances entre les filles et les garçons, mais aussi en fonction du mois de naissance. En effet, les filles et les élèves nés en début d'année civile auront tendance à mieux réussir et à moins redoubler que les garçons et les élèves nés en décembre. Les filles redoublent moins que les garçons à l'école primaire, elles obtiennent de meilleures performances tout au long de leur scolarité,

elles arrivent plus jeunes et plus nombreuses au baccalauréat, elles accèdent également plus fréquemment que les garçons à l'enseignement supérieur (Jacques, 2003 ; Duru-Bellat et al., 2001). Les différences de performances scolaires liées au mois de naissance traduisent en fait des différences de maturité cognitive, comme le soulignent Florin et al. (2004). Cette variable joue un rôle d'autant plus considérable lorsqu'il s'agit d'évaluer les savoirs chez les plus petits : au fur et à mesure du développement, et donc de la scolarité, les écarts liés à la maturation et au mois de naissance s'amenuisent.

Enfin, une dernière catégorie de déterminants de la réussite scolaire est d'ordre contextuel. L'école en elle-même peut avoir un impact, positif ou négatif, sur les performances scolaires des élèves. Ainsi, la scolarisation à deux ans à l'école maternelle est associée à de meilleures acquisitions scolaires, et à une probabilité de redoublement diminuée. En effet, les progressions des élèves au CP sont d'autant plus importantes que la préscolarisation fut longue (Duru-Bellat, 2002). L'impact d'une préscolarisation précoce est déjà présent au CP et l'on constate que cet effet perdure, puisque les enfants scolarisés à 2 ans obtiennent de meilleures performances en français et en mathématiques en CE1 (Jarousse et al. 1992). Il apparaît aussi que les probabilités d'accéder au CE2 sans redoubler sont fortement liées à l'âge d'entrée et à la durée de la scolarisation maternelle (Caille, 2001). En témoignent également ces données extraites d'une étude de Florin (2007) : 90,8% des élèves ayant été scolarisés à 2 ans accèdent au CE2 sans redoubler, contre 76,6% pour les élèves entrés à l'école maternelle à 4 ans et 87,7% des élèves étant entrés à 3 ans. Les effets de ces différents facteurs sur les performances scolaires des élèves interagissent et se cumulent. Ainsi, l'ampleur des inégalités de réussite peut parfois être considérable, entre une fille née en janvier et issue d'un milieu social favorisé, et un garçon né en fin d'année civile et provenant d'une famille modeste. Il apparaît ensuite que les différences scolaires selon le genre diffèrent en fonction du milieu social. En effet, elles sont moins marquées parmi les enfants de cadres que parmi les enfants d'ouvriers, où l'avantage des filles est plus accentué. Enfin, si les effets positifs d'une scolarisation dès 2 ans s'observent pour l'ensemble des élèves, il faut souligner qu'ils n'agissent pas avec la même force selon l'origine socioéconomique de l'enfant. En effet, chez les élèves issus de milieux défavorisés, il apparaît qu'un développement de la préscolarisation réduit une partie des écarts de réussite.

L'école maternelle est un élément essentiel de notre système éducatif. Cependant, son rôle et sa légitimité scolaire sont encore sujets à débat. Pourtant, les effets positifs de la scolarisation maternelle sur les performances et parcours scolaires sont clairement démontrés, et elle peut devenir un lieu privilégié de prévention des difficultés scolaires. Une étude récente (Morlaix et Suchaut, 2007) a montré que les liaisons statistiques entre les différentes compétences scolaires deviennent de plus en plus fortes au fur et à mesure de la scolarité de l'élève. Ainsi, il apparait que les difficultés scolaires des élèves sont plus facilement repérables au début de la scolarité et il est alors pertinent de privilégier une intervention précoce afin de lutter efficacement contre l'échec scolaire. L'école maternelle, et la classe charnière de grande section de maternelle, semblent donc un terrain de recherche particulièrement propice et relativement peu exploité dans les recherches en éducation pour appréhender la genèse des compétences et leurs interactions avec les caractéristiques démographiques, socioéconomiques et scolaires des élèves.

Afin de lutter contre l'échec scolaire, de nombreuses actions sont menées depuis plusieurs années. Certaines de ces actions s'intéressent aux élèves déjà en situation d'échec, lorsque la difficulté scolaire est déjà installée, tandis que d'autres cherchent à la prévenir. Toutes les actions et les dispositifs ne visent pas directement les apprentissages scolaires mais elles ont toutes comme objectif d'accompagner l'élève vers la réussite. Ainsi, les dispositifs d'aides aux élèves peuvent être individuels ou collectifs, dispensés par des enseignants ou par des acteurs extérieurs, proposés sur le temps scolaire, périscolaire ou extrascolaire et prendre diverses formes (Suchaut, 2009). Les résultats des recherches visant à évaluer l'efficacité de tels dispositifs sont généralement très mitigés et peu optimistes. Les effets de telles actions sur les progressions des élèves dépendent de plusieurs facteurs : l'adéquation entre les élèves visés et les élèves retenus pour en bénéficier, l'implication des familles, le nombre d'heures suivis et le niveau de difficulté de l'élève. D'autres stratégies d'interventions éclosent, il s'agit d'activités réalisées en classe ayant pour but de prévenir l'échec scolaire et d'améliorer les performances scolaires des élèves. C'est le cas, par exemple, de l'expérience PARLER menée par Michel Zorman et déployée de 2005 à 2008 dans l'agglomération grenobloise, et dans d'autres académies récemment. L'objectif de ce programme était d'améliorer les acquisitions langagières et à prévenir l'illettrisme des populations socio-économiquement défavorisées et

des populations issues de l'immigration, en intervenant dès la grande section de maternelle. La mise en place de ces activités éducatives et langagières spécifiques en classe a permis d'améliorer significativement les performances des élèves en compréhension de lecture (Bianco et al, 2010). Ce genre de dispositifs repose sur une approche de prévention, et non sur une remédiation.

Nous nous proposons d'étudier, dans cette thèse, une question essentielle, mais peu traitée dans les recherches françaises en sciences de l'éducation : elle concerne la genèse des acquisitions des élèves et leur évolution au cours de la scolarité. Dans un premier temps, il s'agit de s'intéresser à la nature et à la structure des premières compétences scolaires, en lien avec les facteurs qui influent sur leur développement et ainsi fournir des éléments en matière de prévention de l'échec scolaire, la question centrale de cette thèse étant d'étudier les diverses conditions, tant socioéconomiques que scolaires, qui permettent de développer certaines compétences particulièrement prédictives de la réussite scolaire. Le rôle des capacités cognitives des jeunes élèves, scolarisés en grande section de maternelle, et leurs liens avec les compétences de nature scolaire seront spécifiquement étudiés. La problématique peut être structurée en trois questions : Comment se structurent et évoluent les premiers apprentissages des élèves dans le contexte scolaire et socioéconomique ? En quoi les capacités cognitives des élèves ont-elles un impact sur leurs performances scolaires ? Est-ce que des activités spécifiques peuvent avoir un effet positif sur les compétences scolaires, via un accroissement des capacités cognitives ?

Notre document s'articule autour de trois grandes parties, deux parties empiriques et une partie théorique, qui éclaircissent ces questions. Dans la première partie, nous cherchons à comprendre la genèse et l'évolution des compétences scolaires à partir des données du panel 1997 de la Direction de l'Evaluation, de la Prospective et de la Performance (D.E.P.P). Après avoir présenté les données mobilisées et défini les compétences évaluées, nous chercherons à comprendre dans un premier chapitre le rôle des facteurs socioéconomiques, scolaires et démographiques sur la variation des performances scolaires des élèves au CP. Au cours du second chapitre, nous nous intéresserons à l'évolution temporelle des acquisitions des élèves. Nous analyserons les relations statistiques existantes entre les champs évalués au début du CP et les performances scolaires des élèves au CM2 et au début du collège. Nous espérons ainsi

être en mesure d'identifier, dès l'entrée à l'école élémentaire, les domaines les plus prédictifs de la réussite ultérieure. Cependant, les facteurs sociaux ne peuvent expliquer à eux seuls la totalité de la variabilité des performances scolaires des élèves au début du CP. C'est pourquoi, nous chercherons à comprendre, dans un dernier chapitre, la nature du lien qui existe entre les performances scolaires des élèves et le comportement des élèves en classe. Pour ce faire, nous mobiliserons encore une fois les données du panel 1997 qui comprend un volet sur l'évaluation de certaines capacités des élèves, comme l'attention de l'élève en classe, ou ses capacités d'anticipation et d'organisation d'une tâche.

Au cours de la seconde partie, plus théorique, nous présentons le cadre général de la mise en place d'une expérimentation ayant pour objectif d'accroître les capacités cognitives par un entraînement musical, et d'améliorer en retour les performances scolaires des élèves. Nous définirons tout d'abord, dans le premier chapitre, l'éducation musicale par trois approches successives. Une première approche historique retrace la lente évolution des finalités de l'éducation musicale à l'école. Un second volet sera consacré au regard que porte le Ministère de l'éducation nationale sur l'enseignement musical. Enfin, le dernier élément de ce chapitre sera d'ordre psychologique. Nous nous intéresserons aux processus cognitifs engagés lors de l'apprentissage, l'écoute ou la production musicale. Nous présenterons ainsi quelques éléments de psychoacoustique pour comprendre toutes les étapes de la perception de la musique, c'est-à-dire la transformation d'un son en musique et les mécanismes engagés (l'audition, la mémoire, les émotions), ainsi que son apprentissage. Le second chapitre consiste en l'exposition d'une revue de littérature qui présente les résultats de recherches expérimentales en psychologie. L'objectif est de saisir les effets positifs que la musique, par sa pratique ou son écoute, peut engendrer sur le plan cognitif : accroissement du Q.I., de la mémoire et de l'attention, et même des performances scolaires. Enfin, nous présenterons l'expérimentation spécifiquement développée pour notre recherche dans un dernier chapitre. Nous rappellerons les principes méthodologiques des recherches expérimentales, comme l'importance de la randomisation et la présentation du seuil minimum détectable. Enfin, nous définirons notre protocole, c'est-à-dire le programme musical, les horaires et l'organisation des séances, et les épreuves de mesure de capacités cognitives.

La dernière partie de cette thèse sera consacrée à la présentation des résultats de l'expérimentation pour savoir si des activités musicales spécifiques peuvent avoir, *via* un accroissement des capacités cognitives, un impact positif sur les compétences scolaires? Le premier chapitre présente les principales caractéristiques des élèves et de leurs familles, la composition des groupes, témoin et expérimental, et enfin, les performances des élèves aux tests musicaux, cognitifs et scolaires. Lors du second chapitre, nous chercherons à appréhender deux éléments : premièrement l'influence des caractéristiques socioéconomiques, démographiques et scolaires sur les scores des élèves aux différents tests, indépendamment de l'appartenance au groupe expérimental ; deuxièmement, les relations statistiques entre les acquis des élèves en grande section de maternelle et au cours préparatoire. Enfin, lors du dernier chapitre de cette thèse, nous tenterons de déterminer les effets de l'expérimentation sur les capacités cognitives et les performances scolaires.

PARTIE 1: GENÈSE ET ÉVOLUTION DES COMPÉTENCES DANS LES CONTEXTES SOCIAUX ET SCOLAIRES : ANALYSE DU PANEL 97

Bien qu'il s'agisse d'un élément essentiel, la genèse des acquisitions des élèves et leur évolution au cours de la scolarité n'ont été que peu traitées dans les recherches françaises en sciences de l'éducation. Les travaux menés ces dernières décennies ont souvent considéré les acquisitions des élèves comme une variable dépendante de nature instrumentale sans chercher à savoir ce qu'elle pouvait précisément recouvrir. Pourtant, une meilleure compréhension de la nature des acquisitions des élèves peut fournir des éléments importants en matière de politique éducative, notamment pour la définition des curricula, en termes de contenu précis et de programmation au cours des cycles, et pour l'organisation pédagogique concrète des activités d'enseignement.

Une recherche récente (Morlaix et Suchaut, 2007) s'est intéressée à cette problématique. Le principal objectif de cette étude, qui se base sur l'analyse des résultats des élèves aux évaluations nationales à trois niveaux de la scolarité (CE2, sixième et cinquième), est de saisir la manière dont ces acquisitions scolaires se structurent, de manière transversale (à un moment de la scolarité), mais aussi longitudinale (au fil du temps). Outre cette cartographie très précise des compétences, cette étude identifie des éléments les plus prédictifs de la réussite ultérieure. Notre recherche se situe directement dans la suite logique de cette première étude, qu'elle complète et enrichit puisque nous cherchons à analyser la structure des acquisitions scolaires à un niveau scolaire supplémentaire : le CP. Ainsi, nous contribuerons à la cartographie des acquisitions scolaires et à la compréhension de leur évolution depuis l'école élémentaire. Les acquisitions des élèves au début du CP recouvrent des dimensions très variées, certaines étant le reflet direct des connaissances transmises par l'école dès la maternelle, d'autres étant fortement associées aux capacités cognitives de ces jeunes individus. En outre, les compétences mobilisées lors des apprentissages dès le début de la scolarité obligatoire se construisent en lien avec l'environnement familial et social de l'élève. C'est pourquoi nous nous proposons d'analyser les acquisitions scolaires des élèves au début du CP de manière détaillée afin de comprendre comment elles se structurent et de déterminer quels sont les acquis que les élèves doivent maîtriser de façon précoce afin de s'assurer une scolarité sans heurts.

Pour étudier de manière approfondie les acquisitions au CP et leurs déterminants, nous nous appuierons sur les données du Panel d'élèves 1997 de la D.E.P.P. Dans un premier chapitre, nous décrirons cette base de données, des objectifs poursuivis aux informations collectées, afin de faire ressortir sa grande richesse et son intérêt pour notre recherche.

Les facteurs d'ordre sociodémographique contribuent à expliquer une part non négligeable de la variation des performances scolaires dès le début de la scolarité obligatoire. Dans un deuxième chapitre, nous chercherons donc à mieux comprendre quelles relations existent entre la genèse des compétences et les caractéristiques du milieu familial de l'enfant. Nous tenterons d'analyser la variété des acquisitions scolaires des élèves au début du CP, en les reliant notamment aux variables socio-économiques et scolaires classiques : genre, trimestre de naissance, durée de la scolarisation en maternelle, profession des parents, nationalité... Nous nous intéresserons également à l'évolution temporelle de ces acquisitions en analysant les relations entre les champs évalués au début du CP avec ceux du CM2 et du début du collège. Nous espérons ainsi être en mesure d'identifier, dès l'entrée à l'école élémentaire, les domaines les plus prédictifs de la réussite ultérieure.

Les facteurs socioéconomiques ne peuvent cependant expliquer à eux seuls la variété des performances des élèves au début du CP. C'est pourquoi, nous chercherons à comprendre, dans un troisième chapitre, la nature du lien qui existe entre les performances des élèves et les capacités cognitives. Dans un premier temps, nous définirons mieux ce terme de « capacités cognitives », qui sous un vocable générique cache une réalité complexe. Nous tenterons de montrer que cette dimension, souvent négligée dans les recherches en sciences de l'éducation, a un impact sur les performances scolaires des élèves dès la première année de scolarisation au primaire.

Chapitre 1. Le cadre de l'analyse : description des données du panel d'élèves 1997

La nature de la problématique de notre recherche suppose de disposer de renseignements socio-économiques et scolaires des élèves à plusieurs niveaux de scolarité. Les données du panel d'élèves 1997 semblent alors répondre à nos attentes : évaluant les performances des élèves de nature longitudinale, elles nous fournissent également les informations socio-économiques nécessaires à nos analyses. Avant d'exposer nos résultats, nous allons présenter succinctement l'enquête autour des points suivants : contexte et objectifs du panel, organisation et déroulement des épreuves, et données collectées.

1.1. Présentation du panel 1997

Le panel d'élèves 1997 est un échantillon représentatif de la population des élèves entrant au cours préparatoire de l'école primaire à la rentrée 1997. Chacun de ces élèves se voit attribuer un identifiant pour garantir son anonymat et plusieurs types de données sont recueillies. Les informations de type sociodémographiques sont collectées par questionnaires auprès des familles ou directeurs d'école. Les performances des élèves sont évaluées régulièrement de manière active (par des séries de tests) ou passive (par des observations ou appréciations de la part des enseignants). Par son caractère périodique, le panel permet de mettre en évidence des tendances et évolutions. Pour mieux comprendre l'intérêt de ce panel d'élèves, nous présenterons le cadre général dans lequel il s'inscrit et les objectifs visés.

1.1.1. Le cadre général

Scolarisé dès 2 ans ou à partir de 3 ans², la majorité des français poursuivent dorénavant des études au-delà du terme de l'instruction obligatoire puisque l'espérance de vie scolaire³ d'un enfant français, à l'heure actuelle, est de 16 ans et demi (OCDE, 2010). Ainsi, la carrière scolaire d'un individu revêt un caractère fortement temporel et cumulatif. L'analyse de ces carrières et des performances scolaires qui y sont associées nécessite la collecte d'un grand nombre d'informations individuelles sur les élèves et leur famille, tant d'ordre sociodémographiques, que la mesure des acquisitions scolaires, et ce de manière répétée. Le passé scolaire se prêtant mal aux enquêtes rétroactives (familles ne conservant pas tous les documents, archives des établissements scolaires parfois incomplètes, souvenirs flous ou biaisés des individus, difficulté à mesurer certains phénomènes...), la Direction de l'Evaluation, de la Prospective et de la Performance (DEPP) met régulièrement en place des panels d'élèves. Instaurée en 1962 par l'Institut national d'études démographiques (INED), avec le suivi (pendant 8 années) de 17 460 élèves sortants de l'actuelle dernière année de l'enseignement primaire (CM2), la technique du panel a ensuite été régulièrement mise en œuvre en France par le Ministère de l'Éducation nationale à partir de 1973. Depuis lors, sept panels d'élèves ont été mis en place : cinq panels de collégiens (recrutés respectivement en 1973, 1980, 1989, 1995 et 2007) et deux panels d'écoliers (1978 et 1997).

Tableau 1 : Les panels de la DEPP

Année de lancement panel	Elèves entrant	Nombre d'élève	Durée du suivi
Panel 1973	sixième	37 500	11 ans
Panel 1978	cours préparatoire	22 000	8 ans
Panel 1980	sixième	20 000	10 ans
Panel 1989	sixième	25 000	15 ans
Panel 1995	sixième	17 800	En cours
Panel 1997	cours préparatoire	10 000	En cours
Panel 2007	sixième	35 000	En cours

Source: DEPP

² Les taux de scolarisation en maternelle sont les suivants : 18,1% des enfants de 2 ans et 100% des enfants de 3 ans ont été scolarisés en maternelle durant l'année scolaire 2008-2009 (Tableau de l'économie française, édition 2011 INSEE)

³ « L'espérance de vie scolaire est définie comme le nombre total d'années d'instruction qu'un enfant d'un certain âge peut attendre à recevoir à l'avenir, en supposant que la probabilité de son admission à l'école à un âge donné est égale au présent taux d'admission de cet âge-là. » Définition de L'institut Statistique de l'UNESCO.

A la rentrée 1997-1998, la Direction de l'Evaluation, de la Prospective et de la Performance a mis en place un nouveau panel d'élèves du premier degré : le « panel 97 ». Cette initiative dessert comme principal objectif d'accroître la compréhension des parcours scolaires dans leur intégralité. Il s'agit d'une enquête de grande ampleur : l'échantillon est constitué de 10.000 élèves scolarisés au Cours Préparatoire (CP) en septembre 1997 répartis dans 1570 écoles privées ou publiques de France métropolitaine. Afin d'offrir une vision longitudinale des parcours scolaires, les élèves sont suivis sur plusieurs années, jusqu'à la fin de la cinquième. Il s'agit à ce jour de la plus complète et de la plus récente source d'informations individuelles disponible sur les élèves à ce niveau de scolarité, le dernier panel du premier degré datant de 1978.

Afin d'enrichir les données habituellement collectées (renseignements socioéconomiques et parcours scolaires), certaines compétences et attitudes des élèves sont également évaluées en début de CP. Ainsi, un angle nouveau est abordé par ce panel et apporte une mesure des acquis cognitifs. Il est important de notifier qu'il ne s'agit en aucun cas de contrôler les actions des enseignants, ni même d'évaluer l'atteinte des objectifs fixés à l'école maternelle. Il s'agit plutôt de dresser un état des lieux détaillé des acquisitions scolaires des élèves au début du CP, comprenant en sus la mesure de plusieurs dimensions cognitives. A partir d'une description initiale, l'objectif est par la suite de mesurer l'influence de ces premières compétences sur la suite de la scolarisation.

Les épreuves ont été mises au point par des équipes d'universitaires, dont le LEAD⁴, supervisées par un comité de pilotage. C'est à eux qu'est revenue la tâche de suivre sur le terrain le bon déroulement de l'enquête, mais aussi tout le processus de création des épreuves. Nous allons à présent décrire l'organisation de la collecte et des épreuves du panel 97.

_

⁴ Le LEAD, Laboratoire d'Etude de l'Apprentissage et du Développement, à l'Université de Bourgogne

1.1.2. Les objectifs du panel

Afin de comprendre en profondeur les données que nous mobilisons, revenons sur l'objectif initial du panel. La finalité principale de ce panel est de « décrire et d'expliquer les carrières et performances scolaires des élèves depuis l'entrée de l'école élémentaire jusqu'aux premières années du collège » (Colmant et al., 2002, p.15). La DEPP précise à ce sujet qu'il s'agit de mettre en évidence l'ensemble des déterminants de la réussite scolaire dans l'enseignement primaire, que ceux-ci soient familiaux, cognitifs, ou liés au déroulement de la scolarité présente ou antérieure. Ainsi, ces données peuvent être utilisées comme outils de pilotage puisqu'elles rendent compte du niveau des acquisitions scolaires à différents moments clefs de la scolarité, et à plusieurs échelles (nationales, régionales, départementales...). Derrière cette finalité principale, le panel 1997 se dote d'objectifs plus opérationnels, dont celui d'évaluer les effets de la politique lancée en 1991 : celle des cycles à l'école primaire.

Encadré 1 : Les objectifs du Panel 1997

- 1. Suivre de manière précise et détaillée les cheminements des élèves de l'échantillon au sein de l'école élémentaire, puis au début du collège. Le rendement de ce degré d'enseignement pourra être ainsi apprécié au travers de mesures comme la proportion d'élèves parvenant sans redoubler aux différents niveaux de l'école élémentaire, le nombre d'années mis pour les atteindre ou encore le niveau d'acquis cognitifs ou socio-cognitifs atteint à certaines étapes du cursus scolaire.
- 2. Mesurer l'équité du fonctionnement de l'enseignement élémentaire. Grâce aux informations recueillies sur la famille des élèves et les caractéristiques des écoles qu'ils fréquentent, le panel d'élèves recruté en 1997 permettra de mieux comprendre les inégalités de trajectoires et de performances scolaires. En particulier, il rendra possible une mesure fine des disparités sociales de réussite à ce niveau d'enseignement.
- 3. Evaluer l'effet de la politique des cycles mise en place en 1991 et d'une manière plus générale l'évolution des carrières scolaires dans l'enseignement élémentaire ces vingt dernières années en comparant les trajectoires des élèves entrés au cours préparatoire en 1997 avec les données recueillies dans le Panel 1978 ou par la reconstitution de la scolarité élémentaire des élèves des panels du second degré recrutés en 1989 ou 1995.
- 4. Mesurer pour la première fois les différences d'acquis des élèves au moment de leur arrivée au cours préparatoire et d'apprécier leurs effets sur le cursus scolaire ultérieur.

Source: Colmant et al. 2002

1.1.3 L'architecture générale du panel 97

L'architecture du panel d'élèves du premier degré recruté en 1997 résulte de l'évolution des précédentes enquêtes similaires. Dans les années soixante-dix et quatre-vingt, la collecte des données ne s'appuyait exclusivement que sur les directeurs des écoles. Les procédures de recueil des informations ont été amplifiées suite à la mise en place du panel de collégiens de 1989. C'est à partir de cette date que les enquêtes auprès des familles et les évaluations de compétences permettent d'enrichir de recueil des données. Le schéma cidessous représente l'architecture globale des premières années du panel.

Schéma 1 : Le dispositif de recueil d'informations durant les trois premières années de l'enquête (panel 1997

1999 2000

Schéma extrait de Colmant et al. (2002), p.16

Le recueil d'informations, qui s'échelonne de la rentrée de septembre 1997 à juin 2004, s'organise autour de quatre sous-ensembles (collecte d'information auprès des directeurs d'écoles, des enseignants et des familles, mais aussi évaluations régulières auprès des élèves):

- L'interrogation auprès des directeurs d'écoles est réactualisée chaque année.
- Les enseignants remplissent une grille d'observation permettant d'appréhender les comportements de l'élève en classe, ainsi que ses capacités et ses compétences au début du CP (septembre 1997).
- Une collecte d'information complémentaire est effectuée auprès de chacune des familles ayant un enfant faisant partie de l'échantillon du panel. Elles sont interrogées par voie postale au cours du troisième trimestre 1999.
- Enfin, les élèves sont testés sur divers aspect de leurs acquisitions, à plusieurs périodes de leur scolarité : au CP (1997), et lors des évaluations nationales de CE2 (1999-2000) et sixième (2002-2003).

Ainsi, le panel s'inscrit sur une longue durée puisque les élèves sont suivis de leur entrée au CP jusqu'à leur seconde année au collège. Nous allons maintenant décrire successivement ces quatre phases de recueil d'information.

1.2. La collecte des informations

La collecte des informations sur les élèves s'articule autour de quatre sources de renseignements, les directeurs d'écoles, les enseignants et les familles, ainsi que sur des mesures des performances scolaires.

1.2.1. La participation des directeurs d'école

Les directeurs d'école remplissent un questionnaire de recrutement dans lequel plusieurs types de données sont recueillis : caractéristiques socio-économiques des élèves (date de naissance, nationalité, sexe, pays de naissance) et de sa famille (nombre d'enfants dans la famille, rang de l'élève, situation professionnelle des deux parents, nationalité des deux parents...). Par ailleurs, ce questionnaire permet de collecter des données sur les établissements (nombres total d'élèves dans la classe, d'élèves de nationalités étrangères ou d'élèves redoublants...) et aussi sur la scolarité antérieure de l'élève en maternelle (date d'entrée en maternelle et durée de cette scolarisation...). Les données concernant la situation scolaire sont réactualisées chaque année, tant que l'élève est scolarisé dans l'enseignement élémentaire.

1.2.2. Le rôle des enseignants

La seconde source de renseignements est une grille d'observation des élèves. Remplie par l'enseignant, celle-ci permet d'appréhender les comportements de l'élève en classe, ainsi que ses capacités et ses compétences au début du CP, sur une échelle à quatre positions. Afin de mieux comprendre les parcours scolaires des élèves, il est important de ne pas limiter le recueil d'informations aux compétences scolaires et aux caractéristiques socioéconomiques des élèves. Une évaluation des comportements des élèves en classe permet d'enrichir considérablement la palette des analyses possibles, pour comprendre le plus finement possible les trajectoires scolaires des élèves. C'est l'enseignant, au contact direct et quotidien avec l'élève, qui est en charge de cette évaluation.

1.2.3. Le questionnaire famille

Une collecte d'information complémentaire a été effectuée auprès de chacune des familles ayant un enfant faisant partie de l'échantillon du panel. Ces familles ont été interrogées par voie postale au cours du troisième trimestre 1999. Le questionnaire se scinde en trois parties :

- Une première concerne la composition de la famille et les caractéristiques socioéconomiques des parents : profession et niveau d'études des deux parents, nationalité et pays d'origine, taille de la famille, place de l'élève dans la fratrie, langue parlée à la maison et conditions d'hébergement.
- Ensuite, une seconde partie porte sur la scolarité antérieure de l'élève : nombre d'années en maternelle, âge d'entrée et mode de garde.
- Enfin, une dernière partie se consacre aux ressentis de la famille et de l'élève sur sa scolarité à l'école élémentaire : rôle et conception de l'école et des enseignants, vécu de la scolarité des parents...

Une enquête téléphonique a permis de réduire le taux de non réponses. Dans ces questionnaires, que ce soit celui rempli par le directeur ou bien celui des familles, une place centrale est accordée aux informations relatives à la migration (telles que la date d'entrée en France, la nationalité, le pays d'origine, la langue parlée à la maison). La raison en est simple : ces informations permettent d'étudier statistiquement le comportement des jeunes issus de l'immigration, tout comme celui des élèves de nationalité étrangère.

1.2.4. : La mesure des performances scolaires

L'analyse des carrières scolaires est mise en rapport avec les performances des élèves, qui sont mesurées régulièrement. La spécificité de ce panel 1997 réside dans la mesure des performances scolaires des élèves à leur entrée en cours préparatoire. Douze épreuves écrites de type « papier-crayon », d'une vingtaine de minutes chacune, sont destinées à recueillir les informations relatives aux acquis des élèves entrant au CP. La passation des épreuves se déroule de manière collective sous la supervision de l'enseignant. Afin de ne pas surcharger

des élèves qui ne peuvent rester concentrés trop longtemps du fait de leur jeune âge, la passation des épreuves a été répartie en 12 demi-journées durant la première quinzaine d'octobre, ce qui équivaut à une séquence par demi-journée de travail.

Les évaluations se présentent sous forme de cahiers d'exercices subdivisés en 12 séquences et dont la répartition précise figure dans l'encadré de la page suivante. Cette subdivision des épreuves correspond à la volonté d'évaluer des compétences précises, réparties en cinq domaines :

- Les connaissances générales ;
- Les compétences verbales et la familiarité avec l'écrit ;
- Les compétences logiques et la familiarité avec le nombre ;
- Les concepts liés au temps et à l'espace ;
- Le comportement et l'attention.

Encadré 2 : Répartition des épreuves sur la mesure des acquisitions scolaires des élèves à l'entrée au CP (panel 1997)

Cahier 1. Séquence A	Connaissances générales, connaissances de l'écrit
Séquence B	Comportements socio-cognitifs
Cahier 2. Séquence A	Lecture : tâches phonologiques et morphosyntaxiques
Séquence B	Mathématiques : épreuve numérique
Cahier 3. Séquence A	Attention partagée
Séquence B	Concepts liés au temps
Cahier 4. Séquence A	Compréhension orale
Séquence B	Culture technique
Cahier 5. Séquence A	Ecriture
Séquence B	Concepts liés à l'espace
Cahier 6. Séquence A	Lecture : prélecture
Séquence B	Mathématiques : nombres et figures géométriques

Afin de superviser son déroulement, l'enseignant dispose d'un cahier de consignes sur lequel figure des instructions de passation et de codage, mais également des commentaires sur les épreuves. Les réponses sont ensuite codées par l'enseignant de manière standardisée, selon des consignes de codage très strictes.

Le panel 1997 est un outil pertinent pour répondre à nos questions de recherche. En effet, comme nous l'avons spécifié précédemment, nous cherchons à dégager deux tendances. La première consiste à comprendre les liaisons existantes entre la genèse des compétences et les caractéristiques du milieu familial de l'enfant. Pour ce faire, nous analyserons la variété des acquisitions scolaires des élèves au début du CP, en les reliant aux caractéristiques socioéconomiques et scolaires classiques (sexe, trimestre de naissance, durée de la scolarisation en maternelle, profession des parents, nationalité...). Dans un second temps, nous nous intéresserons à l'évolution temporelle de ces acquisitions en analysant les relations entre les champs évalués au début du CP avec ceux du CM2 et du début du collège. Nous espérons ainsi être en mesure d'identifier, dès l'entrée à l'école élémentaire, les domaines les plus prédictifs de la réussite ultérieure.

Les recherches menées sur les données du panel ont permis des avancées considérables en sciences de l'éducation. On s'intéresse désormais à la qualité de ce que l'on produit, les compétences, les relations entre les compétences du CP et du CE2, leur évolution au cours de la scolarité et leur relation avec des variables socioéconomiques et scolaires. Globalement les recherches menées sur les données de panel portent sur deux grandes familles de facteur : les caractéristiques des élèves et l'organisation scolaire. A partir des données du panel 1997, Caille (2001) a mis en avant l'impact positif de la scolarisation précoce sur le redoublement à différents moments de la scolarité (ainsi que Caille et Rosenwald 2006). Florin et al. (2004) ont dégagé l'effet du mois de naissance sur les performances tandis que Ferrier (2003) s'est intéressé à l'impact du mois de naissance sur le retard ou l'avance scolaire pour l'académie de Poitiers.

Ainsi, les données du panel 1997 semblent être un outil statistique tout à fait approprié à notre thématique de recherche. En effet, la taille importante de l'échantillon (plus de 10000 élèves) donnera aux résultats de nos analyses une forte validité scientifique. De plus,

l'exploitation de l'enquête « familles » offre la possibilité de mettre en relation les performances scolaires avec le milieu familial. L'enquête « familles » nous apporte une mesure des principaux facteurs socio-économiques explicatifs de la réussite scolaire, tels que la profession des parents, la composition de la famille, le passé scolaire ou encore la langue parlée à la maison. Les caractéristiques individuelles des élèves (sexe, mois de naissance, nationalité...) sont également disponibles. Enfin, les performances scolaires sont mesurées sous divers angles, notamment les redoublements au cours de la carrière scolaire, des mesures d'aspects cognitifs, le pourcentage de réussite aux évaluations du CP, et les résultats aux évaluations nationales de CE2 et de 6ème. Il nous faut désormais présenter plus en détail les données mobilisées.

1.3. Présentation générale des données mobilisées

1.3.1. L'échantillon

L'échantillon de départ du panel 1997 se compose de 10.274 élèves scolarisés dans 1570 écoles de France métropolitaine. La construction de l'échantillon respecte bien entendu la représentativité de la population, comme le démontre le tableau présenté page suivante.

Tableau 2 : Les caractéristiques des élèves au CP : comparaison France / Panel 1997

Caractéristiques des élèves :		France	Echantillon
Sexe	Garçons	51,6	51,2
Sexe	Filles	48,4	48,8
	5 ans	1,2	1,3
Ago do l'álàvo	6 ans	91,4	91,4
Age de l'élève	7 ans	7	7
	8 ans et plus	0,4	0,3
	moins de 11 élèves au CP	8,3	8,3
Taille de l'école	11 à 30 élèves au CP	33,6	33,4
	plus de 30 élèves au CP	58,1	58,3
Secteur de l'école	Public	86,3	86,4
	Privé	13,7	13,6
Appartenance à une ZEP	ZEP	10	9,2
	Hors ZEP	90	90,8
	Rurale hors ZPIU	2,2	2,4
	Rurale en ZPIU	20,9	20,1
Tranche d'unité urbaine de la	Moins de 20.000 habitants	18	18,6
commune de l'école	De 20.000 à 200.000 hab.	20,7	21,2
	Plus de 200.000 hab.	21,1	21,1
	Agglomération parisienne	17,1	16,6
Ensemble		100	100

Pour l'ensemble de ces élèves nous disposons de données relatives aux caractéristiques socio-économiques ainsi que les résultats aux évaluations de CP. C'est ce premier échantillon qui servira de base à l'analyse de l'influence des caractéristiques individuelles sur la variabilité des scores au début de la scolarité obligatoire. Le tableau suivant récapitule les principales caractéristiques des élèves de l'échantillon du panel.

Tableau 3 : Les caractéristiques des élèves du panel 1997

Caractéristiques de l'é	ève :	N	Pourcentage
Sexe:	Garçon	4904	50,9
	Fille	4737	49,1
Nationalité :	Français	9109	94,3
	Etrangers	532	5,7
Année de naissance	1989	8	0,1
	1990	132	1,4
	1991 « à l'heure »	9357	97,1
	1992	144	1,5
Mois de naissance :	Janvier	800	8,3
	Février	744	7,7
	Mars	798	8,3
	Avril	789	8,2
	Mai	856	8,9
	Juin	822	8,5
	Juillet	879	9,1
	Aout	774	8
	Septembre	819	8,5
	Octobre	814	8,4
	Novembre	756	7,8
	Décembre	790	8,2
Profession du père :	Agriculteurs exploitants	270	2,8
	Artisans, commerçants et chefs d'entreprise	960	9,9
	Cadres et professions intellectuelles supérieures	1463	15,2
	Professions intermédiaires	1631	16,9
	Employés	1169	12,2
	Ouvriers	2527	32,7
	Personnes sans activité professionnelle	404	4,2
	Non renseignée	399	4,1
Durée de la scolarisation en maternelle	Pas scolarisé en maternelle 1 année 2 années 3 années 4 années et plus	15 102 516 6090 2804	0,2 1,1 5,4 63,2 29,1

L'échantillon se compose à part égale de filles et de garçons, généralement à l'heure qui, en grande majorité, sont de nationalité française. La répartition par mois de naissance est semblable aux statistiques nationales de l'Insee : bien que globalement homogène, on constate un moindre pourcentage des naissances en février et une hausse en Juillet. Si 32,7% des élèves ont un père ouvrier, ils sont deux fois moins nombreux à être enfants de cadre. La proportion d'élèves dont le père est inactif est de 4,2%. Enfin, une majorité des élèves a été scolarisée 3 ans en maternelle, puisqu'ils sont 63,2% dans ce cas, tandis qu'ils sont presque 30% à avoir été scolarisés 4 ans ou plus. Les enfants scolarisés moins de trois années en maternelle représentent seulement 6,7% de l'échantillon.

Si nous nous intéressons dans cette première partie à l'analyse de la variété des acquisitions scolaires des élèves au début de la scolarisation obligatoire, en les reliant notamment aux variables socio-économiques et scolaires classiques, nous nous intéresserons par la suite à l'évolution temporelle de ces acquisitions en analysant les relations entre les champs évalués au début du CP avec ceux du CM2 et du début du collège. L'échantillon concerne alors 7267 élèves pour les évaluations de CE2 (2000) et 6340 pour les élèves de 6ème (2002). Ceci correspond à une perte importante puisque 29% sont sortis de l'échantillon entre 1999 et 2000, et 14,5% supplémentaire entre les évaluations de CE2 et de 6ème. Cette perte est essentiellement due aux changements d'école, aux déménagements, aux non réponses, aux redoublements au cours de la scolarité élémentaire ou au manque d'information pour l'enquête famille et aux absences des élèves lors des évaluations de compétences.

1.3.2. : Les scores moyens aux épreuves au début du CP

Comme nous l'avons mentionné précédemment, les évaluations sont segmentées en 12 séquences. Elles comportent un total de 166 items répartis comme suit : connaissances générales et connaissance de l'écrit avant la lecture (22 items), lecture (tâches phonologiques - 20 items), mathématiques (épreuves numériques - 14 items), concepts liés au temps (17 items), compréhension orale (12 items), culture technique (17 items), compétence d'écriture (23 items), concepts liés à l'espace (16 items), compétences de prélecture (16 items), et enfin, nombres et figure géométriques (9 items). A ces séquences s'ajoutent deux épreuves distinctes

et évaluées de manière différente : le comportement socio-cognitif et le comportement de l'élève.

Tableau 4 : Les domaines évalués en CP pour le panel 1997

Grand domaine	Domaines	items
Connaissance générale	Connaissance générale	22
Connaissance générale	Culture technique	17
Las compétences verbales la forciliarité avec l'écrit et	Connaissance de l'écrit	22
Les compétences verbales, la familiarité avec l'écrit et	Compétence d'écriture	23
l'oral	Compréhension orale	12
	Compétence de prélecture	16
Les compétences de lecture	Lecture morphologique et syntaxique	20
	Lecture phonologique	
Les compétences logiques et la familiarité avec le	Nombres et figures géométriques	9
nombre	Compétences numériques	14
Los concento lido qui tempo et à Persona	Les concepts liés au temps	17
Les concepts liés au temps et à l'espace	Les concepts liés à l'espace	16
Los compétonese cognitives	Le comportement	
Les compétences cognitives	L'attention	

Afin de discriminer les différents champs de compétences, nous utilisons de manière récurrente les termes de « connaissances générales », « culture technique », ou encore les « concepts liés à l'espace », ceux-là mêmes utilisés par les concepteurs des épreuves. Avant d'analyser les performances des élèves dans ces différents domaines, il convient de définir ces termes et de comprendre comment les performances des élèves ont été évaluées et pourquoi.

1.3.2.1. Définition et mesure des compétences attendues

Comprendre ce que recouvrent les différents champs de compétence est essentiel à l'analyse des performances des élèves, c'est pourquoi nous exposons les définitions et mesures des compétences attendues selon les six principaux domaines examinés.

1.3.2.1.1. Connaissances générales et culture technique

Peu d'études se sont intéressées à l'évaluation des connaissances sur les objets techniques à ce niveau précoce de la scolarité. Pourtant, dès l'école maternelle, les activités techniques, utilisant les instruments, contribuent au développement des compétences cognitives et sociales des enfants. De manière ludique, les enfants s'habituent à tenir et échanger crayons de couleurs et feutres. Le dessin, par le maniement des crayons, est une propédeutique à l'écriture, permettant à l'enfant de s'initier à la maitrise de cet instrument. En découpant une feuille de papier, l'enfant multiplie, dénombre. Par la présentation d'objet du quotidien, une montre, une règle, un calendrier, l'enfant prend peu à peu mesure de la notion de temps et d'espace. C'est grâce à cet enseignement technique que l'école maternelle permet aux enfants de découvrir les objets et de comprendre leur fonctionnement, de découvrir la matière et ses caractéristiques, de se repérer dans le temps et d'en percevoir les règles essentielles. Toutes ces découvertes font partie du programme de l'enseignement maternel. L'évaluation des connaissances techniques des enfants repose sur six épreuves. Chacune d'entre elles est précédée d'une épreuve d'essai visant à familiariser les enfants avec les modes de réponse (entourer ou colorier). Elles sont présentées de façon synthétique au tableau suivant.

Tableau 5 : Représentation synthétique des épreuves de culture technique du panel 1997

Les outils

Extrait de : Culture technique et connaissance de l'environnement technique par Weil-Barais, A. ; Lebaume, J. et Martinand, J.-L. (Dans Colmant et al., 2002, p. 68).

1.3.2.1.2. Les compétences verbales, la familiarité avec l'écrit et avec l'oral

La communication entre enfants, et entre enfants et adultes, s'effectue avant tout à l'oral. On a longtemps considéré que les enfants s'imprégnaient du langage oral au sein de la cellule familiale, et qu'ils constituaient ainsi au fur et à mesure les bases de leur autoformation. La maîtrise du langage oral s'effectuerait alors naturellement. Ce postulat a été complété par les psychologues et les psychologueses. En effet, c'est bien dans l'interaction avec les adultes, les parents essentiellement, qui oralisent les actions quotidiennes et adaptent leur lexique, que les enfants développent leurs compétences langagières. Cependant, avec une scolarisation maternelle dès 2 ans pour les plus précoces, il est indéniable que l'école joue un rôle considérable dans cet apprentissage. Selon Florin (2007), apprendre à parler c'est

« mettre en mots la vie de la classe, parler de ce qui se passe, ce qui s'est passé, ce qui va advenir, mettre des mots sur les émotions, faire le lien entre le non verbal et le verbal, développer les jeux avec le langage et ses sonorités pour aider à entrer dans l'écrit et à associer phonèmes et graphèmes, expliciter et faire expliciter l'implicite, aider à comprendre, utiliser les différentes fonction du langage. » (Florin, 2007; page 17). Ainsi, plusieurs dimensions sont réunies ici: le langage oral est un outil de communication permettant un premier pas vers l'apprentissage de l'écrit, mais il permet également la mise en perspective, dès la maternelle, des évènements dans le temps et dans l'espace, dans le réel ou dans l'imaginaire.

Les enfants n'appréhendent pas l'école maternelle avec la même densité de lexique, ni avec la même capacité à évoquer de l'imaginaire. Florin et al., dans une étude de 1998 réalisée pour la direction de l'enseignement scolaire, constatent que 25% des élèves de grande section de maternelle ont des difficultés dans la compréhension orale de phrases simples. Or, il apparait que les enfants qui participent moins fréquemment aux conversations scolaires obtiennent des résultats inférieurs à ceux de grands parleurs, et ce, quelle que soit la discipline évaluée

Si « l'acquisition d'un langage oral riche, organisé et compréhensible par l'autre » constitue un des principal objectif de l'école maternelle (cf. BO n°3 du 19 juin 2008, p. 12), la compréhension d'un mot écrit constitue aussi un premier pas vers la lecture. Compréhension orale et compréhension verbale font appel à des mécanismes communs. De nombreuses recherches ont mis en évidence l'existence de corrélations élevées entre la compréhension à l'oral et la lecture, même s'il convient de nuancer ces propos. En effet le caractère permanent de l'écrit permet des retours en arrière et une adaptation de la vitesse de traitement que ne permet pas le langage oral (Fayol, 1992). Ainsi, pour un élève bon lecteur, la compréhension d'un texte écrit est souvent équivalente à sa compréhension du même texte présenté à l'oral.

Bara et al. (2004, 2006) se posent légitimement la question suivante : comment les enfants apprennent-ils à écrire et comment les y aider ? En effet, il peut nous sembler facile d'écrire puisque son fonctionnement est automatisé chez l'adulte et demande donc peu de

ressources cognitives. Cependant, il s'agit bien d'une activité complexe qui demande un apprentissage long et fastidieux, consistant à l'acquisition d'une représentation visuelle et motrice de la lettre. Les auteurs rappellent les différentes étapes d'apprentissage de l'écriture qui débutent progressivement dès l'âge trois ans :

- En effet, à partir de trois ans les enfants ont acquis certaines caractéristiques de l'écriture, comme le sens (de gauche à droite) et la linéarité, et commencent par tracer des lignes ou des gribouillis.
- Puis, entre trois et quatre ans, ils commencent à se servir des pseudo-lettres ou de cercles avant d'utiliser essentiellement les lettres de leur prénom. Ce n'est qu'à partir de cet âge que les enfants peuvent surmonter les contraintes motrices nécessaires à l'acquisition de l'écriture, en particulier réaliser des cercles dans le sens inverse des aiguilles d'une montre. Au fur et à mesure de l'apprentissage, accompagné d'une pratique intense, ces mouvements s'automatisent, et finissent par devenir plus surs et plus rapides.
- Vers cinq ans, ils commencent à associer les lettres aux sons. La maturation du système moteur et l'apprentissage permettent aux enfants d'écrire des chaines de plus en plus longues (lettres, prénom,...).

Plusieurs facteurs influencent directement l'acquisition de l'écriture : les compétences linguistiques, visuelles ou les habilités motrices sont de bons indicateurs des performances en écriture des enfants d'école maternelle et primaire. Reprenons l'exemple cité par les auteurs (Bara et al.; 2006), « Le test développemental d'intégration visuo-motrice, qui consiste en des taches de copie de figures géométriques, permet de prédire les performances en écriture des enfants d'école élémentaire. Les enfants de maternelle ayant réussi à copier les figures du test (ligne verticale, ligne horizontale, cercle, croix, carré, oblique, triangle...) sont capables de copier beaucoup plus de lettres lisibles que les enfants échouant à ce test. ». De manière générale, on observe que les filles obtiennent de meilleurs résultats à ces tests que les garçons. Cet avantage s'explique par le fait que les filles développent plus précocement que les garçons la coordination motrice mais aussi par le contexte environnemental et l'éducation parfois stéréotypée des filles qui développent alors une écriture plus soigneuse et appliquée.

Pour conclure cette partie retenons ceci : les caractéristiques motrices ont une telle influence sur l'apprentissage de l'écriture qu'il est nécessaire que les jeunes enfants s'exercent à tracer des cercles inverses aux aiguilles d'une montre, à copier des figures géométriques, des lettres. En automatisant ces actes, ils pourront ainsi libérer des ressources attentionnelles qu'ils pourront focaliser sur l'orthographe ou la construction de texte.

Dans les épreuves du panel 1997, compréhension orale et familiarité avec l'écrit sont évaluées de manière distincte. Durant l'épreuve de compréhension orale, l'élève doit entourer l'image correspondant le mieux à l'énoncé du professeur. L'épreuve d'écriture est présentée telle quelle :

- « a) trois items demandaient que les enfants écrivent ou identifient des mots ;
- b) six items nécessitaient l'écriture de lettres voyelles ou consonnes ou le complètement de mots par des lettres (a dans ballon ; i dans livre) ;
- c) six séries de signes arithmétiques (-/+) que les enfants devaient mémoriser temporairement puis rappeler (par exemple : (+-+) ou (-++--)). Ces séries comportaient des alternances de (++) et de (-+) variant de (-/+) due les enfants devaient mémoriser temporairement puis rappeler (par exemple : (-/+)) que les enfants devaient mémoriser temporairement puis rappeler (par exemple : (-/+)) que les enfants devaient mémoriser temporairement puis rappeler (par exemple : (-/+)) que les enfants devaient mémoriser temporairement puis rappeler (par exemple : (-/+)) que les enfants devaient mémoriser temporairement puis rappeler (par exemple : (-/+)) que les enfants devaient mémoriser temporairement puis rappeler (par exemple : (-/+)) que les enfants devaient mémoriser temporairement puis rappeler (par exemple : (-/+)) que les enfants devaient mémoriser temporairement puis rappeler (par exemple : (-/+)) que les enfants devaient mémoriser temporairement puis rappeler (par exemple : (-/+)) que les enfants devaient mémoriser temporairement puis rappeler (par exemple : (-/+)) que les enfants devaient mémoriser temporairement puis rappeler (par exemple : (-/+)) que les enfants devaient mémoriser temporairement puis rappeler (par exemple : (-/+)) que les enfants devaient mémoriser temporairement puis rappeler (par exemple : (-/+)) que les enfants devaient mémoriser temporairement puis rappeler (par exemple : (-/+)) que les enfants devaient mémoriser temporairement puis rappeler (par exemple : (-/+)) que les enfants devaient mémoriser temporairement puis rappeler (par exemple : (-/+)) que les enfants devaient mémoriser temporairement puis rappeler (par exemple : (-/+)) que les enfants devaient mémoriser temporairement puis rappeler (par exemple : (-/+)) que les enfants devaient mémoriser temporairement puis rappeler (par exemple : (-/+)) que les enfants devaient mémoriser temporairement puis rappeler (par exemple : (-/+)) que les enfants devaient mémoriser temporairement puis
- d) cinq séries de lettres à mémoriser incluant au moins une voyelle et deux consonnes. Ces séries comptaient de 3 (opl; pol) à 4 (pilo, plol) et 5 (opilo) lettres. Les suites de lettres étaient plus ou moins facilement prononçables (cf. opl vs. pol) et se rencontraient plus ou moins fréquemment dans la langue. »

Extrait de Les compétences verbales et la familiarité avec l'écrit par Michel Fayol (Dans Colmant et al, 2002, p. 49).

1.3.2.1.3. Les compétences de lecture

L'apprentissage de la lecture est un apprentissage fondamental de l'école primaire, avec l'apprentissage de l'écriture et des mathématiques. S'il s'agit d'un sujet qui passionne de nombreux pédagogues, avec, au cœur des débats, l'usage d'une méthode plutôt qu'une autre, les psychologues tentent d'en comprendre les mécanismes d'acquisition et de fonctionnement. Pour aborder efficacement l'apprentissage de la lecture, un certain nombre de compétences préalables doivent être acquises tant d'un point de vue intellectuel que du point de vue psychomoteur, à savoir la compréhension du langage oral, l'aptitude à l'analyse et à la synthèse, mais aussi la latéralisation et la motricité fine.

La lecture peut être définie comme une activité de compréhension d'une information écrite. Cette information est en général une représentation du langage sous forme de symboles identifiables par la vue, ou même par le toucher (Braille). Pour comprendre un texte, il faut mettre en relation ces informations avec les connaissances stockées dans la mémoire à long terme. Au fil des mots qui se succèdent, le lecteur construit des représentations cognitives en s'appuyant sur ces connaissances. Le rôle que joue la mémoire de travail est de toute première importance puisque c'est elle qui permet de stocker temporairement l'information pour la traiter presque simultanément.

Un des principaux objectifs de la première année de l'école primaire, si ce n'est le principal, est d'amener chaque élève à lire et à écrire. Les enseignants s'y emploient dès la maternelle où l'élève apprend progressivement à écrire et reconnaitre son prénom, à compléter la chaine alphabétique, à associer graphème et phonème. Le lexique, qu'il soit oral ou écrit, s'acquiert par exposition et répétition au sein de la famille mais aussi dès l'école maternelle. Les compétences des jeunes enfants débutants leur scolarisation sont très hétérogènes : alors que certains élèves utilisent des mots-phrases, d'autres font part d'un vocabulaire déjà plus diversifié. En ce sens l'école maternelle permet à tous les enfants, quelle que soit leur origine sociale, d'accéder à un lexique nouveau. Comme il est précisé dans une circulaire de 2007 (Bulletin officiel n° 12 du 22 mars 2007) portant sur l'acquisition d'un vocabulaire nouveau, « Dès l'école maternelle devra être mise en place une initiation déjà méthodique au vocabulaire ». Il est même précisé que « en grande section, l'apprentissage d'un ou deux mots nouveaux par jour sera un objectif ».

Cependant l'écoute et la répétition ne suffissent pas toujours à acquérir un nouveau lexique, c'est-à-dire être capable de le maintenir en mémoire, le comprendre, se l'approprier et l'utiliser à bon escient. Dans la longue marche vers l'apprentissage de la lecture et la compréhension de texte, l'acquisition du vocabulaire plus touffu constitue un bon élément de départ. Pour ce faire, l'école maternelle aide l'enfant à développer trois compétences : apprendre la polysémie des mots déjà connus, apprendre des synonymes de ces mots connus, puis apprendre un nouveau lexique.

Comment évaluer les compétences en lecture chez des enfants venant d'entrer au CP, c'est-à-dire débutant à peine l'enseignement de la lecture ? La mesure de cette compétence s'appuie sur l'analyse des résultats à quatre différentes épreuves.

- La lecture : cette première épreuve a pour but d'identifier les élèves ayant des connaissances de base de la lecture avant même son instruction officielle. L'élève doit reconnaitre des mots ou des pseudo-mots écrits, des mots simples donnés oralement (parmi 4 propositions). Par exemple, il s'agit pour lui d'entourer "sur" parmi "mal mur sur lune", ou "mida" parmi "dima sali neda mida".
- La connaissance des lettres : elle se mesure *via* deux types d'épreuves, la connaissance de l'alphabet et du son des lettres. Dans le premier cas, « *il s'agit de mesurer la connaissance que les enfants ont du nom des lettres, connaissances dont on sait qu'elle est un très bon prédicteur de l'apprentissage de la lecture.* » (Gombert et Desvignes, dans Colmant et al., 2002, page 59) . Dans ce cas, l'élève doit reconnaitre une lettre donnée oralement parmi 4 propositions écrites (par exemple, il doit entourer « *La lettre qui s'appelle (f) parmi F Z W U* »). Dans le second cas, il s'agit d'évaluer les premières connaissances du code alphabétique. L'élève doit reconnaître « *la lettre qui écrit le "bruit" [n] parmi M N L J* »).
- La conscience phonologique: comme les épreuves précédente, la conscience phonologique des élèves se mesure via deux séries de tests. Dans la première, la sensibilité à la décomposition de la syllabe, l'élève doit identifier un intrus (par exemple, quel est le mot qui ne finit pas pareil que les autres dans car selle pelle puis dans quille six fille). La seconde épreuve est une tâche d'analyse en segments phonologiques. « Elle est destinée à évaluer la capacité des élèves à identifier consciemment des segments phonologiques inférieurs à la syllabe. Après un item de démonstration, les enfants doivent retrouver parmi 4 objets représentés sur des images celui dont le nom peut être obtenu en supprimant l'attaque (groupe consonantique initial) du nom d'un autre objet représenté sur les autres images. (les noms sont donnés à voix haute par l'enseignant) : "trois" sans tr à retrouver entre "deux oie râteau train". » (Gombert et Desvignes, dans Colmant et al., 2002, page 60)
- Enfin, deux types d'épreuves évaluent la connaissance syntaxique de l'élève. Dans une première tâche, les enfants doivent juger de l'exactitude de la grammaticalité pour

chacune des phrases suivantes: « Paul ont beaucoup d'images » ; « il croque pomme la » ; « je me lave les mains » ; « il mangea la tarte ». S'en suit une seconde tâche où l'enfant doit différencier deux types d'agrammaticalité : les mots des phrases sont soit mélangés, soit incorrects (« Pierre suce pouce son » ; « il ciri ses chaussures »).

1.3.2.1.4. Les compétences logiques et la familiarité avec le nombre

Les compétences logiques et la familiarité avec le nombre regroupent deux passations de tests évaluant les compétences numériques d'une part, et la familiarité avec les nombres et les figures géométriques d'autre part. Les compétences logiques sont mesurées à travers quatre épreuves : une première épreuve de complément de la chaine écrite, une seconde de comparaison, une troisième d'opérations simples, et enfin une dernière épreuve de dénombrement. La familiarité avec le nombre, quant à elle, est évaluée différemment : l'élève doit identifier des nombres écrits en chiffres arabes ainsi que des figures géométriques dictés verbalement.

« L'épreuve est constituée de deux items de familiarisation, et de neuf items de test, qu'on peut distinguer en deux catégories :

- quatre items avec figures géométriques, où il s'agit d'identifier des carrés, des rectangles, des triangles ou des cercles parmi d'autres distracteurs ;
- cinq items pour l'identification des nombres. Deux items concernent des éléments lexicaux isolés («douze» et «neuf») ; trois autres items correspondent à des nombres impliquant l'utilisation de règles syntaxiques (relation additive) : «dix-neuf», «vingt-deux» et «vingt-cinq». Le principe de cette épreuve collective est très simple : l'enfant doit identifier le nombre ou la figure dictés oralement, dans une série de huit cibles. »

Extrait de Nombres et figures géométriques par Mohamed Bernoussi (Dans Colmant et al., 2002, p. 39).

1.3.2.1.5. Les concepts liés à l'espace et au temps

Ces deux épreuves sont destinées à évaluer la maîtrise des concepts spatio-temporels chez les enfants entrant au primaire. Inspirées directement du *Test des concepts de bases* d'Ann E. Boehm (2009), les épreuves ont été adaptées spécifiquement pour des enfants de 6 ans. Ces épreuves évaluent le degré d'acquisition des concepts de base liés à l'espace, c'est-à-dire la direction (gauche/droite), ou la position (au dessus/au-dessous). L'acquisition et la maîtrise de ces concepts constituent un premier pas vers l'apprentissage de la lecture.

La maîtrise des concepts temporels est mesurée par la capacité de l'élève à séquencer un évènement, c'est à dire en identifiant le début et la fin, mais surtout, et c'est le plus discriminant, en discernant correctement les étapes intermédiaires.

« A chaque dessin présenté aux enfants est associée une tâche qui implique la connaissance d'un concept spatial ou temporel selon l'épreuve. Le test spatial est composé de 2 items d'essais et de 16 items-tests (2 items par concept : devant ; derrière ; au-dessus ; au-dessous ; droite ; gauche ; le plus loin ; entre). Le test temporel est composé de : 1 item d'essai, de 14 items-tests (2 items par concept : début ; fîn ...), de 2 histoires à compléter et de 1 épreuve de repérage dans le temps (...). La consigne est la suivante (essai 1, épreuve sur les concepts temporels) : nous allons regarder ensemble des dessins. Faites bien attention car pour chaque dessin, il va falloir faire une croix sur un objet. Par exemple regardez le dessin où il y a des fruits. Faites une croix sur la banane Attention, quand vous avez fait la croix, à chaque fois, attendez que je vous dise quel dessin il faut regarder. C'est bien compris. »

Concepts liés au temps et à l'espace par Frédérique Robin (Dans Colmant et al., 2002, p. 35).

Les passations des épreuves portant sur les concepts temporels et sur les concepts spatiaux sont collectives. Le codage des réponses est dichotomique : 1 pour une bonne réponse (c'est-à-dire une croix sur le bon item) et la note 0 pour une réponse mauvaise ou nulle (c'est-à-dire une croix sur un item différent, ou lorsque l'élève n'a pas dessiné de croix).

1.3.2.1.6. Les compétences cognitives

Les compétences cognitives sont appréhendées par le comportement socio-cognitif et l'attention des élèves en classes. Ces deux aspects sont évalués de manières différentes :

« L'épreuve d'attention partagée consiste à recopier des signes (...), tout en écoutant une histoire lue par l'enseignant. Au cours de l'histoire, dès que l'enfant entend un nom désignant une couleur (8 items), il doit entourer le signe qu'il est en train de recopier, puis continuer la reproduction de signes (...). A la suite de cette tâche duelle, une épreuve de rappel incident est proposée aux enfants, sur le contenu de l'histoire qu'ils ont entendue. Ils doivent cocher les dessins correspondant aux différents aspects de l'histoire, alors qu'ils n'ont pas été prévenus à l'avance qu'il y aurait un rappel. Cette seconde épreuve permet de savoir si les enfants ont traité en profondeur l'ensemble des stimuli verbaux, ou s'ils ont au contraire traité exclusivement les noms de couleurs, les indices dits pertinents. Il y a 9 dessins au total, et 3 seulement ont un rapport avec l'histoire. Les deux épreuves (tâche duelle et rappel) se succèdent sans interruption. »

Extrait de : Epreuve d'attention partagée par Capponi. (Dans Colmant et al., 2002, p.30)

L'évaluation de l'attention de l'élève cherche à déterminer dans quelle mesure l'élève est capable de partager ses ressources attentionnelles entre deux sources d'informations. C'est pour cela que l'on lui propose une double tâche. Il s'agit d'une mesure des capacités de la mémoire de travail. La mémoire de travail est une structure mentale permettant d'effectuer simultanément le maintien temporaire et la manipulation d'informations pendant la réalisation de tâches cognitives complexes telles que la compréhension ou l'apprentissage. La plupart des activités cognitives auxquelles nous sommes quotidiennement confrontés impliquent de multiples étapes ainsi que le maintien temporaire des résultats intermédiaires pendant l'accomplissement de la tâche. Depuis une trentaine d'années, et les recherches de Baddeley et Hitch (1974), la mémoire de travail n'a cessé d'occuper une place toujours plus importante en psychologie, en plaçant cette notion au cœur du fonctionnement cognitif humain. Par le biais de leurs travaux, Baddeley et Hitch montrent que les modèles précédents de mémoire à court terme (notamment celui d'Atkinson et Shiffrin en 1968) ne peuvent remplir le double rôle de maintien et de traitement de l'information de façon simultanée. Depuis lors, les modèles théoriques décrivant la structure et le fonctionnement de cette mémoire de travail se

multiplient (Miyake et Shah, 1999), et le champ d'investigation s'élargit : on s'interroge désormais sur son évaluation (Daneman et Carpenter, 1983 ; Turner et Engle, 1989), ses relations avec l'attention (Cowan, 2005 ; Engle, 2002), « l'intelligence » (Kane et al., 2001), la mémoire à long terme (Rosen et Engle, 1997), et, plus récemment, avec les performances scolaires (Barrouillet et al., 2008). Il est important de comprendre le fonctionnement de la mémoire de travail, composée de trois éléments selon le modèle de Baddeley et Hitch :

- L'administrateur central: il désigne le mécanisme attentionnel de contrôle et de coordination des systèmes esclaves (boucle phonologique et calepin visuo-spatial). Ce système de contrôle est chargé de sélectionner, coordonner et contrôler les opérations de traitement. Les auteurs précisent qu'il n'entre pas directement en action dans le stockage, mais plutôt dans le contrôle de l'attention puisque c'est lui le responsable des fonctions exécutives de plus haut niveau : planification, coordination, inhibition et récupération d'informations.
- La *boucle phonologique* : elle est capable de retenir et de manipuler des informations sous forme verbale
- Le *calepin visuo-spatial* (CVS): il est chargé des informations codées sous forme visuelle.

Le modèle mis au point par Baddeley et Hitch est novateur et trouve son originalité dans le système dynamique qu'il propose et dans lequel le stockage et le traitement de l'information sont assurés par des structures cognitives spécialisées se partageant les ressources attentionnelles : un système attentionnel de contrôle appelé le *central executive* (ou administrateur central), et deux systèmes dits esclaves : la boucle phonologique et le calepin visuo-spatial. Coordonnés par l'administrateur central, les deux systèmes esclaves (la boucle phonologique et le calepin visuo-spatial) s'assurent du maintien temporaire en mémoire des représentations langagières et imagées. Il semble que le fonctionnement de la boucle phonologique, qui a fait l'objet de nombreuses recherches, soit mieux connu que celui de l'administrateur. En effet, afin de maintenir temporairement les informations verbales et acoustiques en mémoire, elle se dote d'un mécanisme de répétition articulatoire. Le calepin visuo-spatial serait constitué d'une structure similaire.

Selon ce schéma, les ressources attentionnelles nécessaires au maintien et au traitement de l'information qui constituent la capacité de la mémoire de travail sont limitées. Plus que cela, les deux fonctions de stockage et de traitement se trouvent en compétition dans le partage de ressources. En intégrant cette théorie sur le fonctionnement de la mémoire de travail aux apprentissages, le défi principal sera donc de trouver la gestion la plus économe et la plus efficace possible de ces ressources attentionnelles limitées.

Le comportement socio-cognitif de l'élève est mesuré à travers son attitude au sein de la classe et la confiance en soi. Il est fréquent d'observer un lien entre une image de soi élevée et de bons résultats scolaires : un élève confiant en lui se sent souvent capable de réussir et réussit. Mais, peut-on pour autant affirmer que les élèves en difficulté scolaire manifestent une faible confiance en eux et en leurs capacités? Autour de cette question se sont développées de fortes controverses. La confiance en soi influence-t-elle les résultats scolaires? Ou bien à l'inverse, les performances scolaires orientent-elles l'image de soi? Une troisième perspective souligne l'interrelation entre ces deux phénomènes. En effet, de bons résultats scolaires peuvent renforcer positivement l'image de soi, tout comme une faible image de soi peut empêcher un élève de s'investir dans sa scolarité, de se fixer des objectifs élevés, puisqu'il se croit voué à l'échec. De façon générale, l'image qu'un élève a de soi peut contribuer à valoriser ou diminuer ses aspirations, ses projets et par-là même ses compétences (Bolognini et al., 1998). L'évaluation de l'estime que l'élève peut avoir de lui-même et de ses capacités repose sur 6 items fonctionnant selon la même logique : on demande à l'élève quel serait sa position hypothétique à une course à pied, à vélo, de piscine... Il doit entourer, sur un dessin correspondant à l'énoncé, le personnage qu'il veut incarner : celui qui arrive le premier, le dernier, au milieu, celui qui est à l'écart... L'attitude des élèves en classe repose sur une observation de leur professeur. Pour chacun des 15 comportements décrits, ils doivent situer chaque élève sur une échelle à 4 propositions (comportement jamais, parfois, souvent, ou habituellement remarqué).

1.3.2.2. Les scores moyens par domaines

Le tableau qui suit fournit les scores moyens, exprimés en pourcentages de réussite, ainsi que les écart-types, pour les élèves de CP.

Tableau 6 : Scores moyens des élèves par domaine (panel 1997)

Scores CP en 1997	Moyenne	Ecart-type
Score connaissances générales	78,7	15,1
Score connaissance de l'écrit	56,8	20,2
Score lecture tâches phonologiques	55,8	21,6
Score lecture morphologie & syntaxe	68,6	21,3
Score compétences épreuve numérique	64,1	20,2
Score concepts liés au temps	77,1	16,7
Score compréhension orale	75,3	16,9
Score compétences d'écriture	57	20,8
Score concepts liés à l'espace	89,6	12,9
Score compétences de prélecture	66,9	21,8
Score nombres & figures géométriques	80,2	20,5
Score culture technique	65,6	18,5

Comme nous pouvons le constater, les scores diffèrent sensiblement selon le domaine évalué. Les scores les plus faibles sont obtenus en lecture (tâches phonologiques), en connaissance de l'écrit et en compétence d'écriture, avec une moyenne inférieure à 60. A l'inverse, les élèves semblent plus à l'aise avec les concepts liés au temps, avec les nombres et les figures géométriques, en compréhension orale et en connaissance générale, avec un score moyen supérieur à 75. Ils se distinguent particulièrement avec les concepts liés à l'espace, où le score moyen s'élève à presque 90. Les scores moyens ne sauraient être suffisants pour rendre compte des performances des élèves, car ils ne nous renseignent ni sur la réussite des différents groupes d'élèves ni sur l'homogénéité des résultats. En effet, derrière un score moyen semblable peut se cacher une variété importante de résultats.

La présentation de la courbe de fréquence cumulée croissante (en annexe) est une autre manière d'appréhender graphiquement la répartition des scores et de saisir les différences individuelles. Cette courbe fait correspondre graphiquement la fréquence cumulée des élèves ayant atteint un score donné. Nous avons choisi de présenter la courbe de fréquence cumulée du score en lecture morphologique et syntaxique. Pour ce domaine, la moyenne s'élève à 68,8 et l'écart-type est de 21,3. On s'aperçoit en observant cette courbe que 30% des élèves environ réussissent moins de 50% des items de lecture morphologique et syntaxique, et qu'à l'inverse, ils sont 20% à obtenir un score supérieur ou égal à 80% de réussite, ce qui illustre à nouveau la variété des résultats individuels.

1.3.3. Le score global

L'analyse des données du panel consiste en partie à examiner les performances des élèves en les rapprochant des variables socio-économiques. Dans un premier temps, la construction d'un score par domaine permet, en regroupant les performances des élèves aux items correspondants, d'appréhender la réussite par champ disciplinaire. Nous sommes ainsi en mesure d'analyser l'impact des caractéristiques socio-économiques des élèves pour chacun de ces domaines. De plus, agréger toutes les données ne semble pas dénué de tout intérêt. Cela permet d'avoir une vision plus globale des relations existantes entre la genèse des compétences et les caractéristiques du milieu familial et scolaire de l'enfant. C'est ainsi qu'apparait la nécessité d'un indicateur synthétique.

Avant cela, on peut déjà s'intéresser aux relations statistiques existant entre chacun des domaines évalués. La matrice de corrélation de la page suivante présente les coefficients de corrélation linéaire pour chaque croisement possible. Par exemple, la réussite en « compétence d'écriture » est fortement associée aux performances en prélecture comme l'indique le coefficient de corrélation élevé (r = 0,66). Ce résultat est plutôt intuitif, mais il existe aussi des relations entre domaines *a priori* très différents, comme le montre le tableau suivant.

Tableau 7 : Matrice de corrélation : les relations entre les domaines (panel 1997)

Epreuves	Lecture	Compréhension	Lecture, tâches Concepts liés au	Concepts liés au	Compétences	Compétences	Figures	Compétence	Connaissance	Culture	Connaissance
•	morphologique	orale	phonologiques	temps	numériques	d'écriture	géométriques	en prélecture	de l'écrit	technique	générale
Compréhension orale	,299										
Lecture, tâches phonologiques	,354	,332									
Concept lié au temps	,365	,464	,443								
Compétences numériques	,360	,383	,462	,545							
Compétences d'écriture	,356	,378	,485	,510	,604						
Nbres et figures géométriques	,290	,320	,350	,442	,534	,516					
Compétences en prélecture	,311	,331	,451	,459	,545	,656	,528				
Connaissance de l'écrit	,300	,325	376,	,427	,440	,455	,377	,426			
Culture technique	,284	,380	,329	,479	,394	,377	,323	,320	,320		
Connaissance générale	278	,318	,319	,407	,349	,336	,293	,305	,333	,317	
Concepts lié à l'espace	,239	,323	,257	986,	,333	,355	,320	,312	,258	,301	,248
	Toutes les corrélations sont significatives au seuil de 0 001	nt cionificatives	an senil de 0 00								

Toutes les corrélations sont significatives au seuil de 0.001

Comme l'indique le tableau ci-dessus, les corrélations entre chaque domaine sont toutes positives et significatives. Elles varient sensiblement, de +0,24 à +0,66, ce qui souligne que les relations fluctuent selon les domaines. Les corrélations les plus faibles sont signifiées en bleu (inférieure à +0,3). On peut constater que ces faibles corrélations sont souvent associées à deux domaines, la lecture morphologique et les concepts liés à l'espace. Ainsi, il s'agit de domaines plus autonomes qui entretiennent moins de liaisons avec les autres domaines. A l'inverse, les plus fortes corrélations, supérieures à +0,6, sont indiquées en rouge (ou orange quand l'indicateur est compris entre +0,5 et +0,6). Ainsi, la réussite en « compétences d'écriture » est fortement associée aux performances en prélecture et aux compétences numériques. Il est important de noter qu'il existe des liens étroits entre domaines a priori très différents, comme mentionné précédemment, et non uniquement entre champs d'un même domaine. C'est pourquoi il apparait important d'étudier la structure des relations entre toutes les compétences et ne pas se cantonner à une analyse par domaines.

Ces relations, parce que positives et significatives, indiquent également qu'un élève ayant obtenu de bons résultats à un domaine a généralement de fortes probabilités d'obtenir de bonnes performances aux autres. De la même manière, la cohérence entre les items d'un même domaine est, elle aussi, importante. En effet, les résultats globaux des différents domaines seront d'autant plus pertinents que les items qui les constituent forment un ensemble homogène. Dans son rapport, Colmant (2002) met en évidence cette cohérence interne des épreuves en calculant, pour chacune des séquences, la corrélation entre tous les items *via* l'alpha de Cronbach. Il s'agit d'un coefficient de « fidélité » qui teste statistiquement la cohérence des réponses inter-items.

Tableau 8 : Les alphas de Cronbach des domaines évalués (panel 1997)

2A	Lecture (tâc
2B	Mathématiq
3B	Concepts lie
4A	Compréhen
4B*	Culture tech
5A	Ecriture
5B	Concepts lie
6A	Lecture (cor
6B	Mathématic

Source: Colmant et al. (2002)

Les valeurs de cet indice, presque toujours supérieures à 0,65, indiquent une cohérence d'ensemble acceptable pour chaque épreuve. Seule exception, la séquence 4A de compréhension orale, où la valeur de l'indice (0,58) signale une moindre cohérence interne. A l'inverse, un seul domaine présente un alpha de Cronbach supérieur à 0,8, celui de l'écriture. A une échelle plus globale, c'est-à-dire réalisée sur l'ensemble des items de l'évaluation de CP, la valeur de l'alpha s'élève à 0,94. Ainsi, ces indicateurs statistiques incitent à l'élaboration d'un score global qui semble approprié pour appréhender les performances de manière plus générale.

Le score global correspond au taux de réussite moyenne pour l'ensemble des épreuves. Il a été établi à partir des scores moyens de chaque séquence pour lesquels on a calculé une moyenne générale. La moyenne du score global est de 68,9 avec un écart-type de 12,9. Ainsi, 95% des élèves obtiennent un score compris entre [68,9 - 2*(12,9); 68,9 - 2*(12,9)]; soit entre 43,1 et 94,7. L'histogramme du score global figure en annexe.

Afin de saisir la répartition des scores et les différences individuelles, nous allons nous intéresser à la présentation de la courbe de fréquence cumulée croissante du score global.

100-90-80-80-60-50-50-20-10-

Graphique 1 : Courbe cumulée croissante du pourcentage d'items réussis à l'évaluation de CP (panel 1997)

Cette courbe correspond à la fréquence cumulée d'élèves ayant atteint un score donné. On s'aperçoit ici que seulement 10% des élèves réussissent moins de 50% des items sur l'ensemble des domaines évalués au CP, et que 50% ont un score égal ou inférieur à 70% de réussite. A l'inverse, on remarque que seulement 20% des élèves obtiennent un score supérieur à 80% de réussite. La moitié des élèves réussissent au moins 69,7% des items lors de l'évaluation de CP (chiffre correspondant au 5^{ème} décile).

40.00

60,00

% d'items réussis évaluation CP

80,00

100,00

20,00

Cependant, il faut se rappeler que le score global est, par essence, une mesure générale des performances des élèves, et qu'il ne permet pas, à ce titre, d'appréhender les disparités importantes qui existent entre les domaines, et entre les élèves au sein d'un même champ. En lecture (tâche phonologique) et en compétence d'écriture par exemple, les écarts entre les élèves peuvent être très importants : pour cette dernière compétence, les élèves du premier décile obtiennent 30 points, contre 87 pour les 10% les plus doués. La répartition des scores en lecture phonologique est proche, avec 25 points pour les élèves du premier décile, et 83 pour les plus forts. Dans ces deux domaines, 45% (compétence d'écriture) et 50% (lecture phonologique) des élèves échouent à plus de la moitié des items. D'autres épreuves

accumulent un pourcentage d'items réussis plus élevé et une moins forte proportion d'élève faible. Pour les concepts liés à l'espace, les 10% les plus faibles obtiennent tout de même un score de 75% de réussite, et 50% des élèves dépassent les 93% de réussite.

A l'aune de cette première approche descriptive des données du panel 1997, il apparait que les scores des domaines évalués sont liés les uns aux autres et, même si l'intensité de la relation varie sensiblement selon les champs, elle touche des domaines *a priori* très différents. Ainsi, un élève qui réussit dans un domaine, à de forte probabilité de réussir aux autres ; mais la réciproque est également vraie : un élève en situation d'échec le sera surement dans tout les domaines.

Les différences de réussite au CP, c'est-à-dire au tout début de la scolarisation obligatoire, résultent, entre autres, de l'impact de variables démographiques, cognitives et socio-économiques. A titre d'illustration, Florin et al. (2004) ont mis en évidence l'impact du mois de naissance sur les performances, Duru-Bellat et al. (2001), l'impact du sexe et de l'origine sociale, et Caille (2001) l'impact de la scolarisation dès deux ans. Il est nécessaire de comprendre dans quelle mesure ces facteurs affectent les acquisitions des élèves à l'entrée au CP.

Chapitre 2. L'analyse des résultats des élèves au CP

Dans ce deuxième chapitre, nous chercherons à comprendre les relations existantes entre la genèse des compétences et les caractéristiques du milieu familial et scolaire de l'enfant à travers plusieurs analyses, tout d'abord par une description des variables indépendantes, mais surtout par une analyse de la variété des acquisitions scolaires des élèves au début du CP, en la reliant notamment aux variables socio-économiques et scolaires classiques : le sexe, la nationalité de l'enfant, la composition de la famille, la profession des deux parents, et la durée de la scolarisation en maternelle.

Nous cherchons à analyser la manière dont ces caractéristiques sont reliées aux performances scolaires des élèves. Par la suite, nous chercherons 1) à déterminer quelles sont les compétences les plus prédictives des performances ultérieures, en étudiant les relations entre les scores de CP et les scores en CE2 et en 6^{ème}, puis 2) à analyser l'influence des facteurs cognitifs sur les performances des élèves en CP.

Nous allons donc maintenant décrire des caractéristiques socio-économique et scolaire des élèves ainsi que leur effet brut sur les scores

Score global

Schéma 2: Analyse des relations entre les facteurs déterminants des performances scolaires (panel 1997)

2.1. Description des caractéristiques socio-économiques et scolaires des élèves et de leur effet brut sur les scores

Nous nous proposons d'estimer l'impact des variables socio-économiques sur les performances des élèves entrant au CP. Le tableau qui suit (tableau 9) présente des différences de résultats au score global en fonction des caractéristiques socio-économiques des élèves. Nous pouvons observer par une première approche, et de manière succincte, les différences de scores bruts selon les caractéristiques socio-économiques des élèves. Ce tableau présente ces différences moyennes pour le score global selon le sexe, la nationalité, le mois de naissance, la profession du père et la durée de scolarisation maternelle.

A première vue, garçons et filles obtiennent des performances assez proches, ce qui n'est pas le cas des élèves français par rapport aux élèves de nationalité étrangère (différence de plus de 10 points). Concernant le score moyen par mois de naissance, on observe une forte hiérarchisation des scores. Les élèves nés en début d'année civile ont les meilleurs résultats, puis les scores décroissent lentement et les élèves de fin d'année obtiennent 8 points de moins que les élèves de janvier. Nous constatons également une classification des performances des élèves en fonction de la profession du père. Sans surprise, ce sont les enfants de cadres et de chefs d'entreprise qui obtiennent les meilleurs scores, suivis par les enfants dont le père occupe un emploi d'agriculteur et de profession intermédiaire. Parallèlement, les enfants d'ouvriers figurent parmi les moins « bons élèves ». Enfin, les enfants scolarisés plus de 3 ans à l'école maternelle, c'est-à-dire ceux qui sont entrés à 2 ans, obtiennent les meilleures performances.

Tableau 9 : Analyse du score global selon les principales caractéristiques socio-économiques des élèves (panel 1997)

Caractéristiques de l'élève :		N	Pourcentage	Score moyen	
Sexe:	Garçon	4904	50,9	68,4	
	Fille	4737	49,1	69,6	
Nationalité :	Français	9109	94,3	70,7	
	Etrangers	532	5,7	59,9	
Mois de naissance :	Janvier	800	8,3	72,6	
	Février	744	7,7	72,7	
	Mars	798	8,3	71,7	
	Avril	789	8,2	71,4	
	Mai	856	8,9	69,4	
	Juin	822	8,5	69,4	
	Juillet	879	9,1	69	
	Aout	774	8	67,8	
	Septembre	819	8,5	66	
	Octobre	814	8,4	67,3	
	Novembre	756	7,8	65,3	
	Décembre	790	8,2	65,2	
Profession du père :	Agriculteurs exploitants	270	2,8	71,3	
	Artisans, commerçants et chefs d'entreprise	960	9,9	76,6	
	Cadres et professions intellectuelles supérieures	1463	15,2	76,1	
	Professions intermédiaires	1631	16,9	71,6	
	Employés	1169	12,2	68,5	
	Ouvriers	2527	32,7	63,5	
	Personnes sans activité professionnelle	404	4,2	59,9	
	Non renseigné	399	4,1	64,8	
Durée de la scolarisation en maternelle	Pas scolarisé en maternelle 1 année 2 années 3 années 4 années et plus	15 102 516 6090 2804	0,2 1,1 5,4 63,2 29,1	52,3 62,8 65,5 68,6 71	

Bien qu'il ne s'agisse ici que d'une première description succincte, des différences dans les scores globaux apparaissent clairement selon des caractéristiques individuelles des élèves. Pour mieux comprendre ces écarts, nous allons désormais présenter les principales conclusions issues des recherches scientifiques, essentiellement en sciences de l'éducation et en sociologie, ayant trait à l'influence des caractéristiques individuelles sur les performances scolaires des élèves.

2.1.1. Le niveau socio-économique des parents

2.1.1.1. La nationalité

Les recherches longitudinales se concentrant sur les parcours scolaires des enfants issus de l'immigration dans le système français mènent à trois conclusions parmi lesquelles seule la première semble s'être très largement répandue. Cette première conclusion est que ces enfants sont plus à risque d'être en échec scolaire. En effet, il apparaît que les enfants d'immigrés font partie des élèves qui encourent les plus grands risques de difficultés (Vallet et Caille, 1996a et 1996b), ou de sortie précoce du système scolaire sans qualification (Caille, 2000). De même, il s'agit d'élèves plus fréquemment orientés vers les filières peu prestigieuses, le plus souvent professionnelles (Vallet et Caille, 1996; Payet, 1995; Duru-Bellat et Kieffer, 2008). Cependant, les analyses statistiques suggèrent que « toutes choses égales par ailleurs » ce premier postulat doit être révisé. En effet, il s'avère que, sous contrôle des caractéristiques socio-économiques, les enfants issus de l'immigration obtiennent d'aussi bonnes performances que les autres élèves (à milieu social identique), si ce n'est meilleures, et qu'ils progressent très rapidement (Ernst et Radica, 1994 ; Vallet et Caille, 1996 ; Duru-Bellat et Mingat, 1997; Boado, 2008). Il s'avère que ce dernier résultat s'explique par des aspirations éducatives, et économiques plus fortes et des demandes d'orientation plus ambitieuses qu'expriment les familles immigrées, comparativement aux autres familles dotées des mêmes ressources matérielles et culturelles (Brinbaum et Kieffer, 2005 et 2009 ; Caille, 2000).

L'analyse des données du panel 1997 nous permet d'étudier rétrospectivement les différences de performances entre les enfants issus de l'immigration et les enfants de nationalité française. Les données du panel sont denses, l'enquête « famille » nous fournit de nombreuses informations sur les caractéristiques des familles : nationalité du père, pays de naissance du père, nationalité de la mère, pays de naissance de la mère, nationalité de l'enfant, pays de naissance de l'enfant, langue parlée à la maison entre les enfants et les parents... Toutes ces variables traduisent une réalité similaire : elles rendent compte du rapport des familles face à l'immigration. Afin d'analyser l'impact de l'immigration sur les performances

scolaires des élèves en CP, il faut opérer un choix. Quelle est la variable la plus pertinente, quelle définition retenir pour les « enfants issus de l'immigration »? Il est reconnu par consensus qu'être immigré⁵ ou né en France de parents immigrés constitue un critère sociologique individuel pertinent de la nationalité.

Afin de ne pas succomber au « règne du bricolage » comme qualifie Patrick Simon (1998) la construction par Valet et Caille (1996b) d'une variable « enfant d'immigré » à partir d'une série d'« attribut étranger » (langue parlée à la maison, nationalité), ou plus récemment l'utilisation des prénoms pour identifier ces enfants pour une étude dans l'académie de Bordeaux (Felouzis et al., 2003 ; 2005), plusieurs possibilités s'offrent à nous pour recenser les enfants issus de l'immigration (c'est-à-dire les enfants né en France de parents immigrés) puisque nous disposons du lieu de naissance et de la nationalité des deux parents et des enfants. Choisir le bon indicateur n'est pas chose aisée, c'est pourquoi nous nous sommes interrogé sur ce que nous voulions qu'il traduise : les nationalités des parents et de l'enfant, le lieu de naissance de l'enfant, mais aussi la langue parlée à la maison. C'est ainsi que nous avons décidé d'inclure dans nos analyses la nationalité de l'enfant.

Bien que les aspirations des familles soient affectées par la nationalité d'origine des parents (Brinbaum et Kieffer, 2009), nous avons préféré regrouper l'ensemble des 47 nationalités étrangères en une seule modalité afin de faciliter l'examen de cette variable sur les performances. Qui plus est, les aspirations des familles se font plus pressantes à partir du moment où il y a orientation, c'est-à-dire au collège, or nous analysons ici les performances des élèves à l'entrée au CP. Les élèves de nationalité étrangère représentent 5,5% des élèves interrogés. Il est important de noter que seulement 2,2% des élèves sont nés à l'étranger, les autres sont donc nés en France de parents de nationalité étrangère. Ces enfants pourront donc acquérir la nationalité française :

- à partir de 13 ans sur déclaration des parents, et si l'enfant réside en France depuis ses 8 ans.

⁵ Le Haut Conseil à l'intégration définit une personne immigrée comme étant née étrangère à l'étranger et entrée en France en cette qualité en vue de s'établir sur le territoire français de façon durable.

- à partir de 16 ans sur sa propre demande, s'il réside en France depuis au moins 5 ans depuis l'âge de 11 ans
- ou à 18 ans de plein droit, selon les mêmes conditions de résidence que précédemment.

Il est important de noter que les enfants nés en France d'un parent de nationalité française et d'un parent de nationalité étrangère sont de nationalité française. Ainsi cette variable seule, la nationalité de l'enfant, ne permet pas d'appréhender les enfants issus de couples mixtes.

Au total, 15,5% des pères et 13,9% des mères sont nés à l'étranger (cf. tableau 10). 77,8% des enfants ont leur deux parents qui sont nés en France (81% si l'on ajoute les DOMTOM), environ 10% des enfants sont issus d'un couple mixte et 9,4% d'entre eux ont leur deux parents qui sont nés à l'étranger. Au total, ce sont 20% des enfants de l'échantillon qui sont issus de l'immigration, alors que seulement 5,5% sont de nationalité étrangère.

Tableau 10 : Tableau croisé lieu de naissance du père et de la mère (panel 1997)

			Lieu de nais	sance mère	
		France	DOM-TOM	Etrangers	Total
Lieu de naissance père	France	77,8%	0,8%	4,4%	82,9%
	DOM-TOM	0,9%	0,6%	0,1%	1,6%
	Etrangers	6,0%	,1%	9,4%	15,5%
	Total	84,6%	1,5%	13,9%	100,0%

Les élèves issus de l'immigration peuvent parler à la maison une autre langue que le français. Ces élèves peuvent alors éprouver quelques difficultés à l'école du fait de leur maitrise parfois imparfaite du français et montrer de moins bonnes performances à l'entrée au CP : difficulté de compréhension des consignes, difficulté à communiquer oralement avec ses

camarades et avec le professeur, parents peu aptes à aider l'enfant dans l'apprentissage de la lecture et de l'écriture à la maison. Une étude de l'OCDE (2005) montre que les élèves qui parlent une autre langue à la maison affichent de moins bonnes performances que les élèves qui parlent la langue d'évaluation. Ainsi, nous sommes amenés à nous interroger sur la proportion d'élèves parlant une autre langue que le français à la maison.

Le tableau de la page suivante indique la langue parlée avec l'enfant à la maison suivant qu'il s'agisse du père ou de la mère. Il apparaît que les comportements de la mère et du père face au choix de la langue parlée à la maison avec l'enfant sont similaires. En effet, les taux sont quasiment identiques puisque 88,7% des pères et 88% des mères ne parlent que le français, moins de 1% ne parlent qu'une autre langue et environ 11% parlent une autre langue et le français.

Tableau 11 : Langue parlée par les parents à la maison

	Père	Mère
Le français uniquement	88.73	88.08
Une autre langue uniquement	0.70	0.91
Souvent le français, parfois une autre langue	7.85	8.06
Souvent une autre langue, parfois le français	2.73	2.95
Total	100	100

Par ailleurs, ces taux, croisés avec les lieux de naissance des parents, nous indiquent que certains parents nés à l'étranger choisissent de ne parler que le français avec leur enfant : 2% des mères et 4% des pères sont dans ce cas. Cependant, les parents nés à l'étranger parlent très majoritairement une autre langue avec leur enfant.

2.1.1.2. La profession des parents

Dans son ouvrage au titre évocateur, "*Tel père, tel fîls – position sociale et origine familiale*" (2004), Claude Thélot nous rappelle que toutes les étapes importantes de la vie d'un individu, qu'il s'agisse de ses décisions d'orientation scolaire, des votes politiques, ou même dans un domaine plus privé, le nombre d'enfants ou le mariage, restent marqués par le milieu social d'origine. Afin de mieux saisir les inégalités sociales de réussite, nous nous proposons d'examiner les performances des élèves en fonction de leur appartenance à tel ou tel autre milieu social. Dans un premier temps, nous examinerons à travers la littérature contemporaine l'influence du milieu social d'origine de l'élève sur sa réussite scolaire : quel est l'ampleur de ce phénomène, quelles variables sont le plus fréquemment associées à l'origine sociale ? Dans le chapitre suivant, nous analyserons à travers les données du panel 97, les écarts de performances des élèves aux différents domaines liés à leur milieu social.

Les liens entre l'origine sociale d'un élève et ses performances scolaires sont très souvent l'objet d'études sociales. Comme le précise Héran (1996, p.37) la catégorie socioprofessionnelle des parents n'est pas une « force autonome qui propulse les individus là où ils doivent aller. C'est le nom que l'on donne à un paquet de propriétés sociales (niveau d'instruction, niveau de ressources, statut salarié ou indépendant, ancienneté des atouts possédés, position dans la hiérarchie des lieux de résidence, etc.) ».

Il existe différentes manières d'appréhender l'origine sociale d'un élève : le statut socioprofessionnel, le diplôme, les conditions de vie, le revenu des deux parents, de la mère ou du père. Les enquêtes PISA fournissent des indicateurs permettant de cerner la richesse matérielle et culturelle des milieux familiaux. L'OCDE a élaboré un indice du statut social, économique et culturel (IESCS). Cet indice a été crée pour appréhender l'impact de la situation familiale et des inégalités scolaires d'origine sociale en complément au seul facteur professionnel des parents. Il est donc dérivé de plusieurs variables, à savoir l'indice socio-économique international du statut professionnel des parents, le niveau de formation des parents converti en années d'études, et, enfin, l'accès des élèves à certaines ressources éducatives (calculatrice, ordinateur, internet, bibliothèque, dictionnaire...). D'autres auteurs

(Duru-Bellat et Kieffer, 2008; Thélot et Vallet 2000) préfèrent associer sous l'appellation des « caractéristiques personnelles et familiales » de l'enfant la catégorie socioprofessionnelle des parents, ainsi que sa nationalité, son genre, le retard scolaire et les attentes des parents vis-àvis de l'école. Goux et Maurin (2003) se sont intéressés aux relations entre les conditions de vie et la réussite scolaire des enfants et ont mis en évidence que le surpeuplement du logement accroit les risques de retard scolaire. Auparavant les mêmes auteurs (Goux et Maurin, 2000) ont conclu à l'impact du revenu des parents sur le retard scolaire. Duée (2005) montre l'impact négatif de la précarité professionnelle du père sur les chances d'obtenir le bac. Dans cette étude, la précarité est appréhendée par une période de chômage, d'inactivité ou d'intérim supérieure à une année avant les 15 ans de l'enfant. Une étude de l'INSEE (Michaudon, 2001), démontre que le diplôme des parents joue un rôle important sur la pratique de la lecture des enfants (de 8 à 12 ans). En effet, on observe que « la part d'enfants lecteurs parmi ceux dont les deux parents n'avaient aucun diplôme est ainsi de 47%, alors qu'elle atteint 79% pour les enfants dont un parent avait au moins le baccalauréat. » (p.3).

Le tableau qui suit récapitule les professions des pères et mères des élèves du panel 97. S'il apparaît que la mère joue un rôle considérable dans la réussite scolaire de l'enfant par ses encouragements (Bouchard et Saint-Amant, 1999) ou son statut socio-professionnel (Menahem, 1988), nous avons tenu à conserver la catégorie socioprofessionnelle du père comme indicateur de l'origine sociale de l'enfant puisque 35% des mères ne travaillaient plus ou n'avaient jamais travaillé lors de l'enquête famille (19% des mères sont au foyer, 8% sont au chômage et 8% n'ont jamais travaillé).

Tableau 12: La profession des parents des enfants du panel 1997

Code	Libellé	Père	Mère
10	Agriculteurs exploitants	3	1,4
21	Artisans	4,7	1,1
22	Commerçants et assimilés	3	1,7
23	Chefs d'entreprise de 10 salariés ou plus	1,4	0,2
31	Professions libérales et assimilés	3,2	1,3
32	Cadres de la fonction publique, professions intellectuelles et artistiques	1,6	0,7
33	Cadres de la fonction publique	1,6	1,5
34	Professeurs, professions scientifiques	0,9	1,2
35	Professions de l'information, des arts et des spectacles	0,7	0,7
37	Cadres administratifs et commerciaux d'entreprise	4,8	2,4
38	Ingénieurs et cadres techniques d'entreprise	5,1	1,1
42	Professeurs des écoles, instituteurs et assimilés	2,1	4,8
43	Professions intermédiaires de la santé et du travail social	1,7	8,7
44	Clergé, religieux		
45	Professions intermédiaires administratives de la fonction publique	1,7	1,8
46	Professions intermédiaires administratives et commerciales des entreprises	4	5,4
47	Techniciens	4,1	1,1
48	Contremaîtres, agents de maîtrise	4,2	0,7
52	Employés civils et agents de service de la fonction publique	4,5	13
53	Policiers et militaires	2,6	0,2
54	Employés administratifs d'entreprise	1,4	16
55	Employés de commerce	2,2	7,6
56	Personnels des services directs aux particuliers	1,2	11,4
61	Ouvriere qualifiée	21.0	5.5
66	Ouvriers qualifiés Ouvriers non qualifiés	31,9 7,2	5,5 9,9
69	Ouvriers non qualities Ouvriers agricoles	1,5	0,6
	Outriors agricores	1,0	0,0
NR	Non réponse	10,7	14,1

2.1.1.3. Composition de la famille

Sous contrôle du milieu social et du niveau scolaire, la dissociation du couple parental avant la majorité de l'enfant pèse défavorablement sur sa scolarité et la durée des études de l'enfant, la réduisant de 6 mois à un an (Archambault, 2007). L'auteur précise que l'impact de cette variable est plus fort chez les enfants de milieu socio-économique défavorisé puisque les chances d'accéder à des études supérieures, déjà très faibles pour l'ensemble des enfants d'ouvriers deviennent quasiment nulles en cas de dissociation familiale. Bee et Boyd (2003) dressent un tableau des effets psychologiques négatifs de la séparation des parents, et de ses conséquences. Ainsi, les enfants de couples séparés sont plus fréquemment sujets aux comportements agressifs ou colériques, à la dépression, à la consommation de drogue et d'alcool et sont plus enclins à entrer dans la criminalité. Les auteurs rappellent que cette variable agit en interaction avec d'autres facteurs, parmi lesquels le climat de conflits parentaux antérieur à la séparation, la précarité financière suite à la séparation, la détresse affective de l'enfant face au départ de l'un de ses parents. Ainsi, la baisse des performances scolaires des enfants de parents séparés pourrait être attribuée à la baisse du niveau de vie résultant de cette séparation. Une étude canadienne (Rousseau, Leblanc, 1992) montre que les enfants issus de familles monoparentales, ainsi que les enfants faisant partie d'une famille reconstituée, ont tendance à plus souvent abandonner leurs études à l'adolescence que les enfants issus de couples « traditionnels ». Ainsi, les auteurs émettent l'hypothèse que c'est le climat de conflit au sein de la famille qui a un impact négatif sur les performances scolaires de l'enfant, plus que la situation de monoparentalité en elle-même

Ainsi, ces éléments nous poussent à nous interroger sur la relation entre la composition de la famille et les performances scolaires des élèves. Pour appréhender cette variable, nous avons opposé les enfants vivant avec leur deux parents et les enfants ne vivant pas avec leur deux parents (regroupant ainsi les familles monoparentales, les familles recomposées, les enfants placés à la DASS ou vivant avec un autre membre de la famille). Dans notre échantillon, la grande majorité des enfants vivent avec leurs deux parents puisqu'ils sont 83% dans cette situation. Lorsque l'enfant ne vit pas dans cette configuration familiale, il vit avec sa mère seule (10,4%) ou avec sa mère et son nouveau conjoint (4,3%). Ils sont à peine plus de 1% à vivre avec leur père (famille monoparentale ou recomposée).

2.1.2. Les facteurs scolaires : la durée de scolarisation en maternelle

Les effets de la durée de la scolarisation en maternelle sur les performances à l'entrée du CP on déjà fait l'objet d'études précédentes (Jeantheau et al., 1998 ; Caille, 2001). Marie Duru-Bellat (2002) met en évidence que les progressions réalisées par l'élève en cours de CP sont d'autant plus importantes que la préscolarisation fut longue. L'effet net d'une préscolarisation précoce, c'est-à-dire dès 2 ans au lieu de 3 ans, est déjà présent au CP, et l'on constate au terme du CE1 un effet bénéfique pour les enfants préscolarisés à 2 ans, qui obtiennent en moyenne de meilleurs résultats. Bien que ces effets s'observent pour l'ensemble des élèves, il faut souligner qu'ils n'agissent pas avec la même force selon l'origine socio-économique de l'enfant. En effet, chez les élèves issus de milieux défavorisés, il apparaît qu'un développement de la préscolarisation réduit une partie de leur différentiel de réussite, mais pour le réduire durablement, il faudrait réserver l'accès en maternelle à deux ans aux enfants de milieux défavorisés exclusivement, ce qui est politiquement problématique.

En nous appuyant sur ces résultats, nous complétons l'analyse puisque nous proposons par la suite une étude des performances par discipline. Quel que soit le domaine évalué, les élèves ayant étés scolarisés plus de trois années à l'école maternelle obtiennent de meilleurs scores que les élèves ayant été scolarisé moins de trois ans. Notons que les élèves non scolarisés du tout en maternelle ou ceux ayant effectué 5 années sont peu nombreux dans le panel, ils représentent moins de 1% de l'échantillon.

Caille (2001) conclu de manière similaire sur l'effet d'une scolarisation précoce sur les performances et la réussite scolaire. L'auteur s'intéresse dans ce cas à l'examen des liens entre préscolarisation précoce et redoublement. Il apparaît que les probabilités d'accéder au CE2 sans redoubler sont fortement liées à l'âge d'entrée et à la durée de la scolarisation maternelle. En témoigne ces données extraites de l'étude de Florin (2007) : 90,8% des élèves ayant été scolarisé à 2 ans accèdent au CE2 sans redoubler, contre 76,6% pour les élèves étant entrée à l'école maternelle à 4 ans. 13% des élèves étant entrés à 3 ans redoublent avant l'entrée en sixième.

Selon une autre étude (Jarousse et al., 1992), il apparaît de manière évidente que les acquisitions des élèves sont d'autant plus élevées que la scolarisation maternelle a été plus longue. Ceci se vérifie lorsqu'on compare les acquis des élèves entrés à deux ou trois ans puisque les écarts existent. En effet, à l'entrée du CP, les acquis des élèves scolarisés à deux ans surpassent ceux des élèves entrés à trois ans. Ce différentiel, dans les acquis en français et en mathématiques, persiste au cours de la scolarisation primaire, en fin de CP et de CE1. Bien que ces données soient fort intéressantes, il ne faut pas négliger les variables individuelles (sexe, origine sociale, nationalité...) qui auraient elles-mêmes un impact sur les acquisitions. En effet, les auteurs observent que l'âge d'entrée en maternelle dépend de la nationalité et de la catégorie socioprofessionnelle :

- 11.5% des enfants entrés à deux ans sont de nationalité étrangère
- 35.9% des ces enfants sont des enfants de cadres moyens ou supérieurs
- 15.8% ont une mère ouvrière

L'accès en maternelle à deux ans ne concerne que 29% des élèves. Le tableau de la page suivante permet de mieux comprendre qui sont ces élèves.

Tableau 13: Scolarisation en maternelle en fonction de la profession des parents (panel 1997)

		Moins de 3	3 ans	Plus de 3 ans
Profession	agriculteurs exploitants	6,7	53,3	39,9
du père	artisans, commerçants et chefs d'entreprise	7,6	64,3	28
•	cadres et professions intellectuelles supérieures	6,3	66,4	27,2
	professions intermédiaires	4,3	66,1	29,5
	Employés	5,9	64,7	29,4
	Ouvriers	6,2	61,5	32,2
	sans activité	14,3	65,8	19,8
	non renseignée	11,2	64,3	24,5
Profession	agriculteurs exploitants	9	58,6	32,3
de la mère	artisans, commerçants et chefs d'entreprise	8,4	55,4	36,1
	cadres et professions intellectuelles supérieures	6	70,1	23,8
	professions intermédiaires	4,8	66,1	29
	Employés	5,1	62,9	31,9
	Ouvriers	5,4	61,1	33,5
	sans activité	8,6	63,8	27,6
	non renseignée	14,7	60,7	24,6
Nationalité	Française	6,3	63,8	29,9
	Autre	13,3	65,5	21,2
Trimestre de	premier trimestre	6,8	50	43,1
naissance	second trimestre	5,3	61,1	33,5
	troisième trimestre	6,4	68,4	25,2
	dernier trimestre	8,1	75,9	15,9

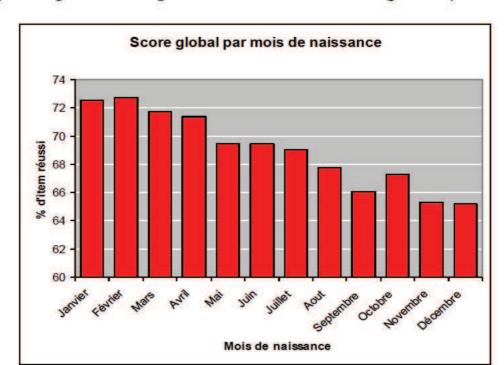
A l'examen de ce tableau, nous constatons sans surprise que c'est le trimestre de naissance de l'élève qui donne lieu aux disparités les plus élevées. 43% des élèves scolarisés à 2 ans sont nés au premier semestre contre seulement 15,9% des élèves nés au dernier semestre. Cependant, les caractéristiques individuelles des élèves ne sont pas les seules à peser dans la balance. L'âge d'accès à l'école maternelle est également régi selon la profession des parents : on observe le pourcentage plus élevé d'enfants scolarisés à deux ans pour un père agriculteur (39,9%) ou une mère artisan – commerçante – chef d'entreprise (36,1%). A l'inverse, ce sont les enfants de cadres et ceux d'inactifs qui sont le moins souvent scolarisés précocement. Enfin, nous pouvons constater que les enfants de nationalité étrangère entrent moins fréquemment que leurs camarades français à l'école maternelle à deux ans. En effet, ils sont 29,9% à y être scolarisés à deux ans lorsqu'ils sont de nationalité française, contre 21,2% dans le cas contraire. Il convient de préciser que garçons et filles parviennent à l'école à deux ans dans des proportions égales.

Nous cherchons désormais à montrer qu'il existe une relation de dépendance entre une scolarisation précoce à l'école maternelle et un ensemble de variables socioéconomiques. Le tableau suivant fait part des coefficients d'une régression logistique binaire. Cette analyse statistique permet d'obtenir la régression de notre variable dichotomique dépendante, ici la scolarisation avant trois ans, en fonction de l'ensemble des variables socioéconomiques : le genre, la nationalité, la profession du père, la profession de la mère et le trimestre de naissance. Dans ce modèle, le R² de Nagelkerke est de 0,082. Ainsi, il explique à hauteur de 8,2% la variance de notre variable dépendante, une durée de scolarisation maternelle supérieure à 3 années, permettant d'appréhender l'entrée à 2 ans en maternelle. Le pourcentage total s'élevant à 70,8% nous indique que le modèle classe correctement les individus dans 70,8% des cas. 8

Tableau 14 : Quels sont les enfants scolarisés avant trois ans : résultats de la régression logistique binaire (panel 1997)

		В	E.S.	Wald	Sign.	Exp(B)
Sexe (Réf. : Garçon)	Fille	,039	,047	,703	,402	1,040
Nationalité (Réf. : Etrangers)	Français	,568	,117	23,63	,000	1,765
Vit avec	Père et mère	,048	,076	,41	,522	1,050
Trimestre de naissance	Premier	1,404	,071	388,87	,000	4,072
(Réf. : Dernier)	Second	,992	,072	190,95	,000	2,697
	Troisième	,577	,074	60,76	,000	1,781
	Agri., artisan	,389	,119	10,63	,001	1,475
Drafossian du pàra	Cadre	,330	,119	7,65	,006	1,391
Profession du père (Réf. : Ss activité)	Prof. intermédiaire	,369	,114	10,39	,001	1,446
	Employé	,341	,118	8,37	,004	1,406
	Ouvrier	,543	,105	26,99	,000	1,722
	Agri., artisane	,345	,130	7,09	,008	1,412
	Cadre	-,198	,111	3,20	,074	,820
Profession de la mère	Prof. intermédiaire	,054	,070	,59	,442	1,056
(Réf. : Ss activité)	Employée	,152	,059	6,59	,010	1,164
	Ouvrière	,250	,098	6,50	,011	1,285
	Constante	-2,742	,158	302,43	,000	,064

Au vu de ces résultats, nous sommes en mesure de constater que les variables introduites dans le modèle n'exercent pas toutes une influence statistiquement significative sur la probabilité d'être scolarisé avant trois ans en maternelle. En effet, on observe que le genre, la typologie du ménage et la profession de la mère n'affectent pas les « chances » d'une scolarisation précoce. La régression logistique montre également que les élèves de nationalité française (B = 0,568, p < 0.01) sont plus susceptibles d'être scolarisés en maternelle à 2 ans, le rapport de cote étant de 1.765. Ils ont donc 1,7 fois plus de chance d'être scolarisé à deux ans. Par ailleurs, on note que plus l'enfant est né en début d'année civile, plus il voit ses chances d'être scolarisé à deux ans s'élever : pour un élève né au premier trimestre par exemple (B = 1,404, p < 0.01), le rapport de cote s'élève à 4.1, c'est-à-dire qu'il a 4 fois plus de chance d'être scolarisé à deux ans qu'un élève né au dernier trimestre. En ce sens, le trimestre de naissance est la variable la plus prédictive d'une scolarisation précoce. Concernant la profession du père, il apparaît que les élèves dont le père est ouvrier (B = 0,543, p <0.01) ont plus de probabilité d'accéder à la maternelle avant trois ans, le rapport de cote étant de 1,7, équivalent à une augmentation de 70% de chance par rapport à un élève dont le père est sans activité. En termes de probabilité, viennent ensuite les enfants dont le père est agriculteur, puis profession intermédiaire, employé et enfin cadre. Contrairement à l'impact sur les scores, on constate que les « chances » d'accéder à la maternelle avant trois ans ne suivent pas une hiérarchisation stricte des effets cohérente avec la stratification sociale. Ainsi, il apparaît que le trimestre de naissance et la nationalité sont les plus prédictifs d'une scolarisation précoce.


2.1.3. Les facteurs démographiques

2.1.3.1. Le mois de naissance

De nombreuses recherches en psychologie du développement ont largement démontré la relation causale entre maturité cognitive et âge. En France, comme dans de nombreux pays, les enfants sont scolarisés en fonction de leur année de naissance. Ainsi dans une même classe, se côtoient des enfants plus ou moins jeunes, avec une différence pouvant aller jusqu'à

un an (en excluant les redoublants). Entre enfants nés au premier trimestre et ceux nés au dernier, on peut donc s'attendre légitimement à trouver des différences de performance dues à l'âge (Florin et al., 2004; Ferrier, 2003). En fait, cette variable joue un rôle d'autant plus considérable lorsqu'il s'agit d'évaluer les savoirs chez les plus petits. Au fur et à mesure du développement, et donc de la scolarité, les écarts liés à la maturation et au mois de naissance s'amenuisent. Grenet (2008 et 2010) a même mis en évidence l'impact du trimestre de naissance sur les trajectoires professionnelles, en particulier sur les rémunérations des hommes.

Nous comparons ci-dessous le score moyen obtenu par les élèves selon leur mois de naissance. Même s'il faut souligner que les écarts présentés dans cet histogramme ne rendent que partiellement compte du pouvoir explicatif de cette variable (il ne s'agit que des effets bruts sur le score global), ces données permettent de dresser un premier état des lieux qui pourra être approfondi par la suite. En effet, on peut d'ores-et-déjà constater graphiquement l'impact du mois de naissance sur les performances mesurées par le score global.

Graphique 2 : Diagramme du score global en fonction du mois de naissance (panel 1997)

Il apparaît clairement une hiérarchisation des scores selon cette variable : les résultats décroissent presque systématiquement au fur et à mesure des mois. Ainsi, un élève né en janvier obtient 72,6 points en moyenne, tandis que celui né en décembre aura un score de 65,2.

A l'entrée au CP, 97% des élèves sont « à l'heure », 1,5% ont un an de retard et la même proportion d'élève a une année d'avance. Le trimestre de naissance a également un effet sur les chances d'être en avance ou de redoubler. Un élève né en début d'année a plus de probabilité d'arriver au CP avec un an d'avance. En effet, 5,1% des élèves nés au premier trimestre sont en avance, alors qu'ils sont moins de 1% dans les autres cas. A l'inverse, un élève né en fin d'année civile a plus de risque d'entrer au CP avec une année de retard : 2,7% des élèves nés au dernier semestre sont en retard.

2.1.3.2. Le genre

Depuis les années soixante, et parallèlement à l'augmentation du taux de scolarisation des filles, les sociologues se sont intéressés aux différences sexuées des parcours scolaires et cherchent à les expliquer. Il apparaît que les filles redoublent moins que les garçons à l'école primaire, qu'elles obtiennent en moyenne de meilleures performances tout au long de leur scolarité, qu'elles arrivent plus jeunes et plus nombreuses au baccalauréat (Jacques 2003), qu'elles accèdent plus à l'enseignement supérieur. Cependant, les parcours scolaires et les choix d'orientation restent encore marqués par des mécanismes d'auto-sélection : les filières scientifiques ainsi que les écoles préparatoires aux grandes écoles (exception faite des écoles de commerce) demeurent majoritairement masculine. Duru-Bellat et al. (2001) cherchent à étudier la présence d'interaction entre le sexe et les classes sociales. Au terme de cette analyse longitudinale, les auteurs dressent un triple constat. Tout d'abord, dans les cohortes récentes, les inégalités sociales de réussite scolaire sont similaires pour les filles et les garçons jusqu'au baccalauréat (pour les cohortes nées dans la première moitié du XX^{ème} siècle, ces inégalités étaient plus marquées chez les filles, avant que la tendance ne s'inverse vers le milieu du siècle). Ensuite, il apparaît que l'ampleur des inégalités scolaires entre les garçons et les filles diffère selon le groupe social. En effet, les différences sexuées sont moins marquées parmi les

enfants de cadres que parmi les enfants d'ouvriers, où l'avantage des filles est plus accentué. Enfin, les auteurs concluent à la persistance des inégalités sociales dont l'ampleur reste plus importante que l'ampleur des inégalités sexuées. Cependant, au même titre que l'origine socio-économique, les différences de genre en termes de performances ou de parcours scolaires font que le sexe est une variable d'importance qui ne doit pas être écartée de nos analyses.

2.1.4 : Synthèse

Les écarts à la moyenne selon les domaines sont compris entre :

- (-4,7) et 4,5 selon le sexe
- 8 et 15 selon la nationalité
- 2 et 11 selon le trimestre de naissance
- 1,8 et 5,3 selon le type de ménage
- 8,7 et 17,8 selon la profession du père
- 6,1 et 16,3 selon la profession de la mère
- 2,7 et 7 selon la durée de scolarisation maternelle

Deux premières observations peuvent immédiatement être tirées de ces résultats. Premièrement, l'amplitude des différences de moyennes varie d'une dimension à l'autre et selon les variables socio-économiques et scolaires. Selon la typologie du ménage, la moyenne en connaissances générales des enfants vivant avec leurs deux parents est supérieure de 1,8 points à la moyenne des enfants ne vivant pas avec leurs deux parents. Il s'agit là du plus petit écart de moyenne. A l'inverse, cet écart peut être relativement élevé, notamment lorsqu'il s'agit de la profession des parents. En effet, entre les enfants dont le père est cadre et les enfants dont le père est sans activité, l'écart de moyenne en compétences de prélecture est de 17,8 points. Ainsi, les variables ne contribuent pas de la même façon selon les domaines. Deuxièmement, il ressort des caractéristiques qui semblent être plus déterminantes que les autres pour les performances à ce stade, à savoir la profession des deux parents, suivie par la

nationalité et le trimestre de naissance. Comparativement, la typologie du ménage, la durée de la scolarisation et le sexe semblent moins participer à la variation des scores.

Complétons ces observations générales en examinant plus précisément certaines caractéristiques individuelles des élèves qui apparaissent comme les plus importantes d'après notre revue de littérature.

- Concernant la variable genre, les filles obtiennent toujours de meilleures performances que les garçons, excepté en culture technique où ils obtiennent 4,7 points de plus que leurs camarades féminins. Ce sont dans les domaines de l'écrit (connaissance de l'écrit et compétences d'écriture) et de la prélecture que les différences sont les plus importantes. Cet écart de genre se révèle très faible pour les deux épreuves numériques, la participation orale, ou dans les concepts de l'espace et du temps (la différence de moyenne entre les filles et les garçons est inférieure à l'unité). Ainsi, pour ces dernières épreuves, il semblerait que le sexe n'influe que peu sur les performances.
- La nationalité semble jouer un rôle conséquent dans la variation des performances, et ce, quelle que soit la discipline évaluée. Son impact est certes un peu plus faible pour les domaines numériques, de lecture et d'écriture, mais il est plus fort pour l'oral, avec une différence entre les élèves français et étrangers s'élevant à 14 points, ainsi que pour les concepts liés à l'espace et au temps (avec un écart respectif de 11 et 15 points).

Ces deux premières variables, le genre et la nationalité, agissent différemment sur les performances selon les domaines évalués. Ce n'est pas le cas de la profession des parents.

- La profession du père et la profession de la mère agissent, au contraire, de manière parfaitement similaire. Ces deux variables contribuent entres autres à la variation de la moyenne pour les « concepts liés à l'espace », avec une différence de 6,1 (profession de la mère) et 8,7 (profession de la mère) entre les enfants de cadres et les enfants dont les parents sont « sans activité ». Dans les deux cas, il s'agit de la plus petite différence de moyenne due aux professions des parents. C'est pour l'épreuve de prélecture que la différence est la plus élevée (16,3 et 17,8 respectivement pour la mère et le père). Notons que c'est la profession du père qui prend le pas sur celle de la mère, avec une

différence de moyenne entre les deux professions souvent plus élevée pour le premier. Cette variable semble jouer un rôle conséquent aux vues de l'importance des variations qu'elle engendre.

- Les trois variables « trimestre de naissance », « durée de la scolarisation maternelle » et « ménage⁶ » sont celles où l'on observe la plus faible amplitude. Comme précédemment, on peut se demander si ces variables jouent un rôle similaire quel que soit le domaine évalué. On observe quelques différences. La typologie du ménage et la durée de scolarisation se comportent de manière similaire. En effet, même si les moyennes selon les domaines ne varient pas sensiblement, on peut constater quelques similitudes, notamment leur rôle moindre dans la variation des performances des concepts liés à l'espace. Au contraire, l'influence du temps de scolarisation et du type de ménage tend à être un peu plus importante pour les compétences numériques et les compétences d'écriture. Concernant l'impact du trimestre de naissance sur les performances, il est minime pour l'espace et pour l'oral, mais plus important pour les compétences numériques, les compétences d'écriture ou de pré-lecture.

Au final, si la variable sexe ne semble effectivement jouer qu'un effet minime, ce n'est pas le cas de la scolarisation en maternelle : son absence peut s'avérer très pénalisante pour les enfants, avec un « manque à gagner » de 16,7 points par rapport à la moyenne. Ainsi cette variable semble être, à ce stade, fortement explicative des performances. De la même manière, les résultats des élèves de nationalité étrangère sont de presque 11 points inférieurs à la moyenne des élèves de nationalité française, élèves de nationalité étrangère qui rappelons-le ne représentent que 5,7% de l'échantillon du panel 97. Comparativement, il apparaît moins pénalisant d'être enfant d'ouvriers (avec un écart de -5,5 points par rapport à la moyenne) alors même que ces élèves représentent 32,7% de l'échantillon du panel.

⁶ Nous désignons par « ménage » les modalités suivantes : 1- l'enfant vit avec ses deux parents, 2- l'enfant ne vit qu'avec l'un de ses deux parents

Bien que cette analyse soit plus affinée que la précédente, elle présente certaines limites. La description des moyennes par domaine et de leurs différences en fonction des caractéristiques socio-économiques et scolaires ne s'est faite qu'indépendamment les unes par rapport aux autres. En effet, la variation des moyennes par domaine selon chacune de ces variables ne peut s'additionner en raison des nombreuses liaisons qui existent entre elles. Par exemple, 63,9% des élèves de nationalité étrangère ont un père ouvrier, contre 31,6% pour les élèves de nationalité française ; 13,1% des élèves scolarisés en maternelle à 2 ans sont nés en janvier, alors qu'ils ne sont plus que 5,6% lorsqu'ils sont nés en septembre. Ainsi, pour estimer les effets propres de chaque variable sur les performances des élèves, on est amené à raisonner « toutes choses égales par ailleurs ».

2.2. Analyse des effets nets des caractéristiques socio-économiques et scolaires sur les scores des différents domaines au CP

Afin de mesurer les effets nets des caractéristiques des élèves du panel, des régressions linéaires multi-variées sont effectuées entre les variables individuelles et les performances à chacune des épreuves. Ce type d'analyse statistique permet de raisonner « toutes choses égales par ailleurs ». Autrement dit, il est possible d'observer l'influence d'une variable donnée sur les écarts de performances, à l'exclusion de tout autre facteur, c'est-à-dire lorsque les autres variables sont contrôlées. Nous présentons d'abord les résultats de ces régressions pour le score global, puis pour les différents domaines.

2.2.1. Score global

Nous analysons ici en détail les résultats de la régression menée sur le score global, afin de faciliter la compréhension des régressions ultérieures réalisées pour les différents domaines. Ceci nous permettra de nous concentrer sur les faits les plus marquants pour chacun domaines évalués dans le panel.

Le tableau 15 présente les résultats de la régression linéaire avec le score global comme variable dépendante. Dans ce tableau, mais aussi pour chacune des épreuves, le coefficient de détermination, le R², nous indique la part de la variance expliquée par le modèle. La valeur de la constante équivaut au score moyen, obtenu par un élève correspondant à la situation de référence, c'est-à-dire un garçon de nationalité étrangère, né au dernier semestre, dont les deux parents sont sans activité et ne vivant pas sous le même toit, et ayant été scolarisé moins de trois ans à l'école maternelle. Les autres valeurs correspondent aux écarts de performances par rapport à la situation de référence.

Tableau 15 : Impact des caractéristiques individuelles et scolaires sur le score global

$R^2 = 0,193$				
Modalité de référence	Modalités actives	В	ES	Signification
	(constante)	48,51	,82	,000
Sexe (Réf. : Garçon)	Fille	1,29	,24	,000
Nationalité (Réf. : Etrangers)	Française	6,65	,54	,000
Trimestre de naissance	Premier trimestre	6,02	,35	,000
(Réf. : Dernier)	Seconde trimestre	3,9	,34	,000
(Réf. : Autre)	Troisième trimestre	2,09	,34	,000
(Nei Autie)	Père et mère	1,47	,38	,000
	Père agriculteur ou artisan	4,95	,58	,000
Profession du père	Père cadre	8,9	,58	,000
(Réf. : Ss activité)	Père profession intermédiaire	6,42	,56	,000
	Père employé	3,66	,57	,000
	Père ouvrier	1,63	,5	,001
Profession de la mère	Mère agriculteur ou artisan	3,12	,69	,000
(Réf. : Ss activité)	Mère cadre	7,05	,55	,000
	Mère profession intermédiaire	5,69	,36	,000
Durée de la scolarisation en	Mère employé	2,83	,31	,000
maternelle (Réf. : - de 3 ans)	Mère ouvrière	,65	,52	,210
,	Trois ans	2,68	,5	,000
	Plus de trois années	3,75	,52	,000

De manière générale, on constate que le sens des différentes variables socioéconomiques correspond à ce que l'on observe habituellement. Plus précisément :

- Les filles présentent de meilleurs résultats que les garçons avec une différence moyenne de 1,3. Rappelons que le raisonnement se fait « toutes choses égales par ailleurs », c'est-à-dire sous contrôle des autres variables (nationalité, trimestre de naissance, profession des parents,...)
- Les élèves de nationalité française réussissent mieux que les élèves de nationalité étrangère, avec une différence de l'ordre de 6,6 points sur les scores globaux.
- Les élèves nés en début d'année civile obtiennent de meilleurs résultats que ceux nés en fin d'année, ceux nés au premier trimestre obtenant un score de près de 6 points supérieur aux enfants nés au dernier trimestre.

- Les élèves vivant avec leur deux parents obtiennent 1,5 points de plus que les autres.
- Les élèves issus de familles favorisées réussissent mieux que la moyenne. Par exemple, les élèves dont le père ou la mère est cadre obtiennent respectivement 8,9 et 7 points de plus que ceux dont le père ou la mère est sans activité.
- Enfin, les élèves ayant été scolarisés plus de 3 ans à l'école maternelle présentent eux aussi de meilleurs résultats que les autres. Ils obtiennent 3,8 points de plus que les enfants ayant moins de 3 ans de scolarité maternelle.

On constate également que les caractéristiques socio-économiques et scolaires des élèves expliquent dans ce cas 19,3% de la variance du score global (R² = 0,19). Notons qu'une part importante de la variation du score globale (soit plus de 80%) ne s'explique pas par les variables prises en compte, ce qui laisse supposer que des facteurs extérieurs au modèle agissent sur les performances. Ces autres variables peuvent être de diverses natures, exogène (comme le background familial et culturel) ou endogène.

Les écarts de scores entre élèves peuvent être modérés ou très importants selon les caractéristiques individuelles. Le genre et la composition du ménage ont un impact modéré et similaire sur la réussite moyenne des élèves. Les plus grands écarts de performances sont dus au trimestre de naissance, à la nationalité de l'enfant et à la profession des parents.

Ainsi, une simulation réalisée sur la base de ce modèle montre qu'une fille de nationalité française, née au premier semestre et dont les deux parents sont cadres obtient 78,4 points, contre seulement 48,5 points pour un garçon de nationalité étrangère, né au dernier semestre et dont les deux parents sont sans activité; ce qui équivaut à une différence de 29,9 points. Bien entendu, il s'agit ici de deux exemples, mais on comprend bien que l'impact des caractéristiques des élèves peut se cumuler pour créer une forte disparité au niveau des résultats des élèves au CP.

Nous avons ici commenté en détail les résultats de la régression réalisée sur le score global. Afin de mieux appréhender l'influence de ces différences inter-individuelles sur les performances, nous allons examiner leur impact pour chacun des domaines de l'évaluation de

début de CP. Pour plus de lisibilité, nous présentons dans un tableau synthétique l'ensemble des résultats des régressions multivariées par domaines (tableau 16), et renvoyons en annexe pour plus de détails. Les commentaires pour chacun des domaines seront faits en référence à ce tableau synthétique.

2.2.2. Connaissances générales

En culture technique et connaissances générales, d'après les R², les variables retenues n'expliquent respectivement que 11,2 et 9,2% des différences de scores entre élèves. On constate que les filles réussissent moins que les garçons en culture technique, avec une différence de 4,8 points, alors que cette variable ne semble pas jouer sur les performances de connaissances générales. Concernant la nationalité, on s'aperçoit que les élèves de nationalité étrangère obtiennent en moyenne presque 10 points de moins que les élèves de nationalité française en culture technique, alors que cette différence est moindre en connaissance générale (4,3). Toutes les autres variables semblent influencer les scores en culture technique et générale selon un sens et une intensité similaire, aux exceptions de la profession du père et de la typologie du ménage. En effet, un élève de père agriculteur obtient d'avantage de point de score en culture technique (6,6) qu'en connaissance générale (3,4), alors que la typologie du ménage n'a pas d'impact significatif sur les performances de connaissances générales, mais un impact, certes limité, sur le score de culture technique

Tableau 16 : Régressions multi-variées sur les scores de chaque domaine

	Champs		Connaissance générale	ssance rale	Familiarité avec l'écrit	ité avec prit	Familiarité avec l'oral	Les com	Les compétences de lecture	lecture	Les compétences numériques	étences ques	Concepts liés à l'espace et au tps	s liés à et au tps
Modalités de références	Epreuves Modalités actives	Score global	Connaissance générale	Culture technique	Connaissance de l'écrit	Compétence d'écriture	Compréhension orale	Lecture tâche phonologiques	Lecture morphologique et syntaxique	Compétence de prélecture	Nombres et figure géométrique	Compétences numériques	Concepts liés au temps	Concepts liés à l'espace
	R² (%)	19,3	9,2	11,2	80	11,2	10,1	8,2	5,2	2,6	6,4	10,8	16	8,9
	(constante)	48,5	64,4	45,4	38,5	33,2	54,1	36,6	6'09	44,5	09	42,3	53,7	74,4
Sexe (Réf.: Garçon)	Fille	1,3***	0,4 ns.	4,8**	3,1***	4,7***	**6'0	2***	1,4***	3,9***	0,57 ns.	0,28 ns.	0,23 ns.	0,7**
Nationalité (Réf. : Etrangers)	Française	6,6***	4,3***	9,7***	4,3***	4,9***	10,3***	5,1**	5,7***	5,2***	5,8**	4,8***	10,4***	8,2***
Trimestre de naissance	Premier trimestre	6,1***	*** C	5,9***	6,6***	7,7***	5,3**	6,6*** ****	4,4 ***,4 ***,5 ***,5	6,4***	* * * * * * * * * * * * * * * * * * * *	8,6***	6,1**	* * * *
(Réf. : Dernier)	Troisième trimestre	2,5	2,3 *e,0	2,7	2, 4 ** **	2,9**	1,9***	, t , v, t , v, t	7,2 *	2,2 ***	0, 4, 5, **	2,0	2,2	o, _ *T, _
Ménage (Réf. : Autre)	Père et mère	1,5***	0,4 ns.	* 4,1	1,7*	2,3***	0,4 ns.	1,7*	1 ns.	3,1**	0,54 ns.	2,5***	*	-0,4 ns.
	Agriculteur ou artisan	4,9***	3,4***	6,6***	3,4**	5,4***	***4,4	4,8**	4,4**	5,8***	6,3***	5,3***	5,3***	3,4***
Profession du père	Cadre	***6,8	7,1***	7,3***	7,9***	10,9***	7,2***	8,7**	7,8***	10,5***	9,1**	10,3***	10,3***	2,8**
(Réf. : Ss activité)	Profession intermédiaire	6,4***	5,2***	***6,9	4,9***	***6'9	4,9**	5,9***	5,3***	7,5***	7,8***	7,3***	4**6'2	4,4**
	Employé	3,6***	3,2***	3,9***	1,9*	4,5**	3,9**	2,1*	***	3,4***	5,5***	4,5***	3,7***	3,4***
	Ouvrier	1,6***	0,9 ns.	2,1**	-0,2 ns.	1,2 ns.	1,2 ns.	0,8 ns.	2,1*	1,4 ns.	3,8***	2,5**	1,6*	2,5***
	Agriculteur ou artisan	3,1***	3,8***	3,4***	3,3*	2,2 ns.	3,4**	2,6*	2,8*	2,9*	3,4**	5,3***	3,8***	2**
Profession de la mère	Cadre	7***	2,5***	6,6***	***9'9	7,3***	2,9***	8,2***	6,3***	9,2***	2,9***	9,4**	8,4**	3,3***
(Réf.: Ss activité)	Profession intermédiaire	5,7***	5,3***	***9	4,7***	5,7***	5,7***	6,4***	***9	6,2***	5,3***	6,6***	6,5***	3,1***
	Employée	2,9***	2,4***	3,5***	2,2***	2,2***	3,2***	2,4***	2,9***	2,6***	3,3***	3,4***	3,6***	2,1***
	Ouvrière	0,65 ns.	-0,6 ns.	1,4 ns.	-0,3 ns.	0,5 ns.	1,1 ns.	1 ns.	-0,18 ns.	-0,3 ns.	0,5 ns.	1,2 ns.	1,1 ns.	0,58 ns.
Durée de la scolarisation en maternelle	Trois ans	2,7***	2,8***	2,1*	3,1***	3,9***	*6,1	2,6**	2,6**	2,5**	2,7**	2,4**	1,7*	1,5*
(Réf. : - de 3 ans)	Plus de trois années	3,7***	3,1***	3,2***	4,5***	***9	2,9***	**	3,4***	**	2,9***	4,2***	2,7***	1,9**
Les résultats sont signific	Les résultats sont significatifs au seuil de 1‰. ***. Significatifs au seuil de 1% **. significatifs	atifs au seu	til de 1% **	significatif	an senil de	* %2%								

Les resultats sont significatifs au seuil de 1‰. **, Significatifs au seuil de 1% **, significatifs au seuil de 5% i

2.2.3. Familiarité avec l'écrit et avec l'oral

Notons tout d'abord que les variables retenues expliquent respectivement 8% et 11,2% des différences de scores entre élèves pour les deux domaines de l'écrit, et 10,1 % pour la compréhension orale. Pour les deux domaines de la familiarité avec l'écrit, la variation des scores en fonction des différentes modalités retenues est, à peu de chose, identique, tant en intensité qu'en sens.

Suite à l'examen des coefficients, on observe que l'impact du sexe est positif et significatif pour les deux domaines de l'écrit, avec une différence de 3 et 4,7 points de plus pour les filles ; en revanche, son rôle est négligeable pour la compréhension orale (moins de 1 point). Il est important de noter que les élèves de nationalité étrangère sont fortement pénalisés pour la compréhension orale, avec une différence de l'ordre de 10 points de moins que leurs pairs français. Concernant les domaines de l'écrit, l'écart est de 4,6 points en moyenne. Le trimestre de naissance joue un rôle semblable pour expliquer la variation des scores, avec une intensité presque identique : un peu plus fort pour les compétences d'écriture et un peu moindre pour la compréhension orale. Ensuite, il semble que c'est en compétence d'écriture que l'impact de la profession du père soit le plus important : un enfant dont le père est cadre obtient 10,9 points de plus qu'un enfant dont le père est sans activité, et 7 points supplémentaires en connaissance de l'écrit et en compréhension orale. Notons que l'impact de la profession de la mère sur les scores de la compréhension orale, connaissance de l'écrit ou compétence d'écriture est semblable pour les trois domaines. Enfin, un élève ayant été scolarisé plus de trois années en maternelle obtiendra de meilleurs résultats dans les trois domaines, mais plus particulièrement en familiarité avec l'écrit, avec un gain de 6 points en compétence d'écriture.

2.2.4. Les compétences en lecture

On constate que les caractéristiques socio-économiques et scolaires des élèves expliquent entre 5,2% et 9,7% des variances des scores en compétences en lecture.

Les différences de scores entre les élèves peuvent être très importantes. Ainsi, en s'appuyant sur ce modèle, une simulation simple nous montre qu'en prélecture, une fille de nationalité française, née au premier trimestre et dont les deux parents sont cadres, scolarisée plus de trois années en maternelle et vivant à la fois avec son père et sa mère obtient 85,8 points, contre seulement 44,5 points pour un garçon de nationalité étrangère, né au dernier trimestre et dont les deux parents sont sans activité; soit une différence considérable de 41,3 points. Globalement, les variables de nationalité, de profession de la mère et de durée de scolarisation maternelle agissent dans le même sens et selon la même intensité pour les trois domaines. Concernant l'impact du genre, on constate que l'intensité varie peu en fonction des trois domaines: les filles obtiennent de meilleurs scores en prélecture (+3,9) qu'en phonologie (+ 2) ou lecture morphologique (+1,4). Le trimestre de naissance agit également de manière différente, avec un gain moindre en lecture phonologique que dans les deux autres domaines. Enfin, en prélecture, la profession du père et la typologie du ménage ont un impact plus fort sur les performances.

2.2.5. Les compétences numériques

Notons tout d'abord que les variables retenues expliquent respectivement 6,4% et 10,8% de la variance des performances entre élèves pour les compétences numériques. Notons également que le genre n'a pas d'impact significatif sur les scores des deux domaines, tout comme la typologie du ménage pour les nombres et la géométrie. En revanche, les élèves vivant avec leurs deux parents ont de meilleures performances en épreuves numériques (+2,5) que ceux dans d'autres configurations familiales. Les variations de scores imputables aux différences socioéconomiques et scolaires sont plus conséquentes dans le domaine des épreuves numériques que dans celui des nombres et de la géométrie. En effet, c'est dans ce premier domaine que le trimestre de naissance ou la profession de la mère ont un impact plus

marqué. Ainsi, naître au premier trimestre plutôt qu'au dernier accroît le score aux épreuves numériques de 8,6 points, et avoir une mère cadre plutôt qu'inactive augmente ce même score de 9,4 points. A l'inverse, la profession du père semble plus affecter les scores en géométrie, à l'exception des enfants de père cadre, qui ont de meilleurs résultats en épreuves numériques qu'en géométrie (respectivement +10,3 et +9,1 par rapport à un père sans activité).

2.2.6. Les concepts liés à l'espace et au temps

Pour les concepts liés au temps et à l'espace, les variables retenues expliquent respectivement 16% et 6,8% des différences de scores entre élèves. Alors que, pour les concepts liés au temps, les variables retenues agissent sur les performances des élèves selon un sens et un impact semblable à ce que nous avons vu précédemment, il en va tout autrement concernant les concepts liés à l'espace. En effet, on constate que les scores ne varient que peu selon le trimestre de naissance puisque les coefficients, même s'ils sont significatifs, n'en restent pas moins petits, puisqu'ils sont proches de 1, avec un léger supplément pour les élèves nés au premier trimestre (+ 1,8 par rapport aux élèves nés au dernier trimestre, mais seulement +0,5 par rapport à un élève né au second trimestre). De plus, on observe que, comparativement aux autres domaines, la profession du père ou la profession de la mère n'influe que peu sur les performances des élèves : un élève dont le père est cadre obtient 5,8 points de plus qu'un enfant dont le père est sans activité. Ce coefficient tombe à 3,2 lorsque l'on considère la profession de la mère, cadre elle aussi. Enfin, la durée de scolarisation en maternelle ne semble pas affecter les scores des élèves, puisque les élèves scolarisés trois années en maternelle « gagnent » 1,5 points par rapport à un élève scolarisé moins de trois ans, alors qu'un élève ayant suivi quatre ans de maternelle obtient 1,9 points de plus par rapport à la variable de référence.

En résumé, les caractéristiques socio-économiques et scolaires des élèves exercent une influence variable selon les domaines. De manière générale, le poids des ces variables est plus important en « concepts liés au temps » puisqu'elles contribuent à hauteur de 16% à l'explication du score. Viennent ensuite la culture technique et les compétences d'écriture : dans ces deux disciplines, le pouvoir explicatif des caractéristiques socio-économiques et scolaires s'élève à 11,2%. A l'inverse, le poids de ces variables est nettement moins important pour la lecture morphologique et syntaxique (5,2%), ainsi que pour les nombres et figures géométriques (6,4%) et les concepts liés à l'espace (6,8%). Dans ces cas, d'autres facteurs doivent contribuer à l'explication de la variance du score. Ce sont ces facteurs que nous chercherons à identifier par la suite.

2.3 Synthèse sur les effets des caractéristiques socio-économiques et scolaires des élèves sur les performances au CP

Les différences selon le genre :

L'influence de la variable genre varie sensiblement selon les domaines évalués. Contrairement aux idées reçues, les garçons n'obtiennent pas de meilleurs scores que les filles en mathématiques à l'entrée en CP puisque l'influence de la variable n'est pas significative. Par contre, l'impact de la variable joue favorablement pour les filles qui présentent un score accru dans plusieurs domaines : familiarité avec l'écrit, avec l'oral et compétences de lecture. Notons qu'en culture technique, le sens de l'influence de la variable s'inverse et s'intensifie, les garçons obtenant 4,8 points de plus que leurs homologues féminins.

Ainsi, sur l'ensemble des 12 domaines évalués, l'écart de score lié au genre n'est pas significatif en connaissance générale, nombre et figure géométrique, compétences numériques et pour les concepts liés au temps. En revanche, en raisonnant « toutes choses égales par ailleurs », on constate un écart significatif de performance lié au sexe dans plusieurs disciplines : culture technique, connaissance de l'écrit, compétence d'écriture, compréhension orale, lecture phonologique, lecture morphologique, compétence de prélecture et concepts liés à l'espace. Pour l'ensemble de ces disciplines, l'écart de score attribuable au genre ne dépasse

pas 4,8 points. Il semble donc que le sexe ne soit pas une caractéristique individuelle très discriminante à ce niveau de la scolarité puisque, sur un total de 12 domaines, l'écart lié à cette variable n'est pas significatif dans quatre cas, et très faible (de 0,7 à 2 points) dans quatre autres cas.

L'impact de la nationalité :

Il est important de noter que, quelle que soit la discipline évaluée, l'influence de la nationalité est toujours significative. Les écarts peuvent être considérables : on note une forte différence de score selon la nationalité en compréhension orale, les élèves de nationalité étrangère obtenant 10 points de moins. On retrouve un écart similaire pour les concepts liés au temps. Les différences de scores pour les concepts liés à l'espace et en culture technique sont respectivement de 8,2 et 9,7 points. Les écarts se portent aux environs de 5 points pour toutes les autres disciplines. Il faut noter que, pour les élèves de nationalité étrangère, dans 12% des cas, la langue parlée à la maison n'est pas le français.

Le trimestre de naissance :

Quelle est la nature des liens qui unit le mois de naissance et les compétences des élèves telles qu'évaluées dans le panel 97 ? De manière générale, on observe une différence significative de scores entre les enfants nés au premier et au dernier semestre. Quelle que soit la discipline évaluée, on constate un gain moyen de 2 points par trimestre de naissance. Plus un élève est né en fin d'année, plus cette variable lui est défavorable. Cependant, l'impact du trimestre de naissance sur les performances diffère selon les disciplines. En effet, bien que le sens de la relation soit constant et toujours significatif, on observe quelques différences : la variable semble jouer un rôle plus important dans certains domaines, comme la familiarité avec l'écrit (connaissance de l'écrit et compétences d'écriture), mais également en compétences numériques. C'est dans ce dernier domaine que les différences de scores entre enfants nés au premier ou au dernier trimestre sont les plus conséquentes, avec un écart de 8,6 points pour les épreuves numériques et de 6,9 pour les nombres et la géométrie. Des écarts plus faibles sont constatés en connaissances générales et lecture morphologique, avec une différence de 4 points. Enfin, nous remarquons que la différence de scores liée au trimestre de

naissance en « concepts liés à l'espace » n'est que très minime (1,8 points). Comme le précise Florin (2004), cet effet du mois de naissance sur les performances et les mesures de redoublement qui y sont associées ne fait que s'accentuer au cours de la scolarisation ultérieure, qu'il s'agisse de l'école élémentaire (CE1) ou du collège (entrée en sixième). Nos résultats confirment l'impact du trimestre de naissance sur la scolarité en termes de performances, appréhendées par les scores aux différentes disciplines, ce qui peut avoir des implications en termes de parcours scolaires, estimés par les fréquences de redoublements.

La profession des parents :

Concernant les différences de scores liées à la profession des parents, on constate un agencement des effets cohérent avec la hiérarchisation sociale. En effet, en premier lieu, les élèves les plus avantagés sont les enfants de cadres, et ce sont les enfants dont les parents sont ouvriers, employés ou sans activité professionnelle qui sont le plus pénalisés. Cependant, il est important de noter que ces écarts varient sensiblement selon le domaine concerné. Par exemple, on observe une différence de 10,9 points entre les enfants de père cadre et la variable de référence (sans activité) en compétence d'écriture. Cette différence atteint le même ordre de grandeur dans plusieurs autres disciplines comme la prélecture, les compétences numériques ou bien les concepts liés au temps. Cependant, les écarts de performance sont moindres pour les concepts liés à l'espace, avec 5,8 points de différence. Pour les autres domaines évalués, les écarts de score liés à la profession du père gravitent autour de 7,5 points, ce qui reste important.

De manière globale on observe les mêmes effets pour la profession de la mère. Cependant, l'effet de cette variable semble légèrement moins important puisque les écarts de score restent toujours inférieurs aux écarts liés à la profession du père : tous domaines confondus, on constate que la variabilité des scores liée à la profession du père, lorsqu'il est cadre, est de 1,5 points supérieure aux gains correspondant à la profession de la mère (cadre elle aussi). Par exemple, en lecture phonologique, les enfants dont le père est cadre obtiennent 9,7 points de plus qu'un enfant dont le père n'exerce pas d'activité professionnelle ; les enfants dont la mère est cadre obtiennent un gain de 8,2. Une autre différence se constate également dans la structure des effets.

Concernant la profession du père, on constate que les enfants de cadres réalisent de bien meilleures performances que les autres, tandis que les scores d'enfants d'agriculteurs se rapprochent plus des scores des enfants d'employés et de professions intermédiaires. En bas du classement, on trouve les enfants d'ouvriers qui obtiennent les scores les plus faibles⁷. La profession de la mère semble beaucoup plus ségréguer. On constate une hiérarchisation stricte des effets des variables cohérente avec la stratification sociale. En ce sens, contrairement à la profession du père, la profession de la mère apparaît comme plus discriminante. Précisons que les enfants dont la mère est ouvrière n'obtiennent pas de résultats significativement différents des enfants dont la mère est sans activité.

La durée de la scolarisation en maternelle :

Nous pouvons vérifier l'impact de la durée de scolarisation maternelle sur les compétences des élèves à l'entrée du CP. En raisonnant toutes choses égales par ailleurs, nous sommes en mesure de quantifier précisément le bénéfice d'une scolarisation maternelle. Pour le score global, un élève scolarisé plus de trois ans obtient 3,7 points de plus qu'un camarade scolarisé moins de trois années. Cet effet bénéfique est différent selon les disciplines : en examinant plus précisément le tableau 16 présentant les résultats des régressions sur tous les domaines, on observe qu'une durée de scolarisation en maternelle supérieure à trois ans débouche sur des scores significativement plus élevés, notamment dans le domaine de l'écrit (connaissance de l'écrit : + 4,5 ; compétence d'écriture : + 6), et pour les compétences numériques (+ 4,2 points de score), et ce par rapport à une scolarisation de deux ans en maternelle. Cet effet positif d'une scolarisation précoce est moins prégnant concernant l'oral, les concepts liés à l'espace et au temps, et pour les nombres et figures géométriques (avec moins de 3 points de gain pour ces disciplines).

⁷ Les différences de score entre les enfants dont le père est ouvrier ou bien sans activité sont significatives pour quatre domaines : culture technique, les deux domaines des compétences numériques et les concepts liés au temps.

2.4. Les acquis des élèves en début de CP les plus prédictifs pour la scolarité ultérieure

Apprendre, c'est stocker en mémoire une information qui sera mobilisée par la suite, c'est, d'après le dictionnaire Larousse, "acquérir par l'étude, par la pratique, par l'expérience une connaissance, un savoir-faire, quelque chose d'utile". La première théorie des conditions d'apprentissage de Gagné (1975), renforcée par la suite par les théories de traitement de l'information, fait part des phases et processus qui se mettent en place dès les premiers apprentissages, mettant ainsi en avant leur caractère cumulatif et hiérarchique. En effet, « il faut d'abord gravir un à un les échelons du bas avant d'être en mesure d'atteindre progressivement ceux du haut, c'est-à-dire passer d'un degré inférieur à un degré supérieur ou du plus simple au plus complexe. » (St.-Yves, 1982, page 40). Gagné (1985) hiérarchise ainsi les apprentissages du plus simple au plus complexe en huit phases, allant de l'identification du signal (stimulus) à la résolution de problèmes, en passant par les phases intermédiaires comme l'apprentissage de concepts et de règles. Ainsi, l'enfant cumule les compétences, et chacune d'entre elles, basée sur un apprentissage préalable plus simple, constitue la base d'une compétence plus complexe.

Ainsi, les apprentissages de 6^{ème} supposent la maîtrise de compétences de base préalablement acquises en CE2 par exemple, et les savoirs de CE2 reposent sur ceux de CP. Entrant au CP, les enfants ont déjà été en contact avec les premiers apprentissages, que ce soit à l'école maternelle ou à la maison. Nous cherchons ici, à partir des données du panel, à déterminer les dimensions du CP qui sont le plus prédictives de la réussite. Dans un premier temps, nous chercherons à analyser les relations que les domaines évalués au CP entretiennent avec le score global afin d'apprécier si certains apprentissages déterminent plus que d'autres la réussite des élèves au CP. Dans un deuxième temps, nous chercherons à identifier quelles sont les dimensions du CP les plus prédictives des performances au CE2, puis dans un dernier temps, nous effectuerons ces mêmes analyses entre le CP et la 6^{ème}.

2.4.1. L'organisation des domaines au CP

Dans cette première section nous cherchons à déterminer si un ou plusieurs domaines sont particulièrement déterminants pour réussir au CP. Pour ce faire, nous nous appuierons sur l'étude des corrélations entre le pourcentage d'items réussis au CP, c'est-à-dire la mesure du score global, et les performances aux différents domaines. Les coefficients de corrélation présentent des valeurs allant de +0,53 et +0,82 (tableau 7 en annexe). Pour la suite de notre analyse nous avons choisi de sélectionner uniquement les domaines les plus fortement liés statistiquement avec le score global. Nous avons fixé un seuil à +0,75. Cela permet de dégager quatre domaines : les compétences d'écriture (+0,82), les compétences numériques (+0,77), les compétences de prélecture (+0,76) et les concepts liés au temps (+0,75). Il est important de noter que d'autres domaines entretiennent une relation moins forte avec le score global, comme les connaissances générales, la lecture morphologique et syntaxique, la compréhension orale, et les concepts liés à l'espace, la valeur du coefficient de corrélation étant inférieure à +0,6.

Ainsi les performances des élèves au CP semblent très liées à la maîtrise de ces quatre domaines. Voyons maintenant dans quelle mesure ces domaines contribuent à expliquer les différences de réussite entre les élèves à l'entrée du CP. Une régression linéaire, comprenant comme variable dépendante le pourcentage d'items réussis au CP et comme variables indépendantes les quatre domaines précédemment mis en lumière, nous permet d'appréhender l'ampleur de cette relation.

Tableau 17: Modèle analysant l'influence des domaines du CP sur le score global au CP

R ² 0,91	Coefficients		
Variables indépendantes	standardisés	t	Signification
(constante)		88,5	,000
score compétences d'écriture	,35	72,3	,000
score concepts liés au temps	,33	79,6	,000
score compétences de prélecture	,25	54,9	,000
score compétences épreuve numérique	,24	54,1	,000

On constate d'abord une certaine hiérarchie entre les quatre domaines, les compétences d'écriture et les concepts liés au temps ayant l'impact le plus fort. L'influence des deux autres domaines n'a pour autant rien de négligeable. Surtout, il est important de noter que ces quatre domaines contribuent à expliquer plus de 90% de la variance du score global de CP, soit presque la totalité. Ces domaines occupent donc une place décisive dans les acquisitions des élèves au CP.

2.4.2. Les relations entre les scores de CP et de CE2

De manière générale, les performances des élèves à l'entrée au CP sont liées à leurs acquisitions de CE2 puisque les deux scores globaux sont corrélés à hauteur de +0,67. Les données du panel 97 nous permettent d'aller au-delà de cette relation générale et d'observer les corrélations entre chacun des domaines de CP et de CE2.

Le tableau ci-après fait part des 117 relations existantes entre les scores, par domaines, des élèves aux évaluations de CP et aux évaluations de CE2. La plus faible corrélation est de +0,19 et la plus forte est de +0,56 (exception faite des relations avec le score global de CP). Afin de dégager les relations les plus importantes, nous avons signalé en gras les coefficients supérieurs à +0,40.

Tableau 18 : Matrice de corrélation entre les scores aux différents domaines des évaluations de CP et de CE2 (panel 1997)

Evaluation de CE2 (1999)	Evaluation de CP (1997)	connaissances générales	connaissance de l'écrit	lecture phonologiques	lecture morphologie & syntaxe	compétences numérique	score concepts liés au temps	compréhension orale	compétences d'écriture	concepts liés à l'espace	compétences de prélecture	nombres & figures géométriques	culture technique évaluation CP	Score global
maths	Coef.	0,28**	0,36**	0,37**	0,28**	0,56**	0,50**	0,32**	0,50**	0,26**	0,43**	0,41**	0,30**	0,63**
	Sig.	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
géométrie	Coef.	0,26**	0,28**	0,30**	0,24**	0,42**	0,44**	0,29**	0,40**	0,22**	0,32**	0,31**	0,28**	0,52**
	Sig.	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
mesure	Coef.	0,25**	0,32**	0,32**	0,24**	0,48**	0,46**	0,28**	0,43**	0,22**	0,39**	0,35**	0,28**	0,56**
	Sig.	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
numération	Coef.	0,21**	0,29**	0,31**	0,22**	0,49**	0,40**	0,25**	0,44**	0,22**	0,38**	0,36**	0,21**	0,53**
	Sig.	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
problèmes	Coef.	0,24**	0,30**	0,30**	0,24**	0,45**	0,40**	0,26**	0,39**	0,19**	0,34**	0,32**	0,24**	0,51**
	Sig.	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
français	Coef.	0,29**	0,36**	0,38**	0,30**	0,49**	0,48**	0,34**	0,50**	0,25**	0,48**	0,39**	0,27**	0,63**
	Sig.	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Compréh.	Coef.	0,31**	0,35**	0,37**	0,30**	0,47**	0,50**	0,36**	0,46**	0,25**	0,44**	0,36**	0,30**	0,61**
—————	Sig.	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
outils de la	Coef.	0,22**	0,31**	0,33**	0,25**	0,42**	0,38**	0,25**	0,46**	0,21**	0,44**	0,35**	0,19**	0,54**
langue	Sig.	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
production	Coef.	0,22**	0,25**	0,27**	0,21**	0,32**	0,34**	0,25**	0,33**	0,19**	0,32**	0,24**	0,20**	0,43**
de l'écrit	Sig.	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00

^{**.} La corrélation est significative au niveau 0.01.

D'après l'étude de cette matrice de corrélations, il ressort que les scores des domaines de CP qui sont les plus liés statistiquement avec les scores de CE2 sont les mêmes que ceux précédemment mis à jour (les coefficients de ces quatre domaines apparaissent clairement par colonnes):

- les compétences numériques de CP sont fortement associées aux résultats de CE2, avec huit corrélations fortes
- les concepts liés au temps sont liés à sept domaines de CE2
- le score de CP en compétence d'écriture entretient sept relations fortes avec les scores par domaines de CE2
- les compétences de prélecture au CP sont fortement liées à quatre domaines de CE2

Ainsi les performances des élèves au CE2 semblent intimement liées à la maîtrise de quatre domaines au CP. Voyons maintenant dans quelle mesure ces quatre domaines contribuent à expliquer les différences de réussite au CE2 entre les élèves. Comme précédemment avec le score global au CP, une régression linéaire, comprenant comme variable dépendante cette fois le score global au CE2, et comme variables indépendantes les scores au CP dans ces quatre domaines, nous permet d'appréhender l'ampleur de cette relation.

Tableau 19 : Modèle 1 analysant l'influence des scores des quatre domaines du CP les plus prédictifs sur le score global de CE2

R ² 0,45 Domaines du CP	Coefficients standardisés		Cignification
	standardises	ι	Signification
(constante)		24,322	,000
score compétences épreuve numérique évaluation CP	,261	22,779	,000,
score concepts liés au temps évaluation CP	,265	24,905	,000
score compétences d'écriture évaluation CP	,183	14,975	,000
score compétences de prélecture évaluation CP	,147	12,733	,000

Il est important de noter que les scores de CP dans ces 4 domaines contribuent à expliquer 45% de la variance du score global de CE2, soit une part non négligeable de la variabilité de ce score. Afin de vérifier ces résultats, nous avons introduit dans un nouveau modèle tous les scores de CP significativement liés aux performances de CE2 (au seuil de 1%).

Il apparaît que ces dix domaines contribuent à expliquer à hauteur de 48% la variance du score global de CE2, soit une faible marge d'amélioration de 3% (48 – 45) par rapport au modèle 1. Signalons également que deux domaines ont été exclus car non significatif au seuil: il s'agit des scores en culture technique et en concepts liés à l'espace. Ainsi, la réussite globale des élèves en CE2 ne dépend pas des performances des élèves au CP dans ces deux

domaines. Les coefficients standardisés permettent de comparer l'impact de ces domaines sur le score global de CE2. Ce second modèle confirme que deux domaines du CP sont particulièrement prédictifs de la réussite en CE2, à savoir les compétences numériques (+0,21) et les concepts liés au temps (+0,2). Deux autres domaines, dont la valeur des coefficients standardisés est plus faible sans pour autant être négligeable, ont un impact plus modéré : les compétences d'écriture (+0,14) et les compétences de prélecture (+0,1). Enfin, il apparaît que les six autres domaines, avec des coefficients standardisés inférieurs à +0,1, n'ont que peu d'impact sur les performances des élèves trois années plus tard.

Tableau 20 : Modèle 2 analysant l'influence des scores des dix domaines du CP les plus prédictifs sur le score global de CE2 (panel 1997)

R ² 0,48	Coefficients		Oissaifis ation
Domaines du CP	standardisés	t	Signification
(constante)		6,672	,000
score compétences épreuve numérique évaluation CP	,208	17,518	,000
score concepts liés au temps évaluation CP	,196	17,309	,000
score compétences d'écriture évaluation CP	,139	11,225	,000
score compétences de prélecture évaluation CP	,105	8,871	,000
score nombres & figures géométriques évaluation CP	,095	9,012	,000
score compréhension orale évaluation CP	,088	8,902	,000
score connaissances générales évaluation CP	,053	5,400	,000
score connaissance de l'écrit évaluation CP	,052	4,995	,000
score lecture morphologie & syntaxe évaluation CP	,046	4,699	,000
score lecture tâches phonologiques évaluation CP	,037	3,459	,001

Ainsi, les acquis des élèves à l'entrée de l'école élémentaire en CP ne pèsent pas tous de la même manière sur les performances ultérieures en CE2. En effet, certains contribuent

plus fortement à la réussite ultérieure, comme les compétences numériques et la maîtrise des concepts liés au temps. A elles seules, ces deux dimensions expliquent près de 40% de la variance du score des élèves en CE2. Il est également intéressant de noter que ces deux dimensions étaient également parmi les plus prédictives des performances en CP.

Afin de déterminer si l'influence de ces variables demeure semblable dans le temps, autrement dit si les performances des élèves dans ces deux domaines contribuent également à la réussite des élèves à l'entrée au collège, nous allons désormais effectuer des analyses similaires avec le score global des élèves en $6^{\text{ème}}$. Avant de commencer ces nouvelles analyses, il est important de rappeler que l'échantillon de CM2 et de $6^{\text{ème}}$ exclut les élèves ayant redoublés au cours de l'école élémentaire.

2.4.3. Les relations entre les scores de CP et de 6ème

De manière générale, si l'on observe une forte corrélation entre les acquis des élèves en CE2 et en 6^{ème} (+0,72), les performances des élèves à l'entrée en collège restent encore liées à leurs acquisitions initiales au CP puisque les deux scores globaux sont corrélés à hauteur de +0,62. Les performances des élèves restent donc relativement stables durant toute leur scolarité au primaire. A nouveau, les données du panel 97 nous permettent d'aller au-delà de ces relations générales, et d'observer les corrélations entre chacun des domaines de CP et les performances en français en en mathématiques en 6^{ème}.

Intéressons-nous aux relations statistiques existant entre chacun des domaines évalués. La matrice de corrélation de la page suivante (tableau 21) présente les coefficients de corrélation linéaire pour les 208 croissements possibles entre les scores, par domaine, des élèves au CP et en 6ème. Comme l'indique le tableau ci-dessous, les corrélations entre chaque domaine sont toutes positives et significatives. Elles varient sensiblement, de +0,13 à +0,50, ce qui signifie que les relations fluctuent selon les domaines. Par exemple, la réussite en « compétences d'écriture » en CP est associée aux performances générales de français en 6ème avec un coefficient de corrélation de +0,44. De même, le score des compétences numériques

en CP est lié aux performances générales en mathématiques 6 années plus tard. Ces résultats sont plutôt intuitifs, mais il existe aussi des relations entre domaines *a priori* très différents, comme l'indique le tableau. Afin de dégager les relations les plus importantes, nous avons signalé en gras les coefficients supérieurs à +0,40.

Tableau 21 : Matrice de corrélation entre les scores aux différents domaines des évaluations de CP et les performances en français en en mathématique en $6^{\rm ème}$.

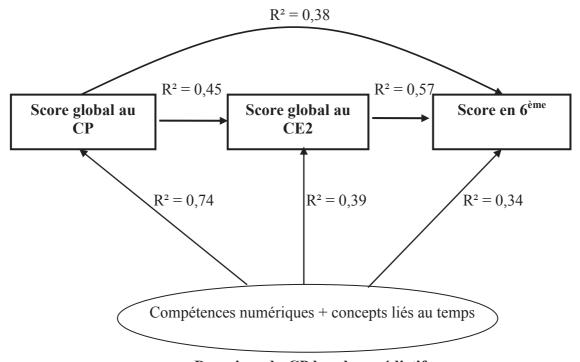
Evaluation de 6 ^{ème} (2002)	Evaluation . de CP (1997)	connaissances générales	connaissance de l'écrit	lecture tâches phonologiques	lecture morphologie & syntaxe	compétences épreuve numérique	concepts liés au temps	compréhension orale	compétences d'écriture	concepts liés à l'espace	compétences de prélecture	nombres & figures géométriques	culture technique	% d'items réussis
français	Corr.	0,28**	0,34**	0,34**	0,28**	0,42**	0,45**	0,30**	0,44**	0,22**	0,43**	0,31**	0,23**	0,57**
	Sig.	0,00	0,00	0,00	0,00	0,00 0,42 **	0,00 0,45 **	0,00	0,00	0,00	0,00	0,00	0,00	0,00 0,56 **
savoir lire	Corr.	0,29**	0,33**						0,42**		0,40**			
	Sig.	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00 0,40 **	0,00	0,00	0,00	0,00	0,00 0,49 **
savoir écrire	Corr.	0,23	0,00	0,29***	0,00	0,00	0,00	0,24	0,00	0,20	0,00	0,27	0,18	
	Sig.	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00 0,53 **
français :	Corr.	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,20	0,24	0,00
compréh.	Sig.	0,26**	0,31**	0,32**	0,00	0,40**	0,42**	0,28**	0,42**	0,00	0,41**	0,00	0,00	0,54**
outils lire &	Corr. Sig.	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0.00	0,00	0.00	0,00	0,00	0,00
écrire		0,22**	0,28**	0,28**	0,23**	0,36**	0,37**	0,25**	0,38**	0,21**	0,37**	0,28**	0,20**	0,49**
outils pour	Corr. Sig.	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
écrire	Corr.	0,24**	0,28**	0,28**	0,24**	0,36**	0,37**	0,24**	0,37**	0,18**	0,37**	0,27**	0,18**	0,48**
outils pour lire	Sig.	0,00	0.00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
maths	Corr.	0,27**	0,33**	0,32**	0,26**	0,50**	0,46**	0,29**	0,43**	0,22**	0,38**	0,35**	0,28**	0,57**
matrio	Sig.	0,00	0.00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
géométrie	Corr.	0,24**	0,29**	0,28**	0,24**	0,40**	0,41**	0,26**	0,36**	0,18**	0,32**	0,27**	0,24**	0,49**
goomoaro	Sig.	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
numération	Corr.	0,23**	0,27**	0,27**	0,22**	0,43**	0,39**	0,25**	0,37**	0,19**	0,34**	0,31**	0,23**	0,49**
	Sig.	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
traitements	Corr.	0,21**	0,27**	0,26**	0,21**	0,42**	0,37**	0,23**	0,37**	0,18**	0,32**	0,29**	0,22**	0,47**
opératoires	Sig.	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
problèmes	Corr.	0,20**	0,25**	0,24**	0,18**	0,38**	0,36**	0,23**	0,32**	0,17**	0,26**	0,25**	0,21**	0,43**
numériques	Sig.	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
rechercher	Corr.	0,23**	0,25**	0,25**	0,20**	0,38**	0,38**	0,25**	0,34**	0,18**	0,30**	0,27**	0,23**	0,46**
l'information	Sig.	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
analyser	Corr.	0,24**	0,29**	0,28**	0,22**	0,46**	0,41**	0,25**	0,38**	0,19**	0,32**	0,31**	0,25**	0,50**
une situation	Sig.	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
produire une	Corr.	0,22**	0,28**	0,27**	0,23**	0,39**	0,38**	0,23**	0,35**	0,17**	0,31**	0,27**	0,22**	0,47**
réponse	Sig.	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
appliquer	Corr.	0,13**	0,16**	0,15**	0,14**	0,25**	0,23**	0,16**	0,23**	0,13**	0,20**	0,18**	0,16**	0,30**
	Sig.	0,00	0,00	0.00	0.00	0.00	0,00	0.00	0.00	0.00	0.00	0,00	0.00	0.00

^{**.} La corrélation est significative au niveau 0.01 .

D'après l'étude de cette matrice de corrélation, il apparaît que les scores des domaines de CP qui sont le plus liés statistiquement avec les scores de $6^{\text{ème}}$ sont les mêmes que ceux précédemment mis à jour :

- les compétences numériques de CP sont fortement associées aux résultats au collège, avec huit corrélations
- les concepts liés au temps sont liés à sept domaines de $6^{\text{ème}}$
- le score de CP en compétence d'écriture entretient cinq relations avec les scores de mathématiques et de français six ans plus tard
- les compétences de prélecture au CP sont liées à trois scores de 6^{ème}

Ainsi, les performances des élèves en $6^{\text{ème}}$ semblent liées à la maîtrise de quatre domaines au CP. Voyons maintenant dans quelle mesure ces quatre domaines, parmi l'ensemble des domaines évalués au CP, contribuent à expliquer les différences de réussite en $6^{\text{ème}}$ entre les élèves. Pour ce faire, nous réalisons une régression linéaire comprenant comme variable dépendante le score global en $6^{\text{ème}}$ et comme variables indépendantes les scores au CP par domaine.


Tableau 22 : Modèle analysant l'influence des scores par domaines du CP sur le score global de 6ème

R² 0,41 Domaines du CP			
Domaines du CP	Coefficients	t	Signification
(constante)		3,363	,001
score concepts liés au temps évaluation CP	,205	15,676	,000
score compétences épreuve numérique évaluation CP	,201	15,063	,000
score compétences d'écriture évaluation CP	,114	8,173	,000
score compétences de prélecture évaluation CP	,091	6,732	,000
score compréhension orale évaluation CP	,073	6,427	,000
score nombres & figures géométriques évaluation CP	,073	6,088	,000
score connaissances générales évaluation CP	,062	5,574	,000
score lecture morphologie & syntaxe évaluation CP	,054	4,819	,000
score connaissance de l'écrit évaluation CP	,050	4,268	,000
score concepts liés à l'espace évaluation CP	,026	2,431	,015
score lecture tâches phonologiques évaluation CP	,024	2,024	,043
score culture technique évaluation CP	-,002	-,161	,872

Les résultats de la régression montrent que les acquisitions des élèves au CP dans les douze domaines contribuent à expliquer à hauteur de 41% la variance du score global de 6ème. Nous pouvons observer que trois domaines du CP ne pas prédictifs du niveau en mathématiques et en français en 6ème : la lecture phonologique, la culture technique, et les concepts liés à l'espace. La réussite globale des élèves en 6ème ne dépend donc pas des performances des élèves au CP dans ces trois domaines, puisque leur d'impact n'est pas significatif. Il est important de noter que les deux dernières dimensions citées ne préfiguraient pas non plus les compétences des élèves au niveau du CE2. Les coefficients standardisés permettent de comparer l'impact de ses domaines sur le score global de 6ème. Ainsi, ce modèle confirme que deux domaines du CP sont particulièrement prédictifs de la réussite en 6ème. Il s'agit des concepts liés au temps (+0,2) et des compétences numériques (+0,2). Deux autres domaines semblent avoir un impact plus modéré puisque leurs coefficients standardisés sont proches de +0,1 : les compétences d'écriture (+0,1) et les compétences de prélecture (+0,09). Enfin, les cinq autres domaines, avec des coefficients standardisés inférieurs à +0,1, n'ont que peu d'impact sur les performances des élèves six années plus tard. Ainsi, les acquis des élèves à l'entrée de l'école élémentaire en CP ne pèsent pas tous de la même manière sur les performances de 6^{ème}. Certains contribuent plus fortement à la réussite ultérieure, comme les compétences numériques et la maîtrise des concepts liés au temps. A elles seules, ces deux dimensions expliquent près de 34% de la variance du score des élèves en 6^{ème}.

Au terme de cette section, il apparaît clairement que les performances scolaires des élèves en CE2 et en 6^{ème} dépendent pour partie de leurs acquisitions dès le début de l'école primaire. En effet, il existe des corrélations entre le niveau de compétences à l'entrée du CP et le niveau de performance global en CE2 (+0,67), et même si ce lien tend à diminuer au cours de la scolarité, le niveau global d'un élève en 6^{ème} reste fortement lié à ses acquis au début de sa scolarisation (+0,62). Parmi l'ensemble des douze domaines évalués en CP, certains apparaissent comme particulièrement prédictifs du niveau global d'acquisitions des élèves. Au niveau du CP, quatre domaines expliquent la quasi-totalité des écarts de performances entre les élèves et plus particulièrement les compétences numériques et la maîtrise des concepts liés au temps. Les performances des élèves au CP dans ces deux mêmes domaines semblent également être les plus prédictives de la réussite des élevées aux évaluations de CE2 et de 6^{ème}.

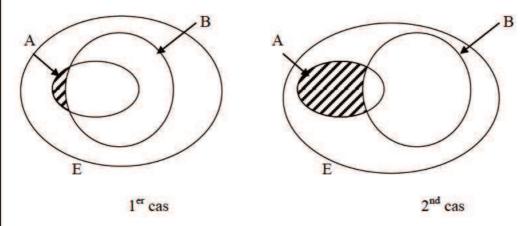
Schéma 3 : Interrelations des scores de CP, CE2 et $6^{\rm ème}$ (panel 1997)

Domaines du CP les plus prédictifs

Le schéma ci-dessus reprend les principaux résultats de notre étude. Nous y percevons que les deux domaines de compétences numériques et de concepts liés au temps contribuent à expliquer à hauteur de 74% la variance du score global de CP. Bien qu'intéressante, nous ne pouvons nous satisfaire de cette seule analyse endogène. Nous chercherons à décrire un peu plus les performances des élèves au CP en dégageant des relations quasi-causales entre les scores par domaines, ceci afin de déterminer quelles sont les compétences les plus déterminantes pour la réussite scolaire au début du primaire. La matrice de corrélation présentée dans à la section I-1.3.3 nous indique que les relations entre deux domaines varient entre +0,24 à +0,66. Mais si l'étude de cet indice nous indique que trois domaines (compétences numériques, compétences d'écriture et compétences de prélecture) entretiennent une relation symétrique et linéaire forte, il ne nous informe pas sur le sens de la relation. C'est pourquoi nous avons décidé de mobiliser l'analyse statistique implicative.

2.4.4. Relations implicatives entre domaines de compétences

Impulsée par les travaux conduits ou dirigés par Régis Gras depuis les années 70, ainsi que par les rencontres internationales portant sur cette thématique, l'Analyse Statistique Implicative (A.S.I.) désigne les modélisations des relations implicatives entre deux observations a et b telles que si j'observe a, alors j'ai aussi tendance à observer b, et ceci, de manière statistiquement significative (Gras et al. 2009, p.1). Nous schématiserons cette relation sous la forme suivante : $a \rightarrow b$. Dans ce cadre, il faut distinguer le théorème mathématique en tant que règle strictement observée, du concept de quasi-implication dégageant une quasi-règle (selon un niveau de confiance donné) et présentant des contres exemples de type $a \rightarrow non b$ (ainsi on a *tendance* à observer b si j'observe a). L'objectif principal est donc d'établir un rapport causal entre les scores des élèves afin d'identifier les domaines (ou couple de domaines) qui déterminent l'acquisition d'autres domaines.


Initialement, CHIC a été développé pour analyser des variables binaires, le logiciel n'est donc pas capable de traiter des valeurs inférieures à 0 et supérieures à 1. L'utilisation du logiciel nécessite un premier travail de transformation des scores en des valeurs proportionnelles comprises dans l'intervalle [0; 1]. En divisant les scores des élèves par la note maximale, nous obtenons des variables fréquentielles. Une seconde étape consiste à combler les valeurs manquantes (CHIC ne traite pas les cases blanches). Pour ce faire, deux possibilités s'offrent à nous : remplacer les valeurs manquantes par la valeur la plus pertinente, c'est-à-dire la moyenne du domaine concerné ou le score d'un élève qui a un comportement semblable; ou supprimer des données les individus pour qui il manque des scores. La première solution peut paraître la plus convenable, notamment pour ne pas perdre d'information; cependant, elle fait perdre en précision d'analyse. De plus, nous constatons qu'un nombre important d'élèves n'ont aucun score. Ainsi, nous avons préféré la seconde option : supprimer de notre fichier les individus pour lesquels des valeurs étaient manquantes. Nous passons donc de 9641 individus à 8590, la taille de l'échantillon reste donc importante. Nous avons choisi d'analyser l'ensemble des performances des élèves selon l'implication entropique et la loi binomiale. Couturier et Almouloud (dans Gras et al., 2009, p.286), préconisent de calculer l'intensité d'implication entropique (plutôt que classique) dès lors que l'on travaille sur un nombre important d'individus. Dans ce cas, moins de quasi-règles seront dégagées mais l'outil est plus adapté à nos données

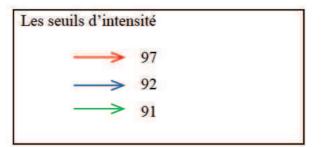
Encadré 3: L'Analyse Statistique Implicative

L'Analyse Statistique Implicative Blanchard et al. (2004)

L'analyse statistique implicative permet de modéliser des règles non symétriques de relations entre deux variables a et b, de type « si a, alors presque b ». La relation implicative $a \rightarrow b$ est mesurée à partir des apparitions invraisemblables, c'est-à-dire lorsque l'on vérifie a sans que b ne le soit. Ainsi, $a \rightarrow b$ sera considéré comme vrai si pour tous individus observés, b = 0 quand a = 0.

Pour rendre plus concrète cette notion d'implication statistique, prenons un exemple que nous allons schématiser. Nous cherchons à déterminer si la réussite des élèves dans un domaine A implique la réussite dans le domaine B.

Dans l'ensemble E, les parties hachurées correspondent au contre-exemple de la règle implicative $A \rightarrow B$.


- Dans le premier cas, la relation implicative A → B est acceptée car le nombre de cas invraisemblables où A ∩ B̄, est petit par rapport au nombre d'élèves attendu dans une hypothèse d'absence de lien. Ainsi, lorsque A = 1 alors B = 1 ou, quand un élève réussit dans le domaine A, alors il réussit aussi dans le domaine B.
- A l'inverse, dans le second cas, la relation implicative A → B est rejetée du fait du nombre trop élevé de contre-exemple : A ∩ B̄ > A ∩ B. Il y a en effet trop d'élèves qui ont réussi A sans réussir B pour valider la règle implicative A → B.

Un atout majeur de CHIC, que nous allons mobiliser à présent, est qu'il génère des graphiques faisant part de ces relations d'implications. Ces graphiques s'appellent des graphes implicatifs.

Schéma 4 : Schéma implicatif des domaines du CP (panel 1997)

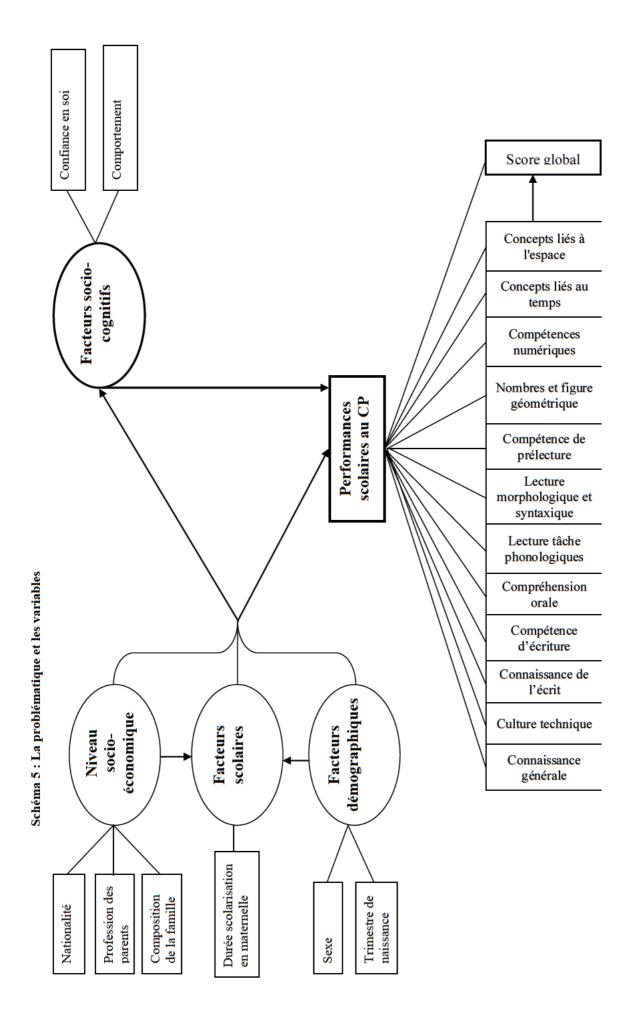
Légende :

Code	Nom du domaine
SC1A1	connaissances générales
SC1A2	connaissance de l'écrit
SC2A1	lecture tâches phonologiques
SC2A2	lecture morphologie & syntaxe
SC2B0	compétences épreuve numérique
SC3B0	concepts liés au temps
SC4A0	compréhension orale
SC5A0	compétences d'écriture
SC5B0	concepts liés à l'espace
SC6A0	compétences de prélecture
SC6B0	nombres & figures géométriques
SC4B0	culture technique

Les couleurs des flèches représentent le seuil d'implication entre deux variables. Par exemple, lorsqu'un élève réussit au domaine SC6B0, il y a 97% de chance qu'il réussisse également le domaine SC5B0. En fonction de sa position dans le graphique, on pourra nommer un domaine « parent » ou « antécédent » celui qui génère un phénomène, qui est à la source d'une relation avec un second domaine, que l'on appelle « enfant » ou « conséquent ». Il est intéressant de noter que certaines variables endossent tour à tour ces deux rôles, comme le domaine des concepts liés au temps (SC3B0), les connaissances générales (SC1A1), et les

nombres et les figures géométriques (SC6B0). Ces trois variables canalisent l'effet de plusieurs domaines, ce qui veut dire qu'il n'y a pas qu'une seule manière d'apprendre et de réussir un domaine, mais bien plusieurs moyens pour y parvenir. Par exemple, un élève aura tendance à réussir les items du domaine SC3B0, les concepts liés au temps, s'il a réussi dans un de ces trois domaines : les compétences numériques, les compétences d'écriture ou la lecture phonologique. De même, la réussite en connaissance générale résulte des performances de l'élève dans un des cinq domaines antécédents, de nature très variée : les concepts liés au temps, la lecture syntaxique, la prélecture, la culture technique ou même la connaissance de l'écrit. Ainsi, certains domaines semblent avoir un impact fort sur la réussite globale des élèves, il s'agit des trois variables parents se trouvant au somment du graphe implicatif (les compétences en épreuve numérique, en écriture et en lecture phonologique), ainsi que les trois domaines qui canalise l'effet de ces variables (les concepts liés au temps, les connaissances générales et les nombres).

Chapitre 3. L'impact des facteurs socio-cognitifs sur les performances des élèves au CP


Dans le chapitre précédent, nous avons examiné l'impact des facteurs socioéconomiques, scolaires et démographiques sur les performances scolaires des élèves au CP. Après avoir mis en évidence l'impact du sexe, du trimestre de naissance, de la nationalité, de la profession des parents et de la durée de la scolarisation en maternelle, nous avons cherché à comprendre comment les performances des élèves se construisaient. Nous avons montré que les compétences numériques et la maîtrise des concepts liés au temps étaient particulièrement prédictives de la réussite scolaire ultérieure. De plus, en mobilisant une méthode d'analyse originale, les analyses statistiques implicatives, nous avons montré comment les apprentissages des élèves se structuraient.

Nous cherchons désormais à déterminer dans quelle mesure d'autres facteurs que ceux susmentionnés peuvent avoir un impact sur les performances des élèves, et tout particulièrement les facteurs socio-cognitifs, tels que le niveau d'estime de soi auto-apprécié par les élèves, le niveau de langage, l'adaptation au rythme de la classe, l'attention et l'autonomie. En effet, ces facteurs sont particulièrement importants pour mieux comprendre les performances scolaires, mais sont souvent négligés.

Le terme de cognition est un mot récurrent dans la littérature contemporaine en psychologie et apparait de plus en plus souvent en sciences de l'éducation. On pourrait rapprocher de cette expression de termes plus usuels et englobante tels que l'intelligence ou plus exactement la manière de penser, de prendre une décision ou d'agir. Nous retiendrons la définition de Lemaire (2006) selon laquelle : « la cognition est cette faculté mobilisée dans de nombreuses activités, comme la perception, les sensations, les actions, la mémorisation et le rappel d'information, la résolution de problèmes, le raisonnement, la prise de décision et le jugement, la compréhension et la production de langage, etc... » (p. 14).

Ainsi, les facteurs cognitifs regroupent une réalité assez large. Certains de ces aspects ayant été mesurés par le panel 1997, nous allons les intégrer à nos analyses afin de comprendre quel rôle jouent les facteurs cognitifs dans les apprentissages des élèves. Cela permet d'enrichir notre problématique, présentée schématiquement page suivante (schéma 6).

Nous allons d'abord étudier les relations existant entre les facteurs socioéconomiques et comportementaux des élèves, puis, celles entre ces facteurs cognitifs et les performances scolaires.

3.1. Relation entre les facteurs sociaux et le comportement des élèves

3.1.1. Image de soi et comportement de l'élève : description des données

Outre la mesure des performances scolaires, le panel 97 comporte également un volet consacré à l'évaluation des attitudes et comportements des élèves en classes, évaluation réalisée par les enseignants. Si l'on peut s'interroger sur la valeur scientifique de telles évaluations réalisées par les enseignants eux-mêmes, nombreuses sont les recherches à avoir démontré leur position privilégiée pour décrire les aptitudes ou les difficultés comportementales des élèves, ainsi que leur faculté à s'adapter au rythme et aux exigences de la vie en classe. En effet, qui mieux que les enseignants, au contact quasi-quotidien des élèves, est à même de repérer les comportements mobilisés par les élèves en classe dans les situations d'apprentissage (Coleman et Dover, 1993 ; Guimard et al., 2002 ; Guimard et al., 2007).

L'évaluation des attitudes et comportements regroupe 21 items. Nous pouvons les distinguer en quatre catégories : l'image de soi (8 items), l'intégration au sein de la classe (6 items), l'exécution de tâches (4 items) et l'attention (3 items).

Il est fréquent d'observer un lien entre une image de soi élevée et de bons résultats scolaires : un élève confiant en lui se sent souvent capable de réussir et réussit. Mais, peut-on pour autant affirmer que les élèves en difficulté scolaire manifestent une faible confiance en eux et en leurs capacités? Autour de cette question se sont développées de fortes controverses pour savoir qui de l'image de soi ou des performances scolaires influence l'autre positivement. Audelà de cette opposition (la confiance en soi améliore les performances scolaires, ou le contraire), une troisième perspective préfère l'interrelation entre ces deux phénomènes : de bons résultats scolaires peuvent renforcer positivement l'image de soi, tout comme une faible image de soi peut empêcher un élève de s'investir dans sa scolarité puisqu'il se croit voué à l'échec. De façon générale, l'image qu'un élève a de lui peut contribuer à valoriser ou diminuer ses aspirations, ses projets et par-là même ses compétences (Bolognini et al., 1998).

L'image de soi est abordée par le Panel 97 à deux reprises : dans un premier temps le professeur évalue la confiance de l'élève en lui lors des activités scolaires, et son échec par excès de confiance sur une échelle à quatre positions ; puis dans un second temps on demande à l'élève de se classer suite à une course imaginaire (6 items).

L'intégration de l'élève au sein de la classe est mesurée à travers 6 items : 3 concernent l'élève parmi d'autres élèves (participation de l'élève lors de travail en groupe, bonne intégration de l'élève parmi les enfants de la classe, niveau de langage), un autre concerne l'élève face à son corps (aisance de l'élève dans les activités mettant en jeu la maîtrise des gestes) ; et enfin 2 derniers items ont trait à la parole de l'enfant (participation à la conversation scolaire, intervention lors de la conversation).

La troisième catégorie concerne l'exécution d'une tâche. Elle est appréhendée par quatre items : rapidité, efficacité, autonomie et organisation.

Enfin, l'attention de l'élève est mesurée à travers 3 items (capacité de l'élève à une attention régulière, fatigue de l'élève pendant les activités scolaires, et adaptation de l'élève au rythme scolaire). L'attention est un mécanisme de première importance lors des apprentissages. Tout nouvel apprentissage est une information que le cerveau doit traiter, apprendre, comprendre, mémoriser puis solliciter. L'apprentissage d'une nouvelle compétence est un processus long qui se fait par étape, dont l'attention fait partie. Afin de comprendre ces étapes et le rôle que l'attention est amenée à prendre lors du processus d'apprentissage, nous nous référons au modèle de mémoire proposé par Atkinson et Shiffrin en 1968. Ce modèle propose que le cerveau traite une information en trois temps :

- Premièrement, l'information parvient aux récepteurs ou enregistreurs sensoriels de l'individu, c'est-à-dire ses yeux, ses oreilles, son nez, ses doigts... pour stimuler tous ses sens. Il s'agit d'une étape très courte puisque cette information n'est retenue par les récepteurs sensoriels que quelques secondes. Ici plus l'enfant est attentif, plus les sens sont sollicités.
- L'information pénètre ensuite temporairement dans la mémoire à court terme jusqu'à ce qu'elle se perde ou qu'elle soit transférée dans la mémoire à long terme si l'individu est attentif. L'attention est donc ici un élément

déterminant. A cette étape, l'information peut demeurer dans la mémoire à court terme 5 à 20 secondes (Ormrod, 2004). Si l'information est traitée ou pratiquée dans ce laps de temps, elle est stockée dans la mémoire à long terme, sinon elle se perd.

- Enfin, l'information est placée dans la mémoire à long terme. Les psychologues s'accordent à penser que cette partie de la mémoire n'est limitée ni en termes spatial, ni en termes temporel. Cependant, pour conserver une information, il faut la réactiver régulièrement (Ormrod, 2004).

Ainsi, la deuxième phase semble un palier important lors de l'apprentissage d'une nouvelle information. En effet, c'est à cet instant que l'information sera soit perdue, soit stockée dans la mémoire à long terme. L'attention est donc un mécanisme déterminant pour apprendre et mémoriser de nouvelles compétences.

Les quatre catégories de mesure des comportements et attitudes des élèves sont évaluées à l'aide de trois outils distincts : une grille d'observation renseignée par les enseignants (13 items), deux questions supplémentaires aux enseignants sur le niveau de langage et l'adaptation de l'élève au sein de la classe, et une auto-évaluation de la part des élèves (6 items).

La grille d'observation a été élaborée à partir d'un outil similaire développé par Florin (1991). Se focalisant sur les comportements des élèves en fin de maternelle ou en début de CP les plus prédictifs de la réussite ultérieure, cette grille comporte 13 questions relatives aux aspects suivants : confiance en soi (items 1 et 2), attention et fatigue (item 3 et 9), différents paramètres de l'exécution d'une tâche (items 5, 6, 7 et 12), l'intégration de l'élève en classe (items 4, 8, 10, 11 et 13). Les professeurs doivent mesurer la fréquence de ses comportements sur une échelle à quatre positions : comportement jamais remarqué, parfois remarqué, souvent remarqué et habituellement remarqué. Le tableau suivant fait part de la fréquence des comportements tels qu'observés par les enseignants.

Tableau 23 : Fréquences des différents comportements observés par l'enseignant, en pourcentage (panel 1997)

	comportement jamais remarqué	comportement parfois remarqué	comportement souvent remarqué	comportement habituellement remarqué
Confiance en lui	14,9	23,6	29,7	31,8
Echec par excès de confiance	64,4	18,	11,1	6,8
Capacité à une attention régulière	11,5	24,5	30,2	33,7
Fatigue pendant les activités	37	24	24,8	14,2
Rapidité dans l'exécution d'une tâche	13,6	24,4	32,4	29,6
Efficacité dans l'exécution d'une tâche	9,3	24,4	32,5	34
Autonomie de l'élève	13,3	22,6	29,8	34,4
Anticipation et organisation de l'élève dans l'exécution d'une tâche	16,2	26,9	31,9	25
Aisance gestuelle	8	22,2	35,5	34,2
Participation à la conversation scolaire	10,9	23,3	27,5	38,3
Intervention à bon escient dans la conversation	11,1	22,2	29,9	36,8
Facilité à travailler en groupe	8,5	20,4	31,2	39,9
Bonne intégration parmi les enfants de la classe	3,7	9,6	24,2	62,5

Ainsi, trois questions donnent lieu à des réponses particulièrement positives : 64,4% des élèves n'échouent jamais par excès de confiance, 62,5% d'entre eux s'intègrent bien parmi les autres enfants de la classe et 60,2% ont une bonne maîtrise du langage. A l'inverse, moins du tiers des élèves anticipent l'exécution d'une tâche (25%) et sont rapides à l'exécuter (29,6%). Selon la question posée, entre 3,7% (problème d'intégration parmi les autres élèves de la classe) et 16,2% (n'anticipent pas l'exécution d'une tâche) des élèves ont une évaluation négative.

Comme nous l'avons mentionné, deux autres questions posées à l'enseignant s'ajoutent à cette première grille, et dont le libellé exact est le suivant :

- question 14 : Du point de vue du langage, par rapport au niveau de la classe, jugezvous son niveau...
 - question 15 : A votre avis, pour suivre le rythme de la classe, a-t-il besoin...

La répartition des réponses figure au tableau suivant. Le niveau de langage des élèves du panel 97 est dans l'ensemble évalué favorablement par les enseignants, bien que près de 10% des enfants aient un niveau insuffisant. En ce qui concerne l'adaptation au rythme de la classe, près de la moitié des élèves s'y adaptent naturellement. L'évaluation est là aussi plutôt positive puisque la majorité des élèves qui ne s'adaptent pas spontanément ont besoin d'être encouragés, et non contraints.

Tableau 24: Niveau de langage et adaptation au rythme de la classe (panel 1997)

Q14	Niveau de langage	%	Q 15	Adaptation au rythme de la classe	%
	Insuffisant	9,8		D'être soutenu, encouragé	35,1
	Moyen	30,1		D'être contraint	15,8
	Bon	60,2		Ni l'un, ni l'autre. Il suit	49,1
	Total	100,0		naturellement le rythme de la classe	49,1
				Total	100,0

Nous venons de voir les résultats des évaluations des attitudes et comportements du point de vue de l'enseignant. Un second outil nous permet d'appréhender la confiance en soi directement par l'élève. Lors des évaluations papier-crayon, un volet spécifique demande à l'élève de se placer lors de différentes situations. Par exemple, pour l'item 2, on demande à l'enfant de s'imaginer en train de faire une course de vélo avec ses camarades. Sur une feuille, un dessin représente cette course : un enfant est nettement en tête, plusieurs sont au milieu, et un autre est loin derrière. On lui demande alors d'entourer sur le dessin l'enfant qu'il s'imagine être. C'est sur ce modèle que sont construits les items 1, 2, 3 et 5. Pour l'item 4, les enfants sur le dessin ont plus ou moins de jetons, et pour l'item 6, les enfants font voler les cerfs-volants plus ou moins hauts dans le ciel. En fonction de la réponse donnée par l'élève, nous sommes en mesure de déterminer la confiance qu'il a en lui. Le tableau suivant indique les fréquences des réponses.

Tableau 25 : Répartition des réponses par items de confiance en soi (panel 1997)

Items	Haute	Basse	Intermédiaire	Non réponse	Autre
Item 1 : la montagne	70,5	9	19,4	0,5	0,6
Item 2 : La course à vélo	82,5	4	2,9	0,5	0,2
Item 3 : La course à pied	83	2,5	13,4	0,7	0,4
Item 4 : Les jetons	81,3	7,6	7,6	1,9	1,5
Item 5 : La course à la piscine	76	5,7	15,7	0,9	1,7
Item 6 : Le cerf-volant	54,1	41,5	Х	3	1,3

Pour cinq des six items, les réponses sont positives à plus de 70%, et négatives pour moins de 20% des élèves. Il est intéressant de noter que les élèves ne choisissent que peu fréquemment les positions intermédiaires (entre 2,5 et 9% selon les items). Les réponses des élèves sont presque également réparties entre les deux propositions pour l'item 6. Il s'agissait de s'imaginer en train de faire voler un cerf-volant. L'élève devait alors entourer sur le dessin l'un des deux enfants : celui qui a le cerf-volant le plus haut dans le ciel ou celui qui le fait voler moins haut.

Ces données ouvrent des perspectives intéressantes. Non seulement elles nous renseignent sur le comportement des élèves en classe, mais aussi, dans une moindre mesure, sur divers aspects de leur cognition, comme leur capacité à maintenir une attention suffisante en classe, leur rapidité, leur efficacité, l'anticipation et l'organisation dans l'exécution d'une tâche. Nous allons maintenant chercher à déterminer comment les différents aspects du comportement des élèves en classe sont liés entre eux.

3.1.2. La structure des items de comportement

Intéressons-nous aux relations statistiques existant entre chacun des comportements de l'élève. La matrice de corrélation présente les coefficients de corrélation linéaire entre les différentes attitudes de l'élève. Comme l'indique le tableau 26, les corrélations entre chaque comportement varient sensiblement, de -0,2 à +0,79, ce qui signifie que les relations fluctuent selon les comportements évalués. Par exemple, l'autonomie de l'élève en CP est associée à son degré de confiance en lui ou à sa capacité à une attention régulière puisque les coefficients de corrélation sont de +0,67. Afin de dégager les relations les plus importantes, nous avons signalé en gras les coefficients supérieurs à +0,50. On voit alors que les items sont fortement corrélés entre eux, à deux exceptions près : l'échec de l'élève par excès de confiance et de la fatigue pendant les activités. La matrice de corrélation montre en effet que ces deux items sont faiblement liés aux autres.

Les corrélations entre les différents items de comportement sont dans l'ensemble très fortes. Afin de compléter l'analyse, une analyse factorielle exploratoire est effectuée pour déterminer la structure des items. Plus précisément, elle permet de voir si les variables font partie d'un même regroupement autour d'un facteur commun latent, si ces variables mesurent différents aspects de ce facteur latent.

Tableau 26 : Les corrélations entre les items de comportement de l'élève (panel 1997)

		Confiance en lui	Echec de l'élève par excès de confiance	Capacité à une attention régulière	Facilité à travailler en groupe	Rapidité dans l'exécution	Efficacité dans l'exécution	Autonomie de l'élève	Aisance gestuelle	Fatigue pendant les activités	Participation active à la conversation	Intervention à bon escient	Anticipation et organisation dans	Bonne intégration parmi les enfants
Conflance en lui lors des activités scolaires	Coef. Sig.	1												
Echec de l'élève par excès de confiance en lui	Coef. Sig.	,144" ,000	1											
Capacité de l'élève à une attention régulière	Coef. Sig.	, 535 "	-,109 ^{**} ,000	1										
Facilité à travailler en groupe	Coef Sig.	,503°°	-,081 ^{**}	,663" ,000	1									
Rapidité dans l'exécution d'une tâche	Coef Sig.	,632 ^{**}	,042"	,611" ,000	,553** ,000	1								
Efficacité dans l'exécution d'une tâche	Coef Sig.	,644" ,000	-,065 ^{**}	, 724 "	,645°°	, 722 "	1		12					
Autonomie de l'élève	Coef Sig.	,675 ^{**}	,014	,676" ,000	,631" ,000	,704" ,000	,768" ,000	1.	i i					
Aisance gestuelle	Coef Sig.	,535" ,000	-,008 ,455	,542" ,000	,543" ,000	,565** ,000	,631" ,000	,629 ^{**}	1				, ,	
Fatigue pendant les activités	Coef Sig.	-,168" ,000	,163 ^{**}	-,194" ,000	-,134" ,000	-,177" ,000	-,186" ,000	-,163" ,000	-,163" ,000	1				
Participation active à la conversation scolaire	Coef Sig.	,574° ,000	,096 ^{**}	,432" ,000	,491" ,000	,508" ,000	,534" ,000	,539" ,000	,462" ,000	-,107" ,000	1			
Intervention à bon escient	Coef Sig.	,562 ^{**}	-,036" ,000	,585" ,000	,598" ,000	,545" ,000	,668" ,000	,630" ,000	,529 ^{**}	-,139" ,000	, 732 "	1		
Anticipation et orga. dans l'exécution d'une tâche	Coef Sig.	,637" ,000	,000 ,946	,680" ,000	,618 ^{**}	,689" ,000	,77 4 "	,789 ^{**}	,623" ,000	-,168" ,000	,554" ,000	,670" ,000	1	
Bonne intégration parmi les enfants de la classe	Coef Sig.	,403"	-,079 ^{**}	,457" ,000	,591" ,000	,404"	,479"	,471"	,452"	-,108" ,000	,473"	,518" ,000	,453" ,000	1

^{**.} La corrélation est significative au niveau 0.01 .

Tableau 27 : Matrice des composantes

	Comp	osante
	1	2
Confiance en lui lors des activités scolaires	,778	-
Echec de l'élève par excès de confiance en lui	-,013	,867
Capacité de l'élève à une attention régulière	,789	
Facilité à travailler en groupe	,763	
Rapidité dans l'exécution d'une tâche	,796	
Efficacité dans l'exécution d'une tâche	,876	
Autonomie de l'élève	,864	
Aisance gestuelle	,739	
Fatigue pendant les activités	-,233	,528
Participation active à la conversation scolaire	,722	
Intervention à bon escient	,804	
Anticipation et organisation dans l'exécution d'une tâche	,863	
Bonne intégration parmi les enfants de la classe	,618	
Niveau de langage au CP en septembre 1997	,696	
Adaptation au rythme de la classe en septembre 1997	,707	

Méthode d'extraction : Analyse en composantes principales.

Les coefficients de l'analyse factorielle suggèrent que les 15 items relatifs au comportement de l'élève mesurent deux facteurs latents différents (dans un souci de lisibilité, les loadings inférieurs à 0,3 en valeur absolue ont été supprimé). Un premier facteur, de « comportement positif », regroupe l'ensemble des items. Les deux items de fatigue de l'élève et d'échec par excès de confiance y contribuent très faiblement, et négativement. C'est précisément ces deux items qui constituent le second facteur, de « comportement négatif ».

a. 2 composantes extraites.

Il est donc pertinent de construire un score global de comportement, à condition d'exclure les deux items de comportement négatif. La légitimité d'un score global de comportement est confirmée par la mesure de l'alpha de Cronbach. En effet, la fidélité du questionnaire constitué des 13 items correspondant à la mesure du comportement positif de l'élève (alpha de Cronbach) est très élevée, puisque le coefficient est de 0,94. Nous avons donc construit un score global de comportement correspondant à la somme des scores aux 13 items, que nous avons ensuite normalisé (moyenne à 100 et écart-type à 15). Nous étudierons par la suite l'impact du score global de comportement sur les performances de l'élève.

Nous avons effectué les mêmes analyses sur les items de la confiance en soi. Il apparaît à la lecture de la matrice de corrélation que les items entretiennent de faibles relations entre elles (de +0,07 à +0,3). De plus, le degré d'homogénéité des six items de confiance en soi est faible, puisque la valeur du coefficient de l'alpha de Cronbach est de 0,49. Ainsi, contrairement au score de comportement, nous ne sommes pas en mesure de calculer un score global pour appréhender la confiance de soi de l'élève. Nous étudierons donc les relations entre les performances de l'élève et les scores aux six items de confiance en soi.

Avant d'étudier l'impact du comportement et de la confiance en soi sur les performances des élèves de CP, nous tenterons d'abord de déterminer l'influence des facteurs socio-économiques et scolaires sur le score global de comportement.

3.1.3. Influences des facteurs socio-économiques et scolaires des élèves sur le score global de comportement

Les relations qu'entretiennent les facteurs socioéconomiques et scolaires des élèves avec leurs comportements et attitudes demeurent peu étudiées. Pourtant, dans la mesure où ils influencent les performances scolaires, comme nous l'avons vu précédemment, ces facteurs pourraient avoir un impact sur les comportements des élèves. Les données du panel 97 permettent d'avancer sur ce point, de déterminer si les facteurs socioéconomiques et scolaires influencent les comportements des élèves et le sens des relations.

Le tableau suivant (tableau 28) présente les principaux résultats de la régression linéaire multi-variée effectuée entre les variables socio-économiques (variables explicatives) d'une part, et le score global de comportement (variable expliquée) d'autre part. La valeur de la constante (80) équivaut au score moyen obtenu par un élève correspondant à la situation de référence et les autres valeurs correspondent aux écarts de performance par rapport à la situation de référence. Par exemple, un élève né au premier trimestre réussit mieux de 7,3 points qu'un élève née au dernier trimestre; toujours selon un raisonnement « toutes choses égales par ailleurs », c'est-à-dire sous contrôle des autres variables (sexe, nationalité, trimestre de naissance...). Notons qu'une part importante de la variation du score global (plus de 86%; $R^2 = 0,135$) ne s'explique pas par les variables prisent en compte, ce qui laisse supposer que des facteurs extérieurs au modèle agissent sur le comportement de l'élève. Ces autres variables peuvent être de diverses natures : les performances de l'élève, les attentes de son professeur ou de ses parents, sa maturité peuvent avoir un impact sur son comportement.

Les écarts de scores de comportement entre élèves peuvent être très importants. Une fille de nationalité française, née au premier trimestre et dont les deux parents sont cadres obtient environ 114 points, contre seulement 80 points pour un garçon de nationalité étrangère, né au dernier trimestre et dont les deux parents sont sans activité, ce qui équivaut à une différence considérable de 34 points. Bien entendu, il s'agit ici de deux exemples mais qui montrent bien que l'impact des caractéristiques des élèves peut se cumuler pour créer une forte disparité au niveau de leur comportement au CP.

Avant d'en venir aux commentaires plus fins sur l'impact de chacune des caractéristiques individuelles, il est important de souligner que presque tous les facteurs socioéconomiques et scolaires considérés ont une influence significative sur les scores de comportement. Comme nous le pensions, les comportements des élèves s'expliquent en partie par leurs caractéristiques individuelles.

Tableau 28 : Impact des facteurs socioéconomiques et scolaires sur le score global de comportement (panel 1997)

$R^2 = 0$, Modali	135 té de référence	Modalités actives	В	Erreur standard	Signification
		(constante)	80,495	1,019	,000
Sexe	(Réf. : Garçon)	Fille	2,793	,298	,000
Nation	alité (Réf. : Etrangers)	Nationalité française	4,349	,681	,000
r tation.	(Réf. : Autre)	Père et mère	2,178	,480	,000
		Premier trimestre	7,375	,436	,000
Trimes	tre de naissance (Réf. : Dernier)	Seconde trimestre	4,277	,427	,000
	(Net. : Deffiler)	Troisième trimestre	1,868	,423	,000
		Père cadre	7,774	,725	,000
		Père profession intermédiaire	5,989	,695	,000
Profes	sion du père	Père agriculteur ou artisan	4,414	,727	,000
	(Réf. : Ss activité)	Père employé	3,030	,719	,000
		Père ouvrier	1,432	,631	,023
		Mère cadre	6,039	,681	,000
		Mère profession intermédiaire	4,997	,447	,000
	sion de la mère	Mère agriculteur ou artisan	2,010	,863	,020
	(Réf. : Ss activité)	Mère employé	2,268	,382	,000
		Mère ouvrière	,312	,645	,628
	de la scolarisation en	Plus de trois années	4,013	,649	,000
matern	elle (Réf. : - de 3 ans)	Trois ans	2,989	,612	,000

Voyons maintenant plus précisément l'ampleur des écarts de scores de comportement selon les caractéristiques individuelles des élèves. Suite à l'examen des coefficients, on observe que l'impact du sexe est positif et significatif, avec une différence de 2,7 points en faveur des filles. Il est important de noter que les élèves de nationalité étrangère sont pénalisés, avec une différence de l'ordre de 4,3 points de moins que leurs pairs français. Le trimestre de naissance joue un rôle conséquent pour expliquer la variation des scores : les élèves nés au premier trimestre obtiennent 7,3 points de plus que les élèves nés au dernier semestre. Il peut s'agir d'une différence de maturation cognitive entre les enfants nés au début d'année, plus âgés par rapport à ceux nés au dernier semestre. Nous avons vu précédemment, qu'à ce niveau de scolarité, cette variable joue un rôle considérable dans l'acquisition des connaissances scolaires (par exemple, un élève né au premier semestre obtient 8,6 points de plus en compétence numérique qu'un élève né au dernier semestre). C'est donc également le cas pour l'attitude en classe. L'impact de la profession des deux parents est tout aussi important : un enfant dont le père est cadre obtient 7,7 points de plus qu'un enfant dont le père est sans activité (6 points lorsque l'on considère la profession de la mère). Il est important de noter qu'une seule variable n'a pas d'impact significatif sur le score global de comportement : avoir une mère ouvrière. Enfin, un élève ayant été scolarisé plus de trois années en maternelle obtiendra un meilleur score global de comportement: avec un gain de 4 points.

Ainsi, le score de comportement des élèves, au même titre que le score global d'acquisition scolaire de CP, s'explique en partie par les caractéristiques individuelles des élèves. Plus important encore, les influences sont tout à fait similaires, les facteurs ayant un impact favorable sur le score d'acquisition l'ayant également sur le score de comportement (par exemple, être une fille, être né au premier trimestre,...). Si ce résultat est intéressant, il ne doit pas faire oublier que le score de comportement peut lui-même contribuer à expliquer les performances scolaires. Nous verrons donc quel peut être l'impact de ce score de comportement sur les performances scolaires des élèves au CP. Avant cela, intéressons-nous aux effets des facteurs individuels sur la confiance en soi.

3.1.4. Influences des facteurs socio-économiques et scolaires des élèves sur les items de confiance en soi

Le score global de comportement intègre déjà des éléments de mesure de la confiance en soi, directement (« Confiance en lui lors des activités scolaires ») ou selon des indices liés à la participation de l'élève en classe. Cependant, ces mesures sont faites du point de vue de l'enseignant et peuvent manquer de précision. Les élèves ont été directement interrogés dans six questions spécifiques. Pour les raisons présentées précédemment, un score global ne peut être construit pour la confiance en soi. Ce sont donc les six items qui vont être étudiés séparément, plus précisément ici, l'impact des facteurs socioéconomiques et scolaires sur ces items.

L'utilisation des items relative à l'estime de soi des élèves nécessite une transformation des données avant de pouvoir mener l'analyse. Nous avons donc choisi de convertir les réponses des enfants en variables dichotomiques, où 1 représente un niveau de confiance en soi. Nous pouvons ainsi d'effectuer des régressions logistiques binaires pour déterminer les facteurs qui ont un impact sur la confiance de l'élève. Le tableau de la page suivante présente les résultats de ces analyses.

Les résultats des régressions logistiques binaires effectuées sur les scores de confiance en soi et/ou d'estime de soi varient selon les items. Cependant, nous pouvons observer quelques similitudes. Premièrement, le fait d'habiter avec ses deux parents n'a aucune incidence sur la confiance que les élèves ont d'eux-mêmes et de leur capacité, et ceci quel que soit l'item considéré. Ensuite, ce sont les filles qui sont le plus tendance à manquer de confiance en elle, puisque les coefficients associés à cette variable sont négatifs, dès lors qu'ils sont significatifs. Par exemple, les filles ont 50% de chance en moins que les garçons d'avoir une haute confiance en elles pour l'item 1 (la montagne) et l'item 3 (la course à pied), le rapport de cote étant proche de 0,5. Ce pourcentage est de 63% lorsque l'on considère l'item 5. Nous observons également que les élèves de nationalité française ont plus tendance à avoir une plus haute estime de soi que les élèves de nationalité étrangère. Ainsi, nous pouvons observer pour les items 2, 3 et 4, où les coefficients sont signification, que l'effet de la nationalité est plus ou moins présent. Pour l'item 2, les élèves de nationalité française ont

20% de chance de plus d'avoir une haute confiance en eux (avec un seuil de significativité de 10%) et pour l'item 4 ce pourcentage s'élève à 63%. Si le trimestre de naissance n'a pas ou très peu d'effet sur les probabilités d'avoir une haute estime de soi pour les items 1, 5 et 6, nous constatons son influence pour les items 2 à 4. Il est intéressant de noter que l'effet de cette variable se hiérarchise selon le trimestre de naissance et qu'il est plus fort pour les élèves de début d'année et décroit par la suite. Par exemple, pour l'item 4, un élève né au premier trimestre à 52% de chance supplémentaire qu'un élève né en fin d'année d'avoir une haute confiance en lui, ce pourcentage est de 37 pour les élèves nés au second trimestre, puis de 20 pour les élèves du troisième trimestre. Concernant la profession du père, elle n'a d'impact que sur l'item 4, les effets les plus importants correspondants au père cadre (+57% par rapport à un enfant dont le père est sans activité), et le plus faible pourcentage étant pour les enfants d'ouvriers (+23%). La profession de la mère agit de manière plus étendue, elle a un impact sur le niveau de confiance de l'élève pour les items 1 à 4. Il est intéressant de noter que le fait d'avoir une mère occupant une profession intermédiaire réduit les probabilités pour l'élève d'avoir une haute confiance en lui (-13%). A l'inverse, l'impact positif le plus élevé (46%) concerne les enfants de mère agricultrice ou artisane pour l'item 3. Enfin, la dernière variable introduite dans ces modèles est la durée de scolarisation à l'école maternelle. Nous observons qu'elle n'a que peu d'effet sur le niveau de confiance de l'élève (30% pour les élèves scolarisés plus de trois ans sur l'item 3). Ainsi, les probabilités d'avoir une haute estime de soi dépendant avant tout du sexe et du trimestre de naissance, les autres variables, dont la nationalité et la profession des parents jouant de manière plus spécifique, sur un ou deux items en particuliers.

Tableau 29: Probabilité d'avoir une haute estime de soi par item (panel 1997)

tes actives B Exp (B) B Ex	Modalité de référence	Items de confiance en soi	Item 1		Item 2		Item 3		Item 4		ltem5		Item 6	
(Ref.: Cargon) File (constante) 1,35 3,86 1,14 3,15 1,11 3,04 0,28 1,3 1,55 4,69 2,48 2,97 3,89 1,024** (Ref.: Cargon) File (Ref.: Etrangen) File (Ref.:		Modalités actives	В	Exp (B)										
(Ref.: Cargon) Fille -,728°° 483 351°° 704 586° 556 6,64°° 368 964°° 369 964°° 369 100° 100° 100°° 10		(constante)	1,35	3,86	1,14	3,15	1,11	3,04	0,28	1,3	1,55	4,69	-,28	,76
Petre et mère -,046°°s ,955 ,1208 2,95° 1,333 4,171°s ,1631 ,1631 ,103°s 1,103 ,103°s ,103°s ,103°s ,103°s ,103°s ,103°s ,103°s ,103°s ,113 ,-017°s ,103°s ,114 ,125°s ,1,133 ,1,14 ,1,13 ,101°s ,103°s ,103°s ,103°s ,1,14 ,1,14 ,1,13 ,1,14		Fille	-,728	,483	-,351	,704	-,586	,556	-,054 ^{ns}	,948	'997	69£'	,024 ^{ns}	1,024
Petre et mère (1907) 1909 111 111 111 111 1111 1111 1111 11	Nationalité (Déf. Etrandere)	Nationalité française	-,046 ^{ns}	,955	,189	1,208	.295	1,343	489	1,631	,103 ^{ns}	1,108	,051 ^{ns}	1,052
Peremier trimestre	(Réf. : Autre)	Père et mère	-,097 ^{ns}	906,	su 660'	1,104	,125 ^{ns}	1,133	-,017 ^{ns}	,983	,032 ^{ns}	1,032	,092 ^{ns}	1,097
Troisième trimestre		Premier trimestre	,072 ^{ns}	1,075	,349	1,418	90,	1,337	,417	1,517	,133	1,143	,113	1,120
Troisième trimestre (1,079 °° 1,081 °° 1,083 °° 1,081 °° 1,092 °° 1,108 °° 1,985 °° 1,128 °°	Trimestre de naissance	Seconde trimestre	,062 ^{ns}	1,064	,254	1,289	,250	1,284	,318	1,374	,073 ^{ns}	1,075	,101 [*]	1,106
Petre cadre Petre agriculteur ou artisan Petre profession intermédiaire -,031 ns ,969 (,082 ns 1,086 ns 1,087 ns 1,945 (,945 ns 1,568 ns 1,486 ns 1,945 n	(Ker.: Demier)	Troisième trimestre	su 620'	1,083	su 880'	1,092	,217	1,242	,185	1,203	,026 ^{ns}	1,026	,105	1,111
Père profession intermédiaire -,021 ns , 969 , 082 ns 1,085 -,067 ns , 945 , 396 ns 1,486 -,059 ns , 943 , 111 ns Père agriculteur ou artisan ,009 ns 1,009		Père cadre	-,051 ^{ns}	,950	-,063 ^{ns}	686,	-,108 ^{ns}	868,	,450	1,568	,017 ^{ns}		,128 ^{ns}	1,136
9) Pete agriculteur ou artisan		Père profession intermédiaire	-,031 ^{ns}	696'	,082 ^{ns}	1,085	-,057 ^{ns}	,945	96£'	1,486	-,059 ^{ns}	,943	,181 [*]	1,198
Père employé (0.009 °° 1,009 °° 1,009 °° 1,009 °° 1,009 °° 1,000 °	Profession du père (Réf · Ss activité)	Père agriculteur ou artisan	-,022 ^{ns}	978,	,043 ^{ns}	1,044	-,081 ^{ns}	,922	.429	1,536	,038 ^{ns}		,111 ^{ns}	1,118
Père ouvrier ,049 ns on mere cadre 1,050 ,049 ns on mere cadre 1,050 -,172 ns on mere cadre ,207 ns on mere cadre 1,050 ns on mere cadre 1,050 ns on mere cadre 1,050 ns on mere cadre 1,140 ns on mere cadre 1,141 ns on mere cadre 1,140 ns on mere cadre 1,141 ns on mere cadre 1,140 ns on mere cadre 1,141 ns on mere cadre		Père employé	_{su} 600'	1,009	-,049 ^{ns}	,953	-,076 ^{ns}	,927	,355	1,426	-,030 ^{ns}	970,	,040 ^{ns}	1,041
Mère cadre -,037 ns ,964 ,131 ns 1,140 ,164 ns 1,178 ns 1,118 ns ,311 ns 1,364 ns ,907 ns ,908 ns ,177 ns Mère profession intermédiaire -,141 ns ,869 ns ,152 ns 1,164 ns ,175 ns 1,191 ns ,351 ns 1,420 ns ,951 ns -,039 ns Mère agriculteur ou artisan ,036 ns 1,036 ns 1,046 ns 1,161 ns 1,261 ns 1,165 ns 1,165 ns 1,165 ns 1,165 ns 1,090 ns 1,091 ns 1,091 ns 1,092 ns 1,091 ns </td <td></td> <td>Père ouvrier</td> <td>,049 ^{ns}</td> <td>1,050</td> <td>,049 ^{ns}</td> <td>1,050</td> <td>-,172 ^{ns}</td> <td>,842</td> <td>,207</td> <td>1,230</td> <td>-,054 ^{ns}</td> <td>,947</td> <td>,013 ^{ns}</td> <td>1,013</td>		Père ouvrier	,049 ^{ns}	1,050	,049 ^{ns}	1,050	-,172 ^{ns}	,842	,207	1,230	-,054 ^{ns}	,947	,013 ^{ns}	1,013
Mère profession intermédiaire , 141 , 869 , 152 1,164 , 175 °° 1,191 , 351 1,420 -,050 °° 951 -,039 °° 98 °° 98 °° 1,036 °° 1,036 °° 1,046 °° 1,046 °° 1,462 °° 1,462 °° 1,165 °° 1,165 °° 1,251 °° 1,029 °° 1,004 °° 1,004 °° 1,004 °° 1,004 °° 1,101 °° 1,151 °° 1,261 °° 1,261 °° 1,165		Mère cadre	-,037 ^{ns}	,964	,131 ^{ns}	1,140	,164 ^{ns}	1,178	,311	1,364	-,097 ^{ns}	806'	,177	1,194
Sactivité) Mère agriculteur ou artisan ,036 °° 1,036 °° 1,046 °° 380 °° 1,462 °° 1,967 °° 1,095 °° 1,251 °° 1,251 °° 1,099 °° 1,004 °° 1,0	Profession de la mère	Mère profession intermédiaire	-,141**	698,	,152	1,164	,175 ^{ns}	1,191	,351	1,420	-,050 ^{ns}		-,039 ^{ns}	,962
Mère employé ,004 ns ascolarisation en Plus de trois années ,004 ns ans 1,004 ns ans 1,105 ns ans 1,116 ns ans	(Réf. : Ss activité)	Mère agriculteur ou artisan	,036 ^{ns}	1,036	,045 ^{ns}	1,046	,380	1,462	,091 ^{ns}	1,095	,224 ^{ns}		-,029 ^{ns}	,971
a scolarisation en Mère ouvrière ,084 scolarisation ,084 scol		Mère employé	,004 ^{ns}	1,004	,141,	1,151	,232	1,261	,152	1,165	,088 ns		,014 ^{ns}	1,014
Plus de trois années ,084 ^{ns} 1,087 ,091 ^{ns} 1,096 ,268 1,308 ,084 ^{ns} 1,088 -,024 ^{ns} 976 ,149 ^{ns} Réf. :- de 3 ans) Trois ans	Durée de la scolarisation en	Mère ouvrière	-,107 ^{ns}	668,	,130	1,139	,104 ^{ns}	1,110	,105 ^{ns}	1,111	-,020 ^{ns}	_	,044 ^{ns}	1,045
Trois ans	matemelle	Plus de trois années	,084 ^{ns}	1,087	,091 ^{ns}	1,096	,268	1,308	,084 ^{ns}	1,088	-,024 ^{ns}		,149 ^{ns}	1,160
	(Réf. : - de 3 ans)	Trois ans	-,021 ^{ns}	,980	,042 ^{ns}	1,043	,196	1,217	,152 ^{ns}	1,164	,004 ^{ns}		,143 [*]	1,154

*** Significatif au seuil de 1%: **significatif au seuil de 1%; * significatif au seuil de 5%

3.2. Etude des relations entre les scores par domaine (CP) et le score global de comportement

Dans la section précédente, nous avons vu comment les variables individuelles peuvent avoir un impact sur le score de comportement. A présent, nous allons étudier la manière dont le score de comportement et les scores de performance scolaire sont liés.

3.2.1. Relation entre les scores des acquisitions scolaires et les comportements des élèves

Quelles peuvent être les relations entre les performances scolaires et les mesures de comportements des élèves ? Pour répondre à cette question, nous commençons par examiner les liens entre comportements et score de performance global au CP. Le tableau 8, en annexe, présente les coefficients de corrélation entre le score aux items de comportement et le score global d'acquisition scolaire. Notons tout d'abord que toutes les corrélations sont significatives et positives. Les coefficients varient de 0,35 à 0,59. Ainsi, certaines dimensions du comportement de l'élève semblent plus liées que d'autres au score global de performance : un élève autonome (+0,56), efficace (+0,59) et organisé dans l'exécution (+0,58) d'une tâche aura tendance à avoir de bonnes performances. Il en est de même d'un élève qui s'adapte bien au rythme de la classe (+0,59). En revanche, l'intégration des élèves parmi les autres enfants de la classe est la variable de comportement associée à la réussite scolaire de la façon la moins élevée (+0,35), mais toujours positive.

Pour affiner ces observations, intéressons-nous maintenant aux relations statistiques existant entre chacun des domaines évalués et le comportement des élèves. Comme l'indique le tableau ci-après (tableau 29), les corrélations entre chaque domaine ne sont pas toutes positives, ni significatives. Les coefficients non significatifs sont le fait de la variable « échec par excès de confiance en lui ». Quant aux coefficients négatifs, ils sont tous associés à la fatigue de l'élève pendant les activités. Les autres relations sont variables : on note des coefficients allant de +0,05 à +0,51, ce qui signifie que les relations fluctuent fortement selon

les domaines. Par exemple, la réussite en « compétences numériques » en CP est associée à l'efficacité de l'élève dans l'exécution d'une tâche puisque le coefficient de corrélation entre ces deux variables est de +0,51. De même, le score en compétences d'écriture en CP est lié avec la même intensité à la variable précédemment citée.

Tableau 30 : Corrélation e les scores par domaines e		conn	con	Ph	lec	con	cone	cor	com	conc	•	ā	c
comportement des élèves		connaissances générales	connaissance de l'écrit	lecture tâches phonologiques	lecture morphologie & syntaxe	compétences épreuve numérique	concepts liés au temps	compréhension orale	compétences d'écriture	concepts liés à l'espace	compétences de prélecture	nombres & figures géométriques	culture technique
Confiance en lui lors des	Coef.	0,266	0,308	0,327	0,257	0,459	0,407	0,304	0,457	0,240	0,420	0,393	0,303
activités scolaires	Sig.	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Echec de l'élève par excès	Coef.	-0,006	0,001	0,013	0,009	0,025	0,011	0,003	0,033	0,017	0,017	0,015	0,051
de confiance en lui	Sig.	0,577	0,930	0,231	0,409	0,016	0,313	0,746	0,002	0,102	0,096	0,144	0,000
Capacité de l'élève à une	Coef.	0,251	0,323	0,314	0,262	0,449	0,378	0,287	0,466	0,239	0,419	0,382	0,258
attention régulière	Sig.	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Facilité à travailler en	Coef.	0,230	0,277	0,281	0,226	0,402	0,333	0,267	0,390	0,197	0,346	0,327	0,241
groupe	Sig.	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Rapidité dans l'exécution	Coef.	0,242	0,298	0,293	0,243	0,437	0,357	0,272	0,448	0,226	0,378	0,355	0,278
d'une tâche	Sig.	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Efficacité dans l'exécution	Coef.	0,300	0,353	0,362	0,303	0,512	0,447	0,338	0,519	0,280	0,465	0,435	0,321
d'une tâche	Sig.	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Autonomie de l'élève	Coef.	0,287	0,344	0,345	0,281	0,484	0,416	0,317	0,489	0,261	0,442	0,405	0,303
	Sig.	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Aisance gestuelle	Coef.	0,221	0,261	0,277	0,228	0,375	0,325	0,252	0,387	0,202	0,332	0,311	0,246
	Sig.	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Fatigue pendant les	Coef.	-0,082	-0,092	-0,085	-0,089	-0,140	-0,126	-0,094	-0,135	-0,063	-0,132	-0,123	-0,074
activités	Sig.	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Participation active à la	Coef.	0,224	0,271	0,279	0,238	0,372	0,349	0,273	0,377	0,209	0,332	0,320	0,291
conversation scolaire	Sig.	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Intervention à bon escient	Coef.	0,276	0,322	0,320	0,279	0,446	0,408	0,315	0,440	0,241	0,395	0,375	0,316
	Sig.	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Anticipation et orga.	Coef.	0,293	0,357	0,359	0,284	0,501	0,438	0,326	0,505	0,263	0,455	0,416	0,320
l'exécution d'une tâche	Sig.	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Bonne intégration parmi les	Coef.	0,201	0,194	0,206	0,194	0,288	0,259	0,211	0,277	0,155	0,252	0,244	0,219
enfants de la classe	Sig.	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Adaptation au rythme de la	Coef.	0,252	0,304	0,313	0,235	0,468	0,398	0,285	0,460	0,228	0,411	0,374	0,274
classe	Sig.	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Niveau de la langue au CP	Coef.	0,337	0,345	0,343	0,318	0,459	0,470	0,382	0,469	0,299	0,443	0,419	0,360
	Sig.	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000

En observant plus attentivement la matrice de corrélation, on s'aperçoit que les relations les plus fortes sont associées à cinq domaines et à six comportements. Parmi les comportements des élèves, ce sont l'efficacité dans l'exécution d'une tâche ainsi que son anticipation et son organisation, l'autonomie de l'élève, l'adaptation au rythme de la classe, son niveau de langue et les interventions à bon escient qui sont le plus souvent associés aux performances des élèves, notamment en compétences d'écriture, en compétences numériques et en compétences de prélecture, pour les concepts liés au temps, et pour les nombres et figures géométriques.

3.2.2. Impact du score global de comportement et des variables individuelles sur les scores de performances

Les performances scolaires au CP, globalement ou par domaine, sont corrélées aux mesures de comportement. Il nous faut maintenant nous assurer que ces corrélations ne masquent pas l'effet d'autres facteurs individuels, ou dit autrement, évaluer l'impact net du score de comportement sur la performance globale.

Comme l'indiquent les résultats du tableau de la page suivante, l'impact du score de comportement sur les performances des élèves en CP est positif et significatif. Plus précisément, un gain d'un point au score global de comportement a pour effet d'accroître le score global de performance scolaire d'un demi-point (0,49). Toutes choses égales par ailleurs, les comportements positifs des élèves (tels que mesurés dans le score global) ont bien un effet favorable sur leur performance.

Tableau 31 : Impact du score de comportement et des caractéristiques des élèves sur le pourcentage d'items réussis à l'évaluation de CP (panel 1997)

$R^2 = 0.48$				
Modalité de référence	Modalités actives	В	Erreur standard	Signification
	(constante)	9,082	,891	,000
	Score global comportement	,491	,007	,000
Nationalité (Réf. : Etrangers) Sexe (Réf. : Garçon)	Nationalité française	4,806	,456	,000
(Fille	-,239	,199	,230
(Réf. : Autre)	Père et mère	,526	,320	,100
Trimestre de naissance	Premier trimestre	2,397	,295	,000
(Réf. : Dernier)	Seconde trimestre	1,800	,286	,000
	Troisième trimestre	1,108	,282	,000
	Père cadre	4,664	,487	,000
Profession du père	Père profession intermédiaire	3,238	,465	,000
(Réf. : Ss activité)	Père agriculteur ou artisan	2,366	,485	,000
	Père employé	1,851	,479	,000
	Père ouvrier	,787	,420	,061
	Mère cadre	4,248	,455	,000
Profession de la mère	Mère profession intermédiaire	3,303	,300	,000
(Réf. : Ss activité)	Mère agriculteur ou artisan	2,248	,575	,000
	Mère employé	1,822	,255	,000
	Mère ouvrière	,298	,429	,487
Durée de la scolarisation en maternelle	Trois ans	1,223	,410	,003
(Réf. : - de 3 ans)	Plus de trois années	1,870	,435	,000

Il est intéressant de noter les changements apportés par l'introduction de cette nouvelle variable (voir tableau n°15 pour le modèle sans score de comportement). En effet, on peut constater qu'à score de comportement égal, et toutes autres choses égales par ailleurs, les filles n'obtiennent pas de performances significativement meilleures que les garçons, alors qu'elles obtiennent 1,3 points de plus dans le modèle précédemment estimé. De la même manière, l'impact du trimestre de naissance parait relativement moins important, avec un score de 2,4 points supérieurs pour les élèves nés au premier trimestre, puis 1,8 et 1,1 points de plus pour les élèves nés par la suite. Or, l'effet du trimestre de naissance dans le modèle qui n'introduit pas le score de comportement est respectivement de 6,1 points, puis de 3,9 et 2,1. Il en est de même avec la valeur des autres coefficients. Par exemple, pour la profession du père, l'impact de la variable « père cadre » est de 4,7 points dans ce modèle, soit près de 4 points inférieurs par rapport au modèle précédent.

Le score de comportement de l'élève joue un rôle essentiel dans l'explication de la variabilité des scores de CP (son introduction améliore d'ailleurs considérablement le R² du modèle et permet d'expliquer près de la moitié de la variabilité totale). Ainsi, ces analyses présentent des résultats intéressants quand à l'impact du comportement des élèves sur leur réussite scolaire. Les matrices de corrélation et les résultats de la régression montrent que dès le début de la scolarisation, le comportement des élèves en classe, tel qu'appréhendé par les enseignants, est associé aux performances scolaires des élèves en CP.

3.2.3. Impact de la confiance en soi et des variables individuelles sur les scores de performances

Nous avons vu précédemment quels sont les facteurs qui peuvent avoir un impact sur la probabilité d'avoir une haute estime en ses capacités. Nous allons maintenant chercher à déterminer si et dans quelle mesure cette variable contribue à l'explication des performances scolaires des élèves au début de la scolarisation. Pour cela, nous avons introduit dans des régressions linéaires multiples, conjointement aux variables socioéconomiques, démographies et scolaires, le score de confiance en soi dichotomisé. Le tableau de la page suivante présente les résultats de ces analyses.

Portons nous attention sur le coefficient associé à la variable « item de confiance en soi ». Nous constatons que les réponses à l'item 1 n'ont pas d'impact sur les performances scolaires des élèves. Par contre, la confiance en soi mesurée à travers les items suivants contribue à expliquer, de manière plus ou moins importante, le pourcentage d'items réussis à l'évaluation de CP. C'est le coefficient associé à l'item 6 qui est le plus faible puisque les élèves qui ont une confiance maximale obtiennent 1,3 points de plus que les élèves manquant de confiance en eux. A l'inverse, l'impact le plus considérable vient de la réponse à l'item 4. Un élève qui a montré un niveau de confiance élevé lors de cet item obtient 6 points de plus au score global de CP qu'un élève ayant peu confiance en lui. Ce gain est considérable, puisqu'il est comparable à l'impact de la nationalité sur les performances scolaires des élèves, et est plus important que le gain obtenu par les élèves né au premier trimestre par exemple.

Tableau 32: Impact du score de confiance en soi sur le score global de CP (panel 1997)

Modalité de référence	Items de confiance en soi	Item 1		Item 2		Item 3		Item 4		Item5		Item 6	
	Modalités actives	В	Sig										
	(constante)	48,643	000	46,309	000'	45,547	000	44,852	000'	46,685	000,	48,077	,000
	Item de confiance en soi	,015	,956	3,089	000'	4,143	000,	6,233	000'	2,404	000,	1,323	000,
Sexe (Réf. : Garçon)	Fille	1,300	000'	1,454	000'	1,636	000,	1,346	000'	1,721	000,	1,289	000,
Nationalité (Réf. : Etrangers) Nationalité française	Nationalité française	6,693	,000	6,605	000,	6,509	000,	6,156	000,	6,647	000,	089'9	000,
(Réf. : Autre)	Père et mère	1,506	,000	1,463	000,	1,432	000,	1,522	000,	1,492	000,	1,478	000,
Trimestre de naissance	Premier trimestre	5,979	,000	5,826	000,	5,805	000,	5,595	000,	5,925	000,	5,942	000,
(Réf. : Dernier)	Seconde trimestre	3,886	,000	3,772	000,	3,735	000,	3,583	000,	3,859	000,	3,853	000,
	Troisième trimestre	2,108	,000	2,066	000,	1,973	000,	1,920	000,	2,100	000,	2,074	,000
	Père cadre	8,768	,000	8,788	000,	8,827	000,	8,320	000'	8,762	000,	8,726	000,
Profession du père	Père profession intermédiaire	6,315	,000	6,274	000,	6,342	000,	5,918	000,	6,341	000,	6,257	,000
(Réf. : Ss activité)	Père agriculteur ou artisan	3,615	,000	3,630	,000	3,652	000,	3,242	,000	3,627	,000	3,601	,000
	Père employé	4,888	,000	4,865	000,	4,931	,001	4,445	000'	4,875	,000	4,852	,000
	Père ouvrier	1,582	,000	1,554	,002	1,680	000,	1,355	900'	1,605	,002	1,579	,002
Profession de la mère (Réf · Se activité)	Mère cadre	7,044	,000	6,985	000,	6,949	000,	6,777	000'	7,088	000,	6,989	000,
	Mère profession intermédiaire	5,664	,000	5,596	000,	5,567	000,	5,358	000'	2,687	000,	5,676	,000
	Mère agriculteur ou artisan	2,822	,000	2,759	000,	2,688	000,	2,676	000'	2,787	000,	2,818	,000
	Mère employé	2,970	,000	2,938	000,	2,766	,249	2,891	000,	2,877	,000	2,982	,000
Durée de la scolarisation en	Mère ouvrière	,656	,208	,588	,257	,595	000,	,553	,278	,661	,203	,641	,218
maternelle	Plus de trois années	3,655	000'	3,611	000,	3,493	000,	3,551	000,	3,667	000,	3,607	,000
(Ref. : - de 3 ans)	Trois ans	2,568	,000	2,545	,000	2,443	000,	2,393	,000	2,569	,000	2,521	000'

Conclusion de la partie I

Le Panel 1997 de la D.E.P.P. offre une source d'information riche, sur un échantillon important et représentatif des élèves de CP. Cette richesse vient de ce que le panel 97 intègre des informations sur l'élève mais aussi sur sa famille, sur sa scolarisation antérieure, sur ses connaissances scolaires, générales et techniques, et sur ses comportements et attitudes en classe. Il s'agit également à ce jour du plus récent panel s'intéressant aux acquisitions des élèves à ce niveau scolaire.

L'exploitation du panel 97 nous permet de corroborer et d'approfondir des résultats issus de la littérature en sociologie et en sciences de l'éducation. Nous confirmons que les facteurs démographiques (le genre et le trimestre de naissance), scolaires (durée de scolarisation maternelle) et socioéconomiques (situation familiale, profession des parents) ont bien une influence sur les performances scolaires des élèves à l'issue de l'école maternelle. De plus, grâce au suivi d'une majorité des élèves du panel aux niveaux supérieurs (CE2 et 6ème), nous soulignons à quel point les compétences acquises en CP sont déterminantes de la réussite scolaire ultérieure, notamment dans deux domaines : les concepts liés au temps et les compétences numériques.

Les informations du panel 97 sur les comportements des élèves et leur confiance en eux nous permettent de mieux comprendre leurs parcours scolaires. En effet, d'une part, nous montrons que les comportements et la confiance des élèves sont influencés par leurs caractéristiques individuelles (sociales, démographiques et scolaires); d'autre part, et surtout, nous montrons que des facteurs cognitifs spécifiques comme l'attention, la rapidité, l'autonomie, l'aisance gestuelle, la confiance en soi, ont un impact positif sur les performances scolaires. Ainsi, ces facteurs sont, en sus des facteurs scolaires, socioéconomiques et démographiques, primordiaux pour comprendre les performances scolaires.

Afin de favoriser la réussite scolaire, il serait alors possible de chercher à agir sur les aspects cognitifs des élèves. Selon différentes recherches récentes, la musique pourrait, entre

autres, soutenir la maturation cognitive des enfants. Nous allons, au cours de la deuxième partie de cette thèse, mener une revue de littérature approfondie afin de déterminer si la musique est un moyen efficace pour développer les capacités cognitives des élèves et identifier les aspects qui y sont particulièrement réceptifs.

PARTIE 2 : ENSEIGNEMENT MUSICAL, APPRENTISSAGES SCOLAIRES ET CAPACITÉS COGNITIVES

Dans la partie précédente, nous avons cherché à comprendre quels étaient les facteurs qui contribuent le plus à la réussite scolaire au début et au cours de l'école élémentaire. Outre les habituelles variations de résultats imputables aux déterminants socioéconomiques et démographiques, nous avons mis en avant l'impact d'autres variables jusqu'alors moins traitées dans les recherches empiriques en sciences de l'éducation en France : le comportement de l'élève en classe, son attention, ses capacités d'anticipation et d'organisation d'une tâche, en d'autres termes, les facteurs cognitifs. On peut légitimement s'interroger sur l'importance d'autres capacités cognitives, non mesurées par le panel 1997, dans l'acquisition des premiers apprentissages scolaires. Parmi ces capacités cognitives, citons en premier lieu la mémoire de travail dont la fonction est de maintenir en mémoire et de traiter une information. Une recherche de Barrouillet et al. (2008) a montré que les scores de mémoire de travail sont corrélés aux acquis scolaires des élèves et à leurs progressions au cours du cycle 3. D'autres capacités cognitives sont indispensables à l'acquisition des apprentissages scolaires : les capacités graphiques, ou graphomotrices, et l'organisation spatiale amènent l'enfant à l'écriture (Fayol, 2002; Bara et al., 2006), tandis que la discrimination visuelle et le rythme sont mobilisés pour la reconnaissance des lettres, des chiffres ou des mots.

On peut supposer que les écarts de réussite scolaire entre les élèves pourraient être diminués par le biais d'actions précoces portant sur la maturation des capacités cognitives. Il est sans doute primordial, comme nous allons le voir au cours de cette partie, de mettre en place ce genre d'activité tôt dans la scolarité de l'élève. En effet, le niveau initial des compétences des élèves à l'entrée du CE2 est fortement prédictif de leurs performances en sixième. Les liaisons statistiques entre les acquisitions des élèves en CE2 et en sixième sont importantes, avec une corrélation entre ces deux variables de 0,76 (Morlaix et Suchaut, 2007). Si les performances des élèves en CE2 laissent deviner leur niveau d'acquisition ultérieur, ce niveau dépend également des premières années de scolarisation : les acquisitions des élèves en CP et en sixième sont corrélées à hauteur de 0,67 dans le panel 97 (cf. section 2.4.2, partie 1). Certes, les scores à l'entrée du CP sont naturellement moins en lien avec les performances en sixième, mais on ne peut nier que le niveau à l'entrée du CP pèse très fortement sur les chances d'un cursus scolaire régulier. Il existe d'ailleurs une forte corrélation entre le niveau

de compétences à l'entrée du CP et les probabilités d'accéder à la sixième « à l'heure » (Caille et Rosenwald, 2006). Ainsi, les parcours scolaires des élèves sont déterminés rapidement, dès le début de la scolarisation obligatoire puisque les élèves qui sont en difficulté dès leur entrée au CP le seront toujours, dans leur quasi-totalité, par la suite. Il en résulte que les interventions seraient sans doute plus efficaces si elles opéraient avant même le cours préparatoire. Parmi les différentes options possibles, les activités musicales sont particulièrement prometteuses. Des recherches montrent que la musique a une action positive sur le développement des capacités cognitives (Rauscher, 2003; Bolduc, 2008) et permet d'accroître la conscience de l'écrit chez des enfants de maternelle (Bolduc, 2006) et même les performances scolaires (Mingat et Suchaut, 1994, 1996; Wetter et al., 2009). Les interventions musicales réalisées à l'école préalablement au cours préparatoire pourraient alors être un vecteur pertinent pour favoriser la maturation cognitive et les performances scolaires.

Dans le premier chapitre, nous chercherons à définir notre objet d'étude, l'éducation musicale, par une mise en perspective historique et philosophique. Nous retracerons les méandres de ses finalités et de sa place dans l'éducation. D'abord au service de l'âme et du beau dans l'antiquité, puis instrumentalisée au service du divin au Moyen-Âge, la musique trouve peu à peu sa place comme enseignement. Nous nous attarderons ensuite, avec un regard plus contemporain, sur l'examen des programmes nationaux pour comprendre la place qu'occupe l'enseignement musical actuellement dans les classes, et ainsi juger de l'opportunité d'une intervention musicale en milieu scolaire. Enfin, nous étudierons la musique du point de vue de la psychoacoustique afin d'appréhender les différentes phases de la perception et de l'apprentissage de la musique.

Dans un second chapitre, nous nous pencherons particulièrement sur le lien entre musique et capacités cognitives. L'examen des recherches en psychologie nous éclairera sur la manière dont la musique, sa pratique ou son écoute, agit sur le développement des capacités cognitives. Nous examinerons la littérature sur ce sujet pour comprendre quels sont les effets de la musique sur les performances scolaires, le QI, ou d'autres mesures des capacités cognitives.

L'impact positif de la musique sur les capacités cognitives ou les performances scolaires des élèves, tel que nous aurons pu le voir à travers l'examen de la revue de la littérature, nous amène à vouloir tester une intervention musicale en classe avant le CP. Dans un troisième chapitre nous présenterons la méthodologie de l'expérimentation puis la mise en place de cette expérimentation : ses objectifs et hypothèses, l'échantillonnage, les outils de mesure (le questionnaire et les tests) et le programme d'activités musicales.

Chapitre 1 : L'éducation musicale

Cette recherche ne peut faire l'économie d'une définition de l'objet d'enseignement sur lequel elle va porter. Ainsi, notre première préoccupation sera de préciser ce qui est entendu par éducation musicale avant de présenter les caractéristiques de cette discipline dans le contexte éducatif et didactique de la pratique enseignante aujourd'hui. Par une approche multi-référentielle, fidèle au cadre épistémologique des sciences de l'éducation, nous présenterons les dimensions historique, institutionnelle et didactique de l'éducation musicale. Il ne s'agira pas d'une analyse exhaustive mais plutôt d'une vue d'ensemble, étant entendu que les développements nécessaires à la compréhension des enjeux d'une discipline nous entraîneraient trop loin, et nous feraient perdre de vue l'objet central : l'enseignant et sa pratique.

La définition de l'éducation musicale, à travers l'évolution de ses finalités, sera essentiellement nourrie par une approche historique et philosophique. Nous l'étudierons plus particulièrement dans les institutions scolaires et dans l'enseignement primaire. Nous aborderons ensuite cet enseignement sous un angle institutionnel, par une mise en perspective des programmes tels qu'ils sont présentés dans les textes officiels avec les pratiques enseignantes. Derrière une apparente volonté de normalisation de l'éducation musicale se cache une réalité complexe. C'est pourquoi nous présenterons la diversité des pratiques *via* la pluralité des formations musicales des professeurs et les variations des durées des activités musicales. Enfin, pour mieux comprendre les processus cognitifs à l'œuvre, nous aborderons l'éducation musicale sous l'angle de sa perception, à l'aide de la psychoacoustique, et de son apprentissage, en nous appuyant sur la psychologie.

1.1 Approche historique de l'éducation musicale à l'école

La musique définit, selon le Larousse, un « *Art qui permet à l'homme de s'exprimer par l'intermédiaire des sons* ». Subtil arrangement de sons rythmés de silences, combinaisons de notes, construit humain au jugement subjectif, il s'agit d'une forme d'expression tant individuelle que collective. Musiques religieuses, au service de l'Etat ou populaire, elle semble universelle : bien que son origine soit difficilement identifiable, elle existe quelle que soit la civilisation. Au cours de l'histoire, elle a pris diverses formes : d'abord objet d'étude scientifique, philosophique, puis artistique, elle se prête plus récemment au jeu de la sociologie, de l'histoire et de l'ethnologie.

1.1.1 Les finalités de l'éducation musicale à travers la philosophie : de Platon à Euler

C'est au travers de la philosophie hellénique, et plus particulièrement à partir de l'œuvre de Platon, que nous introduisons la question des finalités de l'enseignement musical. Une telle rétrospective est-elle justifiable? La lecture et la compréhension des modèles de pensée proposés dans la culture grecque, en termes de valeur accordée à la musique au sein de la société et de l'éducation, contribuent à une meilleure compréhension du rôle et de la place de la musique dans le monde contemporain. Cette mise en perspective souligne l'analogie entre les idées d'hier et d'aujourd'hui : de nombreuses similitudes émergent de cette comparaison qui fait apparaître la modernité de la pensée grecque dans le domaine de l'éducation musicale.

L'éducation des plus jeunes ne se limite pas à former des personnes emplies de culture, elle occupe un rôle de première importance : il s'agit de former des citoyens. Autrement dit, si l'éducation se conçoit de manière individuelle dans le cadre familial ou dans la relation maître-élève, c'est aussi une affaire politique. L'apprentissage du chant, de la musique, des instruments est à la base de l'éducation dans la Grèce antique. La musique occupe une place de première importance dans l'éducation des jeunes, du point de vue

artistique, mais aussi plus largement, elle prépare l'âme au Bien, au Beau et au Vrai. Avant d'exposer les finalités de cet art telles que perçues par Platon, nous allons nous attarder sur son enseignement.

Moutsopoulos (1959) décrypte les œuvres de Platon pour y analyser son profond attachement à la musique et le témoignage de son enseignement aux différents stades de la vie. L'aptitude musicale n'est pas considérée comme un don héréditaire, elle se transmet par un enseignement long qui commence dès le plus jeune âge par la mère qui initie doucement son enfant au monde. Jusqu'à l'orée de la vie adulte ce sont les musiciens-maitres qui transmettent ensuite à leurs disciples l'art de jouer. L'enseignement de la musique commence donc dès la plus jeune enfance : impulsé par la mère, les chansons et berceuses accompagnées de son balancement sont les prémices de son enseignement ; l'enfant y découvre, sans le savoir, le rythme et l'harmonie. L'harmonie est une notion centrale pour le philosophe. Basée sur une organisation mathématique, l'harmonie musicale est un premier pas de l'ascension de l'âme vers le divin.

Les liens entre la musique et tout autre apprentissage, qu'il s'agisse des mathématiques ou de la lecture, ont toujours fascinés. Platon plaçait déjà la musique au cœur de l'éducation, au même titre que les sciences ou la littérature et la pensait vertueuse : aiguisant l'esprit des enfants, disciplinant la jeunesse à l'ordre et à la mesure que l'homme ne possède pas par essence. Platon fait apparaitre à de nombreuses reprises l'association philosophie – musique. Une partie de son œuvre sur le sujet consiste à rappeler la valeur éthique de la musique dans les pensées pythagoriciennes et damoniennes, puis à comprendre le rôle de la musique, sa fonction, la responsabilité du musicien, et les effets du sentiment du beau. Platon identifie la musique à trois notions fondamentales auxquelles tout homme devrait aspirer : le Vrai, le Beau et le Bien. Le Vrai est révélé dans la musique par l'organisation mathématique des sons. Le Beau est perçu par la sensibilité esthétique. Le Bien résulte de l'harmonie que procure la musique et de l'équilibre qui se crée entre la raison, les passions et les désirs de l'homme. Le Vrai est révélé par les nombres, la logique, le rythme qui permettent de mesurer le temps et les distances, de résoudre des problèmes mathématiques. La découverte, que l'on attribue à Pythagore, de la nature mathématique de l'organisation de la musique vient confirmer la

puissance du nombre et de la raison. Musique et mathématiques ainsi réunies constituent la base de l'éducation qui se veut rationnelle, car seule la raison est capable de venir à bout de l'émotion humaine, source de querelle dans la société démocratique grecque.

Si les dialogues de Platon parlent de la musique, ils abordent aussi la question de la morale. La musique ne peut être considérée en totale indépendance de la morale puisqu'elle « pénètre dans l'âme » pour y introduire le Bien. Elle peut y introduire la sagesse, le courage ou la confiance, mais la musique peut aussi précipiter l'âme dans la bestialité et lui faire complètement perdre de vue la raison de son existence. La musique, lorsqu'elle repose sur un rythme régulier, une harmonie, un système raisonné (c'est-à-dire lorsqu'elle est accompagnée de parole) est «bonne pour l'âme ». Cependant toute musique n'est pas «bien ». Selon Platon, la vraie musique rejette la colère et l'orgueil, elle accueille la raison et le calme, elle doit inspirer la joie et la sérénité. Elle se veut confiante et régulière mais discrète, c'est une musique qui mène à l'action, qui est bonne pour l'âme et qui favorise la solidarité dans la société, dans la cité en fournissant un cadre et une esthétique à l'action commune, sur le plan cérémonial, liturgique ou guerrier. Cependant, Platon n'oublie pas que la musique est avant tout une réalité sensible. Elle prend possession de nos émotions, nous plait, nous déplait, mais nous laisse rarement indifférent. Dans sa soif de perfection, l'âme noble tend vers le Beau, prémisse de la sagesse. Par la musique, l'artiste ou celui qui l'écoute peut atteindre le plaisir esthétique, le Beau. Ainsi, l'éducation musicale, qui est placée au cœur de la formation de l'Homme, se pourvoit des trois finalités : individuelle, spirituelle et collective. Elle permet tout d'abord à l'individu d'élever son esprit vers la culture et la raison. La musique permet également à l'Homme de faire la paix avec lui-même pour tendre vers le divin. Enfin, elle solidarise les hommes de la cité autour de leur histoire commune.

D'autres philosophes ont cherché à comprendre les sentiments qu'inspire la musique, sa place au sein de la société et de l'éducation, et même ses finalités. Bien qu'Aristote, dans *la République*, tienne des propos similaires sur les bienfaits d'une éducation musicale pour la formation de la jeunesse, d'autres philosophes ne partagent pas cette vision. Ainsi, dans son œuvre *Critique de la faculté de juger*, Kant relègue la musique à « *la dernière place* » des beaux-arts puisqu'elle ne nourrit pas l'âme de connaissances nouvelles (Kant, traduit par

Philonenko, 1993, p. 233). Pythagore, s'interrogeait quant à lui sur la nature du lien entre musique et mathématiques, ouvrant la voie à l'étude physique et mathématique du son. Euler, dès 1731, exposa sa théorie mathématique de la musique, que l'on retrouve dans *Tentamen novae theoriae musicae*, traduit en 1865 sous le titre de *Musique mathématique*. La musique est ainsi perçue comme un exercice arithmétique inconscient.

La musique a inspiré des siècles d'érudits, non seulement des philosophes, mais aussi des pédagogues, didacticiens ou psychologues s'y sont intéressés, et l'étudient encore. Car si la musique se dote d'une philosophie, elle a aussi une histoire. Nous allons à présent nous intéresser à l'enseignement de la musique à l'école, du point de vue historique. Nous chercherons à mettre en avant les évolutions qu'elle a rencontré et qui l'ont amené à ce que nous pratiquons aujourd'hui dans nos écoles.

1.1.2 L'enseignement de la musique à l'école : une lente évolution

A l'heure où l'enseignement artistique est considéré comme essentiel à l'éducation des jeunes enfants, une rétrospective historique nous rappellera les annales de cette discipline au sein de l'école. Selon les périodes, la musique, telle qu'enseignée à l'école, se veut instrument de la foi, de la Nation, au service de la culture ou objet d'étude.

Tout système éducatif se fait l'écho d'une société, d'une culture, et véhicule comme dessein la réalisation d'un idéal humain qui est celui de cette société et de cette culture. Dans l'antiquité, les philosophes grecs sont attachés à la politique et à la raison. Au Moyen-âge, c'est la religion, et plus précisément la foi chrétienne, qui constitue le cœur autour duquel se pensent et s'organisent les institutions et les activités : l'enseignement n'en est pas exempt, et s'organise autour de la doctrine religieuse, de l'Écriture, des célébrations rituelles de la messe et de l'office. Jusqu'au début du 13^{ème} siècle et la création des universités, seuls les monastères dispensent du « savoir ». Ainsi la musique occupe une place de premier ordre dans les écoles monastiques où l'on apprend les chants de messes. C'est en fréquentant quotidiennement les offices de son église ou de son monastère que l'enfant pratique

régulièrement et se perfectionne à la technique des chants grégoriens. Jusqu'à l'apparition du solfège au $11^{\text{ème}}$ siècle, l'enseignement de la musique se fait sans intermédiaire écrit, c'est-à-dire de bouche à oreille. Nous devons à Guy d'Arezzo (992-1050) le système de notation sur portée et la dénomination moderne des notes de musique. Il en résulte plusieurs bénéfices : les moines disposent désormais d'un support écrit immuable contrairement à leur mémoire, la mélodie peut être déchiffrée ou remémorée sans le secours de l'enseignement oral, l'effort de mémorisation requis pour les choristes est considérablement allégé. Pour conclure cette brève rétrospective de l'enseignement musical au Moyen-âge, précisons que les écoles monastiques ne sont pas le seul lieu de transmission de cette pratique. En effet de nombreux troubadours et ménestrels chantent des contes en s'accompagnant d'un psaltérion ou d'une vièle. Tout comme les moines, ils apprennent leur art oralement, par échanges et contacts mutuels.

A partir du 13^{ème} siècle, lors de la fondation des premières universités, la musique fait partie intégrante de l'enseignement. Les sept arts libéraux, qui constituent le programme d'enseignement de la faculté des arts, sont distribués en deux cycles : le trivium est constitué de la grammaire, la rhétorique et la dialectique et le quadrivium composé de l'arithmétique, de la géométrie, de l'astronomie et de la musique. Si elle fait partie intégrante de l'enseignement, il n'en reste pas moins que la musique est considérée comme un art mineur. En effet, l'accent est mis sur les disciplines du trivium, pour ne consacrer que quelques semaines à la musique. Cependant, la faculté des arts est propédeutique aux facultés supérieures : il faut la fréquenter pour, vers l'âge de dix-neuf ou vingt ans, accéder aux facultés supérieures de théologie, de droit ou de médecine après avoir obtenu le baccalauréat.

Au début du 19^{ème} siècle, l'enseignement de la musique en milieu scolaire ne s'est développé qu'au sein de la capitale. C'est en 1833 que François Guizot, alors Ministre de l'Instruction publique, ajoute le chant au programme de l'école élémentaire. Cette loi du 28 juin 1833 marque un pas décisif dans l'évolution de l'instruction primaire publique alors accessible à tous (du moins à tous les garçons puisqu'il faudra attendre la Loi Falloux de 1850 pour que soient rendues obligatoires les écoles de filles). Les matières enseignées sont au nombre de onze : l'instruction religieuse, la lecture, l'écriture, l'orthographe, la grammaire, l'arithmétique, l'arpentage, le dessin linéaire, la géographie, l'histoire et la musique. Certaines

matières sont considérées comme mineure, comme l'arpentage, la géographie, l'histoire, et la musique, et n'apparaissent que dans une petite minorité d'écoles, essentiellement urbaines; tandis que l'accent est porté avant tout sur l'instruction morale et religieuse, et les cinq disciplines suivantes. Cependant, la présence de la musique comme discipline d'enseignement dispensée lors de l'instruction primaire ne nous renseigne ni sur le volume horaire qui lui est consacré, ni sur les contenus, ni sur le niveau et la manière dont elle est enseignée. La loi Guizot marque aussi une avancée importante de l'enseignement musical qui trouve désormais sa place au sein de l'école. Cette progression est d'autant plus marquée en 1836, lorsqu'il est décidé qu'une épreuve de musique figure au programme du brevet de capacité supérieure (étape obligatoire à partir de 1816 pour quiconque souhaitant devenir maître du primaire).

Suite à la défaite française dans la guerre franco-prussienne (1870), ayant entrainée la perte de l'Alsace-Lorraine, l'école est instrumentalisée pour élever les plus jeunes au sentiment national : l'histoire rappelle la perte d'une région et appelle à une revanche tandis que la géographie délimite les frontières du territoire. La musique n'échappe pas à cet état de fait : dès 1895, les instituteurs peuvent s'appuyer sur l'ouvrage de Bouchor et Tiersot « Chants populaires pour les écoles » qui recueille 38 chansons. Parmi elles, « La chanson du labour », « La moisson », ou « La chanson du pêcheur » les forment à leurs futurs métiers. D'autres encore sont déclinées pour chaque région, comme « la Bretagne », « chanson des Pyrénées », « chanson des Alpes », sans oublier la « chanson pour l'Alsace », et ont pour objectif d'ancrer les élèves dans le patrimoine de leur région. Mais plus nombreux sont les chants patriotiques ayant comme titre évocateur « le soldat français », « aux morts pour la patrie », « les vaillants au temps jadis », « le vengeur », sans oublier « la Marseillaise » rappelant les devoirs du citoyens, les valeurs nationales de la République.

En résumé, il est essentiel de noter que l'éducation musicale, en tant que discipline scolaire à part entière, s'est établie progressivement au cours de la fin du 19^{ème} jusqu'à la première moitié du 20^{ème} siècle. Cette institution de la musique comme enseignement scolaire ne fut pas linéaire, connut des avancées comme des reculs et fut marquée par une disparité entre garçons et filles. En effet, l'enseignement musical occupe une place plus conséquente dans l'éducation de celles-ci. Enfin notons que les freins à l'émergence de cette nouvelle

discipline se sont révélés multiples : manque de personnel qualifié, de formation, de budget et d'indemnités, désaccords didactiques quant à l'introduction du solfège ou des instruments de musique, des âges d'apprentissages, difficile établissement des programmes, ou encore supports pédagogiques inadaptés. En fait, l'institution de la discipline n'est définitivement réalité qu'après la deuxième guerre mondiale.

1.1.3 L'éducation musicale aujourd'hui : quelle considération ?

Si l'éducation à la musique a fait couler beaucoup d'encre dès les premières heures de la philosophie grecque, elle continue encore d'intriguer bon nombre de chercheurs du vingtième siècle. Max Weber inaugura la première sociologie de la musique en 1921. Les sociologues qui lui emboîtèrent le pas s'intéressèrent à la différenciation des pratiques musicales (création, écoute) selon l'appartenance à une société (Alphons Silbermann, 1955; Henri Pousseur, 1972; Norbert Elias et al., 1991; Tia DeNora, 2003). De leur coté, les psychologues tentent de mettre à jour les mécanismes cognitifs d'apprentissage et de reconnaissance de la musique. Comme le précise Rémy Droz (2001), la psychologie de la musique n'existe pas car « la musique n'ayant pas de « psyché », la musique ne saurait faire l'objet d'une étude de « sa » psychologie! Si la musique a une « âme », elle l'a par métaphore » (p. 1). Les ethnomusicologues, quant à eux, vont sur le terrain pour découvrir la musique comme tradition orale. Les historiens s'intéressent à la longue évolution de la musique, sa distanciation progressive au divin à la fin du Moyen-Âge, son instrumentalisation au service du roi puis de la république, son insertion au sein de l'école pour relater le quotidien et son émergence comme discipline. Enfin, les philosophes contemporains s'interrogent encore sur les finalités de la musique aujourd'hui.

Chacune de ces disciplines apporte un élément de réponse à la question suivante : « *Pourquoi, aujourd'hui et demain encore, enseigner l'éducation musicale à l'école ?* », comme s'interroge Duvillard (p.1, 2005). Dans cette section, nous nous intéresserons plus particulièrement aux finalités éducatives de l'enseignement musical à l'école primaire. A travers cette question, c'est la pertinence de la discipline qui est analysée. Les questions

didactiques ainsi que les programmes officiels seront abordés dans les prochaines sections, tandis que les aspects psychologiques feront l'objet d'un chapitre spécifique.

Pour comprendre ces finalités éducatives de l'enseignement musical au primaire, il peut être intéressant de s'attarder sur la vision qu'en ont les élèves. C'est ce qu'a fait Meyer (2003), qui s'est intéressé à la représentation des élèves de primaire à l'encontre de l'enseignement musical. Lorsqu'on leur demande « qu'est-ce que la musique pour toi », 21% mettent en avant le caractère fonctionnel de la musique puisqu'elle permet de s'endormir ou au contraire de se réveiller. Elle est rassurante et relaxante. Pour d'autres (21%), la musique sert à former aux techniques du chant, en maitrisant sa voix, le rythme, en reconnaissant les notes. Pour une minorité des apprenants (10%), la musique transmet des valeurs esthétiques. Enfin, une majorité des répondants (48%) retient la musique comme moyen d'expression (ils adhèrent à la réponse « la musique permet de m'exprimer »). Les élèves ne négligent pas l'aspect émotionnel puisqu'ils associent la musique aux termes « émotion » ou « plaisir » voire même à de la « tristesse ». Pour d'autres, « la musique met des images dans la tête ».. Certains affirment que « la musique c'est un air dans la tête qui met de bonne humeur ». La musique est alors synonyme de « joie ».

Dans son ouvrage « *la musique comme joie à l'école* », Snyders (1999) clame qu'une dimension essentielle de la pédagogie, et souvent oubliée, est la joie. En effet, si une des fonctions de l'école est de préparer les jeunes à leur avenir et de leur faire acquérir les compétences dont ils auront besoin, l'école ne peut pas être seulement la propédeutique de la vie d'adulte, du monde du travail. Les efforts fournis par les élèves doivent être compensés et récompensés par une joie présente et l'enseignement de la musique permet justement aux élèves d'éprouver de la joie. Cependant, pour ouvrir les élèves à cet état, il faut les guider, les orienter vers des écoutes d'œuvres musicales et les décrypter. La joie ne sera pas directe, de plus elle sera individuelle car tous les élèves ne sont pas touchés par les mêmes œuvres, pas au même instant, d'où la nécessité de multiplier les références musicales.

Il est important de rappeler que l'éducation musicale, au même titre que les arts plastiques, est une discipline d'enseignement à l'école primaire, comme peuvent l'être le

français et l'histoire par exemple. Bien que l'enseignement de la musique à l'école tende à être reconsidéré et n'est plus perçu uniquement comme un moment récréatif, force est de constater que la musique n'est pas considérée comme une discipline fondamentale. Si l'on espère que tous les élèves quittent l'école primaire en sachant lire, écrire et compter, on n'attend pas d'eux qu'ils soient capables de déchiffrer une partition ou de jouer d'un instrument. Comme le rappelle Ganvert (1999), l'enseignement du chant est apparu comme une discipline scolaire à part entière dans les programmes depuis 1833, et à partir de 1882, l'éducation musicale est devenue obligatoire à l'école. Or, parmi les élèves de 15 ans qui savent jouer d'un instrument de musique, 28% seulement déclarent l'avoir appris à l'école (Donnat, 1998). L'éducation musicale n'a donc pas pour finalité de transformer les élèves en musicien. En réalité, l'école cherche à initier et à sensibiliser les élèves à la musique, plus que de faire d'eux des musiciens avertis.

Au cours de cette section, nous avons tracé les contours de l'éducation musicale et de ses finalités à travers une approche majoritairement historique. Dans l'antiquité, l'éducation musicale a pour objet d'élever l'âme. La musique est ensuite instrumentalisée dans l'éducation, d'abord pour la foi, puis pour la nation, avant de devenir une discipline à part entière à l'école primaire, même si elle n'est pas considérée comme fondamentale. Ces contours tracés, il nous faut, pour mieux comprendre l'éducation musicale à l'école en France aujourd'hui, mobiliser une approche institutionnelle.

1.2 Approche institutionnelle de l'éducation musicale

Le Ministère de l'éducation nationale définit des programmes et fixe des objectifs relativement à l'enseignement musical au primaire. Ils seront présentés dans un premier temps. Nous nous attarderons ensuite sur la didactique de la musique. Nous terminerons cette section par la question importante de la diversité des pratiques d'enseignement de la musique en cycle primaire.

1.2.1 Les programmes et leurs objectifs

Nous allons voir comment l'enseignement de la musique se pratique à l'école

primaire, et quels sont les moyens mis en œuvre pour servir les objectifs qu'elle vise. Les

professeurs des écoles sont chargés de l'enseignement musical. Les objectifs et la mise en

pratique de cette discipline diffèrent sensiblement selon qu'il s'agit de l'école maternelle ou

de l'élémentaire, c'est pourquoi nous allons les présenter successivement selon ces deux

niveaux de scolarisation.

1.2.1.1 A l'heure actuelle, les objectifs attendus en maternelle

L'apprentissage de la musique à l'école maternelle ne peut être le même qu'en

élémentaire. En effet, il est essentiel de prendre en considération les capacités spécifiques des

jeunes enfants, notamment leurs capacités attentionnelles. Les activités sont donc présentées

sous forme ludique : jeux autours du son et du rythme, chants et gestuelles permettent à

l'enfant de découvrir de nouveaux moyens de communication. Le MEN définit les objectifs

de l'enseignement musical. Ces objectifs sont essentiellement centrés sur les activités

d'écoute. Ainsi les activités musicales « affinent l'attention, développent la sensibilité, la

discrimination des sons et la mémoire auditive. [...] Ils apprennent à caractériser le timbre,

l'intensité, la durée, la hauteur par comparaison et imitation et à qualifier ces

caractéristiques. Ils maîtrisent peu à peu le rythme et le tempo. ».

Le MEN présente également les capacités que les enfants doivent avoir développés à

la fin de l'école maternelle comme étant :

- mémoriser et savoir interpréter des chants, des comptines ;

- écouter un extrait musical ou une production, puis s'exprimer et dialoguer avec les

autres pour donner ses impressions.

Extrait de MEN : « Horaires et programmes de l'école primaire », B.O. du 19 juin 2008.

- 153 -

Les objectifs énoncés font apparaître l'idée de production, puisque les enfants doivent savoir interpréter des chants, mais c'est toujours l'écoute de la musique qui domine. Voyons désormais en quoi diffère, l'enseignement de la musique à l'école élémentaire.

1.2.1.2 Les objectifs de l'éducation musicale à l'école élémentaire

Nous distinguerons ici les activités et les objectifs selon qu'il s'agit du cycle des apprentissages fondamentaux ou du cycle des approfondissements.

Au cycle des apprentissages fondamentaux

L'enseignement de la musique du CP au CE1, s'intègre à la pratique artistique et histoire des arts, qui représente un volume horaire annuel de 81h. En fonction du projet pédagogique du professeur des écoles, la durée hebdomadaire peut varier du simple au double. Nous reviendrons précisément sur ce point. Se reposant sur les compétences déjà acquises en maternelle, un des objectifs de l'éducation musicale en cycle 2 est la justesse du chant : note, rythme, mais aussi puissance de la voix, tout en contrôlant la respiration et l'articulation entre les mots. Ainsi, il est précisé que les élèves « s'exercent à repérer des éléments musicaux caractéristiques très simples, concernant les thèmes mélodiques, les rythmes et le tempo, les intensités, les timbres. Ils commencent à reconnaître les grandes familles d'instruments. ».

Les compétences que les enfants doivent avoir développé à la fin du cycle des apprentissages fondamentaux sont les suivantes:

- s'exprimer par l'écriture, le chant, la danse, le dessin, la peinture, le volume (modelage, assemblage);
- distinguer certaines grandes catégories de la création artistique (musique, danse, théâtre, cinéma, dessin, peinture, sculpture);
- reconnaître des œuvres visuelles ou musicales préalablement étudiées ;
- fournir une définition très simple de différents métiers artistiques (compositeur, réalisateur, comédien, musicien, danseur).

Éducation musicale au cycle des approfondissements

Tout comme l'enseignement de la musique au CP et au CE1, l'éducation musicale au cycle des approfondissements s'intègre à la *pratique artistique et histoire des arts*, qui représente un volume horaire annuel de 78h. L'éducation musicale au cycle 3 s'appuie essentiellement sur deux pratiques : les pratiques vocales et les pratiques d'écoute. Ainsi, les élèves s'exercent aux chants sous diverses formes (seul ou à deux, en canon, en groupe ou en chorale). Durant les activités d'écoute, les élèves s'entraînent à identifier et comparer des œuvres musicales, s'initient à la diversité des genres et des styles selon les époques et les cultures, travaillant ainsi dans le prolongement du travail engagé au cycle précédent.

Les compétences attendues en fin de cycle sont les suivantes :

- interpréter de mémoire une chanson, participer avec exactitude à un jeu rythmique ; repérer des éléments musicaux caractéristiques simples ;
- distinguer les grandes catégories de la création artistique (littérature, musique, danse, théâtre, cinéma, dessin, peinture, sculpture, architecture);
- reconnaître et décrire des œuvres visuelles ou musicales préalablement étudiées : savoir les situer dans le temps et dans l'espace, identifier le domaine artistique dont elles relèvent, en détailler certains éléments constitutifs en utilisant quelques termes d'un vocabulaire spécifique ;
- exprimer ses émotions et préférences face à une œuvre d'art, en utilisant ses connaissances

Le tableau suivant rappelle les différents éléments déjà mentionnés, les activités généralement réalisées en classe et les objectifs à atteindre, et permet d'avoir une vision d'ensemble de l'éducation musicale à l'école primaire.

Tableau 33 : Les activités musicales en classe et leurs objectifs à l'école primaire

	L'éveil à l'école maternelle	L'initiation au cycle des apprentissages fondamentaux	L'apprentissage au cycle des approfondissements
Les activités	Activités vocales : chanter des comptines et des chansons enfantines. Chanter pour le plaisir et accompagner d'autres activités.	Activités vocales : répertoire varié et enrichi de chansons d'horizon culturel divers. Chanter juste et en rythme, savoir chanter de manière collective.	Activités vocales : savoir chanter de manière collective, en canon et en chorale. Maitriser sa voix.
	Activités d'écoute : écouter de manière structurée des œuvres musicales variées. Ecouter pour le plaisir, affiner l'attention, développer la sensibilité, la discrimination des sons et la mémoire auditive	Activités d'écoute : repérer les éléments musicaux simples comme le rythme, le tempo, l'intensité et le timbre	Activités d'écoute : comparer des œuvres musicales et identifier les éléments musicaux simples
	Initiation instrumentale	Reconnaitre les grandes familles d'instruments	Jouer des rythmes différents sur un instrument approprié
sical	À la fin de l'école maternelle l'enfant est capable de :	A la fin du cycle, l'élève est capable de :	A la fin du cycle, l'élève est capable de :
Les objectifs de l'enseignement musical	 mémoriser et savoir interpréter des chants et des comptines; écouter un extrait musical ou une production, puis s'exprimer et dialoguer avec les autres pour donner ses impressions. 	 s'exprimer par le chant; distinguer certaines catégories de la création artistique; reconnaître des œuvres musicales préalablement étudiées; 	 interpréter de mémoire une chanson, participer avec exactitude à un jeu rythmique; repérer des éléments musicaux caractéristiques simples;
		- fournir une définition très simple de différents métiers artistiques (compositeur, musicien).	- reconnaître et décrire des œuvres musicales préalablement étudiées : savoir les situer dans le temps et dans l'espace, identifier le domaine artistique dont elles relèvent, utiliser quelques termes d'un vocabulaire spécifique.

Notre production

Les activités musicales suivent bien évidemment une logique de complexification croissante au fur à mesure de l'avancée de l'enfant dans les niveaux. Si l'écoute domine durant la maternelle, les activités de production sont de plus en plus présentes et exigeantes au cours des cycles suivants. Une fois les objectifs énoncés, il faut savoir comment les atteindre. Ceci nous amène à nous interroger sur la didactique de la musique.

1.2.2 Quelle didactique de la musique ?

Emile Chevé, un théoricien de la musique, met en avant dès 1884, à travers le rapport sur l'enseignement du chant dans les écoles primaires, les difficultés de l'enseignement musical dans le cadre scolaire. Au cœur des débats : le solfège. D'abord introduit dans l'apprentissage de la musique, le solfège est imposé ensuite à l'Ecole Normale en 1905, puis balayé des classes en 1923. L'enseignement musical s'intègre alors progressivement à une seconde formation artistique, le théâtre et l'expression du corps, et l'apprentissage du solfège est repoussé au-delà de 12 ans afin que la musique devienne ludique. Ce n'est que plus récemment que la musique à l'école s'est dotée d'objectifs et d'une pédagogie spécifique afin de la rendre accessible à tous les élèves. Après mai 1968, les instituteurs émettent de vives critiques envers les programmes de 1946 qu'ils considèrent trop rigides ; en parallèle des nouveaux ouvrages, les pratiques pédagogiques se multiplient. Elles prônent la participation active de l'élève par la pratique d'un instrument de musique. Le carillon fait alors son apparition dans les salles de classe, avant qu'il ne soit détrôné par la flûte à bec en 1979.

L'apprentissage de la musique à l'école s'est longtemps contenté de chant choral. Mais avec l'apparition de nouvelles technologies, la musique a pu se faire entendre en classe. Dès les années 1930, les phonographes font leur entrée en classe. Cependant leur coût élevé ne permet pas à toutes les municipalités d'en acquérir. Parallèlement, avec l'apparition de la radio, l'écoute en classe se développe, du moins en région parisienne, avec l'émission « L'heure radiophonique de l'école ». Puis, à partir des années 1990 l'écoute musicale s'est démocratisée en classe : les cd, les mp3 et Internet permettent d'accéder à une source infinie de sons, d'isoler une écoute, de répéter un passage, d'identifier un son à son instrument. Les vidéos permettent de suivre les gestes du chef d'orchestre, et les élèves peuvent repérer les instruments sur des affiches. Cette facilité d'accès à la musique n'efface cependant pas les difficultés pratiques et pédagogiques de cet enseignement, surtout avec les élèves les plus jeunes.

On peut alors se demander ce qu'est l'enseignement musical? Il s'agit d'un enseignement multiple pour le professeur : transmettre des techniques instrumentales ou vocales, permettre à l'élève une certaine autonomie créative, l'amener à affiner son écoute, son analyse auditive, à acquérir un référentiel culturel. Les outils pédagogiques (comme musique au quotidien, la collection j'apprends avec la musique: l'année en musique, jeux chantés jeux dansés), généralement composés de CD et d'un guide pédagogique, peuvent accompagner les professeurs qui se sentent parfois mal à l'aise avec cet enseignement qu'ils ne connaissent pas (tous). Pour permettre aux élèves d'atteindre les objectifs des programmes en matière d'éducation musicale, plusieurs types d'activités sont préconisés : l'écoute, les pratiques instrumentales, vocales et corporelles. Tout comme la pratique du chant, une pratique vocale, les activités d'écoute sont très courantes. Il est important de noter que les différentes activités ne sont pas mutuellement exclusives, bien au contraire. L'écoute peut se coupler à une seconde activité, par exemple corporelle. Il s'agit alors d'une écoute active par le corps. Par le geste, le déplacement, la danse, le mouvement, l'élève transcrit ce qu'il entend avec son corps. De la même manière, il peut être invité à retranscrire graphiquement le signal sonore, à l'oraliser par des mots, à imiter une mélodie avec sa voix ou un instrument. Toutes ces activités aident l'élève à maîtriser et à comprendre les différents paramètres musicaux que sont la hauteur, l'intensité, le timbre, la durée, ou encore le tempo. Dans la pratique, ces activités sont mises en œuvre de manière hétérogène.

1.2.3 La diversité des pratiques enseignantes

A l'école primaire, il subsiste une certaine dissymétrie entre les ambitions figurant dans textes officiels en matière d'éducation musicale, et les pratiques effectives que l'on rencontre dans les classes. La diversité des pratiques enseignantes de la musique est à mettre en lien avec les formations des professeurs des écoles, mettant peu l'accent sur cette discipline. Elle se traduit dans le volume horaire accordé à cette pratique ainsi que dans son contenu.

1.2.3.1 Les formations

Parmi les enseignements dispensés à l'école primaire, l'éducation musicale est généralement délaissée, les débats, discours et recherches se rapportant au système éducatif se concentrent généralement plus sur la maîtrise de la langue française que sur l'enseignement artistique. Pourtant, la revue de littérature que nous allons présenter au chapitre suivant met en lumière les aspects positifs de la musique sur le développement des capacités cognitives des élèves, ainsi que sur leur réussite scolaire. Les conclusions de ces recherches, qui soulignent l'effet transversal des activités musicales sur le développement cognitif des élèves, invitent à la pratique régulière de la musique dans les classes du primaire avec un professeur apte dans ce domaine. Toutefois, un des obstacles les plus souvent avancés par les enseignants à la pratique courante de la musique est le manque de formation à l'enseignement musical (Suchaut, 2000 ; Esquieu, 2006).

Une étude de la DEP (Esquieu, 2006) portant sur la formation initiale et continue des professeurs des écoles révèle que 20% d'entre eux déclarent rencontrer beaucoup de difficultés à enseigner l'éducation musicale, et que 35% déclarent en rencontrer un peu. En effet, peu de professeurs des écoles sont capables de déchiffrer la partition d'une œuvre qu'ils aimeraient enseigner à leurs élèves, ou de jouer d'un instrument de musique. Ressentant cela comme une faiblesse, ils sont nombreux à avoir recours à un intervenant extérieur, un collègue, ou à des chants enregistrés. Les enseignants qui éprouvent des difficultés à enseigner une matière en particulier, comme la musique, sont généralement convaincus que la formation initiale dispensée en IUFM était insuffisante. Selon cette même étude, 62% des enseignants estiment que la formation initiale reçue en éducation musicale, que ce soit en IUFM ou en Ecole Normale, était incomplète; et qu'il est possible de mettre en place des formations spécifiques pour atténuer leurs difficultés d'enseignement.

Pourtant, lors de la formation des futurs professeurs des écoles, on propose généralement aux étudiants des stages ou ateliers culturels visant à développer une activité artistique telle que le théâtre, la danse ou le chant. Plus spécifiquement, on y étudie la pratique vocale et instrumentale, l'écoute et l'analyse d'œuvres, la pratique du chant choral, le travail

autour du rythme *via* les percussions. La majorité des IUFM sont pourvus d'une chorale pour leurs étudiants et certains organisent des spectacles musicaux en fin d'année. Mais, au concours de recrutement, l'éducation musicale n'est pas obligatoire, le candidat ayant le choix entre les arts visuels, la musique ou l'éducation physique et sportive. La musique est le plus fréquemment l'option la moins plébiscitée par les candidats. Il suffit, pour se convaincre des insuffisances, de considérer le nombre d'heures de formation à l'éducation musicale dans les IUFM, du moins quand les futurs enseignants ont eu la chance de suivre cette formation : elle est actuellement d'environ 30 heures. Ce nombre d'heures est insuffisant pour donner au futur professeur des écoles une formation musicale de base et une méthodologie solide qui puisse le rendre apte à enseigner le chant, la chorale, l'écoute, et ainsi la pratique musicale en classe.

Ainsi, l'assurance de ces enseignants dans les activités musicales demeure fortement tributaire de leur parcours personnel et une variété de situations coexiste, certains d'entre eux refusant de chanter face à une classe de maternelle, tandis que d'autres s'accompagnent à la guitare.

1.2.3.2. Le temps consacré aux activités musicales

Bressoux et al. (1999), Bianco et Bressoux (1999) rappellent que l'allocation du temps scolaire varie de manière importante selon les enseignants. Se basant sur des observations faites en 1994 et 1995 auprès de 31 et 14 classes de CE2, ils déterminent que certaines classes peuvent consacrer trois fois plus de temps que d'autres aux mathématiques. Ce rapport s'élève de 1 à 4 pour l'apprentissage du français. Selon ces mêmes études, il apparaît, qu'en moyenne, un professeur emploie 22 minutes par jour à l'enseignement de la musique et des arts plastiques. Des résultats comparables ont été rapportés par Morlaix (2000), chez les professeurs de 70 classes de CE2 Rapporté à l'année, et en supposant que les pratiques enseignantes restent stables, ce sont 57 heures en moyenne qui sont employées à cet enseignement, ce qui est en deçà des recommandations du Ministère de l'Education Nationale (ce dernier préconise en effet que l'on y consacre 78 heures annuellement). Tout comme pour les mathématiques et le français, les écarts sont considérables, et même encore plus grands : le rapport entre la classe où la durée d'enseignement musical et artistique est la plus courte et

celle où cette durée est la plus longue est de 1 à 10. L'amplitude est donc très importante autour de la durée moyenne quotidienne observée de 22 minutes. Certaines classes y ont consacré à peine 5 minutes, tandis que d'autres y ont employé presque une heure quotidienne. soit une différence de 122 heures au terme d'une année de scolarité. Dans une première étude sur la gestion du temps scolaire à l'école primaire, Suchaut (1996) avait déjà relevé des données similaires. La durée hebdomadaire des activités musicales en grande section de maternelle variait de 20 minutes à plus de 5 heures, avec une moyenne de 2h20. Cependant, si l'on exclut de ces données les classes étant intégrées à l'expérimentation musicale menée dans le cadre de l'étude⁸, la durée moyenne allouée à la pratique de la musique était de 1h25. Cette même étude montre une tendance similaire au CP. La durée moyenne consacrée à l'activité musicale est de 1h20 au CP, avec une variation allant de 15 minutes à 4h10 par semaine selon les classes. Une seconde étude du même auteur vient confirmer ces résultats. Suchaut (2000) relève une durée hebdomadaire moyenne des activités musicales de 1h25, un peu plus pour les enseignants de maternelle (2h environ) et un peu en deçà en élémentaire (avec 1h15).

A l'extrême, certains n'enseignent pas du tout la musique. Une étude de la DEP (2006) montre que 7% des professeurs interrogés déclarent ne pas enseigner la musique en classe, et cette proportion s'élève à 19% chez les enseignants ayant plus de 35 ans d'ancienneté. Dans d'autres études, ce pourcentage est de 2,1% (Maizières et al, 2007) et on estime que le pourcentage d'élève privé totalement d'enseignement musical varie de 2 à 5,9% (Baillat et Mazaud, 2002). Selon cette dernière étude, près de 29% des professeurs du primaire ont recours à un intervenant extérieur, cette tendance étant plus forte chez les enseignants les plus âgés.

Comment expliquer de telles disparités dans la pratique musicale en classe ? Chez les professeurs montrant un faible investissement, en volume horaire, pour la pratique de la musique, une des principales raisons évoquées est le manque de formation dans cette discipline (Suchaut, 2000 ; Esquieu, 2006), déjà souligné à la section précédente. Pour ces enseignants, le manque de formation apparaît comme un obstacle majeur à leur pratique en

⁻

⁸ Les classes du groupe expérimental de l'étude de Mingat et Suchaut (1994) pratiquaient 2h ou 4h de musique par semaine

classe, suivi de difficultés relatives à la maîtrise de la voix, dont la justesse, et de l'insuffisance dans leur connaissance du solfège, ou de la pratique d'un instrument. Ils sont 76,7% à penser qu'ils n'ont pas les compétences nécessaires pour enseigner la musique lorsqu'ils ne la pratiquent pas eux-mêmes (Maizières et al 2007). *A contrario*, les professeurs ayant une pratique personnelle de la musique en font-ils profiter leurs élèves ?

Maizières et al (2007) et Maizières (2009) ont étudié les pratiques de la musique en amateur par les enseignants du primaire et l'impact que cela peut avoir sur leur enseignement en classe. Les professeurs sont nombreux à avoir pratiqué (51,3%) ou pratiquer encore de la musique, du chant ou d'un instrument (29,2%). Et si 68,1% écoutent régulièrement de la musique, un tiers d'entre eux ne fréquentent jamais de salle de concert par exemple. Au terme de cette recherche, il apparaît que les professeurs qui ont une pratique personnelle de la musique allouent plus de temps à cette activité en classe avec les élèves, sont plus nombreux à s'investir dans des projets musicaux pour l'école, délèguent moins leur enseignement et intègrent plus fréquemment la pratique d'instrument en classe que les autres professeurs. Cependant, il ne s'agit là que de tableaux croisés et les auteurs n'ont pas trouvé de différences de pratique dans l'apprentissage du chant ou dans les activités d'écoute entre ces deux groupes de professeurs. Ainsi, bien que la relation entre la pratique personnelle de la musique et son enseignement en classe existe, elle n'est pas systématique. En effet, les auteurs montrent que les enseignants qui pratiquent la musique l'enseignent de manière similaire aux professeurs qui n'ont pas d'expériences musicales.

Interrogeons nous pour finir sur la nature des activités musicales en classe. Maizières (2009) a étudié la fréquence de ces activités chez les professeurs du premier degré et il ressort que le chant est très clairement prédominant puisque 80% des enseignants interrogés font chanter leurs élèves au moins une fois par semaine. Suchaut (2000) précise que les élèves de maternelle chantent plus que leurs homologues de l'élémentaire avec une moyenne annuelle respective de 13,2 et 9,1 heures. Il s'agit principalement de comptine pour les élèves de maternelle, et de chant à 1 voix, à 2 voix ou en canon pour ceux de l'élémentaire. Outre le chant, les activités d'écoute sont très fréquentes puisque près de la moitié des professeurs déclarent proposer ce genre d'activité 1 à 2 fois par semaine (Maizières, 2009), et il s'agit

essentiellement d'écoute « pour le plaisir » (Suchaut, 2000). Les activités musicales d'un autre genre se font plus discrètes en classe. Par exemple, Maizières (2009) montre que les enseignants du primaire ne pratiquent jamais ou que très rarement en classe d'instruments de musique (58,5% des cas), de création (71,8%) ou d'improvisation (55%). Ces données sont quelques peu contradictoires avec les données de l'étude de Suchaut (2000), selon laquelle 89% des enseignants de maternelle et 73% de l'élémentaire déclarent utiliser des percussions. Par contre, les deux auteurs se rejoignent sur la pratique d'activité corporelle puisqu'elle est utilisée par 94,5% des enseignants de maternelle, et ce de manière régulière.

Ce n'est qu'à partir de 1882, et après une lente évolution, que l'éducation musicale fait son entrée dans les programmes scolaires de l'école primaire. S'il s'agit, indiscutablement, d'une discipline à part entière, les objectifs dont elle se dote et les contenus d'enseignement pour y parvenir sont régulièrement sujets à discussion. Sa nature culturelle et artistique, qui se confronte à la sensibilité du professeur, font d'elle un enseignement aux différentes facettes, transmissible par la pratique d'un instrument, l'écoute active d'une œuvre, le chant, pour n'en citer que quelques unes. Ces multiples aspects contribuent à en faire une discipline complexe en perpétuel renouveau. Les programmes, les objectifs, mais surtout la didactique et les finalités de l'éducation musicale ne font pas encore l'objet d'un consensus communément accepté par tous les acteurs.

1.3 L'apprentissage de la musique : un processus cognitif

Après avoir examiné l'éducation musicale sous un angle historique et institutionnel en France, il nous semble important, pour compléter la compréhension de cet objet central de notre travail, de nous pencher sur le processus d'apprentissage musical. Dans cette section, avant de présenter les différentes formes d'apprentissage, nous étudierons les processus cognitifs à l'œuvre dans la perception de la musique.

1.3.1. Comprendre la perception de la musique

Les capacités d'écoute sont au cœur de l'apprentissage de la musique. Les termes d'audition, de capacité d'oreille et d'écoute, sont souvent utilisés pour faire part de la perception musicale. Pour comprendre comment la musique est interprétée par notre cerveau et les mécanismes qu'elle déclenche par la suite, il faut se tourner vers la psychoacoustique musicale. La psychoacoustique musicale n'est autre que l'étude des sensations auditives. Il s'agit d'une discipline à l'orée de la physiologie, de la psychologie, et de l'acoustique. Tandis que, par le biais de l'acoustique seule, on étudiera la nature et les propriétés des ondes sonores arrivant jusqu'au tympan, la psychoacoustique cherche à comprendre comment ces ondes sont captées par le système auditif et la manière dont elles sont interprétées par le cerveau.

Dans cette section, nous décrirons succinctement quelques éléments de la psychoacoustique tel que le système auditif, la perception de l'intensité sonore (sonie des sons), la perception des hauteurs (la tonie), la perception des intervalles mélodiques et harmoniques (seuils, consonance/dissonance), ou encore la perception de l'harmonie, du timbre et de la parole puis la perception des objets et patrons sonores, les processus d'organisation auditive et l'analyse de la scène auditive.

1.3.1.1 : Comment entend-t-on : éléments essentiels de la phychoacoustique

Pour bien comprendre comment nous percevons la musique, il faut d'abord comprendre deux choses essentielles : ce qu'est un son, et comment ce son est perçu par l'oreille, en d'autres termes, comment entend-t-on ? Les sons sont des ondes qui se propagent dans l'air sous forme de vibrations. Les ondes qui se propagent changent la pression de l'air. Nous pouvons capter cette succession de hautes et basses pressions. Le changement de pression créé par l'onde est l'amplitude. L'oreille est l'organe par lequel nous pouvons capter ces ondes, dont la musique. Pour comprendre comment la musique est perçue par notre cerveau, il faut d'abord comprendre les mécanismes qui transforment la musique en ondes, puis envoient ces ondes au cerveau.

L'organe qui permet de capter les stimuli sonores (l'oreille) se divise en trois parties : l'oreille externe, l'oreille moyenne et l'oreille interne.

- L'oreille externe est composée du pavillon et du conduit auditif. Le pavillon sert à capter les ondes sonores et à les diriger vers le conduit auditif. Le diamètre de ce dernier diminue au fur et à mesure que l'on se rapproche du tympan.
- L'oreille moyenne comprend le tympan et des petits os (marteau, enclume et étrier).
 Une fois entrées dans le conduit auditif, les ondes qui composent les sons font vibrer la membrane du tympan. Ces vibrations sont ensuite transmises aux trois petits os.
- Les vibrations de l'étrier poursuivent leur chemin vers la cochlée. Il s'agit d'un organe creux rempli de liquide et dont les parois sont tapissées de cils. Ce sont ces cellules ciliées qui transforment le mouvement de leurs cils en signal nerveux. Ce signal transite par le nerf auditif, qui va être interprété par le cerveau comme un son.

Ainsi, les ondes sonores sont captées par le pavillon de l'oreille qui les canalise et les dirige dans le conduit auditif avant de frapper la membrane du tympan. Les vibrations des tympans actionnent le marteau, qui vibre à son tour et transmet l'information à l'enclume et à l'étrier. L'étrier en mouvement pousse la membrane de la fenêtre du vestibule qui fait onduler le liquide de la cochlée. Les cils tapissés au fond de la cochlée bougent en même temps que le liquide. Ce sont ces cils qui, en premier, permettent de coder une partie de l'information sonore. Selon leur position dans la cochlée, ils ne perçoivent pas les mêmes fréquences : les sons aigus stimulent les récepteurs qui se situent au début, tandis que les récepteurs qui perçoivent les sons graves se trouvent plus loin. Une fois stimulés, les cils transmettent l'information au nerf auditif. Les neurones du nerf auditif transmettent ensuite l'information au cerveau.

Une fois l'information transmise, le cerveau joue un rôle important : il permet non seulement de discriminer les sons, mais aussi de les situer dans l'espace. En effet, à moins d'être situé exactement en face de la source sonore, les deux oreilles ne reçoivent pas le stimulus en même temps. De plus, l'intensité des sons qui parviennent aux deux oreilles ne sera pas la même. En croisant ces deux informations perçues par l'oreille gauche et l'oreille droite, nous pouvons localiser avec plus ou moins d'exactitude la source sonore.

1.3.1.2. De la perception du son à perception de la musique

Ecouter de la musique n'est pas simplement écouter un son. Les psychologues cognitivistes spécialisés dans la perception de la musique cherchent à comprendre les processus mentaux qui permettent à l'esprit de créer une cohérence et du sens à la musique. C'est à partir de 1985 que les recherches scientifiques à ce propos ont donné naissance à des premières théories. John Sloboda (1985) fait part de ses résultats dans son ouvrage *The Musical Mind* et explique que nous percevons la musique, non seulement avec les oreilles, mais aussi avec l'esprit, qui élabore et construit des représentations mentales en fonction de notre culture, de notre sens de l'esthétique, qui peuvent être universels, communs et/ou individuels. Pour comprendre comment nous percevons la musique, nous nous appuyons à présent sur les recherches menées en psychologie cognitive. Tour à tour, les études ont porté sur les relations entre la musique et l'audition, les émotions, et la mémoire.

L'audition

C'est le système auditif qui traite l'information acoustique pour déterminer la présence, la position et la nature des sources sonores que l'on entend. Le système auditif peut être divisé en deux éléments. Le premier est le système auditif périphérique, qui se compose de l'oreille externe, moyenne et interne. Comme susmentionné, les ondes sonores sont recueillies puis concentrées par l'oreille externe, transmises à l'oreille moyenne *via* les vibrations du tympan qui se propagent ensuite à l'oreille interne et aux nerfs auditifs. Il revient au second, le système auditif central, de décoder l'information afin de comprendre le message qu'elle émet. Lorsque nous sommes entourés de signaux sonores provenant de différentes sources (par exemple au travail, le son des touches du clavier sur lesquelles on tape, un collègue qui nous parle, une musique en fond sonore), le système auditif périphérique perçoit toutes les vibrations, tous ces sons entremêlées Le système auditif central détermine alors à quelles sources les sons appartiennent pour construire du sens. Ainsi, les paroles de notre collègue ne seront jamais entendues comme faisant partie de la musique de fond par exemple.

Pour appréhender la manière dont cette séparation s'effectue, il est essentiel de comprendre la notion d'objet sonore. Ce terme réfère à la représentation mentale que nous nous faisons de l'objet qui fait du bruit. C'est ce qui nous sert à créer de la cohérence dans ce que nous entendons. Ainsi, à partir d'un son nous pouvons imaginer, nous représenter mentalement, l'objet de la source sonore (par exemple, qu'est-ce qui fait « miaou » ?) et inversement, anticiper un bruit à partir d'une représentation (quel bruit fait un chat ?).

L'analyse auditive d'un environnement sonore peut être appréhendée comme celle du traitement de l'information en mémoire. Pour analyser une scène auditive, nous nous basons sur des indices sonores qui peuvent être classés de la manière suivante (Yost, 2008) :

- 1. la séparation spectrale : il s'agit de la capacité du système auditif à filtrer les sons pour discriminer et identifier des sources sonores lorsqu'elles sont simultanées et multiples.
- 2. le profil spectral : une fois les sons filtrés et discriminés, le filtre spectral permet de regrouper les différents sons appartenant à une même source sonore
- 3. l'harmonicité : les différents sons d'une même source sonore fusionnent en une harmonie ce qui facilite l'identification de la source.
- 4. la séparation spatiale est un indice supplémentaire qui permet de distinguer les sources sonores. Un son venant de gauche et un autre son provenant simultanément mais de la droite ne devrait vraisemblablement pas émaner du même objet sonore.
- 5. la séparation temporelle : il peut s'agir de rythmes, de tempos différents
- 6. les attaques et chutes temporelles : si deux sons ne démarrent pas et ne s'arrêtent pas en même temps, il est peu probable qu'ils soient perçus comme provenant d'une seule et unique source sonore.
- 7. les modulations temporelles : les changements de rythme et de tempo.

Lerdahl et Jackendoff (1983) ont mis au point la théorie générative de la musique totale pour comprendre les mécanismes qui se créent quand les auditeurs écoutent de la musique. Pour ce faire, ils proposent un ensemble de règles qui hiérarchisent les évènements musicaux en deux grandes phases : une phase de segmentation et une phase de réduction. Durant la

première phase, l'auditeur dégage la structure temporelle, rythmique de la musique, et identifie les regroupements d'évènements (les répétitions). Une fois cette phase de segmentation temporelle faite, le second processus se met en place. Il s'agit alors de la phase de réduction durant laquelle l'auditeur s'efforce d'organiser une hiérarchie. Lors de l'écoute d'une chanson, ce qui semble le moins important sera réduit en mémoire, pour garder une place plus importante aux évènements les plus marquants de la chanson. Deux types de réductions sont alors effectués : la réduction de la trame temporelle, où l'on retient le rythme, et la réduction par prolongation, où l'on hiérarchise les évènements (l'introduction, la montée, les répétitions, le refrain, un air de guitare que l'on apprécie plus particulièrement).

Les émotions

Les émotions musicales sont au cœur des recherches psychologie depuis peu. Ces résultats montrent que les réponses émotionnelles suscitées par certaines œuvres ne sont pas exclusivement le fruit de l'œuvre en elle-même, mais peuvent être d'ordre associatif. Par exemple, une chanson peut provoquer de la tristesse parce qu'on l'aura associé à un film mélancolique ou à un évènement douloureux. A l'inverse, cette même chanson peut provoquer de la joie chez une autre personne qui l'aura assimilé à un bonheur particulier. Ces associations émotionnelles extramusicales, comme les nomme Bigand (2008), sont bien réelles mais ne représentent qu'une part infime de nos expériences musicales. En effet, les œuvres musicales ont une structure expressive, plus ou moins forte, qui s'impose d'elle-même à chacun et provoque des états émotionnels. Ainsi, il est peu probable en se rendant à un concert de heavy métal de voir des gens pleurer de tristesse, d'autres sautiller de joie, et des derniers recroquevillés de peur.

Les recherches ont établi que les œuvres musicales provoquent des réponses émotionnelles stables, quel que soit l'individu, et ce même pour des personnes d'origine culturelle différentes (Fritz, 2009), ou pour des musiciens ou non musiciens (Bigand et al. 2005). En effet, les sujets des expérimentations perçoivent tous au même moment de la gaieté, de la colère et de la tristesse lors de l'écoute d'œuvres musicales classiques (Zentner et al.,

2008). Des études similaires ont montré que, même avec des œuvres musicales non connues des sujets, les émotions ressenties sont partagées par tous.

Ces émotions perçues par les auditeurs sont-elles également vécues ? Autrement dit, les sujets identifiant une œuvre exprimant de la tristesse seront-ils tristes ? Vivront-ils cette tristesse ? De manière générale, les émotions perçues par l'écoute des œuvres musicales ne restent pas longtemps dissociées de l'émotion ressentie. En effet, on peut très bien écouter une musique joyeuse pendant dix minutes et ne pas se sentir joyeux, par contre il est plus étonnant de ne pas éprouver de tristesse à la suite de l'écoute d'une œuvre sombre pendant plus d'une heure. En analysant les réponses physiologiques à l'écoute musicale, des chercheurs ont démontré que les émotions musicales sont belles et bien ressenties. Lorsque les émotions ressenties sont fortes, elles génèrent des modifications perceptibles et mesurables : changement du rythme cardiaque (Blood et Zatorre, 2001, Rickard 2004, Iwanaga 2005) du rythme respiratoire (Gomez et Danuser, 2004, Kim et André 2008), pleurs et frissons, mais aussi notre cerveau par ses ondes cérébrales (Trainor et Schmidt 2003). Ces manifestations trahissent nos émotions musicales.

Enfin, plus surprenante encore est la rapidité avec laquelle l'auditeur est capable de fournir une réponse émotionnelle à une œuvre musicale. Aux vues des recherches effectuées à ce propos, il apparaît que seules 500 millisecondes de musique suffisent pour différencier une musique joyeuse d'une musique triste (Peretz, et al. 1998, 2001 ; Bigand et al. 2005).

La mémoire

La musique ne se résume pas à une succession de sons savamment organisés. Elle combine de manière structurée différents attributs, tels qu'intensité, hauteur, durée... Pour comprendre les relations entre les sons, l'auditeur doit traiter ces informations de manière individuelle, les mémoriser puis les relier les unes aux autres (Tillmann et al., 2005).

Ainsi, l'on comprendra que la mémoire joue un rôle essentiel dans le traitement de l'information acoustique.

- La mémoire à court terme intervient en parallèle du stimulus sonore et permet de construire immédiatement une image sonore cohérente. C'est ce qui nous permet de différencier une succession de sons sans intérêt et de la musique en analysant la scène sonore.
- La mémoire à moyen terme permet de repérer les caractères récurent d'un morceau de musique ou d'une chanson, ainsi que les variations éventuelles
- Enfin, la mémoire à long terme structure et organise le tout en allant puiser des rythmes et mélodies stockées dans la mémoire à long terme pour ainsi reconnaître les différents paramètres musicaux (Gribenski, 2005).

Le schéma de la page suivante, extrait de Tramo (2001), présente de manière synthétique les mécanismes cognitifs sollicités lors de la perception musicale, ainsi que les zones du cerveau concernées. En plus des éléments présentés précédemment, le schéma montre que la perception de la musique est également reliée à la perception visuelle, la kinesthésie et la personnalité d'un individu. La perception visuelle est sollicitée en cas de lecture de portée mais aussi lorsque la musique est illustrée par une danse ; la « personnalité » déterminera nos préférences musicales Les relations de la perception musicale avec ces derniers éléments continuent de faire l'objet de travaux en psychologie cognitive. Le schéma montre également que les interrelations sont complexes et non univoques entre les différents facteurs cognitifs à l'œuvre (voir les flèches du schéma). Par exemple, la musique peut amener des mouvements de corps (kinesthésie) qui eux-mêmes génèreront des émotions propres en puisant parfois dans notre vécu personnel.

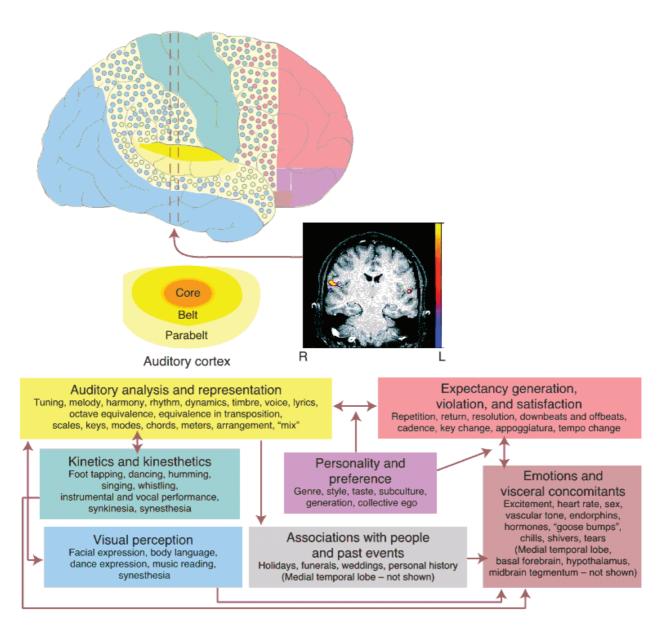


Schéma 6 : Les mécanismes cognitifs sollicités lors de la perception musicale

Extrait de Tramo (2001) "Music of the Hemispheres." Science 291, n°5501 (Janvier, 2001), page 54.

Nous venons de voir que la perception de la musique est un processus complexe qui ne se limite pas à la perception de sons et fait intervenir de nombreux paramètres cognitifs. Nous nous focalisons maintenant sur une question centrale dans l'éducation musicale, l'apprentissage de la musique.

1.3.2. L'apprentissage de la musique

Nous débuterons cette section en interrogeant la part d'inné et la part d'acquis dans l'apprentissage de la musique. Ce point est important car, à l'extrême, si la musique est totalement innée, l'éducation musicale n'a que peu d'intérêt. Nous porterons ensuite notre attention sur les types d'apprentissage et verrons que si l'apprentissage de la musique peut passer par un enseignement explicite, il peut également se faire de manière implicite.

1.3.2.1. La part d'inné et la part d'acquis ?

Les différentes œuvres musicales s'ancrent dans l'époque et la culture dans lesquelles elles ont été créées. Pourtant, nous sommes tous en mesure d'identifier l'œuvre musicale « la flûte enchantée » de Mozart, qui date pourtant de 1791. La musique est donc un art compris de tous ou presque car, pour certaines personnes, le rythme, la mélodie et les accords n'ont pas de sens. Chez les personnes souffrant d'amusie, il n'est parfois pas possible distinguer le bruit de la musique. L'amusie est décrite par Peretz (2002) comme un trouble dans les habilités musicales touchant une partie ou la totalité des aspects suivants : impossibilité de reconnaître une mélodie ou une hauteur, impossibilité de la reproduire, mauvaise perception du rythme, insensibilité ou aversion pour la musique. Ce déficit n'est pas imputable à une dégénérescence de l'ouïe, à un manque d'exposition à la musique, ni même à des faiblesses cognitives, mais est d'origine neurologique, soit de naissance, soit à la suite d'un accident. Ainsi, à l'exception de ces individus, nous sommes tous des experts musicaux inconscients. Bigand et Poulin-Charronat (2006) ont montré que la perception et la compréhension de la musique ne nécessitent pas de pré-requis, et que musiciens et non musiciens l'apprécient de manière identique. Seule la production instrumentale requiert un apprentissage formel et explicite, mais pas lorsqu'il s'agit de chant comme l'indiquent Peretz et Lidji (2006). En effet, les résultats de leurs recherches montrent que les musiciens ne sont pas plus performants que les non musiciens pour chanter, et que l'exposition et le goût pour la musique suffisent à acquérir une performance musicale de base. Le débat entre la part d'inné et la part d'acquis

dans la perception et la cognition de la musique est encore virulent. En effet, on estime que pour devenir un musicien professionnel ou expert, 10000 heures de pratiques cumulées ou 10 ans de pratique intensive sont nécessaires (Ericsson et al, 1993, 2006). De plus, il semblerait que « pour devenir Mozart, il faut être né Mozart » (Arshavsky, 2003). Ainsi, s'il est possible de développer ses aptitudes musicales par l'entraînement ou la pratique, certaines capacités musicales sont innées et certains individus disposent d'aptitudes particulières pour la musique.

Pour s'en convaincre, il suffit de s'intéresser aux études de psychologie cognitive effectuées sur des bébés. Aux regards de ces recherches, il apparaît que nous naissons avec de bonnes capacités musicales, les habilités musicales des enfants de moins d'un an étant comparables à celles des adultes. En effet, les bébés sont sensibles au rythme, à la fréquence, au timbre, à la mélodie (Plantinga et al. 2004) et à la hauteur des notes (Trehub, 2001, Trehub et al. 2006). Cette sensibilité précoce pour la musique, qui ne dépend pas uniquement de l'exposition à la musique ambiante ou des chants maternels, suggère l'existence d'une prédisposition innée pour la musique, hypothèse soutenue notamment par Trehub (2001). Cependant, le fait que la perception musicale relève d'une part innée n'exclut pas la possibilité de les développer *via* un processus d'apprentissage. Trehub et al. (2006) ont proposé ce type de double système : l'écoute et le goût de la musique sont innés, mais les habilités musicales ne le sont pas nécessairement.

Pour faire la part des choses entre l'inné et l'acquis, il est intéressant de se pencher sur les recherches ayant trait à l'oreille absolue. L'oreille absolue est la capacité pour un individu d'identifier une note musicale en l'absence de référence externe. Elle est due à une faculté de discrimination extrêmement développée des fréquences et à une grande mémoire sonore (Levitin, 2004). Il s'agit d'une faculté rare puisque seulement 1 personne sur 10000 serait dotée de cette faculté en Occident (Profita and Bidder, 1988). Ce talent serait donc inné. Cependant, il semble que le développement de l'oreille absolue soit en lien avec le fait de parler une langue tonale (Deutsch et al. 2004, 2006). Ainsi, même un talent aussi exceptionnel serait, au moins en partie, lié à l'acquis. Il n'y a toutefois pas encore de consensus sur la possibilité (Chin, 2003. Sakakibara 2004) ou non (Ross et al, 2003) de développer l'oreille absolue via un apprentissage précoce de la musique, c'est-à-dire avant 6 ans, et en l'état actuel

des connaissances, il n'est pas possible de trancher sur la part d'inné et d'acquis. Tout au plus peut on avancer que l'apprentissage de la musique relève simultanément de ces deux aspects, dans un dosage différent selon les individus.

1.3.2.2. Apprentissage implicite et explicite

Dans la section précédente, nous avons vu que l'on considère un musicien comme expert après un long apprentissage de 10000 heures ou de 10 ans. C'est pourquoi, l'on pense souvent que pour faire de la musique, nous devons obligatoirement avoir suivi un enseignement explicite afin d'acquérir une compétence particulière. Pourtant, nous allons voir que si l'on est capable d'apprécier une œuvre musicale, nous sommes aussi aptes à jouer d'un instrument. En effet, les apprentissages implicites sont présents dans le domaine musical et permettent de développer, chez des individus n'ayant jamais appris à faire de la musique, des aptitudes bien réelles et souvent sous-estimées.

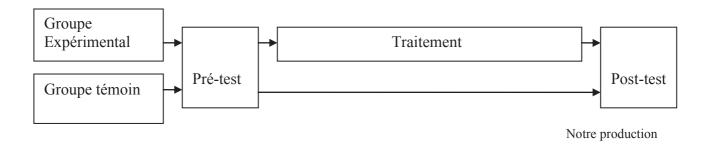
Avant d'approfondir la manière dont l'apprentissage implicite de la musique se construit et quelles pourraient être ses implications pédagogiques, nous proposons une définition de l'apprentissage implicite, reposant sur Perruchet et al. (1998). L'auteur définit, page 25, l'apprentissage implicite comme « un mode d'adaptation sur lequel le comportement d'un sujet apparaît sensible à la structure d'une situation, sans que cette adaptation ne soit imputable à l'exploitation intentionnelle de la connaissance explicite à cette structure ». Delbé (2009) fournit quelques précisions: tout d'abord, les processus d'apprentissage implicites sont dissociés des processus explicites, fonctionnent de manière indépendante et ne sont pas en lien avec le QI. Ensuite, ces processus sont généraux et universels, c'est-à-dire qu'ils s'appliquent à un nombre élevé de situations de la vie quotidienne et sont présents chez tous. La troisième caractéristique de l'apprentissage implicite est son automaticité. Vient ensuite sa résistance face à la dégénérescence, à la vieillesse ou aux troubles psychiques. Enfin, et il s'agit là d'un point particulièrement intéressant, les processus d'apprentissage implicite débutent précocement. Schellenberg et al. (2005) ont montré que les enfants de 6 ans qui n'avaient aucune formation musicale avaient déjà une grande connaissance implicite des harmonies.

Nous sommes donc capables, à la suite d'une exposition répétée (Perruchet et al., 2004), d'abstraire et d'utiliser des règles qui structurent la musique, comme nous apprenons implicitement notre langue maternelle. Le maître mot dans l'apprentissage implicite est la régularité. Ce n'est qu'en étant exposé de manière régulière à la musique que les processus d'apprentissage implicite permettront d'acquérir des connaissances musicales sans qu'elles ne soient verbalisées explicitement. Le système musical repose sur un nombre restreint d'éléments, comme les notes et les accords, et ces mêmes éléments varient en fonction du contexte dans lequel ils apparaissent (différents genres de musique par exemple). Afin de comprendre les structures musicales, l'auditeur doit appréhender (de manière consciente ou non) cette situation de dépendance (Bigand et al., 2005). Ces connaissances permettent aussi de créer des attentes, qui permettent selon les cas, de faciliter (attente correcte) ou de retarder (attente fausse), le traitement cognitif de l'information (reconnaissance, mémorisation...). Tandis que les musiciens connaissent et maîtrisent la théorie et la pratique musicale par un long apprentissage explicite, les non-musiciens sont acculturés à la musique par une exposition régulière.

Bigand et al. (2005) proposent quelques pistes de réflexion pour l'apprentissage et l'enseignement de la musique, en se basant en partie sur la théorie de l'apprentissage implicite. Notre environnement musical, qu'il soit subi ou choisi, influence directement nos apprentissages implicites de la musique. Grâce à l'avancement technologique, il n'est désormais plus nécessaire d'être musicien pour écouter de la musique d'horizons divers. Les auteurs proposent de s'appuyer sur les nouvelles technologies pour apprendre ou faire apprendre la musique aux enfants. Il faut notamment faire attention à l'accessibilité de l'information pour les non-musiciens, en présentant le système sonore de manière simple (codage inventé, formes d'ondes), puis glisser doucement vers un format de plus en plus complexe (les tabulations, les partitions). Cette représentation visuelle du système sonore permet de faciliter la mémorisation de la structure musicale. Cependant, pour être efficace, l'outil pédagogique aidant l'enseignement musical doit être précis, complet, attractif et enrichissant. Un tel outil serait d'une grande aide pour les enseignants du primaire, pour lesquels nous avons déjà présenté les lacunes de formation.

Chapitre 2. Musique et développement des capacités cognitives

Le précédent chapitre nous a permis de mieux circonscrire ce qu'est l'éducation musicale, et notamment de montrer les difficultés de cet enseignement à trouver sa place dans le primaire et la complexité de ses mécanismes d'apprentissage. Il a également montré les lacunes de l'enseignement musical tel qu'il est aujourd'hui réalisé en France, et l'opportunité d'une intervention musicale en milieu scolaire. Rappelons que notre intérêt pour la musique dans cette thèse est justifié par sa capacité supposée à favoriser la réussite scolaire, *via* une action sur les capacités cognitives. Or, s'il n'est pas étonnant d'apprendre que la pratique d'un instrument de musique, des cours de solfège ou de l'écoute musicale développent des facultés en lien avec la musique elle-même, il est bien plus intriguant de se demander quels sont les effets d'un enseignement musical sur d'autres domaines de la cognition.


Les études sur les interactions entre la musique et le développement des capacités cognitives se sont multipliées durant cette dernière décennie. Dès 1949, dans un travail précurseur, le Dr. Alfred Tomatis effectua des recherches en audiologie et phonologie pour déterminer les mécanismes liants l'écoute, le langage et le système nerveux, son objectif étant de traiter les troubles de l'audition et du langage. Afin de quantifier les gains cognitifs résultant de la pratique de la musique, nous nous intéresserons, dans cette section aux travaux de la psychologie cognitive. Pour bien comprendre comment ces gains sont quantifiés, nous présenterons dans un premier temps la méthodologie de l'expérimentation. Dans un second temps, nous examinerons l'impact de l'enseignement musical sur les capacités cognitives. Nous verrons successivement que diverses dimensions cognitives peuvent être affectées par la musique (le Q.I, la mémoire, l'attention, les capacités spatio-temporelles), mais aussi que les enfants pratiquant de la musique présentent de meilleurs scores aux tests de capacité en lecture, en mathématiques, et dans une multitude de disciplines scolaires.

2.1. La méthodologie de l'expérimentation

Avant d'entrer dans le vif du sujet, certains points de méthodologie et de terminologie méritent d'être éclaircis. Il s'agit de définir le principal outil de recherche des psychologues : l'expérimentation. Il existe principalement trois sortes d'expérimentations : l'expérimentation de laboratoire, de terrain et naturelle. Dans chaque cas, l'objectif reste le même : il s'agit d'étudier l'impact d'un facteur d'intérêt (la musique par exemple) en comparant les performances de deux groupes d'individus. Le groupe témoin est celui sur lequel aucune intervention extérieure n'a été réalisée. Le groupe expérimental est celui où les individus ont été soumis à un traitement. Dans le cas des études qui nous intéressent, ce traitement est généralement un entraînement musical.

Dans les études que nous allons présenter, les deux derniers types de recherches (de terrains et naturelles) sont les plus usitées. En effet, on reproche souvent à l'expérimentation de laboratoire d'être trop artificielle. Les sujets, qu'ils soient enfants ou adultes, reçoivent le traitement et subissent les tests dans un environnement très contrôlé, trop selon certains psychologues pour que les résultats puissent être généralisables. En effet, les résultats de ces expérimentations sont amplifiés par le facteur « laboratoire ». Dans le cas des expérimentations de terrain, il s'agit de dépasser la critique faite aux expériences de laboratoire concernant leur éventuel irréalisme. Les sujets du groupe expérimental perçoivent alors le traitement *in situ*. Dans les cas qui nous intéresse, l'entrainement musical des élèves se fait en classe avec le professeur. Enfin, lors de l'expérimentation naturelle, le chercheur ne « fabrique » pas son expérience. Dans ce cas, il s'agit de sélectionner des sujets ayant pratiqué de la musique durant de nombreuses années pour composer le groupe expérimental, et des sujets profanes pour le groupe témoin. Dans cette situation particulière, nul besoin de traitement « externe » par le chercheur, le traitement est « naturel ». La démarche expérimentale peut être représentée schématiquement de la manière suivante.

Schéma 7 : La démarche expérimentale

L'on distingue généralement deux types d'expérimentations : les premières sont quantitatives et s'appuient sur un échantillon représentatif, et les secondes, qualitatives, reposent sur un nombre plus restreint d'individus. Les résultats des recherches en psychologie que nous allons présenter dans la section suivante sont majoritairement le fruit d'investigations qualitatives approfondies sur une poignée de sujet. Si ces deux types d'expérimentation ne poursuivent pas les mêmes objectifs et ne répondent pas aux mêmes interrogations, elles s'appuient néanmoins sur une méthodologie similaire. Le dessein de cette section est de présenter l'expérimentation d'un point de vue épistémologique : qu'est-ce qu'une expérimentation, comment garantir sa validité, quelles questions éthiques soulève-t-elle?

2.1.1. Les principes de base de l'expérimentation

Myers et al. (2003) définissent l'expérimentation comme une recherche qui consiste à mettre en place des procédures de contrôle dans lesquelles on applique au moins deux conditions de traitements différentes selon les sujets. Les comportements des sujets sont alors mesurés et comparés afin de tester l'hypothèse que l'on cherche à vérifier, ou plus globalement répondre à la question suivante : quels sont les effets de ce traitement sur le comportement de ces sujets ?

Bien entendu le point de départ d'une expérimentation, comme pour toute recherche en sciences sociales, est d'identifier l'objectif poursuivi. Une fois l'hypothèse définie, on cherche à déterminer une relation causale entre le traitement expérimental et les effets de l'expérimentation. Par exemple, les recherches en psychologie que nous allons étudier dans la section suivante cherchent à apprécier l'impact de la musique sur les capacités cognitives. Certaines, entre autres Schellenberg en 2004, cherchent à tester l'hypothèse suivante : « la pratique de musique accroît le Q.I. ». Suivant la méthode expérimentale, cette hypothèse est testée en comparant les effets d'une expérience sur les individus de deux groupes. Dans un groupe, les individus vont être exposés à un traitement expérimental. En reprenant l'exemple susmentionné, Schellenberg (2004) a fait faire de la musique à une partie des individus de son échantillon, qui constitue le groupe expérimental. Les autres sujets n'ont pas pratiqué de musique, il s'agit du groupe témoin. Pour vérifier son hypothèse, l'auteur va mesurer le Q.I. de tous les sujets avant et après le traitement expérimental. Quatre situations peuvent se produire :

- 1. Le Q.I des sujets des deux groupes n'évoluent pas. Dans ce cas, il n'est pas possible de se prononcer sur les effets de la musique sur les capacités cognitives, mais il peut être nécessaire d'interroger le traitement expérimental ou la mesure des capacités cognitives qui ne sont peut être pas bien adaptées à l'hypothèse.
- 2. Si le Q.I des sujets du groupe expérimental est accru suite à l'expérience et que celui des individus du groupe témoin n'a que très peu évolué, alors on peut en déduire que « la pratique de la musique accroît le Q.I ».
- 3. Si, à l'inverse, ce sont les sujets du groupe témoin qui accroissent leur Q.I mais pas ceux du groupe expérimental, alors l'hypothèse est réfutée.
- 4. Enfin, si le Q.I des sujets des deux groupes augmente de manière similaire, alors il est impossible de se prononcer sur l'hypothèse.

Outre le facteur que l'on cherche à tester, les dispositifs extérieurs au traitement expérimental de l'expérience doivent être rigoureusement identiques pour les deux groupes. En effet, sans cette précaution, d'autres facteurs pourraient être à l'origine de résultats entre les sujets du groupe témoin et du groupe expérimental et viendraient biaiser les résultats. Schellenberg, dans son expérimentation de 2004, a eu recours à deux groupes expérimentaux :

dans le premier, les sujets faisaient de la musique, dans le second ils suivaient des cours de théâtre, ceci afin de distinguer les bénéfices tirés de la musique de ceux pouvant être attribués à la pratique d'une activité extrascolaire et artistique.

Ainsi, pour être sûr de mesurer ce que l'on cherche à démontrer :

- Il faut pouvoir comparer les comportements des sujets selon des conditions variées et observer les changements de comportements lorsque les conditions de traitement changent. Il faut donc au moins deux traitements différents : absence de traitement et présence de traitement, soit la dichotomie groupe témoin (ou contrôle) et groupe expérimental (ou test).
- Les procédures (de traitement et de mesure) doivent être contrôlées, *via* un protocole qui permet, si besoin, de reproduire à l'identique d'expérience.
- Les caractéristiques des sujets qui reçoivent et ne reçoivent pas le traitement doivent être en tout point comparables. En effet, si les caractéristiques des sujets du groupe expérimental diffèrent trop de celles du groupe contrôle, comment faire la part des choses entre les effets de l'expérimentation et des différences comportementales préexistantes ?

La fiabilité des résultats d'une expérience repose essentiellement sur le principe de contrôle. Cependant, une critique majeure faite à l'encontre des expériences est qu'elles sont généralement artificielles, peu réalistes, et que les résultats obtenus peuvent ne pas se vérifier dans la vie quotidienne. C'est ainsi qu'est né un autre type d'expérience, l'expérimentation quasi-naturelle.

Dans sa version la plus simplifiée, une expérience contrôlée sera constituée de deux groupes, un groupe expérimental qui a accès au dispositif que l'on souhaite évaluer et un groupe témoin. L'affectation aléatoire des sujets dans chacun des deux groupes est le meilleur moyen de satisfaire un certain niveau de qualité statistique. Elle permet en effet que les individus des deux groupes possèdent des caractéristiques observables et inobservables similaires, et ceci d'autant plus que la taille des groupes est grande.

Les quasi-expériences sont utilisées lorsque les sujets ne peuvent être affectés au hasard à un groupe, ou lorsqu'il n'est pas possible de les soumettre à un traitement expérimental. Dans ce cas, les comportements qui se présentent naturellement sont utilisés pour former les groupes. Dans ces expériences dites naturelles, les chercheurs forment les groupes en fonction de la caractéristique dont ils veulent étudier l'impact. Par exemple, Wetter et al. (2009) ont voulu étudier l'impact de la pratique instrumentale sur les performances scolaires des élèves. Les auteurs ont donc récolté diverses données auprès de deux écoles, des données socioéconomiques, sur la pratique de la musique et les notes des élèves. Ils ont ensuite affecté les élèves faisant de la musique à un groupe et les autres à un second groupe afin de comparer leurs performances scolaires, tout en contrôlant par les caractéristiques socio-économiques des élèves. Les quasi-expériences ont un inconvénient important : il n'est pas possible d'être sûr des causes qui suscitent les effets observés, c'est pourquoi l'on dit qu'elles ont une faible validité interne. Sans affectation aléatoire, l'expérimentation peut mesurer d'autres effets que celui du traitement. C'est à ces questions de validité des expérimentations que la prochaine section est consacrée.

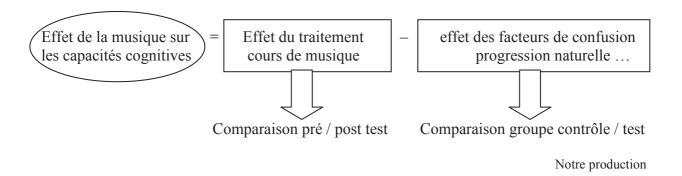
2.1.2. Validité de l'expérimentation

Comme le rappelle Cucheart (2004), trois éléments contribuent à vérifier la validité interne d'une expérimentation ainsi que la fiabilité des résultats trouvés : il s'agit de la robustesse des statistiques liées aux résultats, de la validité de la méthodologie et de l'absence de biais. L'évaluation de la validité interne d'une expérimentation et des résultats qui en découlent ont pour objectif de supprimer la possibilité qu'un effet positif ou négatif de l'expérience ne soit en réalité que le fruit du hasard ou de biais.

Lorsque l'on effectue un test statistique, on ne peut pas écarter à cent pour cent le risque d'erreur. Cependant, par convention, l'on considère que si la valeur du p est de 5% ou moins, c'est-à-dire que s'il y a moins de 5% de chance de se tromper, il est raisonnable de considérer le résultat obtenu comme robuste. Au delà, nous considérons généralement qu'il y a une probabilité trop importante que ce résultat soit du au hasard, à la présence de biais, ou à

des erreurs dans la mesure. A l'examen des résultats des expériences de la revue de littérature, nous serons particulièrement attentifs au seuil de significativité, mais aussi à l'adéquation entre le test statistique utilisé et les données dont disposent les chercheurs, ainsi qu'à la taille de l'échantillon.

Par ailleurs, la validité de la méthodologie suppose que les attentes quant aux effets de l'expérimentation soient explicitées. Afin de garantir la valeur épistémologique du résultat, les effets d'une expérimentation doivent être anticipés et correspondre à l'hypothèse émise avant même sa mise en place. Il convient surtout d'éliminer la possibilité que l'hypothèse ait été formulée après la connaissance des effets de l'expérimentation. Dans ce cas, l'expérimentation ne peut confirmer l'hypothèse puisqu'elle a été émise à partir des effets de l'expérience. Cette tautologie ôte toute valeur aux résultats, puisque de nature inductif, il suggère alors un effet sans le démontrer.


Outre cette question méthodologique, les expérimentations cas-témoin sont sujettes à de nombreux biais. Sacket (1979) en dénombre 35 qui peuvent intervenir tour à tour au moment de l'échantillonnage ou de la mesure. Nous allons présenter les principaux biais qui peuvent affecter le résultat d'une expérimentation : biais de confusion, de suivi et d'évaluation, puis biais de sélection et d'attribution. Les choix méthodologiques retenus permettent d'éviter la présence de certains biais avant même la mise en place de l'expérimentation et permettent ainsi la bonne exécution de l'expérimentation. Nous allons présenter les biais les plus souvent rencontrés lors de la réalisation d'une expérimentation, la manière dont ils apparaissent et la façon dont on peut les éviter.

Les biais avant, pendant et après l'expérimentation :

Le premier d'entre eux est le biais de confusion. Il s'agit de l'influence d'un tiers facteur, qui peut être confondu avec les effets de l'expérimentation. Afin d'éviter ce biais, l'on a recours à un groupe contrôle qui permettra de comparer les comportements des individus avec et sans le traitement expérimental. L'objectif est de comparer les comportements des sujets du groupe expérimental, ayant accès au traitement, avec ceux du

groupe témoin. Ces derniers devraient subir les mêmes influences extérieures, les mêmes facteurs de confusion, que les sujets traités. Ainsi, en se basant sur cette référence, qui représente ce qui se passe en absence de traitement et avec l'effet des facteurs de confusion, l'effet propre de l'expérimentation peut être déterminé en comparant l'évolution des deux groupes. En résumé, pour éliminer le biais de confusion, deux conditions doivent être réunies : la présence d'un groupe témoin, et la certitude que les sujets des deux groupes subissent exactement la même influence des facteurs de confusion (ce qui est l'objectif de la randomisation que nous détaillerons ensuite)

Schéma 8 : Les effets de la musique sur les capacités cognitives

Effet net du traitement

Effet des facteurs de confusion

— Groupe traitement

— Groupe témoin

Schéma 9 : Effet net et facteurs de confusion d'une expérimentation

Source : Schéma adapté de Cucherat et al. (2004) Lecture critique et interprétation des résultats des essais cliniques pour la pratique médicale.

La nature du traitement expérimental que va recevoir le groupe témoin découle en grande partie de la question posée. Si l'on cherche à estimer l'efficacité d'un traitement, le groupe témoin ne doit recevoir aucun traitement. Par contre, si la question est de savoir si le traitement étudié est plus efficace que les pratiques usuelles déjà utilisées, le groupe contrôle doit recevoir le traitement standard et ne rien modifier de ces pratiques habituelles. Dans le cas où l'on cherche à mesure les effets d'une pratique musicale à l'école sur les capacités cognitives des enfants, deux cas de figures peuvent se présenter en fonction de la question de recherche. Si l'on cherche à mesurer le gain de cette pratique par rapport à la pratique habituelle, alors les élèves du groupe témoin ne changent rien à leur pratique habituelle de musique à l'école. Par contre, si l'on cherche à savoir dans l'absolu si cette pratique a un impact sur les capacités cognitives, alors les élèves du groupe témoin ne doivent absolument pas pratiquer de musique à l'école.

Le biais de suivi survient lorsque les deux groupes ne sont pas suivis de la même manière. Ainsi, la comparabilité initiale des groupes n'est plus, une différence peut se créer en dehors de tout traitement, et il sera alors impossible de différencier les effets du traitement du biais de suivi. Pour éviter ce biais, il est essentiel de suivre un protocole strict et de contrôler au maximum l'environnement des deux groupes pour qu'ils soient similaires. Un autre biais qui peut se présenter est celui lié à l'évaluation. Il apparaît lorsque la mesure du comportement à l'étude n'est pas réalisée de manière identique dans les deux groupes. Pour l'éviter, il faut tout d'abord avoir recours à des pré et post-tests identiques pour tous les sujets de l'expérimentation, quel que soit le groupe. Il est ensuite important que l'évaluation soit réalisée en aveugle, c'est à dire par une personne qui ignore si la personne testée fait partie du groupe expérimental ou du groupe témoin.

Les biais liés à l'échantillonnage :

Différentes situations liées à l'échantillonnage sont susceptibles de biaiser les résultats de l'expérimentation, principalement en supprimant la comparabilité des deux groupes.

Un premier biais que l'on rencontre fréquemment dans les études expérimentales est le biais de sélection. Il est lié aux procédures de recrutement des individus et survient lorsque les caractéristiques des sujets des deux groupes ne sont pas comparables. L'effet du traitement expérimental se déduit des différences existantes entre les groupes (témoin / expérimental) et les périodes d'évaluation (pré / post test). Pour être en mesure de déterminer cet effet, il est primordial que les deux groupes soient le plus comparable possible avant la mise en place du traitement expérimental. Dans le cas contraire, il faudra tenir compte de cette différence initiale pour déterminer les effets nets de l'expérimentation, puisque les différences initiales au pré-test vont se répercuter sur les résultats au post-test. Il convient alors au chercheur de déterminer ce qui a trait aux différences initiales et ce qui peut être imputé au traitement. La randomisation a pour effet d'écarter ce biais de sélection. Une fois effectuée, il convient aux chercheurs de vérifier la probabilité qu'a un individu d'être affecté dans le groupe expérimental en fonction de plusieurs de ces caractéristiques. Cependant, il est courant que même à la suite d'une randomisation, les comportements initiaux des sujets des deux groupes

ne soient pas similaires. Dans ce cas, il y a un risque persistant de biais de sélection qui peut potentiellement faire croire à un effet du traitement expérimental où il n'y en a pas ou, inversement, amoindrir un effet réel. Dans le cas où il existe une différence de comportements avant la mise en oeuvre de l'expérimentation, des analyses de types économétriques peuvent permettre de déterminer avec précision les effets nets d'un traitement.

Un second biais lié à l'échantillonnage et nommé le biais d'attribution survient lorsque des sujets randomisés dans l'un ou l'autre groupe sont abusivement écartés de l'analyse. Sauf exception, tous les individus ayant été tirés au sort pour faire partie du groupe expérimental doivent être intégrés à l'expérimentation, puis testés. Il faut minimiser le nombre de données manquantes qui peut avoir pour effet de déséquilibrer la répartition des individus entre les groupes.

2.1.3. La question de l'éthique dans les recherches expérimentales en psychologie

S'il ne fait aucun doute que les expérimentations contrôlées et randomisées sont à même de garantir un certain degré de fiabilité méthodologique, il reste néanmoins nécessaire de s'interroger sur les questions éthiques qu'elles soulèvent. En effet, le fait de séparer les sujets dans deux groupes distincts, un groupe test et un groupe contrôle, se traduit de fait par une rupture du concept d'égalité. Certes, cette situation peut se justifier par le caractère temporaire de l'expérience, par son intérêt pour la recherche, mais elle reste contraire au principe d'égalité de traitement des individus. De plus, l'expérience contrôlée implique de priver une partie de l'échantillon, les sujets du groupe témoin, d'une ressource potentiellement positive pour elle. Généralement, l'objectif des expérimentations n'est pas de tester les effets d'une privation sur un comportement, mais bien l'impact d'un surcroît de pratique par rapport au droit usuel. Les sujets du groupe test ont alors accès à un supplément de ressources dont on cherche à évaluer l'efficacité. Dans ce cas, l'affectation aléatoire des individus dans chacun des deux groupes est considérée comme un moyen plus équitable et transparent qu'une affectation arbitraire

La recherche en psychologie est éthiquement régie par trois textes de références qui sont complémentaires : la loi Huriet-Sérusclat⁹, le code de déontologie du psychologue et le code Caverni.

Datant du 20 décembre 1988, la loi Huriet-Sérusclat a été ensuite modifiée à de nombreuses reprises. Elle vise originellement à garantir la protection des personnes se prêtant à des recherches biomédicales. C'est n'est que suite à la loi du 25 juillet 1994¹⁰ que les recherches en psychologie sont incluses dans la réglementation relative à la protection des personnes qui se prêtent à des recherches biomédicales. Dès lors, les principes éthiques qui régissent cette loi s'imposent à la recherche en psychologie avec pour principale conséquence que ces recherches doivent être encadrées ou co-encadrées par un médecin. Ce n'est que dix ans plus tard, par la loi du 9 août 2004¹¹, que les psychologues sont habilités à diriger des recherches de manière exclusive, c'est-à-dire sans la tutelle d'un médecin, à condition que ces recherches ne compromettent pas la santé physique ou psychique des sujets. Cependant, il est important de noter qu'il ne s'agit que d'une dérogation, visée comme telle par la loi de la protection des personnes qui se prêtent à des recherches biomédicales, et que le principe légal qui prévaut dans le code de la santé publique reste la direction ou codirection des recherches en psychologie par un médecin, dès lors que des personnes se prêtent à ces recherches. C'est pour cette raison, ainsi que par la lourdeur les procédures (soumission des protocoles de recherche à l'examen d'un comité d'éthique, règle du consentement éclairé...), que cette loi n'est pas appliquée par les chercheurs en psychologie et ne constitue pas la référence pour cette profession. Cette inadaptation de la pratique face à la loi, a poussé l'Association des Enseignants de Psychologie des Universités (AEPU), l'Association Nationale des Organisation de Psychologues (ANOP) et la Société Française de Psychologie (SFP) à élaborer un code de conduite dès 1996.

⁹ Loi n°88-1138, disponible à l'adresse suivante : http://www.legifrance.gouv fr/

¹⁰ J.O. n° 171 du 26 juillet 1994. Loi n° 94-630 du 25 juillet 1994 modifiant le livre II bis du code de la santé publique relatif à la protection des personnes qui se prêtent à des recherches biomédicales ¹¹ J.O. n° 185 du 11 août 2004. Loi n° 2004-806 du 9 août 2004 relative à la politique de santé publique

Ce code¹² définit le titre de psychologue, ses droits et ses devoirs ainsi que ses conditions de travail. Dans l'article 9 du second chapitre, le code précise que : « Avant toute intervention, le psychologue s'assure du consentement de ceux qui le consultent ou participent à une évaluation, une recherche ou une expertise. Il les informe des modalités, des objectifs et des limites de son intervention. » (p.5). Cependant, à l'exclusion de cet article, il n'est pas fait d'autre mention de l'éthique dans le milieu de la recherche. Ce code de déontologie présente en fait les règles professionnelles des psychologues plus que celles du chercheur ou de l'enseignant. Ce code n'est pas plus adapté que le précédent aux questions de l'éthique dans le domaine de la recherche en psychologie.

La proposition de Code de conduite des chercheurs dans les sciences du comportement humain (Carveni, 1998) fait figure de référence, chaque laboratoire de psychologie adoptant ensuite une version plus ou moins modifiée mais fondamentalement similaire¹³. Nous n'entrerons pas dans les détails de ce code qui sera présenté en annexe, mais nous allons tout de même en exposer les points les plus essentiels : définition du statut de chercheur en sciences du comportement, responsabilités et devoirs du chercheur.

Seuls sont autorisés à conduire des recherches en sciences du comportement des personnes regroupant ces trois critères : qui soient compétentes, titulaires d'un diplôme légal et reconnu habilitant à effectuer des recherches, qui exercent dans un organisme ou une institution de recherche et qui soient insérées dans la communauté scientifique. Les personnes en formation (les doctorants, les post-doctorants...) sont autorisés à faire des recherches, à condition qu'elles soient placées sous la direction d'un chercheur. Ce dernier doit assurer l'entière responsabilité et la maîtrise éthique ainsi que scientifique de ses recherches, et si besoin recueillir l'approbation de ses pairs avant la mise en place d'une expérimentation.

Le chercheur a aussi des devoirs envers les personnes qui se prêtent à la recherche. Le premier d'entre eux est leur respect et leur protection. Il doit aussi solliciter leur consentement

Le code de déontologie des psychologues est disponible sur le site de la SFP : www.sfpsy.org/
 Pour exemple, le laboratoire URECA de Lille 3 a adopté un Code d'éthique concernant la recherche en psychologie, et disponible ici :

http://ureca.recherche.univ-lille3 fr/uploads/File/comite ethique/CodeEthique URECA.pdf

libre et éclairé préalablement à la recherche en les informant de tous les aspects susceptibles de modifier leur engagement, ainsi que les objectifs et les procédures de la recherche. Le consentement éclairé est une notion centrale dans les recherches en psychologie. Pour des raisons méthodologiques, certaines recherches expérimentales impliquent une divulgation de l'information limitée quant aux attentes ou aux procédures de l'expérience. Dans les cas où, pour des questions de validité scientifique, les sujets d'une expérimentation ne peuvent pas être entièrement informés des objectifs avant la mise en place de l'expérience, le chercheur devra néanmoins informer le sujet au terme de sa participation. Une telle pratique est en contradiction avec la nature fondamentale du consentement éclairé, c'est pourquoi les dérogations à cette règle sont encadrées par le code de conduite du chercheur en sciences du comportement. Ainsi, l'inexactitude ou le manque d'information préalable doit toujours être justifiée scientifiquement. De plus, le code précise, et il s'agit d'un point important, que cela ne doit « jamais porter sur des aspects pouvant influencer l'acceptation de participer (risques physiques, inconfort, émotions déplaisantes,...) » (p. 3). Au terme de la recherche, le chercheur doit alors fournir obligatoirement la totalité des informations relatives aux objectifs de l'expérience, en sachant que même alors les sujets peuvent décider de se retirer de la recherche en exigeant que les données récoltées ne soient pas utilisées, lui soient remises ou bien détruites, et cela sans justifications. De même, l'information préalable ne peut être succincte que si la recherche porte sur des sujets volontaires et sains. Dans le cas spécifique où la recherche étudie les comportements d'enfants, le chercheur doit recueillir une autorisation auprès des parents ou des tuteurs. Il est aussi spécifié que dans le cas de collecte de données non identifiables et en milieu naturel (c'est-à-dire hors laboratoire), le chercheur peut se dispenser de l'obtention du consentement des personnes.

La protection de l'intégrité physique des participants aux expérimentations est garantie par les textes de lois, de même que leurs droits moraux (par la liberté de choix et le consentement éclairé). Cependant, il n'est fait mention nulle part, à notre connaissance, du respect de leur intégrité psychique. Un risque non négligeable d'affecter l'équilibre psychique des sujets des recherches existe dès lors qu'il y a exposition à un traitement ou un stimulus négatif. Ces conditions expérimentales peuvent être maîtrisées par des adultes sains, mais qu'en est-il des personnes vulnérables ? C'est pour répondre à ces questions restées sans réponse que le comité d'éthique du CNRS, COMETS, a rédigé en 2007 un rapport sur

l'éthique dans les recherches en sciences du comportement (COMETS, 2007) et en 2010 un avis sur l'éthique de la recherche dans l'expérimentation sociale (COMETS, 2010). Il propose, entre autres, d'incorporer le concept d'intégrité psychique dans les codes d'éthique du chercheur en psychologie afin de mieux protéger les droits des individus se prêtant aux expérimentations. De plus, il recommande que les chercheurs et les doctorants soient sensibilisés plus fortement aux questions d'éthique, notamment par le biais d'une formation spécifique.

2.2. Impact de l'enseignement musical sur les capacités cognitives et scolaires

Ce détour méthodologique nécessaire nous a permis de définir ce qu'était une expérimentation et ce qui permettait d'assurer sa qualité. Nous revenons désormais à notre objet d'étude, la musique et son effet sur les capacités cognitives et les performances scolaires. Plusieurs expérimentations ont été menées afin de tester l'impact de la musique sur différents facteurs cognitifs. En raison de son originalité et de l'influence qu'il a eu tant dans et en dehors du monde scientifique, nous présenterons d'abord le travail précurseur de Rauscher et al. (1993). Nous verrons ensuite les principaux résultats des études évaluant l'impact de la musique sur les capacités cognitives. C'est ultimement pour son impact sur les performances scolaires que l'intervention musicale est étudiée ici. Nous exposerons donc les travaux relatifs à cette thématique. Nous conclurons cette section en questionnant la durabilité des effets de la musique.

2.2.1. La première étude et ses conséquences : l'effet Mozart

Le terme d' « effet Mozart » se réfère aux résultats d'une étude menée par Frances Rauscher, Gordon Shaw et Katherine Ky (1993) et montrant que les étudiants qui ont écouté la sonate de Mozart (*music group*) ont obtenu des scores significativement plus élevés lors des tâches spatio-temporelles (ST) que ceux ayant écouté de la musique de relaxation ou le silence. Afin de mesurer l'ampleur de cette différence, les auteurs ont transformé les scores ST en scores de QI spatial ; les élèves ont alors obtenu respectivement, en moyenne et selon les groupes, des scores de 119, 111 et 110, soit une augmentation de QI de 8 à 9 points pour les étudiants du « music group » par rapport aux autres. Cet effet est de plus significatif, la condition « music group » diffère significativement des deux autres (t = 3,36; P = 0,0008), tandis que rester en silence ou écouter de la musique relaxante ne diffèrent pas (t = 0.795; P =0,432). Néanmoins, l'effet est transitoire, puisqu'il ne persiste qu'une dizaine de minutes. Ainsi, Rauscher et ses collègues en ont déduit qu'il existait une corrélation entre la musique et les capacités de raisonnement spatial, sans pour autant pouvoir déterminer la nature de ce lien, ni même sa non persistance.

Le rapport de recherche qui découle de cette étude, publié le 14 octobre 1993 dans la prestigieuse revue Nature (Vol. 365), a reçu un accueil disproportionné par la presse populaire. Le jour même, un article de Robert Lee Hotz, du Los Angeles Times, titrait : « Study finds that Mozart music makes you smarter » 14. L'effet Mozart est alors devenu une industrie qui se commercialise sous forme de CD, de revues et de livres. Don Campbell en a fait un commerce lucratif, vendant des produits de la marque déposé « The Mozart Effect® » sur le net¹⁵. Il nous invite à « découvrir les pouvoirs de transformation de la musique pour la santé, l'éducation et le bien-être » 16 à travers ses compilations de CD pour nourrissons, enfants, adolescents ou adultes destinées à ouvrir l'esprit, développer la créativité et l'imagination, stimuler l'intelligence verbale et spatiale. Des articles titrant « Mozart vous rend intelligent » ou « augmenter l'intelligence de votre enfant via Mozart » ont conduit les lecteurs à croire que la musique classique en général, et celle de Mozart en particulier, pouvait accroître l'intelligence de leurs enfants, et les transformer en génie. En 1999, le tapage

 $^{^{14}}$ Article consultable sur internet à l'adresse suivante : http://articles.latimes.com/1993/oct/14 15 www.mozarteffect.com

¹⁶ Notre traduction de: « Discover the transformation powers of music for health, education and well-being »

médiatique autour de cet « effet Mozart » fut tel que les gouverneurs de Georgie et du Tennessee, qui se sont basés sur une mécompréhension des résultats de l'étude, ont demandé aux législateurs de passer de la musique classique pour tous les nouveaux nés des deux états, et de remettre aux familles des CD de Mozart.

Bien qu'initialement le terme d'« effet Mozart » se réfère à l'augmentation de score dans certaines tâches visuo-spatiales après écoute d'une sonate particulière du compositeur, il a été généralisé pour y inclure les bénéfices de scores sur les tâches spatio-temporelles, en mathématiques et en lecture, suite à la pratique ou à l'écoute de musique classique. Cependant, certaines études ont cherché à reproduire l'expérimentation de Rauscher et al. (1993) et ont été incapables de confirmer l'existence d'un tel effet, comme l'étude menée par Steele et al. (1999).

Steele et ses collaborateurs ont cherché à reproduire cet « effet Mozart » en utilisant les mêmes procédures que l'expérimentation de Rauscher. Ils relèvent alors que l'écoute de Mozart ne produit pas d'augmentation de scores aux tâches de capacités spatio-temporelles, contrairement à ce qui avait été montré auparavant. Lorsque ces scores sont retranscrits en QI, le gain est minime, de 3 points, soit trois fois moins de gain que dans l'étude de Rauscher. Selon les auteurs (Steele et al. 1999), cette différence de résultats peut s'expliquer en partie par une procédure expérimentale dissemblable, et surtout par l'utilisation de tests cognitifs différents. En effet, Rauscher et al. (1993) ont spécifié que les effets de l'expérimentation sont présents uniquement sur des tâches de raisonnement spatio-temporel (test de Standfort-Binet), tandis que Steele et al. (1999) ont expérimenté l'effet Mozart *via* des tâches de reconnaissance spatiale (test de Raven). Ce résultat montre à quel point les instruments utilisés dans la mesure des capacités cognitives sont importants, puisqu'il peut y avoir des différences significatives de résultats dans un domaine identique (capacités spatio-temporelles).

En examinant la littérature scientifique, nous tenterons d'éclaircir plusieurs points : à l'aune des recherches sur l'enseignement musical, quelles sont les relations entre la musique et les capacités cognitives telles qu'appréhendées par la mesure du raisonnement spatiotemporel, de l'acquisition des capacités verbales et de la mesure du QI ? Quel est l'effet de la

musique sur les notes scolaires ? Quel est le meilleur âge pour commencer cet enseignement musical afin d'augmenter le raisonnement spatio-temporel et le développement des capacités cognitives en général ? Combien de temps cet effet persiste-t-il ? Et enfin, quelles sont les implications des ces recherches pour l'enseignement de la musique en classe ?

2.2.2. La musique et le développement des capacités cognitives

Depuis les travaux de Rauscher et de ses collaborateurs sur l'« effet Mozart », les recherches en neuropsychologie et psychologie cognitive cherchant à établir la nature des liens entre apprentissage de la musique et développement du cerveau se sont multipliées. Ainsi, nous nous focaliserons successivement sur les relations existantes entre la musique et le QI, entre la musique, la mémoire de travail et l'attention, et, enfin, entre la musique et les capacités spatio-temporelles.

2.2.2.1. La pratique de la musique accroît-elle les capacités cognitives ?

L'article du Los Angeles Times d'octobre 1993 a titré de façon fracassante « *Study finds that Mozart music makes you smarter* » après avoir mal interprété les résultats de Rauscher et al (1993). Il aura fallu attendre plus de 10 ans, avec Schellenberg (2004) pour voir cette affirmation testée réellement. Plus précisément, Schellenberg (2004) teste directement l'hypothèse selon laquelle l'enseignement musical accroît le QI auprès de 144 enfants âgés de 6 ans. Les enfants sont répartis en quatre groupes : deux groupes de musique (voix et piano), un groupe de théâtre et un dernier groupe contrôle sans activité supplémentaire. Après 36 semaines de leçons, tous les enfants (les 4 groupes) ont accru leur score au test de QI de manière très significative. Cette augmentation du score au test de QI est un effet connu : en 36 semaines, tous les enfants ont bénéficié des enseignements reçus en classe. Cependant, cet accroissement n'est pas similaire pour tous : les élèves des deux groupes de musique ont acquis un bénéfice quasi similaire, statistiquement plus élevé que les élèves des deux groupes sans activité musicale (théâtre et pas de leçon). Ainsi, les résultats

indiquent que l'enseignement musical, qu'il s'agisse d'une pratique instrumentale ou vocale, accroît les scores aux tests de QI¹⁷. Si le gain est minime (8 points pour les groupes musicaux contre 4,3 pour les groupes contrôles), il n'en demeure pas moins significatif. Une étude plus récente du même auteur vient renfoncer ces résultats et conclut à une association positive entre l'entraînement musical et un score supérieur aux tests de QI, comparativement aux non musiciens (Schellenberg, 2006).

Une étude plus récente (Gur, 2009) menée en Turquie sur 84 enfants d'une école maternelle privée, indique que l'écoute de la musique classique comme fond sonore a un impact positif sur les capacités cognitives des jeunes enfants mesurées à travers le Silver Drawing Test (test qui se base sur des dessins pour évaluer l'imagination et les capacités d'adaptation aux demandes extérieures).

Si l'écoute et la pratique de la musique influencent de manière globale « l'intelligence », telle que mesurée à travers des tests de QI, nous pouvons nous interroger sur les fonctions cognitives que la musique affecte davantage.

2.2.2.2. La mémoire et l'attention

La mémoire de travail fait référence à une structure mentale permettant d'effectuer simultanément le maintien temporaire et la manipulation d'informations pendant la réalisation de tâches cognitives complexes telles que la compréhension ou l'apprentissage (Baddeley et Hitch, 2001). De nombreuses études en psychologie ont cherché à mettre à jour le rôle de la mémoire de travail sur les performances cognitives (Gathercole, 2001). Il apparaît que les capacités en mémoire de travail sont corrélées avec l'apprentissage du langage (Garthercole et Baddeley, 1993) et celui des mathématiques (Adams et Hitch, 1997). De nombreux chercheurs s'interrogent plus spécifiquement sur les effets de la musique sur les performances en mémoire de travail.

- 194 -

¹⁷ Les tests de QI utilisés sont les WISC-III (Wechsler Intelligence Scale for Children- Third Edition, Wechsler, 1991).

Lee, Lu et Ko (2007), ont cherché à déterminer quels pouvaient être les effets d'un entraînement musical prolongé sur la mémoire de travail de 40 enfants (âgés en moyenne de 12 ans) et de 40 jeunes adultes (22 ans). Parmi les participants, la moitié des enfants pratiquent un instrument de musique depuis 6 ans en moyenne, et la moitié des adultes ont une durée moyenne de pratique de 14 ans. Les résultats montrent que les enfants musiciens présentent des empans de mémoire de travail (spatiale, opératoire, non verbale, phonologique, visuelle...) plus élevés que les enfants non musiciens, et que cette différence est significative. Cette différence entre musiciens et non musiciens est moins flagrante chez les adultes, puisque les différences ne sont significatives que dans deux tests sur sept. D'autres études ont mis en évidence cette même relation positive entre musique et mémoire de travail : les jeunes adultes musiciens affichent de meilleures performances en mémoire auditive, mais non en mémoire visuelle (Tierney et al., 2008), et il apparaît même qu'une mélodie est un moyen mnémotechnique efficace pour retenir en mémoire à long terme une suite de mots (Rainey et Larsen, 2002). Mais, si les liens entre musique et mémoire de travail sont établis chez les enfants ou les jeunes adultes musiciens, est-il possible pour autant d'accroître les capacités de la mémoire de travail via la musique ? L'expérimentation que nous mènerons nous permettra de répondre à cette question.

Intéressons-nous maintenant aux effets de la musique sur les capacités attentionnelles. Un chercheur australien, DeVries (2004), a récemment examiné ces effets dans le cadre d'un programme d'éducation musicale chez des enfants de maternelle. Au terme de six semaines, comprenant chacune 30 minutes de leçons par jour, l'analyse, se portant principalement sur six axes (attention des élèves, habilités motrices, socialisation, expression, théâtre), révèle que les activités musicales permettent aux enfants de devenir plus attentifs en classe. Cependant, cette expérimentation n'a été effectuée que sur une seule classe et sur une assez courte période. Il n'est donc pas possible de comparer ces effets à ceux d'une classe témoin, ni sur un plus grand échantillon. De plus, les données collectées résident en des observations des élèves et en des entretiens avec le professeur. Il n'y a donc pas de mesure objective des progrès éventuels des élèves.

D'autres études ont utilisé la musique classique comme facteur de relaxation pour réduire le stress et en retour accroître les capacités attentionnelles (Hanser, 1985). Plus récemment, Scheufele (1999) a soumis 67 hommes à des situations stressantes en laboratoire. Puis, il a fait écouter une sonate de Mozart à un quart d'entre eux, alors qu'un autre quart utilisait des méthodes de relaxation, avant de mesurer leur attention. Bien que le groupe d'hommes soumis à la musique soit plus détendu (la détente est mesurée par la diminution des battements du cœur), il n'y a pas de différence dans le niveau d'attention avec le groupe relaxation. L'exposition à la musique classique peut donc amener des changements d'ordre physiologique, comme une baisse de la tension artérielle (Allen et Blaskovich, 1994) ou de la fatigue (McCraty et al, 1998). Ces modifications peuvent provenir de son impact sur les émotions.

Jäncke (2008) passe au crible les recherches germanophones portant sur les relations entre musique, mémoire et émotions et cite une étude de Eschrich et al (2008) démontrant l'association entre la musique et la mémoire autobiographique. Certaines musiques nous touchent plus que d'autres et nous rappellent avec nostalgie certains moments passés. Elles peuvent impliquer de fait des émotions fortes. Outre cette association de certaines œuvres musicales à des faits autobiographiques, Bigand (2008) bouscule les idées reçues et affirme que les réponses émotionnelles à la musique ne sont pas subjectives et ne dépendent pas des contextes d'écoute : les œuvres musicales sont en mesure de nous imposer des états émotionnels forts et ce de manière universelle. Elles peuvent évoquer de la colère, de la gaieté ou du désespoir. Plus directement en lien avec ce qui nous intéresse ici, les capacités attentionnelles, la musique peut amener de la sérénité et réduire l'état anxieux.

Ainsi, l'écoute musicale permettrait-elle d'accroître l'attention, sans pour autant que ce soit de façon plus efficace qu'un autre moyen de relaxation. Par contre, la pratique musicale chez les enfants augmente significativement les capacités de la mémoire de travail.

2.2.2.3. Les relations entre la musique et les capacités spatio-temporelles

Depuis l'étude de Rauscher, Shaw et Ky en 1993, de nombreuses études ont cherché à mettre en évidence l'effet positif de la musique sur les performances en raisonnement spatial

et temporel. Leng et Shaw (1991) apportent un cadre théorique, d'ordre neurobiologique, expliquant cette relation entre la musique et le raisonnement spatio-temporel (ST). Selon les auteurs, le raisonnement ST partage avec le raisonnement musical les mêmes structures neuronales et requiert des schémas cognitifs similaires : maintien et transformation d'images mentales dans l'espace et le temps, reconnaissance des différences ou similarités physiques ou spatiales, classification... C'est ainsi qu'est née l'hypothèse suivante : exposer les enfants à une activité musicale accroît les structures neuronales utilisées aussi bien lors des traitements cognitifs musicaux que spatio-temporels, ce qui affecte en conséquence les habilités cognitives telles que mesurées par les habilités spatio-temporelles. Rauscher et al. (1997) ont démontré l'existence d'un tel lien puisque les enfants ayant suivi un enseignement musical obtiennent de meilleurs scores aux tâches ST que les enfants d'un groupe de contrôle. Les résultats de l'étude de Rauscher et Zupan (2000), viennent conforter cette hypothèse. En effet, ils mettent en évidence que les enfants de maternelle ayant bénéficié de leçons de musique augmentent leurs scores aux tâches ST.

L'objectif de cette étude, menée sur un échantillon de 62 enfants (36 garçons, 26 filles), est de déterminer les effets d'un enseignement musical sur le raisonnement ST chez les élèves de maternelle (âge moyen = 5 ans). Les enfants sont répartis en deux groupes : « keyboard » (n = 34), c'est-à-dire le groupe qui bénéficie de l'expérimentation (2 x 20 minutes hebdomadaire) ou «no music», le groupe témoin (n = 28). Afin de déterminer l'ampleur de l'enseignement musical sur les habilités ST, les élèves sont testés à trois reprises : un pré-test au début de l'expérimentation, un test après 4 mois d'expérience, et un dernier test au terme de l'expérimentation, après 8 mois. Les tests sont composés de trois catégories de tâches : résolution de puzzle, mémoire picturale (échelle des capacités des enfants de McCarthy (1972)), et une tâche de construction de blocs (tiré du test standardisé Learning Accomplishment Profile Standardized Assessment test (LAP-D)). La tâche de résolution de puzzle se compose de 4 items de difficulté croissante. Pour réussir complètement chaque item, les enfants doivent arranger des cartes d'un puzzle représentant un objet familier. La tâche de construction de bloc contient 2 items. Les enfants doivent reproduire de mémoire une structure assez simple de 10 blocs. Enfin, la tâche de mémoire temporelle (6 items) demande aux enfants de citer et identifier des images vues précédemment.

Au terme de l'expérimentation, les principaux résultats de l'étude de Rauscher et Zupan (2000) sont les suivants. Les enfants ayant bénéficié de leçons de musique ont augmenté significativement leurs scores aux tâches ST : après huit mois, les élèves du groupe *Keyboard* ont gagné 7,43 points en résolution de puzzle et 49,97 points en construction de bloc, contre seulement 2,94 et 18,95 pour les élèves du groupe contrôle. Il n'y a cependant pas de différence notable de score pour la tâche de mémoire picturale. Contrairement à d'autres études, les enfants de cette expérimentation ont eu des cours de musique par groupe de 10, et non pas de manière individuelle. Il semble alors que des leçons individuelles ne soient pas nécessaires pour accroître les scores, ce qui est une considération économique importante pour les futures recherches et leurs applications pédagogiques.

Si l'on peut mesurer les progressions cognitives des élèves suite à un entraînement musical, psychologues et chercheurs en sciences de l'éducation s'intéressent également aux gains que la musique peut produire directement sur les performances de type scolaire.

2.2.3. Musique et performances scolaires

Les liens entre la pratique musicale et l'acquisition des langues ont fait l'objet de nombreuses recherches. Nous les présenterons dans un premier temps. Nous verrons ensuite l'influence de la pratique musicale sur les performances scolaires dans plusieurs disciplines.

2.2.3.1. La musique et le développement de la conscience phonologique et de la reconnaissance des mots

L'apprentissage de la musique développe les composantes bénéfiques à la conscience phonologique et à la reconnaissance des mots, c'est pourquoi les relations entre la musique et la langue sont beaucoup étudiées. Trois composantes sont particulièrement stimulées par la musique, à savoir la perception auditive, la mémoire phonologique (dite aussi mémoire auditive), et les capacités d'écoute. La pratique d'activités musicales structurées permettrait à l'élève de développer les éléments indispensables à l'émergence des capacités métalinguistiques (Bolduc, 2006). La recension de cinq études quasi-expérimentales effectuée par le même auteur (Bolduc et al., 2009) révèle que l'entrainement musical permet de développer les capacités de lecture et d'écriture chez les jeunes enfants. Plusieurs pistes, que nous allons exposer tout à tout, peuvent expliquer ces résultats. L'apprentissage de la musique semble agir comme un catalyseur, développant des habilités transversales et transférables, permettant d'accroitre les capacités de la mémoire verbale et la conscience phonologique par exemple.

Ho, Cheung et Chan (2003) ont comparé les mémoires visuelles et verbales de 90 garçons âgés de 6 à 15 ans ayant suivi des cours de musique avec celles de garçons n'en ayant pas eu. Scolarisés dans une école de Hong Kong (Raimondi College), 45 d'entre eux sont membres de l'orchestre, et suivent alors au moins 1h de cours de musique par semaine assuré par un professionnel, et ce depuis 1 à 5 ans (moyenne = 2,6 années; écart-type = 1,48 années). Au terme de leur étude, les auteurs montrent que les 45 garçons du groupe musique ont une meilleure mémoire verbale que les garçons du groupe n'en pratiquant pas. Une analyse statistique conduit les auteurs à affirmer que les garçons du groupe musique (MT pour Music Training) se rappellent de plus de mots que ceux du groupe sans musique (NMT pour No Music Training), et ce de manière très significative (F(1,88) = 25,93; p < 0,001). Les scores des trois sessions de tests mettent en évidence que les garçons du groupe MT se rappellent en moyenne de 20% de mots supplémentaires que ceux du groupe NMT. Afin d'analyser l'effet de l'enseignement musical sur les capacités de rétention verbale (capacité à stocker une information verbale en mémoire pour la restituer), les auteurs examinent le pourcentage de mots retenus 10 minutes et 30 minutes après les tests, en fonction du groupe d'appartenance (NMT versus MT). L'effet du groupe d'appartenance sur le pourcentage de mots retenus est significatif (F(1,88) = 10,69; p<0,01), ce qui indique que les garçons de l'orchestre ont une meilleure rétention verbale. Cependant, au regard des analyses statistiques (ANOVA), il apparaît que les scores en mémoire visuelle, tels qu'appréhendés par le rappel de figures, ne diffèrent pas significativement selon les groupes. Ainsi, les auteurs concluentils que: « In general, the results were consistent with our previous study (Chan et al., 1998) and supported our hypothesis that music training selectively affected verbal but not visual memory." (Ho, Cheung et Chan, 2003, p 443). Cette étude portant uniquement sur des sujets chinois (langue tonale), elle ne permet pas de généraliser ces résultats.

Cependant, une étude plus récente et réalisée aux Etats-Unis vient conforter ces résultats. Forgeard et al (2008b) montrent que les enfants jouant d'un instrument de musique (n = 41) obtiennent de meilleurs résultats au test de vocabulaire que les enfants d'un groupe de contrôle (n = 18), avec une différence significative de 2,03 points. Ainsi, l'apprentissage de la musique favorise chez l'enfant le développement des capacités de mémoire verbale, ainsi que l'acquisition du vocabulaire. Nous pouvons légitimement nous questionner sur les liens unissant la musique et la lecture et l'écriture.

Cette question a été examinée à plusieurs reprises au cours de cette dernière décennie. Anvari et al. (2002), ont cherché à déterminer cette relation auprès d'une centaine d'enfants de 4 et 5 ans. Au terme de leur étude, il apparaît que les habilités en musique sont corrélées avec la conscience phonologique et le développement de la lecture. Une étude similaire (Elkoshi, 2009) a évalué le développement précoce de la littératie de jeunes enfants (3 à 5 ans) à travers un programme spécifique de musique. Après une année scolaire (50 minutes par semaine), les enfants du groupe expérimental présentent de meilleurs résultats aux tests de phonologie et de segmentations syllabiques. Bien entendu, ces relations entre musique et littératie précoce peuvent être discutées puisque les expérimentations ont été menées chez de jeunes enfants, qui commencent tout juste à identifier les lettres ou de mots simples. Forgeard et al. (2008a), ont cherché à démontrer les relations existantes entre la musique et les capacités phonologiques d'enfants dyslexiques et d'enfants sans difficulté d'apprentissage. Une série de régressions multiples montrent que, sous contrôle de l'âge, de l'origine sociale et du QI verbal, les capacités phonologiques sont corrélées avec les capacités musicales

De nombreux chercheurs se sont intéressés aux relations entre la pratique d'activités musicales et le développement de la littératie chez les jeunes enfants. Ces études indiquent que la pratique musicale accroît les capacités nécessaires à la lecture : conscience phonologique, reconnaissance et déchiffrage des mots, mise en place de stratégie d'écriture

(Bolduc et Fleuret, 2009). Deux recherches corrélatives (Bolduc et Montésinos-Gelet, 2005; Lamb et Gregory, 1993) menées respectivement sur 13 et 18 enfants de 4 à 6 ans mettent en lumière le lien entre la discrimination de la hauteur des sons et la conscience phonologique. Les élèves qui obtiennent de bons scores aux tâches sur la hauteur du son, peuvent identifier les rimes, les syllabes et les phonèmes, que ces élèves soient francophones ou anglophones. Une troisième étude (Anvari et al., 2002), plus vaste cette fois (réalisée sur une centaine d'élèves) conclut de manière similaire. Qui plus est, ces derniers chercheurs ont repéré une liaison entre la capacité à distinguer la durée musicale et la catégorisation des phonèmes.

En parallèle à ces études menées en laboratoire, les recherches expérimentales sur le terrain se sont multipliées. Toutes ont pour objet l'analyse des effets d'un programme musical sur le développement des capacités en lecture et en écriture. En comparant les résultats d'élèves soumis à ce type de pratiques musicales aux performances d'élèves des groupes témoin, ces études révèlent les retombées positives de tels programmes sur le développement des capacités de lecture et d'écriture chez de jeunes élèves anglophones (Standley et Hughes, 1997; Register, 2001). Une étude comparable (Bolduc, 2006), qui teste ces mêmes effets chez des élèves francophones de maternelle (n= 157), aboutit aux mêmes conclusions.

La musique, et plus particulièrement les chansons, peuvent ainsi contribuer à l'acquisition du langage chez les jeunes enfants, et d'une nouvelle langue chez les adultes. Une expérimentation de Schön et al (2008), menée sur 26 participants âgés en moyenne de 23 ans, montre l'effet facilitateur de la chanson dans l'apprentissage, la mémorisation et la restitution de non-mots. Les auteurs avancent notamment une hypothèse justifiant leur résultat : l'aspect émotionnel d'une chanson accroît les capacités d'attention, ce qui permet une meilleure mémorisation. Marques et al (2007) avaient déjà conclu à des résultats similaires : les musiciens détectent plus fréquemment et plus rapidement les erreurs d'intonation dans une langue étrangère que les non-musiciens, et ce, même dans une langue qu'ils ne parlent pas. Les programmes musicaux exerçant les élèves à manipuler les syllabes, les phonèmes et le rythme des mots contribuent à développer leur conscience phonologique.

2.2.3.2. Musique et autres performances de type scolaires

Les recherches présentées précédemment ont démontré qu'un enseignement musical pouvait avoir des effets bénéfiques sur la phonologie et la littératie. On peut alors se demander quels sont ses effets sur les apprentissages des enfants en dehors, bien entendu, des acquis dans le domaine musical. Contrairement aux nombreuses recherches sur les thèmes liés au langage, les autres domaines scolaires ont fait l'objet de peu de travaux. Nous les présenterons dans cette section.

Quelques études ont mis en lumière l'impact positif de l'apprentissage de la musique sur l'acquisition de notions mathématiques. En s'appuyant sur un programme musical se focalisant sur les concepts partagés en musique et mathématiques (classification, similarité, différence, symétrie, unités, périodicité...), Bamberger (2000) montre que des élèves de maternelle ont développé une meilleure acquisition de ces concepts. Une autre étude (Harris, 2007) effectuée sur 200 élèves de maternelle (3 à 5 ans) cherche à déterminer l'ampleur d'un enseignement enrichi en musique sur les performances en mathématiques dès la petite enfance. L'auteur montre que les enfants ayant reçu un programme musical spécifique, sur une période de 6 mois (3 x 30 minutes hebdomadaires), obtiennent des scores significativement plus élevés que les enfants du groupe témoin, au test « early mathematic-3 ». Il apparaît que cet effet est plus marqué chez les enfants de 3 ans que chez les enfants de 4 et 5 ans. Une étude expérimentale de Bolduc (2009) menée sur 104 enfants du préscolaire montre qu'un programme musical accroît les capacités de la mémoire spatiale et de la mémoire immédiate des chiffres.

La pratique de la musique permet-elle d'avoir de meilleurs résultats scolaires ? Afin de déterminer l'effet de la musique sur les performances scolaires, Wetter et al (2009) ont cherché à comparer les notes d'élèves musiciens (n = 53), avec ceux d'un groupe contrôle (n = 67), en allemand, français, mathématiques, histoire/géographie, musique, sport et travaux manuels. Il apparaît que les enfants jouant d'un instrument obtiennent de manière significative de meilleures notes moyennes à l'école que ceux du groupe contrôle (t(118) = 4,47; p <0,001). De plus, les enfants pratiquant une activité manuelle obtiennent en moyenne les

moins bons résultats que le groupe contrôle (t(79) = 2,51; p <0,05). De manière plus approfondie, les enfants jouant d'un instrument de musique obtiennent significativement de meilleures notes dans tous les domaines, à l'exception du sport. Afin de déterminer l'effet éventuel de facteurs extérieurs sur les performances scolaires, les auteurs ont effectué une régression linéaire multiple. Ils montrent que l'année de scolarisation et le milieu familial d'origine sont des variables particulièrement prédictives des performances scolaires (corrélations respectives de -0,47 et +0,39). Cependant, la pratique d'un instrument de musique est également fortement corrélée avec les notes, à hauteur de +0,34 point. La pratique musicale a alors un impact sur les performances scolaires du même ordre de grandeur que les variables individuelles et scolaires les plus prédictives.

2.2.4. La question du temps d'exposition et de la durabilité de l'effet.

Après avoir passé en revue les effets de la musique sur les capacités cognitives et sur certaines performances scolaires, nous allons désormais nous interroger sur la notion de temps, notamment sur l'impact de la durée de l'enseignement musical sur les performances, mais aussi, sur la durabilité des effets.

Lors de la première étude de Rauscher et al. en 1993, il est apparu que l'effet de l'écoute de musique classique sur les performances aux tests était transitoire, puisqu'il ne persistait qu'une dizaine de minutes. Mais il s'agissait alors de gain de scores suite à l'écoute de musique, et non dans le cadre d'un enseignement. D'autres études ont cherché à analyser la durée de cet effet suite à la pratique de la musique telle que réalisée lors d'un enseignement. Dans l'étude de Rauscher et al (2000) citée précédemment, il ressort qu'après seulement 4 mois de cours, les enfants du groupe *Keyboard* ont accru leurs scores de manière significative dans les deux tâches de capacités spatio-temporelles, par rapport aux enfants du groupe de contrôle. Cette différence gagne en intensité après huit mois de leçons. Une analyse multivariée de variance (MANOVA) montre un effet important de la pratique musicale sur les scores. Cependant, au terme de quatre mois, les scores commencent à décroître dès que cessent les leçons de musique. Dans une autre de ses études, Rauscher (2003) montre que les

enfants ayant suivi des leçons de musique depuis quatre ans ont des scores supérieurs à ceux n'ayant eu que deux années de leçons (supérieur à 52%). Plus récemment encore, les études de Forgeard et al (2008a,b) mettent en avant l'effet de la durée de l'enseignement musical sur les performances dans plusieurs domaines, sous contrôle de l'âge. Il apparaît que la durée de l'enseignement musical peut être prédictive des scores dans des domaines voisins à celui de la musique, mais également dans des domaines plus éloignés comme le vocabulaire et les habilités motrices des deux mains.

Qu'en est-il de la durabilité des effets de l'enseignement musical? Un premier élément de réponse nous vient de l'étude conduite par Rauscher et al. (1997). Il y apparait que l'entrainement musical accroit significativement les capacités spatio-temporelles chez les enfants, et que l'effet perdure plusieurs jours. D'après ces résultats, les auteurs émettent l'hypothèse que l'entrainement musical, dont l'effet positif demeure plusieurs jours, modifie la structure du cerveau. C'est ce que Gaser et Schaug (2003) ont cherché à vérifier. Les auteurs, en comparant les cerveaux de musiciens et de non musiciens droitiers via des scanners à résonance magnétique, ont démontré que les régions du cerveau associées à la motricité, à l'audition et aux habilités visuo-spatiales sont plus développées chez les musiciens. L'accroissement de ces régions résulte d'une adaptation à un apprentissage répété depuis l'enfance. Schellenberg (2006) a examiné les effets à long terme de la pratique d'un instrument de musique durant l'enfance sur les capacités intellectuelles à l'âge adulte (16-25 ans). Ses résultats montrent qu'avoir suivi des leçons de musique durant l'enfance affecte positivement les performances scolaires à l'âge adulte d'une part, et d'autre part les capacités cognitives (tests de QI, compréhension verbale, perception, mémoire de travail...).

De récentes études en psychologie démontrent qu'ils existent des liens forts entre la musique et les performances dans d'autres domaines, tels que les capacités ST (Rauscher et al. 2000), la réussite scolaire (Wetter et al., 2009), le QI (Schellenberg, 2004). Ainsi, la musique agirait comme un catalyseur et favoriserait le développement cognitif des enfants, aussi bien sur le plan psychomoteur, qu'affectif et émotionnel (Schellenberg et al., 2007). Bien que la nature du lien unissant musique et cognition ne soit pas encore bien établie, les recherches que nous avons présentées, et les résultats qui en découlent, nous montrent les effets bénéfiques d'un apprentissage musical sur les performances scolaires et extra-scolaires.

Les chercheurs sont quasi-unanimes : l'apprentissage de la musique renforce la capacité des enfants au transfert de connaissance, favorisant la découverte des liens existants entre les disciplines.

Synthèse sur l'influence de la musique sur les capacités cognitives

Les recherches confirment que la pratique de la musique permet de développer bon nombre d'aptitudes chez les enfants : elle parfait leur mémoire auditive, leur mémoire phonologique, développe leur conscience phonologique (Lamb et Gregory, 1993 ; Standley et Hughes, 1997 ; Register, 2001 ; Anvari et al., 2002 ; Bolduc et Montésinos-Gelet, 2005 ; Bolduc, 2006 ; Bolduc et Fleuret, 2009). Introduire la musique au sein de la classe pourrait être une manière efficace de lutter contre l'échec scolaire puisqu'elle permet aux enfants d'acquérir ou de renforcer, dès la maternelle, les bases solides pour le développement de la lecture, de l'écriture, et du raisonnement mathématique.

Sur la base de la littérature que nous avons examinée, cinq types d'interventions musicales s'avèrent particulièrement efficaces pour favoriser le développement de ces aptitudes : il s'agit du chant, du rythme, de la pratique d'instruments, de l'écoute et du codage.

Le chant stimule la mémoire et l'attention des élèves. De plus, il permet de développer les capacités rythmiques, et mélodiques (hauteur), qui, nous l'avons vu, stimulent la conscience phonologique des enfants. Les activités de codage et de décodage, c'est-à-dire la reproduction graphique d'un son, peuvent revêtir différentes formes. Les chercheurs canadiens ont appelé cette pratique la « notation musicale inventée » (Bolduc 2009), et les anglophones « *idiosyncratic symbol-making* » (Barrett, 1997) ou « *musical notation* ». Peu évaluée en France, cette activité et son lien avec les acquisitions en écriture font l'objet de nombreuses recherches outre-atlantique. Si les effets bénéfiques de la musique sur la cognition des jeunes enfants ont été démontrés, peu de travaux ont évalué l'impact d'un

programme musical qui ne s'appuie pas uniquement sur l'écoute, mais aussi sur des activités de codage et de décodage. Une récente étude (Carmon et al., 2008) menée sur 150 élèves de dernière année de maternelle démontre l'effet positif d'un programme musical incluant des activités de codage (*Toy Musical Notes*): les pauses (blanc), les durées (lignes horizontales), les hauteurs (des ronds) sont représentés graphiquement. A l'issue de cette expérimentation, il s'avère que les élèves ayant bénéficié de ce programme musical obtiennent de meilleurs scores dans tous les paramètres de lecture: moins s de lecture, lecture plus rapide, et meilleure compréhension des phrases. Les exercices rythmiques, à coupler avec la pratique d'instruments de percussion par exemple, facilitent le développement de la conscience phonémique chez les enfants. Par exemple, Bolduc et Fleuret (2009a et 2009b) conseillent de jouer en mot, en associant un rythme à la prononciation des syllabes d'un mot.

Au terme de cette revue de littérature, deux points retiennent notre attention. Premièrement, nous avons été surpris par les tailles des échantillons présentés dans certaines études. Seules quelques expérimentations ont été réalisées sur plus de 100 sujets : Mingat et Suchaut (1994), Schellenberg (2004), Harris (2007) et deux études de Bolduc (2006, 2008). Deuxièmement, les traitements statistiques sont dans l'ensemble peu élaborés : il s'agit essentiellement de comparaison de moyenne, mais peu de travaux font part de régressions linéaires multiples par exemple. Ces deux points offrent des marges de progression méthodologique importantes auxquelles nous serons particulièrement sensibles dans la construction et le traitement des résultats de notre expérimentation. C'est précisément à l'élaboration de notre expérimentation que le prochain chapitre est consacré.

Chapitre 3 : Le cadre de la recherche : une expérimentation d'un programme musical en maternelle

Les résultats de la littérature étudiée au cours du chapitre précédent tendent à montrer les effets positifs de la pratique musicale sur certaines capacités cognitives et performances scolaires. Toutefois, la plupart de ces travaux ne sont pas réalisés en France. Ils s'appuient sur des effectifs réduits limitant leur généralisation et se concentrent sur des domaines cognitifs ou scolaires spécifiques. Les résultats positifs ne sont donc pas directement transposables en l'état au contexte français. Pour mieux comprendre l'effet d'un programme musical dans le contexte éducatif français, nous avons souhaité mener notre propre expérimentation. Nous débuterons ce chapitre en présentant l'expérimentation : son cadre, ses objectifs et ses hypothèses. Ensuite, nous exposerons les modalités de sa mise en œuvre et les choix méthodologiques que nous avons retenus. Nous terminerons cette partie avec la présentation des outils de mesures utilisés.

3.1. Présentation de l'expérimentation

Notre présentation de l'expérimentation s'articule autour de trois points. Nous rappellerons son contexte et l'importance de la lutte contre l'échec scolaire au cycle primaire ; nous exposerons nos objectifs et hypothèses de recherche ; enfin, nous verrons la structure et le calendrier de l'expérimentation.

3.1.1. Le cadre de l'expérimentation

L'école primaire joue un rôle considérable : apporter aux élèves la maîtrise des socles communs essentiels au bon déroulement d'une scolarité ultérieure. Pourtant, un constat alarmant mis en perspective par le HCE (2007) pointe déjà des dysfonctionnements : à l'issue du primaire, ce sont près de 25% des élèves qui ont des acquis fragiles et 15% qui rencontrent déjà de sévères difficultés. Ces élèves quittent donc l'école primaire avec d'importantes

lacunes qui subsistent et s'accroissent ensuite au cours de la scolarité secondaire pour en faire des élèves en grande difficulté. En effet, les chances d'accomplir une scolarité sans heurt et conduisant à une qualification réelle sont très fortement corrélées au niveau initial des compétences au cours de la scolarité élémentaire (Morlaix et Suchaut, 2007; Suchaut, 2007). Ainsi, les parcours scolaires des élèves sont déterminés rapidement, dès le début de la scolarisation obligatoire puisque les élèves qui sont en difficulté dès leur entrée au CP le seront toujours, dans leur quasi-totalité, par la suite.

En agissant dès la grande section de maternelle, nous pouvons lutter contre l'échec scolaire. C'est dans ce cadre qu'a été élaboré le projet « *Stimuler les capacités cognitives pour éviter l'échec scolaire* » des élèves en milieu défavorisé. Répondant à un programme national d'expérimentation du Haut Commissaire de la Jeunesse (HCJ), le projet se déroule sur deux années, de Septembre 2009 à Juin 2011 dans le département de la Haute-Savoie 18. L'expérimentation à proprement parler se déroule sur six mois, de Janvier à Juin 2010. Dans le but de « réduire les sorties prématurées du système de formation initiale » (qui représente l'axe 1 du HCJ) en « améliorant les dispositifs d'orientation et en luttant contre l'échec scolaire » (programme 6 de l'axe 1), nous nous proposons de déterminer les effets d'un entraînement musical sur le développement cognitif des élèves de maternelle, sous contrôle d'autres caractéristiques.

Afin d'appréhender les facteurs liés à l'acquisition des capacités cognitives ainsi que les mécanismes les unissant, ces capacités seront mises en relation avec des éléments du contexte scolaire et de l'environnement socio-économique de l'élève. Plus spécifiquement, nous chercherons à identifier et à mesurer les liens entre capacités cognitives et apprentissages scolaires en évaluant l'impact d'un entraînement musical sur les performances scolaires en mathématiques et en lecture au CP.

_

¹⁸ L'expérimentation est placée sous la responsabilité de Bruno Suchaut, directeur de l'IREDU. Elle se déroule avec la collaboration de Mr. Zermatten, Inspecteur de l'Education Nationale (IEN) en charge de l'école maternelle en Haute-Savoie, ainsi que des conseillers pédagogiques et professeurs des écoles concernées.

3.1.2. Hypothèses et objectifs de la recherche

3.1.2.1. Les objectifs

L'objectif principal de cette expérimentation est de mettre à jour les capacités cognitives susceptibles de favoriser les apprentissages scolaires. Plus précisément, il s'agit de comprendre dans quelle mesure le développement de ces capacités cognitives, *via* un programme d'entraînement musical, affecte les apprentissages scolaires des élèves, tels qu'appréhendés par les performances en mathématiques et en français.

Nous chercherons par ailleurs à déterminer dans quelle mesure les capacités cognitives mesurées en grande section (GS) de maternelle sont prédictives des performances scolaires, non seulement au cours de la même année, mais aussi au cours de la scolarisation en CP.

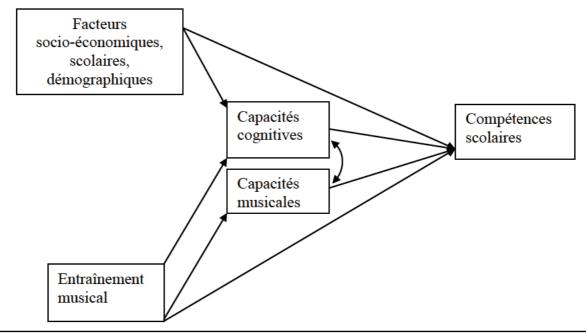
Deux dimensions des capacités cognitives des élèves seront particulièrement privilégiées lors de l'entraînement musical, ces deux aspects étant considérés comme particulièrement prédictif des performances scolaires ultérieures (Alloway et al. 2005) : il s'agit de la mémoire de travail (système de mémoire active qui permet de maintenir et de traiter simultanément des informations à court terme.) et des capacités attentionnelles (capacité à se concentrer sur une tâche sans se laisser distraire par l'environnement extérieur). Les capacités attentionnelles sont très variables d'un élève à l'autre.

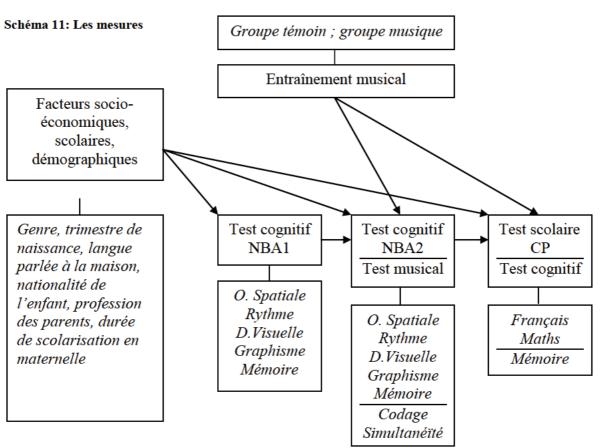
L'hypothèse générale qui anime l'expérimentation, et qui sera ensuite déclinée en plusieurs hypothèses opérationnelles, s'appuie sur l'examen préalable de la littérature empirique, notamment dans le domaine de la psychologie cognitive, présenté au cours du précédent chapitre. Ainsi, nos recherches nous amènent à formuler l'hypothèse selon laquelle l'entraînement musical influence positivement les apprentissages des élèves *via* son impact sur les capacités cognitives.

3.1.1.2. Les hypothèses

Nous présentons ici les deux grandes familles d'hypothèses sous forme de liste.

Hypothèses relatives à l'effet de l'entraînement musical sur les performances scolaires des élèves

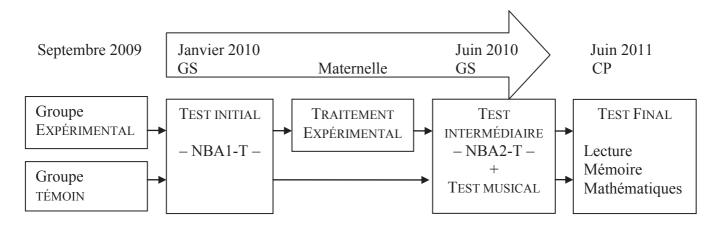

- L'entraînement musical devrait affecter positivement et significativement les apprentissages scolaires des élèves
- Cet accroissement des compétences scolaires serait le fait de la stimulation des capacités cognitives.
- Les effets de l'entraînement musical devraient persister dans le temps. Il y aurait deux effets :
 - Effet immédiat
 - Effet à plus long terme


<u>Hypothèses relatives à l'effet des caractéristiques socio-économiques et scolaires sur les effets</u> de l'entraînement musical

- L'entraînement musical devrait réduire les inégalités sociales de réussite. Ainsi, les écarts de performances liés aux caractéristiques socio-économiques et scolaires devraient être moins importants chez les élèves du groupe expérimental que chez les élèves du groupe témoin.
- De manière globale, nous considérons également que l'entraînement musical, par la stimulation des capacités cognitives, est en mesure de réduire l'impact des caractéristiques socio-économiques et scolaires sur les performances des élèves.

Les schémas des deux pages suivantes représentent la problématique (schéma 9) et les variables que l'on cherche à mesurer (schéma 10). Nous cherchons à étudier les relations qui existent entre les facteurs socio-économiques, les facteurs scolaires et démographiques et les compétences scolaires. Surtout, nous plaçons au cœur de nos analyses les capacités cognitives et l'impact de l'expérimentation musicale sur ces capacités.

Schéma 10: La problématique


3.1.3. L'architecture de l'expérimentation

Le projet, qui s'échelonne de Septembre 2009 à juin 2011, s'organise autour de trois phases : une phase préalable à l'expérimentation, l'expérimentation elle-même, et une phase postérieure à l'expérimentation :

- Phase préalable à l'expérimentation : de septembre 2009 à décembre 2009.
 Durant cette période, notre attention a été portée sur la construction de l'échantillon et l'élaboration du programme d'activités musicales.
- Expérimentation : de janvier à juin 2010. Les élèves de l'échantillon ont été réparti en deux groupes : le groupe expérimental (GE) et le groupe témoin (GT). Les élèves du GE sont soumis au programme d'activités musicales tandis que les autres (GT), suivent les cours classiques. En janvier et en juin, les deux groupes sont testés sur divers aspects de leurs acquisitions.
- Phase postérieure à l'expérimentation : année scolaire 2010-2011. Les élèves, désormais au CP, sont suivis et testés de nouveau en fin d'année.

Le schéma ci-dessous donne une représentation visuelle de la structure du projet et de ses différentes phases.

Schéma 12 : Déroulement de l'expérimentation

3.2. Les modalités de l'expérimentation

La méthode expérimentale ayant été présentée extensivement au cours du précédent chapitre, nous n'en ferons ici qu'un très bref rappel. En revanche, nous présenterons les principes d'échantillonnage, puis le programme musical mobilisé. Nous terminerons par les mesures prises pour assurer le respect du protocole expérimental.

3.2.1. Bref rappel des principes méthodologiques

Reuchlin (1995) définit l'expérimentation comme une méthode permettant de contrôler une hypothèse en comparant ses conséquences prévisibles à des observations spécialement recueillies. Ainsi, en modifiant certaines conditions de l'observation (la variable indépendante), le chercheur pourra constater des modifications dans le résultat de l'observation (la variable dépendante). Une étude expérimentale est la méthode la plus fiable pour nous permettre de valider notre hypothèse et de déterminer une relation de causalité entre la pratique d'un entraînement musical et l'accroissement des acquisitions scolaires des élèves. Cependant, comme ce type d'approche implique le contrôle de l'ensemble de l'environnement, l'étude soulève bon nombre de problèmes, tant organisationnels qu'éthiques. Comme le rappelle Demeuse et al. (2006), afin d'observer les effets de l'expérimentation, il convient de :

- affecter aléatoirement les élèves de l'échantillon dans les groupes expérimentaux et dans les groupes de contrôle, *i.e.* les groupes témoin ;
- identifier et de contrôler les variables :
- éliminer les effets de toutes autres variables « parasites » en maintenant un environnement constant ;
- maîtriser l'ensemble des paramètres du traitement qui est administré aux groupes expérimentaux et aux groupes témoin ;
- disposer de mesures fidèles et valides préalables et consécutives au traitement.

Dans le domaine de l'éducation, plus que tout autre, il est difficile de s'assurer du contrôle de tous les paramètres. C'est pourquoi, afin de déterminer avec exactitude quels sont les effets propres du traitement, c'est-à-dire de l'entraînement musical, sur les performances scolaires des élèves, il convient de contrôler les progressions des élèves n'ayant pas bénéficié du traitement (ceux du groupe témoin). L'échantillonnage, particulièrement l'attribution entre les groupes de traitement et de contrôle, est alors crucial.

3.2.2. Principe d'échantillonnage

L'objectif de l'expérimentation est de fournir une image claire du phénomène à l'étude qui nous permettra de tirer des conclusions légitimes à partir des données recueillies. Afin que l'on puisse juger de l'impact de l'entraînement musical sur les acquisitions des élèves, nous souhaitons comparer leurs performances en fonction de la présence ou de l'absence de traitement, ou dit autrement, comparer les performances des élèves du groupe témoin avec celles des élèves ayant bénéficié de l'entraînement musical. Ceci implique de pouvoir déterminer le niveau à partir duquel on peut détecter un effet, tout en s'assurant de la comparabilité des deux groupes.

Des principes statistiques permettent de nous guider dans le choix de notre échantillonnage. Conformément aux procédures de tests standards, nous posons deux hypothèses, l'hypothèse nulle et son alternative (H₀ et H₁). Soit l'hypothèse nulle (H₀), hypothèse que l'on souhaite réfuter, selon laquelle les élèves des deux groupes (GE et GT) obtiennent des performances identiques. Soit l'hypothèse alternative (H₁), celle que l'on souhaite démontrer, selon laquelle les performances des élèves diffèrent selon leur groupe d'appartenance. Pour trancher entre ces deux hypothèses, il est nécessaire de maximiser la validité interne des résultats, et donc, la probabilité de détection des effets réels. De plus, l'égale répartition des caractéristiques des élèves dans les groupes expérimentaux et les groupes témoins requiert une affectation aléatoire. Ainsi, pour répondre à ces deux prérogatives, il est nécessaire de disposer d'un échantillon suffisamment important.

Les statistiques fournissent une formule qui permet de calibrer l'échantillon afin de détecter l'effet d'un programme expérimental. Cette formule est connue sous le terme d'effet minimal détectable (MDE pour *minimum detectable effects*). Les effets minimaux détectables sont fonction de la puissance statistique (k), du niveau de significativité (α), de la répartition de l'échantillon entre les groupes (P), de la variance (σ^2), et de la taille de l'échantillon (N), et s'obtiennent selon l'équation suivante (Duflo et al., 2007):

$$MDE = (t_{(1-k)} + t_{\alpha}) * \sqrt{\frac{1}{P(1-P)}} \sqrt{\frac{\sigma^2}{N}}$$

Où,

- P indique la proportion de l'échantillon allouée au groupe expérimental ou témoin.
 Nous avons choisi une répartition optimale, où P = 0,5, c'est-à-dire que 50% de notre échantillon est attribué aux groupes témoin et 50% dans les groupes expérimentaux.
- α indique le seuil d'erreur de première espèce (c'est-à-dire rejeter H_0 alors que H_0 est vrai). Il est classiquement fixé à 5%, soit t_{α} égale à 1,96.
- $_K$ indique la puissance statistique (aptitude à mettre en évidence une différence lorsqu'elle existe) qui est égal à 1- β. Le seuil d'erreur de seconde espèce, β, (c'est-à-dire ne pas rejeter H₀ alors de H₁ est vrai) est fixé à 20% soit k égal à 0,8. Ainsi, on a : $t_{(1-k)} = t_{(1-0,8)} = t_{(0,2)} = 1,28$.
- σ indique l'écart-type. Par convention nous standardiserons les scores pour qu'ils présentent une moyenne de 100 et un écart-type de 15.
- Enfin, nous disposons d'un échantillon de 480 élèves.

Ainsi, on obtient pour notre étude :

$$MDE = (1,28+1,96) * \sqrt{\frac{1}{0,53(1-0,53)}} \sqrt{\frac{15^2}{480}}$$

$$MDE = 4,44$$

L'effet minimum détectable varie en fonction de tous ces paramètres. Si l'on décide d'augmenter le seuil d'erreur de seconde espèce, à 90% par exemple, la valeur du MDE augmente (4,9). A l'inverse, si l'on décide le diminuer à 70%, le MDE sera alors de 4. De même, en diminuant le seuil de risque de première espèce alpha à 1% (t_{α} = 2,57) ou à 0,1% (t_{α} = 3,29), alors le seuil de l'effet minimum détectable augmente¹⁹, tandis qu'il diminue lorsque l'on place le seuil de risque alpha à 10%. Il faudra alors effectuer un arbitrage judicieux entre les risques d'erreur et la valeur de l'effet minimum détectable. La taille de l'échantillon et la proportion des individus attribuée dans chacun des deux groupes affectent également le MDE. Plus l'échantillon est grand et plus le seuil du MDE diminue. De même, s'il y a plus d'élèves dans un groupe que dans l'autre, l'effet minimum que l'on pourra détecter augmente. Dans notre étude, nous disposons initialement de 480 élèves dont 53% font partie du groupe témoin.

Ainsi, compte tenu de ces différents paramètres, nous devrions être en mesure de détecter un écart significatif de performance entre les élèves du GE et GT dès que cette différence atteindra 4,4 points, en unité d'écart-type (ou 29% de la variance).

3.2.3. Présentation du programme musical

Le programme musical est un élément central de notre expérimentation reposant sur la mise en œuvre d'un entraînement musical. Nous présenterons les activités du programme ainsi que l'organisation des séances.

¹⁹ La valeur du MDE serait respectivement de 5,2 et 6,2.

3.2.3.1. Les activités

Le programme des activités musicales utilisé pour cette expérimentation est issu de « *Musique au quotidien au cycle 2* » de Bachelard A, Coulon D et Loisy J.P (CRDP de Dijon, 2010). Créé spécifiquement pour une étude précédente (Mingat et Suchaut, 1994), il se décline sur cinq domaines :

- 1 Les chants et jeux vocaux : il s'agit pour l'élève de mémoriser le chant et de le restituer avec justesse. Comme le précisent les auteurs : « les approches pédagogiques sont variées, le travail commence soit par une écoute, soit par un travail rythmique sur le texte, soit encore par des jeux d'expressions. ». Les chants et jeux vocaux aident l'enfant à maîtriser sa voix comme instrument et moyen de communication. De plus, comme le rappelle le Ministère de l'éducation, « Jouer avec sa voix permet de découvrir la richesse de ses possibilités et de construire les bases de la future voix d'adulte parlée et chantée en évitant qu'elle ne se réduise trop rapidement à des usages courants et restreints. » (MEN 2007, B.O n°5). Dans le programme « Musique au quotidien », les chants, en français, anglais ou italien, sont sans difficultés rythmiques et composés de phrases assez courtes. L'apprentissage et la mémorisation des comptines supposent un travail de répétition à plusieurs moments de la journée (le matin, après le repas du midi, pendant l'attente des parents...).
- 2 L'écoute d'œuvres musicales : les activités d'écoute visent à développer la sensibilité, la discrimination et la mémoire auditive. Musiques du monde d'origines africaines, yiddish ou orientales, musiques classiques ou contemporaines, elles visent aussi bien à l'ouverture d'esprit et la découverte qu'à la construction d'un premier référentiel culturel. « Au travers des variantes de timbre et d'intensité d'abord, de durée et de hauteur ensuite, l'enfant apprend progressivement à caractériser ces éléments de base par la comparaison et, souvent, par l'imitation vocale ou gestuelle. Il acquiert avec ces notions vécues un lexique simple mais précis ou des formules imagées qui lui permettent de désigner, avec des qualificatifs de plus en plus nuancés, les caractéristiques d'un extrait ». (MEN, 2007, B.O. n°5).

- 3 Les activités rythmiques et corporelles : ces deux activités vont de pair car le travail sur le rythme se fait essentiellement à travers le corps. Il s'agit de « faire vivre le rythme par le mouvement, par la parole et l'utilisation d'instrument... ». Taper les rythmes dans les mains, évoluer dans un espace restreint en rythme avec la musique ou la chanson, frapper le sol à l'aide d'un bâton, marquer les rythmes en dansant sont autant d'éléments de ces activités. Ainsi, les élèves vivent le rythme avant de le transcrire avec des codes tout d'abord inventés, puis de repérer l'écriture musicale à l'aide de partitions.
- 4 Les activités instrumentales : les auteurs du programme musical précisent à ce sujet que « le parcours proposé dans ce domaine est centré sur l'idée que le son est dépendant du matériau sonore et du geste instrumental ». Il se base essentiellement autour de deux types d'activités : la recherche d'objet sonore via le « sac à sons », et la découverte des instruments de musique à travers l'écoute ou la pratique.
- 5 Le codage et le décodage : à travers diverses activités, les élèves acquièrent progressivement les éléments clés pour coder et décoder ce nouveau langage : reconstitution d'une « partition puzzle » par prélèvement d'indices, découverte des signes, etc. leur permettrons de transcrire symboliquement les sons et, inversement, de déchiffrer certains éléments d'une partition. Pour chaque nouvelle chanson apprise, les élèves disposent individuellement d'une partition dans laquelle les paroles et la musique sont dissociées. Ils pourront s'y référer régulièrement. Les auteurs du programme précisent que « cette présentation différente est conçue pour que les enfants distinguent clairement « le dessin de la musique » de l'écriture du texte. »

Ainsi, le programme musical fait intervenir toutes les compétences de l'éducation musicale devant être acquises à la fin de l'école maternelle, et exposées dans l'encadré de la page suivante.

Encadré 4 : Programme de l'école maternelle

Compétences devant être acquises à la fin de l'école maternelle

- Avoir mémorisé un répertoire varié de comptines et de chansons ;
- Interpréter avec des variantes expressives un chant, une comptine, en petit groupe ;
- Jouer de sa voix pour explorer des variantes de timbre, d'intensité, de hauteur, de nuance ;
- Marquer la pulsation corporellement ou à l'aide d'un objet sonore, jouer sur le tempo en situation d'imitation ;
- Repérer et reproduire des formules rythmiques simples corporellement ou avec des instruments ;
- Coordonner un texte parlé ou chanté et un accompagnement corporel ou instrumental ;
- Tenir sa place dans des activités collectives et intervenir très brièvement en soliste ;
- Ecouter un extrait musical ou une production, puis s'exprimer et dialoguer avec les autres pour donner ses impressions ;
- Utiliser quelques moyens graphiques simples pour représenter et coder le déroulement d'une phrase musicale ;
- Utiliser le corps et l'espace de façon variée et originale en fonction des caractéristiques temporelles et musicales des supports utilisés ;
- Faire des propositions lors des phases de création et d'invention, avec son corps, sa voix ou des objets sonores.

MEN (2007) B.O hors série n°5 du 12 avril 2007

3.2.3.2. L'organisation des séances

Chant, travail sur la voix, l'écoute, le rythme et le codage. Toutes ces activités se croisent régulièrement. Comme nous l'avons précisé précédemment (section 13, partie 2), l'acquisition du codage se fait par le corps, l'écoute et la voix, le corps et la voix aidant à transcrire le rythme; l'écoute favorisant la discrimination des sons et des rythmes... Ces activités ne s'excluent pas mutuellement, au contraire. Lors de chaque séance, ces domaines sont travaillés autour d'un thème central ou d'une chanson : le « sac à sons », un instrument de musique, le vent ou la pluie...

Le programme musical dont bénéficient les élèves du groupe expérimental s'étend de janvier à juin, soit 17 ou 18 semaines actives, en excluant les congés et les jours fériés. Les séances sont présentées sous forme de fiches pédagogiques très détaillées, précisant les objectifs, la mise en condition, les jeux et les écoutes relatives au thème abordé. Ces fiches,

compte tenu de la construction didactique du programme, suivent une progression parfaitement orchestrée. Pour veiller à ce que les élèves du groupe expérimental progressent tous au même rythme, un calendrier a été établi : 3 fiches par semaines à réaliser dans un ordre précis, à chaque séquence correspond donc une fiche. Chaque jour, les élèves pratiquent 30 minutes de musique, soit 2h hebdomadaire. Les trois premiers jours de la semaine correspondent à trois fiches et, le dernier jour, le professeur peut revenir sur une fiche qui demande plus de temps, réviser les chants appris précédemment, ou encore faire écouter des extraits musicaux... Au total, le programme se compose de 49 fiches pédagogiques, accompagné de 4 CD audio, de partitions, d'un calendrier précis et d'une fiche de consigne spécialement conçue pour l'expérimentation. Les deux encadrés suivant présentent les consignes et une fiche du programme.

Encadré 5: Les consignes du programme musical de l'expérimentation

EXPÉRIMENTATION MUSIQUE AU QUOTIDIEN"

La musique, c'est du son organisé dans le temps.

Toute pédagogie concernant cette matière doit donc reposer,

- d'une part sur une grande variété d'expériences sonores, que ce soit avec la voix et des textes, ou avec des objets sonores
- d'autre part sur une maîtrise progressive de notions permettant de découper le déroulement du temps en pulsations, rythmes, séquences successives, puis simultanées.

C'est cette définition assez schématique qui a servi de base à la conception de "Musique au quotidien" qui propose une progression méthodique, qui va du simple au complexe et qui vise à installer, l'une après l'autre, les compétences nécessaires à une pratique musicale.

Consignes de "Musique au quotidien"pour les maîtres

- 1- Il est évident, compte tenu de la construction didactique du document décrite ci-dessus, que <u>les fiches doivent être mises en œuvre dans l'ordre de leur numérotation :</u>
 111, 112, 113... puis 121, 122, 123,...ensuite 131,etc.
 Le premier chiffre indique le numéro de l'étane le second chiffre le numéro de la série dans
 - Le premier chiffre indique le numéro de l'étape, le second chiffre, le numéro de la série dans l'étape, le troisième chiffre, le numéro de la fiche dans la série.
 - Chaque série est conçue autour d'un thème, le plus souvent une chanson, et des activités diverses, de chant, de rythme, de codage, d'écoute...etc. sont développées dans les fiches.
- 2- Les enseignants doivent lire attentivement à l'avance les fiches d'une série afin de préparer les matériels, photocopies, appareils et instruments nécessaires à leur mise en œuvre.
- 3- Ils doivent <u>apprendre eux-mêmes les chants</u> la veille, pour pouvoir les transmettre efficacement et obtenir une bonne qualité musicale. Les documents sonores (double C.D.) contiennent tous les éléments nécessaires, et particulièrement les chansons.
 - Remarque: Attention de bien apprendre les chants dans la tonalité qui convient le mieux aux enfants (c'est celle du disque) Donc ne pas baisser en ayant la fausse impression que c'est plus facile!
- 4- <u>Acquérir un petit clavier.</u> Vous en aurez souvent besoin, ne serait-ce que pour donner le ton avant de chanter. Certains appareils qui mesurent une quarantaine de centimètres de long sont suffisants et sont très peu chers.
- 5- Coudre un (ou plusieurs) sac à sons. Le but de ces sacs est décrit dans les fiches "Sac à sons". Il est de ranger une collection d'objets sonores divers qui servira tout au long de l'année. Pour lui donner un aspect attrayant et un peu "magique", c'est mieux si le tissu sort de l'ordinaire. Il peut être brillant ou très coloré.

Consigne pour la réussite de l'expérimentation

Un calendrier ci-joint indique quelles fiches doivent être mises en œuvre dans quelle semaine. Sachant que le temps moyen prévu est de 30 minutes par fiche, vous ferez trois fiches par semaine, une par jour, et le quatrième jour, vous aurez un laps de temps de 30 minutes à votre convenance, que vous utiliserez

- soit pour finir une fiche qui aurait demandé plus de temps,
- soit pour réviser les chants appris dans les séances ou semaines précédentes,
- soit pour faire écouter des extraits de "Musicabrac" * dans le simple but de susciter une émotion, et de faire parler les enfants sur ce qu'ils ressentent. (musique gaie, triste, qui brille, qui galope, qui plane...etc. etc.

Ainsi, au total, vous aurez consacré 2 heures par semaine à l'éducation musicale.

^{*} Musicabrac 3 édité par l'ADPEP 21 Voir bon de commande ci-joint

Encadré 6: Présentation d'une fiche pédagogique

1.2.2 Sons continus, sons discontinus: codage et décodage

OBJECTIF

* Représenter par écrit une suite de sons continus et de sons discontinus

Rappels concernant le mode de production trouvés lors de la séquence précédente (nommer les verbes d'action, les gestes)

Groupe A: sons discontinus (les gouttes)

Groupe B : sons continus (l'eau qui coule en continu).

ENREGISTREMENT (PUIS ÉCOUTE) D'UNE AUTRE SÉQUENCE DE BRUITS D'EAU-

* Avec les mêmes "musiciens" des groupes A et B, la maîtresse fera jouer une séquence faisant intervenir successivement les sons continus et discontinus. Chaque groupe s'efforcera de respecter les signes précis du * chef d'orchestre *.

Faire jouer par exemple A-B-B-A-B en incluant des silences significatifs entre certaines interventions.

CODAGE

La motivation sera clairement énoncée : on veut garder une trace écrite pour conserver le souvenir de notre travail, pour illustrer la jacquette de la cassette des productions de la classe, pour envoyer éventuellement à nos correspondants...

* On cherchera à représenter symboliquement les sons et non à dessiner les objets concrets liés à la production du son (robinet, lavabo...).

Laisser du temps aux enfants pour qu'ils proposent, discutent... fassent des essais individuels ou * On obtiendra peut-être ceci :

Pour les sons continus :

Pour les sons discontinus :

* Proposer d'écrire "notre histoire d'eau" sur une bande de papier qui deviendra notre "partition".

Par exemple

DÉCODAGE AVEC LA VOIX

- Lecture des "gouttes d'eau" ou des sons discontinus.
 - Tip, tip, tip - Toc, toc, toc
 - onomatopées diverses
 - Flic, floc
 - Claquements de langue
- * Lecture de "l'eau qui coule" ou des sons continus
 - Cheheheheh
 - Brrbrrbrrbrrbrr
 - Ou -
 - -0-
- * Lecture de *notre * partition en suivant le déroulement linéaire. La maîtresse (puis un élève) suit du doigt la bande de papier en le déplacant lentement et régulièrement de gauche à droite sans "sauter" par dessus les silences
 - Collectivement : chacun modifie sa production vocale en fonction du code écrit.
- En deux groupes : chaque groupe se spécialise dans l'une des productions (sons continus ou discontinus).
 - ~ Par deux : le reste de la classe écoute, contrôle
 - Individuellement : avec un "chef" qui montre la partition ou en montrant soi-même la partition.

Extrait de Musique au quotidien au cycle 2

3.2.4. Le respect du protocole de l'expérimentation

L'objectif de l'évaluation de l'expérimentation est de mesurer les effets immédiats et différés de la musique sur les capacités cognitives et les performances scolaires des élèves. Pour effectuer cette recherche, la première étape est de réaliser un protocole précis car, audelà de la construction d'une nouvelle base de données, nous cherchons avant tout à obtenir une mesure fiable et précise des effets de l'expérimentation. Ce protocole se compose de diverses informations ayant trait à la description du déroulement de l'expérimentation et de son évaluation. Ainsi, il précise les modalités de constitution des deux groupes (cf. 3.2.2), les effectifs de chaque groupe à chaque moment clé (cf. 3.1.3), le déroulement et la description du programme musical (cf. 3.2.3) et de ses consignes (cf. annexes) et enfin, le déroulement et la description des tests cognitifs (cf. 3.3.2.1 et 3.3.2.2), musicaux (cf. 3.3.4) et scolaires (cf. 3.3.2.3). Chacun de ces aspects fait l'objet d'une description spécifique et approfondie dans les parties précédentes ou suivantes. Nous allons maintenant décrire la procédure retenue pour assurer le respect du protocole expérimental.

Evaluer les effets de l'expérimentation est une chose, mais il faut s'assurer au préalable du suivi et du respect du programme musical de l'expérimentation pour limiter les biais et ainsi obtenir une mesure fine des effets du traitement expérimental. Deux conseillers pédagogiques de musique ont assuré ce travail durant toute la mise en œuvre du programme musical. Leurs objectifs étaient de former les professeurs des écoles au programme musical avant le début de l'expérimentation pour garantir la compréhension et la bonne utilisation des fiches pédagogiques, de visiter et de filmer certains professeurs *in situ* pour observer le déroulement des séances de musique et de vérifier la concordance entre le calendrier prévisionnel et factuel. Les deux conseillers pédagogiques devaient également être disponibles pour conseiller les professeurs et prévenir toutes difficultés. Nous disposions également d'enregistrements vidéo et sonore de certaines séances antérieures, réalisés par les auteurs du programme musical, que certains professeurs ont consulté et utilisé comme modèle.

3.3. Les instruments de mesure

Nous terminerons ce chapitre par une présentation des instruments de mesure mobilisés dans le cadre de l'expérimentation. Le premier vise à recueillir des informations sur les élèves, sous forme de questionnaire. Un second groupe d'outils de mesure a pour objectif d'évaluer les capacités cognitives des enfants. Enfin, un instrument de mesure est construit pour évaluer les capacités musicales des élèves.

3.3.1. Les questionnaires des élèves

L'objectif des questionnaires élèves est double. Il a pour objectif principal de contrôler des facteurs individuels (socio-économiques et scolaires) pour évaluer l'effet net du programme musical. Ces facteurs peuvent en effet intervenir comme facteur de confusion lors de l'évaluation. Son objectif secondaire est de permettre d'étudier l'impact de ces facteurs individuels sur les capacités cognitives et les performances scolaires.

Lors de la conception du questionnaire, le premier travail consiste en la délimitation de l'objet d'étude et de ses frontières. Nous avons donc défini à l'avance les notions qui seront au centre de notre enquête afin de trouver les bons indicateurs. Nous cherchons à comprendre le rôle que jouent les caractéristiques individuelles des élèves, tant sociologiques que scolaires, dans leurs acquisitions scolaires et leur développement cognitif. Il faut donc trouver des indicateurs pertinents permettant d'approcher au mieux ces caractéristiques. Les qualités d'un bon indicateur sont sa validité (il représente ce qu'il est censé représenter), sa sélectivité, sa convivialité (facile à identifier, à mesurer et à traiter), et son efficience puisqu'il doit être peu coûteux (de Singly, 1992).

Un certain nombre de préceptes sont à respecter lors de la rédaction du questionnaire. Nous avons porté une attention particulière à la longueur du questionnaire et à la longueur des questions. Il serait inutile et contreproductif de lasser les enseignants qui devront remplir de 4 à 30 questionnaires selon le nombre d'élèves faisant partie de notre échantillon. Ainsi, le questionnaire comporte 11 questions. Toujours dans le même souci de ne pas surcharger les

enseignants, le questionnaire repose uniquement sur des questions fermées à choix unique ou multiples. Le primat leur est accordé car elles sont plus rapides et plus faciles, non seulement à répondre mais aussi à coder. De plus, l'enquête a pour fonction de tester une hypothèse et ne cherche pas comprendre des mécanismes ou les acteurs, ce qui supposerait alors d'intégrer quelques questions ouvertes. Outre la longueur du questionnaire, l'ordre des questions a été réfléchi. En effet, il est nécessaire de structurer le questionnaire en utilisant "la méthode de l'entonnoir", qui consiste dans un premier temps à poser des questions d'ordre général (sexe de l'enfant, date de naissance), puis, peu à peu, à aboutir à des questions plus précises, considérées parfois comme intrusive (profession des parents).

Le questionnaire recueille trois types d'informations :

- Les caractéristiques individuelles et sociodémographiques de l'enfant : sexe, date de naissance, nationalité, langue parlée à la maison, et profession des parents
- Les caractéristiques scolaires de l'élève : année d'entrée en maternelle et fréquentation des lieux scolaires tels que l'accueil, la cantine et la garderie.
- La pratique musicale des élèves en dehors de la classe.

Les questionnaires sont auto-administrés par les enseignants. Ils ont été remis en mains propres à ces derniers par les conseillers pédagogiques de circonscription, et recueillis de la même façon.

3.3.2. Les épreuves standardisées

Comme nous l'avons précisé dans le schéma représentant la structure du projet, les acquisitions de tous les élèves (groupe expérimental et groupe témoin) sont évaluées à trois reprises. La première série d'épreuves se déroule en janvier 2010, lorsque les enfants sont au début de la grande section de maternelle : il s'agit du test initial. Le test intermédiaire est administré à la fin de grande section (juin 2010), et le test final se déroule lorsque les enfants sont au cours préparatoire. Au regard de l'importance de l'échantillon, les épreuves sont de type « papier-crayons ». Elles sont administrées par les conseillers pédagogiques de circonscription.

De nombreux outils sont disponibles pour évaluer les capacités cognitives des élèves. Il s'agit principalement de batterie de tests ayant pour objectif de déterminer le niveau de l'élève dans différents aspects de la cognition et de permettre un dépistage précoce de ces difficultés éventuelles. Parmi les différents tests disponibles en français, citons le Nouvelles Epreuves pour l'Examen du Langage (N-EEL) de Muller et Plaza (2004). Cette batterie de test permet d'effectuer un bilan des différents aspects du langage, comme la phonologie ou le lexique par exemple, ainsi que des processus cognitifs en jeu dans l'apprentissage du langage, dont la mémoire. L'Evaluation du Langage Oral, le ELO, de Khomsi (2001), évalue et décrit les compétences orales des enfants (phonologie, compréhension et lexique). Le test de « L'Alouette » de Lefavrais (2005) permet d'évaluer les stratégies de lecture à voix haute et de repérer les élèves en difficultés, voire dyslexiques. Dans le domaine de la logique et des mathématiques, le test TEDI-MATH de Grégoire et al. (2004), permet de diagnostiquer les troubles d'apprentissages en compétences numériques (compter, dénombrer...), tandis que le test UDN-II (le test d'Utilisation Du Nombre) de Meljac et Lemmel (1999), s'attarde sur les capacités de l'enfant à comprendre et à utiliser les nombres. D'autres tests évaluent les capacités scolaires des élèves. C'est le cas du test BOEHM-3, de Boehm (2001), qui cherche à mesurer la compréhension des concepts de base et à dépister les enfants « à risque ». Un autre test du même type, le ESC II (Evaluation des Compétences Scolaires) de Khomsi (1997) permet de repérer les compétences prédictives des capacités de lecture.

Cette liste, non exhaustive, permet de visualiser une partie des tests existants. Cependant, il faut savoir que parmi ces tests, peu sont destinés aux enfants de grande section de maternelle. A l'inverse, les tests pour les très jeunes enfants ou les nourrissons sont nombreux mais trop peu élaborés pour des enfants de 5 ans. De même, ceux pour les enfants à partir du CP foisonnent, mais ceux-ci font appel à des compétences que les enfants que nous ciblons ne maîtrisent pas encore (notamment la lecture et l'écriture). De plus, ces tests sont trop spécifiques, s'intéressant principalement à un aspect des compétences des élèves, soit la littératie, soit la numératie. La solution qui consisterait à associer entre eux plusieurs de ces tests semble impossible au vu des nombreuses contraintes temporelles, chacun de ces tests durant entre 30 et 90 minutes, et organisationnelles, la passation de certains de ces tests étant

individuelle. Ce sont donc les tests NBA (disponibles en annexe) qui ont retenu notre attention. En plus de correspondre à l'évaluation de différents aspects de la cognition, et à notre tranche d'âge, il s'agit de tests où la passation peut s'effectuer de manière collective.

3.3.2.1. Le test initial

L'objectif du test initial (NBAT-1) n'est pas d'évaluer l'ensemble des compétences acquises par l'enfant jusqu'à la grande section de maternelle. Les performances évaluées ici sont relatives aux apprentissages transversaux et fondamentaux les plus déterminants pour la poursuite des apprentissages : la coordination visuo-motrice, l'organisation spatiale, le rythme, la mémoire et la discrimination visuelle. Nous présentons successivement les questions correspondant à ces différents domaines.

<u>La coordination visuo-motrice</u>: ce domaine fait l'objet des 7 premiers items. On peut distinguer trois tâches différentes: l'alternance entre grande boucle et petite boucle (item 1), le tracé dans des limites (de l'item 2 à l'item 6) et le tracé d'un chemin entre différents points (item 7).

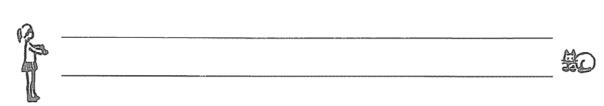
Bara et al. (2006) rappellent que l'écriture est une activité complexe qui demande un apprentissage long et fastidieux consistant à l'acquisition d'une représentation visuelle et motrice de la lettre. A partir de trois ans, les enfants débutent progressivement leur apprentissage de l'écriture en acquérant certaines de ses caractéristiques, comme son sens et la linéarité, et commencent par tracer des lignes ou des gribouillis. Ensuite, entre trois et quatre ans, les enfants commencent à se servir des pseudo-lettres ou de cercles avant d'utiliser essentiellement les lettres de leur prénom. Ce n'est qu'à partir de cet âge que les enfants peuvent surmonter les contraintes motrices nécessaires à l'acquisition de l'écriture : réaliser des cercles dans le sens inverse des aiguilles d'une montre. Au fur et à mesure de l'apprentissage, accompagné d'une pratique intense, ces mouvements s'automatisent, deviennent plus surs et plus rapides.

L'item 1 évalue cette capacité de l'enfant à tracer des cercles dans le sens inverse des aiguilles d'une montre. On leur demande de « continuer la ligne en faisant comme c'est commencé... une grande boucle, une petite boucle, une grande boucle, une petite boucle. »

Figure 1 : Item 1 de graphisme(NBA1)

Item 1

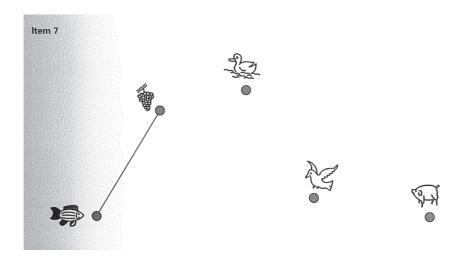
lelelelel


Sur cet item sont évaluées à la fois la capacité de l'élève à produire en alternance une grande et une petite boucle, mais aussi sa maîtrise de la grandeur, des pseudo-lettres et de leur direction. Le maximum de point est attribué à l'élève réunissant ces trois demandes (3 points). Un point est retiré à l'élève ne maîtrisant pas la grandeur ou la direction. Celui qui reproduit l'alternance grande boucle, petite boucle mais qui ne respecte ni la grandeur ni la direction se voit attribuer un point. Si l'alternance n'est pas respectée, ou que la reproduction du modèle est méconnaissable, l'élève n'a pas de point.

Les autres items sont notés selon le même principe de notation : le maximum de point étant attribué à l'élève maîtrisant toutes les demandes, puis la note décroît au fur et à mesure que l'élève ne produit pas telle ou telle autre aptitude.

Les items suivants (2 à 7) évaluent la capacité de l'élève à tracer un trait sans interruption dans les limites imparties. Dans l'item 2 présenté en exemple, l'on demande à l'élève de « montrer le chemin que fera la petite fille pour aller attraper son chat. Vous allez faire un trait avec votre crayon dans le chemin qui est devant la petite fille. Le trait doit rester bien au milieu du chemin. Il ne faut pas toucher les bords et il faut faire le trait d'un seul coup sans s'arrêter, sans lever son crayon. ».

Figure 2: Item 2 de coordination visuo-motrice (NBA1)


Item 2

Au fur et à mesure des items, le chemin devient de plus en étroit ou sinueux.

Le dernier item de la coordination visuo-motrice, l'item 7, suit la même logique. Il figure ci-après. Il faut tracer des traits entre des points noirs. L'évaluateur note que le tracé est effectué sans dépasser certaines limites (avec l'aide d'un transparent).

Figure 3: Item 7 de coordination visuo-motrice (NBA1)

Les capacités motrices ont un réel impact sur l'apprentissage de l'écriture. C'est pourquoi il est nécessaire que les jeunes enfants s'exercent à tracer des cercles inverses aux aiguilles d'une montre, à copier des figures géométriques, des lettres, à réaliser des tracés. En

automatisant cet acte, ils pourront ainsi libérer des ressources attentionnelles qu'ils pourront focaliser sur l'orthographe ou la construction de texte. D'autres facteurs influent directement sur l'acquisition de l'écriture et de l'écriture : par exemple, la discrimination visuelle ou la mémoire sont également de bon indicateur des performances en écriture des enfants.

La mémoire : trois différentes mémoires sont évaluées à travers le test NBA1-T : la mémoire évocatrice, la mémoire visuelle et la mémoire auditive. Comme nous l'avons présenté précédemment, la mémoire de travail est étroitement liée aux apprentissages, qu'il s'agisse d'acquisition de la lecture, de l'écriture ou bien des activités numériques. En fait, cette relation entre activités cognitives de hauts niveaux et mémoire de travail est si étroite que les psychologues cherchent désormais à déterminer les capacités en mémoire de travail afin de les corréler aux résultats, réussites ou échecs des élèves lors des apprentissages scolaires. C'est en 1887 que Joseph Jacobs, un maître d'école anglais, met au point la technique d'empan pour mesurer les capacités de la mémoire à court terme en présentant à ses élèves une liste d'items de longueur variable à retenir et répéter immédiatement. Ce mot est employé par extension de son sens original qui désignait une unité de mesure ancienne égale à la largeur de la main. Depuis, différentes tâches d'empan ont été mises au point. On distingue communément les empans simples des empans complexes, que nous allons traiter de manière successive. Pourquoi distinguer empans simples et empans complexes et à quoi correspondent ces termes précisément ?

On ne peut maintenir en mémoire qu'une quantité limitée d'information, dont le nombre décroît avec le temps sans processus de contrôle tel que l'autorépétition. Les empans simples mesurent la capacité de la mémoire à court terme qui ne requiert qu'un simple maintien de l'information verbale ou visuo-spatiale. Différentes tâches d'empans simples ont été mises en place : verbales, visuelles et spatiales. Après avoir présenté une liste d'items, l'empan correspond au nombre maximal d'items qu'un sujet peut se rappeler sans erreur et dans l'ordre. Ces items peuvent prendre différentes formes, telle que des lettres, des chiffres, ou des mots. Ces empans simples augmentent avec l'âge, pour atteindre une moyenne de 7 (plus ou moins 2) chez l'adulte. De nombreuses études ont cherché à déterminer les causes de l'accroissement de ces empans avec l'âge. Selon une étude de Dempster (1981), il apparaît

que le principal facteur explicatif de cette augmentation est la vitesse d'identification des items : cette vitesse augmente avec l'âge et les mots les plus fréquents sont reconnus plus vite par l'adulte que l'enfant. En fait, avec l'âge, l'information est traitée plus rapidement car l'identification et l'encodage de l'item se font de manière plus efficace. Ainsi le rappel immédiat sera facilité par la libération de ressources attentionnelles nécessaires au maintien de l'information

Le test NBA1-T mesure la mémoire à court terme des enfants *via* deux types de tâches : les tâches d'empan auditif et les tâches d'empan visuel :

- La tâche d'empan auditif consiste à présenter oralement une liste de sept mots que les enfants doivent mémoriser. Après une dizaine de seconde, ils doivent les rappeler en entourant les dessins correspondant sur une feuille où figurent 22 dessins (dont 15 distracteurs). L'empan est alors le nombre maximum d'éléments dont les élèves peuvent se rappeler immédiatement.
- La tâche d'empan visuel suit le même principe : on présente visuellement aux enfants une feuille comportant six formes géométriques. Après 20 secondes d'observation, on cache la feuille et on demande aux enfants d'entourer les dessins qu'ils ont vus.

Un exemple de ces deux tâches est présenté à la page suivante.

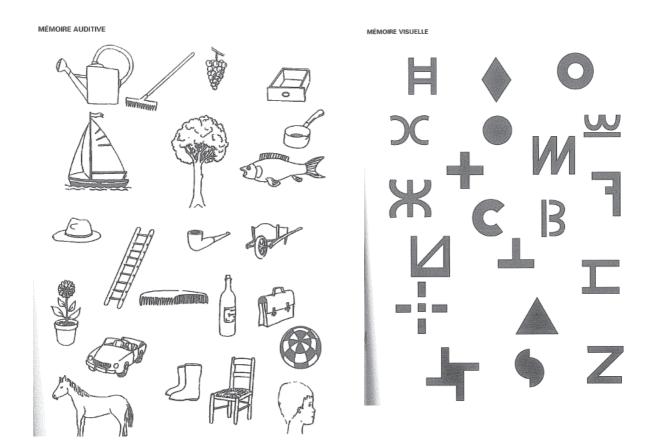


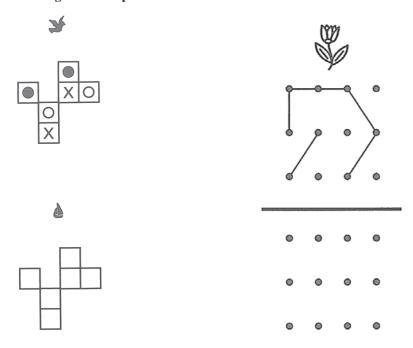
Figure 4 : Items de mémoire auditive et de mémoire visuelle (NBA1)

Alors que dans une tâche d'empan simple on demande à l'élève le maintien puis le rappel de l'information, les tâches d'empan de mémoire de travail, dites complexes, nécessitent parallèlement le traitement d'une autre information. Rappelons que la mémoire de travail n'est pas un système de stockage temporaire mais un système de traitement et de manipulation de l'information. Ainsi, les tâches d'empans complexes se présentent communément comme une double tâche où le sujet doit maintenir une liste d'item en vue d'un rappel ultérieur tout en effectuant une activité concurrente : lecture, résolution de problème, dénombrement... De nombreux psychologues estiment que seules ces tâches d'empans rendent compte des capacités de la mémoire de travail alors que les empans simples n'évalueraient que la mémoire à court terme, dans la mesure où seul le maintien est sollicité. Pour d'autres, au contraire, les activités concurrentes mises en place dans les tâches d'empan

complexes entraveraient l'élaboration de stratégie de maintien de l'information (comme l'autorépétition) et seraient alors un reflet plus fiable de la mémoire à court terme.

Tout comme pour l'évaluation des capacités de la mémoire à court terme, les empans de mémoire de travail peuvent prendre plusieurs formes, par exemple empan de lecture, de comptage ou d'opération.

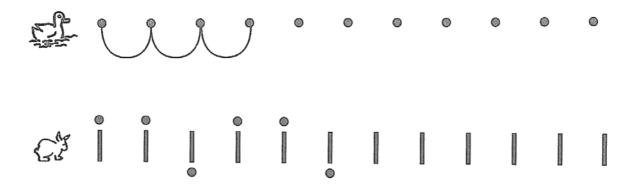
Le test comporte une de ces tâches d'empan complexe. Il s'agit d'une tâche d'empan évocatrice consistant à présenter une liste de six mots que les enfants doivent mémoriser. Après une dizaine de secondes, ils doivent les rappeler en les dessinant sur une feuille. Ici, les enfants doivent effectuer une tâche de mémorisation et une tâche de traitement de l'information. Pour des adultes, il s'agit d'une tâche d'empan simple, mais pour des enfants, cette tâche s'avère très coûteuse cognitivement à réaliser. C'est pourquoi il s'agit bien de mesurer la mémoire de travail.


Bien entendu, il ne s'agit que d'exemples de mesure d'empan, et il en existe bien d'autres. Récemment d'ailleurs, avec la vulgarisation de l'informatique, une nouvelle génération de mesure d'empan a été élaborée. Ces tests, administrés par ordinateur, possèdent plusieurs avantages : étant donné que le rythme d'apparition de chaque item peut être maîtrisé, ils permettent de contrôler la durée et la difficulté du maintien et du traitement de l'information.

Les tâches d'empan complexes en mémoire de travail se révèlent être de bons predicteurs des performances cognitives (Alloway et Gathercole, 2004). Elles le sont également pour les performances scolaires. Une étude publiée en 2005 par Lépine, Barrouillet, et Camos dans *Psychonomic Bulletin and Review* a évalué le pouvoir explicatif des empans en mémoire de travail sur les performances scolaires d'enfants de sixième. Plus précisément, la mémoire de travail est mesurée par deux types instruments et les performances scolaires par les scores individuels aux évaluations nationales. Au terme de leur étude, les auteurs indiquent que les empans en mémoire de travail, particulièrement l'empan de lecture de lettre, sont prédictifs des performances scolaires.

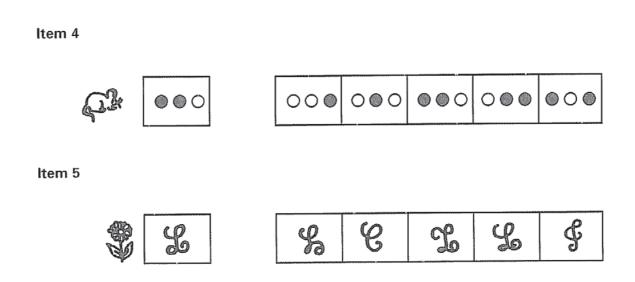
<u>L'organisation spatiale</u>: Pour écrire et pour lire, un élève doit acquérir certaines compétences : traduire la pensée ou le langage oral en texte, connaître l'orthographe des mots, faire correspondre phonème et graphème, et, enfin, utiliser le l'espace de la page. Les capacités spatiales interviennent dans la production de l'écriture et dans la lecture à plusieurs niveaux, lors de l'inspection des marges autour du texte, pour les intervalles entre les lignes et les espacements entre les mots. Tous ces éléments qui ne sont pas du texte et qui ont trait à la disposition du texte sur une feuille sont traités inconsciemment. L'identification des lettres elle-même relève du spatial, et non seulement de l'orthographe. C'est le cas pour les points des i et des j, les barres des t, les doubles lettres, ou encore les accents sur les voyelles.

Afin de mesurer l'organisation spatiale des élèves, deux séries d'items sont présents dans le test. Dans les premiers exercices (2 items) les élèves doivent reproduire un modèle en mettant des croix, des ronds pleins ou des cercles. Dans la seconde série d'items (3 items), les élèves doivent reproduire un modèle mais, cette fois, en traçant des lignes entre des points noirs. Une illustration de chacune de ces deux séries est donnée ci-après.


Figure 5: Items d'organisation spatiale

Les tracés obliques (les croix dans le premier cas et les diagonales dans le second) sont les plus difficiles à tracer pour les enfants. Il s'agit d'un point essentiel pour l'évaluation de cet item.

Le rythme : la langue française, telle une mélodie, possède sa propre organisation rythmique déterminée oralement par l'organisation des pauses (les silanes), la durée des syllabes (croches ou blanches) et l'accentuation. Dans le test, il s'agit d'évaluer le rythme sous sa forme visuelle, et non auditive. Lors des exemples, une structure rythmique apparaît, avec des points ou des « vagues » organisés en séquence, qui se répètent. Les élèves doivent alors identifier et comprendre l'organisation et la régularité en le décomposant de la structure rythmique avant d'être en mesure de la restituer. Dans une première série d'items, les motifs qui se répètent à intervalles réguliers sont des vagues, structurés grâce aux points repères. Dans la seconde partie, il s'agit de points sur des barres. Au fur et à mesure, le rythme devient de plus en plus complexe, comme le montre ces deux exemples.


Figure 6: Items de rythme (NBA1)

Les élèves doivent continuer de relier chaque point par une vague, De la même manière, on demande aux élèves de mettre des points sur les bâtons « comme c'est commencé ».

<u>La discrimination visuelle</u>: lors d'une activité de discrimination visuelle, l'élève doit déterminer si deux stimuli présentés simultanément sont identiques ou différents. Il est important que le modèle reste sous les yeux de l'enfant, car sinon il ne s'agit plus d'une tâche de discrimination visuelle, mais de reconnaissance. L'élève doit comparer les différents dessins pour choisir celui qui est identique au modèle. Là encore, un exemple est présenté.

Figure 7: Items de discrimination visuelle (NBA1)

Les modèles présentés aux élèves sont diversifiés et de complexité variable. Ils se distinguent par la taille (certains items comportent deux, trois ou quatre éléments), la forme (chiffres, lettres manuscrites, lettres majuscules, minuscules) ou l'orientation.

La capacité des élèves à discriminer des figures inversées est considérée comme une épreuve prédictive de l'apprentissage de la lecture. Dans le test NBA1-T, par exemple, on demande à l'élève de reconnaître le "963" parmi 369 / 693 / 698 / 963 / 369. La difficulté pour l'élève est de discriminer le 6 du 9, et le 3 du 8. Dans un autre item, on leur demande d'identifier le pseudo-mot « ube » parmi nbe / ebu / ube / ude / eub. Cette fois, ce sont les lettres n et u ainsi que b et d qui prêtent à confusion pour l'élève.

L'objectif des exercices de discrimination visuelle qui s'adressent aux élèves de maternelle (citons en exemple : « Discrimination visuelle MS et GS » de Magdalena, 2000) est de les préparer à voir que les signes graphiques peuvent prendre des formes différentes, et de bien distinguer en particulier ceux qui sont symétriques (p - q; u - n) ou ceux qui se ressemblent beaucoup (O - Q - C). L'élève aura généralement plus de facilités à discriminer des signes graphiques qui se ressemblent lorsqu'on lui explique le processus de transformation qui permet de passer de l'un à l'autre. Par exemple, lorsque l'on ajoute une barre en bas du F pour faire un E : F + = E.

Le tableau suivant récapitule de manière synthétique les tâches demandées aux élèves, en fonction des différents domaines du test NBA1.

Tableau 34: Test initial NBA1-T

Domaines	Tâches	Nombre d'items
Graphisme :	- Continuer l'alternance grande boucle et petite boucle jusqu'au bout de la page, en respectant la proportionnalité, et la direction	- 1 item
coordination visuo-motrice	- Tracer une droite dans les limites imparties, sans interruption - Tracer un trait sinueux dans les limites imparties, sans	- 3 items
	interruption	- 2 items
	- Relier des points par des segments les plus directs possibles	- 1 item
Mémoire	- Evocation : se rappeler de 6 mots présentés oralement puis les dessiner	- 1 item
	- Visuelle : se rappeler de 6 dessins présentés visuellement sur une feuille puis les reconnaître parmi des distracteurs	- 1 item
	- Auditive : se rappeler de 7 mots présentés oralement puis les reconnaître parmi des distracteurs	- 1 item
Organisation spatiale	- Reproduire un modèle composé de ronds pleins, de cercle et de croix	- 2 items
	- Reproduire un modèle composé de traits reliés entre des points	- 3 items
Rythme	- Relier par des vagues des points en continuant le rythme	- 3 items
	- Mettre des points noirs au-dessus ou au-dessous de trait en continuant le modèle	- 4 items
Discrimination visuelle	- Retrouver, parmi des distracteurs, le dessin identique au modèle. Le modèle est un dessin ou une lettre.	- 5 items
	- Retrouver, parmi des distracteurs, le dessin identique au modèle. Cette fois, le modèle est plus complexe et se compose et plusieurs lettres ou plusieurs chiffres.	- 5 items

3.3.2.2. Le test intermédiaire

Le test intermédiaire NBA2-T (en annexe) partage une grande majorité d'items en commun avec le test initial. En effet, sur les 37 items que compte le test intermédiaire, 27 sont strictement identiques au premier.

- En graphisme, seul un item a été ajouté, qui consiste à recopier une courte phrase.
- Les tâches de mémoire sont identiques.
- En organisation spatiale, 3 sont identiques au test initial, et les 4 autres sont un peu plus complexes.
- En rythme, la moitié des items sont identiques au premier test, et 5 sont plus complexes.
- Tous les items de discrimination visuelle sont identiques.

Ces 10 items qui ne sont pas commun aux deux tests suivent la même logique mais sont un peu plus complexes, notamment les items de rythme. Le tableau suivant présente les tâches du test NBA2-T.

Il est important de préciser que ce sont les conseillers pédagogiques de circonscription et une équipe de néo-retraités qui ont assuré la passation des tests, et non les professeurs euxmêmes, ce qui permet d'assurer une certaine impartialité.

Tableau 35 : Le test intermédiaire NBA2-T

Domaines	Tâches	Nombres d'items
Graphisme :	- Continuer l'alternance grande boucle et petite boucle	- 1 item
	jusqu'au bout de la page, en respectant la proportionnalité,	
coordination	et la direction	- 1 item
visuo-motrice	- Reproduire une courte phrase, comme « lili joue avec son	
	frère », sans omettre de lettre, d'accent, de point et en	- 2 items
	respectant la taille des lettres et l'orientation du texte.	0 :4
	- Tracer une droite dans les limites imparties, sans	- 2 items
	interruption - Tracer un trait sinueux dans les limites imparties, sans	- 1 item
	interruption	- i ileiii
	- Relier des points par des segments les plus directs	
	possibles	
Mémoire	- Evocation : se rappeler de 6 mots présentés oralement	- 1 item
	puis les dessiner	
	- Visuelle : se rappeler de 6 dessins présentés visuellement	- 1 item
	sur une feuille puis les reconnaître parmi des distracteurs	
	- Auditive : se rappeler de 7 mots présentés oralement puis	- 1 item
	les reconnaître parmi des distracteurs	
Organisation spatiale	- Reproduire un modèle composé de ronds pleins, de	- 1 item
	cercles et de croix	
	- Reproduire un modèle composé de traits reliés entre des	- 6 items
Di Albura a	points	4 :4
Rythme	- Relier par des vagues des points en continuant le rythme	- 4 items - 6 items
	- Mettre des points noirs au-dessus ou au-dessous de trait en continuant le modèle	- o items
Discrimination visuelle	- Retrouver, parmi des distracteurs, le dessin identique au	- 5 items
Dischillingtion visuelle	modèle. Le modèle est un dessin ou une lettre.	- 0 1161113
	- Retrouver, parmi des distracteurs, le dessin identique au	- 5 items
	modèle. Cette fois, le modèle est plus complexe et se	
	compose de plusieurs lettres ou plusieurs chiffres.	

3.3.2.3. Le test final

Le test de fin de CP²⁰ a été élaboré sur la base des épreuves nationales. Ce test, comme les précédents, est de type « papier – crayon », et est passé collectivement au vu de l'importance de l'échantillon et des contraintes temporelles. Il est important de noter que nous avons sélectionné certains items uniquement, ceux qui nous paraissaient les plus pertinents. De plus, nous avons réécrit les consignes de passation et changé les dessins des tests. Bien entendu, ce test n'a pas pour objectif d'appréhender tous les domaines scolaires et cognitifs, mais est destiné à recueillir une mesure des compétences des élèves en français et en

L'outil de collecte d'informations des compétences des élèves aux CP est extrait de la thèse de Thierry Troncin (2005), qui a été testé sur près de 4000 élèves de CP en 2003.

mathématiques et, dans une moindre mesure, en mémoire. Les performances évaluées sont relatives aux aptitudes en français (8 exercices) et en mathématiques (7 exercices).

Le français

La séquence de français comporte 37 items répartis sur 8 exercices, que nous allons présenter brièvement. Il s'agit d'exercices simples et familiers des élèves de cours préparatoire. Trente minutes sont allouées à cette séquence.

Exercice 1 : les 6 premiers items concernent la lecture. Les élèves doivent associer un mot au dessin qui lui est présenté sur son cahier. Ainsi, comme l'illustre l'exemple ci-dessous, l'élève doit entourer le mot « lapin ». Dans le cas présent, le mot à entourer se trouve dans la seconde colonne, ainsi l'élève, s'il lit les mots de gauche à droite, n'aura pas à lire tous les mots suivants. Cependant, dans les autres items, les mots corrects sont parfois dans la dernière ou la pénultième colonne.

Figure 8 : Item de français (test CP)

sapin lapin patin matin pépin

Dans l'exemple ci-dessus, comme tous les mots choisis se ressemblent graphiquement, ce sont des voisins orthographiques, et la tâche d'identification est plus difficile. Lorsque l'on cherche à identifier un mot, plusieurs facteurs peuvent faciliter ou inhiber sa reconnaissance : son voisinage orthographique, sa longueur, sa fréquence lexicale. Plus un mot à de voisins orthographiques, plus la reconnaissance de ce mot au sein de ses voisins sera difficile. De même, si un voisin orthographique à une fréquence lexicale supérieure au mot cible, ceci

freine sa reconnaissance Ainsi, la base *Lexique3*²¹ nous apprend que « lapin » a 8 voisins orthographiques, et que c'est le mot « matin » qui a la plus haute fréquence lexicale. Par conséquent le mot « matin » sera identifié plus rapidement que le mot « lapin ». Cependant, il s'agit ici de mots courts et relativement fréquents, donc facilement lisibles pour des élèves de CP. De plus, l'appariement par voisinage orthographique s'effectue sur la première lettre, et le mot cible se trouve en seconde position, ce qui facilite la tâche de l'élève. Dans les items suivants, les mots ont les mêmes attributs, une fréquence lexicale du mot à reconnaître élevée et un voisinage orthographique se faisant sur la première lettre. Seule la position du mot cible change, pour être parfois à la dernière place, ce qui oblige les élèves à lire tous les mots jusqu'à trouver le bon.

Exercice 2 : cet exercice se compose de 3 items. L'élève doit segmenter les phrases dont tous les mots sont attachés comme celle-ci : « Monpapaaimebienlesbonbonsaucaramel ». Il s'agit pour l'élève d'identifier les éléments qui constituent une phrase. Pour reconnaître les mots, l'élève doit lire la phrase lettre à lettre ou syllabe par syllabe. Ce n'est qu'après quelques hésitations et des retours en arrière que l'enfant sera capable de séparer les mots. Si dans le langage oral, l'identification des frontières des mots est difficile, elle l'est moins à l'écrit lorsqu'il s'agit d'un texte imprimé, les blancs entre chaque élément constituant la frontière entre les mots. Cependant, lorsque l'élève doit écrire, il peut parfois se heurter à des difficultés de cette nature. En effet, il est fréquent qu'un élève écrive plusieurs mots dans une phrase attachée comme « boiteàlettre ». Ainsi, ces items auront pour objectif de mesurer leur capacité à segmenter correctement les mots.

Exercice 3 : dans l'exercice suivant, les élèves doivent identifier le mot qui « ne va pas avec les autres », comme l'illustre cette série de mots : « un éléphant – un pion – un loup – un lion – un écureuil ». En dégageant du sens à ce qu'il lit, l'élève est capable de catégoriser les mots ensemble et d'identifier l'intrus. La seule contrainte est de s'assurer que les mots fassent partie du vocabulaire de base d'un élève de CP, car ici, la lecture ne se contente pas

²¹ Lexique3 est une base de données répertoriant plus de 135000 mots. Elle fournit des informations statistiques, telles que le nombre de voisins orthographiques, les anagrammes et la récurrence des mots dans la langue française. Elle est disponible au lien suivant : http://www.lexique.org/

d'identifier la forme sonore des mots, le signifiant, mais bien le signifié, c'est-à-dire le concept qu'il représente et qui est accessible par la mémoire sémantique.

Exercices 4 et 5 : dans l'exercice 4, il s'agit de reconstituer un mot dont les syllabes ont été interverties. Les items de l'exercice 5 suivent la même logique mais avec un niveau de difficulté accru puisque ce sont les mots d'une phrase qui sont, cette fois, dans le désordre.

L'exercice 6 se rapproche du premier puisque l'on présente une image à l'élève. Cependant, il doit, non plus entourer le mot correspondant parmi des propositions, mais écrire le mot.

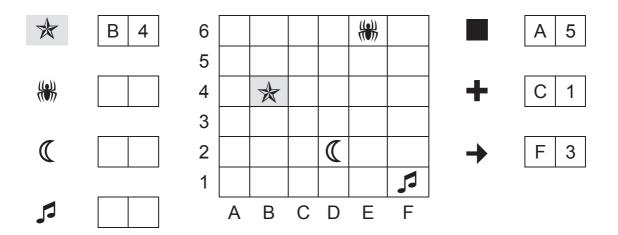
L'exercice 7 consiste en une série de trois dictées de courtes phrases, comme « *J'aime bien les bonbons au chocolat* », ayant pour but de vérifier l'acquisition des règles élémentaires de grammaires et l'orthographe des mots.

Enfin, dans le dernier exercice, on demande aux élèves de finir d'écrire une phrase que l'on a commencée.

Les mathématiques

Tout comme l'épreuve de français, la séquence de mathématique dure trente minutes. Elle est constituée de sept exercices.

Le premier exercice du test en mathématiques est relativement connu des élèves, il s'agit d'une dictée de nombre. Il s'agit de vérifier la connaissance écrite et orale des nombres inférieurs à 100, et plus particulièrement ceux qui posent le plus de problèmes, c'est-à-dire entre 11 et 16, et entre 60 et 99. Dans la dictée sont présents des nombres facilement identifiables (36-49-57-61-100), mais aussi des plus difficiles (14-74-80-93).


Le deuxième exercice consiste à continuer une suite logique de nombres : il s'agit d'une suite croissante simple (25, 26, 27, 28...), décroissante, puis par multiple de 2, de 5 et

de 10. L'élève doit pouvoir comparer les deux premiers nombres pour en déduire une règle qu'il devra appliquer pour continuer.

Dans un troisième exercice de mathématiques, on demande à l'élève d'effectuer une addition qui est posée en colonne. Il s'agit pour l'élève de connaître et d'utiliser correctement les tables d'addition pour calculer une somme. Dans les exercices quatre et cinq, les élèves doivent résoudre un problème. Dans le premier, ils doivent additionner le montant de deux cadeaux, et dans le second, ils doivent déduire le nombre de carottes mangées par un lapin pour déterminer combien il en reste dans le jardin.

Les deux derniers exercices de mathématiques correspondent à du positionnement dans l'espace. Dans le premier (exemple ci-dessous), les élèves doivent déterminer la position et dessiner les objets à partir du codage de chaque élément ; à l'inverse, ils doivent également, à partir de sa position sur le quadrillage, retrouver le code de chaque dessin. Dans le second exercice de ce genre, ils doivent compléter une figure sur un quadrillage par symétrie. Pour réaliser ces deux exercices, les élèves doivent pouvoir se repérer dans l'espace.

Figure 9 : Illustration d'un exercice au test de mathématiques (Test de CP)

Le tableau de la page suivante récapitule l'ensemble des items de français et de mathématiques proposés aux élèves de CP. Il est utile de rappeler que le test de CP intégrait une tâche de mémoire. Elle consistait à mémoriser un récit et à restituer les mots entendus.

Tableau 36: Le test de CP

Domaines	Tâches	Nombre d'items
Français	- identifier un mot parmi ses voisins orthographiques	- 6 items
	- séparer les mots d'une phrase	- 3 items
	- repérer l'intrus parmi une suite de mots	- 6 items
	- reconstituer un mot à partir de syllabes dans le désordre	- 5 items
	- reconstituer une phrase à partir de mots dans le désordre	- 2 items
	- écrire le mot correspondant à l'image	- 9 items
	- écrire trois phrases courtes sous la dictée	- 3 items
	- continuer une phrase	- 3 items
Mathématiques	- écrire des nombres dictés oralement	- 1 item
	- compléter une suite numérique	- 5 items
	- résoudre des additions	- 4 items
	- résoudre des problèmes	- 2 items
	- faire du repérage dans l'espace	- 2 items
Mémoire	- mémoriser un récit et restituer les mots entendus dans	- 1 item
	l'histoire	

Pour conclure cette présentation des instruments de mesure, nous allons maintenant voir le test sonore.

3.3.4. Le test sonore

Dans notre étude, nous chercherons à analyser les relations qui existent entre les capacités cognitives des élèves en grande section de maternelle (mesurées en janvier et juin 2010), les apprentissages en lecture (juin 2011) et les capacités musicales. Nous devons donc collecter des informations relatives au niveau des élèves en musique. Cependant, il n'existe pas de tests mesurant les aptitudes musicales d'enfants de 5 à 6 ans. C'est pourquoi nous avons décidé d'élaborer notre propre test²² avec l'aide d'un professeur de psychologie à l'IUFM de Dijon et spécialisée dans la perception de la musique chez l'enfant. Ce test est disponible en annexe.

Dans le domaine de la cognition auditive, la perception des mots a été largement appréhendée, plus que la perception des sons non-verbaux, comme la musique ou les bruits. Chez les élèves de notre échantillon, de dernière année de maternelle, il est difficile d'évaluer les capacités musicales, d'autant plus que seule la moitié d'entre eux ont suivi le programme

_

²² Le test sonore a été réalisé en collaboration avec Marion Pineau, sur la base de tests sonores existant réalisés par Annie Bachelard et Daniel Coulon.

expérimental. En les interrogeant sur des notions telles que la hauteur, le rythme, les instruments de musique ou le solfège, il est certain que la majeure partie des élèves du groupe témoin n'auraient pas su répondre. Ainsi, il a fallu penser à eux lors de la conception du test, et aux notions que nous voulions évaluer. Réaliser un test sur la perception auditive d'un stimulus non-verbal et non musical nous est apparu comme la meilleure solution. En effet, cela permet d'appréhender la perception auditive de tous les élèves, puisqu'il est accessible à tous. Ainsi, nous pourrons vérifier si le programme d'activité musical accroît la perception auditive des élèves soumis à l'expérimentation.

Le test sonore cherche à évaluer les capacités des élèves à travers cinq types d'épreuve : l'identification, la simultanéité, le couple de son, la chronologie et le codage / décodage. Les items ont été construits selon une même logique : après une écoute de sons, les élèves doivent accomplir la tâche qu'on leur demande. Ces tâches consistes à entourer les dessins correspondant à tous les sons qu'ils ont entendu, seulement ceux qui étaient par pairs, ou bien encore avant ou après tel autre. Seuls les items de codage / décodage revêtent une forme différente. Nous allons décrire brièvement quelques items.

<u>Les tâches d'identification</u> (2 items): comme leur nom l'indique, les tâches d'identification ont pour objectif d'évaluer la capacité de l'élève à identifier la source d'un son. Nous en donnons une illustration en présentant un extrait des consignes de passation du test sonore et de la section correspondante du cahier d'élève.

Encadré 7: Extrait des consignes de passation du test sonore :

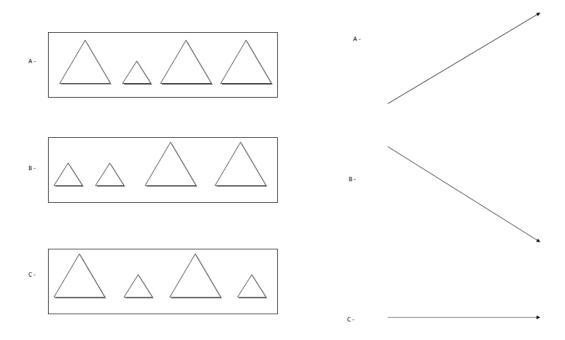
Dire: « Posez vos crayons. Préparez vos oreilles. Je vais vous faire entendre un CD avec 3 sons. Sur votre feuille, il y a plusieurs dessins. <u>Vous devez entourer ceux dont vous avez entendu le bruit</u>. Ecoutez bien, ça va commencer. »

Piste numéro 1 : item 1

« Maintenant, prenez vos crayons et entourez les dessins. Quand vous aurez terminé, <u>ne tournez pas la page</u>. »

Laisser environ 10 secondes. Veiller à ce que les enfants ne tournent pas la page et ne regardent pas les dessins du prochain item.

Figure 10 : Extrait du cahier « élève » correspondant à l'item 1.


Les tâches de simultanéité (1 item): trois sons « mélangés » sont diffusés. Pour répondre convenablement à cet item, l'élève transitera par plusieurs étapes. Tout d'abord, il doit être en mesure de discriminer les sons les uns par rapport aux autres. Ensuite, il va les identifier, savoir à quoi ils correspondent et s'en faire une image mentale. Enfin, il doit les mémoriser, se les rappeler puis entourer les dessins qui correspondent. Cette tâche complexe est très difficile pour un enfant de cet âge.

<u>Les couples de sons</u> (2 items): ce domaine comprend trois items. Sur les deux premiers items, on demande à l'enfant de se rappeler quels sont les sons qui étaient diffusés en même temps. Lors du dernier, on lui demande cette fois quel est le son qu'il a entendu après un autre.

<u>La chronologie</u> (2 items): deux différents items mesurent la chronologie. Dans le premier, l'enfant doit se rappeler les sons dans l'ordre où il les a entendu puis noter 1, 2 et 3 sous les dessins correspondant. Dans le second item de chronologie, on lui demande ce qu'il a entendu juste avant le chat.

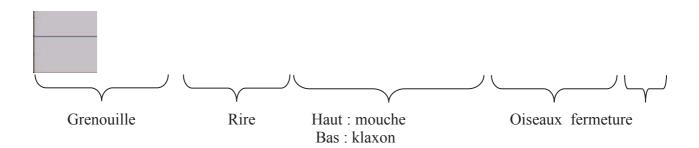
<u>Le codage – décodage</u> (4 items): dans les items de codage-décodage, on demande aux enfants de choisir, parmi trois propositions, le codage qui correspond au stimulus sonore que l'on vient de leur présenter. Au préalable, on prend soin de leur expliquer en quoi consiste l'exercice, en prenant un exemple. Dans le premier item du domaine, il s'agit du volume (fortfaible), un grand triangle représentant un son fort, et un petit triangle représentant un tout petit son.

Figure 11 : Items de codage-décodage

Dans l'exercice suivant, les élèves doivent déterminer si le signal sonore entendu va crescendo, decrescendo, où s'il est stable. Ces deux items sont illustrés à la figure précédente. Les deux derniers items (non illustrés ici) codent la longueur d'une note et un rythme.

Le tableau ci-dessous récapitule l'ensemble des items du test sonore.

Tableau 37: Le test sonore


Domaines	Tâches	Nbre	Piste
		d'Items	
Identification	- Identifier les dessins correspondants aux sons entendus parmi des distracteurs (3 sons entendus)	2	1
	- Même tâche mais sans support visuel		2
Simultanéité	- Retrouver les dessins correspondants aux sons entendus simultanément parmi des distracteurs. Ces sons sont tous « mélangés ».	1	3
Couple de sons	- Déterminer le couple de sons - Déterminer les deux couples de sons	2	4
			5
Chronologie	- Identifier l'ordre dans lequel des sons ont été entendus (3 sons)	2	6 7
	- Déterminer le bruit avant le chat		
Codage - décodage	- Entourer la série de triangles qui représente ce que le musicien a joué (hauteur)	4	8
	- Entourer la flèche qui représente ce que le musicien a joué (crescendo)		9
	- Entourer la série de traits qui montre ce que le musicien a joué (longueur de la note)		10 11
	- Entourez le numéro du rythme qui est le même que le		12
	modèle entendu auparavant (rythme)		13

Lors de la construction des items (réalisée avec le logiciel Audacity), une attention particulière a été portée sur les aspects techniques (le volume sonore, les sons, la stéréo...). Lorsque l'on entend un bruit, le processus de cognition cherche à attribuer une signification au son. Afin de faciliter le travail cognitif que les élèves devront mobiliser pour répondre à ce test, nous avons sélectionné uniquement des bruits qui ont un sens et qui sont facilement identifiables pour les élèves : un rire d'enfant, le ronronnement d'un moteur, une mouche qui vole, des oiseaux qui chantent... En effet, si le stimulus sonore est un son d'instrument de musique, toutes les ressources attentionnelles des élèves vont se focaliser sur l'identification de l'instrument, qu'ils vont chercher à visualiser, oubliant d'écouter les autres sons et de les mémoriser. C'est pourquoi, chaque extrait sonore est un son du quotidien.

Afin de ne pas biaiser les résultats, tous les extraits sonores d'une même piste sont de longueur égale. Par exemple, dans le second item, les enfants entendent trois sons successifs : un cheval, une poule, puis une ambulance. Chacun de ces sons dure 4 secondes. Les élèves auraient plus de facilités à se souvenir du son qui dure le plus longtemps. De même, chaque item a été lissé : le volume est constant et ne diffère par d'un extrait à l'autre.

C'est à partir d'échantillons sonores récoltés sur une banque de sons libres de droit sur Internet (www.universal-soundbank.com) que nous avons créé nos items. Dans l'exemple cidessous, chaque extrait dure en moyenne 4,5 secondes (grenouille, rire et oiseaux). Seuls les deux sons simultanés (mouche + klaxon) durent plus longtemps pour permettre aux élèves de les dissocier puis de les identifier.

Figure 12 : Spectre de la piste 4 (item 4)

Des opérations techniques ont été effectuées lors du traitement des échantillons sonores. Au début de chaque piste une fondue d'ouverture permet d'augmenter progressivement le volume afin de ne pas « agresser » les oreilles des élèves. Le procédé inverse, la fondue de fermeture, permet de diminuer progressivement le volume pour terminer la piste en douceur. Ces mêmes techniques de fondue permettent, par exemple, une meilleure transition entre les rires des enfants et le bruit de la mouche qui vole. Les sons ont été ajustés afin qu'ils soient tous au même niveau sonore et qu'il n'y ait pas d'effet de saturation.

Outre la qualité « pédagogique » de nos épreuves, une attention particulière a été portée à la qualité sonore des items. Cette qualité audio dépend essentiellement de trois critères : la vitesse, le format et le stéréo. Les paramètres de tous nos items sonores sont les suivants :

- La résolution est de 32 bits, ce qui permet de réaliser des opérations complexes, de superposer des sons sans craindre de perte de qualité.
- La fréquence d'échantillonnage est de 44,1 kHz, ce qui correspond par exemple à la fréquence utilisée pour les enregistrements de CD audio. Les ondes produites par tous sons se propagent dans l'air par variation de la pression. Ces variations font vibrer une petite membrane située dans l'oreille interne qui transmet alors ce signal au cerveau²³. Avec une fréquence de 44,1 kHz, ce sont 44100 ondes à la seconde qui vont parvenir à l'oreille, soit une qualité de son optimale.
- Certains des items sont diffusés en stéréophonie, principalement lorsque plusieurs sons sont émis en même temps. Lors de la présentation des items, deux haut-parleurs sont chargés de transmettre le signal sonore. Afin de faciliter la tâche de différenciation pour les enfants, nous dissocions les sons pour qu'ils soient perçus différemment : le croassement de la grenouille est émis par le haut-parleur gauche tandis que le miaulement du chat est émis à droite par exemple.

²³ Nous renvoyons à la section 1.3.1.1. (partie 2) consacrée à la psychoacoustique pour plus de détails.

Conclusion de la partie II

Parmi les diverses interventions qui peuvent être mises en œuvre pour soutenir la réussite scolaire des élèves du primaire, cette partie s'est intéressée à l'enseignement musical.

Une analyse pluridisciplinaire permet de définir l'enseignement musical, ses finalités, son fonctionnement et la manière dont il est réalisé au primaire aujourd'hui en France. Une approche historique souligne l'évolution des objectifs et des méthodes de l'éducation musicale jusqu'à son émergence en tant que discipline. L'apprentissage musical est complexe, relevant tant de l'inné que de l'acquis, et se déroulant à la fois explicitement dans le cadre d'enseignements structurés, et implicitement, par l'écoute musicale. Surtout, notre analyse montre qu'au primaire, les objectifs du Ministère, non accompagnés par des formations adaptées pour les enseignants, se heurtent à des pratiques enseignantes musicales sinon insuffisantes, du moins très hétérogènes. Il est alors pertinent de développer une intervention musicale au cycle primaire.

Les travaux des psychologues cognitivistes, reposant sur la méthode expérimentale, montrent que la pratique d'activités musicales contribue au développement des capacités cognitives des enfants. Elle permettrait notamment d'accroître la mémoire et l'attention, les capacités spatio-temporelles et même selon certains, le QI. Plus encore, les activités musicales auraient un effet sur les habilités langagières, mathématiques, plus largement, sur les performances scolaires. Ces travaux reposent néanmoins sur des échantillons réduits et sont pour la plupart réalisés en dehors du contexte éducatif français, ce qui nous incite à mener notre propre expérimentation.

Nous empruntons aux psychologues la méthode expérimentale, mais la répliquons à plus grande échelle, pour mesurer l'impact d'un programme spécifique de musique réalisé en dernière année de maternelle, d'une part sur les capacités cognitives des élèves, et d'autre part sur leurs performances scolaires subséquentes au cours préparatoire. En suivant une méthodologie rigoureuse, nous construisons par randomisation un groupe de traitement et un groupe de contrôle. Nous élaborons des instruments de mesures pour recueillir des

informations sur les caractéristiques socioéconomiques et scolaires des élèves, sur leurs performances musicales, cognitives et scolaires. Nous présentons les résultats de notre expérimentation dans la partie suivante.

PARTIE 3 : LES EFFETS DE L'EXPÉRIMENTATION MUSICALE SUR LES CAPACITÉS COGNITIVES ET LES COMPÉTENCES SCOLAIRES

Dans la seconde partie de cette thèse nous avons montré, à travers une revue de littérature essentiellement empruntée à la psychologie expérimentale, que la pratique musicale avait un impact sur le développement des capacités cognitives : les enfants qui participent à des activités musicales accroissent leurs scores de Q.I, de capacités spatio-temporelles, de mémoire et même leurs notes scolaires, plus que les autres enfants ne bénéficiant pas de ce genre de programme. Ces résultats nous ont encouragé à réaliser notre propre expérimentation dont nous avons présenté précédemment la méthodologie. Nous allons maintenant vérifier si, et dans quelle mesure, la pratique d'activités musicales en grande section de maternelle peut accroître les capacités cognitives des élèves, mais aussi leurs performances scolaires.

Dans le premier chapitre, nous allons présenter l'échantillon de notre étude, notamment les caractéristiques sociodémographiques et scolaires des élèves. Nous verrons si le tirage aléatoire a permis d'obtenir deux groupes, témoin et expérimental, comparables quant à leurs caractéristiques. Nous présenterons ensuite les résultats bruts obtenus par les élèves aux différents tests de mesure des capacités cognitives (le test initial NBA1 et le test intermédiaire NBA2), des performances scolaires (français et mathématiques) et musicales.

Dans un second chapitre nous nous attèlerons à mesurer l'impact des caractéristiques individuelles et scolaires sur les performances des élèves. Nous étudierons successivement l'effet de ces variables sur les cinq capacités cognitives mesurées à l'aide du test initial et du test intermédiaire, la mémoire, le rythme, le graphisme, la discrimination visuelle et l'orientation spatiale. Nous analyserons également l'influence des caractéristiques des élèves sur leurs capacités musicales. En dernier lieu, nous étudierons l'effet de ces variables sur les performances de français et de mathématiques à la fin du cours préparatoire.

Le dernier chapitre est consacré à l'évaluation de l'expérimentation. Nous chercherons à savoir si le programme d'activité musicale proposé aux élèves de grande section de maternelle a un impact sur le développement de leurs capacités cognitives et sur leurs apprentissages scolaires ultérieurs. Nous mobiliserons des méthodes originales, comme l'analyse de différence de différences qui permet d'isoler les effets propres du traitement

expérimental par rapport aux progressions naturelles des élèves, qui sera validée par un modèle de réponse à l'item. Enfin, le modèle d'Heckman permettra de vérifier la présence d'un biais de sélection qui pourra être corrigé par l'introduction de l'inverse du ratio de Mills dans nos analyses.

Chapitre 1 : Le cadre général de l'analyse : présentation de l'échantillon et des données mobilisées

L'objectif de ce premier chapitre est de présenter les données recueillies par notre recherche. Nous verrons quelles sont les principales caractéristiques des élèves qui composent notre l'échantillon, ainsi que la répartition des élèves dans les deux groupes : témoin et expérimental. Nous décrirons également les résultats des élèves aux différents tests, ainsi que les relations qui les unis, la validité des tests et la construction de scores globaux.

1.1. Les caractéristiques des élèves

L'échantillon de notre expérimentation se compose de 480 élèves de grande section de maternelle, scolarisés dans 31 écoles maternelles ou primaires de Haute-Savoie. Sur la base du volontariat, les 46 classes participant à l'expérimentation sont issues de zones défavorisées où une proportion d'élèves non négligeable présente des difficultés scolaires. La répartition des élèves par groupe s'est faite de manière randomisée avec 53% des élèves (soit 254 enfants) dans le groupe « témoin » et 226 élèves dans le groupe « musique ». Les élèves du groupe témoin suivent un enseignement musical classique, tandis que les élèves du groupe expérimental bénéficient d'un programme musical aménagé : 2 heures hebdomadaires reparties en 4 séances de 30 minutes chacune. Nous allons maintenant détailler la composition de l'échantillon et présenter par la suite les résultats au test initial de janvier 2010 en fonction de certaines caractéristiques individuelles.

1.1.1. Les caractéristiques individuelles de l'élève

Le tableau suivant présente la répartition des élèves de l'échantillon en fonction de cinq caractéristiques : le genre, le pays de naissance, l'année de naissance, le mois de naissance et la durée de scolarisation en maternelle. L'échantillon se compose à part sensiblement égale de filles et de garçons : 50,4% des élèves sont des filles contre 49,6 % de

garçons. Les élèves de l'échantillon sont en grande majorité à l'heure, avec 92,3% des effectifs. Une part négligeable des élèves a effectué moins de trois années de maternelle (3,7%). Ils sont tout aussi peu nombreux à avoir été scolarisés quatre années à l'école maternelle (4%). Enfin, notons que 5,1 % des élèves de notre échantillon sont nés dans un pays étranger.

Tableau 38 : Caractéristiques individuelles des élèves de l'échantillon

Caractéristiques de l'élève :		N	Pourcentage
Sexe:	Garçon	238	49,6
	Fille	242	50,4
Pays de naissance :	France	430	94,9
	Etranger	23	5,1
Année de naissance :	2003	5	1,1
	2004 « à l'heure »	450	97,8
	2005	5	1,1
Mois de naissance :	Janvier	27	5,9
	Février	52	11,3
	Mars	37	8,0
	Avril	37	8,0
	Mai	37	8,0
	Juin	42	9,1
	Juillet	43	9,3
	Aout	29	6,3
	Septembre	38	8,2
	Octobre	40	8,7
	Novembre	47	10,2
	Décembre	32	6,9
Scolarisation en maternelle	1 année	3	0,8
	2 années	11	2,9
	3 années 4 années et plus	347 15	72,3 4

1.1.2. L'élève et sa famille

Les caractéristiques professionnelles des parents ayant un impact avéré sur les performances scolaires, nous avons recueilli cette information durant l'expérimentation. La répartition des parents selon leur catégorie socioprofessionnelle est reportée au tableau en annexe. Un premier trait marquant est la forte proportion de pères ouvriers et de mères inactives ou au chômage. En effet, 39,2% des élèves ont un père ouvrier (qualifié, non qualifié et agricole confondus) et ils sont près de quatre fois moins nombreux à être enfants de cadre. La proportion d'élèves dont le père est inactif ou chômeur est de 5,6%, proportion s'élevant à 34,7% pour les mères.

Au regard des statistiques nationales de l'INSEE, le pourcentage de parents agriculteurs, cadres et employés ne diffère pas. Nous notons néanmoins une différence conséquente pour les professions intermédiaires et les ouvriers. En France, 13,6% des hommes et 12,7% des femmes se classent dans la catégorie des professions intermédiaires, contre 22% des pères et 19% des mères de notre échantillon. De même, nous notons une surreprésentation des ouvriers, puisqu'au niveau national ils représentent 21,6% des hommes et 4,7% des femmes. A l'inverse, seul 2,8% des hommes et 3,1% des femmes des femmes se déclarent au chômage, alors qu'au premier trimestre 2010, le taux national est de 9,5%. *A contrario*, nous remarquons que 32,4% des femmes de notre échantillon se classent dans la catégorie « autre », définie comme celle des femmes au foyer, à la recherche d'un premier emploi ou encore étudiantes, alors que ce chiffre n'excède pas 18% au niveau national pour les femmes. Seulement 2,8% des hommes de notre échantillon sont dans cette situation, alors que les statistiques nationales s'élèvent à 14% pour les hommes.

Il est essentiel de rappeler que près d'un tiers des établissements de l'expérimentation sont classés EP, ce qui concerne 4 circonscriptions sur 9. Les deux tiers restants sont situés en majorité dans des quartiers défavorisés. Ainsi, la nature défavorisée du terrain de l'expérimentation contribue à expliquer la représentation massive des mères au foyer et des pères ouvriers. De même, si seulement 5% des élèves sont nés dans un pays étranger, 35%

parlent une autre langue que le français à la maison. Parmi eux, 32,2% sont bilingues, et 2,4% parlent exclusivement une langue étrangère avec leurs parents (voir tableau XX en annexe).

L'INSEE indique que 74% des adultes parlent uniquement le français avec leurs enfants et qu'ils sont 18% à communiquer dans deux langues. Ainsi, nous constatons que l'usage d'une langue étrangère est plus commun dans notre échantillon. Il est important de noter que 2,4% des enfants de notre étude ne parlent qu'une langue étrangère à la maison, avec leurs parents. Il s'agit vraisemblablement de famille composée de deux parents nés et élevés à l'étranger puisque, comme le révèle l'Insee, 45% des adultes nés et élevés hors de la métropole ne parlent exclusivement qu'une autre langue que le français avec leurs enfants. Dès lors que l'un des deux parents est né en France et qu'il a reçu son éducation en France, alors la langue d'origine sera utilisée de manière occasionnelle. Ainsi, nous supposons qu'environ 35% des enfants de l'échantillon ont au moins un de leurs parents issu de l'immigration, principalement turque et magrébine.

Enfin, en ce qui concerne la structure familiale, l'INSEE indique que 11% des enfants de 4 à 6 ans sont élevés par des mères seules ; 9,8% des élèves de notre échantillon sont dans cette situation. La grande majorité d'entre eux vit avec leurs deux parents (84,2%), et seuls 2% vivent au sein d'une famille recomposée.

1.1.3. L'élève à l'école

Si seuls 15,8% et 20,8% des élèves fréquentent respectivement l'accueil le matin et la garderie le soir, ils sont près de 45% à manger à la cantine le midi. Des tableaux croisés nous permettent d'observer le choix des parents en fonction de certaines de leurs caractéristiques. Nous constatons alors que les variables n'exercent pas toutes une influence égale sur la fréquentation des lieux scolaires. En effet, la typologie du ménage, par exemple, ne semble pas affecter pas les choix des parents. En revanche, la profession de la mère est déterminante, dans la mesure où les élèves dont la mère est cadre ou occupe une profession dite intermédiaire sont plus susceptibles de fréquenter l'accueil, la cantine et la garderie ; et que

97,8% des enfants dont la mère ne travaille pas ne fréquentent pas la garderie le soir. Nous observons également que la totalité des enfants qui parlent exclusivement une langue étrangère à la maison avec leurs parents ne fréquentent pas la garderie du soir, et que 96,9% des enfants qui parlent plus souvent une autre langue que le français ne la fréquentent pas non plus. Les fréquences sont similaires pour la cantine et l'accueil. Ainsi, la profession de la mère et la nationalité d'origine des parents sont les deux variables qui affectent le plus les choix de garde des parents.

1.1.4. Groupe témoin et groupe expérimental

Le tableau ci-dessous présente tout d'abord la répartition des effectifs selon les groupes, aux trois temps de mesure. Initialement, nous disposions d'un échantillon total de 480 élèves. A la fin de la grande section, l'effectif s'est réduit à 443 élèves, à cause des absences le jour du test. L'effectif est de 407 élèves au CP car à cette même raison s'ajoute le fait que certains élèves ont changé d'école.

Tableau 39 : Répartition des effectifs selon les groupes d'expérimentation

Groupes	Début GS	Fin GS	CP
Groupe témoin	254	237	210
Groupe expérimental	226	206	197
Total	480	443	407

La répartition des élèves selon les deux groupes de l'expérimentation, à savoir groupe « témoin » et groupe « expérimental » s'est effectuée de manière aléatoire. La randomisation doit permettre, en principe, d'obtenir deux groupes comparables, tant du point de vue des caractéristiques personnelles, que des scores au test initial. Nous allons maintenant décrire brièvement la composition des deux groupes d'élèves pour s'assurer de la comparabilité des groupes.

Tableau 40 : Répartition des élèves du groupe témoin et expérimental selon le sexe et le pays de naissance

Variables		Groupe témoin	Groupe expérimental
Cava	Fille	126	115
Sexe	Garçon	126	111
Dava da najasansa	France	219	210
Pays de naissance	Etranger	12	11
	1 ^{er}	58	58
Trimestre de	2 nd	69	47
naissance	3 ^{ème}	65	45
	4 ^{ème}	45	74
Genre du professeur	Femme	235	188
Genre du professeur	Homme	19	38
Quelques	Père ouvrier	63	104
professions des	Mère ouvrière	13	32
parents	Mère cadre et intermédiaire	77	37
Pourcentage d'élève	Moins de 50%	75	113
par classe	Plus de 50%	179	113

Les deux groupes comportent autant de filles que de garçons, et autant d'élèves nés en France ou à l'étranger. De la même manière, le nombre d'élèves fréquentant l'accueil, la cantine et la garderie est similaire. Hormis cela, il est important de préciser trois points :

- Premièrement, parmi les 18 élèves pratiquant une activité musicale en dehors de l'école, seuls 3 ont été affecté au groupe musique. Cependant, ce léger déséquilibre ne devrait pas nuire à la qualité des analyses puisqu'il s'agit d'un petit nombre d'élève (18 sur 480, soit moins de 4%).
- Deuxièmement, les professions des parents ne sont pas réparties de manière similaire selon les groupes. On note une proportion plus importante de père et mère cadre ou occupant une profession dite « intermédiaire » chez les élèves du groupe témoin. A l'inverse, les enfants du groupe expérimental ont plus fréquemment un parent ouvrier ou une mère au foyer que leurs homologues du groupe témoin.
- Enfin, les élèves du groupe témoin sont, en moyenne, à peine plus âgés que les élèves du groupe expérimental. Cependant, cette différence reste minime, puisqu'elle n'excède pas un mois. En effet, sur les 32 élèves nés en décembre, 26 sont affectés au groupe musique, et 6 au groupe témoin.

Ainsi, deux éléments pèsent défavorablement sur les élèves du groupe musique : non seulement ils sont, en moyenne, plus jeunes d'un mois ; mais ils sont également plus nombreux à être enfants d'ouvrier, et moins nombreux à être enfants de cadre ou de profession intermédiaire. Nous avons vu précédemment (voir partie 1) l'importance de ces deux variables sur les performances scolaires des enfants, notamment à l'aide des données du Panel 1997. En effet, rappelons que la CSP des parents et tout ce qu'elle véhicule, c'est-à-dire le niveau d'instruction, le revenu, les conditions de vie, l'inactivité, le lieu de résidence, etc. a un impact sur la scolarité des enfants. De même, nombreuses sont les recherches en psychologie qui ont démontré la relation causale entre la maturité cognitive et l'âge de l'enfant. Cette différence de maturité cognitive, quantifiée à travers le mois ou le trimestre de naissance, se répercute sur les performances scolaires. Cette variable joue un rôle d'autant plus considérable lorsqu'il s'agit d'évaluer les savoirs chez les plus petits, comme c'est le cas ici.

Nous cherchons désormais à vérifier s'il existe une relation de dépendance entre l'appartenance au groupe expérimental de notre échantillon et un ensemble de variables socioéconomiques et scolaires. En d'autres termes, la répartition aléatoire par tirage au sort at-elle réparti les élèves de manière similaire dans le groupe témoin et le groupe expérimental en fonction de leurs caractéristiques individuelles et scolaires? Le tableau suivant fait part des coefficients de la régression logistique binaire. Cette analyse statistique permet d'obtenir la régression de notre variable dichotomique dépendante, ici l'appartenance au groupe musique, en fonction de l'ensemble des variables socioéconomiques et scolaires, telles que le genre de l'élève, son pays de naissance et la langue parlée à la maison, son trimestre de naissance, la profession des parents, mais aussi la composition des classes.

Dans ce modèle, le R² de Nagelkerke est de 0.235. Il explique à hauteur de 23,5% la variance de notre variable. Le « pourcentage global » s'élevant à 68% nous indique que le modèle classe correctement les individus dans 68% des cas.

Tableau 41 : Probabilité d'appartenir au groupe musique selon les caractéristiques socioéconomiques et scolaires.

Variables		В	E.S.	Wald	Signif.	Exp(B)
Sexe (réf : garçon)	Fille	,159	,207	,590	,442	1,172
Trimestre de	Premier trimestre	-,077	,257	,091	,763	,926
Naissance	Second trimestre	-,778	,245	10,119	,001	,459
(réf: 4 ^{ème})	Troisième trimestre	-,930	,287	10,488	,001	,395
Pays de naissance	Né en France	,459	,410	1,252	,263	1,582
Langue parlée	Parle Français	-,111	,240	,215	,643	,895
Pratique	Activité musicale	-1,009	,665	2,301	,129	,364
Retard	A l'heure	1,173	,567	4,285	,038	3,232
Genre du prof.	Professeur : femme	-,940	,333	7,960	,005	,391
Cours	Cours multiple	-,450	,324	1,928	,165	,637
Cours	Artisan, commerçant	,329	,420	,612	,434	1,389
Profession du	Ouvrier	,754	,314	5,777	,016	2,125
Père	Cadre	,427	,455	,880	,348	1,532
(réf : ss activité)	Inter., employé	,102	,332	,095	,758	1,108
Profession de	Cadre, inter.	-,577	,311	3,428	,064	,562
La mère	Employée	-,148	,262	,320	,571	,862
(réf : ss activité)	Ouvrière	,728	,397	3,352	,067	2,070
0/ 1 1	Moins de 50 %	1,186	,311	14,598	,000	3,275
% de la classe	Constante	-,888	,650	1,864	,172	,411

Au vu de ces résultats, nous constatons que la plupart des variables introduites dans le modèle n'exercent pas une influence statistiquement significative sur la probabilité d'appartenir ou non au groupe expérimental. En effet, on observe que le genre, le pays de naissance, la langue parlée à la maison, la pratique d'une activité musicale en dehors de l'école, ou le fait d'être scolarisé dans une classe à cours multiple n'affectent pas les « chances » d'appartenir au groupe musique. Certaines variables ont néanmoins une influence significative. La régression montre en effet que le tirage aléatoire a classé moins d'élèves du second et troisième trimestre (B = -0,78 et -0,93 ; p < 0.01) dans le groupe expérimental, le rapport de cote étant de 0,46 et 0,4 respectivement. Par ailleurs, on note que les élèves dont le professeur est une femme (B = -0,940, p < 0.05) sont moins fréquemment présents dans le groupe musique, le rapport de cote étant de 0,39, c'est-à-dire que ces élèves ont 61% de chance de moins d'être dans ce groupe par rapport aux élèves dont le professeur est un

homme. Concernant la profession du père, il apparaît que les élèves dont le père est ouvrier (B = 0,75, p <0.01) ont plus de probabilité d'appartenir au groupe expérimental, le rapport de cote étant de 2,1, équivalant à une augmentation de 110% de chance par rapport à un élève dont le père est sans activité. On constate également, toutefois à la frontière de la significativité (p = 0.06), que les élèves dont la mère est cadre ou profession intermédiaire ont une probabilité plus faible d'appartenir au groupe expérimental, contrairement aux élèves dont la mère est ouvrière, qui ont eux, deux fois plus de chance d'appartenir au groupe expérimental. Enfin, nous avons introduit une dernière variable dans ce modèle, intitulée « moins de 50% ». Rappelons que seule une partie des élèves d'une classe ont été tirés au sort pour faire partie de l'expérimentation, que ce soit dans le groupe de traitement ou de contrôle. Par tirage aléatoire, le pourcentage d'élèves par classe retenue pour faire partie de notre échantillon varie entre 13 et 76%. Il est possible que certaines classes soient surreprésentées (celles où il y a plus de la moitié des élèves). Or, si les élèves de ces classes sont plus nombreux dans le groupe musique, cela pourrait biaiser la mesure de l'efficacité de l'intervention (notamment masquer un effet maître). Il s'avère ici que les élèves appartenant à une classe où moins de 50% des enfants participent à l'expérimentation font plus fréquemment partie du groupe expérimental que les autres. Il y a donc un biais potentiel.

Ainsi, selon leurs caractéristiques individuelles ou scolaires, les élèves de notre échantillon n'ont pas tous la même probabilité d'appartenir ou non au groupe expérimental. Ceci peut poser un problème dans la mesure où ces caractéristiques peuvent avoir un impact sur les scores de capacités cognitives et fausser les effets de l'expérimentation. Nous vérifierons s'il n'y a pas de biais car, malgré la méthodologie de l'expérimentation (le tirage aléatoire), il est possible que les résultats des MCO soient faussés.

1.3. Présentation des principaux résultats aux tests pour l'ensemble des élèves

Nous présenterons ici les résultats des 480 élèves de l'expérimentation aux tests cognitifs (NBA1-T et NBA-2T) et au test musical, puis au test de CP.

1.3.1. Le test initial NBA1-T

Avec ce test, il ne s'agit pas d'évaluer l'ensemble des compétences acquises par l'enfant jusqu'à la grande section de maternelle. Les performances évaluées ici sont relatives aux apprentissages transversaux et fondamentaux les plus déterminants pour la poursuite des apprentissages. Le test initial comporte 5 domaines répartis sur 34 items : l'organisation spatiale, le rythme, la discrimination visuelle, le graphisme et la mémoire. La répartition plus précise des items par domaine est rappelée au tableau suivant.

Il faut préciser que tous les items ne sont pas notés sur une même échelle. En effet, le score maximum peut varier de 1 à 6 points. De plus, le nombre maximum de points diffère selon les domaines :

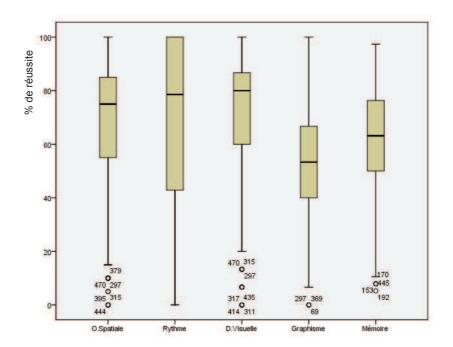
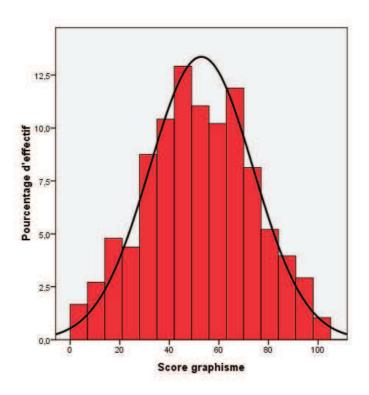

- 14 points maximum pour le rythme
- 15 pour la discrimination visuelle et le graphisme
- 19 pour la mémoire
- 20 pour l'orientation spatiale.

Tableau 42 : Présentation des scores bruts par domaines NBA1

	N	Minimum	Maximum	Décile	Ecart-type	% de réussite
OS	480	0	20	4,8	2,84	68,5
OR	480	0	14	5,29	3,58	67,8
DV	480	0	15	7,02	2,86	72,6
G	480	0	15	3,57	2,66	52,6
M	480	1	18,5	5,38	2,73	63,3

Le tableau précédent présente les scores moyens par domaines pondérés par décile, les écart-types, ainsi que le pourcentage de réussite. Le test NBA a été normalisé sur un échantillon représentatif de la population de telle sorte que les enfants soient équitablement distribués entre les déciles. Les scores moyens pondérés par décile permettent, pour chaque domaine, de situer notre échantillon par rapport à l'échantillon de référence : lorsque le score moyen est égal à 5, les élèves réussissent comme ceux de référence ; ils réussissent mieux lorsque le score est supérieur à 5, et moins bien lorsqu'il est inférieur à cette même valeur. Comme nous pouvons le constater, les scores de réussite diffèrent selon le domaine évalué. Le score moyen le plus faible est obtenu en graphisme. A l'inverse, les élèves semblent plus à l'aise avec la discrimination visuelle.

Sur l'ensemble des domaines, le premier item du test de graphisme est celui qui a été le moins bien réussi, avec un taux de réussite d'à peine 50% (il s'agit de reproduire une succession de grandes et petites boucles). Par contre, le second item enregistre un taux de réussite de 83,5%; il s'agit d'un des items les plus réussis avec les items 3, 4 et 6 de discrimination visuelle (il s'agit de reconnaitre un sigle parmi des distracteurs). Les scores moyens par décile ne sauraient être suffisants pour rendre compte des performances des élèves, car ils ne nous renseignent ni sur la réussite des différents groupes d'élèves, ni sur l'homogénéité des résultats. En effet, derrière un score moyen apparemment semblable peut se cacher une variété importante de résultats. Les scores de discrimination visuelle sont les plus élevés en termes de moyenne et également un des moins dispersés. Cependant, ces données ne correspondent qu'à une tendance centrale et ne permettent pas de prendre en considération la variété importante de résultats, car si certains élèves obtiennent des scores supérieurs à la moyenne, attestant leur maitrise certaines habilités, d'autres éprouvent sans doutes des difficultés. Pour affiner ces observations, nous reportons la boîte à moustache (ou diagramme en boîte) des scores, en pourcentage de réussite, aux différents domaines du test NBA1 au graphique suivant.


Graphique 3 : Boîtes à moustache des scores aux domaines du test NBA1

Le diagramme en boîte indique la dispersion, la symétrie et les valeurs extrêmes des distributions des pourcentages d'items réussis par domaine. Bien entendu, c'est toujours le graphisme qui est le domaine le moins bien réussi, avec une médiane et une moyenne à 53. La moitié des élèves ont donc un score égal ou inférieur à la moyenne. A l'inverse, pour le rythme, 50% des élèves ont un score supérieur ou égal à 78. Cependant, les distributions des scores autour de la tendance centrale ne se font pas toujours de manière symétrique. La distribution est symétrique pour le graphisme, la médiane est centrée dans la « boite » et les moustaches représentants les valeurs adjacentes sont de même longueur. Il en va de même pour le domaine de la mémoire, quoi que l'on puisse observer une légère augmentation de la moustache inférieure. Pour la discrimination visuelle, le rythme et l'organisation spatiale, les diagrammes traduisent une dispersion des valeurs inférieures à la médiane plus grande que celles des valeurs supérieures à la médiane.

Ainsi, les scores de graphisme et de mémoire sont à la fois les plus faibles en moyenne et les moins dispersés. A l'inverse, les moyennes des scores de discrimination visuelle et d'orientation spatiale sont les plus hautes, et les scores figurent parmi les plus étendus. Le domaine le plus discriminant est le rythme, avec une moyenne haute, mais un écart-type important, de près de 32 points.

Plus précisément, le score moyen en rythme est de 68,3 et l'écart-type est de 31,3. Environ 27% des élèves ont obtenu le score maximum en rythme. Les scores de graphisme obtenus par les élèves sont distribués selon la loi normale. Avec une moyenne de 52,6 et un écart-type de 20,9, 68% des élèves ont un score compris entre 31,7 et 73,5.

Graphique 4 : Distribution du pourcentage d'items réussis en graphisme aux tests NBA1

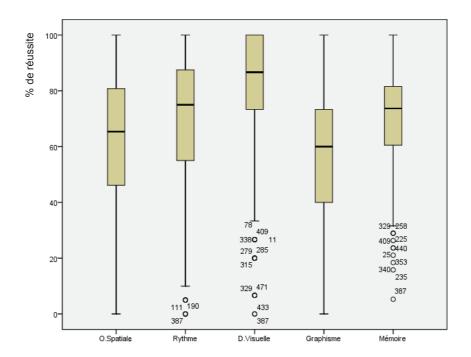
1.3.2. Le test intermédiaire NBA2-T

Le test NBA2-T évalue les capacités cognitives des élèves dans les cinq mêmes domaines que le test précédent. Certains items sont identiques, d'autres reprennent la même structure mais sont plus complexes, et d'autres encore sont complètement nouveaux. Alors que le test NBA1-T a été réalisé pour des élèves scolarisés au premier ou au second trimestre de grande section de maternelle, le test NBA2-T est destiné aux élèves du troisième trimestre de grande section ou du premier trimestre de CP. Cette batterie de test permet donc d'appréhender l'évolution de la maturité cognitive qui se produit entre ces deux périodes car durant le laps de temps qui sépare nos deux séries de tests, il s'est écoulé six mois, six mois durant lesquels les enfants ont continué à apprendre, et à se développer.

Alors que le test initial comporte 34 items, le test NBA2-T se compose de 37 items. Sur ces 37 items, 27 sont strictement identiques au test précédent, 9 autres reprennent la même base mais sont plus complexes, et un item a été ajouté (il est souligné). Dans le tableau suivant, les tâches notées en italique indiquent les items qui diffèrent entre le test NBA1 et le test NBA2.

Tableau 43 : Domaines du test intermédiaire NBA2-T

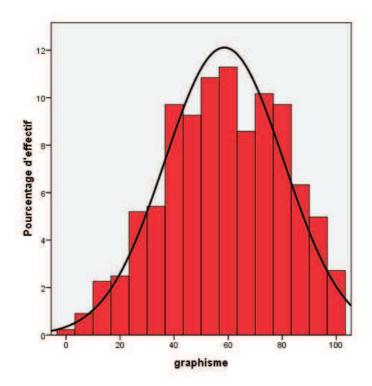
Domaines	Tâches	Nombres d'items
Organisation	- reproduction du modèle 1 (croix, ronds)	- 1 item
spatiale	- reproduction d'un modèle 2 (traits)	- 6 items
Rythme	- séquence rythmique 1 (vagues)	- 4 items
	- séquence rythmique 2 (traits)	- 6 items
Discrimination	- petit	- 5 items
visuelle	- grand	- 5 items
Graphisme :	- alternance grande boucle et petite boucle	- 1 item
	- reproduire une courte phrase	- 1 item
coordination	- tracer dans les limites imparties	- 2 items
visuo-motrice	- tracer un trait sinueux dans les limites imparties	- 2 items
	- joindre les points	- 1 item
Mémoire	- évocation (dessiner)	- 1 item
	- visuelle (identification des figures géométriques)	- 1 item
	- auditive (identification d'objets communs)	- 1 item


Comme dans le test NBA1, tous les items ne sont pas notés sur une même échelle. En effet, le score maximum par item peut varier de 1 à 10 points. De plus, le nombre maximum de points diffère selon les domaines :

- 20 points maximum pour rythme (+6 points par rapport à NBA1)
- 15 pour la discrimination visuelle et le graphisme
- 19 pour la mémoire
- 26 pour l'orientation spatiale (+6 par rapport à NBA1).

Tableau 44 : Présentation des scores bruts par domaines NBA2

NBA2	N	Minimum	Maximum	Moyenne	Décile	Ecart-type	% de réussite
GRAPH	443	,00	15,00	8,78	4,26	3,29	58,55
MEMOIRE	443	1,00	19,00	13,43	7,39	3,04	70,68
OS	443	,00	26,00	16,09	6,22	6,65	61,87
RYTHME	443	,00	20,00	13,71	6,42	4,97	68,57
DV	443	,00	15,00	12,21	6,46	3,05	81,41


Le tableau ci-dessus présente les scores obtenus par les élèves au test cognitif NBA2 : score minimum et maximum, moyenne brute, écart-type, décile moyen, ainsi que le pourcentage de réussite. Les scores diffèrent selon les cinq domaines évalués. Comme lors du test NBA1, le score le plus faible est obtenu en graphisme et, à l'inverse, c'est en discrimination visuelle que les élèves obtiennent le meilleur score. Les scores en mémoire et en rythme sont plutôt semblables, avec un pourcentage de réussite de l'ordre de 70 et 68%. Les similitudes entre les performances des élèves au test initial et au test intermédiaire ne s'arrêtent pas là. Le score moyen de discrimination visuelle, qui est dans les deux cas le domaine le mieux réussi, est également un des moins dispersés. Par contre, il est important de noter que les écarts-types sont plus élevés que pour le test NBA1, notamment ceux d'orientation spatiale et de rythme. Ainsi, les scores des élèves au test intermédiaire seraient plus hétérogènes. Afin de rendre compte de cette hétérogénéité des performances des élèves de manière plus détaillée, nous allons commenter les boites à moustaches associées à chacun des domaines.

Graphique 5 : Boîtes à moustache des scores aux domaines du test NBA2

Le score d'orientation spatiale est le plus discriminant, l'écart-type étant le plus élevé des cinq domaines, avec une performance moyenne relativement faible par rapport aux autres. A l'inverse, les items de discrimination visuelle, qui sont bien réussis dans l'ensemble puisque la moyenne est très élevée, est également le domaine avec l'écart-type le plus faible. Des scores peu dispersés autour d'une moyenne haute font de ce domaine l'un des moins discriminants.

Si le graphisme demeure le domaine le moins bien réussi par les élèves, avec une médiane à 60, c'est tout de même une médiane supérieure de 7 points par rapport au test initial. La moitié des élèves ont donc un score égal ou inférieur à 60. Pour le domaine le mieux réussi, la discrimination visuelle, 50% des élèves ont un score supérieur ou égal à 86. Contrairement à ce que l'on avait observé sur les scores au test initial, les distributions des scores autour de la tendance centrale est plutôt homogène pour tous les domaines, à l'exception de la discrimination visuelle. Nous allons commenter la répartition des scores pour le domaine de graphisme qui est le moins bien réussis des domaines.

Graphique 6 : Distribution du pourcentage d'items réussis en graphisme aux tests NBA2

Comme on pouvait s'y attendre au vu de la boîte à moustache, la majorité des élèves ont un score compris entre 40 et 80% de réussite en graphisme. Avec une moyenne de 58,5 et un écart type de 21,9, la distribution des scores de graphisme suit la loi normale.

1.3.3. Le test musical

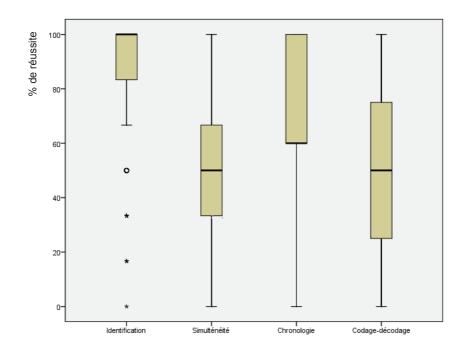

En plus des tests cognitifs, nous avons construit un test musical pour évaluer les compétences des enfants en la matière, et dont nous présentons ici les principaux résultats pour l'ensemble des élèves. Le test musical se décompose en quatre domaines : l'identification, la simultanéité, la chronologie et les activités de codage et décodage. Les statistiques descriptives relatives aux scores par domaine sont reportées au tableau suivant.

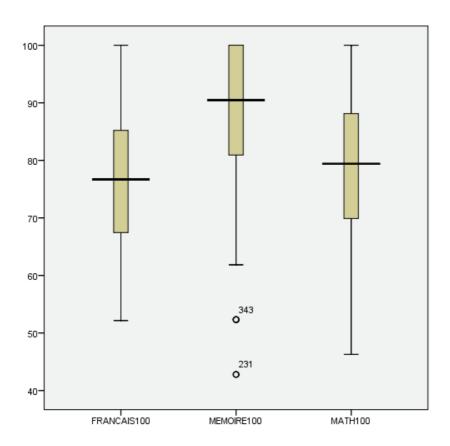
Tableau 45: Scores bruts par domaine au test musical

Test musique	N	Minimum	Maximum	Moyenne	Ecart-type	% de réussite
Identification	443	,00	6,00	5,5079	,98716	91,7983
Simultanéité	443	,00	6,00	2,8668	1,31743	47,7803
Chronologie	443	,00	5,00	3,3476	1,47104	66,9526
Codage-décodage	443	,00	4,00	1,9413	1,00505	48,5327

Les premières épreuves du test, les items d'identification, ont été particulièrement bien réussi par les élèves, avec un pourcentage de réussite de 92%. Il s'agissait des items les plus faciles puisqu'ils ont été conçus pour mettre les enfants à l'aise, notamment ceux du groupe témoin qui n'ont pas eu l'habitude d'identifier des sons en cours d'année. Tel n'a pas été le cas pour les deux domaines de simultanéité et de codage et de décodage, nettement moins bien réussis par les élèves, avec un pourcentage de réussite inférieur à 50%. De la même manière que précédemment, le diagramme en boîte permet d'affiner ces premières observations.

Le graphique suivant montre que la moitié des élèves obtiennent un score égal à 100 pour les tâches d'identification, ce qui souligne à nouveau la très grande réussite des élèves à ce domaine. Pour la chronologie, 50% des élèves réussissent à hauteur de 60%. Pour ces deux domaines, l'on peut voir que la distribution des scores n'est pas symétrique autour de la médiane. Dans un premier cas, pour le score d'identification, l'écart-type est de 16, ce qui explique la faible ampleur de la moustache inférieure: les élèves réussissent massivement les épreuves d'identification (à quelques valeurs extrêmes près). Pour les scores de chronologie, l'écart-type s'élève à 29, les valeurs adjacentes sont plus étendues. Les scores de simultanéité et de codage-décodage sont distribués symétriquement. Il s'agit des domaines avec le plus faible taux de réussite, la médiane se situant à 50 pour les deux épreuves. Les scores de codage-décodage sont plus étendus ($\sigma = 25$) que les scores de simultanéité ($\sigma = 21$).

Graphique 7 : Boîtes à moustache des scores aux domaines du test musical


1.3.4. Les tests de fin de CP

L'année scolaire suivant l'expérimentation, les performances des élèves en français, mathématiques et en mémoire ont été évaluées. Le tableau suivant présente le pourcentage de réussite pour chacun de ces tests.

Tableau 46: pourcentage de réussite pour les tests de CP

	N	Minimum	Maximum	% de réussite	Ecart-type
Français	408	52,16	100	76,06	11,41
Mémoire	408	42,78	100	87,68	13,15
Mathématiques	408	46,28	100	78,64	11,79

Dans l'ensemble les tests ont plutôt été bien accueillis par les élèves puisque les scores minima avoisinent les 50% de réussite, le score le plus faible étant de 43 pour la mémoire. A contrario, les élèves les moins bons ont quand même validé la moitié des items de français. Globalement, la moyenne du test de mémoire est de 87,6 ; associée à un écart-type de 13. Il s'agit du domaine le plus réussit mais aussi celui dont les scores sont plus dispersés. Le graphique suivant permet de visualiser ces données.

Graphique 8 : Boîtes à moustache des scores des tests de CP

1.3.5. Pertinence des scores globaux

Pour évaluer les effets du programme musical de l'expérimentation, il est plus aisé de travailler avec des scores globaux. Nous envisagerons ici la construction de scores globaux pour chacun des différents tests (initial, intermédiaire, final et musical). Pour ce faire, deux étapes sont nécessaires : étudier les relations entre les différents domaines évalués et mesurer la fidélité des scores construits.

1.3.5.1. Les relations entre les différents domaines

Commençons par nous intéresser aux relations statistiques existant entre chacun des cinq domaines évalués dans le test NBA1. La matrice de corrélations du tableau suivant présente les coefficients de corrélation linéaire pour chaque croissement possible au test initial.

Tableau 47: Matrice des corrélations entre domaines (NBA1)

O.S	Rythme	D.V	Graph	Mémoire
1	_		-	
,668***	1			
,435***	,427***	1	-	
,454***	,454***	,266***	1	
,446***	,425***	,252***	,351***	1
	,435*** ,454***	1 ,668 1 ,435 ,427 ,454 ,454	1 ,668 1 ,427 1 ,454 ,266 ,266 1	1 ,668 1 ,435 ,427 1 ,454 ,454 ,266 1

^{***} La corrélation est significative au seuil de 1‰

Comme l'indique le tableau ci-dessus, les corrélations entre chaque domaine sont toutes positives et significatives. Elles fluctuent selon les domaines, entre +0,25 et +0,67. Les corrélations les plus faibles sont souvent associées au score de discrimination visuelle ou de mémoire. Ces domaines sont plus autonomes, puisqu'ils entretiennent moins de liaisons statistiques avec les autres domaines. En revanche, la plus forte corrélation (+0,67) correspond à la relation existant entre l'organisation spatiale et le rythme, les performances en un étant fortement associées aux performances en l'autre. Bien que tous les scores évaluent les capacités cognitives des élèves, il est important de noter que ces cinq domaines demandent d'exercer des tâches différentes. Intéressons-nous désormais aux relations statistiques existantes entre les cinq domaines du test intermédiaire NBA2.

Tableau 48: Matrice des corrélations entre domaines (NBA2)

NBA2	Graph.	Mémoire	O.S	Rythme	D.V
Graphisme	1				
Mémoire	,383***	1			
Organisation spatiale	,531***	,410***	1		
Rythme	,527***	,429***	,702***	1	
Discrimination visuelle	,364***	,381***	,497***	,485***	1

^{***} La corrélation est significative au seuil de 1‰

Ce tableau, comme le précédent, présente les coefficients de corrélation entre les différents domaines du test NBA2. Trois points sont importants ici. Premièrement, nous observons une forte corrélation entre le score d'organisation spatiale et celui de rythme. Or, pour le test initial, la plus forte relation relevée concerne ces deux mêmes domaines. Ainsi, non seulement la liaison statistique entre ces deux scores perdure, mais elle s'accroît.. De la même façon, et c'est notre deuxième point, les relations les plus faibles sont obtenues entre le score discrimination visuelle et de mémoire, puis de mémoire et de graphisme. Il s'agit là encore des deux domaines les plus indépendants par rapport aux autres. Enfin, troisièmement, de manière globale, nous pouvons constater une légère augmentation de tous les coefficients de corrélation.

Les performances des élèves dans les différents domaines des tests initial et intermédiaire semblent conserver les mêmes liaisons statistiques entre elles, et se consolider, puisque les coefficients de corrélations augmentent. Voyons maintenant si les différents scores au test de musique sont aussi en relation.

Tableau 49: Matrice des corrélations entre domaines du test musical

			_	_
	ldent.	Simul.	Chrono	Codage
Identification	1			
Simultanéité	,221***	1		
Chronologie	,117**	,253***	1	•
Codage	,160***	,107**	,257***	1

^{***.} La corrélation est significative au niveau 0.01 (bilatéral).

Nous pouvons constater, au tableau ci-dessus, que les scores de musique sont plus indépendants les uns par rapport aux autres que ne le sont les scores cognitifs. En effet, les coefficients de corrélations, bien que significatifs à différents niveaux, sont faibles. Ceci est cohérent avec notre observation d'une grande diversité de réussite selon les domaines.

Lors de l'épreuve de CP, il a été administré aux élèves un test comportant trois épreuves distinctes: deux épreuves de type scolaire, français et mathématique, et une dernière épreuve d'ordre cognitif, sur la mémoire. Les scores des élèves aux épreuves de CP sont également corrélés entre eux, comme l'indique le tableau ci-dessous. La liaison la plus forte apparait entre le français et les mathématiques, avec un coefficient de 0,67. A l'inverse, la mémoire semble être plus indépendante des autres performances des élèves, avec deux coefficients positifs et significatifs, mais de faible importance (0,21 avec le français et 0,29 avec les mathématiques).

Tableau 50 : Matrice des corrélations entre domaines du test final

français	math	mémoire
1		-
,668***	1	
,213***	,295***	1
	,668***	,668 ^{***} 1

^{***.} La corrélation est significative au niveau 0.01 (bilatéral).

^{**.} La corrélation est significative au niveau 0.05 (bilatéral).

Pour chacun des tests, il existe des corrélations, plus ou moins importantes, entre les domaines évalués. Ceci suggère qu'un score global par test pourrait être élaboré. Pour s'assurer de l'opportunité d'un tel score, il faut maintenant mesurer la fidélité.

1.3.5.2. La fidélité

Même s'il existe des corrélations entre domaines d'un test, il est important de vérifier la cohérence d'ensemble des items. De la même manière, la cohérence entre les items d'un même domaine est, elle aussi, importante. En effet, les résultats globaux des différents domaines sont d'autant plus pertinents que les items qui les constituent forment un ensemble homogène. Nous mesurons alors, à l'aide des alphas de Cronbach, la fidélité par test et par domaine, et en présentons les résultats au tableau de la page suivante.

Les valeurs de l'alpha de Cronbach varient selon les domaines et les tests. Pour les tests NBA1 et NBA2, la faible valeur de l'indice pour les items de mémoire s'explique par le fait que trois différents types de mémoire sont évalués : la mémoire auditive, la mémoire évocatrice et la mémoire visuelle. Chaque item correspond donc à une dimension de la mémoire distincte, c'est pourquoi la valeur de l'indice signale une moindre cohérence interne. Les alphas pour les deux tests de graphisme sont également peu élevés, surtout au test NBA1. Ceci s'explique car les sept items de l'épreuve correspondent à trois types d'exercices différents. Pour les trois autres domaines des tests initial et intermédiaire, les valeurs de l'indice sont supérieures à 0,65, ce qui indique une cohérence d'ensemble acceptable. Un seul domaine présente un alpha de Cronbach supérieur à 0,8 : le rythme. Lors de ces épreuves, les items sont quasiment identiques et les exercices suivent le même schéma. A une échelle plus globale, c'est-à-dire réalisée sur l'ensemble des items des tests NBA1 et NBA2, la valeur de l'alpha s'élève respectivement à 0,88 et 0,89. Ainsi, ces indicateurs statistiques incitent à l'élaboration d'un score global qui semble approprié pour appréhender les performances cognitives de manière plus générale.

Tableau 51: Mesures de la fidélité par test et par domaine

Nature des items	Nombre d'items	Alpha de Cronbach
Test NBA1-T	33	0,88
graphisme	7	0,59
orientation spatiale	6	0,78
rythme	7	0,85
mémoire	3	0,61
discrimination visuelle	10	0,71
Test musical	11	0,48
identification	2	0,4
simultanéité	3	0,21
chronologie	2	0,19
codage-décodage	4	0,13
Test NBA2-T	36	0,89
graphisme	7	0,69
orientation spatiale	6	0,75
rythme	10	0,83
mémoire	3	0,51
discrimination visuelle	10	0,68
Test CP	16	0,89
français	8	0,88
mathématiques	7	0,74

Nous constatons que les valeurs de l'alpha de Cronbach sont nettement plus faibles en ce qui concerne les items musicaux. Les items musicaux semblent donc tester des compétences différentes. Notons toutefois qu'à une échelle plus globale, l'alpha s'élève un peu, pour atteindre 0,48. La fidélité du test musical est ainsi meilleure lorsque la mesure est globale. Nous en conviendrons, la valeur de l'indice reste faible, mais sans doute suffisamment élevée pour réaliser par la suite des analyses sur le score global plutôt qu'item par item.

En ce qui concerne le test de CP, les valeurs de l'indice de Cronbach pour les épreuves de français et de mathématiques sont hautes, avec respectivement un coefficient de 0,88 et 0,74. La valeur de l'alpha de Cronbach s'élève à 0,89 pour l'ensemble des items du test de CP, ce qui témoigne de la forte cohérence des items au sein de ce test. Il est important de noter que l'épreuve de mémoire ne comporte qu'un seul item, c'est pourquoi elle est exclue de cette analyse.

La construction d'un score global à chacun des tests est donc tout à fait pertinente. La cohérence d'ensemble est particulièrement haute pour les tests cognitifs et pour le test de CP. Pour le test musical, les choses sont différentes : l'alpha de Cronbach est certes peu élevé en global, mais il l'est encore moins par domaine, si bien qu'il est tout aussi intéressant de travailler avec un score musical global.

Chapitre 2 : L'influence des caractéristiques individuelles et scolaires sur les acquisitions des élèves en grande section de maternelle et au cours préparatoire

Nous avons vu au cours du précédent chapitre les grandes caractéristiques de l'échantillon de notre expérimentation ainsi que les principaux résultats aux différents tests. Afin d'approfondir notre analyse, nous allons maintenant étudier l'influence des variables individuelles et scolaires sur les acquisitions des élèves, en termes cognitif, musical et scolaire. En effet, nous avons montré dans la partie 1, avec notre propre analyse sur le Panel 97 et à l'aide des résultats de la littérature, que ces variables étaient déterminantes de la réussite scolaire au cours préparatoire, et qu'elles influençaient certains facteurs cognitifs. Il est donc particulièrement important d'évaluer l'impact des caractéristiques individuelles des élèves dans l'échantillon qui est le nôtre. Ceci est d'autant plus intéressant qu'à l'exception de la mesure finale, les tests sont effectués auprès d'enfants de maternelle, pour lesquels l'impact des variables individuelles est bien moins exploré par les sciences de l'éducation que pour les élèves de l'élémentaire. Nous étudierons l'impact des caractéristiques individuelles d'abord sur les performances cognitives en maternelle, au test initial puis intermédiaire, puis sur les performances musicales, et enfin sur l'évaluation scolaire en début de CP.

2.1. Les résultats des élèves au test initial

Afin d'évaluer l'impact des caractéristiques individuelles des élèves de maternelle au test cognitif initial, nous adoptons une démarche en deux temps. En première approche, nous examinons les scores moyens selon différents caractères des enfants. Nous complétons ce premier point par une analyse « toutes choses égales par ailleurs » de l'effet de chaque variable individuelle.

2.1.1. Les scores moyens au test initial NBA1

Le tableau suivant indique les scores globaux moyens obtenus par les élèves au test cognitif initial, le NBA1, en fonction de certaines caractéristiques individuelles et scolaires, sachant que la moyenne générale est fixée à 100 et l'écart type à 15. Les écarts les plus importants concernent la profession du père. Il y a en effet 12,9 points de différence entre un élève dont le père est cadre et un dont le père est ouvrier. Des différences tout aussi importantes existent selon la profession de la mère, le trimestre de naissance et l'âge d'entrée en maternelle. Les scores se hiérarchisent selon le trimestre de naissance : un élève né au premier trimestre obtient en moyenne 11,1 points de plus qu'un élève né en fin d'année. Les scores décroissent au fur et à mesure que l'élève naît en fin d'année, cette variable étant le plus défavorable pour les élèves du dernier trimestre qui obtiennent 6,7 points de mois que la moyenne générale. Les élèves du troisième trimestre ne sont presque pas « pénalisés » par leur mois de naissance puisqu'ils ont une moyenne proche de 100. Par ailleurs, s'il existe une différence notable de score entre les élèves scolarisés à deux ans et ceux scolarisés plus tardivement, à 4 ans ou plus (6% des élèves de notre échantillon).

Tableau 52 : Scores globaux moyens au test NBA1 selon les caractéristiques individuelles et scolaires des élèves

Variables	Variables	NBA1
Genre de l'élève	fille	102,1
	garçon	97,6
Trimestre de naissance	1 ^{er}	104,4
	2 nd	103,3
	3 ^{ème}	99,5
	4 ^{ème}	93,3
Pays de naissance	France	100,3
	Autre	97,6
Langue parlée	Français	102,5
	Autre	95,9
Profession du père	Artisan, com.	102,4
	Ouvrier	94,6
	Cadre	107,5
	Intermédiaire, empl	103,5
	Sans emploi	99,6
Profession de la mère	Ouvrier	95,8
	Cadre, inter	107,5
	Employée	99,7
	Sans emploi	95,8

Les scores moyens ne sont pas identiques selon les domaines évalués. Par exemple, les garçons obtiennent leurs plus bas scores en mémoire et en graphisme (96,9) tandis que la meilleure moyenne s'élève à 100 pour la discrimination visuelle. C'est justement en discrimination visuelle que les filles obtiennent leur moyenne la plus basse (99,5). L'ampleur des différences de score selon le trimestre de naissance varie également par domaine. Ainsi, c'est pour les items de mémoire qu'il y a le moins d'écart entre les élèves du premier et du dernier trimestre (avec un écart de 4 points).

Deux observations peuvent immédiatement être tirées de ces premières données. Premièrement, comme nous venons le mentionner, l'amplitude des différences de moyennes varie non seulement d'une dimension à l'autre mais aussi selon les variables socio-économiques et scolaires. Dans certains cas, nous ne constatons pas d'écart de moyenne. Par exemple, les scores moyens d'orientation spatiale sont identiques pour une fille et un garçon, un élève né en France ou à l'étranger, ou selon l'année de naissance. Cet écart peut au contraire être relativement élevé, notamment lorsqu'il s'agit de la profession des parents. Ainsi, les variables ne contribuent pas de la même façon selon les disciplines. Deuxièmement, les facteurs qui semblent être les plus déterminants pour les performances à ce stade sont la profession des deux parents, suivie par le trimestre de naissance et la langue parlée à la maison. Comparativement, le genre du professeur, le pays de naissance et le type de classe participent moins à la variation des scores.

Bien que cette analyse soit plus poussée que celle du chapitre précédent, elle présente certaines limites. La description des moyennes par domaine et de leurs différences en fonction des caractéristiques socio-économiques et scolaires ne s'est pas faite indépendamment les unes par rapport aux autres. En effet, les variations des moyennes par domaine selon chacune de ces variables ne peuvent s'additionner en raison des nombreuses liaisons qui existent entre elles. Ainsi, pour estimer les effets propres de chaque variable sur les performances des élèves, on est amené à raisonner « toutes choses égales par ailleurs ».

2.1.2. Analyse de l'impact net des variables socioéconomiques sur les scores initiaux cognitifs

Nous analysons dans un premier temps les effets des caractéristiques socioéconomiques des élèves et de quelques variables ayant trait à leur scolarisation sur le score cognitif global. Nous verrons ensuite comment ces effets divergent selon les domaines. Le tableau suivant présente les principaux résultats des régressions linéaires multi-variées effectuées entre les variables individuelles et scolaires et les performances cognitives moyennes, telles qu'appréhendées à travers le score global. Les variables intégrées au modèle expliquent 23% de la variabilité des acquisitions cognitives des élèves au début du 2^{ème} trimestre de la grande section de maternelle.

Tableau 53 : Impact net des facteurs socioéconomiques et scolaires sur le score cognitif initial (NBA1)

R ² : 0,23	_	Coefficients standardis		Coefficients standardisés		
		В	E.S	Bêta	t	Sign.
	(constante)	88,054	3,115		28,268	,000
Genre	fille	4,555	1,257	,152	3,623	,000
T	1er trimestre	6,435	1,550	,184	4,151	,000
Trimestre de naissance	2nd trimestre	6,476	1,459	,202	4,440	,000
Haissance	3eme trimestre	3,965	1,692	,111	2,343	,020
Année de naissance	2004	2,759	3,106	,043	,888,	,375
Pays de naissance	né en France	-1,381	2,379	-,028	-,580	,562
Langue parlée	Parle uniquement le français	2,643	1,487	,085	1,777	,076
Ménage	Père et Mère	1,540	1,893	,040	,814	,416
Musique	Pratique une activité musicale	6,259	3,311	,079	1,890	,059
	Accueil le matin	-1,849	1,988	-,044	-,930	,353
Fréquentation des	cantine	,234	1,581	,008	,148	,883,
lieux scolaires	Garderie le soir	4,135	1,907	,111	2,168	,031
	Particom	-,569	2,809	-,011	-,202	,840
	Pouvrier	-5,748	2,091	-,183	-2,749	,006
Profession du père	Pcadre	,414	2,896	,008	,143	,886
	Pinteremploye	-,758	2,232	-,023	-,339	,734
Profession de la	Mcadreinter	6,945	1,972	,197	3,522	,000
mère	Memploye	1,586	1,633	,051	,971	,332
	Mouvrier	-,615	2,346	-,012	-,262	,793

Les filles commencent leur scolarisation avec un certain avantage, puisque leur score cognitif en cours de grande section de maternelle est supérieur à celui obtenu par les garçons. Le coefficient associé à cette variable est significatif, et est égal à 4,5 points.

97,3% des élèves de notre échantillon sont nés en 2004. Le coefficient associé à cette variable n'est pas significatif. Les différences de maturité cognitive, qui pourraient se traduire par une différence de score au test initial, ne dépendent donc pas de cette variable. C'est selon leur mois de naissance que les différences de score entre les élèves sont les plus parlantes. Les élèves nés au premier et second trimestre obtiennent en moyenne 6,4 points de plus qu'un élève né au dernier trimestre. Les enfants nés un peu plus tardivement, au cours du troisième trimestre, scorent 4 points de plus. Il est important de souligner que nous n'observons pas, contrairement à ce que nous avions noté lors du premier chapitre, une hiérarchisation stricte des écarts de score cognitif en fonction des trimestres de naissance des élèves. En nous appuyant sur les données du panel 1997, nous avions montré que le score global des acquisitions scolaires des élèves de CP se hiérarchisait clairement selon le trimestre de naissance. Les scores de capacités cognitives ne semblent pas être affectés de la même manière : il n'y a pas d'écart de performances entre les élèves nés au premier et deuxième trimestre, et le coefficient relatif au troisième trimestre est un peu moins significatif²⁴.

Si 5,3% des élèves ne sont pas nés en France, ils sont plus nombreux à ne pas parler uniquement le français à la maison. Les coefficients de la régression montrent que le pays de naissance n'a pas d'impact sur les performances cognitives des élèves, contrairement à l'origine culturelle. En effet, le score d'un élève né en France ne diffère pas significativement du score d'un autre né à l'étranger. Par contre, les élèves qui parlent exclusivement le français à la maison obtiennent en moyenne 2,6 points de plus. Notons cependant la faible significativité de ce coefficient.

La composition du ménage ne semble pas affecter les capacités cognitives des élèves, contrairement à ce que nos analyses précédentes avaient montré pour les performances scolaires des élèves de CP. Dans la première partie, nous avions établi que le fait de vivre

²⁴ Il est tout de même significatif au seuil de 5%

avec son père et sa mère avait un impact positif et significatif sur les scores des élèves, même s'il était peu conséquent²⁵. D'autres variables, scolaires cette fois-ci, ne semblent pas affecter les performances cognitives des élèves. C'est le cas pour la fréquentation de certains lieux scolaires, tels que l'accueil du matin et de la cantine. En revanche, les élèves qui fréquentent la garderie le soir ont des scores accrus de l'ordre de 4,1 points.

Un de nos derniers points d'analyse concerne l'étude de l'effet de la profession des parents. Seuls les enfants dont le père est ouvrier et/ou la mère est cadre se distinguent significativement des autres élèves. Les élèves dont le père est ouvrier réussissent moins bien les épreuves cognitives et obtiennent un score inférieur de 5,7 points par rapport à un élève dont le père est sans activité. A l'inverse, les enfants qui ont une mère cadre obtiennent en moyenne 6,9 points de plus que les élèves dont la mère est sans activité.

Enfin, la dernière variable que nous commenterons est celle qui concerne la pratique musicale en dehors de l'établissement scolaire. Si seulement 4,2% des élèves de notre échantillon pratiquent une activité musicale en dehors de l'école, ils obtiennent en moyenne 6,3 points de plus que les autres élèves. Cependant, il faut noter que le coefficient n'est significatif qu'au seuil de 10%.

Nous allons maintenant nous intéresser aux scores obtenus par les élèves dans chacune des dimensions testées : orientation spatiale, rythme, discrimination visuelle, graphisme et mémoire. En effet, il serait intéressant de savoir si les écarts de performances entre élèves sont similaires selon les domaines. Le tableau suivant présente les résultats de nos analyses.

- 287 -

Tableau 54: Impact net des facteurs socioéconomiques et scolaires par domaine du test NBA1

		Ē									
		Orientation spatiale	spatiale	Rythme	Je	Dis. visuelle	suelle	Graphisme	sme	Mémoire	oire
		$R^2 = 0$	0.16	$R^2 = 0.21$	21	$R^2 = 0.09$	60.0	$R^2 = 0$	0.19	$R^2 = 0$	= 0.14
Modèle		В	Sign	В	Sign	В	Sign	В	Sign	В	Sign
	(constante)	93,686	000'	89,893	000'	97,482	000'	86,450	,000	88,835	000,
Genre (garçon)	fille	,516	,694	4,624	000'	-1,022	,456	6,725	000'	5,801	000'
Trimestre de naissance	1er trimestre	6,081	000'	5,983	000'	5,497	,001	4,568	,005	1,386	,400
(dernier)	2nd trimestre	4,723	,000	6,956	,000	3,816	,017	5,012	,00	3,157	,042
	3eme trimestre	2,531	,152	4,403	,010	4,535	,014	,136	,938	2,884	,109
Année de naissance	2004	,108	.973	-1,052	,738	2,396	,480	4,777	,138	3,854	,243
Pays de naissance Langie parlée	Né en France	-1,851	,456	-1,037	799'	,207	936	-1,633	,507	-,734	,771
Ménage	Parle uniquement le français	3,313	,033	3,121	,038	1,328	,413	869'	,650	1,198	,448
Musique	Père et mère	1,199	,543	2,159	,260	1,904	,357	2,650	,177	-2,283	,256
	Pratique une activité musicale	7,608	,028	5,752	980'	-1,100	,761	6,867	,046	3,746	,287
Frequentation des lieux	Accueil le matin	-2,132	,304	669'-	,728	-1,653	,446	,531	962'	-2,805	,184
	cantine	-,153	,926	,619	669'	-,234	,892	,624	,703	-,002	666,
	Garderie le soir	3,028	,128	2,171	,261	1,631	,433	4,503	,023	3,776	,063
Profession du père	Artisan, commerçant	068'-	,761	,536	,850	-5,611	890'	1,253	999'	2,634	,377
(ss activité)	Ouvrier	-6,105	,005	-4,590	,030	-7,804	,001	-1,350	,533	-1,154	,603
Profession de la mère	Cadre	-1,182	,695	1,730	,555	-3,581	,257	1,055	,725	3,489	,257
(ss activité)	Intermédiaire, employé	-1,043	,654	-1,084	,631	-3,328	,172	-1,484	,521	4,170	620,
	Cadre, intermédiaire	6,795	,001	6,867	,001	1,721	,424	5,104	,013	4,891	,020
	Employée	3,119	790'	1,944	,239	-2,200	,217	-,238	888,	3,171	,068
	Ouvrière	3,954	,106	-1,241	,601	-4,342	060'	-2,009	,408	1,392	,576

Une première remarque concerne les pouvoirs explicatifs des modèles de régression, différents selon les domaines. En ce qui concerne les scores de capacités rythmiques, le R² est le plus élevé. Avec un pourcentage de 21,3%, sa valeur est proche de celle du R² pour le score global au test NBA1. Les caractéristiques socioéconomiques et scolaires expliquent à hauteur de 16 et 18,5% la variabilité des acquisitions cognitives des élèves en orientation spatiale et graphisme. Enfin, la part de la variance des acquis en discrimination visuelle et en mémoire est plus faiblement attribuable à ces variables, puisqu'elles contribuent respectivement à 9 et 13,7% de la variation de ces scores.

Selon les domaines du test cognitif initial, les caractéristiques des élèves n'agissent pas toujours selon la même intensité. Nous allons nous concentrer sur les ressemblances et les différences entre chacun de ces modèles. Pour tous les domaines évalués au test NBA1, tout comme pour l'analyse sur le score global, l'année de naissance de l'élève ainsi que son pays de naissance n'ont pas d'incidence sur ses acquisitions cognitives. Le fait d'être une fille permet d'obtenir entre 4,6 et 6,7 points de plus dans trois domaines : en rythme, en mémoire et en graphisme. Cette variable n'a pas d'impact significatif en discrimination visuelle.

Il est intéressant de noter que le trimestre de naissance n'agit pas avec la même intensité selon les domaines. Tandis que pour la mémoire, le trimestre de naissance n'a qu'un impact limité sur les performances²⁶, sa contribution est plus élevée pour les quatre autres domaines. Cependant, les écarts de scores sur les capacités cognitives ne sont pas hiérarchisés selon le trimestre de naissance. En effet, seuls les élèves du second trimestre se distinguent des autres élèves, et obtiennent des scores significativement plus élevés dans tous les domaines. Ces élèves sont également ceux qui marquent le plus de points en rythme et graphisme. Les élèves nés au troisième trimestre n'ont de meilleures performances que les élèves du dernier trimestre que dans deux domaines : en rythme et en discrimination visuelle. Les élèves de début d'année obtiennent de meilleures performances que tous les autres élèves en discrimination visuelle et orientation spatiale. Ainsi, si le trimestre de naissance a un

 $^{^{26}}$ Seul le coefficient associé au second trimestre (B = 3,2) est significatif au seuil de 5%

impact global sur les performances cognitives des élèves, celui-ci est minime sur les capacités de mémoire.

La langue parlée à la maison a également un impact plus ou moins grand selon les domaines cognitifs évalués. Tandis que les élèves parlant uniquement le français obtiennent en moyenne 3 points de plus que les autres en orientation spatiale et en rythme, cette variable n'a pas d'effet significatif sur les scores des autres domaines. Il n'y a pas que la langue parlée à la maison qui puisse jouer un rôle dans l'acquisition des élèves, la composition du ménage a également une incidence. Alors que cette variable n'affecte pas significativement les scores globaux des élèves, elle impacte positivement et significativement les performances des élèves en orientation spatiale, en graphisme et en rythme. Les coefficients sont assez importants, puisqu'ils sont compris entre 5,7 et 7,6. Ainsi, dépendamment des domaines, l'effet de la composition du ménage peut être considérable. Enfin, des divers lieux scolaires, seule la fréquentation de la garderie le soir a un impact significatif sur les performances des élèves, avec un gain de 4,5 points en graphisme et de 3,8 points en mémoire.

Nous constatons enfin les effets négatifs associés au fait d'avoir un père ouvrier. La variation de cet impact est comprise entre -7,8 pour la discrimination visuelle et -4,5 pour les capacités de mémoire. Seules les performances de graphisme semblent être totalement indépendantes de la profession du père puisqu'aucun coefficient n'est significatif. Si l'on n'observe pas d'effet négatif à avoir une mère ouvrière, être enfant de cadre apporte un gain, parfois important, de score. Ces élèves obtiennent un gain allant de 6,8 points de plus en orientation spatiale et en rythme, à 4,9 points supplémentaires en mémoire. Pour le score de discrimination visuelle, les enfants de cadre ne bénéficient pas de cet avantage, mais les enfants d'ouvrières obtiennent 4,3 points de moins que les enfants dont la mère ne travaille pas.

Comme nous l'avons mentionné précédemment, les caractéristiques socioéconomiques et scolaires des élèves expliquent entre 9 et 21% de la variabilité des scores cognitifs des élèves au cours de la grande section de maternelle. Les écarts les plus manifestes sont dus à quatre types de variables : le genre de l'élève, son trimestre de naissance, la composition du

ménage et la profession des parents. Tout d'abord, les filles distancient significativement les garçons dans trois des cinq domaines évalués. L'écart le plus important (6,7) s'observe sur les performances en graphisme. La pratique de la musique en dehors de l'école produit des effets tout à fait similaires, voire supérieurs à ceux du sexe de l'élève. Cette activité extra-scolaire est gage de points supplémentaires pour l'élève en graphisme (6,8) mais surtout en orientation spatiale (7,6). Enfin, la plus grande différence s'esquisse selon la profession du père : être fils ou fille d'ouvrier est synonyme de 7,8 points de moins en moyenne. Les élèves ne sont pas encore en cours préparatoire que déjà leurs performances diffèrent selon leurs caractéristiques. La suite de notre travail de thèse consiste à analyser l'évolution de ses différences au cours de l'année de grande section de maternelle, en nous intéressant maintenant aux performances des élèves au test intermédiaire NBA2.

2.2. Les résultats des élèves en fin de grande section de maternelle : le test intermédiaire

Pour le test intermédiaire, nous procéderons ici comme avec le test initial, en commençant par les scores moyens, et en poursuivant par une analyse de l'impact net des facteurs individuels.

2.2.1. Les scores moyens au test intermédiaire NBA2

Nous allons procéder brièvement à l'examen des moyennes obtenues par les élèves au test cognitif intermédiaire, le NBA2, selon quelques une de leurs caractéristiques.

Tableau 55: Scores globaux moyens au test NBA2 selon des caractéristiques individuelles et scolaires

		NBA2
Genre de l'élève	fille	102,2
	garçon	97,7
Trimestre de naissance	1 ^{er}	104,6
	2 nd	103
	3 ^{ème}	97,4
	4 ^{ème}	94,9
Pays de naissance	France	100
	Autre	99,1
Langue parlée	Français	100
	Autre	99,9
Profession du père	Artisan, com.	100,4
	Ouvrier	95,6
	Cadre	104,2
	Intermédiaire, empl	103,1
	Sans emploi	100,5
Profession de la mère	Ouvrier	97,6
	Cadre, inter	104,7
	Employée	100,9
	Sans emploi	96

Les écarts de performance selon les caractéristiques socioéconomiques et scolaires des élèves n'ont que très peu évolué entre la première période de test et la seconde. Les scores de capacités cognitives semblent toujours être hiérarchisés selon le trimestre de naissance, un élève né au premier trimestre obtenant près de 10 points supplémentaires relativement à un élève né en fin d'année. En comparaison avec les résultats du test NBA1, les moyennes obtenues par les élèves du troisième trimestre sont plus basses de 2 points.

L'effet brut de la variable ayant trait au genre de l'élève est resté identique entre les deux périodes d'évaluation. On constate une différence de score de l'ordre de 4,5 points entre les garçons et les filles (toujours en faveur de ces dernières). Tandis que les moyennes des élèves selon leur sexe, les différences de scores selon l'origine culturelle se sont amoindries. En effet, un élève né en France ou un autre né à l'étranger obtiennent désormais un score identique, alors que nous observions un écart initial de 2,7 points entre eux au test NBA1. Il en est de même pour la langue parlée à la maison, où nous ne constatons plus de différence de moyenne entre les élèves parlant français et les autres²⁷.

²⁷ L'écart entre ces deux types d'élèves était pourtant considérable lors du test initial, avec une différence de 6,6 points de score.

Les écarts de performances selon la profession du père semblent s'être également réduits. Alors que, au test initial, les enfants de cadres distanciaient les enfants d'ouvriers de 12,9 points, cette différence est ramenée à 8,6 points à la fin de la grande section de maternelle. Ceci s'explique par un double mouvement : d'un coté, les enfants de cadres retirent un moins grand bénéfice puisqu'ils obtiennent une moyenne de 104,2 au test intermédiaire, soit 3,3 points de moins par rapport au test initial ; de l'autre, les enfants d'ouvriers augmentent leur score global de 1 point entre les deux périodes d'évaluation. L'évolution des scores moyens selon la profession de la mère suit un schéma analogue. Au terme de la scolarisation maternelle, 8,7 points de score séparent les enfants de cadres et de mères sans emploi. Initialement, cette différence se portait à 11,7 points. De la même manière que pour la profession du père, les scores moyens associés à chacune des professions de la mère tendent à se rapprocher de la moyenne standardisée. Enfin, nous nous attardons sur une dernière variable : l'âge d'entrée en maternelle. Si les moyennes des élèves scolarisés à deux ans ou à trois ans n'ont pas évolué entre les deux tests, nous constatons que les élèves scolarisés plus tardivement augmentent de 4,4 points leur performance moyenne.

Une première observation peut immédiatement être tirée de ces premières données : bien que les moyennes varient toujours selon les variables socioéconomiques et scolaires, l'amplitude des écarts est moins importante à la seconde période d'évaluation qu'à la première. Les variables les plus déterminantes pour les performances des élèves en fin de maternelle sont la profession des deux parents et le trimestre de naissance. Contrairement à ce que l'on avait observé pour les moyennes des élèves au test initial, la langue parlée à la maison ne semble plus jouer un rôle aussi décisif.

2.2.2. Analyse de l'impact net des variables socioéconomiques sur les scores de capacité cognitive en fin de grande section de maternelle.

Dans cette section, nous chercherons à comprendre quels sont les effets nets des caractéristiques socioéconomiques des élèves sur leurs performances cognitives à la fin de la grande section de maternelle, mais également la manière dont l'amplitude de ces effets se

structure temporellement entre les deux périodes d'évaluation. Pour ce faire, nous nous appuierons sur deux types d'analyses. Dans un premier temps, nous comparerons les coefficients des régressions pour le test initial et intermédiaire, puis dans un second temps, nous analyserons l'impact des performances initiales sur les performances au test NBA2. Le tableau ci-dessous présente les principaux résultats des régressions linéaires multi-variées effectuées entre les variables individuelles et scolaires et les performances cognitives moyennes, mesurées à travers le score global NBA2 (modèle 1). Dans le second modèle, nous avons intégré les scores moyens des élèves obtenus au test NBA1 comme variable explicative dans la régression.

 $Tableau\ 56: Impact\ net\ des\ facteurs\ socio\'economiques\ et\ scolaires\ sur\ le\ score\ cognitif\ interm\'ediaire\ (NBA2)$

		Modè		Modě R²= (
TEST NBA2		В	Sign.	В	Sign.
	(constante)	88,632	,000	18,162	,000
Genre	fille	4,830	,000	,990	,249
	1er trimestre	5,856	,001	1,337	,208
Trimestre de naissance	2nd trimestre	5,840	,000	,558	,576
	3eme trimestre	,568	,756	-2,335	,042
Année de naissance	2004	4,984	,169	2,709	,231
Pays de naissance	Né en France	-2,848	,278	-1,349	,410
Langue parlée	Parle uniquement le français	3,486	,030	1,534	,127
Musique	Pratique une activité musicale	7,319	,040	1,881	,398
Ménage	Père et mère	,237	,906	-1,219	,330
	Accueil le matin	-,358	,865	1,313	,318
Fréquentation des lieux scolaires	cantine	-,527	,758	-1,406	,187
	Garderie le soir	2,714	,180	-,472	,709
Profession du père	Artisan, commerçant	-2,132	,478	-1,886	,315
,	Ouvrier	-4,743	,038	-,418	,770
	Cadre	-2,087	,500	-1,993	,301
	Intermédiaire, employé	-,866	,718	-,236	,875
Profession de la mère	Cadre, intermédiaire	5,467	,010	-,241	,857
	Employée	3,188	,072	1,927	,081
	Ouvrière	,825	,748	1,116	,485
Evaluation au test initial				,802	,000

Les variables intégrées au modèle 1 expliquent 18% de la variabilité des acquisitions cognitives des élèves à la fin de grande section de maternelle. Ainsi, une grande part des variations de score entre les élèves demeure encore inexpliquée. Lorsque nous introduisons les performances initiales des élèves seules, c'est-à-dire sans prendre en compte les variables socioéconomiques, nous constatons que la valeur du R² augmente considérablement. Les performances des élèves au cours de la grande section de maternelle expliquent à elles seules 66,3% de la variabilité des scores des élèves six mois plus tard²8. Le pouvoir explicatif du second modèle, celui qui intègre à la fois les performances initiales et les caractéristiques des élèves, est quant à lui 68,2%. Ainsi, si l'on compare les pouvoirs explicatifs du second et du troisième modèle, le gain de la variance expliquée est de seulement 1,9%. Ce pourcentage peut paraitre faible, pourtant il est conforme aux travaux de Mingat (1991) et de Suchaut et Mingat (1994). Ceci s'explique parce qu'une grande partie de l'effet des caractéristiques individuelles est captée dans le score cognitif initial

Nous allons maintenant commenter les résultats de ces différentes analyses. Les coefficients des modèles de régression ci-dessus indiquent les variations de score au test intermédiaire selon les variables prises en compte. Dans le premier modèle nous avons introduit uniquement les caractéristiques socioéconomiques des élèves, tandis que dans le second, nous avons ajouté le score au test initial. La comparaison de ces deux modèles permet de rendre compte de l'évolution des performances des élèves selon leurs caractéristiques propres et selon une dimension temporelle. Nous serons ainsi en mesure de déterminer si des différences significatives de score apparaissent durant la fin de grande section de maternelle (entre le test initial et le test intermédiaire), en plus des différences observées lors du test initial.

Nous avons vu dans la section précédente que les filles commencent leur scolarisation en dernière année de maternelle avec 4,5 points de plus que les garçons au score global de capacité cognitive. A la fin de l'année de grande section de maternelle, l'écart entre fille et garçon reste constant, à 4,8 points. Lorsqu'on contrôle par le score cognitif initial, il n'y a pas

⁻

²⁸ Il s'agit d'un troisième modèle de régression linéaire dont les résultats ne sont pas présentés ici où Test intermédiaire = f(Test initial) uniquement.

de différence significative entre garçon et fille (voir modèle 2). A score cognitif initial égal, les filles n'ont pas un meilleur score intermédiaire que les garçons, ce qui peut être interprété de la manière suivante : les filles ne progressent pas plus que les garçons entre les deux tests. C'est cette interprétation que nous allons retenir pour le reste de nos commentaires.

Les coefficients associés au trimestre de naissance des élèves évoluent quelque peu entre les deux périodes d'évaluation. Les élèves nés au cours des deux premiers trimestres obtiennent encore 5,8 points de plus que ceux nés au dernier trimestre. Les enfants nés au troisième trimestre ne se distinguent plus significativement des élèves nés en fin d'année. Le modèle 2, qui contrôle les acquis initiaux des élèves, permet d'isoler les effets nets du trimestre de naissance au cours de la grande section. Dans ce modèle, le coefficient associé au troisième trimestre, significatif au seuil de 5%, est négatif. Ainsi, les élèves du troisième trimestre semblent progresser moins que les autres.

La significativité des coefficients de la régression montrent que le pays ou l'année de naissance, n'ont toujours pas d'impact sur les performances cognitives des élèves. La langue parlée à la maison affiche un effet accru sur les scores de fin d'année : les élèves qui parlent exclusivement le français à la maison obtiennent désormais en moyenne 3,5 points de plus que les autres élèves. Notons que le coefficient gagne en significativité. La composition du ménage ne semble pas davantage affecter les capacités cognitives des élèves, pas plus que la fréquentation des lieux scolaires, alors que la présence de l'élève à la garderie était associée à un gain de score au test initial.

Pour conclure sur les commentaires du tableau précédent, nous nous penchons sur l'analyse de l'effet de la profession des parents. Tout d'abord, nous observons une influence similaire aux deux tests dans la mesure où seuls les enfants dont le père est ouvrier et/ou la mère est cadre se distinguent significativement des autres élèves. Les élèves dont le père est ouvrier réussissent moins bien les épreuves cognitives et obtiennent un score inférieur de 4,7 points par rapport à un élève dont le père est sans activité. A l'inverse, les enfants ayant une mère cadre obtiennent en moyenne 5,5 points de plus que les élèves dont la mère est sans activité. Ainsi, l'étendue des différences de performance en fonction des caractéristiques des

élèves est plus faible pour les scores au test intermédiaire qu'elles ne le sont au test initial. Une différence notable apparaît : les enfants dont la mère occupe un statut d'employé tirent leur épingle du jeu. Ces élèves progressent plus que les autres, et ce de manière significative (voir modèle 2). Ils obtiennent 3,2 points de plus que les enfants dont la mère est sans activité.

Nous allons maintenant nous intéresser aux scores obtenus par les élèves dans chacune des dimensions testées au test intermédiaire, soit orientation spatiale, rythme, discrimination visuelle, graphisme et mémoire. En effet, il est intéressant de savoir si les écarts de performances entre élèves sont similaires selon les domaines, et si ces différences perdurent durant la dernière année de maternelle. Les tableaux suivants présentent les résultats de nos modèles d'analyse.

Tableau 57: Impact des facteurs socio-économiques et scolaires sur les scores du test NBA2 (par domaines)

		Organisation spatiale R = 0.115	spatiale 15	Rythme R = 0.15	ne 15	Dis. visuelle R= 0.062	suelle .062	Graphisme R = 0.14	aphisme = 0.14	Mémoire R = 0.15	oire .15
Modèle 1		В	Sign	В	Sign	В	Sign	В	Sign	В	Sign
	(constante)	93,289	,000	90,109	,000	91,923	,000	93,046	,000	88,882	000,
Genre	fille	909'	899'	2,735	,049	1,987	,172	006'9	,000	6,290	,000
	1er trimestre	5,682	,001	5,374	,002	4,348	,016	3,808	,028	2,802	,103
Inmestre de naissance	2nd trimestre	5,703	,001	5,584	,001	4,527	,007	2,969	,065	3,767	,019
	3eme trimestre	1,669	,380	1,516	,416	2,613	,182	-2,457	,189	-,134	,943
Année de naissance	2004	3,067	,415	5,124	,165	1,509	/69'	2,622	,479	6,272	680,
Pays de naissance	Né en France	-,058	,983	-1,961	,453	-,044	786'	-4,246	,106	,795	,761
Langue parlée	Parle uniquement le français	,526	606'	4,418	,328	-3,372	,477	5,868	,196	1,203	,790
Musique	Pratique une activité musicale	5,277	,153	3,623	,317	5,377	,158	5,126	,158	6,942	,055
Ménage	Père et mère	,318	,879	,155	,940	,381	,860	1,210	,556	-1,683	,411
	Accueil le matin	-,227	,917	-,068	976,	626'	,664	-1,109	909'	-1,194	,577
Fréquentation des lieux cantine	cantine	,717	,681	2,134	,213	998'	,630	-,373	,828	-1,830	,285
scolaires	Garderie le soir	2,078	,322	3,644	,077	-,122	,955	3,261	,115	2,183	,289
	Artisan, commerçant	-3,048	,329	-2,039	,505	,467	,884	-,160	,959	-2,323	,447
	Ouvrier	-5,408	,023	-3,869	960'	-1,564	,522	-1,629	,485	-6,298	,007
Profession du père	Cadre	-1,546	,628	-,735	,814	-1,680	609'	1,298	629,	-2,154	,490
	Intermédiaire, employé	-2,662	,283	666'-	,681	-,962	,706	3,447	,158	-,513	,833
	Cadre, intermédiaire	5,091	,021	5,544	,010	3,700	,102	2,005	,353	6,497	,003
	Employée	1,517	,412	,885	,625	4,374	,022	1,743	,338	4,390	,016
Profession de la mère	Ouvrière	-,663	,803	-,674	,796	,761	,781	-,120	,963	5,717	,028
			•								

es)
ij
ma
ō
ar
ë
A 2
9
it N
te
qn
es
0
SC
les
Ħ
S
ire
ola
SC
et
les
ig
Om
Ou O
έc
io-
200
S
em
ct
s fa
de
Ę,
iti
Ë
ore
SC
qn
t
pa
Im
••
58
an
bleau
Tal

		Organisation spatiale R = 0.49	r spatiale .49	Rythme R = 0.52	ne .52	Dis. visuelle R= 0.27	suelle 7.27	Graphisme R = 0.32	isme .32	Mémoire R = 0.54	oire .54
Modèle 3		В	Sign	В	Sign	В	Sign	В	Sign	В	Sign
	(constante)	31,554	000,	28,227	,000	45,081	,000	53,214	,000	53,140	,000
Genre	fille	,128	906,	-,270	862'	2,216	,085	3,976	,002	3,662	,005
	1er trimestre	2,168	,108	1,677	,201	2,207	,171	1,769	,255	2,460	,119
Trimestre de naissance	2nd trimestre	2,501	,046	,643	,603	2,721	690'	,752	,603	2,274	,123
	3eme trimestre	980'	,980	-1,422	,314	,567	,744	-2,375	,155	-1,408	,410
Année de naissance	2004	1,801	,528	5,427	,051	,931	,786	,713	,829	4,948	,144
Pays de naissance	Né en France	,914	,651	-1,441	,464	-1,113	,646	-3,389	,148	1,336	,576
Langue parlée	Parle uniquement le français	-,663	,850	1,378	,686	-5,092	,225	7,925	,051	,787	,849
Musique	Pratique une activité musicale	,647	,818	,236	,931	5,133	,127	2,166	,505	4,968	,135
Ménage	Père et mère	-,665	,675	-1,069	,489	-,877	,645	-,134	,942	-,659	,726
	Accueil le matin	1,056	,525	,740	,647	1,942	,330	-1,479	,441	,223	,910
Fréquentation des lieux	cantine	-,015	,991	,631	,625	,325	,838	-,811	,597	-2,240	,153
scolaires	Garderie le soir	,210	,895	1,899	,221	-,631	,741	1,367	,461	,393	,836
	Artisan, commerçant	-2,365	,318	-2,440	,290	3,259	,253	-,932	,734	-3,946	,160
	Ouvrier	-1,267	,485	-,566	,747	2,314	,290	-1,097	,598	-6,283	,003
Profession du père	Cadre	-1,012	929,	-2,141	,363	,506	,862	,857	,760	-3,737	,193
	Intermédiaire, employé	-2,245	,233	-,575	,753	,953	,674	4,170	,056	-2,515	,261
	Cadre, intermédiaire	-,013	,994	,654	069'	2,565	,200	-,411	,832	4,504	,023
	Employée	-,790	,575	-,276	,840	5,082	,003	1,823	,261	3,286	,048
Profession de la mère	Ouvrière	-3,565	,078	-,433	,825	2,688	,268	,692	,767	5,031	,035
Score initial par domaine		799'	000'	,683	000'	,485	000'	,455	000'	,402	000'

Avant de s'attarder sur l'analyse approfondie de ces résultats, une première remarque consiste à commenter les pouvoirs explicatifs des modèles de régression. Nous avons effectué, sur chacun des cinq scores du test intermédiaire NBA2, trois analyses. Dans le premier modèle, nous cherchons à expliquer les scores par l'ensemble des caractéristiques des élèves (CE). Par exemple, pour le score intermédiaire d'organisation spatiale (O.Sinter) : O.Sinter = f(CE). Un deuxième modèle ne prend en compte que les scores initiaux, par exemple O.Sinter = f(O.Sinitial), avec O.Sinitial le score initial d'organisation spatiale. Nous avons intégré dans le troisième modèle les scores au test initial, non pas le score global, mais bien les scores par domaine, en plus des caractéristiques des élèves. Ainsi, en reprenant notre exemple, nous avons : O.Sinter = f(CE, O.Sinitial). Le tableau ci-dessous récapitule la part de la variance expliquée en pourcentage de tous ces modèles.

Tableau 59 : Part de variance expliquée par les modèles de régression (variable dépendante = score NBA2)

	Modèle 1	Modèle 2	Modèle 3
Organisation spatiale	11,5	47,4	49,2
Rythme	15	50	51,8
Discrimination visuelle	6,2	22,7	27
Graphisme	14	24,6	31,8
Mémoire	15	22,7	29

La part de la variance des scores de capacités cognitives du test intermédiaire expliquée par les variables introduites dans les modèles diffère selon les domaines, parfois du simple au double. Les caractéristiques socioéconomiques et scolaires des élèves seuls expliquent entre 6,2 et 15% la variabilité des acquisitions cognitives à la fin de la grande section de maternelle. Les R² les plus élevés sont attribuables au troisième modèle, qui comprend à la fois les caractéristiques des élèves et les scores initiaux. Ainsi, nous sommes en mesure d'expliquer près de 50% de la variation des scores d'orientation spatiale et de rythme. Enfin, les acquisitions initiales des élèves expliquent à elles seules une part non négligeable des variations de scores : entre 22,7 et 50% pour le rythme.

Nous allons maintenant nous focaliser sur l'interprétation des coefficients des modèles 1 et 3 en nous concentrant essentiellement sur deux choses : l'étude des différences existant dans les écarts de performances selon les caractéristiques socioéconomiques des élèves entre les scores du test initial et du test intermédiaire ; l'examen des différences de progressions selon ces mêmes caractéristiques et selon les domaines, en contrôlant les acquis initiaux des élèves (modèle 3). En effet, rappelons que les coefficients correspondant aux caractéristiques individuelles des élèves peuvent s'interpréter comme des progressions dans le modèle 3, dans la mesure où ils indiquent, à score initial égal, les différences au score intermédiaire.

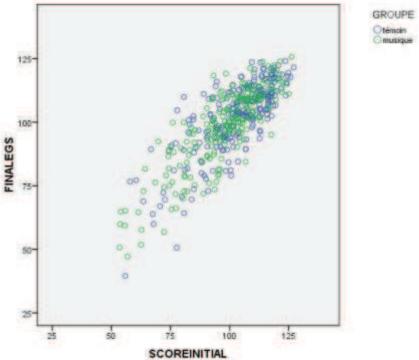
Les filles obtiennent toujours de meilleures performances que les garçons dans trois domaines : le rythme, le graphisme et la mémoire. Les coefficients associés à cette variable de genre sont en baisse par rapport au test initial pour le rythme, stable pour le graphisme, mais en nette augmentation pour la mémoire. Les filles obtiennent en effet 3 points de plus en mémoire au test intermédiaire. Les coefficients du modèle 3 montrent que les filles ont plus progressé que les garçons en rythme, en graphisme et en discrimination visuelle, bien que la significativité de ce dernier coefficient soit plus faible (significatif au seuil de 10%).

En fonction de la naissance, nous pouvons séparer les élèves en deux groupes : ceux nés avant et après juillet. Les élèves nés avant juillet se distinguent significativement des autres élèves et obtiennent des scores plus élevés de 3 à 6 points selon les domaines. Il est intéressant de noter que nous n'observons plus de hiérarchisation selon le trimestre de naissance. Les élèves du premier et du second trimestre ont des scores moyens identiques. Les effets de cette variable sont plus forts en organisation spatiale et en rythme (+5,5 points), que dans les autres domaines. Les élèves nés au second trimestre ont progressé plus que les autres, avec un gain supplémentaire de 2,5 points en organisation spatiale et en discrimination visuelle. C'est justement dans ces deux domaines que les écarts initiaux entre les élèves du premier et second trimestre étaient les plus marqués, ce qui explique pourquoi les deux premiers trimestres de naissance ont maintenant des effets identiques au test intermédiaire.

Alors que nous n'observions pas d'effet de l'année de naissance sur les performances des élèves au test initial, les élèves nés en 2004 obtiennent 6,3 points de plus que les autres en mémoire (au seuil de significativité de 10%). Parallèlement, nous constatons, à l'aide des

coefficients du modèle 3, que ces élèves ont progressé plus vite que les autres en rythme, avec une différence d'environ 5,5 points.

Par ailleurs, d'autres variables n'ont pas d'effet sur les performances cognitives des élèves en fin de grande section de maternelle : le pays de naissance, la composition du ménage ou la fréquentation des lieux scolaires n'ont pas d'impact, ni sur les performances, ni sur les progressions des élèves. Le cas d'une autre variable est un peu plus singulier : alors qu'on ne distingue pas de différence significative de score selon la langue parlée à la maison, on constate que les élèves qui ne parlent que le français progressent plus que les autres (+7,9) en graphisme.


La profession des deux parents a également un impact très intéressant sur les performances des élèves et sur leurs progressions. Comme précédemment, seuls les élèves dont le père est ouvrier se distinguent significativement des autres élèves et obtiennent de moins bons scores cognitifs à la fin de la grande section. C'est en mémoire que la différence est la plus importante (-6,3 points). A l'inverse, les scores des enfants d'ouvriers ne diffèrent pas des autres élèves en discrimination visuelle et en graphisme. Il est intéressant de noter que les enfants d'ouvriers progressent moins vite en mémoire (-6,3) et en rythme (-3,9). La profession de la mère a un impact plus fort sur les progressions des élèves. Les enfants dont la mère est cadre ont de meilleures performances en organisation spatiale (+5,1), en rythme (+5,5) et en mémoire (+6,5), mais pas en discrimination visuelle ni en graphisme. Les élèves dont la mère est employée « gagnent » 4,3 points en discrimination visuelle et 4,4 en mémoire. Enfin, les enfants dont la mère est ouvrière obtiennent 5,7 points de plus en mémoire qu'un élève dont la mère est sans activité. En termes de progression, tous les élèves ont accru leurs scores en mémoire plus vite que les enfants dont la mère ne travaille pas (+4,2 points en moyenne). De la même manière, les enfants dont la mère est employée ont progressé plus vite que les autres en discrimination visuelle (+5).

2.2.3. Influence des performances des élèves au test initial sur les acquis cognitifs de fin de maternelle

Nous allons maintenant examiner l'influence des performances aux différentes dimensions de l'évaluation NBA1 sur la variabilité des scores à la fin de l'école maternelle. Même s'il ne s'est écoulé que six mois entre les deux périodes d'évaluation, il est plausible que certaines dimensions soient plus prédictives que d'autres. Pour ce faire, nous allons procéder par étape. Tout d'abord, après une première analyse graphique, nous allons calculer les matrices de corrélation mettant en lien ces différentes variables, puis nous réaliserons un modèle de régression linéaire, et enfin nous nous appuierons sur les statistiques implicatives.

GROUPE

Graphique 9 : Relation entre les scores globaux aux tests initial et intermédiaire des élèves

Ce graphique donne la répartition des élèves selon le groupe expérimental en fonction de leurs scores globaux aux tests initial et intermédiaire. Le nuage de points fait ressortir une nette tendance : l'association positive entre les scores à chacun des tests. Pour affiner domaine par domaine, nous nous appuyons sur une matrice des corrélations.

Tableau 60: Matrice des corrélations entre les scores des différentes dimensions des tests NBA1 et NBA2

Test NB	A2					
Test NBA1	O. Spatiale	Rythme	D. Visuelle	Graphisme	Mémoire	FINALEGS
O. Spatiale	,689**	,640**	,452 ^{**}	,495**	,460**	,720 ^{**}
Rythme	,634**	,707**	,456 ^{**}	,475**	,401**	,704**
D. Visuelle	,408**	,398**	,476**	,350**	,318**	,514 ^{**}
Graphisme	,466**	,489**	,333**	,496**	,292**	,547**
Mémoire	,383**	,415**	,280**	,372**	,469**	,506**
SCOREINITIAL	,703**	,722 ^{**}	,543**	,596**	,529**	,814**

De manière globale, les performances des élèves aux tests NBA1 et NBA2 sont fortement liées, puisque le coefficient de corrélation est de 0,8, ce qui confirme l'observation graphique. Comme nous pouvons le constater à l'examen de ce tableau, les scores des mêmes domaines sont parfois fortement corrélés : ainsi, le coefficient qui rend compte de la liaison existante entre deux scores d'organisation spatiale est de 0,69, celui pour les deux scores de rythme est de 0,7. A l'inverse, les deux scores de discrimination visuelle, graphisme et mémoire sont moins corrélés entre eux. Par ailleurs, on peut remarquer que certains domaines ont une influence plus marquée sur le score final. Les deux dimensions qui semblent entretenir le plus de liaison avec le score global de capacités cognitives NBA2 sont l'organisation spatiale et le rythme, avec des coefficients s'élevant respectivement à 0,72 et 0,7.

Tableau 61: Influence des domaines de NBA1 sur le score au test NBA2

	Coefficients	standardisés
	В	Signification
(constante)	-8,036	,036
OSINITIAL	,316	,000
ORINITIAL	,278	,000
DVINITIAL	,181	,000
GINITIAL	,172	,000
MINITIAL	,131	,000

a. Variable dépendante : FINALEGS

Les résultats de la régression semblent tendre vers la même conclusion. Les coefficients associés aux scores initiaux d'organisation spatiale et de rythme ont un effet fort sur les performances cognitives des élèves en fin de maternelle (0,32 et 0,28). Les autres domaines ont une importance relative moindre (entre 0,13 et 0,18), mais réelle. Il est également important de noter que les scores initiaux expliquent à hauteur de 67,7% la variabilité des scores au test final. La valeur élevée du R² est un résultat convergent avec l'observation graphique faite à la figure XX. Ainsi, comme on pouvait s'y attendre, les performances des élèves au test cognitif intermédiaire sont fortement déterminées par celles au test cognitif initial. De façon plus intéressante, on observe que le score intermédiaire est fortement influencé par deux domaines du test initial.

Une dernière analyse concerne la hiérarchisation des domaines à chacun des deux tests NBA1 et NBA2. En effet, nous venons de voir que les domaines sont liés entre eux. Il est possible d'aller plus loin et de détecter si la réussite à un ou des domaines implique la réussite à d'autres. Pour ce faire, une analyse statistique implicative est mobilisée. L'idée de cette méthode est de déceler des relations d'implication, dont les schémas ci-dessous, réalisés avec CHIC, rendent compte pour nos données. Nous renvoyons à la partie 1 pour une présentation plus approfondie de la méthode d'analyse statistique implicative (voir encadré de la première partie).

NBA1

Mémoire Graphisme

Mémoire Graphisme

Mémoire Graphisme

Mémoire Graphisme

Wisuelle

Graphique 10: Graphes implicatifs des dimensions des tests NBA1 et NBA2

Rythme

Rappelons que les traits rouges signifient que la relation implicative entre les deux variables est supérieure ou égale à 75%; elle est de 70% pour les traits en bleu. Il est intéressant de noter que le schéma d'implication des performances du test NBA1 comprend tous les domaines, tandis que pour la seconde période, au test NBA2, l'orientation spatiale et le rythme en sont exclus. En fait, les relations de ces deux domaines avec les autres ne sont plus suffisamment importantes pour être statistiquement significatives, puisqu'elles sont inférieures à 50%. Ainsi, les relations d'implication ne sont pas identiques à chacun des deux tests. Ces modifications peuvent refléter le processus de maturation cognitive des enfants. Les élèves sont scolarisés en maternelle et sont donc très jeunes. A cet âge, la cognition évolue très rapidement, et les interactions entre les domaines peuvent se modifier entre les deux périodes de mesure, ce que reflètent les schémas d'implication. Il est également important de

noter qu'il n'y a pas pour autant de renversement de tendance dans les implications entre domaines²⁹ : l'évolution semble se faire dans une certaine continuité.

Les implications les plus importantes (c'est-à-dire à 75%) concernent les relations entre les domaines de discrimination visuelle et de rythme au test NBA1 et entre les domaines de graphisme et de discrimination visuelle pour NBA2. Ainsi, un élève réussissant parfaitement les tâches de discrimination visuelle au test NBA1 a trois chances sur quatre d'achever brillamment les items de rythme à ce même test.

Enfin, il faut noter que la mémoire joue un rôle essentiel, et ce pour les deux périodes d'évaluation. En effet, elle se situe au début du chaînon d'implications, au même titre que le graphisme dans le premier test, et seule dans le second test. Il s'agit alors d'une capacité cognitive particulièrement déterminante.

-

²⁹ Ce serait le cas si on avait par exemple « Discrimination visuelle » implique « Rythme » à NBA1, et le contraire pour NBA2.

2.3. Les performances des élèves au test musical

La musique est un élément central du programme expérimental, c'est pourquoi nous avons souhaité introduire une mesure de performance en la matière. Nous examinerons les performances des élèves au test musical d'abord sur les scores moyens, puis en évaluant l'impact net des caractéristiques individuelles et scolaires. Le tableau ci-dessous indique les moyennes obtenues par les élèves au test de musique en fonction de certaines caractéristiques socio-démographiques et scolaires.

Tableau 62: Scores moyens au test musical selon des caractéristiques individuelles et scolaires

		Musique
Genre de l'élève	fille	100,5
	garçon	99,4
Trimestre de naissance	1 ^{er}	104,8
	2 nd	100,2
	3 ^{eme}	99,3
	4 ^{eme}	94,8
Pays de naissance	France	100
	Autre	99,1
Langue parlée	Français	101,2
	Autre	98,1
Profession du père	Artisan, com.	101,8
	Ouvrier	96,2
	Cadre	105,7
	Intermédiaire, empl	101,5
	Sans emploi	100,5
Profession de la mère	Ouvrier	97,4
	Cadre, inter	103,7
	Employée	100,4
	Sans emploi	97,5

Les scores moyens au test musical divergent très peu selon le genre de l'élève et son pays de naissance, ainsi que selon le genre du professeur et le type de cours. Un écart un peu plus important peut être observé selon la langue parlée à la maison, à l'avantage des élèves parlant le français au domicile. Dans un même ordre de grandeur, selon l'âge d'entrée en maternelle, les élèves scolarisés dès deux ans ont un meilleur score (100,1) que ceux scolarisés à quatre ans (96,1)

Des différences plus notables apparaissent pour le trimestre de naissance et pour la profession des parents. On retrouve pour le test musical la hiérarchie observée pour les performances scolaires, avec un gradient selon le trimestre de naissance et un fort écart entre les trimestres extrêmes, un élève né au premier trimestre obtenant en moyenne 8 points de plus que son homologue né au dernier trimestre. Si l'écart de score est important selon la profession de la mère (6 points entre les plus et les moins favorisés), il l'est encore plus selon la profession du père. Ce sont en effet près de 12 points qui séparent les scores moyens obtenus par un enfant de cadre et un enfant d'ouvrier.

Nous allons maintenant isoler l'impact respectif de chacune des caractéristiques individuelles sur le score musical. Nous intégrons notamment le fait de pratiquer une activité musicale à l'extérieur de l'école, ce qui permet de contrôler l'effet éventuellement perturbateur de cette variable. Les résultats de la régression correspondante sont présentés au tableau suivant. Les variables introduites dans ce modèle expliquent à hauteur de 11,8% la variation des scores de musique. Nous ne disposons malheureusement pas de mesure des performances initiales en musique. Cependant, nous pouvons chercher à contrôler l'effet net des caractéristiques des élèves en prenant en compte le score global initial des capacités cognitives, ce qui permet de raisonner à compétences cognitives égales. Cette régression est celle du modèle 2.

Tableau 63: Impact net des facteurs socioéconomiques, scolaires et cognitifs sur le score musical

R ² : 0,118		Modè	le 1	Mode	èle 2
Score de musique		В	Sign	В	Sign.
	(constante)	102,518	,000	56,985	,000
Genre	fille	1,387	,323	-1,094	,380
Trimestre de naissance	1er trimestre	7,496	,000	4,577	,003
	2nd trimestre	2,762	,089	-,650	,653
	3eme trimestre	2,804	,140	,928	,577
Année de naissance	2004	-4,094	,275	-5,563	,090
Pays de naissance	Né en France	-4,026	,139	-3,058	,199
Langue parlée	Parle uniquement le français	2,711	,103	1,449	,320
Musique	Pratique une activité musicale	4,921	,182	1,407	,663
Ménage	Père et mère	-3,216	,122	-4,156	,023
Fréquentation des lieux	Accueil le matin	,419	,848	1,498	,432
scolaires	cantine	-4,559	,010	-5,126	,001
	Garderie le soir	2,957	,158	,898,	,625
Profession du père	Artisan, commerçant	3,826	,220	3,985	,144
	Ouvrier	-,990	,675	1,805	,385
	Cadre	4,741	,139	4,802	,087
	Intermédiaire, employé	2,664	,283	3,071	,157
Profession de la mère	Cadre, intermédiaire	4,301	,051	,613	,753
	Employée	1,464	,424	,649	,685
	Ouvrière	,851	,749	1,039	,655
Score initial NBA1	.			,518	,000

Ni le sexe, ni le pays de naissance, ni la langue parlée à la maison n'ont d'effet sur les performances musicales des élèves. Nous retrouvons l'impact du trimestre de naissance observé sur les scores moyens, puisque les élèves nés au premier (+7,5) et second trimestre (+2,7) obtiennent de meilleurs scores que les autres. Cependant, lorsque l'on contrôle par le score cognitif global NBA1, seuls les élèves du premier trimestre se distinguent significativement des autres. En raisonnant selon ce même modèle, les enfants de père cadre obtiennent 4,9 points de plus que les élèves dont le père ne travaille pas. Autrement dit, à compétences cognitives égales, les enfants de père cadre ont de meilleures performances en musique. Concernant la profession de la mère, le modèle 1 montre que les enfants de cadre obtiennent 4,3 points supplémentaires relativement aux enfants dont la mère ne travaille pas. Cet effet disparaît toutefois dans le modèle 2.

Si la profession des parents ou le trimestre de naissance ont un impact positif sur les performances des élèves au test musical, certaines variables sont associées à une baisse de points. Ainsi, en raisonnant à score cognitif égal, les élèves nés en 2004, ceux qui fréquentent la cantine et enfin ceux vivant avec leur père et leur mère voient leur score de musique baisser de près de 5 points en moyenne. L'impact négatif le plus fort est imputable à l'année de naissance (-5,6), et le moins conséquent à la composition du ménage (-4,2).

Enfin, si la pratique de la musique en dehors du cadre scolaire affecte positivement les scores de capacités cognitives initiales des jeunes enfants, elle ne permet pas d'accroitre significativement les scores aux tâches musicales, puisque le coefficient associé à cette variable n'est pas significatif, que les capacités cognitives initiales soient ou non contrôlées.

2.4. Les performances des élèves au CP

Les performances des élèves ayant été abordées en termes cognitifs et musicaux, il nous reste maintenant à les examiner en termes scolaires, au CP. Nous suivrons la même logique que dans les sections précédentes, en étudiant les scores moyens et l'impact des facteurs socioéconomiques, mais aussi, en analysant les relations entre les scores au CP et en maternelle.

2.4.1. Les scores moyens au test de CP

Nous allons tout d'abord examiner les performances moyennes des élèves au CP en fonction de leurs caractéristiques. Comme précédemment, la moyenne est fixée à 100 et l'écart-type à 15. Nous faisons figurer au tableau suivant les scores moyens des élèves en français, mathématiques et en mémoire selon certaines caractéristiques individuelles et scolaires.

Tableau 64: Scores moyens aux tests de CP selon des caractéristiques individuelles et scolaires

		Français	Mathématiques	Mémoire
Genre de l'élève	fille	101,6	100,3	102,5
	garçon	98,6	99,9	97,5
Trimestre de naissance	1 ^{er}	101,7	101,8	100,3
	2 nd	100	102,2	98,9
	3 ^{ème}	99,5	98,1	100,4
	4 ^{ème}	97,8	99,2	100,6
Pays de naissance	France	99,7	100,3	99,8
	Autre	99,8	100,3	99,9
Langue parlée	Français	99,9	102,1	99,8
	Autre	99,9	100,3	99,9
Profession du père	Artisan, com.	98,8	100,3	103,4
	Ouvrier	97,3	96,6	100,7
	Cadre	102,5	108,2	100,5
	Intermédiaire, empl	102,5	103,2	98,7
	Sans emploi	101	97	98,1
Profession de la mère	Ouvrier	99,1	99	99,7
	Cadre, inter	103,4	106,8	100,3
	Employée	100,9	100,2	100,7
	Sans emploi	96,9	95,1	99

Les performances des élèves en français, mathématiques et en mémoire semblent être hiérarchisées en fonction du genre et du trimestre de naissance. Les filles obtiennent de meilleurs scores que les garçons, notamment en mémoire où elles devancent ces derniers de 5 points, puis en français et en mathématique. Si en mémoire et en mathématiques le trimestre de naissance semble contribuer modestement à la variation des scores, son influence est bien plus forte en français : les élèves nés au premier trimestre y obtiennent en moyenne 4 points de plus que les élèves nés au dernier trimestre.

Les écarts de performances les plus importants sont constatés lorsque l'on s'intéresse à la profession des deux parents. Ce sont les enfants dont le père est cadre qui en moyenne réussissent le mieux, suivis des enfants dont la mère est cadre. L'écart est plus important en

mathématiques que dans les autres domaines évalués. A l'inverse, les enfants dont la mère ne travaille pas obtiennent les plus faibles résultats, cet écart étant le plus grand en mathématiques une nouvelle fois. Les performances des enfants d'ouvrières se rapprochent beaucoup de celles des enfants dont la mère ne travaille pas tandis que les scores proches de la moyenne sont obtenus par les enfants d'employées et de professions intermédiaires. Ainsi, à la fin du CP, ce sont plus de 11 points en mathématiques qui séparent les enfants de mère cadre et les enfants dont la mère ne travaillent pas, cet écart étant porté à 4 points en français, et à 1,3 points en mémoire. Ces différences de performances sont similaires en ce qui concerne la profession du père. En synthèse, il est important de noter que ce sont les enfants dont le père ou la mère sont, soit sans emploi, soit ouvrier, qui obtiennent les moins bonnes performances, et que les écarts sont d'autant plus important qu'il s'agit des mathématiques.

2.4.2. Les relations entre les scores de CP et de maternelle

Nous disposons des scores cognitifs des élèves de maternelle pour deux périodes, initiale et intermédiaire. C'est pour chacun de ces deux tests cognitifs qu'il nous faut examiner les relations avec les scores de CP. Pour commencer, nous nous intéressons aux relations entre les scores des domaines aux tests cognitifs et les trois scores de CP, à l'aide de matrice des corrélations.

La première matrice présente les corrélations entre les domaines de NBA1 et les scores de CP. Les corrélations entre les scores des élèves aux épreuves de CP et de début de grande section maternelle sont presque toutes significatives et d'amplitude variable. Ce sont les mathématiques qui entretiennent les liaisons statistiques les plus fortes avec les scores cognitifs du test NBA1, et plus particulièrement l'organisation spatiale (0,52) et le rythme (0,51). Nous constatons que ce sont ces mêmes domaines cognitifs qui sont le plus fortement corrélés au français, avec un coefficient de 0,48 et 0,4. L'item de mémoire de CP est, quant à lui, lié au domaine de la mémoire NBA1, mais avec un coefficient relativement faible de 0,26. La corrélation non significative concerne le score de mémoire au CP et la discrimination visuelle; ces deux domaines semblent donc indépendants. Dans l'ensemble, nous observons que le score de mémoire en CP est relativement peu corrélé aux performances des élèves en

maternelle. En termes de score cognitif global, les performances de français et de mathématiques sont liées au score global obtenu par les élèves au test NBA1, avec une valeur du coefficient de 0,5 et 0,58.

Tableau 65: Matrice des corrélations entre les scores de CP et les scores cognitifs initiaux (NBA1)

NBA1	OSINITIAL	ORINITIAL	DVINITIAL	GINITIAL	MINITIAL	SCOREINITIAL
Français cp	,478**	,402**	,344**	,334**	,293**	,503**
Math cp	,523**	,512 ^{**}	,365**	,381**	,360**	,581**
Mémoire cp	,113 [*]	,191**	,063	,126 [*]	,262**	,205**

^{**.} La corrélation est significative au niveau 0.01 (bilatéral).

Le tableau suivant présente les coefficients de corrélations entre les domaines cognitifs du test NBA2 et les scores du test de CP. Les plus forts coefficients de corrélation sont obtenus entre le rythme et les mathématiques, et le rythme et l'organisation spatiale. De manière globale, les liaisons statistiques entre les domaines du test NBA2 et de CP sont très similaires aux coefficients de corrélation entre les scores du test NBA1 et de CP, avec une légère augmentation pour toutes ces relations. De la même manière qu'avec le test cognitif initial, la liaison la plus faible concerne la mémoire au CP et la discrimination visuelle, la corrélation étant toutefois ici significative. A la différence du test NBA1, la mémoire en CP est cette fois plus liée au rythme (0,24) qu'à la mémoire testée en fin de grande section (0,18). Enfin, les scores globaux de fin de maternelle demeurent très liés aux scores de français et de mathématiques à hauteur de 0,53 et 0,6.

Tableau 66: Matrice des corrélations entre les scores de CP et les scores cognitifs intermédiaires (NBA2)

NBA2	Graphisme	Mémoire	Organisation.S	Rythme	Discrimination.V	FINALEGS
francais cp	,407**	,352**	,456 ^{**}	,432**	,365**	,535 ^{**}
math cp	,417**	,358**	,537**	,557**	,391**	,601**
mémoire cp	,192**	,182**	,177**	,241**	,167**	,255**

^{**.} La corrélation est significative au niveau 0.01 (bilatéral).

^{*.} La corrélation est significative au niveau 0.05 (bilatéral).

^{*.} La corrélation est significative au niveau 0.05 (bilatéral).

Les matrices de corrélation montrent que les performances des élèves en CP sont liées à leurs scores cognitifs de maternelle. Il est alors intéressant de déterminer quels sont les aspects cognitifs les plus prédictifs de la réussite des élèves au CP. Pour ce faire, nous réalisons deux régressions. Le premier tableau ci-dessous présente les résultats des MCO sur le score global de CP, avec comme variables explicatives les scores des tests cognitifs initiaux, le NBA1. Les régresseurs du second tableau sont les scores des tests cognitifs de fin de GS, les NBA2.

Tableau 67: Impact net des domaines cognitifs de NBA1 sur le score global de CP

		Groupes	
Score de Début GS (NBA1)	Tous	Musique	Témoin
O. Spatiale	,279***	,245***	,350***
Rythme	,162***	,188**	,157**
D. Visuelle	,130***	,151**	,160***
Graphisme	,098***	,044 ^{ns}	,131**
Mémoire	,104***	,092 ^{ns}	,093 ^{ns}

Tableau 68: Impact net des domaines cognitifs de NBA2 sur le score global de CP

		Groupes	
Score de Fin GS (NBA2)	Tous	Musique	Témoin
O. Spatiale	,199***	,139ns	,266***
Rythme	,201***	,293***	,118 ^{ns}
D. Visuelle	,127***	,098 ^{ns}	,192***
2	,150***	,096 ^{ns}	,227***
Graphisme Mémoire	,133***	,141**	,111*

Pour chacun de ces tableaux, nous avons distingué les élèves des deux groupes, témoin et expérimentale, afin d'appréhender les éventuelles différences entre les deux sous-échantillons. Pour l'ensemble des élèves, l'organisation spatiale au test initial est la variable la plus prédictive des scores de CP. A la fin de la grande section de maternelle, le score d'orientation spatiale est toujours l'un des plus prédictifs des performances des élèves au CP. Lorsque l'on observe les valeurs des coefficients pour les élèves du groupe témoin et du groupe musique, nous constatons une légère différence. Tandis que l'organisation spatiale, puis le graphisme, sont les variables qui contribuent le plus à l'explication des performances pour les élèves du groupe témoin aux deux tests cognitifs, c'est le rythme qui a une des valeurs les plus élevées chez les enfants du groupe expérimental, et particulièrement en fin de grande section de maternelle. Afin d'approfondir l'étude de l'influence des scores cognitifs sur les performances des élèves en français, mathématiques et mémoire, nous avons réalisé un modèle similaire sur chacun de ces scores. Les résultats de ces analyses figurent au tableau de la page suivante.

Pour l'ensemble des élèves, le score de mémoire des élèves au CP semble être expliqué en partie par le score de mémoire au test initial, et, dans une moindre mesure, par le score de rythme. Au test intermédiaire, c'est le score de rythme qui a le plus grand pouvoir explicatif. Quelques différences apparaissent entre les élèves des deux groupes. Alors que, chez les élèves du groupe musique, seul le score initial de mémoire a un impact positif et significatif sur les scores de mémoire de CP, le score de rythme a aussi un impact chez les élèves du groupe témoin. Le score de rythme possède même une influence plus grande que celle du score mémoire dans le groupe témoin. Après l'expérimentation, au test NBA2, ce sont les scores de mémoire et de discrimination visuelle pour les élèves du groupe témoin, et le score de rythme pour les élèves du groupe musique, qui déterminent le plus fortement le score de mémoire de CP.

Les scores de mathématiques s'expliquent essentiellement par les performances initiales d'organisation spatiale (0,24) et de rythme (0,22). A la fin du programme expérimental, la tendance s'inverse, mais avec une prégnance des deux même domaines : ce sont d'abord les scores de rythme (0,28), puis ceux d'organisation spatiale (0,21) qui exercent

l'influence la plus grande sur les performances en mathématiques. Notons également la différence entre les élèves des deux groupes, et particulièrement avec les domaines cognitifs du test de fin de grande section de maternelle. Ainsi, chez les élèves du groupe musique, seul le score de rythme a un impact significatif sur les performances en mathématiques au CP, tandis que pour les élèves du groupe témoin, toutes les variables exercent un impact, notamment l'organisation spatiale, puis le rythme et le graphisme.

Enfin, en ce qui concerne le score de français CP, l'organisation spatiale et la discrimination visuelle des élèves sont les deux domaines qui ont le plus fort impact avant la mise en place de l'expérimentation. A l'issue de la grande section de maternelle, ce sont cette fois l'organisation spatiale et le graphisme qui sont les deux variables les plus prédictives des scores de français en CP. Là encore, des différences sont à noter entre les deux groupes d'élèves. Si, pour les domaines cognitifs du test intermédiaire, le graphisme est la variable la plus prédictive chez les élèves du groupe témoin, c'est l'orientation spatiale qui occupe cette place chez les élèves ayant fait partie du groupe musique.

En synthèse, on peut retenir deux points. Tout d'abord, on constate que les domaines cognitifs les plus déterminants de la réussite au CP ne sont pas identiques pour les deux tests NBA. Les capacités cognitives évoluent, ainsi que les relations que les domaines cognitifs entretiennent entre eux (voir section 223). Il est donc compréhensible de relever une telle différence. Ensuite, on observe que l'influence des facteurs cognitifs varie entre les deux groupes d'élèves. De manière globale, les résultats de nos analyses montrent que les domaines cognitifs les plus prédictifs de la réussite future au CP sont le rythme, pour les élèves du groupe musique, et l'organisation spatiale, le graphisme et la discrimination visuelle pour les élèves du groupe témoin.

Tableau 69: Impact net des domaines cognitifs (NBA1 et NBA2) sur les scores de CP en français, mathématiques et mémoire

MEMOIRE CP	ı	NBA1			NBA2	
	Tous	Musique	Témoin	Tous	Musique	Témoin
O. Spatiale	-,103 ^{ns}	-,049 ^{ns}	-,090 ^{ns}	-,044 ^{ns}	-,073 ^{ns}	-,012 ^{ns}
Rythme	,174**	,155 ^{ns}	,264***	,173**	,192*	,175*
D. Visuelle	-,041 ^{ns}	,019 ^{ns}	-,061 ^{ns}	,054 ^{ns}	,043 ^{ns}	*444
Graphisme	,014 ^{ns}	-,002 ^{ns}	,023 ^{ns}	,076 ^{ns}	,104 ^{ns}	,117 ^{ns}
Mémoire	,245***	,228***	,247***	,080°s	,154*	*010*
MATH CP	Tous	Musique	Témoin	Tous	Musique	Témoin
O. Spatiale	,240***	,268***	,262***	,206***	,095ns	,317***
Rythme	,218***	,145*	,295***	,276***	,385**	,165**
D. Visuelle	***************************************	,111 ^{ns}	,165**	**260,	,114 ^{ns}	, 15,
Graphisme	,091**	,012 ^{ns}	,126**	* 460,	,049 ^{ns}	,154**
Mémoire	,101**	,122*	,072 ^{ns}	**560,	,076 ^{ns}	,110*
FRANÇAIS CP	Lous	Musique	Témoin	Tous	Musique	Témoin
O. Spatiale	,298***	,216**	***068,	,183***	,174*	,202**
Rythme	,076 ^{ns}	,177**	,001 ^{ns}	,097 ^{ns}	,161*	,047 ^{ns}
D. Visuelle	,139***	,165**	,149**	,128**	su690'	,209***
Graphisme	,093*	,065 ^{ns}	,117*	,166***	,105 ^{ns}	,242***
Mémoire	,055 ^{ns}	,020 ^{ns}	,064 ^{ns}	,135***	,151**	,098 ^{ns}

2.4.3. Analyse de l'impact net des variables socioéconomiques sur les scores de français, mathématiques et mémoire des élèves en CP

Il nous reste désormais à évaluer l'impact net de facteurs individuels et scolaires. Rappelons en effet que les scores moyens différaient selon certaines de ces caractéristiques. En première approche, nous réalisons des régressions linéaires multivariées entre les variables socioéconomiques et scolaires, et les performances globales des élèves au CP.

Tableau 70 : Impact des facteurs socioéconomiques et scolaires sur le score global de CP

		Coefficients	modèle 1	Coefficients	modèle 2
Modèle		В	Signification	В	signification
	(constante)	94,673	,000	35,776	,000
	Fille	2,226	,135	-1,246	,317
	1er trimestre	2,120	,242	-1,976	,193
	2nd trimestre	2,314	,182	-1,019	,478
	3eme trimestre	,674	,741	,041	,980
	né en France	-2,402	,371	-1,671	,448
	Parle uniquement le français	-,769	,663	-3,084	,036
	Père et Mère	2,286	,314	,423	,820
	Accueil le matin	-,864	,709	-1,397	,460
	cantine	,293	,879	,923	,560
	Garderie le soir	,129	,955	-,978	,599
	Particom	-1,578	,626	1,389	,599
	Pouvrier	-2,328	,347	1,477	,475
	Pcadre	1,894	,584	2,895	,303
	Pinteremploye	1,359	,607	2,409	,265
	Mcadreinter	8,320	,000	4,636	,017
	Memploye	4,915	,012	1,558	,331
	Mouvrier	3,824	,160	4,084	,072
	Score NBA2	*		,649	,000

Les variables intégrées au modèle 1 expliquent 8,7% de la variabilité des scores des élèves au CP. Une très grande part des variations de scores entre les élèves reste ainsi à expliquer. Lorsque l'on introduit les performances des élèves en fin de grande section de maternelle (modèle 2), la valeur du coefficient de détermination est alors de 0,42.

Seuls quelques coefficients sont significatifs, et peu de variables socioéconomiques et scolaires semblent contribuer à la variabilité des scores des élèves au CP. En effet, dans le premier modèle, le sexe, le trimestre ou le pays de naissance, pour n'en citer que quelques uns, n'ont pas d'impact significatif sur les performances des élèves au CP. En revanche, les élèves dont la mère est cadre obtiennent en moyenne 8,3 points de plus que les élèves dont la mère ne travaille pas, et les enfants d'employée réussissent mieux eux aussi, avec une différence de 4,9. En raisonnant à score cognitif égal, c'est-à-dire dans le modèle intégrant les performances des élèves au test NBA2, on constate que si les élèves de mère cadre conservent un certain avantage, il est tout de même moindre, la valeur du coefficient étant de 4,6. Les enfants dont la mère est ouvrière réussissent d'ailleurs aussi bien, avec un gain de 4 points par rapport à une mère au foyer. Il est intéressant de noter que dans ce second modèle, les enfants qui parlent exclusivement le français obtiennent 3 points de moins que les élèves qui parlent une autre langue à la maison. Ce faible effet des caractéristiques individuelles sur le score global de CP est un résultat étonnant qui mérite un approfondissement, ce que nous ferons en examinant l'impact de ces facteurs sur chacun des trois domaines du CP (français, mathématiques, mémoire).

Avant de commenter les résultats des régressions linéaires sur les scores en français, mathématiques et mémoire, une première analyse consiste à examiner les pouvoirs explicatifs des modèles de régression. Nous avons effectué, sur chacun des trois scores du test de CP, trois analyses distinctes. Dans un premier modèle, nous cherchons à expliquer les scores par l'ensemble des caractéristiques des élèves (CE). En plus de ces caractéristiques, nous avons intégré dans un deuxième modèle les scores au test intermédiaire, c'est-à-dire les performances globales des élèves à la fin de grande section (NBA2). Enfin, un dernier modèle ne prend en compte que les scores du test intermédiaire. Le tableau ci-dessous récapitule la part de la variance expliquée (en pourcentage) pour tous ces modèles.

Tableau 71: Parts de variance expliquée pour trois modèles relatifs aux domaines de CP

	Français	Mathématiques	Mémoire
Modèle 1 (CE)	7,9	13	6,8
Modèle 2 (CE + NBA2)	33	41,9	12,9
Modèle 3 (NBA2)	28,6	36,1	6,5

La part de la variance des scores du test final expliquée par les variables introduites dans les modèles diffère considérablement selon les domaines. C'est pour les mathématiques que les pouvoirs explicatifs des modèles sont régulièrement les plus forts. Plus précisément, les caractéristiques socioéconomiques et scolaires des élèves expliquent un pourcentage relativement faible de la variabilité des acquisitions à la fin du cours préparatoire, avec presque 8% en français, 13% en mathématiques et près de 7% en mémoire. Les R² les plus élevés sont attribuables au second modèle, qui comprend à la fois les caractéristiques des élèves et les scores au test NBA2. Ce modèle permet ainsi d'expliquer 41,9% de la variation des scores de mathématique par exemple. Enfin, les acquisitions initiales des élèves expliquent à elles seules une part non négligeable des variations de scores : 28,6% pour le français et 36,1% pour les mathématiques. Ces proportions sont nettement supérieures à celles relatives aux facteurs socioéconomiques et scolaires. Autrement dit, les facteurs cognitifs semblent plus déterminants que les caractéristiques des élèves pour le français et les mathématiques. Par ailleurs, il est intéressant de noter le cas particulier du score de mémoire. En effet, au vu des faibles pourcentages de la variance expliquée, il semble que d'autres facteurs que ceux mesurés ici doivent contribuer à l'explication de la variabilité des performances des élèves dans ce domaine.

Venons en maintenant aux commentaires sur les résultats des régressions. Le tableau de la page suivante présente les résultats des régressions linéaires multivariées effectuées entre les variables socioéconomiques et scolaires, et les scores de français, mathématiques et mémoire des élèves en CP (modèle 1). Alors que le sexe n'affectait pas les performances globales des élèves, les filles obtiennent 2,9 points de plus que les garçons en français et 5,1 en mémoire. Ce coefficient n'est pas significatif en mathématiques. En ce qui concerne le trimestre de naissance, seuls les élèves nés au second trimestre ont de meilleures

performances, mais uniquement en mathématiques (+2,7). Les élèves qui pratiquent une activité musicale en dehors du cadre scolaire obtiennent 7,5 points de plus que les autres élèves en français, mais cette variable n'a pas d'impact significatif dans les autres domaines. Parmi les professions des parents, seule la profession de la mère semble avoir une influence sur les performances des élèves : les enfants dont la mère est cadre et ceux dont la mère est employée réussissent significativement mieux que les enfants dont la mère est sans emploi. Plus précisément, c'est un écart de 7 points en français et de 8,5 points en mathématiques qui sépare les enfants de ces dernières et les enfants de mère cadre, écart qui est ramené respectivement à 4,3 et 4,6 points pour les enfants de mère employée. Notons également que la profession des parents, pères et mères confondus, ne contribue pas à expliquer la variabilité des scores de mémoire. Enfin, de manière générale, l'année de naissance de l'élève, son pays de naissance, la langue parlée à la maison, la fréquentation des lieux scolaires en maternelle et la composition du ménage n'ont pas d'impact significatif sur les scores de français, de mathématiques, ni même de mémoire.

Tableau 72 : Impact des facteurs socioéconomiques et scolaires sur les scores de français, de mathématiques et de mémoire

Constante) B fille 2,930 1er trimestre 2,392 2nd trimestre 1,941 3eme trimestre 1,194 2004 -3,404 Né en France -2,210	Sign ,000 ,052 ,195	88 971		(ċ
e stre	,000 ,052 ,195	88 971	Sign	В	Sign
n 5 d	,052 ,195 ,268	- (0,00	000'	93,280	000'
<u>0</u>	,195 ,268	,303	,835	5,148	,001
	,268	1,543	,388	609'-	,743
		2,863	,092	-1,034	,557
	,563	-,232	806'	-,413	,842
	666,	4,855	,215	5,053	,214
	,448	-1,915	,497	-3,214	,273
Parle uniquement le français -2,037	,254	1,529	,376	-,598	,739
Pratique une activité musicale 7,550	,053	2,424	,520	5,046	,198
Fréquentation des lieux Père et mère	,270	1,114	,626	689'	,772
Accueil le matin ,877	707,	-1,827	,420	-2,987	,204
cantine -,647	,742	,677	,722	,730	,712
Garderie le soir -1,412	,541	2,136	,339	-3,299	,156
Artisan, commerçant -3,321	,311	-,406	868'	4,554	,168
Ouvrier -3,583	,152	-1,246	,607	2,498	,321
Cadre -1,241	,723	4,201	,215	2,392	,497
Intermédiaire, employé ,013	966,	1,947	,455	-,255	,925
Cadre, intermédiaire 7,013	,003	8,510	000'	3,099	,192
Employée 4,322	,029	4,642	,016	2,734	,169
Ouvrière 3,852	,161	3,375	,204	1,985	,472

Tableau 73: Impact du score cognitif, des facteurs socioéconomiques et scolaires sur les scores de français, mathématiques et mémoire

		Fra R=	Français R = 0.33	Mathématiques R = 0.42	atiques .42	Mé R=	Mémoire R= 0.13
Modèle 2		В	Sign	В	Sign	В	Sign
	(constante)	49,512	000'	34,843	000'	68,215	000'
Genre	fille	-,020	886'	-3,288	,010	3,603	,019
Trimestre de naissance	1er trimestre	-1,482	,364	-1,703	,270	-2,234	,232
	2nd trimestre	-1,188	,441	-,035	,981	-1,856	,292
	3eme trimestre	,308	,864	-,281	698,	,016	,994
Année de naissance	2004	-5,696	,124	3,950	,258	2,575	,542
Pays de naissance	Né en France	-,857	,737	-1,102	,648	-2,576	,377
Langue parlée	Parle uniquement le français	-4,087	,010	-,754	,611	-2,001	,265
Musique	Pratique une activité musicale	5,138	,135	-2,120	,513	3,449	,380
Ménage	Père et mère	1,438	,478	-,562	692'	-,315	,892
	Accueil le matin	,185	,927	-2,522	,187	-2,682	,246
Fréquentation des lieux	cantine	,509	,767	1,193	,461	668,	,646
scolaires	Garderie le soir	-2,423	,226	1,499	,427	-3,464	,130
	Artisan, commerçant	-,117	796'	2,122	,431	5,655	,083
Profession du père	Ouvrier	,145	,948	2,228	,290	4,309	,091
-	Cadre	,032	,992	5,534	,054	2,412	,486
	Intermédiaire, employé	1,354	,564	3,201	,149	,564	,833
	Cadre, intermédiaire	3,556	,088	5,063	,010	2,169	,361
Profession de la mère	Employée	1,110	,520	1,544	,344	1,337	,498
	Ouvrière	3,828	,116	3,594	,118	2,767	,319
Score NBA2		0,565	000'	,604	000'	,294	000'

En intégrant au modèle précédent les scores des élèves à la fin de grande section maternelle (modèle 2), nous raisonnons « à score cognitif égal en fin de grande section ». Nous observons alors que les filles obtiennent de moins bonnes performances que les garçons en mathématiques (-3,3), mais de meilleures en mémoire (+3,6). Il est intéressant de noter que les filles n'obtiennent plus un score plus élevé que les garçons en français. La profession des deux parents semble avoir un impact sur les performances des élèves en CP. Les enfants dont le père est cadre obtiennent 5,5 points de plus en mathématiques que les élèves dont le père ne travaille pas. En mémoire, ce sont les enfants d'artisans, commerçants et les enfants d'ouvriers qui réussissent le mieux, avec un écart respectif de 5,6 et 4,3 points de plus par rapport à la situation de référence. La profession du père n'affecte pas significativement les performances des élèves en français. Pour la profession de la mère, seuls les enfants de mère cadre obtiennent de meilleures performances que les enfants dont la mère ne travaille pas en français (+3,6) et en mathématiques (+5). Enfin, il est à noter que nombre de variables ne contribuent pas à expliquer la variabilité des scores entre les élèves : le trimestre de naissance, l'année et le pays de naissance, la pratique d'une activité musicale en dehors de l'école, la composition du ménage, et la fréquentation des lieux scolaires.

Les performances des élèves en CP dépendent de nombreux facteurs, sociodémographiques, scolaires et cognitifs. Ces facteurs ont un poids variable pour expliquer la variabilité des scores en CP, mais il ressort de nos analyses que ce sont les facteurs cognitifs, tels qu'appréhendés par les domaines des tests NBA, qui contribuent le plus à expliquer la variabilité des scores de CP. Ceci indique qu'il est bien pertinent, comme nous en avons fait l'hypothèse, de chercher à favoriser la réussite scolaire en agissant sur les capacités cognitives des élèves. Il nous faut maintenant vérifier que la musique permet bien d'atteindre cet objectif, et évaluer les effets de l'expérimentation.

Chapitre 3 : Les effets de l'expérimentation

Nous avons mis en œuvre une expérimentation à grande échelle reposant sur une intervention musicale en grande section de maternelle et afin de favoriser la réussite scolaire des élèves. Les chapitres précédents nous ont permis de décrire notre échantillon et de souligner l'influence des caractéristiques individuelles des élèves sur leurs performances en grande section de maternelle et en CP. Nous allons maintenant évaluer les effets de l'expérimentation, afin de répondre à deux grandes questions. La première est la suivante : une intervention musicale permet-elle d'améliorer les capacités cognitives des enfants ? Une riche littérature, notamment en psychologie, montre les effets potentiellement positifs de la musique sur la cognition. Nous allons évaluer ces effets dans un cadre expérimental à grande échelle. Les capacités cognitives des élèves sont fortement prédictives de leurs performances scolaires au CP, comme nous venons de le voir dans le chapitre 2, ce qui amène à notre seconde question: une intervention musicale permet-elle d'améliorer les performances scolaires des élèves de CP? Cette question est d'un intérêt tout particulier pour les sciences de l'éducation, pour lesquelles la lutte contre l'échec scolaire est un sujet central, tant en termes scientifique que d'aide à la décision publique. Après avoir mesuré les effets de l'expérimentation sur les scores au test musical, afin de s'assurer du bon déroulement du programme musical, nous répondrons à successivement à ces deux grandes questions.

3.1. Effet de l'expérimentation sur les scores du test musical

Comme nous l'avons déjà mentionné, nous ne disposons pas de mesure des compétences musicales des élèves avant la mise en place de l'expérimentation. Nous ne pouvons donc évaluer avec exactitude les effets de l'intervention Cependant, l'objectif du test musical n'est pas de mesurer les effets du programme musical sur les performances des élèves en comparant les moyennes avant-après et en fonction de l'appartenance au groupe témoin ou musique. L'objectif est beaucoup plus modeste, mais néanmoins essentiel. Les scores de

musique sont à considérer comme une simple mesure de contrôle qui rend compte de la bonne mise en application du programme expérimental. En effet, on peut s'attendre à ce que les élèves du groupe musique obtiennent de meilleurs scores musicaux que ceux du groupe témoin. Nous allons dans un premier temps analyser les scores musicaux en fonction de l'appartenance au groupe de contrôle ou de traitement, puis nous évaluerons les effets nets en tenant compte des caractéristiques des élèves.

3.1.1. Comparaison des moyennes des scores du test musical en fonction de l'appartenance aux groupes.

Une première analyse consiste à comparer les scores obtenus par les élèves aux différentes épreuves musicales selon leur groupe d'appartenance. Le tableau ci-dessous présente les moyennes au test musical pour les élèves du groupe témoin et les élèves du groupe expérimental.

Tableau 74: Moyennes au test de musique selon les groupes

GROUPE		identification	simultanéité	chronologie	codage	score total
témoin	Moyenne	100,6843	100,8201	100,7159	98,8558	100,2943
	Ecart-type	14,49441	15,71248	14,37186	15,25103	14,64253
musique	Moyenne	99,2127	99,0564	99,1764	101,3164	99,6614
	Ecart-type	15,55957	14,11504	15,68640	14,63216	15,42987

Comme le montre ce tableau, les moyennes des deux groupes d'élèves sont quasiment identiques quel que soit le domaine évalué. Pour les trois domaines d'identification, de simultanéité et de chronologie, les élèves du groupe témoin obtiennent une moyenne supérieure de près de 1,5 points par rapport aux élèves du groupe expérimental. La tendance se renverse pour les scores de codage et décodage où les élèves du groupe expérimental

devancent les élèves du groupe témoin de 2,5 points environ. De manière globale, c'est-à-dire sur l'ensemble des items du test de musique, nous notons une différence de 0,6 point entre les élèves des deux groupes, toujours en faveur des élèves du groupe témoin. Cependant, ces différences de moyennes sont-elles suffisamment importantes pour être statistiquement significatives ?

Tableau 75: Résultats des comparaisons de moyennes des scores musicaux selon les groupes d'élèves

Scores	Т	Signification
identification	1,03	,304
simultanéité	1,23	,217
chronologie	1,07	,282
codage	-1,72	,085
score total	0,44	,658,

Comme l'indique l'examen des résultats ci-dessus, seule la différence de moyenne du score de codage-décodage entre les élèves du groupe témoin et les élèves du groupe expérimental est statistiquement significative, au seuil de 10%. Or, c'est pour ce domaine que les moyennes obtenues dans le groupe musique sont supérieures à celles du groupe témoin (101,3 contre 98,9). Ce résultat est un premier indice de la bonne mise en œuvre du programme musical. Les moyennes des autres domaines ne diffèrent pas suffisamment pour être significatives, ce qui est plutôt rassurant dans la mesure où les scores étaient supérieurs dans le groupe de contrôle. En revanche, les moyennes globales, pour lesquelles il y avait un léger avantage au groupe expérimental, ne diffèrent pas significativement entre les deux groupes.

3.1.2. Les effets nets sur le score de musique

Les comparaisons de moyennes donnent une information certes intéressante, mais qui doit être affinée. En effet, il faut garder à l'esprit que la répartition des élèves entre les deux groupes témoin et expérimental n'est pas parfaitement identique, selon certaines caractéristiques individuelles telles que la profession des parents et le mois de naissance des enfants. La répartition se fait d'ailleurs en défaveur du groupe musique. Nous allons donc évaluer l'effet net du programme.

Le tableau de la page suivante présente les effets nets de chaque variable introduite dans les modèles. Nous ne nous attarderons pas à commenter en détail l'impact des caractéristiques sociodémographiques des élèves sur les performances de musique, puisqu'ils ont déjà été détaillés dans le chapitre précédent. En comparant les coefficients, nous observons que l'introduction du groupe d'appartenance ne change pas les coefficients des autres variables.

Nous nous intéressons ici aux différences de scores entre les élèves ayant bénéficié du programme expérimental et les élèves faisant partie du groupe témoin. D'après le modèle 1 (première colonne du tableau), l'appartenance au groupe expérimental n'aurait pas d'effet sur le score de musique. Toutefois, ce modèle ne tient pas compte des caractéristiques des élèves, dont nous venons de rappeler l'importance. En contrôlant les scores de musique par les performances cognitives initiales des élèves (modèle 2), il apparaît que les élèves du groupe expérimental obtiennent 2,2 points de plus que les élèves du groupe contrôle. Et lorsqu'on introduit dans le modèle l'ensemble des caractéristiques individuelles les plus importantes (modèle 3), et notamment la profession des parents et le trimestre de naissance, le gain de score musical associé à l'appartenance au groupe expérimental atteint 3,2 points, et gagne en significativité.

Tableau 76: Impact net du traitement expérimental sur les scores de musique

		Coeff	ficients et signific	ativités
		Modèle 1	Modèle 2	Modèle 3
	(constante)	100,3 ***	45,797 ***	55,172 ***
Groupes	GROUPE EXPE	-,648 ^{ns}	2,212 *	3,197 **
Score initial NBA 1	SCOREINITIAL		,531 ***	,528 ***
Genre	fille			-1,246 ^{ns}
	1er trimestre			4,504 ***
Trimestre de naissance	2nd trimestre			-,294 ^{ns}
	3eme trimestre			1,387 ^{ns}
Année de naissance	2004			-6,202 *
Pays de naissance	né en France			-3,293 ^{ns}
Ménage				-4,211 **
Langue parlée	Père et Mère			1,643 ^{ns}
Musique	Parle uniquement le français			
	Pratique une activité musicale			2,121 ^{ns}
Fréquentation des lieux	Accueil le matin			1,524 ^{ns}
scolaires	cantine			-5,082 ***
	Garderie le soir			,672 ^{ns}
Profession du père				3,773 ^{ns}
Tolession du pere	Artisan, commerçant			1,245 ^{ns}
	Ouvrier			
	Cadre			4,582 *
Profession de la mère	Intermédiaire, employé			3,038 ^{ns}
Total Soloti de la more	Cadre, intermédiaire			1,052 ^{ns}
	Employée			,864 ^{ns}
				,489 ^{ns}
	Artisan, commerçant			,489 ^{//s}

Nous pouvons également nous demander si des résultats similaires sont retrouvés selon les domaines musicaux testés. En effectuant ces mêmes analyses par domaine, nous observons un effet positif de 4,4 points (significatif à 1%) pour les élèves du groupe expérimental, mais uniquement pour les activités de codage et décodage. Pour les autres domaines, les coefficients associés à cette variable ne sont pas significatifs.

Il semble donc qu'il existe une relation positive entre l'appartenance au groupe expérimental et le score musical global. Cette relation est particulièrement marquée pour le domaine du codage-décodage. Bien entendu, ce résultat ne peut, en l'état, signifier que l'intervention musicale améliore les capacités des élèves en musique. Il aurait fallu pour cela disposer d'information sur le niveau des enfants en musique avant l'expérimentation. Néanmoins, malgré ces précautions, la liaison positive est un indice de la bonne mise en place de l'expérimentation, dont on va pouvoir mesurer les effets sur les scores cognitifs.

3.2. Effet de l'expérimentation sur les scores cognitifs

Pour évaluer les effets de l'expérimentation sur les performances cognitives des enfants, nous allons procéder en plusieurs étapes. Nous débuterons classiquement, d'abord en mesurant les effets bruts de l'expérimentation, puis en s'intéressant aux effets nets à l'aide de régression. De façon plus originale, nous poursuivrons avec des méthodes d'analyse novatrices. En raison de la spécificité de notre échantillon, nous effectuerons des analyses en différences de différences, afin de séparer les effets de l'expérimentation de ceux de l'évolution naturelle des performances des enfants. Nous terminerons par des modèles de réponse à l'item pour nous assurer de la validité des items utilisés dans notre échantillon.

3.2.1. Les effets bruts de l'expérimentation sur les performances cognitives

Comme nous venons de le voir, plusieurs moyens sont à notre disposition pour faire part des effets de l'expérimentation sur les performances cognitives des élèves. Nous commençons par analyser les effets globaux du programme musical sur les scores cognitifs, indifféremment du groupe d'expérimentation, en comparant les scores de tous les élèves avant et après la mise en place de l'expérimentation, c'est-à-dire en comparant les scores NBA1 et NBA2 pour en déduire une quelconque progression. Le tableau ci-dessous expose les moyennes des élèves aux deux tests.

Tableau 77 : Moyennes avant-après des scores cognitifs

	Moyenne	Ecart-type
SCORE INITIAL NBA1	65,2520	17,31514
SCORE FINAL NBA2	67,6048	17,40979
Mémoire NBA1	61,6669	19,33353
Mémoire NBA2	70,6843	15,99225
O. Spatiale NBA1	68,8713	22,70635
O. Spatiale NBA2	61,8684	25,57587
Rythme NBA 1	68,9777	31,32322
Rythme NBA 2	68,5666	24,86683
D. Visuelle NBA1	73,3183	23,60007
D. Visuelle NBA2	81,4146	20,36385
Graphisme NBA1	53,4236	21,16734
Graphisme NBA2	58,5553	21,95841

A première vue, il semble que les élèves ont dans leur ensemble accru leurs scores de capacité cognitive entre la première et la seconde période d'évaluation, puisque les pourcentages de réussite au score global passent de 65,2 à 67,6%. Nous observons une progression pour les scores de mémoire (+9), de discrimination visuelle (+8) et de graphisme

(+5). En revanche, le score de rythme est resté stable, tandis que celui d'organisation spatiale a baissé (-7). Il nous faut maintenant vérifier si les différences de moyenne par paires sont significatives.

Tableau 78 : Comparaison des moyennes avant-après des scores cognitifs

			Erreur standard		nfiance 95% de érence		
Domaines	Moyenne	Ecart-type	moyenne	Inférieure	Supérieure	t	Sig.
Score global	-2,35	10,31	0,49	-3,32	-1,39	-4,80	,000
Mémoire	-9,01	18,50	0,88	-10,74	-7,29	-10,25	,000
O. Spatiale	7	19,23	0,91	5,21	8,79	7,66	,000
Rythme	0,41	22,32	1,06	-1,67	2,49	0,39	,698
D. Visuelle	-8,09	22,67	1,08	-10,21	-5,97	-7,51	,000
Graphisme	-5,13	21,56	1,02	-7,14	-3,12	-5,01	,000

D'après ces données, toutes les différences de moyennes observées sont significatives, à l'exception du rythme (paire 4). Ceci n'est pas étonnant puisque nous n'avions pas observé de différence de moyenne entre les deux périodes pour ce domaine. Ainsi, les élèves ont dans leur ensemble progressé en termes de capacités cognitives durant l'année de grande section de maternelle. Cependant, ces premiers résultats ne nous renseignent pas sur les effets du programme musical. Une deuxième étape consiste donc à déterminer si tous les élèves ont progressé, ou seulement les élèves du groupe expérimental. Nous allons maintenant effectuer la même analyse en fonction de l'appartenance au groupe témoin et au groupe expérimental.

Tableau 79 : Moyennes des scores cognitifs avant-après et par groupe expérimental

Domaines	Groupe	e témoin	Groupe	musique
Domaines	Moyenne	Ecart-type	Moyenne	Ecart-type
SCORE INITIAL NBA1	68,2553	16,00854	61,7967	18,13771
SCORE FINAL NBA2	69,9734	16,29100	64,8799	18,27670
Mémoire NBA1	62,6138	18,99889	60,5774	19,70144
Mémoire NBA2	72,4295	15,72534	68,6765	16,09887
O. Spatiale NBA1	72,8903	21,17773	64,2476	23,56189
O. Spatiale NBA2	64,7842	23,97903	58,5138	26,96807
Rythme NBA 1	74,6835	29,11404	62,4133	32,53762
Rythme NBA 2	70,9916	23,84555	65,7767	25,76874
D. Visuelle NBA1	76,0900	21,67851	70,1294	25,31288
D. Visuelle NBA2	83,6850	18,67852	78,8026	21,90076
Graphisme NBA1	55,3868	21,35043	51,1650	20,77735
Graphisme NBA2	60,7876	20,53288	55,9871	23,27803

Le tableau montre que les élèves du groupe témoin ont toujours de meilleures performances que les élèves du groupe musique, et ceci quel que soit le domaine cognitif évalué. Ceci peut s'expliquer en partie par un score au test initial déjà plus faible chez les élèves du groupe expérimental (par exemple, 61,8 contre 68,2 dans le groupe témoin pour le score NBA1). Il s'agit d'une hypothèse que nous testerons dans la partie suivante. Pour comprendre les effets du programme, il est préférable de raisonner en termes d'amélioration des performances entre les deux périodes. Nous observons alors que les élèves ayant suivi le programme musical progressent plus vite que les autres. En effet, les élèves du groupe musique ont augmenté leur score global de 3 points tandis que, parallèlement, les élèves du groupe témoin ne progressent que de 1,7 points. Cependant, selon les domaines, les progressions des élèves ne sont pas identiques. En mémoire et en graphisme, les élèves du groupe témoin obtiennent un gain de score supérieur à celui des élèves de l'autre groupe, écart allant de 0,7 en graphisme à 2,1 points en mémoire. A l'inverse, les élèves du groupe expérimental progressent plus vite que les autres en discrimination visuelle; plus encore, en

rythme, alors que le score diminue dans le groupe témoin, il augmente dans le groupe musique. Enfin, en organisation spatiale, tous les élèves subissent une diminution de score, cependant la perte est plus faible pour les élèves du groupe expérimental. A noter que ces différences de performances entre les scores du test NBA1 et NBA2 pour chacun des deux groupes sont toutes significatives.

Les différences de progressions des élèves peuvent être rapprochées de certaines caractéristiques individuelles. En effet, les caractéristiques individuelles sont plus ou moins favorables aux performances cognitives. Les progressions peuvent donc être variables selon le mois de naissance, la profession des parents, etc. Nous n'allons pas détailler les différences de progression entre le test NBA1 et NBA2 selon toutes les caractéristiques des élèves, une telle analyse ne présentant que peu d'intérêt dans la mesure où l'impact net de ces caractéristiques sera examiné à la section suivante.

Au vu de ces premiers résultats, peut-on supposer que l'expérimentation a un effet positif sur les performances cognitives? Il est trop tôt pour se prononcer car plusieurs problèmes se posent. Tout d'abord celui de l'échantillon. En effet, bien que l'on soit dans une expérience contrôlée avec randomisation de l'échantillon, les résultats de la régression logistique binaire nous ont montré que les probabilités qu'un élève soit tiré au sort pour faire partie ou non du groupe expérimental dépendaient de certaines de ses caractéristiques individuelles. Plus précisément, les élèves de fin d'année et ceux dont le père et/ou la mère sont ouvriers sont plus fréquemment présents dans le groupe expérimental. Or, nous savons qu'il s'agit de variables ayant un impact négatif sur les performances des élèves (cf. chapitre 2). Outre l'endogénéité des variables explicatives qui peuvent biaiser les résultats de nos analyses, il est probable que les effets de l'expérimentation soient différenciés selon les caractéristiques des élèves. Nous devons donc commencer par contrôler l'effet de ces caractéristiques et raisonner une fois de plus « toutes choses égales par ailleurs ».

3.2.2. Les effets nets de l'expérimentation sur les performances des élèves au test NBA2 : analyse par régression

Le tableau suivant présente les résultats de trois régressions linéaires effectuées sur le score global du test NBA2. Nous nous appliquerons à examiner essentiellement l'impact de l'expérimentation sur les performances cognitives des élèves, impact qui est exprimé par la variable dichotomique « GROUPE » (les élèves du groupe témoin sont codés 0, et les élèves du groupe expérimental 1).

La part de la variance expliquée par le premier modèle, c'est-à-dire par la seule appartenance au groupe témoin ou expérimental, est faible, à peine 2%. Par contre, dès lors que 1'on intègre le score initial des élèves (NBA1), le pourcentage augmente considérablement, et passe à 66,3% (modèle 2). Enfin, le troisième modèle qui ajoute un ensemble de caractéristiques individuelles explique 67,9 % de la variance totale.

Tableau 80 : Impact net des caractéristiques individuelles et du groupe expérimental sur le score NBA2

		Unstandardiz	ed Coefficients	Standardized Coefficients		
Modèle		В	Std. Error	Beta	t	Sig.
1	(Constant)	101,966	,968	-	105,382	,000
	GROUPE	-4,288	1,417	-,143	-3,026	,003
2	(Constant)	18,679	2,936		6,361	,000
	GROUPE	,081	,846	,003	,096	,924
	SCOREINITIAL	,811	,028	,815	28,910	,000
3	(Constant)	19,796	3,329		5,947	,000
	GROUPE	,041	,888,	,001	,046	,963
	SCOREINITIAL	,798	,031	,802	25,779	,000
	fille	,936	,853	,031	1,096	,273
	1er trimestre	1,406	1,047	,040	1,342	,180
	2nd trimestre	,639	,998	,020	,640	,522
	3eme trimestre	-2,203	1,149	-,062	-1,917	,056
	né en France	-,879	1,509	-,017	-,582	,561
	Parle uniquement le français	1,275	,972	,041	1,311	,190
	Père seul	-1,875	3,622	-,014	-,518	,605
	Pratique une activité musicale	1,605	2,210	,021	,726	,468
	Particom	-2,284	1,720	-,045	-1,328	,185
	Pouvrier	-,728	1,309	-,023	-,556	,578
	Pcadre	-2,284	1,830	-,045	-1,248	,213
	Pinteremploye	-,625	1,328	-,019	-,470	,638
	Mcadreinter	-,672	1,273	-,019	-,528	,598
	Memploye	1,600	1,067	,051	1,499	,135
	Mouvrier	,926	1,583	,018	,585	,559

Les effets de l'expérimentation s'appréhendent dans ce tableau à travers l'impact de l'appartenance au groupe expérimental sur les scores cognitifs des élèves. Dans le premier modèle, le coefficient associé à cette variable est significatif mais négatif ce qui signifie que ce sont les élèves du groupe expérimental qui obtiennent 4,3 points de moins que les élèves du groupe témoin. Cependant, en contrôlant par le score cognitif initial, il n'y a pratiquement plus de différence de score entre les deux groupes d'élèves, et même un léger avantage au groupe musique. C'est toujours le cas dans le troisième modèle ajoutant un ensemble de caractéristiques individuelles. Ces résultats montrent à nouveau l'importance de tenir compte

des caractéristiques individuelles et cognitives initiales pour évaluer les effets du programme. Le programme expérimental semble donc relativement neutre sur les performances cognitives globales. Qu'en est-il pour les différents domaines du test NBA2 ?

Pour répondre à cette question, nous réalisons des régressions pour chacun des domaines selon les trois mêmes modèles (avec le groupe d'appartenance seulement; en ajoutant le score cognitif initial correspondant; avec l'ensemble des variables). Pour saisir le pouvoir explicatif de ces modèles, nous présentons d'abord au tableau suivant les pourcentages de variance expliquée pour chacune des dimensions du test NBA2 selon les trois modèles.

Tableau 81: Parts de variance expliquée

	Graphisme	D.Visuelle	Rythme	O.Spatiale	Mémoire
Modèle 1	1	1,4	1	1,5	0,9
Modèle 2	24,8	23,1	50	47,4	22,5
Modèle 3	31,2	27,1	51,5	49,3	29,2

Tout comme avec le score global NBA2, il apparaît que l'appartenance au groupe expérimental n'explique que très faiblement (de 0,9% à 1,5%) la variabilité des scores cognitifs par domaine à la fin de la grande section de maternelle. Dans l'ensemble, c'est en rythme et en organisation spatiale que les variables introduites dans les modèles 2 et 3 contribuent le plus à l'explication de la variance (entre 47% et 52%). Venons en maintenant aux commentaires sur les régressions par domaine du test NBA2 (tableau suivant).

Tableau 82 : Impact net des caractéristiques individuelles et du groupe expérimental sur les domaines du test NBA2

Iat	i adieau 82 : i impact net des caracteristiques individuelles et du groupe experimental sur les domaines du test i de 22	dues marvia	ne 12 carre	groupe expe	I IIIICII tai sa	ics domain	es un test 14.	DA4			
	(()	Graphism	isme	D.Visuelle	nelle	Rythme	me	O.Spatiale	tiale	Mémoire	oire
MOV	Modeles	В	Sign.	В	Sign.	В	Sign.	В	Sign.	В	Sign.
~	(Constant)	101,374	000'	101,684	000'	101,389	000,	101,670	000'	101,348	000'
	GROUPE	-3,042	,033	-3,608	,012	-3,072	,031	-3,638	,011	-2,924	,041
7	(Constant)	52,196	000,	52,968	000'	27,924	000'	30,950	000,	54,731	000'
	GROUPE	-1,594	,202	-1,845	,147	1,079	,297	,270	,799	-2,221	080'
	NBA INITIAL (par domaines)	,483	000'	,478	,000	,713	,000	,688	000'	,463	,000
က	(Constant)	54,885	000'	46,426	000'	29,825	000'	32,187	000'	56,804	000'
	GROUPE	-1,086	,403	-1,501	,262	1,210	,269	,733	,513	-1,046	,427
	NBA INITIAL (par domaines)	,449	000'	,477	000,	,688	000,	999'	000'	,401	000'
	fille	4,082	,001	2,144	,092	-,387	,712	,073	,945	3,404	900,
	1er trimestre	2,108	,167	1,988	,207	1,659	,198	2,127	,106	2,639	780,
	2nd trimestre	,499	,730	2,692	,070	,926	,451	2,582	,038	2,232	,129
	3eme trimestre	-2,599	,121	,393	,821	-1,162	411	980'	,952	-1,573	,357
	né en France	-3,361	,129	-1,135	,619	-,648	,727	,788	,678	1,340	,551
	Parle uniquement le français	-,575	,685	1,965	,179	2,368	,049	1,505	,219	2,148	,137
	Père seul	-3,514	,508	4,951	,365	4,037	,366	-4,426	,332	-7,131	,187
	Pratique une activité musicale	1,849	,567	5,124	,123	1,570	,562	1,000	,719	4,531	,168
	Particom	-,697	,782	2,813	,280	-2,558	,227	-2,759	,203	-3,920	,126
	Pouvrier	-,622	,745	2,214	,265	-,527	,743	-1,454	,378	-5,808	,003
	Pcadre	1,139	,671	-,141	,959	-2,591	,250	-1,495	,516	-4,156	,128
	Pinteremployé	4,221	,030	,412	,837	-,686	,674	-2,485	,137	-2,928	,140
	Mcadreinter	-,776	,675	2,231	,238	1,172	,453	-,044	976,	2,680	,154
	Memploye	2,084	,182	4,438	900'	-,236	,857	-,807	,549	2,273	,154
	Mouvrier	,652	,778	2,901	,226	-,295	878,	-3,774	090'	4,260	,071

Comme le montre le modèle 1 du tableau de la page précédente, l'appartenance au groupe expérimental est associée à une performance inférieure de 3 points en graphisme, rythme et mémoire, et de 3,6 points de moins en discrimination visuelle et en organisation spatiale. Ceci ne signifie pas pour autant que le programme musical a un effet négatif sur les capacités cognitives. De nombreux facteurs de confusion persistent et doivent être pris en compte. En introduisant dans le modèle le score cognitif initial, c'est-à-dire dans le modèle 2, nous constatons que le coefficient associé à la variable GROUPE n'est plus significatif, exception faite du score de mémoire (-2,2). Cependant, en contrôlant par le score global NBA1 et non plus par le score de mémoire au test NBA1, l'appartenance au groupe n'a plus d'impact significatif (B = -0,089 ; p = 0,943 ; résultat non présenté dans le tableau). Surtout, en tenant compte de l'ensemble des caractéristiques individuelles, plus aucun coefficient correspondant à l'appartenance au groupe musique n'est significatif (modèle 3). Autrement dit, le programme musical semble avoir un impact neutre sur les capacités cognitives dans les différents domaines.

Ainsi, que pouvons-nous conclure quant aux effets de l'expérimentation et à l'impact du traitement expérimental sur les performances cognitives des élèves ? Comment évaluer l'effet de la musique sur les capacités cognitives ? Nous avons tenté de répondre à ces questionnements en usant de régressions linéaires multivariées. Au terme de ces analyses, il apparaît que, à score cognitif initial égal, le traitement expérimental n'a ni augmenté ni diminué le score des élèves ayant bénéficié de l'expérimentation. Cependant, il est important de comprendre que les données mobilisées pour ces analyses sont mal adaptées au modèle de régression multivariée, et ceci essentiellement pour deux raisons. La première d'entre elles a trait aux effets de caractéristiques observables et inobservables liées au biais de sélection endogène. La seconde correspond aux risques de corrélation des erreurs de mesures trop importantes qui apparaissent quand on cherche à expliquer un score t_l par un autre score t_0 .

La méthodologie de l'expérimentation repose sur le principe de comparaison entre élèves ayant bénéficié de l'expérimentation musicale et les élèves n'en ayant pas bénéficié. Ainsi, au cœur de cette démarche expérimentale se trouve la question des biais de sélection. Afin que la comparaison soit la plus fiable possible, nous tentons de produire deux groupes d'élèves possédant les mêmes caractéristiques observables. Pour ce faire, nous avons utilisé la

randomisation. Les résultats de l'analyse par régression logistique binaire³⁰ nous ont montré que les individus des deux groupes, groupe témoin et groupe expérimental, ne possédaient pas les caractéristiques. En effet, les enfants dont le père est ouvrier, ainsi que les enfants dont la mère est ouvrière, ont plus de probabilité d'être tirés au sort pour faire partie du groupe expérimental, alors que parallèlement, les enfants dont la mère est cadre en ont moins. Ainsi, la randomisation est imparfaite et a attribué au groupe expérimental deux fois plus d'enfants d'ouvriers et deux fois moins d'enfants de cadres que dans le groupe témoin. Or, la revue de littérature de la première partie et les résultats de nos régressions linéaires attestent qu'il s'agit d'une variable défavorable, les enfants d'ouvriers ayant de moins bons scores que les enfants de cadres. Si l'on ne tient pas compte de ce déséquilibre important lié à la randomisation, les résultats de nos analyses seront biaisés, et nous risquons de conclure trop hâtivement à l'effet nul du traitement expérimental sur les scores cognitifs des élèves de grande section de maternelle.

De plus, nous avons effectué notre tirage au sort sur la base de caractéristiques observables que nous avons choisi, mais il se peut que, malgré nos précautions, nous ayons négligé certaines caractéristiques importantes qui peuvent avoir un impact sur les performances cognitives et scolaires des élèves : il s'agit alors de caractéristiques inobservables. Nous avons donc choisi un autre outil d'analyse statistique qui permet traiter ce problème : la différence de différences.

3.2.3 L'analyse en différence de différences : principes méthodologiques et résultats

Nous avons affecté aléatoirement les élèves dans deux groupes, le groupe témoin et le groupe expérimental, pour lesquels nous avons récolté les scores à deux tests cognitifs, le premier avant le traitement et le second au terme de l'expérimentation. Rappelons que les deux tests cognitifs partagent un grand nombre d'items strictement identiques. Afin d'estimer

³⁰ Se référer à la section 1.1.4 de cette partie pour le détail des analyses

les effets du programme de musique sur les performances, une première option serait d'observer l'évolution des moyennes des élèves du groupe musique avant et après la mise en place de l'expérimentation. Dans ce cas, nous mesurerions non seulement les effets de l'expérimentation, mais aussi les progressions naturelles des enfants entre ces deux laps de temps, or nous voulons isoler l'effet net du traitement musical. Une seconde option serait alors de comparer les moyennes des deux groupes au test intermédiaire, mais dans ce cas, nous mesurerions un impact de l'ensemble des différences entre les élèves des deux groupes qui ne proviendrait pas uniquement de la mise en place de l'expérimentation. En effet, bien que les élèves soient affectés aléatoirement à un groupe ou un autre, nous observons cependant quelques différences dans leur répartition (notamment les mois de naissance), ces différences pouvant avoir un impact sur les scores.

La méthode d'analyse finalement retenue combine les deux options précédentes. Afin d'estimer les effets de l'expérimentation, nous allons procéder à une analyse de différence de différences (DD). Elle sera utilisée pour mesurer les changements induits par le programme musical sur les performances cognitives. Au terme des analyses, le coefficient produit représente la différence de scores entre le test initial et le test final et les différences de scores entre les élèves du groupe témoin et les élèves du groupe expérimental. A l'aide de l'analyse de différence de différences, nous allons examiner les effets de l'expérimentation en nous basant sur l'évolution des scores aux deux moments de passation et sur les deux groupes. L'analyse de DD utilise les performances du groupe témoin pour déterminer quels auraient été les scores des élèves du groupe musique en l'absence d'expérimentation, puis analyse la différence entre le score projeté et le score réel des élèves du groupe musique.

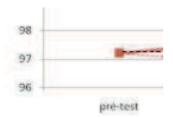
Encadré 8 : la différence de différences

Estimation du modèle de différence de différences (Imbens et Wooldridge, 2007)

$$y = \beta_0 + \beta_1 dB + \delta_0 d2 + \delta_1 d2 \times dB + u$$

Avec y le résultat aux tests cognitifs de la seconde période et β_0 la constante. Dans cette équation, les termes d2, dBet le terme d'interaction $d2 \times dB$ sont des variables muettes.

- dB est une variable muette qui capte les différences temporelles. Elle est égale à 1 pour la seconde période. Elle est associée à β_1 qui est l'estimateur de différences entre le pré et le post-test.
- d2 est la variable muette associée aux groupes. Il s'agit d'une variable dichotomique qui prend la valeur de 1 pour les élèves du groupe traitement. δ_0 est l'estimateur de différence de traitement.
- Le terme d'interaction $d2 \times dB$ est une variable muette qui est égale à 1 pour les observations du groupe de traitement à la seconde période, c'est-à-dire pour les élèves de groupe musique au post-test.
- Enfin, le coefficient de la différence de différences est δ_1 .


Pour déterminer la valeur de ce coefficient de différence de différences, nous définissons les moyennes M_{et} des élèves du groupe (e) à deux périodes (t). Comme nous l'avons précisé précédemment, les élèves de l'échantillon ont été répartis aléatoirement en deux groupes (e), le groupe témoin (0) et le groupe expérimental (1). Pour chacun de ces deux groupes d'élèves, nous disposons de deux mesures (t) : les scores au test initial (0), et le score au test intermédiaire (1).

Ainsi, le coefficient de différence des différences δ_1 correspond à :

$$(M_{11}-M_{10})$$
 - $(M_{01}-M_{00})$

Le graphique suivant représente l'évolution des scores des élèves du groupe musique et des élèves du groupe témoin. Une troisième droite représente la trajectoire qu'aurait du suivre les scores des élèves du groupe musique s'il n'y avait pas eu d'intervention.

Graphique 11 : Evolution des scores cognitifs musique-témoin et avant-après

Graphiquement, on constate un léger effet positif de l'expérimentation. Il y a en effet une amélioration par rapport à la tendance qu'aurait possiblement suivi le groupe musique sans le traitement. De plus, l'écart de moyenne est positif dans le groupe musique, et négatif dans le groupe de contrôle. Cependant, cette lecture graphique ne suffit pas. Il faut en effet se demander si la différence de différences est suffisamment importante pour être statistiquement significative. Il se trouve qu'elle ne l'est pas. Le traitement expérimental ne permet pas d'accroitre de manière significative les scores cognitifs globaux au test NBA.

Il peut être intéressant d'examiner plus en détail les effets du programme, en particulier domaine par domaine. En effet, il se peut que certaines dimensions cognitives bénéficient davantage du programme musical. Par ailleurs, en raison de l'importance des caractéristiques individuelles (genre, trimestre de naissance, profession des parents, langue parlée à la maison, etc.), il est souhaitable de les intégrer dans les modèles de différence de différences. Nous estimons donc plusieurs modèles pour chaque domaine et avec les caractéristiques individuelles. Nous présenterons uniquement les résultats significatifs sous forme de tableau ³¹

³¹ Il n'y a pas de résultats significatifs pour le domaine d'organisation spatiale, c'est pourquoi il n'apparait pas dans le tableau

Tableau 83: Coefficients significatifs des différences de différences (p-value entre parenthèses)

	Graphisme	Dis. Visuelle	Mémoire	Rythme
Mère ouvrière	-10,4* (0,1)	-11,5* (0,1)		
Mère cadre	+5,9* (0,1)			
Père ouvrier	-4,9* (0,1)			
Père cadre	+8,3* (0,1)	-11,5** (0,02)		
Mère non cadre	-3,2* (0,1)			
Fille			-4,1* (0,07)	
Parle français				+3,6* (0,1)

Il est à noter que, pour chacune des dimensions, et sans tenir compte des caractéristiques individuelles des élèves, il n'y a pas d'effet significatif. Tout comme avec le score global, l'intervention musicale n'a pas d'influence sur les capacités cognitives. En revanche, des effets significatifs apparaissent lorsque les caractéristiques individuelles sont prises en compte.

De tous les domaines, c'est alors le graphisme qui réagit le plus à l'expérimentation. Cependant, si l'expérimentation a un effet positif et significatif sur les performances des enfants de cadre, elle a un impact négatif sur les enfants d'ouvrier. Ainsi, la musique ne ferait qu'exacerber des différences sociales déjà existantes dans le domaine graphique. Le résultat est plus nuancé pour la discrimination visuelle, puisqu'il y a un effet identique pour les enfants de père cadre et de mère ouvrière, mais négatif. En ce qui a trait à la mémoire, la musique a une influence négative pour les filles. En rythme, l'intervention musicale n'a un effet positif que pour les élèves qui parlent français à la maison, élèves qui possédaient déjà un avantage à l'origine.

Au final, les analyses en différence de différences tendent à confirmer les résultats des régressions. L'intervention musicale semble avoir un effet globalement neutre sur les performances cognitives des élèves aux tests NBA. Pour conclure sur cette section, nous cherchons à vérifier la validité des items des deux tests cognitifs.

3.2.4 Les apports du modèle de réponse à l'item pour vérifier la validité des items et de l'échantillon

Les performances des élèves à chacun des deux tests cognitifs NBA1 et NBA2 dépendent de leurs caractéristiques socioéconomiques, démographiques et scolaires. Ainsi, les scores moyens cognitifs et les propriétés techniques des items sont relatifs à notre échantillon. Si l'on avait administré les mêmes items à d'autres individus présentant des caractéristiques différentes, il est probable que les performances moyennes ne soient pas identiques. Ainsi, un item jugé facile ou difficile au sein de notre échantillon peut ne plus l'être ou l'être d'autant plus s'il était soumis à un échantillon différent. La Théorie des Réponses aux Items répond à cette problématique en s'efforçant d'estimer les propriétés des items qui soient indépendantes de l'échantillon dans lequel ils ont été administrés. Elle aboutit à des échelles qu'on qualifie d'absolues. Ces modèles de réponses à l'item reposent sur les deux postulats suivants (Verhelst et al., 1995):

- La probabilité qu'un individu produise une réponse correcte à un item est déterminée par deux sortes de facteurs, des traits latents de l'individu et les propriétés de l'item lui-même. Les traits latents, non directement observables et mesurables, correspondent à certains attributs de l'individu, notamment ses compétences. Plus la compétence de l'individu est élevée, plus la probabilité qu'il réponde juste à l'item est forte. Sont considérées comme les propriétés de l'item son pouvoir discriminant, son degré de difficulté, et le facteur chance. Dans ce cas, plus un item est difficile, plus la probabilité qu'un individu donne une réponse juste est faible. Ainsi, les réponses fournies à l'item sont considérées comme une fonction des caractéristiques des individus et des caractéristiques de l'item.
- Le second postulat qui anime les modèles de réponse à l'item est que l'ensemble des items d'un même test permettent d'appréhender une même caractéristique « sous-jacente » et que les réponses à ces items sont affectées d'une erreur de mesure aléatoire.

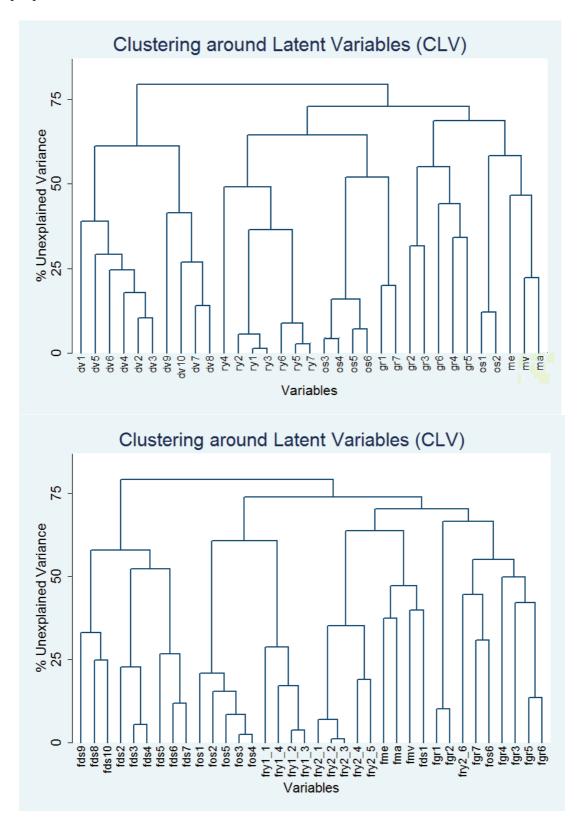
Encadré 9: le modèle de Rash

Modèle de Rash

Le modèle de Rasch est un des modèles de réponse à l'item les plus simples. Chaque item est caractérisé par un paramètre de difficulté, et les individus par leurs aptitudes. La probabilité d'une réponse juste est alors déterminée par l'équation suivante :

$$P(X_{ni} = 1) = \frac{Exp^{\beta_n - \delta_i}}{1 + Exp^{\beta_n - \delta_i}}$$

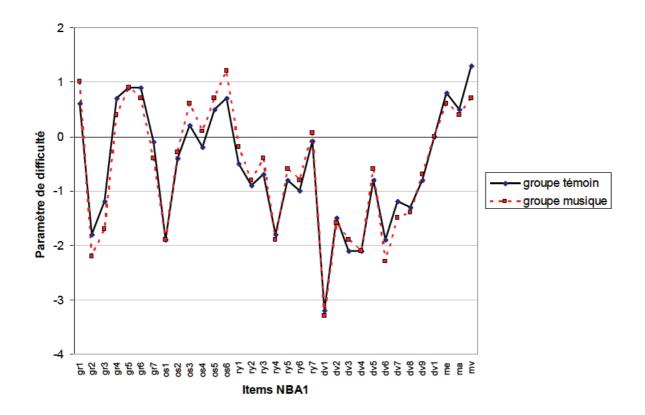
- Avec X_{ni} une variable dichotomique où 1 correspond à une réponse correcte et 0 à une réponse fausse. P est donc la probabilité d'une réponse correcte.
- β_n correspond aux capacités d'une personne n
- δ_i est la difficulté d'un item i

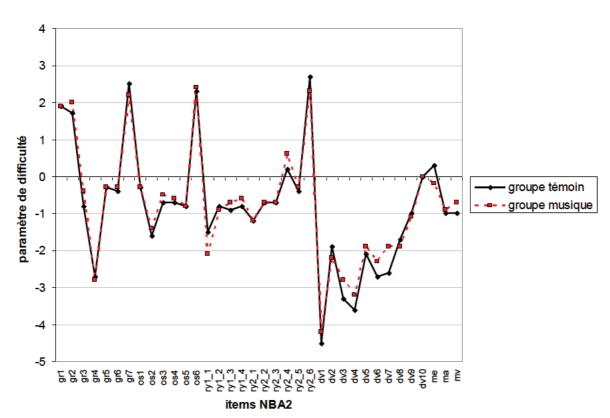

Nous cherchons donc à établir la relation qui existe entre le trait latent de l'individu (c'est-à-dire son niveau de compétence), les propriétés techniques propres à l'item, et la probabilité de répondre correctement à l'item. Cette relation est formalisée par une fonction, appelée la fonction caractéristique de l'item, qui peut être représentée graphiquement par la Courbe Caractéristique de l'Item (CCI). Cette courbe se présente généralement sous la forme d'un S plus ou moins allongé. Cette méthode d'analyse statistique présente un double intérêt. Il s'agit, d'une part, d'estimer les propriétés métriques des items des tests NBA1 et NBA2 (calcul des paramètres dits de difficulté, de discrimination et, éventuellement, de pseudochance) et, d'autre part, d'estimer le niveau auquel chaque individu possède le trait latent (paramètres des individus). Nous pourrons ainsi comparer ces coefficients entre les élèves des deux groupes, témoin et expérimental, pour déterminer si les élèves du second groupe réussissent mieux les items les plus difficiles par exemple, et vérifier le parallélisme des coefficients des tests de Rasch. Le modèle de Rasch (Rasch, 1960) que nous proposons d'utiliser permet de surmonter ce double écueil. Il se propose de fournir une mesure

indépendante du degré de difficulté des items utilisés pour la mesure des performances cognitives qui sera indépendant de notre échantillon. Comme il ne s'applique qu'aux variables dichotomiques, nous avons fixé un seuil de réussite à 75%. Lorsque l'élève réussit 75% ou plus d'un item, nous avons considéré l'item comme réussi et codé 1; nous l'avons codé 0 dans le cas contraire.

Avant de mettre en place ce modèle, nous devons nous assurer de l'unidimensionnalité des items. Selon l'hypothèse d'unidimensionnalité, l'ensemble des items d'un même test permet d'appréhender une même caractéristique latente. Concrètement cela suppose que tous les items des tests NBA1 et NBA2 contribuent à expliquer une seule et unique dimension sous jacente, ici la mesure fine des capacités cognitives des enfants. Dans la pratique, il est rare, voire impossible, d'avoir à faire à une dimension unique, à une unidimensionnalité parfaite. C'est pourquoi cette notion est élargie et l'on accepte communément cette hypothèse à un certain niveau d'approximation, lorsqu'il existe une dimension clairement dominante par rapport à d'autres facteurs qui pourraient avoir une influence sur les résultats. Parmi les différentes méthodes qui permettent d'évaluer cette caractéristique, nous avons choisi le coefficient alpha de Cronbach. Les coefficients des alphas de Cronbach ont été présentés dans le premier chapitre de cette partie. Pour rappel, pour l'ensemble des items du test NBA1 et NBA2, ils sont respectivement égaux à 0,88 et 0,89. Nous avons également vérifié les coefficients KR20 pour l'ensemble des performances aux items NBA1 et NBA2, après les avoir recodé en variable dichotomique échec ou réussite. La cohérence interne n'a que très peu évoluée, et demeure à un niveau élevé, puisque les coefficients KR20 sont très proches des alphas de Cronbach : 0,86 pour les items du test NBA1 et 0,89 pour les items du test NBA2. Les valeurs des coefficients étant élevées, nous considérons avoir validé l'hypothèse d'unidimensionnalité.

Une première analyse que nous avons effectuée dans le cadre des modèles de réponses à l'item est le regroupement des items du test NBA1 et NBA2 autour de variables latentes, regroupement aussi connu sous le terme anglais de clustering.


Graphique 12 : Classement des items des tests NBA1 et NBA2 autour des variables latentes



Nous pouvons observer que les items de discrimination visuelle (dv) se regroupent tous autour d'une même variable latente et qu'ils se distinguent particulièrement des autres items du test NBA. Ils forment deux groupes distincts (dv1 à dv6) et (dv7 à dv10) lors du premier test. Lors du second test, nous retrouvons une structure similaire, les items de discrimination visuelle (fds*) sont tous regroupés, à l'exception du premier item qui est classé avec ceux de mémoire (et plus particulièrement la mémoire visuelle). Les sept items de rythme sont groupés tous ensemble autour d'une même variable latente au pré-test, tandis qu'ils sont subdivisés par type d'exercice au post-test (fry1_* d'un côté et fry2_* de l'autre). Tous les items d'organisation spatiale sont regroupés au test NBA2, et ils sont associés aux items de rythme de type 1 (les vagues). Au test NBA1, les items d'organisation spatiale sont séparés en deux groupes, les items os3 à os6, associés aux items de graphisme d'une part, et les deux premiers items (os1 et os2) associés aux items de mémoire d'autre part. Dans l'ensemble, les items peuvent être considérés comme valides. A quelques exceptions près, ils correspondent, pour chaque catégorie cognitive, à une même variable latente.

L'intérêt principal du modèle de Rasch est de fournir une mesure indépendante du degré de difficulté des items, ce qui constitue notre deuxième analyse. Les graphiques ci-après permettent de visualiser les coefficients des paramètres de difficulté pour chacun des items aux deux tests, selon le groupe expérimental ou le groupe témoin. Ces coefficients s'interprètent aisément : plus leur valeur est grande, et plus la probabilité qu'un élève réponde correctement à l'item est petite. En d'autres termes, une valeur de l'indice élevée signifie que l'item est difficile. Il est important de noter que la difficulté des items est sensiblement égale selon les groupes, même si l'on constate quelques différences mineures. En effet, certains items du test NBA1 sont plus difficiles à réaliser pour les élèves du groupe musique (gr1, quelques items d'organisation spatiale et de rythme), tandis que d'autres sont plus faciles pour eux (gr2, gr3 et quelques items de discrimination visuelle). Hormis quelques rares exceptions, tous les items du test NBA2 affichent une difficulté similaire pour tous les élèves confondus. Ainsi, les analyses du modèle de Rasch et des paramètres de difficulté des items ne peuvent que valider les résultats des modèles de différence de différences puisque les items présentent une difficulté identique pour tous les élèves, qu'ils appartiennent au groupe expérimental ou non. Ce résultat confirme à nouveau la validité des items (en particulier la validité externe). En effet, ce test aurait invalidé les items si les paramètres de difficulté était très différents selon le groupe d'expérimentation (par exemple, si un item était facile dans un groupe et difficile dans l'autre). On peut également l'interpréter d'une autre manière : dans la mesure où les items présentent une difficulté similaire aux élèves des deux groupes, la validité de l'échantillon expérimental peut également être confirmée. En effet, le résultat d'une difficulté similaire signifie aussi qu'il n'y a pas de grande différence dans les facultés des enfants de chaque groupe, donc que la construction des deux groupes, témoin et de traitement, est correcte.

Graphique 15 : Paramètres de difficulté des items des tests NBA1 et NBA2 selon les groupes

Nous venons de confirmer la validité des items des tests cognitifs utilisés, ce qui nous permet de confirmer les résultats obtenus. L'ensemble des analyses menées dans cette section convergent vers un même résultat : le programme musical a une action relativement neutre sur les capacités cognitives des élèves telles qu'appréhendées par les tests NBA. Il nous faut maintenant évaluer les effets de l'expérimentation sur les performances scolaires en CP.

3.3. Les effets de l'expérimentation sur les scores de CP

L'étude des effets de l'expérimentation sur les scores de CP sera réalisée en trois temps. Nous débuterons par une comparaison de moyennes, avant de poursuivre par une analyse des effets nets dans les modèles de régression. En raison de la structure de notre expérimentation, nous disposons des résultats d'une seule période d'évaluation du rendement scolaire (fin CP), et non d'une mesure avant-après, de telles performances ne pouvant être mesurées en maternelle. Cependant, les scores cognitifs des élèves mesurés en maternelle nous permettrons de raisonner *ceteris paribus*. Enfin, les résultats des régressions pouvant être biaisés par la répartition asymétrique des caractéristiques individuelles selon les groupes, nous chercherons à évaluer les effets de l'expérimentation via le modèle d'Heckman.

3.3.1. Comparaisons de moyennes des scores en CP

Nous comparerons pour commencer les moyennes obtenues au test final de CP par les élèves du groupe témoin et du groupe musique. Rappelons que le test comprend trois épreuves : français, mathématiques, et mémoire. Nous indiquons également la moyenne globale à ces épreuves. Les résultats sont reportés au tableau suivant.

Tableau 84 : Scores moyens en CP selon le groupe

	GROUPE	N	Mean	Std. Deviation	t	Sig.
Français	témoin	210	99,9	15,9	-0,19	0,84
	musique	197	100,2	14,1	0,10	0,04
Math	témoin	210	99,5	15,6	-0,66	0,51
	musique	197	100,5	14,3	-0,00	0,51
Mémoire	témoin	210	95,6	13,6	-6,36	0,00
	musique	197	104,6	14,9	-0,30	0,00
Score Global CP	témoin	210	99,3	15,7	-1,04	0,30
	musique	197	100,8	14,3	-1,04	0,30

Nous observons que les moyennes des élèves du groupe témoin sont très proches des moyennes des élèves du groupe musique. A première vue, les élèves du groupe musique semblent avoir mieux réussi, puisqu'ils obtiennent 1,5 points de plus au score global. On constate que les scores de français sont très proches (0,3 point d'écart), alors que l'écart est un peu plus important en mathématiques (1 point d'écart). Sans conteste, les élèves du groupe expérimental semblent mieux réussir l'item de mémoire que les élèves du groupe témoin (9,1 points d'écart). Cependant, les tests de comparaisons de moyennes montrent que les différences entre les scores moyens des élèves ne sont pas suffisamment importantes pour être significative, que ce soit en mathématiques, en français ou pour le score de global. En revanche, l'écart de moyenne entre les élèves du groupe témoin et expérimental est significatif pour le score de mémoire. Ainsi, les élèves du groupe expérimental auraient su tirer profit de leur entrainement musical, du moins pour ce domaine. Il ne faut cependant pas oublier que ces moyennes reflètent des effets bruts qui dépendent notamment de caractéristiques individuelles (âge, genre, profession des parents...), c'est pourquoi nous allons estimer des effets nets de l'expérimentation.

3.3.2. L'estimation par régression

Comme nous l'avons fait précédemment avec les scores cognitifs, nous estimons trois modèles : un premier modèle dans lequel le groupe d'appartenance est la seule variable explicative, un deuxième modèle où nous ajoutons le score cognitif en début de grande section de maternelle, et un troisième modèle qui intègre les caractéristiques socioéconomiques des élèves. Les résultats figurent au tableau 85.

D'après ce même tableau, l'appartenance au groupe expérimental seul (modèle 1) permet d'expliquer un écart important en mémoire. En effet, les élèves ayant bénéficié du programme musical obtiennent un score de 8,6 points supérieur à celui des élèves du groupe témoin. Ceci confirme la forte significativité des écarts de moyenne constatée pour ce domaine. Dans le modèle 1, aucun des autres coefficients de la variable GROUPE n'apparaît significatif.

Lorsque l'on raisonne en termes de score cognitif initial égal pour tous, c'est-à-dire dans le modèle 2, tous les coefficients de la variable GROUPE sont significatifs, bien qu'à des seuils divers. Le gain en mémoire augmente pour atteindre 10,3 points. En ce qui concerne les autres domaines de l'évaluation de CP, le programme musical semble avoir permis aux élèves d'obtenir de meilleures performances en mathématiques avec une différence de + 3,8 points. En français, bien que les élèves du groupe musique obtiennent 2,7 points de plus, la significativité associée à ce coefficient est moins satisfaisante que les autres, mais malgré tout inférieure au seuil de 5%. De manière globale, sur ces trois disciplines, les élèves du groupe expérimental ont de meilleurs scores (+4,4) que les élèves du groupe témoin.

Dans le dernier modèle, nous avons introduit les caractéristiques socio-économiques des élèves, dont nous commentons rapidement les coefficients. Le trimestre de naissance ne semble pas avoir d'impact sur les performances des élèves, pas plus que le pays de naissance, la composition du ménage ou la pratique de la musique en dehors de l'école. Des professions des deux parents, c'est la profession de la mère qui a le plus d'impact sur les performances des élèves, en particulier lorsque la mère est cadre. En effet, les enfants de mère cadre

obtiennent au score global 4,3 points de plus que les élèves dont la mère ne travaille pas ; ils obtiennent 5,2 points de plus en mathématiques. Mais les scores de mémoire et de français ne semblent pas dépendre de cette variable. Enfin, les filles réussissent moins bien que les garçons en mathématiques (-2,8), mais mieux en mémoire (+3,6).

Concentrons-nous à nouveau sur la variable qui nous intéresse ici tout particulièrement, l'appartenance au groupe expérimental. Les valeurs des coefficients associées au groupe sont plus élevées dans ce troisième modèle. Il en va de même pour leur significativité, qui s'accroît ici. La différence globale sur le test de CP est de +4,7 points, ce qui représente un gain important. Elle atteint même 10,3 points en mémoire. En mathématiques, les élèves du groupe musique obtiennent 4,2 points de plus que ceux du groupe témoin. C'est en français que l'impact est le moins important, avec tout de même un gain de 3 points pour les élèves du groupe expérimental. Ainsi, toutes choses égales par ailleurs, les résultats de la régression indiquent que les élèves ayant bénéficié du programme musical réussissent mieux que les autres aux épreuves de CP.

Les données que nous avons récoltées ne nous permettent pas d'effectuer le même type d'analyse complémentaire que précédemment. En effet, les performances évaluées lors de ce test final, la lecture, l'écriture, les additions..., ne s'acquièrent qu'à partir du CP, et ne peuvent donc être mesurée en maternelle. Nous ne pouvons pas non plus rapprocher les scores des tests NBA1 et NBA2 du score de CP car il s'agit de deux types de tests différents mesurant les capacités cognitives des élèves d'un coté, et leurs compétences scolaires de l'autre. Ainsi ne nous disposons pas de score antérieur à celui du CP ayant pour objet les mêmes compétences pour effectuer des comparaisons, mesurer les progressions des élèves ou même, effectuer une analyse de différence de différences.

Tableau 85 : Impact net des caractéristiques individuelles et du groupe expérimental sur les scores de CP

		Score global		Français		Maths		Mémoire	
Modèles		В	Sig.	В	Sig.	B.	Sig.	B.	Sig.
1	(Constant)	99,43	0,00	99,90	0,00	99,80	0,00	95,83	0,00
	GROUPE	1,20	0,43	0,13	0,93	0,56	0,72	8,60	0,00
2	(Constant)	36,82	0,00	47,10	0,00	38,01	0,00	69,08	0,00
	GROUPE	4,45	0,00	2,75	0,04	3,84	0,00	10,34	0,00
	NBA1	0,61	0,00	0,51	0,00	0,60	0,00	0,26	0,00
3	(Constant)	37,86	0,00	48,79	0,00	38,02	0,00	69,22	0,00
	GROUPE	4,75	0,00	3,01	0,03	4,17	0,00	10,30	0,00
	NBA1	0,62	0,00	0,54	0,00	0,58	0,00	0,26	0,00
	fille	-0,85	0,49	0,09	0,95	-2,80	0,02	3,58	0,01
	1er trimestre	-1,09	0,46	-0,61	0,70	-1,30	0,38	-1,27	0,46
	2nd trimestre	-0,95	0,51	-1,30	0,40	-0,07	0,96	-1,34	0,42
	3eme trimestre	-0,87	0,60	-0,33	0,86	-1,45	0,38	-0,11	0,96
	né en France	-2,79	0,20	-3,52	0,13	-0,66	0,76	-3,57	0,15
	Parle uniquement le français	-2,80	0,05	-4,30	0,00	-0,13	0,92	-1,38	0,39
	Père et Mère	0,24	0,90	0,73	0,71	-0,42	0,82	-0,15	0,94
	Pratique une activité musicale	2,47	0,43	3,40	0,31	-0,25	0,94	5,19	0,15
	Particom	-1,65	0,53	-3,64	0,20	0,15	0,96	4,81	0,11
	Pouvrier	0,28	0,89	-1,29	0,55	1,75	0,39	2,68	0,25
	Pcadre	-0,06	0,98	-2,71	0,37	3,37	0,23	0,50	0,88
	Pinteremploye	1,39	0,51	0,07	0,97	2,92	0,17	0,25	0,92
	Mcadreinter	4,31	0,02	3,03	0,13	5,19	0,01	1,27	0,55
	Memploye	3,63	0,02	2,99	0,07	3,60	0,02	1,90	0,29
	Mouvrier	3,44	0,12	3,25	0,17	3,32	0,13	-0,32	0,90

Nous avons cherché ici à expliquer le score des élèves en fin de CP dans ces différentes dimensions (français, mathématiques et mémoire), en fonction des caractéristiques socioéconomiques, scolaires et démographiques des élèves, ainsi que de leur score cognitif de fin de grande section. Dans les régressions linéaires multiples précédentes, l'impact du traitement expérimental s'exprime par la variable dichotomique « GROUPE ». Or, dans le premier chapitre de cette partie, nous avons mis en lumière, *via* une régression logistique

binaire, la dissymétrie des caractéristiques des élèves, entre les élèves du groupe témoin et du groupe expérimental³². Il serait alors possible que les résultats de nos régressions soient quelque peu biaisés. Pour le vérifier, et surtout s'affranchir de cet éventuel biais, nous allons estimer un modèle d'Heckman qui s'appuie sur deux équations, une équation de sélection et une équation substantielle.

3.3.3. L'apport du modèle d'Heckman

Le modèle d'Heckman (1979) est une méthode statistique permettant de corriger le biais de sélection. Le modèle d'Heckman avec sélection estime (1) la probabilité qu'à un élève de faire partie de notre groupe expérimental puis (2) intègre cette probabilité en tant que variable explicative dans la seconde équation (voir encadré). Nous avons estimé le modèle d'Heckman par la Méthode du Maximum de Vraisemblance (MMV) pour les scores de français, de mathématiques et pour le score global. La convergence n'ayant pas aboutie après plus d'un millier d'itérations pour le score de mémoire, nous avons privilégié la méthode en deux étapes pour appréhender cette variable. Lors de cette dernière approche, l'équation de sélection est d'abord estimée par un modèle Probit; puis, les coefficients de l'équation substantielle sont obtenus *via* une régression par MCO. Nous avons vérifié, sur les scores de français et de mathématiques, que les deux méthodes produisaient des résultats similaires.

⁻

³² Pour rappel, nous avions établi qu'il y a deux fois plus d'enfants d'ouvriers dans le groupe musique, et plus d'enfants de cadres dans le groupe témoin.

Encadré 10: Le modèle d'Heckman

Modèle d'Heckman avec sélection

(1) Accès au groupe expérimental (équation de sélection)

$$z_i^* = w_i \gamma + \mu_i$$
 on observe z_i^* uniquement sur les élèves du groupe expérimental

- Avec *w_i* les caractéristiques relatives aux élèves du groupe expérimental, dans l'équation de sélection (trimestre de naissance et professions des deux parents)
- Et μ_i suivant une loi normale centrée réduite N(0,1)
- (2) Estimation du score global (équation substantielle)

$$y_i = x_i \beta + \varepsilon_i$$
 observable uniquement si $z_i^* > 0$, c'est-à-dire sur les élèves du groupe expérimental

- Avec x_i les variables relatives aux caractéristiques des élèves (sexe, trimestre de naissance, langue parlée à la maison, pays de naissance, profession des parents, pratique musicale hors du cadre scolaire et le score de capacité cognitif initial)
- Et ε_i suivant une loi normale N(0, σ_{ε}).

_

Nous nous sommes basés sur les résultats de la régression logistique binaire (chapitre 1, section 114) pour déterminer les variables à intégrer à l'équation de sélection. Ainsi, nous y avons introduit le trimestre de naissance et la profession des deux parents puisqu'il s'agit des seules variables pour lesquelles les rapports de cotes sont significatifs. Concernant les variables de notre équation substantielle, il s'agit des mêmes variables précédemment utilisées : sexe de l'élève, trimestre de naissance, pays de naissance, langue parlée à la maison, pratique d'une activité musicale en dehors du cadre scolaire, profession des deux parents et score cognitif initial. Nous présentons ci-après les résultats de nos modèles d'Heckman sur les scores de CP, estimés par la méthode du maximum de vraisemblance ou en deux étapes avec le logiciel Stata.

Tableau 86 : Estimation du modèle d'Heckman pour les scores en CP

	Score global		français		math		Mémoire (two steps)	
	Coef.	Sign,	Coef.	Sign,	Coef.	Sign,	Coef.	Sign
Equation substantielle								
fille	-0,18	0,91	-0,19	0,92	-1,64	0,33	6,95	0,00
Premier	0,18	0,94	0,99	0,65	-0,61	0,81	-2,32	0,65
Second	0,64	0,79	-0,46	0,86	1,44	0,57	3,06	0,79
Troisième	4,64	0,10	4,08	0,17	2,73	0,36	9,01	0,46
Né en France	-0,29	0,93	2,96	0,38	-4,15	0,25	-3,98	0,38
Parle français	-3,22	0,12	-4,65	0,03	0,49	0,81	-3,28	0,25
Père et Mère	-0,58	0,82	-0,15	0,96	-0,83	0,74	-0,59	0,86
Activité musicale	-0,90	0,89	0,07	0,99	-4,42	0,51	7,05	0,41
Artisan, commerçant	5,03	0,24	6,33	0,14	0,63	0,89	5,49	0,70
Ouvrier	-0,89	0,80	1,72	0,69	-3,75	0,30	-5,51	0,81
Cadre	3,20	0,47	4,05	0,38	2,21	0,65	-4,22	0,78
Inter., employé	5,77	0,09	6,45	0,05	3,92	0,29	1,59	0,79
Cadre, inter.	8,61	0,01	3,54	0,38	11,02	0,00	17,80	0,36
Employée	3,83	0,14	-0,15	0,96	6,95	0,01	9,28	0,42
Ouvrière	-0,35	0,92	-0,16	0,96	-0,47	0,90	-1,61	0,92
nba1	0,47	0,00	0,43	0,00	0,40	0,00	0,19	0,02
(constance)	61,05	0,00	56,48	0,00	74,78	0,00	103,62	0,06
Equation de sélection								
Premier	0,11	0,48	0,10	0,52	0,10	0,52	0,09	0,54
Second	-0,27	0,06	-0,29	0,05	-0,29	0,04	-0,29	0,05
Troisième	-0,28	0,10	-0,30	0,08	-0,29	0,08	-0,30	0,07
Artisans, commençant	0,28	0,25	0,31	0,21	0,23	0,36	0,31	0,21
Ouvrier	0,58	0,00	0,58	0,00	0,59	0,00	0,57	0,00
Cadre	0,36	0,17	0,33	0,21	0,39	0,13	0,33	0,21
Inter., employé	0,07	0,73	0,08	0,68	0,09	0,65	0,08	0,66
Cadre, inter.	-0,51	0,01	-0,48	0,01	-0,51	0,00	-0,47	0,01
Employée	-0,28	0,07	-0,28	0,07	-0,26	0,09	-0,28	0,07
Ouvrière	0,39	0,09	0,45	0,05	0,39	0,08	0,45	0,05
(constance)	-0,13	0,51	-0,13	0,49	-0,13	0,50	-0,13	0,49
/athrho	-1,01	0,03	-0,32	0,68	-1,44	0,00	Mills (la	mbda)
/Insigma	2,66	0,00	2,49	0,00	2,82	0,00	-24,91	0,68
rho	-0,77		-0,31		-0,89		-1,00	
sigma	14,35		12,06		16,85		24,91	
lambda	-10,99		-3,71		-15,06		-24,91	
LR test of indep. (rho = 0) Prob > chi2	0,26		0,70		0,09			

Avant de commenter les résultats du modèle d'Heckman, il convient de préciser que le tableau se divise en deux parties. Dans la première partie se trouve l'estimation de la régression du score global (équation substantielle) ; la seconde partie fournit les résultats pour l'équation de sélection, soit les probabilités d'accéder au groupe expérimental. Le bas du tableau fournit différentes mesures sur lesquelles nous reviendrons plus loin.

Intéressons-nous maintenant à l'interprétation des résultats propres à l'équation de sélection. Le modèle d'Heckman confirme la dissymétrie significative de l'échantillon. En effet, les coefficients négatifs et significatifs associés au second et troisième trimestre de naissance indiquent que ces élèves sont moins fréquemment présents dans le groupe expérimental. De la même manière, les enfants dont la mère est cadre ou employée sont moins tirés au sort pour faire partie du groupe musique. A l'inverse, d'autres caractéristiques d'élèves sont plus souvent rencontrées dans le groupe expérimental, comme certaines professions des parents. Les enfants d'ouvriers, pères et mères confondus, sont ainsi plus largement alloués au groupe musique, comme en témoignent les coefficients positifs et significatifs associés à ces deux variables. Ainsi, l'équation de sélection du modèle d'Heckman corrobore les précédents résultats, à savoir l'inégale répartition des caractéristiques des élèves dans chacun des deux groupes. Il apparait que les élèves du groupe expérimental accumulent certaines caractéristiques *a priori* « défavorables » (parents ouvriers, nés en fin d'année). Cette dissymétrie est-elle suffisamment importante pour être à l'origine d'un biais ?

Venons-en désormais aux résultats du modèle d'Heckman où deux coefficients indiquent l'existence d'un tel biais. Le premier est la valeur du rho, qui correspond au coefficient de corrélation des termes d'erreur des deux équations du modèle. Lorsque la valeur de l'indice diffère significativement de 0, l'estimation du modèle par MCO est biaisée. Pour le score global (Prob > chi2 = 0,26), l'hypothèse de non corrélation entre les deux équations est rejetée, ce qui signifie que la dissymétrie de notre échantillon ne biaise pas significativement les résultats des MCO. Les résultats des modèles d'Heckman réalisés sur chacune des trois disciplines du CP confirment également l'absence de biais en français (Prob > chi2 = 0,7). Concernant les scores en mémoire, le modèle d'Heckman a été estimé par la

procédure en deux étapes, faute de convergence. Dans ce modèle, aucun test n'est effectué pour déterminer si la valeur du rho diffère ou non significativement de 0. Toutefois, le modèle a généré la significativité de l'inverse du ratio de Mills (le lambda), ce qui nous permet de déterminer si un modèle de sélection permet d'obtenir des estimateurs plus efficients qu'avec une régression classique. Le coefficient du lambda n'étant pas significatif, nous en concluons que les estimations par régression ne sont pas biaisées pour le score en mémoire, à l'instar des scores en français et du score global.

L'inégale répartition des élèves au sein des deux groupes semble par contre biaiser les estimations des scores de mathématiques, mais seulement à un seuil de significativité inférieur à 10% (Prob > chi2 = 0,08). Ainsi, nous pensons que les écarts de performances entre les deux groupes d'élèves peuvent être biaisés et que les effets de l'expérimentation peuvent être sousestimés, en mathématiques du moins.

Nous allons introduire dans nos futures régressions l'inverse du ratio de Mills en tant que facteur explicatif. Ce coefficient, calculé pour chaque individu, est extrait du modèle d'Heckman et permet d'exprimer la probabilité pour un élève d'être tiré au sort pour faire partie de groupe expérimental. Cette procédure permet de corriger le biais de sélection de l'échantillon et d'affiner l'impact des autres variables. Le tableau ci après présente les résultats de régressions corrigées sur les scores de CP.

Tableau 87 : Régression sur les scores de CP corrigés du biais de sélection

	anara d	rlohol	fronc	noio.	me	,th	ma é ma a ima	
	score (français		math		mémoire	
	Coef.	P>t	Coef.	P>t	Coef.	P>t	Coef.	P>t
(constance)	58,83	0,05	63,09	0,05	64,40	0,03	73,02	0,04
groupe	4,69	0,00	2,97	0,03	4,10	0,00	10,29	0,00
nba1	0,62	0,00	0,54	0,00	0,58	0,00	0,26	0,00
Inverse Mills	-23,50	0,48	-16,02	0,65	-29,56	0,37	-4,25	0,91
fille	-0,87	0,48	0,08	0,95	-2,82	0,02	3,58	0,01
Premier	-2,57	0,32	-1,63	0,56	-3,17	0,22	-1,54	0,61
Second	3,45	0,59	1,70	0,80	5,46	0,39	-0,54	0,94
Troisième	3,77	0,58	2,83	0,70	4,37	0,52	0,73	0,93
Né en france	-2,74	0,21	-3,49	0,14	-0,60	0,78	-3,56	0,16
Parle Français	-2,73	0,05	-4,25	0,01	-0,04	0,98	-1,36	0,40
Père et mère	0,23	0,90	0,72	0,71	-0,43	0,81	-0,15	0,94
Activité musicale	2,39	0,44	3,35	0,32	-0,35	0,91	5,18	0,15
Artisan, com.	-6,62	0,38	-7,02	0,38	-6,10	0,42	3,91	0,65
Ouvrier	-8,37	0,50	-7,19	0,59	-9,13	0,46	1,11	0,94
Cadre	-5,32	0,50	-6,29	0,46	-3,24	0,68	-0,45	0,96
Intermédiaire	0,19	0,95	-0,75	0,80	1,41	0,61	0,03	0,99
Cadre, inter.	11,89	0,27	8,20	0,48	14,72	0,18	2,64	0,83
Employée	7,95	0,21	5,94	0,38	9,03	0,15	2,68	0,71
Ouvrière	-2,57	0,77	-0,85	0,93	-4,23	0,63	-1,41	0,89

Il est intéressant de comparer les valeurs des coefficients entre les deux modèles de régression (corrigé versus non corrigé), c'est-à-dire d'appréhender les différences lorsque l'on y intègre l'inverse du ratio de Mills. Les coefficients associés à la variable groupe restent stables. En effet, selon le modèle corrigé du biais de sélection, les élèves du groupe musique obtiennent 4,1 points de plus en mathématiques que les élèves du groupe témoin, soit le même coefficient que dans le modèle précédent (modèle 3, tableau 85). Notons enfin, et il s'agit d'un point important, que les autres variables n'ont plus d'impact significatif, qu'il s'agisse de la profession du père ou de la mère, à l'exception cependant des performances cognitives initiales et du genre des élèves.

Bien qu'il n'y ait *a priori* pas de biais, nous avons voulu par mesure de précaution vérifier les changements qui s'opèrent en intégrant l'inverse du ratio de Mills comme variable indépendante aux côtés des autres régresseurs dans l'explication des scores de français, de

mémoire et pour le score global des élèves en CP. Nous concluons de la même manière : les coefficients associés à la variable du groupe expérimental restent stables, aussi bien en français, en mémoire et pour le score global. Ainsi, il apparaît que les résultats des MCO ne sont pas biaisés et que les effets du traitement expérimental sont bien estimés.

L'application du modèle d'Heckman nous permet de confirmer le résultat de meilleur rendement scolaire au CP pour les élèves du groupe musique relativement au groupe témoin. Malgré la dissymétrie de certaines caractéristiques des élèves entre les deux groupes, un biais de sélection n'est avéré que pour le score en mathématiques. Cependant, sa correction corrobore les résultats obtenus par régression classique, les élèves du groupe musique obtenant encore de meilleures performances. Ainsi, nos résultats montrent que l'intervention musicale en maternelle a permis d'accroître la réussite scolaire au CP.

Conclusion de la partie III

Nous avons mené une expérimentation avec affectation aléatoire des élèves afin d'évaluer l'impact d'un programme musical en maternelle sur les capacités cognitives des enfants à ce même niveau scolaire, et sur la réussite scolaire ultérieure (en cours préparatoire). Cette expérimentation a été motivée par une littérature en psychologie soulignant le rôle de la musique comme outil capable d'accroître les capacités cognitives d'une part, et par nos propres analyses mettant en avant le lien entre certains facteurs cognitifs et les performances scolaires d'autre part. L'échantillon ainsi construit est particulièrement original, à la fois par sa structure expérimentale et par sa taille importante.

Les informations disponibles sur les élèves de l'échantillon sont très riches, et concernent tant leurs caractéristiques sociodémographiques que celles de leur environnement scolaire. Elles nous permettent de montrer que ces facteurs ont une influence sur les capacités cognitives des enfants de maternelle, telles que mesurées par les tests NBA1 et NBA2. Ces caractéristiques sont également, à un degré moindre, déterminantes des performances musicales. Nous confirmons enfin le rôle des caractéristiques individuelles et scolaires sur les performances au CP.

Plusieurs précautions ont été prises pour s'assurer de la qualité de l'expérimentation et ont permis de la valider, en particulier la vérification de la bonne mise en place du programme musical *via* le test musical et la confirmation d'une difficulté similaire des tests cognitifs pour les élèves des deux groupes à l'aide des modèles de réponses à l'item.

L'évaluation de l'impact du programme musical sur les capacités cognitives des élèves de maternelle montre que la musique est relativement neutre en la matière, que ce soit au niveau global, ou pour chacun des domaines cognitifs (graphisme, discrimination visuelle, organisation spatiale, mémoire, rythme). Ce résultat est confirmé par une analyse statistique novatrice, en différence de différences. En revanche, le programme musical en maternelle a un effet positif sur les performances en CP, et ce de façon non négligeable, les élèves du groupe musique obtenant environ 4 points de plus au score global que ceux du groupe témoin.

Cet effet positif est également présent pour les scores de français et mathématiques. Le recours à une méthode d'analyse permettant de contrôler les biais de sélection, le modèle d'Heckman, conforte et renforce ce résultat d'impact positif de la musique sur les performances scolaires.

L'évaluation des effets de l'expérimentation permet ainsi d'obtenir de nombreux résultats intéressants, dont un particulièrement marquant : la musique n'a pas d'effet immédiat sur les capacités cognitives, mais améliore à terme les performances scolaires. Il s'agit d'un résultat inédit qui ne manquera pas d'ouvrir de nouvelles perspectives de recherche.

CONCLUSION GÉNÉRALE

Le travail réalisé au cours de cette thèse avait pour ambition de mieux comprendre les prémices des parcours scolaires. Il s'agissait également d'apporter une contribution à la connaissance des mécanismes d'apprentissage des élèves en évaluant les effets d'une intervention pouvant favoriser leur réussite scolaire, en l'occurrence, un enseignement musical en grande section de maternelle.

La première partie de cette thèse repose sur l'exploitation des données du panel 1997. Ce panel, constitué par un échantillon important et représentatif, suit les élèves du CP jusqu'à leur entrée dans le secondaire et est le plus récent disponible à ce jour permettant de mesurer des progressions des acquis scolaires. Notre exploitation des données du panel 1997 a, non seulement confirmé l'impact des variables socioéconomiques, démographiques et scolaires traditionnellement identifiées en sciences de l'éducation sur les performances scolaires au CP, mais elle a également montré, en utilisant les analyses statistiques implicatives, une hiérarchisation des compétences scolaires des élèves. Plus encore, notre travail a mis en évidence l'existence de relations entre d'une part, les capacités cognitives des élèves, (mesurées dans le panel notamment par l'attitude en classe et la confiance en soi) et, d'autre part, leurs performances scolaires.

Comment alors soutenir la réussite scolaire des élèves du primaire? Agir sur les capacités cognitives des élèves ne serait-il pas un moyen d'action pertinent, comme l'indique l'une des pistes explorées dans des études expérimentales menées sur le sujet? C'est en partant de ces questions que nous avons étudié dans la deuxième partie de cette thèse une piste particulièrement prometteuse, celle de l'enseignement musical. Nous avons montré dans une revue de littérature dominée par la psychologie cognitive, que la musique pouvait être un outil particulièrement efficace pour accroître les capacités cognitives, que ce soit les capacités spatiales et temporelles, certaines dimensions de la mémoire, ou même le Q.I. Nous avons également souligné que la musique pouvait être un moyen efficace d'amélioration des performances scolaires des élèves, et qu'elle était un moyen d'autant plus pertinent dans le contexte français d'un enseignement musical sinon insuffisant, du moins très hétérogène. Afin de tester empiriquement les effets de la musique sur les capacités cognitives et sur les performances scolaires des élèves, nous avons mobilisé une méthode d'évaluation empruntée

à la psychologie : la recherche expérimentale. Appliquée à plus grande échelle auprès d'enfants de grande section de maternelle, elle nous a permis de collecter des données originales.

Notre troisième partie a été consacrée à l'analyse de ces données. La démarche a reposé sur une méthodologie robuste et de nombreuses précautions ont été prises pour garantir la validité des résultats produits. Ainsi, la détermination de la taille de l'échantillon repose sur la recherche d'effet minimum détectable, le tirage aléatoire de l'échantillon permet en théorie d'obtenir deux groupes, un groupe de musique et un groupe témoin, comportant les mêmes caractéristiques et le programme d'activités musicales suit un calendrier précis pour s'assurer que tous les élèves progressent en même temps. En outre, plusieurs mesures ont été réalisées afin de comparer les progressions des élèves selon leurs groupes. Pour soutenir encore plus la validité des résultats issus de l'expérimentation, nous avons mobilisé une méthode économétrique d'évaluation, la méthode des différences de différences, qui a montré des résultats peu concluants quant à l'impact de la musique sur les progressions des capacités cognitives, mesurées par les tests NBA. Ces résultats ont été confirmés par les modèles de réponse à l'item. En revanche, nous avons montré que le traitement expérimental a bien un effet positif sur les performances scolaires des élèves mesurées au CP. Le modèle d'Heckman nous a permis de vérifier que cette conclusion n'était pas biaisée par l'inégale répartition des caractéristiques individuelles des deux groupes.

Ainsi, il convient de s'interroger sur les résultats présentés dans cette thèse. En effet, un paradoxe se dégage : la musique a un effet positif sur les performances scolaires des élèves mesurées au CP, mais très peu d'impact sur les capacités cognitives en maternelle. Ce dernier résultat va à l'encontre de ce qui est relevé dans la revue de littérature et il est primordial de se questionner sur les raisons d'une telle conclusion. La revue de la littérature permet d'émettre plusieurs hypothèses pour expliquer l'inefficacité du traitement expérimental sur l'accroissement des capacités cognitives.

Un temps d'expérimentation musicale trop court pourrait expliquer l'absence d'effet sur les capacités cognitives. Il est possible d'imaginer qu'augmenter la durée du traitement musical (de 6 mois à 1 année scolaire) ou bien augmenter l'intensité du traitement (de 2h à 4h

hebdomadaire) se répercutera sur la mesure des capacités cognitives. Pourtant, l'étude de Rausher et al. (2000) montre des résultats significatifs après 4 mois d'entrainement musical, alors que les enfants font 40 minutes de musique par semaine. Cette piste, si elle ne doit pas être totalement délaissée, semble peu prometteuse.

Le type d'activité musicale pourrait être remis en question. Il est possible que les activités proposées n'aient pas été en mesure d'avoir un effet bénéfique sur les capacités cognitives. Pourtant, l'examen de la littérature scientifique indique que le chant, le rythme, la pratique instrumentale, l'écoute et le codage s'avèrent efficaces pour favoriser le développement des capacités cognitives (Bolduc, 2006, 2008 et 2009). Là encore, cette piste parait pouvoir être écartée.

Une autre explication possible vient de ce que les caractéristiques des élèves des deux groupes auraient biaisé les résultats de l'expérimentation. Malgré les précautions méthodologiques prises, il s'est avéré que les caractéristiques des élèves du groupe témoin et du groupe expérimental n'étaient pas parfaitement identiques. Il en résulte des scores initiaux des élèves du groupe témoin plus élevés que les scores initiaux des élèves du groupe musique. Même si nous raisonnons en termes de progrès, il se peut que les résultats en aient été affectés. Ceci étant, la rigueur des analyses statistiques effectuées pour corriger ce biais nous amène à penser que cette explication est peu crédible.

Deux pistes de réflexion retiennent plus particulièrement notre attention et semblent celles pour lesquelles des approfondissements apporteraient un éclairage sur les résultats de notre thèse. La première est que, bien que nous ayons retenu des tests largement validés, les tests cognitifs NBA pourraient ne pas avoir mesuré les « bonnes » capacités cognitives. Les instruments utilisés afin de mesurer les capacités cognitives sont déterminants dans ce type d'analyse. Or, la littérature montre qu'il peut y avoir des différences significatives de résultats dans un domaine cognitif identique avec une étude expérimentale similaire, mais un test de capacité cognitive différent (par exemple : les capacités spatio-temporelles dans les travaux de Steele et al. 1999 et Rauscher et al. 1993). La construction d'outils de mesure plus spécifiques au domaine musical, en partenariat avec des psychologues, ou l'utilisation de plusieurs instruments de mesure lors du même test (en se limitant bien entendu à quelques domaines cognitifs) sont des pistes à explorer.

La seconde explication est que l'effet de la musique transite par des capacités cognitives non mesurées par nos tests. Ainsi, il y aurait un chaînon manquant par lequel la musique permettrait l'amélioration des performances scolaires qui expliquerait le paradoxe apparent de notre résultat. Au final, il faudra s'interroger plus en profondeur sur le lien entre entraînement musical et capacités cognitives pour comprendre les conditions dans lesquelles un programme musical est efficace.

Notre thèse ouvre des perspectives sur l'efficacité des programmes d'intervention précoces contre l'échec scolaire, relatives à l'utilisation d'un cadre épistémologique transdisciplinaire, et enfin à la démarche expérimentale en sciences de l'éducation et sa mobilisation pour l'aide à la décision publique. Si nos résultats concernent uniquement l'évaluation d'une pratique en particulier, celle de la musique, et ne peuvent être transposés à d'autres méthodes d'interventions, ils encouragent à élargir la réflexion autour de la lutte contre l'échec scolaire et du rôle de la scolarisation en maternelle. L'école maternelle est le premier lieu de scolarisation où seront acquises progressivement les premières compétences langagières et scientifiques, ainsi que des comportements sociaux et l'autonomie, tous indispensables à une scolarité ultérieure de qualité. Mieux comprendre les difficultés scolaires des élèves et trouver des moyens efficaces et peu coûteux pour les atténuer est un enjeu important en France au moment où le niveau des élèves sortant du primaire et les moyens alloués à l'enseignement public sont préoccupants.

Le cadre épistémologique des recherches en sciences de l'éducation est par essence pluridisciplinaire. Cette thèse s'insère pleinement dans cette optique et est le fruit d'un travail qui a su mobiliser plusieurs approches disciplinaires. L'expérimentation est une méthodologie empruntée à la psychologie, les tests musicaux ont été élaborés en étroite collaboration avec une psychologue spécialisée dans la perception musicale et le programme expérimental a été réalisé par des pédagogues de la musique. La présence d'économistes de l'éducation au sein de notre laboratoire de recherche a inspiré l'utilisation de techniques économétriques, comme les analyses de différences de différences et le modèle d'Heckman. Enfin, dans une moindre mesure, notre travail mobilise également des approches historiques et sociologiques. Cette pluridisciplinarité permet d'obtenir des résultats plus riches, plus complets (et complexes), qui permettent une meilleure compréhension de notre objet d'étude.

Les résultats surprenants de notre expérimentation invitent à approfondir davantage cette démarche pluridisciplinaire en développant plus encore les partenariats avec la psychologie cognitiviste et la musicologie. L'effet positif d'une intervention musicale sur les performances scolaires, mais modéré, sinon inexistant, sur les capacités cognitives amène à émettre deux hypothèses : l'absence de lien entre les performances cognitives et scolaires, ou l'existence de variables cognitives latentes non mesurées par lesquelles transiterait l'effet de l'entraînement musical. La première hypothèse allant à contre-courant de l'ensemble des recherches menées à ce jour, c'est la seconde qui a notre préférence. Les tests de capacités cognitives utilisés dans notre travail sont des outils standardisés et largement validés, et ne peuvent être mis en cause. En revanche, ce sont les capacités cognitives qu'ils mesurent qu'il faut questionner. Identifier les capacités cognitives en lien avec la réussite scolaire et les moyens d'action pour accroître ces capacités nécessite un travail en équipe pluridisciplinaire qui enrichirait notre compréhension de la genèse des compétences scolaires.

Il est important de souligner l'apport de la méthodologie expérimentale mobilisée dans cette thèse, d'un point de vue personnel, mais aussi, et surtout, pour les sciences de l'éducation. La mise en œuvre exigeante de l'expérimentation a été une expérience très enrichissante et formatrice, qui a permis le développement de compétences multiples, liées à la planification d'un projet de recherche, au choix des outils de mesures, à la récolte de données, au budget, et surtout au travail en équipe, en partenariat avec les acteurs de terrain.

L'expérimentation (entendue au sens d'expérimentation contrôlée et randomisée) reste un outil peu utilisé dans les recherches en sciences de l'éducation en France. Pourtant, il s'agit d'un outil de mesure rigoureux qui permet d'appréhender et de mesurer l'efficacité d'une intervention en milieu éducatif, que celle-ci vise, comme c'est notre cas, l'amélioration des résultats scolaires, ou qu'elle vise d'autres objectifs (entre autres, lutte contre le décrochage scolaire, la délinquance et les violences scolaires, contre l'usage de substances toxiques légales ou non, pour favoriser des comportements sains, etc.). La popularité croissante de cette méthode, qui est de plus en plus utilisée en dehors des recherches en psychologie, en France comme à l'international, dans les milieux académiques ou comme outil d'aide à la décision publique, ne peuvent qu'attester du potentiel de la méthode pour évaluer l'efficacité de dispositifs scolaires et, en retour, éclairer le choix des politiques publiques. La démarche

expérimentale présente un intérêt certain d'aide à la décision et son attrait pour les autorités publiques s'est accru, comme l'atteste le financement obtenu pour notre recherche auprès du Haut Conseil de la Jeunesse, organisme qui a crée en 2009 le Fond d'expérimentation pour la jeunesse. Bien sûr, cet outil n'est pas exempt de limites : les coûts qu'il engendre, les questionnements éthiques qu'il soulève, l'organisation qu'il demande, son évaluation et la validation des résultats qui en résultent peuvent parfois être un frein à la mise en place d'une telle méthodologie. Néanmoins, la qualité et la validité scientifique des résultats que cette méthode permet d'obtenir, le développement de son utilisation dans d'autres champs disciplinaires (économie, sociologie, etc.), invitent à la mobiliser plus activement dans le champ de recherche qui est le nôtre.

Les analyses développées au cours cette thèse auront, nous l'espérons, contribué à l'analyse des premières compétences des élèves et ouvrent de nouvelles perspectives à un champ de recherche qui concerne des enjeux majeurs des systèmes éducatifs.

BIBLIOGRAPHIE

- Adams, J. W., & Hitch, G. J. (1997). Working memory and children's mental addition. *Journal of Experimental Child Psychology*, 67(1), 21–38.
- Allal, L. (1999). Acquisition et évaluation des compétences en situation scolaire. *Raisons* éducatives, 1, 2(2), 77–94.
- Allen, K., & Blascovich, J. (1994). Effects of music on cardiovascular reactivity among surgeons. *Jama*, 272(11), 882.
- Alloway et al. (2005). Working memory and phonological awareness as predictors of progress towards early learning goals at school entry. *The British Psychological Society*, *23*, 417–426.
- Alten, M. (1995). *La musique dans l'école : de Jules Ferry à nos jours*. Collection Psychologie et pédagogie de la musique, ISSN 0224-747X; 23 (Vol. 1-1). Issy-les-Moulineaux: Éd. EAP.
- Alten, M. (2005). Musique scolaire et société dans la France de la Troisième République. *Tréma*, L'éducation musicale scolaire : une évolution à évaluer, (25), 5–19.
- Andrade, J., Baddeley, A. D., & Hitch, G. J. (2001). Working memory in perspective. East Sussex UK: Psychology Press.

- Anvari, S. H., Trainor, L. J., Woodside, J., & Levy, B. A. (2002). Relations among musical skills, phonological processing, and early reading ability in preschool children. *Journal of Experimental Child Psychology*, 83(2), 111–130.
- Archambault, P. (2007). Les enfants de familles désunies en France: leurs trajectoires, leur devenir (Vol. 158). Ined.
- Arshavsky, Y. I. (2003). When did Mozart become a Mozart? Neurophysiological insight into behavioral genetics. *Brain and Mind*, *4*(3), 327–339.
- Atkinson, R. C., & Shiffrin, R. M. (1968). Human memory: A proposed system and its control processes. *The psychology of learning and motivation: Advances in research and theory*, 2, 89–195.
- Bachelard, A., Coulon, D., & Loisy, J.-P. (2010). *Musique au quotidien*. Au quotidien, CRDP de l'académie de Dijon.
- Baddeley, A. D., & Hitch, G. (1974). Working memory. *The psychology of learning and motivation*, 8, 47–89.
- Baillat, G., & Mazaud, A. (2002). L'éducation musicale à l'école: Un point de vue sur la polyvalence des enseignants du premier degré. *Recherche et formation*, (40), 95–120.
- Bamberger, J. (2000). Music, math, and science: Towards an integrated curriculum. *Journal for Learning Through Music*, 32–35.
- Bara, F., Gentaz, É., & Colé, P. (2004). Les effets des entraînements phonologiques et multisensoriels destinés à favoriser l'apprentissage de la lecture chez les jeunes enfants. *Enfance*, 56(4), 387–403.

- Bara, F., Gentaz, É., & Colé, P. (2006). Comment les enfants apprennent-ils à écrire et comment les y aider. *Sciences cognitives et éducation*, 9–24.
- Barrett, J. R., McCoy, C. W., & Veblen, K. K. (1997). Sound ways of knowing: Music in the interdisciplinary curriculum. Schirmer Books.
- Barrouillet, P., Bernardin, S., Portrat, S., Vergauwe, E., & Camos, V. (2007). Time and cognitive load in working memory. *Learning, Memory*, *33*(3), 570–585.
- Barrouillet, P. & Camos, V. (2007). Le développement de la mémoire de travail. In J. Lautrey (Ed.), Psychologie du développement et de l'éducation (pp. 51-86). Paris : PUF.
- Barrouillet, P., & Lépine, R. (2005). Working memory and children's use of retrieval to solve addition problems. *Journal of Experimental Child Psychology*, *91*(3), 183–204.
- Barrouillet, Pierre, Camos, V., Morlaix, S., & Suchaut, B. (2008). Progressions scolaires, mémoire de travail et origine sociale: quels liens à l'école élémentaire? *Revue française de pédagogie*, 162(1), 5–14.
- Bautier, E. (2006). Apprendre à l'école. Apprendre l'école. Des risques de construction d'inégalités dès la maternelle. Lyon: Chronique Sociale.
- Bee, H., & Boyd, D. (2003). Psychologie du développement: Les âges de la vie. De Boeck Supérieur.
- Bennacer, H. (2005). Étude des déterminants personnels du comportement scolaire de l'élève: test d'un modèle structural. *Psychologie Française*, *50*(4), 451–469.

- Bergonnier-Dupuy, G. (2005). Famille (s) et scolarisation. *Revue française de pédagogie*, 151(1), 5–16.
- Bianco, M., & Bressoux, P. (1999). Les effets d'un aménagement du temps scolaire sur les acquis des élèves à l'école élémentaire. *Enfance*, *52*(4), 397–414.
- Bianco, M., Bressoux, P., Doyen, A.-L., Lambert, E., Lima, L., Pellenq, C., & Zorman, M. (2010). Early Training in Oral Comprehension and Phonological Skills: Results of a Three-Year Longitudinal Study. *Scientific Studies of Reading*, 14, 211–246.
- Bigand, E. (2004). L'oreille musicale experte peut-elle se développer par l'écoute passive de la musique? *Revue de Neuropsychologie*, *14*(1-2), 191–221.
- Bigand, E. (2008). Sons et Musique. De l'art à la science. Pour la science, (373), 132-138.
- Bigand, E., & Delbe, C. (2008). Apprentissage implicite en musique: Théorie et Modèles. *Intellectica*, (48-49), 13–26.
- Bigand, E., & Delbé, C. (2010). Introducing implicit learning: from the laboratory to the real life. *Rethinking physical and rehabilitation medicine*, 95–110.
- Bigand, E., & Filipic, S. (2008). Cognition et émotion musicales. *Intellectica*, (48-49), 37-50.
- Bigand, E., Filipic, S., & Lalitte, P. (2005). The time course of emotional responses to music. *Annals of the New York Academy of Sciences*, 1060(1), 429–437.
- Bigand, E., & Poulin-Charronnat, B. (2006). Are we « experienced listeners »? A review of the musical capacities that do not depend on formal musical training. *Cognition*, 100(1), 100–130.

- Bigand, Emmanuel, Lalitte, P., Madurell, F., & Tillmann, B. (2005). Apprendre la musique : perspectives sur l'apprentissage implicite de la musique et ses implications pédagogiques. *Revue française de pédagogie*, *152*(1).
- Blanchard, J., Kuntz, P., Guillet, F., Gras, R., & others. (2004). Mesure de la qualité des règles d'association par l'intensité d'implication entropique. *Mesures de Qualité pour la Fouille de Données*, 33–45.
- Blood, A. J., & Zatorre, R. J. (2001). Intensely pleasurable responses to music correlate with activity in brain regions implicated in reward and emotion. *Proceedings of the National Academy of Sciences of the United States of America*, 98(20).
- Blood, A. J., Zatorre, R. J., Bermudez, P., & Evans, A. C. (1999). Emotional responses to pleasant and unpleasant music correlate with activity in paralimbic brain regions. *Nature neuroscience*, *2*, 382–387.
- Boado, H. C. (2008). Les enfants d'immigrés progressent-ils plus vite àl'école? *Population*, 63(4), 747–765.
- Boehm, A. (2009). Test des concepts de base BOEHM (Ecpa.).
- Boehm, A. E. (2001). *Boehm Test of Basic Concepts–3: Preschool*. San Antonio, TX: The Psychological Corporation.
- Bolduc, J. & Fleuret, C. (2009). La musique au cœur des pratiques en littérature. Faire la différence... de la recherche à la pratique, (19).
- Bolduc, J. (2009). Musique et habilités cognitives au préscolaire. *Recherche en éducation musicale*, 27, 1–16.

- Bolduc, J. (2006). Les effets d'un programme d'entraînement musical expérimental sur l'approbation du langage écrit à la maternelle [Effects of a music training program on kindergartners' literacy skills]. Québec: Université Laval.
- Bolduc, J. (2008). The Effects of Music Instruction on Emergent Literacy Capacities among Preschool Children: A Literature Review. *Early Childhood Research & Practice*, 10, 5.
- Bolduc, J. (2009). La conscience de l'écrit: étude des représentations d'enfants d'âge préscolaire dans des productions de notations musicales inventées. *Lire le monde: Les littératies multiples et l'éducation dans les communautés francophones*, 35.
- Bolduc, J. (2009). La production de notations musicales inventées: une autre façon d'approcher l'écrit à la période préscolaire. *Revue des sciences de l'éducation*, 35(3), 107–126.
- Bolduc, J., & Montésinos-Gelet, I. (2005). Pitch awareness and phonological awareness. *Psychomusicology*, 19(1), 3–14.
- Bolduc, J., & Vachon, A. (2009). Les chemins croisés de la littératie et de la musique.

 Langage et littératie chez l'enfant en service de garde éducatif, 93.
- Bolduc, J. (2009). Effects of an integrated music/literacy program on kindergartners' phonological awareness abilities. *International Journal of Music Education*, 27(1), 37 47.
- Bolognini, M., Prêteur, Y., & Bariaud, F. (1998). *Estime de soi: Perspectives développementales*. Delachaux et Niestlé.

- Bouchard, P., & Saint-Amant, J. (1996). Stéréotypes et réussite scolaire, réédition 1999. Editions du remue-ménage.
- Bouchor, & Tiersot. (1925). *Chants populaires pour les écoles. Livre du maître*. Paris : Librairie Hachette.
- Bourdieu, P. (1984). Questions de sociologie. Paris : Les éditions de Minuits.
- Bourdot, M.-F. (2002). *Jeux chantés, jeux dansés : 80 comptines pour s'exprimer avec son corps : guide pédagogique*. J'apprends avec la musique (Vol. 1-1). Paris: Nathan.
- Braeunig, F., & Bouchor, M. (1897). *Chants populaires pour les écoles : (recueil Bouchor-Tiersot) : livre du maître* (Vol. 1-1). Paris: Librairie Hachette.
- Bressoux, P., Bru, M., Altet, M., & Leconte-Lambert, C. (1999). Diversité des pratiques d'enseignement à l'école élémentaire. *Revue française de pédagogie*, *126*(1), 97–110.
- Bressoux, Pascal. (2000). Modélisation et évaluation des environnements et des pratiques d'enseignement : rapport d'habilitation à diriger des recherches (Vol. 1-1).
- Brinbaum, Y., & Kieffer, A. (2005). D'une génération à l'autre, les aspirations éducatives des familles immigrées. Ambition et persévérance. *Education et formations*, 72, 53–75.
- Brinbaum, Y., & Kieffer, A. (2009). Les scolarités des enfants d'immigrés de la sixième au baccalauréat: différenciation et polarisation des parcours. *Population*, *64*(3), 561–610.
- Brougère, G. (2002). L'exception française: L'école maternelle face à la diversité des formes préscolaires. *Les dossiers des sciences de l'éducation*, (7).

- Caille, J. P. (2001). Scolarisation à 2 ans et réussite de la carrière scolaire au début de l'école élémentaire. *Education et formations*, 7–18.
- Caille, J. P. (2004). «Le redoublement à l'école élémentaire et dans l'enseignement secondaire». Éducation & formations, ministère de l'Éducation nationale, Dep, 69.
- Caille, J. P. (2000). Le risque de sortie sans qualification au cours des années quatre-vingt-dix. Effets des différences de trajectoires scolaires et de milieu familial. *VEI enjeux*, 76–92.
- Caille, J. P., & O'prey, S. (2005). Estime de soi et réussite scolaire sept ans après l'entrée en sixième: Les représentations des élèves du panel 1995, sept ans après leur entrée en sixième. *Education et formations*, (72), 25–52.
- Caille, J. P., & Rosenwald, F. (2006). Les inégalités de réussite à l'école élémentaire: construction et évolution. *France, portrait social*. Paris: Institut national de la statistique et des études économiques, 115–137.
- Carmon et al. (2008). The musical notes methods for initial reading acquisition. *Journal of Cognitive Education and Psychology*, 7(1), 81–100.
- Caverni, J. P. (1998). Pour un code de conduite des chercheurs dans les sciences du comportement humain. *L'année psychologique*, *98*(1), 83–100.
- Chevais, M., Brochart, L., & Ducasse, R. (1930). *Chants et oeuvres chorales des maîtres de la musique française. Chants et choeurs à 1, 2 et 3 voix égales.* Anthologie du chant scolaire et post-scolaire. (Vol. 1-1). Paris: Au Ménestrel.
- Chevé, E. (1884). *Méthode élémentaire de musique vocale*. Chez les auteurs.

- Chevrie-Muller, C., & Plaza, M. (2004). *N-EEL: nouvelles épreuves pour l'examen du langage*. ECPA, Éditions du Centre de psychologie appliquée.
- Chin, C. S. (2003). The development of absolute pitch: A theory concerning the roles of music training at an early developmental age and individual cognitive style. *Psychology of Music*, 31(2), 155.
- Coleman, J. M., & Dover, G. M. (1993). The RISK screening test: Using kindergarten teachers' ratings to predict future placement in resource classrooms. *Exceptional Children*, *59*(5), 468–477.
- Colmant, M., Jeantheau, J. P., & Murat, F. (2002a). Les compétences des élèves à l'entrée en cours préparatoire: (études réalisées à partir du panel d'écoliers recruté en 1997).

 Ministère de l'éducation nationale, de la jeunesse et des sports, Direction de l'évaluation et de la prospective.
- Comets-Comité d'éthique du CNRS. (2007). Ethique et sciences du comportement humain. CNRS.
- Comets-Comité d'éthique du CNRS. (2010). Ethique de la recherche dans l'expérimentation sociale. CNRS.
- Couturier. (2001). Traitement de l'analyse statistique implicative dans CHIC (p. 30–50). Présenté à *Fouille des données par l'analyse statistique implicative*, IUFM Caen.
- Cowan, N. (2005). Working memory capacity. Psychology Press.

- Cucherat, M., Lièvre, M., Leizorovicz, A., & Boissel, J. P. (2004). Lecture critique et interprétation des résultats des essais cliniques pour la pratique médicale. Flammarion médecine-sciences.
- Dajez, F., & Plaisance, E. (1992). Education de la petite enfance et école maternelle.

 *Perspectives documentaires en sciences de l'éducation, (27), 115–142.
- Daneman, M., & Carpenter, P. A. (1983). Individual differences in integrating information between and within sentences. *Journal of Experimental Psychology: Learning, Memory, and Cognition*, 9(4), 561.
- De Singly, F. (1992). L'enquête et ses méthodes: le questionnaire (Vol. 128). Paris : Nathan.
- Delbé, C. (2009). Musique, psychoacoustique et apprentissage implicite.
- Demeuse, M., Strauven, C., & Roegiers, X. (2006). Développer un curriculum d'enseignement ou de formation: des options politiques au pilotage. De Boeck Université.
- Dempster, F. N. (1981). Memory span: Sources of individual and developmental differences. *Psychological Bulletin*, 89(1), 63.
- DeNora, T., & Adorno, T. W. (2003). *After Adorno: rethinking music sociology*. Cambridge University Press.
- Deutsch, D., Henthorn, T., & Dolson, M. (2004). Absolute pitch, speech, and tone language: Some experiments and a proposed framework. *Music Perception*, 21(3), 339–356.

- Deutsch, D., Henthorn, T., Marvin, E., & Xu, H. S. (2006). Absolute pitch among American and Chinese conservatory students: Prevalence differences, and evidence for a speech-related critical period. *The Journal of the Acoustical Society of America*, *119*, 719.
- Devries, P. (2004). The Extramusical Effects of Music Lessons on Preschoolers. *Australian Journal of Early Childhood*, 29(2), 6–11.
- Donald, S. G., & Lang, K. (2007). Inference with difference-in-differences and other panel data. *The Review of Economics and Statistics*, 89(2), 221–233.
- Donnat, Olivier, & France. (1998). Les pratiques culturelles des Français à l'ère numérique : enquête 2008 (Vol. 1-1). Paris: La Documentation française.
- Droz, R. (2001). Musique et émotions. Actualités psychologiques.
- Duée, M. (2005). L'impact du chômage des parents sur le devenir scolaire des enfants. *Revue économique*, *56*(3), 637–645.
- Duflo, E., Glennerster, R., & Kremer, M. (2007). Using randomization in development economics research: A toolkit. *Handbook of Development Economics*, *4*, 3895–3962.
- Durand, G., & Perrotin, C. (1991). Contribution à la réflexion bioéthique: dialogue France-Québec. Les Editions Fides.
- Duru-Bellat, M. (2002). Les inégalités sociales à l'école: genèse et mythes. Paris: PUF, 2002.

 PUF.
- Duru-Bellat, M., & Kieffer, A. (2008). Du baccalauréat à l'enseignement supérieur en France: déplacement et recomposition des inégalités. *Population*, *63*(1), 123–157.

- Duru-Bellat, M., Kieffer, A., & Marry, C. (2001). La dynamique des scolarités des filles: le double handicap questionné. *Revue française de sociologie*, 42(2), 251–280.
- Duru-Bellat, Marie, & Mingat, A. (1997). La constitution de classes de niveau dans les collèges; les effets pervers d'une pratique à visée égalisatrice. *Revue française de sociologie*, 38(4), 759–789.
- Duvillard, J. (2005). L'éducation musicale scolaire : une évolution à évaluer. *Tréma*, (25), 20–32.
- Elias, N., Schröter, M., Etoré-Lortholary, J., & Lortholary, B. (1991). *Mozart, sociologie d'un genie*. Seuil Paris.
- Engle, R. W. (2002). Working memory capacity as executive attention. *Current Directions in Psychological Science*, 11(1), 19.
- Ericsson, K. A., Krampe, R. T., & Tesch-R\"omer, C. (1993). The role of deliberate practice in the acquisition of expert performance. *Psychological review*, *100*(3), 363.
- Ericsson, K. A., & others. (2006). The influence of experience and deliberate practice on the development of superior expert performance. *The Cambridge handbook of expertise and expert performance*, 683–703.
- Ernst, B., & Radica, K. (1994). Les élèves au cycle d'observation: caractéristiques, performances en français et en mathématiques, orientation en fin de cycle. *Les dossiers d'Éducation et Formations*, 40.
- Eschrich, S., M\\u00fcnte, T. F., & Altenm\\u00fculler, E. O. (2008). Unforgettable film music: the role of emotion in episodic long-term memory for music. *BMC neuroscience*, *9*(1), 48.

- Esquieu, N. (2006). Les enseignants des écoles publiques et la formation. *Note d'information-*Direction de la programmation et du développement, (17), 1–6.
- Euler, L. (1865). Musique mathématique: la musique rendue facile, par le système de la notation lettrée, ou essai d'une nouvelle théorie de la musique, fondée sur les connaissances physiques et métaphysiques appliquées aux vrais principes de l'harmonie (Vol. 1-1). Paris: Librairie scientifique et philosophique.
- Fayol, M. (1992). Comprendre ce qu'on lit: de l'automatisme au contrôle. *Psychologie cognitive de la lecture*, 73–105.
- Fayol, M. (2002). Production du langage. Traité des sciences cognitives. *Paris: Hermès Science. Hickmann, M.(2002). Développement de la production verbale orale In M. Fayol, Dir. Production du langage*, 173–189.
- Fayol, M., Gombert, J. E., Lecocq, P., Sprenger-Charolles, L., & Zagar, D. (1992).

 *Psychologie cognitive de la lecture. Presses universitaires de France.
- Felouzis, G. (2003). La ségrégation ethnique au collège et ses conséquences. *Revue française de sociologie*, 44(3), 413–447.
- Felouzis, G. (2005). De l'école à la ville: comment se forment les collèges ghettos? Informations sociales, 125(5), 38–47.
- Ferrier, J. (2003). L'avance et le retard scolaires à l'école élémentaire et au collège. *Les Cahiers de l'Éducation*, 28, 9–18.
- Florin, A. (1989). Modèles éducatifs à l'école maternelle : des textes officiels aux pratiques des classes. L'exemple des activités de langage. *Enfance*, 42(3), 75–93.

- Florin, A. (1991). Pratiques du langage à l'école maternelle et prédiction de la réussite scolaire. Presses universitaires de France.
- Florin, A. (2007). L'école primaire en France. Rapport au Haut Conseil de l'Education.(en ligne sur le site du HCE).
- Florin, A., Cosnefroy, O., & Guimard, P. (2004). Trimestre de naissance et parcours scolaire. Revue européenne de psychologie appliquée, 54(4), 237–246.
- Florin, A., Guimard, P., & Khomsi, A. (1998). La maîtrise de la langue orale au cycle 2.

 Recherche pour la Direction des Ecoles. Université de Nantes, Labécd.
- Florin, A., Guimard, P., & Nocus, I. (2002). Les évaluations des enseignants et la prédiction des compétences langagières de leurs élèves: études longitudinales à l'école maternelle et élémentaire. *Le Langage et l'homme*, *37*(2), 175–190.
- Florin, A. (2005). Pour un accueil réussi des tout-petits à l'école maternelle. *1001 bébés*, 48(1), 55–70.
- Florin, A. (2010). Le développement du lexique et l'aide aux apprentissages. *Enfances & Psy*, 47(2), 30–41.
- Forgeard, M., Schlaug, G., Norton, A., Rosam, C., Iyengar, U., & Winner, E. (2008). The relation between music and phonological processing in normal-reading children and children with dyslexia. *Music Perception*, 25(4), 383–390.
- Forgeard, M., Winner, E., Norton, A., & Schlaug, G. (2008). Practicing a musical instrument in childhood is associated with enhanced verbal ability and nonverbal reasoning. *PLoS One*, *3*(10), 3566.

- Fritz, T., Jentschke, S., Gosselin, N., Sammler, D., Peretz, I., Turner, R., Friederici, A. D., et al. (2009). Universal recognition of three basic emotions in music. *Current Biology*, 19(7), 573–576.
- Gagné, R.M. (1985). The conditions of learning and theory of instruction. CBS College Publishing.
- Gagné, R. M. (1975). Essentials of learning for instruction. Dryden Press.
- Ganvert, G. (1999). L'enseignement de la musique en France: situation, problèmes, réflexions.

 Paris : L'Harmattan Edition.
- Ganvert, Gérard. (1999). L'enseignement de la musique en France: situation, problèmes, réflexions. Collection Sciences de l'éducation musicale, ISSN 1299-5584. Paris: L'Harmattan Edition.
- Garnier, P. (2009). Préscolarisation ou scolarisation? L'évolution institutionnelle et curriculaire de l'école maternelle. *Revue française de pédagogie*, *169*(4), 5–15.
- Gathercole, S. E. (2001). *Short-term and working memory*. East Sussex UK: Psychology Press.
- Gathercole, S. E., & Baddeley, A. D. (1993). *Working memory and language*. Essays in cognitive psychology, ISSN 0959-4779 (Vol. 1-1). Hove: L. Erlbaum associates.
- Gentaz, É., Colé, P., & Bara, F. (2003). Évaluation d'entraînements multi-sensoriels de préparation à la lecture pour les enfants en grande section de maternelle : une étude sur la contribution du système haptique manuel. *L'année psychologique*, *103*(4), 561–584.

- Gomez, P., & Danuser, B. (2004). Affective and physiological responses to environmental noises and music. *International Journal of Psychophysiology*, *53*(2), 91–103.
- Goux, D., & Maurin, É. (2000). «La persistance du lien entre pauvreté et échec scolaire». France, portrait social, 2001, 86–98.
- Goux, D., & Maurin, É. (2003). «Surpeuplement du logement et retard scolaire des enfants». *Données Sociales 2002-2003*, 455–459.
- Gras, R. (2000). Les fondements de l'analyse implicative statistique. *Quaderni di Ricerca in Didattica*.
- Gras, R., Couturier, R., Guillet, F., & Spagnolo, F. (2005). Extraction de règles en incertain par la méthode statistique implicative. *Comptes rendus des 12èmes Rencontres de la Société Francophone de Classification*, 148–151.
- Gras, R., & Kuntz, P. (2007). Analyse Statistique Implicative (ASI), en réponse à des problèmes fondateurs. *Apports Théoriques à l'Analyse Statistique Implicative et Applications, Université Jaume I Cstellon Castellon*, 15–40.
- Gras, Régis, Régnier, J.-C., & Guillet, F. (2009). *Analyse statistique implicative : une méthode d'analyse de données pour la recherche de causalités* (Vol. 1-1). Toulouse: Cépaduès.
- Grégoire, J., Van Nieuwenhoven, C., & Noël, M. (2004). TEDI-MATH (Flemish adaptation: A. Desoete, H. Roeyers, & M. Schittekatte). *Brussels: TeMA*.
- Grenet, J. (2010). Le mois de naissance influence-t-il les trajectoires scolaires et professionnelles? Une évaluation sur données française. *Revue économique*, 61(3), 589–598.

- Gribenski, M. (2005). Musique et sciences cognitives. *Labyrinthe*, (20), 99–116.
- Guegan, J.-F., Ecalle, J., Guimard, P., Khomsi, A., & Florin, A. (1999). Maîtrise de l'oral en grande section de maternelle et conceptualisation de la langue écrite en début de cours préparatoire. *Revue française de pédagogie*, *126*(1), 71–82.
- Guimard, P. (2010). L'évaluation des compétences scolaires. Presses universitaires de Rennes.
- Guimard, P., Cosnefroy, O., & Florin, A. (2007). Évaluation des comportements et des compétences scolaires par les enseignants et prédiction des performances et des parcours à l'école élémentaire et au collège. *L'orientation scolaire et professionnelle*, (36/2), 179–202.
- Guimard, P., & Floron, A. (2001). Comportements scolaires en moyenne section de maternelle et prédiction de la réussite scolaire à l'école élémentaire. *Psychologie et psychométrie*, 22(1), 75–100.
- Guimard, P., Florin, A., & Nocus, I. (2002). How the teachers in kindergarten can predict the school trajectories of their pupils? *European review of applied psychology*, *52*(1), 63–76.
- Gur, C. (2009). Is There any Positive Effect of Classical Music on Cognitive Content of Drawings of Six Year-Old Children in Turkey? *European Journal of Scientific Research*, 36(2), 251–259.
- Hanser, S. B. (1985). Music therapy and stress reduction research. *Journal of Music Therapy*.
- Hanushek, E. A., & others. (2006). Does Educational Tracking Affect Performance and Inequality? Differences-in-Differences Evidence Across Countries. *The Economic Journal*, 116(510), C63–C76.

- Hardouin, J.-B. (2005). *Construction d'échelles d'items unidimensionnelles en qualité de vie.* (Thèse de doctorat). Université René Descartes, Paris 5.
- Harris, M. A. (2007). Differences in mathematics scores between students who receive traditional Montessori instruction and students who receive music enriched Montessori instruction. *Journal for Learning through the Arts*, *3*(1).
- Haut Conseil de l'Education. (2007). L'école primaire. Bilan des résultats de l'école. Paris
- Heckman, J. J. (1979). Sample selection bias as a specification error. *Econometrica: Journal of the econometric society*, 153–161.
- Héran, F. (1996). École publique, école privée: qui peut choisir? Économie et Statistique, 293(1), 17–39.
- Ho, Y.-C., Cheung, M.-C., & Chan, A. S. (2003). Music training improves verbal but not visual memory: cross-sectional and longitudinal explorations in children. *Neuropsychology*, 17(3), 439–450.
- Huguet, M.-C. (2008). Capital culturel et inégalités sociales de réussite scolaire: les effets des pratiques musicales. *Revue française de pédagogie*, *162*(1), 45–57.
- Huguet-Benabdelmouna, M.-C. (2007). La réussite en éducation musicale : des facteurs individuels aux facteurs contextuels (Thèse de doctorat). Université de Bourgogne, Dijon.
- Imbens, G., & Wooldridge, J. (2007). What's new in econometrics. *Lecture Notes, NBER Summer Institute*.

- Iwanaga, M., Kobayashi, A., & Kawasaki, C. (2005). Heart rate variability with repetitive exposure to music. *Biological psychology*, 70(1), 61–66.
- Jacques, M. H. (2003). Garçons et filles de classes terminales: le filtre sexué des représentations du cursus et des intentions d'orientation post-baccalauréat. *Carrefours de l'éducation*, (1), 62–81.
- Jäncke, L. (2008). Music, memory and emotion. Journal of Biology, 7(6), 21.
- Jarousse, J. P., Mingat, A., & Richard, M. (1992). La scolarisation maternelle à deux ans: effets pédagogiques et sociaux. *Éducation et formations*, (31), 3–9.
- Jeantheau, J. P., Développement, D. de la P. et du, & Murat, F. (1998). *Observation à l'entrée* au CP des élèves du« panel 1997 ». Direction de la Programmation et du Développement.
- Kane, M. J., Bleckley, M. K., Conway, A. R. A., & Engle, R. W. (2001). A controlled-attention view of working-memory capacity. *Journal of Experimental Psychology: General*, 130(2), 169.
- Kant, I., trad. Philonenko, A. (1993). *Critique de la faculté de juger*. Librairie Philosophique J. Vrin.
- Khomsi, A. (1997). *Batterie d'évaluation des compétences scolaires en cycle 2 (ECS2)*. Paris : ECPA, Les Editions du Centre de psychologie appliquée.
- Khomsi, A. (2001). *ELO: évaluation du langage oral*. Paris : ECPA, Les Editions du Centre de psychologie appliquée.

- Kieffer, A., & Duru-Bellat, M. (1999). Evaluer la démocratisation de l'enseignement : la situation française à l'épreuve des comparaisons internationales. *Revue française de pédagogie*, 127(1),
- Kim, J., & André, E. (2008). Emotion recognition based on physiological changes in music listening. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 2067–2083.
- Kinnear, P. R., Gray, C. D., Huet, N., & Masuy, B. (2005). SPSS facile appliqué à la psychologie et aux sciences sociales: maîtriser le traitement de données. De Boeck Université.
- Lamb, S. J., & Gregory, A. H. (1993). The relationship between music and reading in beginning readers. *Educational Psychology*, *13*(1), 19–27.
- Le Boterf, G. (1995). *De la compétence: essai sur un attracteur étrange*. Paris : Editions d'Organisation.
- Le Boterf, G. (2001). *Ingénierie et évaluation des compétences*. Paris : Editions d'Organisation.
- Lee, Y., Lu, M., & Ko, H. (2007). Effects of skill training on working memory capacity. *Learning and Instruction*, 17(3), 336–344.
- Lefavrais, P. (2005). *Test de l'Alouette Révisé*. Paris : ECPA, Les Editions du Centre de psychologie appliquée.
- Lemaire, P. (2006). Psychologie cognitive. De Boeck Université.

- Leng, X., & Shaw, G. L. (1991). Toward a neural theory of higher brain function using music as a window. World Scientific Pub. Co.
- Lépine, R., Barrouillet, P., & Camos, V. (2005). What makes working memory spans so predictive of high-level cognition? *Psychonomic Bulletin & Review*, *12*(1), 165.
- Lerdahl, F., & Jackendoff, R. (1983). An overview of hierarchical structure in music. *Music Perception*, 229–252.
- Lerman, I. C. (2006). Analyse logique, combinatoire et statistique de la construction d'une hiérarchie binaire implicative : niveaux et noeuds significatifs. Publication interne (Irisa. En ligne) (Vol. 1-1). Rennes: Institut de Recherche en Informatique et Systèmes Aléatoires.
- Leroy, J. L., & Terrien, P. (2011). Perspectives actuelles de la recherche en éducation musicale. Editions L'Harmattan.
- Levitin, D. J. (2004). L'oreille absolue: autoréférencement et mémoire. *L'année* psychologique, 104(1), 103–120.
- Magdalena, G.-J. (2000). Discrimination visuelle ms/gs. Retz
- Maizières, F. (2009). Le rapport à la musique des enseignants du premier degré : rapport personnel, rapport professionnel. (Thèse de doctorat). Université Nancy 2.
- Maizieres, F., Vilatte, J.-C., & Dupuis, P.-A. (2007). Pratique de la musique en amateur des enseignants du premier degré et enseignement de la musique. *Actualité de la recherche en éducation et en formation*. Strasbourg.

- Marques et al. (2007). Musicians detect pitch violation in a foreign language better than nonmusicians: behavioral and electrophysiological evidence. *Journal of Cognitive Neuroscience*, 19, 1453–1463.
- Martinot, D. (2001). Connaissance de soi et estime de soi: ingrédients pour la réussite scolaire. *Revue des sciences de l'éducation*, *27*(3), 483–502.
- McAdams, S., & Bigand, E. (1994). *Penser les sons: Psychologie cognitive de l'audition*.

 Paris : Presses Universitaires de France.
- McCraty, R., Barrios-Choplin, B., Atkinson, M., & Tomasino, D. (1998). The effects of different types of music on mood, tension, and mental clarity. *Alternative Therapies in Health and Medicine*, *4*(1), 75.
- Meljac, C., & Lemmel, G. (1999). *Batterie UDN-II: Manuel d'utilisation et matériel*. Paris: ECPA.
- MEN. (2008). Bulletin officiel hors-série n° 3 du 19 juin 2008.
- MEN. (2007). Bulletin officiel n° 12 du 22 mars 2007.
- MEN. (2006). Decret n° 2006-830 du 11 juillet 2006 relatif au socle commun de connaissances et de compétences et modifiant le code de l'éducation.
- Menahem, G. (1988). L'activité professionnelle des mères a augmenté les chances de réussite de leurs enfants. *Economie et statistique*, *211*(1), 45–48.
- Meulemans, T. (1998). L'apprentissage implicite: Une approche cognitive, neuropsychologique et développementale. Solal.

- Meyer, E. (2003). Récit de pratique : apprendre la musique, quelles représentations chez les élèves. In *Apprendre et enseigner la musique: représentations croisées*. Paris : L'Harmattan.
- Michaudon, H. (2001). La lecture, une affaire de famille. Insee Premières.
- Mingat, A. (1991). Expliquer la variété des acquisitions au cours préparatoire: les rôles de l'enfant, la famille et l'école. *Revue française de pédagogie*, *95*(1), 47–63.
- Mingat, A., & Suchaut, B. (1996). Incidences des activités musicales en grande section de maternelle sur les apprentissages au cours préparatoire. Les Sciences de l'éducation pour l'ère nouvelle, 29(3), 49–76.
- Mingat, A., & Suchaut, B. (1994). Evaluation d'une expérimentation d'activités musicales en grande section maternelle : effets transversaux sur les acquisitions scolaires en lecture et en mathématiques au cours préparatoire. Cahier de l'IREDU; 56. Dijon
- Miyake, A., & Shah, P. (1999). *Models of working memory: Mechanisms of active maintenance and executive control.* Cambridge Univ Pr.
- Morin, M. F., & Montésinos-Gelet, I. (2005). Les habiletés phonogrammiques en écriture à la maternelle: Comparaison de deux contextes francophones différents France-Québec. *Canadian Journal of Education/Revue canadienne de l'éducation*, 28(3), 508–533.
- Morlaix, S. (2002). Intérêts et apports de l'analyse des variables latentes pour le chercheur en sciences sociales: Exemple d'application à l'économie de l'éducation. *L'Orientation scolaire et professionnelle*, 31(1), 117–138.

- Morlaix, S. (2000). Rechercher une meilleure répartition du temps scolaire en primaire pour favoriser la réussite au collège. *Revue française de pédagogie*, *130*(1), 121–131.
- Morlaix, S, & Suchaut, B. (2007). Evolution et structure des compétences des élèves à l'école élémentaire et au collège : une analyse empirique des évaluations nationales. Cahier de l'IREDU; 68. Dijon.
- Moutsopoulos, E. (1959). *La musique dans l'oeuvre de Platon*. Paris : Presses universitaires de France.
- Moutsopoulos, E. A., & Université de Paris. (1959). *La musique dans l'oeuvre de Platon* (Vol. 1-1). Paris: Presse Universitaires de France.
- Myers, A., & Hansen, C. H. (2003). Psychologie expérimentale. De Boeck Supérieur.
- OCDE. (2005). Apprendre aujourd'hui, réussir demain: premiers résultats de PISA 2003. OECD Publishing.
- OCDE. (2006). Regards sur l'éducation. OECD Publishing.
- Ormrod, J. E. (2004). Human learning. New Jersey: Upper Saddle River.
- Payet, J.-P. (1995). Collèges de banlieue. Ethnographie d'un monde scolaire. *Revue Française* de Pédagogie, (117), 170-174.
- Peretz, I., Blood, A. J., Penhune, V., & Zatorre, R. (2001). Cortical deafness to dissonance. *Brain*, 124(5), 928.
- Peretz, I., Gagnon, L., & Bouchard, B. (1998). Music and emotion: perceptual determinants, immediacy, and isolation after brain damage. *Cognition*, 68(2), 111–141.

- Peretz, I., & Lidji, P. (2006). Une perspective biologique sur la nature de la musique. *Revue de neuropsychologie*, *16*(4), 361–413.
- Peretz, I. (2002). L'amusie congénitale. médecine/sciences, 18(8-9), 2.
- Perruchet, P., & Nicolas, S. (1998). L'apprentissage implicite: un débat théorique. *Psychologie française*, 43, 13–26.
- Perruchet, P., & Pacton, S. (2004). Qu'apportent à la pédagogie les travaux de laboratoire sur l'apprentissage implicite? *L'année Psychologique*, *104*(1), 121–146.
- Pineau, M, & Bigand, E. (2001). *Perception et intégration des évènements musicaux*. Presses Universitaires du Septentrion
- Pineau, M., & Tillmann, B. (2001). *Percevoir la musique : une activité cognitive*. Collection Sciences de l'éducation musicale. Paris: L'Harmattan.
- Plantinga, J., & Trainor, L. J. (2005). Memory for melody: Infants use a relative pitch code. *Cognition*, 98(1), 1–11.
- Pousseur, H. (1972). Musique, sémantique, société. Paris : Casterman.
- Profita, J., Bidder, T. G., Optiz, J. M., & Reynolds, J. F. (1988). Perfect pitch. *American Journal of Medical Genetics*, 29(4), 763–771.
- Rainey, D. W., & Larsen, J. D. (2002). The Effect of Familiar Melodies on Initial Learning and Long-term Memory for Unconnected Text. *Music Perception: An Interdisciplinary Journal*, 20(2), 173–186.

- Rasch, G. (1960). Studies in mathematical psychology: I. Probabilistic models for some intelligence and attainment tests. Oxford, UK: Nielson & Lyd-ische
- Rauscher, F H, & Shaw, G. L. (1998). Key components of the Mozart effect. *Perceptual and Motor Skills*, 86(3 Pt 1), 835–841.
- Rauscher, F H, Shaw, G. L., & Ky, K. N. (1993). Music and spatial task performance. *Nature*, 365(6447), 611.
- Rauscher, F. H. (2002). Mozart and the mind: Factual and fictional effects of musical enrichment. *Improving academic achievement: Impact of psychological factors on education*, 267–278.
- Rauscher, F. H. (2003). Can Music Instruction Affect Children's Cognitive Development? Developmental Psychology, 20(4), 615–636.
- Rauscher, F.H., Shaw, G. L., Levine, L. J., Wright, E. L., Dennis, W. R., Newcomb, R. L., & others. (1997). Music training causes long-term enhancement of preschool children's spatial-temporal reasoning. *Neurological research*, *19*(1), 2–8
- Rauscher, F. H, & Zupan, M. A. (2000). Classroom keyboard instruction improves kindergarten children's spatial-temporal performance: A field experiment. *Early Childhood Research Quarterly*, *15*(2), 215–228.
- Rauscher, F. H, & Gruhn, W. (2008). *Neurosciences in music pedagogy* (Vol. 1-1). New York: Nova Biomedical Books.
- Ravard, J., & Rabreau, J. (2005). NBA1-T. Echelle d'évaluation des préalables pour les CP et Batterie analytique de lecture/orthographe. Paris: Edition ECPA.

- Register, D. (2001). The effects of an early intervention music curriculum on prereading/writing. *Journal of Music therapy*, 38(3), 239.
- Regnard, F., Cramer, E., Lammé, A., (2003). Apprendre et enseigner la musique: représentations croisées: actes des 3es et 4es Journées francophones de recherche en éducation musicale. Collection Sciences de l'éducation musicale, (Vol. 1-1). Paris: L'Harmattan.
- Régnier, J. C., & Gras, R. (2005). Statistique de rangs et analyse statistique implicative. *Revue* de statistique appliquée, 53(1), 5–38.
- Reuchlin, M. (1995). Les méthodes en psychologie. Paris : Presses Universitaires de France.
- Rickard, N. S. (2004). Intense emotional responses to music: a test of the physiological arousal hypothesis. *Psychology of Music*, *32*(4), 371.
- Rosen, V. M., & Engle, R. W. (1997). The role of working memory capacity in retrieval. *Journal of Experimental Psychology: General*, 126(3), 211.
- Ross, D. A., Olson, I. R., & Gore, J. C. (2003). Absolute pitch does not depend on early musical training. *Annals of the New York Academy of Sciences*, 999(1), 522–526.
- Rousseau, J., & Leblanc, P. (1992). «La structure familiale comme facteur déterminant de l'abandon scolaire prématuré chez les adolescents». Actes du 1er symposium québécois de recherche sur la famille, PUQ, Québec.
- Sackett, D. L. (1979). Bias in analytic research. *Journal of Chronic Diseases*, 32(1-2), 51–63.

- Saint-Yves, A. (1982). Psychologie de l'apprentissage-enseignement: une approche individuelle ou de groupe. Presses de l'Université du Québec.
- Sakakibara, A. (2004). Why are people able to acquire absolute pitch only during early childhood?: Training age and acquisition of absolute pitch. *Japanese Journal of Educational Psychology*, *52*(4), 485–496.
- Schellenberg, E Glenn. (2004). Music lessons enhance IQ. *Psychological Science: A Journal of the American Psychological Society / APS*, 15(8), 511–514.
- Schellenberg, E. G, Bigand, E., Poulin-Charronnat, B., Garnier, C., & Stevens, C. (2005). Children's implicit knowledge of harmony in Western music. *Developmental science*, 8(6), 551–566.
- Schellenberg, E. Glenn. (2005). Music and Cognitive Abilities. *Current Directions in Psychological Science*, *14*(6), 317 –320.
- Schellenberg, E. Glenn, Nakata, T., Hunter, P. G., & Tamoto, S. (2007). Exposure to music and cognitive performance: tests of children and adults. *Psychology of Music*, *35*(1), 5 19.
- Scherer, K. R. (2004). Which emotions can be induced by music? what are the underlying mechanisms? and how can we measure them? *Journal of New Music Research*, *33*(3), 239–251.
- Scherer, K. R., & Zentner, M. R. (2001). Emotional effects of music: Production rules. *Music and emotion: Theory and research*, 361–392.

- Scheufele, P. (2000). Effects of progressive relaxation and classical music on measurements of attention, relaxation, and stress responses. *Journal of Behavioural Medicine*, 23(2), 207-228.
- Schön et al. (2008). Songs as an aid for language acquisition. Cognition, 106, 975–983.
- Shah, P., & Miyake, A. (1999). Models of working memory. *Models of working memory:*Mechanisms of active maintenance and executive control, 1–27.
- Silbermann, A. (1955). *Introduction à une sociologie de la musique*. Paris : Presses universitaires de France.
- Simon, P. (1998). Nationalité et origine dans la statistique française. Les catégories ambiguës. *Population (French Edition)*, *53*(3), 541–567.
- Sloboda, J. A. (1985). *The musical mind: The cognitive psychology of music*. Oxford University Press.
- Snyders, G. (1999). *La musique comme joie à l'école*. Editions L'Harmattan.
- Snyders, Georges. (2008). *J'ai voulu qu'apprendre soit une joie*. Les Lilas: Éd. Nouveaux regards, Institut de recherche de la FSU.
- Standley, J. M, & Hughes, J. E. (1997). Evaluation of an early intervention music curriculum for enhancing prereading/writing skills. *Music Therapy New-York*, *15*, 79–86.
- Standley, Jayne M. (2008). Does Music Instruction Help Children Learn to Read? Evidence of a Meta-Analysis. *Update: Applications of Research in Music Education*, *27*(1), 17 –32.

- Steele, K M, Ball, T. N., & Runk, R. (1997). Listening to Mozart does not enhance backwards digit span performance. *Perceptual and Motor Skills*, 84(3 Pt 2), 1179–1184.
- Steele, K. M., Bass, K. E., & Crook, M. D. (1999). The Mystery of the Mozart Effect: Failure to Replicate. *Psychological Science*, *10*(4), 366–369.
- Suchaut, B. (2000). La musique à l'école primaire : Analyse des pratiques enseignantes.

 Rapport pour l'Inspection académique de la Côte d'Or
- Suchaut, B. (2008). Le rôle de l'école maternelle dans les apprentissages et la scolarité des élèves. *Conférence pour l'A.G.E.E.M.*
- Suchaut, B., Bydanova, E., Genelot, S., Herremans, T., Lapostolle, G., Mingat, A., Morlaix, S., et al. (2007). *Eléments d'évaluation de l'école primaire française. Rapport pour le Haut Conseil de l'Education*. IREDU.
- Suchaut, B. (1996). Le temps scolaire: Allocation et effets sur les acquisitions des élèves en grande section de maternelle et au cours préparatoire (Thèse de doctorat). Université de Bourgogne, Dijon.
- Suchaut, B. (2009). L'aide aux élèves : diversité des formes et des effets des dispositifs.

 Communication aux 2èmes rencontres nationales sur l'accompagnement.
- Thélot, C., & Vallet, L. A. (2000). La réduction des inégalités sociales devant l'école depuis le début du siècle. *Économie et statistique*, *334*(1), 3–32.
- Thompson, W. F., Schellenberg, E. G., & Husain, G. (2001). Arousal, Mood, and The Mozart Effect. *Psychological Science*, *12*(3), 248 –251.

- Tierney, A. T., Bergeson, T. R., & Pisoni, D. B. (2008). Effects of Early Musical Experience on Auditory Sequence Memory. *Empirical Musicology Review*, *3*, 178–186.
- Tillmann, B., Madurell, F., Lalitte, P., & Bigand, E. (2005). Apprendre la musique: perspectives sur l'apprentissage implicite de la musique et ses implications pédagogiques. *Revue française de pédagogie*, *152*(1), 63–77.
- Tozzi, M. (2002). Penser par soi-même: Initiation à la philosophie. Chronique sociale.
- Trainor, L. J., & Schmidt, L. A. (2003). Processing emotions induced by music. *The cognitive neuroscience of music*, 310–324.
- Tramo, M. J. (2001). Biology and music. Music of the hemispheres. *Science*, 291(5501), 54–56.
- Trehub, S. E. (2001). Musical predispositions in infancy. *Annals of the New York Academy of Sciences*, 930(1), 1–16.
- Trehub, S. E. (2003). The developmental origins of musicality. *Nature Neuroscience*, *6*(7), 669–673.
- Trehub, S. E., & Hannon, E. E. (2006). Infant music perception: Domain-general or domain-specific mechanisms? *Cognition*, *100*(1), 73–99.
- Trocin, T. (2005). Le redoublement: radiographie d'une décision à la recherche de sa légitimité. (Thèse de doctorat). Université de Bourgogne, Dijon.
- Turner, M. L., & Engle, R. W. (1989). Is working memory capacity task dependent? 1. Journal of Memory and Language, 28(2), 127–154.

- Vallet, L. A., & Caille, J. P. (1996a). Niveau en français et en mathématiques des élèves étrangers ou issus de l'immigration. *Economie et statistique*, 293(1), 137–153.
- Vallet, L. A., & Caille, J. P. (1996b). Les élèves étrangers ou issus de l'immigration dans l'école et le collège français. Une étude d'ensemble, *Les dossiers d'Education et Formations*, 67, Ministère de l'Education nationale. DEP.
- Verhelst, N., Glas, C., Fisher, G., & Molenaar, I. (1995). Rasch models: foundations, recent developments, and applications. *The One Parameter Logistic Model*.
- Viriot-Goeldel, C., Tazzouti, Y., Deviterne, D., Matter, C., Geiger-Jaillet, A., & Carol, R. (2007). Préparer aux apprentissages fondamentaux. Etude comparée des performances obtenues par les élèves à l'issue de l'école maternelle française et du *Kindergarten* allemand. *Actualité de la Recherche en Education et en Formation*.
- Vuckovic et al. (2008). Playing with diversity: young children and music in an Australian child care center. Présenté à 13th international seminar of ISME [International Society for Music Education] Music in the early years: Research, Theory and Practice, Rome, Italy: Suthers.
- Weber, Max, Molino, J., & Pedler, E. (1998). Sociologie de la musique: les fondements rationnels et sociaux de la musique. Collection Leçons de choses (Paris), Paris: Métailié.
- Wetter, O. E., Koerner, F., & Schwaninger, A. (2009). Does musical training improve school performance? *Instructional Science*, *37*(4), 365–374.
- Yost, W. A. (2008). Auditory perception of sound sources. New-York: Springer.

- Zannoni, S., & Ottaviani, M. G. (2001). Implication statistique et recherche en didactique.

 Utilisation d'un outil non symétrique d'analyse de données pour l'interprétation des résultats d'un test d'évaluation. *Mathématiques et sciences humaines.*, (154).
- Zanten, A. van, & Payet, J.-P. (1996). Ecole et immigration. *Revue française de pédagogie*, 117(1), 5–6.
- Zentner, M., Grandjean, D., & Scherer, K. R. (2008). Emotions evoked by the sound of music: Characterization, classification, and measurement. *Emotion*, 8(4), 494.