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QUELQUES THÈMES EN L’ANALYSE
VARIATIONNELLE ET OPTIMISATION

23 Février 2014

Directeurs de thèse
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PHAN Quoc Khanh, Université de Science de Ho Chi Minh ville

Jean-Jacques STRODIOT, Université de Namur



Résumé

Dans cette thèse, j’étudie d’abord la théorie des Γ-limites. En dehors de quelques propriétés

fondamentales des Γ-limites, les expressions de Γ-limites séquentielles généralisant des résultats

de Greco sont présentées. En outre, ces limites nous donnent aussi une idée d’une classification

unifiée de la tangence et la différentiation généralisée. Ensuite, je développe une approche des

théories de la différentiation généralisée. Cela permet de traiter plusieurs dérivées généralisées

des multi-applications définies directement dans l’espace primal, tels que des ensembles varia-

tionnels, des ensembles radiaux, des dérivées radiales, des dérivées de Studniarski. Finalement,

j’étudie les règles de calcul de ces dérivées et les applications liées aux conditions d’optimalité

et à l’analyse de sensibilité.
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Abstract

In this thesis, we first study the theory of Γ-limits. Besides some basic properties of Γ-limits,

expressions of sequential Γ-limits generalizing classical results of Greco are presented. These

limits also give us a clue to a unified classification of derivatives and tangent cones. Next, we

develop an approach to generalized differentiation theory. This allows us to deal with several

generalized derivatives of set-valued maps defined directly in primal spaces, such as variational

sets, radial sets, radial derivatives, Studniarski derivatives. Finally, we study calculus rules of

these derivatives and applications related to optimality conditions and sensitivity analysis.
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Preface

Variational analysis is related to a broad spectrum of mathematical theories that have grown

in connection with the study of problems of optimization and variational convergence.

To my knowledge, many concepts of convergence for sequences of functions have been

introduced in mathematical analysis. These concepts are designed to approach the limit of se-

quences of variational problems and are called variational convergence. Introduced by De Giorgi

in the early 1970s, Γ-convergence plays an important role among notions of convergences for

variational problems. Moreover, many applications of this concept have been developed in other

fields of variational analysis such as calculus of variations and differential equations.

Recently, nonsmoothness has become one of the most characteristic features of modern vari-

ational analysis. In fact, many fundamental objects frequently appearing in the frame work

of variational analysis (e.g., the distance function, value functions in optimization and control

problems, maximum and minimum functions, solution maps to perturbed constraint and varia-

tional systems, etc.) are inevitably of nonsmooth and/or set-valued structures. This requires the

development of new forms of analysis that involve generalized differentiation.

The analysis above motivates us to study some topics on Γ-limits, generalized differentiation

of set-valued maps and their applications.

viii



Chapter 1

Motivations

1.1 Γ-limits

Several last decades have seen an increasing interest for variational convergences and for

their applications to different fields, like approximation of variational problems and nonsmooth

analysis, see [22, 32, 113, 120, 131, 133, 150]. Among variational convergences, definitions of

Γ-convergence, introduced in [48] by Ennio De Giorgi and Franzoni in 1975, have become

commonly-recognizied notions (see [37] of Dal Maso for more detail introduction). Under suit-

able conditions, Γ-convergence implies stability of extremal points, while some other conver-

gences, such as pointwise convergence, do not. Moreover, almost all other variational conver-

gences can be easily expressed in the language of Γ-convergence. As explained in [16, 57, 169],

this concept plays a fundamental role in optimization theory, decision theory, homogenization

problems, phase transitions, singular perturbations, the theory of integral functionals, algorith-

mic procedures, and in many others.

In 1983 Greco introduced in [82] a concept of limitoid and noticed that all the Γ-limits are

special limitoids. Each limitoid defines its support, which is a family of subsets of the domain

of the limitoid, which in turn determines this limitoid. Besides, Greco presented in [82, 84] a

representation theorem for which each relationship of limitoids corresponds a relationship in set

theory. This theorem enabled a calculus of supports and was instrumental in the discovery of a

limitation of equivalence between Γ-limits and sequential Γ-limits, see [83].

Recently, a lot of research has been carried in the realm of tangency and differentiation and

their applications, see [2, 4, 8, 14, 15, 50, 77, 101, 109, 134]. We propose a unified approach to

approximating tangency cones and generalized derivatives based on the theory of Γ-limits. This

means that most of them can be expressed in terms of Γ-limits.

1



§1. Motivations

The analysis above motivates us to study the theory of Γ-limits.

1.2 Sensitivity analysis

Stability and sensitivity analyses are of great importance for optimization from both the

theoretical and practical view points. As usual, stability is understood as a qualitative analysis,

which concerns mainly studies of various continuity (or semicontinuity) properties of solution

maps and optimal-value maps. Sensitivity means a quantitative analysis, which can be expressed

in terms of various derivatives of the mentioned maps. For sensitivity results in nonlinear pro-

gramming using classical derivatives, we can see the book [64] of Fiacco. However, practical

optimization problems are often nonsmooth. To cope with this crucial difficulty, most of ap-

proaches to studies of optimality conditions and sensitivity analysis are based on generalized

derivatives.

Nowadays, set-valued maps (also known as multimaps or multifunctions) are involved fre-

quently in optimization-related models. In particular, for vector optimization, both perturbation

and solution maps are set-valued. One of the most important derivatives of a multimap is the

contingent derivative. In [107–109,153,154,162,163], behaviors of perturbation maps for vector

optimization were investigated quantitatively by making use of contingent derivatives. Results

on higher-order sensitivity analysis were studied in [158, 167], applying kinds of contingent

derivatives. To the best of our knowledge, no other kinds of generalized derivatives have been

used in contributions to this topic, while so many notions of generalzed differentiability have

been introduced and applied effectively in investigations of optimality conditions, see books [11]

of Aubin and Frankowska, [129, 130] of Mordukhovich, and [147] of Rockafellar and Wets.

We mention in more detail only several recent papers on generalized derivatives of set-valued

maps and optimality conditions. Radial epiderivatives were used to get optimality conditions

for nonconvex vector optimization in [66] by Flores-Bazan and for set-valued optimization in

[102] by Kasimbeyli. Variants of higher-order radial derivatives for establishing higher-order

conditions were proposed by Anh et al. in [2,4,8]. The higher-order lower Hadamard directional

derivative was the tool for set-valued vector optimization presented by Ginchev in [71, 72].

Higher-order variational sets of a multimap were proposed in [105, 106] by Khanh and Tuan in

dealing with optimality conditions for set-valued optimization.

We expect that many generalized derivatives, besides the contingent ones, can be employed

effectively in sensitivity analysis. Thus, we choose variational sets for higher-order consider-

2



§1. Motivations

ations of perturbation maps, since some advantages of this generalized differentiability were

shown in [7, 105, 106], e.g., almost no assumptions are required for variational sets to exist (to

be nonempty); direct calculating of these sets is simply a computation of a set limit; extentions

to higher orders are direct; they are bigger than corresponding sets of most derivatives (this

property is decisively advantageous in establishing necessary optimality conditions by separa-

tion techniques), etc. Moreover, Anh et al. established calculus rules for variational sets in [7]

to ensure the applicability of variational sets.

1.3 Optimality conditions

Various problems encountered in the areas of engineering, sciences, management science,

economics and other fields are based on the fundamental idea of mathematical formulation.

Optimization is an essential tool for the formulation of many such problems expressed in the

form of minimization/maximization of a function under certain constraints like inequalities,

equalities, and/or abstract constraints. It is thus rightly considered a science of selecting the best

of the many possible decisions in a complex real-life environment.

All initial theories of optimization theory were developed with differentiability assumptions

of functions involved. Meanwhile, efforts were made to shed the differentiability hypothesis,

there by leading to the development of nonsmooth analysis as a subject in itself. This added a

new chapter to optimization theory, known as nonsmooth optimization. Optimality conditions

in nonsmooth problems have been attracting increasing efforts of mathematicians around the

world for half a century. For systematic expositions about this topic, including practical ap-

plications, see books [11] of Aubin and Frankowska, [29] of Clarke, [92] of Jahn, [129, 130] of

Mordukhovich, [142] of Penot, [146] of Rockafellar and Wets, and [149] of Schirotzek. A signi-

cant number of generalized derivatives have been introduced to replace the Fréchet and Gâteaux

derivatives which do not exist for studying optimality conditions in nonsmooth optimization.

One can roughly separate the wide range of methods for nonsmooth problems into two

groups : the primal space and the dual space approaches. The primal space approach has been

more developed, since it exhibits a clear geometry, originated from the famous works of Fermat

and Lagrange. Most derivatives in this stream are based on kinds of tangency/linear approx-

imations. Among tangent cones, contingent cone plays special roles, both in direct uses as

derivatives/linear approximations and in combination with other ideas to provide kinds of gen-

eralized derivatives (contingent epiderivatives by Jahn and Rauh in [96], contingent variations

3



§1. Motivations

by Frankowska and Quincampoix in [68], variational sets by Khanh et al. in [7, 105, 106], gen-

eralized (adjacent) epiderivatives by Li et al. in [27, 166, 168], etc).

Similarly as for generalized derivatives defined based on kinds of tangent cones, the radial

derivative was introduced by Taa in [160]. Coupling the idea of tangency and epigraphs, like

other epiderivatives, radial epiderivatives were defined and applied to investigating optimality

conditions in [65–67] by Flores-Bazan and in [102] by Kasimbeyli. To include more information

in optimality conditions, higher-order derivatives should be defined.

The discussion above motivates us to define a kind of higher-order radial derivatives and use

them to obtain higher-order optimality conditions for set-valued vector optimization.

1.4 Calculus rules and applications

The investigation of optimality conditions for nonsmooth optimization problems has im-

plied many kinds of generalized derivatives (introduced in above subsections). However, to the

best of our knowledge, there are few research on their calculus rules. We mention in more de-

tail some recent papers on generalized derivatives of set-valued maps and their calculus rules.

In [94], some calculus rules for contingent epiderivatives of set-valued maps were given by

Jahn and Khan. In [116], Li et al. obtained some calculus rules for intermediate derivative-like

multifunctions. Similar ideas had also been utilized for the calculus rules for contingent deriva-

tives of set-valued maps and for generalized derivatives of single-valued nonconvex functions

in [11, 164, 165]. Anh et al. developed elements of calculus of higher-order variational sets for

set-valued mappings in [7].

In [156], Studniarski introduced another way to get higher-order derivatives (do not de-

pend on lower orders) for extended-real-valued functions, known as Studniarski derivatives, and

obtained necessary and sufficient conditions for strict minimizers of order greater than 2 for

optimization problems with vector-valued maps as constraints and objectives. Recently, these

derivatives have been extended to set-valued maps and applied to optimality conditions for set-

valued optimization problems in [1, 117, 159]. However, there are no results on their calculus

rules.

The analysis above motivates us to study on calculus rules of Studniarski derivatives and

their applications.

4



Chapter 2

Preliminaries

2.1 Some definitions in set theory

Definition 2.1.1. ([23, 24]) Let S be a subset of a topological sapce X .

(i) A family F of subsets of S is called a non-degenerate family on S if /0 6∈F .

(ii) A non-degenerate family F on S is called a semi-filter if

G⊇ F ∈F =⇒ G ∈F .

(iii) A semi-filter F on S is called a filter if

F0,F1 ∈F =⇒ F0∩F1 ∈F .

The set of filters and the set of semi-filters on S are denoted by F(S) and SF(S), respectively.

If A ,B are two families, then B is called finer than A (denoted by A ≤B) if for each A ∈A

there exists B ∈B such that B ⊆ A. We say that A and B are equivalent (A ≈B) if A ≤B

and B ≤A . A subfamily B of a non-degenerate family F is said a base of F (or B generates

F ) if F ≤B. We say that A and B mesh (denoted by A #B) if A∩B 6= /0 for every A ∈ A

and B ∈B.

The grill of a family A on S, denoted by A #, is defined by

A # := {A⊆ S : ∀
F∈A

A∩F 6= /0}.

Therefore A #B is equivalent to A ⊆B# and to B ⊆A #.

If F is a filter, then F ⊆ F #. In SF(S), the operation of grills is an involution, i.e., the

following equalities hold (see [55])

A ## = A ,
(⋃

i
Ai

)#
=
⋂

i

(
A #

i
)
,
(⋂

i
Ai

)#
=
⋃

i

(
A #

i
)
. (2.1)

5



§2. Preliminaries

Semi-filters, filters, and grills were thoroughly studied in [53] by Dolecki.

Definition 2.1.2. ([18]) (i) A set S with a binary relation (≤) satisfying three properties : reflex-

ity, antisymmetry, and transitivity is called an ordered set S (also called a poset).

(ii) Let S be a subset of a poset P. An element a ∈ P is called an upper bound (or lower

bound) of S if a≥ s (a≤ s, respectively) for all s ∈ S.

(iii) An upper bound a (lower bound, respectively) of a subset S is called the least upper

bound (or the greatest lower bound ) of S, denoted by supS or
∨

S (infS or
∧

S, respectively) if

a≤ b (a≥ b, respectively) for all b be another upper bound (lower bound, respectively) of S.

Definition 2.1.3. ([18, 82]) (i) A poset L is called a lattice if each couple of its elements has a

least upper bound or “join” denoted by x∨ y, and a greatest lower bound or “meet” denoted by

x∧ y.

(ii) A lattice L is called complete if each of its subsets S has a greatest lower bound and a

least upper bound in L.

(iii) A complete lattice L is called completely distributive if

(a)
∨
j∈J

∧
i∈A j

f ( j, i) =
∧

ϕ∈∏
j∈J

A j

∨
j∈J

f ( j,ϕ( j)),

(b)
∧
j∈J

∨
i∈A j

f ( j, i) =
∨

ϕ∈∏
j∈J

A j

∧
j∈J

f ( j,ϕ( j)),

for each non-empty family {A j} j∈J of non-empty sets and for each function f defined on

{( j, i) ∈ J× I : i ∈ A j} with values in L, and ∏
j∈J

A j := {ϕ ∈ (
⋃

j∈J A j)J : ∀
j∈J

ϕ( j) ∈ A j}, where

(
⋃

j∈J A j)J denotes the set of functions from J into
⋃

j∈J A j.

(iv) A non-empty subset S of a lattice L is called a sublattice if for every pair of elements a,b

in S both a∧b and a∨b are in S.

(v) A sublattice S of a complete lattice L is called closed if for every non-empty subset A of

S both
∧

A and
∨

A are in L.

2.2 Some definitions in set-valued analysis

Let X , Y be vector spaces, C be a non-empty cone in Y , and A⊆Y . We denote sets of positive

integers, of real numbers, and of non-negative real numbers by N, R, and R+, respectively. We

often use the following notations

coneA := {λa : λ ≥ 0, a ∈ A}, cone+ A := {λa : λ > 0, a ∈ A},

6



§2. Preliminaries

C∗ := {y∗ ∈ Y ∗ : 〈y∗,c〉 ≥ 0, ∀c ∈C}, C+i := {y∗ ∈ Y ∗ : 〈y∗,c〉> 0, ∀c ∈C \{0}}.

A subset B of a cone C is called a base of C if and only if C = coneB and 0 6∈ clB.

For a set-valued map F : X → 2Y , F +C is called the profile map of F with respect to

C defined by (F +C)(x) := F(x) +C. The domain, graph, epigraph and hypograph of F are

denoted by domF , grF , epiF , and hypoF , respectively, and defined by

domF := {x ∈ X : F(x) 6= /0}, grF := {(x,y) ∈ X×Y : y ∈ F(x)},

epiF := gr(F +C), hypoF := gr(F−C).

A subset M⊆X×Y can be considered as a set-valued map M from X into Y , called a relation

from X into Y . The image of a singleton {x} by Mx is denoted by Mx := {y ∈ Y : (x,y) ∈M},
and of a subset S of X is denoted by MS :=

⋃
x∈S Mx. The preimage of a subset K of Y by M is

denoted by M−1K := {x : Mx∩K 6= /0}.

Definition 2.2.1. Let C be a convex cone, F : X → 2Y and (x0,y0) ∈ grF .

(i) F is called a convex map on a convex set S⊆ X if, for all λ ∈ [0,1] and x1,x2 ∈ S,

(1−λ )F(x1)+λF(x2)⊆ F((1−λ )x1 +λx2).

(ii) F is called a C-convex map on a convex set S if, for all λ ∈ [0,1] and x1,x2 ∈ S,

(1−λ )F(x1)+λF(x2)⊆ F((1−λ )x1 +λx2)+C.

Definition 2.2.2. Let F : X → 2Y and (x0,y0) ∈ grF .

(i) F is called a lower semicontinuous map at (x0,y0) if for each V ∈ N (y0) there is a

neighborhood U ∈N (x0) such that V ∩F(x) 6= /0 for each x ∈U .

(ii) Suppose that X ,Y are normed spaces. The map F is called a m-th order locally pseudo-

Hölder calm map at x0 for y0 ∈ F(x0) if ∃λ > 0, ∃U ∈N (x0), ∃V ∈N (y0), ∀x ∈U ,

(F(x)∩V )⊆ {y0}+λ ||x− x0||mBY ,

where BY stands for the closed unit ball in Y .

For m = 1, the word “Hölder” is replaced by “Lipschitz”. If V = Y , then “locally pseudo-

Hölder calm” becomes “locally Hölder calm”.

7



§2. Preliminaries

Example 2.2.3. (i) For F : R→ R defined by F(x) = {y : −x2 ≤ y ≤ x2} and (x0,y0) = (0,0),

F is the second order locally pseudo-Hölder calm map at x0 for y0.

(ii) Let F : R→ R be defined by

F(x) =

{ {0,1/x}, if x 6= 0,

{0,(1/n)n∈N}, if x = 0,

and (x0,y0) = (0,0). Then, for all m ≥ 1, F is not m-th order locally pseudo-Hölder calm at x0

for y0.

Observe that if F is m-th order locally (pseudo-)Hölder calm at x0 for y0, it is also n-th order

locally (pseudo-)Hölder calm at x0 for y0 for all m > n. However, the converse may not hold.

The following example shows the case.

Example 2.2.4. Let F : R→ R be defined by

F(x) =

{
x2sin(1/x), if x 6= 0,

0, if x = 0,

and (x0,y0) = (0,0). Obviously, F is second order locally Hölder calm x0 for y0, but F is not

third order locally Hölder calm at x0 for y0.

In the rest of this section, we introduce some definitions in vector optimization. Let C ⊆ Y ,

we consider the following relation ≤C in Y , for y1,y1 ∈ Y ,

y1 ≤C y2⇐⇒ y2− y1 ∈C.

Recall that a cone K in Y is called pointed if K∩−K ⊆ /0.

Proposition 2.2.5. If C is a cone, then ≤C is

(i) reflexive if and only if 0 ∈C,

(ii) antisymmetric if and only if C is pointed,

(iii) transitive if and only if C is convex.

Proof. (i) Suppose that ≤C is reflexive, then y ≤C y for all y ∈ Y . This means 0 = y− y ∈ C.

Conversely, since 0 ∈C, y− y ∈ D for all y ∈ Y . Thus, y≤C y.

(ii) Suppose that ≤C is antisymmetric. If C ∩−C is empty, we are done. Assume that

y ∈ C ∩−C, then 0 ≤C y, y ≤C 0. This implies y = 0. Conversely, let y1,y2 ∈ Y such that

y1 ≤C y2 and y2 ≤C y1. Then, y2− y1 ∈C∩−C. Since C is pointed, y2 = y1.

8
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(iii) Suppose that≤C is transitive. Let y1,y2 ∈C and λ ∈ (0,1). Since C is cone, λy1 ∈C and

(1−λ )y2 ∈C. It follows from λy1 ∈C that 0≤C λy1. Similarly,−(−(1−λ )y2) = (1−λ )y2 ∈C

means −(1−λ )y2 ≤C 0. This implies −(1−λ )y2 ≤C λy1. Thus, λy1 +(1−λ )y2 ∈C.

Conversely, let y1,y2,y3 ∈ Y such that y1 ≤C y2 and y2 ≤C y3. It means that y2− y1 ∈C and

y3− y2 ∈C. Since C is cone, 1
2(y2− y1) ∈C and 1

2(y3− y2) ∈C. It follows from the convexity

of C that 1
2(y3− y2)+ 1

2(y2− y1) = 1
2(y3− y1) ∈C. Thus, y1 ≤C y3.

A relation≤C satisfying three properties in the proposition above is called an order (or order

structure) in Y . Proposition 2.2.5 gives us conditions for which a cone C generates an order in

Y .

We now recall some conditions on C, introduced in [28] by Choquet, to ensure that (Y,≤C) is

a lattice. Recall that in Rn, a n-simplex is the convex hull of n+1 (affinely) independent points.

Proposition 2.2.6. ([28]) Suppose that C is a convex cone in Rn. Then (Y,≤C) is a lattice if and

only if there exists a base of C which is a (n−1)-simplex in Rn−1.

Proof. It follows from Proposition 28.3 in [28].

By the proposition above, (R2,≤C) is a lattice if and only if C has a base which is a line

segment. In R3, the base of C must be triangle to ensure that (R3,≤C) is a lattice.

Let C be a convex cone in Y . A main concept in vector optimization is Pareto efficiency.

A⊆ Y , recall that a0 is a Pareto efficient point of A with respect to C if

(A−a0)∩ (−C \ l(C)) = /0, (2.2)

where l(C) := C∩−C. We denote the set of all Pareto efficient points of A by MinC\l(C)A.

If, addtionally, C is closed and pointed, then (2.2) becomes (A−a0)∩ (−C \{0}) = /0 and is

denoted by a0 ∈MinC\{0}A.

Next, we are concerned also with the other concepts of efficiency as follows.

Definition 2.2.7. ([88]) Let A⊆ Y .

(i) Supposing intC 6= /01, a0 ∈ A is a weak efficient point of A with respect to C if (A−a0)∩
−intC = /0.

(ii) a0 ∈ A is a strong efficient point of A with respect to C if A−a0 ⊆C.

1intC denotes the interior of C.

9
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(iii) Supposing C+i 6= /0, a0 ∈ A is a positive-proper efficient point of A with respect to C if

there exists ϕ ∈C+i such that ϕ(a)≥ ϕ(a0) for all a ∈ A.

(iv) a0 ∈ A is a Geoffrion-proper efficient point of A with respect to C if a0 is a Pareto

efficient point of A and there exists a constant M > 0 such that, whenever there is λ ∈C∗ with

norm one and λ (a0− a) > 0 for some a ∈ A, one can find µ ∈ C∗ with norm one such that

〈λ ,a0−a〉 ≤M 〈µ,a−a0〉 .
(v) a0 ∈ A is a Henig-proper efficient point of A with respect to C if there exists a pointed

convex cone K with C \{0} ⊆ intK such that (A−a0)∩ (−intK) = /0.

(vi) Supposing C has a convex base B, a0 ∈ A is a strong Henig-proper efficient point of A

with respect to C if there is ε > 0 such that clcone(A−a0)∩ (−clcone(B+ εBY )) = {0}2.

Note that Geoffrion originally defined the properness notion in (iv) for Rn with the ordering

cone Rn
+. The above general definition of Geoffrion properness is taken from [103].

To unify the notation of these above efficiency (with Pareto efficiency), we introduce the fol-

lowing definition. Let Q⊆ Y be a nonempty cone, different from Y , unless otherwise specified.

Definition 2.2.8. ([88]) We say that a0 is a Q-efficient point of A if

(A−a0)∩−Q = /0.

We define the set of Q-efficient points by MinQ A.

Recall that a cone in Y is said to be a dilating cone (or a dilation) of C, or dilating C if it

contains C\{0}. Let B be, as before, a convex base of C. Setting δ := inf{||b|| : b ∈ B}> 0, for

ε ∈ (0,δ ), we associate to C a pointed convex cone Cε(B) := cone(B+εBY ). For ε > 0, we also

associate to C another cone C(ε) := {y ∈ Y : dC(y) < εd−C(y)}.
Any kind of efficiency in Definition 2.2.7 is in fact a Q- efficient point with Q being appro-

priately chosen as follows.

Proposition 2.2.9. ([88]) (i) Supposing intC 6= /0, a0 is a weak efficient point of A with respect

to C if and only if a0 ∈MinQ A with Q = intC.

(ii) a0 is a strong efficient point of A with respect to C if and only if a0 ∈ MinQ A with

Q = Y \ (−C).

(iii) Supposing C+i 6= /0, a0 is a positive-proper efficient point of A with respect to C if and

only if a0 ∈ MinQ A with Q = {y ∈ Y : ϕ(y) > 0} (denoted by Q = {ϕ > 0}), ϕ being some

functional in C+i.
2Let E be a set, then clE denotes the closure of E.
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(iv) a0 is a Geoffrion-proper efficient point of A with respect to C if and only if a0 ∈MinQ A

with Q = C(ε) for some ε > 0.

(v) a0 is a Henig-proper efficient point of A with respect to C if and only if a0 ∈MinQ A with

Q being pointed open convex, and dilating C.

(vi) Supposing C has a convex base B, a0 is a strong Henig-proper efficient point of A with

respect to C if and only if a0 ∈MinQ A with Q = intCε(B), ε satisfying 0 < ε < δ .

The above proposition gives us a unified way to denote sets of efficient points by the follow-

ing table

Sets of Notations

C-efficiency MinC\{0}

weak C-efficiency MinintC

strong C-efficiency MinY\(−C)

positive-proper C-efficiency
⋃

ϕ∈C+i
Min{ϕ>0}

Geoffrion-proper C-efficiency
⋃

ε>0
MinC(ε)

Henig-proper C-efficiency MinQ

where Q is pointed open convex, and dilating C

strong Henig-proper C-efficiency MinintCε (B)

ε satisfying 0 < ε < δ , where δ := inf{||b|| : b ∈ B}

For relations of the above properness concepts and also other kinds of efficiency see, e.g.,

11
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[87, 88, 103, 104, 125]. Some of them are collected in the diagram below as examples, see [88].

Geoffrion-proper C-efficiency

��
strong C-efficiency // C-efficiency //

OO
weak C-efficiency

positive-proper C-efficiency // Henig-proper C-efficiency

C has a compact convex base

��
strong Henig-proper C-efficiency

OO

Let us observe that

Proposition 2.2.10. Suppose that Q is any cone given in Proposition 2.2.9. Then

Q+C ⊆ Q.

Proof. It is easy to prove the assertion, when Q = intC, Q = Y \ (−C), Q = {y ∈ Y : ϕ(y) > 0}
for ϕ ∈C+i, or Q is a pointed open convex cone dilating C.

Now let Q = C(ε) for some ε > 0, y ∈ Q and c ∈C. We show that y + c ∈ Q. It is easy to

see that dC(y+c)≤ dC(y) and d−C(y)≤ d−C(y+c). Because y ∈Q, we have dC(y) < εd−C(y).

Thus, dC(y+ c) < εd−C(y+ c) and hence y+ c ∈ Q.

For Q = intCε(B), it is easy to see that C ⊆ Q for any ε satisfying 0 < ε < δ . So, Q +C ⊆
Q+Q⊆ Q.

12



Chapter 3

The theory of Γ-limits

3.1 Introduction

Γ-convergence were introduced by Ennio De Giorgi in a series of papers published be-

tween 1975 and 1985. In the same years, De Giorgi developed the theoretical framework of

Γ-convergence and explored multifarious applications of this tool. We now give a brief on the

development of Γ-convergence in this peroid.

In 1975, a formal definition of Γ-convergence for a sequence of functions on a topological

vector space appeared in [48] by De Giorgi and Franzoni. It included the old notion of G-

convergence (introduced in [155] by Spagnolo for elliptic operators) as a particular case, and

provided a unified framework for the study of many asymptotic problems in the calculus of

variations.

In 1977, De Giorgi defined in [38] the so called multiple Γ-limits, i.e., Γ-limits for functions

depending on more than one variable. These notions have been a starting point for applications

of Γ-convergence to the study of asymptotic behaviour of saddle points in min-max problems

and of solutions to optimal control problems.

In 1981, De Giorgi formulated in [40, 41] the theory of Γ-limits in a very general abstract

setting and also explored a possibility of extending these notions to complete lattices. This

project was accomplished in [43] by De Giorgi and Buttazzo in the same year. The paper also

contains some general guide-lines for the applications of Γ-convergence to the study of limits of

solutions of ordinary and partial differential equations, including also optimal control problems.

Other applications of Γ-convergence was considered in [39, 45] by De Giorgi et al. in 1981.

These papers deal with the asymptotic behaviour of the solutions to minimum problems for the

Dirichlet integral with unilateral obstacles. In [44], De Giorgi and Dal Maso gave an account

13



§3. The theory of Γ-limits

of main results on Γ-convergence and of its most significant applications to the calculus of

variations.

In 1983, De Giorgi proposed in [42] several notions of convergence for measures defined on

the space of lower semicontinuous functions, and formulated some problems whose solutions

would be useful to identify the most suitable notion of convergence for the study of Γ-limits of

random functionals. This notion of convergence was pointed out and studied in detail by De

Giorgi et al. in [46, 47].

In 1983 in [82] Greco introduced limitoids and showed that all the Γ-limits are special lim-

itoids. In a series of papers published between 1983 and 1985, he developed many applications

of this tool in the general theory of limits. The most important result regarding limitoids, pre-

sented in [82,84], is the representation theorem for which each relationship of limitoids becomes

a relationship of their supports in set theory. In 1984, by applying this theorem, Greco stated in

[83] important results on sequential forms of De Giorgi’s Γ-limits via a decomposition of their

supports in the setting of completely distributive lattice. These results simplify calculation of

complicated Γ-limits. This enabled him to find many errors in the literature.

In this chapter, we first introduce definitions and some basic properties of Γ-limits. Greco’s

results on sequential forms of Γ-limits are also recalled. Finally, we give some applications of

Γ-limits to derivatives and tangent cones.

Consider n sets S1, ...,Sn and a function f from S1× ...× Sn into R. Given non-degenerate

families A1, ...,An on S1, ...,Sn, respectively, and α1, ...,αn ∈ {+,−}.

Definition 3.1.1. ([38]) Let

Γ(A α1
1 , ...,A αn

n ) lim f := ext−αn

An∈An
... ext−α1

A1∈A1
extα1

x1∈A1
... extαn

xn∈An
f (x1, ...,xn),

where ext+ = sup and ext− = inf.

The expression above, called a Γ-limit of f , is a (possibly infinite) number. It is obvious that

Γ(A α1
1 , ...,A αn

n ) lim f =−Γ(A −α1
1 , ...,A −αn

n ) lim(− f ). (3.1)

Given topologies τ1, ...,τn on S1, ...,Sn, we write(
Γ(τα1

1 , ...,ταn
n ) lim f

)
(x1, ...,x2) := Γ(Nτ1(x1)α1 , ...,Nτn(xn)αn) lim f 1. (3.2)

Notice that Γ(τα1
1 , ...,ταn

n )lim f is a function from S1× ...×Sn into R.

1If (X ,τ) is a topological space, then Nτ(x) stands for the set of all neighborhoods of x.

14
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Proposition 3.1.2. ([50]) (i) If Ak ≤Bk, then

Γ(...,A −
k , ...) lim f ≤ Γ(...,B−k , ...) lim f ,

Γ(...,A +
k , ...) lim f ≥ Γ(...,B+

k , ...) lim f .

(ii) Suppose that Ai, i = 1, ...,n, are filters. Then

Γ(...,A −
k , ...) lim f ≤ Γ(...,A +

k , ...) lim f ,

Γ(...,A +
k ,A −

k+1, ...) lim f ≤ Γ(...,A −
k+1,A

+
k , ...) lim f .

It is a simple observation that “sup” and “inf” operations are examples of Γ-limits:

infB f (x) = Γ(Nι(B)−) f , supB f (x) = Γ(Nι(B)+) f ,

where ι stands for the discrete topology, Nι(B) is the filter of all supersets of the set B. If B is

the whole space, we may also use the chaotic topology o.

3.2 Γ-limits in two variables

Let f : I×X → R defined by f(i,x) := fi(x), where { fi}i∈I is a family of functions from X

into R and filtered by a filter F on I. Thus, results on Γ-limits of f implies those on limits of

{ fi}i∈I .

From Definition 3.1.1, we get for x ∈ X ,

(Γ(F+;τ−) lim f)(x) = Γ(F+,Nτ(x)−) lim f

= sup
U∈Nτ (x)

inf
F∈F

sup
i∈F

inf
y∈U

f(i,y)

= sup
U∈Nτ (x)

limsupF inf
y∈U

fi(y),

= sup
U∈Nτ (x)

Γ(F+) inf
y∈U

fi(y),

(Γ(F−;τ−) lim f)(x) = Γ(F−,Nτ(x)−) lim f

= sup
U∈Nτ (x)

sup
F∈F

inf
i∈F

inf
y∈U

f(i,y)

= sup
U∈Nτ (x)

liminfF inf
y∈U

fi(y),

= sup
U∈Nτ (x)

Γ(F−) inf
y∈U

fi(y),
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(Γ(F+;τ+) lim f)(x) = Γ(F+,Nτ(x)+) lim f

= inf
U∈Nτ (x)

inf
F∈F

sup
i∈F

sup
y∈U

f(i,y)

= inf
U∈Nτ (x)

limsupF sup
y∈U

fi(y),

= inf
U∈Nτ (x)

Γ(F+) sup
y∈U

fi(y),

(Γ(F−;τ+) lim f)(x) = Γ(F−,Nτ(x)+) lim f

= inf
U∈Nτ (x)

sup
F∈F

inf
i∈F

sup
y∈U

f(i,y)

= inf
U∈Nτ (x)

liminfF sup
y∈U

fi(y),

= inf
U∈Nτ (x)

Γ(F−) sup
y∈U

fi(y).

Based on these limits above, we can show that some well-known limits are special cases of

Γ-limits as follows.

Remark 3.2.1. (i) If functions fi(x) are independent of x, i.e., for every i there exists a constant

ai ∈ R such that fi(x) = ai for every x ∈ X , then(
Γ(F+;τ

−) lim f
)
(x) =

(
Γ(F+;τ

+) lim f
)
(x) = limsupF ai,(

Γ(F−;τ
−) lim f

)
(x) =

(
Γ(F−;τ

+) lim f
)
(x) = liminfF ai.

(ii) If functions fi(x) are independent of i, i.e., there exists g : X → R such that fi(x) = g(x)

for every x ∈ X , i ∈ I, then(
Γ(F−;τ

+) lim f
)
(x) =

(
Γ(F+;τ

+) lim f
)
(x) = limsup

y→τ x
g(y),

(
Γ(F−;τ

−) lim f
)
(x) =

(
Γ(F+;τ

−) lim f
)
(x) = liminf

y→τ x
g(y).

In [36], Γ(F+;τ−) lim f and Γ(F−;τ−) lim f are called, by Dal Maso, the Γ-upper limit and

the Γ-lower limit of the family fi and are denoted by Γ- limsupτ

F
fi and Γ- liminfτ

F
fi, respectively.

If there exists a function f0 such that for all x ∈ X ,

(Γ(F+;τ
−) lim f)(x)≤ f0(x)≤ (Γ(F−;τ

−) lim f)(x),

then we say that { fi} Γ-convergences to f0 or f0 is a Γ-limit of { fi}.
The following examples show that, in general, Γ-convergence and pointwise convergence

are independent.
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Example 3.2.2. ([36]) Let X = R (with a usual topology ν on R) and { fn} be defined by

(i) fn(x) = sin(nx). Then, { fn} Γ-converges to the constant function f =−1, whereas { fn}
does not converge pointwise in R.

(ii) fn(x) =

 nxe−2n2x2
, if n is even,

2nxe−2n2x2
, if n is odd.

By calculating, { fn} converges pointwise to 0, but { fn} does not Γ-converge since

(
Γ(I −;ν

−) lim f
)
(x) =

{
−e−1/2, if x = 0,

0, if x 6= 0,

(
Γ(I +;ν

−) lim f
)
(x) =

 −
1
2

e−1/2, if x = 0,

0, if x 6= 0,

where f(n,x) := fn(x) and I := {Im}m∈N with Im := {n ∈ N : n≥ m}.

We now compare the notion of Γ-limits with some classical notions of convergence.

Definition 3.2.3. A family { fi}i∈I is said to be continuously convergent to a function g : X →R
if for every x ∈ X and for every neighborhood V of g(x), there exist F ∈F and U ∈Nτ(x) such

that fi(y) ∈V for every i ∈ F and for every y ∈U .

It follows immediately from the definitions that { fi} is continuously convergence to g if and

only if

Γ(F+;τ
+) lim f≤ g≤ Γ(F−;τ

−) lim f.

Definition 3.2.4. ([111]) Let {Ai}i∈I be a family of subsets in (X ,τ) filtered by F .

(i) The K-upper limit of {Ai}i∈I is defined by

Limsupτ

F Ai =
⋂

F∈F
clτ
⋃
i∈F

Ai.

(ii) The K-lower limit of {Ai}i∈I is defined by

Liminfτ

F Ai =
⋂

F∈F #

clτ
⋃
i∈F

Ai.

(iii) If there exists a subset A in X such that

Limsupτ

F Ai ⊆ A⊆ Liminfτ

F Ai,

then we say that {Ai} K-converges to A.
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It follows from the above definition that x ∈ Limsupτ

F Ai if and only if for every U ∈Nτ(x)

every F ∈F , there is i ∈ F such that U ∩Ai 6= /0; due to the duality of filters and their grills, if

for every U ∈Nτ(x) there is H ∈F # such that U ∩Ai 6= /0 for each i ∈ H.

A point x ∈ Liminfτ

F Ai if and only if for every U ∈Nτ(x) and every H ∈F #, there is i ∈H

such that U ∩Ai 6= /0. Dually, if for every U ∈Nτ(x) there is F ∈F such that for each i ∈ F ,

U ∩Ai 6= /0.

When X is equipped with the discrete topology ι , the discussed limits become set-theoretical,

that is

Limsupι

F Ai =
⋂

F∈F

⋃
i∈F

Ai,

and

Liminfι

F Ai =
⋂

H∈F #

⋃
i∈H

Ai =
⋃

F∈F

⋂
i∈F

Ai.

Remark 3.2.5. It is generally admitted among those who study optimization, that modern defi-

nition of limits of sets by Painlevé and Kuratowski (see [110,172,173]). However, Peano already

introduced them in 1887. Indeed, in [135], Peano defined the lower limit of a family, indexed by

the reals, of a subsets Aλ of an affine Euclidean space A by

Liminfλ→+∞ Aλ := {y ∈ X : limλ→+∞d(y,Aλ ) = 0}.

In [137], he also defined the upper limits of {Aλ}

Limsupλ→+∞ Aλ := {y ∈ X : liminfλ→+∞d(y,Aλ ) = 0}

that he also expresses as

Limsupn→+∞ Aλ =
⋂

n∈N
cl
⋃
k≥n

Ak.

In 1948, Kuratowski, by his work (see [111]), has definitely propagated the concept of limits

of variable sets and established the use of them in mathematics, that are called today upper and

lower Kuratowski limits.

Recall that, for every A⊆ X , the characteristic function of A is defined by

χA(x) :=

{
1, if x ∈ A,

0, if x 6∈ A.
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Let Ω⊆ (S1,τ1)× ...× (Sn,τn). We define

χG(τα1
1 ,...,ταn

n )Ω := Γ(τα1
1 , ...,ταn

n ) lim χΩ.

Then G(τα1
1 , ...,ταn

n )Ω is called G-limit of Ω, see [38].

The following proposition shows that K-limits of a family of subsets can be expressed in

terms of G-limits.

Proposition 3.2.6. ([36]) Let {Ai}i∈I be a family of subsets of X. Then

G(F−;τ
+)A = Liminfτ

F Ai, G(F+;τ
+)A = Limsupτ

F Ai,

where A is a relation from I into X, i.e. A⊆ I×X, defined by A(i) := Ai.

In particular, {Ai} K-converges to A if and only if {χAi} Γ-converges to χA.

Proof. We prove only the first equality, the other one being analogous. Since χG(F−;τ+)A =

Γ(F−;τ+) lim χA takes only the values 0 and 1, it is enough to show that

(Γ(F−;τ
+) lim χA)(x) = 1 ⇐⇒ x ∈ Liminfτ

F Ai. (3.3)

By (3.2), (Γ(F−;τ+) lim χA)(x) = 1 if and only if

inf
U∈Nτ (x)

sup
F∈F

inf
i∈F

sup
x′∈U

χA(i,x′) = 1.

It means that for every U ∈ Nτ(x) there is F ∈ F such that for each i ∈ F , there is x′ ∈ U

satisfying x′ ∈ Ai, i.e., U ∩Ai 6= /0. Thus, x ∈ Liminfτ

F Ai. This prove (3.3) and concludes the

proof of the proposition.

The next result shows a connection between Γ-convergence of functions and K-convergence

of their epigraphs or hypographs.

Proposition 3.2.7. ([36]) Let { fi}i∈I be a family of extended-real-valued functions, and let

f− := Γ(F−;τ
−) lim f, f + := Γ(F+;τ

−) lim f.

Then

epi( f−) = Limsupτ

F epi( fi), epi( f +) = Liminfτ

F epi( fi),

hypo( f−) = Liminfτ

F hypo( fi), hypo( f +) = Limsupτ

F hypo( fi).

In particular, { fi} Γ-converges to f if and only if {epi( fi)} (or {hypo( fi)}) K-convergences to

epi( f ) ({hypo( f )}, respectively).
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Proof. By the similarity, we prove only the first equality. A point (x, t) ∈ X ×R belongs to

epi( f−) if and only if f−(x)≤ t. By the defininition of f−, this happens if and only if for every

ε > 0, and for every U ∈Nτ(x) we have

liminfF inf
y∈U

fi(y) < t + ε,

and this is equivalent to say that for every ε > 0,U ∈Nτ(x),F ∈F there exists i ∈ F such that

inf
y∈U

fi(y) < t + ε . Since this inequality is equivalent to

epi( fi)∩ (U× (t− ε, t+ ε)) 6= /0,

and the sets of the form U × (t − ε, t + ε), with U ∈ Nτ(x) and ε > 0, are a base for the

neighborhood systems of (x, t) in X ×R, we have proved that (x, t) ∈ epi( f−) if and only if

(x, t) ∈ Limsupτ

F epi( fi).

3.3 Γ-limits valued in completely distributive lattices

This section presents some results related to Γ-limits given by Greco in [82, 83]. More

precisely, he defined functionals called limitoids and proved that Γ-limits are special limitoids.

Then he proved representation theorem showing that for which each relationship of limitoids

corresponds a relationship in set theory.

3.3.1 Limitoids

Let S be a set with at least two elements and L be a complete lattice with the minimum

element 0L and the maximum element 1L (0L 6= 1L).

Definition 3.3.1. ([82]) A function T : LS → L is said L-limitoid in S (or limitoid , in short) if

for every f ,g ∈ LS and for each complete homomorphism ϕ of L in L,

(i) g≤ f =⇒ T (g)≤ T ( f ),

(ii) T (ϕ ◦g) = ϕ(T (g)),

(iii) T (g) ∈ g(S)
L
,

where g(S)
L

is the smallest closed sublattice of L containing g(S), and LS denotes the set of

functions from S into L .
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We recall that a complete homomorphism ϕ : L→ L′ between two complete lattices is a

function verifying two equalities ϕ(
∨

A) =
∨

ϕ(A) and ϕ(
∧

A) =
∧

ϕ(A) for each non-empty

subset A of L, see [82].

Simple examples of limitoids are limit inferior and limit superior. Let f be a function from

S into L and A be a non-degenerate family of subsets of S, the limit inferior and limit superior

of f along A are defined, respectively,

liminfA f =
∨

A∈A

∧
x∈A

f (x)
(

= sup
A∈A

inf
x∈A

f (x)
)

,

limsupA f =
∧

A∈A

∨
x∈A

f (x)
(

= inf
A∈A

sup
x∈A

f (x)
)

.

The Γ−limit introduced in Definition 3.1.1 is another example of the limitoid.

It is evident that the limit inferior, limit superior and Γ-limit do not change if we use equiva-

lent families. Since A ## = A for each family A , we have

liminfA f = liminfA ## f , limsupA f = limsupA ## f .

The following result characterises of a completely distributive lattice L.

Proposition 3.3.2. ([82]) A complete lattice L is completely distributive if and only if

liminfA f = limsupA # f , (3.4)

for each non-degenerate family A of subsets of S and for each function f from S into L.

Proof. It follows from Proposition D.3 in [82].

Definition 3.3.3. ([83]) The support of a limitoid T in S, denoted by st(T ), is the family of sets

defined by

st(T ) := {A⊆ S : T (χ
L
A) = 1L},

where χL
A : S→ L is to 1L on A and to 0L on S\A.

A support of a limitoid T in S is a semi-filter, i.e., st(T ) ∈ SF(S). Recall that, SF(S) is a

completely distributive lattice with respect to inclusion, see [83], with its operations
∧

and
∨

be

the intersection and the union of sets, respectively.
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The support of Γ-limit in Definition 3.1.1 is indicated with (A α1
1 , ...,A αn

n ). In [83], Greco

proved recursively that

(A −)≈A ##, (A +)≈A #,

(A α1
1 , ...,A

αn−1
n−1 ,A −

n )≈ (A α1
1 , ...,A

αn−1
n−1 )×An,

(A α1
1 , ...,A

αn−1
n−1 ,A +

n )≈ ((A α1
1 , ...,A

αn−1
n−1 )#×An)#,

where A ×B indicates the family generated by {A×B : A ∈ A ,B ∈B}. Some special cases

are
(A −,B−)≈A ×B, (A +,B−)≈A #×B,

(A +,B+)≈ (A ×B)#, (A −,B+)≈ (A #×B)#,

(A +,B−,C−)≈A #×B×C , (A −,B+,C−)≈ (A #×B)#×C .

Then we get the following property

(A −α1
1 , ...,A −αn

n )≈ (A α1
1 , ...,A αn

n )#. (3.5)

3.3.2 Representation theorem

The representation theorem of Greco showed that each limitoid valued in a completely

distributive lattice is a limit inferior.

Theorem 3.3.4. ([82]) (The representation of limitoids) Let L be a completely distributive lattice

and T be a limitoid in S. Then, for each f ∈ LS,

T ( f ) = liminfst(T ) f , (3.6)

where st(T ) is the support of T .

Proof. First, we check that for each f ∈ LS,

liminfst(T ) f ≤ T ( f )≤ limsup(st(T ))# f , (3.7)

where (st(T ))# := {A ⊆ S : A∩F 6= /0,∀F ∈ st(T )}. For each A ∈ st(T ), we put g := χL
A ∧

(
∧

f (A)) . Since L is completely distributive, the function ϕ(x) := x∧ (
∧

f (A)) is a complete

homomorphism of L in L. So, from condition (ii) in Definition 3.3.1 and the definition of car-

riers, we get T (g) =
∧

f (A). Since g ≤ f , it follows from condition (i) in Definition 3.3.1 that∧
f (A)≤ T ( f ). Therefore,

liminfst(T ) f ≤ T ( f ).
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On the other hand, let A∈ (st(T ))# and g := χL
S\A∨(

∨
f (A)) . From the definition of (st(T ))#,

we have (S\A) 6∈ st(T ), so T (χL
S\A) = 0L. Since the function ϕ defined by ϕ(x) := x∨ (

∨
f (A))

is a complete homomorphism of L in L, so T (g) =
∨

f (A). Finally, since g ≥ f , we obtain∨
f (A)≥ T ( f ), which implies

T ( f )≤ limsup(st(T ))# f .

Thus, we have proved (3.7). (3.6) is obtained by Proposition 3.3.2.

It follows from (3.6) that

Γ(A α1
1 , ...,A αn

n ) lim f = liminf(A α1
1 ,...,A αn

n ) f = sup
A∈(A α1

1 ,...,A αn
n )

inf
(x1,...,xn)∈A

f (x1, ...,xn).

By virtue of (3.4) and (3.5), we get

Γ(A −α1
1 , ...,A −αn

n ) lim f = liminf(A α1
1 ,...,A αn

n )# f = inf
A∈(A α1

1 ,...,A αn
n )

sup
(x1,...,xn)∈A

f (x1, ...,xn).

The representation of limitoids allows us to describe the structure of lattice Lim(S,L) of

limitoids in S valued in L, where L is a completely distibutive lattice. The set Lim(S,L) of

limitoids in S valued in L is the complete lattice with respect to the order defined by T ≤ T ′ if

and only if T (g) ≤ T ′(g) for each g ∈ LS. In Lim(S,L), the limitoids
∨

iTi,
∧

iTi are defined by

for each g ∈ LS, (∨
i
Ti

)
(g) =

∨
i
(Ti(g)) ,

(∧
i
Ti

)
(g) =

∧
i
(Ti(g)) .

Furthermore, the function st : Lim(S,L)→ SF(S) is a complete homomorphism of Lim(S,L)

on SF(S), see [82], since for each semi-filter A in S,

st
(∧

i
Ti

)
=
⋂

i
st(Ti), st

(∨
i
Ti

)
=
⋃

i
st(Ti), st(liminfA ) = A .

On the other hand, if L is completely distributive, then two limitoids in S with the same

supports are equal (by the representation of limitoids). Therefore

Theorem 3.3.5. ([82]) (The structure of lattice of limitoids) If L is a completely distributive lat-

tice, then the function that associates each limitoid in S to its support is a complete isomorphism,

i.e., a bijective complete homomorphism, from Lim(S,L) into SF(S).

The function liminf : SF(S)→ Lim(S,L) that associates each semi-filter A in S to the limit

inferior with respect to A is the inverse isomorphism. Therefore, for a completely distributive

lattice L, we have

liminf⋂
iAi f =

∧
i
liminfAi f , (3.8)
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liminf⋃
iAi f =

∨
i
liminfAi f , (3.9)

for each f ∈ LS and {Ai}i ⊆ SF(S).

These analyses above mean that with a completely distributive lattice L, each theorem in

Lim(S,L) becomes a theorem in set theory in SF(S), and vice versa.

3.4 Sequential forms of Γ-limits for extended-real-valued func-
tions

In this section, we extend Greco’s results to more general filters related to sequentiality, like

Fréchet, strongly Fréchet, and productively Fréchet filters.

Let F be a filter on X . We recall that, see [53]

•F is called a principal filter if there exists a nonempty subset A of X such that F = {B⊆
X : A⊆ B}. The set of principal filters on X is denoted by F0(X).

• F is called a sequential filter if there exists a sequence {xn}n in X such that the family

{{xn : n≥m} : m ∈N} is a base of F . Then, we denote F ≈ {xn}n. The set of sequential filters

on X is denoted by Fseq(X).

• F is called a countably based filter if it admits a countable base. The set of countably

based filters on X is denoted by F1(X).

Principal filters and sequential filters are special cases of countably based filters. If F ≈
{xn}n, then (see [83])

liminfF f = liminf
n→+∞

f (xn), liminfF # f = limsup
n→+∞

f (xn).

To facilitate for results in the sequel, we denote Seq(F ) := {E ∈ Fseq(X) : E ≥F}.

Definition 3.4.1. ([62]) A topological space X is called

(i) Fréchet if whenever A ⊆ X , and x ∈ clA, there exists a sequence {xn}n on A such that

x = lim
n→+∞

xn.

(ii) strongly Fréchet if for each a decreasing sequence {An}n of subsets of X and x∈
⋂

n cl(An),

there exists a sequence {xn}n such that xn ∈ An and x = lim
n→+∞

xn.

(iii) first countable if for all x ∈ X , N (x) is a countably based filter.

Definitions of Fréchet and strongly Fréchet spaces can be rephrased in terms of filters as

follows, see [52, 100].
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• A space X is Fréchet if and only if for all x ∈ X , N (x) is a Fréchet filter on X in the

following sense: a filter F is Fréchet if

∀G ∈ F0(X) : G #F =⇒∃H ∈ Fseq(X) : H ≥F ∨G , (3.10)

where F ∨G := {F ∩G : F ∈F ,G ∈ G } is the supremum of F and G .

• A space X is strongly Fréchet if and only if for all x ∈ X , N (x) is a strongly Fréchet filter

on X in the following sense: a filter F is strongly Fréchet if

∀G ∈ F1(X) : G #F =⇒∃H ∈ Fseq(X) : H ≥F ∨G . (3.11)

Based on definitions above, Jordan and Mynard introduced a productively Fréchet space by

using a new filter, called productively Fréchet filter, as follows

Definition 3.4.2. ([100]) A space X is productively Fréchet if and only if for all x ∈ X , N (x) is

a productively Fréchet filter on X in the following sense: a filter F is productively Fréchet if

∀G ∈ FsF(X) : G #F =⇒∃H ∈ F1(X) : H ≥F ∨G ,

where FsF(X) denotes the set of strongly Fréchet filters on X .

In [100], Jordan and Mynard showed that

first countable filter =⇒ productively Fréchet filter =⇒ strongly Fréchet filter =⇒ Fréchet filter,

i.e.,

first countable space =⇒ productively Fréchet space =⇒ strongly Fréchet space =⇒ Fréchet space.

Proposition 3.4.3. ([100]) A filter F is productively Fréchet if and only if F ×G is a Fréchet

filter (equivalently a strongly Fréchet filter) for every strongly Fréchet filter G .

Proof. It follows from Theorem 9 in [100].

Remark 3.4.4. ([53]) (i) For every semi-filter F , we have

H 6∈F #⇐⇒ Hc ∈F , (3.12)

where Hc denotes the complement of H. In fact, by definition, H 6∈F # whenever there is F ∈F

such that H ∩F = /0, equivalently F ⊆ Hc, that is, Hc ∈F since F is filter.

25



§3. The theory of Γ-limits

(ii) If F is a filter on a set X , G is a filter on a set Y , and H is a filter on X ×Y , we denote

by H F the filter on Y generated by the sets

HF = {y : ∃x ∈ F,(x,y) ∈ H},

for H ∈H and F ∈F , and by H −G the filter on X generated by the sets

H−G = {x : ∃y ∈ G,(x,y) ∈ H},

for H ∈H and G ∈ G . Notice that

H #(F ×G )⇐⇒ (H F )#G ⇐⇒F#(H −1G ).

We now recall some definitions introduced in [83] by Greco as follows

Definition 3.4.5. ([83]) Let N be a sequential filter associated with a sequence {n}n, and let

A1, ...,Ak be filters.

(N α0,A α1
1 , ...,A αk

k )seq := extα1

{x1
n}n∈Seq(A1)

... extαk

{xk
n}n∈Seq(Ak)

ext−α0

m∈N
extα0

n≥m
{(n,x1

n, ...,x
k
n)}n,

where α0,α1, ...,αk are signs of +,− and ext− =
⋂

,ext+ =
⋃

.

From Definition 3.4.5, the sequential form of the Γ-limit is defined as follows

Definition 3.4.6. ([83]) Let N be the sequential filter associated with a sequence {n}n, A1, ...,Ak

be filters in S1, ...,Sk, respectively, and f : N×S1× ...×Sk→R. The sequential Γ-limit is defined

by

Γseq(N α0,A α1
1 , ...,A αk

k )lim f := extα1

{x1
n}n∈Seq(A1)

... extαk

{xk
n}n∈Seq(Ak)

ext−α0

m∈N
extα0

n≥m
f (n,x1

n, ...,x
k
n),

where ext− = inf,ext+ = sup, α0,α1, ...,αk are signs of +,−.

The Γseq-limit is a limitoid and its support is the family (N α0,A α1
1 , ...,A αk

k )seq.

3.4.1 Two variables

Proposition 3.4.7. Suppose that F is a Fréchet filter. Then

F =
⋂

E∈Seq(F )

E =
⋂

E∈Seq(F )

E #, (3.13)

F # =
⋃

E∈Seq(F )

E =
⋃

E∈Seq(F )

E #. (3.14)
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Proof. Since (3.13) implies (3.14) (by (2.1)), we prove only (3.13). Let F ∈F and an arbitrary

E ∈ Seq(F ). Since E ≥ F , there exists E ∈ E such that E ⊆ F , so F ∈ E . This implies

F ∈
⋂

E∈Seq(F )
E . Thus, F ⊆

⋂
E∈Seq(F )

E . Since E ⊆ E #, we get

F ⊆
⋂

E∈Seq(F )

E ⊆
⋂

E∈Seq(F )

E #.

We now prove
⋂

E∈Seq(F )
E # ⊆F . It follows from the definition of Fréchet filters that

∀ A ∈F # =⇒∃E ∈ Seq(F ) : A ∈ E . (3.15)

Suppose that H 6∈ F . This implies Hc ∈ F #. From (3.15), there is E ∈ Seq(F ) such that

Hc ∈ E , i.e., H 6∈ E #. Thus, H 6∈
⋂

E∈Seq(F )
E #.

Proposition 3.4.8. Let F ,G be filters.

(i) Suppose that F is Fréchet. Then

(F+,G−) =
⋃

E∈Seq(F )

(E −,G−) =
⋃

E∈Seq(F )

(E +,G−), (3.16)

(F−,G +) =
⋂

E∈Seq(F )

(E +,G +) =
⋂

E∈Seq(F )

(E −,G +). (3.17)

(ii) Suppose that F is strongly Fréchet and G is productively Fréchet (or vice versa). Then

(F−,G−) =
⋂

E∈Seq(F )

(E −,G−) =
⋂

E∈Seq(F )

(E +,G−), (3.18)

(F+,G +) =
⋃

E∈Seq(F )

(E +,G +) =
⋃

E∈Seq(F )

(E −,G +). (3.19)

Proof. (i) Since (3.16) implies (3.17), we prove only (3.16). Because (E −,G−) ≈ E × G ,

(E +,G−)≈ E #×G and E ⊆ E #, we get⋃
E∈Seq(F )

(E −,G−)⊆
⋃

E∈Seq(F )

(E +,G−).

It follows from (3.14) that

(F+,G−)≈F #×G = (
⋃

E∈Seq(F )

E )×G ⊆
⋃

E∈Seq(F )

(E ×G ).
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Thus,

(F+,G−)⊆
⋃

E∈Seq(F )

(E −,G−)⊆
⋃

E∈Seq(F )

(E +,G−).

Let A∈
⋃

E∈Seq(F )
(E +,G−), then there exists E ∈ Seq(F ) such that A∈E #×G . It means that

there exist A1 ∈ E # and A2 ∈ G such that A⊇ A1×A2. Suppose that A 6∈ (F+,G−)≈F #×G .

It follows from A2 ∈ G that A1 6∈ F #. By (3.12), we get Ac
1 ∈ F . Because E ≥ F , we get

Ac
1 ∈ E , which contradicts to A1 ∈ E #.

(ii) Similarly, we prove only (3.18). It follows from Proposition 3.4.3 that F×G is a Fréchet

filter. We can see that

(F−,G−) ≈ F ×G

= (
⋂

E∈Seq(F )
E )×G (by (3.13))

⊆
⋂

E∈Seq(F )
(E ×G )

⊆
⋂

E∈Seq(F )
(E #×G )

=
⋂

E∈Seq(F )
(E #× (

⋂
B∈Seq(G )

B))

⊆
⋂

E∈Seq(F )

⋂
B∈Seq(G )

(E #×B)

⊆
⋂

E∈Seq(F )

⋂
B∈Seq(G )

(E ×B)#

⊆
⋂

D∈Seq(F×G )
D#

= F ×G (by (3.13)).

Remark 3.4.9. In [100] Jordan and Mynard showed that if F is not a strongly Fréchet filter (or

not a productively Fréchet filter), then there exists a countably based filter G (a strongly Fréchet

filter G , respectively) such that F ×G is not a Fréchet filter. On the other hand, by Proposition

3.4.3,
⋂

E∈Seq(F )
(E −,G−) is a Fréchet filter. Thus

(F−,G−) 6=
⋂

E∈Seq(F )

(E −,G−).

Proposition 3.4.10. Let E ≈ {xn}n.

(i) If G is strongly Fréchet filter, then

(E −,G−) =
⋂

{yn}n≥G

{(xn,yn)}n, (E +,G +) =
⋃

{yn}n≥G

{(xn,yn)}#
n.
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(ii) If G is countably based filter, then

(E +,G−) =
⋂

{yn}n≥G

{(xn,yn)}#
n, (E −,G +) =

⋃
{yn}n≥G

{(xn,yn)}n.

Proof. (i) We prove only (E −,G−) =
⋂

{yn}n∈Seq(G )
{(xn,yn)}n since this formula implies the other

one by properties of grills. It follows from Proposition 3.4.3 that E ×G is Fréchet filter. We can

see that
(E −,G−) ≈ E ×G

= E × (
⋂

B∈Seq(G )
B) (by (3.13))

⊆
⋂

B∈Seq(G )
(E ×B)

=
⋂

B∈Seq(G )
((

⋂
D∈Seq(E )

D)×B) (by (3.13))

⊆
⋂

B∈Seq(G )

⋂
D∈Seq(E )

(D×B)

⊆
⋂

L∈Seq(E×G )
L

= E ×G (by (3.13)).

Because E ≈ {xn}n, we get

(E −,G−) =
⋂

{yn}n≥G

{(xn,yn)}n.

(ii) We prove only (E −,G +) =
⋃

{yn}n≥G
{(xn,yn)}n. Let G ≈ {Gn}n, where {Gn}n is a de-

creasing sequence of subsets, and A ∈ (E −,G +) ≈ (E #×G )#. In other words, for each n and

H ∈ E #,

(H×Gn)∩A 6= /0⇐⇒ AGn∩H 6= /0, (3.20)

that is, AGn ∈ E ## = E for each n. This means that for every n there is kn such that {xk : k ≥
kn} ⊆ AGn, hence there exists {yn

k : k ≥ kn} ⊆ Gn with

{(xk,yn
k) : k ≥ kn} ⊆ A.

Using induction, we can get a strictly increasing sequence {kn}n with this property. Let

yk := yn
k if kn ≤ k < kn+1.

Then {yk}k ≥ G and {(xk,yk)} ⊆ A for each k ≥ k1.
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Conversely, let A ∈
⋃

{yn}n≥G
{(xn,yn)}n, then there is D ≈ {yk}k ≥ G such that (xk,yk) ⊆ A.

We can check that (3.20) holds, then A ∈ (E −,G +).

Theorem 3.4.11. Let f : N×X → R.

(i) If G is a strongly Fréchet filter on X, then

Γ(N −,G−) = Γseq(N −,G−), Γ(N +,G +) = Γseq(N +,G +).

(ii) If G is a countably based filter on X, then

Γ(N −,G +) = Γseq(N −,G +), Γ(N +,G−) = Γseq(N +,G−).

Proof. We check only for Γ(N +,G +) = Γseq(N +,G +). The other cases are analogous. Let

E = N , from (3.4.10), we get

(N +,G +) =
⋃

{yn}n∈Seq(G )

{(n,yn)}#
n.

It follows from (3.6) and (3.9) that for all f : N×X → R,

Γ(N +,G +) lim f = liminf(N +,G +) f

= sup
{yn}∈Seq(G )

liminf{(n,yn)}#
n

f

= sup
{yn}∈Seq(G )

limsup
n→+∞

f (n,xn)

= Γseq(N +,G +) lim f .

The following example shows that the strongly Fréchetness of G in Theorem 3.4.11(i) is

necessary.

Example 3.4.12. Let a sequential fan SN := {
⋃

n∈N Xn}∪{x∞}, where Xn := {xn,k : k ∈ N} and

Xn∩Xm = /0 for all n 6= m, be equipped with a topology defined as follows

• each point xn,k is isolated;

• a basic open neighborhood of x∞ in the form

O f (x∞) := {x∞}∪{xn,k : k ≥ f (n)},
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for each function f ∈ NN, where NN := { f : N→ N}.
First, we prove that SN is not strongly Fréchet, i.e., there exists {An} be a decreasing se-

quence of subsets in SN such that x∞ ∈
⋂

n cl(An), but there is no xn ∈ An with x∞ = lim
n→∞

xn.

Setting An := {Xm : m≥ n}. It is easy to check that An+1 ⊆ An and x∞ ∈
⋂

n cl(An). For each

n, choose any finite set Fn of An and denote F :=
⋃

n Fn. We define a function h ∈ NN by

h(n) :=

{
1+max{k : xn,k ∈ F}, if F ∩Xn 6= /0,

1, otherwise.

Then, Oh(x∞)∩F = /0, i.e., x∞ 6∈ clF . Since Fn is arbitrary for all n, there is no xn ∈ An with

x∞ = lim
n→+∞

xn.

Let g : N×SN→ [0,1] be defined by

g(n,x) =


1

n
√

m
, if x ∈ Xm,

1, otherwise.

By calculating, we get

Γ(N −,Nτ(x∞)−) lim g = 0.

Let {xm} be a sequence converging to x∞. If xm = x∞ for infinitely many m ∈ N, we get

lim
m→+∞

g(m,xm) = 1. We now consider xm 6= x∞ for all m ∈ N. Then, there exists n0 ∈ N such

that {xm} ⊆
⋃n0

n=1 Xn. Indeed, if not, for all n ∈ N, there exists mn such that xmn 6∈
⋃n

l=1 Xl . This

implies that xmn ∈ An+1, where {An} is the decreasing sequence of subsets defined above. By

the previous analysis, {xmn}n does not converge to x∞, which is a contradiction. Thus, each

sequence {xm} (6= {x∞}) converging to x∞ is in type of {xp,k : ∃n0 ∈N, p ∈ [1,n0],k→+∞}. By

calculating, we get

liminf
m→+∞

g(m,xm) = liminf
k→+∞

g(k,xp,k) = 1.

This implies that

Γseq(N −,Nτ(x∞)−) lim g = 1.

Thus

Γ(N −,Nτ(x∞)−) lim g < Γseq(N −,Nτ(x∞)−) lim g.

3.4.2 Three variables

Proposition 3.4.13. Let F ,G be filters.
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(i) If F is strongly Fréchet and G is productively Fréchet (or vice versa), then

(F−,G−) =
⋂

{xn}n≥F

⋂
{yn}n≥G

{(xn,yn)}n =
⋂

{xn}n≥F

⋂
{yn}n≥G

{(xn,yn)}#
n,

(ii) If F is Fréchet and G is countably based, then

(F+,G−) =
⋃

{xn}n≥F

⋂
{yn}n≥G

{(xn,yn)}n =
⋃

{xn}n≥F

⋂
{yn}n≥G

{(xn,yn)}#
n.

Proof. (i) It follows from Proposition 3.4.3 that F ×G is a Fréchet filter. We can see that

(F−,G−) =
⋂

{xn}n≥F
({xn}−n ,G−) (by Proposition 3.4.8)

=
⋂

{xn}n≥F

⋂
{yn}n≥G

{(xn,yn)}n (by Proposition 3.4.10)

⊆
⋂

{xn}n≥F

⋂
{yn}n≥G

{(xn,yn)}#
n

⊆
⋂

L∈Seq(F×G )
L #

= F ×G (by (3.13)).

(ii) We can see that

(F+,G−) =
⋃

{xn}n≥F
({xn}−n ,G−) (by Proposition 3.4.8)

=
⋃

{xn}n≥F

⋂
{yn}n≥G

{(xn,yn)}n (by Proposition 3.4.10).

Besides,

(F+,G−) =
⋃

{xn}n≥F
({xn}+n ,G−) (by Proposition 3.4.8)

=
⋃

{xn}n≥F

⋂
{yn}n≥G

{(xn,yn)}#
n (by Proposition 3.4.10).

Proposition 3.4.14. Let E ≈ {xn}n, and G ,H are filters.

(i) Suppose that G is strongly Fréchet and H is productively Fréchet (or vice versa). Then

(E −,G−,H −) =
⋂

{yn}n≥G

⋂
{zn}n≥H

{(xn,yn,zn)}n.

(ii) Suppose that G is countably based and H is strongly Fréchet. Then

(E −,G +,H −) =
⋃

{yn}n≥G

⋂
{zn}n≥H

{(xn,yn,zn)}n.
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(iii) Suppose that G ,H are countably based. Then

(E +,G−,H −) =
⋂

{yn}n≥G

⋂
{zn}n≥H

{(xn,yn,zn)}#
n.

(iv) Suppose that G is strongly Fréchet and H is countably based. Then

(E +,G +,H −) =
⋃

{yn}n≥G

⋂
{zn}n≥H

{(xn,yn,zn)}#
n.

Proof. We only prove (iii). The other ones are analogous. It follows from Proposition 3.4.3 that

E ×G ×H is a Fréchet filter. We have

(E +,G−,H −) ≈ E #×G ×H

= (
⋂

{yn}n≥G
{(xn,yn)}#

n)×H (by Proposition 3.4.10)

⊆
⋂

{yn}n≥G
({(xn,yn)}#

n×H )

=
⋂

{yn}n≥G

⋂
{zn}n≥H

{(xn,yn,zn)}#
n (by Proposition 3.4.10)

⊆
⋂

B∈Seq(E×G×H )
B#

= E ×G ×H (by (3.13))

⊆ E #×G ×H .

Corollary 3.4.15. Let E ≈ {xn}n, and G ,H are filters.

(i) Suppose that G is strongly Fréchet and H is productively Fréchet (or vice versa). Then

(E +,G +,H +) =
⋃

{yn}n≥G

⋃
{zn}n≥H

{(xn,yn,zn)}#
n.

(ii) Suppose that G is countably based and H is strongly Fréchet. Then

(E +,G−,H +) =
⋂

{yn}n≥G

⋃
{zn}n≥H

{(xn,yn,zn)}#
n.

(iii) Suppose that G ,H are countably based. Then

(E −,G +,H +) =
⋃

{yn}n≥G

⋃
{zn}n≥H

{(xn,yn,zn)}n.

(iv) Suppose that G is strongly Fréchet and H is countably based. Then

(E −,G−,H +) =
⋂

{yn}n≥G

⋃
{zn}n≥H

{(xn,yn,zn)}n.
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Proof. It follows from Proposition 3.4.14.

Theorem 3.4.16. Let G ,H be filters on X ,Y , respectively, and f : N×X×Y → R.

(i) Suppose that G is strongly Fréchet and H is productively Fréchet (or vice versa). Then

Γ(N −,G−,H −) = Γseq(N −,G−,H −),

Γ(N +,G +,H +) = Γseq(N +,G +,H +).

(ii) Suppose that G is countably based and H is strongly Fréchet. Then

Γ(N −,G +,H −) = Γseq(N −,G +,H −),

Γ(N +,G−,H +) = Γseq(N +,G−,H +).

(iii) Suppose that G ,H are countably based. Then

Γ(N +,G−,H −) = Γseq(N +,G−,H −),

Γ(N −,G +,H +) = Γseq(N −,G +,H +).

(iv) Suppose that G is strongly Fréchet and H is countably based. Then

Γ(N +,G +,H −) = Γseq(N +,G +,H −).

Γ(N −,G−,H +) = Γseq(N −,G−,H +).

Proof. Based on Proposition 3.4.14 and Corollary 3.4.15, the proof is similar to that of Theorem

3.4.11.

3.4.3 More than three variables

Let T and Ti, i ∈ I, be R-limitoids in S, and st(T ) =
⋂

i∈I st(Ti). It follows from (3.6) and

(3.8) that for all f : S→ R,

T ( f ) = infi∈I Ti( f ). (3.21)

The following lemma give us a condition for which “inf” in (3.21) can be attained.

Lemma 3.4.17. The following properties are equivalent

(i) for each f : S→ R,

T ( f ) = mini∈I Ti( f ),

(ii) for each countably based filter F ,(
st(T )−,F−)=

⋂
i∈I

(
st(Ti)−,F−) .
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Proof. Suppose that (ii) holds. By setting F := {S}, we get st(T ) =
⋂

i∈I st(Ti). This implies

T ( f ) = infi∈I Ti( f ).

Let H ≈ {{r : r < rn} : n ∈ N}, where {rn}n is a strictly decreasing sequence converging to

T ( f ) such that T ( f ) < rn for all n. It follows from (3.6) that

T ( f ) = liminfst(T ) f = sup
A∈st(T )

inf
x∈A

f < rn,

that is, {x∈ S : f (x) < rn} ∈ st(T )# for all n, that is, ( f−1(H ))#(st(T )) or else gr( f )∈ (st(T )×
H )#. By (ii), there is i ∈ I such that gr( f ) ∈ (st(Ti)×H )#, equivalently for all n, Ti( f ) =

liminfst(Ti) f < rn. Then,

Ti( f )≤ lim
n→+∞

rn = T ( f ),

which implies (i).

Conversely, suppose that (i) holds and F ≈ {Fn : n ∈ N}, where {Fn}n is a decreasing se-

quence of subsets. We prove that(
st(T )−,F−)# =

⋃
i∈I

(
st(Ti)−,F−)#

.

Let H ∈ (st(T )−,F−)# ≈ (st(T )×F )#. By Remark 3.4.4(ii), H ∈ (st(T )×F )# if and only if

st(T )#(H−1F ), that is, H−1Fn ∈ (st(T ))# for all n. Let

fH(x) :=

{
inf
{1

n : x ∈ H−1Fn
}

, if {1
n : x ∈ H−Fn} 6= /0,

1, otherwise.

Then if n > 1
r , that is, r > 1

n , and x ∈ H−1Fn, then fH(x) < r, so that H−1Fn ⊆ {x : fH(x) < r}.
It follows from

T ( fH) = liminfst(T ) f = sup
A∈st(T )

inf
x∈A

f = inf
B∈(st(T ))#

sup
x∈B

f

that T ( fH) < r for each r > 0. By (i), there exists i ∈ I such that Ti( fH) = 0, i.e., for each r > 0,

Ti( fH) = liminfst(Ti) fH = sup
A∈st(Ti)

inf
x∈A

fH < r,

equivalently, {x : fH(x) < r} ∈ st(Ti)# for all r > 0. Therefore, if 1
n < r < 1

n−1 , then

H−Fn ⊆ {x : fH(x) < r} ⊆ H−Fn−1,

so that H−Fn−1 ∈ st(Ti)# for each n > 1, that is H ∈ (st(Ti)×F )#.
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Proposition 3.4.18. Suppose that F is a strongly Fréchet filter, G ,H are countably based

filters. Then

(F−,G +,H −) =
⋂

E∈Seq(F )

(E −,G +,H −). (3.22)

However, there exist countably based filters F ,G ,H such that

(F−,G +,H −) 6=
⋂

E∈Seq(F )

(E +,G +,H −).

Proof. It follows from Lemma 3.4.17 that (3.22) will be proved if for each extended-real-valued

function f ,

Γ(F−,G +) lim f = min
E∈Seq(F )

Γ(E −,G +) lim f . (3.23)

It follows from (3.17) that (F−,G +) =
⋂

E∈Seq(F )
(E −,G +). This implies

Γ(F−,G +) lim f = inf
E∈Seq(F )

Γ(E −,G +) lim f .

Setting b := inf
E∈Seq(F )

Γ(E −,G +) lim f . Let {En}n be a sequence of sequential filters such that

En ≥ F for all n and b = infn Γ(E −n ,G +) lim f . Let {rn}n be a strictly decreasing sequence

converging to b and Γ(E −n ,G +) lim f < rn for all n. By the definition of Γ-limits, for all n,

inf
G∈G

Γ(E −n )sup
y∈G

f (x,y) < rn.

It means that for every n, there exists Gn ∈ G such that

Γ(E −n ) sup
y∈Gn

f (x,y) < rn,

that is, {
x : sup

y∈Gn

f (x,y) < rn

}
∈ E #

n .

Hence {
x : sup

y∈Gn

f (x,y) < rn

}
n

⊆F #.

Since F is a strongly Fréchet filter, there is a sequential E0 ≈ {xn}n ≥F such that

sup
y∈Gn

f (xn,y) < rn.
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This implies

inf
Gn∈G

Γ(E0
−) sup

y∈Gn

f (x,y) < rn.

Thus, Γ(E0
−,G +) lim f ≤ b =

⋂
E∈Seq(F )

Γ(E −,G +) lim f , which implies (3.23).

For the second part of (iii), we consider the following example.

Example 3.4.19. ([83]) Let F = G = H = N (0), where N (0) is a filter of neighborhoods of

0 on S = [0,1], and g : [0,1]× [0,1]→ R be defined by

g(x,y) :=

{
2−m, if ∃ n,m ∈ N such that x = 2−n(1−2−m), 0≤ y≤ 2−m,

1, otherwise.

Setting Em := {2−n(1− 2−m)}n. It is evident that Γ(E +
m ,N (0)+) lim g = 2−m. By virtue of

(3.8) and Proposition 3.4.18(ii), we get

0 = inf
E≥N (0)

Γ(E +,N (0)+) lim g = Γ(N (0)−,N (0)+) lim g.

Recall that hypo(g) ∈ (N (0)−,N (0)+,N (0)−) if and only if Γ(N (0)−, N (0)+) lim g >

0, see Lemma 3.4 in [83]. This implies hypo(g) 6∈ (N (0)−,N (0)+,N (0)−). Let E be an

sequential filter associated with a sequence {xn} ⊆ [0,1] converging to 0. If there exists m

such that {xn}n∩{2−n(1−2−m)}n is infinite, we have Γ(E +,N (0)+) lim g≥ 2−m; otherwise,

Γ(E +,N (0)+) lim g = 1. Then, hypo(g) ∈ (E +,N (0)+,N (0)−) for each sequential filter E

finer than N (0). In conclusion, we demonstrate that hypo(g) 6∈ (N (0)−,N (0)+,N (0)−) and

hypo(g) ∈
⋂

E≥N (0)
(E +,N (0)+,N (0)−).

Proposition 3.4.20. Suppose that F is a strongly Fréchet filter, and G ,H are countably based

filters. Then

(F−,G +,H −) =
⋂

{un}n≥F

⋃
{yn}n≥G

⋂
{zn}n≥H

{(un,yn,zn)}n.

However, there exist countably based filters F ,G ,H such that

(F−,G +,H −) 6=
⋂

{un}n≥F

⋃
{yn}n≥G

⋂
{zn}n≥H

{(un,yn,zn)}#
n.

Proof. It follows from Propositions 3.4.14(ii) and 3.4.18.
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Proposition 3.4.21. Let E ≈ {xn}n, F be a strongly Fréchet filter, G ,H be countably based

filters. Then

(E −,F−,G +,H −) =
⋂

{un}n≥F

⋃
{yn}n≥G

⋂
{zn}n≥H

{(xn,un,yn,zn)}n.

However, there exist countably based filters F ,G ,H such that

(E +,F−,G +,H −) 6=
⋂

{un}n≥F

⋃
{yn}n≥G

⋂
{zn}n≥H

{(xn,un,yn,zn)}#
n.

Proof. It is implied from Propositions 3.4.10 and 3.4.20.

The results above define the possibility to express filters. They are mainstay for De Giorgi’s

Γ-limits, for example, if F ,G ,H ,C are countably based filters then the following extensions

of previous results are not true in general

(C +,F−,G +,H −) =
⋃

{wn}n≥C

⋂
{un}n≥F

⋃
{yn}n≥G

⋂
{zn}n≥H

{(wn,un,yn,zn)}n

and

(C +,F−,G +,H −) =
⋃

{wn}n≥C

⋂
{un}n≥F

⋃
{yn}n≥G

⋂
{zn}n≥H

{(wn,un,yn,zn)}#
n.

Theorem 3.4.22. Let F be a strongly Fréchet filter on X, and G ,H be countably based filters

on Y,Z, respectively. Then, for every f : N×X×Y ×Z→ R,

Γ(N −,F−,G +,H −)lim f = Γseq(N −,F−,G +,H −)lim f .

However, there exist countably based filters F ,G ,H and an extended-real-valued function f

such that

Γ(N +,F−,G +,H −)lim f 6= Γseq(N +,F−,G +,H −)lim f .

Proof. It follows from Theorem 3.3.5, Proposition 3.4.21 with E = N .

Corollary 3.4.23. Let F be a strongly Fréchet filter on X, and G ,H be countably based filters

on Y,Z, respectively. Then, for every f : N×X×Y ×Z→ R,

Γ(N +,F+,G−,H +)lim f = Γseq(N +,F+,G−,H +)lim f .

However, there exist countably based filters F ,G ,H and an extended-real-valued function f

such that

Γ(N −,F+,G−,H +)lim f 6= Γseq(N −,F+,G−,H +)lim f .
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Proof. It follows from Theorem 3.4.22.

From the theorem and corollary above, we see that for k ≥ 3, regardless of the sign α0 there

are countably based filters F1, ...,Fk and α1, ...,αk such that

Γ(N α0 ,F α1
1 ,F α2

2 , ...,F αk
k )lim 6= Γseq(N α0,F α1

1 ,F α2
2 , ...,F αk

k )lim.

3.5 Applications

In this section, applications of Γ-limits to generalized derivatives and tangency are given.

3.5.1 Generalized derivatives

It is generally admitted that definition of differentiability of functions in Euclidean spaces

was introduced in [69] by Fréchet in 1911. However, the definition of derivative at a point x of a

real-valued function defined on a subset of Euclidean space was already given in [135] by Peano

in 1887 and generalized in 1908 in [138] to function valued in Euclidean space.

Let A be a subset in Rm and x be an accumulation point of A. A function f : A→ Rn is said

to be differentiable at x if there exists a linear map L : Rm→ Rn such that

lim
y→x

f (y)− f (x)−L(y− x)
||y− x||

= 0. (3.24)

It should be stressed that Peano’s definition appeared in a rigorous modern form (3.24), that

is used nowadays in contrast to the standard language of mathematical definition in that epoch,

was usually informal and often vague. Even if, in giving this definition, Peano referred to the

concepts of Grassmann in [81] and of Jacobi in [91], those however were more rudimentary. As

A is not the whole of Euclidean space, in general the linear operator L in (3.24) is not unique; if

it is, it is called the derivative of f at x and is denoted by D f (x).

D f (x) is called nowadays the Fréchet derivative of f at x, although Fréchet gave its informal

(geometric) definition only in [69] in 1911. Fréchet was apparently unaware of Peano’s defini-

tion, because one month later, he published in [70] another note, acknowledging contributions

of some authors, such as Stolz, Pierpoint and Young, but not that of Peano.

In 1892, Peano introduced the strict differentiability of f at x, see [136], that is, if (3.24) is

strengthened to

lim
y,u→x,y6=u

f (y)− f (u)−L(y−u)
||y−u||

= 0.
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He also noticed that strict differentiability amounts to continuous differentiability. This defini-

tion is frequently referred to Leach in [114], where it is called strong differentiability, and to

Bourbaki in [21].

Not only recently, a prominent role that nonsmooth analysis plays in connection with op-

timization theory is widely recognized, especially since the latter has natural mechanisms that

generate nonsmoothness: duality theory, sensitivity and stability analysis, decomposition tech-

niques, etc. Therefore, theories of generalized differentiability have been started. One of its

important applications is the topic of optimality conditions for nonsmooth and nonconvex prob-

lems. References [19, 129, 130, 147] are recent books that contain systematic expositions and

references on generalized differentiation and their applications to optimization-related problems,

including optimality conditions. Also, [89, 141] are also detailed treatments on the issues.

Although a whole spectrum of denitions of differentiability can be given in analytical and/or

geometrical ways, we can observe that using of kinds of directional derivatives is often a first step

for a differential construction; see e.g. [89, 97, 147] for often-met notions of directional deriva-

tives. Therefore, applying directional derivatives is a simple way to deal with optimization-

related problems in general and optimality conditions in particular, see [71, 73–76, 157].

In this subsection, by using Γ-limits, we introduce a unified notation of derivatives. Let

N+(0) := N (0)∩ (0,+∞) be a filter on (0,+∞), τ be a topology on X , and f : X → R.

Let ϑ f be the supremum of τ and of the coarsest topology in X for which f is continuous.

An unified notation of derivatives of f at x0 is defined by

D(N+(0)α1 ;ϑ
α2
f ,τα3) f (x0)(h) :=

(
Γ(N+(0)α1;ϑ

α2
f ,τα3) lim

f (x+ tu)− f (x)
t

)
(x0,h),

(3.25)

with α1 ∈ {+,−}, α2,α3 ∈ {+,−,∗} where α2 = ∗ (or α3 = ∗) means that x (u, respectively) is

fixed and equal to x0 (h, respectively).

The formula (3.25) can be abbreviated as follows

D(α1,α2,α3) f (x0)(h) = Γ
(
(t→ 0+)α1 ,(x→ x0)α2,(u→ h)α3

)
lim

f (x+ tu)− f (x)
t

.

By using (3.25), we get the following definition.

Definition 3.5.1. Let f : (X ,τ)→ R and x0 ∈ X .

(i) The upper directional derivative of f at x0 in direction h ∈ X is

D(+,∗,∗) f (x0)(h) = Γ((t→ 0+)+) lim
f (x0 + th)− f (x0)

t
.
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(ii) The lower directional derivative of f at x0 in direction h ∈ X is

D(−,∗,∗) f (x0)(h) = Γ
(
(t→ 0+)−

)
lim

f (x0 + th)− f (x0)
t

.

(iii) The upper tangent derivative of f at x0 in direction h ∈ X is

D(+,∗,+) f (x0)(h) = Γ
(
(t→ 0+)+,(u→ h)+

)
lim

f (x0 + tu)− f (x0)
t

.

(iv) The lower tangent derivative of f at x0 in direction h ∈ X is

D(−,∗,−) f (x0)(h) = Γ
(
(t→ 0+)−,(u→ h)−

)
lim

f (x0 + tu)− f (x0)
t

.

(v) The upper paratangent derivative of f at x0 in direction h ∈ X is

D(+,+,+) f (x0)(h) = Γ
(
(t→ 0+)+,(x→ x0)+,(u→ h)+

)
lim

f (x+ tu)− f (x)
t

.

(vi) The lower paratangent derivative of f at x0 in direction h ∈ X is

D(−,−,−) f (x0)(h) = Γ
(
(t→ 0+)−,(x→ x0)−,(u→ h)−

)
lim

f (x+ tu)− f (x)
t

.

In short, the results above can be expressed as follows

Unifying terminology Notation Traditional terminology

upper directional derivative D(+,∗,∗) f (x0)(h) upper Dini derivative

lower directional derivative D(−,∗,∗) f (x0)(h) lower Dini derivative

upper tangent derivative D(+,∗,+) f (x0)(h) upper Hadamard derivative

lower tangent derivative D(−,∗,−) f (x0)(h) lower Hadamard derivative

upper paratangent derivative D(+,+,+) f (x0)(h) paratangent derivative

lower paratangent derivative D(−,−,−) f (x0)(h) Clarke derivative

3.5.2 Tangent cones

In this subsection, we recall some well-known tangent cones in optimization theory and

express them in terms of Γ-limits.

Recently, various types of tangent cones have been studied in the literature. Their definitions

depend on variants of the limiting process. The most known contribution to the investigation

of these concepts is due to Bouligand in 1932, see [20]. One can find a mention about other
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contributors in papers of Guareschi [85, 86], Saks [148], Severi [151, 152], Federer [63] and

Whitney [170]. We can say that, for tangent cones, main references are Bouligand in optimiza-

tion theory, Ferderer in geometric measure theory and calculus of variations, and Whitney in

differential geometry.

However, by [54], we discover that tangent cones were already known by Peano at the end

of 19th century. Indeed, in 1887, Peano gave in [135] a metric definition of tangent straight line

and tangent plane, then reaches, in a natural way, a unifying notion as follows

tang(A,x) := x+Liminf
λ→+∞

λ (A− x).

Later, in 1908, he introduced in [138] another types of tangent cone, namely

Tang(A,x) := x+Limsup
λ→+∞

λ (A− x).

To distinguish two above notions, we shall call the first lower tangent cone and the second

upper tangent cone. As usual, after abstract investigation of a notion, Peano considered signif-

icant special cases and calculated the upper tangent cone in several basic figures (closed ball,

curves and surfaces parametrized in a regular way).

Let S be a subset of X . The homothety of S, see [50, 139, 145], is the set-valued map from

(0,+∞)×X into X defined by

HS(t,x) :=
1
t
(S− x). (3.26)

HS can be considered as a relation in (0,+∞)×X ×X . If x0 is fixed, (3.26) is called the

homothety of S at x0 and is denoted by HS,x0 .

Let τ,θ be topologies on X . Based on the above homothety, we now give a unified notation

of cones as follows

v ∈ TS(N+(0)α1;θ
α2
S ,τα3)(x0)⇐⇒

(
Γ(N+(0)α1;θ

α2
S ,τα3) lim χ(HS)

)
(x0,v) = 1, (3.27)

with θS be a topology induced on S by θ , α1,α3 ∈ {+,−}, α2 ∈ {+,−,∗}, where α2 = ∗means

that x is fixed and equal to x0.

The formula (3.27) can be abbreviated as follows

v ∈ T (α1,α2,α3)
S (x0)⇐⇒ Γ

(
(t→ 0+)α1,(x→ x0)α2,(u→ v)α3

)
lim χ(HS) = 1.

By (3.27), we introduce the following definition.
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Definition 3.5.2. Let S⊆ X and x0 ∈ clS.

(i) The upper tangent cone of S at x0 is defined by

v ∈ T (+,∗,+)
S (x0)⇐⇒ Γ((t→ 0+)+,(u→ v)+) lim χ(HS,x0) = 1.

(ii) The lower tangent cone of S at x0 is defined by

v ∈ T (−,∗,+)
S (x0)⇐⇒ Γ((t→ 0+)−,(u→ v)+) lim χ(HS,x0) = 1.

(iii) The upper paratangent cone of S at x0 is defined by

v ∈ T (+,+,+)
S (x0)⇐⇒ Γ((t→ 0+)+,(x→ x0)+,(u→ v)+) lim χ(HS) = 1.

(iv) The lower paratangent cone of S at x0 is defined by

v ∈ T (−,−,+)
S (x0)⇐⇒ Γ((t→ 0+)−,(x→ x0)−,(u→ v)+) lim χ(HS) = 1.

Proposition 3.5.3. (i) v ∈ T (+,∗,+)
S (x0) if and only if for every Q ∈Nτ(v), t > 0, there are t ′ ≤ t

and v′ ∈ Q such that x0 + t ′v′ ∈ S.

(ii) v ∈ T (−,∗,+)
S (x0) if and only if for every Q ∈Nτ(v) there is t > 0 such that for all t ′ ≤ t

there is v′ ∈ Q satisfying x0 + t ′v′ ∈ S.

(iii) v∈ T (+,+,+)
S (x0) if and only if for every Q∈Nτ(v), W ∈NθS(x0), t > 0 there are v′ ∈Q,

x′ ∈W, t ′ > 0 such that x′+ t ′v′ ∈ S.

(iv) v ∈ T (−,−,+)
S (x0) if and only if for every Q ∈Nτ(v) there are W ∈NθS(x0) and t > 0

such that for all t ′ ≤ t, x′ ∈W there is v′ ∈ Q satisfying x′+ t ′v′ ∈ S.

Proof. By the similarity, we prove only (iv). It follows from (3.27) that v ∈ T (−,−,+)
S (x0) if and

only if
(
Γ(N+(0)−;θ

−
S ,τ+) lim χ(HS)

)
(x0,v) = 1, i.e.,

inf
Q∈Nτ (v)

sup
W∈NθS (x0)

sup
t>0

inf
t ′≤t

inf
x′∈W

sup
v′∈Q

χ(HS)(t
′,x′,v′) = 1.

It means that for every Q∈Nτ(v) there are W ∈NθS(x0) and t > 0 such that for all t ′≤ t, x′ ∈W

there is v′ ∈ Q satisfying x′+ t ′v′ ∈ S.

Remark 3.5.4. When X is a normed space. We get the sequential form of these tangent cones

as follows

(i) T (+,∗,+)
S (x0) = {v ∈ X : ∃tn→ 0+,∃vn→ v,x0 + tnvn ∈ S}.

(ii) T (−,∗,+)
S (x0) = {v ∈ X : ∀tn→ 0+,∃vn→ v,x0 + tnvn ∈ S}.

(iii) T (+,+,+)
S (x0) = {v ∈ X : ∃tn→ 0+,∃xn ∈ S : xn→ x0,∃vn→ v,xn + tnvn ∈ S}.

(iv) T (−,−,+)
S (x0) = {v ∈ X : ∀tn→ 0+,∀xn ∈ S : xn→ x0,∃vn→ v,xn + tnvn ∈ S}.
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These cones, also called the contingent cone, the adjacent cone, the paratangent cone, and

the Clarke cone, respectively, were thoroughly studied in [11–13, 17, 50, 60, 61, 77–79, 161] in

detail.

These results above give us a unified way to denote cones as follows

Unifying terminology Notation Traditional terminology

upper paratangent cone T (+,+,+)
S (x0) paratangent cone

upper tangent cone T (+,∗,+)
S (x0) contingent cone

lower tangent cone T (−,∗,+)
S (x0) adjacent cone

lower paratangent cone T (−,−,+)
S (x0) Clarke cone

The tangent cones above play an important role in the study of various mathematical prob-

lems, including optimization, viability theory, and control theory. Moreover, once one has a con-

cept of tangent cone, one can construct a corresponding derivative of a set-valued map. Some

of them are presented in the table below as examples, see book [11] of Aubin and Frankowska.

Let F : X → 2Y and (x0,y0) ∈ grF .

Traditional terminology Unifying notation Definition

paratangent derivative DF(+,+,+)(x0,y0) gr(DF(+,+,+)(x0,y0)) = T (+,+,+)
grF (x0,y0)

contingent derivative DF(+,∗,+)(x0,y0) gr(DF(+,∗,+)(x0,y0)) = T (+,∗,+)
grF (x0,y0)

adjacent derivative DF(−,∗,+)(x0,y0) gr(DF(−,∗,+)(x0,y0)) = T (−,∗,+)
grF (x0,y0)

circatangent derivative DF(−,−,+)(x0,y0) gr(DF(−,−,+)(x0,y0)) = T (−,−,+)
grF (x0,y0)

Inspired by them, many kinds of generalized derivatives have been defined and applied to

optimization. Some of them, e.g., variational sets, radial sets, radial derivatives, and Studniarski

derivatives, will be introduced in Chapters 4, 5, and 6. They can also be expressed in terms of

Γ-limits.
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Chapter 4

Variational sets and applications to
sensitivity analysis for vector optimization
problems

4.1 Introduction

First-order derivatives (of various types, classical or generalized) of a map are used to ap-

proximate a given map to simplify a problem under consideration. To have better approxima-

tions, higher-order derivatives are applied. For generalized derivatives and their applications in

variational analysis, see books [19] of Bonnans and Shapiro, [129,130] of Mordukhovich, [147]

of Rockafellar and Wets, and long papers [89] of Ioffe, and [141] of Penot. Examining the ex-

isting optimality conditions, we can observe that the key argument is included in a separation

of suitable sets. To explain the idea, let us take the well-known scheme of Dubovitskii-Milyutin

in [58] for first-order optimality conditions in single-valued scalar optimization problems : the

intersection of the cone of decrease directions of the objective function and the cone of feasible

directions defined by constraints must be empty at a local minimizer. Here, the cone of decrease

directions is defined by a kind of derivatives. For other theories of optimality conditions, espe-

cially of higher-order conditions, we may have separations of sets, not cones. An important point

for a necessary optimality condition of this type is that the larger the separated sets, the stronger

the result. This was a motivation for Khanh and Tuan in [105,106] to propose variational sets re-

placing derivatives so that they are bigger than sets defined by known derivatives and can be used

in the mentioned separation. Some advantages of this generalized differentiability were shown

by Khanh et al. in [7, 105, 106], e.g., almost no assumptions are required for variational sets

to exist; extentions to higher orders are direct; they are bigger than corresponding sets of most
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§4. Variational sets and applications to sensitivity analysis for vector optimization problems

derivatives, which implies advantageous results in establishing necessary optimality conditions

by separation techniques, etc.

In this chapter, we will present our results, published in [3], on variational sets in sensitivity

analysis. We study properties of perturbation maps, in terms of higher-order variational sets.

Regarding solutions of vector optimization, we restrict ourselves to basic notions of (Pareto)

efficient points and weak efficient points. Correspondingly, our concern is to deal with pertur-

bation maps and weak perturbation maps. We employ variational sets in both assumptions and

conclusions. We also show cases where our results can be employed but some existing results

cannot. Examples are provided to ensure the essentialness of each imposed assumption.

4.2 Variational sets of set-valued maps

In this section, we introduce the concept of variational sets of set-valued maps and establish

some results on the relationship between variational sets of F and its profile map.

4.2.1 Definitions

Let X and Y be normed spaces, C be a pointed closed convex cone in Y . To approximate

multivalued map F : X → 2Y at (x0,y0) ∈ grF , we recall two types of higher-order variational

sets as follows.

Definition 4.2.1. ([105, 106]) Let v1, ...,vm−1 ∈ Y .

(i) The first, second, and higher-order variational sets of type 1 are the following

V 1(F,x0,y0) := Limsup
x F→x0, t→0+

1
t
(F(x)− y0),

V 2(F,x0,y0,v1) := Limsup
x F→x0, t→0+

1
t2 (F(x)− y0− tv1),

V m(F,x0,y0,v1, · · · ,vm−1) := Limsup
x F→x0, t→0+

1
tm (F(x)− y0− tv1−·· ·− tm−1vm−1),

where x F→ x0 means that x ∈ domF and x→ x0.

(ii) The first, second, and higher-order variational sets of type 2 are the following

W 1(F,x0,y0) := Limsup
x F→x0 t→0+

cone+(F(x)− y0),
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W 2(F,x0,y0,v1) := Limsup
x F→x0 t→0+

1
t
(cone+(F(x)− y0)− v1),

W m(F,x0,y0,v1, · · · ,vm−1) := Limsup
x F→x0 t→0+

1
tm−1 (cone+(F(x)− y0)− v1−·· ·− tm−2vm−1).

(iii) If the upper limits in (i) are equal to the lower ones, then these limits are called the first,

second, and higher-order proto-variational sets of type 1 of F at (x0,y0). Similar terminology is

defined for type 2.

By using equivalent formulations for the upper limit of a set-valued map (see [11]), i.e.,

Limsup
x F→x0

F(x) = {y ∈ Y : ∃xn ∈ domF : xn→ x0,∃yn ∈ F(xn),yn→ y},

we easily obtain the following formulae of two types of variational sets.

Proposition 4.2.2. ([7]) (Equivalent formulations of V m) V m(F,x0,y0,v1, · · · ,vm−1) is equal to

all of the following sets

(i) {y ∈ Y : liminf
x F→x0, t→0+

1
tm d(y0 + tv1 + ...+ tm−1vm−1 + tmy,F(x)) = 0},

(ii) {y∈Y : ∃tn→ 0+,∃xn
F→ x0,∃r(tm

n ) = 0(tm
n ),∀n,y0 + tnv1 + ...+ tm−1

n vm−1 + tm
n y+r(tm

n )∈
F(xn)},

(iii) {y ∈ Y : ∃tn→ 0+,∃xn
F→ x0,∃vn→ y,∀n,y0 + tnv1 + ...+ tm−1

n vm−1 + tm
n vn ∈ F(xn)},

(iv) {y ∈ Y : ∃tn→ 0+,∃xn
F→ x0,∃yn ∈ F(xn), lim

n→∞

1
tm
n

(yn− y0− tnv1− ...− tm−1
n vm−1) = y},

(v)
⋂
ε>0

⋂
α>0
β>0

⋃
0<t≤α

‖x−x0‖≤β

(
1
tm (F(x)− y0− tv1− ...− tm−1vm−1)+ εBY ),

(vi)
⋂
α>0
β>0

cl
⋃

0<t≤α

‖x−x0‖≤β

1
tm (F(x)− y0− tv1− ...− tm−1vm−1).

Proposition 4.2.3. ([7]) (Equivalent formulations of W m) W m(F,x0,y0,v1, ...,vm−1) has the fol-

lowing equivalent expressions

(i) {y ∈ Y : liminf
x F→x0, t→0+

1
tm−1 d(v1 + ...+ tm−2vm−1 + tm−1y,cone+(F(x)− y0)) = 0},
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(ii) {y∈Y :∃tn→ 0+,∃xn
F→ x0,∃r(tm−1

n )= 0(tm−1
n ),∀n,v1+...+tm−2vm−1+tm−1

n y+r(tm−1
n )∈

cone+(F(xn)− y0)},

(iii) {y ∈ Y : ∃tn→ 0+,∃xn
F→ x0,∃vn→ y,∀n,v1 + ...+ tm−2vm−1 + tm−1

n vn ∈ cone+(F(xn)−
y0)},

(iv) {y∈Y :∃tn→ 0+,∃xn
F→ x0,∃yn ∈ cone+(F(xn)−y0), lim

n→∞

1
tm−1
n

(yn−v1−...−tm−2
n vm−1)=

y},

(v)
⋂
ε>0

⋂
α>0
β>0

⋃
0<t≤α

‖x−x0‖≤β

(
1

tm−1 (cone+(F(x)− y0)− v1− ...− tm−2vm−1)+ εBY ),

(vi)
⋂
α>0
β>0

cl
⋃

0<t≤α

‖x−x0‖≤β

1
tm−1 (cone+(F(x)− y0)− v1− ...− tm−2vm−1).

Remark 4.2.4. For all m≥ 1, we have

(i) V m(F,x0,y0,v1, ...,vm−1)⊆W m(F,x0,y0,v1, ...,vm−1).

(ii) V m(F,x0,y0,0, ...,0) = V 1(F,x0,y0), W m(F,x0,y0,0, ...,0) = W 1(F,x0,y0).

(iii) If v1 6∈ V 1(F,x0,y0) then V 2(F,x0,y0,v1) = /0. If one of the conditions v1 ∈ V 1(F,x0,y0),

..., vm−1 ∈V m−1(F,x0,y0,v1, ...,vm−2) is violated, then V m(F,x0,y0,v1, ...,vm−1) = /0. The

variational sets of type 2 have the same property.

(iv) Variational sets can be expressed in terms of Γ-limits as follows

y ∈V m(F,x0,y0,v1, ...,vm−1)

⇐⇒ inf
Q∈N (y)

inf
W∈N (x0,domF)

inf
t>0

sup
0<t ′<t

sup
x′∈W

sup
y′∈Q

χgr(LF,y0,v1,...,vm−1)(t ′,x′,y′) = 1

⇐⇒ Γ(N+(0)+,N (x0,domF)+,N (y)+) lim χgr(LF,y0,v1,...,vm−1) = 1,

where N (x0,domF) := N (x0)∩domF , and LF,y0,v1,...,vm−1 : (0,+∞)×X→ 2Y is defined

by

LF,y0,v1,...,vm−1(t
′,x′) :=

1
t ′m

(F(x′)− y0− t ′v1− ...− t ′m−1vm−1).

y ∈W m(F,x0,y0,v1, ...,vm−1)

⇐⇒ inf
Q∈N (y)

inf
W∈N (x0,domF)

inf
t>0

sup
0<t ′<t

sup
x′∈W

sup
y′∈Q

χgr(HF,y0,v1,...,vm−1)(t ′,x′,y′) = 1

⇐⇒ Γ(N+(0)+,N (x0,domF)+,N (y)+) lim χgr(HF,y0,v1,...,vm−1) = 1,
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where HF,y0,v1,...,vm−1 : (0,+∞)×X → 2Y is defined by

HF,y0,v1,...,vm−1(t
′,x′) :=

1
t ′m

(cone+(F(x′)−y0)− t′v1− ...− t′m−1vm−1).

The inclusion in Remark 4.2.4(i) may be a strict inclusion or an equality as shown by the

following examples.

Example 4.2.5. Let X = R, Y = R2 and, for n = 1,2, ...,

F(x) =



{(0,0)}, if x = 0,

{(−n,n)}, if x = 1
n ,{(1

n ,0
)}

, if x = ln
(
1+ 1

n

)
,{(

1, 1
n2

)}
, if x = sin

(1
n

)
,

/0, otherwise.

Then, for (x0,y0) = (0,(0,0)) ∈ grF and v1 = (1,0) ∈ Y , one has

V 1(F,x0,y0) = {(y1,0) ∈ Y : y1 ≥ 0},

V 2(F,x0,y0,v1) = {(y1,0) ∈ Y : y1 ∈ R},

W 1(F,x0,y0) = {(y1,0) ∈ Y : y1 ≥ 0}∪{(−y1,y1) ∈ Y : y1 ≥ 0},

W 2(F,x0,y0,v1) = {(y1,y2) ∈ Y : y2 ≥ 0}.

Example 4.2.6. Let X = R, Y = R2 and, for n = 1,2, ...,

F(x) =



{(0,0)}, if x = 0,

{(−n,n)}, if x = 1
n ,{(1

n ,0
)}

, if x = ln
(
1+ 1

n

)
,

/0, otherwise.

Then, for (x0,y0) = (0,(0,0)) ∈ grF and v1 = (1,0) ∈ Y , one has

V 1(F,x0,y0) = {(y1,0) ∈ Y : y1 ≥ 0},

W 1(F,x0,y0) = {(y1,0) ∈ Y : y1 ≥ 0}∪{(−y1,y1) ∈ Y : y1 ≥ 0},

V 2(F,x0,y0,v1) = W 2(F,x0,y0,v1) = {(y1,0) ∈ Y : y1 ∈ R}.
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Remark 4.2.7. Recall that the higher-order contingent derivative of F at (x0,y0) (relative to

(u1,v1), · · · , (um−1,vm−1)) is the map DmF(x0,y0,u1,v1, · · · ,um−1,vm−1) : X → 2Y (see [11])

defined by

DmF(x0,y0,u1,v1, · · · ,um−1,vm−1)(u) := Limsup
u′→u,t→0+

1
tm (F(x0 + tu1 + · · ·+ tm−1um−1 + tmu′)−

−y0− tv1−·· ·− tm−1vm−1).

We can say roughly that the contingent derivative is a directional variant of variational set

V m. Similarly, most of generalized derivatives (e.g., the (upper) Dini derivative, Hadamard

derivative, adjacent derivative, etc) are also based on directional rates, while for the variational

sets we allow the flexibility xn
F→ x0. That is why these sets are big

DmF(x0,y0,u1,v1, · · · ,um−1,vm−1)X ⊆V m(F,x0,y0,v1, · · · ,vm−1)⊆W m(F,x0,y0,v1, · · · ,vm−1).

More comparisons between variational sets with well-known derivatives were stated in Propo-

sition 4.1 in [105] by Khanh and Tuan.

4.2.2 Relationships between variational sets of F and those of its profile
map

The first simple result about a relation between variational sets of the two maps F and its

profile map is as follows.

Proposition 4.2.8. (i) V m(F,x0,y0,v1, · · · ,vm−1)+C ⊆V m(F +C,x0,y0,v1, · · · ,vm−1),

(ii) W m(F,x0,y0,v1, · · · ,vm−1)+C ⊆W m(F +C,x0,y0,v1, · · · ,vm−1).

Proof. By the similarity, we present only a proof for (ii). Let y∈W m(F,x0,y0,v1, · · · ,vm−1)+C,

i.e., there exist v ∈W m(F,x0,y0,v1, · · · ,vm−1) and c ∈ C such that y = v + c. Then, there are

tn→ 0+, xn
F→ x0 and vn→ v such that

hn(v1 + · · ·+ tm−2
n vm−1 + tm−1

n (vn + c)) ∈ F(xn)+C− y0.

So, v+ c ∈W m(F +C,x0,y0,v1, · · · ,vm−1).

The inclusions opposite to those in Proposition 4.2.8 may not hold as the following example

shows.
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Example 4.2.9. Let X = R, Y = R2, C = R2
+, (x0,y0) = (0,(0,0)), and

F(x) =

{ {(0,0)}, if x = 0,

{(−1,−1)}, if x 6= 0.

Then, we have V 1(F,x0,y0) = {(0,0)} and V 1(F +C,x0,y0) = R2. Thus, V 1(F +C,x0,y0) 6⊆
V 1(F,x0,y0) + C. Let v1 = (0,1) ∈ V 1(F + C,x0,y0). Then, V 2(F + C,x0,y0,v1) 6= /0 and

V 2(F,x0,y0,v1) = /0. Consequently,

V 2(F +C,x0,y0,v1) 6⊆V 2(F,x0,y0,v1)+C.

For variational sets of type 2, one has W 1(F,x0,y0) +C = R2 = W 1(F +C,x0,y0) and v1 ∈
W 1(F +C,x0,y0). But, W 2(F +C,x0,y0,v1) = R2 and W 2(F,x0,y0,v1) = /0. Hence, W 2(F +

C,x0,y0,v1) 6⊆W 2(F,x0,y0,v1)+C.

Proposition 4.2.10. Suppose C have a compact base. Then

(i) MinC\{0}V m(F +C,x0,y0,v1, · · · ,vm−1)⊆V m(F,x0,y0,v1, · · · ,vm−1),

(ii) MinC\{0}W m(F +C,x0,y0,v1, · · · ,vm−1)⊆W m(F,x0,y0,v1, · · · ,vm−1).

Proof. We prove only (i). Let v ∈ MinC\{0}V m(F +C,x0,y0,v1, · · · ,vm−1). Then, there exist

tn → 0+, xn
F→ x0, yn ∈ F(xn), and cn ∈ C such that, for all n, vn := t−m

n (yn + cn− y0− tnv1−
·· ·− tm−1

n vm−1)→ v. Then,

y0 + tnv1 + · · ·+ tm−1
n vm−1 + tm

n vn− cn ∈ F(xn). (4.1)

We claim that cn/tm
n → 0 (for a subsequence). For a compact base Q of C, one has cn = αnbn for

some αn ≥ 0, bn ∈ Q. If αn = 0 for infinitely many n ∈ N, we are done. Hence, let αn > 0 for

all n, we may assume that bn→ b ∈ Q. Then, cn/tm
n = αnbn/tm

n → 0 if and only if αn/tm
n → 0+.

Suppose that αn/tm
n does not converge to 0. Then, nothing is lost by assuming that αn/tm

n ≥ ε

for some ε > 0. Let cn := (εtm
n /αn)cn. Then, cn− cn ∈ −C and

y0 + tnv1 + · · ·+ tm−1
n vm−1 + tm

n vn− cn ∈ F(xn)+C.

Since cn/tm
n → εb 6= 0, one has vn−t−m

n cn→ v−εb, and hence v−εb∈V m(F +C,x0,y0,v1, · · · ,vm−1).

Thus,

−εb ∈ (V m(F +C,x0,y0,v1, · · · ,vm−1)− v)∩ (−C \{0}),
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contradicting the efficiency of v. Therefore, cn/tm
n → 0. It follows from (4.1) that

y0 + tnv1 + · · ·+ tm−1
n vm−1 + tm

n

(
vn−

cn

tm
n

)
∈ F(xn),

and vn− t−m
n cn→ v. So, v ∈V m(F,x0,y0,v1, · · · ,vm−1).

For weak efficiency, we do not have a similar result, as indicated by the following example.

Example 4.2.11. Let X = R, Y = R2, C = R2
+, (x0,y0) = (0,(0,0)), and

F(x) =



{(0,0)}, if x = 0,

{(0,−1)}, if x =
1
n
,

{(1
n
,
−1
n

)}, if x = sin
1
n

for n ∈ N,

/0, otherwise.

Then, we have

V 1(F,x0,y0) = {(x,y) ∈ Y : y =−x,x≥ 0},

W 1(F,x0,y0) = {(0,y) ∈ Y : y≤ 0}∪{(x,y) ∈ Y : y =−x,x≥ 0},

V 1(F +C,x0,y0) = W 1(F +C,x0,y0) = R+×R.

Consequently, MinintCV 1(F +C,x0,y0) = MinintCW 1(F +C,x0,y0) = {0}×R. Therefore,

MinintCV 1(F +C,x0,y0) 6⊆V 1(F,x0,y0), MinintCW 1(F +C,x0,y0) 6⊆W 1(F,x0,y0).

If intC 6= /0, for weak efficiency, we have the following analogous properties.

Proposition 4.2.12. Suppose Ĉ⊆ intC∪{0} be a closed convex cone with a compact base. Then

(i) MinintCV m(F +Ĉ,x0,y0,v1, · · · ,vm−1)⊆V m(F,x0,y0,v1, · · · ,vm−1),

(ii) MinintCW m(F +Ĉ,x0,y0,v1, · · · ,vm−1)⊆W m(F,x0,y0,v1, · · · ,vm−1).

Proof. We prove only (ii). Since Ĉ⊆ intC∪{0}, any v∈MinintCW m(F +Ĉ,x0,y0,v1, · · · ,vm−1)

satisfies

v ∈W m(F +Ĉ,x0,y0,v1, · · · ,vm−1)∩MinĈ\{0}W
m(F +Ĉ,x0,y0,v1, · · · ,vm−1), (4.2)
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where MinĈ\{0}W
m(F +Ĉ,x0,y0,v1, · · · ,vm−1) is the set of efficient points of W m(F +Ĉ,x0,y0,v1,

· · · ,vm−1) with respect to the cone Ĉ. Hence, there exist tn→ 0+, xn
F→ x0, vn→ v, cn ∈ Ĉ, and

hn > 0 such that, for all n,

v1 + · · ·+ tm−2
n vm−1 + tm−1

n vn

hn
− cn ∈ F(xn)− y0. (4.3)

For a compact base Q̂ of Ĉ, there exist αn ≥ 0 and qn ∈ Q̂ such that cn = αnqn. We may

assume that qn → q ∈ Q̂. We claim that hnαn/tm−1
n → 0+ (for a subsequence). This is true if

αn = 0 for infinitely many n ∈ N. Now, suppose to the contrary that αn > 0, and hnαn/tm−1
n

does not converge to 0. Then, we may assume that hnαn/tm−1
n ≥ ε for some ε > 0. Let cn :=

(εtm−1
n /hnαn)cn ∈ Ĉ. Then, we have cn− cn ∈ Ĉ. By (4.3), we obtain

v1 + · · ·+ tm−2
n vm−1 + tm−1

n vn

hn
− cn ∈ F(xn)+Ĉ− y0.

As hncn/tm−1
n → εq 6= 0, this implies that v− εq ∈W m(F +Ĉ,x0,y0,v1, · · · ,vm−1). Therefore,

−εq ∈ (W m(F +Ĉ,x0,y0,v1, · · · ,vm−1)− v)∩ (−Ĉ \{0}),

which contradicts (4.2). Hence, hnαn/tm−1
n → 0+ and vn− t−(m−1)

n hncn → v. It follows from

(4.3) that v ∈W m(F,x0,y0,v1, · · · ,vm−1).

To get the equalities in Proposition 4.2.8, we need the following new notions.

Definition 4.2.13. Let (x0,y0) ∈ grF , v1, · · · ,vm−1 ∈ Y , and m ∈ N. The m-th order singular

variational set of type 1 (type 2, respectively) of F at (x0,y0) is defined by

V ∞(m)(F,x0,y0,v1, · · · ,vm−1) := {y ∈ Y : ∃xn
F→ x0,∃tn→ 0+,∃λn→ 0+,

∃yn ∈
F(xn)− y0− tnv1−·· ·− tm−1

n vm−1

tm
n

,λnyn→ y}

(W ∞(m)(F,x0,y0,v1, · · · ,vm−1) := {y ∈ Y : ∃xn
F→ x0,∃tn→ 0+,∃λn→ 0+,

∃yn ∈
cone+(F(xn)− y0)− v1−·· ·− tm−2

n vm−1

tm−1
n

,λnyn→ y}).

Definition 4.2.14. Let A⊆ Y .

(i) A is said to have the domination property if and only if A⊆MinC\{0}A+C.

(ii) When intC 6= /0, we say that A has the weak domination property with respect to Ĉ if and

only if A⊆MinintC A+Ĉ, where Ĉ ⊆ intC∪{0} is a closed convex cone.
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Proposition 4.2.15. Let C have a compact base.

(i) Let either of the following conditions hold:

(i1) V m(F +C,x0,y0,v1, · · · ,vm−1) has the domination property,

(i2) V ∞(m)(F,x0,y0,v1, · · · ,vm−1)∩ (−C) = {0}.
Then

V m(F +C,x0,y0,v1, · · · ,vm−1) = V m(F,x0,y0,v1, · · · ,vm−1)+C, (4.4)

MinC\{0}V
m(F +C,x0,y0,v1, · · · ,vm−1) = MinC\{0}V

m(F,x0,y0,v1, · · · ,vm−1). (4.5)

(ii) Let either of the following two conditions hold:

(ii1) W m(F +C,x0,y0,v1, · · · ,vm−1) has the domination property,

(ii2) W ∞(m)(F,x0,y0,v1, · · · ,vm−1)∩ (−C) = {0}.
Then

W m(F +C,x0,y0,v1, · · · ,vm−1) = W m(F,x0,y0,v1, · · · ,vm−1)+C,

MinC\{0}W
m(F +C,x0,y0,v1, · · · ,vm−1) = MinC\{0}W

m(F,x0,y0,v1, · · · ,vm−1).

Proof. We prove only (i). First, we check (4.4). By Proposition 4.2.8(i), we need simply to

verify that

V m(F +C,x0,y0,v1, · · · ,vm−1)⊆V m(F,x0,y0,v1, · · · ,vm−1)+C.

If (i1) holds, then V m(F +C,x0,y0,v1, · · · ,vm−1)⊆MinC\{0}V m(F +C,x0,y0,v1, · · · ,vm−1)+C.

Hence, (4.4) is satisfied since we have (by Proposition 4.2.10)

MinC\{0}V
m(F +C,x0,y0,v1, · · · ,vm−1)+C ⊆V m(F,x0,y0,v1, · · · ,vm−1)+C.

If (i2) holds and v∈V m(F +C,x0,y0,v1, · · · ,vm−1), then there exist tn→ 0+, xn
F→ x0, yn ∈F(xn),

and cn ∈C such that t−m
n (yn +cn−y0−tnv1−·· ·−tm−1

n vm−1)→ v. If one has n0 such that cn = 0

for all n ≥ n0, then v ∈ V m(F,x0,y0,v1, · · · ,vm−1). If there is a subsequence, denoted again by

{cn} with cn 6= 0, we claim that {||cn||/tm
n } be bounded. Indeed, otherwise we may assume that

||cn||/tm
n → ∞ and cn/||cn|| → c ∈C \{0}. Setting

vn :=
yn + cn− y0− tnv1−·· ·− tm−1

n vm−1

tm
n

, λn :=
tm
n
||cn||

,

we get

λn
yn− y0− tnv1−·· ·− tm−1

n vm−1− tm
n vn

tm
n

→−c ∈ −C \{0}.
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As λn→ 0+, this means −c ∈ V ∞(m)(F,x0,y0,v1, · · · ,vm−1)∩−C \ {0}, contradicting (i2). So,

{||cn||/tm
n } is bounded and ||cn||/tm

n → a≥ 0. With vn := ||cn||−1(yn−y0−tnv1−·· ·−tm−1
n vm−1−

tm
n vn), one has

y0 + tnv1 + · · ·+ tm−1
n vm−1 + tm

n

(
vn +

||cn||vn

tm
n

)
= yn ∈ F(xn).

It easy to see that vn + t−m
n ||cn||vn→ v−ac. Thus, v−ac ∈V m(F,x0,y0,v1, · · · ,vm−1) and (4.4)

is satisfied. (4.5) is implied directly from (4.4).

The following example shows that conditions in Proposition 4.2.15 are essential.

Example 4.2.16. Let X = R, Y = R2, C = R2
+, x0 = 0, y0 = (0,0), and

F(x) =

{ {(0,0)}, if x≤ 0,

{(0,0),(−1,−1)}, if x > 0.

Then,

(F +C)(x) =


R2

+, if x≤ 0,

{(y1,y2) : y1 ≥−1,y2 ≥−1}, if x > 0.

By calculating, we get V 1(F,x0,y0) = {(0,0)} and V 1(F +C,x0,y0) = R2. So the conclusions in

Proposition 4.2.15(i) does not hold. The reason is that both conditions in Proposition 4.2.15(i)

are not satisfied.

Obviously, V 1(F +C,x0,y0) does not have the domination property. Next, we show that

V ∞(1)(F,x0,y0)∩(−C) 6= {(0,0)}. Indeed, by chosing xn =
1
n
→ x0, tn =

1
n
→ 0+, λn =

1
n
→ 0+

and yn = (−n,−n), it is easy to check that

yn ∈
F(xn)− y0

tn
and λnyn→ (−1,−1).

Thus, (−1,−1) ∈V ∞(1)(F,x0,y0)∩ (−C).

The following result for weak efficiency can be proved similarly as Proposition 4.2.15.

Proposition 4.2.17. Let Ĉ ⊆ intC∪{0} be a closed convex cone with a compact base.

(i) Impose either of the following two conditions:

(i1) V m(F +Ĉ,x0,y0,v1, · · · ,vm−1) has the weak domination property with respect to

Ĉ,
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(i2) V ∞(m)(F,x0,y0,v1, · · · ,vm−1)∩ (−Ĉ) = {0}.
Then

MinintCV m(F,x0,y0,v1, · · · ,vm−1) = MinintCV m(F +Ĉ,x0,y0,v1, · · · ,vm−1).

(ii) Let either of the following conditions hold:

(ii1) W m(F + Ĉ,x0,y0,v1, · · · ,vm−1) has the weak domination property with respect

to Ĉ,

(ii2) W ∞(m)(F,x0,y0,v1, · · · ,vm−1)∩ (−Ĉ) = {0}.
Then

MinintCW m(F,x0,y0,v1, · · · ,vm−1) = MinintCW m(F +Ĉ,x0,y0,v1, · · · ,vm−1).

4.3 Variational sets of perturbation maps

In this section, we apply results of subsection 4.2.2 to set-valued optimization. Let U be a

normed space of perturbation parameters, Y be an objective (normed) space ordered by a pointed

closed convex cone C and F : U→ 2Y . One aims at finding the set of efficient points or the set of

weak efficient points of F(u) for a given parameter value u. Hence, we define set-valued maps

G and S from U to Y by, for u ∈U ,

G(u) := MinC\{0}F(u), S(u) := MinintC F(u).

As it is well-known, G and S are called the perturbation map and weak perturbation map,

respectively. The purpose of this section is to investigate relationships between variational sets

of F and that of G and S, including relations between the set of efficient points or the set of weak

efficient points of these variational sets.

A map F is said to have the domination property around u0 if and only if there exists a

neighborhood V of u0 such that F(u) has the domination property for all u ∈ V . The map F is

said to have the weak domination property around u0 with respect to Ĉ if and only if there exists

a neighborhood V of u0 such that F(u) has the weak domination property with respect to Ĉ for

all u ∈V , where Ĉ ⊆ intC∪{0} is a closed convex cone.

Remark 4.3.1. (i) Suppose y0 ∈ G(u0) and F have the domination property around u0. Then

V m(G+C,u0,y0,v1, · · · ,vm−1) = V m(F +C,u0,y0,v1, · · · ,vm−1),
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W m(G+C,u0,y0,v1, · · · ,vm−1) = W m(F +C,u0,y0,v1, · · · ,vm−1).

(ii) Suppose y0 ∈ S(u0) and F have the weak domination property around u0 with respect to

Ĉ. Then

V m(S +Ĉ,u0,y0,v1, · · · ,vm−1) = V m(F +Ĉ,u0,y0,v1, · · · ,vm−1),

W m(S +Ĉ,u0,y0,v1, · · · ,vm−1) = W m(F +Ĉ,u0,y0,v1, · · · ,vm−1).

The first result on efficiency is as follows.

Theorem 4.3.2. Let (u0,y0) ∈ grG and v1, · · · ,vm−1 ∈Y . Suppose F have the domination prop-

erty around u0 and C have a compact base.

(i) Assume further either of the following two conditions:

(i1) V m(F +C,u0,y0,v1, · · · ,vm−1) has the domination property,

(i2) V ∞(m)(F,u0,y0,v1, · · · ,vm−1)∩ (−C) = {0}.
Then

MinC\{0}V
m(F,u0,y0,v1, · · · ,vm−1) = MinC\{0}V

m(G,u0,y0,v1, · · · ,vm−1).

(ii) Impose either of the following conditions:

(ii1) W m(F +C,u0,y0,v1, · · · ,vm−1) has the domination property,

(ii2) W ∞(m)(F,u0,y0,v1, · · · ,vm−1)∩ (−C) = {0}.
Then

MinC\{0}W
m(F,u0,y0,v1, · · · ,vm−1) = MinC\{0}W

m(G,u0,y0,v1, · · · ,vm−1).

Proof. We prove only assertion (i). Remark 4.3.1(i) yields that V m(G +C,u0,y0,v1, · · · ,vm−1)

also has the domination property. Because either (i1) or (i2) holds, from Proposition 4.2.15 we

get

MinC\{0}V
m(F,u0,y0,v1, · · · ,vm−1) = MinC\{0}V

m(F +C,u0,y0,v1, · · · ,vm−1)

= MinC\{0}V
m(G+C,u0,y0,v1, · · · ,vm−1) = MinC\{0}V

m(G,u0,y0,y1, · · · ,ym−1).

The following example illustrates Theorem 4.3.2.
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Example 4.3.3. Let U = R, Y = R2, C = R2
+, u0 = 0, y0 = (0,0), and F(u) = {(y1,y2) ∈ Y :

y1 = u, y2 ≥ |y1|} for u ∈U . Then, G(u) = {(y1,y2) ∈ Y : y1 = u, y2 = |y1|}. Let vi = (−1,1)

for i = 1, · · · ,m−1. Direct calculations give

V m(F,u0,y0,v1, · · · ,vm−1) = W m(F,u0,y0,v1, · · · ,vm−1)

=

{ {(y1,y2) ∈ Y : y2 ≥ |y1|}, if m = 1,

{(y1,y2) ∈ Y : y1 + y2 ≥ 0}, if m > 1.

V m(G,u0,y0,v1, · · · ,vm−1) = W m(G,u0,y0,v1, · · · ,vm−1)

=

{ {(y1,y2) ∈ Y : y2 = |y1|}, if m = 1,

{(y1,y2) ∈ Y : y1 + y2 = 0}, if m > 1.

We can check that assumptions of Theorem 4.3.2 are satisfied for all m. Direct checking

yields

MinC\{0}V m(F,u0,y0,v1, · · · ,vm−1) = MinC\{0}V m(G,u0,y0,v1, · · · ,vm−1)

= MinC\{0}W m(G,u0,y0,v1, · · · ,vm−1)

=

{ {(y1,y2) ∈ Y : y1 ≤ 0, y2 = |y1|}, if m = 1,

{(y1,y2) ∈ Y : y1 + y2 = 0}, if m > 1.

Similarly, by Remark 4.3.1(ii) and Proposition 4.2.17, we have the following for weak effi-

ciency.

Theorem 4.3.4. Let (u0,y0) ∈ grS and v1, · · · ,vm−1 ∈ Y . Suppose F have the weak domination

property around u0 with respect to Ĉ, where Ĉ ⊆ intC∪{0} is a closed convex cone having a

compact base.

(i) Let either of the following two conditions hold:

(i1) V m(F + Ĉ,u0,y0,v1 · · · ,vm−1) has the weak domination property with respect

to Ĉ,

(i2) V ∞(m)(F,u0,y0,v1, · · · ,vm−1)∩ (−Ĉ) = {0}.
Then

MinintCV m(F,u0,y0,v1, · · · ,vm−1) = MinintCV m(S,u0,y0,v1, · · · ,vm−1).

(ii) Impose one of the following two conditions:
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(ii1) W m(F +Ĉ,u0,y0,v1, · · · ,vm−1) has the weak domination property with respect

to Ĉ,

(ii2) W ∞(m)(F,u0,y0,v1, · · · ,vm−1)∩ (−Ĉ) = {0}.
Then

MinintCW m(F,u0,y0,v1, · · · ,vm−1) = MinintCW m(S,u0,y0,v1, · · · ,vm−1).

Example 4.3.5. Let U = R, Y = R2, C = R2
+, u0 = 0, y0 = (0,0), and

F(u) =

{ {(y1,y2) ∈ Y : y1 = u, y2 ≥−y1}, if u≤ 0,

{(y1,y2) ∈ Y : 0≤ y1 ≤ u, y2 ≥ 0}, if u > 0.

Then,

S(u) =

{ {(y1,y2) ∈ Y : y1 = u, y2 ≥−y1}, if u≤ 0,

{(y1,y2) ∈ Y : 0≤ y1 ≤ u, y2 = 0}, if u > 0.

Let vi = (1,0) for i = 1, · · · ,m−1. Direct computations yield that

V m(F,u0,y0,v1, · · · ,vm−1) =

{
R2

+∪{(y1,y2) ∈ Y : y1 ≤ 0, y2 ≥−y1}, if m = 1,

R×R+, if m > 1,

and

V m(S,u0,y0,v1, · · · ,vm−1) =

{ {(y1,y2) ∈ Y : y1 ≤ 0, y2 ≥−y1}∪ (R+×{0}), if m = 1,

R×{0}, if m > 1.

For each of F and S, variational sets of two types coincide for all m≥ 1. We can check that

assumptions of Theorem 4.3.4 are fulfilled for all m (for an arbitrary closed convex cone Ĉ such

that Ĉ ∈ intR2
+∪{(0,0)}). Direct verifying gives

MinintCV m(F,u0,y0,v1, · · · ,vm−1) = MinintCV m(S,u0,y0,v1, · · · ,vm−1)

= MinintCW m(S,u0,y0,v1, · · · ,vm−1)

=

{ {(y1,y2) : y1 ≤ 0, y2 =−y1}∪ (R+×{0}), if m = 1,

R×{0}, if m > 1.

Note that the set of (Pareto) efficient points is much smaller than that of weak efficient points

G(u) =

{ {(y1,y2) ∈ Y : y1 = u, y2 =−y1}, if u≤ 0,

{(0,0)}, if u > 0.
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For vi = (1,0), i = 1, · · · ,m− 1, we have V 1(G,u0,y0) = W m(G,u0,y0) = {(y1,y2) ∈ Y : y1 ≤
0, y2 =−y1}, and they are empty for m > 1. We can check that assumptions of Theorem 4.3.2

are satisfied for m = 1 and

MinC\{0}V 1(F,u0,y0) = MinC\{0}V 1(G,u0,y0)

= MinC\{0}W 1(G,u0,y0)

= {(y1,y2) ∈ Y : y1 ≤ 0, y2 =−y1)}.

In the following case, Theorems 4.3.2 and 4.3.4 can be used, but some recent existing results

cannot.

Example 4.3.6. Let U = R, Y = R2, C = R2
+, u0 = 0, y0 = (0,0), and

F(u) =


{(0,0)}, if u = 0,{

(0,0);(
1
n3 ,
−1
n3 );(

−1
n3 ,

1
n3 )
}

, if u =
1
n

for n ∈ N,

/0, otherwise.

Then, S(u) = G(u) = F(u). For v1 = (1,−1), v2 = (−1,1). Calculations give

V 1(F,u0,y0) = W 1(F,u0,y0) = {(y1,y2) ∈ Y : y1 + y2 = 0},

V 2(F,u0,y0,v1) = W 2(F,u0,y0,v1) = {(y1,y2) ∈ Y : y1 + y2 = 0},

V 3(F,u0,y0,v1,v2) = W 3(F,u0,y0,v1,v2) = {(y1,y2) ∈ Y : y1 + y2 = 0}.

We can check that assumptions of Theorems 4.3.2 and 4.3.4 are satisfied. Calculating the lower

Studniarski derivative of F at (u0,y0) (see [158] for the definition), we have dmF(u0,y0)(u) is

empty for all u ∈R. Hence, Theorems 4.1-4.3 and Corollaries 4.1-4.3 of [158] cannot be in use.

Since D2F(u0,y0,u1,v1)(u) = /0, for all u ∈R, Theorems 4.3, 4.7, and 4.10 of [167] in terms

of second-order contingent derivatives cannot be applied either.

Proposition 4.3.7. Let (u0,y0) ∈ grS and v1, · · · ,vm−1 ∈Y . Suppose F have a proto-variational

set of order m of type 1 at (u0,y0). Then

V m(S,u0,y0,v1, · · · ,vm−1)⊆MinintCV m(F,u0,y0,v1, · · · ,vm−1).

Proof. Let y ∈ V m(S,u0,y0,v1, · · · ,vm−1), i.e., there exist tn → 0+, un
S→ u0, and yn → y such

that

y0 + tnv1 + · · ·+ tm
n yn ∈ S(un)⊆ F(un), (4.6)
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so y ∈ V m(F,u0,y0,v1, · · · ,vm−1). Suppose y 6∈ MinintCV m(F,u0,y0,v1, · · · ,vm−1), i.e., there

exists some y′ in V m(F,u0,y0,v1, ..., vm−1) such that y− y′ ∈ intC. For the above sequences tn
and un, there exists y′n→ y′ such that y0 + tnv1 + · · ·+ tm

n y′n ∈ F(un), and yn−y′n ∈ intC for large

n. Consequently,

(y0 + tnv1 + · · ·+ tm
n yn)− (y0 + tnv1 + · · ·+ tm

n y′n) = tm
n (yn− y′n) ∈ intC,

i.e., y0 + tnv1 + · · ·+ tm
n yn 6∈MinintC F(un) = S(un), which contradicts to (4.6).

Unfortunately, the similar result is not true for W m, as indicated by the next example.

Example 4.3.8. Let U = R, Y = R2, C = R2
+, and

F(u) =

{
({0}×R)∪ (R×{0})∪{(x,y) ∈ Y : x2 + y2 = 1}, if u = 0,

/0, if u 6= 0.

Then,

S(u)=

{
((−∞,−1)×{0})∪ ({0}× (−∞,−1))∪{(x,y) : x2 + y2 = 1,x≤ 0,y≤ 0}, if u = 0,

/0, if u 6= 0.

The map F has a proto-variational set at (0,(−1,0)) and W 1(F,0,(−1,0)) = (R+×R)∪ (R−×
{0}). However, we have

MinintCW 1(F,0,(−1,0)) = ({0}×R−)∪ (R−×{0}),

W 1(S,0,(−1,0)) = (R−×{0})∪{(x,y) ∈ Y : y≤−x,x≥ 0},

and hence W 1(S,0,(−1,0)) 6⊆MinintCW 1(F,0,(−1,0)).

Can we get a similar result when “G”and “MinC\{0}” replacing “S”and “MinintC” in Propo-

sition 4.3.7? The following example gives a negative answer.

Example 4.3.9. Let U = R, Y = R2, C = R2
+, and

F(u) =

{ {(x,y) ∈ Y : x > 0,y <−x}∪{(x,y) ∈ Y : y =−x}, if u = 0,

/0, if u 6= 0.
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Then, G(u)≡MinC\{0}F(u) is defined by G(0) = {(x,y) ∈Y : y =−x,x≤ 0} and G(u) = /0 for

any u 6= 0. We see that F has the following proto-variational set

V 1(F,0,(0,0)) = {(x,y) ∈ Y : x≥ 0,y <−x}∪{(x,y) ∈ Y : y =−x}.

Since MinC\{0}V 1(F,0,(0,0)) = {(x,y) ∈Y : y =−x,x < 0} and V 1(G,0,(0,0)) = {(x,y) ∈Y :

y =−x, x≤ 0}, one has

V 1(G,0,(0,0)) 6⊆MinC\{0}V
1(F,0,(0,0)).

Theorem 4.3.10. Let (u0,y0) ∈ grS, v1, · · · ,vm−1 ∈Y , and Ĉ be a closed convex cone contained

in intC∪{0} and have a compact base. Suppose the following conditions be satisfied:

(i) either of the following holds

(i1) V m(F +Ĉ,u0,y0,v1, · · · ,vm−1) has the weak domination property with respect

to Ĉ,

(i2) V ∞(m)(F,u0,y0,v1, · · · ,vm−1)∩ (−Ĉ) = {0},
(ii) F has the weak domination property around u0 with respect to Ĉ,

(iii) F has a proto-variational set of order m of type 1 at (u0,y0).

Then

V m(S,u0,y0,v1, · · · ,vm−1) = MinintCV m(F,u0,y0,v1, · · · ,vm−1).

Proof. Obviously, by Proposition 4.3.7, we need to prove only that

V m(S,u0,y0,v1, · · · ,vm−1)⊇MinintCV m(F,u0,y0,v1, · · · ,vm−1).

Propositions 4.2.12, 4.2.17 and Remark 4.3.1(iii) together imply that

MinintCV m(F,u0,y0,v1, · · · ,vm−1) = MinintCV m(F +Ĉ,u0,y0,v1, · · · ,vm−1)

= MinintCV m(S +Ĉ,u0,y0,v1, · · · ,vm−1)⊆V m(S,u0,y0,v1, · · · ,vm−1).

4.4 Sensitivity analysis for vector optimization problems

In this section, we consider the following two constrained vector optimization problems,

where both the objective map and the constraint set depend on a perturbation parameter,

MinC\{0} F(x,u), subject to x ∈ X(u), (4.7)
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MinintC F(x,u), subject to x ∈ X(u). (4.8)

Here, as before, U,W,Y are normed spaces, C is a pointed closed convex ordering cone in Y ,

F is a set-valued objective map from W ×U to Y , and X is a set-valued map from U to W . We

define a set-valued map H from U to Y by

H(u) := F(X(u),u) = {y ∈ Y : y ∈ F(x,u),x ∈ X(u)}.

So, H(u) is the parameterized feasible set in the objective space. In problems (4.7) and (4.8),

we aim to obtain efficient points and weak efficient points of H(u), respectively. Solution sets

in Y of problems (4.7) and (4.8) are denoted by MinC\{0}H(u) and MinintC H(u), respectively.

Like in Section 4.3, we define

G(u) := MinC\{0}H(u), S(u) := MinintC H(u).

We need the following new definition.

Definition 4.4.1. Let W,U,Y be normed spaces, F : W ×U → 2Y , ((x0,u0),y0) ∈ grF , x ∈W ,

and (wi,vi) ∈W ×Y for i = 1, · · · ,m−1.

(i) The m-th order upper (lower, respectively) variation of F at ((x0,u0),y0) with respect to

x is

V m
q (F,(x0[x],u0),y0,w1,v1, · · · ,wm−1,vm−1) := {v∈Y : ∃tn→ 0+,∃hn→ 0+,∃xn→ x,∃un→ u0,

∃vn→ v,∀n,y0 +hnv1 + · · ·+hm−1
n vm−1 +hm

n vn ∈ F(x0 + tnw1 + · · ·+ tm−1
n wm−1 + tm

n xn,un)}

(V m
q (F,(x0[x],u0),y0,w1,v1...,wm−1,vm−1) := {v∈Y :∀tn→ 0+,∀xn→ x,∀un→ u0,∃vn→ v,∀n,

y0 + tnv1 + ...+ tm−1
n vm−1 + tm

n vn ∈ F(x0 + tnw1 + ...+ tm−1
n wm−1 + tm

n xn,un)}).

(ii) F is said to have a m-th order proto variation of F at ((x0,u0),y0) if and only if, for all x,

V m
q (F,(x0[x],u0),y0,w1,v1, · · · ,wm−1,vm−1) = V m

q (F,(x0[x],u0),y0,w1,v1, · · · ,wm−1,vm−1).

We recall that a map M : X → 2Y is said to be calm around x0 ∈ domM if and only if there

exist a neighborhood V of x0 and L > 0 such that ∀x ∈V ,

M(x)⊆M(x0)+L||x− x0||BY .

We now investigate connections of a proto variation of F and a variational set of X to the

corresponding variational set of H.
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Proposition 4.4.2. Let u0 ∈ U, x0 ∈ X(u0), and y0 ∈ F(x0,u0). If F has a m-th order proto

variation at ((x0,u0),y0), then⋃
x∈V m(X ,u0,x0,w1,··· ,wm−1)

V m
q (F,(x0[x],u0),y0,w1,v1, · · · ,wm−1,vm−1)⊆V m(H,u0,y0,v1, · · · ,vm−1).

(4.9)

Moreover, if W is finite dimensional, X̃(u,y) := {x ∈ Rn : x ∈ X(u),y ∈ F(x,u)} is calm

around (u0,y0), X̃(u0,y0) = {x0}, and V 1
q (X̃ ,(u0,y0[0]),x0) = {0}, then the inclusion opposite

to (4.9) is valid.

Proof. Let x ∈V m(X ,u0,x0,w1, · · · ,wm−1) such that there exists v satisfying

v ∈V m
q (F,(x0[x],u0),y0,w1,v1, · · · ,wm−1,vm−1).

Since x ∈V m(X ,u0,x0,w1, · · · ,wm−1), there exist tn→ 0+, un→ u0, xn
X→ x such that, for all n,

x0 + tnw1 + · · ·+ tm−1
n wm−1 + tm

n xn ∈ X(un).

Then,

F(x0 + tnw1 + · · ·+ tm−1
n wm−1 + tm

n xn,un)⊆ H(un). (4.10)

Because v ∈V m
q (F,(x0[x],u0),y0,w1,v1, · · · ,wm−1,vm−1), with the above tn,un,xn, there exists

yn ∈F(x0 +tnw1 + · · ·+tm−1
n wm−1 +tm

n xn,un) such that t−m
n (yn−y0−tnv1−·· ·−tm−1

n vm−1)→ v.

So, we have

y0 + tnv1 + · · ·+ tm−1
n vm−1 + tm

n

(
yn− y0− tnv1−·· ·− tm−1

n vm−1

tm
n

)
= yn ∈

∈ F(x0 + tnw1 + · · ·+ tm−1
n wm−1 + tm

n xn,un).

It follows from (4.10) that v ∈V m(H,u0,y0,v1, · · · ,vm−1).

Next, we prove the inclusion reverse to (4.9). Let v ∈ V m(H,u0,y0,v1, · · · ,vm−1), i.e., there

exist tn→ 0+, un→ u0, and vn
H→ v such that y0 + tnv1 + · · ·+ tm−1

n vm−1 + tm
n vn ∈ H(un) for all

n. Then, there exists xn ∈ X(un) such that y0 + tnv1 + · · ·+ tm−1
n vm−1 + tm

n vn ∈ F(xn,un). Hence,

xn ∈ X̃(un,y0 + tnv1 + · · ·+ tm−1
n vm−1 + tm

n vn). The calmness of X̃ yields M > 0 such that

||xn− x0|| ≤M||(un,y0 + tnv1 + · · ·+ tm−1
n vm−1 + tm

n vn)− (u0,y0)||.

Then, xn→ x0 and hence (xn− x0− tnw1−·· ·− tm−1
n wm−1)→ 0. We claim that {t−m

n (xn− x0−
tnw1−·· ·− tm−1

n wm−1)} is bounded. Indeed, we have

x0 + ||xn− x0||
(xn− x0)
||xn− x0||

= xn ∈ X̃(un,y0 + tnv1 + · · ·+ tm−1
n vm−1 + tm

n vn). (4.11)
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We may assume that an := (xn− x0)/||xn− x0|| → a with norm one. Setting rm
n := ||xn− x0−

tnw1−·· ·− tm−1
n wm−1||, we have rm

n → 0+ and

y0 + tnv1 + · · ·+ tm−1
n vm−1 + tm

n vn = y0 + rn
tn
rn

v1 + · · ·+ rm−1
n

tm−1
n

rm−1
n

vm−1 + rm
n

tm
n

rm
n

vn

= y0 + rn

(
tn
rn

v1 + · · ·+ rm−2
n

tm−1
n

rm−1
n

vm−1 + rm−1
n

tm
n

rm
n

vn

)
=: y0 + rnqn.

For hn := ||xn−x0||, (4.11) is written equivalently as x0+hnan ∈ X̃(un,y0+rnqn). If tm
n /rm

n → 0+,

then qn→ 0 and a∈V 1
q (X̃ ,(u0,y0[0]),x0), which is impossible. Thus, {t−m

n (xn−x0−tnw1−·· ·−
tm−1
n wm−1)} is bounded and

xn :=
1
tm
n

(xn− x0− tnw1−·· ·− tm−1
n wm−1)

converges to some x ∈ Rn. Since x0 + tnw1 + · · ·+ tm−1
n wm−1 + tm

n xn ∈ X(un), one has

y0 + tnv1 + · · ·+ tm−1
n vm−1 + tm

n vn ∈ F(x0 + tnw1 + · · ·+ tm−1
n wm−1 + tm

n xn,un).

Therefore, x ∈V m(X ,u0,x0,w1, · · · ,wm−1) and v ∈V m
q (F,(x0[x],u0),y0,w1,v1, · · · ,wm−1,vm−1).

The following four examples ensure the essentialness of each assumption of Proposition

4.4.2.

Example 4.4.3. (X̃(u0,y0) = {x0} is needed)

Let U = W = Y = R, F(x,u) = {x(x−1)}, u0 = 0, x0 = 1, y0 = 0 ∈ F(x0,u0), and

X(u) =


{x ∈W : 0≤ x≤ 1}, if u = 0,

{x ∈W :−u≤ x≤ 1}, if u =
1
n
, n ∈ N,

/0, otherwise.

Then,

X̃(u,y) =



{
1−
√

1+4y
2

,
1+
√

1+4y
2

}
, if u ∈ {0}∪{1

n
: n ∈ N}, −1

4
≤ y≤ 0,{

1−
√

1+4y
2

}
, if u ∈ {1

n
: n ∈ N}, 0 < y≤ u(u+1),

/0, otherwise,
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and

H(u) =


{y ∈ Y :

−1
4
≤ y≤ 0}, if u = 0,

{y ∈ Y :
−1
4
≤ y≤ u(u+1)}, if u =

1
n
, n ∈ N,

/0, otherwise.

The map X̃ is clearly calm around (u0,y0) and we can obtain by direct calculations that

V 1
q (X̃ ,(u0,y0[0]),x0) = {0}, V 1(X ,u0,x0) =−R+,

V 1
q (F,(x0[x],u0),y0) = {x}, V 1(H,u0,y0) = R.

So, ⋃
x∈V 1(X ,u0,x0)

V 1
q (F,(x0[x],u0),y0) =−R+.

Thus, since X̃(u0,y0) = {0,1} 6= {x0}, we have

V 1(H,u0,y0) 6⊆
⋃

x∈V 1(X ,u0,x0)

V 1
q (F,(x0[x],u0),y0).

Example 4.4.4. (the calmness around (u0,y0) cannot be dropped)

Let U = W = Y = R, F(x,u) = {x(x−1)}, u0 = 0, x0 = 1, y0 = 0 ∈ F(x0,u0), and

X(u) =


{x ∈W : 0 < x≤ 1}, if u = 0,

{x ∈W :−u < x≤ 1}, if u =
1
n
, n ∈ N,

/0, otherwise.

Then,

X̃(u,y) =



{1}, if u ∈ {0}∪{1
n

: n ∈ N}, y = 0,{
1−
√

1+4y
2

,
1+
√

1+4y
2

}
, if u ∈ {0}∪{1

n
: n ∈ N}, −1

4
≤ y < 0,{

1−
√

1+4y
2

}
, if u ∈ {1

n
: n ∈ N}, 0 < y < u(u+1),

/0, otherwise,

and H(u) is as in Example 4.4.3 with only “y ≤ u(u + 1)” replaced by the strict inequality.

Hence,

X̃(u0,y0) = {x0}, V 1
q (X̃ ,(u0,y0[0]),x0) = {0},
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V 1(X ,u0,x0) =−R+, V 1
q (F,(x0[x],u0),y0) = {x}, V 1(H,u0,y0) = R.

Consequently, because X̃ is not calm around (u0,y0), we really have

⋃
x∈V 1(X ,u0,x0)

V 1
q (F,(x0[x],u0),y0) =−R+,

V 1(H,u0,y0) 6⊆
⋃

x∈V 1(X ,u0,x0)

V 1
q (F,(x0[x],u0),y0).

Example 4.4.5. (Vq(X̃ ,(u0,y0[0]),x0) = {0} is essential)

Let U = Y = R, W = R2, X(u) = {x ∈W : x1 = u, x2 = 0}, F(x,u) = {x2
1(x1−1)}, u0 = 0,

x0 = (0,0), and y0 = f (x0,u0) = 0. Then,

X̃(u,y) =

{
{(u,0)}, if u ∈ R, y = u2(u−1),

/0, otherwise,

and H(u) = {u2(u−1)}. Hence, X̃(u0,y0) = {x0} and X̃ is calm around (u0,y0). Direct calcu-

lations give V 1(X ,u0,x0) = R×{0}, V 1
q (F,(x0[x],u0),y0) = {0}. Therefore,

⋃
x∈V 1(X ,u0,x0)

V 1
q (F,(x0[x],u0),y0) = {0}.

By taking tn =
1
n

, un =
1√
n

, xn = (un,0) ∈ X(un), vn =
1√
n
− 1 → −1, we can check that

y0 + tnvn ∈ H(un). Thus, −1 ∈V 1(H,u0,y0). Consequently,

V 1(H,u0,y0) 6⊆
⋃

x∈V 1(X ,u0,x0)

V 1
q (F,(x0[x],u0),y0).

To see the cause, let tn =
1
n

, un =
1
n

, yn =
1
n
(
1
n
− 1)→ 0, xn = (1,0) to have that x0 + tnxn ∈

X̃(un,y0 + tnyn), and so (1,0) ∈V 1
q (X̃ ,(u0,y0[0]),x0).

Example 4.4.6. (W needs be finite dimensional)

Let U = Y = R, and W = l1, the space of all real sequences x = (xi)i∈N with
∞

∑
i=1

∣∣xi
∣∣< ∞. Let

X(u) =


{0}, if u = 0,

{x = (xi)i∈N ∈W : xi = u if i = n; xi = 0 if i 6= n}, if u =
1
n
, n ∈ N,

/0, otherwise,
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F(x,u) = {||x||(||x||−1)}, u0 = 0, x0 = 0 ∈ X(u0), and y0 = 0 ∈ F(x0,u0). Then,

X̃(u,y) =


{0}, if u = 0,

{(xi)i∈N ∈W : xi = u if i = n; xi = 0 if i 6= n}, if u =
1
n

,n ∈ N, y = |u|(|u|−1),

/0, otherwise,

and

H(u) =


{0}, if u = 0,

{|u|(|u|−1)}, if u =
1
n
, n ∈ N,

/0, otherwise.

Hence, X̃ is calm around (u0,y0). We can compute directly that

X̃(u0,y0) = {x0}, V 1
q (X̃ ,(u0,y0[0]),x0) = {0},

V 1
q (F,(x0[x],u0),y0) = {−||x||}, V 1(X ,u0,x0) = {0}.

Therefore, ⋃
x∈V 1(X ,u0,x0)

V 1
q (F,(x0[x],u0),y0) = {0}.

By taking tn =
1
n

, un =
1
n

, xn = (xi
n)i∈N ∈ X(un) satisfying xi

n = un if i = n and xi
n = 0 if i 6= n,

and vn =
1
n
−1→−1, we can check that y0 + tnvn ∈ H(un). Hence, −1 ∈V 1(H,u0,y0). Thus,

V 1(H,u0,y0) 6⊆
⋃

x∈V 1(X ,u0,x0)

V 1
q (F,(x0[x],u0),y0).

Finally, invoking to Proposition 4.4.2 and results of Section 4.3, we easily establish rela-

tions between the set of efficient points and the set of weak efficient points of the mentioned

variational sets stated in the following theorems.

Theorem 4.4.7. Let (u0,y0) ∈ grG, x0 ∈ X(u0), y0 ∈ F(x0,u0), W be finite dimensional, and C

have a compact base. Suppose that

(i) H has the domination property around u0,

(ii) either of the following two conditions holds:

(ii1) V m(H +C,u0,y0,v1, · · · ,vm−1) has the domination property,

(ii2) V ∞(m)(H,x0,y0,v1, · · · ,vm−1)∩ (−C) = {0},
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(iii) F has a m-th order proto variation at ((x0,u0),y0),

(iv) X̃ is calm around (u0,y0),

(v) X̃(u0,y0) = {x0} and V 1
q (X̃ ,(u0,y0[0]),x0) = {0}.

Then

MinC\{0}

 ⋃
x∈V m(X ,u0,x0,w1,··· ,wm−1)

V m
q (F,(x0[x],u0),y0,w1,v1, · · · ,wm−1,vm−1)

=

MinC\{0}V
m(G,x0,y0,v1, · · · ,vm−1).

Proof. This follows from Theorem 4.3.2 and Proposition 4.4.2.

Theorem 4.4.8. Let (u0,y0) ∈ grS, x0 ∈ X(u0), y0 ∈ F(x0,u0), W be finite dimensional, and Ĉ

be a closed convex cone contained in intC∪{0}, and have a compact base. Suppose that

(i) Y has the weak domination property around u0 with respect to Ĉ,

(ii) either of the following two conditions is satisfied:

(ii1) V m(H +Ĉ,u0,y0,v1, · · · ,vm−1) has the weak domination property with respect

to Ĉ,

(ii2) V ∞(m)(H,x0,y0,v1, · · · ,vm−1)∩ (−Ĉ) = {0},
(iii) F has a m-th order proto variation at ((x0,u0),y0),

(iv) X̃ is calm around ((u0,y0),x0),

(v) X̃(u0,y0) = {x0} and V 1
q (X̃ ,(u0,y0[0]),x0) = {0}.

Then

MinintC

 ⋃
x∈V m(X ,u0,x0,w1,··· ,wm−1)

V m
q (F,(x0[x],u0),y0,w1,v1, · · · ,wm−1,vm−1)

=

MinintCV m(S,x0,y0,v1, · · · ,vm−1).

Proof. Theorem 4.3.4(i) and Proposition 4.4.2 together imply this theorem.

Theorem 4.4.9. Let (u0,y0) ∈ grS, the assumptions of Theorem 4.4.8 be satisfied, and H have

a proto-variational set of order m of type 1 at (u0,y0). Then

V m(S,u0,y0,v1, · · · ,vm−1) =

MinintC

 ⋃
x∈V m(X ,u0,x0,w1,··· ,wm−1)

V m
q (F,(x0[x],u0),y0,w1,v1, · · · ,wm−1,vm−1)

 .
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Proof. Applying Theorem 4.3.10 and Proposition 4.4.2, we are done.

Remark 4.4.10. Though there have been several contributions to analysis of perturbation map

G and weak perturbation map S for unconstrained feasible map F (defined in Section 4.3), we

see only Tanino in [162] dealing with this topic for a map F in a set-constrained smooth single-

valued problem. That paper was limited to first-order results in terms of gradients of F . The

present section is the first attempt of higher-order considerations of F for a set-constrained nons-

mooth multivalued problem. The extension has been performed in several aspects. Furthermore,

we have extended successfully almost directly Theorem 4.1 of Tanino in [162]. However, a

drawback here is that the results are technically complicated. We hope that, excluding inevitable

complexity, e.g., with higher-order derivatives (at least because of long expressions) and a high

level of nonsmoothness, improvements can be obtained in future. In this section, we restrict our-

selves to making sure that the relatively complicated assumptions imposed in the results cannot

be avoided by showing (in examples) their essentialness.
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Chapter 5

Radial sets, radial derivatives and
applications to optimality conditions for
vector optimization problems

5.1 Introduction

On optimality conditions for nonsmooth problems, to meet the increasing diversity of prac-

tical situations, a broad spectrum of generalized derivatives has been developed to replace the

Fréchet and Gâteaux derivatives. Each of them is suitable for several models, and none is univer-

sal. Note that the wide range of methods in nonsmooth optimization can be roughly separated

into the primal and the dual space approaches. Almost notions of generalized derivatives in the

primal space approach are based on corresponding tangency concepts and hence carry only lo-

cal information. In other words, such derivatives are local linear approximations of a considered

map.

Until now, only few concepts of such derivatives have been extended to orders greater than

two, which are naturally understood to be inevitable for higher-order optimality conditions, such

as contingent, adjacent and Clarke derivatives (see [26, 59, 67, 80, 87, 95, 99, 103, 115, 118, 119,

125], variational sets (see [7, 105, 106]), etc. (The derivatives constructed in the dual space

approach are hardly extended to orders greater than two.) The radial derivative, introduced by

Taa in [160], is in the first approach, but encompasses the idea of a conical hull, and hence

contains global information of a map as its conical hull, and is closed and can be used to obtain

optimality conditions for global solutions without convexity assumptions.

We recall that, for a subset S of a normed space X and x0 ∈ clS, the radial cone of S at x0 is
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defined by Taa in [160] as follows

RS(x0) := {u ∈ X : ∃tn > 0,∃un→ u,∀n,x0 + tnun ∈ S}.

For F : X → 2Y , X ,Y be normed spaces, (x0,y0) ∈ grF and u ∈ X , the first-order radial

derivative of F at (x0,y0) is defined in [160] by gr(DRF(x0,y0)) = RgrF(x0,y0). A kind of

higher-order radial derivatives was proposed by Anh et al. in [8] as follows. The m-th order

outer radial derivative of F at (x0,y0) ∈ grF is

Dm
R F(x0,y0)(u) := {v ∈ Y : ∃tn > 0,∃(un,vn)→ (u,v),∀n,y0 + tm

n vn ∈ F(x0 + tnun)}, (5.1)

the m-th order inner radial derivative of F at (x0,y0) ∈ grF is

D[(m)
R F(x0,y0)(u) := {v ∈ Y : ∀tn > 0,∃(un,vn)→ (u,v),∀n,y0 + tm

n vn ∈ F(x0 + tnun)}.

Observe that the graph of the above higher-order radial derivatives is not a higher-order

tangent set of the graph of the map, because the rates of change of the points under consider-

ation in X and Y are different (tn and tm
n ). The graph of many other higher-order derivatives is

such a corresponding graph. For instance, for F : X → 2Y , (x0,y0) ∈ grF and (ui,vi) ∈ X ×Y ,

i = 1, ...,m− 1, recall that the m-th order contingent derivative of F at (x0,y0) with respect to

(u1,v1), ...,(um−1,vm−1) is

DmF(x0,y0,u1,v1, ...,um−1,vm−1)(u) := {v ∈ Y : ∃tn→ 0+,∃(un,vn)→ (u,v),

∀n,y0 + tnv1 + ...+ tm
n vn ∈ F(x0 + tnu1 + ...+ tm

n un)}.

Its graph is just the m-th order contingent set of the graph of F . In some sense, this property

has a better geometry and is more natural.

The discussion above motivates the aim of this chapter: to define another kind of higher-

order radial derivatives based on (higher-order) radial sets and use it to obtain higher-order

optimality conditions for set-valued vector optimization. It turns out that, in general this kind

of radial derivatives is incomparable with our previous definitions in [8], but it provides a tool

for establishing new optimality conditions, which also sharpen or improve a number of the

existing results in the literature. Note further that the obtained optimality conditions have global

characters and do not need any convexity assumptions. The content of this chapter is also our

research published in [2, 4].
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5.2 Radial sets and radial derivatives

Definitions of higher-order radial sets and corresponding derivatives are introduced in this

section, followed by their properties and basic calculus rules like those for a sum or composition

of mappings.

5.2.1 Definitions and properties

Definition 5.2.1. Let X be a normed space, x0 ∈ S⊆ X , and u1, ...,um−1 ∈ X with m≥ 1.

(i) The m-th order upper radial set of S at x0 with respect to u1, ...,um−1 is defined as

T r(m)
S (x0,u1, ...,um−1) := {y ∈ X : ∃tn > 0,∃yn→ y,∀n,x0 + tnu1 + ...+ tm−1

n um−1 + tm
n yn ∈ S}.

(ii) The m-th order lower radial set of S at x0 with respect to u1, ...,um−1 is

T r[(m)
S (x0,u1, ...,um−1) := {y ∈ X : ∀tn > 0,∃yn→ y,∀n,x0 + tnu1 + ...+ tm−1

n um−1 + tm
n yn ∈ S}.

Definition 5.2.2. Let X ,Y be normed spaces, F : X → 2Y , (x0,y0) ∈ grF , and (ui,vi) ∈ X ×Y ,

i = 1, ...,m−1 with m≥ 1.

(i) The m-th order upper radial derivative of F at (x0,y0) with respect to (u1,v1) , ...,

(um−1,vm−1) is the multimap Dm
R F(x0,y0,u1,v1, ...,um−1,vm−1) : X → 2Y whose graph is

grDm
R F(x0,y0,u1,v1, ...,um−1,vm−1) := T r(m)

grF (x0,y0,u1,v1, ...,um−1,vm−1).

(ii) The m-th order lower radial derivative of F at (x0,y0) with respect to (u1,v1), ...,

(um−1,vm−1) is the multimap D[(m)
R F(x0,y0,u1,v1, ...,um−1,vm−1) : X → 2Y with

grD[(m)
R F(x0,y0,u1,v1, ...,um−1,vm−1) := T r[(m)

grF (x0,y0,u1,v1, ...,um−1,vm−1).

We easily obtain the following formulae, for x ∈ X ,

Dm
R F(x0,y0,u1,v1, ...,um−1,vm−1)(x) = {v ∈ Y : ∃tn > 0,∃xn→ x,∃vn→ v,∀n,

= y0 + tnv1 + ...+ tm−1
n vm−1 + tm

n vn ∈ F(y0 + tnu1 + ...+ tm−1
n um−1 + tm

n xn)}

D[(m)
R F(x0,y0,u1,v1, ...,um−1,vm−1)(x) = {v ∈ Y : ∀tn > 0,∃xn→ x,∃vn→ v,∀n,

y0 + tnv1 + ...+ tm−1
n vm−1 + tm

n vn ∈ F(y0 + tnu1 + ...+ tm−1
n um−1 + tm

n xn)}.
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Remark 5.2.3. (i) It follows that

Dm
R F(x0,y0,u1,v1, ...,um−1,vm−1)(X)⊆ T r(m)

F(X)(y0,v1, ...,vm−1).

(ii) Radial sets are especial cases of Γ-limits. Indeed,

y ∈ T r(m)
S (x0,u1, ...,um−1) ⇐⇒ inf

Q∈N (y)
sup
t>0

sup
y′∈Q

χgr(HS,x0,u1,...,um−1)(t,y′) = 1

⇐⇒ Γ(R+,N (y)+) lim χgr(HS,x0,u1,...,um−1) = 1,

y ∈ T r[(m)
S (x0,u1, ...,um−1) ⇐⇒ inf

Q∈N (y)
inf
t>0

sup
y′∈Q

χgr(HS,x0,u1,...,um−1)(t,y′) = 1

⇐⇒ Γ(R−,N (y)+) lim χgr(HS,x0,u1,...,um−1) = 1,

where R := {(0,+∞)} be a filter on (0,+∞), and HS,x0,u1,...,um−1 : (0,+∞)→ 2X is defined by

HS,x0,u1,...,um−1(t) :=
1
tm (S− x0− tu1− ...− tm−1um−1).

(iii) Radial derivatives can be expressed in terms of Γ-limits as follows

y ∈ Dm
R F(x0,y0,u1,v1, ...,um−1,vm−1)(x)

⇐⇒ inf
Q∈N (y)

inf
W∈N (x)

sup
t>0

sup
x′∈W

sup
y′∈Q

χgr(HF,(x0,y0),(u1,v1),...,(um−1,vm−1))(t,x
′,y′) = 1

⇐⇒ Γ(R+,N (x)+,N (y)+) lim χgr(HF,(x0,y0),(u1,v1),...,(um−1,vm−1)) = 1,

y ∈ D[(m)
R F(x0,y0,u1,v1, ...,um−1,vm−1)(x)

⇐⇒ inf
Q∈N (y)

inf
W∈N (x)

inf
t>0

sup
x′∈W

sup
y′∈Q

χgr(HF,(x0,y0),(u1,v1),...,(um−1,vm−1))(t,x
′,y′) = 1

⇐⇒ Γ(R−,N (x)+,N (y)+) lim χgr(HF,(x0,y0),(u1,v1),...,(um−1,vm−1)) = 1,

where HF,(x0,y0),(u1,v1),...,(um−1,vm−1) : (0,+∞)×X → 2Y is defined by

HF,(x0,y0),(u1,v1),...,(um−1,vm−1)(t,x
′) :=

1
tm (F(x0 + tu1 + ...+ tm−1um−1 + tmx′)− y0−
−tv1− ...− tm−1vm−1.

(iv) Definitions 5.2.1, 5.2.2 correspond to the following known definition of the contingent

objects

T m
S (x0,u1, ...,um−1) := {y ∈ X : ∃tn→ 0,∃yn→ y,∀n,x0 + tnu1 + ...+ tm−1

n um−1 + tm
n yn ∈ S},

grDmF(x0,y0,u1,v1, ...,um−1,vm−1) := T m
grF(x0,y0,u1,v1, ...,um−1,vm−1).
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Observe another fact, which makes the radial set and derivative different from the contingent

set and derivative, and hence also from other tangency notions and derivatives in variational

analysis. Let us explain this difference only between T r(2)
S (x0,u) and T 2

S (x0,u) for simplicity.

It is known that if u 6∈ TS(x0), then T 2
S (x0,u) = /0. But, the simple example with X = R2, S =

{0R2,e1}, x0 = 0R2 , e1 = (1,0), e2 = (0,1) shows that this is not valid for radial cones: u =

e1− e2 6∈ T r
S (x0), but e2 ∈ T r(2)

S (x0,u), i.e., the last cone is nonempty.

(v) The objects defined in Definitions 5.2.1, 5.2.2 are called upper and lower radial sets

and derivatives, respectively. However, though being applied to establish necessary optimality

conditions similarly as the upper radial concept is, this lower radial object yields weaker results,

and it is not convenient for dealing with sufficient optimality conditions. Therefore, in this

chapter we develop only the upper radial concepts and thus omit the term “upper”.

In the following example, we compute a radial derivative and a contingent derivative in an

infinite dimensional case.

Example 5.2.4. Let X = R and Y = l2, the Hilbert space of the numerical sequences x = (xi)i∈N

with ∑
∞
i=1 x2

i being convergent. By (ei)i∈N we denote standard unit basis of l2. Consider F : X→
2Y defined by

F(x) :=



{
1
n
(−e1 +2en)

}
, if x =

1
n
,{

y = (yi)∞
i=1 ∈ l2 : y1 ≥ 0,y2

1 ≥ ∑
∞
i=2 y2

i
}

, if x = n,

{0}, otherwise.

It is easy to see that C := {y = (yi)∞
i=1 ∈ l2 : y1≥ 0,y2

1≥∑
∞
i=2 y2

i } is a closed, convex, and pointed

cone. For (x0,y0) = (0,0), we compute T r(1)
grF (x0,y0). If (u,v)∈ T r(1)

grF (x0,y0), by definition, there

exist tn > 0 and (un,vn)→ (u,v) such that

tnvn ∈ F(tnun). (5.2)

If tnun 6∈ {1/n,n}, then from (5.2) a direct computation gives v = 0. Now assume that tnun ∈
{1/n,n}. Consider the first case with tnun = 1/n. From (5.2), one has

tnvn =
1
n
(−e1 +2en). (5.3)

We have two subcases. If u = 0, then un = 1/(ntn)→ 0, and hence (5.3) implies that vn =

un(−e1 +2en)→ 0, i.e., v = 0. In the second subcase with u > 0, we claim that there is no v such
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that (u,v) ∈ T r(1)
grF (x0,y0). Suppose there exists such a (u,v) (with u > 0). Then, from (5.3), the

sequence (ntn)−1(−e1 + 2en) = un(−e1 + 2en) converges. Hence, as une1→ ue1, the sequence

dn := 2unen is also convergent. Suppose that dn converges to d. By a direct computation, one

has

||2unen−d||2 = (2un)2 + ||d||2 +2〈2unen,−d〉 → 0.

Therefore, 4(u)2 + ||d||2 = 0 (since {en} converges weakly to 0, 〈en,d〉 → 0), which is a contra-

diction.

Now consider the second case with tnun = n. From (5.2) we get tnvn ∈C. Thus, v ∈C since C is

a closed cone. It follows from un = n/tn that u≥ 0. Consequently, we have proved that

T r(1)
grF (x0,y0)⊆ ([0,+∞)×C)∪ ((−∞,0)×{0}).

We now show the reverse inclusion. Let (u,v) ∈ ([0,+∞)×C)∪ ((−∞,0)×{0}). We prove

that there exist tn > 0, un→ u, and vn→ v such that (5.2) holds for all n. Indeed, depending on

u and v, such tn, un, and vn can be chosen as follows.

• For (0,v) such that v ∈C, we take tn = n2, un = 1/n, vn ≡ v.

• For (u,v) ∈ (0,+∞)×C, we take tn = n/u, un ≡ u, vn ≡ v.

• For (u,v) ∈ (−∞,0)×{0}, we take tn = n/|u|, un ≡ u, vn ≡ 0.

So,

T r(1)
grF (x0,y0) = ([0,+∞)×C)∪ ((−∞,0)×{0}).

Therefore,

D1
RF(x0,y0)(u) =

{
C, if u≥ 0,

{0}, if u < 0.

By a similar way, with simpler calculations, we get T 1
grF(x0,y0) = R×{0}, and hence for all

u ∈ R, D1F(x0,y0)(u) = {0}.

The next example highlights detailed differences between (5.1) and the radial derivative

introduced in Definition 5.2.2(i).

Example 5.2.5. Let X = Y = R and F(x) = {x2} and (x0,y0) = (0,0). Direct calculations yield

D1
RF(x0,y0)(x) = D1

RF(x0,y0)(x) = R+.

Without any information, we have D2
RF(x0,y0)(x) = x2. Now let (u1,v1) = (0,0) be given, then

D2
RF(x0,y0,u1,v1)(x)= R+. For another given direction (u1,v1)= (1,0), D2

RF(x0,y0,u1,v1)(x)=

{1+a2x2 +2ax : a≥ 0}.
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Definition 5.2.6. Let F : X→ 2Y , (x0,y0)∈ grF and (ui,vi)∈ X×Y , i = 1, ...,m−1 with m≥ 1.

(i) If T r(m)
F(X)(y0,v1, ...,vm−1) = T r[(m)

F(X) (y0,v1, ...,vm−1), then this set is called a m-th order proto-

radial set of F(X) at y0 with respect to v1, ...,vm−1.

(ii) If Dm
R F(x0,y0,u1,v1, ...,um−1,vm−1)(x) = {v ∈Y : ∀tn > 0,∀xn→ x,∃vn→ v : y0 + tnv1 +

...+tm−1
n vm−1+tm

n vn ∈F(y0+tnu1+...+tm−1
n um−1+tm

n xn),∀n}, for any x∈ domDm
R F(x0,y0,u1,

v1, ...,um−1,vm−1), then this derivative is called a m-th order radial semiderivative of F at (x0,y0)

with respect to (u1,v1), ...,(um−1,vm−1).

Note that, following strictly Definition 5.2.2, we would define that Dm
R F(x0,y0,u1,v1, ...,

um−1,vm−1) is a m-th order radial semiderivative if

grDm
R F(x0,y0,u1,v1, ...,um−1,vm−1) = T r[(m)

grF (x0,y0,u1,v1, ...,um−1,vm−1).

But, this last condition is equivalent to

Dm
R F(x0,y0,u1,v1, ...,um−1,vm−1)(x) = {v ∈ Y : ∀tn > 0,∃xn→ x,∃vn→ v,∀n,y0 + tnv1 + ...

+tm−1
n vm−1 + tm

n vn ∈ F(x0 + tnu1 + ...+ tm−1
n um−1 + tm

n xn)},

which is weaker than Definition 5.2.6(ii). (This weaker condition was used to define proto-

contingent derivatives in many papers in the literature.) Definition 5.2.6 is restrictive. However,

it may be satisfied as shown in the following.

Example 5.2.7. Let X =Y = R, F : X→ 2Y be defined by F(x) = {y∈Y : y≥ x}, and (x0,y0) =

(0,0). Then, direct calculations yield T r(1)
F(X)(y0) = T r[(1)

F(X) (y0) = R and

D1
RF(x0,y0)(x) = {v ∈ Y : ∀tn > 0,∀xn→ x,∃vn→ v,∀n,y0 + tnvn ∈ F(x0 + tnxn)}

= {v ∈ Y : v≥ x}.

So, T r(1)
F(X)(y0) is a first-order proto-radial set of F(X) at y0, and D1

RF(x0,y0) is a first-order radial

semiderivative of F at (x0,y0).

For examples of second-orders, with any v1 ∈ R, direct computations show that

T r(2)
F(X)(y0,v1) = T r[(2)

F(X) (y0,v1) = R.

Thus, T r(2)
F(X)(y0,v1) is a second-order proto-radial set of F(X) at y0 with respect to v1 ∈ R.

Passing to derivatives, let (u1,v1)= (1,1). Direct computations indicate that both D2
RF(x0,y0,

u1,v1)(x) and the set on the right-hand side of the equality in Definition 5.2.6(ii) are equal to
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{v ∈ Y : v ≥ x}. Thus, F has a second-order radial semiderivative at (x0,y0) with respect to

(1,1). However, for (u1,v1) = (0,−1), the derivatives are “worse”:

D2
RF(x0,y0,u1,v1)(x) = {v ∈ Y : v≥ x}

and the other mentioned set is empty. So, F does not have a second-order radial semiderivative

at (x0,y0) with respect to (0,−1).

Proposition 5.2.8. If S is convex, then so is T r[(m)
S (x0,u1, ...,um−1).

Proof. If T r[(m)
S (x0,u1, ...,um−1) = /0 or is a singleton, the result holds trivially. Now assume that

there are v1,v2 ∈ T r[(m)
S (x0,u1, ...,um−1) and λ ∈ (0,1). It follows from the definition that, for

any tn > 0, there exist sequences v1
n and v2

n such that v1
n→ v1, v2

n→ v2 and for i = 1,2,

x0 + tnu1 + ...+ tm−1
n um−1 + tm

n vi
n ∈ S.

From the convexity of S, we have

x0 + tnu1 + ...+ tm−1
n um−1 + tm

n
(
λv1

n +(1−λ )v2
n
)
∈ S.

Thus, λv1 +(1−λ )v2 ∈ T r[(m)
S (x0,u1, ...,um−1) and the proof is complete.

Proposition 5.2.9. If S is convex and u1, ...,um−1 ∈ S, then

T r[(m)
S (x0,u1− x0, ...,um−1− x0)⊆ T [(m)

S (x0,u1− x0, ...,um−1− x0) =

= T m
S (x0,u1− x0, ...,um−1− x0) = T r(m)

S (x0,u1− x0, ...,um−1− x0)

Proof. From the definitions, we have

T r[(m)
S (x0,u1− x0, ...,um−1− x0)⊆ T [(m)

S (x0,u1− x0, ...,um−1− x0)

and

T r(m)
S (x0,u1− x0, ...,um−1− x0) = cl

(⋃
t>0

S− x0− t(u1− x0)− ...− tm−1(um−1− x0)
tm

)
.

Since S is convex, Proposition 3.1 of [118] says that the right side of the last equality is equal to

T m
S (x0,u1− x0, ...,um−1− x0) = T [(m)

S (x0,u1− x0, ...,um−1− x0) and we are done
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The inclusion in Proposition 5.2.9 may be strict as for S = [0,1] and x0 = 0, since we have

T r[(1)
S (x0) = {0} and T [(1)

S (x0) = T 1
S (x0) = T r(1)

S (x0) = R+.

It is known (Corollary 3.1 of [118]) that if S is convex and u1, ...,um−1 ∈ S, then T [(m)
S (x0,u1−

x0, ...,um−1− x0) is convex. Therefore, Proposition 5.2.9 implies the following.

Corollary 5.2.10. If S is convex and u1, ...,um−1 ∈ S, then T r(m)
S (x0,u1− x0, ...,um−1− x0) is

convex.

Proposition 5.2.11. Let S = domF and (x0,y0) ∈ grF. Then, for all x ∈ S,

(i) F(x)− y0 ⊆ D1
RF(x0,y0)(x− x0),

(ii) F(x)− y0 ⊆ T r(1)
F(S)(y0).

Proof. Let x ∈ S, y ∈ F(x)− y0, then y0 + y ∈ F(x). Therefore, there exist tn = 1,yn = y and

xn = x−x0, for all n, such that y0 +tm
n yn ∈ F(x0 +tnxn) for all n. Hence, y∈D1

RF(x0,y0)(x−x0).

(ii) Let x ∈ S, y ∈ F(x)− y0, then y0 + y ∈ F(x). Therefore, there exist tn = 1,yn = y and

xn = x− x0, ∀n such that y0 + tm
n yn ∈ F(x0 + tnxn)⊆ F(S). So, y ∈ T r(1)

F(S)(y0).

Note that these assertions say, in particular, that radial sets and derivatives possess global

properties without any (relaxed) convexity assumption. To make this clear, recall that F : X→ 2Y

is termed pseudoconvex at (x0,y0) ∈ grF if epiF − (x0,y0) ⊆ TepiF(x0,y0). Furthermore, if F

is pseudoconvex at (x0,y0), then, ∀x ∈ domF , F(x)− y0 ⊆ V 1(F+,x0,y0) (see Proposition 2.1

of Khanh and Tuan in [105]). Roughly speaking, that is why, in the sufficient condition (see

Theorem 5.3.7), no convexity assumption is needed.

5.2.2 Sum rule and chain rule

Proposition 5.2.12. (Sum rule) Let Fi : X → 2Y , x0 ∈ Ω := domF1 ∩ domF2, yi ∈ Fi(x0) for

i = 1,2.

(i) If either F1(Ω) or F2(Ω) has a m-th order proto-radial set at y1 with respect to v1,1, ...,v1,m−1

or at y2 with respect to v2,1, ...,v2,m−1, respectively, then

T r(m)
F1(Ω)(y1,v1,1, ...,v1,m−1)+T r(m)

F2(Ω)(y2,v2,1, ...,v2,m−1)

⊆ T r(m)
(F1+F2)(Ω)(y1 + y2,v1,1 + v2,1, ...,v1,m−1 + v2,m−1).
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(ii) If either F1 or F2 has a m-th order radial semiderivative at (x0,y1) with respect to

(u1,v1,1), ...,(um−1,v1,m−1) or at (x0,y2) with respect to (u1,v2,1), ...,(um−1,v2,m−1), respec-

tively, then for any u ∈ X,

Dm
R F1(x0,y1,u1,v1,1, ...,um−1,v1,m−1)(u)+Dm

R F2(x0,y2,u1,v2,1, ...,um−1,v2,m−1)(u)

⊆ Dm
R (F1 +F2)(x0,y1 + y2,u1,v1,1 + v2,1, ...,um−1,v1,m−1 + v2,m−1)(u).

Proof. (i) Let ui ∈ T r(m)
Fi(Ω)(yi,vi,1, ...,vi,m−1) for i = 1,2. Then, there exist tn > 0 and u1

n→ u1 such

that

y1 + tnv1,1 + ...+ tm−1
n v1,m−1 + tm

n u1
n ∈ F1(Ω).

Suppose that F2(Ω) has a m-th order proto-radial set at y2. Then, with tn above, there exists

u2
n→ u2 such that

y2 + tnv2,1 + ...+ tm−1
n v2,m−1 + tm

n u2
n ∈ F2(Ω).

Thus,

(y1 + y2)+ tn(v1,1 + v2,1)+ ...+ tm−1
n (v1,m−1 + v2,m−1)+ tm

n (u1
n +u2

n) ∈ (F1 +F2)(Ω).

Hence, u1 +u2 ∈ T r(m)
(F1+F2)(Ω)(y1 + y2,v1,1 + v2,1, ...,v1,m−1 + v2,m−1).

(ii) If u does not belong to the intersection of domDm
R F1(x0,y1,u1,v1,1, ...,um−1,v1,m−1) and

domDm
R F2(x0,y1,u1,v2,1, ...,um−1,v2,m−1), the conclusion is trivial. Suppose that u ∈ domDm

R Fi

(x0,yi,u1,vi,1, ...,um−1,vi,m−1) for i = 1,2 and let vi ∈Dm
R Fi(x0,yi,u1,vi,1, ...,um−1,vi,m−1)(u) for

i = 1,2. Then, there exist tn > 0 and (un,v1
n)→ (u,v1) such that

y1 + tnv1,1 + ...+ tm−1
n v1,m−1 + tm

n v1
n ∈ F1(x0 + tnu1 + ...+ tm−1

n um−1 + tm
n un).

For v2, suppose that F2 has a m-th order radial semiderivative at (x0,y2), with tn,un above, there

exists v2
n→ v2 such that

y2 + tnv2,1 + ...+ tm−1
n v2,m−1 + tm

n v2
n ∈ F2(x0 + tnu1 + ...+ tm−1

n um−1 + tm
n un).

Thus,

(y1 + y2)+ tn(v1,1 + v2,1)+ ...+ tm−1
n (v1,m−1 + v2,m−1)+ tm

n (v1
n + v2

n)

∈ (F1 +F2)(x0 + tnu1 + ...+ tm−1
n um−1 + tm

n un).

Hence, v1 + v2 ∈ Dm
R (F1 +F2)(x0,y1 + y2,u1,v1,1 + v2,1, ...,um−1,v1,m−1 + v2,m−1)(u).
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The following example shows that the assumption about proto-radial sets in Proposition

5.2.12 cannot be dropped.

Example 5.2.13. Let X = Y = R, C = R+, and F1,F2 : X → 2Y be given by

F1(x) =

 {1}, if x =
1
n
,n ∈ N,

{0}, if x = 0,

F2(x) =

 {0}, if x =
1
n
,n ∈ N,

{1}, if x = 0.

It is easy to see that F1 and F2 have neither first order proto-radial set (of F1(Ω) and F2(Ω)) nor

first order radial semiderivative at (0,0) and (0,1), respectively. We have

T r(1)
F1(Ω)(0) = R+, T r(1)

F2(Ω)(1) = R−,

where Ω := domF1 = domF2 =
{

0,
1
n

}
n∈N

, and

D1
RF1(0,0)(0) = R+, D1

RF2(0,1)(0) = R−.

On the other hand,

(F1 +F2)(x) =

 {1}, if x =
1
n
,n ∈ N,

{1}, if x = 0.

Direct calculations yield

T r(1)
(F1+F2)(Ω)(1) = {0}, D1

R(F1 +F2)(0,1)(0) = {0}.

Thus,

T r(1)
F1(Ω)(0)+T r(1)

F2(Ω)(1) 6⊆ T r(1)
(F1+F2)(Ω)(1)

and

D1
RF1(0,0)(0)+D1

RF2(0,1)(0) 6⊆ D1
R(F1 +F2)(0,1)(0).

Proposition 5.2.14. (Chain rule) Let G : X→ 2Y , F : Y → 2Z with ImG⊆ domF, (x0,y0)∈ grG,

(y0,z0) ∈ grF and (u1,v1,w1), ...,(um−1,vm−1,wm−1) ∈ X ×Y ×Z. Suppose that F has a m-th

order radial semiderivative at (y0,z0) with respect to (v1,w1), ...,(vm−1,wm−1). Then

(i) Dm
R F(y0,z0,v1,w1, ...,vm−1,wm−1)[T

r(m)
G(X)(y0,v1, ...,vm−1)]⊆ T r(m)

(F◦G)(X)(z0,w1, ...,wm−1),

(ii) Dm
R F(y0,z0,v1,w1, ...,vm−1,wm−1)[Dm

R G(x0,y0,u1,v1, ...,um−1,vm−1)(X)]

⊆ T r(m)
(F◦G)(X)(z0,w1, ...,wm−1).
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Proof. (i) Let z ∈ Dm
R F(y0,z0,v1,w1, ...,vm−1,wm−1)[T

r(m)
G(X)(y0,v1, ...,vm−1)]. There exists

v∈ T r(m)
G(X)(y0,v1, ...,vm−1) such that z∈Dm

R F(y0,z0,v1,w1, ...,vm−1,wm−1)(v). Hence, there exist

tn > 0 and vn→ v such that

y0 + tnv1 + ...+ tm−1
n vm−1 + tm

n vn ∈ G(X).

Because F has a m-th order radial semiderivative of F at (y0,z0) with respect to (v1,w1), ...,

(vm−1,wm−1), there exists zn→ z such that

z0 + tnw1 + ...+ tm−1
n wm−1 + tm

n zn ∈ F(y0 + tnv1 + ...+ tm−1
n vm−1 + tm

n vn)⊆ F(G(X)).

Thus, z ∈ T r(m)
(F◦G)(X)(z0,w1, ...,wm−1).

(ii) This follows from (i) and Remark 5.2.3(i).

These rules will be applied in the sequel since they are simple (at least their formulations

are). However, being a proto-radial set or radial semiderivative is a restrictive condition. Hence,

we develop now another sum rule and another chain rule for possible better applications. For a

sum M +N of two multimaps M,N : X → 2Y , we express it as a composition as follows. Define

G : X → 2X×Y and F : X×Y → 2Y by, for the identity map I on X ,

G = I×M and F(x,y) = y+N(x). (5.4)

Then, clearly M + N = F ◦G. So, we will apply a chain rule. The chain rule given in

Proposition 5.2.14, though simple and relatively direct, is not suitable for dealing with this

composition F ◦G, since the intermediate space (Y there and X ×Y here) is little involved. We

develop another chain rule as follows. Let general multimaps G : X → 2Y and F : Y → 2Z be

considered, where X ,Y,Z be normed spaces. The so-called resultant multimap C : X ×Z→ 2Y

is defined by C(x,z) := G(x)∩F−1(z). Then, domC = gr(F ◦G).

We can obtain a general chain rule suitable for dealing with a sum expressed as a composition

as above, and without assumption about radial semiderivatives, as follows.

Proposition 5.2.15. Let (x0,z0) ∈ gr(F ◦G), y0 ∈C(x0,z0), and (ui,vi,wi) ∈ X×Y ×Z.

(i) If, for all w ∈ Z, one has

T r(m)
G(X)(y0,v1, ...,vm−1)∩Dm

R F−1(z0,y0,w1,v1, ...,wm−1,vm−1)(w)

⊆ Dm
RCX(z0,y0,w1,v1, · · · ,wm−1,vm−1)(w), (5.5)
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where CX : Z→ 2Y is defined by CX(z) := C(X ,z), then

Dm
R F(y0,z0,v1,w1...,vm−1,wm−1)[T

r(m)
G(X)(y0,v1, ...,vm−1)]⊆ T r(m)

(F◦G)(X)(z0,w1, ...,wm−1).

(ii) If, for all (u,w) ∈ X×Z, one has

Dm
R G(x0,y0,u1,v1, ...,um−1,vm−1)(u)∩Dm

R F−1(z0,y0,w1,v1, ...,wm−1,vm−1)(w)

⊆ Dm
RC((x0,z0),y0,(u1,w1),v1, ...,(um−1,wm−1),vm−1)(u,w), (5.6)

then

Dm
R F(y0,z0,v1,w1...,vm−1,wm−1)[Dm

R G(x0,y0,u1,v1, ...,um−1,vm−1)(u)]

⊆ Dm
R (F ◦G)(x0,z0,u1,w1, ...,um−1,wm−1)(u).

Proof. By the similarity, we prove only (i). Let w∈Dm
R F(y0,z0,v1,w1...,vm−1,wm−1)[T

r(m)
G(X)(y0,v1,

...,vm−1)], i.e., there exists some y∈ T r(m)
G(X)(y0,v1, ...,vm−1) such that y∈Dm

R F−1(z0,y0,w1,v1, ...,

wm−1,vm−1)(w). Then, (5.5) ensures that y ∈ Dm
RCX(y0,z0,w1,v1, · · · ,wm−1,vm−1)(w). This

means the existence of tn > 0 and (yn,wn)→ (y,w) such that, for all n ∈ N,

y0 + tnv1 + ...+ tm−1
n vm−1 + tm

n yn ∈C(X ,z0 + tnw1 + ...+ tm−1
n wm−1 + tm

n wn).

From the definition of the map C, we get z0 + tnw1 + ...+ tm−1
n wm−1 + tm

n wn ∈ (F ◦G)(X). So,

w ∈ T r(m)
(F◦G)(X)(z0,w1, ...,wm−1).

We now show the essentialness of the assumption (5.6) in Proposition 5.2.15 (it is similar

for (5.5)) by the following.

Example 5.2.16. Let X = Y = Z = R, G : X → 2Y and F : Y → 2Z be defined by

G(x) =

{ {1,2}, if x = 1,

{0}, if x = 0,
F(y) =

{ {0}, if y = 1,

{1}, if y = 0.

Then,

(F ◦G)(x) =

{ {0}, if x = 1,

{1}, if x = 0,
F−1(z) =

{ {0}, if z = 1,

{1}, if z = 0,

C(x,z) = G(x)∩F−1(z) =

{ {1}, if (x,z) = (1,0),

{0}, if (x,z) = (0,1).
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Let (x0,z0) = (0,1) and y0 = 0 ∈C(x0,z0). Direct calculations give

D1
RG(x0,y0)(1/2) = {1/2,1}, D1

RF(y0,z0)(1) = {−1},

D1
RF(y0,z0)(1/2) = {−1/2}, D1

R(F ◦G)(x0,z0)(1/2) = {−1/2}.

So, the conclusion of Proposition 5.2.15(ii) does not hold. The reason is the violence of (5.6):

for (u,w) = (1/2,−1), D1
RF−1(z0,y0)(−1) = {1}, D1

RC((x0,z0),y0)(u,w) = /0, and hence

D1
RG(x0,y0)(u)∩D1

RF−1(z0,y0)(w) 6⊆ D1
RC((x0,z0),y0)(u,w).

Now we apply the preceding composition rule to establish a sum rule for M,N : X→ 2Y . For

this purpose, we use G : X → 2X×Y and F : X ×Y → 2Y defined in (5.4). For (x,z) ∈ X ×Y , we

set H(x,z) := M(x)∩ (z−N(x)). Then, the resultant multimap C : X ×Y → 2X×Y associated to

these F and G is C(x,z) = {x}×H(x,z).

Proposition 5.2.17. Let (x0,z0) ∈ gr(M +N), y0 ∈ H(x0,z0) and (ui,vi,wi) ∈ X×Y ×Y .

(i) If, for all w ∈ Y , one has

T r(m)
M(X)(y0,v1, ...,vm−1)∩ [w−T r(m)

N(X)(z0− y0,w1, ...,wm−1)]

⊆ Dm
R HX(z0,y0,v1 +w1,v1, · · · ,vm−1 +wm−1,vm−1)(w), (5.7)

where HX : Y → 2Y is defined by HX(y) := H(X ,y), then

T r(m)
M(X)(y0,v1, ...,vm−1)+T r(m)

N(X)(z0− y0,w1, ...,wm−1)

⊆ T r(m)
(M+N)(X)(z0,v1 +w1, · · · ,vm−1 +wm−1).

(ii) If, for all (u,w) ∈ X×Y , one has

Dm
R M(x0,y0,u1,v1, ...,um−1,vm−1)(u)∩ [w−Dm

R N(x0,z0− y0,u1,w1, ...,um−1,wm−1)(u)

⊆ Dm
R H((x0,z0),y0,(u1,v1 +w1),v1, ...,(um−1,vm−1 +wm−1),vm−1)(u,w), (5.8)

then

Dm
R M(x0,y0,u1,v1, ...,um−1,vm−1)(u)+Dm

R N(x0,z0− y0,u1,w1, ...,um−1,wm−1)(u)

⊆Dm
R (M +N)(x0,z0,u1,v1 +w1, ...,um−1,vm−1 +wm−1)(u).
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Proof. By the similarity, we prove only (ii). Let w ∈ Dm
R M(x0,y0,u1,v1, ...,um−1,vm−1)(u) +

Dm
R N(x0,z0− y0,u1,w1, ...,um−1,wm−1)(u), i.e., there exists y ∈ Dm

R M(x0,y0,u1,v1, ...,um−1,

vm−1)(u) such that y ∈ w−Dm
R N(x0,z0− y0,u1,w1, ...,um−1,wm−1)(u). Then, (5.8) ensures that

y ∈ Dm
R H((x0,z0),y0,(u1,v1 +w1),v1, ...,(um−1,vm−1 +wm−1),vm−1)(u,w). This means the ex-

istence of tn > 0 and (un,yn,wn)→ (u,y,w) such that

y0 + tnv1 + ...+ tm−1
n vm−1 + tm

n yn ∈

H(x0 + tnu1 + ...+ tm−1
n um−1 + tm

n un,z0 + tn(v1 +w1)+ ...+ tm−1
n (vm−1 +wm−1)+ tm

n wn).

From the definition of H, we get

z0 +tn(v1 +w1)+ ...+tm−1
n (vm−1 +wm−1)+tm

n wn ∈ (M+N)(x0 +tnu1 + ...+tm−1
n um−1 +tm

n un).

So, w ∈ Dm
R (M +N)(x0,z0,u1,v1 +w1, ...,um−1,vm−1 +wm−1)(u).

The following example shows that assumptions (5.7) and (5.8) cannot be dispensed and are

not difficult to check.

Example 5.2.18. Let X = Y = R and M,N : X → 2Y be given by

M(x) =

 {1}, if x =
1
n
, n ∈ N,

{0}, if x = 0,

N(x) =

 {0}, if x =
1
n
, n ∈ N,

{1}, if x = 0.

Then,

H(x,z) = M(x)∩ (z−N(x)) =


{0}, if (x,z) = (0,1),

{1}, if (x,z) =
(

1
n
,1
)

, n ∈ N,

/0, otherwise,

(M +N)(x) =

 {1}, if x =
1
n
, n ∈ N,

{1}, if x = 0.

Choose x0 = 0, z0 = 1, y0 = 0 ∈ clH(x0,z0) and u = w = 0. Then, one can easily show

T r(1)
M(X)(y0) = R+, T r(1)

N(X)(z0− y0) = R−, D1
RHX(z0,y0)(w) = {0},

D1
RM(x0,y0)(u) = R+, D1

RN(x0,z0− y0)(u) = R−, D1
RH((x0,z0),y0)(u,w) = {0}.
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Thus, (5.7) and (5.8) are violated:

T r(1)
M(X)(y0)∩ [w−T r(1)

N(X)(z0− y0)] 6⊆ D1
RHX(z0,y0)(w),

D1
RM(x0,y0)(u)∩ [w−D1

RN(x0,z0− y0)(u)] 6⊆ D1
RH((x0,z0),y0)(u,w).

Direct computations show that conclusions of Proposition 5.2.17 do not hold:

T r(1)
M(X)(y0)+T r(1)

N(X)(z0− y0) 6⊆ T r(1)
(M+N)(X)(z0),

D1
RM(x0,y0)(u)+D1

RN(x0,z0− y0)(u) 6⊆ D1
R(M +N)(x0,z0)(u),

since T r(1)
(M+N)(X)(z0) = {0} and D1

R(M +N)(x0,z0)(u) = {0}.

5.3 Optimality conditions

Let X , Y and Z be normed spaces, C⊆Y and D⊆ Z be pointed closed convex cones, not the

entire space, S⊆ X nonempty, and F : S→ 2Y , G : S→ 2Z . Our problem is

(P) MinQ F(x), s.t. x ∈ S, G(x)∩−D 6= /0.

We denote A := {x ∈ S : G(x)∩−D 6= /0} (the feasible set).

In this section, both necessary and sufficient optimality conditions for the mentioned efficient

solutions of the problem (P) are established. As Q-efficiency (see Definition 2.2.7) includes

many other kinds of solutions as particular cases (see Proposition 2.2.9), we first prove necessary

optimality conditions of this notion.

Proposition 5.3.1. Let (x0,y0) ∈ grF be a Q-efficient solution of (P), (ui,vi,wi) ∈ X × (−C)×
(−D), i = 1, ...,m−1, and z0 ∈G(x0)∩−D. Suppose that the open cone Q satisfies Q+C ⊆Q.

Then, the following separations hold

T r(m)
(F,G)+(S)(y0,z0,(v1,w1), ...,(vm−1,wm−1))∩ (−Q×−intD) = /0, (5.9)

Dm
R (F,G)+(x0,y0,z0,(u1,v1,w1), ...,(um−1,vm−1,wm−1))(X)∩ (−Q×−intD) = /0. (5.10)

Proof. Suppose (5.9) does not hold. Then, there exists (y,z) such that

(y,z) ∈ T r(m)
(F,G)+(S)(y0,z0,(v1,w1), ...,(vm−1,wm−1)), (5.11)

(y,z) ∈ (−Q×−intD). (5.12)
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It follows from (5.11) and the definition of m-th order radial sets that there exist sequences tn > 0,

xn ∈ S, and (yn,zn) ∈ (F,G)(xn)+C×D such that

(yn,zn)− (y0,z0)− tn(v1,w1)− ...− tm−1
n (vm−1,wm−1)

tm
n

→ (y,z). (5.13)

From (5.12) and (5.13), one has, for large n,

yn− y0− tnv1− ...− tm−1
n vm−1 ∈ −Q, zn ∈ −intD. (5.14)

As v1, ...,vm−1 ∈ −C, (5.14) implies that, for large n,

yn− y0 ∈ −Q. (5.15)

Because zn ∈G(xn)+D, there exist zn ∈G(xn) and dn ∈D such that zn = zn +dn. (5.14) implies

also that zn ∈ G(xn)∩ (−D) for large n, and then xn ∈ A. Because yn ∈ F(xn)+C, there exist

yn ∈ F(xn) and cn ∈C such that yn = yn +cn. Then, (5.15) implies that yn−y0 ∈−Q for large n.

Therefore, yn− y0 ∈ (F(A)− y0)∩ (−Q), which contradicts the Q-efficiency of (x0,y0). Thus,

(5.9) holds. (5.10) follows from (5.9) and the evident fact that

Dm
R F(x0,y0,u1,v1, ...,um−1,vm−1)(X)⊆ T r(m)

F(X)(y0,v1, ...,vm−1).

Propositions 5.3.1 and 2.2.9 together yield the following result.

Theorem 5.3.2. Let (x0,y0) ∈ grF, (ui,vi,wi) ∈ X × (−C)× (−D), i = 1, ...,m− 1, and z0 ∈
G(x0)∩−D. Then, (5.9) and (5.10) hold in each of the following cases

(i) (x0,y0) is a weak efficient solution of (P) and Q = intC,

(ii) (x0,y0) is a strong efficient solution of (P) and Q = Y \−C,

(iii) (x0,y0) is a positive-proper efficient solution of (P) and Q = {y : ϕ(y) > 0} for some

functional ϕ ∈C+i,

(iv) (x0,y0) is a Geoffrion-proper efficient solution of (P) and Q = C(ε) for ε > 0,

(v) (x0,y0) is a Henig-proper efficient solution of (P) and Q = K for some pointed open

convex cone K dilating C,

(vi) (x0,y0) is a strong Henig-proper efficient solution of (P) and Q = intCε(B) for ε satis-

fying 0 < ε < δ .

The next example illustrates Theorem 5.3.2(vi).
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Example 5.3.3. Let X =Y = Z = R, S = X , C = D = R+, G(x)≡R, and F(x)= {y ∈ Y : y≥ |x|}.
Choose the base B = {1}. Then, δ = 1 and Cε(B) = R+ for all ε ∈ (0,δ ). Let (x0,y0) = (0,0)

and z0 = 0. It is easy to see that (x0,y0) is a strong Henig-proper efficient solution. For any

(v1,w1) ∈ −(C×D), direct computations give

T r(1)
(F,G)+(S)(y0,z0) = R+×R, T r(2)

(F,G)+(S)(y0,z0,v1,w1) = R+×R,

and hence

T r(1)
(F,G)+(S)(y0,z0)∩−int(Cε(B)×D) = /0, T r(2)

(F,G)+(S)(y0,z0,v1,w1)∩−int(Cε(B)×D) = /0,

i.e., the necessary optimality condition of Theorem 5.3.2(vi) holds.

We now compare Theorem 5.3.2 with some known results. Because variational sets (see

Section 4.2), played the role of generalized derivatives (see [105,106]), are bigger than the image

of X through most of kinds of generalized derivatives (see Remark 2.1 and Proposition 4.1 in

[105]), optimality conditions (obtained by separating sets as usual) in terms of these variational

sets are strong. So, we will compare our results with those using variational sets. However, in

general, these sets are incomparable with radial sets as follows

Example 5.3.4. Suppose that X = R, Y = R2, (x0,y0) = (0,(0,0)), and F : X → 2Y be defined

by

F(x) =

{ {(0,0)}, if x = 0,

{(1,0)}, otherwise.
Then,

W 1(F,x0,y0) = T r(1)
F(X)(x0,y0) = {(y1,y2) ∈ R2

+ : y2 = 0}.

Let v1 = (1,0). Then,

W 2(F,x0,y0,v1) = {(y1,y2) ∈ R2 : y2 = 0},

T r(2)
F(X)(y0,v1) = {(y1,y2) ∈ R2 : y1 = y2

2 + y2,y2 ≤ 0}.

Hence, the latter may be more advantageous in cases as ensured by the following.

Example 5.3.5. Let X = Y = Z = R, S = {0,1}, C = D = R+, (x0,y0) = (0,0), G and F be
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G(x) = F(x) =


{0}, if x = 0,

{−1}, if x = 1,

/0, otherwise.

Choose the base B = {1}. Then, δ = 1 and Cε(B) = R+ for all ε ∈ (0,δ ). Let z0 = 0. Let

us try to use optimality conditions given in [106] by Khanh and Tuan in terms of variational

sets to eliminate (x0,y0) as a candidate for a strong Henig-proper efficient solution. We can

compute directly that V 1((F,G)+,x0,y0,z0) = R+×R+. Let (v1,w1) ∈V 1((F,G)+,x0,y0,z0)∩
−bd(Cε(B)×D(z0)),· · · , (vm−1,wm−1)∈V m−1((F,G)+,x0,y0,z0,v1,w1, · · · ,vm−2,wm−2)∩−bd(Cε(B)×
D(z0)), for m≥ 2, where bdA means the boundary of A. It is easy to check that (v1,w1) = · · ·=
(vm−1,wm−1) = (0,0) and

V m((F,G)+,x0,y0,z0,v1,w1, · · · ,vm−1,wm−1) = R+×R+.

Thus, for all m≥ 1, we get

V m((F,G)+,x0,y0,z0,v1,w1, · · · ,vm−1,wm−1)∩−int(Cε(B)×D(z0)) = /0.

For variational sets of type 2, by direct calculating we get

W 1((F,G)+,x0,y0,z0) = R+×R+,

W 1((F,G)+,x0,y0,z0)∩−int(Cε(B)×D) = /0.

Let (v1,w1)∈W 1((F,G)+,x0,y0,z0)∩−bd(Cε(B)×D), (v2,w2)∈W 2((F,G)+,x0,y0,z0,v1,w1)

∩−bd(Cε(B)×D(w1)),· · · , (vm−1,wm−1) ∈W m−1((F,G)+,x0,y0,z0,v1,w1, · · · ,vm−2,wm−2)∩
−bd(Cε(B)×D(w1)), m≥ 3. We have (v1,w1) = · · ·= (vm−1,wm−1) = (0,0) and

W m((F,G)+,x0,y0,z0,v1,w1, · · · ,vm−1,wm−1) = R+×R+.

Thus, for all m≥ 2, we get

W m((F,G)+,x0,y0,z0,v1,w1, · · · ,vm−1,wm−1)∩−int(Cε(B)×D(w1)) = /0.

So, Theorems 3.4 and 3.5 of Khanh and Tuan in [106] say nothing about (x0,y0) being strong

Henig-proper efficient or not. By virtue of Remark 3.3 in [106] and Proposition 2.2 in [106], we

can see that Theorems 4.1, 4.2, 5.1, and 5.2 of Li and Chen in [115], Theorem 3.1, Proposition

3.1 of Gong et al. in [80] and Theorem 1 of Liu and Gong in [119] cannot be in use to reject
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(x0,y0) either. On the other hand, since T r(1)
(F,G)+(S)(y0,z0) = R×R, Theorem 5.3.2(vi) rejects the

candidate (x0,y0).

Moreover, Theorem 3.2(i) of Khanh and Tuan in [105] says nothing about (x0,y0) being

weak efficiency for (P). By Proposition 4.1 in [105], we can see that Theorem 7 of Jahn and

Rauh in [96], Theorem 5 of Chen and Jahn in [26], Theorem 4.1 of Corley in [33], Proposition

3.1 of Taa in [160], Theorem 2.7(a) of Jahn and Khan in [93], Theorem 2 of Crepsi et al. in

[34], Theorem 4.1 of Crepsi et al. in [35] and Theorem 3.1 of Jahn at al. in [95] cannot be in

use to reject (x0,y0) either. On the other hand, by using Theorem 5.3.2(i), (x0,y0) is not a weak

efficiency for (P).

Finally we discuss sufficient conditions for the mentioned efficient solutions of problem (P).

Proposition 5.3.6. Let (x0,y0) ∈ grF and x0 ∈ A, the feasible set. Suppose that there exists

z0 ∈ G(x0)∩ (−D) such that, for (ui,vi,wi) ∈ X × (−C)× (−D), i = 1, ...,m− 1, and x ∈ S,

either of the following separations holds

T r(m)
(F,G)+(S)((y0,z0),(v1,w1), ...,(vm−1,wm−1))∩−(Q×D(z0)) = /0, (5.16)

Dm
R (F,G)+(x0,y0,z0,u1,v1,w1, ...,um−1,vm−1,wm−1)(x− x0)∩−(Q×D(z0)) = /0. (5.17)

Then, (x0,y0) is a Q-efficient solution of (P), for any non-empty open cone Q.

Proof. By the similarity, we prove only (5.16). Note that (5.16) is required to be satisfied also for

vi = 0 ∈−C and wi = 0 ∈−D, i = 1, ...,m−1. Therefore, T r(1)
(F,G)+(S)(y0,z0)∩−(Q×D(z0)) = /0.

It follows from Proposition 5.2.11 that (y− y0,z− z0) ∈ T r(1)
(F,G)+(S)(y0,z0) for all y ∈ F(S), z ∈

G(S). Then,

(F,G)(S)− (y0,z0)∩−(Q×D(z0)) = /0.

Suppose the existence of x ∈ A and y ∈ F(x) such that y− y0 ∈ −Q. Then, there exists z ∈
G(x)∩−D such that (y,z)− (y0,z0) ∈ −(Q×D(z0)), a contradiction.

From Propositions 5.3.6 and 2.2.9, we obtain immediately the following result.

Theorem 5.3.7. Let (x0,y0) ∈ grF and x0 ∈ A. Suppose that there exists z0 ∈ G(x0)∩ (−D)

such that, for (ui,vi,wi) ∈ X × (−C)× (−D), i = 1, ...,m− 1, and x ∈ S, either of (5.16) or

(5.17) holds. Then, one has the following assertions

(i) (x0,y0) is a weak efficient solution of (P) and Q = intC,
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(ii) (x0,y0) is a strong efficient solution of (P) and Q = Y \−C,

(iii) (x0,y0) is a positive-proper efficient solution of (P) and Q = {y : ϕ(y) > 0} for some

functional ϕ ∈C+i,

(iv) (x0,y0) is a Geoffrion-proper efficient solution of (P) and Q = C(ε) for ε > 0,

(v) (x0,y0) is a Henig-proper efficient solution of (P) and Q = K for some pointed open

convex cone K dilating C,

(vi) (x0,y0) is a strong Henig-proper efficient solution of (P) and Q = intCε(B) for ε satis-

fying 0 < ε < δ .

In the following example, Theorems 5.3.7(vi) works, while several existing results do not.

Example 5.3.8. Let X = Y = Z = R, C = D = R+, G(x)≡ {0}, and

F(x) =


{0}, if x = 0,{

1
n2

}
, if x = n, n ∈ N,

/0, otherwise.

Choose the base B = {1}. Then, δ = 1 and Cε(B) = R+ for all ε ∈ (0,δ ). Let (x0,y0) = (0,0)

and z0 = 0. It is easy to see that A = N∪{0}. Then, T r(1)
(F,G)+(A)(y0,z0) = R+×R+. It follows

from Theorem 5.3.7(vi) that (x0,y0) is a strong Henig-proper efficient solution. It is easy to see

that domF = N∪{0} is not convex and F is not pseudoconvex at (x0,y0). So, Theorem 3.6 of

Khanh and Tuan in [106], Theorems 5.3, 5.4 of Li and Chen in [115], and Theorem 2 of Liu and

Gong in [119] cannot be applied.

Moreover, it is easy to see that (x0,y0) is also a weak efficient solution. But, Theorem 8 of

Jahn and Rauh in[96], Theorem 6 of Chen and Jahn in [26] and Theorem 3.3 of Khanh and Tuan

in [105] cannot be applied.

A natural question now arises: can we replace D by D(z0) in the necessary condition given

by Theorem 5.3.2 to obtain a smaller gap with the sufficient one expressed by Theorem 5.3.7?

Unfortunately, a negative answer is supplied by the following example.

Example 5.3.9. Suppose that X = Y = Z = R, S = X , C = D = R+, and F : X→ 2Y , G : X→ 2Z

are given by

F(x) =

{
{y : y≥ x2}, if x ∈ [−1,1],

{−1}, if x 6∈ [−1,1],
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G(x) = {z ∈ Z : z = x2−1}.

We see that (x0,y0) = (0,0) is a weak efficient pair of (P). Take z0 = −1 ∈ G(x0)∩ (−D). We

have T r(1)
(F,G)+(S)(y0,z0) = R×R+ and hence

T r(1)
(F,G)+(S)(y0,z0)∩−int(C×D) = /0.

On the other hand, D(z0) = R. Thus,

T r(1)
(F,G)+(S)(y0,z0)∩−int(C×D(z0)) 6= /0.

5.4 Applications in some particular problems

In this section, we apply calculus rules to establish necessary conditions for some kinds of

efficient solutions of several particular optimization problems. We first prove a simple charac-

terization of this notion.

Proposition 5.4.1. Let X ,Y and Q as before, F : X→ 2Y , (x0,y0)∈ grF and (ui,vi)∈ X×(−C),

i = 1, ...,m−1. Suppose that the open cone Q satisfies Q+C⊆Q. Then, y0 is a Q-efficient point

of F(X) if and only if one of the following separations holds

T r(m)
F+(X)(y0,v1, ...,vm−1)∩ (−Q) = /0, (5.18)

Dm
R F+(x0,y0,(u1,v1), ...,(um−1,vm−1))(X)∩ (−Q) = /0. (5.19)

Proof. It follows from Propositions 5.3.1 and 5.3.6.

Let F : X → 2Y and G : X → 2X . Consider

(P1) MinQ F(x′) s.t. x ∈ X and x′ ∈ G(x).

This problem can be restated as the unconstrained problem: MinQ (F ◦G)(x). Recall that

(x0,y0) is called a Q-efficient solution if y0 ∈ (F ◦G)(x0) and ((F ◦G)(X)− y0)∩ (−Q) = /0.

Proposition 5.4.2. Assume for (P1) that ImG ⊆ domF, (x0,z0) ∈ grG, (z0,y0) ∈ grF, and

(u1,v1,w1), ...,(um−1,vm−1,wm−1) ∈ X × X × (−C). Suppose that an open cone Q satisfies

Q+C ⊆ Q and (x0,y0) is a Q-efficient solution of (P1).
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(i) If either F+ has a m-th order radial semiderivative at (z0,y0) with respect to (v1,w1), ...,

(vm−1,wm−1) or (5.5) holds for F+ and G, then

Dm
R F+(z0,y0,v1,w1, ...,vm−1,wm−1)[T

r(m)
G(X)(z0,v1, ...,vm−1)]∩ (−Q) = /0.

(ii) If either F+ has a m-th order radial semiderivative at (z0,y0) with respect to (v1,w1), ...,

(vm−1,wm−1) or (5.6) holds for F+ and G, then

Dm
R F+(z0,y0,v1,w1, ...,vm−1,wm−1)[Dm

R G(x0,z0,u1,v1, ...,um−1,vm−1)(X)]∩ (−Q) = /0.

Proof. We prove (i). By Proposition 5.4.1, T r(m)
(F◦G)+(X)(y0,w1, ...,wm−1)∩ (−Q) = /0. Proposi-

tions 5.2.14(i) and 5.2.15(i) say that

Dm
R F+(z0,y0,v1,w1, ...,vm−1,wm−1)[T

r(m)
G(X)(z0,v1, ...,vm−1)]⊆ T r(m)

(F◦G)+(X)(y0,w1, ...,wm−1).

From Propositions 5.4.2 and 2.2.9, we obtain immediately the following result for (P1).

Theorem 5.4.3. Assume for (P1) that ImG⊆ domF, (x0,z0)∈ grG, (z0,y0)∈ grF, and (u1,v1,w1)

, ...,(um−1,vm−1,wm−1) ∈ X ×X × (−C). Then, assertions (i) and (ii) in Proposition 5.4.2 hold

in each of the following cases

(i) (x0,y0) is a weak efficient solution of (P1) and Q = intC,

(ii) (x0,y0) is a strong efficient solution of (P1) and Q = Y \−C,

(iii) (x0,y0) is a positive-proper efficient solution of (P1) and Q = {y : ϕ(y) > 0} for some

functional ϕ ∈C+i,

(iv) (x0,y0) is a Geoffrion-proper efficient solution of (P1) and Q = C(ε) for ε > 0,

(v) (x0,y0) is a Henig-proper efficient solution of (P1) and Q = K for some pointed open

convex cone K dilating C,

(vi) (x0,y0) is a strong Henig-proper efficient solution of (P1) and Q = intCε(B) for ε satis-

fying 0 < ε < δ .

To compare with a result of Jahn and Khan in [94], we recall the definition of contingent

epiderivatives. For a multimap F between normed spaces X and Y , Y being partially ordered

by a pointed convex cone C and a point (x,y) ∈ grF , a single-valued map EDF(x,y) : X → Y

satisfying epi(EDF(x,y)) = TepiF(x,y)≡ TgrF+(x,y) is said to be the contingent epiderivative of

F at (x,y).
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Example 5.4.4. Let X = Y = R, C = R+, G(x) = {−|x|}, and F be defined by

F(x) =

{
R−, if x≤ 0,

/0, if x > 0.

Since G is single-valued we can try to make use of Proposition 5.2 of [94]. By a direct compu-

tation we have TepiF(G(0),0) = R2. So, the contingent epiderivative EDF(G(0),0)(h) does not

exist for any h ∈ X . Hence, the necessary condition in the mentioned Proposition 5.2 says noth-

ing about the candidate point (0,0) for weak efficiency. However, F+ has the first order radial

semiderivative at (G(0),0) and T r(1)
G(X)(G(0))= R−. Furthermore, Dm

R F+(G(0),0)[T r(1)
G(X)(G(0))]=

R, which meets −intC, and hence Theorem 5.4.3(i) above rejects this candidate.

Our sum rule can be applied directly to the following problem

(P2) MinQ F(x) s.t. g(x)≤ 0,

where X , Y are as for problem (P1), F : X → 2Y and g : X →Y . Denote A := {x ∈ X : g(x)≤ 0}
(the feasible set). Define G : X → 2Y by G(x) := {0} if x ∈ A and G(x) := {g(x)} otherwise.

Consider the following unconstrained set-valued optimization problem, for arbitrary s > 0,

(P3) MinQ (F + sG)(x).

In the particular case, when Y = R and F is single-valued, (P3) is used to approximate (P2) in

penalty methods (see [147]). We will apply our calculus rules for radial sets to get the following

necessary condition for a Q-minimal solution of (P3).

Proposition 5.4.5. Let y0 ∈ F(x0), x0 ∈ Ω = domF ∩domG, and (u1,vi,1), ...,(um−1,vi,m−1) ∈
X × (−C) for i = 1,2. Suppose that an open cone Q satisfies Q +C ⊆ Q and (x0,y0) is a Q-

efficient solution of (P3). Then

(i) if either F+(Ω) (or sG+(Ω)) has a m-th order proto-radial set at y0 with respect to v1,1, ...,

v1,m−1 (at 0 with respect to v2,1, ...,v2,m−1, respectively) or (5.7) holds for F+ and sG+, then

(T r(m)
F+(Ω)(y0,v1,1, ...,v1,m−1)+ sT r(m)

G+(Ω)(0,v2,1/s, ...,v2,m−1/s))∩ (−Q) = /0.

(ii) if either F+ (or sG+) has a m-th order radial semiderivative at (x0,y0) with respect to

(u1,v1,1), ..., (um−1,v1,m−1) ( at (x0,0) with respect to (u1,v2,1), ..., (um−1,v2,m−1), respectively)

or (5.8) holds for F+ and sG+, then, for any u ∈ X,

(Dm
R F+(x0,y0,u1,v1,1, ...,um−1,v1,m−1)(u)+sDm

R G+(x0,0,u1,v2,1/s, ...,um−1,v2,m−1/s)(u))∩
(−Q) = /0.
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Proof. We prove (i). It follows from Propositions 5.2.12(i) and 5.2.17(i) that

T r(m)
F+(Ω)(y0,v1,1, ...,v1,m−1)+T r(m)

sG+(Ω)(0,v2,1, ...,v2,m−1)⊆

T r(m)
(F+sG)+(Ω)(y0,v1,1 + v2,1, ...,v1,m−1 + v2,m−1).

It is easy to see that

T r(m)
sG+(Ω)(0,v2,1, ...,v2,m−1) = sT r(m)

G+(Ω)(0,v2,1/s, ...,v2,m−1/s),

T r(m)
F+(Ω)(y0,v1,1, ...,v1,m−1)+ sT r(m)

G+(Ω)(0,v2,1/s, ...,v2,m−1/s)

⊆ T r(m)
(F+sG)+(Ω)(y0,v1,1 + v2,1, ...,v1,m−1 + v2,m−1).

By Proposition 5.4.1, one gets

T r(m)
(F+sG)+(Ω)(y0,v1,1 + v2,1, ...,v1,m−1 + v2,m−1)∩ (−Q) = /0,

and hence the proof is complete.

From Propositions 5.4.5 and 2.2.9, we obtain immediately the following statement for (P3).

Theorem 5.4.6. Let y0 ∈ F(x0), x0 ∈ Ω = domF ∩ domG, and (u1,vi,1), ...,(um−1,vi,m−1) ∈
X × (−C) for i = 1,2. Then, assertions (i) and (ii) in Proposition 5.4.5 hold in each of the

followiing cases

(i) (x0,y0) is a weak efficient solution of (P3) and Q = intC,

(ii) (x0,y0) is a strong efficient solution of (P3) and Q = Y \−C,

(iii) (x0,y0) is a positive-proper efficient solution of (P3) and Q = {y : ϕ(y) > 0} for some

functional ϕ ∈C+i,

(iv) (x0,y0) is a Geoffrion-proper efficient solution of (P3) and Q = C(ε) for ε > 0,

(v) (x0,y0) is a Henig-proper efficient solution of (P3) and Q = K for some pointed open

convex cone K dilating C,

(vi) (x0,y0) is a strong Henig-proper efficient solution of (P3) and Q = intCε(B) for ε satis-

fying 0 < ε < δ .

The next example illustrates a case, Theorem 5.4.6 is more advantageous than earlier existing

results.
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Example 5.4.7. Let X = Y = R, C = R+, g(x) = x4−2x3, and F(x) = R− for all x ∈ X . Then,

S = [0,2] and G(x) = max{0,g(x)}. Furthermore, since TepiF(0,0) = R2 and TepiG(0,0) =

{(x,y) : y ≥ 0}, the contingent epiderivative EDF(0,0)(h) does not exist for any h ∈ X and

Proposition 5.1 of Jahn and Khan in [94] cannot be applied. But we have proto-radial sets

T r(1)
F+(X)(0) = R and T r(1)

G+(X)(0) = R+. So,

(T r(1)
F+(X)(0)+ sT r(1)

G+(X)(0))∩ (−intC) 6= /0.

By Theorem 5.4.6(i), (x0,y0) is not a weak efficient solution of (P3). This fact can be checked

directly too.
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Chapter 6

Calculus rules and applications of
Studniarski derivatives to sensitivity and
implicit function theorems

6.1 Introduction

In set-valued analysis, one of the most popular and useful higher-order derivatives is the

contingent derivative introduced in [10] by Aubin in 1981. However, the set DmF(x0,y0,u1,v1,

...,um−1,vm−1)(u) (its definition is given in Remark 4.2.7 in Chapter 4) is non-empty only if

v1 ∈ DF(x0,y0)(u1), ..., vm−1 ∈ Dm−1F(x0,y0,u1,v1, ...,um−2,vm−2)(um−1). In applications,

even the need of having these m− 1 points may lead to inconvenience. In 1986, the follow-

ing modification was proposed in [156] by Studniarski, without the “intermediate” orders in

definition and hence without the need of these m−1 points,

DmF(x0,y0)(x) := {v ∈ Y : ∃tn→ 0+,∃(xn,vn)→ (x,v), ∀n,y0 + tm
n vn ∈ F(x0 + tnxn)}.

We can write the following two equivalent formulations as follows

DmF(x0,y0)(u) = Limsup
(t,u′)→(0+,u)

F(x0 + tu′)− y0

tm ,

and, by setting (xn,yn) := (x0 + tnun,y0 + tm
n vn), γn = t−1

n ,

DmF(x0,y0)(u) = {v ∈ Y : ∃γn > 0, ∃(xn,yn) ∈ grF : (xn,yn)→ (x0,y0),

(γn(xn− x0),γm
n (yn− y0))→ (u,v)}.
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This object is called, by several authors, the Studniarski derivative. In nonsmooth optimization,

it was applied in obtaining optimality conditions, e.g., in [97, 99, 117, 124, 144, 156, 159] and in

discussing sensitivity analysis in [158] by Sun and Li.

The idea of omitting “intermediate” orders in defining higher-order derivatives was contin-

ued in [8, 49]. Namely, several notions of higher-order derivatives were developed, combining

the idea of extending to higher-order the radial derivative proposed by Taa in [160] (for the

first-order) with this omitting. In that way, global (not local as with the above two derivatives)

higher-order optimality conditions were established for nonconvex optimization. (The main

technical change in the above definitions is replacing ∃tn→ 0+ by ∃tn > 0.) The possibility for

global consideration is good for optimality conditions, but for some other topics like sensitivity

analysis or implicit function theorems, this may be inconvenient.

Thus, in this chapter, we return to the Studniarski derivative. Namely, we are concerned with

two topics. First we develop calculus rules for this derivative, observing that these rules have

not been studied, but a kind of derivatives is significant only if it enjoys enough calculus rules.

Later, we use the Studniarski derivative just to the two mentioned topics of sensitivity analysis

and implicit function theorems to ensure that in this paper we can investigate what is difficult

for the derivatives considered in [8]. The content of this chapter is also our results in [6].

6.2 The Studniarski derivative

Let X ,Y be normed spaces, F : X → 2Y , (x0,y0) ∈ grF , u ∈ X , and m≥ 1.

Definition 6.2.1. The m-th order Studniarski derivative of F at (x0,y0) is defined by

DmF(x0,y0)(x) := Limsup
(t,x′)→(0+,x)

F(x0 + tx′)− y0

tm ,

or, equivalently,

DmF(x0,y0)(x) = {v ∈ Y : ∃tn→ 0+,∃(xn,vn)→ (x,v), ∀n,y0 + tm
n vn ∈ F(x0 + tnxn)}.

The m-th order Studniarski derivative can be expressed as the Γ-limit as follows

v ∈ DmF(x0,y0)(x) ⇐⇒ inf
Q∈N (v)

inf
W∈N (x)

inf
t>0

sup
0<t ′<t

sup
x′∈W

sup
v′∈Q

χgr(LF,(x0,y0))(t
′,x′,v′) = 1

⇐⇒ Γ(N+(0)+,N (x)+,N (v)+) χgr(LF,(x0,y0)) = 1,
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where LF,(x0,y0) : (0,+∞)×X → 2Y is defined by

LF,(x0,y0)(t
′,x′) :=

1
t ′m

(F(x0 + t ′x′)− y0).

If the upper limit in Definition 6.2.1 is a full limit, i.e., the upper limit coincides with the

lower limit for all u, then the map F is called to have a m-th order proto-Studniarski derivative

at (x0,y0).

Example 6.2.2. Let X = Y = R and Fn : X → 2Y , n ∈ N, be defined by, for all x ∈ X , Fn(x) =

{y ∈ Y : y ≥ xn}. By calculating, we can find the m-th order Studniarski derivatives of Fn at

(x0,y0) = (0,0) as follows

If m = n, then for all u ∈ X , DmFn(x0,y0)(u) = {y ∈ Y : y≥ un}.
If m < n, then for all u ∈ X , DmFn(x0,y0)(u) = R+.

If m > n, then

DmFn(x0,y0)(u) =


R, if n = 2k−1 (k = 1,2, ..) and u≤ 0,

R+, if n = 2k (k = 1,2, ..) and u = 0,

/0, otherwise.

In the following example, we compute the Studniarski derivative of a map into an infinite

dimensional case.

Example 6.2.3. Let X = R and Y = l2, the Hilbert space of the numerical sequences x = (xi)i∈N

with ∑
∞
i=1 x2

i being convergent. By (ei)i∈N we denote standard unit basis of l2. Let f : X → Y be

defined by

f (x) :=


1
n
(−e1 +2en), if x =

1
n
,

0, otherwise

and (x0,y0) = (0,0). We find the higher-order Studniarski derivatives of f at (x0,y0). It follows

from Definition 2.1 that v ∈Dm f (x0,y0)(u) means the existence of tk→ 0+, uk→ u, and vk→ v

such that

y0 + tm
k vk ∈ f (x0 + tkuk). (6.1)

For all u ∈ X , we can choose tk→ 0+, uk→ u such that tkuk 6= 1/k. So, for all u ∈ X ,

{0} ⊆ Dm f (x0,y0)(u).
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We now prove that, for each v ∈ Y \ {0}, v 6∈ Dm f (x0,y0)(u) for all u ∈ X . Suppose, on the

contrary, there exist u ∈ U and v ∈ Y \ {0} such that v ∈ Dm f (x0,y0)(u), i.e., there are tk →
0+, uk → u, vk → v such that (6.1) holds. If tkuk 6= 1/k for infinitely many k ∈ N, we get a

contradiction easily. Hence, assume that tkuk = 1/k. Then (6.1) becomes vk =
1

k.tm
k

(−e1 +2ek).

If 1/(k.tm
k )→+∞, we get a contradiction to the convergence of the sequence (−e1+2ek)/(k.tm

k ).

Suppose 1/(k.tm
k )→ a ≥ 0. As e1/(k.tm

k )→ ae1, the sequence ek/(k.tm
k ) converges to some c,

i.e.,

|| 2
k.tm

k
ek− c||2→ 0,

that is,

|| 2
k.tm

k
ek− c||2 = (

2
k.tm

k
)2 + ||c||2 +2

〈
2

k.tm
k

ek,−c
〉
→ 0. (6.2)

Since (ek) converges to 0 with respect to the weak topology, then 〈ek,−c〉 → 0. From (6.2), we

get 4a2 + ||c||2 = 0. If a = 0, then c = v(6= /0) since (−e1 +2ek)/(k.tm
k )→ v. If a > 0, then 4a2 +

||c||2 6= 0. Therefore, we always have a contradiction. Thus, for all u∈ X , Dm f (x0,y0)(u) = {0}.

We now present a condition for a m-th order Studniarski derivative to be nonempty.

Proposition 6.2.4. Let dimY < +∞, (x0,y0) ∈ grF, and x0 ∈ int(domF). Suppose that

(i) F is lower semicontinuous at (x0,y0),

(ii) F is m-th order locally pseudo-Hölder calm at x0 for y0.

Then, DmF(x0,y0)(x) 6= /0 for all x ∈ X.

Proof. For x = 0, this is trivial because we always have 0 ∈DmF(x0,y0)(0). By assumption (ii),

there exist λ > 0, U1 ∈N (x0) and V ∈N (y0) such that ∀x′ ∈U1,

(F(x′)∩V )⊆ {y0}+λ ||x′− x0||mBY .

By assumption (i), with V above, there exists U2 ∈ N (x0) such that ∀x̂ ∈ U2, V ∩F(x̂) 6= /0.

It follows from x0 ∈ int(domF) that there exists U3 ∈ N (x0) such that U3 ∈ domF . Setting

Û = U1 ∩U2 ∩U3, we get Û ∈ N (x0). Let an arbitrary x ∈ X \ {0} and tn → 0+. Because

x0 + tnx→ x0, we get x0 + tnx ∈ Û for large n. Hence, there exists yn ∈ F(x0 + tnx)∩V such that

t−m
n ||yn− y0|| ≤ λ ||x||m.

So, t−m
n (yn− y0) is a bounded sequence and hence has a convergent subsequence. By Definition

6.2.1, the limit of this subsequence is an element of the set DmF(x0,y0)(x).
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Example 6.2.5. (assumption (ii) is essential) Let F : R→ 2R be defined by

F(x) =



{x1/3}, if 0≤ x≤ 1,

{x}, if x > 1,

{−x}, if −1≤ x < 0,

{−x1/3}, if x <−1.

Direct computations yield that DmF(0,0)(1) = /0 for all m≥ 1. Here, F is lower semicontinuous

at (0,0), but the m-th order locally pseudo-Hölder calmness fails.

Example 6.2.6. (assumption (i) cannot be dropped) Let F : R→ 2R be defined by

F(x) =

{ {1}, if x = 0,

{y : y≤ x}, if x 6= 0.

Then, assumption (ii) is satisfied at (0,1). Direct calculations give that DmF(0,1)(1) = /0 for

all m ≥ 1. The cause is that F is not lower semicontinuous at (0,1), since F is mth-order

locally pseudo-Holder calm at 0 for 1. Indeed, pick λ = 1,U = {x ∈ R : −1/2 < x < 1/2},
V = {y ∈ R : 1/2 < y < 3/2}. Then, F(x) = {y ∈ R : y ≤ x} ⊂ (−∞,1/2) for all x ∈U \ {0}.
Therefore, F(x)∩V = /0 for all x ∈U \{0}, and

F(0)∩V = {1} ⊂ {y0}+ ||x||mBY

for all m≥ 1.

A map F is said to have a strict Studniarski derivative at (x0,y0) ∈ grF if

DmF(x0,y0)(u) = {v ∈ Y : ∀tn→ 0+,∃(un,vn)→ (u,v), ∀n,y0 + tm
n vn ∈ F(x0 + tnun)}.

Proposition 6.2.7. Let F : X → 2Y , (x0,y0) ∈ grF, and F be a convex map and have a strict

Studniarski derivative at (x0,y0). Then, DmF(x0,y0) is convex.

Proof. Let x1,x2 ∈ X and yi ∈ DmF(x0,y0)(xi), i = 1,2, i.e., for any tn → 0+, there exists

(xi
n,y

i
n)→ (xi,yi) such that, for all n, yi

n ∈ t−m
n (F(x0 + tnxi

n)− y0). Since F is convex, for all

λ ∈ [0,1],

λ

(
F(x0 + tnx1

n)− y0

tm
n

)
+(1−λ )

(
F(x0 + tnx2

n)− y0

tm
n

)
⊆ F(λ (x0 + tnx1

n)+(1−λ )(x0 + tnx2
n))− y0

tm
n

.
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Therefore,

λy1
n +(1−λ )y2

n ∈
F(x0 + tn(λx1

n +(1−λ )x2
n))− y0

tm
n

.

Hence, λy1 +(1−λ )y2 ∈ DmF(x0,y0)(λx1 +(1−λ )x2).

The next statement is a relation between the Studniarski derivative of F and that of the profile

map.

Proposition 6.2.8. Let F : X → 2Y , and (x0,y0) ∈ grF. Then, for all x ∈ X,

DmF(x0,y0)(x)+C ⊆ Dm(F +C)(x0,y0)(x). (6.3)

If dimY < +∞ and F is m-th order locally Hölder calm at x0 for y0, then (6.3) becomes an

equality.

Proof. Let w ∈ DmF(x0,y0)(x) +C, i.e., there exists v ∈ DmF(x0,y0)(x) and c ∈ C such that

w = v+ c. We then have sequences tn→ 0+, xn→ x, and vn→ v such that, for all n,

y0 + tm
n (vn + c) ∈ F(x0 + tnxn)+ tm

n c⊆ F(x0 + tnxn)+C.

So, v+ c ∈ Dm(F +C)(x0,y0)(x).

Let w∈Dm(F +C)(x0,y0)(x), i.e., there exist tn→ 0+, xn→ x, wn→w such that y0 +tm
n wn ∈

F(x0 + tnxn)+C. Then, there exist yn ∈ F(x0 + tnxn) and cn ∈C satisfying

wn = t−m
n (yn− y0)+ t−m

n cn. (6.4)

Because F is m-th order locally Hölder calm at x0 for y0, there exists λ > 0 such that, for large

n,

yn ∈ F(x0 + tnxn)⊆ {y0}+λ ||tnxn||mBY .

So,

t−m
n ||yn− y0|| ≤ λ ||xn||m.

Since dimY < +∞, t−m
n (yn− y0) (using a subsequence, if necessary) converges to some v and

v ∈ DmF(x0,y0)(x). From (6.4), the sequence cn/tm
n converges to some c ∈ C and w = v + c.

Thus w ∈ DmF(x0,y0)(x)+C.
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6.3 Calculus rules

Proposition 6.3.1. (Sum rule) Let F1,F2 : X → 2Y , x0 ∈ domF1 ∩ domF2, yi ∈ F(xi) (i=1,2)

and u ∈ X. Suppose either F1 or F2 has a m-th order proto-Studniarski derivative at (x0,y1) or

(x0,y2), respectively. Then

DmF1(x0,y1)(u)+DmF2(x0,y2)(u)⊆ Dm(F1 +F2)(x0,y1 + y2)(u). (6.5)

If, additionally, dimY < +∞ and either F1 or F2 is m-th order locally Hölder calm at x0 for y1

or y2, respectively, then (6.5) becomes an equality.

Proof. Consider vi ∈DmFi(x0,yi)(u). For v1, there exist tn→ 0+, un→ u, and v1
n→ v1 such that,

for all n, y1 +tm
n v1

n ∈F1(x0 +tnun). For v2, supposing that F2 has the m-th order proto-Studniarski

derivative at (x0,y2), with tn, un above, there exists v2
n→ v2 such that y2 + tm

n v2
n ∈ F2(x0 + tnun).

Hence, y1 + y2 + tm
n (v1

n + v2
n) ∈ (F1 +F2)(x0 + tnun) and v1 + v2 ∈ Dm(F1 +F2)(x0,y1 + y2)(u).

Let v ∈ Dm(F1 +F2)(x0,y1 + y2)(u), i.e., there exist tn→ 0+, un→ u, and vn→ v such that

y1 + y2 + tm
n vn ∈ (F1 +F2)(x0 + tnun) = F1(x0 + tnun)+F2(x0 + tnun).

This means that there exist yi
n ∈ Fi(x0 + tnun), i = 1, 2, such that

vn = t−m
n (y1

n− y1)+ t−m
n (y2

n− y2). (6.6)

Suppose F1 is m-th order locally Hölder calm at x0 for y1, i.e., there exists L > 0 such that, for

large n,

y1
n ∈ F1(x0 + tm

n un)⊆ {y1}+L||tnun||mBY .

Because dimY < +∞, t−m
n (y1

n− y1) (using a subsequence, if necessary) converges to some v1

and hence v1 ∈ DmF1(x0,y1)(u). From (6.6), the sequence t−m
n (y2

n− y2) also converges to some

v2 such that v2 = v−v1, and v2 ∈DmF2(x0,y2)(u). Thus, v∈DmF1(x0,y1)(u)+DmF2(x0,y2)(u).

Proposition 6.3.2. (Chain rule) Let F : X → 2Y , G : Y → 2Z , (x0,y0) ∈ grF, (y0,z0) ∈ grG, and

ImF ⊆ domG.

(i) Suppose G has a m-th order proto-Studniarski derivative at (y0,z0). Then, for all u ∈ X,

DmG(y0,z0)(D1F(x0,y0)(u))⊆ Dm(G◦F)(x0,z0)(u). (6.7)
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If, additionally, dimY < +∞ and F is locally Lipschitz calm at x0 for y0, then (6.7) becomes an

equality.

(ii) Suppose G has a first-order proto-Studniarski derivative at (y0,z0). Then, for all u ∈ X,

D1G(y0,z0)(DmF(x0,y0)(u))⊆ Dm(G◦F)(x0,z0)(u). (6.8)

If, additionally, dimY < +∞ and F is m-th order locally Hölder calm at x0 for y0, then (6.8)

becomes an equality.

Proof. By the similarity, we prove only (i). Let w ∈ DmG(y0,z0)(D1F(x0,y0)(u)), i.e., there

exists v∈D1F(x0,y0)(u) such that w∈DmG(y0,z0)(v). There exist tn→ 0+, un→ u, and vn→ v

such that y0 + tnvn ∈ F(x0 + tnun). With tn,vn above, we have wn → w such that z0 + tm
n wn ∈

G(y0 + tnvn). So, z0 + tm
n wn ∈ G(F(x0 + tnun)). Thus, w ∈ Dm(G◦F)(x0,z0)(u).

Let w ∈ Dm(G◦F)(x0,z0)(u), i.e., there exists tn→ 0+, un→ u, and wn→ w such that z0 +

tm
n wn ∈ G(F(x0 + tnun)). Then, there exists yn ∈ F(x0 + tnun) such that z0 + tm

n wn ∈ G(yn). Due

to the local Lipschitz calmness of F and the finiteness of dimY , the sequence vn := t−1
n (yn−y0),

or a subsequence, converges to some v and v ∈ D1F1(x0,y0)(u). This implies that z0 + tm
n wn ∈

G(y0 + tnvn) and hence w ∈ DmG(y0,z0)(v).

We next discuss calculus rules for the following operations.

Definition 6.3.3. (i) For F1,F2 : X→ 2Rk
, Rk being an Euclidean space, the product of F1 and F2

is the set-valued map 〈F1,F2〉 : X→ 2R defined by 〈F1,F2〉(x) := {〈y1,y2〉 : y1 ∈ F1(x),y2 ∈ F2(x)} .
(ii) For F1,F2 : X → 2R, the quotient of F1 and F2 is the set-valued map F1/F2 : X → 2R

defined by (F1/F2)(x) := {y1/y2 : y1 ∈ F1(x),y2 ∈ F2(x),y2 6= 0} .

Proposition 6.3.4. (Product rule) Let F1,F2 : X→ 2Rk
, x0 ∈ domF1∩domF2, yi ∈F1(x0) (i=1,2).

Suppose either F1 or F2 has a m-th order proto-Studniarski derivative at (x0,y1) or (x0,y2),

respectively. Then, for all u ∈ X,

〈y2,DmF1(x0,y1)(u)〉+ 〈y1,DmF2(x0,y2)(u)〉 ⊆ Dm(〈F1,F2〉)(x0,〈y1,y2〉)(u). (6.9)

If, additionally, Fi are m-th order locally Hölder calm at x0 for yi, i = 1,2, then (6.9) becomes

an equality.

Proof. Consider vi ∈ DmFi(x0,yi)(u). There exist tn→ 0+, un→ u, and v1
n→ v1 such that y1 +

tm
n v1

n ∈ F1(x0 + tnun). Supposing F2 has the m-th order proto-Studniarski derivative at (x0,y2),
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with tn, un above, there exists v2
n→ v2 such that y2 + tm

n v2
n ∈ F2(x0 + tnun). We have〈

y1 + tm
n v1

n,y2 + tm
n v2

n
〉

= 〈y1,y2〉+ tm
n (
〈
y1,v2

n
〉
+
〈
y2,v1

n
〉
+ tm

n
〈
v1

n,v
2
n
〉
),

and 〈
y1 + tm

n v1
n,y2 + tm

n v2
n
〉
∈ 〈F1,F2〉(x0 + tnun).

This implies that
〈
y1,v2〉+〈y2,v1〉 ∈ Dm(〈F1,F2〉)(x0,〈y1,y2〉)(u).

Let v ∈ Dm(〈F1,F2〉)(x0,〈y1,y2〉)(u), i.e., there exist tn→ 0+, un→ u, and vn→ v such that

〈y1,y2〉+ tm
n vn ∈ 〈F1,F2〉(x0 + tnun). Then, there exist yi

n ∈ Fi(x0 + tnun) such that 〈y1,y2〉+
tm
n vn =

〈
y1

n,y
2
n
〉
. We have〈

y1
n,y

2
n
〉
=
〈
y1

n− y1 + y1,y2
n− y2 + y2

〉
=
〈
y1

n− y1,y2
n− y2

〉
+
〈
y1

n− y1,y2
〉
+
〈
y2

n− y2,y1
〉
+〈y1,y2〉 .

This implies that

vn =
〈

y1
n− y1

tm
n

,y2

〉
+
〈

y2
n− y2

tm
n

,y1

〉
+ tm

n

〈
y1

n− y1

tm
n

,
y2

n− y2

tm
n

〉
. (6.10)

Because Fi is m-th order locally Hölder calm at x0 for yi, there exists Li > 0 such that, for large

n,

yi
n ∈ Fi(x0 + tm

n un)⊆ {yi}+Li||tnun||mBY .

This implies that there are two subsequence (the subscripts of the second one are taken among

those of the first), denoted by the same notations t−m
n (yi

n− yi), converging to some vi ∈ Rk and

vi ∈DmFi(x0,yi)(u), i = 1,2. Thus, from (6.10), v∈ 〈DmF1(x0,y1)(u),y2〉+〈DmF2(x0,y2)(u),y1〉 .

Proposition 6.3.5. (Quotient rule) Let F1,F2 : X → 2R, x0 ∈ domF1 ∩ domF2, and yi ∈ Fi(x0)

(i=1,2) with y2 6= 0. Suppose either F1 or F2 has a m-th order proto-Studniarski derivative at

(x0,y1) or (x0,y2), respectively. Then, for all u ∈ X,

1
y2

2
(y2DmF1(x0,y1)(u)− y1DmF2(x0,y2)(u))⊆ Dm((F1/F2)(x0,y1/y2)(u). (6.11)

If, in addition, F2 is m-th order locally Hölder calm at x0 for y2, then (6.11) becomes an equality.

Proof. Consider vi ∈ DmFi(x0,yi)(u). There exist tn→ 0+, un→ u, and v1
n→ v1 such that y1 +

tm
n v1

n ∈ F1(x0 + tnun). Supposing F2 has the m-th order proto-Studniarski derivative at (x0,y2),

with tn, un above, there exists v2
n→ v2 such that y2 + tm

n v2
n ∈ F2(x0 + tnun). We have

y1 + tm
n v1

n
y2 + tm

n v2
n

=
y1

y2
+ tm

n

(
y2v1

n− y1v2
n

y2
2 + tm

n v2
ny2

)
∈ (F1/F2)(x0 + tnun).
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This implies that y−2
2 (y2v1− y1v2) ∈ Dm((F1/F2)(x0,y1/y2)(u).

Let v ∈ Dm(F1/F2)(x0,(y1/y2))(u), i.e., there exist tn→ 0+, un→ u, and vn→ v such that

(y1/y2)+ tm
n vn ∈ (F1/F2)(x0 + tnun). So, there exist yi

n ∈ Fi(x0 + tnun) such that (y1/y2)+ tm
n vn =

y1
n/y2

n. We get
y1

n
y2

n
=

y1

y2
+

y2(y1
n− y1)− y1(y2

n− y2)
y2

2 + y2(y2
n− y2)

,

and hence

vn =
y2(y1

n− y1)/tm
n − y1(y2

n− y2)/tm
n

y2
2 + tm

n .y2(y2
n− y2)/tm

n
. (6.12)

Because F2 is m-th order locally Hölder calm at x0 for y2, (y2
n − y2)/tm

n converges to some

v2 with v2 ∈ DmF2(x0,y2)(u). From (6.12), the sequence (y1
n − y1)/tm

n also converges to v1

such that v1 ∈ DmF1(x0,y1)(u) and v = y−2
2 (y2v1− y1v2). Thus, v ∈ y−2

2 (y2DmF1(x0,y1)(u)−
y1DmF2(x0,y2)(u)).

Corollary 6.3.6. (Reciprocal rule) Let F : X → 2R, y0 ∈ F(x0) with y0 6= 0. Then, for all u ∈ X,

− y−2
0 (DmF(x0,y0)(u)⊆ Dm(1/F)(x0,1/y0)(u). (6.13)

If, in addition, F is m-th order locally Hölder calm at x0 for y0, then (6.13) becomes an equality.

In the rest of this section, we discuss other sum and chain rules, which may be more useful

in some cases (see, e.g., Section 6.4). Let X ,Y,Z be normed spaces. To investigate the sum

M +N of multifunctions M,N : X → 2Y , we express M +N as a composition as follows. Define

F : X → 2X×Y and G : X×Y → 2Y by, for I being the identity map on X and (x,y) ∈ X×Y ,

F = I×M and G(x,y) = y+N(x). (6.14)

Then, clearly M +N = G◦F .

First, we develop a chain rule. Let general multimaps F : X → 2Y and G : Y → 2Z be consid-

ered. The so-called resultant set-valued map C : X×Z→ 2Y is defined by

C(x,z) := F(x)∩G−1(z).

Then, domC = gr(G◦F). We need the following compactness properties.

Definition 6.3.7. Let H : X → 2Y be a set-valued map.

(i) H is said to be compact, see [140], at x∈ cl(domH) if any sequence yn ∈H(xn) satisfying

xn→ x has a convergent subsequence.

(ii) H is said to be closed at x if (clH)(x) = H(x), where clH is the closure map of H defined

by gr(clH) = cl(grH).
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Note that when H is compact at x, the image H(x) still may be not closed. Simply think

of H : R→ 2R equal to (0,1) if x = 0, and to {0} if x 6= 0. Then, H is compact at 0, but

H(0) = (0,1) is not closed.

We define other kinds of m-th order Studniarski derivatives of G◦F with respect to variable

y as follows.

Definition 6.3.8. Let ((x,z),y) ∈ grC.

(i) The m-th order y-Studniarski derivative of G◦F at ((x,z),y) is defined as, for u ∈ X ,

Dm(G◦y F)(x,z)(u) := {w∈Z :∃tn→ 0+,∃(un,yn,wn)→ (u,y,w),∀n,yn ∈C(x+tnun,z+tm
n wn)}.

(ii) For an integer k, the m-th order pseudo-Studniarski derivative of the map C at (x,z) with

respect to k is defined as, for (u,w) ∈ X×Z,

Dm(k)
p C((x,z),y)(u,w) := {y ∈ Y : ∃tn→ 0+,∃(un,yn,wn)→ (u,y,w),∀n,

y+ tk
nyn ∈C(x+ tnun,z+ tm

n wn)}.

If k = m, the set in Definition 6.3.8(ii) is denoted shortly by Dm
pC((x,z),y)(u,w). One has a

relationship between Dm(G◦y F)(x,z)(u) and Dm(G◦F)(x,z)(u) in the following statement.

Proposition 6.3.9. Let (x,z) ∈ gr(G◦F) and u ∈ X.

(i) For y ∈C(x,z), one has

Dm(G◦y F)(x,z)(u)⊆ Dm(G◦F)(x,z)(u).

(ii) If C is compact and closed at (x,z), then⋃
y∈C(x,z)

Dm(G◦y F)(x,z)(u) = Dm(G◦F)(x,z)(u).

Proof. (i) This follows immediately from the definitions.

(ii) “⊆” follows from (i). For “⊇”, let w ∈ Dm(G ◦F)(x,z)(u), i.e., there exist sequences

tn → 0+ and (un,wn)→ (u,w) such that z + tm
n wn ∈ (G ◦F)(x + tnun). So, there exists yn ∈ Y

with yn ∈C(x+ tnun,z+ tm
n wn). Since C is compact at (x,z), yn (or a subsequence) has a limit y.

Since (x + tnun,z + tm
n wn,yn)→ (x,z,y), one has y ∈ (clC)(x,z). It follows from the closedness

of C at (x,z) that y ∈C(x,z).

The first chain rule for G◦F using these Studniarski derivatives is
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Proposition 6.3.10. Let (x,z) ∈ gr(G◦F) and y ∈C(x,z). Suppose, for all (u,w) ∈ X×Z,

DmF(x,y)(u)∩ (D1G(y,z))−1(w)⊆ Dm
pC((x,z),y)(u,w). (6.15)

Then

D1G(y,z)[DmF(x,y)(u)]⊆ Dm(G◦y F)(x,z)(u).

Proof. Let v∈D1G(y,z)[DmF(x,y)(u)], i.e., there exists y∈DmF(x,y)(u) such that y∈ (D1G(y,z))−1(v).

Then, (6.15) ensures that y ∈ Dm
pC((x,z),y)(u,v). This means the existence of tn → 0+ and

(un,yn,vn) → (u,y,v) such that y + tm
n yn ∈ C(x + tnun,z + tm

n vn). We have yn := y + tm
n yn ∈

C(x+ tnun,z+ tm
n vn). So, v ∈ Dm(G◦y F)(x,z)(u) and we are done.

Proposition 6.3.11. Let (x,z) ∈ gr(G◦F) and y ∈C(x,z). Suppose, for all (u,w) ∈ X×Z,

D1F(x,y)(u)∩ (DmG(y,z))−1(w)⊆ Dm(1)
p C((x,z),y)(u,w). (6.16)

Then

DmG(y,z)[D1F(x,y)(u)]⊆ Dm(G◦y F)(x,z)(u).

Proof. The proof is similar to that of Proposition 6.3.10.

Note that, when m = 1, we have (D1G(y,z))−1 = D1G−1(z,y), however this is not true for

m≥ 2 as shown in the following example.

Example 6.3.12. Let F : R→ R be defined by F(x) = x2. Then,

F−1(y) =

{ {−√y,
√

y}, if y≥ 0,

/0, if y < 0.

Direct computations yield that D1F(0,0)(u)= {0} for all u∈R, which implies that (D1F(0,0))−1(0)

= R and (D1F(0,0))−1(v) = /0 for v 6= 0. It is easy to check that D1F−1(0,0) coincides with

(D1F(0,0))−1.

For m = 2, D2F(0,0)(u) = {u2} for all u ∈ R, which implies

(D2F(0,0))−1(y) =

{ {−√y,
√

y}, if y≥ 0,

/0, if y < 0.
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However,

D2F−1(0,0)(v) =

{
R, if v = 0,

/0, if v 6= 0.

To get a chain rule for Studniarski derivatives in the form of equalities, we first prove the

inclusions reverse to those in Propositions 6.3.10(i), 6.3.11(i) under additional assumptions as

follows.

Proposition 6.3.13. Let y ∈C(x,z) and Y be finite dimensional.

(i) If

Dm
pC((x,z),y)(0,0) = {0}, (6.17)

then

Dm(G◦y F)(x,z)(u)⊆ D1G(y,z)[DmF(x,y)(u)].

(ii) If

Dm(1)
p C((x,z),y)(0,0) = {0}, (6.18)

then

Dm(G◦y F)(x,z)(u)⊆ DmG(y,z)[D1F(x,y)(u)].

Proof. By the similarity, we prove only (i). Let w∈Dm(G◦y F)(x,z)(u), i.e., there exist tn→ 0+

and (un,yn,wn)→ (u,y,w) such that yn ∈ C(x + tnun,z + tm
n wn). If yk = y for infinitely many

k ∈ N, one has 0 ∈ DmF(x,y)(u), w ∈ D1G(y,z)(0) and we are done. Thus, suppose yn 6= y for

all n and, for sn := ||yn−y||1/m, the sequence vn := s−m
n (yn−y) or some subsequence has a limit

v of norm one. If tn/sn→ 0, since

y+ sm
n vn = yn ∈C

(
x+ sn(

tnun

sn
),z+ sm

n (
tm
n wn

sm
n

)
)

,

one sees that v ∈ Dm
pC((x,z),y)(0,0), contradicting (6.17). Consequently, t−1

n sn has a bounded

subsequence and one may assume that t−1
n sn tends to q ∈ R+. So,

y+ tm
n (sm

n vn/tm
n ) = yn ∈C(x+ tnun,z+ tm

n wn)

and then one gets qmv∈Dm
pC((x,z),y)(u,w). It follows from the definition of Dm

pC((x,z),y)(u,w)

that qmv ∈ DmF(x,y)(u) and w ∈ D1G(y,z)(qmv).

Combining Propositions 6.3.9 - 6.3.13, we arrive at the following chain rule.
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Proposition 6.3.14. Suppose Y is finite dimensional and (x,z) ∈ gr(G ◦ F) is such that C is

compact and closed at (x,z).

(i) Assume that (6.17) holds for every y ∈C(x,z). Then

Dm(G◦F)(x,z)(u)⊆
⋃

y∈C(x,z)

D1G(y,z)[DmF(x,y)(u)]. (6.19)

If, additionally, (6.15) holds for every y ∈C(x,z), then (6.19) is an equality.

(ii) Assume that (6.18) holds for every y ∈C(x,z). Then

Dm(G◦F)(x,z)(u)⊆
⋃

y∈C(x,z)

DmG(y,z)[D1F(x,y)(u)]. (6.20)

If, additionally, (6.16) holds for every y ∈C(x,z), then (6.20) is an equality.

Now we apply the preceding chain rules to establish sum rules for M,N : X → 2Y . For this

purpose we use F : X → 2X×Y and G : X×Y → 2Y defined in (6.14). For (x,z) ∈ X×Y , set

S(x,z) := M(x)∩ (z−N(x)).

Then, the resultant map C : X×Y → 2X×Y associated to these F and G is

C(x,z) = {x}×S(x,z).

Given ((x,z),y) ∈ grS, the m-th order y-Studniarski derivative of M + N at (x,z) is defined

as, for u ∈ X ,

Dm(M+y N)(x,z)(u) := {w∈Y :∃tn→ 0+,∃(un,yn,wn)→ (u,y,w),∀n,yn ∈ S(x+tnun,z+tm
n wn)}.

Observe that

Dm(M +y N)(x,z)(u) = Dm(G◦y F)(x,z)(u). (6.21)

One has a relationship between Dm(M +y N)(x,z)(u) and Dm(M + N)(x,z)(u) as noted in the

next statement.

Proposition 6.3.15. Let (x,z) ∈ gr(M +N) and y ∈ S(x,z).

(i) Dm(M +y N)(x,z)(u)⊆ Dm(M +N)(x,z)(u).

(ii) If S is compact and closed at (x,z), then⋃
y∈S(x,z)

Dm(M +y N)(x,z)(u) = Dm(M +N)(x,z)(u).
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Proof. (i) This is an immediate consequence of the definitions.

(ii) When S is compact and closed at (x,z), C is compact and closed at (x,z). Hence, the

equality in Proposition 6.3.9(ii) holds. In view of (6.21), this relation implies the required equal-

ity.

For higher-order sum rules, we have

Proposition 6.3.16. Let (x,z) ∈ gr(M +N) and y ∈ S(x,z).

(i) Suppose, for all (u,v) ∈ X×Y ,

DmM(x,y)(u)∩ [v−DmN(x,z− y)(u)]⊆ Dm
p S((x,z),y)(u,v). (6.22)

Then

DmM(x,y)(u)+DmN(x,z− y)(u)⊆ Dm(M +y N)(x,z)(u).

(ii) If (6.22) holds for all y ∈ S(x,z), then⋃
y∈S(x,z)

(DmM(x,y)(u)+DmN(x,z− y)(u))⊆ Dm(M +N)(x,z)(u).

Proof. (i) Let w ∈ DmM(x,y)(u) + DmN(x,z− y)(u), i.e., there exists y ∈ DmM(x,y)(u) such

that y ∈ w−DmN(x,z− y)(u). Hence, (6.22) ensures that y ∈ Dm
p S((x,z),y)(u,w). Therefore,

there exist tn→ 0+ and (un,yn,wn)→ (u,y,w) such that y+ tm
n yn ∈ S(x+ tnun,z+ tm

n wn). Setting

yn = y+ tm
n yn, we have yn ∈ S(x+ tnun,z+ tm

n wn). Consequently, w ∈ Dm(M +y N)(x,z)(u).

(ii) This follows from (i) and Proposition 6.3.15(i).

We can impose an additional condition to get equalities in the above sum rules as follows.

Proposition 6.3.17. Let Y be finite dimensional and (x,z) ∈ gr(M +N).

(i) Suppose, for y ∈ S(x,z),

Dm
p S((x,z),y))(0,0) = {0}. (6.23)

Then

Dm(M +y N)(x,z)(u)⊆ DmM(x,y)(u)+DmN(x,z− y)(u).

(ii) If S is compact and closed at (x,z) and (6.23) holds for every y ∈ S(x,z), then one has

Dm(M +N)(x,z)(u)⊆
⋃

y∈S(x,z)

(DmM(x,y)(u)+DmN(x,z− y)(u)). (6.24)

If, additionally, (6.22) holds for every y ∈ S(x,z), then (6.24) becomes an equality.
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Proof. (i) Let w∈Dm(M +y N)(x,z)(u), i.e., there exist tn→ 0+ and (un,yn,wn)→ (u,y,w) such

that yn ∈ S(x+ tnun,z+ tm
n wn). If yk = y for infinitely many k ∈N one has 0 ∈DmM(x,y)(u) and

w∈DmN(x,z−y)(u), and we are done. Thus, suppose yn 6= y for all n and, for sn := ||yn−y||1/m,

the sequence vn := s−m
n (yn− y) converges to v of norm one. If tn/sn→ 0, since

y+ sm
n vn = yn ∈ S

(
x+ sn(

tnun

sn
),z+ sm

n (
tm
n wn

sm
n

)
)

,

one sees that v ∈ Dm
p S((x,z),y)(0,0), contradicting (6.23). Consequently, sn/tn has a bounded

subsequence and we may assume that sn/tn tends to q ∈ R+. So,

y+ tm
n

(
sm

n
tm
n

vn

)
= yn ∈ S(x+ tnun,z+ tm

n wn)

and then qmv ∈ Dm
p S((x,z),y)(u,w). It follows from the definition of Dm

p S((x,z),y)(u,w) that

qmv ∈ DmM(x,y)(u) and w−qmv ∈ DmN(x,z− y)(u).

(ii) This follows from (i) and Propositions 6.3.15 and 6.3.16.

Next, we define two other m-th order Studniarski derivatives, which are slight modifications

of those in the above definitions and suitable for applications to variational inequalities in Section

6.4. Let P be also a normed space, F : P×X → 2Y and N : P×X → 2Y . Let Ŝ : P×X×Y → 2Y

be given by

Ŝ(p,x,y) := F(p,x)∩ (y−N(p,x)).

Definition 6.3.18. Given y0 ∈ Ŝ(p,x,y) and (u,v) ∈ P×X , we define

Dm(F +y0 N)((p,x),y)(u,v) := {w ∈ Y : ∃tn→ 0+,∃(un,vn,yn,wn)→ (u,v,y0,w),

yn ∈ Ŝ(p+ tnun,x+ tm
n vn,y+ tm

n wn)},

and

Dm
p Ŝ((p,x,y),y0)(u,v,s) := {w ∈ Y : ∃tn→ 0+,∃(un,vn,sn,wn)→ (u,v,s,w),

y0 + tm
n wn ∈ Ŝ(p+ tnun,x+ tm

n vn,y+ tm
n sn)}.

Proposition 6.3.19. Let Y be finite dimensional and ((p,x),y) ∈ gr(F +N).

(i) Suppose, for y0 ∈ Ŝ(p,x,y),

Dm
p Ŝ((p,x,y),y0))(0,0,0) = {0}. (6.25)

112



§6. Calculus rules and applications of Studniarski derivatives to sensitivity and implicit
function theorems

Then

Dm(F +y0 N)((p,x),y)(u,v)⊆ Dm
p F((p,x),y0)(u,v)+Dm

p N((p,x),y− y0)(u,v).

(ii) If Ŝ is compact and closed at (p,x,y) and (6.25) holds for every y0 ∈ Ŝ(p,x,y), then one has

Dm
p (F +N)((p,x),y)(u,v)⊆

⋃
y0∈Ŝ(p,x,y)

(Dm
p F((p,x),y0)(u,v)+Dm

p N((p,x),y− y0)(u,v)).

Proof. (i) Let w ∈ Dm(F +y0 N)((p,x),y)(u,v), i.e., there exist tn → 0+ and (un,vn,yn,wn)→
(u,v,y0,w) such that yn ∈ Ŝ(p+tnun,x+tm

n vn,y+tm
n wn). If yk = y0 for infinitely many k ∈N, one

has 0 ∈ Dm
p F((p,x),y0)(u,v) and w ∈ Dm

p N((p,x),y− y0)(u,v), and we are done. Now suppose

yn 6= y0 for all n and, for sn := ||yn− y0||1/m, the sequence ln := s−m
n (yn− y0) converges to l of

norm one. If tn/sn→ 0, since

y0 + sm
n ln = yn ∈ Ŝ

(
p+ sn

tnun

sn
,x+ sn(

tm
n vn

sn
),y+ sm

n (
tm
n wn

sm
n

)
)

,

one sees that l ∈Dm
p Ŝ((p,x,y),y0)(0,0,0), contradicting (6.25). Consequently, one may assume

that sn/tn tends to q ∈ R+. So,

y0 + tm
n

(
sm

n
tm
n

ln

)
= yn ∈ Ŝ(p+ tnun,x+ tm

n vn,y+ tm
n wn)

and thus qml ∈ Dm
p Ŝ((p,x,y),y0)(u,v,w). By the definition of Dm

p Ŝ((p,x,y),y0)(u,v,w), one has

qml ∈ Dm
p F((p,x),y0)(u,v) and w−qml ∈ Dm

p N((p,x),y− y0)(u,v).

(ii) We need to prove that, if Ŝ is compact and closed at (p,x,y), then

Dm
p (F +N)((p,x),y)(u,v) =

⋃
y0∈Ŝ(p,x,y)

Dm(F +y0 N)((p,x),y)(u,v).

The containment “⊇” follows from definitions. For “⊆”, let w ∈ Dm
p (F + N)((p,x),y)(u,v).

There exist tn → 0+ and (un,vn,wn)→ (u,v,w) such that y + tm
n wn ∈ F(p + tnun,x + tm

n vn) +

N(p + tnun,x + tm
n vn). Then, one can find yn ∈ F(p + tnun,x + tm

n vn) such that y + tm
n wn− yn ∈

N(p + tnun,x + tm
n vn). Therefore, yn ∈ Ŝ(p + tnun,x + tm

n vn,y + tm
n wn). Since Ŝ is compact at

(p,x,y), one may assume that yn converges to y0. As (p + tnun,x + tm
n vn,y + tm

n wn)→ (p,x,y),

one has y0 ∈ (cl Ŝ)(p,x,y). It follows from the closedness of Ŝ that y0 ∈ Ŝ(p,x,y).
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6.4 Applications

6.4.1 Studniarski derivatives of solution maps to inclusions

Let M : P×X → 2Z be a set-valued map between normed spaces. Then, the map S defined by

S(p) := {x ∈ X : 0 ∈M(p,x)}, (6.26)

is said to be the solution map of the parametrized inclusion 0 ∈M(p,x).

Theorem 6.4.1. For a solution map S defined by (6.26) and x ∈ S(p), we have, for p ∈ P,

DmS(p,x)(p)⊆ {x ∈ X : 0 ∈ Dm
p M((p,x),0)(p,x)}.

Proof. Let (p,x)∈ grDmS(p,x), i.e., there exist sequences pn→ p, xn→ x, and tn→ 0+ such that

x+ tm
n xn ∈ S(p+ tn pn). This implies that 0 is an element of the set M(p+ tn pn,x+ tm

n xn). Hence,

for zn = 0, the inclusion 0 + tm
n zn ∈M(p + tn pn,x + tm

n xn) holds, i.e., 0 ∈ Dm
p M((p,x),0)(p,x).

In parameterized optimization, we frequently meet M of the form

M(p,x) = F(p,x)+N(p,x), (6.27)

where F : P×X → 2Z and N : P×X → 2Z . Let Ŝ : P×X×Z→ 2Z be defined by

Ŝ(p,x,z) := F(p,x)∩ (z−N(p,x)).

The following theorem gives an approximation of the m-th order Studniarski derivative of S

when M is defined by (6.27).

Theorem 6.4.2. For the solution map S(p) = {x ∈ X : 0 ∈ F(p,x)+N(p,x)} and x ∈ S(p) with

Z being finite dimentional, suppose either of the following conditions hold

(i) Ŝ is compact and closed at (p,x,0) and Dm
p Ŝ((p,x,0),y)(0,0,0) = {0} for all y ∈

Ŝ(p,x,0);

(ii) there exists y ∈ Ŝ(p,x,0) such that either F or N is m-th order locally Hölder calm at

(p,x) for y or −y, respectively.

Then

DmS(p,x)(p)⊆ {x ∈ X : 0 ∈
⋃

y∈Ŝ(p,x,0)

(Dm
p F((p,x),y)(p,x)+Dm

p N((p,x),0− y)(p,x))}.
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Proof. We first prove that

Dm
p M((p,x),0)(p,x)⊆

⋃
y∈Ŝ(p,x,0)

(Dm
p F((p,x),y)(p,x)+Dm

p N((p,x),0− y)(p,x)).

If (i) holds, the above inclusion is followed by Proposition 6.3.19. For the case (ii) and y ∈
Ŝ(p,x,0), we see that y ∈ F(p,x) and −y ∈ N(p,x). Let v ∈ Dm

p M((p,x),0)(p,x), i.e., there

exist tn→ 0+, (pn,xn)→ (p,x), and vn→ v such that

0+ tm
n vn ∈M(p+ tn pn,x+ tm

n xn) = F(p+ tn pn,x+ tm
n xn)+N(p+ tn pn,x+ tm

n xn).

Then, there exist y1
n ∈ F(p+ tn pn,x+ tm

n xn) and y2
n ∈ N(p+ tn pn,x+ tm

n xn) such that

vn = t−m
n (y1

n− y)+ t−m
n (y2

n− (−y)). (6.28)

Suppose F is m-th order locally Hölder calm at at (p,x) for y. Then, there exists L > 0 such that

for large n,

y1
n ∈ F(p+ tn pn,x+ tm

n xn)⊆ {y}+L||(tn pn, tm
n xn)||mBZ.

Because dimZ < +∞, t−m
n (y1

n− y), or a subsequence, converges to some v1 ∈ Z and so v1 ∈
Dm

p F((p,x),y) (p,x). From (6.28), the sequence t−m
n (y2

n− (−y)) also converges to some v2 such

that v2 = v− v1, and v2 ∈ Dm
p N((p,x),−y)(p,x). Thus,

v ∈ Dm
p F((p,x),y)(p,x)+Dm

p N((p,x),−y)(p,x).

Now applying Theorem 6.4.1 completes the proof.

6.4.2 Implicit multifunction theorems

Let M : P×X→ Z and S(p) := {x∈ X : M(p,x) = 0}, be the set of solutions to the parametrized

equation M(x, p) = 0. We impose the condition

(∗)

{ ∃x ∈ X such that M(0,x) = 0 and

Mp is continuous in a neighborhood (U,V ) ∈N (0)×N (x),

where Mp denotes the partial Fréchet derivative with respect to p. Let H = V ∩M(0, .)−1, i.e.,

H(z) = {x ∈V : M(0,x) = z}.
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Under the hypotheses of usual implicit function theorems for M ∈C1, S and H are single-valued

and smooth (with derivatives DS, DH), and there holds

DS(0) =−DH(0)Mp(0,x) =−Mx(0,x)−1Mp(0,x).

Now we are interested in a similar formula of the m-th order Studniarski derivative DmS(0,x)(.)

of the map S under the assumption (∗). For (p,x) near (0,x), we consider the map

r(p,x) := M(p,x)−M(0,x)−Mp(0,x)p.

By the mean-value theorem, one obtains

r(p,x) =
1∫

0

[Mp(θ p,x)−Mp(0,x)]pdθ ,

where

α(p,x,θ) := ||Mp(θ p,x)−Mp(0,x)||

can be estimated (uniformly for 0 < θ < 1) by

α(p,x,θ)≤ 0(p,x) with 0(p,x)→ 0+ as x→ x and ||p|| → 0+.

Due to ||r(p,x)|| ≤ 0(p,x)||p||, one easily sees that ||p||−1||r(p,x)|| → 0+ as x→ x and ||p|| →
0+, and

r(p(t),x(t)) = o2(t) if x(t)→ x and p(t) = tq+o1(t) with some q ∈ P,

where ok(t) means that ||ok(t)||
t → 0+ as t→ 0+.

For (p,x) near (0,x), we have

M(p,x) = 0 if and only if M(0,x) =−Mp(0,x)p− r(p,x),

i.e.,

x ∈ S(p) if and only if x ∈ H(−Mp(0,x)p− r(p,x)).

Let M̂ : P×X → Z be defined by

M̂(p,x) :=−Mp(0,x)(p)− r(p,x).

Then, x ∈ S(p) if and only if x ∈H(M̂(p,x)). Set C(p,x) := M̂(p,x)∩H−1(x). It is easy to see

that C(0,x) = {0}.
The following result is a slight modification of that in Proposition 6.3.13(ii).
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§6. Calculus rules and applications of Studniarski derivatives to sensitivity and implicit
function theorems

Lemma 6.4.3. Let Z be finite dimentional and either of the following conditions hold

(i) M̂ is locally Lipschitz calm at (0,x) for 0;

(ii) C is compact and closed at (0,x) and

Dm(1)
p C((0,x),0)(0,0) = {0}. (6.29)

Then, x ∈ DmS(0,x)(q) implies that x ∈ DmH(0,x)[Dm(1)
p M̂((0,x),0)(q,x)].

Proof. Let x ∈ DmS(0,x)(q), i.e., there exist tn→ 0+, qn→ q, and xn→ x such that x + tm
n xn ∈

S(0+ tnqn). This implies that

x+ tm
n xn ∈ H(M̂(0+ tnqn,x+ tm

n xn)). (6.30)

Then, there exists yn ∈ M̂(0 + tnqn,x + tm
n xn) such that x + tm

n xn ∈ H(yn). Suppose (i) hold.

Because M̂ is locally Lipschitz calm at (0,x) for 0, there exists L > 0 such that, for large n,

yn ∈ M̂(0+ tnqn,x+ tm
n xn)⊆ {0}+L||(tnqn, tm

n xn)||BZ.

Since dimZ < +∞, vn := (tn)−1(yn−0) converges to some v∈ Z. So, v∈Dm(1)
p M̂((0,x),0)(q,x).

It implies that x+ tm
n xn ∈ H(0+ tnvn). Thus, x ∈ DmH(0,x)(v).

If assumption (ii) holds, it follows from (6.30) that there exists

yn ∈ M̂(0+ tnqn,x+ tm
n xn)∩H−1(x+ tm

n xn) = C(0+ tnqn,x+ tm
n xn).

Since C is compact at (0,x), yn (or a subsequence) has a limit y. Since (0+ tnqn,x+ tm
n xn,yn)→

(0,x,y), ones has y∈ (clC)(0,x). It follows from the closedness of C at (0,x) that y∈C(0,x) = 0.

If yk = 0 for infinitely many k∈N, one has 0∈Dm(1)
p M̂((0,x),0)(q,w) and w∈DmH(0,x)(0),

and we are done. Thus, one may suppose, for sn := ||yn||, the sequence vn := yn/sn has a limit v

of norm one. If tn/sn→ 0, since

0+ snvn = yn ∈C
(

0+ sn(
tnqn

sn
),x+ sm

n (
tm
n xn

sm
n

)
)

,

one sees that v ∈ Dm(1)
p C((0,x),0)(0,0), contradicting (6.29). Consequently, one may assume

that sn/tn converges to q ∈ R+. So,

0+ tn

(
sn

tn
vn

)
= yn ∈C(0+ tnqn,x+ tm

n xn)

and thus qv∈Dm(1)
p C((0,x),0)(q,x). It follows from the definition of Dm(1)

p C((0,x),0)(q,x) that

qv ∈ Dm(1)
p M̂((0,x),0)(q,x) and x ∈ DmH(y,z)(qv).
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§6. Calculus rules and applications of Studniarski derivatives to sensitivity and implicit
function theorems

Lemma 6.4.4. Let Z be finite dimentional, the asumptions of Lemma 6.4.3 be satisfied and

Dm(1)
p M̂((0,x),0)(q,x)∩ (DmH(0,x))−1(x)⊆ Dm(1)

p C((0,x),0)(q,x). (6.31)

Then, x ∈ DmS(0,x)(q) if and only if x ∈ DmH(0,x)[Dm(1)
p M̂((0,x),0)(q,x)].

Proof. By Lemma 6.4.3, we need to prove that x ∈ DmH(0,x)[Dm(1)
p M̂((0,x),0)(q,x)] implies

x∈DmS(0,x)(q). x∈DmH(0,x)[Dm(1)
p M̂((0,x),0)(q,x)] means the existence of v∈Dm(1)

p M̂((0,x),0)

(q,x)∩ (DmH(0,x))−1(x). Then, (6.31) ensures that v ∈ Dm(1)
p C((0,x),0)(q,x). This means the

existence of tn→ 0+ and (qn,xn,vn)→ (q,x,v) such that

0+ tnvn ∈C(0+ tnqn,x+ tm
n xn).

From the definition of the map C, we get 0+ tnvn ∈ M̂(0+ tnqn,x+ tm
n xn) and x+ tm

n xn ∈ H(0+

tnvn), which imply that x+tm
n xn ∈H(M̂(0+tnqn,x+tm

n xn)). Thus, we have x+tm
n xn ∈ S(0+tnqn)

and x ∈ DmS(0,x)(q).

Theorem 6.4.5. Impose the assumptions of Lemma 6.4.3. Then,

DmS(0,x)(q)⊆ DmH(0,x)[−Mp(0,x)(q)]. (6.32)

If, additionally, (6.31) holds, then (6.32) becomes an equality.

Proof. By Lemmas 6.4.3 and 6.4.4, we need to prove that Dm(1)
p M̂((0,x),0)(q,x)=−Mp(0,x)(q).

Let v ∈ Dm(1)
p M̂((0,x),0)(q,x). There exist tn→ 0+ and (qn,xn,vn)→ (q,x,v) such that

0+ tnvn = M̂(0+ tnqn,x+ tm
n xn) =−Mp(0,x)(0+ tnqn)− r(0+ tnqn,x+ tm

n xn).

Therefore,

vn =−Mp(0,x)(qn)− t−1
n r(tnqn,x+ tm

n xn)→−Mp(0,x)(q).

Thus, v =−Mp(0,x)(q) and we are done.
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Conclusions

In this thesis, we have presented results related to some topics of variational analysis. First,

we have stated definitions and basic properties of Γ-limits. Then, several generalized results

on sequential forms of Γ-limits have been given. We have also got important applications of

Γ-limits to tangency and generalized differentiation theory. It turns out that most of generalized

derivatives can be expressed in terms of Γ-limits. Finally, we have introduced some kinds of

generalized derivatives and their applications. In detail,

• We have discussed higher-order analysis for quantitative properties of perturbation maps

of nonsmooth vector optimization in terms of variational sets, a kind of generalized derivatives

which is suitable for a high level of nonsmoothness and relatively easy to compute. We have

established relations between variational sets of a perturbation map and weak perturbation map

or the efficiency/weak efficiency of these sets and the corresponding ones of the feasible-set map

to the objective space. These results have been applied to sensitivity analysis for set-constrained

vector optimization. As some results look complicated, we have tried to confirm the essential-

ness of each imposed assumption, as well as to illustrate advantages of our results by a number

of examples, which indicate also that computing variational sets is not a hard work.

• Realizing advantages in some aspects of radial sets and derivatives, we have aimed to

establish both necessary and sufficient higher-order conditions in terms of radial sets and deriva-

tives for various kinds of efficiency concepts in set-valued vector optimization. We have chosen

the Q-efficiency defined in [88] to unify these concepts. Thus, we have first discussed optimality

conditions for Q-efficiency and then rephrase the results for the other kinds of solutions. Be-

sides, we have also discussed properties and basic calculus rules of radial sets and derivatives

like those for a sum or composition of maps. Furthermore, direct applications of these rules in

proving optimality conditions for some particular problems have been given.

• Some calculus rules for Studniarski derivatives have been given to ensure that it can be

used in practice. Most of the usual rules, from the sum and chain rules to various operations in

119



Conclusions

analysis, have been investigated. It turns out that Studniarski derivatives possesses many fun-

damental and comprehensive calculus rules. Although this construction is not comparable with

objects in the dual approach like Mordukhovich’s coderivatives (see books [129,130] and papers

[89, 90, 128]) in enjoying rich calculus, it may be better in dealing with higher-order properties.

We have paid attention also on relations between the established calculus rules and applications

of some rules to get others. As such applications we have provided a direct employment of sum

rules to establishing an explicit formula for the Studniarski derivative of the solution map to a

parametrized inclusion in terms of Studniarski derivatives of the data. Furthermore, chain rules

have been also used to get implicit multifunction theorems.
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Further works

1) Studying on stability theories with respect to solution sets under perturbations of the data

has been of great interest in variational convergence. Some papers presented the convergence of

solution sets and efficient sets of perturbed problems in general convergence spaces, by using

some kinds of convergence, such as adherence and persistence, see [51, 56]. For vector prob-

lems, the notion of continuous convergence of the sequence of perturbed vector valued objective

functions has usually been used, see [51, 56, 122, 146, 169, 171]. Extending this convergence,

in [132, 133], by using Γ-limits, Oppezzi and Rossi introduced the notion of Γ-convergence

for sequences of vector valued functions and investigated stability results for convex vector opti-

mization problems. Some recent papers dealing with this convergence are [9,112,113,120,123].

For possible developments of Chapter 3, we think that, by using Γ-limits, ones can get stability

results to vector programming problem, where the objective function holds some conditions on

convexity as the inequality constraints, while the equality constraints are linear.

A well established practice to solve a vector optimization problem is through an associated

scalar optimization problem. There are various approaches, see [121,126,127,143], to scalarize

a vector optimization and obtain a complete characterization for several types of solution sets

of the vector optimization in terms of solution sets of the scalarized problem. Thus, we can

establish the convergence of solution sets of scalarized problems by using Γ-limits.

2) For possible developments of Chapter 4, we think that, besides going deeper in relations

for perturbation and weak perturbation maps in terms of variational sets for set-constrained

problems, one can consider the most important case of optimization problems with constraints

defined by inequalities and equalities. Furthermore, sensitivity analysis in terms of generalized

derivatives other than contingent ones and variational sets is a promising research direction. In

fact, first results of this kind have been obtained very recently by Diem et al. in [49], using the

so-called contingent-radial derivatives. This generalized derivative is defined by a combination

of the ideas of contingent derivatives and radial ones (for the latter derivative see recent works
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Further works

of Anh and Khanh in [2, 5]).

3) Note that separation theorems are a basic tool for proving optimality conditions and du-

ality statements. With the development of nonconvex optimization theory, there has come into

existence a need for nonconvex separation theorems, see [25]. So, for possible developments

of Chapter 5, we can derive optimality conditions of several kinds of efficient solutions for set-

valued optimization problems by using a nonconvex separation function given by Certh and

Weidner in [25]. Then, we can use these results to derive duality results for vector optimization

when the objectives and the constraints are nonconvex. Besides, motivated by [14, 30, 31], we

can obtain some calculations of higher-order radial sets in certain functional spaces.
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[82] G. H. Greco, Limitoidi e reticoli completi, Ann. Univ. Ferrara 29 (1983), 153 – 164. ↑1, 6, 14, 20, 21, 22, 23

[83] G. H. Greco, Decomposizioni di semifiltri e Γ−limiti sequenziali in reticoli completamente distributivi, Ann.
Mat. Pura Appl. 137 (1984), 61 – 81. ↑1, 14, 20, 21, 22, 24, 26, 37

127



Bibliography

[84] G. H. Greco, Operatori di tipo G su reticoli completi, Rend. Sem. Mat. Univ. Padova 72 (1984), 277 – 288.
↑1, 14

[85] G. Guareschi, Un concetto di derivazione delle funzioni di più variabili reali più ampio di quello della
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133



Index

lower semicontinuous, 7

Simplex, 9

Space

first countable, 24
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