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ABSTRACT 

The Paleozoic Saharan platform including the peri-Hoggar Basins (i.e. Murzuq, Illizi, Mouydir, 

Ahnet, Reggane and Tim Mersoï basins) are defined as intracraonic basins. Their histories have 

been dominated by slow long-wavelength vertical motions leading to overall low subsidence 

rate (i.e ca. 10 m/Ma to 50 m/Ma)  and accumulation of an extensive cover of platformal 

sediments (i.e. shallow deposits environments), rhythmed by pulsatile periods of increasing and 

decreasing rate probably triggered by regional geodynamic events. The vertical motions of the 

platform produced several arches also called domes, swells, highs, ridges (e.g. the Tihemboka, 

Amguid El Biod, Arak-Foum Belrem and Azzel Matti Arches) and basins (syncline-shaped) 

with different wavelengths going from several hundred to more than a thousand kilometres. 

The persistence of a rather uniform pattern of vertical motions seems to control the architecture 

of the basins indicating a large-scale control (i.e. lithospheric). This latter controls spatially and 

temporally the deposition and the erosion dynamics. Several major erosion events significantly 

truncated the pre-existing sediments over wide areas, producing regional unconformities, 

especially restricted and amalgamated on arches, which separate the platformal cover into 

divisions. Through an original multidisciplinary integrated approach going from a geological 

basin analysis, coupling the substrate and the basin architecture to a numerical thermo-

mechanical modelling of the lithosphere, this study has led to decipher the forcing factors of 

the intracratonic basins of the Saharan platform. 

The Arches-Basins architecture is highlighted through the identification of tectono-sedimentary 

structures (growth strata, truncatures…). This architecture is featured by thickness variation 

and facies portioning, organized by sub-vertical planar normal faults (sometimes blind faults) 

forming horst-graben systems associated with forced folding in the cover. Connected and 

nucleated to major mega-shear zones, horst-graben systems are inverted (positive inversion) or 

reactivated (forced folds) during successive geodynamic events (e.g. Cambro-Ordovician 

extension, Ordo-Silurian glacial rebound, Siluro-Devonian “Caledonian” 

extension/compression, late Devonian extension/compression and “Hercynian” compression). 

Formed under a Precambrian lithosphere of accretionary type, inherited during several paleo-

orogenies (e.g. Eburnean, Pan-African), a substrates zonation of the Arches-Basins framework 

is described, where the Archean to Paleoproterozoic terranes are forming the structural highs 

and the Meso-Neoproterozoic terranes the structural lows. 
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Based on these geological observations and the hypothesis of conserved differential densities 

(implying an isostatic potential) between the inherited different accreted terranes in the 

lithosphere (i.e. archean and proterozoic terranes), a 2D thermo-mechanical numerical model 

is proposed. The first and second order forcing factors, respectively recorded in the subsidence 

rate pattern by the low long-lived and by their cyclic deviations, are well constrained 

reconciling the singular Arches-Basins tectono-stratigraphic architecture. The different 

simulations have shown the importance of thermal anomaly, tectonics (weak strain rate) and 

external sediment supply on the dynamic of these intracratonic basins. Where, sediment flux 

controls the speed and the duration of basin infill until achievement of the isostatic equilibrium. 

The thermal anomaly and the tectonics compel the tectono-stratigraphic complexification such 

as the arches framework (intra-arches, boundary secondary arches…) and the stratigraphy 

architecture (wedges, diachronic unconformities). 

Furthermore, by comparing the basins architecture and the signature of the subsidence and the 

thermal pattern between numerical model and geological data from peri-Hoggars Basins, we 

see that all the forcing parameters associated can be linked to geodynamic events such as 

glaciation/deglaciation, global warming, rifting, intra-plate volcanism, and local deformation, 

probably triggered by far field stresses.  

Finally, an original classification is proposed based on the best fit of each peri-Hoggar Basins 

with different thermomechanical numerical models and their forcing factors dominance 

(tectonics dominated, thermal anomaly dominated, sediment flux dominated and/or different 

combination of these latter). 

Keywords: Saharan platform, peri-Hoggar Basins, Arches-Basins, Precambrian structural 

heritages, lithosphere heterogeneity, terranes, thermo-mechanical, far field stresses, density, 

potential isostatic equilibrium. 
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RESUME 

La plate-forme Saharienne paléozoïque, comprenant les bassins péri-Hoggar (Murzuq, Illizi, 

Mouydir, Ahnet, Reggane et Tim Mersoï) sont définies comme des bassins intracratoniques. Ils 

ont été dominés par des mouvements verticaux lents et à grande longueur d'onde, conduisant à 

de faible vitesse de subsidence (c’est-à-dire environ 10 m/Ma à 50 m/Ma) et à l'accumulation 

d'une couverture sédimentaire étendue de type plate-forme (environnements de dépôts peu 

profonds), rythmée par des périodes pulsatiles d’augmentation et de diminution du taux de 

subsidence probablement déclenchées par des événements géodynamiques régionaux. Les 

mouvements verticaux de la plate-forme ont créé plusieurs arches également appelés dômes, 

paléo-topographies (par exemple les arches de la Tihemboka, d’Amguid El Biod, d’Arak-Foum 

Belrem et de l’Azzel Matti) et des bassins (en forme de synclinal) de différentes longueurs 

d'onde allant de plusieurs centaines à plus de milliers kilomètres. La persistance d’un ensemble 

assez uniforme de mouvements verticaux semble contrôler l’architecture des bassins, ce qui 

semble indiquer un contrôle à grande échelle (i.e. lithosphérique). Ce dernier contrôle 

spatialement et temporellement la dynamique sédimentaire de dépôt et d'érosion. Plusieurs 

périodes d'érosion majeures ont considérablement tronqué les sédiments préexistants sur de 

vastes zones, produisant des discordances régionales, restreintes et amalgamées sur les arches, 

qui séparent la couverture sédimentaire de la plateforme. À travers une approche intégrée 

multidisciplinaire originale allant d’une analyse géologique de bassin, associant le substrat et 

l’architecture de bassin à une modélisation thermomécanique numérique de la lithosphère, cette 

étude a permis de décrypter les facteurs de forçage des bassins intracratoniques de la plate-

forme saharienne (bassins péri-Hoggar). 

L'architecture en Arches-Bassins est mise en évidence par l'identification de structures tectono-

sédimentaires (onlap divergents, troncatures…). Cette architecture se caractérise par des 

variations d'épaisseur et des partitionnements de faciès, organisés par des failles normales 

planes sub-verticales formant des systèmes d'horst-graben souvent associés à des plis forcés 

dans la couverture. Connectés et nucléés aux grandes zones de méga-cisaillement, les systèmes 

d'horst-graben sont inversés (inversion positive) ou réactivés (plis forcés) au cours 

d'événements géodynamiques successifs (par exemple : extension cambro-ordovicienne, 

rebond glaciaire ordo-silurien, extension/ compression Siluro-Dévonien «Calédonienne», 

extension/compression du dévonien tardif et compression «hercynienne»). 
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Formée sous une lithosphère précambrienne de type accrétionnaire héritées de plusieurs paléo-

orogénèses (e.g. Eburnéenne, Panafricaine), une zonation des substrats sous l’architecture en 

Arches-Basins est observée : Les terranes Archéen à Paléoprotérozoïque se situent sous les 

hauts structuraux et les terranes méso-néo-protérozoïques sous les dépressions. 

Sur la base de ces observations géologiques et de l’hypothèse de densités différentielles 

conservées (impliquant un potentiel isostatique) entre les différents terranes accrétées héritées 

(i.e. les terranes archéennes et protérozoïques) dans la lithosphère, un modèle numérique 

thermo-mécanique 2D est proposé. Les facteurs de forçage du premier et du second ordre, 

respectivement caractérisés par de faible taux de subsidence et par leurs déviations cycliques 

pendant de longues durées (250 Ma), sont bien contraint par le modèle réconciliant aussi 

l’architecture tectono-stratigraphique singulière en Arches-Basins. Les différentes simulations 

ont montré l’importance des anomalies thermiques, de la tectonique (faible taux de 

déformation) et de l’apport externes en sédiments sur la dynamique de ces bassins 

intracratoniques. Le flux sédimentaire contrôle la vitesse et la durée de remplissage du bassin 

jusqu'à l'équilibre isostatique. L'anomalie thermique et la tectonique entraînent la 

complexification de l’architecture stratigraphique des bassins (onlaps divergents, discordances 

diachroniques) mais aussi tectonique avec la mise place de structures tels que des arches intra-

bassins et des arches secondaires bordières inter-bassins... 

Par ailleurs, en comparant l’architecture des bassins, la signature thermique et les courbes de 

subsidence entre les modèles numériques et les données géologiques des bassins péri-Hoggars, 

nous voyons que tous les paramètres de forçage associés peuvent être liés à des événements 

géodynamiques tels que les glaciations/déglaciations, réchauffement global, rifting, volcanisme 

intra-plaque et déformation locale, probablement provoqués par des contraintes de champ 

lointain. 

Finalement, une classification originale est proposée basée sur la meilleure correspondance de 

chaque bassin péri-Hoggar avec différents modèles numériques thermomécaniques et leurs 

différents facteurs de forçage (à dominance tectonique, à dominance thermique, à dominance 

flux sédimentaire et/ou combinaison différente de ces derniers). 

Mots-clés: Plate-forme saharienne, Bassins péri-Hoggar, Arches-Bassins structures, héritages 

structuraux précambriens, hétérogénéité de la lithosphère, terranes, thermo-mécaniques, 

champs de contraintes lointaines, densité, potentiel isostatique.  
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Intracratonic basins also called “cratonic basins”, “interior cratonic basins” or “intracontinental 

sags” (Allen and Allen, 2013; Allen and Armitage, 2011; Heine et al., 2008) have a widespread 

repartition in the world (cf. Figure I-1 and Figure I-2). They host most of fresh water aquifers, 

minerals resources and hydrocarbons (61%) reserves of the world. They have been a renewed 

interest for these basins following non-conventional petroleum exploration. By their position in 

continents interior (see Figure I-1 and Figure I-2) and so, their stability through time (i.e. away 

from recycling area), they constitute an extraordinary record of the earth history. They preserve 

sediments in sinks (depressions) recording changes in climatic and tectonic processes occurring 

on the surface of the earth (Allen and Allen, 2013). They also expose relic of deep structures 

(Goodwin, 1996), which are witnesses of unsuspected geodynamic cycle and internal 

compositions of the earth constituting their substrate (i.e. basement). 

Consequently, in the light of this remarks, intracratonic basins represent amazing areas allowing 

to both study the contents (i.e. basin substrates) and the container (i.e. sediments infill). 

 

Figure I-1: Distribution of intracontinental basins on the continents surrounding the Atlantic 

Ocean, with typical cratonic basins highlighted. Other basins shown are commonly 
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unequivocally associated with extensional tectonics. Selected basins are color-coded according 

to the timing of initiation. Source: Base map and basin outlines provided by Trond Torsvik from 

Allen and Armitage, (2011). 

 

Figure I-2: Map showing the location of 24 cratonic basins overlain on a map of lithospheric 

thickness derived from surface wave tomography (Priestley and McKenzie, 2013). The basins 

are colour-coded by their age of initiation. 1: Southern West Siberian basin; 2: Hudson basin; 

3: Williston basin; 4: Michigan basin; 5: Illinois basin; 6: Solimoes basin; 7: Amazon basin; 

8: Parnaíba basin; 9: Paraná basin; 10: Chaco basin; 11: Congo basin; 12: Taoudenni basin; 

13: Kufra basin; 14: Murzuq basin; 15: Illizi basin; 16: Ghadames basin; 17: Tindouf basin; 

18: Ordos basin; 19: Sichuan basin; 20: Georgina basin; 21: Amadeus basin; 22: Officer 

basin; 23: Mporokoso basin; 24: Witswatersrand basin. Figure from published paper (Daly et 

al., 2018a). 
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Figure I-3: Localization and thickness of intracratonic basins in the world from Heine et al., 

(2008). 

1 Intracratonic basins main characteristics 

Intracratonic basins are situated in the interior of a continent, far from any active margins upon 

stable lithosphere area, weakly deformed (low reliefs), there are characterized by several 

common features (see Allen and Allen, 2013; Allen and Armitage, 2011; Armitage and Allen, 

2010 and references therein): 

• They are characterized by geometries large circular, elliptical, saucer-shaped to oval-

shaped (see Figure I-2 and Figure I-3); 

• The basins are mainly filled with shallow-water and continental sediments, and 

relatively simple layer-cake stratigraphy separated by unconformities, giving 

superimposed mega-sequences; 

• The rate and duration of subsidence are respectively slow and long-lived (Figure I-4); 

• The structural framework is featured by the reactivation of structures and emergence 

of arches/domes/swells/highs/ridges (e.g. Figure I-7). 
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The compilation of backstripped tectonic curves of intracratonic basins in the world (Figure 

I-4) shows prolonged, often marked by an initial stage of relatively fast subsidence, followed 

by a period of decreasing subsidence rate (Allen and Armitage, 2011; Nunn and Sleep, 1984; 

Xie and Heller, 2009), somewhat similar to that of passive margins ocean basins (Sleep, 1971; 

Xie and Heller, 2009). They are approximately exponential in shape, following the shape and 

magnitude of seafloor subsidence, but with longer decay constants (Xie and Heller, 2009). 

Presence of deviations from idealized thermal subsidence is notable in Figure I-4. These 

deviations are more pronounced than those seen in passive margins and suggest that tectonic 

reactivation characterizes many intracontinental basins (Xie and Heller, 2009). The shape of 

the curve of well W17 in the Ahnet Basin localized in the Saharan platform (the area of study) 

is coherent with the other curves (number 12 in red; Figure I-4). 

 

Figure I-4: Example of tectonic subsidence in intracratonic basins through the world modified 

from literature (Allen and Armitage, 2011; Xie and Heller, 2009). 1: Illinois Basin (Bond and 

Kominz, 1984); 2: Michigan Basin (Bond and Kominz, 1984); 3: Williston Basin, North Dakota 

(Bond and Kominz, 1984); 4: Williston Basin, Saskatchewan (Fowler and Nisbet, 1985); 5: 

Paraná Basin, Brazil, CB-3 well (Oliveira, 1987 from Allen and Armitage, 2011); 6: Northeast 

German Basin (Scheck and Bayer, 1999); 7: Southwest Ordos Basin (Xie, 2007 from Xie and 

Heller, 2006); 8: Paris Basin (Prijac et al., 2000); 9: West Siberian Basin, Russia, Urengoy 

well (Saunders et al., 2005); 10: West Siberian Basin, Russia, Samotlar-39 well (Saunders et 

al., 2005); 11: Paraná Basin (Zalan et al., 1990); 12: Well W17 in Ahnet Basin (Perron et al., 

2018). 
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The distribution and the thickness of intracratonic basin are typically less than 5 km (Figure 

I-3). They rarely reach <6-7 km as in the West Siberian, Illinois and Paranà basins (e.g. Allen 

and Armitage, 2011). They are commonly regularly spaced with their centers located about 103 

km apart (Allen and Allen, 2013; Allen and Armitage, 2011). 

Contrary to others main basins (i.e. extensional rift basin, passive margin, foreland basin), the 

repartition of subsidence in these basins is mainly asymmetrical with irregular growth (Figure 

I-4). They often involve other processes and mechanisms of control. 

 

Figure I-5: Subsidence repartition in different types of basin modified from Lafont, (1994). t: 

basin duration of subsidence; T: thickness of the basin; λ: wavelength of the basin; v: range of 

subsidence rate. Values from Allen and Allen, (2013). 
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2 Basin mechanisms and processes of formation 

Three generic basin forming mechanisms, under which the majority of basin forming 

mechanisms fall are proposed in the literature (Allen and Allen, 2013): Lithospheric 

stretching/thinning, cooling and flexural loading (Figure I-6A). When we are compared 

classical basins to an intracratonic basin (e.g. Figure I-5), neither of these basins looks similar 

either in size (geometries), in magnitude or in subsidence rate. 

Consequently, multiple alternative hypotheses and models have been invoked to explain 

mechanism of formation of intracratonic basins (see Allen and Armitage, 2011 and references 

therein or; Hartley and Allen, 1994) such as thermal contraction, underplating or dynamic 

topography (Figure I-6B). They are also the following (not limited): 

• An excess mass within the lower crust which isn’t isostatically compensated. This may 

be either due to a phase change to a dense mineral assemblage such as ecologite 

(Artyushkov, 1992) or emplacement of igneous underplating (DeRito et al., 1983; Stel 

et al., 1993). 

• Thermal contraction subsidence following heating by a plume (Kaminski and Jaupart, 

2000), the emplacement of anorogenic granites (Klein and Hsui, 1987) or extension at 

depth which only thins the lithosphere (Xie and Heller, 2009). 

• Reactivation of older structures which underlie the basin possibly due to a change of the 

stress field of the basin (Guiraud et al., 2005; Zalan et al., 1990; Ziegler et al., 1995). 

• Reactivation of pre-existing sags under in-plane stress or flexural loading (Beaumont et 

al., 1988; Quinlan, 1987; Quinlan and Beaumont, 1984). 

• Subsidence due to dynamic topography, over a region of downwelling in the convecting 

mantle beneath (Hartley and Allen, 1994; Heine et al., 2008) or related to the subduction 

of cold oceanic slabs (Burgess et al., 1997; Mitrovica et al., 1989). 

• Extension at the surface caused by magmatic upwelling (Lüning et al., 1999; Neumann 

et al., 1992). 

• Extremely slow rifting at low strain rates (10-16 s-1) caused by a change in the stress field 

to extension associated with supercontinent break up (Armitage and Allen, 2010). 

Moreover, due to the very long-lived characteristic, it is not uncommon that several 

mechanisms occur through time (Allen and Armitage, 2011). Other authors (e.g. Klein and 

Hsui, 1987) have suggested some combination of the above (models are overlapping). Knowing 
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that some processes are either explicit or implicit in many models (e.g. Kaminski and Jaupart, 

2000; Sleep and Snell, 1976). This makes the classification of these basins often rather hard 

(Kingston et al., 1983; Klemme, 1980). 

The more time is spent, the more complicated it seems to find evidence and clues of these 

processes. Besides, they are not always obvious to decipher in the geological record. It can be 

the presence of paleo-rift (Armitage and Allen, 2010), mantle plume (Kaminski and Jaupart, 

2000) or underplating (DeRito et al., 1983; Stel et al., 1993). 

 

Figure I-6: (A) The three lithospheric processes account for subsidence. Any sedimentary basin 

subsidence results from one of these three processes or a combination of them (Allen and Allen, 

2013). (B) Different hypotheses for subsidence origin of intracratonic basins (Allen and 

Armitage, 2011). 

3 Arches and Basins architecture and basins wavelengths 

We have seen that arch and (syncline-shaped) basin architectures is a common feature (Figure 

I-7) in intracratonic basins. In the world, it is highlighted by tectono-stratigraphic particularities 

(thickness changes, onlap, truncatures…), documented by numerous studies in South-America 

(de Brito Neves et al., 1984; Daly et al., 2014, 2018b; Milani and Zalan, 1999; Soares et al., 

1978; Watts et al., 2018; Zalan et al., 1990), North-Africa (Coward and Ries, 2003; Eschard et 

al., 2010; Perron et al., 2018), Europa (Eyer, 2012), Russia (Alekseev et al., 1996; Vyssotski et 

al., 2012), Australia (Harris, 1994; Lindsay and Leven, 1996; Mory et al., 2017), Arabia (al-

Laboun, 1986; Tavakoli-Shirazi et al., 2013; Vennin et al., 2015), North-America (Beaumont 

et al., 1988; Burgess, 2008; Burgess et al., 1997; Dineley, 1971; Pinet et al., 2013; Quinlan, 

1987; Quinlan and Beaumont, 1984; Watts et al., 2018) and Asia (Thomas et al., 1999). 
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Figure I-7: The arch and syncline-shaped basin architecture, a common characteristic of 

intracratonic basins inspired from Seyfert, (1987). 

The presence of arch and basin architectures is mainly neglected in the different models 

proposed in the literature (see previous part Chapter I.2). The authors habitually focus their 

study on the low long-lived subsidence particularities. Nevertheless, this arch-basin framework 

can be explained by intraplate source such as topography dynamic (Burgess et al., 1997; 

Burgess and Gurnis, 1995; François et al., 2013; Heine et al., 2008), lithospheric folding (Figure 

I-9) (Cloetingh and Burov, 2011), mantle plume (Burov and Cloetingh, 2009; Koptev et al., 

2016), far field stresses (e.g. Cloetingh, 1988; Ziegler et al., 1995), local increase of the 

geotherm (Neves et al., 2008) or traction induced from the mantle below the deformation (Hillis 

et al., 2008). 

 

Figure I-8: Relation between basins wavelength and the thickness of deformed unit. 

Characteristic sizes of some major types of sedimentary basins as a function of deformation 

intensity. Figure modified from Brun, (1999). 
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Figure I-9: Characteristics of lithospheric folding. (A) Poly-harmonic folding concept: due to 

rheological stratification, the lithosphere can develop different folding wavelength in response 

to tectonic compression. Surface topography will reflect superposition of different wavelengths. 

(B) Theoretically predicted wavelengths as function of thermo-tectonic age (for different 

lithospheric layers as well as whole-lithosphere folding. Model is compared to the observed 

wavelengths (Cloetingh et al., 1999). 1: Tien Shan; 2: Western Goby; 3: Central Asia; 4: 

Himalayan syntaxis belt; 5: Central Australia; 6: Russian platform; 7: South Caspian Basin; 

8: Eastern Black Sea; 9: Western Black Sea; 10: Pannonian Basin System; 11: NW European 

platform; 12: Brittany; 13: Iberia; 14: Barents Sea; 15: Canadian Arctic; 16: Transcontinental 

Arch of North America; 17: Laramide foreland (USA). Figure modified from Cloetingh and 

Burov, (2011). Paleozoic peri-Hoggar Basins based on this study data (last major 

thermotectonic event: Pan-African orogeny dated around 600 Ma e.g. Guiraud et al., (2005). 
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Figure I-10: Schematic diagram illustrating the relationship between the duration of 

subsidence and the configurations of the lithosphere and of the sedimentary infill at specific 

intracontinental basins modified from Cacace and Scheck-Wenderoth, (2016). Lithospheric 

thickness data are after (Artemieva, 2006), sediment thickness after (Heine et al., 2008), and 

subsidence duration after (Xie and Heller, 2009). The observed lack of correlation between 

equilibrium lithospheric thickness (red circles) and subsidence duration strongly suggests that 

subsidence in these basins cannot be exclusively explained by differences in the initial 

lithospheric configuration of the respective basins. In contrast, preserved sediments thickness 

(light blue circles) provides a better fit to the duration of subsidence, thus supporting the 

existence of a dynamic and structural relation between sedimentation pattern and history and 

resulting subsidence history. Placement of some Paleozoic peri-Hoggar Basins based on this 

study data. 
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Even if deciphering the processes of formation of intracratonic basins (and arch-basin 

architectures) is not always easy to decipher, the magnitude of wavelengths suggests a large-

scale control (see Figure I-8 and Figure I-9), according to some authors (Brun, 2002; Burov and 

Cloetingh, 2009). They link the relationship between the wavelength of the basin and the 

thickness of the deformed unit. Indeed, when we replace the Paleozoic Saharan intracratonic 

basins in Figure I-9, the range of control between different basins is disparate. Therefore, it 

suggests for the Paleozoic basins a lithospheric scale control by buckling or flexure (see Figure 

I-8 and Figure I-9).  

When, we observe the emplacement of the worldwide intracratonic basins, there is no relation 

with the lithospheric thickness (Figure I-2). Indeed, some basins can be situated upon rather 

thick or thin lithosphere. Knowing that, the resolution used cannot highlight local variation and 

heterogeneities. According to Cacace and Scheck-Wenderoth, (2016), correlation between 

equilibrium lithospheric thickness and subsidence duration is not clear (Figure I-10). They 

suggest that subsidence in these basins cannot be exclusively explained by differences in the 

initial lithospheric configuration of the respective basins but more probably the preserved 

sediments thickness provides a better fit to the duration of subsidence. Nevertheless, when we 

replace some Paleozoic Saharan intracratonic basins this correlation is neither obvious (Figure 

I-10). For the same duration of subsidence, the thickness between basins are different 

suggesting a local variability. 

As a consequence, according to these observations the mechanism of control of intracratonic 

basins and their architecture seems to be rather more complex than expected. And it is often the 

results of combination of several parameters. In order to reconcile both the wavelength and the 

local variation of thickness of these basins, we should probably also take to account the 

influence of paleo-structures heritage (basement rheologic heterogeneities). A forcing factor 

which stays in the same magnitude and shouldn’t be neglected. 

4 Precambrian heritage of continental lithosphere (Archean to 

Proterozoic terranes) 

Intracratonic basins are located on a variety of crustal substrates, irrespective of whether they 

are crystalline shields sensu stricto, accreted terranes, or ancient fold-belts and rift systems 

(Allen and Armitage, 2011). 



CHAPTER I – INTRODUCTION AND CONTEXT OF STUDY 

30 

P. PERRON - 2019 

Many authors have documented the influence of pre-existing structures, such as prior fault 

populations, shear zones and terrane suture zones throughout the lithosphere on the geometry 

and evolution of upper-crustal framework systems forming during later tectonic events (e.g. 

Audet and Bürgmann, 2011; Bellahsen et al., 2013, 2013; Bird et al., 2015; Bladon et al., 2015; 

de Brito Neves et al., 1984; Brune et al., 2017; Caravaca et al., 2017; Daly et al., 1989; Doré et 

al., 1997; Neves et al., 2008; Peace et al., 2018; Phillips et al., 2018; Rostirolla et al., 2003; 

Salomon et al., 2015). 

Therefore, the basement features (i.e. rheology, thermicity…) resulting from a complex 

assemblage is a key factor to understand the basin arrangement and his framework. 

However, the geometry and chemical-physical properties of deep structures in lithosphere are 

less well constrained, with information provided primarily by whole crust to lithosphere 

imaging geophysical methods such as seismic tomography, deep seismic reflection surveys, 

seismic refraction surveys and potential field imaging. Although, we are able to image these 

structures to substantial depths, such techniques are relatively low resolution, thereby limiting 

ability to interpret the geological origin of such structures and thus hampering efforts to 

examine how they may influence the structural style and kinematics of later formed structural 

architecture systems. That’s why, clues of this influence are certainly to find in the analysis of 

the origins of continental lithosphere, the paleo-orogenies and their heritage during the “old” 

Precambrian times. 

4.1 Paleo-orogenies and orogenic style: Continental lithosphere assembly 

The Precambrian refers to the period of geological time between 4.6 Ga and 541 Ma where the 

Archean (i.e. 4 Ga to 2.5 Ga) and the Paleoproterozoic (i.e. 2.5 Ga to 1.6 Ga) are key epochs in 

world framework. Both periods are characterized by high mantle activity, high crustal accretion, 

and profound changes in geodynamic processes, tectonic style and architecture, 

paleoatmospheric and paleobiological conditions. These changes have certainly had a 

considerable impact on the formation of the world sedimentary basins. 

Geochemical and geochronological studies show that about 60% of the current crust is formed 

before 2.7 Ga (Cawood et al., 2009; Taylor and McLennan, 1995). According to the models, 

most of the Archean and Paleoproterozoic crustal growth is operated continuously, or during 

periods of high growth (Condie, 1998; Reymer and Schubert, 1984; Taylor and McLennan, 

1995) corresponding to periods of significant mantle activity (Campbell et al., 1989; Reymer 
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and Schubert, 1984). Some authors match these peaks of crustal growth with periods of 

supercontinent formation (Aspler et al., 2001; Eriksson et al., 2005). Three supercontinents 

would have existed between the end of the Archean and the Neoproterozoic. They are 

referenced as the Kenorland dated approximately between 2.65 and 2.4 Ga (Williams et al., 

1991), the Columbia between 2.2 and 1.8 Ga (Rogers and Santosh, 2002) and the Rodinia 

around 1.2 Ga (Rogers et al., 1995). The existence of the first two supercontinents, their 

organization and their location are still very much disputed by the scientific community. 

However, Condie, (1998) emphasizes the importance of Archaean and Paleoproterozoic magma 

production. He estimates that about 39% and 35% continental crust were produced respectively 

during the Archean and Paleoproterozoic. 

Two processes are proposed to explain the formation of continental crusts at the Archean and 

the Paleoproterozoic. On the one hand there is the lateral magmatic accretion involving the 

subduction process, and on the other hand the vertical accretion involving a massive 

underplating of mantle materials (Condie, 1980, 1998; Kroner, 1985; Kröner and Layer, 1992). 

The deformation style during crustal thickening (orogenic) or during crustal thinning (formation 

of sedimentary basins) of the earth’s crust depends strongly on the rheology, i.e. the mechanical 

behavior of the lithosphere. Knowing that the rheological behavior of Earth's lithosphere is 

mainly controlled by the temperature, the evolution of the geothermal gradient as a function of 

depth and as a function of time (Turcotte and Schubert, 2014). Indeed, in the Archean and 

Paleoproterozoic, continental and oceanic crusts (juvenile crusts) as well as the upper 

lithospheric mantle were marked by higher temperatures than in the Phanerozoic (Richter, 

1988). It will impact their tectonic style. 

Through the world and geological time, different orogenic styles-types are recognized and 

classified (Figure I-11; Cagnard et al., 2011; Chardon et al., 2009). They are the following:  

• The ultra-hot Archean orogens are featured by the domes and basins structures (Figure 

I-11A; Cagnard et al., 2011; Chardon et al., 2009). They are characterized by a 

sagduction-type vertical deformation, associated with mantle convection phenomena 

and the establishment of "sag basins". These structures show a succession of domes of 

granitoid of TTG type and gneiss often migmatitic of variable size between which are 

placed basins of supracrustal rocks, belts of green rocks or "greenstones belts" (Figure 

I-11A). There are documented in the Indian craton (Bouhallier et al., 1993, 1995; 

Chardon et al., 1998), in the West African craton (Vidal et al., 2009), in the North-
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American craton (Hoffman et al., 1989), in the Australian craton (Nijman et al., 2010) 

and in the Chinese craton (Zhao et al., 2001). 

• The hot Paleoproterozoic orogens are defined by transpressive sigmoid accretionary 

structures (Figure I-11B; Cagnard et al., 2011; Chardon et al., 2009). They are organized 

into major lithospheric faults associated with SC shear structures (Choukroune et al., 

1987) forming spectacular anastomosed network identified in worldwide continents 

(Figure I-11D and E). This type of orogens is experienced in the world such as in the 

West African craton (Baratoux et al., 2011; Perrouty et al., 2012) and in the Antarctica 

craton (Pelletier et al., 2002). 

• The Neo-Proterozoic to Phanerozoic collisional modern cold orogens (Figure I-11C) 

are demarcated by essentially thrusting and “classical” tectonics (Cagnard et al., 2011). 

Each of these events are associated with the set of rocks with different chemical and physical 

properties (Figure I-11). 

The Paleoproterozoic constitutes a pivotal period of Earth's history marked by a significant 

change in the rheology of the whole lithosphere complex (Figure I-11). This change is 

characterized by the decline of mantle magmatism, the strong growth of the continental crustal 

surface and the transition between sagduction type geodynamics and peri-oceanic subduction 

processes and intracontinental associated with "cold" lithospheric plate tectonics (Cagnard et 

al., 2011; Chardon et al., 2009; Condie, 1998; Gapais et al., 2014). 

Modern collision chains are characterized by thrusting of crustal scale. The juvenile 

lithospheres, on the other hand associated with a higher geothermal gradient, show a weaker 

mechanical resistance and appear essentially controlled by vertical forces of volume (Cagnard 

et al., 2011; Chardon et al., 2009; Condie, 1998; Gapais et al., 2014). Choukroune et al., (1995) 

show, however, that some structural features are common to both the present and Precambrian 

mountain ranges. Thus, some structures involved in continental deformation such as thrusting 

sheets, domes in the broad sense, and strike-slips, but also evolution of the metamorphic facies 

characterize the Precambrian or Phanerozoic orogens (Choukroune et al., 1995). 

Both the Archean domes and basins (Bertrand and Caby, 1978; Haddoum et al., 1994; 

Ouzegane et al., 2003a) and the Paleoproterozoic accretionary structures types (Bertrand and 

Caby, 1978; Latouche and Vidal, 1974) are detected in the Hoggar massif (Figure I-11). They 

define a structural heritage that will forced and constrained further orogens (e.g. Pan-African; 

Black et al., 1994; Caby, 2003; Haddoum et al., 2013; Liégeois et al., 2003). 
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These different paleo-orogenies have led to the collage and the suturing of terranes of different 

Precambrian age and rheologies. It will change in deep the structure of the lithosphere and the 

surface behavior through time. 

 

Figure I-11: Schematic cross section illustrating different orogenic styles developed through 

time modified from Cagnard et al., (2011). (A) Archean domes and basins orogens, (B) 

Paleoproterozoic accretionary orogens, (C) Modern cold orogens characterized by thrusting 

style tectonics. Example of regional-scale shear zone patterns and sigmoidal structures in 

accretionary Precambrian orogens. (D) The Eastern Goldfield province, Yilgam craton, 

Australia modified from Chardon et al., (2009); (E) The Birrimian orogen, West African 

Craton, Burkina Faso modified from Chardon et al., (2009). 
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4.2 Rheological properties of inherited accretionary lithosphere 

We have seen that Precambrian orogenies could have assembled and put together multiple 

terranes of different ages and origins. Where, the terrane has been defined as: a piece of crust 

that broke off a tectonic plate and accreted or sutured in or on a continental platform or craton 

of another tectonic plate and having a different geological history than its surrounding 

formations. These accretionary continental lithospheres formed during accretionary orogen 

comprise a range of oceanic or continental lithospheric substrates of various age and composed 

of mafic to silicic igneous rocks and their sedimentary derivatives (Cawood, 2009; Cawood et 

al., 2009; Condie, 2007). 

The enhanced survivability of continental cratonic lithosphere, because of nearly zero rate of 

lithosphere recycling since the late Archean allows their stabilization and the anticipation of 

their geochemical and geophysical properties through time (Artemieva, 2006). Nevertheless, 

they can be remobilized during major tectonic events, hence the concept of “metacraton”, that 

could lead to decratonization, but retaining relics and/or isotopic inheritance of the former 

craton (Abdelsalam et al., 2002). It is still recognizable dominantly through its rheological, 

geochronological and isotopic characteristic. 

The analysis of continental lithospheric rheologic properties such as strength, depth, heat flux 

and density displays a strong relation and dependence to tectono-thermal age (Artemieva, 2009; 

Artemieva and Mooney, 2001; Djomani et al., 2001; Kaban et al., 2014). According to 

Artemieva and Mooney, ( 2001), an important segregation in rheological behavior exists 

between Neo-Meso-Proterozoic juvenile lithosphere (<1.8 Ga) and Archean-Paleoproterozoic 

lithosphere (Figure I-12). Each of these continental lithospheres (i.e. Archean, Proterozoic, 

Phanerozoic) are featured by different thickness, lithological, geochemical, thermal and 

rheological properties (Figure I-13). These dissimilarities between Precambrian to Phanerozoic 

continental lithospheres have been documented by many studies (Artemieva, 2009; Artemieva 

and Mooney, 2002; Cherepanova and Artemieva, 2015; Djomani et al., 2001; Durrheim and 

Mooney, 1994; Griffin et al., 2003; King, 2005; McKenzie and Priestley, 2008, 2016; Michaut 

et al., 2009; Nyblade and Pollack, 1993; Petitjean et al., 2006; Sleep, 2003, 2005). 
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Figure I-12: Lithospheric thermal thickness versus geologic age of the continental lithosphere. 

The Archean lithosphere has bimodal thickness distribution centered at 350 and 220 km. Gray 

area shows the lithospheric thickness estimates derived from thermal data from Artemieva and 

Mooney, (2002). Key: Ar—Archean; ePt, mPt, lPt—early, middle and late Proterozoic, 

respectively; Pz—Paleozoic; Cz—Cenozoic. Placement of the West African Craton (WAC) and 

the Pan-African mobile belts (Central African) from Artemieva, (2006). 

They especially propose differential densities and thicknesses between Archean, Proterozoic 

and Phanerozoic continental lithospheres (e.g. Figure I-13). Besides, statistical analysis of 

lithospheric geotherms reveals a striking correlation between the age of terranes and their 

thermal regime: the lithospheric thermal thickness linearly decreases with time from 

Mesoarchean to present (Artemieva, 2006). A consequence of these features is highlighted in 

the Siberian Craton (Cherepanova and Artemieva, 2015): its tectonic structure shows 

heterogeneities due to accreted Archean-Paleoproterozoic terranes separated by Proterozoic 

suture zones. They show a strong correlation between heterogeneous density assemblies and 

tectonic settings, where the deepest intracratonic sedimentary basins (the Varnavar and the 

Viluy Basins) are underlined by a high-density structure. 
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The paradigm pointing the heterogenic structures of continental lithosphere as a controlling 

factor could be an interesting path to understand intracratonic basins framework. 

 

Figure I-13: Secular variations in average physical properties of the continental lithospheric 

mantle (CLM) due to compositional and temperature variations modified from Artemieva, 

(2009): (a) forsterite content, (b) average temperature in the CLM, (c) density at standard, i.e. 

room, P–T conditions, (d) S-wave seismic velocity. Primitive mantle (of pyrolite composition) 

is shown for a comparison. Right column illustrates the effect of temperature on: (e) density, 

(f) seismic velocities, and (g) inverse seismic attenuation. Placement of Archean terranes 

(WAC: West African Craton, IOGU: In Ouzzal Granulites Unit) and Proterozoic terranes (Se: 

Serouenout, It: In Teidini, Tas: Tassendjanet). 

5 Questions and problematics 

To summarize, the intracratonic basins situated in continental interiors are sensitive to the 

substrate, which depends on the rheological parameters of the underlying terranes assembled 

through several different type of paleo-orogenies during Archean, Proterozoic and/or 

Phanerozoic. The contrast resulting from these accreted different lithospheric entities (i.e. 

terranes) could be an interesting approach to better understand basins infilling and so, 

intracratonic basins specificities. In particular, in the case of the Saharan platform, where the 
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different orogenies have putted together Archean type terranes (e.g. WAC) and Proterozoic type 

terranes (e.g. Pan-African mobile belt) with their own rheologic properties (Figure I-12). 

In the light of this introduction, main features of these intracratonic basins are not well 

characterized and are still debated. Among the objectives of this project, the goal is to answer 

to questions need as follows:  

• (1) What are the working mechanisms of these slow subsidence basins? 

• (2) How can we characterize crustal and lithospheric deformations? 

• (3) What is the nature of the apparently permanent lithospheric & rheological 

heterogeneities through 250 Ma? 

• (4) What is the control and trigger of the regular uplifts of inherited paleohighs/arches 

and extensive & coeval unconformities/hiatuses? 

•  (5) What are the controlling factors of the sedimentary record, the reservoir architecture 

and facies distribution? 

• (6) What is the impact on the Silurian/Devonian Hot Shales and other source rocks 

deposits? 

The objective of this PhD project is to characterize factors controlling the architecture and the 

low-rate subsidence of the selected intracratonic Paleozoic basins 

6 The case of the Paleozoic Saharan platform (peri-Hoggar basins) 

For this purpose, we have selected the case of the Paleozoic basins of the Saharan platform. 

These basins initiated at the Cambrian are classified as intracratonic basins i.e. sag basin (Figure 

I-1). They are also often referred as intercratonic or intercontinental basins (Holt, 2012; Holt et 

al., 2010). 

We will see how these Paleozoic basins (of Gondwana especially) regroups all the main 

singularities of intracratonic basins described previously. We will highlight their slow 

subsidence, typical large wavelength of a few 100’s km, regular rejuvenation of paleohighs not 

easily related to global geodynamic cycles, frequent extensive unconformities, and subtle and 

complex facies portioning (architecture). 

The industrial application of this study is complete: The petroleum system associated to these 

basins are among the most prolific, either as conventional plays, or as more challenging plays, 

like stratigraphic traps and shales gas (oil) (Boote et al., 1998; Burke et al., 2003, 2003; Logan 
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and Duddy, 1998; Macgregor, 1996; MacGregor et al., 1998; Purdy and MacGregor, 2003). 

Following that, they remain a significant geo-strategic issue for worldwide energetic 

procurement. 

7 Manuscript construction 

The research work undertaken during this thesis allowed the writing of three scientific articles 

published, submitted and in preparation in international scientific journals: 

• Article 1. Perron, P., Guiraud, M., Vennin, E., Moretti, I., Portier, É., Le Pourhiet, L., 

Konaté, M., 2018. Influence of basement heterogeneity on the architecture of low subsidence 

rate Paleozoic intracratonic basins (Reggane, Ahnet, Mouydir and Illizi basins, Hoggar 

Massif). Solid Earth 9, 1239–1275. https://doi.org/10.5194/se-9-1239-2018. (Published). 

 

• Article 2. Perron, P., Le Pourhiet, L., Guiraud, M., Vennin, E., Moretti, I., Portier, É., 

Konaté, M. Control of inherited accreted lithospheric heterogeneity on the architecture and 

the low long-lived subsidence rate of intracratonic basins. (Submitted to Basin Research). 

 

• Article 3. Perron, P., Le Pourhiet, L., Guiraud, M., Vennin, E., Portier, É., Moretti, I., 

Konaté, M. Deciphering the origin of forcing factors controlling the architecture of Paleozoic 

intracratonic peri-Hoggar basins of low subsidence rate: Link with geodynamic history. (In 

preparation). 

 

The thesis manuscript is divided into eight chapters which are based on scientific articles but 

also on original data. They organize themselves as follows: 

• Chapter I: “Introduction and problematics”. 

This chapter initiate the subjects by introducing intracratonic main characteristics and their 

mechanisms and processes of formation. A discussion is especially led on the Arches and 

Basins architecture and of Precambrian heritage of accretionary lithospheres. Finally, questions 

and problematics of the studied area are called. The calendar of execution of the different tasks 

is revealed. 
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• Chapter II: “Materials and methods of an integrated multidisciplinary approach”. 

This chapter presents the general approach of the manuscript as well as the different methods 

and tools used from the characterization of both inherited structures and basins architecture to 

lithospheric thermo-mechanical numerical modelling. 

• Chapter III: “Geological context of peri-Hoggar Basins (Saharan platform)”. 

This chapter presents a complete synthesis of the geology of peri-Hoggar Basins. After a brief 

localization of the studied area, and his main singularities, the structural, geodynamic, thermal 

stratigraphic and sedimentary framework is described as well as the occurring petroleum 

systems. At the end, evidence of tectono-sedimentary structures from bibliography pointing out 

the arches-basins architecture is synthetized. 

This part establishes a state of art of the bibliography on the studied area permitting the 

introduction of the following chapter. 

• Chapter IV: “Influence of basement heterogeneity on the architecture of low 

subsidence rate Paleozoic intracratonic basins (Reggane, Ahnet, Mouydir and Illizi 

basins, Hoggar Massif)”. 

After a brief reminder of some concepts in order to study syn-sedimentary tectono-stratigraphic 

structures, the article published in Solid Earth journal is introduced. This paper presents an 

integrated multidisciplinary method using satellite images, seismic and well-logs data. A 

sedimentologic synthesis (i.e. depositional environments and electrofacies) of the Saharan 

platform is done. The tectonic calendar is specified and linked to subsidence pattern. The 

structural style and deformation kinematics models are highlighted. Finally, a conceptual 

geological model integrating both the basement nature (terranes) and the architecture of the 

arches-basins features is established. 

• Chapter V: “Tectono-stratigraphic characterization of peri-Hoggar Basins: 

Evidencing Arches and Basins architecture – Unpublished supplementary data”. 

This chapter brings unpublished supplementary data helping the better characterization the 

tectono-stratigraphic architecture of peri-Hoggar Basins through essentially satellite images, 

seismic and well logs. These observations and interpretations permit a better constrain at the 

regional scale the architecture and the tectonic history of the Saharan platform. Regional cross 

sections of the Paleozoic series are also shown. This part is supported by the previous chapter 
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especially for the sedimentologic part where depositional environments and electrofacies were 

already defined. 

• Chapter VI: “Lithospheric thermo-mechanical numerical modelling: Control of 

inherited accreted lithospheric heterogeneity on the architecture and the low long-

lived subsidence rate of intracratonic basins”. 

This chapter starts with a brief reminder of some basic concepts of lithospheric thermo-

mechanical numerical modelling and finishes by the presentation of the article submitted to 

Basin Research. Stating from the two previous chapter, this part treats of the viability of the 

conceptual geological model proposed by testing it through lithospheric thermo-mechanical 

numerical modelling. Different simulations are launched to exam the hypothesis of an 

uncompensated lithosphere due to heterogenic density inherited from accreted terranes of 

different age (Archean and Proterozoic). A parametrization of the model and forcing factors is 

done. 

• Chapter VII: “Deciphering the origin of forcing factors controlling the 

architecture of Paleozoic intracratonic peri-Hoggar basins: Link with geodynamic 

history – Application and calibration”. 

This chapter makes the junction between chapter IV-V proposing a geological conceptual 

model and chapter VI testing numerical lithospheric modelling. The numerical model is 

applicated to peri-Hoggar Basins and calibrated/validated by geological data. The origins of the 

forcing factors are identified and linked to the geodynamic history of the Gondwana (eustatic 

and/or tectonic, climatic). This chapter loop the whole integrated study of this manuscript. 

• Chapter VIII: “Conclusion and perspectives”. 

In this final chapter, the main results of these different studies will be synthesized and the 

answers to the various questions formulated above will be made in the conclusion. The 

implications of these results in the academic and industrial fields will be presented and will help 

to define the perspectives opened up by this research work. 

 



 

 

CHAPTER II. MATERIALS AND METHODS OF AN 

INTEGRATED MULTIDISCIPLINARY APPROACH 

 

 

 

Ring complex of Jebel Arkenu-Uweinat (Google-Earth view; 22°10’23” N, 25°01’25” E) 
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The method used in this study is based on an integration of different multidisciplinary tools, 

technics (i.e. satellite images interpretation, sequence stratigraphy, seismic interpretation…) 

and datas (i.e. satellite images data, sedimentologic data, well-log data, biostratigraphic data, 

geochronologic data, geophysics data…). The realization of a four dimensions Geographic 

Information System (GIS) integrated database (satellites images data, well-log data, geophysics 

data, geochronologic data) allowed to characterize the architecture of the basin and the role of 

the basement (structural, sedimentary bodies…) in structuration of the basin. The purpose is to 

better understand controlling factors of these basins and to construct a model of basin. The 

whole method used in this study is schematically synthetized in Figure II-1. This method 

constitutes the unfolding of the different chapters of the thesis. 

 

Figure II-1: Method of integrated multidisciplinary characterization of intracratonic basins 

used in this study. Notice that WP4 (Stratigraphic modelling) workflow is not under the scoop 

of this manuscript. It represents an interesting perspective of work for the future. 
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1 Characterization of syn-sedimentary structures of Arch-Basin 

architecture (WP1) 

The first step of our approach is to characterize the basin tectono-stratigraphic architecture 

(WP1; Figure II-1). It consists of characterizing the structural style, the faults kinematics and 

the syn-sedimentary structures using satellite images and seismic profiles. In addition, the 

sedimentological analysis through essentially well-log data helps to identify the facies 

partitioning in the area and the evolution of the depositional environment through time. 

1.1 GIS integration of data and software 

Our workflow is mainly centered on an integration of different type of data in a GIS (geological 

map, field data, well data, biostratigraphy data, geochronology data…) in order to spatialize our 

study. GIS is grateful tool designed to collect, store, process, analyze, manage and present all 

types of spatial and geographic data. In this study, a combination of GLOBAL MAPPER and 

ARCGIS softwares was used, each with different technical qualities. Well 

correlation/calibration and seismic interpretation were done with PETREL and OPENDTECT 

softwares. 

1.2 Geological mapping and satellite images interpretations 

Geological map from the Beicip-Sonatrach consortium study in the 1971-1972 (Bennacef et al., 

1974; Bensalah et al., 1971) and satellite images (i.e. 7ETM+ from USGS: 

https://earthexplorer.usgs.gov/) were used to map and identify sedimentary, tectonic and syn-

sedimentary tectonic structures such as wedge-shaped units associated with thickness variation 

(i.e. progressive unconformities; Riba, 1976). 

Contrary to other geophysical technics such as seismic, there is no disturbance of the geological 

information. Furthermore, the well outcropping conditions of the Paleozoic succession and 

Precambrian basement structures provide a grateful case of study. 

The structural interpretation of the outcropping study area from satellites images (flash-earth, 

Google Earth, Landsat 7 ETM+ …) was achieved (Figure II-2). It has permitted to characterize 

the main structural style of the area. It later has helped the interpretation of wells and of seismic 

data. It also has highlighted tectonic kinematics of Paleozoic outcrops during the Cambro-
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Ordovician extension, Devonian and the Hercynian compression and identify thickness 

variations, evidence of syn-tectonic sedimentation. 

In fact, the field work remains regrettably very difficult in the last fifteen years because of the 

insecurity. Consequently, satellite images are really grateful tools to understand the geology of 

these areas. 

 

Figure II-2: Methodology of satellite images analysis and re-interpretation from Landsat 7 

ETM+ (USGS: https://earthexplorer.usgs.gov/) and geological maps (Bennacef et al., 1974; 

Bensalah et al., 1971). 

1.3 Stratal sedimentary geometries and structural style (satellite images and seismic 

analysis) 

In our study, we have derived information from multiple data sets such as satellite images and 

seismics in order to analysis structural styles, lapout relationship, stratal stacking patterns, 

stratal geometries, and geomorphology of the basins. Besides, it also has helped well-log 

correlation and the sequence stratigraphy analysis (Catuneanu et al., 2009). Each of these 

applications brings limitations. 

The excellent outcropping conditions of the Paleozoic provide a favorable case of study to map 

and identify exhumed geologic structures (e.g. wedges, thickness variation, folds, faults…). In 

this purpose geological map (Bennacef et al., 1974; Bensalah et al., 1971), digital elevation 

model (DEM) and satellite images (i.e. 7ETM+ from USGS, Google Earth) data were used. 

Contrary to other geophysical technics such as seismic there is no disturbance of the geological 

information and have a better resolution. 
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Seismic data provide grateful information about geological sub-surface settings. Here, the 

interpretation of the key stratigraphic horizon has been done by calibration of seismic profiles 

from well-log data (sonic). After well-calibration and the interpretation of the seismic lines, 

seven key horizons have been identified: near the top Ordovician, near the top Silurian, near 

the top Pragian, near the top Givetian, near the top mid-Frasnian, near the top Famennian, near 

the base Quaternary and near the Hercynian unconformities (see Perron et al., 2018). The 

geometries and structural style are difficult to observe in seismic profiles because of vertical or 

horizontal exaggeration (Stone, 1991). It can bring geological misinterpretation (e.g. fault 

dip…). Furthermore, the vertical seismic resolution is around 50 m, which can make difficult 

the investigation of some geologic structures. That’s why, we have combined in this work the 

interpretation of satellite images and seismic data. They provide useful and complementary 

surface and sub-surface information. 

1.4 Sedimentology, sequence stratigraphy, electro-facies and well correlation 

This part is based on integration, analysis and synthesis of core, outcrop, well-log, lithologic, 

sedimentologic and biostratigraphic data (Figure II-3). Our approach is founded on the model-

independent concept of sequence stratigraphy (Catuneanu et al., 2009). It entails to describe the 

sedimentary bodies in the basin (Catuneanu et al., 2009) to complete the former satellite images 

and seismic interpretations. The purpose of this method is to define a characteristic gamma-ray 

pattern (electrofacies) of the facies associations, so as to classify sedimentary depositional 

environments from well-logs (see Figure 8 and 9 in Perron et al., 2018). 

Lithologic and sedimentologic studies were synthetized from internal Sonatrach and IFP reports 

(Aissani and Bennamane, 2003, 2003; Desaubliaux et al., 2005; Dokka, 1999; Eschard et al., 

1999; Robertson, 2002) and published articles (Beuf et al., 1971; Biju-Duval et al., 1968; Wendt 

et al., 2006). Facies description from core and outcrop of these studies were lumped into facies 

associations corresponding to the main dispositional environments present in the Algerian 

platform (see Table 1 in Perron et al., 2018). 

Then, the litho-sedimentologic logs were associated and compared to their gamma-ray well-

logs patterns (gamma-ray electrofacies). A synthesis is available in Figures 8 and 9 in Perron 

et al., (2018). The well-logs data available came from several campaigns, which were leaded in 

from 1950s to 2010s with numerous sorts of petrophysics tools (spectral, laterolog…). It implies 

a heterogeneous database and a normalization of the petrophysic data was led. 
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Figure II-3: Methodology of well correlation and interpretation from wireline, cuttings, core 

and sedimentological studies (e.g. Eschard et al., 1999). 

The main tool used was the gamma-ray (GR) log and in some case when not available resistivity 

(RES) and spontaneous potential (SP). The gamma-ray spectrum registers the natural 

radioactivity of the rocks (Uranium, Thorium, and Potassium) and is sensitive to clay, K-

feldspar, phosphates and organic matter. It can help to determine sand/shale ratio: increase of 

gamma-ray values usually indicates shales whereas decrease of this value can indicate 

sandstones (Serra and Serra, 2003). These features make it the most powerful tool to define 

lithologies. In addition, gamma-ray peaks are frequently interpreted as the maximum flooding 

surface (MFS) (e.g. Catuneanu et al., 2009; Galloway, 1989; Milton et al., 1990; Serra and 

Serra, 2003). 

This method can be interrogated in littoral environments as these settings can be affected by 

diagenetic phenomena and glauconitic-rich facies (Hesselbo, 1996). Consequently, calibration 

of the gamma-ray shape curve with core or outcrop data can afford valuable information of the 

main sedimentary environments encountered and the stacking pattern. Besides, cuttings data 

where used to help interpretation and identify different lithologies (e.g. carbonates, clays). 

Finally, the extrapolation of the different depositional environments, as identified from the 

internal, published studies and this work to the well-logs patterns (electrofacies) has allowed to 

reconstruct with satellites images and seismic interpretation the sedimentologic-stratigraphic 

architecture of the peri-Hoggar Basins. 
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1.5 Biostratigraphic calibration and flattening 

Time calibration of stratigraphic unit was applied from biostratigraphic data (Figure II-3). 

Knowing that macrofossil is often rare in core and cuttings sample (Legrand, 2002), calibration 

was mainly done from palynomorph fossils (essentially Chitinozoan and spores). Some data 

can be provided from cuttings sample, in this case contamination can happen. 

In this study some wells present palynological data in the Cambro-Ordovician (e.g. Figure II-4) 

or in the Devonian (e.g. Figure II-5), which came from internal unpublished data (Abdesselam, 

1990; Abdesselam-Rouighi, 1977, 1991; Azzoune, 1999; Beicip-Franlab, 1996; Bouche, 1963; 

Eschard et al., 1999; Futyan et al., 1996; Hassan, 1984; Khiar, 1974; Magloire and Chennaux, 

1965; Robertson, 2002) and from published data (Abdesselam-Rouighi, 1986, 2003; 

Abdesselam-Rouighi and Boumendjel, 1992; Abdesselam-Rouighi and Coquel, 1997; 

Boumendjel, 2002; Coquel and Abdesselam-Rouighi, 2000; Kermandji, 2007; Kermandji et al., 

2008, 2009; Kichou-Braîk et al., 2006; Moreau-Benoit et al., 1993; Oulebsir and Paris, 1995). 

A biozonation synthesis is available in Figure III-38 and Figure III-39. These data have 

permitted to calibrate and to date the well correlation stratigraphic sequences. 

 

Figure II-4: Example of biostratigraphical (Palynology) correlation in the Ordovician from 

internal (Eschard et al., 1999; Robertson, 2002) or published data (Kichou-Braîk et al., 2006; 

Oulebsir and Paris, 1995). 

The resolution of the biostratigraphical datations depends on the numbers of biozonations 

between each stratigraphic unit. Some unit are well constrained by many zonations and others 

are badly constrained. In addition, biostratigraphical biozonation are different between authors 

(Figure III-38 and Figure III-39). On the Saharan platform, the Devonian series are better 
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constrained than other series (e.g. Carboniferous) because of its petroleum interest. The lack of 

data can also be related to their heterogeneity of repartition (e.g. the Ordovician and the 

Devonian much more sampled than carboniferous or Cambrian). 

Flattening was done at the top Pragian unit (Top C3 unit) or at the top Givetian unit which are 

well-preserved on the Saharan platform (Biju-Duval et al., 1968). It also corresponds to a major 

flooding surface on the whole Saharan platform (Carr, 2002; Eschard et al., 2005; Fekirine and 

Abdallah, 1998). They are also easily identified in log by a high peak of gamma-ray (shales 

indicator). 

 

Figure II-5: Example of biostratigraphical (Palynology) good to fair correlation in the 

Devonian from internal (e.g. Eschard et al., 1999) or published data (e.g. Abdesselam-Rouighi, 

2003; Moreau-Benoit et al., 1993). 
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1.6 Backstripping (software and methods) 

Backstripping is a method used to restore the initial thickness (i.e. paleo-thickness) of a 

sedimentary column (Allen and Allen, 2005). The backstripping analysis assumes some errors 

and limitations which may arise from uncertainties around the data used and method (Chevalier 

et al., 2003; Holt et al., 2010; Lachkar et al., 2009; Xie and Heller, 2009): (1) mechanical 

compaction of sediments (ignoring chemical processes such as cementation); (2) accuracy of 

the measurement and report of the sedimentary thickness; (3) amount of erosion or non-

deposition; (4) backstripping calculation; (5) paleo-bathymetry estimations; and (6) age control. 

Due to resolution of wireline tools (i.e. log registering all 5 to 20 centimetre), all selected 

sections have been measured at a decametric scale. 

Lithological compositions features have determined by interpretation of gamma-ray patterns 

and cuttings. Paleo-bathymetry were estimated from depositional environments. Porosity 

experimental data are based on (Sclater and Christie, 1980) Chrono-stratigraphical age are 

based on Ogg et al., (2016). 

Subsidence analyses is led with OSXbackstrip software, featured by 1D Airy backstripping 

code after Allen and Allen, (2005) and Watts, (2001). The morphology of the backstripped 

curve and subsidence rates can give clues on the nature of the sedimentary basin (Xie and 

Heller, 2009). 

2 Characterization of basement heritage (WP2) 

To explore the nature of the basement (WP2; Figure II-1), a terrane map was constructed from 

integration of geophysics (aeromagnetic anomaly map: https: //www.geomag.us/, Bouguer 

gravity anomaly map: http://bgi.omp.obs-mip.fr/), geologic (geologic structural map) and 

geochronologic data (e.g. U-Pb radiochronological).  

Black et al., (1994) was the first to interpret the Hoggar massif (Tuareg Shield) as a composite 

of 23 terranes. To distinguish the terranes, he proposed three main working criteria for 

distinguish the terranes: “(1) Boundaries between terranes may be thrust fronts, some having 

ophiolitic remnants, or steep ductile megashear zones that acted as strike-slip faults under 

greenschist facies conditions during the late stage of the collision. (2) On either side of these 

boundaries, some features are incompatible if no large relative movements are envisioned i.e., 

contrasting metamorphic regimes, lithological sequences, geochronological data, vergences, 
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and major geologic events (e.g., anatexis). (3) Spoon-shaped thrusts at the tip of terranes, triple 

points indicating truncation of welded terranes by later displacement of another terrane, and 

molasse facies along terrane boundaries are other discriminators”. From these latter criteria 

proposed by Black et al., (1994), satellites images (Landsat 7ETM+ from USGS) and published 

geologic maps (Berger et al., 2014; Bertrand and Caby, 1978; Black et al., 1994; Caby, 2003; 

Fezaa et al., 2010; Liégeois et al., 1994, 2003, 2005, 2013), we have redrawn Hoggar’s terranes 

boundaries and geometries. 

2.1 Radiochronological datation compilation 

In order to understand the rheology and the thermal age of the different terranes of 

geochronologic/radiochronology data from published studies have been compiled. These data 

were georeferenced and integrated in a GIS project to assess the thermo-tectonic age for each 

basement terranes (data available here: https://doi.org/10.5194/se-9-1239-2018-supplement, 

including 1177 datations points). 

Thermo-tectonic ages were grouped into eight main thermo-orogenic events (see Figure 1 in 

Perron et al., 2018): The Liberian-Ouzzalian event (Arcehan, > 2500 Ma), the Archean, 

Eburnean (i.e., Paleoproterozoic, 2500–1600 Ma), the Kibarian (i.e. Mesosproterozoic, 1600–

1100 Ma), the Neoproterozoic oceanization-rifting (1100–750 Ma), the syn-Pan-African 

orogeny (i.e. Neoproterozoic, 750–541 Ma), the post-Pan-African (i.e. Neoproterozoic, 541–

443 Ma), the Caledonian orogeny (i.e. Siluro Devonian, 443–358 Ma), and the Hercynian 

orogeny (i.e. Carbo-Permian, 358–252 Ma). During the same time a study has published a 

similar compilation (Bechiri-Benmerzoug et al., 2017). This method is illustrated in Figure II-6. 

 

Figure II-6: Compilation and integration of radiochronology data in a SIG project. 
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2.2 Geophysics and terranes geometries 

Aeromagnetic anomaly map (https: //www.geomag.us/) and Bouguer gravity anomaly map 

(http://bgi.omp.obs-mip.fr/) were used to explore undercover basement structure and structural 

style (mega shear zone and SC sigmoidal fabrics). 

Magnetic anomalies map and gravity anomalies map were integrated in the GIS project and 

used to detail the geometries of the basement terranes under the Paleozoic series. These tools 

were used in some publication in the area (Bournas et al., 2003; Brahimi et al., 2018a; Idres et 

al., 2011). This method is illustrated in Figure II-7 below. 

 

Figure II-7: Methodology characterizing the basement terranes. 

3 Lithospheric thermo-mechanical numerical modelling (WP3) 

In order to test our hypothesis according to our geological observations, we have used a thermo-

mechanical model. 

Our approach consists in using a simple numerical thermo-mechanical lithospheric model 

constrained by our integrated data base. In this purpose, we have used the code pTatin2D 

essentially developed by Laetitia Le Pourhiet from Sorbonne University. It is defined by a 

parallel implementation of the finite element method, which employs an Arbitrary Lagrangian 

Eulerian discretization, together with the material point method. Post-processing and 

visualization of the different calculated simulation was done via ParaView software. The 

forward modelled subsidence and thermal curves presented in this study are extracted with 

some MATLAB scripts modified from Jourdon, (2017). This workflow led to better understand 

controlling factors of these basins and test the viability of our models. It models the very large-

scale forcing parameters and the first order mechanisms at the origins of the magnitude of 
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wavelength of intracratonic basins. 230 simulations were launched comprising different type of 

parametrization and tests. 

4 Comparison with analogues (WP5) 

In order to test and validate the reliability of our forward numerical models, we compare it to 

collected bibliographic data from other intracratonic basins elsewhere in the world. This step 

(WP5; Figure II-1) seeks to refine our conceptual model with other world basins. It consists 

essentially to assembled published literature data. This part was partially achieved and should 

need furthermore time to constrain our model (see Chapter VIII.3). 
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The North Africa (Figure III-1) consists of two distinct units separated by the South Atlas fault 

(Askri et al., 1995; Figure III-2): 

• to the north, an Alpine domain marked by mountain chains of Cenozoic age resulting 

from the Alpine orogenesis 

• to the south, the Saharan platform, a relatively stable region comprising a Precambrian 

basement on which thick Paleozoic (Ceno-Mesozoic too) sedimentary basins have been 

deposited. 

The Paleozoic Saharan platform including the exposed peri-Hoggar Basins (Figure III-2) is part 

of the Gondwana. This history is at the origin of his actual tectonic and sedimentologic 

framework. 

According to many authors the palaeohigh or Arches are formed above crustal mobile zones 

resulting from the terrane accretion during the Pan-African history (Eschard et al., 2010; Fabre, 

1988, 2005; Guiraud et al., 2005). Despite this knowledge, there is still a lack of studies trying 

to apprehend and highlight the main singular characteristics (low rate subsidence, facies 

portioning, regional unconformities…) of the platform and their relationship with the heritage 

of Precambrian tectonic structures. Likewise, structural evolution of this intracratonic area is 

still poorly misunderstood. 

This chapter attempts to establish a geologic synthesis of the bibliographic data available on 

the Paleozoic Saharan platform. We have essentially focused this study on peri-Hoggar Basins, 

which includes the Reggane, the Ahnet, the Mouydir, the Illizi, Murzuq and the Tim Mersoï 

Basins. 
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1 Geographic localization of peri-Hoggar Basins 

The peri-Hoggar Basins, part of the northern Africa is located between Morocco at the 

northwest, the Tunisia at the northeast, Algeria at the center, Mali at the southwest, Niger at the 

southeast and Libya at the east (Figure III-1). In the south, the landscape is mainly desert 

environment, formed of large expanses of sand dunes (erg), gravel plains (regs) and with 

scattered oases islands, while on the coast in the north the climate is Mediterranean. The Eglab 

massif in the west and the Hoggar massif in the east expose regions of basement Precambrian 

rocks. 

The studied area is exposed on a surface of about 2,700,000 km2. The geographic localization 

and features of each peri-Hoggar Basins are the following: 

• The Reggane Basin 

The Reggane Basin is located in the southwestern part of Algeria at about 300 km southeast 

from Adrar and 100 km south from the city In Salah, at the eastern edge of the West African 

Craton (Figure III-1). The geometry is featured by a large asymmetric oval depression, roughly 

oriented North-West/South-East. It is surrounded by the Reguibat Shield (Yetti-Eglab) 

westwards, the Azzel Matti Arch eastwards, the Souara high (Ougarta chain) north-eastwards 

and the Bou Bernous Arch north-westwards. The sedimentary deposits of this basin cover a 

surface of approximately 140,000 km2 (Figure III-2). The Paleozoic series are essentially 

exhumed on the edges of the basin at the vicinity of the different Arches and massif (e.g. 

Reguibat Shield, Ougarta Chain). 

• The Ahnet and Mouydir Basins 

The Ahnet and Mouydir Basins are located in the south-western part of Algeria and the north-

west of the Hogger massif (Figure III-1). The Ahnet-Mouydir Basins is surrounded southwards 

by the Hoggar massif (Tuareg Shield), westwards by the Azzel Matti Arch, eastwards by the 

Amguid El Biod Arch and separated between together by the Arak-Foum Belrem Arch. At the 

north, the Ahnet Bains is disconnected from the Timimoun Basin by the Djoua high. 

In these basins, the Paleozoic deposits cover a surface of approximately 170,000 km2 (Wendt 

et al., 2006). All the Paleozoic series are well outcropping and preserved in the area especially 

Carboniferous formations which have been the subject of numerous studies (e.g. Conrad, 1973, 

1984; Wendt et al., 2010a). The essential of the Paleozoic formations are laid on the Hoggar 
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massif basement with a monoclinal dip to the north. This general dip organization is disturbed 

near Arches (Figure III-2). 

• The Illizi Basin 

The Illizi basin is situated in the south-eastern part of Algeria (Figure III-1). It is bordered by 

the Tihemboka Arch located near the south-eastern Algeria border and the south-western 

Libyan border and at 115 km southwest of the In Amenas gas site near the Mesozoic 

unconformity. The Tihemboka Arch separates the Illizi basin at the West and Murzuq basin at 

the East. This high associated at the East with the Atchan Arch is situated in the extension of 

the Djanet terrane southwards at the North-East of the Tuareg Shield. 

At the West, the NE-SW Fadnoun fault delimits at the West the SE Illizi sub-basin. The surface 

zone studied is about 108,000 km2 and the average altitude is 540 m (500-620m). Southwards, 

the Tassili N’Ajjer Paleozoic formations (monocline northwards of Cambrian to Devonian 

series) are laid on the Hoggar massif basement under significant cuesta form (Figure III-2). 

This zone has been subject to numerous outcrop studies related to their quality conservation 

(Beuf et al., 1971; Eschard et al., 2005; Zazoun, 2008). 

• The Murzuq Basin 

The Murzuq basin is mainly situated in the south-western Libya with a surface of 

approximatively 58,000 km2 (Figure III-1). The geometry is subcircular, bounded by the 

Tihemboka Arch westwards, the Tibesti massif eastwards, the Gargaf Arch northwards and the 

Djado sub-Basin southwards. Somewhere the Tihemboka Arch and the Gargaf are connected 

(Eschard et al., 2010). The Paleozoic outcropped series are mainly situated on the edges of the 

basin, near Awaynat area, near the Tihemboka Arch, bordered by the Fadnoun fault, the Gargaf 

Arch, the Murizidié, the Dor El Gussa area (Ghienne et al., 2013) and the Tibesti massif (Figure 

III-2). Some of these latter structures as well as the Tiririne high appear as lineaments that do 

not have significant play at the outcrop (Hallett, 2002; Sola et al., 2000). It separates the 

Awaynat depression at the west to the Awbari depression at the east. 

• The Tim Mersoï Basin 

The Tim Mersoï basin is situated in the north-western Niger and cover a surface of 1,500 km2. 

It corresponds to a northward branch of the Iullemmeden syncline. It extends to Algeria, where 

it is known as the syncline of Tin Séririne (Figure III-1). It is limited to the West by the In 



CHAPTER III – GEOLOGICAL CONTEXT OF PERI-HOGGAR BASINS 

60 

P. PERRON - 2019 

Guezzam Ridge, to the East by the Aïr Massif and to north by the Hoggar massif (Konaté et al., 

2009). The Paleozoic series, weakly deformed, are particularly well exposed on the Aïr massif 

but also on the Hoggar massif (Figure III-2), where they are laid in discordance. 

 

Figure III-1: Localization of peri-Hoggar basins and of the Paleozoic Saharan Platform, part 

of the North Gondwana (North Africa). The satellites images are from USGS Landsat 7 ETM+ 

(https://earthexplorer.usgs.gov/). Note the presence of outcropping Paleozoic series around the 

exhumed basement of the Hoggar Massif (800 km large). 
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2 Geological settings of the Saharan platform 

The geological history of the Saharan platform (Figure III-2) is complex and multiphase 

(alternating quiescence, compressive and extensive phases; e.g. Craig et al., 2008; Fabre, 2005; 

Guiraud et al., 2005) This characteristic is in particular at the origin of reactivation and 

inversion structures. Many authors emphasize the importance of tectonic inheritance 

(Precambrian faults lineaments) on the architecture of current basins (Beuf et al., 1971; Craig 

et al., 2008; Eschard et al., 2010; Fabre, 1988, 2005; Guiraud et al., 2005). 

During Phanerozoic times, the frequent rejuvenation of the fault net was responsible for the 

regional or local tectonic evolution, with various behaviors in response to changes in the stress 

fields (Coward and Ries, 2003; Craig et al., 2008). This phenomenon also influenced the 

development of magmatic provinces (Coward and Ries, 2003; Guiraud et al., 2005). 

The fact is that for the petroleum exploration industry, the knowledge of palaeohighs uplift  

timing separating the Saharan craton into sub-basins is critical to our understanding of the 

petroleum system evolution (Eschard et al., 2010). The Azzel Matti, Arak-Foum Belrem, 

Amguid El Biod and Tihemboka Arches are some of these NS complexes fault systems which 

are at the origin of sub-basin structuring and isolation (Figure III-2 and Figure III-3). 

North-Africa including Algeria, Libya and Nigeria are provinces with high petroleum potential. 

This explains the significant research activity in these areas. In the studied area, the main 

petroleum system is globally formed by the Cambro-Ordovician and Devonian sandstones 

(reservoirs) and the Lower Silurian “hot shales” (source rock and seal).  

Furthermore, the tectonic evolution of this region is responsible of the establishment of 

petroleum trap system (structural traps). Indeed, the main tectonic phase that led to the current 

structure of the basin is undoubtedly the “Hercynian” orogeny but “Caledonian” compression 

with a lesser extent, also played a role, including on sedimentation (Boote et al., 1998; Coward 

and Ries, 2003; Eschard et al., 2010; Zazoun, 2001). 

In this part, a synthesis of tectonic, geodynamic, sedimentary and geological settings is realized 

through the compilation of literature data. 
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Figure III-2: Geological map of the Paleozoic North Saharan Platform (North Gondwana) 

georeferenced, compiled and modified from (1) Paleozoic subcrop distribution below the 
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Hercynian unconformity geology of the Saharan Platform (Boote et al., 1998; Galeazzi et al., 

2010); (2) Geological map (1/500,000) of the Djado basin (Jacquemont et al., 1959); (3) 

Geological map (1/200,000) of Algeria (Bennacef et al., 1974; Bensalah et al., 1971), (4) 

Geological map (1/50,000) of Aïr (Joulia, 1963), (5) Geological map (1/2,000,000) of Niger 

(Greigertt and Pougnet, 1965), (6) Geological map (1/5,000,000 ) of the Lower Paleozoic of 

the Central Sahara (Beuf et al., 1971), (7) Geological map (1/1,000,000) of Morocco (Hollard 

et al., 1985), (8) Geological map of the Djebel Fezzan (Massa, 1988); Shear zone and lineament 

names: Suture Zone East Saharan Craton (SZ ESC), West Ouzzal Shear Zone (WOSZ), East 

Ouzzal Shear Zone (EOSZ), Raghane Shear Zone (RSZ), Tin Amali Shear Zone (TASZ), 4°10’ 

Shear Zone, 4°50’ Shear Zone, 8°30’ Shear Zone. 1: Figure III-40; 2: Figure III-41; 3: Figure 

III-3; 4: Figure III-4 and Figure III-34. 

 

Figure III-3: EW cross section of peri-Hoggar Basins (North Gondwana Platform, North 

Africa) modified from Craig et al., (2006). For localization see 3 in Figure III-2. 
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Figure III-4: NS cross section of peri-Hoggar Basins (North Gondwana Platform, North Africa) 

modified from English et al., (2016b). For localization see 4 in Figure III-2. 

2.1 Historical and Previous works 

The Saharan Platform has been the subject of several works, from the beginning of the 20th 

century until today (Figure III-5). Three main periods characterize the research history: (1) The 

first period (1900-1950) which was mainly devoted to the prospecting of coal and metals; (2) 

The second period (1950-1970), was oriented towards oil prospecting; and (3) the present 

period (after 1970) which is more diversified (Figure III-5). 

(1) During the first period (1900-1950), Flamand (1911) defined the main stratigraphic lines of 

the Western North Sahara. Meyendorff (1928) studied Gourara, Touat, Erg Chèche, Tanezrouft 

and Ahnet. Killian (1925) prepared a synthesis on the geology of the central Sahara. Monod 

(1931-1932) carried out a geological work in the south-east of the Ahnet. From 1947 to 1957, 

Lapparent worked on the stratigraphy and distribution of deposits of vertebrates and 

invertebrates in the regions of Gourara, Touat and Tidikelt. 
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Figure III-5: Chronological repartition of major important phD thesis, publications and 

monographies (not exhaustive) in the Paleozoic Saharan platform through the 20 centuries. 

(2) During the second period (1950-1970), all the works were carried out by petroleum 

geologists. They were concerned with the establishment of lithostratigraphy and the definition 

of the extension of sandstone bodies which were considered as hydrocarbon reservoirs in the 

Sahara. Among them, we can cite: The regional monography of Follot, (1950), (1953); the 

Devonian Goniatites study of Petter, (1959); the structural analysis of Freulon, (1955), (1964) 

in the western Tassili area; the geological study of Legrand (1961-1985); the stratigraphy and 

the sedimentological study of the sandstones of the outer Tassili of the French Petroleum 

Institute (IFP) published in 1967; the produced and published lithological study of the Tassili 
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N'Ajjer oriental of Dubois, Beuf and Biju-Duval (1967); the Ordovician study of the Bled El 

Mass of Beuf (1968); the realization of the post-Hercynian continental evolution of the Algerian 

Sahara (Saoura, Erg Chèche, Tanezrouft, Ahnet and Mouydir) of Conrad (1969); and the new 

observations on the Cambro-Ordovician of Bled El Mass of Beuf, Biju-Duval, Maivier and 

Legrand (1969). 

(3) The third period is featured by modern structural, petrographic, and geochemical works, 

among them we can cite the following: the remarkable published monography on the Lower 

Paleozoic of the Central Sahara of Beuf et al. (1971); the stratigraphic synthesis on the 

Paleozoic terrains of the Algerian Sahara of Aliev, (1971); the structural work carried out on 

the Ahnet presented by Echikh (1975) and Badsi (1998); the Saharan geological synthesis of 

Fabre (1976); the study of the Ordovician of Bled El Mass by Legrand (1983); the work of 

Conrad (1984) on the Carboniferous series; the tectonic analysis of Haddoum (1997) on the 

Hercynian; the study of Logan P. and Duddy I. (1998) investigating the thermal history of the 

Ahnet and Reggane Basins and consequences for hydrocarbon generation and accumulation; 

the Hercynian tectogenesis of Zazoun (2001); the major synthesis of Fabre (2005); and the 

recent stratigraphic work of Wendt et al., (2006) for the Devonian and the Carboniferous Wendt 

et al., 2010.  

Associated to this period numerous phD works were realized such as the thesis of Mezlah, 

(2006) on the "Mid-Devonian mud-mounds of the Ahnet and its neighboring regions"; of 

Kracha, (2011) on the Ordovician reservoirs in the Ahnet basin; of Candilier, (1979) on the 

palynology of Late Devonian Early Carboniferous of Illizi basin; of Denis, (2007) on the 

Glacial Ordovician in the Djado; of Lubeseder, (2005) on the Siluro-Devonian of the Sahara; 

of Takherist, (1991) on structural and heat flow of the platform; of Tournier, (2010) on the 

diagenesis of Ordovician sandstones (Sbâa Basin); of Wazir, (2014) on the diagenesis 

petrophysics of Ordovician sandstones (Sbâa Basin); of Laggoun-Défarge, (1987) on diagenesis 

organic matter (Sbâa Basin); of Moreau, (2005) on the glacial Ordovician (Murzuq Basin); of 

Girard, (2011) on the glacial Ordovician (Murzuq Basin, Libya); of Bekkouche, (1992) on the 

Siluro-Devonian sedimentology and diagenesis (Ghadamès Basin); of Akkouche, (2007) on 

AFTA and petroleum potential (Sbâa-Ahnet Basin); of Zielinski, (2011) on the thermal history 

(Ahnet-Mouydir Basin); of Clerc, (2012), on Tunnel valley of Upper Ordovician (Anti-Atlas); 

of Robert-Charrue, (2006) on structural inversion systems (Anti-Atlas); of Kamel, (1987) on 

Devono-Carboniferous tectono-sedimentary structures (Morocco); of Henniche, (2002) on the 
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architecture of the Illzi basin; of Marante, (2008) on the architecture and dynamic of the Saharan 

platform… 

Concerning the exhumed basement of the Hoggar massif (formerly Ahaggar), a large quantity 

of works has been done since the beginning of 19 century. Conrad. Killian and others (e.g. 

Duveyrier, Roche, Foureau, Nieger.) were in the first to study the Hoggar. They reclaimed a 

big part of the understanding of this region. From this work Lelubre (1952) undertook a more 

precise study especially in the central part of the Hoggar but also in the In Ouzzal unit (actually 

called LATEA). Afterward, more recent geological, geochemical and geochronological studies 

were led by authors such as Black et al., (1994), Caby, (2003), Bertrand, (1974), Allègre and 

Othman, (1980), Berger et al., (2014), Bertrand and Lasserre, (1976), Fezaa et al., (2010), 

Latouche, (1972), Liégeois et al., (2013), Peucat et al., (1996), Trompette, (1973), Vialette and 

Vitel, (1979), Boissonnas et al., (1969), Ferrara and Gravelle, (1966), Latouche and Vidal, 

(1974)… They are at the origin of a better understanding of the Precambrian history of the area 

(see also Ouzegane et al., 2003b for the historicity). 

2.2 Main characteristics of the Saharan platform 

The Paleozoic Saharan Platform (North Gondwana) is characterized by eight mains 

singularities documented by many authors (e.g. Beuf et al., 1971; Fabre, 2005): 

2.2.1 Paleozoic area 

The Paleozoic is featured by an giant sedimentation area of at least 16 million km2 (2000 km 

wide and 8000 km long) covering the Sahara and the Arabian Peninsula from central Atlantic 

to the Persian Gulf (Avigad et al., 2005; Beuf et al., 1971; Frizon de Lamotte et al., 2013). 

These deposits constitute the largest area of detrital sediments ever found on a continental crust 

(Burke et al., 2003). 

2.2.2 Sediment thickness and low long-lived subsidence rate 

The sediment thickness is low (Figure III-6) except for certain particularly area (e.g. in the 

Ougarta; Ghienne et al., 2007b). Indeed, these deposits often represent only a few hundred 

meters or a few thousand meters at most deposited around 250 Ma (Beuf et al., 1971; Eschard 

et al., 2005; Fabre, 1988). Furthermore, the subsidence rate is very low (Figure III-7 and Figure 

III-8). 
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Figure III-6: Compilation of different directions of sedimentary flux and isopach maps during 

the Paleozoic. (1) Paleocurrent directions measured in the Ajjers formation i.e. Cambrian 

compiled from Beuf et al., (1971); (2) Paleocurrent directions in the Lower Devonian 

sandstones compiled from literature (Bennacef et al., 1971; Beuf et al., 1969, 1971); (3) 

Paleocurrent directions during Visean and Serpukhovian compiled from Fröhlich et al., 

(2010b); (4) Evidence of the inclination of the “infratassilian” surface (Pan-African surface) 

to the north according to the directions of the paleocurrents measured in the basic sandstones 
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of the Cambrian compiled from Beuf et al., (1971); (5) Isopach map for the entire Lower 

Paleozoic in the North African platform compiled from Fabre, (1988); (6) Isopach map for the 

entire Devonian in the North African platform from Fabre, (1988). 

 

Figure III-7: Backstripped subsidence curves of the Paleozoic North Saharan Platform (peri-

Hoggar basins) compiled from literature: 1: well W17, 2: well W5 and 3: well W7 in Ahnet 

basin, 4: well W21 in Mouydir basin, 5: well W1 in Reggane basin (Perron et al., 2018); 6: 

well in Sbâa basin (Tournier, 2010); 7: well in Ghadamès-Berkine basin (Yahi, 1999); 8: well 

RPL-101 in Reggane basin, 9: well HAD-1 in Ghadamès basin, 10: well REG-1 in Timimoun 

basin, 11: well TGE-1 in Illizi basin (Makhous and Galushkin, 2003a, 2003b); 12: well L1-1, 

13: Pseudowell, 14: well A1-76, 15: well F1-NC58, 16: well J1-NC101, 17: well A1-77, 18: 

well D1-NC58, 19: well H1-NC58, 20: well A1-67 in Murzuq basin (Galushkin and Eloghbi, 

2014); 21: Well B1NC43 and 22: A1NC43 in Al Kufrah basin, 23: composite well in Ghadames 

basin (Holt et al., 2010). 
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Figure III-8: Total burial subsidence curves of the Paleozoic North Saharan Platform (peri-

Hoggar basins) compiled from literature: 1: well W1, 2: well W4, 3: well W7 and 4: well W9 

in Ahnet basin (Kracha, 2011); 5: well KB-2 in Timimoun basin, 6: well ELA-1 in Ghadamès-

Berkine basin (Kadi et al., 2013); 7: well in the Illizi basin (Wells et al., 2018); wells model 8: 

A and 9: B in Ghadamès-Berkine basin (Underdown et al., 2007); 10: well LD-1 and 11: well 

PDG-2 in Berkine-Ghadamès basin (Aissaoui et al., 2016); 12: well F3-NC174, 13: well H29-

NC115, 14: well A1-NC186, 15: well A1-NC190 in Murzuq basin (Belaid et al., 2010); 16: 

cross section in the southwestern Anti-Atlas (Burkhard et al., 2006); 17: well OTRA-1 in the 

Sbâa basin, 18: well RG-3 in the Reggane basin, 19: well TEG-1 in the Timimoun basin (Logan 

and Duddy, 1998); 20: Hassi Messaoud field (English et al., 2017); 21: well in Sbâa basin 

(Tournier, 2010); 22: well in Ghadamès-Berkine basin (Yahi, 1999); 23: well RPL-101 in 

Reggane basin, 24: well HAD-1 in Ghadamès basin, 25: well REG-1 in Timimoun basin; 26: 

well TGE-1 in Illizi basin, 27: well TO-1 and 28: well KA-1 in the Dahar depression (Makhous 

and Galushkin, 2003a, 2003b); 29: well LT-1bis and 30: well OTLA-1 well in the Sbâa basin 

(Drid, 1989); 31: well L1-1 in Murzuq basin (Galushkin and Eloghbi, 2014); 32: well WT-1 in 

the Berkine basin (Yahi et al., 2001); 33: well G and 34: well A in the Illizi Basin (English et 

al., 2016a). 
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2.2.3 Main terrigenous sedimentation 

The sediments are dominated by siliciclastic. Indeed, the Lower Paleozoic series are 

predominantly composed of detrital sediments, mainly siliciclastic deposited in continental to 

marine environments (Beuf et al., 1971; Eschard et al., 2005). Though, carbonates occurrences 

can be observed in the Middle-Upper Devonian to the Carboniferous series (Wendt, 1985, 1988; 

Wendt et al., 1993; Wendt, 1995; Wendt et al., 1997, 2006, 2009a; Wendt and Kaufmann, 

1998). From the South to the North, the depositional environments progressively evolve from 

fluviatile facies to shallow marine facies (i.e. upper to lower shoreface) and then to offshore 

facies (Beuf et al., 1971; Carr, 2002; Eschard et al., 2005, 2010; Fabre, 1988, 2005; Fekirine 

and Abdallah, 1998; Guiraud et al., 2005; Legrand, 1967a). 

2.2.4 Facies homogeneity 

The facies and depositional environments are featured by a great homogeneity and by very slow 

and subtle lateral variations over time (Beuf et al., 1971; Carr, 2002; Fabre, 1988; Guiraud et 

al., 2005; Legrand, 2003a; Perron et al., 2018). The homogeneity of the facies and the 

transitional evolution leads to a general difficulty in defining the different facies envelopes, and 

in particular to delimit the marine domain of the continental domain (Beuf et al., 1971). 

2.2.5 The NNW paleocurrents of the Saharan platform 

Measures of paleoenvironments on the Saharan platform indicate that the sediments are globally 

transported to the NNW (Figure III-6). During the Paleozoic, the general paleocurrent directions 

changes rather from NNW to NW (Beuf et al., 1969, 1971; Fabre, 1988, 2005; Fröhlich et al., 

2010b; Gariel et al., 1968; Le Heron et al., 2009; Wendt, 1995). However, paleocurrent 

directions can be locally deviated especially near arches (e.g. see red arrows at the base of 

Devonian series in Figure III-6) due to tectonics events according to some authors (Beuf et al., 

1968b, 1971). This main orientation over the whole Saharan domain seems to indicate an 

inclination of the infracambrian (or “infratassilian” or Pan-African) surface slightly dipping 

northwards (Beuf et al., 1971; Eschard et al., 2010; Fabre, 1988; Guiraud et al., 2005). It is 

validated by the South-North deposition profile and by a general thickening of all sedimentary 

units northward (Beuf et al., 1971; Fabre, 1988, 2005; Garfunkel, 2002; Guiraud et al., 2005). 

This pattern is interrupted by the presence of paleoighs such as “Arches” where thinning of 

some units are observed (Beuf et al., 1968b, 1971; Borocco and Nyssen, 1959; Chavand and 

Claracq, 1960; Eschard et al., 2010; Frizon de Lamotte et al., 2013; Wendt et al., 2006). 
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2.2.6 Maturity and homogeneity of the mineralogy 

The mineralogical composition of the Paleozoic clastics is homogeneous and mature. There are 

mainly composed of quartz, few encountered micas, rare feldspars (generally altered), and 

heavy minerals (i.e. zircons, tourmalines and rutiles). Many articles studied the sourcing of the 

deposits by U-Pb detrital zircons datations (Altumi et al., 2013; Avigad et al., 2003, 2005, 2012; 

Linnemann et al., 2011; Meinhold et al., 2011, 2013; Morton et al., 2011). The results indicated 

a local provenance (West African Craton, Tuareg Shield terranes, Cadomian terranes) mainly 

of Neoproterozoic ages. Extreme chemical weathering and erosion led to the peneplanation of 

the Gondwanan supercontinent (Pan-African chains) and provided voluminous Paleozoic 

sandstones deposits (Avigad et al., 2003, 2005; Beuf et al., 1971). 

2.2.7 Major widespread unconformities 

The platform is marked by major unconformities reflecting sensitivity to climatic variations or 

tectonic (Beuf et al., 1971; Eschard et al., 2005, 2010; Fabre, 1988, 2005; Guiraud et al., 2005). 

These unconformities are related to sudden changes in environmental conditions due to global 

climate changes (glaciation, transgression, etc.), or to angular structures in relation to large-

scale tectonic movements ("epirogenic deformations"). From the base of the Paleozoic series, 

four of them are relevant: (1) the infracambrian (or infratassilian) surface which marks the end 

of the great phases of deformations and the base of the beginning of the Paleozoic sedimentary 

history, (2) the discontinuity of the Upper Ordovician (Taconic discordance) resulting from 

global tectonic movements, and modelled by continental glaciation, (3) the erosive surface of 

the Silurian which marks a vast marine transgression, and (4) the basal Devonian surface 

(Caledonian unconformity) that materializes several phases of deformations related to the 

Caledonian orogeny. 

2.2.8 Association of Arches and Basins shape 

Arches and Basins of various wavelength (75 to 500 km) settings (Figure III-2, Figure III-3 and 

Figure III-4) were locally described in the literature (Beuf et al., 1968b, 1971; Chavand and 

Claracq, 1960; Fabre, 1988, 2005; Frizon de Lamotte et al., 2013; Guiraud et al., 2005; Wendt 

et al., 2006). During the Paleozoic ancient NS or NW-SE structures were rejuvenated (Beuf et 

al., 1968b, 1971; Boote et al., 1998; Craig et al., 2008; Dixon et al., 2010; Eschard et al., 2010; 

Frizon de Lamotte et al., 2013). They have induced an individualized some basins (Beuf et al., 

1968b, 1971; Boote et al., 1998; Eschard et al., 2010; Frizon de Lamotte et al., 2013). 
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2.3 Structural framework of the Saharan platform 

North Africa is composed of cratonic cores (i.e. old stable lithosphere) and surrounding accreted 

terranes (i.e. crustal scale lithospheric block with different geological features) (Abdelsalam et 

al., 2002; Black et al., 1994; Guiraud et al., 2005; Liégeois et al., 2003, 2013). Specifically, 

cratonic cores correspond to three main structural entities: The West African Craton, the 

Touareg shield (including the Hoggar massif) and the East Saharan Craton (Figure III-9; 

Metacraton according to Abdelsalam et al., 2002). Suture zones define the contact between 

these different structural units. These suture zones, although formed during the Pan-African 

orogeny, largely replayed during Hercynian orogens (collision between Gondwana and Africa) 

and Alpine/Austrian (collision between Laurasia and Europe) (Craig et al., 2008). 

These different rheological domains are delimited by large North-South trending crustal shear 

zone forming the terranes boundaries (Abdelsalam et al., 2002; Bertrand and Caby, 1978; Caby, 

2003; Fezaa et al., 2010; Liégeois et al., 2003). These N170°-N20° shear zone characterized by 

thrusting are more than 600 km long and 500 km large (Denis, 2007). They are marked by a 

sinisteral movement in the western half of the Hoggar and dextral in the eastern half (Black et 

al., 1994; Caby, 2003; Guiraud et al., 2005; Haddoum et al., 2013). 

2.3.1 The West African Craton 

The West African Craton is located in the West of Northern Africa. It is consisted of an Archean 

to Paleoproterozoic basement covered of sediments ranging from the Neoproterozoic to the 

present time and entirely surrounded by Pan African or Hercynian belts (Peucat et al., 2005; 

Villeneuve and Cornée, 1994). Two major orogenic stages formed this craton: the Liberian 

orogeny (3000-2400 Ma) and the Eburnean orogeny (2200-1900 Ma) (Bertrand and Caby, 

1978). It is considered stable since when and has minimally affected by recent orogens (Black 

et al., 1994; Fabre, 1988; Liégeois, 2019). 

2.3.2 The East Saharan Craton 

The East Saharan Craton is a vast region (~5,000,000 km2) located between the Tuareg Shield 

and the Arabian-Nubian Shield. It is composed of metamorphic and magmatic rocks and the 

early dating of Archean rocks in the Uweynat area (Fezaa et al., 2006, 2010, 2013). This area 

has first been considered as a craton and was named the Nile Craton, the northern part of the 

large Sahara-Congo Craton, and the Eastern Saharan Craton (Fezaa et al., 2010). 



CHAPTER III – GEOLOGICAL CONTEXT OF PERI-HOGGAR BASINS 

74 

P. PERRON - 2019 

Abdelsalam et al., (2002), compiled all the geochronological and isotopic data on the region 

and demonstrated that if Pan-African events are largely present, protoliths are largely 

Paleoproterozoic or Archean in age and that the whole area share numerous pre-Neoproterozoic 

characteristics and behaved as a single block during the Phanerozoic. They named it “Saharan 

metacraton”, defining a metacraton as a craton that has been remobilized during an orogenic 

event but is still recognizable dominantly through its rheological, geochronological and isotopic 

characteristics (Abdelsalam et al., 2002; Fezaa et al., 2010; Liégeois et al., 2013). Due to the 

high level of force needed to destabilize rigid and thick cratonic lithosphere, it is most likely 

that metacratonization occurs dominantly during collisional or post-collisional events (Liégeois 

et al., 2013). Nevertheless, the term “metacraton” is not accepted by all authors (Bumby and 

Guiraud, 2005). 

According to Liégeois et al., (2013), the Saharan craton was subjected, at the end of the 

Neoproterozoic, to important collisional events along all its margins against the Tuareg Shield 

(with the West African craton behind) in the west, against the Congo craton and intervening 

Pan-African belts to the south, against the Arabian-Nubian Shield to the east, and against an 

unknown continent to the north. As no tectonic escape was thus possible, the Saharan craton 

has been metacratonized not only on its margins but also within its interior, as described for the 

Djanet-Edembo terranes in Eastern Hoggar at the origin of the Murzukian episode (Fezaa et al., 

2010). 

These collision events might have resulted in reactivation of pre-existing zones of lithospheric 

weaknesses leading in some places to overgrowth of the cratonic root allowing for negative 

buoyancy to develop (Abdelsalam et al., 2011). 

Fezaa et al., (2010), showed that the Eastern Hoggar was subjected to a late Ediacaran tectono-

magmatic episode at 575–555 Ma, unlinked to the Pan-African orogeny. He proposed the 

existence of a Murzuk craton just to the East, below the Murzuk basin, based on geophysical 

and sedimentary evidences. This Murzukian intracontinental transpressive episode would be 

due to the indentation of the Murzuk craton, maybe in response to what occurred beyond this 

craton to the NE in a similar way as is the intracontinental orogeny. In that model, the Djanet 

Terrane would be the metacratonic boundary of the lithosphere-thick Murzuq craton (Fezaa et 

al., 2006, 2010, 2013). 

Finally, based on surface geology and geophysical observations (Abdelsalam et al., 2011), 

Liégeois et al., (2013), interpreted the Western Saharan Craton as a possible composite of three 
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main craton remnants of the pre-Neoproterozoic: The Murzuq, Al Kufrah and Chad cratons (cf. 

Figure III-9). 

 

Figure III-9: Main rheological domain of Saharan Africa centered on the Saharan metacraton 

from Liégeois et al., (2013). 

2.3.3 The Tuareg Shield 

The Tuareg shield or Trans-Saharan mobile belt (Figure III-10), composed of Hoggar, Aïr and 

Iforas regions in Central Sahara was assembled during the Pan-African orogeny, at the end of 

the Neoproterozoic, as a result of collision between the Tuareg terranes and the West African 

craton (Caby, 2003; Liégeois et al., 2003, 1994, 2013; Liégeois, 2019). 

The Shield Touareg is crossed by major shear zones of crustal scale, sub-vertical dip and 

oriented generally north-south (N170°E–N20°E) reactivated during the late-Pan-African phase 

(Caby, 2003; Liégeois et al., 2003, 1994, 2013). Horizontal replays are very important and are 

usually several hundred kilometers (Caby, 2003). Punching generated by the West African 

Craton in more ductile mobile zones (terranes Hoggar) resulted in a lateral expulsion of material 

to the north (Black et al., 1994; Caby, 2003; Coward and Ries, 2003). Thus, the direction of 

play of these vulnerabilities varies depending on their position in the Hoggar mountains: in the 
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western half, these setbacks have played in the sinistral sense, while the recesses become dextral 

in the eastern half of the massif (Black et al., 1994). 

An earlier Neoproterozoic supercontinent of Rodinia dispersed and reassembled during the Pan-

African so, typically, the Pan-African mobile belts represent full Wilson cycles (Figure III-10), 

exhibiting rift-related sedimentation and magmatism, passive margin sedimentation, 

subduction obduction, collision magmatism and tectonics (Bumby and Guiraud, 2005). 

 

Figure III-10: (A) Historical subdivision. (B) Actual Tuareg shield terrane mapped (Liégeois 

et al., 2003). (C) Proposed geodynamic evolution of western and central Hoggar between 900 

and 520 Ma (Caby, 2003). 

2.3.3.1 Western Part (Pharusian) 

The western part of the Tuareg shield (Figure III-10 and Figure III-11), instead of the In Ouzzal 

terrane (200 km to the west of LATEA) is dominantly constituted of terranes (Black et al., 1994; 

Liégeois et al., 2013). They were formed during an island arc and continental arc subduction-

related events (730–630 Ma) followed by Ediacaran collisional and post-collisional events 

(630–580 Ma) (Berger et al., 2014; Caby, 2003; Liégeois et al., 2003). 
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During Cambrian times, thick molassic (i.e. dismantling of the Pan-African chain deposits) and 

volcanic series filled narrow grabens in the western and central parts of Hoggar. Large 

Paleozoic basins with thick sedimentary series were developed over the Hoggar shield since the 

Ordovician (Henry et al., 2007). Molasse deposits with volcaniclastic intercalations, reaching 

more than 6000 m thick, are found particularly in the northwest part of the shield Touareg, 

bordering the Pharusian chain (Djellit et al., 2002; Fabre, 1988; Henry et al., 2007). They 

characterize dismantling, uplift and peneplanation chain (Craig et al., 2008; Fabre, 1988, 2005; 

Guiraud et al., 2005). 

 

Figure III-11: Interpretative sketch summarizing the geodynamic evolution of the 

Tassendjanet-Tidéridjaouine terrane (western part of the Hoggar Massif) deduced from data 

collected on eclogite and garnetamphibolites (Berger et al., 2014). 

2.3.3.2 Central Part (LATEA) 
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The central Hoggar (Figure III-10), historically named “Polycyclic Central Hoggar” (Caby and 

Andreopoulos-Renaud, 1987), located 400 km east of the suture between the Tuareg shield and 

the West African craton, had a different evolution. It has been shown that the four terranes 

constituting the Central Hoggar (Black et al., 1994) were part of a single pre-Pan-African 

passive margin (Liégeois et al., 2003). The acronym LATEA (from the first letters of the names 

of the four terranes, Laouni, Azrou-n-Fad, Tefedest, Egéré Aleksod; Figure III-10) was given 

to this region (Liégeois et al., 2003). LATEA was formed during the Eburnian orogeny (i.e. 

paleoproterozoic; Liégeois et al., 2003). It is made of Archean and Paleoproterozoic 

metamorphic and magmatic rocks (Black et al., 1994; Fezaa et al., 2013; Liégeois et al., 2003) 

behaved as a craton during the Mesoproterozoic and the Early and Middle Neoproterozoic 

where oceanic terranes (such as the juvenile Iskel terrane and the Tin Begane eclogite-bearing 

nappes) were accreted along its margins (Figure III-12) during Cryogenian and Ediacaran 

periods (Caby, 2003; Liégeois et al., 2003). 

In the LATEA basement there is no Neoproterozoic events recorded older than 630 Ma, a time 

that marks the beginning of the Tuareg/West African craton collision. During that collision, the 

LATEA craton was dissected into several terranes and intruded by batholith largely from a 

preponderant Paleoproterozoic/Archean crustal source (Liégeois et al., 2003, 2013). 

The partition of LATEA lithosphere was accomplished through the activation of mega-shear 

zones that accommodated several hundred kilometers of horizontal displacement (Liégeois et 

al., 2003, 2013). These shear zones are interpreted as escape roots of the northward expulsion 

of the Tuareg terranes as LATEA was squeezed between the West African craton to the west 

and the Saharan metacraton to the east (Black et al., 1994; Liégeois et al., 2013). 

Furthermore, since 580 Ma, LATEA was reactivated along the same shear zones sporadically 

which both triggered igneous activities and volcanism episodes (Liégeois et al., 2003, 2013). 

Additionally, Beuf et al., (1971), exposed that these shear zones had controlled Paleozoic 

sedimentation (presence of large thickness variations of the Paleozoic sedimentary section 

across these zones). The mega shear zones and the different types of terranes will be 

fundamental for the understanding of the processes associated with the evolution of the 

paleozoic intracratonic basins (cf. Chapter VI and Chapter VII). The above analysis indicates 

that LATEA behaved as a craton during the Tonian and Cryogenian periods when there were 

no marked collisional orogenic events, except arc accretions not affecting the LATEA basement 

(Liégeois et al., 2003, 2013). 
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Figure III-12: Tuareg Shield formation: terranes accretion modified from Liégeois et al., 

(2003). (A) 900 Ma: LATEA constitutes a passive margin without anyapplied stress; this is the 

period of the building of the Iskel island arc with the subduction plane dipping awayfrom 

LATEA craton; the limits of the greater LATEA craton is inferred from available drillings 

(Latouche, pers. observations). (B) 870–850 Ma: accretion of the Iskel island arc onto the 

LATEA cratonic passive margin. (C) Accretion onto LATEA of juvenile terrains represented by 

eclogites, ophiolites and other various oceanic lithologies, including that studied here in the 

Tin Begane area. (D) Period of metacratonization of LATEA: LATEA is squeezed between the 

West African craton (WAC) to the east and the Saharan craton (SC) or metacraton (SmC) to 

the east. LATEA is dissected by mega-shea r zones generating linear lithospheric delamination 

and asthenospheric uprise. 

2.3.3.3 Eastern Part 

Eastern Hoggar (Figure III-13) is bounded to the west by the Raghane megashear zone 

(Liégeois et al., 2003, 2013), which is also the western boundary of the Saharan metacraton 

(Abdelsalam et al., 2002). 

It is composed of three contrasted NW-SE oriented terranes (Black et al., 1994). These terranes 

are from west to east: The Aouzegueur terrane (Ao; eastern part of the Hoggar Massif, Figure 

III-10), composed of Neoproterozoic oceanic rocks thrust eastward (Fezaa et al., 2010; Liégeois 

et al., 2003, 2013) during the 800-650Ma period with granitic plutons intruding these structures 

at 600Ma; the Edembo terrane (Ed; eastern part of the Hoggar Massif, Figure III-10 ), composed 

of an amphibolite-facies metamorphic basement intruded by various granitoids and considered 

as an intracontinental hot belt (Liégeois et al., 2013); the Djanet Terrane, composed of 

greenschist-facies sediments intruded by high-K calcalkaline granites (Black et al., 1994). No 
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oceanic-related rocks are known in the two latter terranes (Fezaa et al., 2010; Liégeois et al., 

2013). 

The Djanet Group (Dj; eastern part of the Hoggar Massif, Figure III-10), equivalent to the 

Tiririne Group, constitutes the oldest rocks in the Djanet and Edembo terranes (Fezaa et al., 

2010; Liégeois et al., 2013). During this period (600Ma), the Tuareg shield to the west of the 

Raghane shear zone was considered as a stable lowland craton (Black et al., 1994; Liégeois et 

al., 2003, 2013). However, these two terranes were affected during 575–545 Ma by 

metamorphic events of different metamorphic grades (Fezaa et al., 2010a). 

This led Fezaa et al., (2010) to propose a distinct event called the Murzukian orogenic episode 

(570-550 Ma; Figure III-13) that affected the entire Eastern Hoggar. This orogenic event is 

linked with the stress induced at the western margin of a newly-discovered rigid entity to the 

east referred to by Fezaa et al., (2010) as the Murzuq craton. 

 

Figure III-13: (A) Main rheological domains from North-West Africa with enhancement of the 

LATEA metacraton and of the Djanet and Edembo metacratonic terranes (Liégeois et al., 

2013). (B) Schematic model section at 570–550 Ma of the Murzuq craton. Metacratonization 

resulted from the intracontinental convergence of the Murzuq craton, relaying a northern 

unknown continent push and the relatively stable Tuareg shield, leant against the West African 

craton (Fezaa et al., 2010; Liégeois et al., 2013). 

The late Ediacaran Murzukian (Figure III-13) event is thus an intracratonic event resulting from 

a convergence at plate boundaries beyond the limits of the Murzuq craton (Fezaa et al., 2010). 

It has been proposed that this event was due to vertical planar lithospheric delamination during 

transpressive movements along pre-existing weakness zones inherited from the 
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Paleoproterozoic evolution of these terranes as a result of the indentation of the Murzuq craton 

(Fezaa et al., 2010). 

 

Figure III-14: Sketched E–W cross-sections through the Tuareg Shield showing terranes 

accretion (Liégeois, 2019). 

To summarize: The Precambrian history of the Hoggar corresponds to several complete Wilson 

cycle (Figure III-14). The neoproterozoic Pan-African orogeny was responsible of the accretion 

of three types of lithospheres: the Ouzzalian-Oumelalian (>2.7 Ga; Paleoproterozoic to Archean 

cratons; e.g. Ferrara and Gravelle, 1966; Latouche and Vidal, 1974; Ouzegane et al., 2003a), 
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the older strongly metamorphic Suggarian as the equivalent of the Eburnean (~2 Ga orogeny; 

continental lithosphere delaminated métacratons; e.g. Ouzegane et al., 2003b; Peucat et al., 

2003, 2005) or of the middle Palaeoproterozoic (2.2–1.8 Ga) and the younger slightly 

metamorphic Pharusian as the equivalent of the Pan-African (~0.6 Ga orogeny; oceanic 

lithosphere and Neoproterozoic metasediments; Berger et al., 2014; Bertrand and Lasserre, 

1976; Black et al., 1994; Caby, 2003; Liégeois et al., 2003; Liégeois, 2019). 

2.3.4 Deep geophysic structures of the Saharan lithosphere 

Many studies have documented through geophysics tools (tomography, resistivity…) the deep 

structures of the Hoggar massif and the Saharan platform. Liégeois et al., (2005) has proposed 

a model (Figure III-15) showing through tomography the differential thickness between the 

diverse entities of the lithosphere. Cratons and terranes are identified and circumscribed by 

geophysics such as the Saharan shield (Abdelsalam et al., 2011), the terranes of Hoggar Massif 

(Bournas et al., 2003; Brahimi et al., 2018a; Takherist, 1991) and the West African Craton 

(Roussel and Lesquer, 1991). Others authors, have displayed the lithospheric scale of the shear 

zones identified on the massif (In Ouzzal terranes) through magnetotelluric modeling (Bouzid 

et al., 2008). 

 

Figure III-15 Lithospheric model based on geology and tomography showing differential 

lithospheric thickness between terranes and cratonic cores from Liégeois et al., (2005). 
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2.4 Geodynamic and unconformities of the Saharan platform 

North Africa is composed of three major structural entities (Figure III-2), namely the West 

African Craton (WAC), the Tuareg Shield (TS) and the East Saharan Craton (ESC). It has 

formed part of a single lithospheric plate throughout the Phanerozoic and, hence its structural 

development has been controlled to a large degree by intraplate processes (e.g. Holt et al., 2010; 

Ziegler et al., 1998). The majority of Phanerozoic tectonism and magmatism within the North 

African plate can be considered to have occurred along broad lineaments, which represent 

repeatedly reactivation and exploitation of earlier, Late Proterozoic Pan-African sutures 

(heterogeneity, shear zones…), and which formed generally between 720 and 550 Ma (Beuf et 

al., 1971; Bumby and Guiraud, 2005; Craig et al., 2008; Galeazzi et al., 2010; Guiraud and 

Bosworth, 1997). This featured determines the main deformation trends, especially the N-S 

Pan-African basement fault systems (Figure III-2; Bumby and Guiraud, 2005; Galeazzi et al., 

2010; Guiraud et al., 2005). The interpretation of the formation of Phanerozoic basins is often 

accomplished by considering the inter-relationship between the orientations of Phanerozoic 

stress fields relative to the orientation of the Pan-African trends (Beuf et al., 1971; Bumby and 

Guiraud, 2005; Craig et al., 2008; Guiraud and Bosworth, 1997). 

The Paleozoic North Saharan Platform including the peri-Hoggar basins was a part of the 

northern passive margin of the Gondwana supercontinent and experienced a complex and 

polyphase history (Boote et al., 1998; Craig et al., 2008; Fabre, 1988; Guiraud et al., 2005). 

The Saharan Paleozoic intracratonic basins have experienced sixteen major tectonic phases, 

thus affecting sedimentation through geological time. They are the following: 

2.4.1 The Eburnean Orogeny (c. 2000 Ma) 

The Eburnean orogeny, or Eburnean cycle was a series of tectonic, metamorphic and plutonic 

events in what is now West Africa during the Paleoproterozoic era (i.e. about 2000 ± 100 Ma). 

In the Hoggar massif, this event is identified in several places such as Tassendjanet, In Ouzzal 

(cf. Figure III-16), Aleskod and Oumelalen areas (Allegre and Caby, 1972; Bertrand and Caby, 

1978; Bertrand and Lasserre, 1976; Latouche and Vidal, 1974; Ouzegane et al., 2003b, 2003a). 
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Figure III-16: Archean terrane of In Ouzzal structural style in "dome and basins" reactivated 

during the Paleoproterozoic Eburnean orogeny via the mega shear zones (Benbatta et al., 

2016). 

2.4.2 The Pan-African orogeny (c. 900-600 Ma) 

The Pan-African orogeny, also called Cadomian orogeny or Brasiliano (in Brazil) is a major 

event in the geological history of Africa (Figure III-17). It results from the collision of several 

tectonic plates has and led to the formation of the super-continent Pannotia (Hallett, 2002). 

According to Caby, (2003), these three tectonic plates are composed of Archean cratons to 

Paleoproterozoic (West African craton, Kalahari, Congo and Nile), the suture zones correspond 

to mobile zones accreted Neoproterozoic oceans (Mozambique, Adamastor and Pharusian). 

The Pan-African orogeny at the origin of the Gondwana supercontinent was formed by the 

assembly of several continental fragments and oceanic terranes during the Neoproterozoic Pan-

African orogeny (Craig et al., 2008; Guiraud et al., 2005; Unrug, 1992; Figure III-17). In the 

North African platform it resulted from the collision of the West African Craton (WAC) and 

the East Saharan Craton (ESC), between the Tuareg Shield (TS) mobile belt (Craig et al., 2008; 

Guiraud et al., 2005; Unrug, 1992). It is characterized by an East-West shortening direction and 

numerous large North-South trending faults with a very important horizontal displacements 

about hundred kilometers (Caby, 2003; Craig et al., 2008; Guiraud et al., 2005; Liégeois et al., 

2003). This phase of convergence is followed by a period of post-orogenic thermal subsidence 

(<600 Ma) which favors the development of the North African Paleozoic basins (Burke et al., 

2003; Coward and Ries, 2003; Fabre, 1988). 
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Figure III-17: (A) Evolution of North Africa during the Pan-African orogeny modified from 

Craig et al., (2008). (B) Paleogeographic reconstruction of the supercontinent Gondwana at 

the end of the Pan-African cycle relating the distribution of stable cratons and Pan-African 

mobile belts modified from Craig et al., (2008). 

In Northern-Africa, the Pan-African orogeny results from the collision of the West African 

Craton (WAC) and the East Saharan Craton (ESC) between the Tuareg Shield (TS) (Figure 

III-17). According to Black et al., (1994), this orogeny has two main periods: a period of major 

collision (750-660 Ma) and a period of major shear (660-580 Ma). It led to the subduction, the 

collision and amalgamation of Archean and Proterozoic cratons, voluminous island arc material 
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as accreted terranes (23 terranes; cf. Black et al., 1994), and sub-craton sized fragments of 

Proterozoic continental material into a coherent supercontinental unit (Black et al., 1994; 

Bumby and Guiraud, 2005; Caby, 2003). It is characterized by an East-West shortening 

direction and numerous large North-South trending faults with a very important horizontal 

displacement about hundred kilometers (Caby, 2003; Craig et al., 2008; Guiraud et al., 2005; 

Haddoum et al., 2013; Liégeois et al., 2003, 2013). 

It leads to the formation of the supercontinent Gondwana (Caby, 2003; Coward and Ries, 2003; 

Fabre, 1988, 2005; Liégeois et al., 2013). This collision has headed to lateral expulsion of 

triangular-shaped blocks of lithosphere material from the Tuareg Shield to the north and south 

(Black et al., 1994; Coward and Ries, 2003; Fabre, 1988, 2005). The collision of the West 

African Craton had the effect of producing a large-scale uplifted area across northern Africa, 

and also produced anastomosing patterns of both left and right-lateral strike-slip tectonics 

throughout northern Africa associated with subsequent tectonic escape (Coward and Ries, 

2003). 

Collision was accomplished by multiple phases of both east- and west-dipping paleo-

subduction zones during the Neoproterozoic (Caby, 2003). The end of the Pan African orogeny 

was diachronous. Local timings for the last deformation vary from Late Precambrian to the 

Early Cambrian (Holt et al., 2010). The Pan-African structures will be reactivated during the 

late successive tectonic phases, illustrating the role of the Pan-African structural configuration 

on the evolution of North African sedimentary basins (Craig et al., 2008). 

2.4.3 The infra-Cambrian extension and Pan-African collapse (c. 1000-525 Ma) 

At the end of the Pan-African orogeny, after the major phase of deformation and 

metamorphism, an orogenic collapse of the Pan-African Mountains set place (Ahmed and 

Moussine-Pouchkine, 1987; Bumby and Guiraud, 2005; Caby et al., 1985; Djellit et al., 2002; 

Fabre, 1988, 2005). 

This late-orogenic extension may have been associated with the formation of pull-apart basins 

and horst-graben structures infilled with Upper Precambrian-Cambrian volcano-sedimentary 

molasses (e.g. “Bled El Mass” series, “Pourprée” series, El Moungar conglomerate series; 

Figure III-18), deposited preferentially along mega lineaments (Ahmed and Moussine-

Pouchkine, 1987; Bumby and Guiraud, 2005; Caby et al., 1985; Coward and Ries, 2003; Djellit 
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et al., 2002; Fabre, 1988). It is also recognized in the Anti-Altas, Morocco (Oudra et al., 2005; 

Piqué et al., 1999). 

 

Figure III-18: Late-orogenic Panafrican molasses basins of In Semmen and of Ouallen (Ahmed 

and Moussine-Pouchkine, 1987). 
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2.4.4 The peneplanation (Infratassilian surface fm.) and start of subsidence (c. 525 Ma) 

At the beginning of the Cambrian (i.e. around 530 and 500 Ma), the consolidated Pan-African 

orogen of North Africa was levelled and peneplaned and set the place of a relatively stable 

platform (Beuf et al., 1971; Fabre, 1988). The duration of this peneplenation must be restricted 

to several tens of millions of years (Bennacef et al., 1971; Beuf et al., 1968b; Boissonnas et al., 

1969). This “Infratassilian” surface unconformity (also called Pan-African unconformity) is 

featured by a wide polygenic planar peneplain or pediplain surface with sometimes residual 

relief (i.e. inselbergs), composed of quartzite dreikanters, ferruginous levels, arenites and 

reworked clasts (Beuf et al., 1971; Fabre, 1988, 2005). This surface gives the start of the 

deposition of a vast Paleozoic mainly siliciclastic deposits (Beuf et al., 1971), experienced by 

a typical cratonic tectono-stratigraphic history (Beuf et al., 1971; Boote et al., 1998; Eschard et 

al., 2010). 

2.4.5 Cambro-Ordovician extension (c. 525-418 Ma) 

The Cambro-Ordovician is characterized by an extensive regime associated with the rift/split 

and drift of the Avalonia terrane from Gondwana, the development of the Armorica micro-

continent and the opening of the Rheic Ocean (Nance et al., 2010; Stampfli and Borel, 2002; 

Zazoun and Mahdjoub, 2011). 

There were no major plate collisions or separations at this time and local transpressional and 

transtensional reactivation processes dominated the region as a result of the interaction of 

intraplate stress fields with pre-existing fault systems of varying orientation and geometry 

(Craig et al., 2008). They were reactivated as normal faults or strike-slip faults, leading to the 

development of horst-grabens or half-graben structures (Coward and Ries, 2003). During this 

period the Saharan platform experienced several tectonic phase related to an oceanic opening 

and a tectonic tilting towards the N-NW (Beuf et al., 1971; Coward and Ries, 2003; Craig et 

al., 2008; Eschard et al., 2010). 

By the end of the Cambrian, where a brief drop in sea level was registered a regional uplift has 

probably happened (Fabre, 1988). At the Early Ordovician, a tectonic activity occurs 

characterized by the absence of the Cambrian over the main uplifts, e.g. the Ahara Uplift and 

the Tihemboka Arch (Echikh, 1998; Eschard et al., 2010). During Llandeilo time (i.e. 

Darriwilian), a peak of activity has occurred, particularly on the southern edge of the Ghadames 

Basin, in Illizi and close to the Gargaf Uplift (Echikh, 1998). 



CHAPTER III – GEOLOGICAL CONTEXT OF PERI-HOGGAR BASINS 

89 

P. PERRON - 2019 

The Cambrian and Lower Ordovician was a period of active uplift, with palaeohighs forming 

slowly rising broad horsts covered by the Cambro-Ordovician sediments before being eroded 

during the uplift phase (Eschard et al., 2010). They were covered by the Cambro-Ordovician 

sediments before being eroded during the uplift phase (Eschard et al., 2010). The Ahara (Figure 

III-20C-D), the Tihemboka (Figure III-20A), the Azzel Matti (Figure III-20B), the Amguid El 

Biod, the Ougarta range and the Arak-Foum Belrem (Figure III-19) Arches show evidences of 

tectonic activity during the Cambro-Ordovician (Beuf et al., 1968b; Borocco and Nyssen, 1959; 

Eschard et al., 2010; Fabre, 2005; Ghienne et al., 2007b; Kracha, 2011). It is documented by 

syn-sedimentary tectonic structures such as thickness variations, lateral facies variations, 

current directions variations (Figure III-19 and Figure III-20). These structures also present in 

the Ajjers formation are evidences of the early activity of the Arches leading to the 

individualization of the different basins of the Saharan platform since the Cambrian time. 

 

Figure III-19: (A) Thickness and facies lateral variation of Cambro-Ordovician series on the 

Arak-Foum Belrem Arch (Beuf et al., 1968b). (B) Syn-tectonic conglomerates in Cambro-

Ordovician series on the Arak-Foum Belrem Arch (Beuf et al., 1968b). (C) Syn-tectonic 

conglomerates in Cambro-Ordovician series on the Arak-Foum Belrem Arch (Beuf et al., 

1971). 
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Figure III-20: (A) EW cross section on the Tihemboka Arch (Illizi Basin) showing variation of 

thickness, wedges strata in the Cambro-Ordovician series. (B) NNW-SSE cross section on the 

Azzel Matti Arch (Ahnet Basin) showing variation of thickness, wedges strata in the Cambro-

Ordovician series. (C) Cross-section between in the Berkine Basin and the Ahara High, 

showing the stratigraphic pinchout of the Cambro-Ordovician succession on the northern flank 

of the Ahara High. (D) Seismic section on the southern flank of the Berkine Basin illustrating 

the onlap configuration of the Cambro-Ordovician, and the thickness reduction of the Silurian 

and Devonian succession. Images from published paper (Eschard et al., 2010). 

In the Tassili-N-Ajjers (Oued Messiradjene) unconformity has been observed between Ajjers 

and In Tahouite formations (Bennacef et al., 1971; Beuf and Montadert, 1962). In the eastern 

Murzuq basin (Dor El Gussa and Murizidié location), intra-Ordovician tectonically driven 

unconformity were shown (Ghienne et al., 2013).  

2.4.6 “Taconic” phase (c. 445 Ma) 

The Taconic orogeny (or Taconian) is defined as the orogenic disturbance that occurred in 

eastern North America at the end of the Ordovician period (Rodgers, 1971). In the Saharan 

platform, the Taconic tectonic phase is featured by an moderate amplitude deformation leading 

to a major low-angle stratigraphic unconformity which occurred before the late Asghill glacial 

event and after the deposition of In Tahouite formation (Bennacef et al., 1971; Eschard et al., 

2010; Fabre, 1988). Evidence of the Taconic unconformity is documented by a cross-section 
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near the Dhar high (cf. Figure III-21) where successive units of the Early Ordovician is pinch 

out and eroded associated to volcanic layers in the Brides and Illizi basin (Echikh, 1998). This 

magmatic intrusion is linked to Mesozoic instead by K-Ar datations (Chabou et al., 2007b). In 

the Adrar Tan Elak (i.e. Amguid El Biod Arch), it is described by an intra-Ordovician angular 

unconformity after a roughly NS direction folding phase (Borocco and Nyssen, 1959; Claracq 

et al., 1958). Many evidence of Late Ordovician (Caradocian? i.e. Sandbian to Katian) Taconic 

event were highlighted by partial or complete erosion to the basement in the Eglab and major 

lineament (see Pl. 27, p.422; Beuf et al., 1971) such as the Bled el Mass Arch (Beuf et al., 

1968a; Eschard et al., 2010). 

 

Figure III-21: Geological section of the Ordovician formations in North Africa illustrating the 

gully associated with the Taconic unconformity (Echikh, 1998). 

During the Ashgillian (i.e. Upper Katian to Hirnantian), the isopach map of the Tamadjert 

Formation (i.e. Syn-glacial deposits) for the Illizi basin shows the existence of the NW-SE pull-

apart grabens and half-grabens basins (Figure III-22), consistent with a NE-SW extensional 

direction (Zazoun and Mahdjoub, 2011). In the Gargaf area, location of the main glacial valleys 

partly controlled by inherited Pan-African structural trends, and by the existence of glacio-

isostatically induced fault-related depocentres. (Ghienne et al., 2003). 

However, the origin of the Taconic unconformity remains a subject of considerable controversy 

when we look at regional cross-sections, the field and the seismic lines. Indeed, Late Ordovician 

geologic structures are complex to understand because the effects of the local uplift interfered 

with the Taconic unconformity (Eschard et al., 2010). According to Galeazzi et al., (2010), this 

unconformity show very little relation with tectonism and are most probably due to major sea 

level falls related to a glacial eustatic fall. For Zazoun and Mahdjoub, 2011, the Taconic 
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unconformity is probably a combination of traditional tectonic movements and glaciotectonics 

(Figure III-23). 

 

Figure III-22: Isopachs map of syn-glacial Tamadjert Formation in the Illizi basin. The 

geometry seems compatible with an NE–SW extensional direction resulted in a transtension 

along the N–S and NNW–SSE major lineaments and the formation of pull-apart basins during 

the deposition of the Tamadjert Formation (Zazoun and Mahdjoub, 2011). 
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Figure III-23: Constraints regime in Cambro-Ordovician series in the Illizi basin (Zazoun and 

Mahdjoub, 2011). 

2.4.7 Hirnantian major glaciation (c. 445-444 Ma) 

Towards the end of the Ordovician, the North-Gondwana platform drifts through the South 

Pole. The climate was relatively warm in the lower Ordovician, becoming cold and dry towards 

the end of the Ordovician, favoring the installation of an ice cap covering a good part of the 

current Sahara (Clerc et al., 2013; Denis et al., 2007; Fabre, 2005; Ghienne et al., 2007a; Heron 

and Craig, 2008; Le Heron, 2007; Ravier, 2014; Scotese et al., 1999). The "maximum" 

hypothesis envisages the existence of a single cap, with a diameter of nearly 8000 km (Figure 

III-24; see also Figure III-24), which would be much greater than the size of the current 

Antarctic icecap. A "minimal" alternative hypothesis proposes the development of several 

smaller caps (Ghienne et al., 2007a). However, numerical modelling has rejected this scenarios 

with individual separate ice centers because of instability (Pohl et al., 2016). Still according to 

this study, land ice thickness simulated in their baseline runs reaches 6000 m over extensive 

areas. 

The sedimentary architecture of glacial deposits is controlled by the repetition of periods of 

glacial erosion, associated with the jerky extension of the ice sheet during its growth period, 

and by the formation of depocentres associated with glacio-isostatic reactivation of a pre-

existing fault networks (Clerc et al., 2013; Denis et al., 2007; Ghienne et al., 2003; Girard et 
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al., 2018; Ravier et al., 2014). Soft-sediment deformation structures in subglacial environments 

are also recorded (Clerc, 2012; Clerc et al., 2013; Ravier, 2014; Ravier et al., 2014). This results 

in discontinuous and juxtaposed sedimentary units, filling in paleotopographies. Facies of pro-

glacial/deglaciation are documented in the Saharan platform (Clerc et al., 2013; Deschamps et 

al., 2013; Girard et al., 2012; Hirst et al., 2002; Le Heron et al., 2006). 

 

Figure III-24: Paleogeography of the Gondwana at the Upper Ordovician (Veevers, 2005). At 

that time, Gondwana is partly covered by a large ice cap. During the period of maximum ice 

extension, the ice cap covered more than half of the South American continent and the Arabian 

Peninsula, as well as almost the entire African continent. 

2.4.8 Deglaciation and isostatic rebound (c. 444 Ma) 

After a period of glaciation, the Saharan platform was partly recovered by an enormous ice-

sheet (Figure III-24; Beuf et al., 1971; Le Heron et al., 2009; Heron and Craig, 2008; Ghienne 

et al., 2007a; Girard et al., 2012, 2018; Dixon et al., 2008a). The melting and ice retreating 

(Figure III-24) lead to a complex isostatic rebalancing of the basement structures which is an 

rapid geologic phenomena (Beuf et al., 1971; Heron and Craig, 2008; Denis, 2007; Le Heron 

et al., 2006; Ghienne et al., 2003; Fabre, 1988). Evidence of a positive isostatic compensations 

is suggested by the absence of Lower Llandovery (Imirhou formation) in the Mouydir basin 
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(see p.428 and table 28; Beuf et al., 1971). In the Djado, during interstadial and postglacial 

stages, glacio-isostatic rebound, grabens, normal faults, radial extensional micro-faults and 

extensional dihedrons were generated by extensional tectonics (Denis, 2007; Denis et al., 2007; 

Moreau, 2011). In the Murzuq basin, unconformity due to postglacial retirement were also 

outlined (Ghienne et al., 2013; Le Heron et al., 2006). 

 

Figure III-25: Paleo-glaciological reconstructions of the Late Ordovician Saharan ice sheet 

modified from Heron and Craig, (2008) showing both Ice sheet configuration at glacial 

maximum position and during its stepwise recession. 



CHAPTER III – GEOLOGICAL CONTEXT OF PERI-HOGGAR BASINS 

96 

P. PERRON - 2019 

2.4.9 Silurian subsidence (c. 444-418 Ma) 

Silurian times were marked by continuous subsidence of the north Gondwanan passive margin 

reflecting the development of the proto-Tethyan ocean between Gondwana, Armorica and 

Avalonia (Craig et al., 2008; Lüning et al., 2000). It is a period of general quiescence and 

stability with limited uplift of all paleohighs, which were passively flooded during the Lower 

Silurian transgression (Eschard et al., 2010). At that time, a residual topography remained, and 

was onlapped by the basal part of the transgressive Silurian shales (Eschard et al., 2010). The 

Middle and Upper Silurian progradationnal sequences (Lüning et al., 2000) were deposited 

without being influenced by the paleohighs topography (Eschard et al., 2010). Transgression 

started at the east and south-east and flooded the major Arches during the Middle Llandovery 

(Beuf et al., 1971). 

2.4.10 Early Devonian Caledonian compression (418-398 Ma) 

The Caledonian orogeny is related to the convergence and collision of Laurentia, Baltica, 

Avalonia and intervening terranes leading to the closure of the Iapetus Ocean, occupying a time 

interval of around 200 Ma (Mckerrow et al., 2000). At the same time (Figure III-37), 

rifting/drifting of the Hun Superterrane progressively set place to the Paleotethys ocean and 

close the Rheic ocean between Laurussia and Gondwana (Stampfli and Borel, 2002). 

In the Saharan platform, the Caledonian tectonic event, is mainly mentioned as uplifting of 

some trends (Figure III-26, Figure III-27 and Figure III-28), large-scale folding or blocktilting 

(e.g. Gargaff Arch, Tihemboka Arch, Fadnoun axis, Azell Matti Arch, Saoura-Ougarta, Aïr 

area, Tasmena area, In Ezzan area, In Guezzam area, Ahara high, Amguid El Biod Arch), 

associated with breaks in the series and frequent angular unconformities below Early Devonian 

formations (Beuf et al., 1971; Biju-Duval et al., 1968; Boote et al., 1998; Boudjema, 1987; 

Carruba et al., 2014; Chavand and Claracq, 1960; Collomb, 1962; Coward and Ries, 2003; 

Dubois et al., 1967; Dubois and Mazelet, 1964; Echikh, 1998; Eschard et al., 2010; Fabre, 2005; 

Frizon de Lamotte et al., 2013; Ghienne et al., 2013; Gindre et al., 2012; Legrand, 1967b, 1967a; 

Lessard, 1961; Massa, 1988). Already at the Wenlock epirogenic events (long wavelength 

deformation) have modified sedimentation conditions (see p. 102; Beuf et al., 1971). During 

this compressive event, large wavelength folds and paleohighs were accentuated, affecting 

sedimentation and facies distribution in the sedimentary basins (Eschard et al., 2010; Galeazzi 
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et al., 2010). Locally, paleohighs may have provided detrital material (Eschard et al., 2010; 

Galeazzi et al., 2010). 

 

Figure III-26: (A) EW cross section in the Illizi basin and the Tihemboka Arch showing 

variation of thickness, angular unconformities, wedges strata in the lower Devonian series 

(Eschard et al., 2010). (B) Correlation of the Devonian succession on the northern flank of the 

Ahara High where we observe the complete pinchout of the Gedinnian fluvial unit on the flank 
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of the high (Eschard et al., 2010). (C) Cross-section showing the stratigraphic architecture of 

the Siluro-Devonian succession between the Ghadames Basin and the Gargaff Arch (Eschard 

et al., 2010). 

 

Figure III-27: (A) EW cross section on the Tihemboka Arch (Illizi basin) showing variation of 

thickness, angular unconformities, wedges strata in the lower Devonian series (Beuf et al., 

1971). (B) Thickness variation and sandy lense (Beuf et al., 1971). (C) EW cross section 

through the Ahnet and Mouydir basin in the Siluro-lower Devonian series showing variation of 

thickness near Azzel Matti and Arak-Foum Belrem Arches (Beuf et al., 1971) see also (Biju-

Duval et al., 1968). 
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Figure III-28: (A) Thickness and facies variations of Siluro-Devonian formations on the 

Idjerane axis (i.e. Arak-Foum belrem Arch) (Legrand, 1967a). (B) Thickness and facies 

variations of Siluro-Devonian formations in the Bled El Mass area (i.e. Azzel Matti Arch) 

(Legrand, 1967a). (C) EW cross section in the Illizi basin and the Tihemboka Arch showing 

variation of thickness, angular unconformities, wedges strata in the lower Devonian series 

(Legrand, 1967a). 
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Evidence of the Caledonian event is documented, in the southwestern and southern flank of the 

Ghadames Basin, the Lower Devonian Tadrart formation is seem to directly overly the Upper 

Silurian basal Acacus series with a progressive truncation of the Acacus (Upper Silurian) units 

from NE to SW on this unconformity (Echikh, 1998). In the Illizi basin, only the lowermost 

part of Acacus Formation is preserved (Echikh, 1998). Besides, seismic data may show folding 

of the Silurian section below flat-lying Devonian deposits (Echikh, 1998). Well described 

indication of Caledonian unconformity are also highlighted in the Murzuq basin (Ghienne et 

al., 2013) and Al Kufrah basin (Gindre et al., 2012). Massive sand injection associated with 

igneous intrusion triggered by basin-scale uplift are also described in the Murzuq basin (Moreau 

et al., 2012). These structural features imply NW-SE shortening, probably of moderate 

intensity, though much weaker than the Hercynian one (Guiraud et al., 2005). Elsewhere, in the 

Drâa basin, in the NW Libya and over the Al Kabir trend, there is also no sign of this event in 

Lower Devonian series (Echikh, 1998; Ouanaimi and Lazreq, 2008). 

Moreover, a widespread near top Emsian unconformity probably triggered by regional tectonic 

activity has been identified in the Illizi basin (Abdesselam-Rouighi, 2003; Boudjema, 1987; 

Boumendjel et al., 1988; Brice and Latrèche, 1998; Moreau-Benoit et al., 1993), in the AHnet-

Mouydir basin (Wendt et al., 2006), in the Libyan Ghadames and Al Kufra basins (Bellini and 

Massa, 1980). It is associated to basaltic volcanism and intrusive activity in the Ahnet basin 

and Anti-Atlas (Belka, 1998; Wendt et al., 1997) 

Many authors have correlated the Late Silurian to Early Devonian tectonism as the maximum 

collisional deformation of the Caledonian Orogeny (see references below). However, this event 

clearly relates to collisions involving far away continents and terranes where Gondwana was 

located thousands of kilometres to the south and separated from the collisional zone by a major 

ocean during this time (Craig et al., 2008; Mckerrow et al., 2000; Stampfli and Borel, 2002). 

Tectonic events in North Africa during post-Infracambrian-pre-Hercynian times were therefore 

independent of the Caledonian Orogeny. Time-descriptive terms may be preferred instead 

(Craig et al., 2008). This denomination is thus controversial. The origin of this intra-plate stress 

could be linked to far field stresses, knowing that, in continental craton compression stresses 

can be transmitted through distances of up to 1600 km from a collision front (Ziegler et al., 

1995). The origin of Late Silurian to Early Devonian intra-plate stress in North Africa is 

currently unclear but is possibly associated either with a phase of rifting along the Gondwana 

margin (Boote et al., 1998) or with initial closure of the Iapetus Ocean (Fekirine and Abdallah, 
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1998). Frizon de Lamotte et al., 2013 didn’t interpreted it as a far effect of the Variscan orogeny, 

contrary to Fabre, 2005 who associated to the beginning of it. 

2.4.11 Middle to Late Devonian extension (c. 398-359 Ma) 

The Middle to Late Devonian times (Figure III-37) is defined by the divergence between 

Gondwana and European Hunic terrane, where the latter converging (pre colliding) with 

Laurussia leading to the closing of the Rheic ocean (Stampfli and Borel, 2002). 

The Late Devonian is the time for two contrasting large-scale tectonic processes: the onset of 

the Variscan Orogeny along the Gondwana-Laurussia margin on the one hand and the 

development of magmatism, rifting and domal basement uplift within these continents on the 

other hand (Frizon de Lamotte et al., 2013). The collision between Gondwana and Laurasia that 

ultimately produced the Hercynian Orogeny possibly first affected North Africa during the mid-

Devonian, creating extension/transtension pull-appart basins (Craig et al., 2008). 

 

Figure III-29: (A) Pinch out of Middle-Upper Devonian series on the Tihemboka Arch 

(Chaumeau et al., 1961). (B) Pinch out of Middle-Upper Devonian series on the Tihemboka 
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and Gargaf Arches (Fabre, 2005). (C) Pinch out of Middle-Upper Devonian series on the 

Ougarta chain, Djebel Heche, Touat, Azzel Matti and the Ahnet basin (Legrand, 1967a). 

This Devonian deformation has reactivated megashear zone systems coeval with semi-regional 

uplift of the Ghadames and Illizi basins and of the adjacent Tihemboka, Ahara, Gargaf and 

Brak-Bin Ghanimah Arches in the mid-Eifelian and at the end of the mid-Devonian (Late 

Givetian) and with the related development of the Frasnian Unconformity (Craig et al., 2008). 

Evidence of extensional structures and/or tectonic activity during the Late Devonian, as proved 

by the major thickness variations of these series are documented in the Anti-Atlas (Baidder et 

al., 2008; Michard et al., 2008; Wendt, 1985), in the Tihemboka (Chaumeau et al., 1961; Fabre, 

2005; Legrand, 1967a), in the Tasmena basin (Derycke and Goujet, 2011; Fabre, 1976; Lessard, 

1961), in the Gargaff Arch (Collomb, 1962; Fabre, 2005; Massa, 1988), in the Azzel Matti Arch 

(Legrand, 1967a; Wendt et al., 2006), in the Foum Belrem Arch (Wendt et al., 2006), in the 

Amguid El Biod Arch (Wendt et al., 2009b), in the northern Africa and in Arabia platform 

(Frizon de Lamotte et al., 2013). Example are imaged in Figure III-29 and Figure III-30. 

 

Figure III-30: The structural context of the Bechar Basin (Algeria) (Frizon de Lamotte et al., 

2013). (a) Line drawing illustrating the geometry of the Bechar Basin at depth; notice that the 

tilted blocks at depth were folded during the Variscan Orogeny together with the Upper 

Devonian (?)–Carboniferous infilling of the Bechar Basin. (b) Schematic diagram synthesizing 

the tectonic history of the Bechar Basin during the Paleozoic and Mesozoic. 
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This event corresponds to a major collapse and even “disintegration” of the north-western 

Gondwana margin prior to the Variscan Orogeny (Wendt, 1985). While, the activity of the 

palaeohighs (e.g. Ahara, Gargaff and Tihemboka High) almost ceased during the Frasnian 

times, with marine shales onlapping different elements of the Paleozoic succession below and 

sealing most of the palaeohighs (Eschard et al., 2010). 

2.4.12 The early Pre-Hercynian compression (c. 359-305 Ma) 

Prior to the main Hercynian orogeny, the compressive event started from Late Devonian, 

resulting in the reactivation of basement faults, and the development of pull-apart basins, strike-

slip faults (Craig et al., 2008). Tournaisian to Lower Visean sediments have also been partially 

eroded from the hanging wall of local structures in the Tihemboka Arch (Boudjema, 1987). 

Late Devonian and Carboniferous were marked by a complete reorganization of the depocentres 

on the craton, in relation to the beginning of the Hercynian compression, except for the Gargaff 

High, which continuously grew to the present day (Eschard et al., 2010). Biostratigraphic data 

indicate that Early Tournaisian strata are absent over most of the area of the Ghadames and 

Illizi basins (Echikh, 1998). In the Ahnet-Mouydir basins, two major gaps, one during the 

middle Tournaisian, the other during the middle Visean to Serpukhovian  were identified and 

related to tectonic pulses (Wendt et al., 2009a). 

2.4.13 The Carboniferous-Early Permian Hercynian Orogeny (c. 305-270 Ma) 

The Hercynian orogeny is centred around the Carboniferous-Early Permian and led to the 

formation of the supercontinent Pangea (Stampfli and Borel, 2002). It is associated with the 

closure of the Iapetus Ocean between Laurentia and Baltica (thus creating Laurussia) and 

subsequent collision between Laurussia and Gondwana by closure of the Paleotethys (Bumby 

and Guiraud, 2005; Stampfli and Borel, 2002).  

In the Saharan Platform, evidence of this deformation is documented as an uplift phase and 

major erosion clearly recorded, corresponding to intense folding, strike-slip faulting (Coward 

and Ries, 2003; Craig et al., 2008; Haddoum, 2009; Haddoum et al., 2001; Zazoun, 2001, 2008). 

Two main compression phases with different of shortening are documented (Craig et al., 2008; 

Haddoum et al., 2001; Zazoun, 2001): A Tournaisian to Lower Visean compressive phase, 

oriented N40°, resulting in the development of NW-SE folding trend and a post-Namurian 

compressive phase, oriented N120°. 



CHAPTER III – GEOLOGICAL CONTEXT OF PERI-HOGGAR BASINS 

104 

P. PERRON - 2019 

 

Figure III-31: EW cross section in the Ahnet and Mouydir basins in the Carboniferous series 

showing variation of thickness near Azzel Matti and Arak-Foum Belrem Arches (Wendt et al., 

2010b). 

The present-day configuration of the Saharan platform is essentially inherited from this major 

tectonic event (Coward and Ries, 2003; Guiraud et al., 2005). Folding, strike-slip faulting and 

reverse faulting occurred by the latest Paleozoic, resulting in the development of structures 

which are unconformably sealed by Mesozoic formations (Boote et al., 1998; Coward and Ries, 

2003; Haddoum et al., 2001). Once again, it is very likely that the Pan-African fault pattern had 

influenced the Hercynian deformation (Boote et al., 1998; Coward and Ries, 2003; Haddoum 

et al., 2001). 

The intensity of Hercynian deformation decreases eastwards across North Africa away from 

the collision zone (Craig et al., 2008). This compressive deformation increased during the 

Carboniferous, inducing a migration of the depocentres: the Ahara High started to subside and 

the Tihemboka High was sealed by the Carboniferous sediments (Eschard et al., 2010). In the 

Tim Mersoï basin, litho-stratigraphic correlation shows variation of thickness between the 

center of the basin and the Aïr basement (Coquel et al., 1995; Fabre, 2005) 
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Figure III-32: Permo-Carboniferous intra-plate deformation of the Sahara Platform forming 

the foreland of the Mauretanides-Atlas orogen. Arrows indicate axes of major Arches. 

Schematic evolutionary diagram of Ougarta trough modified from Dallmeyer and Lécorché, 

(1991); Ziegler et al., (1995). Ti = Tinduff basin, Ta = Taoudeni basin, Tm = Timimoun basin, 

Gh = Cihadames basin, MO = Mourzouk basin. (1) major faults, (3) rift, (4) Late Carboniferous 

thrusting, (5) Lower Permian thrusting, (6) Lower Permian-Late Carboniferous folded chain, 

(7) major extruded Arches, (8) terminal Carboniferous shortening direction, (9) terminal 

Permian shortening direction. 

In the Ahnet and the Mouydir basins, the folding and faulting have occurred around the 

Carboniferous/Permian transition or, more probably, during the Early Permian (Haddoum et 

al., 2001). Thickness variations of Carboniferous series are also observed at the vicinity of 

Arches (Figure III-31). Moreover, inversion or reactivation of former structure are identified in 

the Ghadamès basin (Abudeif, 2015) and in the Ahnet basin (Badsi et al., 1999). The Figure 

III-32 illustrates the impact of the Hercynian orogeny on the Saharan platform. 
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2.4.14 Mesozoic extension: Tethys and Atlantic opening (c. 270-130 Ma) 

During the Mesozoic, the Pangea break-up and the opening of the Central Atlantic and Thetys 

is accompanied by an extensive tectonic regime (Craig et al., 2008; Guiraud et al., 2005a; 

Guiraud and Maurin, 1992). This event is recorded in North-Africa by the initiation of rifting 

processes and the development of magmatic provinces (Craig et al., 2008). In the Illizi Basin, 

the NE-SW fault system is reactivated as normal fault system with a NW-SE lengthening 

direction, leading to local bloc tilting (Figure III-33). 

 

Figure III-33: Main extension phases during the Tethys and Atlantic opening reactivating 

major ancients faults lineaments (Fairhead et al., 2013). 

2.4.15 Alpine and Austrian orogeny (c. 130-23 Ma) 

The collision between European and African tectonic plate resulted in the closure of the Thetys 

and the Alpine orogeny (Bumby and Guiraud, 2005; Craig et al., 2008; Guiraud et al., 2005a). 

In Africa, this event is recorded through compressive pulses starting at the late Cretaceous. The 

first phase (Austrian) is an E-W compression phase leading to the development of folds along 

the N-S reactived faults, as well as wrench reactivation of NE-SW faults with “en-échelons” 

folds. Most of the deformation is accommodated by the Atlasic domain, although limited 

deformation could be affecting the Illizi Basin (tilting blocs). 
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2.4.16 Eocene-Miocene uplift (c. 35-23 Ma to present day) 

Since the Miocene, the Hoggar Massif was uplifted (4000-5000 meters) resulting in the 

exhumation of the Paleozoic series in the southern part of the Illizi Basin (Tassilli N’Ajjers). 

This uplift is associated with the reactivation of Pan-African and Paleozoic faults (Liégeois et 

al., 2005), rifting processes associated with the opening of Central Atlantic, thermal anomaly 

beneath the Hoggar and the presence of a potential hot-spot (Craig et al., 2008; Guiraud et al., 

2005). 

Nevertheless, a new study based on thermochronology methods (Apatite fission tracks) 

revealed evidence of a widespread exhumation of the Touareg Shield during the Late Eocene, 

before the establishment of the first 35 Ma volcanic edifices (English et al., 2016b; Rougier, 

2012; Rougier et al., 2013; Ye et al., 2017). 

Furthermore, it indicated that if there was reactivation of Pan-African shear zones, they were 

only minor and did not affect exhumation of the basement. Thermochronological data suggest 

burial of the Hoggar and Reguibat shields (English et al., 2016b; Leprêtre, 2015; Leprêtre et 

al., 2015; Rougier et al., 2013), consistently with subsidence under the Saharan basins before 

late Eocene exhumation (Figure III-34). Rougier, (2012) also presented that the Touareg Shield 

may have been buried under a sedimentary cover of 1 to 2.5 km thick. 

 

Figure III-34: Schematic structural section across the Hoggar Massif from the Berkine Basin 

in the north to the Iullemmeden Basin in the south from English et al., (2016b). Note that the 
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Hoggar had an earlier history of uplift with significant erosion of the Paleozoic sequence 

during the Hercynian orogeny. For localization see 4 in Figure III-2. 

2.5 Basin heat flow and thermal activity of the Saharan basins 

Overviews of the tectonic development and thermal activity of the north African basin were 

published by many authors (Badalini et al., 2002; Boote et al., 1998; Coward and Ries, 2003; 

Craig et al., 2008; Logan and Duddy, 1998; Zielinski, 2011; Zieliński, 2012). A compilation of 

thermal curves is presented below (Figure III-35). Heat production of the actual Sahara are 

documented by some authors (Lesquer et al., 1989; Takherist, 1991; Takherist and Lesquer, 

1989). 

 

Figure III-35: Thermal history curves of the Paleozoic North Saharan Platform (peri-Hoggar 

basins) compiled from literature: 1: well in the Illizi basin (Wells et al., 2018); 2: well model A 

and 3: G in Ghadamès-Berkine basin (Underdown et al., 2007); 4: well OTRA-1 in the Sbâa 

basin, 5: well RG-3 in the Reggane basin, 6: well TEG-1 in the Timimoun basin, 7: well in the 

eastern Ahnet basin (Logan and Duddy, 1998); 8: well F3-NC174, 9: well H29-NC115, 10: 
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well NC-174, 11: well NC-115, 12: well NC-186, 13: well NC-190 in Murzuq basin (Belaid et 

al., 2010); 14: well A-76 well in Murzuq basin (Galushkin and Eloghbi, 2014). 

2.6 Paleozoic sedimentary, stratigraphic and biostratigraphic context 

The Paleozoic represents about 290 Ma (541-251 Ma, Ogg et al., 2016) which are divided into 

six periods: Cambrian, Ordovician, Silurian, Devonian, Carboniferous and Permian. The first 

three constitute the Lower Paleozoic (541-419 Ma), the last three the Upper Paleozoic (419-

251 Ma). During the Paleozoic, two great orogenic cycles take place, the New Caledonian cycle 

and the Hercynian cycle, respectively attributed to the Lower and Upper Paleozoic. 

These cycles, marked by several orogenic phases (for example for the New Caledonian cycle: 

Sardinian, Taconic and Caledonian), each comprise three major phases: sedimentation, 

orogenesis and peneplanation. The base of the cycles is thus materialized by large surfaces of 

major discordances. 

As already mentionned, the set of proposed Paleozoic reconstructions (Blakey, 2008; Stampfli 

et al., 2002; Stampfli and Borel, 2002; Torsvik et al., 2012; Torsvik and Cocks, 2011, 2013; 

Veevers, 2005) show that during this period of the Earth was marked by the presence of a super-

continent called Gondwana which formed a huge continental area (see also Figure III-37). 

The principal paleogeographic characteristics of North and Central Africa during the Paleozoic 

were the permanency of large exposed lands over central Africa, surrounded by northerly and 

northwesterly dipping pediplanes episodically flooded by epicontinental seas related to the 

Paleotethys Ocean (Beuf et al., 1971; Eschard et al., 2010; Guiraud et al., 2005). This 

configuration, in combination with eustatic sea-level fluctuations, had a strong influence on 

facies distributions. Significant transgressions occurred during the Early Cambrian, 

Tremadocian, Llandovery, Middle to Late Devonian, Early Carboniferous, and Moscovian 

(Fabre, 1988, 2005; Guiraud et al., 2005). During Paleozoic times, the sedimentation conditions 

in the Gondwana platform were profoundly influenced by three main factors: The colonization 

of the earth by vegetation, a contrasted climatic cyclicity and low gradients in continental and 

shallow marine environments (Guiraud et al., 2005). 

Figure III-36 is a summary of the Paleozoic litho-stratigraphic, sequence stratigraphy and 

tectonic framework context on the peri-Hoggar Basins. It regroups the Reggane, the Ahnet, the 

Mouydir, the Illizi (with the Tassili), the Murzuq and the Tim Mersoï Basins. 
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Figure III-36: Paleozoic litho-stratigraphic, sequence stratigraphy and tectonic framework of 

the Peri-Hoggar basins (North African Saharan Platform) compiled from (1) 

Chronostratigraphic chart (Ogg et al., 2016), (2) The Cambrian–Silurian (Askri et al., 1995) 

and the Devonian–Carboniferous stratigraphy of the Reggane basin (Cózar et al., 2016; 

Lubeseder, 2005; Lubeseder et al., 2010; Magloire, 1967; Wendt et al., 2006), (3) The 

Cambrian–Silurian (Paris, 1990; Wendt et al., 2006) and the Devonian–Carboniferous 

stratigraphy of the Ahnet basin (Beuf et al., 1971; Conrad, 1973, 1984; Legrand-Blain, 1985; 

Wendt et al., 2006, 2009a), (4) The Cambrian–Silurian (Askri et al., 1995; Paris, 1990; Videt 

et al., 2010) and the Devonian–Carboniferous stratigraphy of the Mouydir basin (Askri et al., 

1995; Beuf et al., 1971; Conrad, 1973, 1984; Wendt et al., 2006, 2009a), (5) The Cambrian–

Silurian (Eschard et al., 2005; Fekirine and Abdallah, 1998; Jardiné and Yapaudjian, 1968; 

Videt et al., 2010) and the Devonian–Carboniferous stratigraphy of the Illizi basin (Eschard et 

al., 2005; Fekirine and Abdallah, 1998; Jardiné and Yapaudjian, 1968), (6) The Cambrian–

Silurian (Dubois, 1961; Dubois and Mazelet, 1964; Eschard et al., 2005; Henniche, 2002; Videt 

et al., 2010) and the Devonian–Carboniferous stratigraphy of the Tassili-N-Ajjers (Dubois et 

al., 1967; Eschard et al., 2005; Henniche, 2002; Wendt et al., 2009a), (7) The whole 

stratigraphy of the Murzuq basin (Echikh and Sola, 2000), (8) The whole stratigraphy of the 

Tim Mersoï basin (Coquel et al., 1995; Denis et al., 2007; Joulia, 1963), (9) 2nd order sequence 

stratigraphy of the Saharan Platform (Carr, 2002; Eschard et al., 2005; Fekirine and Abdallah, 

1998), (10) 3rd order sequence stratigraphy of the Saharan Platform (Djouder et al., 2018; 

Eschard et al., 2005; Fröhlich et al., 2010b; Lubeseder, 2005; Lubeseder et al., 2010; Wendt 

et al., 2006), (11) Eustatic and climatic chart (Haq and Schutter, 2008; Scotese et al., 1999), 

(12) Tectonic events (Boudjema, 1987; Coward and Ries, 2003; Craig et al., 2008; Guiraud et 

al., 2005; Lüning, 2005); (A) Infra-Tassilian (Pan-African) unconformity, (B) Intra-Arenig 

unconformity, (C) “Taconic” and glacial unconformity, (D) Isostatic rebound unconformity, 

(E) Caledonian unconformity, (F) Hercynian unconformity. *16: Conrad, (1984) and Wendt et 

al., (2009a) dated the formation Carboniferous; *15: Iridet Dalle dated Late Touraisian Early-

Visean by ammonoids (Korn et al., 2010a); *14: Orsine fm. dated Emsian by abundant 

microfauna (Eschard et al., 2005); *13: Unit C2 dated Pragian by palynomorphs (Eschard et 

al., 2005); *12: Oued Saret sandstones dated Lower Llandeilo (Oulebsir and Paris, 1993; Paris 

et al., 2000a); *11: Azzel-Tiferouine shales dated Arenig to Llandeilo (Paris et al., 2000a); 

*10: Ouargla sandstones dated Arenig (Oulebsir and Paris, 1993); *9: In Tahouite fm. dated 

Arenig by brachiopods and lamellibranches (Legrand, 1964); *8: Hamra’s Quartzite/Unit III-

2 dated Arenig (Eschard et al., 2005); *7: El Gassi shales/Unit III-1 dated Tremadoc by 
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Graptolites and Chitinozoan (Legrand, 1964; Paris et al., 2000a); *6: Vire du Mouflon dated 

Lower Ordovician by brachiopods and lamellibranches (Legrand, 1964); *5: Unit IV 

/Tamadjert fm. dated Late Ashgill (Oulebsir and Paris, 1993); *4: Unit B Dalle dated Pridoli 

(Henniche, 2002); *3: M’Kratta Dalle dated Late Ordovician (Oulebsir and Paris, 1993); *2: 

Graptolites shales dated from Llandovery to Upper Ludlow (Legrand, 1964); *1: Unit M dated 

Wenlock to Ludlow (Boumendjel et al., 1988; Henniche, 2002). 

2.6.1 The infra-Cambrian molasses series 

The Infra-Cambrian is mainly composed of crystalline rocks formed during the Pan-African 

orogeny (e.g. Fabre, 2005). Locally, it is possible to find molasses (e.g. Western Hoggar), 

whose thickness can reach 6000 m, which were deposited in extensive basins formed during 

the Pan-African late-orogenic extension phase (Djellit et al., 2002). 

2.6.2 The fluvio-conglomerates Cambrian series 

The Cambrian starts at the base with volcano-sedimentary (i.e. molasses) and conglomerates 

facies respectively corresponding to the formation of El Moungar in the Illizi-Tassili basins, 

the “Pourprée” series in the Ahnet basin and the Ouallen in Semmen-Bled El Mass series in the 

Mouydir basin, equivalent to the unit I in subsurface. The top is featured by fluvial sandstones 

facies corresponding to the Tin Taradjelli in the Tassili, Ajjers-Hassi Leila in the Illizi basin, 

the Ajjers-Amguid in the Mouydir basin, the Ajjers-Azzel Matti in the Ahnet basin, the Ajjers 

in the Reggane, which is equivalent to the unit II in subsurface (Figure III-36). 

2.6.3 The fluvial to marine of pre-glacial Ordovician series 

The pre-glacial Ordovician succession comprises all the series deposited between the fluvial 

Cambrian and the polyphase glacial erosion surface of the Hirnantian glacial episode (Figure 

III-36). The base is mainly composed of clastic sediments going through fluvial to shallow 

marine (estuarine to upper shoreface) environments matching at the base to the Formation of 

“Vire du Mouflon” in the Tassili and Alternation Zone, El Gassi and El Atchane in the Ahnet-

Mouydir-Illizi basins equivalent to the unit III-1 (Eschard et al., 2005, 2010; Videt et al., 2010). 

In the middle, the Formation of “Banquette” in the Tassili is principally defined by a bioturbated 

clastic ramp corresponding to the Hamra quartzite in the Ahnet-Mouydir-Illizi basins and 

equivalent to the unit III-2. At the top, the In Tahouite Formation in the Tassili or Reggane 

basin also called Hassi Touareg in the Illizi basin is composed by the Ouargla (shoreface facies), 
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the Azzel Tiferouine offshore shales facies, the tidal ramp Oued Saret entities forming the unit 

III-3 (Figure III-36). 

16 main cycles, high frequency (Videt et al., 2010) and five to six transgressive-regressive, low 

frequency depositional sequences (Eschard et al., 2005; Ghienne et al., 2007b) have been 

differentiated on the northern Gondwana platform. 

2.6.4 The syn-glacial Ordovician series 

The syn-glacial Ordovician (i.e. late Ashgill or Hirnantian glaciation) is stratigraphically 

characterized by the Tamadjert Formation in the Tassili also called the Felar-Felar Formation 

and equivalent to the unit IV (Figure III-36). The succession comprises all the series deposited 

between the glacial irregular deeply incising unconformity and isostatic rebound erosional 

surface resulting from ice melting sediments filling (e.g. Deschamps et al., 2013; Hirst et al., 

2002). It is composed of microconglomerates shales and El Golea sandstones Formations 

(Figure III-36). At this time Northwestern Africa was located in the paleo South Pole area and 

glacial deposits were registered both in continental and marine domains (Guiraud et al., 2005; 

Scotese et al., 1999). The ice kinematics is characterized by migrating ice fronts during 

successive phases of ice advance and recession (Ghienne, 2003). It is recorded by in the form 

of glaciotectonic deformation structures within unconsolidated glacial sediments (e.g. complex 

subglacial shear zones, decametre- scale sediment diapirs, load-structures and plurikilometric 

composite thrust and fold systems) (Beuf et al., 1971; Clerc et al., 2013; Denis, 2007; Denis et 

al., 2007; Ghienne, 2003; Le Heron et al., 2005; Ravier et al., 2014, 2015). 

The number of glacial cycles preserved in North Gondwana is controversial and varies between 

2 and 5 (Ghienne, 2003; Le Heron et al., 2006, 2009; Loi et al., 2010). The duration of this 

icehouse event was short (i.e. 1 million years to 2 million years) and most of western Gondwana 

was buried under a thick continental ice-sheet, centered above Central Africa (Figure III-37), 

implying coalescent synchronous glaciers (Ghienne et al., 2007a; Le Heron et al., 2009; 

Sutcliffe et al., 2000). New numerical modelling helped to respond to circumscribe this 

glaciation (Pohl et al., 2016). At the end of the Ordovician a major diachronous flooding take 

place on the all Saharan domain due to deglaciation processes (diachronous), paleo-topography 

and differential isostatic readjustment (Beuf et al., 1971). The progressive retreat of ice sheet 

set place to periglacial deposits (Beuf et al., 1971). 
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Figure III-37: Paleozoic plate reconstruction of the north Gondwana modified from Blakey, 

(2008). 
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2.6.5 The Silurian marine series 

The Silurian starts with the M’Kratta Dalle characterized by bioturbated tidal sandstones post-

glacial deposits (deglaciation) and rich organic radioactive shales “Hot Shales” deposited in 

ofsshore. The rest of the succession is dominated by offshore shale marine facies respectively 

corresponding to the Oued Imirhou in the Tassili, the Graptolites shales in the Illizi-Mouydir 

basins, the Tiounkeline in the Ahnet basin, the Oued Ali formations in the Reggane basin. The 

top Silurian is composed of shoreface to fluvio-estuarine sandstones respectively corresponding 

to the Formation Atafaïtafa-Mederba in the Tassili, the Tifernine-Oued Titist in the Illizi basin, 

equivalent to the F6 in subsurface (divided by M, A, B1 and B2 units), the “Passage zone” or 

Lower Assejrad in the Ahnet-Mouydir basin. The lower part of the Silurian is marked by a 

prograding transgressive sequence up to the offshore deposits followed by at the top a regressive 

succession. Silurian marine shales with graptolites shows transgression diachronism depending 

on region between lower Llandovery with an early partial melt and a middle Llandovery general 

melt of the ice-sheet (Beuf et al., 1971). 

2.6.6 The fluvial to marine series of Lower Devonian (Lochkovian to Emsian) 

The lower Devonian is stratigraphically featured by the Talmerik Middle bar, the Sidewalks, 

the Upper Bar and the Osirine Formations in the Tassili. In the Illizi basin, it is marked by Oued 

Tifidist, the Hassi Tabankort, the Alrar shaly-Sandstones equivalent to the F6 reservoirs 

(divided by C1 to C3 units), the F5 and the F4 reservoirs. It is defined by the Oued Samene or 

Asjerad or Idjorane Sandstones formations in the Ahnet-Mouydir basins (Figure III-36). It is 

identified by the Zemlet, the Saheb El Djir and Oued Samene (Dkhissa) Formations in the 

Reggane basin. It is marked by continental/fluvial sandstones systems in the south, passing into 

deltaic/shallow marine sandstones with argillaceous intercalations towards the north and 

northwest (Beuf et al., 1971; Djouder et al., 2015, 2018; Dubois et al., 1967; Eschard et al., 

2005; Henniche, 2002; Wendt et al., 2006). More precisely, it is characterized by a gradual 

transition from a continental fluvial environment in the central and eastern part of the Tassili 

N’Ajjers/Illizi basin, across a continental marine zone in the western part of the Tassili 

N’Ajjers/Illizi basin and the Mouydir basin, into a predominantly marine regime in the Ahnet 

basin (Beuf et al., 1971; Dubois et al., 1967; Eschard et al., 2005; Henniche, 2002; Wendt et 

al., 2006). Paleocurrents show mainly S-N to SE-NW directions (Beuf et al., 1969). The 

Silurian-Devonian boundary, defined by the flat low-angle tectonic unconformity, called the 

‘Caledonian unconformity’ is linked with a tectonic event and a major relative sea-level fall 
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which affected most of the Gondwanan margin (Beuf et al., 1971; Eschard et al., 2005, 2010; 

Henniche, 2002). The late Early Devonian registered a brief marine transgression during the 

Emsian, with the occurrence of shallow marine sandstones to offshore marine mudstones all 

along the North African platform (Guiraud et al., 2005). 

2.6.7 The carbonates marine series of Middle Devonian (Eifelian and Givetian) 

The Middle Devonian is stratigraphically marked by the Illizi Formations in the Tassili, Alrar 

shaly-Sandstones equivalent to the F3 reservoirs and Shale series in the Illizi basin, the Adrar 

Morrat shales in the Mouydir-Ahnet-Reggane basins, evolving to Takoula limestones and Azzel 

Matti limestones in the Ahnet-Reggane basins (Wendt et al., 2006, 2009b; Figure III-36). 

During the early Givetian, spectacular carbonate mud mounds were constructed in this area 

(Mezlah, 2006; Wendt et al., 1993, 1997, 2006). In the Middle Devonian (Figure III-37), plate 

reconstruction of this part of Gondwana locates it at about 45°S (Golonka, 2002), at about 50°S 

(Scotese et al., 1999) or at about 60°S (Torsvik and Cocks, 2011). 

2.6.8 The marine series of Upper Devonian (Frasnian and Famennian) 

The Late Devonian were initiated by deposition of organic-rich shales (Guiraud et al., 2005; 

Lüning et al., 2000, 2004), evolving to shale facies and finishing with fluvio-deltaic to nearshore 

sandstones deposits (Conrad, 1984; Conrad et al., 2010; Eschard et al., 2010; Wendt et al., 

2006). The succession comprises the Tin Meras Formation, the Illerene Formation in the Tassili. 

The Illerene Formation is diachron (Attar et al., 1980; Latreche and Coquel, 1996): In the south, 

its age is essentially Famennian, whereas on the Ahara uplift its age is mainly Strunian. 

It is defined by the Gazelle formation equivalent to the shale Series and F2 reservoirs in the 

Illizi basin. It is featured by the Meden Yahia Formation (shales and Sandstones), the 

Temertasset Formation and the Khenig Formations in the Reggane-Ahnet-Mouydir basins 

(Figure III-36). In the Late Devonian (Figure III-37), after the northward drift and clockwise 

rotation of Gondwana (Aïfa et al., 1990), the palaeolatitude of this area has shifted to about 

30°S (Golonka, 2002). The Late Devonian is generally considered as a period of major 

environmental and biotic crises (the Frasnian-Famennian and Devonian-Carboniferous 

boundary crises) and by the onset of a long-term cooling event (the Upper Paleozoic Icehouse 

stage) (e.g. Copper, 1986; Streel et al., 2000). The Late Devonian was initiated by deposition 

of transgressive deposits. Three main transgressive-regressive low frequency cycles can be 

identified (Wendt et al., 2006). 
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2.6.9 The Carboniferous deltaic to marine series 

The Carboniferous strata were deposited under open-marine, deltaic, shallow-subtidal, fluvial, 

and continental environments (Conrad, 1972, 1973, 1984; Wendt et al., 2009a). It is 

characterized from the bottom to the top by the Khenig, the Teguentour Shales, the Tibaradine, 

the Iridets, the Kreb El Douro, the Tirechoumine Shales, the Djebel Berga, the Hassi Taibine 

and the Red Formations in the Ahnet-Mouydir basins. In the Reggane basin, from the bottom 

to the top the Carboniferous is composed by the Khenig, the Teguentour Shales, the Tibaradine, 

the Lower Tirechoumine, the Kreb Ed Douro, the upper Tirechouline, the Gart Dehb, the Djebel 

Berga and the Hassi Bachir Formations (Figure III-36). In the Early Carboniferous (Figure 

III-37), plate reconstruction of this sector of Gondwana situates it at about 30°S (Golonka, 

2002) and at about 45° S (Scotese et al., 1999). In Late Carboniferous, after the northward drift 

and clockwise rotation of Gondwana (Aïfa et al., 1990), the palaeolatitude of this area shifted 

to about 15° S (Golonka, 2002) or more southerly at 18-24°S (Derder et al., 2001) or even more 

southerly at 50° S (Torsvik and Cocks, 2011) based on a compilation of palaeomagnetic and 

faunal/floral data. It is subdivided in four transgressive–regressive cycles (Wendt et al., 2009a). 

Two major gaps were identified, one during the middle Tournaisian, the other during the middle 

Visean to Serpukhovian (Wendt et al., 2009a). Absent in the Tassili, in the Illizi basin, the 

Carboniferous is stratigraphically marked the Issendjel, the Assekaifaf, the Oued Oubarakat, 

the Adeb Larache and the Tiguentourine formations equivalent to the A to F units in subsurface. 

2.6.10 Biostragraphic data and zonation 

In this part, a synthesis of biostratigraphical data and zonation of different fossils have been 

done in the Saharan platform. According to Lubeseder, (2005), a revision of these early results 

is necessary because one or more of the following problems is usually encountered: a) the early 

works refer to old stage schemes and differ from today’s standards (e.g. old Siegenian vs. new 

Pragian/(new) Emsian); b) stage boundary definitions have changed, with new index-fossils or 

their correlatives; c) only taxa have been listed in a publication without an age proposal; d) 

previous index taxa are now known to have a different range; e) recent reviews show that 

previous taxa determinations may be erroneous because the fauna was compared to the wrong 

faunal type province (e.g. brachiopods, Jansen, 2001; graptolites, Legrand, 1985); f) different 

fossil groups in one location and level indicate different ages. In addition, a regional 

chronostratigraphic correlation requires a common biozone reference standard. These are the 

graptolite zones for the Silurian and the conodont zones for the Devonian. All other formation 
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to bed ages derived from different fossil groups must be compared to and plotted onto these 

standards. 

 

Figure III-38: Cambro-Ordovician synthesis of biostratigraphic zonation compiled from 

bibliography. (1) Time slices. (2) Chitizonoan biozones of North Gondwana (Paris, 1990; Paris 

et al., 2000b; Videt et al., 2010). (3) Chitizonoan biozones of Illizi (Eschard et al., 1999; Paris 

et al., 2000b). (4) Miospores biozones (Richardson and McGregor, 1986). (5) Miospores 

biozones (Streel et al., 1987). (6) Miospores biozones (Richardson and McGregor, 1986). (7) 

Miospores biozones (Rubinstein and Steemans, 2002). (8) Miospores biozones (Kermandji, 

2007, 2012; Kermandji et al., 2008, 2009). (9) Miospores biozones (Boumendjel, 1987). (10) 

Miospores biozones (Massa, 1988). (11) Miospores biozones (Moreau-Benoit et al., 1993). (12) 

Miospores biozones (Abdesselam-Rouighi, 1986, 2003, 2003). (13) Acritaches biozones 

(Jardiné et al., 1974). (14) Graptolites biozones (Videt et al., 2010). (15) Conodontes biozones 

(Wendt et al., 2010b). (16) Ammonites zonations (Korn et al., 2007, 2010a, 2010b). 
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Figure III-39: Devono-Carboniferous synthesis of biostratigraphic zonation compiled from 

bibliography. (1) Time slices. (2) Chitizonoan biozones of North Gondwana (Paris, 1990; Paris 
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et al., 2000b; Videt et al., 2010). (3) Chitizonoan biozones of Illizi (Eschard et al., 1999; Paris 

et al., 2000b). (4) Miospores biozones (Richardson and McGregor, 1986). (5) Miospores 

biozones (Streel et al., 1987). (6) Miospores biozones (Richardson and McGregor, 1986). (7) 

Miospores biozones (Rubinstein and Steemans, 2002). (8) Miospores biozones (Kermandji, 

2007, 2012; Kermandji et al., 2008, 2009). (9) Miospores biozones (Boumendjel, 1987). (10) 

Miospores biozones (Massa, 1988). (11) Miospores biozones (Moreau-Benoit et al., 1993). (12) 

Miospores biozones (Abdesselam-Rouighi, 1986, 2003, 2003). (13) Acritaches biozones 

(Jardiné et al., 1974). (14) Graptolites biozones (Videt et al., 2010). (15) Conodontes biozones 

(Wendt et al., 2010b). (16) Ammonites zonations (Korn et al., 2007, 2010a, 2010b). 

2.7 Petroleum systems 

Paleozoic deposits of the Saharan platform (North Africa) is a highly productive petroleum 

system with a long exploration history in Algeria, Libya and Tunisia from the late 1950s to 

present day (Boote et al., 1998; Burke et al., 2003, 2003; Logan and Duddy, 1998; Macgregor, 

1996; MacGregor et al., 1998; Purdy and MacGregor, 2003). The Lower Silurian and Frasnian 

“hot shales” are considered as the main hydrocarbon source rocks (respectively 80-90% and 

10%) and seals (Boote et al., 1998; Lüning et al., 2000, 2004). The Cambro-Ordovician and 

Lower Devonian sandstones are known as the main reservoirs (Boote et al., 1998; Craig et al., 

2008; Eschard et al., 2005, 2010). A general description of the petroleum systems in the North 

Africa province can be found in (Burke et al., 2003; Macgregor, 1996; MacGregor et al., 1998), 

more precisely for the Ahnet-Reggane province in (Logan and Duddy, 1998) and for the 

Ghadames-Illizi province in (Dixon et al., 2010). An overview of the Illizi-Berkine petroleum 

area (Eastern part of the Saharan Platform) was published by Galeazzi et al., 2010. 

2.8 Evidence of tectono-sedimentary structures from bibliography 

In this part, a synthesis of bibliographic geologic cross sections is presented showing evidence 

of stratigraphic and sedimentary structures (see Chapter III.2.4). They are often evidence of 

Arches and Basins geometries. All the cross sections collected in the literature are 

georeferenced in Figure III-40 for the north peri-Hoggar basins and in Figure III-41 for the 

south peri-Hoggar basins. They range from years 1950 to 2010. They document thickness 

variations, growth strata, stratal lapout lateral facies variations, current directions variations 

related to tectono-sedimentary structures. They can be evidences of extensional or 

compressional kinematics during the Paleozoic on the Saharan Platform such the Cambro-
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Ordovician extension, the Caledonian event, the Middle to Late Devonian event and the 

Hercynian compression (see Chapter III.2.4). 

 

Figure III-40: Localization of different cross sections of north peri-Hoggar Basins 

georeferenced and compiled from bibliography. See Figure III-2 for geological legend and 

localization. 
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Figure III-41: Localization of different cross sections of south peri-Hoggar Basins 

georeferenced and compiled from bibliography. See Figure III-2 for geological legend and 

localization. 



CHAPTER III – GEOLOGICAL CONTEXT OF PERI-HOGGAR BASINS 

123 

P. PERRON - 2019 

3 Conclusion 

According to this literature review, the Paleozoic (North Gondwana) intracratonic basins of the 

Saharan platform history have been dominated by slow long-wavelength vertical motions 

leading to overall low rate subsidence and accumulation of an extensive cover of platformal 

sediments (i.e. shallow deposits environments), with occasional tectonic pulsatile events such 

as rifting, intra-plate volcanism, and local deformation, probably triggered by far field stresses. 

The vertical motions of the platform produced several Arches (i.e. domes, swells, highs, ridges) 

and basins (synclines) with different wavelengths going from several hundred to more than a 

thousand kilometres. This latter may control spatially and temporally the deposition and the 

erosion dynamics. Many studies have documented tectono-sedimentary structures such as 

thickness variations, onlaps and truncatures at the vicinity of enigmatic Arches. Several major 

erosion events significantly truncated the pre-existing sediments over wide areas, producing 

regional unconformities that separate the platformal cover into divisions. 

The persistence of a rather uniform pattern of vertical motions seems to control the architecture 

of these basins. This architectural pattern of the Saharan platform and his associated Arches 

and Basins (sub-basins), which is often identified in the literature as basement related, seems 

to point out a large-scale control (i.e. lithospheric). 

As a consequence, integrate Precambrian substrate studies and architectural tectono-

sedimentologic analysis, seems to be crucial to build a coherent and viable conceptual 

geological model. These two domains of study are often led separately, at least in our area, 

because of partitioning of the different disciplines. 
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1 Summary and objectives 

The last chapter has presented a state of art of bibliography data available on the Saharan 

platform and peri-Hoggar Basins. The many years of previous works has highlighted the main 

singularities of these intracratonic Basins. It forms an important base of knowledge, 

indispensable for a better understanding and characterization of the studied area. 

The purpose of this part, which have been published into Solid Earth, is to the establish a 

conceptual geological model based on the integration of multidisciplinary data such as satellite 

images, seismic profiles, well logs, Bouguer anomaly maps and aeromagnetic anomaly maps. 

The study is essentially focus on the Reggane, the Ahnet, the Mouydir and the Illizi Basins for 

characterization of the basin architecture, and the Hoggar massif for the analysis of the 

basement. This chapter starts with a brief reminder of concepts of syn-sedimentary tectono-

sedimentary structures. It will help the reader on some tectono-sedimentary notions used in the 

paper. 

In more details, the main objectives are the following: 

• Elaborated a multidisciplinary integrated methodology; 

• Observe, describe and interpret tectono-stratigraphic structures (structural style, stratal 

geometries); 

• Synthetize sedimentologic, depositional environments studies and their associated well 

logs pattern; 

• Define sequence stratigraphy and facies partitioning calibrated by biostratigraphy; 

• Found a geological model integrating basement and tectono-stratigraphic architecture 

characterization of Arches-Basins. 

2 Reminder of some concepts for the study of syn-sedimentary tectono-

stratigraphic structures 

In this part, an inventory of tectonics literature is proposed in order to help the identification 

and the analysis of syn-tectonic structures in the studied area. 
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2.1 Compressional and extensional structures 

The recognition of faults kinematics is based on literature of fault-related folding in extensional 

terrains (Grasemann et al., 2005; Reches and Eidelman, 1995; Schlische, 1995; Withjack et al., 

1990, 2002). These authors identify the emplacement of footwall anticlines and hanging-wall 

synclines by investigating fault-propagation folds or drag forced folds (Figure IV-1). The half-

graben basin with a roll-over anticline (i.e. reverse drag) is the most common geometrical model 

used in extensional settings (Cosgrove and Ameen, 1999; Grasemann et al., 2005; Schlische, 

1995) (Figure IV-2). Nevertheless, half-graben basin models with normal drags have also been 

described in extensional settings (Grasemann et al., 2005; Khalil and McClay, 2002; Schlische, 

1995; Withjack et al., 2002; Withjack and Callaway, 2000). In this framework, the geometry of 

the extensional forced folds and their associated fault patterns depend on the thickness and 

viscosity of the viscous layer, the thickness of the cover sequence, the strength and ductility of 

the cover sequence, the dip, the magnitude and the rate of displacement along the underlying 

master normal fault (Patton and Fletcher, 1995; Withjack et al., 1990; Withjack and Callaway, 

2000). Furthermore, the fact that folds associated to the strain are asymmetrical, it is 

characteristic of forced folds mechanisms (Cosgrove and Ameen, 1999). 

 

Figure IV-1: Fault drag of a central marker along normal and reverse (thrust) faults. Normal 

drag refers to markers that are convex in the direction of slip and reverse drag to markers that 

are concave in the direction of slip. The angle θ is the acute angle measured from the fault to 
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the undeformed central marker (anticlockwise angles are positive). The presented work 

demonstrates that low angles favor normal drag and high angles favor reverse drag modified 

from Grasemann et al., (2005). 

 

Figure IV-2: (A) Development of a syn-depositional syncline during extensional tectonics 

modified from Guiraud and Seguret, (1985). The syncline develops on a tilted basement block 

overlain by a competent-incompetent layer. (B) Fold and fault patterns associated with 

extensional/compressional forced folding modified from Patton and Fletcher, (1995) and 

Withjack et al., (1990). (1-2) normal, (3) vertical, and (4) reverse fault basement. 
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2.2 Inversion and reactivation structures 

Many authors have studied influence (Figure IV-3), reactivation and inversion of pre-existing 

tectonic structures in different context (Bellahsen and Daniel, 2005; Bonini et al., 2012; 

Buchanan and McClay, 1991; Butler, 1989; Casas et al., 2001; Dooley and Schreurs, 2012; Soto 

et al., 2007; Ustaszewski et al., 2005; Viola et al., 2004). They mainly show that inherited 

structural features represent a key factor in controlling strain distribution and localization of 

deformation as long as a pre-existing fault remains mechanically weaker than its surroundings. 

Indeed, surfaces of pre-existing faults usually display lower cohesive strength and friction 

coefficient than intact rocks. They demonstrate that heterogeneities such as pre-existing faults 

should be included in models designed to understand the behavior and the tectonic evolution of 

sedimentary basins.  

 

Figure IV-3: (A) Schematic diagram of a classical positive inversion structure; A, B and C are 

stratigraphic sequences. A, prerift; B, synrift; C, postrift sequence modified from Williams et 

al., (1989). (B) Deformation styles of shortened (inverted) normal fault systems: (1) normal 
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fault localizing thrust-ramp; (2-3) thrust ramp decapitating an early normal fault modified from 

Bonini et al., (2012). 

To summarize, the behavior of faulted rock is determined by its geometric, kinematic, 

rheological, historical characteristics (inherited mechanical weakness) and its orientation 

relative to the new stress field. Besides, the dip of basement inherited structures have an direct 

influence on the geomorphology of the forced folds associated in surface (Johnson and Johnson, 

2002; Patton and Fletcher, 1995; Withjack et al., 1990). 

2.3 Syn-tectonic structures (growth strata) 

The syn-sedimentary structuring of a basin results from sedimentation disturbances in the space 

and time. The signatures of these syn-sedimentary tectonic markers are: syn-sedimentary fault, 

progressive unconformities (growth structure), variations in thickness series and/or changes in 

facies and the distribution of current directions. They are records of tectonic activities. The term 

progressive unconformity was first defined by Briot (1937). It characterized by the provision 

of sediments in the vicinity range of an active fault (i.e. syn-sedimentary). Many examples of 

progressive unconformities (Figure IV-4), especially associated with folds or thrusting, have 

been described (Casas-Sainz et al., 2005; Riba, 1976; Suppe et al., 1992). Progressive 

unconformities frequently associated with intra-formational angular unconformity result in 

significant lateral variation thickness. 

Growth or syntectonic strata (Figure IV-4) are stratigraphic intervals that were deposited during 

deformation (Shaw et al., 2005). The timing of deformations is thus determined by the ages of 

the growth strata (Shaw et al., 2005). The geometries of growth structures (i.e. growth fold 

patterns ) are controlled principally by the folding mechanism and the relative rates of 

sedimentation and uplift (Shaw et al., 2005).  

Syn-sedimentary fault-related folding has been documented in the Gulf of Suez (Khalil and 

McClay, 2002; Lewis et al., 2015), in the North Sea (Kane et al., 2010; Lewis et al., 2013) and 

from analogue models (Withjack et al., 1990) or numerical trishear model (Jin and Groshong, 

2006). In fault-related folds, growth strata are typically thin across fold limbs toward structural 

highs (Shaw et al., 2005). 

Sedimentation rate in a basin depends on the space available (i.e. accommodation) and 

weathering/erosion mechanism (i.e. climate conditions). It is controlled by the base level 

variation (i.e. the lowest level to which a land surface can be eroded by streams, which is, 
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ultimately, sea level or a level where they can be deposition). This variation is governed by 

internal forcing (tectonic) and external forcing (glacio-eustatic). It implies that during a period 

of strong tectonic there is a lot of accommodation for sedimentation. Reflectors structures such 

as onlaps, toplaps, truncation or offlaps can be evidence of these activities. 

 

Figure IV-4: Growth strata as records of fold kinematics (folding by progressive limb rotation) 

modified from Shaw et al., (2005). 

3 Published article in Solid Earth 

Abstract (Français) 

La plateforme intracratonique paléozoïque nord-africaine est caractérisée par une association 

d'arches (rides, dômes, ou paléo-hauts structuraux) et de bassins synclinaux à faible taux de 

subsidence de différentes longueurs d'onde (75 à 620 km). Les bassins de Reggane, d'Ahnet, de 

Mouydir et d'Illizi sont délimités successivement d'est en ouest par les arches d'Amguid El 

Biod, d'Arak-Foum Belrem et d'Azzel Matti.  

Grâce à l’analyse de nouvelles données géologiques non publiées (images satellitaires, 

diagraphies de puits, lignes sismiques), on peut voir que les dépôts associés à ces arches et 

bassins synclinaux présentent des variations d’épaisseur et des modifications de faciès allant 
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des environnements continentaux aux environnements marins. Les arches sont caractérisées par 

de minces dépôts avec des surfaces érosionnelles amalgamées et condensées, tandis que les 

bassins synclinaux présentent des successions plus épaisses et bien conservées. De plus, la 

succession de faciès verticaux évolue de dépôts minces du Silurien au Givétien en sédiments 

épais au Dévonien supérieur. 

Les structures synsédimentaires et les discordances majeures sont liées à plusieurs événements 

tectoniques, tels que l'extension cambro-ordovicienne, le rebond glaciaire ordo-silurien, 

l'extension/compression «Calédonienne» siluro–dévonienne, la compression/extension «tardi-

dévonienne» et la compression «Hercynienne». 

Localement, la déformation est caractérisée par des failles normales planes presque verticales 

responsables de la structuration en horst et graben associée en surface au plissement au cours 

de la période cambrienne-ordovicienne-silurienne. Ces structures peuvent avoir été inversées 

ou réactivées lors de la compression dévonienne (i.e. calédonienne, du dévonien moyen à tardif) 

et du carbonifère (i.e. pré-hercynien à l'hercynien). 

La caractérisation du socle à partir de données géologiques et géophysiques (cartes 

aéromagnétiques et gravimétriques) montre une zonation structurale des arches et bassins en 

fonction de l'âge des terranes délimitées par des méga zones de cisaillement. Les "anciennes" 

terranes (Archéennes et Paléoprotérozoïques) sont situées sous les arches tandis que les 

"jeunes" terranes (Néo-Mésoprotérozoïques) sont situées sous les dépôcentres des bassins. Ce 

cadre structural résulte de l’accrétion de terranes archéennes et protérozoïques hérités 

d’orogenèses précédentes (e.g. l’orogénèse panafricaine 900-520 Ma). Ainsi, le modèle de 

remplissage sédimentaire paléozoïque et la nature de la déformation résultent de la réactivation 

lente et répétée des terranes précambriennes liés par des systèmes de failles lithosphériques sub-

verticales. Les périodes d'alternance entre quiescence tectonique et accélération de la faible 

subsidence en association avec la tectonique d’extension et d’inversion locale apparaissent 

synchrones d’événements géodynamiques paléozoïques (e.g. orogénèses lointaines, 

glaciation…). 

Mots-clés: Bassin intracratonique, paléozoïque, arches, faible taux de subsidence, héritage 

tectonique, terranes, Sahara central. 
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Les principaux résultats de l’article : 

Les analyses multi-échelles et multidisciplinaires effectuées dans cette étude nous permettent 

d’établir un modèle des bassins intracratoniques Paléozoïque du Sahara Central couplant 

l’architecture de bassin et les structures du socle. Bien que nous ne fournissions pas 

d’explication quantitative de la dynamique de ces bassins, notre synthèse souligne que leur 

mécanisme de subsidence n'est pas le résultat d'un processus unique. Nous essayons de faire ici 

une liste des propriétés indispensables à la formation de ces bassins tels que : 

• L’association de grands bassins synclinaux et d’arches avoisinantes (i.e. paléo-reliefs). 

Le cadre structural montre une association étroite des bassins synclinaux, des arches 

inter-bassins principales à secondaires et d'arches secondaires intra-bassins ; 

• Par une architecture de horst et graben constituée par des failles normales sub-verticales 

planes associées à des structures de plis forcés. Localement, cette tectonique d'extension 

est perturbée par des structures d’inversion positive ou des failles normales 

transportées ; 

• Un faible taux de subsidence compris entre 5 et 50 m.Ma-1 ; 

• Les longues périodes d'extension et de quiescence tectonique sont interrompues par de 

brèves périodes de compression ou de glaciation/déglaciation (Beuf et al., 1971; Denis 

et al., 2007; Le Heron et al., 2006). Ces périodes de compression peuvent être liées à 

des compressions intraplaques corrélées à des orogénèses lointaines tels que les 

événements calédonien et Hercynien (Frizon de Lamotte et al., 2013) ou à un 

soulèvement intraplaque des arches due au magmatisme (Derder et al., 2016; Fabre, 

2005; Frizon de Lamotte et al., 2013; Moreau et al., 1994) ; 

• Des onlaps divergents synsédimentaires et discordances locales sont identifiés à partir 

des données sismiques, des images satellites et des données de puits. Les périodes 

d'activités tectoniques sont caractérisées par une réactivation normale à inverse des 

failles bordières, la mise en place de prismes d’accrétions sédimentaires et de 

discordances au voisinage des arches ; 

• L’architecture stratigraphique présente une variation latérale de facies et un 

partitionnement des faciès entre les faciès marins distaux remplissant les centres des 

bassins intracratoniques (i.e. dépôts marin offshore) et les faciès amalgamés proximaux 

(i.e. fluvio-marin, littoral) associées à des hiatus stratigraphiques importants et à des 

discordances érosionnelles à proximité des arches ; 
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• Un lien étroit est mis en évidence entre la période de déformation tectonique et la 

présence de discordances. En revanche, les périodes de quiescences et d’extensions 

tectoniques sont caractérisées par de faibles variations latérales des faciès, des dépôts 

épais et l’absence de surfaces d’érosion ; 

• L'héritage précambrien correspond aux terranes Archéennes à Paléoprotérozoïque 

identifiées dans le massif du Hoggar et réactivées au cours du cycle panafricain Méso-

Néoprotérozoïque. L’hétérogénéité lithosphérique précambrienne illustrée par les 

différentes caractéristiques des terranes précambriennes (longueur d’onde, âge, nature, 

zones de faille) contrôle spatialement la mise en place des bassins synclinaux 

intracratoniques reposant sur les terranes océaniques Méso-Néoprotérozoïque et les 

arches situées sous les terranes continentales Archéen à Paléoprotérozoïque. De 

nombreux auteurs suggèrent que le contrôle de la fabrique du socle est hérité de 

l'orogenèse panafricaine dans les bassins sahariens (Beuf et al., 1968b, 1971; Boote et 

al., 1998; Carruba et al., 2014; Coward and Ries, 2003; Eschard et al., 2010; Guiraud et 

al., 2005; Sharata et al., 2015). 
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Late Ordovician sandstones mega-dunes in the Tassili-N-Ajjers (Google-Earth view; 

25°38’50” N, 8°57’09” E) 
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1 Summary and objectives 

In the last chapter, we have seen that the Saharan Paleozoic peri-Hoggar basins display 

stratigraphic architecture and structural styles typical of intracratonic basins, characterized by 

relatively thin and laterally extensive sedimentary series that contain major regional 

unconformities and are arranged in broad synclines and anticlines, affected by regional 

basement-involved faults, and crustal buckling. Where, this framework is closely linked to 

terranes zonation. The distribution is preferentially organized by “old” terranes forming the 

substrates of the Arches and the “young” ones the substrates of the basins depocenter. Regional 

highs and faults are usually long-lived features that separate basins, and some are organized in 

strike-slip fault belts. Faults are often reactivated through time as a response to tectonic events 

developed either close to the area or more often to relatively distant plate-boundary events. 

In this chapter supplementary observations and interpretation are presented of the Saharan 

Paleozoic peri-Hoggar Basins based on satellite images, seismic profiles and well logs data. 

They bring further additional data validating the model proposed previously in the published 

paper and some new geological elements. 

The different objectives of this chapter are the following: 

• Bring further observations and interpretations from satellite images, seismic profiles 

(local and regional) and well logs (regional correlation); 

• Improve the structural style, the lithological rheologic framework and highlight the syn-

sedimentary extensional and compressional markers; 

• Link with Precambrian inherited basement faults; 

• Analyze the stratigraphy, sedimentologic and the sequence stratigraphy of regional 

cross sections; 

• Better characterized the tectono-sedimentary architecture of the peri-Hoggar Basins, 

especially the Arches-Basins framework. 

2 Major structural elements (Arches-Basins) 

The Saharan platform (Figure V-1) is structured by three major faults lineaments trends: Sub-

meridian (varying from NS to NNW-SSE or NNE-SSW), NW-SE and NE-SW directions. 

There are mainly associated to NS, NNW-SSE, NNE-SSW, NW-SE and NE-SW broad 
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asymmetrical folds. These trends are often linked to basement structures (i.e. mega-shear zones 

and sutures zones) outcropping in the Hoggar massif (Figure V-1). 

The Saharan platform and peri-Hoggar Basins (Figure V-1) is characterized by an association 

of synclines (i.e. basins) and anticlines (i.e. arches, domes, high area) with different wavelength 

(λ). The wavelength of the basins (Figure V-1) can vary from 620 km in the Murzuq basin to 

75 km in the Sbâa basin going through the Tindouf basin (300 km), the Reggane (250 km), the 

Ahnet basin (220 km), the Mouydir basin (150 km), the Illizi basin (500 km), the Djado basin 

(230 km), the Iullemeden basin (300 km), the Tin Séririne basin (100 km) and the Tim Mersoï 

basin (200 km). There are limited with each other by the Azzel-Matti, the Arak-Foum Belrem, 

the Amguid El Biod and the Tihemboka arches mainly oriented NS, the Bou Bernou, the Ahara, 

and the Gargaf arches-oriented NE-SW, the Saoura and the Azzene arches-oriented NW-SE. 

Consequently, a large wave-length and low amplitude flexural deformation characterizes 

Paleozoic times on the Gondwana shield 

We have seen that the basins are principally circular to oval shaped constrained by arches 

framework (Figure V-1). The whole describes a sort of fan-shaped with orientation of arches 

and basins going from NW-SE westwards to NE-SW eastwards. This is concordant with the 

squeeze of Tuareg Shield (i.e. mobile belt) between the West African Craton and the East 

Saharan Craton (i.e. cratonic blocks) described by many authors (Coward and Ries, 2003; Craig 

et al., 2008). 

In the Saharan platforms (Figure V-1), we have presented a complex classification of Arches-

Basins framework characterized by inter-basin principal arch, inter-basin boundary secondary 

arch, intra-basin secondary arch and syncline-shaped basin (cf. Chapter IV). This structural 

outline can also be observed and identified in regional seismic profiles in the Reggane, the 

Ahnet, the Sbâa and the Timimoun Basins around the Azell Matti Arch, the Arak-Foum Belrem 

Arch and the Azzene High (Figure V-2 and Figure V-3). These structures are formed by large 

broad horst and grabens systems with planar faults associated with forced folds. Diminution of 

thickness of the different series are observed at the vicinity of the Arches. 

In the next part, we will see that these singular structures are re-activated or inverted during the 

Paleozoic, evidenced by syn-sedimentary tectonic markers. They are identified by the study of 

seismic profiles and satellite images. 
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Figure V-1: Geological map of the Paleozoic North Saharan Platform (North Gondwana) 

showing the localization of geological map zooms, structural interpretations zooms and 
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regional seismic cross sections. 1: Figure V-4; 2: Figure V-5; 3: Figure V-6; 4: Figure V-7; 5: 

Figure 5b in (Perron et al., 2018); 6: Figure V-14B; 7: Figure V-17A; 8: Figure VII-12; 9: 

Figure V-8. (a): Figure V-2A; (b): Figure V-2B; (c): Figure V-3A; (d): Figure V-3B. Ah. B.: 

Ahnet Basin; Mo. B.: Mouydir Basin. 

 

Figure V-2: (A) EW seismic profile of Ahnet Basin showing Arches and basins architectures 

between Bahar El Hammar intra-arches and Foum Belrem interbasin boundary secondary 

arch. (B) NW-SE seismic cross section from Sbâa to Ahnet Basins going through the Azzel Matti 

Arch and Ara-Foum Belrem Arch. See (a) and (b) in Figure V-1 for localization. 
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Figure V-3: (A) SSW-NNE seismic cross section through the Reggane, the Sbâa and the 

Timimoun Basins showing Arches and basins architectures. (B) W-E seismic cross section from 

the Reggane to the Ahnet Basins separated by Azzel Matti Arch and Arak-Foum Belrem Arch. 

See (c) and (d) in Figure V-1 for localization. 

3 Tectono-sedimentary structures analyses (satellite images and seismic 

profiles interpretation) 

On the Saharan platform, the sedimentation occurred in wide sags and sub-basins over a stable 

cratonic domain, the sub-basins being separated by tectonic arches episodically uplifted and 

eroded (Eschard et al., 2005). The difficulty is that the facies and thickness evolutions are very 
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progressive in these low subsiding basins and depositional. Furthermore, the wedge geometry 

can then be rather complex when local progressive unconformities interfered with more global 

regional unconformities (Eschard et al., 2010). However, according to many authors, rapid 

facies and thickness variations can be expected when approaching the arches which were active 

during sedimentation (Beuf et al., 1971; Eschard et al., 2005). 

We have seen that subsequently, flexural intracratonic sub-basins were created on the Saharan 

platform, the sub-basins being separated by Arches forming highs on which sedimentary series 

are thinning. The structuration of the Arches was not continuous but reactivated during specific 

periods and each sub-basin also had a specific subsidence regime. The highs can be passively 

onlapped by sediments or actively uplifted and eroded. The mechanism of such deformation is 

still poorly known, and probably resulted from a lithospheric buckling and the reactivation of 

Precambrian structures. 

It is often difficult to discriminate if the arches and highs actually observed at a regional scale 

were contemporaneous from the Paleozoic sedimentation or if they correspond to more recent 

uplifts and truncations. 

Through the analysis of satellite images (Figure V-5, Figure V-6 and Figure V-7) and seismic 

profiles (Figure V-4), the aim of this study is to understand structural style, the tectonic 

kinematic evolution (i.e. compressive and extensive alternating periods) and accommodation 

of the deformation during the Paleozoic. Besides, the object is also to better circumcise the role 

of heritage on the establishment of current faults patterns. Notice that this part adds 

supplementary observations and interpretation shown in the Chapter IV (i.e. Perron et al., 2018). 

Several seismic profiles (Figure V-4) and satellite images zoom (Figure V-5, Figure V-6 and 

Figure V-7) are selected in order to highlight evidence of syn-tectono-sedimentary structures 

(e.g. wedges strata, growth strata, onlaps, thickness variations, angular unconformities, 

progressive unconformities). Some of these structures are located at vicinity of inter-basin arch 

and intra-basin arch. 

Three tectonic events are shown by identifying the kinematics and the timing of the faults and 

folds through the analysis of the syn-sedimentary structures. They are the following on the 

structural maps (Figure V-5, Figure V-6 and Figure V-7): the Cambro-Ordovician (blue), the 

Siluro-Devonian (red) and the Carboniferous (green). 
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Figure V-4: (A) Satellite images of the Reggane, Ahnet, and Mouydir Basins (Landsat 7 ETM 

+ from USGS database). (B) Geological map of the Paleozoic of the Reggane, Ahnet, and 

Mouydir Basins associated with the different terranes. For the legend and references see Figure 
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V-1. Localization of map 1: Figure VII-13 and Figure V-9. Localization of the interpreted 

seismic profiles a: Figure 7b in (Perron et al., 2018); b: Figure 7a in (Perron et al., 2018); c 

Figure 7c in (Perron et al., 2018); d: Figure 7d in (Perron et al., 2018); e: Figure V-26; f: 

Figure V-19; g: Figure V-20; h: Figure V-21; i: Figure V-25; j: Figure V-18. 

 

Figure V-5: Structural map of Amguid El Biod Arch. The blue and red colors corresponding 

respectively to Cambro-Ordovician structures and Devonian structures (to Carboniferous?). 

1: Figure V-16A; 2: Figure V-14A. For localization of the map see Figure V-1. 
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Figure V-6: Structural map of Arak-Foum Belrem Arch. The blue, red and green colors 

corresponding respectively to Cambro-Ordovician structures, Devonian structures and 

Carboniferous (Hercynian). 1: Figure 5a in (Perron et al., 2018); 2: Figure V-15; 3: Figure 

V-13; 4: Figure V-22; 5: Figure V-11A; 6: Figure 6d in (Perron et al., 2018); 7: Figure V-11B. 

For localization of the map see Figure V-1. 
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Figure V-7: Structural map of Ahnet Basin and Azzel Matti Arch. The blue, red and green colors 

corresponding respectively to Cambro-Ordovician structures, Devonian structures and 

Carboniferous (Hercynian). 1: Figure V-12A; 2: Figure V-12B; 3: Figure V-23; 4: Figure 

V-24; 5: Figure V-17B. For localization of the map see Figure V-1. 
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3.1 Synsedimentary syncline-shaped basin delimited by arches 

At the large scale, the peri-Hoggar Basins is characterized by the Arches-Basins architecture. 

It is demarcated by arches (i.e. anticlines) delimiting syncline-shaped basins (see example of 

Mouydir Basin in Figure V-9). 

In the last part (Chapter IV), we have seen that mainly all the series are thin when approaching 

arches while they thick at center of the basin (depocenter). This differential subsidence between 

arches and the basin implies a more or less constant relative uplift of arches likened to basin 

depocenter. 

Notice that we can also observe this main feature with satellite images i.e. 2D plan (Figure 

V-9B). It is due to the two major tectonic events during the Phanerozoic (Hercynian and Late 

Eocene swell) which are at the origin of the exhumation and the tilting of the Paleozoic series 

actually presented in the Saharan Platform (English et al., 2016b; Rougier, 2012; Rougier et al., 

2013; Ye et al., 2017). These events allow us to interpret in section the series visible in maps 

(Figure V-8). Following that, we can perceive in 2D map the architecture of the Saharan 

platform such as thickness variations between arches and basins. 

 

Figure V-8: Schematic structural section across the Hoggar Massif and the peri-Hoggar Basins 

showing in 2D map projection the architecture of the basins modified from English et al., 

(2016b). Note that the Hoggar had two history of uplift with significant erosion of the Paleozoic 

sequence during the Hercynian orogeny and the Late Eocene. For localization see Figure V-1. 
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Besides, we can see clearly the zonation of the terranes between arches-basins systems and the 

thickness variations (wedges) associated (Figure V-8). 

Eschard et al., (2010) have also shown the progressive growing of arches (referred as paleohighs 

in the article) during the Paleozoic times. In Chapter IV, we have revealed that this pattern is 

not only restricted to few layers. But it is a large frequent component of these intracratonic 

basins. Moreover, the global low rate of subsidence can vary from acceleration, deceleration to 

inversion during the Paleozoic probably related to geodynamic events (Perron et al., 2018). 

 

Figure V-9: Example of Mouydir Basin a synsedimentary syncline-shaped basin delimited by 

arches showing maximum of thickness of series at the center and reduce approaching arches. 

See Figure V-4 for localization. 

This deconvolution of the raw tectonic signal represents the first order pattern of the peri-

Hoggar Basins where the arches-basins architecture is control by the terranes repartition and 
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nature. However, more local signal can be identified which are also fractal evidences and guides 

of this latter first one (see next part with markers of synsedimentary tectonics). Knowing that, 

the cover fault network is mainly connected and nucleated on basement paleo-structures (i.e. 

shear zones). And consequently, they our control by the movements and kinematics of the 

basement… 

3.2 Evidence of syn-sedimentary extensional markers 

In the Saharan Platform (Figure V-5, Figure V-6 and Figure V-7) and according to Chapter IV, 

two types of geometry of faults have been observed (Figure V-13 and Figure V-22): 

• There are the sinuous shaped faults (fault F2, faults F7 to F12 in Figure V-13B). They 

are arranged “en echelon” or sinuous shape result from normal fault propagation and 

linkage between isolated faults, tip faults, relay faults and parents faults (Marchal et al., 

1998, 2003). The sinuous shape as well as the lateral rapid variation of fault 

displacement  are characteristic of syn-lithification fault structures (Marchal et al., 1998, 

2003). These structures are preferentially located in the boundary of arches (i.e. intra-

basin and intra-terrane). 

• There are the straight shaped faults showing lateral low variation of fault displacement 

related to post-lithification brittle faults (see reviews in Marchal et al., 1998, 2003). 

They are featured by discontinuous deformation cutting the Paleozoic cover (fault F1 in 

Figure V-13 and Figure V-22). They are preferentially situated above mega-shear zone 

between terrane boundaries (i.e. inter-basin). They are controlled by basement heritage 

and seems to be reactivated through the Paleozoic (syn to post depositional). The 

intensity of the deformation is the most significant. 

The extensional normal faulting is associated with pluri-kilometric folding (folds collinear with 

faults) represented by footwall anticlines and hanging-wall synclines. The faults are steeply-

dipping (sub-vertical) and planar. The folds footwall anticlines are generally asymmetric. They 

are mainly oriented N0°-N10°-N170°, varying from N150°-N140° to N30°-N40° (Figure V-5, 

Figure V-6 and Figure V-7). A secondary trend can be seen perpendicularly (i.e. more or less 

N90° to N120° or N50°-N60°) to these trends. These latter was interpreted in some area (e.g. 

Djado basin) as extension fault due to isostatic rebound after deglaciation event (Denis et al., 

2007). 



CHAPTER V – TECTONO-STRATIGRAPHIC CHARACTERIZATION OF PERI-HOGGAR BASINS 

188 

P. PERRON - 2019 

The approach for the recognition of the kinematics of the deformation is reminded in Chapter 

IV. The models of extensional structures, which seems to best fit to our area are described. 

These markers of kinematic are detected in satellite images (Figure V-11A-B, Figure V-12A-

B, Figure V-14, Figure V-15, Figure V-16 and Figure V-17B) and in seismic profiles (Figure 

V-18, Figure V-19, Figure V-20 and Figure V-21). They show mainly steeply-dipping normal 

fault decipherable by a footwall anticline and a syncline hanging wall. Normal blind faults are 

also identified (e.g. Figure V-18), linked to basement movement. The whole can form horst and 

grabens systems (cf. Figure V-15, Figure V-16, Figure V-18 and Figure V-21). 

Notice in Figure V-11 and Figure V-12 an example of how stratigraphic units are identified 

using geological maps (Bennacef et al., 1974; Bensalah et al., 1971) which were georeferenced 

beforehand (see also Chapter II.1.2 and Chapter II.1.3). 

The syncline hanging wall can be associated with divergent onlaps (i.e. growth strata), allowing 

the datation of the movement of the fault. According to these structures, several extensional 

events were deciphered, featured by the activation or reactivation of the normal faults. They 

occurred during the Infracambrian (DO0) (e.g. Figure V-18), the Cambro-Ordovician (DO1) 

(e.g. Figure V-12A), the Hirnantian (e.g. Figure V-25), the Silurian (DO2) (e.g. Figure V-14B) 

and the Mid-Late Devonian (DO3) (e.g. Figure V-12B). 

All the extensional structures (faults, forced folds) identified in seismic and in satellite images 

imply one main stresses axis oriented N90°. In the literature, this axis can be referred to both 

the late Infra-Cambrian extension and the Cambro-Ordovician extensional regime (Galeazzi et 

al., 2010). 

3.3 Evidence of syn-sedimentary compressional and strike-slip markers 

After the establishment of broad horst and graben systems during Infracambrian or/and 

Cambro-Ordovician (described previously), compressional and inversion structures have 

occurred through further tectonic events (e.g. Caledonian, Hercynian) reactivating basement 

faults framework. These compressional markers are more easily decipherable in seismic 

profiles rather than in satellite images. Nevertheless, simple inversed and thrusted structures 

can be detected in satellite images (e.g. Figure V-11B and Figure V-12A). 
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Two type of inversion models have been highlighted in the area (cf. Chapter IV): 

• The positive inversion of paleo-normal faults model featured by inversed fault-

propagation folds with a tectonic transport from hanging wall to footwall. This kind of 

model can be observed in the Bahar El Hammar intra-basin Arch (Figure V-25 and 

Figure V-2A) and near the Azzel Matti inter-basin Arch (Figure V-2B). 

• The transported normal fault model characterized by inversed fault-propagation folds 

with a tectonic transport from footwall to hanging wall (accommodated by Silurian 

detachment layer). This type of model is identifiable in satellite images (Figure V-11B, 

Figure V-12A and Figure V-15) and in seismic (Figure V-20 and Figure V-21). 

These inversion model can be thin-skinned i.e. deforming limited layers (e.g. Figure V-20) or 

thick-skinned i.e. involving a lot of series (e.g. Figure V-21 and Figure V-18), depending on 

the deformation intensity and decoupling shale layers. In the literature (e.g. Figure V-10A), 

these structures are well-documented and differentiated (e.g. Madritsch et al., 2008; Tozer et 

al., 2002). 

Associated to these compressional (and previous extensional) kinematics, markers of strike-slip 

component are decipherable, evidenced by different type of structures such as: dextral strike 

slip horsetails (e.g. Figure V-24), dextral sigmoid fold (e.g. Figure V-22), senestral lateral folds, 

dextral lateral folds and dextral en echelon folds (e.g. Figure V-23). These markers are more 

easily observable in satellite images. Nevertheless, pop-up structures connected to a flower-like 

faults systems are recognized (e.g. Figure V-21). In the literature (Figure V-10B-C), these 

structures are evidence of strike slip movement (e.g. Casas et al., 2001; Dooley and Schreurs, 

2012; Sylvester, 1988). In seismic strike-slip faults are often characterized by a typical 

geometry called “flower” or “palmed tree structure” (Dooley and Schreurs, 2012; Fossen, 2010; 

Le Guerroué and Cobbold, 2006; Soto et al., 2007; Woodcock and Fischer, 1986; Woodcock 

and Rickards, 2003). 

In general, most of real strike-slip zones have an additional component. Two main types of 

"flower structures" have been defined, positive and negative "flower structures" (Figure 

V-10C). Negative flower structures are created in an extensive context (i.e. transtensive faults). 

They are characterized by a depression zone established by normal faulting. While positive 

flowers structures are formed in shortening conditions (i.e. transpression faults). They are 

featured by a rising configuration in surface (i.e. “pop up”) resulting from reverse faulting 
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(Figure V-10D). Transpression results in combinations of wrenching and thrusting structures 

(e.g. Casas et al., 2001; Dooley and Schreurs, 2012; Sylvester, 1988). 

 

Figure V-10: (A) Thin-skinned vs thick-skinned tectonic style modified from Tozer et al., (2002); 

In (1) uplift and folding have resulted from thin-skinned thrusting and duplication of the 

stratigraphy at depth. In contrast, uplift in interpretation in (2) is due to reactivation of a pre-

existing extensional fault that originally hosted an increased thickness of sediment. (B) 

Structural pattern of a dextral strike-slip fault (Riedel shear) modified from Sylvester, (1988). 

(C) Example of ttectonic structures present in a strike slip zone modified from Guiraud, (1990); 

(1) Deformation of the sedimentary cover by folds arranged in echelon on a basement strike-
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slip fault; (2) Positive flower structures associated to strike-slip component in a fault zone. (D) 

Map and cross-sections of a generic strike-slip fault system, showing flower structures and 

duplexes; (1) Positive flower structure and (2) Negative flower structure modified from 

Woodcock and Fischer, (1986). 

Locally, strike slip faults can evolve into reverse faults propagation folds which attest of 

compressional kinematics. The presence of spilled dip strata along these faults forming 

overturned folds highlights a compression event (e.g. see fault F6 in Figure V-22 and F2 in 

Figure V-15). Observations which was already documented by Haddoum et al., (2001). 

All these observations are clues of transpressional and transtensional tectonic kinematics during 

the Paleozoic. As already studied in Chapter IV, through the identification of growth strata, 

truncatures and thickness variation, indications of compression have essentially occurred during 

the Caledonian, the Mid-Late Devonian and the Hercynian. 

All the compressional structures (folds, faults) identified in seismic and in satellite images 

imply three main stresses axes: 

• One Oriented N90°. In the literature, this axis can be referred to the Caledonian 

compression regime (Beuf et al., 1971; Galeazzi et al., 2010). 

• And two oriented N40° and N120°. They are assigned in the literature to two 

compression phases: N40° of Visean age and 120° of post-Serpukhovian-ante Permian 

age (Haddoum et al., 2001; Zazoun, 2001). 

The intensity of the deformation is not the same on the different faults. This can be explained 

by the orientation of the fault lineaments relative to the principal stress during the different 

tectonic event. It is known that in strike slip structure more the stress is perpendicular to the 

shear plane more the deformation will be important (Casas et al., 2001; Dooley and Schreurs, 

2012). This fact will control the strike slip (wrenching, friction) dominant or the compression 

(thrusting) dominant of the arches. 
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Figure V-11: (A) Normal fault associated with footwall anticline and hanging wall syncline 

(i.e. forced fold). (B) Syn-sedimentary normal fault in Mid-Upper Devonian inversed. For 

localization see 5 and 7 in Figure V-6. 
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Figure V-12: (A) Syn-sedimentary normal fault in Cambro-Ordovician series and inversion of 

Lower Devonian on Silurian detachment layer. (B) Divergent onlaps over Azzel Matti basement 

(“series Pourprée”). For localization see 1 and 2 in Figure V-7. 
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Figure V-13: (A) Not interpreted Google Earth image (B) Interpreted Google Earth image 

showing NS normal sinuous and straight faults in Cambro-Ordovician series (C) 3D Google 

Earth image showing relief. For localization see 3 in Figure V-6. 
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Figure V-14: (A) Structural interpretation of Google earth satellites images of Aguelman area 

showing poly-historic paleo-reliefs (ancient normal fault escarpment associated to a footwall 

anticline and a hanging wall syncline) sealed by Silurian deposits. (B) Structural interpretation 

of Google earth satellites images showing growth strata (wedges) in Siluro-Devonian series. 

OTh: In Tahouite formation (Early to Late Ordovician, Floian to Katian), OTj: Tamadjert 

Formation (Late Ordovician, Hirnantian), sIm: Imirhou formation (Early Silurian), sdAt: 

Atafaïtafa formation (Middle Silurian), dTi: Tifernine formation (Middle Silurian). 1: Cambro-

Ordovician extension, 2: Silurian sealing (horizontal drape). For localization see 2 in Figure 

V-5 for (A) and 6 in Figure V-1 for (B). 
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Figure V-15: (A) 3D Google Earth image of Arak-Foum Belrem Arch with localization of cross 

sections. (B) Google earth satellites images of Adrar Tiggad-N-Teghlamt (near Arak-Foum 
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Belrem Arch, eastwards inter-basin boundary secondary arch). (C) Structural interpretation 

Google earth satellites images showing normal fault inverted structure associated with folding 

(tectonic transport from hanging wall to footwall), detachment layer in Silurian shales series; 

Strata geometries shows divergent onlap in Silurian series in the hanging wall. (SSi: Basement 

and infra-Cambrian series, CoAj: Ajjers formation (Late Cambrian), OTh: In Tahouite 

formation (Early to Late Ordovician, Floian to Katian), OTj: Tamadjert Formation (Late 

Ordovician, Hirnantian), sIm: Imirhou formation (Early Silurian), sdAs1: Asedjrad formation 

1 (Late Silurian to Early Devonian), dAs2: Asedjrad formation 2 (Early Devonian, 

Lochkovian), dSa: Oued Samene formation (Early Devonian, Pragian). 1: Cambro-Ordovician 

extension, 2: Siluro-Devonian reactivation (Caledonian event) to Herycnian (?). For 

localization see 1 and 2 in Figure V-6. 

 

Figure V-16: (A) Structural interpretation of Google earth satellites images near Oued In 

Rhlem (near Amguid El Biod Arch, inter-basin boundary secondary arch) showing normal 

fault; Strata geometries shows divergent onlap in Lower Devonian series in the hanging wall. 

For localization see 1 in Figure V-5. (B) Structural interpretation of Google earth satellites 
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images of Djebel Idjerane in the Mouydir basin (near Arak-Foum Belrem Arch, eastwards 

inter-basin boundary secondary arch) showing a normal fault (footwall anticline and syncline 

hanging wall). Thickness variation of Imirhou formation (Early Silurian) between footwall and 

hanging wall. For localization see 1 in Figure V-22 and 4 in Figure V-6. OTj: Tamadjert 

Formation (Late Ordovician, Hirnantian), sIm: Imirhou formation (Early Silurian), sdAs1: 

Asedjrad formation 1 (Late Silurian to Early Devonian), dAs2: Asedjrad formation 2 (Early 

Devonian, Lochkovian), dSa: Oued Samene formation (Early Devonian, Pragian) d2b: 

Givetian, d3a: Meden Yahia formation (Late Devonian, Frasnian). 

 

Figure V-17: (A) Structural interpretation of Google earth satellites images near Tihemboka 

arch (inter-basin arch) showing angular unconformity in Upper Silurian-Lower Devonian 

series in the hanging wall. For localization see 7 in Figure V-1. (B) Structural interpretation 

of Google earth satellites images near Azzel Matti Arch (inter-basin boundary secondary arch) 

showing normal blind fault; Strata geometries shows onlap in Lower Devonian series in the 

hanging wall. For localization see 5 in Figure V-7. sIm: Imirhou formation (Early Silurian), 
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sdAs1: Asedjrad formation 1 (Late Silurian to Early Devonian), dAs2: Asedjrad formation 2 

(Early Devonian, Lochkovian), dSa: Oued Samene formation (Early Devonian, Pragian).  

 

Figure V-18: (A) NS seismic profile of near Djoua arch (inter-basin arch between the Ahnet 

and the Timimoun basins); (B) Interpreted seismic profile showing steeply-dipping basement 

normal blind faults associated to forced folding forming a horst; At the south, a structures is 

featured by reverse fault propagation fold (inversion); Strata lapout geometries shows 
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Frasnian onlaps on top Givetian and diminution of Frasnian near the arch; Truncature of 

Paleozoic series by Mesozoic unit on Hercynian unconformity. For localization see j in Figure 

V-4. 

 

Figure V-19: (A) West-East seismic profile in the Ahnet basin near Erg Tegunentour (near 

Arak-Foum Belrem Arch, westwards inter-basin boundary secondary arch) (B) Interpreted 

seismic profile showing steeply-dipping westwards basement normal blind faults associated to 

forced folding; Strata lapout geometries shows lower Silurian onlaps on the top Ordovician, 

upper, onlaps and downlaps of Frasnian series on top Givetian unit. For localization see f in 

Figure V-4. 
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Figure V-20: (A) NW-SE seismic profile in the Ahnet basin near Erg Tegunentour (near Arak-

Foum Belrem Arch, westwards inter-basin boundary secondary arch) (B) Interpreted seismic 

profile showing steeply-dipping westwards basement normal blind faults associated to forced 

folding; Strata lapout geometries shows lower Silurian onlaps on the top Ordovician, glacial 

valley in intra-Ordovician series, onlaps and downlaps of Frasnian series on top Givetian unit. 

For localization see g in Figure V-4. 
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Figure V-21: (A) West-East seismic profile in the Ahnet basin near Erg Tegunentour (near 

Arak-Foum Belrem Arch, westwards inter-basin boundary secondary arch). (B) Interpreted 

seismic profile showing steeply-dipping westwards basement normal blind faults associated to 

forced folding; Strata lapout geometries shows lower Silurian onlaps on the top Ordovician, 

upper, onlaps and downlaps of Frasnian series on top Givetian unit. For localization see h in 

Figure V-4. 
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Figure V-22: (A) Not interpreted Google Earth image with localization of maps; 1: Figure 

V-16B; 2: Figure 6f in Perron et al., (2018); 3: Figure 6e in Perron et al., (2018). (B) 

Interpreted Google Earth image showing NS echelons folds in Devonian series. (C) 3D Google 
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Earth image showing relief. (D) Model of en echelon dextral folds. For localization see 4 in 

Figure V-6. 

 

Figure V-23: (A) Not interpreted Google Earth image. (B) Interpreted Google Earth image 

near Azzl Matti Arch showing echelon fold with a senestral strike slip movement in Devonian 

series. (C) 3D Google Earth image showing relief. (D) Model of en echelon senestral folds. For 

localization see 3 in Figure V-7. 
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Figure V-24: (A) Not interpreted Google Earth image with localization of map; 1: Figure 6e in 

(Perron et al., 2018). (B) Interpreted Google Earth image showing dextral strike slip fault 
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associated to horse tails structures in Devonian series (C) 3D Google Earth image showing 

relief. (D) Model of horse tails strike slip. For localization see 4 in Figure V-7. 

 

Figure V-25: (A) West-East seismic profile of Bahar el Hammar in the Ahnet basin (Ahnet 

intra-basin arch); (B) Interpreted seismic profile showing steeply-dipping eastwards normal 

fault inverted structure associated with folding (convex drag in each part of the fault); Strata 

lapout geometries shows glacial valley in the Ordovician series, Silurian onlaps on top 
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Ordovician, Silurian onlaps on top Ordovician; Frasnian onlaps on top Givetian; Polyphased 

events: Cambro-Ordovician extension and Devo-Carboniferous positive inversion (tectonic 

transport from hanging wall to footwall). For localization see i in Figure V-4. 

3.4 Stratigraphy and lapout  

This part is an inventory of stratigraphy and lateral termination of strata (i.e. lapout) such as 

onlaps, dowlaps and toplaps. They were identified on both seismic and satellite images. 

3.4.1 Pan-African unconformity 

The Pan-African unconformity or the Infra-Cambrian (Infra-tassilian) surface can be identified 

on several seismic profiles (Figure V-19, Figure V-25 and Figure V-26) and satellites images 

(Figure V-12A-B). Tilted basement reflectors probably Precambrian series (“Les séries 

Pourprée”) are truncated by sub-horizontal planar Cambro-Ordovician strata forming an 

angular unconformity. Some of the paleo-structures observed can be sealed by Cambro-

Ordovician series or reactivated in further tectonics (Figure V-25 and Figure V-26). Moreover, 

onlaps of Cambro-Ordovician strata are visible on Precambrian series (Figure V-12A-B), 

attesting of paleo-relief on the Azzel Matti Arch since the Cambrian. 

3.4.2 Hirnantian glaciation 

Incised valleys are observable in the hanging wall of fault (Figure V-20, Figure V-21, Figure 

V-25 and Figure V-26). These incised valleys are filled with onlapped reflectors and bound by 

truncated reflectors on the floor and the margins. They seem to be preferentially located in 

hanging-wall of the horst and graben systems. These seismic structures are described in the 

Murzuq basin and are characteristic of incised glacial valley related to Hirnantian glaciation 

(Smart, 2000). 

3.4.3 Silurian transgression 

The Silurian transgression is observed in seismic profiles (e.g. Figure V-26 and Figure V-21) 

and in satellite images (Figure V-14A). It is characterized by Lower Silurian onlaps and 

downlaps directly lay on the top Ordovician series. It can seal Cambro-ordovician fault (Figure 

V-14A). 
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3.4.4 Hercynian unconformity 

The Hercynian unconformity is well identified in seismic (cf. Figure V-18). Paleozoic reflectors 

truncated by Ceno-Mesozoic series feature it. Horizontal isopach (?) layer weakly deformed 

attesting of a very subtle tectonic strain after their deposition features the Ceno-Mesozoic unit. 

Consequently, the Hercynian unconformity has sealed the Paleozoic series (Boote et al., 1998). 

Discordant Quaternary deposits (Quaternary unconformity) are also identified covering the 

whole Paleozoic series (Figure V-11A and Figure V-12A). 

 

Figure V-26: (A) SN seismic profile near the Foum Belrem Arch. (B) Interpreted SN seismic 

profile near the Foum Belrem Arch showing glacial valley in the Ordovician series, Silurian 
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onlaps on the top Ordovician limit, downlaps and onlaps structures in Frasnian series on the 

top Givetian, Pan-African unconformity, Pan-African paleo-thrusting. For localization see e in 

Figure V-4. 

3.5 Lithological and rheological framework 

The stratigraphic succession of Paleozoic (cf. Figure III-36) displays two mains contrasted type 

of lithologies: Thick low resistance (i.e. ductile) shales characterized by the Silurian and the 

Frasnian-Famennian units. High resistance (i.e. elastic) sandstones (with some limestone 

layers) featured by the Cambro-Ordovician, Lower Devonian and Lower Carboniferous units. 

It follows that majors uncoupling can be identified: Uncoupling between Cambro-Ordovician 

and Lower Devonian series; Uncoupling Lower Devonian and Lower Carboniferous series. 

Evidence of Silurian shales acting as a detachment layer uncoupling Cambro-Ordovician and 

Devonian series are visible such as Figure V-12A. Decoupling of Lower Devonian and 

Carboniferous separated by Frasnian-Famennian Shales series visible in Ahnet basin 

characterized by disharmony (Figure V-4). Frequency of folds is more important in the 

Carboniferous series than in the underlying Famennian series (i.e. Cambrian to Mid Devonian 

series). 

Furthermore, Silurian and Frasnian-Famennian shales play an important role in the rheological 

behavior of Paleozoic structures. It permits in some case to accommodate the deformation and 

inverted paleo-structures. The forced folds shape initiated by basement faults can be influence 

by this ductile-plastic layer (Johnson and Johnson, 2002). Damping of faults often occurs in 

these series (e.g. Figure V-14B). 

Additionally, the presence of an mechanical uncoupling can also exist between “Pourprée” 

series, lateritic series and the crystalline basement (Beuf et al., 1971). 

Structures are discontinuously deformed (fault and folds association) and coupled with the 

basement. Cambro-Ordovician layers are essentially dominated by sandstones deposits (i.e. 

elastic rheology) while Silurian is composed of shales (i.e. plastic-ductile rheology). Whereas 

Silurian to Carboniferous layers are deformed continuously (folds) where Silurian play the role 

of detachment layer between the two latter. The Silurian shales could be a good client for 

decoupling the deformation and permitting forced fold structures. 
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3.6 Structural style and implications 

Our observations made from seismic and satellites images highlight several tectonic features: 

(1) heritage and reactivation/inversion of basement faults (essentially sub-vertical but presence 

of thrusting fault); (2) Forced fold and trishear models; (3) major uncoupling between Cambro-

Ordovician series and Devonian series through Silurian detachment shale layer; (4) minor 

uncoupling in layer cake series such as Devonian series and Carboniferous series; (5) imply 

disharmonic structures/layers; (6) sub-vertical planar fault; (7) dominated by repeatedly strike 

slip movement. 

Clearly the structural style in this Paleozoic intracratonic area is defined by basement steeply 

dipping tectonic structures where the deformation is accommodated mainly by strike slip 

movement (i.e. transpression or transtension) on sub-vertical faults. The compression 

component is accommodated by flexural structure (folding) and the extension component by 

sub-vertical planar extension faults. In case of sub-vertical planar extensional fault 

compensation graben occurs to accommodate the deformation (Faure and Chermette, 1989). 

In surface, the deformation is characterized by folds (fault propagation fold, asymmetric uplift). 

The mechanical behavior (i.e. the accommodation of the deformation) of the basement and the 

cover seems to be different (i.e. ductile to brittle). It can be explained by the petrological 

heritage of these two entities: crystalline rocks for the basement and shales and sandstones for 

the cover. From analogical and numerical structural analysis, the thesis of detachment fold and 

propagation fold were privileged (Badsi et al., 1999). 

 

Figure V-27: Comparison between classical extensional basin and peri-Hoggar intracratonic 

basins structural style. Notice that faults morphologies impact the sedimentation pattern. 
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To summarize, the structural style is featured by vertical displacement and equilibration on 

major sub-vertical faults between terranes. A singular tectonic kinematics, where there is no 

(or weakly) stretching which can be observe in classical extensional zones such as rifts (Figure 

V-27). 

3.7 Precambrian inherited basement faults structures 

The establishment of Paleozoic tectonic structures (e.g. folds) seems to be tough to explain 

under simple compression without basement faults (Badsi et al., 1999; Beekman et al., 2000). 

The hypotheses of the presence of pre-existing basement discontinuities reactivating during 

Paleozoic tectonic events seems to be the key understanding (Badsi et al., 1999; Beekman et 

al., 2000; Haddoum et al., 2001; Zazoun, 2001). In the literature, many authors have pointed 

the significance of influence of basement faults on the basin structuration (e.g. Fowler and 

Osman, 2013). Numerous study show how weakness zone influence the geometries and 

structuring of strike slip fault zone (e.g. Dooley and Schreurs, 2012). 

Several evidences of basement structures can be observed in seismic profiles (e.g. Figure V-18 

and Figure V-26). Basement analysis of the seismic cross section doesn’t permit to clearly 

distinguish the faults geometries. Reflectors signatures are often chaotic. Seismic survey 

acquisition has not been for deep structures objectives (Badsi et al., 1999). Though, the faults 

are mainly characterized by steeply dipping planar normal faults (to the east or to the west). It 

can form a horst and graben system probably inherited from the Precambrian. The lateral 

movement of this basement faults (i.e. wrench) is difficult to decipher in cross section, 

nevertheless many authors has demonstrated it (Caby, 2003; Haddoum et al., 2013; Liégeois et 

al., 2003). In surface satellites imagery (e.g. Figure V-22, Figure V-23 and Figure V-24), the 

presence of sigmoid folds, echelon folds, horse tails structures attest of the strike slip movement 

(see also Haddoum et al., 2001; Zazoun, 2001). Tilted series to the east is uncomfortably 

overlain by the Cambro-Ordovician unit (pointed out by reflectors truncatures) (e.g. Figure 

V-26). This structure might have been controlled by a paleo-thrusting featured in the basement 

by an inverse fault with a moderate dip to the east and with a tectonic transport to the west or a 

paleo-half graben (not visible here but possibly present eastwards) during the Precambrian. All 

these structures seem to be reactivated or inverted during the Paleozoic tectonic events leading 

to the deformation of the cover. 
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3.8 Synthesis of the chronologic tectonic kinematics and strata lapout geometries 

The main structures detectable in the subsurface by seismic interpretation and in surface by 

satellites images are normal faults affecting the basement and dividing it into horst and graben 

systems during Cambro-Ordovician (maybe earlier by Pan-African chain collapse). The 

reactivation or/and positive inversion of these systems, consisting of compressional gentle folds 

associated with reverse faults located on the pre-existing normal faults or/and extensional fault 

related to forced fold helped by detachment layer (i.e. Silurian and Frasnian-Famennian series) 

are the main structural kinematics of these basins. The extensional movement switched into a 

compressional one. This latter description synthesized the structural style, stratigraphic lapout 

and the chronologic tectonic kinematics of the Saharan Platform where three main tectonic 

models have been identified (Figure V-28). 

Contrary to the Siluro-Devonian tectonic which rejuvenated some paleo-structures the 

Hercynian compression has largely affected the Precambrian basement and is at the origin of 

the actual state of Saharan platform (Follot, 1953). Indeed, the Hercynian unconformity sealed 

the Paleozoic series (Boote et al., 1998). The Hercynian event is featured by a particular tectonic 

style. The uncoupling of the Cambro-Ordovician and Devo-Carboniferous series separated by 

Silurian shales is visible. This observation was already shown by Follot, (1953). 

Our observation shows that the Arches and Basins association were active and rejuvenated 

during local or/and regional strain between the Cambrian to the Carboniferous. This 

characteristic framework disappear during the carboniferous according to Wendt et al., (2006). 

The control of basement faults inherited from Precambrian orogeny on Paleozoic covers was 

point out by many authors (Beuf et al., 1968b, 1971; Biju-Duval et al., 1968; Boote et al., 1998; 

Echikh, 1998; Eschard et al., 2010; Fabre, 2005; Frizon de Lamotte et al., 2013; Guiraud et al., 

2005; Haddoum et al., 2001; Zazoun, 2001). Nevertheless, we have seen that some event 

describe in the literature are not easily decipherable in seismic or satellites images (e.g. 

Caledonian event).  
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Figure V-28: Synthesis of structural model, stratigraphic lapout identified from satellite images 

and seismic profiles during the Paleozoic time on the Saharan Platform. (i), (ii), (iii) 

correspond to structural models proposed in Perron et al., 2018. 
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4 Stratigraphy and sedimentology 

In this part, the analysis of the basin architecture of the peri-Hoggar Basins is led through the 

angle of well logs correlation and the facies partitioning. Regional correlations of wells (Figure 

V-29) are made calibrated by biostratigraphic data and guide by previous tectonic analysis. 

 

Figure V-29: Geological map of the Paleozoic North Saharan Platform (North Gondwana) 

showing the localization of regional wells cross sections. (a): Figure V-33; (b): Figure V-32; 

(c): Figure V-39; (d): Figure V-35; (e): Figure V-34; (f): Figure V-36; (g): Figure V-42; (h): 

Figure V-37; (i): Figure V-40; (j): Figure V-38; (k): Figure V-41. Sb. B.: Sbâa Basin; Ah. B.: 

Ahnet Basin; Mo. B.: Mouydir Basin. 
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4.1 Facies association, depositional environments and well-log pattern 

The Paleozoic sedimentary series described in the literature is composed of fluviatile to Braid-

deltaic plain Cambrian, not only fluviatile (e.g. Brahmaputra River analogue), with a 

transitional facies from continental to shallow marine (e.g. Beuf et al., 1968b, 1968a, 1971; 

Eschard et al., 2005, 2010; Sabaou et al., 2009), Upper Ordovician glaciogenic deposits (e.g. 

Beuf et al., 1968a, 1971; Deschamps et al., 2013; Dixon et al., 2008b, 2008a; Eschard et al., 

2005, 2010; Ghienne et al., 2007a; Girard, 2011; Hirst, 2012, 2016; Lang et al., 2012; Le Heron 

et al., 2009), argillaceous deep marine Silurian deposits (e.g. Djouder et al., 2018; Eschard et 

al., 2005, 2010; Gindre et al., 2012; Legrand, 1986, 2003b; Lüning et al., 2000) and offshore to 

embayment Carboniferous deposits (e.g. Wendt et al., 2009). In this complete sedimentary 

succession, the facies associations and depositional as well as well-log pattern of the Silurian 

and the Carboniferous are rather similar to Cambro-Ordovician and the Devonian. As 

consequence, we have focused on the Cambro-Ordovician and the Devonian. 

The Devonian facies association describe in Table 1 in Chapter IV related to their gamma-ray 

log patterns (Figure 9 in Chapter IV) are regrouped into five main depositional systems: 

Continental (fluvial), coastal plain, transitional (estuarine, tidal flat, laggonal, fluvial/tidal 

distributary channels), (upper to lower) shoreface and (upper to lower) offshore. Additional 

core descriptions with their gamma ray signal are presented in Figure V-31. 

The Cambro-Ordovician facies association description and their gamma-ray signature are issue 

from internal studies (Desaubliaux et al., 2005; Robertson, 2002). After a compilation and 

synthesis, they are reorganized into four main depositional systems: Continental (fluvial), 

continental to marine transition, upper marine and lower marine shelf. 

An example of stacked patterns of depositional environments associated with their gamma-ray 

log signature is exposed in Figure V-30. They are well representative of the Cambro-Ordovician 

and Devonian successions that can be experienced in the peri-Hoggar Basins. It constitutes a 

base for interpretation of the regional cross sections. 

The depositional environment systems (based on facies succession) were established 

considering the lateral environments evolution and the reconstruction of paleoprofiles deposits 

from the stratigraphic correlations between the different sections. The interpretation of certain 

facies was difficult or equivocal, and sometimes the recognition of the relative position of these 

facies has resolved any ambiguity and offered the best interpretation. 
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Figure V-30: Example of sequence stratigraphy limit with the depositional environments 

associated with their gamma-ray signature and well-logs patterns (i.e. electro-facies) in (A) the 

Ordovician series and (B) in the Devonian series. Example of representative electrofacies of 

Cambro-Ordovician and Devonian successions used as a pattern for regional well correlations 

of peri-Hoggar Basins. 
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Figure V-31: Core sedimentologic description of well MSR-1 in Devonian series in Ahnet 

Basin. The palynological datation is from published paper (Kermandji et al., 2008) and the 

core description from internal study (Aissani and Bennamane, 2003). 
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4.2 Paleozoic regional well-log correlation and cross section 

The description of the gamma-ray log patterns and trends (Figure V-30) permit the 

reconstitution of the geometries of the sedimentary bodies and of their vertical and lateral 

evolution of the Paleozoic. A parasequence is defined as a prograding succession, bounded by 

flooding surfaces and defining a coarsening or cleaning upward trend. 

A selection of 138 wells and 15 outcrop cross section have been used to illustrate the 

stratigraphic architecture of the peri-Hoggar Basins (Figure V-29). They are displayed on five 

East-West cross sections (Figure V-32, Figure V-33, Figure V-34, Figure V-35 and Figure 

V-39) and one North-South cross sections (Figure V-36, Figure V-37, Figure V-38, Figure 

V-40, Figure V-41 and Figure V-42). 

The stacking pattern of the Paleozoic successions shows multiple cycles of major regression 

and major transgression (Figure V-32, Figure V-33, Figure V-34, Figure V-35, Figure V-36, 

Figure V-37, Figure V-38, Figure V-39, Figure V-40, Figure V-41 and Figure V-42). 

In the Upper Silurian to Lower Devonian series a lateral variation of facies is observe. The 

facies evolve from fluvial near the Tihemboka Arch to shoreface systems westwards (more and 

more marine influence). Spatially, we observe a deepening of facies northwards but also 

westwards (i.e. north-westwards trend). This feature was already observe by numerous authors 

(e.g. Beuf et al., 1971; Eschard et al., 2005). 

Temporally, we display a shallowing downward of the different unit (i.e. Lower Devonian has 

more proximal facies than Upper Devonian). Moreover, the Cambro-Ordovician and the 

Devonian are essentially characterized by shallower facies than the Silurian and the 

Carboniferous 

Our observation shows evidence of thickness variation and erosion between arches and basin. 

Some level can be condensed or eroded at proximity of the arch. Subtle facies lateral variations 

are also detected. It is featured by a shallowing of depositional environments at the vicinity of 

arches and deepening of environments in basin lows. The maximum of thickness of the 

Paleozoic series are observed upon Proterozoic terranes. 

In this part, multiple regional cross section from internal wells data has highlighted evidence of 

stratigraphic and sedimentary structures. Likewise, it leads to confirm of the arches and basins 

architecture characteristics previously pointed out in Chapter IV. 
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Figure V-32: North EW wells cross section of North peri-Hoggar Basins (Reggane-Ahnet-Mouydir-Illizi Basins). Horizontalization on top Pragian transgression. For localization see Figure V-29. 
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Figure V-33: South EW wells cross section of North peri-Hoggar Basins (Reggane-Ahnet-Mouydir-Illizi Basins). Horizontalization on top Pragian transgression. For localization of the cross section see Figure V-29. 
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Figure V-34: EW cross wells section in the North part of the Ahnet Basin. Horizontalization on top Pragian transgression. For localization of the cross section see Figure V-29. 
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Figure V-35: EW cross wells section in the central part of the Ahnet Basin. Horizontalization on top Pragian transgression. For localization of the cross section see Figure V-29. 
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Figure V-36: NS wells cross section of North peri-Hoggar basins (Ahnet-Sbâa-Reggane Basins). Horizontalization on top Givetian transgression. For localization of the cross section see Figure V-29. 
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Figure V-37: NS wells cross section of North peri-Hoggar basins (Ahnet-Timimoun Basins). Horizontalization on top Pragian transgression. For localization of the cross section see Figure V-29. 
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Figure V-38: NS wells cross section of North peri-Hoggar basins (Mouydir-Timimoun Basins). Horizontalization on top Givetian transgression. For localization of the cross section see Figure V-29. 
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Figure V-39: EW wells cross section of North peri-Hoggar basins (Reggane-Sbâa-Timimoun Basins). Horizontalization on top Givetian transgression. For localization of the cross section see Figure V-29. 
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Figure V-40: NS wells cross section of North peri-Hoggar basins (Ahnet-Timimoun Basins). Horizontalization on top Givetian transgression. For localization of the cross section see Figure V-29. 
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Figure V-41: NS wells cross section of North peri-Hoggar basins (Timimoun Basin). Horizontalization on Lower Silurian transgression. For localization of the cross section see Figure V-29. 
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Figure V-42: NS wells cross section of North peri-Hoggar basins (Sbâa-Timimoun Basins). Horizontalization on top Givetian transgression. For localization of the cross section see Figure V-29. 
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5 Conclusion 

The supplementary data presented previously bring new observations so as to improve the 

geological model proposed in Chapter IV. It confirms that the Peri-Hoggar Basins are of 

intracratonic basin type characterized by strong interactions with basement NS-trending horst 

and graben systems. This framework is inverted or/and reactivated since the late Proterozoic as 

a response to tectonic events (i.e. transpression or transtension) developed either close to the 

area or more often to relatively distant plate-boundary events according to some authors 

(Bumby and Guiraud, 2005; Galeazzi et al., 2010). 

Indeed, local tectonism is considered to be the far-field effect of plate-tectonic processes that 

affected the North African plate-boundaries, such as the Caledonian and Hercynian Orogenies, 

the opening of the Tethys and Atlantic oceans, and the Alpine Orogeny (Galeazzi et al., 2010; 

Ziegler et al., 1995). These were accompanied by localized thermal mantle processes (Galeazzi 

et al., 2010) or igneous activity (Derder et al., 2016; Moreau et al., 1994). 

We have seen that the basement heterogeneity of the Hoggar Massif continues into the 

subsurface of the Saharan Platform basins and determined main Phanerozoic deformation 

trends. They structure the broad arches and basins architecture, partitioning the sedimentary 

distribution of peri-Hoggar Basins. 

This part has brought supplementary data highlighting the influence of inherited substrate 

heterogeneities, far field tectonics and thermal anomalies on the Arches-Basins tectono-

sedimentary architecture of these intracratonic basins. 

However, the mechanism of such deformation and subsidence is still poorly known, and 

probably resulted from a lithospheric buckling and the reactivation of Precambrian structures. 

As a consequence of these observations, forward numerical modelling should take to account 

and assimilate these geological constrains (“ingredients”) in order to build a viable model. 
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1 Summary and objectives 

The Saharan Paleozoic basins display stratigraphic architecture and structural styles typical of 

intracratonic basins, characterized by relatively thin and laterally extensive sedimentary series 

that contain major regional unconformities and are arranged in broad synclines and anticlines, 

affected by regional basement-involved faults, and crustal buckling. 

 

Figure VI-1: Conceptual model of the subsidence mechanism between arches and basins 

depocenter extracted from geological observations in previous chapter. 

On the one hand, our results from analysis of satellites images, seismic profiles and well cross 

sections show a differential low rate subsidence, sedimentary architecture and tectonic style 

between arches and basins highlighting the Saharan intracratonic basins. On the other hand, the 

basement characterization shows a specific organization of terranes between arch and basins 

(Figure VI-1). All these outcomes point out a large-scale control involving the lithosphere. 

From these observations, many questions arise such as: What are the forcing factors and motors 

of the intracraonic basins? Can the heterogeneity of the lithosphere, especially due to 

differential density of the terranes, constrain the architecture of these basins? 
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The different objectives of this chapter are the following: 

• Test the viability of the conceptual geological model featured by lithospheric density 

heterogeneities between terranes (Figure VI-1) by doing a numerical thermo-

mechanical modelling; 

• Parametrization and simulation of models with homogenous and heterogenous 

lithosphere to tectonics, sediment flux and thermal anomaly; 

• Extract the basins architecture and subsidence curves of the forward models; 

• Identify the different forcing factors controlling the intracratonic basins. 

2 Notions of lithospheric thermo-mechanical numerical modelling 

To model something is to simplify something. Any model relies on approximations on the 

physics. Using Newtonian mechanics instead of relativity; using a pseudo static formulation 

rather than a fully dynamic one and neglecting the propagation of seismic waves; neglecting 

the change of volume associated to variations of density by assuming incompressibility with 

Boussinesq approximation instead of solving for mass conservation; all these are examples of 

approximations. These approximations are not made by chance, and in general it is possible and 

even necessary to find theoretical and/or experimental justification for them. Once these 

hypotheses on the physics are chosen, the scientist can determine a mathematical or numerical 

model which allows making some predictions about the phenomenon. 

Once the problem is set, i.e. the physics, the initial conditions and the boundary conditions are 

chosen (ingredients), it is desirable to actually be able to solve it (Figure VI-2). 

 

Figure VI-2: Example of idealize model ingredients for numerical physic calculation. 
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3 Submitted article at Basin Research 

Abstract (Français) 

Les bassins intracratoniques ont tendance à subsider beaucoup plus longtemps que l’échelle de 

temps prévue par la relaxation thermique de la lithosphère. De nombreuses hypothèses ont été 

suggérées pour expliquer leur longévité, mais peu ont été testées à l'aide de modèles numériques 

thermomécaniques quantitatifs, qui capturent la dynamique de la lithosphère. La modélisation 

tectono-stratigraphique de ces bassins est difficile, car ils ne présentent que quelques kilomètres 

de subsidence sur 1000 km au cours d'une période dépassant 250 millions d'années. Nos 

simulations sont conçues pour examiner le rôle relatif de l'anomalie thermique, de la tectonique 

et de l'hétérogénéité de la lithosphère sur la formation de bassins intracratoniques. 

Les résultats des simulations numériques thermomécaniques 2D démontrent que la lithosphère 

continentale hétérogène accrétée permet de former des bassins plus subsidents que les bassins 

homogènes, qu’une anomalie thermique initiale et/ou qu’un forçage tectonique soit appliqué ou 

non. L’hétérogénéité de la lithosphère explique donc au premier ordre la subsidence à long 

terme et l’architecture arches-bassins des bassins intracratoniques. De fortes lithosphères 

hétérogènes maintiennent en effet un déséquilibre isostatique local pendant une très longue 

période. Ces variations latérales stockent l'énergie potentielle consommée par l'érosion 

différentielle. Pour un coefficient d'érosion relativement bien accepté de 10-6 m2/s, la 

subsidence dure plus longtemps que 250 Myr. Plus généralement, la quantité de sédiments 

disponible contrôle la durée de l'affaissement. 

Les résultats montrent également que le forçage tectonique de champ lointain peut expliquer la 

tendance du second ordre, telle que l’accélération, la décélération et l’inversion du taux de 

subsidence. De légers changements dans les champs de contraintes lointains lors de la 

subsidence complexifient l'architecture tectono-stratigraphique (arches intra-bassins, sous-

bassins) de ces bassins et provoquent un diachronisme dans la subsidence, ce qui entraîne des 

modifications du signal stratigraphique entre différents bassins voisins (discordances et 

diachronismes). 

Mots clés: Bassin intracratonique, zone mobile accrétée hétérogène, compensation isostatique, 

subsidence potentiel, tectonique de champs de contraintes lointains. 

  



CHAPTER VI – LITHOSPHERIC THERMOMECHANICAL NUMERICAL MODELLING 

236 

P. PERRON - 2019 

Les principaux résultats de l’article : 

Grâce à une modélisation thermomécanique 2D, nous avons appliqué des facteurs de forçage 

externes (mécanisme d’érosion/déposition et de flux sédimentaire à vitesse constante) et de 

forçage internes (anomalie thermique, tectonique) à des lithosphères homogènes et à des 

lithosphères accrétées (Archéen et Protérozoïque). À partir de l'analyse des simulations, nous 

pouvons affirmer que : 

• La présence d'une anomalie thermique n'est pas suffisante pour créer des bassins avec 

des subsidences de longues durées. Même avec les processus d’érosion/sédimentation, 

la subsidence thermique cesse après 150 Ma ; 

• Les arches et les bassins peuvent émerger de la géométrie des terranes grâce à la 

compensation isostatique verticale et différentielles des terranes archéennes et 

Protérozoïques avec de différentes rhéologies/densités ; 

• Les taux de sédimentation contrôlent la durée de subsidence, généralement elle peut être 

supérieure à 250 Ma dans un contexte intracontinental où il n'y a pas de chaînes de 

montagnes pouvant fournir un apport important de sédiments ; 

• En raison de la distance par rapport aux sources et des changements paléoclimatiques 

(alternance de phases arides et humides), les vitesses de sédimentation peuvent varier 

dans ces grandes zones intracontinentales subsistantes, ce qui entraîne la complexité à 

interpréter les architectures sédimentaires (hiatus, troncatures, onlaps…) même si les 

conditions aux limites sont assez simples et identiques pour les différents bassins ; 

• Un flux sédimentaire latéral (externe) est nécessaire pour couvrir les arches, augmenter 

l'épaisseur et la température des bassins ; 

• La tectonique conduit à des bassins plus asymétriques/complexes et permettent la 

formation d'arches intra-bassins et d'arches bordières secondaires interbassins délimités 

par des failles formant des sous-bassins (grabens). Ils peuvent expliquer les différences 

de remplissage sédimentaire entre les bassins voisins ainsi que la présence de 

discordances dans les dépocentres des sous-bassins ; 

• L'effet de la tectonique est amplifié lorsqu'une anomalie thermique profonde affaiblit la 

lithosphère. 
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Abstract (English) 

Intracratonic basins tend to subside much longer than the timescale predicted by thermal 

relaxation of the lithosphere. Many hypotheses have been suggested to explain their longevity, 

yet few have been tested using quantitative thermo-mechanical numerical models, which 

capture the dynamic of the lithosphere. Tectono-stratigraphic modelling of these basins is 

challenging since they display only few kilometers of subsidence over 1000 of km during period 

that exceed 250 Myr. The simulations are designed to examine the relative role of thermal 

anomaly, tectonics and heterogeneity of the lithosphere on the formation of intracratonic basins.  

Results of the 2D thermo-mechanical numerical simulations demonstrate that heterogeneous 

accretionary continental lithosphere allows forming deeper basins than homogeneous one 

whether an initial thermal anomaly and/or tectonic forcing are applied or not. Heterogeneity of 

the lithosphere therefore explains to first order long-term subsidence and the arches-basins 

architecture of the intracratonic basins. Strong heterogeneous lithospheres indeed maintain 

local isostatic disequilibrium for very long period of time. These lateral variations store 

potential energy that is consumed by differential erosion. For relatively well-accepted 

coefficient of erosion of 10-6 m2/s, the subsidence last longer than 250 Myr. More generally, 

the quantity of sediments available controls the subsidence duration. 

The results also highlight that far field tectonic forcing can account for the second order trend, 

such as acceleration, deceleration and inversion of subsidence rate. Slight changes in far field 

stress during subsidence complexify the tectono-stratigraphic architecture (intra-basin arches, 

sub-basins) of these basins and causes subsidence diachronism, which results in stratigraphic 

unconformities between different neighboring basins.  

Key words: Intracratonic basin, heterogenous accreted mobile belt, isostatic compensation, 

potential subsidence, far field tectonic. 

4 Introduction 

Intracratonic basins also called “cratonic basins”, “interior cratonic basins” or “intracontinental 

sags” have a widespread distribution in the world (see fig. 6 from Heine et al., 2008). They host 

most of fresh water aquifers, minerals resources and hydrocarbons reserves of the world. They 

possess several common features (see Allen and Armitage, 2011 and references therein). They 

are located in the interior of a continent, far from any active margins (stretch or convergent) 
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upon stable continental lithosphere area. They are usually large (>150,00 km2 in area) circular, 

elliptical to oval-shaped in plan and saucer-shaped in cross section. They display a low 

topographic relief and an elevation close to present-day sea level and are filled with continental 

to shallow-water sedimentation. Their structural framework can be characterized by the 

emergence of the association of arches in a broad sense and basins of different kilometric 

wavelengths reactivated through time (de Brito Neves et al., 1984; Perron et al., 2018; Quinlan, 

1987; Seyfert, 1987). Yet, their stretching factors are very low (Armitage and Allen, 2010; 

Allen and Allen, 2013). They experience low subsidence rate (5 to 50 m/Ma) during a long 

period (>250 Myr) characterized by curves with sublinear to gently exponential shape (Figure 

VI-3). 

 

Figure VI-3: Compilation of backstripped tectonic subsidence of intracratonic basins modified 

from literature (Allen and Armitage, 2011; Xie and Heller, 2009) showing periods of 

acceleration (ALRS), deceleration (DLRS) and inversion (ILRS) of the low rate subsidence. 1: 

Ghadames/Berkine Basin, Algeria (Yahi, 1999); 2: Illinois Basin (Bond and Kominz, 1984); 3: 

Michigan Basin (Bond and Kominz, 1984); 4: Williston Basin, North Dakota (Bond and 

Kominz, 1984); 5: Williston Basin, Saskatchewan (Fowler and Nisbet, 1985); 6: Paraná Basin, 

Brazil, CB-3 well (Oliveira, 1987 from Allen and Armitage, 2011); 7: Northeast German Basin 

(Scheck and Bayer, 1999); 8: Southwest Ordos Basin (Xie, 2007 from Xie and Heller, 2006); 

9: Paris Basin (Prijac et al., 2000); 10: West Siberian Basin, Russia, Urengoy well (Saunders 

et al., 2005); 11: West Siberian Basin, Russia, Samotlar-39 well (Saunders et al., 2005); 12: 
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Paraná Basin (Zalan et al., 1990); 13: A1NC43 Al Kufrah basin (Holt et al., 2010); 14: 

Ghadamès basin (Holt et al., 2010); 15: Well W17 in Ahnet Basin (Perron et al., 2018). 

Multiple hypotheses and models have been invoked to explain the dynamics of these slow 

subsiding long-lived intracratonic basins (see Allen and Armitage, 2011 and references therein 

or Hartley and Allen, 1994). The preservation of the low subsidence rate in these basins together 

with the long exponential decay of subsidence with time (Fig. 1) has led many authors to 

propose essentially a thermal decay subsidence origin for these basins (Armitage and Allen, 

2010; Cacace and Scheck-Wenderoth, 2016; Haxby et al., 1976; Holt et al., 2015; Howell and 

van der Pluijm, 1999; McKenzie, 1978; Nunn, 1994; Nunn et al., 1984; Nunn and Sleep, 1984; 

Xie and Heller, 2009). This first order trend of idealized thermal-driven subsidence does not 

explain the long geological time scale (i.e. >250 Myr) over which these basins subside. Indeed, 

the thermal relaxation of the lithosphere should be mainly achieved in 50 Ma (Moretti and 

Froidevaux, 1986). Moreover, it does not explain the alternation of periods of quiescence (i.e. 

deceleration; DLRS: Deceleration of the Low Rate Subsidence), acceleration (ALRS: 

Acceleration of the Low Rate subsidence) and inversion (ILRS: Inversion of the Low Rate 

Subsidence) of the subsidence curves (Figure VI-3). 

Using numerical simulations of lithospheric deformation, the aim of this study is to 

circumscribe what first-order mechanisms can maintain the low long-lived subsidence rate of 

the intracratonic basins through the geological time and what second-order forcing can explain 

local acceleration and inversion of subsidence. Part 2 outlines our working hypothesis before 

describing and justifying the adopted modelling scheme. Part 3 deals with the role of internal 

forcing due to lateral variation in lithology, initial geotherm and tectonics. Part 4 focuses on the 

tectono-stratigraphic architecture of basins and explores the effects of erosion-deposition 

processes and lateral sediment. We finally compare and discuss the subsidence pattern resulting 

from the experiments to previously proposed models. 

5 Working hypotheses 

5.1 Arches and basins in accretionary type lithosphere 

Considering the lithospheres as homogenous simplifies the conceptual models but it might 

sometimes be fundamentally incorrect. Continental lithospheres are indeed the result of a 

complex blocks assembly even in old cratonic areas (de Wit et al., 1992). Intracontinental basins 

(Holt, 2012; Holt et al., 2010, 2015) are often basins formed upon an inherited heterogeneous 
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lithosphere assembled during different former geodynamic events (Cawood, 2009; Cawood et 

al., 2009; Condie, 2007). According to many authors (de Brito Neves et al., 1984; Daly et al., 

2018b; Peace et al., 2018; Perron et al., 2018; Phillips et al., 2018), the basement inherited 

heterogeneities (i.e. terranes) separated by shear zones structures are connected to arches and 

basins features, constraining their shape and architecture through time and tectonic activity. For 

instance, in North Africa, Perron et al. (2018) have described the correlation between the 

zonation of terranes age and the location of arches and basins. 

Accretionary type lithospheres are the result of the collage of different types of lithospheric 

column along vertical shear zones (Figure VI-4) inherited from former orogenies. The tectonic 

orogenic style of the Archean (i.e. ultra-hot orogens) and the Proterozoic (i.e. accretionary to 

collisional orogens) is different from modern orogenies (Cagnard et al., 2011; Chardon et al., 

2009). Accretionary orogens indeed display sub-vertical shear zones rather than mega-thrust 

observed in contemporary orogens. These vertical shear zones are often involved in further 

tectonic events (Audet and Bürgmann, 2011; Peace et al., 2018; Perron et al., 2018). Many 

studies stress the importance of these paleo-weaknesses in the basement on structural 

framework developed later on (Célérier et al., 2005). Whether this inheritance is related to the 

weakness of the shear zone or the rheological contrast between the different blocks remains a 

question in the framework of intracratonic basins. Modelling studies have shown that strength 

contrast are often more likely to be reactivated than fault zones (Ranalli, 2000; Buiter and 

Pfiffner, 2003; Pourhiet et al., 2004; Lafosse et al., 2016; von Tscharner et al., 2016). 

In any cases, the dissimilarities between Archean and the Proterozoic lithospheres that typically 

constitutes cratonic areas is well agreed (Artemieva, 2009; Artemieva and Mooney, 2002; 

Cherepanova and Artemieva, 2015; Djomani et al., 2001; Durrheim and Mooney, 1994; Griffin 

et al., 2003; King, 2005; McKenzie and Priestley, 2008, 2016; Michaut et al., 2009; Nyblade 

and Pollack, 1993; Petitjean et al., 2006; Sleep, 2003, 2005). Difference in thickness, lithology, 

geochemical content, thermal regime and rheological properties have been evidenced using 

both geological and geophysical arguments on all continents such as Africa (Brahimi et al., 

2018; de Wit and Linol, 2015; Fishwick and Bastow, 2011; Hartley et al., 1996; Hartley and 

Allen, 1994), Russia (Cherepanova et al., 2013; Cherepanova and Artemieva, 2015), but also 

in North-America (Caravaca et al., 2017; Daly et al., 2018b; Eaton and Darbyshire, 2010; 

Frederiksen et al., 2013; Gaschnig et al., 2013; Haxby et al., 1976; Lyatsky et al., 2006; Tesauro 

et al., 2015), South-America (Cordani and Teixeira, 2007; Dallmeyer, 1989; Daly et al., 2014, 

2018b; Heilbron et al., 2008; James and Assumpção, 1996; Mantovani et al., 2005; Nunn and 
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Aires, 1988; Padilha et al., 2014; Pérez-Gussinyé et al., 2007; Tozer et al., 2017), and Asia 

(Ratheesh-Kumar et al., 2014). 

 

Figure VI-4: Isostasy equilibrium potential by an Airy calculation between Archean and 

Proterozoic terranes (see Appendix A). 

Another parameter that is often overlooked in study of inheritance at fast deforming plate 

boundaries but might become important in slow deforming plate interiors is the contrast in 

density between Proterozoic lithosphere and Archean ones.  In some case, geophysical data 

(e.g. map of Bouguer anomaly, free air anomaly, isostatic anomaly) point out that theses 

lithospheric columns are still not locally isostatically compensated (Gwavava et al., 1996; 

Perron et al., 2018). Besides, isostatically uncompensated ancient mass excess related to ancient 

rift zone (DeRito et al., 1983) or dense body in the lower crust (Haxby et al., 1976; Howell and 

Pluijm, 1990; Howell and van der Pluijm, 1999; Nunn and Sleep, 1984) are recognized to drive 

subsidence. These buried loads indeed trigger downward surface flexure, which can be filled 

by sediments as long as isostatic compensation mass excess is not achieved. 

These geological and geophysical observations constrained our heterogeneous theorical initial 

lithospheric models (Figure VI-5). We hypothesis that the isostatic disequilibrium inherited 

from the accretion of terranes of different density together with differential erosion/deposition 

could potentially cause the prolonged subsidence of intracratonic basins. Using a simple Airy 

isostatic balance model (e.g. Allen and Allen, 2013), it is possible to calculate the potential of 

space creation in the basins knowing the initial topography. We than compare this driver with 

external forcing such as far field tectonic loading and massive sediment influx. 
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5.2 Initial models setups and boundary conditions 

In order to test whether the isostatic potential is a valid working hypothesis, we use thermo-

mechanical simulations. The model box is 300 deep and 1600 km long. The mesh is refined to 

enable modelling large-scale dynamics over 250 Myr with a resolution of 500 × 500 m at the 

surface in reasonable computing time. This surface resolution allows us to visualize and 

constrain the tectono-stratigraphic architecture of the synthetic basins. 

 

Figure VI-5: a) Inputs models (model P, A and M) of the different simulations with the different 

parameters applied in experiments such as b) the far fields stresses (sinusoidal extension-

compression 40 Myr) and c) the thermal anomaly. d) Yield-strength envelopes of the simulated 

materials calculated for a strain rate of 1.5.10−11 s−1. Δσ represents the deviatoric stress, 
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positive values under extension and negative values under compression. e) Initial temperature 

state of the lithosphere for all the simulations presented. 

The thermal structure of the continental lithosphere is computed for a plate thickness of 120 

km, a thermal age of 400 Myr and a surface radiogenic heat production of 3.10−9 W·kg−1 with 

an exponential decay characteristic depth of 10 km using the formula in Burov and Diament, 

(1995). For the asthenosphere, an adiabatic gradient of 0.5°K/km is used. Temperatures are 

fixed at the top and base of the model at 0 °C and 1400 °C respectively, and a null heat flux is 

assumed on the model lateral boundaries (Figure VI-5e). 

In order to test the effect of thermal subsidence, some of the simulations are affected by a 

thermal anomaly. In that case, the thermal age follows a gaussian distribution from 50 Myr at 

the center of the model to 400 Myr on the borders with a standard deviation of 600 km (Figure 

VI-5c). 

The effect of thermal anomaly is compared to isostatic rebalancing using two types of 

lithospheric columns: Archean and Proterozoic and three initial geometries (Figure VI-5a). 

Model P is composed of a homogenous Proterozoic lithosphere. The model A is defined by a 

homogenous Archean lithosphere. The model M (i.e mixed) is composed of two types of 

lithosphere (Archean cratonic and Proterozoic terranes). The Archean terranes have a 40 km 

crust (20+20 km) and a lighter mantle lithosphere that reflects their high magnesium number. 

The Proterozoic terranes have a 30 km thick crust (15+15 km) and their mantle is of the same 

density as the asthenosphere. The rheological parameters of the Archean and Proterozoic 

lithosphere are consigned in Table 1 and their associated yield-strength envelope in Figure 2d. 

All initial geometries include vertical low friction zones to mimic inherited weak shear zones 

from ancient orogenies. 

Model M is largely inspired from the geodynamic setting of the Saharan platform (Perron et al., 

2018). It consists of three 200 km wide Proterozoic terranes separated by two Archean terranes 

of 100 km in width sandwiched in between two 400 km wide Archean cratons. Model M is 

therefore by no mean in local isostatic equilibrium in the initial conditions. According to initial 

density parameters (Table 1), initial model inputs (Figure VI-4) and an initial topography of 

500 m, we estimated a potential basin filling of around 5 km, when the isostatic compensation 

is achieved (see Appendix A). 
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All the models use a free upper boundary surface subject to constant erosion – sedimentation 

allowing the development of sedimentary basins. These surface processes (erosion and 

sedimentation) are modelled using Culling's, (1965) law with a diffusivity (κe) of 1.10−6 m2·s−1. 

Lateral inflow of sediments follows the same kind of modelling used in Jourdon et al., (2018). 

The vertical velocity at the base of the model is computed in order to compensate for horizontal 

stretching or shortening applied on the vertical sides. 

 

Archean 

upper 

crust 

Archean 

lower 

crust 

Archean 

Mantle 

Proterozoic 

upper crust 

Proterozoic 

lower crust 
Mantle Sediments Units 

Phase 1 2 3 4 5 6 7 
 

Lithology 
wet 

quartz 

strong 

wet 

anorthite 

dry 

olivine 

strong wet 

anorthite 

Strong 

diabase 

dry 

olivine 

wet quartz 

smaller 

friction 

 

n 4 3 3 3 4.7 3 4 
 

A 1.1.10-4 4.0.102 7.0.103 4.0.102 8 7.0.103 1.1.10-4 MPa−n.s−1 

Q 223 356 510 356 485 510 223 kJ·mol−1 

ρ0 2800 2900 3335 2900 2900 3345 2400 kg/m3 

ϕ0 30 30 30 30 30 30 30 ° 

ϕ∞ 10 10 10 10 10 10 10 
 

Co0 20 20 20 20 20 20 20 MPa 

Co∞ 1 1 20 1 10 20 1 MPa 

References G & T R & D G & E R & D M G & E G & T 
 

Table 1: Rheological parameters used in all experiments. References are from R & D (Rybacki 

and Dresen, 2000), G & T (Gleason and Tullis, 1995), G & E (Goetze and Evans, 1979) and M 

(Mackwell et al., 1998). α = 3.10−5 K−1, β = 1.10−11 Pa−1, κe = 5.10−7 m2·s−1, κ = 1.10−6 m2·s−1, 

εmin = 0, εmax = 1, Cp = 1000 J.kg−1·K−1, H = 3.10−9 W·kg−1. 
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The vertical boundaries of the model have null vertical shear stress. Horizontal kinematic 

boundary conditions (Figure VI-5a) are either zero or their integral with time is zero. This 

second type of boundary conditions is used to simulate the effects of far field orogenic cycle. 

A sinusoidal variation with time period of 40 Myr peak to peak has been chosen as 

representative between two shortening events (Figure VI-5b). The amplitude of the signal 0.5 

mm/Myr (1.5e-11s-1) ensures a minimal amount of shortening and stretching per cycle (10 km 

over 1600 km). Appendix B details the equations solved and the method. 

6 Accretionary vs homogeneous lithosphere 

We present eight different experiments grouped in 3 benchmarks aimed at characterizing how 

the presence of a thermal anomaly (3.1), far field tectonic forcing (3.2) and interplay between 

the two (3.3) is recorded in the different type of lithosphere. List of these inputs parameters for 

each models (A, P and M) are referenced in Table 2. 

Models Lithosphere type 

Far field stresses 

(compression/extension 

alternation) 

Thermal 

anomaly 

Lateral 

sediment 

supply 

A1 Homogeneous archean no yes no 

A2 Homogeneous archean yes no no 

P1 Homogeneous proterozoic no yes no 

P2 Homogeneous proterozoic yes no no 

M1 Heterogeneous archean/proterozoic no yes no 

M2 Heterogeneous archean/proterozoic yes no no 

M3 Heterogeneous archean/proterozoic no no no 

M4 Heterogeneous archean/proterozoic yes yes no 

M5 Heterogeneous archean/proterozoic no no yes 

M6 Heterogeneous archean/proterozoic yes yes yes 

Table 2: List of parameters inputs for each models. Notice that duration of each model is 250 

Myrs. 

6.1 Impact of thermal anomaly 

The purpose of this first benchmark (Figure VI-6 and Figure VI-8) is to analyze the behavior 

of the three types of lithosphere, namely Proterozoic (P1), Archean (A1) and accretionary 

lithosphere (M1) in response to an initial thermal perturbation. 

The two first tests (P1 and A1 in Figure VI-6), after 250 Myr, show the same features. That is 

the lack of deep sedimentary basins and an exponential decay in subsidence rate characteristic 

of thermal subsidence. Subsidence actually ceases after 150 Myr for both simulations (see P1 

and A1 in Figure VI-7). On the contrary, the third experiment (M1) displays three bowl-shaped 
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basins created upon the 3 Proterozoic terranes, in our configuration i.e. two peripheral basins 

and one central basin, separated by basement inter-basins arches upon Archean terranes (Figure 

VI-8). The peripheral basins are 200 km width with a thickness of 1.25 km. The central basins 

are thinner (i.e. 0.8 km) and narrower (i.e. 140 km) than peripheral ones. 

During the simulation, due to the relief creation, the uplifted Archean terranes get eroded and 

sediments are deposited upon Proterozoic ones. No sediments are deposited on archean terranes 

(i.e. arches). The basins form topographic lows, which indicates that sedimentation rate does 

not compensate for accommodation space creation. The thickness of the different sedimentary 

layers increases towards the center of the basins and decrease progressively approaching arch 

forming growth strata. Truncations (M1 in Figure VI-9) show that the strata are successively 

eroded by the next deposits. Consequently, the width of the basins remains stable through time. 

 

Figure VI-6: (A1) Model A with thermal anomaly shows no creation of basin. (P1) Model P 

with thermal anomaly shows no creation of basin. (P2) Model P with far field stresses shows 

the creation of eights narrow basins with chaotic stratigraphic architecture near shear zones. 

(A2) Model A with far field stresses displays the formation of four narrow basins with chaotic 

stratigraphic architecture above shear zones. 
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Figure VI-7: Subsidence curves from different models in Figure VI-6 (wells W1-A1 to W1-A2 

and W1-P1 to W1-P2) associated with Figure 1 bibliographic data. The thermal subsidence of 

W1-A1 and W1-A2 is achieved after 150 Myr. The wells P1 and P2 show linear decay 

subsidence with deviations of different amplitude. Boundary conditions: E=Extension and 

C=Compression. 

This first benchmark shows that thermal anomaly below homogenous lithosphere cannot 

explain the long-lived subsidence of intracratonic basins and so whatever are the lithosphere 

characteristics. In less than 50 Myr the equilibrium is reached. On the contrary, with a 

heterogeneous lithosphere, due for instance by the accretion of different ones, with initial 

isostasy disequilibrium, the morphology of the subsidence curve is very weakly bent indicating 

that the potential of subsidence is not over after 250 Myr (see M1 in Figure VI-9). 

6.2 Impact of far field stresses (tectonics) 

The purpose of this second benchmark (Figure VI-6 and Figure VI-8) is to analyze the behavior 

of the three types of lithosphere in response to far field tectonic periodic loading by comparing 

simulation P2, A2 and M2. 

On one the hand, the two homogeneous models display a condensed and a complex 

sedimentation pattern, which does not fit any intracratonic basin geometry. In P2 test (Figure 

VI-6), eight mini-basins (i.e. about 25 km large and 280 to 770 m thick) are created on either 

side of the shear zones except the two central ones. The simulation A2 (Figure VI-6) displays 

four narrow basins (i.e. 50 km large and 280 to 720 m thick) located just above the shear zones. 

In these two runs, the maximum of strain (and of basin thickness) is concentrated on the second 
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shear zone starting from models boundaries. The subsidence curve morphologies show a linear 

decreasing trend with alternation of up and down deviations of amplitude of 110 m for P2 and 

400 m for A2 (Figure VI-7). 

On the other hand, the accretionary lithosphere model M2 display the formation of arches and 

basins, which are very similar at first order to the structural pattern obtained with simulation 

M1 (Figure VI-8). At second order, some dissimilarities are however to be noted. The bottom 

of the bowl-shaped basins of M2 is flat, with angular shape and with some weak undulations 

that does not happen in the purely thermally-driven model. Also, the main basins are formed in 

peripheral positions rather than in the center of the heterogeneous corridor. 

 

Figure VI-8: (M1) Model M with thermal anomaly displays the creation of arches and basins 

architecture (i.e. One central basin and two peripheral basins separated another by arches). 

(M3) Model M without thermal anomaly shows the same architecture of basins than M1 

demonstrating the minor influence of thermal anomaly. (M2) Model M with far filed stresses 

and without thermal anomaly modifies peripheral basins structural architecture by flattening 

the bottom. (M4) Model M with far field stresses and thermal anomaly modifies central basin 

structural architecture (i.e. formation of grabens above the shear zones). 

This second benchmark demonstrates that for similar tectonic loading, homogenous lithosphere 

with faults remain stable, and only allow the formation of small basins at the apex of the shear 

zones. Their subsidence curves display a liner trends with deviations. Heterogeneous 
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lithosphere on the contrary forms basins and arches structures associated to inherited 

lithospheric heterogeneities in buoyancy and rheology that are very similar to the results 

obtained with a thermal anomaly. Yet, far field stresses cause period of acceleration, 

deceleration and inversion of the subsidence (Figure VI-9) that were identified on the data 

displayed in Figure VI-3. It also complexify the architecture of intracratonic basins.  

 

Figure VI-9: Subsidence curves from different models in Figure VI-8 (wells W1-M1 to W1-M4) 

associated with Figure 1 bibliographic data. The subsidence of W1-M1 and W1-M2 is constant 

after 250 Myr (i.e. still have a potential of subsidence). The wells W1-M2 and W1-M4 show 

linear decay subsidence with deviations of different amplitude. Boundary conditions: 

E=Extension and C=Compression. 

6.3 Interplay between tectonic and thermal anomalies 

Having shown that basins and arches only form and last for long in case of heterogeneous 

lithosphere, we now want to evaluate the relative effect of thermal anomaly and far field 

tectonics on the location and rate of subsidence. This third benchmark therefore aims (1) at 

dissociating the role of the thermal anomaly from the role of heterogeneous rock column (2) 

understanding the interplay between tectonic and thermal anomaly using two extra experiments 

M3 and M4. M3 has no thermal anomaly nor tectonic forcing, M4 has a thermal anomaly and 

tectonic forcing. Both models are displayed on Figure VI-8 together with M1 and M2.  

After 250 Myr, M3 simulations show globally the same features as M1 (Figure VI-8). The 

peripheral basins are 200 km width and 1.5 km deep. The central basins are thinner (i.e. 1 km) 

and narrower (i.e. 160 km) than peripheral ones. This singularity can be explained by the larger 
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surface of erosion of the two end Archean blocks (i.e. the source of sediments is more 

important) directly feeding the peripheral basins (i.e. sedimentation rate varying according the 

different basins) and by the thermal doming of the central basin due to the initial thermal 

anomaly. The only difference between these two models is indeed a negative vertical shift of 

125 m of subsidence curve of M3 as compared with M1 (Figure VI-9) that we interpret as initial 

thermal doming in M1. 

After 250 Myr, M2 and M4, the two models subjected to tectonic forcing display more 

differences than M1 and M3 (Figure VI-8). While M2 displays the same overall distribution of 

depocenter as M1 and M3 and only differs by the flat angular base of the basins, M4 displays 

more complex distribution of depocenters. Central and boundary sub-basins are indeed 

separated by inter-basin arches, inter-basin arches secondary arch and intra-basin secondary 

arches. A specific structural framework has been described in Perron et al., (2018). Moreover, 

the maximum of deformation is localized in the peripheral basins for M2 and in the central 

basin, above the initial thermal anomaly, for M4. 

The secondary arches and basins are controlled by steeply dipping conjugated normal faults 

(synthetic and antithetic), forming graben structures located from either side of terranes 

boundaries (and shear zones). These structures are repeatedly activated and re-activated during 

extensions and inversed during compressions due to far field tectonics (i.e. sinusoidal boundary 

conditions).  The comparison between M2 and M4 demonstrates that the thermal anomaly can 

favor initial fault softening and control the strain intensity in the basins that are located above 

them. The subsidence curve morphologies are so impacted and show a linear decreasing trend 

with alternation of up and down deviations of amplitude of 280 m for M2 and 960 m for M4 

(Figure VI-9). The deformation as well as the amplitude of deviations are much more significant 

under the central thermal anomaly. 

The comparison of these four tests (Figure VI-8) clearly indicates that isostatic rebalancing 

between different accreted terranes with heterogenic rheological properties (Archean and 

Proterozoic) can be considered as a driving force for the creation of accommodation. Thermal 

or tectonic forcing are not necessary conditions for the creation of basins and their preservation 

through time. However, while thermal forcing alone does not induce very large changes in the 

distribution and shape of the basins, tectonic forcing is sensitive to the presence of thermal 

anomalies. 
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7 Architecture of basins in accretionary lithosphere 

7.1 Covering the arches: Impact lateral sediment supply 

None of the simulations presented so far have reached solutions in which sediments cover 

arches, as it is the case in the sub-Saharan platform (Perron et al., 2018). As surface processes 

permit the local isostatic reequilibration and controls its (M3 in Figure VI-8), we expect that 

variation in lateral (out-of-plane) sediment supply implemented as a source term might also 

affect the subsidence of the basins and arches. Thus, we compare the basins obtained with a 

heterogeneous lithosphere (model M) without lateral sediment supply (i.e. only local sediment 

supply by diffusive erosion/deposition processes; M3 in Figure VI-8) to a model with lateral 

sediment supply (M5 in Figure VI-10; see also Figure VI-11). The simulation M5 consists of 

bringing a constant lateral sedimentation flux on the external edges of the model (expected in a 

3D model with the possibility of many sources). The sediments infill the accommodation 

created. 

After 250 Myr, we observe the same configuration than the last simulations (M1 and M3 in 

Figure VI-8). The peripheral basins are characterized by a thickness of 3 km and the central 

basin by a thickness of 2.75 km. Contrary to all the previous models, we observe the presence 

of sediment on arches about 1.5 km thick. The width of the peripheral basins is about 350 km 

and 300 km for the central one (from the edge to the arches centers). The morphology of the 

curves displays an exponential decay trend and almost reach equilibrium after 250 Myr (Figure 

VI-10C). They show a differential subsidence between peripheral (W1), central basins (W3) 

and arches (W2). The average rate of subsidence is 12 m/Myr in peripheral basins (W1), 11 

m/Myr in the central basin (W3) and 6 m/Myr on arches (W2). 

During the simulation, the Proterozoic terranes and the Archean terranes are differentially 

subsiding one relative to each other. The addition of lateral sediment flux increases the 

temperature of the basins (<50 °C in simulations Figure VI-8 and >100°C in Figure VI-10A). 

We observe an unexpected rise up of the isotherms under Proterozoic terranes (i.e. basins) and 

a go down under Archean terranes (i.e. arches). It is caused by the slow burial of the radiogenic 

heat production of the basement that follows the relative uplift of the Archean terranes regarding 

the Proterozoic terranes (Figure VI-11). 
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Figure VI-10: (A) Tectono-stratigraphic basins architecture and heat production of Model M5 

without thermal anomaly shows stratigraphic lapout (i.e. onlap, truncatures and thickness 

variations) features when approaching the arches; (B) Stratigraphy and hiatus repartition 

between the wells W1-M5 to W3-M5; (C) Subsidence curves of well W1-M5 to W3-M5 are 

characterized by exponential decay shape. 
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Figure VI-11: Comparison between model M3 and M5 showing increase of the temperature 

under the basins with lateral sediment supply due to heat production of the basement. 

The analysis of these two simulations (M3 and M5) shows the importance of additional 

sediment supply rate as a forcing factor on the dynamics and filling of basins (loading). In our 

model these sources are lateral since the modeling is done in 2D. This parameter permits to 

rapidly reach the isostatic compensation by increasing subsidence rate. It also brings sediment 

on arches and enlarges the width of the basins. The high intensity of the external sediment flux 

reduces the duration of subsidence and also increases the thermal of the basin. The tectono-

stratigraphic architecture of arches and basins is also well expressed. 

7.2 More complex models 

We have now circumscribed the first-order trend controlling the low long-lived subsidence rate 

and the architecture (arches and basins) of the intracratonic basins. Besides, the second-order 

trend featured by deviations with periods of acceleration, deceleration and inversion of the low 

subsidence rate can be explained by far field stresses alternating compressional/extensional 

pulses (i.e. changes in tectonic processes occurring at the adjacent plate margins). We now want 

to compare the results at smaller scale by comparing the internal architecture of M5, a pure 

isostatic model with lateral sedimentary influx, to M6, the same model submitted to both 

thermal anomaly and tectonic forcing.  
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In M5, the association of arches and basins (Figure VI-10) is evidenced by divergent onlaps 

(i.e. growth strata), truncatures and reduce thickness when approaching the arches (i.e. Archean 

terranes). The stratigraphic succession is featured by many hiatuses that can be followed on the 

model at the local scale (one basin) and the regional scale (three basins). The unconformities 

are particularly well expressed on arches where some entire stratigraphic units are missing and 

amalgamated. Besides, some stratigraphic units are present in central basin and not in peripheral 

basins. 

Simulation M6 (Figure VI-12) displays the same sub-basins and sub-arches than M4, yet with 

more sediments due to the lateral sediment supply. The left peripheral basin and central basin 

are both characterized by a thickness of 4.8 km while the right peripheral is slightly less thick 

(4.25 km). We observe the presence of sediments on arches about 2.2 km. The maximum of 

thickness is in the central boundary basin where sediments reach nearly 5 km. The structural 

pattern similar to M4 localizes the strain in this latter fault related unit. The fault softening that 

results from the initial thermal perturbation gives its asymmetrical shape to the central basin. 

The basins display divergent onlaps (i.e. growth strata), truncatures and reduction in thickness 

when approaching the different arches (i.e. inter-basins or intra-basins on Figure VI-12A). The 

stratigraphic succession features many unconformities. Some entire stratigraphic units are 

missing in the sub-basins, intra-basin arches and inter-basin secondary boundary arches while 

present in others (Figure VI-12B). The minimum of thickness and the maximum of 

amalgamated erosional surfaces are detected on the inter-basin principal arches (W5 in Figure 

VI-12). In the central boundary basins (W2 in Figure VI-12A), unconformities are observed in 

the depocenter (maximum thickness recorded in the model) where a continuous conformable 

stratigraphy would have been expected. 

7.3 Basins evolution: key to deciphering past geodynamics 

The far field stresses associated with thermal perturbation parameters bring specificities on the 

tectono-stratigraphic architecture of the basins (Figure VI-12). The arch and basin structural 

first-order pattern (Figure VI-10) is remodeled by the formation of grabens near terranes 

boundaries during extension, positively inverted during compression. It is defined by sub-

basins, intra-basin arches and inter-basin secondary boundary arches a characteristic identified 

in the Saharan intracratonic basins (Perron et al., 2018). 
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In our case, the lithospheric heterogeneities associated with newly created faults on weaknesses 

zones by far field stresses control the compartmentalization and the tectonic kinematics. This 

individualization of the different structural units and the disparate propagation of the 

deformation through them explain the diachronism of the subsidence patterns (i.e. acceleration, 

deceleration and inversion) and the stratigraphic succession architecture between neighboring 

basins. For instance, we have highlighted that the layers present in the footwall can be eroded 

in the hanging wall where the maximum of thickness is usually expected. 

First of all, the analysis of 1D well burial history shows that, the initial rate of subsidence in the 

center of the basins is greater in models with tectonics (W1-M6, 4 and 6 on Figure VI-12C) 

than in models without far field tectonics (W1-M5 and 3 on Figure VI-10C). Nevertheless, a 

clear tectonic signal is only recorded in the sedimentary architecture of the central basin at the 

onset of the models with tectonics. The peripheral basins do subside faster, but they do not 

display large temporal oscillations with 40 Myr cycle before 80 Myr. We infer that this delay 

reflects the reduced strength of the lithosphere at the apex of the thermal anomaly at the onset 

of the model. This thermal signal disappears after 80 Myr and tectonic deformation become 

distributed across the three basins. 

This suggest that variations of the sedimentary record of tectonic oscillation in subsidence rate 

is a good indicator for lateral variation in strength of the lithosphere and that whether these 

variations are stable or not in time can be interpreted as local thermal (non-stationary) or 

chemical (stationary) weakening of the lithosphere. 

Looking in more details at the sedimentary record of the far field tectonic sinusoidal loading, it 

is clear that the subsidence curve response is 1) not always sinusoidal and 2) different whether 

wells are located on arches (W5-M6, Figure VI-12A), intra-basin arches (W3-M6, Figure 

VI-12A), central boundary basins (W2-M6, Figure VI-12A), central basins (W4-M6, Figure 

VI-12A) or peripheral basins (W1-M6 and W6, Figure VI-12A). 

First of all, tectonic loading sedimentary record is stronger in the central boundary basins (W2-

M6, Figure VI-12C) than in any other well. To first order, these basins subside rapidly during 

extension and uplift in lesser amount during compression. Yet, in the details the phase of 

subsidence last longer than the phase of uplift. Indeed, subsidence starts during the slowing 

down of far field compression and last to the very end of the extension cycle. It is easier to 

understand how the system behaves by studying the effect of one tectonic cycle (see 

supplementary materials). 
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Figure VI-12: (A) Model M with far field tectonics, lateral sediment flux and thermal anomaly 

shows a complexification of the basins and arches architecture within Figure VI-10 with the 
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set-up of inter-basins boundary secondary arches and intra-basin secondary arches. The strain 

is concentrated in the central basin with creation of grabens above shear zones (i.e. limits of 

terranes); (B) Stratigraphy and hiatus repartition between the wells W1-M6 to W5-M6; (C) 

Subsidence curves of wells W1-M6 to W6-M6 displays an exponential decay with deviations of 

different amplitude depending on their localization (i.e. near maximum strain zones or not). 

Several type of diachronicity of the oscillations (antiphase, out of phase) are observed 

depending on the localisation and propagation of deformation. Boundary conditions: 

E=Extension and C=Compression. 

The peripheral basins display very short periods of uplift, which corresponds to 1) maximum 

subsidence rate in the central boundary basins, 2) a marked increase in subsidence rate in the 

central basin, 3) maximum uplift of arches and 4) onset of subsidence in the central boundary 

basins. This short period of time corresponds to the period during which extension rate increases 

at the boundary. During that time period, the system behaves like a rift bordered by the external 

normal faults of the central boundary basins and where the arches and the peripheral basins 

behave like uplifting rift shoulder. As extension decelerates at the boundary, the central 

boundary basins (W2-M6) continue to subside but until extension ceased but the outer part of 

the system relaxes as shown by the subsiding trend of the arches (W5-M6) and the peripheral 

basins (W1-M6). The central basin (W4-M6) continues to subside at yet smaller rate than the 

central boundary basin (W2-M6), which highlights that the conjugate normal faults are active. 

At the onset of compression, the peripheral basin (W1-M6) subsidence accelerates while the 

central basin (W4-M6) and the central boundary basin (W2-M6) mark a rapid uplift. This 

corresponds to a phase of tectonic inversion of the principal boundary faults. Yet, at the peak 

of compression, central basin and the central boundary basins start to subside together with the 

peripheral basins marking the end of tectonic activity on faults for the tectonic cycle. During 

that phase the system in buckling down as a whole. 

To summarize, the principal faults that bounds the central boundary basins are active through 

all the extensional phase, whatever the rate, but the activity of the conjugate faults starts only 

towards the peak of extensional rate. During compression, principal boundary faults are only 

active with the acceleration of shortening. After the peak of compression, the system is locked 

and responds by downward buckling of the whole lithosphere. This asymmetric behavior 

between extension and compression phase is well explained by the fact that the lithosphere is 

stronger in compression than in extension (Brace and Kohlstedt, 1980). 
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These delays in inversion of the fault system versus global buckling may explain why during 

the a same tectonic event, both extensional or compressional structures can be locally identified 

in the different sub-basins (Perron et al., 2018). 

8 Discussion 

Low rate and long duration subsidences are an intriguing geological feature often described in 

the literature; several studies have attempted to explicate the first order mechanism of 

subsidence but generally without considering their particular architecture and intrinsic 

characteristics. Apart classical thermal cooling subsidence source after conventional phase of 

extension (McKenzie, 1978) suggested in different areas (Korsch et al., 1988; Lüning et al., 

1999; de Oliveira and Mohriak, 2003; Thomas et al., 1999) or alternatively after a phase of 

compression (McKenzie and Priestley, 2016), some authors invoke thermal relaxation process 

by stretching of rifted basement at slow strain rate over long period of time (Allen and Armitage, 

2011; Armitage and Allen, 2010; Cacace and Scheck-Wenderoth, 2016), by cooling and 

thickening of the lithosphere (Holt et al., 2010, 2015), by mantle delamination (Avigad and 

Gvirtzman, 2009), by phase changes (Baird et al., 1995; Eaton and Darbyshire, 2010; Gac et 

al., 2013; Hamdani et al., 1991; Kaus et al., 2005; Naimark and Ismail-Zadeh, 1995).  

Yet, the cratonic studied area are often considered as “old”, “buoyant” “thick”, “cold” and 

“strong” lithosphere (Griffin et al., 2003; King, 2005; McKenzie and Priestley, 2008, 2016; 

Michaut et al., 2009; Nyblade and Pollack, 1993; Sleep, 2003, 2005) where thermal activity is 

reduced. With the current lithosphere characteristic, thermal anomalies allow indeed to explain 

lithosphere thinning during the rifting and then thickening (for aborted rift as for passive margin 

after the opening). Besides, our models show that thermal anomalies do not destabilize strong 

continental lithospheres (A1 and A2 in Figure VI-6) and that thermal subsidence is relaxed 

rapidly (see A1 and A2 in Figure VI-8), in less than 50 Myr as expected by computing the 

thermal relaxation of a lithosphere (see for instance Turcotte and Schubert, 2014). More over 

the existence of geological evidences for mantle flux, delamination, plume, thermal anomaly, 

rifting zone are not always obvious.  

Here we find that contrast in rheologies and densities of Archean and Proterozoic terranes (all 

M models) are actually necessary and sufficient to drive slow long-term subsidence observed 

in intracratonic basins. The values of subsidence rate in our models (Figure VI-9) are coherent 

with the range of data (Figure VI-3) provided by the literature (Allen and Armitage, 2011; Xie 
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and Heller, 2009). Although, our subsidence curves can be described approximately by 

exponential decay, the diffusive process that causes the decay is the rate of basin infilling. High 

sedimentary rates cause a faster decay (Figure VI-10C). 

In our models, the strength of the continental lithosphere keeps its integrity slowing down the 

isostatic compensation progression. The local differential strength between the terranes permits 

localized vertical movements and basins creation either by flexure or when far field loading 

occurs by buckling (in compression) or normal faulting (in extension). In the first case, feed 

and the preservation of subsidence are due to isostasy by coupling erosion/denudation of 

uplifted reliefs and deposition in depressions (Avouac and Burov, 1996; Moretti and Turcotte, 

1985). In the second case, weaker lithosphere uplift by buckling during compressive events 

while rheological interfaces between terranes allows localized displacement to occur along 

normal faults during extensional events. Faults are found to play a more important role when 

the lithosphere is thermally weakened. 

Various authors have suggested that far field stresses and intra-plate effects impact intra-

cratonic basins (Klein and Hsui, 1987; Lambeck, 1983; Xie and Heller, 2009) more than can be 

reasonably accounted for by eustatic sea-level changes (Vail et al., 1977). Here we show that 

far field stresses forcing indeed allow explaining the second order trend characterized by the 

subsidence deviations pattern and complexification of the structural framework. The amplitude 

of variation in subsidence rate related to tectonic in our models (Figure VI-9) is coherent with 

the data range (Figure VI-3) provided by the literature (Allen and Armitage, 2011; Xie and 

Heller, 2009). 

The different behavior of arches, sub-basins and sub-arches submitted to far field stress 

provides an alternative explanation to variation in dynamic topography (Burgess et al., 1997; 

Coakley and Gurnis, 1995) for the diachronicity of large regional unconformities documented 

in North America with the Michigan-Illinois basins (Allen and Armitage, 2011; Sloss, 1963; 

Watts et al., 2018), in South-America with the Parnaiba basin (Daly et al., 2018b; Watts et al., 

2018) and in North Africa with peri-Hoggar basins (Beuf et al., 1971; Eschard et al., 2010; 

Perron et al., 2018). 

9 Conclusions  

Through a 2D thermo-mechanical modelling, we have applied basic internal (thermal anomaly, 

far field stresses) and external forcing factors (surface erosion/deposition and constant 
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sedimentation rate) to homogenous lithospheres and accretionary lithospheres (Archean and 

Proterozoic). From the analysis of the simulations, we can state that: 

1. The presence of a thermal anomaly is not sufficient to create long-lived basins. Even 

with erosion sedimentation processes, thermal subsidence ceases after 150 Myr. 

2. Arches and Basins can emerge from the amplification of the geometry of the terranes 

through vertical isostatic compensation of Archean/Proterozoic terranes (columns) with 

different rheologies/densities. 

3. The sedimentation rates control the duration of subsidence, typically over 250 Myr in 

intra-continental context where there are no mountain ranges to provide large sediment 

supply. 

4. Due to distance to the sources and to paleoclimatic changing (i.e. alternating arid and 

humid phases), the sedimentation rates may vary in these kinds of large subsiding 

intracontinental areas resulting in complex to interpret sedimentary features (time gap, 

truncation, onlap…) even if the boundary conditions are rather simple and the same for 

the various basins. 

5. Lateral sedimentary influx is necessary to cover the arches and sufficient to both 

increase the thickness of basin and rise the temperature. 

6. Far field stresses lead to more asymmetric basins and permit the formation intra-basins 

arches and inter-basin boundary secondary arches delimited by fault-related sub-basins 

(grabens). They can explain dissimilarities of sedimentary fillings between neighboring 

basins as well as the presence of unconformities in the deeper part of the basins. 

7. The effect of tectonic is amplified when a deep-seated thermal anomaly weakens the 

lithosphere. 

Taken as keys to interpret real dataset, we believe that the simulations presented here are simple 

but realistic enough to constitute a step forward in tectono-stratigraphic trap prediction and heat 

flux analysis in intracratonic basins. 

10 Appendix A: Calculation of isostatic potential between Archean and 

Proterozoic terranes (cf. Figure VI-4) 

sediments thickness basin = topography (t) × ρarche × arche sediments thickness 

(1) Initial state (no sedimentation on arches) with t < 500 m, hsa=0, hsb=0 
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(h6 - h0 + hsb)×ρ6 + h5×ρ5 + h4×ρ4 + h0×ρs + hsb×ρs 

= (h1 - hsb)×ρ1 +h2×ρ2 + h3×ρ3 +hsb×ρ6 

= h1×ρ1 + h2×ρ2 + h3×ρ3 + hsa×ρs 

= h1×ρ1 + h2×ρ2 + h3×ρ3 + hsa×ρs 

hsa×ρs + Pa = hsb×ρs + Pp - t×ρ6 - hsb + hsa×ρ5 

Pa - Pp = t0×ρ6 

(2) Initial state (basins filling) with t=0 

Pa - Pp = -hsb×ρs + hsb×ρ6 - hsa×ρ6 + hsa×ρ5 - t×ρ6 

positive constant = hsb×(ρ6 - ρ5) - hsa×(ρ6 - ρ5) - t×ρ6 

positive constant = (hsb - hsa)×(ρ6 - ρ5) 

(Pp - Pa) / (ρ6 - ρ5) = hsb - hsa - (t×ρ6) / (ρ6 - ρ5) 

(t0×ρ6) / (ρ6 - ρ5) = (500×3345) / (3345 - 2400) = 1500 m 

(3) Final state (potential basins filling) with t=final 

h = (Pa - Pp) / (2×ρ6 - ρ1 - ρs) = 7550 / (2×3345 - 2800 - 2400) ~ 5 Km 

11 Appendix B: Numerical method. 

In order to study the influence of accreted lithospheric heterogeneities on the architecture and 

the low long-lived subsidence of intracratonic basins, we use the thermo-mechanical numerical 

code pTatin (May et al., 2014) in its 2D version (Jourdon et al., 2017). The code relies on PETSc 

library Balay et al., (2017) to solve conservation of momentum  

 

for an incompressible fluid flow described by its velocity v such as 

, 

using high order Q2P1 finite elements in parallel. This permits to model accurately the 

topography with a free surface. In order to avoid deformation of the mesh the lithologies are 
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tracked with ALE marker in cell approach (May et al., 2015). Markers are used to carry 

lithological inform and adjust the density with temperature T and pressure P using Boussinesq 

approximation  

, 

and to compute the stress and deformation rate. The fluid/rocks typically deform by dislocation 

creep  

 

where the viscosity depends on temperature T, lithology (A, n, Q see Table 1) and strain rate (

). However, when viscous stress exceeds brittle frictional brittle strength  

or maximum plastic strength  the effective viscosity is adjusted to keep the stress on the yield 

cap  following 

. 

Conservation of momentum is coupled with conservation of heat  

.  

The heat diffusivity , heat production H and heat capacity Cp do not vary for the different 

simulations. 

Sediment transport is simulated using advection diffusion of the topography in 1D 

 

with a source term S, which permits out-of-plane sediments inflow and outflow. Details about 

the implementation and tracking of the stratigraphy may be found in Jourdon et al., (2018). 
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1 Summary and objectives 

On the one hand, we have proposed a conceptual geological model integrating both the 

substrates nature and the tectono-sedimentologic architecture of the Arches-Basins (Chapter 

IV). On the second hand, we have developed a lithospheric thermomechanical numerical model 

testing several models with homogenous and heterogeneous lithospheres to forcing factors such 

as tectonics, sediment flux and thermal anomaly (Chapter VI). We have extracted several results 

explaining both the first and second order control of intracratonic basins as well as their arches 

and basins architecture. 

This ending chapter attempts to link these two parts by calibrating and comparing geological 

data of peri-Hoggar Basins with our forward modelling results. 

The different objectives of this chapter are the following: 

• Application of the lithospheric thermo-mechanical numerical model to peri-Hoggar 

Basins; 

• Comparison between the stratigraphic architecture, the thermal and the subsidence 

curves of forward modelling with geological data of peri-Hoggar Basins; 

• Classification of the different peri-Hoggar Basins according to their factors forcing 

dominance (with numerical models standards). 

2 Article in preparation 

Abstract (Français) 

La modélisation numérique thermomécanique d’échelle lithosphérique peut être utilisée comme 

un outil efficace pour identifier les différents forçages de la mise en place et du développement 

des bassins intracratoniques. En raison de leurs longues longueurs d'ondes et de leurs positions 

particulières dans des lithosphères stables à longue durée de vie, des paramètres inhabituels 

peuvent être prédominants contrairement à d'autres bassins considérés comme plus classiques 

(e.g. bassin d'avant-pays, rifts, marge passive…). 

La comparaison des résultats de la modélisation avec les paléo-températures, les courbes de 

subsidences et l'architecture tectono-sédimentaire observées des bassins péri-Hoggar permet de 

mieux comprendre l'origine des mécanismes de subsidence et peut contraindre les forçages de 
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ces bassins intracratoniques et le lien avec les événements géodynamique. Une classification 

est proposée montrant les différents types de bassins intracratoniques basée sur les géométries 

et leur ressemblance architecturale des différents bassins péri-Hoggar. 

Les principaux résultats de l’article : 

La comparaison des résultats de la modélisation avec les données géologiques des bassins péri-

Hoggar (Plateforme Saharienne) a permis de mettre en évidence la viabilité de la cohérence du 

modèle géologique conceptuel proposé (Perron et al., 2018) et l'hypothèse d'un déséquilibre 

isostatique entre les différentes terranes accrétées composant le substrat. La variabilité de 

densité dans la lithosphère, héritée des paléo-orogénèses, crée des colonnes non compensées 

qui seront conservées au fil du temps. L’équilibre entre ces entités sera atteint après une très 

longue durée. 

Les principaux résultats de cette étude sont les suivants : 

• Le modèle numérique thermomécanique mis au point est cohérent et viable pour 

expliquer la faible subsidence de longue durée (premier ordre) et les déviations 

associées du signal (second ordre) des bassins péri-Hoggar ; 

• Les hétérogénéités de densité lithosphérique entre les terranes accrétées archéennes et 

protérozoïques contrôlent l’architecture en Arches et Basins ; 

• La comparaison des données géologiques avec les modèles thermomécaniques 

numériques permet de classer chaque bassin péri-Hoggar en fonction de leurs forçages 

(à dominance tectonique, à dominance anomalie thermique et/ou à dominance flux 

sédimentaire externe). Ils sont définis par leur architecture (c'est-à-dire en forme de 

synclinal ou forme complexe), le ramollissement des failles/terranes et leur remplissage 

(c'est-à-dire, affamés ou comblés) ; 

• Un très faible taux de contrainte (0,5 km/Ma) peut être transmis loin (plus de 1600 km) 

à l’intérieur du modèle et provoquer et/ou réactiver des failles, ce qui est cohérent avec 

la propagation des contraintes intraplaques lointaines mise en évidence par certains 

auteurs (Perron et al., 2018; Ziegler et al., 1995) ; 

• Le diachronisme et les discordances entre les différents bassins péri-Hoggar sont bien 

expliqués par la propagation hétérogène de la déformation à travers le modèle. 

En raison de la modélisation 2D, le flux de sédiments (c’est-à-dire l’apport de sédiments en 

amont) doit être simulé en apportant des sédiments externes aux extrémités des modèles. Par 
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ailleurs, la composante décrochante dans les mégas zones de cisaillement héritées, identifiée 

dans la plateforme saharienne, doit également être prise en compte (Haddoum et al., 2001, 2013; 

Perron et al., 2018; Zazoun, 2001, 2008). Par conséquent, la modélisation 3D devrait constituer 

une perspective intéressante afin de mieux contraindre ces bassins intracratoniques. 

Abstract (English) 

Lithospheric thermo-mechanical numerical modelling can be used as an efficient tool for 

deciphering different forcing factors of intracratonic basins. Because of their long wavelength 

feature and their particular position in long-lived stable lithosphere, unusual parameters can be 

predominant contrary to other classical basins (e.g. foreland basin, rifts, passive margin…). 

Comparison of paleo-temperature, subsidence patterns and tectono-sedimentary architecture 

from the peri-Hoggar Basin with modeling results with provides new insight into the origin of 

the mechanism of subsidence and may constrains the forcing factors of these intracratonic 

basins, and the link with geodynamic events. A classification is proposed showing the different 

trends in regard with their geometries and architecture likeness with the peri-Hoggar Basins. 

3 Introduction 

The Paleozoic basins of the Northern part of the paleo-continent Gondwana, and more 

specifically the of Sahara platform, correspond to a series of syn-sedimentary synclinal with 

typical large wavelength of 75 to 620 km (sub-basins), strongly influenced by the structural 

inheritage of paleo-orogenies (Beuf et al., 1971; Coward and Ries, 2003; Perron et al., 2018). 

These basins are generally separated by structural highs of low amplitude (frequently named in 

the literature “arch”, “moles”, “ridges”, “highs”, “swells”) which were episodically reactivated 

during all Paleozoic and which are controlling the sedimentary architecture, and therefore their 

related specific petroleum system (Eschard et al., 2010; Perron et al., 2018). They represent the 

most prolific petroleum systems of the world (Boote et al., 1998; Eschard et al., 2010; 

Macgregor, 1996; MacGregor et al., 1998). They are classified as intracratonic basins (i.e. sag 

basin) and they are often referred as intercratonic or intercontinental basins (Holt, 2012; Holt 

et al., 2010). 

The structural framework result from the subduction, accretion and collision of continental 

cratonic and oceanic island arc terranes/cores of various age and rheologies through a complex 
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geological history such as the Eburnean, the Kibaran and the Pan-African orogenic cycle 

(Bertrand and Caby, 1978; Black et al., 1994; Caby, 2003; Liégeois, 2019). 

Perron et al., (2018) highlighted the influence of basement heterogeneity and anisotropy on the 

tectono-sedimentary architecture of the basins and arches in the Reggane, Ahnet, Mouydir and 

Illizi basins (i.e. North Hoggar area) through a multidisciplinary integrated approach. They have 

been exposed the specific distribution of the Paleozoic arches and basins framework of the 

Sahara with the different zonations of the accreted basement terranes (archean, paleo-

proterozoic and proterozoic). A conceptual geological model coupling the terranes natures and 

the tectono-sedimentary architecture was proposed, where the arches are preferentially situated 

upon Archean or Paleoproterozoic terranes and basins depocenter upon Meso-Neoproterozoic 

terranes. 

Due to their sedimentary oval-bowl shaped arrangement around the large Saharan massifs, 

synsedimentary syncline geometry, low rate subsidence preserved over a long period, these 

basins cannot be linked to a classical rifting process, nor to a late-orogenic gravitational collapse 

process as documented in the literature (Morley et al., 1990; Pinet and Colletta, 1990; Séguret 

et al., 1989). The understanding of the geodynamic and structural evolution of these peri-

Hoggar basins therefore requires a better knowledge of the dynamics of the lithosphere, on a 

regional scale. 

Yet the process or processes that form these basins is still a matter of debate within the literature 

(Allen and Armitage, 2011). Especially, the difficulty is to explain their long-living polyhistory 

basin-fill feature. Owing to their extended history they are often formed by a combination of 

mechanisms. Besides, the forcing factors controlling the structural and stratigraphic framework 

related to arches-basins architecture is often misunderstood. 

In Perron et al., (submitted), a numerical thermo-mechanical model was proposed to explain 

the mechanism of formation and evolution of these intracratonic basins by both reconciling 

their most enigmatic features such as the arches and basins architecture and the low-long-lived 

subsidence rate as well as the subsidence deviations patterns. Where for explaining subsidence 

source in our area, some modelling work has invoked a thermal cooling and thickening of the 

lithosphere (Holt et al., 2010) without constraining their architecture, the model proposed by 

Perron et al., (submitted) shows that an initial thermal anomaly is not necessary. Indeed, the 

hypothesis of an initial uncompensated isostatic heterogenic lithosphere inherited from accreted 

terranes with different densities column associated with basic erosion and deposition processes 
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and sedimentation flux can control the subsidence pattern of these basins. This lateral variation 

of lithospheric density will play a determining role in the structural evolution of the Pan-African 

mobile zone, in particular in the peri-Hoggar Basins. 

The aim of this study is to decipher and better constraints the different processes of forcing 

factors controlling the peri-Hoggar basins through the Paleozoic time. For this purpose, we 

compare the architecture, the subsidence and the thermal pattern of the numerical thermo-

mechanical model parametrized and tested in Perron et al., (submitted) with geological data 

compiled in the peri-Hoggar basins. For each peri-Hoggar Basins, a better-fit model with their 

geological data (architecture, morphologies, thermal and subsidence history) is proposed 

establishing a basin classification based on their forcing parameters combinations. We discuss 

the probable origins of these forcing factors such as far field stresses (plate boundary 

paleogeographic reconstruction), thermal anomaly (magmatic events), sediments flux (climato-

eustatism) and their coherence and viability with the case of each peri-Hoggar Basins during 

the Paleozoic. 

4 Geological and geophysical settings 

The intracratonic basins of the Paleozoic Saharan platform (i.e. peri-Hoggar Basins) is 

characterized by an association of arches (anticlines) and basins (synclines) of different 

wavelengths from 75 to 620 km (Figure VII-1, Figure VII-2 and Figure VII-3). Stratigraphic 

hiatus, lateral facies variation (i.e. shallowing facies), thinning, wedges, erosion and 

condensation of series are highlighted when approaching the arches (Perron et al., 2018; Figure 

VII-2). These tectono-sedimentary structures are documented and dated by many studies (see 

Table 3 and Figure VII-1 for localization of different cross sections). It attests that the arches 

are representing structural highs that were preserved through time (i.e. slowly uplifting). The 

geometries of the intracratonic basins are featured by large circular, elliptical to oval-shaped in 

plan and saucer-shaped in cross section. They are characterized by low (5 to 50 m/Ma) and long 

periods of subsidence (>250 Ma) alternating periods of quiescence, acceleration and inversion 

due to compressional/extensional kinematics (Figure VII-4A). These periods are linked to 

regional tectonic pulses (e.g. Caledonian compression, Hercynian orogeny) or climate changes 

(e.g. Late Ordovician deglaciation featured by isostatic rebound) (Perron et al., 2018). The 

subsidence curves morphologies between the different basins can be in phase (i.e. synchronous 

curves), in antiphase and out phase (i.e. shifted curves) with these phases (Figure VII-4A). The 
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burial constrains the paleo-temperature history and so the maturity of the petroleum systems of 

these basins (Figure VII-4B). 

 

Figure VII-1: Satellite images of the Paleozoic peri-Hoggar basins (Landsat 7 ETM + from 

USGS database: https://earthexplorer.usgs.gov/) associated with the georeferenced different 

cross sections compiled from bibliography. See also Table 3 for reference. 
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Figure VII-2: Geological map of the Paleozoic peri-Hoggar Basins (North Saharan Platform; 

North Gondwana) modified from Perron et al., (2018) showing evidence of erosion, hiatus, 
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thickness variations, paleocurrent directions, thermo-orogenic events and igneous activity data 

(https://doi.org/10.5194/se-9-1239-2018-supplement) compiled from bibliography (see Figure 

VII-1). Terrane names and abbreviations: Tassendjanet (Tas), Tassendjanet nappe (Tas n.), 

Ahnet (Ah), In Ouzzal Granulitic Unit (IOGU), Iforas Granulitic Unit (UGI), Kidal (Ki), 

Timétrine (Tim), Tilemsi (Til), Tirek (Tir), In Zaouatene (Za), In Teidini (It), Iskel (Isk), Tefedest 

(Te), Laouni (La), Azrou-n-Fad (Az), Egéré-Aleskod (Eg-Al), Serouenout (Se), Tazat (Ta), 

Issalane (Is), Assodé (As), Barghot (Ba), Tchilit (Tch), Aouzegueur (Ao), Edembo (Ed), and 

Djanet (Dj). Shear zone and lineament names and abbreviations: west Ouzzal shear zone 

(WOSZ), east Ouzzal shear zone (EOSZ), Raghane shear zone (RSZ), Tin Amali shear zone 

(TASZ), 4◦100 shear zone, 4◦500 shear zone, and 8◦300 shear zone. A: Localization of cross 

section of Figure VII-3. 1: Figure VII-5; 2:Figure VII-11; 3: Figure VII-12; 4:Figure VII-13; 

5: Figure VII-14. 

The beginning of subsidence of these basins (i.e. Early Cambrian around 530 and 500 Ma) starts 

at the end of the Pan-African orogeny and was followed by an orogenic collapse (Ahmed and 

Moussine-Pouchkine, 1987; Boote et al., 1998; Bumby and Guiraud, 2005; Caby et al., 1985; 

Coward and Ries, 2003; Djellit et al., 2002; Fabre, 2005; Fabre et al., 1988). The whole was 

uplifted and peneplaned forming a wide polygenic planar “Infratassilian” surface unconformity 

(also called Pan-African unconformity) setting the place of a relatively typical stable cratonic 

platform tectono-stratigraphic history (Bennacef et al., 1971; Beuf et al., 1968b, 1971; 

Boissonnas et al., 1969; Fabre, 1988, 2005). The persistence of some low paleo-reliefs is 

identified preferentially localized on arches area (Beuf et al., 1971). 

The two major tectonic events during the Phanerozoic (Hercynian and Late Eocene swell) are 

at the origin of the exhumation and the tilting of the Paleozoic series actually outcropping in 

the Saharan Platform (English et al., 2016b; Rougier, 2012; Rougier et al., 2013; Ye et al., 

2017). These tectonic events allow to interpret in section the series visible in 2D maps (Figure 

V-8), showing the synsedimentary syncline-shaped architecture of the peri-Hoggar Basins 

defined in Perron et al., (2018). 

The peri-Hoggar Basins were part of the Gondwana supercontinent formed by the assembly of 

several continental fragments and oceanic terranes during the Neoproterozoic Pan-African 

orogeny (Craig et al., 2008; Guiraud et al., 2005; Unrug, 1992). The origin of the structural 

framework emanates from the collision of the West African Craton (WAC) and the East 

Saharan Craton (ESC) also called the Saharan Metacraton (Abdelsalam et al., 2002), squeezing 
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the Tuareg Shield (TS) mobile belt (Craig et al., 2008; Guiraud et al., 2005; Unrug, 1992). It 

results heterogenic substrates inherited from proterozoic accreted mobile belt of different 

terranes (archean cratons and meso-neoproterozoic terranes) delimited by sub-vertical mega-

shear zone (Black et al., 1994; Caby, 2003; Liégeois et al., 1994). 

 

Figure VII-3: E–W cross-section of the Paleozoic peri-Hoggar basins (calibrated with wells) 

associated with the different terranes and the Bouguer anomaly extracted from Bouguer 

anomaly map (from International Gravimetric Bureau: http://bgi.omp.obs-mip.fr/). Notice the 

relation between arches with positive anomalies and syncline-shaped basins with negative 

anomalies. See Figure VII-2 and Figure VII-5 for legend and localization. 

The sub-vertical mega-shear and suture zones indicating the boundaries between different 

terranes were first highlighted by Black et al., (1994). They were consecutively reactivated 

and/or inverted during the Phanerozoic tectonic events (Boote et al., 1998; Coward and Ries, 

2003; Craig et al., 2008; Fabre, 1988, 2005; Guiraud et al., 2005; Perron et al., 2018). They are 

well constrained by aeromagnetic data (Figure VII-5) showing sigmoidal and SC shear fabrics 

(Perron et al., 2018). In addition, it was also used to decipher terranes structural geometries and 

the suture zones under the sedimentary cover (Bournas et al., 2003; Brahimi et al., 2018a; 

Perron et al., 2018). The existence of igneous or volcanic activity linked to these structures 

point out the lithospheric nature of these faults (e.g. Liégeois et al., 1994; Moreau et al., 1994; 

Nkono et al., 2018). This is supported by conductivity anomalies (i.e. an increase of the 

conductivity), showing the lithospheric scale of these structures (Bouzid et al., 2008, 2015). 
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Figure VII-4: (A) Total burial subsidence curves of the Paleozoic North Saharan Platform 

(peri-Hoggar basins) compiled from literature: well W7 in Ahnet basin, well W21 in Mouydir 

basin (Perron et al., 2018); well W1, well W4, well W7 and well W9 in Ahnet basin (Kracha, 

2011); well KB-2 in Timimoun basin, well ELA-1 in Ghadamès-Berkine basin (Kadi et al., 

2013); well in the Illizi basin (Wells et al., 2018); wells model A and B in Ghadamès-Berkine 
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basin (Underdown et al., 2007); well LD-1 and well PDG-2 in Berkine-Ghadamès basin 

(Aissaoui et al., 2016); well F3-NC174, well H29-NC115, well A1-NC186, well A1-NC190 in 

Murzuq basin (Belaid et al., 2010); cross section in the southwestern Anti-Atlas (Burkhard et 

al., 2006); well OTRA-1 in the Sbâa basin, well RG-3 in the Reggane basin, well TEG-1 in the 

Timimoun basin (Logan and Duddy, 1998); Hassi Messaoud field (English et al., 2017); well 

in Sbâa basin (Tournier, 2010); well in Ghadamès-Berkine basin (Yahi, 1999); well RPL-101 

in Reggane basin, well HAD-1 in Ghadamès basin, well REG-1 in Timimoun basin; well TGE-

1 in Illizi basin, well TO-1 and well KA-1 in the Dahar depression (Makhous and Galushkin, 

2003a, 2003b); well LT-1bis and well OTLA-1 in the Sbâa basin (Drid, 1989); well L1-1 in 

Murzuq basin (Galushkin and Eloghbi, 2014); well WT-1 in the Berkine basin (Yahi et al., 

2001); well G and well A in the Illizi Basin (English et al., 2016a). The different curves 

morphologies showing antiphase, out of phase and in phase between basins. The data show low 

rate subsidence with periods of deceleration (Deceleration of Low Rate Subsidence: DLRS), 

acceleration (Acceleration of Low Rate Subsidence: ALRS), or inversion (Inversion of Low Rate 

Subsidence: ILRS) synchronous and correlated with regional tectonic pulses (i.e. major 

geodynamic events). (B) Thermal history curves of the Paleozoic North Saharan Platform (peri-

Hoggar basins) compiled from literature: well in the Illizi basin (Wells et al., 2018); well model 

A and G in Ghadamès-Berkine basin (Underdown et al., 2007); well OTRA-1 in the Sbâa basin, 

well RG-3 in the Reggane basin, well TEG-1 in the Timimoun basin, well in the eastern Ahnet 

basin (Logan and Duddy, 1998); well F3-NC174, well H29-NC115, well NC-174, well NC-115, 

well NC-186, well NC-190 in Murzuq basin (Belaid et al., 2010); well A-76 well in Murzuq 

basin (Galushkin and Eloghbi, 2014). 

Currently in the area, the negative gravity anomalies can be witnesses of Meso-Neo-Proterozoic 

oceanic terranes or suture zones composed of ophiolites, ultrabasic and basic rocks (Bayer and 

Lesquer, 1978; Roussel and Lesquer, 1991). While, the positive gravity anomalies can indicate 

Archean-Paleopoterozoic cratonic terranes composed of granulites and TTG rocks (Takherist, 

1991). 

In the Saharan basins, there is the existence of a good direct or inverse correlation between the 

sedimentary structure (structural depressions and arches) and Bouguer anomalies (Takherist, 

1991). The gravimetric anomaly map (Figure VII-3 and Figure VII-5) shows that positive 

anomalies (> 66 mGal) are mainly associated with arches whereas negative anomalies are 

related to depressional basins (< 66 mGal). All this features highlighted by Perron et al., (2018) 

are interpreted as lithospheric mass disequilibrium related to density anisotropy between 
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different terranes. Knowing that, according to this same study there is a close relation between 

the Arches-Basins architecture and the underlying repartition of the terranes age. 

Liégeois et al., (2005, 2013) have evidenced the rheological lithospheric heterogeneities and 

thickness between different entities (i.e. WAC, IOGU, LATEA, ESC) based on geological and 

tomography arguments (e.g. Fishwick and Bastow, 2011). 

 

Figure VII-5: (A) Interpreted aeromagnetic anomaly map (EMAG2 from 

https://www.geomag.us/) of the Paleozoic peri-Hoggar basins (North Saharan Platform) 

showing the different terranes delimited by NS, NW–SE and NE–SW lineaments and mega-

sigmoid structures (SC shear fabrics) from Perron et al., (2018); (B) Bouguer anomaly map 

(from International Gravimetric Bureau: http://bgi.omp.obs-mip.fr/) of the Paleozoic peri-

Hoggar basins (North Saharan Platform) presenting evidence of positive anomalies under 

arches and negative anomalies under basins from Perron et al., (2018). A: Localization of cross 

section in Figure VII-3. 
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Events References on the Saharan Platform 
Magmatism & thermal 

activity 

Eocene 

exhumation 
English et al., 2016b; Galeazzi et al., 2010; Rougier, 2012; Rougier et al., 2013; Ye et al., 2017  

Hercynian 

compression 

Abudeif, 2015; Boote et al., 1998; Carruba et al., 2014; Coward and Ries, 2003; Craig et al., 2008; Eschard et 

al., 2010; Follot, 1953; Haddoum, 2009; Haddoum et al., 2001; Najem et al., 2015; Wendt et al., 2009a; 

Zazoun, 2001, 2008. Hiatus: Coquel and Abdesselam-Rouighi, 2000; Wendt et al., 2009a 

Bonhomme et al., 1996; 

Boote et al., 1998; 

Carpena et al., 1988; 

Chabou et al., 2007a; 

Derder et al., 2016; 

English et al., 2016b; 

Glover, 1999; Liégeois et 

al., 1991; Liégeois, 2019; 

Underdown et al., 2007 

Famennian     

Frasnian 

unconformity 

Evidence: Boudjema, 1987; Chaouchi et al., 1998; Henniche, 2002; Henniche et al., 2003a, 2003b. No 

evidence: Wendt et al., 2009b 
  

Frasnian hot 

shales 
Lüning et al., 2003, 2004   

Middle to Late 

Devonian local 

compression 

Perron et al., 2018   

Middle to Late 

Devonian 

extension 

Abdesselam-Rouighi, 2003; Baidder et al., 2008; Boumendjel et al., 1988; Brice and Latrèche, 1998; 

Chaumeau et al., 1961; Collomb, 1962; Craig et al., 2008; Eschard et al., 2010; Fabre, 2005; Fekirine and 

Abdallah, 1998; Frizon de Lamotte et al., 2013; Legrand, 1967a, 1967b; Lessard, 1961; Massa, 1988; Michard 

et al., 2008; Moreau-Benoit et al., 1993; Wendt, 1985; Wendt et al., 1997, 2006, 2009b 

Belka, 1998; Derder et 

al., 2016; Frizon de 

Lamotte et al., 2013; 

Wendt et al., 1997 

Emsian hiatus Kermandji, 2007; Kermandji et al., 2003, 2008, 2009; Mehadji Ouali et al., 2011; Wendt et al., 2006   

Pragian hiatus Kermandji, 2007; Kermandji et al., 2003, 2008, 2009; Wendt et al., 2006   

Caledonian 

local 

compression 

Evidence: Beuf et al., 1971; Biju-Duval et al., 1968; Boote et al., 1998; Boudjema, 1987; Boumendjel et al., 

1988; Carruba et al., 2014; Chavand and Claracq, 1960; Coward and Ries, 2003; Dubois and Mazelet, 1964; 

Echikh, 1998; Eschard et al., 2010; Fekirine and Abdallah, 1998; Follot, 1950; Frizon de Lamotte et al., 2013; 

Ghienne et al., 2013; Gindre et al., 2012; Jäger et al., 2009; Legrand, 1967a, 1967b; Magloire, 1967; Najem et 

al., 2015. No evidence: Boumendjel, 2002; Fekirine and Abdallah, 1998; Kermandji, 2007; Kermandji et al., 

2008, 2009; Ouanaimi and Lazreq, 2008 

Bertrand, 1974; 

Bonhomme et al., 1996; 

Denis, 2007; Derder et 

al., 2016; Fabre, 2005; 

Ferkous and Monie, 2002; 

Moreau et al., 1994; 

Picciotto et al., 1965 

Caledonian 

extension 
Perron et al., 2018   

Silurian 

sealing 
Perron et al., 2018   

Silurian 

extension 
Najem et al., 2015; Perron et al., 2018   

Silurian hot 

shales 
Eschard et al., 2005, 2010; Lüning et al., 2000   

Glacial 

rebound and 

transgression 

Beuf et al., 1971; Denis, 2007; Denis et al., 2007; Eschard et al., 2005, 2010; Ghienne et al., 2003; Girard et 

al., 2012, 2018; Konaté et al., 2003, 2006; Le Heron, 2010; Le Heron et al., 2006, 2007; Moreau, 2011. Hiatus: 

Beuf et al., 1971; Paris et al., 2000a; Remack-Petitot, 1960 

  

Upper 

Ordovician 

glaciation 

Glacial laout: Le Heron, 2010; Najem et al., 2015; Smart, 2000a. Syn-tectonic: Beuf et al., 1971; Eschard et al., 

2010; Ghienne et al., 2003, 2007b; Heron and Craig, 2008; Zazoun and Mahdjoub, 2011. Glacio-tectonics: 

Beuf et al., 1971; Denis, 2007; Denis et al., 2010; Ravier et al., 2014, 2015. Architecture: Deschamps et al., 

2013; Hirst, 2012, 2016; Hirst et al., 2002; Lang et al., 2012 

  

Taconic 

Tectonics origin: Bennacef et al., 1971; Beuf et al., 1968a, 1971; Echikh, 1998; Eschard et al., 2010; Fabre, 

1988, 2005. Eustatism origin: Galeazzi et al., 2010. Glaciotectonics/tectonics origin: Zazoun and Mahdjoub, 

2011 

  

Cambro-

Ordovician 

extension 

Bennacef et al., 1971; Beuf et al., 1968a, 1968b, 1971; Beuf and Montadert, 1962; Borocco and Nyssen, 1959; 

Claracq et al., 1958; Echikh, 1998; Eschard et al., 2010; Fabre, 1988, 2005; Ghienne et al., 2003, 2007b, 2013; 

Najem et al., 2015; Zazoun and Mahdjoub, 2011. Hiatus: Mélou et al., 1999; Oulebsir and Paris, 1995; Paris et 

al., 2000a; Vecoli et al., 1995, 1999 

Azzouni-Sekkal et al., 

2003; Liégeois et al., 

2003; Liégeois, 2019  

Pan-African 

peneplenation 

Bennacef et al., 1971; Beuf et al., 1968a, 1971; Boissonnas et al., 1969; Fabre, 1988, 2005; Galeazzi et al., 

2010 
  

Pan-African 

collapse 

Abudeif, 2015; Ahmed and Moussine-Pouchkine, 1987; Bumby and Guiraud, 2005; Caby et al., 1985; Coward 

and Ries, 2003; Djellit et al., 2002; Fabre, 2005; Fabre et al., 1988; Najem et al., 2015; Oudra et al., 2005; 

Piqué et al., 1999; Soulaimani et al., 2014 

  

Table 3: Synthesis of references highlighting evidence of hiatus, erosion and thickness 

variations related to geodynamic events on the Saharan Platform (preferentially documented 

at the vicinity of arches). See also bibliographic cross sections georeferenced in Figure VII-1. 

All these observations helped by a large integrated multidisciplinary geological database show 

under the peri-Hoggar intracratonic Basins, the presence of an heterogenous accreted 

lithosphere with different nature, thickness and densities between terranes delimited by 
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subvertical lithospheric shear zones which seems isostatically uncompensated. These features 

are at the origin of the hypothesis developed and tested in model M (i.e. mixed) in Perron et al., 

(submitted). 

5 Methods and modelling inputs  

After the establishment of a geological conceptual model in Perron et al., (2018), highlighting 

the link between the repartition of the terranes age (archean, paleoproterozoic and meso-

neoproterozoic) with the arches-basins system and the hypothesis of a lithospheric density 

heterogeneity related to this feature (according to authors such as Artemieva, 2009; Artemieva 

and Mooney, 2002; Djomani et al., 2001), we have constructed a numerical thermomechanical 

lithospheric model M (i.e. mixed) in consequence. The hypothesis and the coherency of the 

model in intracratonic settings were tested and validated by using a 2-D version of the code 

pTatin2d (Perron et al., submitted). 

Then, this numerical model M which is featured by the collage of Archean and Proterozoic 

terranes is experienced to different inputs combinations (associating or not thermal anomaly, 

tectonics and sediment flux). 

 

Figure VII-6: Method from construction of the numerical models to comparison, quantification 

and classification with the peri-Hoggar Basins. 

In this study, results from these simulations are compared to geological data extracted from 

peri-Hoggar Basins (thermal and subsidence curves, cross sections, seismic data…) in order to 
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analysis some tendency and do a classification of these basins according to their forcing factors 

predominance (i.e. thermal dominated, sediment supply dominated, far field tectonic stresses 

dominated). The synthesis of this methodology is shown in Figure VII-6. 

 

Figure VII-7: a) Inputs models of the simulations with the different parameters applied in 

experiments such as b) the far fields stresses (sinusoidal extension-compression 40 Myr) and 

c) the thermal anomaly. d) Isostasy equilibrium potential by an Airy calculation between 

archean and proterozoic terranes (see Appendix A). e) Initial temperature state of the 

lithosphere for all the simulations presented. f) Yield-strength envelopes of the simulated 

materials calculated for a strain rate of 1.5.10−11 s−1. Δσ represents the deviatoric stress, 

positive values under extension and negative values under compression. 
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The initial model setups, rheological parameters and boundary conditions are presented in 

Perron et al., (submitted). The model consists of three 200 km wide Proterozoic terranes 

separated by two Archean terranes of 100 km in width sandwiched in between two 400 km wide 

Archaean cratons delimited by shear zones (i.e. softening corridors). It results therefore a local 

isostatic disequilibrium in the initial conditions that can be calculated based on a simple Airy 

isostatic balance model (e.g. Allen and Allen, 2013). 

According to initial density parameters (Perron et al., submitted), initial model inputs (Figure 

VII-3) and an initial topography of 500 m, we estimated a potential basin filling of around 5 

km, when the isostatic compensation is achieved (see Appendix A in Perron et al., submitted ). 

The value of topography is chosen because of the planar characteristic of the “Infratassilian” 

unconformity where some low paleo-relief are described in the Saharan platform by Beuf et al., 

(1971). The maximum of basin thickness values observed in the Saharan platform are around 5 

km (Figure VII-4). 

6 Geological constrains of the numerical models M and link of forcing 

factors with geodynamics of peri-Hoggar Basins 

The different models M are presented in Figure VII-8, Figure VII-9 and Figure VII-10 their 

inputs parameters compiled in Table 4. For each model M the tectono-stratigraphic architecture, 

the subsidence and thermal curves are extracted and visualizable. They are composed of three 

starved type basins (M3 in Figure VII-8A; M2 and M4 in Figure VII-9) and three filled type 

basins (M5 in Figure VII-8B; M6 and M7 in Figure VII-10). Two of them are featured by 

complex-shaped architecture (M4 and M6) and four by syncline-shaped architecture (M2, M3, 

M5 and M7). We defined as the complex-shaped architecture, the basin presenting intra-basin 

arches (i.e. intra-terranes deformations). 

Before comparing the results of the model M from Perron et al., (submitted) to geological data 

of some singular peri-Hoggar Basins (i.e. Tasmena, Mouydir, Tim Mersoï and Ahnet Basins), 

we examine the general viability and the applicability of the different parameters of model M 

to case of the Saharan platform. 

In Perron et al., (submitted), four main parameters were simulated and tested. They are the 

following: lithosphere heterogeneities, thermal anomaly, far field tectonics (i.e. low 

compression/extension tectonics alternation) and surface processes intensity (i.e. 

erosion/deposition and lateral sediment flux). All these inputs parameters can be deduced from 
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bibliographic synthesis of the Saharan platform (see Figure VII-2, Figure VII-3 and Table 3). 

The different link between inputs model parameters and geodynamic events on the Saharan 

platform is presented here. 

Models 

Limits conditions 

(compression/extension 

alternation) 

Thermal anomaly 
Lateral sediment 

supply 

Duration 

(Myr) 

M2 yes no no 250 

M3 no no no 250 

M4 yes yes no 250 

M5 no no yes 250 

M6 yes yes yes 250 

M7 yes no yes 250 

Table 4: Parameters inputs of different models M and runs. 

6.1 Lithosphere heterogeneities: Control of long-lived low rate subsidence and 

Arches/Basins architecture 

The choice of a model with lithosphere heterogeneities was first based on the singular zonation 

of terranes below the arches-basins architecture highlighted in the Saharan Platform by Perron 

et al., (2018). Where the Platform is characterized by the alternation of subsident zones (basin 

depocenter above Neo-Meso Proterozoic terranes) and elevated domains (arches above 

Archean/Paleoproterozoic craton) forming a "piano keys" configuration (Figure VII-2 and 

Figure VII-3). 

The differential subsidence between arches and basins was explained by isostatic readjustment 

processes, where the high-density Proterozoic terranes are subsiding and the low-density 

Archean terranes are relatively uplifting (Perron et al., submitted). This structuring in "piano 

keys" was built in agreement with geophysical data available on the Saharan platform and with 

lithosphere models (e.g. Artemieva, 2009; Djomani et al., 2001), showing variations in average 

thicknesses and density of Archean (220 km, 3.31g/cc), Proterozoic (170 km, 3.33g/cc) and 

Phanerozoic (100 km, 3.36g/cc) lithospheres. 
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According to the model M3 proposed in Figure VII-8A, rose Archean terranes are strongly 

eroded and are the main sources of sediments. In contrast, the Proterozoic terranes, 

characterized by contrasting densities, are marked by gravitational instability. They present a 

structuration in relatively high (arches; Archean-Paleoproterozoic terranes) and low zones 

(basins; Neo-Meso-Proterozoic terranes). The Archean-Paleoproterozoic terranes are subject to 

erosion while the Neo-Meso-Proterozoic terranes are characterized by sedimentation. A 

constant horizontal transport of materials from the highs (hence the unconformities and reduce 

series) to the adjacent depocenters, which is compensated in the lithosphere for very long period 

of time. The global analysis of total burial (total subsidence) curves from the Sahara platform 

Basins during the Paleozoic (i.e. >250 Ma) shows depth reaching 0.5 to 6 km with an average 

rate ranging from 5 to 20 m/Ma (Figure VII-4A).  

Both the long-lived low subsidence rate and arches-basins architecture are observed in the 

model M (Figure VII-8A-B). The subsidence values are in the same magnitude of model M3 

and M5, respectively ranging from 5 m/Myr to 10 m/Myr (Figure VII-8C). They are more 

significant in model M6 and M7 (Figure VII-10) 

The mechanism coupling erosions/sedimentation processes at the surface with the differential 

isostatic compensation in heterogeneous inherited accreted lithospheres control both the slow 

long-lived subsidence and the arches-basins architecture. This first order pattern observed in 

Perron et al., (submitted) for worldwide intracratonic basins can also be fitted to the mechanism 

of formation of the Paleozoic basins of the Sahara platform (Figure VII-8C).  

Nevertheless, the non-presence of sediments on arches remains problematic in this model M3. 

Indeed, in the Saharan platform the arches are mainly recovered by sediments, even if they are 

rather thinner than in the rest of the platform (Perron et al., 2018) 

This issue is corrected with the adding of lateral sediment supply presented in model M5 (Figure 

VII-8B). In this model M5, both the rate of subsidence is accelerated and reach more rapidly 

the isostatic equilibrium (W1-M5 in Figure VII-8C). It highlights the importance of sediment 

flux on the basin duration until the infilling of the basin. The quantity of sediments available 

controls the subsidence duration (Perron et al., submitted). Besides, the differential sediment 

supply could in some case explain the differential subsidence between the different basins (or 

sub-basins limited by arches) in the Saharan platform. A parameter that wasn’t modelled and 

tested. 
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Figure VII-8: (A) Model M3 coupling lithosphere heterogeneity, local erosion/deposition and 

processes (syncline-shaped starved basins); Notice the impact of the size of the erosion surface 

on basins filling. Peripheral basins are thicker than the central basin. A link can be made with 

the WAC and the East Saharan craton two major sediment providers. (B) Model M5 coupling 

lithosphere heterogeneity and local erosion/deposition processes (syncline-shaped filled 

basins); Notice the impact of external sediment flux on basin architecture. (C) Subsidence 
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curves from the different models and comparison with literature curves (Well data: see Figure 

VII-4). 

6.2 Far field tectonics: Impact on tectono-stratigraphic architecture  

The integration of tectonics in the model helps to simulate the tectonic history of the Saharan 

platform, featured by an alternation of extensional and compressional periods during the 

Paleozoic (see references in Table 3). This tectonics is at the origin of the structural framework 

connected and nucleated to inherited mega-shear zone and characterized by large broad horst 

and graben systems re-activated and/or inversed during the Cambro-Ordovician extension, 

Caledonian compression, Late Devonian extension, Hercynian compression (Perron et al., 

2018). In the literature (Craig et al., 2008; Frizon de Lamotte et al., 2013; Guiraud et al., 2005; 

Haddoum et al., 2001; Perron et al., 2018; Ziegler et al., 1995), the deformation observed during 

these events are considered as the results of intra-plate stresses caused by far field effects of 

distant tectonics such as orogenies (e.g. Caledonian compression), rifting and ocean spreading 

(e.g. Cambro-Ordocivian extension). Therefore, in order to reproduce this effect, very weak 

strain of 0.5 km/Myr is applied over a model of 1600 km of large. Knowing that according to 

Ziegler et al., (1995) in continental craton compression stresses can be transmitted through 

distances of up to 1600 km from a collision front. The tectonic events of the Saharan platform 

are quantitively well-registered in the subsidence pattern by the recording of deviations (defined 

as the second order pattern in Perron et al., submitted) with amplitude ranging from 0.25 to 3.5 

km (Figure VII-4A). The subsidence rate can be inferior at +5 m/Ma during the periods of 

quiescence (DLRS), +150 m/Ma for periods of acceleration (ALRS) , and -150 m/Ma for 

inversion periods (ILRS) (Figure VII-4A). Notice that the exceptional high amplitude is 

essentially due to the Hercynian compression during the Carbono-Permian time. 

In the simulation of models M where tectonics is activated, very weak strain (0.5 km/Myr) can 

be transmitted far away (over 1600 km) inside the model. The play of uplift and downlift called 

(oscillations) between the different units is diachronically set due to the heterogenic behavior 

of the lithosphere and the deformation transmission. It directly impacts the deposition or not of 

some layers depending on their location to the strain front. It is also materialized in the 

subsidence pattern between wells by out of phase and antiphase (Figure VII-9 and Figure 

VII-10). In the subsidence pattern of numerical models (Figure VII-9 and Figure VII-10), 

deviations amplitude are ranging from 0.3 to 1.3 km according to the well localization. The 

subsidence rate values of periods of quiescence (DLRS), periods of acceleration (ALRS) and 
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for inversion periods (ILRS) can be respectively inferior at +5 m/Myr, +110 m/Myr and -100 

m/Ma.  

All these results from models (Figure VII-9 and Figure VII-10) are coherent with the geological 

data values of Saharan Basins. Nevertheless, some high amplitude and high values of ALRS 

and ILRS in bibliographic data (Figure VII-4A) are due to Hercynian compression, which is a 

particular tectonically punctual intensive event (e.g. Boote et al., 1998; English et al., 2016a; 

Logan and Duddy, 1998). The model M difficulty fit with this major event. Higher 

compression/extension parameters could elucidate this singularity. We see that for actual 

boundary conditions (low deformation) the periods of acceleration and inversion of the 

subsidence is explained by tectonic activity. Fault and terranes rheologic softening through time 

also play an important role in the amplitude and the rate of these periods. In contrast, the periods 

of deceleration are explicated by a tectonic quiescence. 

Concerning the stratigraphic architecture in the Saharan platform, many authors have 

documented the wide lateral extension and continuity of some facies during millions of years 

(Bennacef et al., 1971; Beuf et al., 1971; Coward and Ries, 2003; Fabre, 1988; Guiraud et al., 

2005). The same shoreface or fluvial sequences can be correlated over tens to hundreds of 

kilometres even in the Illizi basin (Eschard et al., 2005, 2010). Such a continuity of the facies 

belts is also very specific to the Gondwana Saharan craton (Beuf et al., 1971) and is at the origin 

of the diachronous deposition of these sedimentary bodies. In low rate accommodation (or low 

rate subsidence basin) settings, relative sea-level fall either due to a tectonic uplift or to climato-

eustatism can generate regional scale unconformities on the stratigraphic architecture of the 

Paleozoic succession. Many evidences of these regional widespread unconformities (bio-

stratigraphic or stratigraphic), preferentially registered on arches, are register through the 

Saharan intracratonic platform during the Paleozoic (Table 3). They are often hard to temporally 

and spatially constrain. 

The models M help to explain the stratigraphic continuity or the diachronicity of unconformities 

this heterogenic by the behavior of the lithosphere to far field stresses propagation below each 

basin and sub-basin highlighted by differential oscillation in the recording of subsidence pattern 

(Perron et al., submitted). 
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Figure VII-9: (A) Model M2 coupling lithosphere heterogeneity, local erosion/deposition 

processes and tectonics (syncline-shaped starved basins) with their burial and thermal history 

curves. (B) Model M2 coupling lithosphere heterogeneity, local erosion/deposition processes, 

tectonics and thermal anomaly (starved complex-shaped basins) with their burial and thermal 
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history curves. Well data: see Figure VII-4. See Figure VII-7c for localization of the thermal 

anomaly in the model (i.e. under the central basin). 

 

Figure VII-10: (A) Model M6 coupling lithosphere heterogeneity, local erosion/deposition 

processes, tectonics and lateral sediment flux (syncline-shaped filled basins) with their burial 
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and thermal history curves. (B) Model M7 coupling lithosphere heterogeneity, local 

erosion/deposition processes, tectonics, thermal anomaly and lateral sediment flux (complex-

shaped filled basins) with their burial and thermal history curves. Well data: see Figure VII-4. 

See Figure VII-7c for localization of the thermal anomaly in the model (i.e. under the central 

basin). 

6.3 Thermal activity, magmatism, and heat flux 

The activation of thermal anomaly in the model results from the global analysis of the igneous 

and tectono-thermal history of the Saharan platform (see references in Table 3). It can be 

quantitatively documented by the global analysis of paleo-temperatures/thermal curves from 

bibliographic data (Figure VII-4B). These data show values at the end of the Permian ranging 

from 60°C to 250°C with the most ones around 130°C (Figure VII-4B). The amplitude of 

deviations of the temperature can reach 125°C. This high peak of temperature is mainly attained 

during the Carbono-Permian. The thermal maturation of the Paleozoic sedimentary infill of 

some Saharan basins (e.g. Ahnet, Mouydir and Illizi) is principally a product of burial (English 

et al., 2016a; Galeazzi et al., 2010; Zieliński, 2012). It has most probably been achieved during 

the Late Carboniferous prior to the Variscan (Hercynian) inversion and only locally during the 

Mesozoic and the Early Cenozoic (English et al., 2016a; Logan and Duddy, 1998; Zieliński, 

2012). Burial temperature differences can be observed between neighboring basins as is 

observed in the model M7 between central and peripheral basins (W1-M7 and W3-M7 in Figure 

VII-10). The burial temperature range in the Ahnet basin (30-120°C) attest of lower values than 

in Mouydir (50-150°C) through the analysis of conodont color alteration index (CAI) during 

the Middle Devonian to the Lower Carboniferous (Zieliński, 2012). 

Magmatic intrusion and thermal activity could have locally re-heated the basins (see Figure 

VII-2 and Table 3; e.g. Derder et al., 2016; Liégeois, 2019; Moreau et al., 1994, 2012; Zieliński, 

2012). They are mainly associated to key tectonic events such as the Cambro-Ordovician 

extension, the Caledonian compression and the Hercynian compression (Figure VII-2 and Table 

3). The different igneous intrusions (dolerites, plutons…) are predominantly aligned on shear 

zone (Figure VII-2), thus forming thermal drains. 

Nevertheless, the majority of the plutons (constituting thermal source) are set during the Pan-

African orogeny and older events (e.g. Liégeois, 2019), therefore, the initial thermal parameters 

of the lithosphere are rather “hot” for a cratonic area (see inputs in Perron et al., submitted). 
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The measurements of the modern heat flow in Algeria revealed the presence of an east-west 

trending zone with elevated heat values (90-130 mW/m2) across the Saharan basins (Lesquer et 

al., 1989, 1990; Takherist and Lesquer, 1989). High heat-flow average of 82+/- mW.m-2 related 

to extensional Miocene-Pliocene-Quaternary volcanism and mantle thermal anomaly 

(Takherist and Lesquer, 1989) 

In the numerical model M6, the 120°C maximum of temperature observed is achieved after 250 

Myr in peripheral and central basins (W4-M6 and W1-M6; Figure VII-10A). In the model M7 

temperature is featured by values lower around 90°C after 250 Myr (W1-M7; Figure VII-10B). 

This variance is correlated to the initial thermal anomaly in the model. The temperature on 

secondary boundary arches, intra-basin arche are a little colder than maximum ones. The 

temperature registered on arches is very low around 20°C. The amplitude of deviations is for 

the temperature smoother and damped (i.e. of the order of 10°C) than for subsidence curves 

observed previously. 

The calculation of the heat flux from the initial parameters, we obtain values around 90 mW/m2. 

Moreover, the thermal anomaly has a significant role on faults and terranes softening. It triggers 

the complexification of the basin architecture (see Perron et al., submitted; Chapter VI.6.3). 

Notice that temperature in model M2 and M4 (Figure VII-9) do not exceed 50°C. Nevertheless, 

they are in the range of temperature estimation of CAI during Devonian (Zieliński, 2012). 

All these results from temperature curves and heat flow stay coherent between literature data 

and the model M. The temperature linked to simple burial dynamics as well as heat flow are in 

the same order magnitude. However, little dissimilarity can be observed: 

The first major difference with the models M is the rapid and punctual peak of temperature (i.e. 

deviations) linked to the Hercynian orogeny associated to igneous/thermal intrusions (Figure 

VII-2). This major heating overprints the effects of heating caused by simple burial. The model 

proposed here cannot explain it. It could be triggered by an adiabatic decompression of the 

lithosphere (e.g. Latin and White, 1990). Probably insertion of other parameters (thermal 

anomalies, more important compression/extension…) should be added during the simulation. 

The second variance is the low temperature registered on the arches (or at their vicinity). The 

diminution of the initial difference of density between Archean column and Proterozoic (and 

so initial paleo-topography) could be a response permitting a more significant burial (Figure 

VII-7b). Moreover, the increases of the surface radiogenic production (H) could also be a 
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solution. Even if, compared with younger continental crust, the Archaean craton has low heat 

flow (Nyblade and Pollack, 1993; Petitjean et al., 2006). 

Moreover, alone thermal anomaly (i.e. without tectonics or/and sediments flux) has a small 

influence on subsidence intensity of the basins (see comparison between model M3 and M1 in 

perron et al., submitted). 

6.4 Sourcing of sediments: Impact of sediment flux and width of the erosional surface 

The sedimentary external flux is modelized to simulate the detrital control parameters which 

can be considered as a sort of climatic proxy (see paleocurrents directions in Figure VII-2 

attesting of lateral supply of sediments in the Saharan platform). Notice that for each models M 

basic local erosion and deposition processes are activated, defined by erosion of arches and 

deposition in basins depocenter. It is consistent with the presence of thin series with erosional 

unconformities on arches and conformal thick series in basins pointed out in Perron et al., 

(2018). 

During the Paleozoic on the Saharan platform, the sediment is globally transported to the NNW 

shown by the general paleocurrent directions changes rather from NNW to NW (Figure VII-2; 

Bennacef et al., 1971; Beuf et al., 1969, 1971; Fabre, 1988, 2005; Fröhlich et al., 2010b; Le 

Heron et al., 2009). The platform shows a South to North deposition profile (i.e. respectively 

shallow to deep facies) and a general thickening of all units northwards (Beuf et al., 1971; 

Fabre, 1988, 2005; Garfunkel, 2002; Guiraud et al., 2005). The sources of sediments probably 

come from continental domains situated even further south, but their precise locations are still 

difficult to establish because the more proximal series have not been preserved towards the 

South (Beuf et al., 1971). 

Besides, the presence of Paleozoic series and Precambrian series (crystalline rocks), put in 

outcrop by the exhumation of the Hoggar (Tuareg shield) which take place during the Late-

Eocene (Rougier et al., 2013), indicate that this craton was not acting as a source of of 

sedimentary material or as a barrier to sand drift in this region (Avigad et al., 2005; Beuf et al., 

1971). The sourcing of sediments showed a distant and a local provenance (West African 

Craton, Tuareg Shield terranes, Cadomian terranes) mainly of Neoproterozoic ages (Altumi et 

al., 2013; Avigad et al., 2003, 2005, 2012; Linnemann et al., 2011; Meinhold et al., 2011, 2013; 

Morton et al., 2011). These studies have shown the significant role of width cratons such as the 

WAC in sediment supply. 
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The numerical model highlights the importance of sediment flux and the width of the erosion 

surface (i.e. related to the craton extension?) on both the thickness and the infilling rate of the 

basins until isostatic equilibrium (Figure VII-8; see also Perron et al., submitted). This result 

indicates that sourcing of sediments needs to be taken to account in the dynamics of the Saharan 

intracratonic basins. 

The geological data enlighten here are coherent with the model M (Figure VII-8), which 

supplies laterally (far away) but also locally (i.e. by eroding cratons and arches) the sediments. 

Moreover, the differential quantity of sediment supply explains the variation of thickness 

between the peripheral basins and the central basin (Figure VII-8). 

7 Application of the numerical models M to geological data of peri-Hoggar 

Basins 

The latter part has shown the coherency of the applicability of the model M developed in Perron 

et al., (submitted) to the case the intracratonic basins of the Paleozoic Saharan platform.  

The four main parameters tested, which are lithosphere heterogeneities, thermal anomaly, far 

field tectonics (i.e. low compression/extension tectonics alternation) and surface processes 

intensity (i.e. erosion/deposition and lateral sediment flux) are coherent with forcing factors 

occurring on the Saharan platform. They constitute proxies of these latter. Consequently, they 

can be applied to the singular case of some peri-Hoggar Basins. 

The results of the different numerical models M are compared with geological/geophysical data 

of the peri-Hoggar basins such as total burial subsidence curves, thermal curves (compiled from 

the Saharan platform) and tectono-stratigraphic seismic or geological cross sections (e.g. 

Tasmena, Ahnet, Mouydir and Tim Mersoï Basins). Each of the peri-Hoggar Basins is 

controlled by one or several inputs parameters (tectonics, thermal anomaly and sediment flux). 

7.1 The Tasmena Basin: Example of syncline-shaped starved Basin 

Extracted geological data (satellite images and geological maps) from the Tasmena Basin are 

compared with our different numerical forward model M. 

The Tasmena Basin forms a syn-sedimentary syncline-shaped structure associated with a horst 

and graben system where there is some highs and lows (Claret and Tempere, 1968; Lessard, 

1961). The basin is delimited by sub-meridian major faults nucleated to ancient “basement 
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scars” at the edges where the series are reducing (Lessard, 1961). They are defined as terranes 

limits; hence, the wavelength of the basin is almost identical to that of the accreted Proterozoic 

oceanic domains (Figure VII-11A). The maximum of thickness in the basin reaches 1.5 km with 

descreases approaching arches (Claret and Tempere, 1968; Lessard, 1961). The essentially 

detritic filling of these basins is discordant on the Hoggar massif (Claret and Tempere, 1968; 

Lessard, 1961). Evidence of synsedimentary structures are highlighted northwards by Beuf et 

al., (1971) along the same lineament edging the Tasmena Basin in the Tassili Timissao (Figure 

VII-1). The paleocurrents directions are mainly oriented NNW (Figure VII-11A). They are 

more or less parallel to the major lineaments (Beuf et al., 1971). These observations are 

consistant with the general structural style observe on the Saharan platform (Perron et al., 2018). 

In the area (Figure VII-2), there is no identified markers of major thermal and igneous activity 

during the Paleozoic, suggesting that they didn’t had a key role in the basin dynamics. Besides, 

the intensity of deformation is low in regards of other basins closer to the WAC suture zone 

(Craig et al., 2008). 

The best fit is found with the model M2 coupling lithosphere heterogeneity, local 

erosion/deposition processes and far field tectonics (Figure VII-11). In this numerical model 

M2 the maximum of thickness is about 1.5 km in peripheral basins. These basins form a 

syncline-shaped (with a flat angular bottom) limited by boundary faults. These basin 

architecture characteristics are similar to the geological observations in the Tasmena Basin. 

In the light of these observations and conferring to the inputs of the model M2, we can advance 

that the main forcing factors of the Tasmena Basin are those gathering lithospheric 

heterogeneities, local erosion/deposition processes and low far field tectonics. In this case the 

lateral sediment flux didn’t had a major role in supplying the basin. 

Then, the basin is considered as starved and syncline-shaped (with a flat angular basement). 

Moreover, according to the inclination of the Infratassilian surface (to the NNW) and 

paleocurrents directions (Figure VII-11A), the Tasmena Basin was located upstream of the 

sediment source. The sedimentary supplies just passed through it and feed downstream basins 

with more accommodation space available such as the Ahnet and the Mouydir Basins. Indeed, 

these latter basins are featured by greater thicknesses. 
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Figure VII-11: Comparison of the tectono-stratigraphic architecture of the Tasmena basin with 

thermo-mechanical numerical model M2. (A) Geological map of the Paleozoic series in the 

Tasmena basin showing the typical arche and basin architecture with diminution of series 

approaching arches. (B) Satellite images of the Paleozoic series in the Tasmena basin (Landsat 

7 ETM +). (C) Cross section extracted from model M2 showing the similar arch-basin 
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architecture. Notice that we can compare our cross section with the 2D map (see explanation 

in the geological sittings part). Thickness (1.5 km) of the model is coherent with thickness shown 

by Lessard, (1961). 

7.2 The Mouydir and the Tim Mersoï Basins: Example of a syncline-shaped filled Basins 

Extracted geological data (cross sections, seismic, satellite images, geological map, subsidence 

and thermal curves) from the Mouydir and the Tim Mersoï Basins were compared with the 

numerical forward model M (Figure VII-12 and Figure VII-13). 

The Mouydir and Tim Mersoï basins show a syn-sedimentary synclinal geometry with a 

thickening of the Paleozoic series in the axial zone and a variations of facies, of paleocurrent 

directions (e.g. Beuf et al., 1968) as well as a thickness reduction in the vicinity of major 

accidents (i.e. arches), associated with onlaps (e.g. Figure VII-12A and B). They also display 

the migration of depocenters from North to south, associated with a gradual shift of Paleozoic 

series in the edges areas (particularly visible in the Tim Mersoï basin). This typical tectono-

stratigraphic architecture in arches and basins (referenced as paleo-highs) was first described 

by Eschard et al., (2010) and renewed by Perron et al., (2018). 

The depocenter of the Mouydir and Tim Mersoï basins is situated upon the accreted Proterozoic 

oceanic domains (Figure VII-12 and Figure VII-13). Divergent onlaps are visible on the 

Archean terranes as well as on the Paleoproterozoic Aïr terranes visible by satellite images and 

geological maps (Figure VII-12A-B). The essentially detritic filling of these basins is discordant 

on the Hoggar massif and on the Aïr basement (in the Tim Mersoï). In the Arlit region the 

maximum thickness of deposits is about 1800 m (Konaté et al., 2009; Yahaya and Lang, 2000). 

In the Mouydir the sedimentary succession can reach 1550 to 4800 m (Beuf et al., 1971; Conrad, 

1984; Wendt et al., 2006, 2009a; Zieliński, 2012).  

According to Zieliński, (2012), through the analysis of conodont color alteration index (CAI) 

during the Middle Devonian to the Lower Carboniferous, the burial temperature range from 50 

to 150°C. Major igneous activity is described on the edges of the Tim Mersoï Basin, in the Aïr 

Massif (see Assodé terrane; Figure VII-1 and Figure VII-2), featured by giant Devonian ring 

complex mainly aligned on Raghane shear zone (Moreau et al., 1994). It highlights the role of 

faults as thermal drains. 

During the Paleozoic, the structures of these basins are mainly controlled by N-S senestral or 

dextral sub-vertical normal faults (i.e. transtension to transpression) forming horst and graben 
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network weakly inverted and/or reactivated through time (see tectonic calendar and stresses 

orientation in Haddoum et al., 2001; Konaté et al., 2009; Perron et al., 2018; Yahaya and Lang, 

2000; Zazoun, 2001). Both in the Mouydir basin and in the Tim Mersoï, the sedimentary filling 

has the same tectono-stratigraphic features cited previously (Figure VII-12 and Figure VII-13). 

Besides, intensity of the deformation in these basins is lower than in the Ahnet Basin, situated 

near the WAC/TS suture zone (Craig et al., 2008; Haddoum et al., 2001). 

These observations have shown a differential subsidence and sedimentary architecture between 

arches and basins through the Paleozoic. On arches (inter-basin principal arches, intra-basin 

arches) or approaching these ones (inter-basin boundary/peripheric secondary arches), singular 

sedimentary and strata geometries such as strata pinch out, wedges (i.e. divergent onlaps, strata 

growth), partitioning facies, diminution or erosion of series and condensation level can be 

identified during the Paleozoic (Perron et al., 2018). These evidences were also locally exposed 

by several authors elsewhere on the Saharan platform (Table 3). 

The paleocurrents directions are globally oriented NNW which is more or less parallel to the 

major lineaments (Beuf et al., 1971). However, local variations of these directions can be 

observed during Cambro-Ordovician, Caledonian tectonics pulses (Figure VII-12A and Figure 

VII-13A; Beuf et al., 1968b, 1971; Wendt, 1995). They can be punctually oriented orthogonally 

to the main directions. They can be both evidence of lateral sediment flux from upstream and 

punctual local erosion/deposition processes during uplift of arches (i.e. archean terranes). 

The geological data from Mouydir and the Tim Mersoï Basins particularly fit well with the 

geometry of the peripheral or central basins in the numerical model M7 coupling lithosphere 

heterogeneity, local erosion/deposition processes, tectonics and lateral sediment flux (Figure 

VII-13F and Figure VII-12D). 

In M7, the maximum of thickness is registered in the central part of the basin covering 

Proterozoic terranes while wedges (divergent onlaps), diminution and erosion of series are 

observed when approaching arches associated with Archean terranes (Figure VII-12 and Figure 

VII-13). In addition, the total burial subsidence curve of well W21 (from Perron et al., 2018) 

well-fit with the curve of well W3-M7 (Figure VII-13E-F). Amplitude of deviations stays 

coherent between them. The strain is localized near terranes limits where local inversion zones 

associated with folding can be both observed on geological cross section (cf. interbasin 

boundary secondary arch; Figure VII-13C) and the model (Figure VII-12C). In the model M7, 
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truncatures and strata pinch out are highlighted in the limbs of the folding, features that were 

already observed in seismic (see Fig. 7 in Perron et al., 2018). 

Consequently to this best fit found, we can advance that the main forcing factors of the Mouydir 

and Tim Mersoï Basins are those gathering both lithospheric heterogeneities, local 

erosion/deposition processes, tectonics and lateral sediment flux (Figure VII-12 and Figure 

VII-13). We can define it as a syncline-shaped filled basin with boundary secondary arches 

structures. 

Notice that the Mouydir and Tim Mersoï Basins also fit well with peripheral basins in the 

numerical model M6 (Figure VII 10A or Figure VII 14D), which are situated away (i.e. on the 

edges) from the central basin submitted to the thermal anomaly (Figure VII 7c). This choice is 

more coherent with the magmatic and thermal activity identified in the Hoggar and Aïr Massif 

(e.g. Liégeois, 2019; Moreau et al., 1994). 

In the arch of the Tim Mersoï Basin (i.e. edge of the basins), Moreau et al., (1994) have shown 

the establishment of the Aïr ring complex in the Assodé terrane, constituting a major thermal 

source during the Devonian. In the terranes under the Mouydir Basin, the “Taourirt” plutons 

are set between 539-523 Ma (i.e. Early Cambrian) according to Azzouni-Sekkal et al., (2003). 

After that few thermal re-heating activities are observed in granites aligned on shear zones 

(Figure VII-2). They are attributed to tectonic reactivation of the shear zones (e.g. Djouadi et 

al., 1997). 

Consequently, thermal activity seems have occurred in these different basins, however at 

different degrees (it is the case of the majority of the basins in the Saharan platform because of 

the heritage of the Pan-African orogeny; e.g. Liégeois, 2019). 

In the case of the Mouydir Basin thermal activity is weaker (or at least older) than in the Tim 

Mersoï Basin. In contrast, the intensity of tectonic activity is more significative in the Mouydir 

Basin than in the Tim Mersoï Basin. Indeed, the latter is farer from the different deformation 

front during the Paleozoic (Craig et al., 2008; Haddoum et al., 2001). These basins highlight 

either the coupling between high thermal anomaly/low tectonic stresses and low thermal 

anomaly/high tectonic stresses. 

We have seen in Perron et al., (submitted) that thermal anomaly must be coupled to tectonics 

in order to have a major influence. Sensitive study should be led in order to decipher the balance 

gradient between tectonic and thermal intensity. 
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Figure VII-12: Comparison of stratigraphic architecture cross section in the Tim Mersoï basin 

with thermo-mechanical numerical model M7. (A) Geological map of the Paleozoic series in 
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the Tim Mersoï basin. (B) Satellite images of the Paleozoic series in the Tim Mersoï basin 

(Landsat 7 ETM +). (C) WNW-ESE cross section of the Tim Mersoï basin localized in Figure 

A showing the typical arche and basin architecture with diminution of series approaching 

arches. (D) Cross section extracted from model M7 showing the similar arch-basin 

architecture. Notice that this comparison is possible with peripheral basins in the numerical 

model M6. 

7.3 The Ahnet Basin: Example of a complex-shaped filled Basin 

Extracted geological data (cross sections, seismic, satellite images, geological map, subsidence 

and thermal curves) from the Ahnet Basin are compared with the numerical forward model M 

(Figure VII-14). 

In the Ahnet Basin similar geological observations can be establish than in the Mouydir and 

Tim Mersoï Basins such as differential thickness variations between arches and basins, and 

paleocurrents directions, (Figure VII-14A-B-C). Nevertheless, the main changes are in relation 

with the tectono-stratigraphic architecture. The presence of intra-arches structures complexify 

the global syncline-shaped architecture of the Ahnet Basin (Figure VII-14A-C; Perron et al., 

2018). Besides, the thickness reaches 1.7 to 7.1 km in the Ahnet Basin which is on average 

higher than the Mouydir type basins (Beuf et al., 1971; Conrad, 1984; Wendt et al., 2006, 2009a; 

Zieliński, 2012). Evidence of thermal activity (Figure VII-14A) and the position of the Ahnet 

Basin near the WAC suture testify of a high tectonic and thermal activity. The tectonic history 

is featured by the pulsatile alternation of periods of compression and extension at origin of the 

formation of horst and graben systems inversed and/or reactivated through time (Perron et al., 

2018). During the Paleozoic, the direction of shortening and stretching are mainly oriented 

NNE-SSW to NE-SW, E-W and NNW-SSE (Boudjema, 1987; Haddoum, 2009; Haddoum et 

al., 2001; Zazoun, 2001). According to numerous authors (Akkouche, 2007; Boote et al., 1998; 

Coward and Ries, 2003; Craig et al., 2008; Haddoum et al., 2001; Logan and Duddy, 1998; 

Zazoun, 2001) the tectono-thermal intensity in this area was very significant than elsewhere on 

the Saharan platform because of his position near the deformation front during the Hercynian 

orogeny (see Fig. 32 in Craig et al., 2008). Before this major event, during the Middle Devonian 

to the Lower Carboniferous, the burial temperature range in the Ahnet basin are from 30 to 

120°C according to the analysis of CAI (Zieliński, 2012). 

In the light of these observations, a good fit is found between the geological data from Ahnet 

Basin and the central basin in the numerical model M6 coupling lithosphere heterogeneity, local 
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erosion/deposition processes, tectonics, lateral sediment flux and thermal anomaly (Figure 

VII-14D). 

Model M6 presents many similar features than the model M7. However, the main changes are 

observed in the singular complexification of the tectono-stratigraphic architecture (Figure 

VII-14D). As shown in Perron et al., (submitted), the thermal anomaly has a significant role on 

faults and terranes softening. It triggers the complexification of the basin architecture in the 

central part of the model where the strain is preferentially localized near terranes limits (Chapter 

VI.6.3). Indeed, the first-order structural pattern featured by arches-basins framework is 

overprinted by the formation of grabens near terranes boundaries during extension, positively 

inverted during compression. They are associated to major folding creating intra-basins arches 

and secondary boundary arches, a structural style well-defined in the Ahnet Basin (Perron et 

al., 2018). The sub-basins register the maximum of thickness which can reach 5 km. The total 

burial subsidence curve of well W7 (from Perron et al., 2018) and 1 to 4 from Kracha, (2011) 

well-fit with the curves of well W3-M6 and W4-M6 (Figure VII-14E-G). The thermal curve 5 

from Logan and Duddy, (1998) and CAI data from Zieliński, (2012) are coherent with the 

model results (Figure VII-14F-H). In these two cases, both the slope and the amplitude of 

deviations of the curves stays in the same magnitude of data. Notice that the first part of the 

subsidence history from the Precambrian to the Early Silurian time of wells in the Ahnet Basin 

(Figure VII-14E) is more coherent with starved model M2 or M4 (Figure VII-9). In addition, 

according to the position of the wells (Figure VII-14A), the subsidence pattern between them 

can be in antiphase, in out of phase and in phase (Figure VII-14E). This differential oscillation 

of the subsidence curves is also noticeable between wells in Figure VII-14G. It is documented 

in Perron et al., (submitted)as the propagation of the deformation in a heterogeneous 

lithosphere. 

The numerical model M6 globally reconcile the complex architecture, the thickness, subsidence 

and thermal history of the Ahnet Basin. So, the forcing factors of Ahnet Basin are those 

gathering lithospheric heterogeneities, local erosion/deposition processes, tectonics, lateral 

sediment flux and thermal anomaly. This basin is complex-shaped filled basin with intra-arches 

and boundary secondary arches structures.  
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Figure VII-13: Comparison of tectono-stratigraphic architecture cross section and thermal subsidence curves in the Mouydir basin with thermo-mechanical numerical model M7. (A) Geological map of the Paleozoic 

series in the Mouydir basin. (B) Satellite images of the Paleozoic series in the Mouydir basin (Landsat 7 ETM +). (C) WSW-ENE cross section of the Mouydir basin localized in Figure A showing the typical arche and 

basin architecture with diminution of series approaching arches. (D) Cross section extracted from model M7 showing the similar arch-basin architecture. (E) Total burial subsidence of well W21 from bibliography 

(Perron et al., 2018). (F) Comparison of total subsidence in E with curve model M7. (G) Thermal curves extracted from the model M7. Notice that this comparison is possible with peripheral basins in the numerical 

model M6. 
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Figure VII-14: Comparison of tectono-stratigraphic architecture cross section and thermal subsidence curves in the Ahnet basin with thermo-mechanical numerical model M6. (A) Geological map of the Paleozoic series 

in the Ahnet basin. (B) Satellite images of the Paleozoic series in the Ahnet basin (Landsat 7 ETM +). (C) NW-SE seismic cross section of the Ahnet basin and Azzel Matti Arch localized in Figure A showing the typical 

complexification of arche and basin architecture with intra-arches structures. (D) Cross section extracted from model M6 showing the similar complexification of the arch-basin architecture with presence of intra-

arches. (E) Total burial subsidence of well W7 from Perron et al., (2018) and well 1, 2, 3, 4 from Kracha, (2011). (F) Comparison of total subsidence curves of E with curve model M6. (G) Comparison of thermal curves 

extracted from the model M6 with 5 from bibliography (Logan and Duddy, 1998).  
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8 Classification of peri-Hoggar Basins in function of their forcing factors 

dominance 

The comparison between geological data of the peri-Hoggar Basins and the different numerical 

thermo-mechanical models allows to classify the basins according to their forcing factors in a 

three pole diagram (Figure VII-15): Tectonic dominated (represented by the model M2), 

thermal dominated (represented by the model M1) and external sediment flux dominated 

(represented by the model M3). 

In this classification, we can see the distribution of the different peri-Hoggar Basins according 

to their architecture (i.e. syncline-shaped, complex-shaped), their softening of the 

faults/terranes and their infilling (i.e. starved or filled). 

The different main criteria needed in order to classify each basin are compiled in Table 5. 

 

Figure VII-15: Classification of the different peri-Hoggar Basins based on the intensity of the 

three main modelled parameters from M1 to M7 (thermal anomaly, tectonics and sediment 

flux). Note that this classification is established by comparing the architecture, the geometries, 

the thermal and the subsidence curves between models and geological data. For each category 

local erosion/deposition process is active (i.e. erosion of arches and deposition in basins 

depocenter). 
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Models M2 M3 M4 M5 M6 M7 

Limits conditions 

(compression/extension 

alternation) 

yes no yes no yes yes 

Thermal anomaly no no yes no yes no 

Lateral sediment supply no no no yes yes yes 

Duration (Myr) 250 250 250 250 250 250 

Basins 

morphologies 

& typologies 

Lateral 

basins 

Flat 

angular 

syncline-
shaped 

Syncline-

shaped 

Syncline-

shaped 

Syncline-

shaped 

Syncline-

shaped 

Syncline-

shaped 

Central 

basin 

Syncline-

shaped 

Syncline-

shaped 

Complex-

shaped 

Syncline-

shaped 

Complex-

shaped 

Syncline-

shaped 

Arches structures 

identified 

 inter-

basin 

arches, 

inter-basin 

2nd 

boundary 

arches 

only inter-

basin 

arches 

 inter-basin 

arches, inter-

basin 2nd 

boundary 

arches, intra-

basin arches 

only 

inter-

basin 

arches 

inter-basin 

arches, inter-

basin 2nd 

boundary 

arches, intra-

basin arches 

inter-

basin 

arches, 

inter-

basin 

2nd 

boundary 

arches 

Basin filling Starved Starved Starved Infilled Infilled Infilled 

Arches thickness max. 

(km) 
no no no 1,5 2,2 1,8 

Basin thickness max. 

(km) 
1,9 1,4 2,8 3 5 4,5 

Temperature max. (°C) 20 20 25 90 120 90 

Global average 

subsidence rate (m/Myr) 
8 6 11 12 20 18 

Deviations highs (m) 5 to 400 no 400 to 1100 no 400 to 1400 5 to 500 

Peri-Hoggar Basins best 

morphology fit 

Tasmena 

Basin 
  

Tassili 

Tafassasset, 

Sbâa Basin ? 

  

Ahnet Basin, 

Illizi Basin?, 
Timimoun 

Basin, 

Ghadamès 

Basin, 

Mouydir 

Basin, Tim 

Mersoï Basin 

Mouydir 

Basin, 

Tim 

Mersoï 

Basin 

Table 5: Main criteria of classification of the different peri-Hoggar Basins. 

9 Conclusion and perspective 

Comparing results from forward modelling to geological data from the peri-Hoggar Basins 

(Saharan platform) has led to highlight the viability of the coherency of the conceptual 

geological model proposed (Perron et al., 2018) and the hypothesis of isostatic disequilibrium 

of the accreted terranes composing the substrate. The density variability in the lithosphere 

inherited from paleo-orogenies creates uncompensated entities that will be conserved through 

time. It will be achieved their equilibrium after a very long time. 
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The key results of this study are the following: 

• The thermo-mechanical numerical model developed is coherent and viable to explain 

the first (i.e. long-lived low signal) and seconder (i.e. deviations) order subsidence 

pattern of the peri-Hoggar Basins; 

• The lithospheric density heterogeneities between accreted Archean and Proterozoic 

terranes control the Arches-Basins architecture; 

• Comparison of geological data with numerical thermo-mechanical models allows to 

classify each peri-Hoggar Basins related to their forcing factors (dominated tectonics, 

dominated thermal and dominated external sediment flux). They are defined by their 

architecture (i.e. syncline-shaped, complex-shaped), their softening of the 

faults/terranes and their infilling (i.e. starved or filled); 

• Periods of acceleration of the low rate subsidence (ALRS) are well-correlated with 

temperature increasing during the Paleozoic, which have an impact on climate dynamic 

and so on sediment flux (considered as a proxy). Knowing that, the external sediment 

supply controls the total basin infill until reaching isostatic equilibrium. However, in 

some case, sediment supply only cannot explain ALRS, tectonics parameter has to be 

taken to account. It is a major forcing factor indispensable during inversion of the low 

subsidence rate (IRLS); 

• Very low strain rate (0.5 km/Myr) can be transmitted far away (over 1600 km) inside 

the model and provoke or/and reactivate faulting, which is coherent with the 

propagation of far field stresses in plate interiors highlighted by some authors (Perron 

et al., 2018; Ziegler et al., 1995); 

• Diachronism and unconformities between the different peri-Hoggar Basins is well 

explained by the heterogenic propagation of the deformation through the model. 

Because of the 2D modelling, lateral sediment flux (i.e. sediment supply from upstream) has to 

be simulated by bringing external sediment supply at edges of the models. As well as strike slip 

kinematics through inherited mega-shear zone well identified in the Saharan platform 

(Haddoum et al., 2001, 2013; Perron et al., 2018; Zazoun, 2001, 2008) cannot be taken into 

account. Consequently, 3D modelling should be an interesting perspective in order better 

constrain these intracratonic basins. 
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1 Temporal geological synthesis of the Paleozoic peri-Hoggar Basins 

The sedimentation pattern of the Gondwana craton is characterized by a stable tectonic regime 

and very low sedimentation rate during the Paleozoic (Bennacef et al., 1971). These basins 

subside over very long periods of time with a low rate (Beuf et al., 1971; Coward and Ries, 

2003; Eschard et al., 2010). A poly-history is represented by distinct phases of subsidence basin 

evolution, rhythmed by tectonic pulse (Perron et al., 2018). In intracratonic basin, the eustatic 

sea level variation strongly affects the sedimentary bodies organization because of slow 

subsidence (i.e. low accommodation space for sediment supplying) over hundreds of millions 

of years (Holt, 2012; Sloss, 1963). Consequently, in this context, glacio-eustatic variation might 

explain actual architecture (i.e. widespread unconformities, weak lateral facies variations) of 

the Saharan platform. In such geodynamical context, eustatic variations can be a main 

controlling factor of accommodation changes (third-order sequences), being amplified above 

the highs. The Paleozoic eustatic charts of Haq and Schutter (2008) show that the eustatic 

variations amplitude can be sufficient to provoke the emersion of the arches during the eustatic 

sea-level falls. Glacio-eustatic variation cannot considered as a unique controlling factor. 

If it had been the case arches structures would have disappeared through time by erosion and 

deposition leveling. Conversely, arches growth through time and keep their configuration from 

Cambrian to Devonian and Carboniferous (Perron et al., 2018). Therefore, an internal 

mechanism (i.e. tectonic) seems to maintain this configuration. According to Eschard et al., 

(2010), in such a cratonic context, the uplift rate of the highs is expected to be slow and constant. 

This organization seems similar between the different arches (Eschard et al., 2010). 

Nevertheless, acceleration or deceleration of subsidence can be noted during geodynamic event 

(Figure VIII-1B). Consequently, the analysis of subsidence histories should help to decipher 

the different forcing mechanisms during the Paleozoic in the peri-Hoggar Basins (NW Basins). 

The subsidence curves analysis of the Paleozoic history of the peri-Hoggar Basins allows 

extracting three type of low subsidence pattern (ALRS: Acceleration of the Low Rate 

Subsidence, DLRS: Deceleration of the Low Rate Subsidence and IRLS: Inversion of the Low 

Rate Subsidence), linked to internal (tectonics) and/or external forcing (climate change and 

glaciation) (Figure VIII-1). 

Two periods of DLRS (Deceleration of the Low Rate Subsidence) are mainly registered during the 

Late Cambrian and the Early Devonian with rate of subsidence comprise from 5 to 20 m/Ma. The 
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Late Cambrian shows a global increase of the temperature (high temperature) associated with a 

worldwide eustatic transgression trend (Figure VIII-1C and D). During these periods, evidence of 

unconformities is observed which are preferentially registered on arches (Table 3; Figure VIII-1A). 

Especially, the Emsian hiatus identified by many authors (Table 3) which is well correlated to a 

high peak of temperature and a worldwide eustatic regression (Figure VIII-1C and D). We observe 

for both stages, the deposition of principally continental fluvial dominated systems. This type of 

sedimentation in a context of low rate subsidence is consistent with denudation rates range (5 to 

50 m/Ma) in low relief area (see Fig. 9.14 in Einsele, 2000) in stable tectonic regime. During these 

periods of tectonic quiescence, the sedimentation pattern seems to be mostly influenced by climatic 

and surface processes mechanism (erosion, weathering and low sediment flux). 

This phase of quiescence is in agreement with the model M3, where basic surface processes 

eroding uplifted arches and depositing in subsided basins without tectonic parameters (Figure 

VII-8) control the basin dynamics and the low rate subsidence. The external sediment supply and 

surface processes are identified as the first order signal in these intracratronic basins (Perron et al., 

submitted). 

Fourth periods of ALRS (Acceleration of the Low Rate Subsidence) are observed during the 

Early-Middle Ordovician, the Silurian, the Early Mid Devonian and the Late Devonian with 

rate of subsidence, which can reach 150 m/Ma. They are characterized by the deposition of 

marine dominated environments with rare hiatus rare and conformable series (Figure VIII-1A). 

These periods are linked to worldwide high (Early-Middle Ordovician) or increasing 

temperature (Silurian, Early Mid Devonian and the Late Devonian) permitting to enlighten a 

possible increase of sediment supply (Figure VIII-1D). They are associated to worldwide 

transgressions (Early-Middle Ordovician, Silurian and Early Mid Devonian) and regressions 

(Late Devonian). During these transgressions (Figure VIII-1C), the maximum of magnitude of 

sea level variation are about 50 m (Haq and Schutter, 2008), which is insufficient to alone 

explicate the subsidence acceleration. 

Then, neither eustatic or/and climatic parameters only can explain this acceleration of the 

subsidence. Putting into perspective the results from numerical model M, the acceleration of 

the subsidence rate can be explained by the high sediments flux (climatic proxy) and/or 

extensional tectonics (far field stresses). Where, subsidence acceleration rate from high 

sediment flux are featured by lower values than from tectonics (see difference of slop between 

the curves M3 and M6). Consequently, external forcing factors have undoubtedly accentuated 
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or limited this trend, even if the tectonic seems to be the main controlling factor. In some case, 

it is possible because of the range of values that the acceleration of the subsidence rate can be 

related only to the increase of the sediment flux. Besides, globally the increases of temperatures 

and so the augmentation of detrital supply related is globally correlated with acceleration of the 

subsidence. 

Three periods of ILRS (Inversion of the Low Rate Subsidence) are identified during the Late 

Ordovician, the Early Devonian, the Givetian and the Early Carboniferous with negative rate 

of subsidence comprise from -5 to -100 m/Ma. They are mainly featured by deposition of glacial 

(Late Ordovician), fluvial (Early Devonian) and shallow marine (the Givetian and the Early 

Carboniferous) systems. During these periods, evidence of many unconformities (e.g. glacial 

incision, Caledonian unconformity) is observed which are preferentially registered on arches 

(Table 3; Figure VIII-1A). They are associated with a negative (Hirnantian glaciation) or 

positive peak of temperature (Figure VIII-1D). They are associated to worldwide regression 

(Late Ordovician, Early Devonian, and Early Carboniferous) and transgression (Givetian). The 

maximum magnitude of sea level variation is going from 100 m for the Late Ordovician 

glaciation to 50 m for the Early Devonian regression (Figure VIII-1C). Decipher signature to 

isostatic and eustatic signals during glaciation/deglaciation events is difficult (Girard et al., 

2018). 

Comparison with our model allow to propose tectonic as the mechanism permitting to 

understand this inversion. Following these observations, these periods must be correlated to 

tectono-isostatic events. We can identify the early Silurian isostatic rebound from ice sheet 

melting and the far field stresses from the Early Devonian Caledonian orogeny, the Middle-

Late Devonian event and the Carbo-Permian Hercynian orogeny (Figure VIII-1C). 

To conclude, the temporal and spatial variation in subsidence and architecture within basins 

result from a complex balance between internal forcing (lithosphere heterogeneity, thermal 

anomaly, tectonics) and/or external forcing (local erosion/deposition, lateral sediment flux). 

The Saharan platform was alternatively flooded or emerged depending on the eustatic sea-level 

variations, sediments supply, the uplift rates and the global geodynamic deformation. 

Depending on the nature of the subsidence rate pattern (i.e. either DLRS, ALRS and IRSL), 

one or a combination of several of these forcing factors control the Paleozoic intracratonic 

basins of the Saharan platform. 
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Figure VIII-1: (A) Chronostratigraphic chart and architecture of the Paleozoic intracratonic 

basins (Reggane, Ahnet, Mouydir) associated with their basement heterogeneities (i.e. 
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terranes) drawn from literature (Eschard et al., 2010; Perron et al., 2018; Wendt et al., 2006); 

(B) Schematic characteristic backstripped curve of these basins; (C) Eustatic curve (Haq and 

Schutter, 2008) and geodynamic events: (a) Hirnantian glaciation, (b) Carboniferous 

glaciation, (c) Caledonian orogeny, (d) pre-Hercynian orogeny, (e) Devonian igneous 

intrusion; (D) Isostopic temperature (shallow, tropical/sub-tropical) during the Paleozoic 

(Prokoph et al., 2008). (0) Late Pan-African extensional collapse, (1) Pan-African 

peneplenation, (2) Cambro-Ordovician extension, (3) Upper Ordovician glaciation and 

deglaciation linked to isostatic rebound, (4) Silurian extension, (5) Silurian sealing, (6) 

Caledonian compression, (7) Early Devonian tectonic quiescence, (8) Middle Devonian 

compression, (9) Middle to Late Devonian extension, (10) Pre-Hercynian compression. 

2 Conclusion (Question responses) 

The aim of this thesis was to analyze the tectono-sedimentary architecture systems of the North 

Gondwanan Paleozoic platforms (peri-Hoggar basins), which are very large (in width and 

length) and have no current equivalent. Several questions were asked and introduced at 

beginning of this manuscript: 

• (1) What are the working mechanisms of these slow subsidence basins? 

• (2) How can we characterize crustal and lithospheric deformations? 

• (3) What is the nature of the apparently permanent lithospheric & rheologogical 

heterogeneities through 250 Ma? 

• (4) What is the control and trigger of the regular uplifts of inherited paleohighs/arches 

and extensive & coeval unconformities/hiatuses? 

•  (5) What are the controlling factors of the sedimentary record, the reservoir architecture 

and facies distribution? 

• (6) What is the impact on the Silurian/Devonian Hot Shales and other source rocks 

deposits? 

With the help of our multi-disciplinary integrated approach, we have tried to response to each 

of them: 

(1) What are the working mechanisms of these slow subsidence basins? 

Both the published paper (Chapter IV) and the submitted paper (Chapter VI) has permitted to 

response to this question. After the establishment of an integrated multi-disciplinary conceptual 
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geological model coupling both tectono-sedimentologic of the Arches-Basins architecture and 

the nature of the substrate, we have highlighted a specific distribution between the Arches-

Basins framework and the age of the terranes. We have shown that “old” terranes (Archean and 

Paleoproterozoic) form preferentially substrates of the Arches and the “young” terranes (Meso-

Neoproterozoic) constitute the substrates of the basin depocenter. This zonation is inherited 

from accreted, assembled and sutured terranes separated by major mega shear zone during 

several paleo-orogenies. Stating the hypothesis of isostatic disequilibrium between the different 

terranes because of differential densities of Achaean, Paleoproterozoic, Meso-Neoproterozoic 

entities based on published studies (Artemieva, 2009; Artemieva and Mooney, 2002; Djomani 

et al., 2001), led to the construction of a 2D numerical thermo-mechanical lithospheric model. 

We have seen that a combination of lithospheric heterogeneity assembled with terranes of 

different densities and basic surface processes can explain the first order mechanism at the 

origin of the low and long subsidence rate. It also reconciles the Arches-Basins architecture. 

Erosion and deposition of the different blocks associated with a progressive re-equilibration of 

the isostatic density anomalies in the lithosphere will maintain the subsidence dynamic through 

long geological time. As a consequence, the nature of the inherited uncompensated isostatic 

anomalies associated with basic surface processes (external forcing) can constrain and force the 

mechanism of slow subsidence (first order mechanism in intracratonic basins). This new 

numerical model developed in this study has shown by extracting and comparing forward 

modelling results with geological data that it is both coherent with peri-Hoggar Basins and other 

worldwide basins. 

(2) How can we characterize crustal and lithospheric deformations? 

The submitted paper (Chapter VI) has tried to response to this question. The new numerical 

model developed in this study (see model M) inspired and calibrated from geological data was 

subject to sinusoidal pulsatile tectonics alternating compressional and extensional kinematics 

(0.5 km/Myr with time period of 40 Myr). In our simulation, this very weak strain can be 

transmitted far away (over 1600 km) inside the model provoking or/and reactivating faults. A 

tectonic style coherent with the propagation of far field stresses in plate interiors highlighted by 

some authors (Coakley and Gurnis, 1995; Haddoum et al., 2001; Perron et al., 2018; Ziegler et 

al., 1995). Moreover, two type of deformations are identified, featured by classical faulting 

during extension implying the crustal scale and buckling mainly during compression evolving 

the whole lithosphere. During extension horst and grabens systems are created and concentrated 

at near terranes boundaries (i.e. shear zones). In contrast, during compression large scale 
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buckling is observed, characterized by the uplift of the Archean terranes and the downlift of the 

Proterozoic terranes. This asymmetric behavior between extension and compression phase is 

well explained by the fact that the lithosphere is stronger in compression than in extension 

(Brace and Kohlstedt, 1980). Delays in inversion of the fault system versus global buckling is 

also observed. It may explain why during the a same tectonic event, both extensional or 

compressional structures can be locally recognized in the different Arches and sub-basins 

(Perron et al., 2018). Moreover, the presence or not of a thermal anomaly (which can be related 

to both tectonics activity and igneous activity) is at the origin of fault and terranes softening 

and strain localization. It may be at the origin of the terrane response to lithospheric buckling. 

It can also influence the thermal activity of the basins and so the reservoirs (maturity of the 

source rock…). 

(3) What is the nature of the apparently permanent lithospheric & rheologogical 

heterogeneities through 250 Ma? 

Both the published paper (Chapter IV) and the submitted paper (Chapter VI) has helped to 

response to this question. The multidisciplinary approach integrating geophysical 

(aeromagnetic, Bouguer anomaly maps), geological and geochronological (U/Pb SHRIMP…) 

analysis of the Saharan platform, and especially of the exhumed Hoggar massif has allowed to 

establish a substrates geological model. It was the results of collage of portion of different 

terranes during paleo-orogenies with their own physico-chemical properties. A particular 

zonation of the terranes with the cover framework was highlighted, where the relation between 

these two seems to be the age and origin of the different terranes (i.e. Archean, 

Paleoproterozoic, Meso-Neoproterozoic). Through a 2D numerical thermo-mechanical 

modelling, we have shown that differential densities (dependent of age) between the terranes 

(in this case Archean and Proterozoic) in the lithosphere can be a viable hypothesis to explain 

the nature of the apparently permanent lithospheric and rheologogical heterogeneities through 

250 Ma. Moreover, we have seen that in the simulation submitted to basic surface processes 

(erosion and deposition), the isostatic equilibrium isn’t reach after 250 Myr. This argue in favor 

of a very long process maintaining the stability of the lithosphere coherency. 

(4) What is the control and trigger of the regular uplifts of inherited paleohighs/arches 

and extensive & coeval unconformities/hiatuses? 

Both the published paper (Chapter IV) and the submitted paper (Chapter VI) has helped to 

response to this question. In the first part (Chapter IV), we have seen that the vertical motions 
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of the platform produced several arches (also called domes, swells, highs, ridges) and basins 

(synclines shaped depressions) with different wavelengths going from several hundred to more 

than a thousand kilometres. This latter controlling spatially and temporally the deposition and 

the erosion dynamics. Several major erosion events significantly truncated the pre-existing 

sediments over wide areas, producing regional unconformities amalgamated approaching 

arches that separate the platformal cover into divisions. The persistence of a rather uniform 

pattern of vertical motions seems to control the architecture of theses basins and the thickness 

variation at the vicinity of Arches. With the different simulations from the new developed 

models (Chapter VI), we have both explained the first order mechanism controlling the Arches-

Basins architecture (described previously) as well as the second order mechanism directing the 

deviations of the subsidence signal. In our modelling, the lithospheric density heterogeneities 

are at the origin of the Arches-Basins framework; And the far field tectonics applied at the 

model boundaries are at the origin of the up and down deviations of the subsidence pattern and 

complexification of the stratigraphic architecture. The coupling of these two controls the 

stratigraphic distribution of unconformities/hiatuses which is coherent with geological data 

collected on the Saharan platform. They help to understand heterogenic propagation of the 

strain impacting the stratigraphic diachronism and the absence or presence of some layers 

between neighboring basins. 

(5) What are the controlling factors of the sedimentary record, the reservoir architecture 

and facies distribution? 

In order to totally response to the question a coupling with stratigraphic modelling (with 

DIONISOS software) should be led. However, a beginning of response at this question can be 

realized with the two last chapters (Chapter VI and Chapter VII). Apart all the controlling 

factors needed to explain the first and seconder order mechanism of control already cited 

previously that constrain the tectono-stratigraphic architecture, we have seen that sediment flux 

is predominant factor in the duration of subsidence (until isostatic equilibrium achievement) of 

the basins. It also constrains the presence of sediment on arches. Besides, we have observed a 

close synchronization between climatic global warming and acceleration of the subsidence rate. 

This lateral sediment supply control the facies distribution and features (grain size, nature, 

origin…) depending on the source. We have shown that it could be both local (erosion of arches) 

and more distal/regional (cratons). Nevertheless, alone this parameter cannot explain the 

characteristic of these basins. A subtitle equilibrium between far field stresses, sediment flux 

and thermal anomaly has to be taken to account… 



CHAPTER VIII – CONCLUSION AND PERSPECTIVES 

315 

P. PERRON - 2019 

(6) What is the impact on the Silurian/Devonian Hot Shales and other source rocks 

deposits? 

The thermo-mechanical models proposed in this study cannot alone response to this question. 

Further work should be pursued by a coupling with stratigraphic modelling (with DIONISOS 

software) in order to refine the study, especially on facies partitioning. This latter cannot be 

succeeded by our thermo-mechanical modelling. Nevertheless, actual model of deposition of 

hot shales on the Saharan platform is defined by their preferential deposition in depression or 

paleo-depressions (Lüning et al., 1999, 2000, 2004) essentially created by horst and grabens 

faulting and glacial systems (themselves controlled by fault network) during Hirnantian 

deglaciation (Clerc, 2012; Clerc et al., 2013; Denis et al., 2007; Ghienne et al., 2003; Girard et 

al., 2018; Ravier et al., 2014; Zazoun and Mahdjoub, 2011). Our models have shown that due 

to cyclic inversion (extensional and compressional kinematics) in the maximum basin 

depocenter important hiatus (truncatures of series) are observed which could be at the origin of 

the non-presence of the hot shales. This unexpected observation could have a no negligible 

impact on the petroleum systems and the repartition of the source rocks. 

3 Perspectives and comparison with intracratonic basins possible 

analogues (Case of Paraná Basin) 

Aside its potential (yet requested) use for a broader understanding of the Paleozoic intracratonic 

basins, the multidisciplinary integrated method developed during this work may find other 

applications to answer diverse scientific questions. 

Due to this approach involving different parameters as several scales, tools and domains (from 

geological analysis to numerical thermo-mechanical modelling), which is the main interest of 

the method, it might be used to help discriminate the influence of each distinct controlling 

parameter. It remains a first step in order to better constrain quality reservoirs predictions in 

intracratonic basins by coupling stratigraphic modelling (Dionisos). 

At the light of the conclusion and results from this research work many opened perspectives 

and questions arise both from the geological analysis part (Chapter IV and Chapter V) and the 

modelling part (Chapter VI and Chapter VII) such as: (1) Can we export this model and 

approach to other worldwide basins? (2) Can we better constrain spatial paleogeographic 

environments of the Paleozoic succession? (3) What is the implication on modelled facies 

partitioning (Dionisos)? (4) Can a coupling between stratigraphic modelling and thermo-
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mechanical modelling allow to better constrain quality reservoirs predictions of these 

intracratonic basins? (5) How can 3D thermo-mechanical modelling help the understanding of 

strike slip kinematics and sediments source supply of these basins? (6) Can other rheologic 

parameters than density control the differential subsidence? 

Case of Paraná Basin: 

A similar work can be achieved elsewhere. Indeed, a comparison of our forward numerical 

model with other worldwide basins can be allowed, especially with the South-American Basins 

(example of Paraná Basin in Figure VIII-2 and Figure VIII-3). These intracratonic basins were 

part of the Gondwana history (Rogers et al., 1995; Unrug, 1992), resulting from the same 

processes of accretion of heterogeneous terranes and cratonic cores described in this study 

(Figure III-17). 

In this case, the basin depocenter is situated upon a different substrate than the edges of it, 

where the series are thinning and onlapping (Figure VIII-2A-B). The different substrates are 

separated by major shear zones (Figure VIII-2B). Besides, several authors (de Brito Neves et 

al., 1984; de Castro et al., 2012; Coelho et al., 2018; Rostirolla et al., 2003) have pointed out 

the influence of basement on the architecture of these basins. Geophysics anomalies are also 

highlighted and often related to basement structures (Cordani and Teixeira, 2007; Dallmeyer, 

1989; Daly et al., 2014, 2018b; Heilbron et al., 2008; James and Assumpção, 1996; Mantovani 

et al., 2005; Nunn and Aires, 1988; Padilha et al., 2014; Pérez-Gussinyé et al., 2007; Tozer et 

al., 2017). They could be evidence of isostatic disequilibrium in the lithosphere between 

different terranes. 

In view of our first observations (Figure VIII-2 and Figure VIII-3), both the architecture and 

the subsidence curves geological data of Paraná Basin seems coherent with the results of our 

models. 
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Figure VIII-2: Comparison of stratigraphic architecture cross section in the Paraná Basin with 

thermo-mechanical numerical model. (A) Geological map of the Paleozoic series in the Paraná 

Basin from Daly et al., (2018b). (B) Geoseismic interpretation of the deep seismic profile; And 

the same seismic data at a vertical exaggeration of 1:30 showing the cratonic megasequence 

and overlying Cretaceous section from Daly et al., (2018b). (C) Cross section extracted from 

model M7 showing the similar architecture. 1: Cretaceous Grajaú Group; 2: Upper 

carboniferous–Middle Triassic Balsas Group; 3: Middle Devonian–Lower Carboniferous 

Caninde Group; 4: Silurian–Lower Devonian Serra Grande Group; 5: Silurian–Triassic 
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cratonic basin megasequence; 6: Late Neoproterozoic and Cambrian sedimentary remnants of 

the Riachão basin; 7: Parnaíba Block crystalline basement; 8: mid-crustal reflectivity; 9: 

Cambrian volcanics and sediments of the Campo Maior graben; 10: Neoproterozoic Cruzeta 

Complex of the Borborema Province; 11: Neoproterozoic granitic gneisses of the Borborema 

Province; 12: Neoproterozoic schists of the Estrondo Group; 13: Neoproterozoic phyllites of 

the Tocantins Group; 14: Paleoproterozoic Amazonian craton; 15: lithospheric mantle. 

 

Figure VIII-3: Comparison of subsidence curves from geological data of Paraná Basin and 

numerical models (Model M2 and M3). a: Well CB-3 from Paraná Basin, Brazil, (Oliveira, 

1987 from Allen and Armitage, 2011); b: Well from Paraná Basin (Zalan et al., 1990). 
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CHAPTER VIII: 

Figure VIII-1: (A) Chronostratigraphic chart and architecture of the Paleozoic intracratonic 

basins (Reggane, Ahnet, Mouydir) associated with their basement heterogeneities (i.e. terranes) 

drawn from literature (Eschard et al., 2010; Perron et al., 2018; Wendt et al., 2006); (B) 

Schematic characteristic backstripped curve of these basins; (C) Eustatic curve (Haq and 
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Titre : Tectonique et architecture des bassins intracratoniques Paléozoïques : Impact sur 
l’enregistrement sédimentaire et la géométrie des réservoirs associés. Exemple de la marge Nord 

Gondwanienne 

Mots clés : Plate-forme saharienne, Bassins péri-Hoggar, Arches-Bassins structures, héritages 
structuraux précambriens, hétérogénéité de la lithosphère, terranes, thermo-mécaniques, champs de 

contraintes lointaines, densité, potentiel isostatique. 

Résumé : La plate-forme Saharienne 
paléozoïque, comprenant les bassins péri-

Hoggar (Murzuq, Illizi, Mouydir, Ahnet, 

Reggane et Tim Mersoï) sont définies comme 
des bassins intracratoniques. Ils ont été dominés 

par des mouvements verticaux lents et à grande 

longueur d'onde, conduisant à de faible vitesse de 

subsidence (c’est-à-dire environ 10 m/Ma à 50 
m/Ma) et à l'accumulation d'une couverture 

sédimentaire étendue de type plate-forme 

(environnements de dépôts peu profonds), 
rythmée par des périodes pulsatiles 

d’augmentation et de diminution du taux de 

subsidence probablement déclenchées par des 
événements géodynamiques régionaux. Les 

mouvements verticaux de la plate-forme ont créé 

plusieurs arches également appelés dômes, 

paléo-topographies (par exemple les arches de la 
Tihemboka, d’Amguid El Biod, d’Arak-Foum 

Belrem et de l’Azzel Matti) et des bassins (en 

forme de synclinal) de différentes longueurs 
d'onde allant de plusieurs centaines à plus de 

milliers kilomètres. La persistance d’un 

ensemble assez uniforme de mouvements 
verticaux semble contrôler l’architecture des 

bassins, ce qui semble indiquer un contrôle à 

grande échelle (i.e. lithosphérique). Ce dernier 

contrôle spatialement et temporellement la 
dynamique sédimentaire de dépôt et d'érosion. 

Plusieurs périodes d'érosion majeures ont 

considérablement tronqué les sédiments 
préexistants sur de vastes zones, produisant des 

discordances régionales, restreintes et 

amalgamées sur les arches, qui séparent la 

couverture sédimentaire de la plateforme. À 
travers une approche intégrée multidisciplinaire 

originale allant d’une analyse géologique de 

bassin, associant le substrat et l’architecture de 
bassin à une modélisation thermomécanique 

numérique de la lithosphère, cette étude a permis 

de décrypter les facteurs de forçage des bassins 
intracratoniques de la plate-forme saharienne 

(bassins péri-Hoggar). 

La plate-forme Saharienne paléozoïque, 
comprenant les bassins péri-Hoggar (Murzuq, 

Illizi, Mouydir, Ahnet, Reggane et Tim Mersoï) 
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intracratoniques. Ils ont été dominés par des 

mouvements verticaux lents et à grande longueur 
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Title : Architecture and tectonic of Paleozoic intracratonic Basins : Impact on the sedimentary record 

and associated geometries. Example of peri-Hoggar Basins (North Gondwana) 

Keywords : Saharan platform, peri-Hoggar Basins, Arches-Basins, Precambrian structural heritages, 

lithosphere heterogeneity, terranes, thermo-mechanical, far field stresses, density, potential isostatic 

equilibrium. 

Abstract : The Paleozoic Saharan platform 

including the peri-Hoggar Basins (i.e. Murzuq, 
Illizi, Mouydir, Ahnet, Reggane and Tim Mersoï 

basins) are defined as intracraonic basins. Their 

histories have been dominated by slow long-
wavelength vertical motions leading to overall 

low subsidence rate (i.e ca. 10 m/Ma to 50 

m/Ma)  and accumulation of an extensive cover 

of platformal sediments (i.e. shallow deposits 
environments), rhythmed by pulsatile periods of 

increasing and decreasing rate probably 

triggered by regional geodynamic events. The 
vertical motions of the platform produced 

several arches also called domes, swells, highs, 

ridges (e.g. the Tihemboka, Amguid El Biod, 
Arak-Foum Belrem and Azzel Matti Arches) 

and basins (syncline-shaped) with different 

wavelengths going from several hundred to 

more than a thousand kilometres. The 
persistence of a rather uniform pattern of 

vertical motions seems to control the 

architecture of the basins indicating a large-
scale control (i.e. lithospheric). This latter 

controls spatially and temporally the deposition 

and the erosion dynamics. Several major erosion 
events significantly truncated the pre-existing 

sediments over wide areas, producing regional 

unconformities, especially restricted and 

amalgamated on arches, which separate the 
platformal cover into divisions. Through an 

original multidisciplinary integrated approach 

going from a geological basin analysis, coupling 
the substrate and the basin architecture to a 

numerical thermo-mechanical modelling of the 

lithosphere, this study has led to decipher the 

forcing factors of the intracratonic basins of the 
Saharan platform. 

The Paleozoic Saharan platform including the 

peri-Hoggar Basins (i.e. Murzuq, Illizi, 
Mouydir, Ahnet, Reggane and Tim Mersoï 

basins) are defined as intracraonic basins. Their 

histories have been dominated by slow long-
wavelength vertical motions leading to overall 

low subsidence rate (i.e ca. 10 m/Ma to 50 

m/Ma)  and accumulation of an extensive cover 

of platformal sediments (i.e. shallow deposits 
environments), rhythmed by pulsatile periods of 

increasing and decreasing rate probably 

triggered by regional geodynamic events. The 
vertical motions of the platform produced 

several arches also called domes, swells, highs, 

ridges (e.g. the Tihemboka, Amguid El Biod, 
Arak-Foum Belrem and Azzel Matti Arches) 

and basins (syncline-shaped) with different 

wavelengths going from several hundred to 

more than a thousand kilometres. The 
persistence of a rather uniform pattern of 

vertical motions seems to control the 

architecture of the basins indicating a large-scale 
control (i.e. lithospheric). This latter controls 

spatially and temporally the deposition and the 

erosion dynamics. Several major erosion events 
significantly truncated the pre-existing 

sediments over wide areas, producing regional 

unconformities, especially restricted and 

amalgamated on arches, which separate the 
platformal cover into divisions. Through an 

original multidisciplinary integrated approach 

going from a geological basin analysis, coupling 
the substrate and the basin architecture to a 

numerical thermo-mechanical modelling of the 

lithosphere, this study has led to decipher the 

forcing factors of the intracratonic basins of the 
Saharan platform. 
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