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Abstract

The goal of our research is to develop efficient and robust control protocols for classical
and quantum systems. To this end, we have applied Optimal Control Theory (OCT)
and Shortcuts to Adiabaticity (STA) with inverse engineering and motion planning

approaches in three different examples, which are Resistor Capacitor (RC) circuits, Fourier
Transform-Ion Cyclotron Resonance (FT-ICR), and Nuclear Magnetic Resonance (NMR). Some
of our results are not limited to these systems but are rather general. We apply OCT and STA
with inverse engineering approach to control the time-evolution of the charge on a capacitor.
We show that OCT solution is a member of the family of STA solutions. In order to control an
ensemble of spins and apply it in NMR, we harness the method of mapping spins to springs.
We give a more illustrative explanation of this method, hence it becomes clear why this works
both under OCT and STA control pulses. The mutual advantages and drawbacks of OCT
and STA are discussed. By using the Rotating Wave Approximation (RWA), we show that
the control pulses developed for an ensemble of springs are applicable in FT-ICR. In a first
step, we have designed robust pulses without any constraint on the amplitude of the pulse
following the framework of OCT. Moreover, in a second step, adapting the Gradient Ascent
Pulse Engineering (GRAPE) algorithm we have taken into account an important experimental
limitation, which is the constraint on the amplitude of the pulse. The OCT and STA control
pulses have been compared with standard adiabatic and Stored Waveform Inverse Fourier
Transform (SWIFT) pulses. This is the first time that OCT is applied in FT-ICR.

*

Le but de ce travail de recherche est de développer des protocoles de contrôle efficaces
et robustes pour les systems classiques et quantiques. A cette fin, nous avons appliqué
les approches de théorie du contrôle optimal et de "Shortcuts to Adiabaticity" (STA)

basé pour cette dernière sur des méthodes inverses dans trois exemples distincts : la charge
d’une capacité dans un circuit électrique RC, la résonance cyclotron d’ion par transformée de
Fourier (FT-ICR) et la Résonance Magnétique Nucléaire (NMR). Certains de ces résultats
ne sont pas limités à ces systèmes mais sont plus généraux. Nous avons utilisé OCT et STA
pour contrôler l’évolution temporelle de la charge d’une capacité. Nous montrons que OCT
peut être vu comme un membre de la famille des solutions STA. Dans le but de contrôler un
ensemble de spins pour des applications en NMR, nous exploitons la connexion entre les spins
et les ressorts. Nous donnons une description qualitative de cette approche, ce qui nous permet
d’expliquer pourquoi celle-ci fonctionne à la fois avec des impulsions OCT et STA. Les avantages
et les inconvénients de OCT et STA sont discutés. En utilisant l’approximation des ondes
tournantes, nous montrons que les pulses de contrôle développés pour un ensemble de ressorts
sont applicables en FT-ICR. Dans une premiẽre étape, nous avons mis en forme des impulsions
robustes sans contrainte sur son amplitude à partir des méthodes du contrôle optimal. De plus,
dans une seconde étape, nous avons pris en compte les limitations expérimentales sur les limites
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de l’intensité de l’impulsion. Les impulsions OCT et STA ont été comparées avec les solutions
standards adiabatiques et SWIFT (Stored Waveform Inverse Fourier Transform). Il s’agit de la
première fois que le contrôle optimal est appliqué en FT-ICR.
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Introduction

Scientific problems are conventionally divided into direct and inverse problems. A direct
problem is about predicting the set of observations from a set of causal factors that
produce them. A good classical example is the Newton’s direct problem: the force field

at a given time, the mass of a solid object of interest and the initial state (position, orientation
and velocity) are known, and the goal is to predict the state at a given time in the future
or the final state. This is the direct problem and the way most of us were introduced to
classical mechanics at school. There are also good examples in the theory of electricity and
gravity: the charge distribution and currents or mass distribution are given and the goal is
to predict the characteristics of electromagnetic or gravitational fields that an experimenter
will observe. Opposed to direct or forward problem, the inverse or backward problem starts
with the effects (e.g. a set of observations) to calculate the causes. Little does general public
know that inverse problems are more interesting and practical. For instance, the counterpart
inverse problem of Newton could be formulated in this way: the mass of a solid object of
interest, the initial and the final states are known, and the goal is to calculate the force field
that drove the object from its initial state into the final state. Similarly, a counterpart example
of inverse problems in the theory of electricity and gravity could be given in the following
way: an experimenter measures the electromagnetic or gravitational fields and the goal is to
calculate the charge distribution and currents or mass distribution. The last example indicates
the greater utility of inverse problems in real life applications. Indeed, we first observe the
gravitational field of Earth and then put forward the inverse problem of finding the mass
distribution and structure of Earth. A historical astronomical example of a solved inverse
problem is the theoretical prediction of existence of the 8th solar planet later called Neptune
from the perturbed trajectory of Uranus by John Couch Adams [2] and Urbain Jean Joseph
Le Verrier [3]. Another historical example is Weyl’s conjecture about the relation between
the eigenfrequencies and shape (area, perimeter) of a drum. In some sense, this indicates the
possibility of hearing the shape of a drum [4]. The field of inverse problems was later scratched
by Soviet-Armenian astronomer Viktor Ambartsumian. Essentially, he examined the inverse
Sturm-Liouville problem or if we put it in another way, he examined the possibility of finding the
form of equations given a family of eigenvalues. Ambartsumian’s studies in this direction were
published and remained in obscurity and oblivion for a long time until Swedish mathematicians
would develop his ideas after the Second World War [5].
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*
Along with the development of inverse problems, a new direction that we call Optimal

Control Theory (OCT) started to emerge as an extension of the calculus of variations which is
applied to solve inverse problems [6]. OCT problems can also be viewed as a combination of
direct and inverse problems. As a brief historical overview, it is worth to recall two of the earliest
problems posed by Galileo Galilei in 1638 that were later solved by the calculus of variations
[7–9] and established the beginning of the control theory. The first is the brachistochrone
problem [8] of shaping a wire such that a frictionless bead sliding along it traverses the distance
between two end points in minimum time. The second is the heavy chain problem of finding
the shape assumed by a heavy chain hanging between two points [10]. Later, OCT started
to enter into the area of technological sciences. For instance, one of aircraft applications of
OCT was the calculation of the minimum time-to-climb (time-optimal solution [11–14]) path
to an altitude of 20km using aerodynamic data from McDonnell and thrust data from General
Electric. This path was tested in January of 1962 and provided substantially shorter time than
had been achieved by cut-and-try [10]. The fuel-optimal solution is thoroughly discussed in [15,
16]. There is a very nice example of applying OCT in a simple mechanical system [17]. For
another example of a simple mechanical system where OCT is compared with Shortcuts to
Adiabaticity (STA) see the reference [18]. OCT has also been applied to quantum systems
first in the context of physical chemistry to steer chemical reactions or control specific degrees
of freedom [19, 20], followed by control of spin dynamics [21, 22] for applications in Nuclear
Magnetic Resonance (NMR) [11, 23–30], Magnetic Resonance Imaging (MRI) [31–34] and
quantum systems in general [35–37]. Quantum optimal control approaches as well as the state
of the art are described in details [38]. The link between quantum speed limit and the energetic
cost expenditure has been described [39].

**
Many approaches and methodologies in control theory apart from OCT are applied including

but not limited to adiabatic control and STA. Adiabatic methods [40–43] aim to achieve
excitation insensitive to spatial inhomogeneities of the Radio Frequency (RF) magnetic field
or off-resonances in the sample and are widely used thanks to their simplicity and intuitive
scheme but require a long control duration, which could be undesirable. As an alternative
to that, STA protocols [44–53] constitute driving schemes to control classical and quantum
systems without the need of slow driving [47, 50, 54]. STA protocol has a myriad of applications
in different disciplines including quantum thermodynamics, superconducting qubits, nitrogen-
vacancy centers and ultracold gases [55], just to name a few [54]. Furthermore, engineered swift
equilibration protocol that shortcuts time-consuming relaxations of a Brownian particle trapped
in an optical potential could also be referred to STA technique [56]. Different approaches are
known in STA such as fast-forward approach [57], enhanced STA approach [58], counderdiabatic
approach [59, 60]. A new method of driving an ultracold gas in potential box with STA was
proposed [61]. State of the art of STA is thoroughly discussed [47, 50].
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***
This thesis is devoted to the in-depth exploration of STA and OCT techniques for linear

and non-linear dynamical systems. In the first chapter, OCT and STA techniques are applied
in a linear system of a Resistor Capacitor (RC) circuit. We compare the mutual advantages
and drawbacks of STA and OCT control pulses. We show that OCT is included in the family
of STA solutions in this example. In the second chapter, we focus on a quite challenging
problem of ensemble control. This chapter mainly focuses on the application of OCT and
STA in an ensemble of springs and spins. We give an original explanation of an established
connection between those two ensemble control problems [62]. We tackle the problem of finding
a robust control pulse for this physical system. We design new analytic pulses for the robust or
selective control of two-level quantum systems, which could be useful in NMR, MRI or quantum
computing applications. In the third chapter, we apply OCT and STA in Fourier Transform-Ion
Cyclotron Resonance (FT-ICR) Mass Spectrometry (MS), which is an experimental technique
designed for measuring the masses of ions e.g. in unknown natural extracts. We introduce the
Rotating Wave Approximation (RWA) thereby indicating on the applicability of the control
pulses developed for an ensemble of springs in FT-ICR. Then, we compare the newly designed
OCT pulses with standard adiabatic and Stored Waveform Inverse Fourier Transform (SWIFT)
pulses. All the necessary mathematical tools are presented in the Appendices. The gradient
based algorithm is described in Subsecs. 3.2.4, A.2. Some useful tips for inverting a matrix and
reversing the direction of steering of an ensemble of springs are given in Appendix B. Fresnel
integral, imaginary error function, some important integrals and stationary phase approximation
are introduced in Appendix C.

****
All chapters are based on original scientific publications that are mentioned below.

Chapter 1

• V. Martikyan, D. Guéry-Odelin, and D. Sugny, Comparison between optimal control and
shortcut to adiabaticity protocols in a linear control system, Phys. Rev. A 101, 013423
Published 15 January 2020

Chapter 2

• V. Martikyan, A. Devra, D. Guéry-Odelin, S. J. Glaser, and D. Sugny, Robust control of
an ensemble of springs: Application to ion cyclotron resonance and two-level quantum
systems, Phys. Rev. A 102, 053104 Published 4 November 2020

Chapter 3

• V. Martikyan, C. Beluffi, S. J. Glaser, M-A Delsuc, and D. Sugny, Application of Optimal
Control Theory to Fourier Transform Ion Cyclotron Resonance, Molecules 2021, 26(10),
2860
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Applications of STA and OCT Techniques to a Simple Model

In this chapter we deal with simple RC series circuit subjected to a driving voltage source.
The objective is to reach the stationary regime corresponding to sinusoidal driving in
a time much shorter than the characteristic time of the circuit [63]. This approach can

also be harnessed to reach fast discharge of a capacitor or sudden change of the driving
frequency [63]. The same mathematical framework can be applied to control the motion of a
charged particle in a medium by an external electric field [64]. This differential system has the
very interesting property of being linear which considerably simplifies its study. We apply the
general STA and OCT methods to this simple model and we derive the analytic STA and OCT
solutions. Boundary conditions are also taken into account at the initial and final times. The
STA trajectory is derived with reverse engineering approach, which consists in imposing the
desired evolution of the dynamics and inferring from it the required control pulse [65, 66]. The
STA pulse can be expanded over several function bases [64]. The optimal control problem is
defined through a cost functional, which allows smooth evolution of the system. The optimal
trajectory is achieved from Pontryagin’s Maximum Principle (PMP) both in the singular and
regular cases. Different works have compared STA and OCT in a nonlinear setting [36, 37, 67].
Here, we revisit this comparison for a linear system. We discuss the advantages and drawbacks
of STA and OCT protocols and the way they can mutually benefit from each other. In Sec. 1.1
we describe the physical model, and we formulate the main objectives of the control problem. In
Sec. 1.2 we solve the optimal control problem with the only boundary conditions on the charge
at initial and final times. In Sec. 1.3 we tackle the general problem with additional boundary
conditions on the current and we provide an analytic solution. We also discuss the behavior of
the regularized cost functional near the origin. In Sec. 1.4 we derive the STA solutions. We prove
that exponential STA and regular optimal solutions are equivalent. In Sec. 1.5 we show that
the limit of the regular optimal solution as λ→ 0 coincides with the singular optimal protocol.
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CHAPTER 1. APPLICATIONS OF STA AND OCT TECHNIQUES TO A SIMPLE MODEL

Note that λ is a small parameter allowing to regularize the singular solution. Details will be
given below. Furthermore, the regular cost converges to the singular cost as λ→ 0. In Sec. 1.6
we generalize this approach to additional boundary conditions on higher order derivatives of
the charge. Imposing such conditions, one ensures smooth behavior at initial and final times for
the time evolution of the system while securing the robustness of the control pulse with respect
to control time. Such conditions are typical for STA but not for OCT.

1.1 RC Circuits

We consider a simple electric circuit made of a resistor placed in series with a capacitor driven
by a time dependent voltage source (see Fig. 1.1). Charge on the capacitor obeys a first order

C

R

V(t)

Figure 1.1: Scheme of a simple RC circuit

differential equation [63]:

(1.1) q̇(t)+ q(t)
τ

= V (t)
R

,

with τ= RC, which comes from Kirchhoff’s voltage law:

k∑
i=1

Vk = 0.

The Kirchhoff’s second fundamental law states that the algebraic sum of all the voltages around
any closed loop in a circuit is equal to zero.
Let us discuss a particular case of Eq. (1.1) with τ= 1s, that is the dynamical system:

(1.2) ẋ(t)+ x(t)= u(t),

where V (t)/R = u(t) is the control function with a dimension of current, and x(t) ≡ q(t). The
goal of the control is to drive the system from the state x(0) = 0 to x(T) = 1 (x(t) ∈ R) in a
fixed time T with additional constraints ẋ(0)= 0, ẋ(T)= 0 while minimizing the running cost
C = ∫ T

0

[
x2(t)+ ẋ2(t)

]
dt.
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1.2. SIMPLIFIED PROBLEM

Summary

• The physical model we consider in this chapter is depicted in Fig. 1.1.

• In physical terms, the goal of the control is to charge an initially uncharged
capacitor of a RC circuit in a fixed control time while holding the current equal
to zero at the initial and final times and minimizing the dissipated energy and
the average energy of the capacitor.

• As a first step towards a final solution, we first consider in Sec. 1.2 a simplified
problem without any boundary constraints on the current.

1.2 Simplified Problem

Here, our goal is to drive the state of the system x(t) governed by the dynamics given in Eq. (1.2)
from x(0)= 0 to x(T)= 1 in a fixed time T without any constraint on the derivative of the state.
Our analysis is based on the mathematical theory of optimal processes (a brief overview is given
in Appendix A). We first construct Pontryagin’s Hamiltonian of the system under study [68]:

Hp = p(u− x)− 1
2

(x2 + (u− x)2),

which corresponds to the linear dynamics given in Eq. (1.2) and where p is the adjoint state.
The cost functional physically represents the dissipated energy and the average energy of
capacitor:

(1.3) C =
T∫

0

[
x(t)2 + ẋ(t)2

]
dt.

Hamilton’s equations are: ẋ = u− x

ṗ = p+2x−u

Since there is no constraint on u, the optimal control satisfies the maximization condition of
PMP [68–70] ∂Hp

∂u = 0, which leads to u∗ = x+ p. The optimal trajectories can be expressed as:ẋ = p

ṗ = x

The general solution is:
x(t)= c1 et+c2 e−t,
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CHAPTER 1. APPLICATIONS OF STA AND OCT TECHNIQUES TO A SIMPLE MODEL

where the constants c1 and c2 can be found from the boundary conditions x(0)= 0 and x(T)= 1:

c1 =−c2 = c, c = 1
eT −e−T ,

This gives:

(1.4) x(t)= sinh(t)
sinh(T)

.

Using the hyperbolic trigonometric identities:

cosh(2t) = sinh2(t)+cosh2(t)

sinh(2t) = 2sinh(t)cosh(t)

and substituting the dynamics given in Eq. (1.4) into Eq. (1.3) one can obtain the minimum
cost, which is expressed by a cotangent hyperbolic function:

(1.5) C ∗ = coth(T).

Summary

• Here, we have discussed the simple case with no boundary constraint on the
current.

• We have obtained the corresponding dynamics and the running cost which are
given by Eqs. (1.4), (1.5).

• The value of the cost functional when T = 1 is C ∗(T = 1)= coth1≈ 1.3130.

• In Sec. 1.3 we will discuss the general case with boundary constraints on the
current.

1.3 General Problem

We introduce the notations y := ẋ and z := u in order to tackle the problem with additional
constraints ẋ(0) = ẋ(T) = 0. The idea is to transform the problem with boundary conditions
that is difficult to deal with in optimal control into an extended control problem without any
constraint on derivatives. The price to pay is the increase of the size of the system under study
i.e. its dimension. The modified dynamics in new variables is obtained by taking a first order
derivative from both sides of Eq. (1.2):

ẍ+ ẋ = u̇ = v,

where v := u̇ is a new control. The dynamical system is now defined in R2:

(1.6)

 ẏ= v− y

ż = v

10



1.3. GENERAL PROBLEM

with boundary conditions y(0)= y(T)= 0 and z(0)= 0, z(T)= 1. The original variables can be
retrieved simply going back to the relations x = z− y and u = z. The cost functional C to
minimize is given by:

(1.7) C =
T∫

0

[
(z− y)2 + y2

]
dt.

The control field v does not explicitly appear in the integrand of the cost functional. There are
two approaches of finding a solution to this singular problem. Both approaches are discussed
later on. Corresponding singular and regular solutions have been compared by numerical
simulations.

1.3.1 Singular Case

We solve this problem in this subsection in a very general setting without any constraint on
the control. In this case, we show that singular solutions with unbounded fields minimize the
cost functional. Singular control fields have been exhibited in quantum physics in different
examples [11, 71–73]. Another work where singular control is used for a problem from quantum
optics is [74]. In the singular case, the goal is to directly derive the optimal solution. Pontryagin’s
Hamiltonian can be expressed as:

Hp = py(v− y)+ pzv− 1
2

[
(z− y)2 + y2

]
Hamilton’s equations are:

(1.8)

ṗy = py +2y− z

ṗz = z− y.

The singular control v∗ is a solution of PMP:

∂Hp

∂v
= 0,

which leads to a singular set: py + pz = 0. Note that this condition does not allow to explicitly
obtain the control. A few manipulations have to be made to find the optimal solution. Since
the relation py + pz = 0 is valid on a time interval, we may take a first order derivative of both
sides of this equation:

ṗy + ṗz = 0⇒ py =−y⇒ ṗy + ẏ= 0⇒ v∗ = z

The initial differential system (1.6), taking into account that v∗ = z, can be expressed as: ẏ= z− y

ż = z

11



CHAPTER 1. APPLICATIONS OF STA AND OCT TECHNIQUES TO A SIMPLE MODEL

This leads to a singular trajectory:

(1.9)

ys = y0 e−t+z0 sinh(t)

zs = z0 et,

which does not satisfy the boundary conditions. In order to sew this solution to the boundary
values we assume that the optimal solution has a structure B-S-B (this structure is the general
solution of PMP) where B is a bang pulse, and S is a singular one. Since there is no constraint
on the control field, the bang control is a Dirac pulse of amplitude vτ and of duration τ such
that vττ=A with A being the area of the pulse. The time τ can be chosen as small as needed.
We denote by A1 and A2 the areas of the first and second bangs respectively. During the bang
pulse of very large amplitude, the dynamical system is governed by the following system (we
can neglect y with respect to v):  ẏ= v

ż = v

Note that y(t), z(t) satisfy the same differential equation. We have:

lim
τ→0

vτ=A1 and lim
τ→T

v(T −τ)=A2

At time t = 0:

ẏ(0)= v(0) ⇒ lim
τ→0

y(τ)− y(0)
τ

= v(0)⇒ y(τ)= y(0)+v(τ)τ+ o(τ)

τ→ 0 ⇒ y(0+)= y(0)+A1

At time t = T:

ẏ(T)= v(T) ⇒ lim
τ→T

y(τ)− y(T)
τ−T

= v(T)⇒ y(τ)= y(T)−v(τ)(T −τ)− o(T −τ)

τ→ T ⇒ y(T−)= y(T)−A2

Here y(0+) is the right limit of y(τ) as τ approaches 0 from the right side. Similarly, y(T−) is the
left limit of y(τ) as τ approaches T from the left side. o(τ) is an infinitely small term of higher
order than τ itself as τ→ 0 such that the ratio o(τ)/τ is still infinitely small as τ approaches 0.
We have: 

y(0+)= y(0)+A1

z(0+)= z(0)+A1

y(T−)= y(T)−A2

z(T−)= z(T)−A2,
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1.3. GENERAL PROBLEM

which can be simplified by taking into account the boundary conditions y(0) = y(T) = 0 and
z(0)= 0, z(T)= 1:

(1.10)



y(0+)=A1

z(0+)=A1

y(T−)=−A2

z(T−)= 1−A2

Substituting these relations back into Eq. (1.9) at time t = T we obtain:A1(e−T +sinh(T))+A2 = 0

A1 eT +A2 = 1

which has a solution:
A1 = 1

sinh(T)
, A2 =−coth(T)

According to Eqs. (1.10), the constants y0 = y(0+), z0 = z(0+) are equal y0 = z0 =A1. Thus the
singular solution (see Eqs. (1.9)) reads:

(1.11) ys = cosh(t)
sinh(T)

; zs = et

sinh(T)
; xs = zs − ys = sinh(t)

sinh(T)

The bang pulses bring and remove the system instantaneously from the trajectory of the
unconstrained problem such that the boundary conditions are eventually satisfied. As it follows
from Eq. (1.7), the minimum cost functional C ∗ is equal to the one of the simplified problem:
C ∗ = coth(T). For T = 1, we have: C ∗ ≈ 1.3130. Here, we assume that the bang pulses have no
contribution to the cost.

1.3.2 Regular Case

Regular approach of solving the general problem consists in artificially introducing the control
field v into the integrand of the cost functional (see Eq. (1.7)):

(1.12) CR =
T∫

0

[
(z− y)2 + y2 +λv2

]
dt,

where CR is the so called regularized cost functional, and λ is the positive parameter that is
mentioned in the introduction of this chapter. The singular case is obtained in the limit λ→ 0.
We will verify that this limit is well defined. The way to solve the regular problem is the same.
We first construct Pontryagin’s Hamiltonian:

(1.13) Hp = py(v− y)+ pzv− 1
2

[
(z− y)2 + y2 +λv2

]
.
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Then we write down the dynamics of the adjoint state from Hamilton’s equations:
ṗy =−∂Hp

∂y
= py − z+2y

ṗz =−∂Hp

∂z
= z− y.

According to PMP, the optimal field v∗ must satisfy the following equation:

∂Hp

∂v

∣∣∣∣∣
∗
= 0,

therefore

(1.14) v∗R = py + pz

λ
.

Substituting v∗R into the dynamics of the system (see Eq. (1.6)) we arrive at:
ẏ=−y+ 1

λ
(py + pz)

ż = 1
λ

(py + pz).

The final system of differential equations of the optimal state (y, z, py, pz) is:

(1.15)



ẏ=−y+ 1
λ

(py + pz)

ż = 1
λ

(py + pz)

ṗy = 2y− z+ py

ṗz =−y+ z.

Let ~X := (y, z, py, pz)ᵀ be the state of the physical system where ᵀ stands for transpose. With
this new notation, Eq. (1.15) can be rewritten in a matrix form:

(1.16) ~̇X = Mλ
~X ,

where Mλ is a matrix:

(1.17) Mλ =


−1 0 1/λ 1/λ

0 0 1/λ 1/λ

2 −1 1 0

−1 1 0 0

 .

In the following, an analytic solution is given to Eq. (1.16).
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1.3. GENERAL PROBLEM

1.3.3 Analytic Solution in the Regular Case

The formal analytic solution of Eq. (1.16):

(1.18) ~X = eMλ t ~X (0),

where ~X (0) is the initial state of the system, contains a matrix exponential eMλ t. The two
unknowns keeping us away from an explicit solution are the matrix exponential eMλ t and the
initial state ~X (0). In the following, we derive the explicit form of the matrix exponential by
solving the eigenvalue and eigenvector problem of the matrix Mλ:

Mλ
~X =µ~X .

Finding eigenvalues µ1,µ2,µ3,µ4, and eigenvectors ~X1,~X2,~X3,~X4 is a standard procedure:

µ1 =−1, µ2 = 1, µ3 =− 1p
λ

, µ4 = 1p
λ

X1 = c1


1

0

−1

1

 , X2 = c2


1

2

2λ−1

1



X3 = c3


1

1−p
λ

−pλ
λ

 , X4 = c4


1

1+p
λp

λ

λ


Normalization constants c1, c2, c3, c4 of eigenvectors do not play any role in the eigendecomposi-
tion of Mλ, therefore we can choose c1 = c2 = c3 = c4 = 1. Block matrix P with its ith column
equal to the right eigenvector ~X i of Mλ:

(1.19) P =


1 1 1 1

0 2 1−p
λ 1+p

λ

−1 2λ−1 −pλ p
λ

1 1 λ λ


is invertible if λ 6= 1, and det(P)= 4λ1/2(1−λ)2. This is not an obstacle since we are interested in
values of λ relatively close to 0. Long calculations of the inverse of the matrix P using cofactors
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are omitted:

(1.20) P−1 =



1−2λ
2(1−λ)

− 1
2(1−λ)

1
2(1−λ)

1
1−λ

− 1
2(1−λ)

1
2(1−λ)

− 1
2(1−λ)

0

1
2(1−λ)

p
λ

2(1−λ)
− 1

2
p
λ (1−λ)

1

2(λ−p
λ )

1
2(1−λ)

−
p
λ

2(1−λ)
1

2
p
λ (1−λ)

1

2(λ+p
λ )


The fundamental property of eigenvectors entails MλP = PD or Mλ = PDP−1 where D is the
diagonalized form of P with its diagonal elements equal to the eigenvalues of Mλ:

D =



−1 0 0 0

0 1 0 0

0 0 − 1p
λ

0

0 0 0
1p
λ


,

Expansion of eMλ t into Taylor series results in a compact expression:

(1.21) eMλ t = P eDt P−1,

where eDt is a diagonal matrix:

(1.22) eDt =


e−t 0 0 0

0 et 0 0

0 0 e−
tp
λ 0

0 0 0 e
tp
λ

 .

We denote by N1(t), N2(t), N3(t), N4(t) the column vectors of the block matrix N(t)= eMλ t:

(1.23) N(t)= eMλ t = (
N1(t) N2(t) N3(t) N4(t)

)

N1(t) = 1
2(1−λ)



(1−2λ)e−t−et+e−
tp
λ +e

tp
λ

−e−t+et+
p
λ e−

tp
λ −

p
λ e

tp
λ

e−t−et− 1p
λ

e−
tp
λ + 1p

λ
e

tp
λ

2e−t−
(
1+ 1p

λ

)
e−

tp
λ −

(
1− 1p

λ

)
e

tp
λ


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N2(t) = 1
2(1−λ)



−2et+
(
1−

p
λ

)
e−

tp
λ +

(
1+

p
λ

)
e

tp
λ

2et+
(p

λ −λ
)
e−

tp
λ −

(p
λ +λ

)
e

tp
λ

−2et+
(
1− 1p

λ

)
e−

tp
λ +

(
1+ 1p

λ

)
e

tp
λ

(
1p
λ

−
p
λ

)(
−e−

tp
λ +e

tp
λ

)


(1.24)

N3(t) = 1
2(1−λ)



−(1−2λ)e−t+(1−2λ)et−
p
λ e−

tp
λ +

p
λ e

tp
λ

e−t−(1−2λ)et−λe−
tp
λ −λe

tp
λ

−e−t+(1−2λ)et+e−
tp
λ +e

tp
λ

−2e−t+
(
1+

p
λ

)
e−

tp
λ +

(
1−

p
λ

)
e

tp
λ



N4(t) = 1
2(1−λ)



(1−2λ)e−t−et+λe−
tp
λ +λe

tp
λ

−e−t+et+λ
p
λ e−

tp
λ −λ

p
λ e

tp
λ

e−t−et−
p
λ e−

tp
λ +

p
λ e

tp
λ

2e−t−
(p

λ +λ
)
e−

tp
λ +

(p
λ −λ

)
e

tp
λ


N1i,N2i,N3i and N4i are the components of the blocks. Our next objective is to find the initial
state ~X (0) and thereby the initial adjoint state of the system. This aim is reached by considering
a partial explicit form of Eq. (1.18):N13(t) N14(t)

N23(t) N24(t)

py(0)

pz(0)

=
y(t)−N11(t)y(0)−N12(t)z(0)

z(t)−N21(t)y(0)−N22(t)z(0)


Taking into account the boundary conditions y(0)= z(0)= 0 we arrive at:

(1.25)

y(t)

z(t)

=
N13(t) N14(t)

N23(t) N24(t)

py(0)

pz(0)

 .

In a similar way, from Eq. (1.18) and the boundary conditions y(0)= z(0)= 0, we deduce:

(1.26)

py(t)

pz(t)

=
N33(t) N34(t)

N43(t) N44(t)

py(0)

pz(0)

 .
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We recall that y(T)= 0, and z(T)= 1, thus Eq. (1.25) implies:py(0)

pz(0)

= A−1

0

1

 ,

where

A =
N13(T) N14(T)

N23(T) N24(T)

 ,

A−1 =
N13(T) N14(T)

N23(T) N24(T)

−1

= 1
2(1−λ)det(A)

×

×



(
1p
λ

−
p
λ

)(
−e−

Tp
λ +e

Tp
λ

)
−2e−T +

(
1+ 1p

λ

)
e−

Tp
λ +

(
1− 1p

λ

)
e

Tp
λ

2eT −
(
1− 1p

λ

)
e−

Tp
λ −

(
1+ 1p

λ

)
e

Tp
λ e−T −eT − 1p

λ
e−

Tp
λ + 1p

λ
e

Tp
λ

 ,

and

(1.27)
det(A)= 1

4(1−λ)2
p
λ

[(
1−

p
λ

)2
e−

(
1+ 1p

λ

)
T −

(
1+

p
λ

)2
e−

(
1− 1p

λ

)
T −

−
(
1+

p
λ

)2
e

(
1− 1p

λ

)
T +

(
1−

p
λ

)2
e

(
1+ 1p

λ

)
T +8

p
λ

]
.

We finally obtain the initial adjoint state:

(1.28)

py(0)

pz(0)

= 1
2(1−λ)det(A)


−2e−T +

(
1+ 1p

λ

)
e−

Tp
λ +

(
1− 1p

λ

)
e

Tp
λ

e−T −eT − 1p
λ

e−
Tp
λ + 1p

λ
e

Tp
λ

 .

Knowledge of the initial state enables us to extract the dynamics of the system from Eq. (1.25)
and Eq. (1.26):

(1.29)



y

z

x

py

pz

vR


= a



y1 y2 y3 y4

z1 z2 z3 z4

x1 x2 x3 x4

py1 py2 py3 py4

pz1 pz2 pz3 pz4

v1 v2 v3 v4




e−t

et

e−
tp
λ

e
tp
λ



x = z− y, vR = py + pz

λ

18
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where
(1.30)

a= 1
4(1−λ)2 det(A)

=

=
p
λ(

1−p
λ

)2
e−

(
1+ 1p

λ

)
T −

(
1+p

λ
)2

e−
(
1− 1p

λ

)
T −

(
1+p

λ
)2

e
(
1− 1p

λ

)
T +

(
1−p

λ
)2

e
(
1+ 1p

λ

)
T +8

p
λ

y1 = −2eT +
(
1− 1p

λ

)
e−

Tp
λ +

(
1+ 1p

λ

)
e

Tp
λ

y2 = 2e−T −
(
1+ 1p

λ

)
e−

Tp
λ −

(
1− 1p

λ

)
e

Tp
λ

y3 = −
(
1− 1p

λ

)
e−T +

(
1+ 1p

λ

)
eT − 2p

λ
e

Tp
λ(1.31)

y4 = −
(
1+ 1p

λ

)
e−T +

(
1− 1p

λ

)
eT + 2p

λ
e−

Tp
λ

The rest of the multipliers z1, z2, . . . ,v4 can be expressed in terms of y1, y2, y3, y4:

(1.32)



z1 z2 z3 z4

x1 x2 x3 x4

py1 py2 py3 py4

pz1 pz2 pz3 pz4

v1 v2 v3 v4


=



0 2y2

(
1−

p
λ

)
y3

(
1+

p
λ

)
y4

−y1 y2 −
p
λ y3

p
λ y4

−y1 −(
1−2λ

)
y2 −

p
λ y3

p
λ y4

y1 y2 λy3 λy4

0 2y2

(
1− 1p

λ

)
y3

(
1+ 1p

λ

)
y4


Some of the results achieved in the present section are represented in Fig. 1.2.

1.3.4 True Hamiltonian and Regularized Cost Functional

We have previously examined the evolution of the state of the system ~X (t)= (y, z, py, pz). Time
evolutions of the true Hamiltonian and regularized cost functional are also interesting aspects to
explore. Substituting Eq. (1.14) into Eq. (1.13) we obtain the true Hamiltonian of the system:

(1.33) H true =−py y− 1
2

[(
z− y

)2 + y2
]
+

(
py + pz

)2

2λ
,

which is a constant of motion. Our next goal is to plot the dependence of the cost functional on
the regularization parameter λ. This computation allows us to explore the link between regular
and singular trajectories. We recall the final formula of the regularized cost functional:

CR =
T∫

0

Gdt =
T∫

0

[
(z− y)2 + y2 +λv2

R

]
dt
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Figure 1.2: (a) Plot of the optimal regular and singular trajectories in the (y, z) plane. The
red and blue dots indicate respectively the initial state and the target state. The black dots
correspond to the end points of the trajectories associated with the bang pulses. (b) Plot of
the time evolution of the regular control field vR . The singular control field is derived from vR
in the limit λ→ 0. The black solid line corresponds to the singular solution, while the regular
solutions are displayed in color. The color bar indicates the value of λ×105 for each regular
process. Dimensionless units are used.

In order to plot this additional dependence we must calculate the terms λv2
R , y2, (z− y)2:

λv2
R = a2

w2
2 e2t+w2

3 e−
2tp
λ +w2

4 e
2tp
λ +2

[
w2w3 e

(
1− 1p

λ

)
t+w2w4 e

(
1+ 1p

λ

)
t+w3w4

]

w2 = 2
p
λ y2, w3 =−

(
1−

p
λ

)
y3, w4 =

(
1+

p
λ

)
y4

y2 = a2

y2
1 e−2t+y2

2 e2t+y2
3 e−

2tp
λ +y2

4 e
2tp
λ +2

[
y1 y2 + y1 y3 e−

(
1+ 1p

λ

)
t+

+y1 y4 e−
(
1− 1p

λ

)
t+y2 y3 e

(
1− 1p

λ

)
t+y2 y4 e

(
1+ 1p

λ

)
t+y3 y4

]

(z− y)2 = a2

x2
1 e−2t+x2

2 e2t+x2
3 e−

2tp
λ +x2

4 e
2tp
λ +2

[
x1x2 + x1x3 e−

(
1+ 1p

λ

)
t+

+ x1x4 e−
(
1− 1p

λ

)
t+x2x3 e

(
1− 1p

λ

)
t+x2x4 e

(
1+ 1p

λ

)
t+x3x4

]
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Integrand G can now be written in a compact form:

G = a2

G1 e−2t+G2 e2t+G3 e−
2tp
λ +G4 e

2tp
λ +2

[
G13 e−

(
1+ 1p

λ

)
t+

+G14 e−
(
1− 1p

λ

)
t+G23 e

(
1− 1p

λ

)
t+G24 e

(
1+ 1p

λ

)
t
] ,(1.34)

where

G1 = 2y2
1 , G2 = 2

(
1+2λ

)
y2

2 , G3 = 2
(
1−

p
λ +λ

)
y2

3 , G4 = 2
(
1+

p
λ +λ

)
y2

4

G13 =
(
1+

p
λ

)
y1 y3, G14 =

(
1−

p
λ

)
y1 y4

G23 =
(
1−

p
λ

)(
1−2

p
λ

)
y2 y3, G24 =

(
1+

p
λ

)(
1+2

p
λ

)
y2 y4,

The regularized cost functional CR is obtained by integrating G:

CR = a2

1
2

[
−

(
e−2T −1

)
G1 +

(
e2T −1

)
G2

]
−
p
λ

2

[(
e−

2Tp
λ −1

)
G3 −

(
e

2Tp
λ −1

)
G4

]
−

−2
p
λ

1+p
λ

(
e−

(
1+ 1p

λ

)
T −1

)
G13 −

(
e

(
1+ 1p

λ

)
T −1

)
G24

+(1.35)

+2
p
λ

1−p
λ

(
e−

(
1− 1p

λ

)
T −1

)
G14 −

(
e

(
1− 1p

λ

)
T −1

)
G23



0 0.02 0.04 0.06 0.08 0.1
0.1

0.2

0.3

0.4

0.5

λ

lo
g 1

0(
C

R
)

Figure 1.3: Plot of the regularized cost functional log10(CR) as a function of the parameter
λ (solid blue line). The solid horizontal black line indicates the value of the minimum cost
functional log10[coth(1)] for the singular solution. In the limit when λ→ 0, the singular and
regularized costs coincide log10(CR)→ log10

[
coth(1)

]
.
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Results concerning the behavior of the regularized cost functional for the values of λ close to 0

[64] is represented in Fig. 1.3. Analytically, it can be shown that the curves of the regularized
and singular costs converge for the values λ¿ 1 (see Subsec. 1.5.2), however, we encounter
some numerical problems because of exponential terms in Eq. (1.35), and therefore the regular
solution is not depicted for the values λ< 8.2×10−6 in Fig. 1.8.

Summary

• The singular and regular solutions are obtained. We have shown that the singular
solution coincides with that of the simplified problem.

• The regular solution, which has been analytically obtained, is anticipated to
coincide with the singular solution when λ→ 0. This is rigorously discussed in
Sec. 1.5.

• In Sec. 1.4 the reversely engineered STA solutions are derived and compared
with the optimal solution.

1.4 Shortcuts to Adiabaticity

In the previous sections, we found the optimal solution of the control problem Eq. (1.2) with
and without additional boundary conditions on the derivatives. The optimal solution is unique
and corresponds to the energy minimum, therefore we will call it the global optimal solution.
In this section, our aim is to solve the general control problem by using STA protocols with
reverse engineering approach. We obtain polynomial, trigonometric, exponential families of
STA solutions of different orders. Within each family and each order of STA solutions we find
the one corresponding to the energy minimum by minimizing the cost functional with respect
to the free parameters (the number of free parameters depends on the order of the expansion).
These minima, that we call local optima, have been compared with the global optimum. Their
advantages and drawbacks have been discussed.

1.4.1 Polynomial Family of STA Solutions

In OCT we first find the control field, and then we are able to extract the optimal trajectories.
Here, we do the opposite. Trajectories are found first by narrowing our search within a family of
functions, and then the control field is extracted from the dynamics. Since polynomial functions
are the simple ones, let us start from them by assuming that x(t) is a polynomial function of
the order n:

x(t)=
n∑

k=0
ak tk
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From now on we assume that T = 1. The initial conditions x(0) = ẋ(0) = 0 impose a0 = a1 = 0,
and therefore:

(1.36) x(t)=
n∑

k=2
ak tk

From the final conditions x(T = 1)= 1, ẋ(T = 1)= 0, it follows:

(1.37)


n∑

k=2
ak = 1

n∑
k=2

kak = 0

There are 2 equations and n−1 unknowns, thus there are n−3 free parameters. Let us denote
the solutions corresponding to polynomial, trigonometric and exponential functions respectively
by xPn, xTgn , xEx, where index n is the order of the family. The controls and cost functionals are
denoted in the same way. The orders n = 3,4,5,6 are considered one by one.

• If n = 3, there is no free parameter:

xP3(t)= 3t2 −2t3

uP
3(t)= 6t−3t2 −2t3

The cost functional has been numerically evaluated: C P
3 ≈ 1.57143.

• If n = 4, there is one free parameter a:

xP4(t)= (3+a)t2 −2(1+a)t3 +at4

uP
4(t)= 2(3+a)t− (3+5a)t2 −2(1−a)t3 +at4

The minimization in this simple case can be done analytically. Just recall the expression for the
cost functional:

C =
1∫

0

[
x2(t)+ ẋ2(t)

]
dt

Substitution of the 4th order solution into the last expression yields:

C P
4 = 2

[(
1

1260
+ 1

105

)
a2 + 1

60
a+ 11

14

]
,

and hence

amin =− 1/60
2

(
1/1260+1/105

) =−21
26

≈−0.8076923

C P
4 = 2

[(
1

1260
+ 1

105

)(
21
26

)2
− 1

60

(
21
26

)
+ 11

14

]
,

or C P
4 ≈ 2(0.006730769−0.013461538+0.785714286)≈ 1.55797
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• If n = 5, there are two free parameters a and b:

xP5(t)= (3+a+2b)t2 − (2+2a+3b)t3 +at4 +bt5

uP
5(t)= 2(3+a+2b)t− (3+5a+7b)t2 + (−2+2a−3b)t3 + (a+5b)t4 +bt5

Hereafter, the minimization is done numerically in the environment of "Mathematica" by the
help of the functions "NMinimize" and "NIntegrate". The corresponding values for the free
parameters and the cost functional are:

a ≈ 23.636752, b ≈−9.(7), C P
5 ≈ 1.40276

• If n = 6, there are three free parameters a, b, and c:

xP6(t)= (3+a+2b+3c)t2 − (2+2a+3b+4c)t3 +at4 +bt5 + ct6

uP
6(t)= 2(3+a+2b+3c)t− (3+5a+7b+9c)t2 + (−2+2a−3b−4c)t3 + (a+5b)t4 + (b+6c)t5 + ct6

The corresponding values for the free parameters and the cost functional are:

a ≈ 6.956942, b ≈ 5.627256, c ≈−5.135011, C P
6 ≈ 1.39986

The polynomial solutions in comparison with singular and regular ones are depicted in Fig. 1.4.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

(a)

t

x

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

(b)

t

u

Figure 1.4: Comparison between the polynomial STA and OCT solutions. Panels (a) and (b)
represent respectively the time evolution of the trajectory x and of the control field u. The
black and magenta lines correspond respectively to the singular and regular solutions. The
parameter λ is set to 10−4. The polynomial STA solutions are plotted in blue, aqua, yellow and
red for the respective orders n = 3,4,5,6. Dimensionless units are used.

The value of λ is taken sufficiently small to illustrate the behavior of the regular solution when
λ approaches 0. In the limit λ→ 0, the regular optimal solution coincides with the singular one.
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1.4.2 Trigonometric Family of STA Solutions

Next we consider the family of trigonometric functions. Let x(t) be a sum of sine functions:

(1.38) x(t)=
n∑

k=1
ak sin

(
kπ
2

t
)

The condition x(0)= 0 is automatically satisfied. The second condition ẋ(0)= 0 imposes:
n∑

k=1
kak = 0(1.39)

From x(1)= 1, ẋ(1)= 0, it follows:

(1.40)


n∑

k=1
ak sin

(
kπ
2

)
= 1

n∑
k=1

kak cos
(

kπ
2

)
= 0

There are 3 equations and n unknowns, hence there are again n−3 free parameters. The cases
n = 3,4,5,6 are considered one by one.

• If n = 3, there is no free parameter.

xTg3 (t)= 3
4

sin
(
π

2
t
)
− 1

4
sin

(
3π
2

t
)

uTg

3 (t)= 3
4

(
π

2
cos

(
π

2
t
)
+sin

(
π

2
t
))

− 1
4

(
3π
2

cos
(

3π
2

t
)
+sin

(
3π
2

t
))

The corresponding value for the cost functional is:

C
Tg

3 ≈ 1.70041

• If n = 4, there is one free parameter a.

xTg4 (t)=
(

3
4
−2a

)
sin

(
π

2
t
)
+2asin(πt)−

(
1
4
+2a

)
sin

(
3π
2

t
)
+asin(2πt)

uTg

4 (t)=
(

3
4
−2a

)(
π

2
cos

(
π

2
t
)
+sin

(
π

2
t
))

+2a
(
πcos(πt)+sin(πt)

)−
−

(
1
4
+2a

)(
3π
2

cos
(

3π
2

t
)
+sin

(
3π
2

t
))

+a
(
2πcos(2πt)+sin(2πt)

)
The corresponding values for the free parameter and the cost functional are:

a ≈ 0.0202, C
Tg

4 ≈ 1.69843

• If n = 5, there are two free parameters a and b.
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xTg5 (t)=
(

3
4
−2a

)
sin

(
π

2
t
)
+2(a−b)sin(πt)−

−
(

1
4
+2a−b

)
sin

(
3π
2

t
)
+ (a−b)sin(2πt)+bsin

(
5π
2

t
)

uTg

5 (t)=
(

3
4
−2a

)(
π

2
cos

(
π

2
t
)
+sin

(
π

2
t
))

+2(a−b)
(
πcos(πt)+sin(πt)

)−
−

(
1
4
+2a−b

)(
3π
2

cos
(

3π
2

t
)
+sin

(
3π
2

t
))

+ (a−b)
(
2πcos(2πt)+sin(2πt)

)+
+b

(
5π
2

cos
(

5π
2

t
)
+sin

(
5π
2

t
))

The corresponding values for the free parameters and the cost functional are:

a ≈ 0.785988, b ≈−0.356639, C
Tg

5 ≈ 1.48104

• If n = 6, there are three free parameters a, b, and c.

xTg6 (t)=
(

3
4
−2a−2b

)
sin

(
π

2
t
)
+ (2a−3c)sin(πt)−

−
(

1
4
+2a+b

)
sin

(
3π
2

t
)
+asin(2πt)+bsin

(
5π
2

t
)
+ csin(3πt)

uTg

6 (t)=
(

3
4
−2a−2b

)(
π

2
cos

(
π

2
t
)
+sin

(
π

2
t
))

+ (2a−3c)
(
πcos(πt)+sin(πt)

)−
−

(
1
4
+2a+b

)(
3π
2

cos
(

3π
2

t
)
+sin

(
3π
2

t
))

+

+a
(
2πcos(2πt)+sin(2πt)

)+b

(
5π
2

cos
(

5π
2

t
)
+sin

(
5π
2

t
))

+ c
(
3πcos(3πt)+sin(3πt)

)
The corresponding values for the free parameters and the cost functional are:

a ≈ 1.0407, b ≈−0.312242, c ≈−0.0105136, C
Tg

6 ≈ 1.48099

The trigonometric solutions in comparison with the singular and regular ones are depicted
in Fig. 1.5. This family of functions has been considered in hope to reach a closer path in
comparison with the regular and singular optimal solutions. Contrary to our expectations, the
difference between STA and OCT paths is of the same order of magnitude for the polynomial (see
Fig. 1.4) and trigonometric functions (see Fig. 1.5) but the polynomial appears to give better
results.
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Figure 1.5: Same as Fig. 1.4 but for the trigonometric STA solutions. Dimensionless units are
used.

1.4.3 Exponential Family of STA Solutions

In essence, the regular optimal solution given in Eq. (1.29) is a sum of real exponential functions.
Inspired by this fact, we propose to consider the family of exponential functions:

(1.41) x(t)= aet+be−t+cekt+d e−kt

Here, the parameter k can be chosen according to the minimum energy requirement. We
choose the coefficients a, b, c, d, complying with the boundary conditions x(0) = 0, x(1) = 1,
ẋ(0)= ẋ(1)= 0. The following matrix equation then must be fulfilled:

B~h =~s,

B =


1 1 1 1

e e−1 ek e−k

1 −1 k −k

e −e−1 kek −ke−k

 , ~h =


a

b

c

d

 , ~s =


0

1

0

0


The coefficient vector ~h can be expressed as:

~h = B−1~s,(1.42)

B−1 = 1
detB


∣∣B∣∣

11

∣∣B∣∣
21

∣∣B∣∣
31

∣∣B∣∣
41∣∣B∣∣

12

∣∣B∣∣
22

∣∣B∣∣
32

∣∣B∣∣
42∣∣B∣∣

13

∣∣B∣∣
23

∣∣B∣∣
33

∣∣B∣∣
43∣∣B∣∣

14

∣∣B∣∣
24

∣∣B∣∣
34

∣∣B∣∣
44

.

(1.43)
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∣∣B∣∣
11 ,

∣∣B∣∣
12 , . . . are the cofactors of the B matrix, and detB is the determinant. ~h can be

rewritten in a simpler form:

~h = 1
detB


∣∣B∣∣

21∣∣B∣∣
22∣∣B∣∣
23∣∣B∣∣
24

 .

The determinant and the cofactors are given in the following way:

detB =−(1−k)2 e−(1+k)−(1−k)2 e1+k+(1+k)2 e−(1−k)+(1+k)2 e1−k−8k∣∣B∣∣
21 = k

(
−2e−1+(1+k)e−k+(1−k)ek

)
∣∣B∣∣

22 = k
(
−2e+(1−k)e−k+(1+k)ek

)
(1.44) ∣∣B∣∣

23 = k
(
(1+ 1

k
)e−1+(1− 1

k
)e−2e−k

)
∣∣B∣∣

24 = k
(
(1− 1

k
)e−1+(1+ 1

k
)e−2ek

)
,

hence we derive the coefficients a,b, c,d:
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Figure 1.6: Comparison between the exponential STA and OCT solutions. Panels (a) and (b)
represent respectively the time evolution of the trajectory x and of the control field u. The
black and magenta lines correspond respectively to the singular and regular solutions. The
parameters k and λ are set respectively to 100 and 10−3. The exponential STA solution is
plotted in blue. Dimensionless units are used.
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a =
k

(
−2e−1+(1+k)e−k+(1−k)ek

)
−(1−k)2 e−(1+k)−(1−k)2 e1+k+(1+k)2 e−(1−k)+(1+k)2 e1−k−8k

b =
k

(
−2e+(1−k)e−k+(1+k)ek

)
−(1−k)2 e−(1+k)−(1−k)2 e1+k+(1+k)2 e−(1−k)+(1+k)2 e1−k−8k

c =
k

((
1+ 1

k

)
e−1+

(
1− 1

k

)
e−2e−k

)
−(1−k)2 e−(1+k)−(1−k)2 e1+k+(1+k)2 e−(1−k)+(1+k)2 e1−k−8k

(1.45)

d =
k

((
1− 1

k

)
e−1+

(
1+ 1

k

)
e−2ek

)
−(1−k)2 e−(1+k)−(1−k)2 e1+k+(1+k)2 e−(1−k)+(1+k)2 e1−k−8k

In Fig. 1.6 the comparison of regular, singular and exponential solutions is illustrated. Later
on, we will see that these solutions converge to each other as k goes to ∞ and λ approaches 0.
The cost functional is computed numerically C Ex ≈ 1.325271.

1.4.4 Exponential Solution vs Regular Solution

Here we are interested in comparing the exponential and regular solutions. Notice that
Eqs. (1.29), (1.30) and (1.32), when T = 1, read:

(1.46) xR(t)= a

(
x1 e−t+x2 et+x3 e−

tp
λ +x4 e

tp
λ

)

a=
p
λ(

1−p
λ

)2
e−

(
1+ 1p

λ

)
−

(
1+p

λ
)2

e−
(
1− 1p

λ

)
−

(
1+p

λ
)2

e1− 1p
λ +

(
1−p

λ
)2

e1+ 1p
λ +8

p
λ

(1.47)

x1 =−y1 = 2e−
(
1− 1p

λ

)
e−

1p
λ −

(
1+ 1p

λ

)
e

1p
λ(1.48)

x2 = y2 = 2e−1−
(
1+ 1p

λ

)
e−

1p
λ −

(
1− 1p

λ

)
e

1p
λ(1.49)

x3 =−
p
λ y3 =−

(
1−

p
λ

)
e−1−

(
1+

p
λ

)
e+2e

1p
λ(1.50)

x4 =
p
λ y4 =−

(
1+

p
λ

)
e−1−

(
1−

p
λ

)
e+2e−

1p
λ ,(1.51)

where xR(t) is the regular solution. If k ≡ 1p
λ

, a connection between detB and a follows from
Eqs. (1.44).

detB =−1
λ

[
(1−

p
λ )2 e−

(
1+ 1p

λ

)
−(1+

p
λ )2 e−

(
1− 1p

λ

)
−

−(1+
p
λ )2 e

(
1− 1p

λ

)
+(1−

p
λ )2 e

(
1+ 1p

λ

)
+8

p
λ

]
,(1.52)
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(1.53) 1
detB

=−
p
λa.

The coefficients a,b, c,d (see Eq. (1.45)) can be expressed by means of a and the multipliers x1,
x2, x3, x4:

b =− 1
detB

1p
λ

x1 = ax1

a =− 1
detB

1p
λ

x2 = ax2

d =− 1
detB

1p
λ

x3 = ax3

c =− 1
detB

1p
λ

x4 = ax4.

With these new relations, the exponential solution (see Eq. (1.41)) can be rewritten in a new
form:

(1.54) xEx(t)= a

(
x1 e−t+x2 et+x3 e−

tp
λ +x4 e

tp
λ

)
.

From Eq. (1.46) and Eq. (1.54) we deduce that the regular and exponential solutions coincide:

(1.55) xEx(t)≡ xR(t).

This statement is also visible numerically in Fig. 1.6, where k = 100 and λ= 0.001. In Fig. 1.7
the parameter k is increased and the parameter λ is decreased for a better illustration of
the convergence of singular, regular and exponential solutions. Numerically, the maximum
difference of exponential and regular solutions over time is almost zero for the values of k and
λ respectively set to 100 and 10−4:

max
∣∣∣xR(t)− xEx(t)

∣∣∣≈ 2× eps,

where eps is the distance from 1.0 to the next larger double-precision number, and eps ≈ 2.2204×
10−16. In Table 1.1 all the numerical values for polynomial, trigonometric and exponential
function families are summarized. Table 1.1 also gives the cost C for different STA protocols
and for the global optimal solution. As could be expected for polynomial and trigonometric
expansions, the higher the order n is, the smaller C is. We observe nevertheless that these
solutions remain quite far from the global optimal solution, 6% and 12%, respectively, for the
polynomial and trigonometric solutions at the order 6. The basis of real exponential functions
seems to be more suited to the control problem since a small cost (1% larger than the optimal
one) is achieved with the simple expansion proposed in Eq. (1.41).
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Figure 1.7: Same as Fig. 1.6. The parameters k and λ are set respectively to 500 and 10−5.
Dimensionless units are used.

order cost functional
n C a b c k

optimal solution – 1.3130 – – – –
3 1.57143 – – – –

polynomial 4 1.55797 −0.8076923 – – –
5 1.40276 23.636752 −9.(7) – –
6 1.39986 6.956942 5.627256 −5.135011 –
3 1.70041 – – – –

trigonometric 4 1.69843 0.0202 – – –
5 1.48104 0.785988 −0.356639 – –
6 1.48099 1.0407 −0.312242 −0.0105136 –

exponential – 1.325271 – – – 100

Table 1.1: Values of the coefficients a, b, and c for the polynomial and trigonometric expansions
of the STA solution, value of the parameter k for the exponential STA solution and values of
the costs C for STA and singular OCT solutions.

Summary

• Reversely engineered polynomial, trigonometric and exponential STA solutions
are obtained.

• The different STA solutions and the regular and singular solutions have been
compared.

• We have shown that the exponential and regular solutions coincide.

• In Sec. 1.5, we explore the behavior of the regular solution and regularized cost
in the limit when λ→ 0 with λ being the regularization parameter.
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1.5 Limits

The aim of this section is to describe the behavior of the exponential or regular solution and
regular cost for the values of the parameter λ in a neighborhood of 0. If everything has been
done correctly, then the limit of the regular optimal solution and regular cost when λ approaches
0 must converge to the singular optimal solution and singular cost. Although, terms like e

Tp
λ

p
λ ,

which diverge when the parameter λ is near 0, persist in the final physical results, we expect
the sum of this kind of terms and thus the physical quantities to be convergent.

1.5.1 Exponential Solution vs Singular Solution

The physical insights, we have, lead us to the hypothesis that the limit of the exponential and
regular solution, when λ→ 0, converges to the singular solution. Let us rigorously prove this
statement. We recall:

1
a
=
p
λ

(
1− 1p

λ

)2

e−
(
1+ 1p

λ

)
T −

(
1+ 1p

λ

)2

e−
(
1− 1p

λ

)
T −

(
1+ 1p

λ

)2

e
(
1− 1p

λ

)
T +

+
(
1− 1p

λ

)2

e
(
1+ 1p

λ

)
T

+8.

The first and the third terms converge to zero, when λ→ 0:

lim
λ→0

pλ (
1− 1p

λ

)2

e−
(
1+ 1p

λ

)
T

= lim
λ→0

(
1− 1p

λ

)2

1p
λ

e
(
1+ 1p

λ

)
T
= 0

lim
λ→0

pλ (
1+ 1p

λ

)2

e
(
1− 1p

λ

)
T

= lim
λ→0

(
1+ 1p

λ

)2

1p
λ

e−
(
1− 1p

λ

)
T
= 0.

The second and the fourth terms diverge when λ→ 0:

lim
λ→0

−pλ (
1+ 1p

λ

)2

e−
(
1− 1p

λ

)
T

=− lim
λ→0

(
1+ 1p

λ

)2
e−

(
1− 1p

λ

)
T

1p
λ

=−∞.

(1.56) lim
λ→0

pλ (
1− 1p

λ

)2

e
(
1+ 1p

λ

)
T

= lim
λ→0

(
1− 1p

λ

)2
e

(
1+ 1p

λ

)
T

1p
λ

=+∞

In the end, we obtain an uncertainty:

lim
λ→0

1
a
=∞−∞.
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In order to resolve this uncertainty, we have to combine the second and the fourth terms:

lim
λ→0

p
λ

e
Tp
λ

(
1− 1p

λ

)2

eT −
(
1+ 1p

λ

)2

e−T



=

= lim
λ→0

(
eT −e−T

) e
Tp
λ

1p
λ

+
[

1p
λ

(
eT −e−T

)
−2

(
eT +e−T

)]
e

Tp
λ

=

=+∞+∞=+∞,

hence it follows that:
lim
λ→0

1
a
=+∞⇒ lim

λ→0
a= 0.

From Eqs. (1.47), (1.48), (1.49), (1.50) and (1.51), we obtain:

lim
λ→0

(
axi

)= 0×∞; i = 1 . . .3

lim
λ→0

(
ax4

)= 0×
(
−e−T −eT

)
= 0.

As one can deduce from Eq. (1.54), in order to calculate the limit of the exponential solution,
when λ→ 0, we first have to resolve the following uncertainties:

lim
λ→0

(
ax1 e−t

)
= 0×∞

lim
λ→0

(
ax2 et

)
= 0×∞

lim
λ→0

(
ax3 e−

tp
λ

)
= 0×∞

lim
λ→0

(
ax4 e

tp
λ

)
= 0×∞.

Let us do that step by step. Using Eqs. (1.47), (1.48), (1.49), (1.50) and (1.51) we arrive at:

lim
λ→0

[
ax1

]=
= lim
λ→0

 2eT p
λ e−

Tp
λ +

(
1−p

λ
)
e−

2Tp
λ −

(
1+p

λ
)

(
1−p

λ
)2

e−T e−
2Tp
λ −

(
1+p

λ
)2

eT e−
2Tp
λ +8

p
λ e−

Tp
λ −

(
1+p

λ
)2

e−T +
(
1−p

λ
)2

eT

=

=− 1
eT −e−T =− 1

2sinhT

lim
λ→0

[
ax2

]=
= lim
λ→0

 2e−T p
λ e−

Tp
λ +

(
1+p

λ
)
e−

2Tp
λ +

(
1−p

λ
)

(
1−p

λ
)2

e−T e−
2Tp
λ −

(
1+p

λ
)2

eT e−
2Tp
λ +8

p
λ e−

Tp
λ −

(
1+p

λ
)2

e−T +
(
1−p

λ
)2

eT

=

= 1
eT −e−T = 1

2sinhT
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lim
λ→0

[
ax3 e−

tp
λ

]
=

= lim
λ→0


−pλ

((
1−p

λ
)
e−T e−

Tp
λ +

(
1+p

λ
)
eT e−

Tp
λ −2

)
e−

tp
λ(

1−p
λ

)2
e−T e−

2Tp
λ −

(
1+p

λ
)2

eT e−
2Tp
λ +8

p
λ e−

Tp
λ −

(
1+p

λ
)2

e−T +
(
1−p

λ
)2

eT

=

= 0
eT −e−T = 0

lim
λ→0

[
ax4 e

tp
λ

]
=

= lim
λ→0


−pλ e−

(T−t)p
λ

((
1+p

λ
)
e−T +

(
1−p

λ
)
eT −2e−

Tp
λ

)
(
1−p

λ
)2

e−T e−
2Tp
λ −

(
1+p

λ
)2

eT e−
2Tp
λ +8

p
λ e−

Tp
λ −

(
1+p

λ
)2

e−T +
(
1−p

λ
)2

eT


= 0

eT −e−T = 0,

where 0≤ t ≤ T. These relations with Eq. (1.54) finally yield:

lim
λ→0

xEx(t)= 1
2sinhT

(
et−e−t

)
= sinh t

sinhT
= xs(t),

where xs(t) is the singular solution. The regular and exponential solutions coincide, thus:

(1.57) lim
λ→0

xEx(t)= lim
λ→0

xR(t)= xs(t),

just as we guessed from our physical insights.

1.5.2 Regularized Cost vs Singular Cost

From the physical insights, we could guess that the regularized cost converges to the singular
cost when λ→ 0. Let us rigorously prove this statement. Limits of all terms on the right side of
Eq. (1.35), when λ approaches 0, are calculated one by one:

lim
λ→0

[
a2G1

]
=

= lim
λ→0


2

(
−2eT p

λ e−
Tp
λ −

(
1−p

λ
)
e−

2Tp
λ +

(
1+p

λ
))2

[(
1−p

λ
)2

e−T e−
2Tp
λ −

(
1+p

λ
)2

e−T −
(
1+p

λ
)2

eT e−
2Tp
λ +

(
1−p

λ
)2

eT +8
p
λ e−

Tp
λ

]2

=

= 2(
eT −e−T

)2 = 1
2sinh2 T
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lim
λ→0

[
a2G2

]
=

= lim
λ→0


2

(
1+2λ

)(
2e−T p

λ e−
Tp
λ −

(
1+p

λ
)
e−

2Tp
λ +

(
1−p

λ
))2

[(
1−p

λ
)2

e−T e−
2Tp
λ −

(
1+p

λ
)2

e−T −
(
1+p

λ
)2

eT e−
2Tp
λ +

(
1−p

λ
)2

eT +8
p
λ e−

Tp
λ

]2

=

= 2(
eT −e−T

)2 = 1
2sinh2 T

lim
λ→0

[
a2pλ

(
e−

2Tp
λ −1

)
G3

]
=

= lim
λ→0


2
p
λ

(
1−p

λ +λ
)(

e−
2Tp
λ −1

)((
1−p

λ
)
e−T e−

Tp
λ +

(
1+p

λ
)
eT e−

Tp
λ −2

)2

[(
1−p

λ
)2

e−T e−
2Tp
λ −

(
1+p

λ
)2

e−T −
(
1+p

λ
)2

eT e−
2Tp
λ +

(
1−p

λ
)2

eT +8
p
λ e−

Tp
λ

]2

=

= 0(
eT −e−T

)2 = 0

lim
λ→0

[
a2pλ

(
e

2Tp
λ −1

)
G4

]
=

= lim
λ→0


−2

p
λ

(
1+p

λ +λ
)(

e−
2Tp
λ −1

)(
−

(
1+p

λ
)
e−T −

(
1−p

λ
)
eT +2e−

Tp
λ

)2

[(
1−p

λ
)2

e−T e−
2Tp
λ −

(
1+p

λ
)2

e−T −
(
1+p

λ
)2

eT e−
2Tp
λ +

(
1−p

λ
)2

eT +8
p
λ e−

Tp
λ

]2

=

= 0(
eT −e−T

)2 = 0

lim
λ→0

a2
p
λ

1+p
λ

(
e−

(
1+ 1p

λ

)
T −1

)
G13

=

= lim
λ→0


p
λ

(
e−

(
1+ 1p

λ

)
T −1

)(
−2

p
λ eT e−

Tp
λ −

(
1−p

λ
)
e−

2Tp
λ +

(
1+p

λ
))

[(
1−p

λ
)2

e−T e−
2Tp
λ −

(
1+p

λ
)2

e−T −
(
1+p

λ
)2

eT e−
2Tp
λ +

(
1−p

λ
)2

eT +8
p
λ e−

Tp
λ

]2 ×

×
((

1−
p
λ

)
e−T e−

Tp
λ +

(
1+

p
λ

)
eT e−

Tp
λ −2

)]
= 0(

eT −e−T
)2 = 0
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lim
λ→0

a2
p
λ

1−p
λ

(
e−

(
1− 1p

λ

)
T −1

)
G14

=

= lim
λ→0


p
λ

(
e−T −e−

Tp
λ

)(
−2

p
λ eT e−

Tp
λ −

(
1−p

λ
)
e−

2Tp
λ +

(
1+p

λ
))

[(
1−p

λ
)2

e−T e−
2Tp
λ −

(
1+p

λ
)2

e−T −
(
1+p

λ
)2

eT e−
2Tp
λ +

(
1−p

λ
)2

eT +8
p
λ e−

Tp
λ

]2 ×

×
(
−

(
1+

p
λ

)
e−T −

(
1−

p
λ

)
eT +2e−

Tp
λ

)]
= 0(

eT −e−T
)2 = 0

lim
λ→0

a2
p
λ

1−p
λ

(
e

(
1− 1p

λ

)
T −1

)
G23

=

= lim
λ→0


p
λ

(
eT e−

Tp
λ −1

)(
1−2

p
λ

)(
2
p
λ e−T e−

Tp
λ −

(
1+p

λ
)
e−

2Tp
λ +

(
1−p

λ
))

[(
1−p

λ
)2

e−T e−
2Tp
λ −

(
1+p

λ
)2

e−T −
(
1+p

λ
)2

eT e−
2Tp
λ +

(
1−p

λ
)2

eT +8
p
λ e−

Tp
λ

]2 ×

×
((

1−
p
λ

)
e−T e−

Tp
λ +

(
1+

p
λ

)
eT e−

Tp
λ −2

)]
= 0(

eT −e−T
)2 = 0

lim
λ→0

a2
p
λ

1+p
λ

(
e

(
1+ 1p

λ

)
T −1

)
G24

=

= lim
λ→0


p
λ

(
eT −e−

Tp
λ

)(
1+2

p
λ

)(
2
p
λ e−T e−

Tp
λ −

(
1+p

λ
)
e−

2Tp
λ +

(
1−p

λ
))

[(
1−p

λ
)2

e−T e−
2Tp
λ −

(
1+p

λ
)2

e−T −
(
1+p

λ
)2

eT e−
2Tp
λ +

(
1−p

λ
)2

eT +8
p
λ e−

Tp
λ

]2 ×

×
(
−

(
1+

p
λ

)
e−T −

(
1−

p
λ

)
eT +2e−

Tp
λ

)]
= 0(

eT −e−T
)2 = 0.

The limit of the regular cost CR (see Eq. (1.35)) as λ approaches 0 is additive:

lim
λ→0

CR =−1
2

(
e−2T −1

) 1
2sinh2 T

+ 1
2

(
e2T −1

) 1
2sinh2 T

= 1
4sinh2 T

(
e2T −e−2T

)
=

=sinhT coshT
sinh2 T

= cothT =Cs.

We conclude that the regular cost, when λ→ 0, converges to the singular cost Cs just as we
expected.
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1.5.3 Limit of the Derivative of Regularized Cost

As we mentioned before, because of singularities we are not able to plot the dependency of the
regularized cost on the regularization parameter λ for λ¿ 1. Here, we will make that point
clearer and find out the direction of the curvature when λ→ 0.

0 0.2 0.4 0.6 0.8 1
1.31

1.32

1.33

1.34

◦

λ×104

C
R

Figure 1.8: Plot of the regularized cost functional CR as a function of the parameter λ (solid
blue or dark gray line). The solid horizontal black line indicates the value of the minimum cost
functional coth1 which corresponds to the singular solution. The solid red or light gray line is a
square-root fit coth1+p

6λ of CR around λ= 0. The black circle indicates the minimum value
λ= 8.2×10−6 for which CR has been numerically computed. Dimensionless units are used.

Although the analytic expression of the derivative of the regular cost is too long to be given
here or even to be considered in the scope of this research, it is quite possible to treat the
problem numerically. Mathematical intuition led us to a guess, which was later numerically
confirmed, that the derivative of the regularized cost when λ→ 0 diverges approximately with
the speed 1/

p
λ . In other words, the regularized cost behaves as

p
λ over the values of λ

near 0. As a part of our numerical computations, the function "Limit" in the environment of
"Mathematica" was also used to confirm our guess. What we claim is illustrated in Fig. 1.8
where the dependencies of the regularized cost CR and fitting function coth1+p

6λ on the
parameter λ are plotted.
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Summary

• We have rigorously proven that the exponential or regular solution coincides
with the singular one in the limit when λ→ 0, where λ is the regularization
parameter.

• We have also proven that the regularized cost converges toward the singular
cost when λ approaches 0.

• The derivative of the regularized cost has been shown to diverge with the rate
' 1/

p
λ when λ→ 0.

• In Sec. 1.6 we generalize our approach to the case of higher order boundary
constraints.

1.6 Generalization to Higher Orders

All we have done above can be generalized to the case of constraints including higher order
derivatives. In this general case, the problem is to steer the system between the initial x(0)= 0

and target states x(T) = 1 under constraints including higher, up to nth order derivatives
ẋ(0)= ẍ(0)= ·· · = x(n)(0)= 0 and ẋ(T)= ẍ(T)= ·· · = x(n)(T)= 0. In the following, we first introduce
the basics of Linear Quadratic Optimal Control Theory (LQOCT) [75], then we apply this
theory to the particular model we have discussed above.

1.6.1 Generalized Problem

The model is described by a simple linear differential equation, and LQOCT is fully applica-
ble (see Sec. 1.6.3):

(1.58) ẋ+ x = u

The problem is to find the optimal field to steer the system from the state x(0) = 0 to the
state x(1)= 1, while insuring that all the derivatives up to nth order vanish at the initial and
final times: ẋ(0)= ·· · = x(n)(0)= 0 and ẋ(1)= ·· · = x(n)(1)= 0. For the optimization procedure we
enlarge the space of variables by introducing extra coordinates x1 = ẋ, x2 = ẍ, · · · , xn = x(n) and
z0 = u, z1 = u̇, z2 = ü, · · · , zn−1 = u(n−1). This way we replace the boundary conditions on the
derivatives by conditions on the state of the system. The new control is v = u(n). The dimension
of the state of the system is n+1,

(
xn, zn−1, · · · , z1, z0

)
. The differential system to control can be
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expressed as:

(1.59)



ẋn + xn = v

żn−1 = v

żn−2 = zn−1

· · ·
żk = zk+1

· · ·
ż1 = z2

ż0 = z1,

with the boundary conditions xn(0) = xn(1) = 0, zn−1(0) = zn−1(1) = 0, · · · , z1(0) = z1(1) = 0,
z0(0)= 0, z0(1)= 1. The cost functional in the regular case can be written as:

(1.60) CR =
T∫

0

[
(z0 − x1)2 + x2

1 +λv2
]

dt

with

(1.61) x1 = z1 − z2 + z3 +·· ·+ (−1)nzn−1 − (−1)nxn

Before the derivation of the regular control let us show that the singular control is the same
for all orders. The singular case is obtained in the limit when λ→ 0. Pontryagin’s singular
Hamiltonian can be expressed as:

HS = pn(v− xn)+ pn−1v+ pn−2zn−1 +·· ·+ p0z1 − 1
2

[
(z0 − x1)2 + x2

1

]
,

where the adjoint states pn, pn−1, · · · , p1 and p0 are associated respectively to xn, zn−1, · · · ,
z1 and z0. Using HS, and Hamilton’s equation ṗ = −∂Hs

∂x , where x is the state, and p is the
corresponding adjoint state, we also deduce the differential equations governing the dynamics
of the adjoint states:

(1.62)


ṗn = pn + (−1)n+1(2x1 − z0)

ṗk =−pk−1 + (−1)k+1(2x1 − z0), k = n−1, · · · ,1

ṗ0 = z0 − x1

The singular control satisfies PMP ∂Hs
∂v = 0 which leads to pn + pn−1 = 0. Since this statement is

valid in a non-zero time interval, the time derivatives of pn + pn−1 are equal to 0. We therefore
obtain a series of constraints given by:

pn − (−1)n−k pk = 0, k = n−1, · · · ,0

pn + (−1)n+1x1 = 0

z1 = z0
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where each relation is obtained by derivating with respect to time the preceding one. From
z1 = z0 and Eqs. (1.59), we deduce that z0 = z1 = z2 = ·· · = zn−2 = zn−1 = v for the singular
trajectory. From Eqs. (1.59) we deduce that ż0 = z0. Substituting the solution of this equation
z0(t)= Z et into the first inhomogeneous first-order differential equation of Eqs. (1.59) ẋn+xn = v

we obtain the singular trajectories:z0(t)= z1(t)= ·· · = zn−1(t)= v(t)= Z et

xn(t)=Y e−t+Z sinh t

In the same way, as it has been done in Sec. 1.3.1, we can show that the control field has a
discontinuity at initial and final times. In other words, it is a B—S—B pulse, where B means
bang and S singular pulses. Otherwise, we can not sew the boundary conditions to the trajectory.
For the constants Z and Y we obtain the same expressions as in Sec. 1.3.1. More importantly,
the singular control is indeed the same for any order n.

1.6.2 Regular Control

In this section we find the regular control by using LQOCT. Pontryagin’s regularized Hamilto-
nian has the form:

(1.63) HR = pn(v− xn)+ pn−1v+ pn−2zn−1 +·· ·+ p0z1 − 1
2

[
(z0 − x1)2 + x2

1 +λv2
]

.

Pay attention to the fact that HR = Hs − 1
2λv2. Since the dynamics of the adjoint state follows

the Hamiltonian equation ṗi =−∂H
∂xi

, we arrive at Eqs. (1.62). The regular control satisfies PMP
∂HR
∂v = 0 which leads to v = 1

λ
(pn + pn−1). We rewrite Eqs. (1.59) in a matrix form:

(1.64) d
dt



xn

zn−1

zn−2
...

z1

z0


=



−1 0 · · · 0 0

0 0 · · · 0 0

0 0
... In−1

...
0 0


×



xn

zn−1

zn−2
...

z1

z0


+



1

1

0
...
0

0


v.

Comparing Eq. (1.64) with Eq. (1.71) we observe:

(1.65) x =



xn

zn−1

zn−2
...

z1

z0


, A =



−1 0 · · · 0 0

0 0 · · · 0 0

0 0
... In−1

...
0 0


, B =



1

1

0
...
0

0


,
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where In−1 is an identity matrix of size n−1. Then substituting Eq. (1.61) into Eqs. (1.62) we
obtain:

(1.66)



ṗn = pn −2(−1)2n+1xn +2(−1)2n+1zn−1 +·· ·+2(−1)n+1z3−
−2(−1)n+1z2 +2(−1)n+1z1 − (−1)n+1z0;
...

ṗk =−pk−1 −2(−1)n+k+1xn +2(−1)n+k+1zn−1 +·· ·+2(−1)k+1z3−
−2(−1)k+1z2 +2(−1)k+1z1 − (−1)k+1z0; k = n−1, · · · ,1
...

ṗ0 = (−1)nxn − (−1)nzn−1 +·· ·− z3 + z2 − z1 + z0,

where p = (pn, pn−1, · · · , p1, p0)ᵀ is the adjoint state. Comparing Eq. (1.66) with Eq. (1.75), we
find out:

(1.67) W =



2(−1)2n · · · 2(−1)n+k · · · (−1)n

... . . . ... . . . ...
2(−1)n+k · · · 2(−1)2k · · · (−1)k

... . . . ... . . . ...
(−1)n · · · (−1)k · · · (−1)0


Comparing Eq. (1.60) and Eq. (1.72), we deduce that U = λ. Since we have the expressions
for matrices A, B, U and W, we also have the block matrix M. We recall that ẋ+ x = u and
hence x = z0 − x1. On the other hand x1 = z1 − z2 + z3 +·· ·+ (−1)nzn−1 − (−1)nxn, thus according
to Eq. (1.84) the state x can be expressed in the following way:

(1.68) x =
2n∑
j=1

a j eλ j t,

where the coefficients a j are defined from the boundary conditions. Equation (1.85) holds
true with Ci being a vector of coefficients a j and Vi = (0,1,0, · · · ,0)ᵀ. Numerically inverting the
matrix L one can find the coefficients a j. In a second step, by taking the derivatives of x we
can calculate the regular optimal control in the initial and modified coordinates:

u = ẋ+ x =
2n∑
j=1

a j(1+λ j)eλ j t(1.69)

v = ẋn + xn =
2n∑
j=1

a jλ
n
j (1+λ j)eλ j t .(1.70)

The simulations have been done according to Eq. (1.69) and Eq. (1.70).
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Figure 1.9: Plot of the time evolution of the optimal trajectories (a) and of the regular optimal
controls u (b) and v (c). The colorbar indicates the value of the order n. The parameter λ is
set to 10−5, 5×10−7, 5×10−9 and 10−11 respectively for n = 1, 2, 3 and 4. The black line in the
small inset represents the singular optimal solution. Dimensionless units are used.

The analysis of the generalized problem is summarized in Fig. 1.9. Notice that in the middle
of the time interval, the control field is singular independently of the order n.

1.6.3 Linear Quadratic Optimal Control Theory

This problem could also be solved by applying the LQOCT. The control problem is given by
the dynamical equation:

(1.71) ẋ = Ax+Bu,

where x ∈Rn is the state of the system and u ∈Rm is the control field, A ∈ Mn(R) and B ∈ Mnm(R)

are two constant matrices. The linear dynamics modeled as in Eq. (1.71) is ensemble controllable
[76, 77]. Starting from the state x(0)= x0, the goal is to reach the state x(T)= x f at time T under
the additional constraints ẋ(0)= ẋ0, ẍ(0)= ẍ0,· · · , x(n−1)(0)= x(n−1)

0 and ẋ(T)= ẋ f , ẍ(T)= ẍ f , · · · ,
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x(n−1)(T)= x(n−1)
f while minimizing the cost functional C defined by:

(1.72) C =
∫ T

0

[
xTWx+uTUu

]
dt,

where W ∈ Mn(R) and U ∈ Mm(R) are two constant symmetric matrices which are respectively
positive and positive definite. The Pontryagin Hamiltonian Hp of the system can be written as:

(1.73) Hp = pT Ax+ pTBu− 1
2

(
xTWx+uTUu

)
,

where p ∈Rn is the adjoint state. The dynamics of p is governed by the Hamiltonian equation:

(1.74) ṗ =−∂Hp

∂x
,

or in vector components:

ṗi =−∂Hp

∂xi
=− ∂

∂xi

 n∑
j,k=1

p j A jkxk −
1
2

n∑
j,k=1

x jWjkxk

=−
n∑

j,k=1
p j A jkδki +

1
2

n∑
j,k=1

δi jWjkxk+

+ 1
2

n∑
j,k=1

x jWjkδki =−
n∑

j=1
p j A ji + 1

2

n∑
k=1

Wikxk +
1
2

n∑
j=1

x jWji =

=−
n∑

j=1
AT

i j p j + 1
2

n∑
j=1

Wi jx j + 1
2

n∑
j=1

WT
i j x j

Since W is a symmetric matrix WT =W, we arrive at:

(1.75) ṗ =−AT p+Wx

The optimal control satisfies the maximization condition of PMP ∂Hp
∂u = 0, which can be written

by means of vector components:

0= ∂

∂ui

 n∑
j=1

m∑
k=1

p jB jkuk −
1
2

m∑
j=1

m∑
k=1

u jU jkuk

=
n∑

j=1

m∑
k=1

p jB jkδki −
1
2

m∑
j=1

m∑
k=1

δi jU jkuk−

− 1
2

m∑
j=1

m∑
k=1

u jU jkδki =
n∑

j=1
p jB ji − 1

2

m∑
k=1

Uikuk −
1
2

m∑
j=1

u jU ji =

=
n∑

j=1
BT

i j p j − 1
2

m∑
j=1

Ui ju j − 1
2

m∑
j=1

UT
i ju j

Since U is symmetric UT =U, we obtain:

(1.76) BT p−Uu = 0 or u =U−1BT p.

From Eqs. (1.71), Eq. (1.75) and Eq. (1.76) we finally obtain:

(1.77)

 ẋ

ṗ

=
 A BU−1BT

W −AT

 x

p

 .
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We introduce the following notation:

X =
 x

p

 , M =
 A BU−1BT

W −AT

(1.78)

Now we can rewrite Eq. (1.77) in the following way:

(1.79) Ẋ = MX .

The formal solution is well-known:

(1.80) X (t)= eMt X (0),

where X ∈R2n, and M ∈ M2n,2n(R). For deriving an explicit expression of the matrix exponential
eMt we have to find the eigenvalues and eigenvectors of M. Suppose the eigenvalues and
eigenvectors of M are given respectively by {λ1,λ2, . . . ,λ2n}, and {S1,S2, . . . ,S2n}. Note that λi ∈R,
and Si ∈ M2n,1(R); i = 1,2, . . . ,2n. Let us define the matrices of eigenvectors and eigenvalues:

(1.81) P = (
S1 S2 · · ·S2n

)
, D =


λ1 0 · · · 0

0 λ2 · · · 0
...

...
...

...
0 0 · · · λ2n


The basic properties of eigenvalues and eigenvectors impose: MP = PD, or M = PDP−1. Therefore
by expanding eMt into Tailor series, we can ensure that:

(1.82) eMt = P eDt P−1.

The vector eMt X (0) can be represented in the following way:

(1.83) eMt X (0)=


c11 eλ1 t+c12 eλ2 t+·· ·+ c1,2n eλ2n t

c21 eλ1 t+c22 eλ2 t+·· ·+ c2,2n eλ2n t

...
c2n,1 eλ1 t+c2n,2 eλ2 t+·· ·+ c2n,2n eλ2n t


Taking into account Eq. (1.80) we can rewrite the last relation in a compact form:

(1.84) X i =
2n∑
j=1

ci j eλ j t .

The coefficients ci j are defined from the boundary conditions: X i(0)= X i0, X i(T)= X i f , Ẋ i(0)=
Ẋ i0, Ẋ i(T)= Ẋ i f , . . . , X (n−1)

i (0)= X (n−1)
i0 , X (n−1)

i (T)= X (n−1)
i f ; i = 1,2, . . . ,2n. Taking the derivatives

of Eq. (1.84) up to the order n−1 we obtain:

LCi =Vi,
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or

(1.85) Ci = L−1Vi,

where

(1.86) Ci =



ci1

ci2
...

ci,2n−1

ci,2n


, Vi =



X i0

X i f
...

X (n−1)
i0

X (n−1)
i f


and

(1.87) L =



1 1 · · · 1 1

eλ1T eλ2T · · · eλ2n−1T eλ2nT

...
...

...
...

...
λn−1

1 λn−1
2 · · · λn−1

2n−1 λn−1
2n

λn−1
1 eλ1T λn−1

2 eλ2T · · · λn−1
2n−1 eλ2n−1T λn−1

2n eλ2nT


.

Substituting the coefficients ci j into Eq. (1.84) we obtain the solution of the control problem
given by Eq. (1.71).

Summary

• We have applied LQOCT to the general problem with higher order boundary
constraints.

• The singular control has been shown to be the same for any maximum order of
the boundary constraints.

• We have compared the regular and singular solutions.

• The application of LQOCT is discussed for this problem in Sec. 1.6.3.

1.7 Conclusions

In this chapter, we apply OCT and STA control protocols in the same linear system, where
two main requirements are to be fulfilled. First, we aim to find the global optimal solution,
which corresponds to the minimum energy cost. Second, we ensure to be robust against time
interval variations. To this end, higher order boundary constraints are imposed on the state of
the system. Our research findings claim the suitability of OCT protocols for finding the global
optimal solution. In contrast, STA protocols are well suited to fulfill higher order boundary
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CHAPTER 1. APPLICATIONS OF STA AND OCT TECHNIQUES TO A SIMPLE MODEL

constraints while ensuring the robustness against time interval variations. Remarkably, we have
proved that OCT protocols can be adapted to satisfy higher order boundary constraints by
enlarging the dimension of the phase space. Alternatively, inspired by OCT protocols we have
shown the high efficiency of exponential STA solutions. We have discussed the drawbacks of
each protocol and paved a way to make the OCT and STA protocols benefit from each other.
The application of LQOCT is discussed for this particular problem.
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Ensemble Control of Springs and Spins

Manipulating large ensembles of dynamical systems by a single control is a challenging
task due to inherent parameter variations for each individual component of the
considered ensemble. The direct problem of calculating the time evolution of an

ensemble of dynamical systems corresponding to a given control pulse can be solved through a
numerical integration, whereas the inverse problem of designing a control pulse that produces
the desired distribution of final states is much more difficult [38, 62]. In this chapter, we consider
the control problem of an ensemble of springs and spins [78]. Thanks to the linearity of the
dynamics, analytic control pulses can easily be designed to control an ensemble of springs.
To this end, different methods can be used such as STA or OCT. Contrary to that, analytic
approaches for the control of an ensemble of spins have not been sufficiently developed due
to the non-linearity of the spin dynamics. An alternative to designing high-fidelity broadband
pulses to steer spin systems by using a non-trivial dynamic connection between non-linear
spring and linear spin systems has been presented in [62]. This alternative claims, under some
conditions, that nonlinear pulse design is equivalent to designing controls for steering linear
spring systems under optimal forcing. Furthermore, this surprising dynamic connection has
been proven to be true even under non-optimal forcing [79]. By mapping spins to springs, one
may achieve excitation and inversion of a spin population in a given bandwidth of Larmor
frequencies of the spins [62]. We have extended this dynamic connection to STA protocols with
motion planning approach [79]. In Sec. 2.1 we present the control problem of a single spring by
two-component control pulse. In Sec. 2.2, we explore the controllability limits of an ensemble of
springs and present some simulation results as well as other attempts. In Sec. 2.3, we present
results about the behavior of the fidelity as a function of control time, spring frequencies and
the distribution of offset frequencies. In Sec. 2.4, we describe and give an original explanation to
the idea of mapping spins to springs firstly suggested by Prof. Jr-Shin Li et al. for an ensemble
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CHAPTER 2. ENSEMBLE CONTROL OF SPRINGS AND SPINS

of spins [62]. In Sec. 2.5 we present the STA protocols to control an ensemble of springs and
spins.

2.1 Optimal Control of a Single Spring

Control of a single spring is a trivial matter. Nevertheless, it is worth to first solve this problem
as it will help the reader to follow the development of methods in this direction. The time
evolution of a driven harmonic oscillator or a spring is expressed through a system of first order
differential equations [79]:

(2.1) d
dt

 x

y

=
 0 −ω
ω 0

 x

y

+
 ux

uy

 ,

where ω is the spring frequency, (ux,uy) the two components of the control field and (x, y) the
state of the dynamical system. The goal of the control is to steer the system from its initial
state (x(0)= x0, y(0)= y0) to the target one (x(T)= x1, y(T)= y1) by means of the (ux,uy) control
field while minimizing the pulse energy, namely the following cost functional:

(2.2) C = 1
2

∫ T

0
(u2

x +u2
y)dt.

In this manuscript, we consider only this particular cost functional that corresponds to the
energy minimum. In general a time-minimum cost functional could also be considered [80].
The control time T is fixed. In order to optimize the trajectory of the harmonic oscillator, we
introduce the Pontryagin Hamiltonian Hp according to the mathematical theory of optimal
processes of Pontryagin-Boltyanski-Gamkrelidze [68] (see Sec. A.1):

(2.3) Hp = px ẋ+ py ẏ− 1
2

(u2
x +u2

y),

where (px, py) is the adjoint state. The latter can be rewritten in the form:

(2.4) Hp = px(−ωy+ux)+ py(ωx+uy)− 1
2

(u2
x +u2

y).

By the help of the Hamilton equations, we recover the time-evolution of the state of the system
(x, y) and obtain that for the adjoint state (px, py):

(2.5)



ẋ = ∂Hp

∂px
=−ωy+ux

ẏ= ∂Hp

∂py
=ωx+uy

ṗx =−∂Hp

∂x
=−ωpy

ṗy =−∂Hp

∂y
=ωpx
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2.1. OPTIMAL CONTROL OF A SINGLE SPRING

Hereafter, for the sake of simplicity, we introduce complex representations of the state (x, y),
adjoint state (px, py) and control pulse (ux,uy):

z = x+ i y, p = px + i py, u = ux + iuy.

The solutions of the differential equations are found by the method of constant variation (see
Sec. B.3):

(2.6) p(t)= p(0)eiωt

(2.7) z(t)= z(0)eiωt+
∫ t

0
u(τ)eiω(t−τ) dτ.

According to the maximization condition of PMP [68], the partial derivatives of the Pontryagin
Hamiltonian with respect to ux and uy are zero at (u∗

x ,u∗
y)1:

(2.8)


∂Hp

∂ux
= 0

∂Hp

∂uy
= 0

We deduce that:

(2.9)

u∗
x (t)= px(t)

u∗
y(t)= py(t)

or according to Eq. (2.6):

(2.10) u∗(t)= p0 eiωt,

where p0 = p(0) is the initial adjoint state. In other words, the optimal field is a sum of cosine
and sine functions and is known up to a constant that is defined by the following boundary
conditions: z(T)= x(T)+ i y(T)= x1 + i y1 = z1

z(0)= x(0)+ i y(0)= x0 + i y0 = z0.

According to Eq. (2.7):

(2.11)
∫ T

0
u∗(τ)e− iωτ dτ= e− iωT z1 − z0,

where the optimal control field is defined from Eq. (2.10). The latter integral condition finally
yields:

(2.12) p0 = 1
T

(
e− iωT z1 − z0

)
.

1the asterisk next to any function indicates that the function is extremal
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CHAPTER 2. ENSEMBLE CONTROL OF SPRINGS AND SPINS

From Eq. (2.7) we obtain the optimal trajectory:

(2.13) z∗(t)= (z0 + tp0)eiωt .

The real and imaginary parts of the optimal field are given by the following expressions:

(2.14)
u∗

x (t)= 1
T

(
x1 cosωT + y1 sinωT − x0

)
cosωt−

− 1
T

(
y1 cosωT − x1 sinωT − y0

)
sinωt

(2.15)
u∗

y(t)= 1
T

(
y1 cosωT − x1 sinωT − y0

)
cosωt+

+ 1
T

(
x1 cosωT + y1 sinωT − x0

)
sinωt

Similarly, parametric equations of the optimal trajectory can be derived:

(2.16)
x∗(t)=

[
x0

(
1− t

T

)
+ (

x1 cosωT + y1 sinωT
) t

T

]
cosωt−

−
[

y0

(
1− t

T

)
+ (

y1 cosωT − x1 sinωT
) t

T

]
sinωt

(2.17)
y∗(t)=

[
y0

(
1− t

T

)
+ (

y1 cosωT − x1 sinωT
) t

T

]
cosωt+

+
[

x0

(
1− t

T

)
+ (

x1 cosωT + y1 sinωT
) t

T

]
sinωt

The control problem is solved for the frequency ω. In other words, the solution we have derived
works exactly for the spring with frequency ω. To evaluate the efficiency of our solution, we
calculate the final states of springs with frequencies Ω ∈ [−1;1]. The final states of these springs
do not coincide with the desired target state. However, the final and target states could be
sufficiently close. The closer they are, the better our solution is. The difference between the
target and final states and hence the efficiency of the solution is measured by the fidelity F :

(2.18) F (Ω)= 1−∣∣z∗(Ω,T)− z1
∣∣2 .

z∗(Ω,T) is the final state of the spring with a frequency Ω driven by the optimal control pulse
u∗(t) that is computed for a spring ω= 0.25. By direct substitution of the optimal pulse into
the trajectory of springs, we arrive at:

(2.19) z∗(Ω,T)=
[

z0 + T
2
ζ(Ω)

]
eiΩT

with the ζ(Ω) function given by:

(2.20) ζ(Ω)= 2e− i(Ω−ω)T/2 sinc
[

(Ω−ω)T
2

]
p0.
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Figure 2.1: (a) Optimal trajectory of the spring with ω= 0.25 in the (x, y) space. The initial
state z0 = (0,0) is indicated with a green filled square, and the target state z1 = (1,1) with a
black filled square. (b) The time evolution of the optimal control pulse u∗ is depicted via its
components u∗

x (blue solid line) and u∗
y (red solid line). The control time T is set to T = 1. (c)

The dependence of the fidelity F on the frequencies Ω ∈ [−1;1] is computed by using Eqs. (2.18)
and (2.19). The best performance of the algorithm is reached at the points of intersection of
the fidelity curve and the line F = 1 (red solid line).

As one could anticipate, the target state is reached only if Ω=ω= 0.25. The optimal solution
is not robust against frequency variations. As it is shown in Subsec. 2.2.1, a robust control field
can be designed by considering the simultaneous control of an ensemble of harmonic oscillators
with different frequencies.

Summary

• We have obtained the optimal control pulse to steer a spring between the desired
initial and target states (see Fig. 2.1).

• The fidelity or the efficiency of the control process turns out to be not sufficient
in case of a single offset.

• In Sec. 2.2 we explore the ensemble control of springs.
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CHAPTER 2. ENSEMBLE CONTROL OF SPRINGS AND SPINS

2.2 Ensemble Controllability

We start our discussion from the second remark that has been proven in [76]. It will help us
to dive deeper in the control problem of an ensemble of springs. An ensemble of springs with
different offset frequencies ω driven by a single control pulse u obeys the following dynamics:

(2.21) d
dt

 xω
yω

=
 0 −ω
ω 0

 xω
yω

+
 u

0

 ,

where u(t) ∈R, and we assume that the initial state
(
xω(0), yω(0)

)= (x0, y0) does not depend on
the offset frequencies ω ∈ [

ωmin,ωmax
]
.

Theorem 2.1. Ensemble of springs is not controllable if one of the control components is not
available (in our case, uy ≡ 0 and ux ≡ u: see Eq. (2.21)).

The proof to this theorem that is given in [76] is based on a coordinate transformation. This
proof shows that the trajectories of springs have to be symmetric about the x axis meaning that
the ensemble is not controllable for arbitrary initial and target states. Here, we prove another
theorem, which provides us a better understanding of the controllability limits.

Theorem 2.2. Let u ∈ R and v ∈ R be the control pulses steering two different ensembles of
springs with the respective offset frequencies ω ∈ [

ωmin,ωmax
]

and ω ∈ [−ωmax,−ωmin
]

from the
initial state z0 to the target state z1 in a fixed time t f , then

z0 ∈R, z1 ∈R⇔ u ≡ v

First, let us prove the necessary condition. We are given z0 ∈R and z1 ∈R, and the goal is to
prove that u ≡ v. Equation (2.21), which describes the time evolution of an ensemble of springs,
is solved in Sec. B.3:

(2.22) zω(t)= z0 eiωt+eiωt
t∫

0

e− iωτ u(τ)dτ.

According to Eq. (2.22), the control pulses u and v must satisfy the following equations:

(2.23)
t f∫

0

e− iωτ u(τ)dτ= z1 e− iωt f −z0

(2.24)
t f∫

0

eiωτ v(τ)dτ= z1 eiωt f −z0,
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2.2. ENSEMBLE CONTROLLABILITY

where ω ∈ [
ωmin,ωmax

]
. The complex conjugate of Eq. (2.23) combined with the conditions

z0 ∈R and z1 ∈R yields:
t f∫

0

eiωτ [
u(τ)−v(τ)

]
dτ= 0.

The above expression is true for any ω ∈ [
ωmin,ωmax

]
and any t f . We therefore conclude

u(t)≡ v(t). The necessity has been proved. Next, we prove the sufficient condition. We are given
u(t) ≡ v(t) and are required to prove that the initial and target states are real. However, we
will go even further and prove that the trajectories are symmetric about the y= 0 axis. From
Eq. (2.23), (2.24) and the condition u(t)≡ v(t) we obtain:

(2.25) eiωt f z∗1 − z∗0 = eiωt f z1 − z0.

The complex conjugate of this equation is:

e− iωt f z1 − z0 = e− iωt f z∗1 − z∗0 .

Combining the above two equations we arrive at:

e− iωt f (z1 − z∗1 )= eiωt f (z1 − z∗1 ),

or in a compact form:
(z1 − z∗1 )sinωt f = 0.

The latter is true for any ω ∈ [
ωmin,ωmax

]
and any t f . We thus conclude z1 = z∗1 and conse-

quently (see Eq. (2.25)) z0 = z∗0 meaning that the initial and target states z0 and z1 are real.
The sufficiency has been proved. To observe the symmetry we go back to Eq. (2.21). Since
u ≡ v, we can rewrite the same equation also for −ω. We have:

ẋω =−ωyω+u

ẏω =ωxω

ẋ−ω =ωy−ω+u

ẏ−ω =−ωx−ω

We define new variables Xω := xω− x−ω and Yω := yω+ y−ω. From the above set of equations we
obtain: Ẋω =−ωYω

Ẏω =ωXω.

The corresponding dynamical equation for the complex variable Zω = Xω+iYω has the following
form:

Żω = iωZω.
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CHAPTER 2. ENSEMBLE CONTROL OF SPRINGS AND SPINS

The solution of this differential equation is given by:

Zω = Zω(0)eiωt .

Returning to the real coordinates we obtain:Xω(t)= Xω(0)cosωt−Yω(0)sinωt

Yω(t)=Yω(0)cosωt+ Xω(0)sinωt.

Since the initial state (x0, y0) is the same for all the springs and we have already proved that
y0 = 0, we arrive at: Xω(0)= xω(0)− x−ω(0)= x0 − x0 = 0

Yω(0)= yω(0)+ y−ω(0)= y0 + y0 = 0,

whence we deduce:
Xω(t)≡ 0, Yω(t)≡ 0

or in the old coordinates:
xω(t)= x−ω(t), yω(t)=−y−ω(t).

The above equation is the mathematical formulation of the symmetry about the y= 0 axis. As
a logical conclusion, by disclaiming the necessary and the sufficient conditions of this theorem,
one may rewrite the theorem in another form:

Theorem 2.3. Let u ∈ R and v ∈ R be the control pulses steering two different ensembles of
springs with the respective offset frequencies ω ∈ [

ωmin,ωmax
]

and ω ∈ [−ωmax,−ωmin
]

from the
initial state z0 to the target state z1 in a fixed time t f , then

ℑ(z0)2 +ℑ(z1)2 6= 0⇔ u(t) 6≡ v(t)

One oscillator with non-zero offset frequency is always controllable even if one of the
control inputs is not available. Note, however, that one oscillator with zero offset frequency
can be driven solely along the y = y0 axis due to the absence of circular motion. Although
the mathematical formalism is introduced in Subsec. 2.2.1, we plot a specific case of a control
as a logical conclusion. In Fig. 2.2 we illustrate the ensemble controllability of springs with
negative offset frequencies that are steered along an axis other than x. The target state z1 is
not real and therefore u(t) 6≡ v(t) but u(t) exists with the only difference that it does not drive
the springs with positive offset frequencies between the same states. We define the fidelity as
F (Ω)= 1−∣∣z(Ω,T)− z1

∣∣2 with z(Ω,T) being the final state of the spring Ω. The frequency range
is regularly discretized for computational reasons. In other words, it allows us to transform the
initial infinite dimensional dynamical system to a finite one which can be used from a numerical
point of view. This is a standard procedure that we follow throughout the whole manuscript.
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Figure 2.2: Panel (a) displays the dependence of the fidelity F on the frequency Ω in a
logarithmic scale. The dashed vertical red lines represent the N = 4 offset frequencies ωi with
i = 1,2,3,4 in the frequency range Ω ∈ [−2,−1

]
. The trajectories of springs in the phase space

(x, y) are plotted in panel (b). The colorbar shows the values of the offset frequencies. The initial
state z0 = (1,0) and the target state z1 = (−3,2) are depicted respectively with green and black
circles. Panel (c) displays the time evolution of the unconstrained optimal ensemble control u∗.
The control time T is set to T = 6.

2.2.1 Control of an Ensemble of Springs

Our goal is to design an optimal control pulse, which steers the dynamical system (see Eq. (2.21))
with N discrete frequencies ωi from its initial state to the target state:

(xi(0), yi(0))= (x0, y0)→ (x1, y1)= (xi(T), yi(T)),

while minimizing the cost functional:

C = 1
2

T∫
0

u2dt.

With the discretization of the frequencies, we obtain a finite-dimensional dynamical system and
we can apply the standard procedure of PMP. This procedure of controlling an ensemble of
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systems with dispersion in the values of one or several parameters (in our case the only parameter
is the frequency), which has been widely explored in quantum control e.g. by OCT [81], is a
standard tool for improving robustness. The cost functional C physically corresponds to energy
expenditure. The Pontryagin Hamiltonian Hp is given by:

Hp =
N∑

i=1

(
pxi(−ωi yi +u)+ pyiωixi

)
− 1

2
u2.

The Hamilton equations:

(2.26)



ẋi =−ωi yi +u

ẏi =ωixi

ṗxi =−pyiωi

ṗyi = pxiωi.

can easily be solved as shown in Sec. B.3:

(2.27)


zi(t)= z0 eiωi t+

t∫
0

u(τ)eiωi(t−τ) dτ

pi = pi(0)eiωi t .

The new variables zi and pi are defined in the following way: zi := xi + i yi and pi := pxi + i pyi.
The optimal control pulse must satisfy the maximization condition of PMP:

∂Hp

∂u
= 0,

hence we obtain the optimal pulse u∗:

(2.28) u∗ =
N∑

i=1
pxi =

N∑
i=1

(
pxi(0)cosωi t− pyi(0)sinωi t

)
.

By direct substitution of the optimal control into Eqs. (2.27), we obtain the optimal trajectory
of the offset ωi:

(2.29) z∗i (t)=
[

z0 + t
2
ξi(t)

]
eiωi t,

where

(2.30) ξi(t)=
N∑

j=1
A−

i j(t)p j(0)+
N∑

j=1
A+

i j(t)p j(0),

and

A−
i j(t)= e− i(ωi−ω j)t/2 sinc

[
(ωi −ω j)t

2

]

A+
i j(t)= e− i(ωi+ω j)t/2 sinc

[
(ωi +ω j)t

2

]
.
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2.2. ENSEMBLE CONTROLLABILITY

Equation (2.30) combined with its conjugate yields:

(2.31)

 A−(t) A+(t)

A+(t) A−(t)

 p(0)

p(0)

=
 ξ(t)

ξ(t)

 ,

where A is the complex conjugate of A. From the boundary conditions zi(0)= z0 and zi(T)= z1

we get the initial adjoint state:

(2.32)

 p(0)

p(0)

=
 A−(T) A+(T)

A+(T) A−(T)

−1  ξ(T)

ξ(T)

 ,

where ξ(T) is defined from Eq. (2.29):

(2.33) ξi(T)= 2
T

(
z1 e− iωiT −z0

)
.

We can obtain ξ(t) from Eq. (2.31). In summary, we now have the initial adjoint state p0

and the constant vector ξ(T), and hence the optimal control pulse u∗(t) and the optimal
trajectory z∗i (t) for the offsets ωi (see Eqs. (2.29) and (2.28)). The fidelity and the final state
are given respectively by Eq. (2.18) and Eq. (2.19). However, the function ζ(Ω) is different. The
counterpart of Eq. (2.20) is obtained by direct substitution of the optimal control pulse into
the trajectory of springs:

(2.34) ζ(Ω)=
N∑

j=1
e− i(Ω−ω j)T/2 sinc

[
(Ω−ω j)T

2

]
p(0)+

N∑
j=1

e− i(Ω+ω j)T/2 sinc

[
(Ω+ω j)T

2

]
p(0).
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Figure 2.3: We consider N = 9 offset frequencies ωi with i = 1,2, · · · ,9 in the frequency range
Ω ∈ [−1,1

]
. The colorbar shows the values of the offset frequencies. The initial state z0 = 0 and

the target state z1 = 3 are depicted respectively with green and black circles. Panels (a) and
(c) display the trajectories of springs in the space (x, y). Panels (b) and (d) display the time
evolution of the unconstrained optimal ensemble control u∗. In panels (a) and (b) the control
time T is set to T = 16 and the mean value of the fidelity over Ω is <F >≈ 0.998, whereas in
panels (c) and (d) T = 25 and <F >≈−3.866.

The matrix of Eq. (2.32), which we invert in the simulations, is numerically singular i.e. its
determinant is zero to the numerical precision of the computation. However, this matrix has a
Moore-Penrose pseudo-inverse, which successfully runs the code. The matrix inversion can also
be done by using the discrete prolate spheroidal sequences [80]. In the end, the important point
is that the solution steers the ensemble between the desired states. From the practical point of
view, we just care about the control pulse, and not about the way we obtain it. The results
of our simulations for Ω ∈ [−1,1] are presented in Fig. 2.3. The initial and target states are
real, and therefore the trajectories are symmetric about the y= 0 axis. The larger the control
duration is the more the springs circulate, which results in decreased values of maxima of the
control pulse and increased deviation of off-resonance springs from the desired trajectories
thereby decreasing the fidelity. This is the reason for the low fidelity corresponding to the
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2.2. ENSEMBLE CONTROLLABILITY

illustrations of panels (c) and (d) in Fig. 2.3. When driving the springs along y= const axis,
the second control pulse component uy, if available, does not affect the results since uy ∼ 10−13.
We assume that the N offset frequencies are regularly distributed in the interval Ω ∈ [ω1,ω2],
but other choices may be more efficient, and the frequency step is chosen small enough to avoid
the discretization effect. The same approach is used in NMR to control a spin ensemble [23, 24,
82]. The control time, which we have chosen for the simulations, is relatively long to ensure
the smoothness of the control field but also short enough to ensure sufficient fidelity. Our
designed control pulse eventually has to be implemented in experiments. To this end, first and
foremost, the amplitude of the control pulse must be limited. One of the naive options that
we thought could help us restrain the maximum amplitude of the control pulse, but in fact it
did not appear to be helpful in any way, was to cut the pulse at a fixed time t0. We choose t0

such that
∣∣u(t)

∣∣≤ u0 for t ≤ t0 and
∣∣u(t)

∣∣> u0 for t > t0, where u0 is the threshold. The cutting
is done in two different ways. Either the control pulse u fulfills the condition u(t > t0) = 0 or
u(t > t0) = u0. Even in the latter case, when u(t > t0) = u0, the fidelity is just 0.65 (with the
parameters: z0 = 0, z1 = 3, w1 =−1, w2 = 1, N = 6, T = 3.5 and t0 = 3.4) which is not a satisfying
result. Alternatively, we came up with another idea that we thought could help us restrain the
amplitude of the control pulse. We include a constant u0 directly in the cost functional:

C = 1
2

T∫
0

(u−u0)2dt.

In this case, the optimal control pulse u∗, the optimal trajectory of offset frequencies z∗i (t) and
the components of the vector ξ(T) have slightly different forms:

u∗(t)= u0 +
N∑

i=1
pxi = u0 +

N∑
i=1

(
pxi (0)cosωi t− pyi (0)sinωi t

)
z∗i (t)=

[
z0 + t

2
ξi(t)+u0te− iωi t/2 sinc

(
ωi t
2

)]
eiωi t

ξi(T)= 2
T

[
z1 e− iωiT −z0 −u0T e− iωiT/2 sinc

(
ωiT

2

)]
.

(2.35)

The initial adjoint state p(0), and thus the optimal control field u∗(t) and the optimal trajectory
z∗(t), can numerically be computed (see Eq. (2.32)). The term −u0T e− iωiT/2 sinc

(
ωiT

2

)
in ξ(T)

introduces a shift in the initial adjoint state p(0) and therefore in ξ(t). However, this shift
is compensated by the additional terms u0 and u0te− iωi t/2 sinc

(
ωi t
2

)
correspondingly in u∗(t)

and z∗i (t) such that the numerical results do not depend on u0. This has been confirmed by
numerical computations. In brief, this approach does not help to limit the maximum amplitude
of the control pulse.
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Summary

• We have considered a control problem of an ensemble of springs and found
out that not all target states are reachable if the second control component is
unavailable. Starting from the origin one can reach all the states along the x

axis. The rest is reachable if and only if there are no offsets of opposite signs (see
Theorems 2.1, 2.2, 2.3).

• The fidelity or the efficiency of the control process depends on the control time
and number of offsets. The smaller the control time and the larger the number
of offsets are, the more efficient is the solution (see Fig. 2.3).

• In Sec. 2.3 we discuss the dependency of the fidelity on the control time and
distribution of offsets in the considered frequency range.

2.3 Fidelity Plots

In this section, we present some numerical simulations and figures, which contain dense
information about the dependence of the fidelity F on the control time T and on the distribution
of offset frequencies ωi within the frequency range Ω ∈ [ω1,ω2].

2.3.1 Fidelity of the Control Process

Here, we illustrate the behavior of the fidelity for different control times. Note that in this
section, the fidelity F is defined in a different way due to illustrative reasons:

F = 1−∣∣z(Ω,T)− z1
∣∣ .

In the definition of the fidelity, we take the square of the modulus to avoid the singularity at
the origin. However, for the contour plots of the current subsection we derive higher resolution
figures if we take the modulus. We follow the new definition only in this subsection.
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Figure 2.4: Similar to Figs. 2.3, the trajectories of the springs are depicted in panel (a), and the
control pulse in panel (b). N = 6 offset frequencies ωi with i = 1,2, · · · ,6 are regularly distributed
in the frequency range Ω ∈ [−1;1]. The initial and target states respectively are z0 = 0 and
z1 = 3. The control time is T = 16.25.

We consider the control problem presented in Fig. 2.4. By varying the control time T we
observe the change of the fidelity plot. This means one fidelity plot corresponds to each control
duration. Graphically we can assure ourselves from Fig. 2.5 that the shorter is the control time
the higher is the fidelity as we have already stated in the previous subsection. Until here, we have
just considered the regular distribution of offset frequencies. In fact, the fidelity plot is different
for different distributions of offset frequencies that we consider in the optimization process (see
Fig. 2.6). Moreover, the regular distribution appears to be one of the worst. We consider a
pair of offsets (ω1,ω2) in the interval Ω ∈ [−1;1] (see Fig. 2.6). An important conclusion of our
results on the optimal choice of the distribution of two offsets that is summarized in Fig. 2.6 is
that a high fidelity can be reached by setting (ω1;ω2)= (−0.1515;0.1313). The mean value of the
fidelity, in this case, is <F >≈ 0.91. The optimal choice of the two offsets (ω1;ω2)= (−0.(29),0.(7))

provides the highest possible mean fidelity in this setting <F >= 0.96257. Due to the symmetry
of the system, the sign of the offset does not make a difference. The fidelity drops down on the
diagonals. For instance, the mean value of the fidelity is just <F >≈ 0.24 for (ω1;ω2)= (−0.5;0.5).
The second diagonal corresponds to the case of a single offset. Because of the symmetry of the
dynamics, the control pulse designed for a positive frequency steers the negative one between
the desired states and therefore the fidelity drops down even on the first diagonal but rapidly
goes up when we introduce an infinitely small frequency shift.
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CHAPTER 2. ENSEMBLE CONTROL OF SPRINGS AND SPINS

Figure 2.5: Dependence of the fidelity F on the control time T ∈ [
6.5;16.25

]
and on the spring

frequency Ω. N = 6 offset frequencies ωi are regularly distributed in the frequency range
Ω ∈ [−1,1]. The colorbar corresponds to the magnitude of the fidelity.

Summary

• We have plotted the dependence of the fidelity on the control time and frequen-
cies.

• The more we decrease the control time, the more the fidelity increases (see
Fig. 2.5).

• The regular distribution of offsets is not the optimal choice. We have found
the optimal pair of offsets for a particular setting. Due to symmetry of the
system, the fidelity drops down when the distribution of offsets is symmetric (see
Fig. 2.6).

• In Sec. 2.4 we discuss the ensemble control of spins or Bloch systems.

2.4 Mapping Spins to Springs

The control of one spin has been studied in the last century and is well-known [31]. Here we
discuss the optimal control of an ensemble of two-level quantum systems [83]. Our aim is to
generalize the method introduced by Prof. Jr. Shin-Li and Prof. S. J. Glaser [62] in which they
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Figure 2.6: N = 2 offset frequencies ω1 and ω2 are considered in the frequency range Ω ∈ [−1;1
]
.

The average fidelity over spring frequencies Ω ∈ [−1;1] is different for different values of offset
pairs (ω1;ω2). The initial and target states respectively are z0 =π/2, z1 = 0. The control time T
is set to T = 5. The colorbar corresponds to the mean value of the fidelity.

introduce a nontrivial dynamic connection between nonlinear spin and linear spring systems.
We have made one step forward in understanding this connection. To have a self-consistent
and easy-to-understand introduction of this chapter, we first introduce the method of mapping
springs to spins developed by Prof. Jr. Shin-Li et al. [62].

The semi-classical Bloch model of the time evolution of a two-level system can mathematically
be represented as a first order matrix differential equation [77, 80, 84]:

(2.36) d
dt


Mx(t,ω)

My(t,ω)

Mz(t,ω)

=


0 −ω u(t)

ω 0 −v(t)

−u(t) v(t) 0




Mx(t,ω)

My(t,ω)

Mz(t,ω)


Here we neglected the relaxation effects by assuming a very short control duration compared to
the relaxation time. Now, consider separately the dynamics of an undamped driven harmonic
oscillator:

(2.37) d
dt

 x(t,ω)

y(t,ω)

=
 0 −ω
ω 0

 x(t,ω)

y(t,ω)

+
 u(t)

v(t)


We steer the Bloch system from M0 = (1,0,0) to MF = (0,0,1), and the spring system from
X0 = (π/2,0) to XF = (0,0). It is worth to notice that these two dynamics become even more

63
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similar when the external forces u(t) and v(t) are missing. We might expect a similar evolution
under external forcing. Based on this insight, a dynamical projection between the endpoints
of the trajectory of a spin to that of a spring has been established. To this end, a complex
projection is constructed:

(2.38) f (t)= Mx(t)+ i My(t)
a(t)+Mz(t)

,

where 0 ≤ t ≤ T is the pulse duration and a(t) = a1(t)+ ia2(t) is a complex-valued function
satisfying the Riccati equation with the initial condition a(0)= 1 and depending on the time-
varying RF pulse:

(2.39) ȧ =− uβ
2m

a2 − uMz(β−1)
m

a+ u(1+M2
z −M2

zβ)
2m

,

where β= e2iωt and m = Mx + i My, then f follows:

(2.40) ḟ = iω f + 1
2

uf 2 + 1
2
βu

with f (0)= 1 since m(0)= 1, z(0)= 0, and a(0)= 1. If a(t)= 1 over the entire duration, then f (t)

simply becomes the stereographical projection. Using the fact that the magnitude of the vector
||M|| = 1, we can compose conditions on f (t) and a(t) to ensure that the dynamic projection
corresponds to a valid (i.e., noncomplex-valued and unique) Bloch trajectory. The necessary
and sufficient condition to have a one-to-one projection between the trajectories of spins and
springs is formulated by the following bound on f (t):

(2.41) 0≤∣∣ f
∣∣2 < 1−|a|2 +

√
(1−|a|2)2 +4a2

2

2a2
2

,

where |a|2 = a2
1 + a2

2. This condition also indicates why the stereographic projection fails to
provide a mapping in the general case.
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Figure 2.7: The feasibility of pulse design is illustrated. We plot the trajectory of
∣∣ f

∣∣2 (black)
and the corresponding bound (red) given by the right side of Eq. (2.41) resulting from the (a)
minimum-energy control u∗

π/2 =−cos(3t) and (b) a quadratic control u(t)= (18t2+4−9π2)/8 that
steer the spring from X0 = (π/2,0) to XF = (0,0). In (a) the trajectory of

∣∣ f
∣∣2 is much smaller

than the bound appearing as a horizontal line at the bottom of the figure.

The control problem of an ensemble of springs is linear whereas that of an ensemble of
Bloch systems is bi-linear. If the conditions we have imposed on f are satisfied then the optimal
pulse to steer an ensemble of springs is applicable to an ensemble of Bloch systems. Note that
the corresponding pulse does not correspond to the optimal solution of the non-linear system.
In summary, this method is of great scientific importance as it allows to analytically explore
a bi-linear control problem. A negative aspect of this approach is the fact that in general
Eq. (2.41) is very difficult to verify in practice (see Fig. 2.7).

2.4.1 Spin Systems vs Nonlinear Oscillators

Here, we present an original explanation to the method of mapping spins to springs. Two main
dynamical equations are taken into consideration [62]. One describes the semi-classical Bloch
model of a two-level system:

(2.42) d
dt


Mx(t,ω)

My(t,ω)

Mz(t,ω)

=


0 −ω u(t)

ω 0 −v(t)

−u(t) v(t) 0




Mx(t,ω)

My(t,ω)

Mz(t,ω)


and the other one describes the dynamics of an undamped harmonic oscillator:

(2.43) d
dt

 x(t,ω)

y(t,ω)

=
 0 −ω
ω 0

 x(t,ω)

y(t,ω)

+
 u(t)

v(t)

 .

To make the similarity of the two dynamics even more appealing and to give an original
explanation to the method of mapping spins to springs, we exchange the variables Mx, My, Mz
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with x, y, z. We go from Cartesian (x, y, z) to spherical (r,θ,ϕ) coordinates in the spin systems:
x = r cosϕsinθ

y= rsinϕsinθ

z = r cosθ

and from Cartesian (x, y) to polar coordinates (r,ϕ) in the spring systems:x = r cosϕ

y= rsinϕ.

Assuming that the radius of the Bloch sphere is constant (r = const) and substituting the
derivatives of x, y, z in spherical:

ẋ =−rsinϕsinθϕ̇+ r cosϕcosθθ̇

ẏ= r cosϕsinθϕ̇+ rsinϕcosθθ̇

ż =−rsinθθ̇

and polar coordinates: ẋ = cosϕṙ− rsinϕϕ̇

ẏ= sinϕṙ+ r cosϕϕ̇

into Eqs. (2.42), (2.43) we correspondingly obtain:

(2.44)


−sinϕsinθϕ̇+cosϕcosθθ̇ =−ωsinϕsinθ+ucosθ

cosϕsinθϕ̇+sinϕcosθθ̇ =ωcosϕsinθ−vcosθ

−sinθθ̇ =−ucosϕsinθ+vsinϕsinθ

(2.45)

cosϕṙ− rsinϕϕ̇=−ωrsinϕ+u

sinϕṙ+ r cosϕϕ̇=ωr cosϕ+v

For the spin system, multiplying the first and the second equations of Eqs.(2.44) respectively
by sinϕ and cosϕ and then substracting the first equation from the second one we get:

(2.46)

sinθϕ̇=ωsinθ− (usinϕ+vcosϕ)cosθ

−sinθθ̇ =−ucosϕsinθ+vsinϕsinθ

We assume that sinθ 6= 0 and we divide both sides of Eqs. (2.46) by sinθ:

(2.47)

ϕ̇=ω− (usinϕ+vcosϕ)cotθ

θ̇ = ucosϕ−vsinϕ.
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For the spring system, we multiply the first and the second equations of Eqs. (2.45) respectively
by sinϕ and cosϕ, then we substract the first equation from the second one. In the next step,
we multiply the same equations in the same order by cosϕ and sinϕ respectively, then we sum
both equations. Finally we arrive at:

(2.48)

ϕ̇=ω− (usinϕ−vcosϕ)/r

ṙ = ucosϕ+vsinϕ.

Equations (2.47), (2.48) are the main equations to be considered in this section. To further
visualize the similarity of these equations, let us expand the function cotθ into Taylor series.
The well-known formula of the Taylor series of the function cot x has the following form:

cot x = 1
x
− 1

3
x− 1

45
x3 − 2

945
x5 −·· ·− 22nBn

(2n)!
x2n−1 −·· · ,0<|x| <π,

where B0 = 1, B1 = 1/6, B2 = 1/30, B3 = 1/42, . . . , Bn are the Bernoulli numbers. Since 0< θ <π,
this formula is applicable for cotθ as well. In further discussions we only need the first three
terms of that expansion. Substituting it into Eqs. (2.47) we arrive at:

(2.49)


ϕ̇=ω− (usinϕ+vcosϕ)

(
1
θ
− 1

3
θ− 1

45
θ3 −·· ·

)
θ̇ = ucosϕ−vsinϕ.

The similarity of Eqs. (2.47) and Eqs. (2.48) becomes obvious. The azimuthal angle is defined
the same way for both cases (ϕ∼ϕ). However, the counterpart of the polar angle in the spring
systems is the radial coordinate (θ ∼ r). Assume that we have found the required control
field (u,v) for a spring system (see Eqs. (2.48)). Then (u,−v) will be a control field for a spin
system (if we take only the first term in the expansion) steering the system between the same
initial and target states. In other words, the dynamics of a spring system is nothing more than
that of a linear approximation of a spin system. This is how an idea of a nonlinear spring
system is being naturally risen. The dynamics of a nonlinear spring system unlike the linear
one (see (2.48)) has the following form:

(2.50)


ϕ̇=ω− (usinϕ−vcosϕ)

(
1
r
− 1

3
r− 1

45
r3 −·· ·

)
ṙ = ucosϕ+vsinϕ.

Hereafter, the state of a spring system will be described by (r,ϕ) and that of a spin system
by (θ,ϕ). The control (u,v) which steers an ensemble of linear springs from (π/2,0) to (0,0) has
been proven to approximately steer an ensemble of spins from (π/2,0) to (0,0) when considering
the same Larmor dispersion in frequencies for both systems [62]. It is important to note that
this approximation works best for small polar angles. The generalization we try to make is
based on Eqs. (2.49), (2.50). The idea is to solve the linear control problem of a spring system
and then apply the obtained solution to the spin systems. The linear spring system can easily
be analyzed by analytic methods. We use numeric methods only for inversion of a matrix.
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2.4.2 Simulations for One Control Case

In this subsection, we assume that v = 0 and we consider one control u along the x direction.
Equations (2.49), (2.50) respectively take the forms:

(2.51)


ϕ̇=ω−usinϕ

(
1
θ
− 1

3
θ− 1

45
θ3 −·· ·

)
θ̇ = ucosϕ

(2.52)


ϕ̇=ω−usinϕ

(
1
r
− 1

3
r− 1

45
r3 −·· ·

)
ṙ = ucosϕ.

In the simulations, we take the optimal solution of the linear control problem of a spring system
and apply it to steer the spin systems and the nonlinear spring systems. For illustrations,
we have chosen a specific frequency of a spring and of a spin. We have taken 500 points for
discretization of the range Ω ∈ [−1,1]. With these parameters in the case when two control pulse
components ux and uy are available, the results barely differ from the case with uy = 0. This is
because we steer the ensemble of springs along the y= 0 axis (see the values of parameters in
the caption of Fig. 2.8), which means that one control pulse component u is sufficient.

0 π/4 π/2 3π/4 π
−5

−4

−3

−2

−1

0

1

2

t

u∗

Figure 2.8: The evolution of an optimal control pulse. N = 4 offset frequencies are regularly
distributed in the frequency range Ω ∈ [−1;1]. The control time is set to T =π. The initial and
target states are respectively z0 =π/3 and z1 = 0.

We apply the control pulse depicted in Fig. 2.8 to steer an ensemble of spins. The trajectories
of springs and spins under this optimal forcing is depicted in Fig. 2.9. The difference of
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counterpart states of springs and spins, namely θ− r and φ−φ is depicted in Fig. 2.10. The
fidelity of spins is defined as cos[θ(ω)], and is about 0.9998.
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Figure 2.9: Trajectories of a spin and of a spring. The black solid line and the dashed red line
correspond respectively to the polar angle and the radius. The spin dynamics is computed using
the exact dynamical equations. A linear spring system is considered. All curves correspond to
the offset frequency Ω≈−0.57114.
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Figure 2.10: Comparison between trajectories of a spin and of a spring. The blue, black and red
lines correspond respectively to linear, 1st and 2nd order nonlinear spring systems. The spin
dynamics is exactly computed using the exact dynamical equations. All curves correspond to
the offset frequency Ω≈−0.57114.
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Figure 2.11: N = 4 offset frequencies are regularly distributed in the frequency range Ω ∈ [−1;1].
The control time is set to T = π. The initial and the target states of springs are respectively
z0 =π/3 (θ =π/3 for spins) and z1 = 0 (θ = 0 for spins). The colorbar corresponds to the frequency
Ω.

As we can see in Figs. 2.9 and 2.10, linear approximation of Bloch equations under OCT
pulses for small polar angles is already a good approximation. The trajectories of spins on a
Bloch sphere are depicted in Fig. 2.11.

Summary

• We have introduced the method of mapping spins to springs.

• We have presented an original explanation to the method of mapping spins to
springs.

• We have applied this method to control an ensemble of spins.

• In Sec. 2.5 we discuss the ensemble control of spins or Bloch systems under STA
control pulses.

2.5 STA Solutions

In the computations of the optimal solution by LQOCT, we are required to compute an inverse
of a matrix, which may cause numerical problems. In this section, we introduce a STA solution
that allows us to avoid these problems. STA methods generally exploit the algebraic structure
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of quantum mechanics [47–50]. We propose a general STA protocol for linear dynamical systems
based on a motion planning approach, known in control theory as Brunovki form [85, 86].

2.5.1 One Control Input: Springs

We assume from now on that z0 = (0,0) and z1 = (1,0), thus the goal of the control problem is
to find a solution, which fulfills the relation:

(2.53)
t f∫

0

e− iωτ u(τ)dτ= e− iωt f

for ω ∈ [ωmin,ωmax]. We propose to adapt the method introduced in [67]. We first consider the
case of two frequencies ω1 and ω2. We introduce an auxiliary function g(t) such that:

(2.54) u(τ)= g(4)(τ)+
(
ω2

1 +ω2
2

)
g(2)(τ)+ω2

1ω
2
2 g(τ).

After integrating by parts we have:

(2.55)
t f∫

0

e− iωτ u(τ)dτ= e− iωt f +
(
ω2 −ω2

1

)(
ω2 −ω2

2

)
G(t f ),

where the function g obeys the following boundary conditions:

(2.56) g(0)= g(t f )= g′(0)= g′(t f )= g(2)(0)= g(2)(t f )= 0; g(3)(0)= 0; g(3)(t f )= 1

and

G(t f )=
t f∫

0

e− iωτ g(τ)dτ.

The condition Eq. (2.53) is satisfied for the two frequencies ω1 and ω2 (see Eq. (2.55)). A
possible g function is of the form:

(2.57) g(t)= (−t f )3

3!

(
t
t f

)4(
1− t

t f

)3

.

It is then straightforward to generalize this computation to the case of N offsets. The only non
zero boundary condition is g(2N−1)(t f )= 1. The control field is given by the expression:

(2.58) u(t)=
N+1∑
k=1

Pk−1 g2(N−k+1)(t),

where the factors Pk are the coefficients of the characteristic polynomial of the matrix W =
−diag

(
ω2

i

)N

i=1
(PN = det(λI−W)= P0λ

N+P1λ
N−1+·· ·+PN−1λ+PNλ

0). As a possible g function
we can choose:

(2.59) g(t)= (−t f )2N−1

(2N −1)!

(
t
t f

)2N(
1− t

t f

)2N−1

.
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The energy and the control pulse are very similar to the ones in Fig. 2.12. The trajectories
and the fidelity are similar to the case with additional boundary constraints (see Fig. 2.13). At
the order N we have 4N constraints to fulfill, thus we have to consider at least a polynomial
of order 4N −1. The behavior of the control field at t = 0 and t f can be adjusted by adding
some new constraints: g(2N)(0)= g(2N)(t f )= 0. This way we ensure to have u(t)= 0 at the initial
and final times. We thus need another function h(t)= ν(t)g(t), which will satisfy the additional
constraints alongside with others. Here ν is an auxiliary finite-value function. According to
Leibniz derivation rule of products:

(2.60) h(n)(t)=
n∑

k=0
Ck

n g(k)(t)ν(n−k)(t).

Note that g(0), g(t f ) and all derivatives of g are 0 except g(2N−1)(t f ) = 1. According to the
definition of h(t) and Eq. (2.60) and independently of ν(t) this leads to: h(0) = h(t f ) = h′(0) =
h′(t f )= ·· · = h(2N−2)(0)= h(2N−2)(t f )= h(2N−1)(0)= 0. The h(t) function is required to fulfill also
the constraint h(2N−1)(t f )= 1 and the additional constraints h(2N)(0)= h(2N)(t f )= 0. From the
constraint h(2N−1)(t f )= 1 and Eq. (2.60), we derive:

(2.61) ν(t f )= h(2N−1)(t f )= 1.

Notice that g(2N)(0) and g(2N)(t f ) have the following values (see Eq. (2.59) and Eq. (2.60)):

(2.62) g(2N)(0)= (−1)2N−1 2N
t f

, g(2N)(t f )= (2N)2

t f
.

From the condition h(2N)(0)= 0 and Eq. (2.60) we derive:

(2.63) ν(0)g(2N)(0)=−2N
t f

ν(0)= h(2N)(0)= 0⇒ ν(0)= 0

From the condition h(2N)(t f )= 0 and Eq. (2.60) we derive:

(2.64) 2Nν′(t f )+ν(t f )g(2N)(t f )= 2Nν′(t f )+ (2N)2

t f
= h(2N)(t f )= 0,

whence we deduce:

(2.65) ν′(t f )=−2N
t f

.

We finally arrive at:

(2.66) ν(0)= 0, ν(t f )= 1, ν′(t f )=−2N
t f

There are three conditions to be satisfied for ν therefore ν must be at least a 2nd order
polynomial:

(2.67) ν(t)= a0 +a1t+a2t2.
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From the boundary conditions set on ν we get for the coefficients a0, a1 and a2:

(2.68) a0 = 0, a1 = 1
t f

(2+2N), a2 =− 1
t2

f
(1+2N)

thus ν(t) takes the form:

(2.69) ν(t)= t
t f

1+ (2N +1)

(
1− t

t f

) .

Higher order polynomials can work as well. The general form of ν(t) of any order is:

(2.70) ν(t)=
(

t
t f

)n
1+ (

2N +n
)(

1− t
t f

)
where the order n ≥ 1. For higher orders, Fig. 2.13 remains almost the same. Starting from

0 /3 2 /3
-8

-4

0

4

8

12

16

20

0 /3 2 /3
0

60

120

180

240

300

360

420

Figure 2.12: The final radii of springs are r ∼ 0.999719. STA without additional constraints (blue
dashed line), STA with additional constraints (blue solid line) and OCT (red solid line) control
fields and energies are compared. The parameters are set to z0 = (0,0), z1 = (1,0), t f =π, n = 1,
N = 4.

n = 21 the angular distribution of springs is linear. The h(t) function or the new g(t) function
with additional constraints for any order n ≥ 1 has the following final form:

(2.71) g(t)= (−t f )2N−1

(2N −1)!

(
t
t f

)2N+n(
1− t

t f

)2N−1
1+ (

2N +n
)(

1− t
t f

)
We plot the energies in Fig. 2.12 to graphically show that OCT consumes less energy compared
to STA, moreover OCT consumes the least energy among all the possible solutions. It is worth
mentioning, however, that we use a specific cost functional and that OCT could minimize the
time instead, for instance. The control pulse depicted in Fig. 2.12 can also be applied to steer
an ensemble of spins by using the method of mapping spins to springs.
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Figure 2.13: STA and OCT trajectories as well as STA (blue) and OCT (red) fidelities are
compared. The fidelity is defined as 1−

∣∣∣z f − z1

∣∣∣2. The order is n = 1. N = 4 offsets are considered
in the frequency range Ω ∈ [−1;1]. The control time is t f =π, and the initial and target states
respectively are z0 = (0,0), z1 = (1,0). The best performance of the algorithm is reached at the
points of intersection of the fidelity curve and the line F = 1.

2.5.2 One Control Input: Spins

Here, we apply the STA solution in spin systems. The goal of the control problem, unlike the
case of the springs, is to steer the system Ω ∈ [−1;1

]
in a fixed time t f =π from the initial state

z0 = (1,0,0) to the final state z1 = (0,0,1). Although the direction of steering is reversed, the
STA solution obtained in Subsection 2.5.1 can still be applied by reversing the control field (see
Eq. (B.15)). In the simulations, we use the Bloch equations in spherical coordinates. Function
g for N offset frequencies without or with additional constraints of any order n ≥ 1 is given
respectively by Eq. (2.59) and Eq. (2.71). The STA control field can be expressed in terms of
the derivatives of g (see Eq. (2.58)). The fidelity of an ensemble of spins is defined as cos(θ(ω))

As we can see in Fig. 2.15, linear approximation of Bloch equations under STA pulses for small
polar angles is already a good approximation. Note that the control pulses in Fig. 2.14 are the
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Figure 2.14: The initial and target states respectively are z0 = (1,0) and z1 = (0,0). N =
4 offset frequencies are considered in the frequency range Ω ∈ [−1,1

]
. The control time is

t f = π. OCT (solid red line) and STA control fields and energies with (solid blue line) and
without (dashed blue line) additional constraints are compared. The order is n = 1.

negatives of the control pulses in Fig. 2.12 reversed in time. In Sec. 2.5.4 we give a detailed
explanation to this.

2.5.3 Two Control Inputs: Springs

We consider in this subsection the control of an ensemble of springs by two control fields u(t)

and v(t), α(t)= u(t)+ iv(t). The goal of the control procedure is to steer the ensemble of springs
from the initial state z0 = (0,0) to the final state z1 = (1,0). In other words, the goal is to find a
solution to the following equation:

(2.72)
t f∫

0

e− iωτα(τ)dτ= e− iωt f .

We first consider the case with two frequencies ω1 and ω2. We assume that the control α can
be expressed as:

(2.73) α(t)= g(2)(t)− i
(
ω1 +ω2

)
g(1)(t)−ω1ω2 g(t),

where g(t) ∈C is an auxiliary function which satisfies the following boundary conditions:

g(0)= g(t f )= 0; g(1)(0)= 0; g(1)(t f )= 1.
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Figure 2.15: The initial and target states respectively are z0 = (1,0) and z1 = (0,0). N = 4
offset frequencies are considered in the frequency range Ω ∈ [−1,1

]
. The control time is t f =π.

Trajectories of spins (θ, ϕ) and linear springs (r, ϕ) are depicted. Red and blue curves correspond
respectively to OCT and STA trajectories of spins, yellow and black dashed curves correspond
respectively to OCT and STA trajectories of linear springs. Additional constraints are taken
into account. All curves correspond to the offset frequency Ω≈−0.9519. The parameter n is set
to n = 1. The minimum values of STA and OCT fidelities respectively are min

(
F ST A

)
≈ 0.9674

and min
(
FOCT

)
≈ 0.9999.

Substituting α(t) into the left hand side of Eq. (2.72) and integrating by parts we obtain:

(2.74)
t f∫

0

e− iωτα(τ)dτ= e− iωt f −(ω−ω1)(ω−ω2)G(t f ),

where G(t f ) =
t f∫
0

e− iωτ g(τ)dτ. Equation (2.72) is satisfied and thus the control process is per-
formed for both frequencies ω1 and ω2. As a possible g(t) function we can consider:

(2.75) g(t)= (−t f )

(
t
t f

)2(
1− t

t f

)
.

The generalization to the case of N offset frequencies leads to the following form of g(t):

(2.76) g(t)= (−t f )N−1

(N −1)!

(
t
t f

)N(
1− t

t f

)N−1

with boundary conditions given by:

g(0)= g(t f )= g′(0)= g′(t f )= ·· · = g(N−2)(0)= g(N−2)(t f )= 0

g(N−1)(0)= 0; g(N−1)(t f )= 1(2.77)
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The control α will be expressed as:

(2.78) α(t)=
N+1∑
k=1

Pk−1 g(N−k+1)(t),

where Pk are the coefficients of the characteristic polynomial of the matrix W =−diag(− iωi)N
i=1.
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Figure 2.16: N = 4 offset frequencies are considered in the frequency range Ω ∈ [−1;1
]
. The

control time is t f =π. The initial and target states respectively are z0 = (0,0), z1 = (1,0). STA
fidelity (blue line), OCT fidelity (red line) are depicted. The fidelity is defined as F = 1−

∣∣∣z f − z1

∣∣∣2.
STA is the one without additional constraints. Two control inputs are considered.

At order N, we have 2N constraints to fulfill, thus we have to consider at least a polynomial
of order 2N −1. The behavior of the control field at t = 0 and t f can be adjusted by adding
some new constraints: g(N)(0)= g(N)(t f )= 0. This way we ensure to have α(t)= 0 at the initial
and final times. We thus need another function h(t)= η(t)g(t) which will satisfy the additional
constraints alongside with others. Here η is an auxiliary finite-value function. The steps that
lead to the derivation of the function η(t) are similar to the ones taken in Subsec. 2.5.1:

(2.79) η(t)= t
t f

1+ (N +1)

(
1− t

t f

) .

Higher order polynomials can work as well. The general form of η(t) of any order is:

(2.80) η(t)=
(

t
t f

)n
1+ (

N +n
)(

1− t
t f

)
where the order n ≥ 1. In the next simulations parameters are the same as for the latter. The
h(t) function or the new g(t) function with additional constraints for any order n ≥ 1 has the

77



CHAPTER 2. ENSEMBLE CONTROL OF SPRINGS AND SPINS

following final form:

(2.81) g(t)= (−t f )N−1

(N −1)!

(
t
t f

)N+n(
1− t

t f

)N−1
1+ (

N +n
)(

1− t
t f

)
Notice that STA fidelity increases as we increase the order n (see Fig. 2.17). It is worth noticing
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Figure 2.17: N = 4 offset frequencies are considered in the frequency range Ω ∈ [−1;1
]
. The

control time is t f =π. The initial and target states respectively are z0 = (0,0), z1 = (1,0). The
fidelity is defined as 1−

∣∣∣z f − z1

∣∣∣2. OCT fidelity (red line), STA fidelities of the orders n = 1 (blue
line), n = 2 (dashed blue line), n = 3 (cyan line), and n = 4 (dashed cyan line) are depicted.

that the fidelity is higher in the case of one control compared to the case with two controls.
When one control is unavailable, the frequency of the pulse is higher, and so is the full width
in the reciprocal space [87]. In other words, in the latter case the pulse is in resonance with a
wider range of frequencies, and therefore the fidelity is higher.

2.5.4 Two Control Inputs: Spins

Here, we apply the STA solution in spin systems. The goal of the control problem, unlike the
case of the springs, is to steer the system Ω ∈ [−1,1

]
in a fixed time t f = π from the initial

state z0 = (1,0,0) to the final state z1 = (0,0,1). Although the direction of steering is reversed,
the STA solution obtained in the previous section can still be applied by reversing the control
field (see Eq. (B.15)). In the simulations, we use the modified form of Bloch equations (see
Eq. (2.49)). Function g for N offset frequencies without or with additional constraints of any
order n ≥ 1 is given respectively by Eq. (2.76) and Eq. (2.81). The STA control field can be
expressed in terms of the derivatives of function g (see Eq. (2.78)). Linear approximation of
the Bloch equations is already satisfying also in the case of two controls as it is illustrated in
Fig. 2.20. The control pulse of Fig. 2.19 is the negative of the one in Fig. 2.18 reversed in time.
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Figure 2.18: N = 4 offset frequencies are considered in the frequency range Ω ∈ [−1;1
]
. The

control time is t f =π. The initial and target states respectively are z0 = (0,0), z1 = (1,0). OCT
and STA control fields and energies are compared. Solid red, dashed red, solid blue and dashed
blue curves correspond respectively to OCT (ux or |u|2), OCT (uy), STA (ux or |u|2) and
STA (uy) solutions. The order is n = 1. The mean value of radii is < r >∼ 1.002.

2.5.5 Continuous Case

Here we consider a control problem of an ensemble of springs. The goal is to steer the ensemble
from zω(0) = 0 to zω(t f ) = 1. With these initial and target states the evolution of the system
must satisfy the following integral equation:

(2.82) e iωt f =
t f∫

0

e iωτ u(τ)dτ,

for ω ∈ [ωmin,ωmax]. Until here we discretized the range of frequencies. Otherwise the STA and
OCT solutions would coincide. Here, we show the existence and the uniqueness of the control
solution for a continuous set of frequencies. A different proof was given in [88]. We assume that
u ∈ L2([0, t f ]), i.e., u is a square integrable function with a compact support included in the
interval [0, t f ], u is zero outside of this interval. Its Fourier transform û is an analytic function
which is known over the interval [ωmin,ωmax]. Since the zeros of a nonzero analytic function
are isolated, we deduce that there is at most one solution to Eq. (2.82). Indeed, if we consider
two solutions u1 and u2 to that, then û1 − û2 is zero over [ωmin,ωmax], which contradicts the
previous result. The map F defined by

L2([0, t f ])→ L2([ωmin,ωmax]),

u → û|[ωmin,ωmax]
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Figure 2.19: The initial and the target states respectively are z0 = (1,0), z1 = (0,0). N = 4 offset
frequencies are considered in the frequency range Ω ∈ [−1,1

]
. The control time is t f =π. OCT

and STA control fields and energies are compared. The fidelity of an ensemble of spins is defined
as cos(θ(ω)). Solid red, dashed red, solid blue and dashed blue curves correspond respectively
to OCT (ux or |u|2), OCT (uy), STA (ux or |u|2) and STA (uy) solutions. STA solution is with
additional constraints. The order is n = 1. The STA fidelity is F ∼ 0.9998 and the OCT fidelity
F ∼ 0.999943.

is thus injective. The surjectivity of F can be described from the Paley-Wiener theorem which
states the following property. The function û fulfills the condition

∣∣û(ω)
∣∣≤ C et f |ω|,

where C > 0, if and only if there exists u ∈ L2([0, t f ]) such that

û(ω)=
∫ t f

0
e− iωτ u(τ)dτ

and we can choose C =
t f∫
0

∣∣u(τ)
∣∣dτ. Satisfying the conditions of this theorem by a judicious choice

of target states ensures the existence of a solution to Eq. 2.82. In the example under study, this
condition is fulfilled since

∣∣û(ω)
∣∣=∣∣∣e iωt f

∣∣∣= 1.
To summarize, these results establish the existence and uniqueness of an ideal mathematical

control field u(t) for a continuous set of frequencies. However, for practical applications, it is
more interesting to consider a finite set and to take into account additional constraints on
the control field. This idea has been developed for OCT and STA procedures in the previous
sections where the set of frequencies is discretized. Note that the two fields converge toward
the same solution when the discretization step goes to 0.
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Figure 2.20: The initial and the target states respectively are z0 = (1,0), z1 = (0,0). N = 4
offset frequencies are considered in the frequency range Ω ∈ [−1,1

]
. The control time is t f =π.

Trajectories of spins (θ, ϕ) and linear springs (r, ϕ) are depicted. Red and blue curves correspond
respectively to OCT and STA trajectories of spins, yellow and black dashed curves correspond
respectively to OCT and STA trajectories of linear springs. STA solution is with additional
constraints. The order n is set to n = 1. All curves correspond to the offset frequency Ω≈−0.9519.

Summary

• We have introduced STA control pulses with motion planning approach to
control an ensemble of springs and applied them to an ensemble of spins. This is
also a good demonstration of the applicability of the method of mapping spins
to springs even under not optimal forcing.

• We have discussed the case of one control and two control components. The
algorithm is different for these two cases. The STA fidelity of one control input
is higher than that of two control inputs.

• We have also compared the STA and OCT solutions. In the case of one control,
the STA fidelity is higher than the OCT fidelity. In the case of two controls,
starting from the order n = 2 the STA fidelity is higher than the OCT fidelity for
the particular parameters we consider since the OCT objective is to minimize
the energy but not to maximize the fidelity.

• We have discussed the important case of continuous set of frequencies and proved
the existence and uniqueness of the control field.
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2.6 Pulses

The ultimate goal of ensemble control theory is to develop a route to steer an ensemble of
systems between the given initial and target distributions of states. This problem can be broken
into smaller parts. To this end, we design a broadband, narrowband ultrahigh fidelity and
selective pulses. Broadband pulses are robust with respect to a wide range of frequencies. The
narrowband pulses that we consider are robust and hold an ultrahigh fidelity with respect to
a narrow range of frequencies. Selective pulses steer a specific range of frequencies while not
affecting the outsiders. In this section, we also derive an adiabatic pulse.

2.6.1 Excitation Pulse

Our goal in Sec. 2.5.1 is to steer an ensemble of springs from z0 = (0,0) to z1 = (1,0) in a fixed
time t f . To drive an ensemble from z0 = (0,0) to z1 = (π/2,0) instead (see Fig. 2.5.1), we have to
introduce some modifications into the dynamics. There is no need to go through the calculations
again. It is sufficient to rewrite the modified equations for this case. Equation (2.53) reads:

(2.83)
t f∫

0

e− iωτ u(τ)dτ= π

2
e− iωt f .

Equations (2.54), (2.55) respectively read:

u(τ)= π

2

(
g(4)(τ)+

(
ω2

1 +ω2
2

)
g(2)(τ)+ω2

1ω
2
2 g(τ)

)
(2.84)

t f∫
0

e− iωτ u(τ)dτ= π

2
e− iωt f +π

2

(
ω2 −ω2

1

)(
ω2 −ω2

2

)
G(t f ).(2.85)

For the general case of N offsets Eq. (2.58) will read:

(2.86) u(t)= π

2

N+1∑
k=1

Pk−1 g2(N−k+1)(t).

Similarly Eq. (2.55) will be modified into:

(2.87)
t f∫

0

e− iωτ u(τ)dτ= π

2
e− iωt f +π

2

N∏
k=1

(
ω2 −ω2

k

)
G(t f ).

The rest of the discussions and equations in Sec. 2.5.1 remain unchanged.
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Figure 2.21: The control time is set to t f = 24, z0 = (0,0), z1 = (π/2,0). Dimensionless units
are used. STA with additional constraints (blue line) and optimal (red line) excitations of an
ensemble of springs are illustrated in the range of frequencies Ω ∈ [0,1]. The pulses have been
computed for a regular distribution of N = 4 (solid line) and N = 6 (dashed line) springs. Panels
(a) and (b) display, respectively, the distance to the target state dω =

∣∣∣∣π2 (
ω2 −ω2

1

)(
ω2 −ω2

2

)
G(t f )

∣∣∣∣
and the corresponding control fields.

We can also go backwards, in other words from z0 = (π/2,0) to z1 = (0,0). In order to do
that, we just need to reverse the control field in time and take its negative value as indicated in
Sec. B.2).
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Figure 2.22: STA (blue line) and OCT (red line) pulses and energies are compared. The
surface areas under the squares of control pulses indicate the magnitudes of energies. As one
could anticipate, EOCT < EST A. N = 4 regularly distributed springs (harmonic oscillators) are
considered in the range of frequencies Ω ∈ [0,1]. Control time is set to t f =π. The order is n = 1.
The initial and target states are z0 = (π/2,0) and z1 = (0,0).
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Figure 2.23: STA (blue and black lines) and OCT (red and yellow lines) trajectories of spins
are depicted. The exact dynamical equation (blue and red lines) and linear approximation are
used (black and yellow lines). N = 4 regularly distributed springs (harmonic oscillators) are
considered in the range of frequencies Ω ∈ [0,1]. Control time is set to t f =π. The order n is set
to n = 1. The initial and the target states are z0 = (π/2,0) and z1 = (0,0). All curves correspond
to the offset frequency Ω≈ 0.024.

Although OCT solution corresponds to the minimum energy but at the endpoints the
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maximum amplitude could be very large. It is is not the case for the STA pulse due to the
boundary constraints we additionally impose on the solution (see Fig. 2.22). The pulse depicted
in Fig. 2.22 steers the spins from the equatorial plane to the north pole (see Fig. 2.23).

2.6.2 Concatenated Pulse

Here we present a practical tool to design an efficient control pulse for an ensemble of spins. The
symmetry of the Bloch equations and the dynamics of springs entail two important properties
of control pulses which are discussed in the next lines. To interchange the initial and target
states, we have to inverse the pulse in time and take its negative value:

(2.88) v(t)=−u(t f − t).

To inverse the direction of steering from the equatorial plane, we have to take the negative
value of the control pulse:

(2.89) v(t)=−u(t).

In summary, we can inverse spins by applying a π pulse or 2 successive π/2 pulses. When
steering the spins from the north pole to the south pole, the two successive π/2 pulses are uπ/2(t)

and uπ/2(t f − t). To apply these pulses, we first give a formal solution of the Bloch equations.
Equation (2.42) with v = 0 can be rewritten in the following form:

(2.90) d
dt


Mx

My

Mz

=ω


0 −1 0

1 0 0

0 0 0




Mx

My

Mz

+u


0 0 1

0 0 0

−1 0 0




Mx

My

Mz


We can give a more compact form to it by denoting:

Mx

My

Mz

 := ~M,


0 −1 0

1 0 0

0 0 0

 := Rz,


0 0 1

0 0 0

−1 0 0

 := Ry

We finally arrive at:

(2.91) ~̇M =ωRz ~M+uRy ~M

or

(2.92) ~̇M =
(
ωRz +uRy

)
~M.

In a very short period of time dt, the control pulse u can be treated as a constant. In other
words, we assume that the control pulse is a piece-wise constant function, which is a common
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assumption in NMR control problems. With this said, we can represent the solution in the
following way:

(2.93) ~M(t+dt)= e
(
ωRz+u(t)Ry

)
dt ~M(t).
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Figure 2.24: N = 4 equal offsets are considered ω1 =ω2 =ω3 =ω4 = 0. The control time is set to
t f = 20. π/2 (red solid line) and π (black solid line) STA pulses are compared in label (a) and
the corresponding ultrahigh fidelities in label (b). The efficiency of two successive π/2 pulses is
depicted in label (b) with black dashed line. The order is n = 2.

Using Eq. (2.93) with iterative steps, we compute the final state of the spins. The linear
approximation of Bloch equations is valid for small polar angles. This is why, the fidelity of the
π pulse is the least in Fig. 2.24. The linear approximation works sufficiently well for π/2 pulses.
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Although the control duration is twice as long for the concatenated pulses but it works better
as the conditions of the linear approximation are sufficiently well satisfied (see Fig. 2.24). This
way by applying successive pulses, which change the polar angle not more than by π/2, we can
achieve any state on the Bloch sphere.

2.6.3 Selective Control Pulses

We recall the dynamics of an ensemble of springs (see Eq. (2.21)) with dispersion in natural fre-
quencies. The controllability conditions are satisfied given that the control pulse is homogeneous
and both control inputs are available [76, 77, 80, 88].
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Figure 2.25: N = 4 offsets ωi are regularly distributed in the frequency range Ω ∈ [−1;1]. In
panel (a) the trajectories of springs are depicted. The positive offsets remain in the initial
state z0 = 0 while the negative offsets are driven to the target state z1 = 1+ i. The control
inputs are illustrated in panel (b). The fidelity is depicted in panel (c) and is defined as
F = 1−∣∣z(Ω,T)− z1

∣∣2 such that the maximum efficiency for the positive frequencies is reached
when the fidelity is 1 while for the negative frequencies when the fidelity is −1. The control
time is set to T = 4.

Here we derive selective compensating pulses which compensate against the dispersion in
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natural frequencies and are selective with respect to frequencies. The results we obtained in
Sec. 2.2.1 remain unchanged with a single difference that now the initial and target states
depend on the offset ωi. In our simulations, we drive an ensemble of springs from a fixed point
z0 to zi f that depends on the offset. The fidelity thus depends on offsets. Figures 2.25 and
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Figure 2.26: N = 4 offsets ωi are regularly distributed in the frequency range Ω ∈ [1;2]. In
panel (a) the trajectories of springs are depicted. The high frequency offsets remain in the
initial state z0 = 0 while the low frequency offsets are driven to the target state z1 = 1. The
control input is illustrated in panel (b). The fidelity is depicted in panel (c) and is defined
as F = 1−∣∣z(Ω,T)− z1

∣∣2 such that the maximum efficiency for the high frequencies is reached
when the fidelity is 0 while for the low frequencies when the fidelity is 1. The control time is
set to T = 7. One control input is sufficient to reach the control objective since here we consider
only positive frequencies.

2.26 are given here as illustrative examples. The control pulses are optimal with respect to the
energy. Various distributions of target states are achievable. For instance, we can also drive an
ensemble of springs without affecting a single spring or vice versa.
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2.6.4 Adiabatic Control

Adiabatic control is one of the widely used protocols in control theory [40–43]. It can be
expressed as a chirped excitation pulse:

(2.94) u(t)= u0 cos

[
ω0t+ st2

2

]
,

where u0 is the pulse amplitude, ω0 the initial frequency and s is the sweep rate. We calculate
the time evolution of an ensemble of springs both by the stationary phase approximation and
by using the Fresnel or imaginary error functions. We assume that z0(ω)≡ 0 for all springs. The
stationary phase approximation is presented in Sec. C.3. The approximated time evolution of
an ensemble of springs is expressed in the following way (see Eqs. (C.22), (C.23)):

(2.95) zω(t f )= eiωt f

∫ t f

0
e− iωτ u(τ)dτ' eiωt f u0

√
π

2s
e

i
(
π
4 −

(ω−ω0)2

2s

)
.

We can, however, express the precise evolution

(2.96) zω(t f )= u0

2
eiωt f

t f∫
0

e
i
[

st2
2 +(ω0−ω)t

]
+e

− i
[

st2
2 +(ω0+ω)t

]dt

via the Fresnel or K function as we have mentioned above (see Sec. C.1):

(2.97) zω(t f )= u0

2
eiωt f

[
K

(
s
2

,ω0 −ω
)
+K

(
− s

2
,−ω0 −ω

)]
.

It is worth to notice that z−ω(t f )= zω(t f ), and therefore
∣∣∣z−ω(t f )

∣∣∣=∣∣∣zω(t f )
∣∣∣. After the adiabatic

excitation, all the springs have almost the same radius
∣∣∣zω(t f )

∣∣∣, but a different phase Arg[zω(t f )],
which can be expressed as

(2.98) Arg
[
zω(t f )

]
=ωt f +

π

4
− (ω−ω0)2

2s
.
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Figure 2.27: Evolution as a function of ω of the radius (a) and phase (b) of an ensemble of springs
with ω ∈ [−3,3]. The parameters of the adiabatic control field u(t) are set to u0 = 1, t f = 400,
ω0 = 0, ω f = 2, and s = ω f −ω0

t f
. The solid red (dark gray) lines correspond to the stationary phase

approximation, and the solid black lines correspond to the exact solution expressed in terms
of the function K . Only the positive frequencies are plotted for the argument of z(t f ). The
different quantities are dimensionless.

As can be seen in Eq. (2.98), this phase is not constant and varies quadratically with the
frequency ω. The radius which can be expressed as

(2.99)
∣∣∣zω(t f )

∣∣∣= u0

√
π

2s

can be fixed by adjusting either the amplitude of the pulse u0 or the sweeping rate s. A
numerical example is given in Fig. 2.27, showing the accuracy of the adiabatic approximation
for a long control time t f in the range of excited springs. The main problem with this approach
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is its lack of flexibility since only a specific family of target states can be reached. This adiabatic
solution will be used in Chapter 3 for FT-ICR applications.

2.6.5 Optimal Control

In this subsection we add a parameter λ to account the weight of energy as opposed to the
distance from the target state in the minimization process [68, 89–91]. We refer the reader to
the standard references [68, 90, 92] for technical details. We consider an approach where the
distance to the target states (for a finite set of frequencies ω) is defined in the cost functional
C to minimize. The cost functional C can be expressed as

(2.100) C = 1
2

∑
k

([
xk(t f )− xkf

]2 +
[

yk(t f )− ykf

]2
)
+ λ

2

∫ t f

0
u2dt

where λ is a positive penalty factor chosen to weight the importance of the pulse energy. The
Pontryagin Hamiltonian is

(2.101) Hp =∑
k
ℜ[

iωkzk p̄k + pku
]− λu2

2

and the optimal control is given by

(2.102) u∗ = 1
λ

∑
k
ℜ[pk].

The time evolution of pk can be expressed as

(2.103) pk(t)= pk(0)eiωk t = pk(t f )eiωk(t−t f )

with the final condition
pk(t f )= zkf − zk(t f ).

After straightforward computation, we deduce that

2λ
t f

z j(t f )=∑
k

ei(ω j−ωk)t f /2 sinc

[
(ω j −ωk)t f

2

]
pk(t f )+ei(ω j+ωk)t f /2 sinc

[
(ω j +ωk)t f

2

]
p̄k(t f )

 ,

which can be expressed as

(2.104) 2λ
t f

z j(t f )=∑
k

(
C jk

[
zkf − zk(t f )

]
+D jk

[
z̄kf − z̄k(t f )

])
,

with

C jk = ei(ω j−ωk)t f /2 sinc

[
(ω j −ωk)t f

2

]
,(2.105)

D jk = ei(ω j+ωk)t f /2 sinc

[
(ω j +ωk)t f

2

]
.(2.106)

91



CHAPTER 2. ENSEMBLE CONTROL OF SPRINGS AND SPINS

Equation (2.104) and its complex conjugate give the dynamical state at time t f , and thus the
final adjoint state. We then obtain the control field u(t). Numerical results with this approach
are provided in Subsecs. 3.2.2, 3.2.3.

Summary

• The π/2 pulse has been derived and applied to an ensemble of spin systems.

• The concatenated pulses have appeared to have ultra-high fidelity and be more
robust with respect to Larmor dispersion than a simple inversion pulse.

• We have achieved selectivity frequency-wise.

• It is possible to control the final radius of springs by adiabatic excitation simply
adjusting the control amplitude and sweep rate.

• We obtain the optimal pulse with a second approach by introducing the distance
to the target state and balancing the weight of energy in the optimization
process.

2.7 Conclusions

We have reviewed in this study different approaches to control the dynamics of an inhomogeneous
ensemble of springs. The different methods presented in this chapter can be used in any linear
control system. They also provide interesting alternatives to design pulses controlling two-level
quantum systems. We have shown the relative advantages and drawbacks of STA and OCT
protocols. OCT minimizes the energy consumption, but in contrary we have less control over
the pulse behavior at initial and final times. On the other hand, we can impose additional
boundary constraints on STA solutions at the endpoints of time interval. Moreover, in some
cases STA control pulses appear to be more robust against dispersion of Larmor frequencies.
Any target state and control duration can be formally chosen, which can lead, e.g., to robust
or selective control protocols. In order to satisfy experimental limitations on the shape of the
control field, additional constraints have to be accounted for. For the two methods, only a
finite set of frequencies (with a regular discretization) are considered. This frequency set can
be optimized in a practical application to improve the efficiency of the control process. The
efficiency of the derived control fields is comparable. Another future research direction is the
extension of this approach to other nonlinear dynamical systems. From a mathematical point of
view, this method can be applied in a neighborhood of a fixed point of the dynamics. A major
limitation of this idea is related to the size of the region around the fixed point that can be
considered to reach the target state with a given accuracy. As shown in this study, this size is
quite large for a two-level quantum system because robust or selective excitation processes can
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be realized from the linearized system. This characteristic is not known a priori and has to be
determined in each practical case.
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Ion Cyclotron Resonance Mass Spectrometry

This chapter is dedicated to the investigation of the efficiency of optimal control tech-
niques in Two Dimensional (2D) FT-ICR MS. To the best of our knowledge, it is
the first time that such methods are applied in this domain. We consider a simple

control protocol composed of an excitation and detection processes. This chapter is organized
as follows. At first we give a short description of the experimental setup. This experimental
technique is designed for measuring the masses of ions by exciting them with homogeneous
magnetic and time-varying electric fields. While circulating, electrically charged ions induce
charge redistribution and current on the detecting plates which is the output signal. We can
then measure the charge to mass ratio by Fourier analysis of the output signal. The interested
reader can find more details in [93–97]. Then we investigate the control of an ensemble of
ions with cyclotron frequencies ωi ∈ [ωmin,ωmax]. We consider an electric field with one or two
components. We analytically and numerically show that the complete and simultaneous control
of the speed and of the position of ions is not possible. A partial control either of the speed or
of the position of ions can be realized. Different numerical results are presented. A comparison
with the standard adiabatic and SWIFT solutions is also provided.

3.1 Experimental Setup

FT-ICR MS is designed to measure the masses of ions and their relative abundance. The ions
are injected with a very small velocity in the center of the cell. A schematic illustration is given
in Fig. 3.1. The ions are subjected to a uniform and static magnetic field which forces the ions
to rotate in a plane perpendicular to the field. The Newton’s second law with the Lorentz force
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Z

Y

X

B

E

Figure 3.1: Experimental Cell of FT-ICR MS: The ions are subjected to the electric field ~E and
the magnetic field ~B along the x- and z- directions respectively. The opposite plates orthogonal
to the x- axis are the excitation plates, while the ones perpendicular to the y- axis are the
detection plates. The distance d between each pair of opposite plates is of the order of 10 cm.
The origin O of the laboratory frame coincides with the center of the cell.

acting on the ions is given by:

m
d~v
dt

= ~F = q~v×~B,

and leads to the following expression of the angular cyclotron frequency ωc:

ωc = v
r
= qB

m
.

We stress that ωc is inversely proportional to m. The standard mass unit in FT-ICR is the
Dalton:

1 u = 1.660539×10−27 kg.

1 u is of the order of the mass of Hydrogen atom. For a standard magnetic field of 7T, we
deduce that νc =ωc/(2π) ranges from 1 kHz to 1 MHz.The experimental values are summarized
in the following table.

Parameter Value
B 8T
ν 1 KHz< ν< 1 MHz

Tex 5µs

r ' 1cm

E ' 10V m−1

Table 3.1: Experimental Values of 2D FT-ICR MS.
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The initial velocity of the ions can be estimated with the temperature T of the sample. The
equipartition theorem gives:

1
2

mv2 = kBT,

and from the Newton-Lorentz law
m

v2

r
= qvB

we conclude:

(3.1) r =
√

2mkBT
qB

.

At room temperature, an ion of mass m = 100 u subjected to a magnetic field B = 3T with q = 1e

has a radius r ' 0.08mm. The ion cyclotron motion is not detectable by the detection plate due
to a too small radius and to the fact that the packet of ions is not spatially coherent (the spatial
phase is random). Such problems can be overcome by using an excitation process with an
electric field ~E(t). The excitation plates with a time-dependent voltage generate a time-varying
uniform electric field exciting the ions. The excitation pulse increases the orbital radius of the
ions up to a few centimeters. While approaching the conducting plates of the cell, the ions
induce charge difference and current in the detecting plates which obey Eqs. (3.27), (3.28). The
Fourier Transform of the S signal provides us the sequence of the cyclotron frequencies which
leads to the sequence of the charge-to-mass ratio of the ions in the cell. Next, we investigate
the control of the motion of the ions in such mutually transverse electromagnetic fields. In
the next sections, we discuss the dynamics of ions in the experimental cell. Then we explore
the detection process. We will investigate each pulse and technique separately with its own
detection process.

3.1.1 Model Dynamics

We consider the simplest modeling of ion trajectories in FT-ICR. The different ions in the
experimental cell are confined in the (x, y)-plane and are subjected to a constant magnetic field
~B and a time-dependent electric field ~E, respectively, along the z- and x-axes of the laboratory
frame. Note that optimal control techniques can also be used if two control fields along the x-
and y-directions are available. The dynamics are governed by the Lorentz’s equation:

(3.2) mk~̇vk = qk~E+ qk(~vk ×~B),

where mk, qk and ~vk are the mass, charge and speed of the ion k. ~̇vk denotes the time derivative
of ~vk. Equation (3.2) can be expressed in Cartesian coordinates:

(3.3)



ẋk = vxk

ẏk = vyk

v̇xk =ωk(ex +vyk )

v̇yk =−ωkvxk .
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with the cyclotron frequency ωk = qkB
mk

and ~e = ~E/B. The coordinates (xk, yk) and (vxk ,vyk )

describe, respectively, the position and the speed of the ion k in the (x, y)-plane. We assume
that the frequency ωk belongs to the interval [ωmin,ωmax], which is defined by the ion packet
under study. As described below, the aim of the control process is to excite the different ions in
a robust way with respect to the parameter ω.

The control problem can be defined as follows. Starting from the center of the cell (xk = 0,
yk = 0) with a zero speed (vxk = 0, vyk = 0), the goal is to reach at a fixed control time t f a given
radius r f and phase ϕ f . As an illustrative example, we force the phase to vary linearly with ω,
contrary to the standard result obtained with chirp pulses, where a quadratic phase dependence
is observed (see Sec. 3.2.1 for details). We denote by rk(t) and ϕk(t), respectively, the radius
and the phase of ion k at time t. We assume in a first step that there is no constraint on the
electric field. A limitation on the maximum pulse intensity is accounted for in Section 3.2.4. To
simplify the notations, we omit below the index k. Using Equation (3.3), it is straightforward to
show that Ω=ωx+vy is a constant of motion. At t = 0, since x(0)= 0 and vy(0)= 0, we deduce
that Ω= 0 so vy(t)=−ωx(t). One of the two coordinates vy(t) or x(t) can be eliminated. This
also means that we cannot control simultaneously the position and the speed of the ion with
only one control. We arrive at: 

ẏ= vy

v̇y =−ω2Vx

V̇x = vy + ex

where Vx = vx/ω. We introduce the vector X = (y,vy,Vx) whose dynamics are governed by:

(3.4) Ẋ = AX +Cex,

with

A =


0 1 0

0 0 −ω2

0 1 0

 ,C =


0

0

1


The dynamics of this linear system can be explicitly integrated as follows. The eigenvalues

of A are (0, iω,−iω) and the corresponding eigenvectors can be written as:

X0 =


1

0

0

 , X+ =


1

iω

1

 , X− =


1

−iω

1


At time t f , the state of the system is given by:

X (t f )=
∫ t f

0
eA(t f −s)Cex(s)ds.
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We have:
eAt = PeDtP−1,

where D = diag(0, iω,−iω) and

P =


1 1 1

0 iω −iω

0 1 1

 ,P−1 =


1 0 −1

0 −0.5i/ω 0.5

0 0.5i/ω 0.5


We deduce that:

eAt =


1 sin(ωt)/ω −1+cos(ωt)

0 cos(ωt) −ωsin(ωt)

0 sin(ωt)/ω cos(ωt)


and

(3.5) X (t f )=
∫ t f

0
dsex(s)


−1+cos[ω(t f − s)]

−ωsin[ω(t f − s)]

cos[ω(t f − s)]


The existence of the integral of motion implies the impossibility of simultaneous control of
velocities and positions of ions. We can control either the velocities or the positions.

3.1.2 Rotating Wave Approximation

We describe in this section the RWA which allows to simplify the control of FT-ICR processes.
Using this approximation, we show that the control of ions reduces to the control of an ensemble
of springs of different frequencies.

The oscillating excitation field ex applied only along the x- axis can be expressed as the
sum of two rotating fields, one in the same direction as the ions and the other in the opposite
direction. We introduce the RWA which assumes that the field rotating in opposite direction to
the ions has a negligible effect on their trajectories. This approximation is verified if the range of
frequencies around the central frequency ωo is not too large, as discussed in Appendix C.4. Note
that RWA is a standard tool in NMR [22, 98, 99] where it is derived in a similar but different
way due to the non-linearity of the system [100]. In particular for FT-ICR, this approximation
does not depend on the amplitude of the excitation. Using RWA, we show below that the
control of ions is equivalent to the control of an ensemble of springs of different frequencies [62,
88]. The derivation starts with the control of speeds which fulfill:v̇xk =ωkvyk +ωkex

v̇yk =−ωkvxk
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In complex coordinates, we have:

(3.6) v̇k =−iωkvk +ωkex(t),

where vk = vxk + ivyk. We consider that ωk ∈ [ω0−δω,ω0+δω] where ω0 is the carrier frequency
of the electric field, ex(t)= e0(t)cos(ω0t+φ(t)), and δω is small compared to ω0. We also assume
that the amplitude e0(t) and the phase φ(t) vary slowly in time with respect to the frequency
ω0. We express the speed as: vk = ṽke−iω0 t, where ṽk is the complex speed in the frame rotating
at frequency ω0. We deduce that:

˙̃vk =−i∆ωkṽk +ωk
e0

2
(e−iφ+ e2iω0 t+iφ),

where ∆ωk =ωk −ω0 is the detuning term. In the RWA, we neglect the rapidly oscillating term
exp(2iω0t) and we arrive at:

(3.7) ˙̃vk '−i∆ωkṽk +ωk
e0

2
e−iφ.

It is worth noting here that, in the rotating frame, the dynamics are driven by two control
parameters, e0 cosφ and e0 sinφ. Note that we recover the control of an ensemble of springs.
An additional step can be done for the position of the ion k, xk = xk + i yk. We set xk = x̃ke−iω0 t.
It is then straightforward to show that:

˙̃xk − iω0x̃k = ṽk(t)

Since x̃k varies slowly with respect to eiω0 t, we can neglect the time derivative ˙̃xk, which gives:

x̃k =
i
ω0

ṽk(t).

If the RWA is valid, we deduce that the speed control leads also to the control of the position
of ions. In this study, the validity of RWA is verified in the different examples by a numerical
integration of Eq. (3.5).

Summary

• The experimental setup of FT-ICR MS is presented. We briefly discussed the
excitation and detection processes.

• The dynamics of ions is derived. We also obtain an integral of motion which
reduces the dimension of state by one.

• We show that in the regime of RWA, one can apply, to excite ions, the control
pulses that we have developed for an ensemble of springs.
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3.2 Pulses

In this section, we discuss a number of pulses that are used to excite the ions in FT-ICR. We
describe the detection process with some simulation results in Sec. 3.3. Although monochromatic
and square pulses can be used but the efficient means of excitation are adiabatic, SWIFT and
OCT pulses. Next subsections are devoted to the description of their properties.

3.2.1 Adiabatic Excitation

The goal of this paragraph is to compute the final states of the ions in the case of an adiabatic
excitation of the form ex = e0 cos(ωi t+ s

2 t2) where ωi is the initial frequency and s the sweep
rate. We recall that integrals of the form

K (α,β)=
∫ t f

0
ei

(
αt2+iβt

)
dt

can be expressed by the Fresnel function (see Sec. C.1). This result allows to exactly compute
the dynamics of the system. Starting from Eq. (3.5), the final state of the FT-ICR process can
be expressed as follows:

X (t f )= e0

∫ t f

0
dt


−cos(ωi t+ st2/2)+cos(st2/2+ (ωi −ω)t+ωt f )/2+cos(st2/2+ (ωi +ω)t−ωt f )/2

−ω[sin(st2/2+ (ωi −ω)t+ωt f )/2−sin(st2/2+ (ωi +ω)t−ωt f )/2]

cos(st2/2+ (ωi −ω)t+ωt f )/2+cos(st2/2+ (ωi +ω)t−ωt f )/2


and we finally obtain:xω(t f )/e0 =ℑ[ eiωt f

2 K ( s
2 ,ωi −ω)− e−iωt f

2 K ( s
2 ,ωi +ω)]

yω(t f )/e0 =ℜ[−K ( s
2 ,ωi)+ eiωt f

2 K ( s
2 ,ωi −ω)+ e−iωt f

2 K ( s
2 ,ωi +ω)]

This dynamics can be approximated by using the stationary phase approximation. For that
purpose, we start from Equation (3.6) and we assume that

∫ t f
0 ex(t)dt = 0. For a proper

justification of the assumption, we recall that e0 changes slowly with respect to the frequency
ωi. Therefore the negative and positive parts of ex cancel each other surface-wise due to its
amplitude modulated nature of a high carrier frequency ωi. With this said, we arrive at:

vk(t f )=ωke−iωk t f

∫ t f

0
dtex(t)eiωk t.

The stationary phase approximation is discussed in Sec. C.3. For a chirp excitation, the phase
φ(t) is defined by φ(t)=ωi t+ st2

2 . The instantaneous frequency ω(t) can be expressed as:

ω(t)= φ̇(t)=ωi + st,

where s = ω̇(t). In the example under study, the rate s is given by s = (ω f −ωi)/t f . We assume
that s > 0 and we deduce that the Fourier transform of the control field is given by:

êx(ω)=
∫ t f

0
ex(t)eiωtdt = e0

2

∫ t f

0
[e−i(ωi t+ st2

2 −ωt) + ei(ωi t+ st2
2 +ωt)]dt.
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We denote by φ1 and φ2 the arguments of the two exponential terms. It is straightforward
to verify that φ̇1(t)= 0 for t = t(ω)

1 = ω−ωi
s and that φ̇2(t)= 0 for t = t(ω)

2 = −ω−ωi
s . Neglecting the

second contribution since t(ω)
2 < 0 and assuming that t(ω)

1 is not too close to 0 and t f , we can
consider that the integral is defined from −∞ to +∞. We finally get:

êx(ω)= e0

√
π

2s
ei( π4 +φ1(t(ω)

1 )).

The phase spectrum φ(ω)= π
4 +φ1(t(ω)

1 ) can be written as:

φ(ω)= π

4
+ (ω−ωi)2

2s
.

Coming back to the original control problem, we obtain:

(3.8) vk(t f )'ωke0

√
π

2s
exp[i(

π

4
−ωk t f +

(ωk −ωi)2

2s
)].
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Figure 3.2: Excitation of an ensemble of ions, here, is realized by an adiabatic pulse. The
black curve represents the final radii of ions as a function of the frequency while the red
solid line represents the stationary phase approximation. The parameters are set to t f = 10ms,
E0 = 3.2V /m and B0 = 7T. The vertical blue solid lines indicate the range of frequency of the
pulse.

In the range of validity of this approximation, from Eq. (3.8), we conclude that the final
radius of ions r =

∣∣∣vk(t f )
∣∣∣ /ωk at time t = t f is a constant and does not depend on the cyclotron

frequency of the ion. The phase, however, varies quadratically with the frequency ωk. A
numerical example is given in Fig. 3.2. The frequency of the chirped pulse goes from 400 to
600 kHz.
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3.2.2 Optimal Pulse with RWA

We illustrate the optimal control of ions with the following numerical example. We consider
the approach presented in Subsec. 2.6.5. We first compute the optimal control u(t) of a spring
ensemble with ω ∈ [0,200]. The control time t f is set to 1. At this point, all the quantities
are dimensionless. The target states z fω depend on the frequency, and the final radius of the
trajectory can be expressed as:

(3.9)
∣∣∣z f

∣∣∣= 1
2

(
1+ tanh[(ωs −ω)µ]

)
,

where µ= 0.1 and ωs = 100. The target radius is of the order of 1 for ω<ωs and 0 for ω>ωs.
The smooth transition between the two regions can be adjusted with the parameter µ. The
phase of the target state is defined as:

z f (ω)=
∣∣∣z fω

∣∣∣e(iωηt f )

with η= 0.5, the slope of the frequency-dependent phase. We observe numerically that a nonzero
slope in a given range (η ∈ [0,1]) helps limit the maximum amplitude of the pulse. The same
observation was made for spin control [101, 102]. The parameter λ which weights the importance
of the pulse energy in the cost functional, is set to 10−3. A regular discretization of 60 frequencies
in the range [0,200] is taken into account in the optimization. Note that the final result does
not change if a sufficient number of frequencies is used. The control field is then expressed in
physical units as follows. We define the normalized electric field e(t) as:

(3.10) e(t)= E0

B0
u(t)cos(ω0t),

where E0 = 100V m−1, B0 = 10T, and ω0/(2π) = 500KHz. These values are typical to FT-ICR
MS. The intensity of the electric field E0 is fixed to get a radial excitation of a few centimeters.
The control time is assumed to be expressed in ms, leading to a control duration of 1ms, which
is also standard in FT-ICR. We deduce that a range of ω/(2π) = 100/(2π) = 16kHz is excited
around the central frequency ω0/(2π). Note that the RWA (see Sec. 3.1.2) is justified since
∆ω¿ω0.
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Figure 3.3: Excitation profiles of an ensemble of ions by optimal (black line) and adiabatic (red
line) pulses are compared. We depict the final radii r (in mm) of ions as a function of the
frequency f in the range of frequencies [460,540]kHz. The optimal control pulse E0(t)= E0

B u(t)
with a duration of 1ms is also displayed.

Numerical results are presented in Fig. 3.3. The radius of the ion is denoted r. A comparison
can be made with an adiabatic excitation, characterized by the following parameters: ωi/(2π)=
480kHz, ω f /(2π) = 520kHz, t f = 1ms and an amplitude E0 = 0.625kV m−1. The sweep rate s

is defined as s = ω f −ωi
t f

. We observe that the optimal control process generates a very good
excitation inside the expected range of frequencies. This control procedure is directly comparable
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to the adiabatic process.

3.2.3 SWIFT Pulse

Based on the linearity of ion dynamics, it has been proposed to generate pulses by Fourier
synthesis from a given excitation profile, in an approach called SWIFT [103–105]. In this
paragraph, we describe the application of the SWIFT method to the model system. We consider
a specific approach in which the control law and the corresponding dynamics can be expressed
analytically.

The dynamics are governed by the differential system (3.2). In the RWA described in
Sec. 3.1.2, the dynamics can be approximated as:

˙̃vk =−i∆ωkṽk +
ω0

2
e0e−iφ,

where ṽk = ṽxk + iṽyk and the control field is expressed as ex(t) = e0(t)cos(ω0t+φ(t)). The
differential equation can be integrated and leads to:

ṽk(t f )=
∫ t f

0
e−i∆ωk(t f −t)ω0

2
e0e−iφdt

We deduce that:
ṽ∗

k(t f )e−i∆ωk t f =
∫ t f

0
e−i∆ωk tω0

2
e0eiφdt.

Introducing u(t) = e0eiφ and assuming that u is different from zero only in the interval
[0, t f ], we obtain: p

2π
ω0

2
û(∆ωk)= ṽ∗

k(t f )e−i∆ωk t f .

where we use the following definition for the Fourier transform:

f (t)= 1p
2π

∫ +∞

−∞
f̂ (ω)eiωtdω; f̂ (ω)= 1p

2π

∫ +∞

−∞
f (t)e−iωtdt.

The target states are defined as:r∆ωk = r0Π(∆ωk
δω

)

φ∆ωk = a∆ωk +φ0

where Π is the gate function, with Π(x)= 1 if |x| ≤ 1
2 and 0 otherwise. The parameter δω is the

width of the distribution and φ0 is an arbitrary constant. We have:

xk = r∆ωk ei(a∆ωk+φ0).

In the RWA (see Sec. C.4), starting from ṽk =−iω0x̃k, we arrive at:

ṽk(t)=−iω0r∆ωk ei(a∆ωk+φ0)eiω0 t

105



CHAPTER 3. ION CYCLOTRON RESONANCE MASS SPECTROMETRY

and

û(∆ω)= 2ip
2π

r∆ωk e−i∆ωk(t f +a)e−iφ0−iω0 t f ,

which gives

u(t)=FT−1[
2ip
2π

r∆ωk e−i∆ωk(t f +a)e−iφ0−iω0 t f ].

Since
1p
2π

∫ +∞

−∞
Π(

ω

δω
)eiωtdω= δωp

2π
sinc(

δωt
2

),

we obtain:

u(t)= r0δωeiφ1

π
sinc[

δω

2
(t− t0)],

with t0 = t f +a and φ1 an arbitrary phase. The original control field ex(t)= e0(t)cos(ω0t+φ(t))

is then given by:

ex(t)= r0δω

π
sinc(

δω

2
(t− t0))cos(ω0t+φ1).

Since the choice of the initial phase φ1 is arbitrary, we finally get:

ex(t)= r0δω

π
sinc(

δω

2
(t− t0))cos(ω0(t f − t)).

The next step consists in integrating exactly the system dynamics using the original system
and Equation (3.5). The final state of the dynamics is given by the following expressions:

xω(t f )= ∫ t f
0 dtex(t)sin[ω(t f − t)]

yω(t f )= ∫ t f
0 dtex(t)(−1+cos[ω(t f − t)]).

We then deduce:

xω(t f )= r0δω

2π
[Is(t f ,ωs,ω0 +ω)−Is(0,ωs,ω0 +ω)−Is(t f ,ωs,ω0 −ω)+Is(0,ωs,ω0 −ω)]

and

yω(t f ) = r0δω

2π
[−2Ic(t f ,ωs,ω0)+2Ic(0,ωs,ω0)

+Ic(t f ,ωs,ω0 +ω)−Ic(0,ωs,ω0 +ω)+Ic(t f ,ωs,ω0 −ω)−Ic(0,ωs,ω0 −ω)]

with ωs = δω
2 . The Ic and Is functions are defined in Sec. C.2.
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Figure 3.4: Excitation profiles of an ensemble of ions by optimal (blue line) with RWA and
SWIFT (red line) pulses are compared. The final radii r (in mm) of ions are depicted as a
function of the frequency f in the range of frequencies [460,540]kHz. The optimal control pulse
E0(t)= E0u(t) with a duration of 1ms is also displayed.

The comparison between the excitation by SWIFT and optimal pulses given in Fig. 3.4 is
not really fair. In fact, the gate function is a square for the SWIFT and tanh function for the
optimal pulse. This point partly explains the better efficiency of optimal pulses. The optimal
pulse is computed according to Subsec. 2.6.5.
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3.2.4 Optimal Gradient-Based Algorithm

The goal of this section is to develop a first-order gradient-based algorithm suited to this
control problem [69, 106]. We use a numerical optimization algorithm to take into account field
amplitude constraint of the form |ex(t)| ≤ emax. Note that this algorithm can be seen as the
counterpart of the Gradient Ascent Pulse Engineering (GRAPE) algorithm in NMR [107] and
that other limitations such as spectral constraints or bandwidth limitations could be added
[108–115]. In the numerical simulations, the control field is described as a piece-wise constant
function. Rapid time variations leading to high frequencies may appear in the optimization
process. For question of numerical stability and precision, we apply the algorithm in the system
with the RWA and then we use the derived control law in the original dynamical system.

We start from the differential system (3.7) written in the rotating frame for the ion k as:
˙̃v(k)
x =∆ωk ṽ(k)

y +ux

˙̃v(k)
y =−∆ωk ṽ(k)

x +uy

where ux = ω0
2 e0 cosφ and uy = −ω0

2 e0 sinφ. The two controls satisfy the limitation ux(t)2 +
uy(t)2 ≤ u2

max with umax = ω0
2 emax. The corresponding target state is (ṽ(k)

xf , ṽ(k)
yf ). We consider a

cost functional J with no penalty on the control field defined as:

(3.11) J = 1
2

∑
k

[(ṽ(k)
xf − ṽ(k)

x (t f ))2 + (ṽ(k)
yf − ṽ(k)

y (t f ))2].

The Pontryagin Hamiltonian can be expressed as:

HP =∑
k

[∆ωk(−p(k)
y ṽ(k)

x + p(k)
x ṽ(k)

y )+ux p(k)
x +uy p(k)

y ].

The adjoint states fulfill the following relations:

(3.12)

ṗ(k)
x =∆ωk p(k)

y

ṗ(k)
y =−∆ωk p(k)

x .

The gradients are given by:
∂HP

∂ux
=∑

k
p(k)

x ,
∂HP

∂uy
=∑

k
p(k)

y

The correction to the control fields δux(t) and δuy(t) at each step of the algorithm is
proportional to these gradients [69]. The final adjoint states can be expressed as:p(k)

x (t f )= ṽ(k)
xf − ṽ(k)

x (t f )

p(k)
y (t f )= ṽ(k)

yf − ṽ(k)
y (t f ).

and Eq. (3.12) can be directly integrated backward in time. We thus consider the following
gradient-based algorithm.
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1. Choose guess fields ux(t) and uy(t).

2. Propagate forward the state of every ion k and compute (v(k)
x (t f ),v(k)

y (t f )).

3. Propagate backward the adjoint state of the system from Eq. (3.12).

4. Compute the corrections δux(t) and δuy(t) to the control fields, δux(t)= ε
∑

k p(k)
x , δuy(t)=

ε
∑

k p(k)
y where ε is a small positive constant.

5. Define the new control fields ux(t) 7→ ux(t)+δux(t) uy(t) 7→ uy(t)+δuy(t).

6. Truncate the new control fields ux(t) and uy(t) to satisfy the constraint√
ux(t)2 +uy(t)2 ≤ umax:

ux(t) 7→ ux(t)umax√
ux(t)2 +uy(t)2

,uy(t) 7→ uy(t)umax√
ux(t)2 +uy(t)2

.

7. Go to Step 2 until a given accuracy is reached.

Similar algorithms are used in NMR for taking into account pulse constraints [23, 24, 82].
Note that the use of a gradient causes this type of algorithm to converge towards a local
maximum of the optimization problem. Numerical simulations with different guess fields allow
partly overcoming this limitation, even if the global maximum is not reached with certainty.

3.2.5 Application of LQOCT to ICR

We apply in this section the PMP to FT-ICR processes in the case without any amplitude
constraint. We denote by Xk the state associated with the frequency ωk as defined in Eq. (3.4)
of Section 3.1.1 and by (X (k)

1 , X (k)
2 , X (k)

3 ) the coordinates. {ωk} is the set of discrete frequencies
used in the numerical optimization. The optimal problem is defined through the cost functional
J to minimize:

J = 1
2

∑
k

[(X (k)
1 (t f )− X (k)

1 f )2 + (X (k)
2 (t f )− X (k)

2 f )2]+ λ

2

∫ t f

0
e2

xdt.

Since there is no final condition on X3(t f ), this term does not appear in the expression of
J . The Pontryagin Hamiltonian is given by:

HP =∑
k

[p(k)
1 X (k)

2 −ω2
k p(k)

2 X (k)
3 + p(k)

3 X (k)
2 + p(k)

3 u]− λ

2
e2

x.

For the adjoint state, we have: 
ṗ(k)

1 = 0

ṗ(k)
2 =−p(k)

1 − p(k)
3

ṗ(k)
3 =ω2

k p(k)
2
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with the final conditions:

(3.13)


p(k)

1 (t f )= X (k)
1 f − X (k)

1 (t f )

p(k)
2 (t f )= X (k)

2 f − X (k)
2 (t f )

p(k)
3 (t f )= 0

Note that p(k)
1 is a constant of the motion. We deduce the dynamics of the adjoint state:

(3.14)


p(k)

1 (t)= p(k)
1 (t f )

p(k)
2 (t)= A(k) cos(ωk t)+B(k) sin(ωk t)

p(k)
3 (t)=−p(k)

1 (t f )+ωk[A(k) sin(ωk t)−B(k) cos(ωk t)]

with A(k) = sin(ωk t f ) p(k)
1 (t f )
ωk

+ p(k)
2 (t f )cos(ωk t f )

B(k) = sin(ωk t f )p(k)
2 (t f )− p(k)

1 (t f )
ωk

cos(ωk t f )

The optimal control e∗x can be expressed as:

(3.15) e∗x(t)= 1
λ

∑
k

p(k)
3 (t)

which can be transformed into:

e∗x(t)= 1
λ

∑
k

[−p(k)
1 (t f )+ p(k)

1 (t f )cos(ωk(t f − t))− p(k)
2 (t f )ωk sin(ωk(t f − t))].

The last step consists in computing the trajectory corresponding to this optimal control
field. We obtain for an ion of frequency ω:

X1(t f )= 1
λ

∑
k

[
p(k)

1 (t f )(t f −
sin(ωt f )

ω
− sin(ωk t f )

ωk
)+ p(k)

2 (t f )(1−cos(ωk t f )

+ p(k)
1 (t f )

2
[
sin((ωk +ω)t f )

ωk +ω
+ sin((ωk −ω)t f )

ωk −ω
]+ ωk p(k)

2 (t f )
2

[
cos((ωk +ω)t f )−1

ωk +ω
+ cos((ωk −ω)t f )−1

ωk −ω
]
]

and

X2(t f )= −ω
λ

∑
k

[
p(k)

1 (t f )
cos(ωt f )−1

ω
+ p(k)

1 (t f )
2

[
1−cos((ωk +ω)t f )

ωk +ω
+ cos((ωk −ω)t f )−1

ωk −ω
]

+ωk p(k)
2 (t f )
2

[
sin((ωk +ω)t f )

ωk +ω
− sin((ωk −ω)t f )

ωk −ω
]
]

Such results can be written in a compact form as follows:λX ( j)
1 (t f )=∑

k[R jk p(k)
1 (t f )+S jk p(k)

2 (t f )]

λX ( j)
2 (t f )=∑

k[T jk p(k)
1 (t f )+U jk p(k)

2 (t f )]
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where the matrices R, S , T and U are known explicitly and the index j labels the ion of the
ensemble. We finally arrive at the following system to fulfill:


∑

k[R jk X (k)
1 f +S jk X (k)

2 f ]=λX ( j)
1 (t f )+∑

k[R jk X (k)
1 (t f )+S jk X (k)

2 (t f )]∑
k[T jk X (k)

1 f +U jk X (k)
2 f ]=λX ( j)

2 (t f )+∑
k[T jk X (k)

1 (t f )+U jk X (k)
2 (t f )]

In matrix form, for N = 2, we have:



∑
k R1k X (k)

1 f +S1k X (k)
2 f∑

k T1k X (k)
1 f +U1k X (k)

2 f∑
k R2k X (k)

1 f +S2k X (k)
2 f∑

k T2k X (k)
1 f +U2k X (k)

2 f

=


λ+R11 S11 R12 S12

T11 λ+U11 T12 U12

R21 S21 λ+R22 S22

T21 U21 T22 λ+U22




X (1)

1 (t f )

X (1)
2 (t f )

X (2)
1 (t f )

X (2)
2 (t f )



This linear system allows computing the final state of the system Xk(t f ), then the adjoint
state from Eq. (3.13) and (3.14) and the optimal control field with Eq. (3.15). We observe
that the control law is expressed as a linear combination of cosine and sine functions of the
frequencies ωk of the finite discretized set. Note that the same method can be applied in the
RWA starting from Eq. (3.7) (see [79] for details).

3.2.6 Numerical Computations

We now focus on ion control with amplitude constraint. The numerical simulations were carried
out by assuming the RWA. The same set of discretized frequencies is chosen. We optimize
piecewise constant functions with a time step lower than 1µs to avoid discretization effect. The
dynamics are integrated numerically through the formulas given in Subsec. 3.1.1. More than
1000 iterations are usually needed to converge to an efficient solution. We can apply the gradient-
based algorithm described in Sec. 3.2.4 with only one control field, namely E0(t)= e0(t)B, and
the phase ϕ(t) of the electric field is set to 0. We consider the same control problem as before
and the optimal solutions derived with LQOCT are used as guess field for the optimization
algorithm.
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Figure 3.5: The optimal amplitudes E0x (blue line) and E0y (red line) are plotted for a maximum
amplitude of 100V m−1 in label (a) and 50V m−1 in label (b). Label (c) corresponds to the total
amplitude E0 =

√
E2

0x +E2
0y .

The optimization algorithm fails to converge towards a very good excitation profile, when
the maximum amplitude is much smaller than 100V m−1. This obstacle can be partly overcome
by considering two control inputs (in the rotating frame) denoted E0x = e0Bcosϕ and E0y =
e0Bsinϕ. An example is displayed in Fig. 3.5 for a maximum amplitude of 100 and 50V m−1.
An almost perfect excitation profile is achieved in these two cases. Note the different structures
of the inputs along the x and y directions, namely even and odd functions.

Summary

• We have presented the adiabatic pulse, and the stationary phase approximation.

• We have compared the SWIFT and optimal pulses.

• We have compared the adiabatic pulse and OCT pulse with RWA.

• The application of LQOCT is discussed for this particular problem.

• A gradient based algorithm is used to account for experimental limitations on
the control pulse amplitude.
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3.3 Detection Process

In the previous subsection the excitation phase has been discussed. The next step is to investigate
the detection phase. A computer simulation of this process has been carried out. Herein we
consider only the adiabatic pulse since the results are quite similar to those of square, SWIFT
and optimal pulses. Monochromatic pulses, however, are capable to sense only the ions that
are in resonance with the pulse. It is worth to emphasize the importance of excitation pulses
in this phase. We deploy our designed pulses to bring all the ions with different frequencies
to circulate in a relatively large radius in order to be closer to the detection plates so their
frequencies can be recorded in the detected current.

3.3.1 Green’s Reciprocity Principle

Before going on with the main task, it is worthwhile to start with the Green’s reciprocity
principle as all the important calculations are based on it. Suppose we have a charge distribution
ρ1 with its associated potential V1, and a completely separate charge distribution ρ2 with
potential V2. These two distributions do not co-exist. They are completely different situations.
We consider the electric fields ~E1 and ~E2 produced by these two distributions and the following
integral taken over all space [116]1:

(3.16) I =
∫
V

~E1~E2d~r

Recalling two well-known facts from the theory of electricity; ~E = −~∇ϕ and ~∇~E = ρ/ε0, we
integrate Eq. (3.16) by parts under the natural assumption that fields vanish when going to
infinity:

I =−
∫
V

~∇ϕ1~E2d~r =
∫
V

ϕ1~∇~E2d~r = 1
ε0

∫
V

ϕ1ρ2d~r

Similarly we get:

I =−
∫
V

~∇ϕ2~E1d~r =
∫
V

ϕ2~∇~E1d~r = 1
ε0

∫
V

ϕ2ρ1d~r,

hence the following statement called Green’s reciprocity principle is true:

(3.17)
∫
V

ϕ1ρ2d~r =
∫
V

ϕ2ρ1d~r

1Problem 3.43.
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3.3.2 Parallel-Plate Capacitor

Assume a uniform electric field ~E with a given potential ϕ. Then ~∇ϕ=−~E = const, and as the
derivative of the potential along an arbitrary direction ~n is given by:

dϕ
dn

=
(
~∇ϕ

)
~n,

it follows that

(3.18) ∆ϕ

∆n
= const.

Now let us consider a particular case of a uniform electric field bounded inside the parallel-plate
capacitor. We assume that the plates are infinite conducting planes. The frame of reference is
chosen such that the origin is fixed in an equal distance d/2 from all plates, and the ordinate
axis is directed perpendicular to the positive plate. From now on we will conventionally name
one of the plates positive and the other one negative. The distance between the plates is d. We
denote the potentials of the positively and negatively charged plates correspondingly with ϕ+
and ϕ−. Then according to Eq. (3.18) the following statement holds:

(3.19) ϕ+−ϕ−
d

= ϕ+−ϕ(y)
d/2− y

,

where ϕ(y) is the potential at a point with an ordinate y inside the capacitor. From here ϕ(y)

can be deduced:

(3.20) ϕ(y)=
(

1
2
+ y

d

)
ϕ++

(
1
2
− y

d

)
ϕ−.

This relation with the Green’s reciprocity principle will be used in the next section.

3.3.3 Charge Induction in the System of Parallel Plates

Suppose the same capacitor with grounded plates, where the Cartesian coordinate system is
chosen as before. In this situation the plates are discharged, and their potentials are equal
to zero. Now suppose that a charge q is placed between the plates at a distance y from the
negative plate. The potentials as well as the total charge in the system will be again equal
to zero, but this time a non-zero charge will be induced on the plates to compensate the one
between them. Although it is considerably harder to find the charge distribution on the plates,
but it is relatively straightforward to find the induced net charge on each plate with the help of
Green’s reciprocity principle [116]2.
To apply the reciprocity theorem we need two distinct charge distributions. For the first, we
take the one described. For the second, we just remove the point charge and the condition that
the plates are grounded, so each plate can be at a different from zero potential.

2Problem 3.44.
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At first consider the distribution as given. Since the two plates are grounded, we have ϕ+ =ϕ− = 0.
Also due to the fact that the induced charge must cancel out the point charge, so there is no
net charge in the system. That is Q++Q−+ q = 0.
Now consider the distribution without the point charge q. In this case we take the potential
of the negative plate to be ϕ′− =−ϕ0 and of the positive plate to be ϕ′+ =ϕ0. Note that this
time the plates are not grounded. All the corresponding quantities for this case are denoted by
prime.
Since the second distribution contains no point charge the potential varies linearly between the
two plates as it is reflected in Eq. (3.20):

(3.21) ϕ′(y)= 2y
d
ϕ0

Now we are ready to apply the reciprocity theorem. On one side we have:

(3.22)
∫
V

ϕ1ρ2d~r =ϕ−Q′
−+ϕ+Q′

+ = 0,

since ϕ− =ϕ+ = 0

On the other side we have:

(3.23)
∫
V

ϕ2ρ1d~r =ϕ0Q+−ϕ0Q−+ϕ′(y)q =ϕ0

[
2Q++

(
2y
d

+1
)

q

]
,

since Q− =−Q+− q. According to the Green’s theorem (3.17) the right hand of Eq. (3.23) must
be zero, and therefore:

Q+ =−1
2

(
1+ 2y

d

)
q(3.24)

Q− = 1
2

(
−1+ 2y

d

)
q(3.25)

∆Q =Q+−Q− =−2y
d

q.(3.26)

where ∆Q is the charge difference between the two plates. The same computation can be done
for spherical and cylindrical capacitors.

3.3.4 Signal Processing

Finally we can come back to our main problem. In the experimental setup the conducting plates
which are allocated for the detection are perpendicular to the ordinate axis. Experimenters can
measure both the charge difference and the current induced on these two plates. Each ion gives
its own contribution in the signal production. Assume N ions are injected into the experimental
setup. We will distinguish them by a subscript i assigned to the characteristic quantities of the
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ions:

Sz(t)=
N∑

i=1
∆Q i =−

N∑
i=1

2qi

d
yi(t)(3.27)

Sv(t)=
N∑

i=1

d
dt
∆Q i =−

N∑
i=1

2qi

d
vi y(t)(3.28)

Sz(t) and Sv(t) are respectively the charge difference and the current induced on the plates. Let
us recall some useful formulas which will be used in further discussions. The dynamics of the
ions in the mutually transverse electromagnetic field is governed by the general law:

vi(t)= vi(t0)e− iωi(t−t0)+ωi

t∫
t0

e(τ)e− iωi(t−τ) dτ(3.29)

zi(t)= zi(t0)+
t∫

t0

vi(τ)dτ i = 1 . . . N(3.30)

All notations stay the same. In particular be aware that the electric field is directed along the
abscissa:

e(t)= E(t)
B

ωi = qiB
mi

For simplicity we assumed that the detection process starts right after the excitation phase.
The time intervals for the excitation and detection phases are taken to be respectively in [0,Tex]

and [Tex,Tex +Tdet]. In the detection process e = 0, therefore:

(3.31) vi(t)= vi(Tex)e− iωi(t−Tex) t ∈ [
Tex,Tex +Tdet

]
i = 1 . . . N

The imaginary parts of the velocities take the form:

(3.32) vi y(t)= vi y(Tex)cos
[
ωi

(
t−Tex

)]−vix(Tex)sin
[
ωi

(
t−Tex

)]
Substituting it into Eq. (3.28) we get the Sv signal. For the coordinates and their imaginary
parts we similarly obtain:

zi(t)= zi(Tex)+vi(Tex)
(
t−Tex

)
e− iωi

(
t−Tex

)
/2 sinc

[
ωi

(
t−Tex

)
2

]
(3.33)

yi(t)= yi(Tex)− (
t−Tex

)
sinc

[
ωi

(
t−Tex

)
2

]vix(Tex)sin

[
ωi

(
t−Tex

)
2

]
−

− vi y(Tex)cos

[
ωi

(
t−Tex

)
2

] .(3.34)

Substitution of the last equation into Eq. (3.27) provides us the Sz signal.
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3.3.5 Analyzing the Signals

In this section we are going to calculate the Fourier Transformations of these signals which
actually provide us the sequence of the frequencies of the injected ions. From now on the hat
will assign the state of being Fourier Transformed. Alongside with the following:

(3.35)
b∫

a

eiαx dx = (b−a)eiα(b+a)/2 sinc
[
α(b−a)

2

]
we recall also the other integral formulae. Some simple calculations lead to a similar set of
equations as that of Eqs. (3.27) and (3.28):

Ŝv(ω)=−
N∑

i=1

2qi

d
v̂i y(ω)(3.36)

Ŝz(ω)=−
N∑

i=1

2qi

d
ŷi(ω)(3.37)

In order to get the Fourier Transforms of Sv and Sz signals we just need to find those of the
velocities and of the coordinates. Note that vi(t), zi(t) as well as the Sv and Sz signals are
defined in the time range [Tex,Tex +Tdet]. There is no signal detected out of that. In other
words we treat vi(t) and zi(t) as non-periodic functions of time defined on the real axis, which
are zero out of the aforementioned time-range. Hence we arrive:

v̂i y(ω)=
∞∫

−∞
vi y(t)e− iωt dt =

Tex+Tdet∫
Tex

vi y(t)e− iωt dt =

= iTdet

2
e− iωTex

{
v̄i(Tex)ei(ωi−ω)Tdet/2 sinc

[
(ωi −ω)Tdet

2

]
−vi(Tex)e− i(ωi+ω)Tdet/2 sinc

[
(ωi +ω)Tdet

2

]}

(3.38)

A similar result holds for the coordinates:

ŷi(ω)=
∞∫

−∞
yi(t)e− iωt dt =

Tex+Tdet∫
Tex

yi(t)e− iωt dt =

= Tdet

(
yi(Tex)− vix(Tex)

ωi

)
e− iω

(
2Tex+Tdet

)
/2 sinc

(
ωTdet

2

)
+ Tdet

2ωi
e− iωTex ×(3.39)

×
{

v̄i(Tex)ei(ωi−ω)Tdet/2 sinc
[

(ωi −ω)Tdet

2

]
+vi(Tex)e− i(ωi+ω)Tdet/2 sinc

[
(ωi +ω)Tdet

2

]}
The bar stands for the complex conjugate.

These results are common for all type of excitation pulses. The difference that the excitation
pulses make are vi(Tex) and zi(Tex), that is the initial values of the velocities and of the
coordinates for the detection phase. In the next section, we discuss the numerical results for
the detection of ions by means of the adiabatic pulse. The detection results for square and
monochromatic pulses are quite similar.
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3.3.6 Detection of Ions by Means of the Adiabatic Pulse

The dynamics of ions under the influence of the adiabatic pulse

(3.40) ex(t)= e0 cos

(
ω0t+ st2

2

)

has the following form:

(3.41) vi(t f )= e0ωi

2
e− iωi t f

[
K

(
− s

2
,−ω0 +ωi, t f

)
+K

(
s
2

,ω0 +ωi, t f

)]
.

(3.42) zi(t f )=− i e0ℜ
[
K

(
s
2

,ω0, t f

)]
+ i e0

2
e− iωi t f

[
K

(
s
2

,ω0 −ωi, t f

)
+K

(
s
2

,ω0 +ωi, t f

)]
.

The Fourier transform of the adiabatic pulse is given by:

(3.43) êx(ω)= e0

2

[
K

(
s
2

,ω0 −ω,Tex

)
+K

(
− s

2
,−ω0 −ω,Tex

)]
.

The Fourier transforms of velocities and positions can be computed by the final velocities and
positions (see Eqs. (3.38) and (3.39)).
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Figure 3.6: The adiabatic pulse and its Fourier transformation are computed via analytic
formula. The parameters are set to e0 = 1, Tex = 400µs, s = 5×10−3, N = 600.
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Figure 3.7: The detection pulse and its Fourier transformation are displayed. The parameters are
set to e0 = 1, Tex = 400µs, s = 5×10−3, N = 600, Td = 200µs, d = 2cm, ν1 = 2MHz, ν2 = 4MHz,
ν3 = 6MHz.

The detection process can also be realized by applying square, SWIFT and OCT pulses.
The monochromatic pulse is able to see only the on-resonance ion.

Summary

• The detection process is presented along with the Green’s reciprocity principle.

• We describe qualitatively and quantitatively the induced charge on the detecting
plates.

• We show how to analyze the two types of signals.

• We implement the described techniques to detect the injected ions which circulate
under the influence of adiabatic pulse.

3.4 Conclusions

We applied optimal control techniques to the robust excitation of ions in FT-ICR. We considered
the simplified but realistic conditions of a 2D trajectory and of a homogeneous magnetic field.
In this model system, we propose different ways to solve the optimal control problems. Such
methods are directly inspired from NMR in which OCT is a standard and efficient tool. In the
case without pulse limitation, the linearity of the dynamical equations allows using LQOCT,
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which has the advantage to lead to an analytical formula of the control law. Very good results
were obtained both for the final radii and phases of the ions. A specific range of frequencies
was considered in this study, but the same approach can be extended to broadband excitation
from 100 to 900 kHz. However, this solution is both in shape and in amplitude very similar
to the SWIFT pulse. The two solutions are expected to be equal for a continuous range of
frequencies. More original control laws are derived when the pulse intensity is limited. Due
to this constraint, optimal iterative algorithms have to be used, and we adapt to FT-ICR the
standard GRAPE algorithm, well-known in NMR. Even if this algorithm has some limitations,
it allows reducing the pulse intensity, by a factor larger than three in the examples under
study. On the basis of NMR results, this algorithm is expected to be very efficient in the
case of other excitation profiles. The very encouraging and promising results obtained in this
investigation must now be confirmed by experimental implementation. Numerical simulations
of this study are not fully realistic. Effects such as the magnetron motion, field geometry, field
inhomogeneities or ion collisions are neglected. However, the model system we consider describes
quite faithfully the main cyclotronic behavior and permits to grasp rapidly the main features of
ion trajectories. Numerical codes were developed to account for such experimental details. The
relative simplicity of the application of numerical optimal algorithms makes it possible to adapt
it straightforwardly to a new class of control problems. They could thus be combined with such
codes. We are therefore quite confident about the extension of optimization procedures to these
additional experimental constraints and limitations.
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ix A
Basics of Optimal Control Theory

The aim of this chapter is to give a general introduction of PMP as well as to introduce
the gradient based algorithm. The interested reader can also find more details in a
wide range of scientific literature [6, 8, 9, 68–70, 75, 86, 89, 90, 92].

A.1 Optimal Control Theory: PMP

Here we solve an optimization problem for a continuous system which later can be approximated
by a discrete system for a solution on digital computers. Consider the following dynamical
system:

(A.1) ẋ(t)= f
[
x(t),u(t), t

]
,

with x(t0) given at time t0 (t0 < t < t f ), where x ∈Rn, the state vector, is determined by u(t) ∈Rm,
the control. The goal is to steer the system from its initial state into the target state at a fixed
time t f . We do not aim to exactly reach the target but rather to be as close as possible to it. In
other words, first, we assume there is no terminal constraint on the state vector. We consider a
scalar cost of the form:

(A.2) J =φ

[
x
(
t f

)
, t f

]
+

t f∫
t0

L
[
x(t),u(t), t

]
dt.

The problem is to find the control u(t) that minimizes J. To adjoin the system dynamics (see
Eq. (A.1)) to J we introduce a multiplier vector p(t) ∈Rn:

(A.3) J =φ

[
x
(
t f

)
, t f

]
+

t f∫
t0

L
[
x(t),u(t), t

]
dt+

t f∫
t0

pᵀ(t)
(
ẋ(t)− f

[
x(t),u(t), t

])
dt,
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where φ, the terminal cost, is to minimize the distance between the final and the target states.
The integrand L is the running cost and p is the Lagrange multiplier, the so called adjoint
state in control theory. For convenience, we define a scalar function Hp as follows:

(A.4) Hp
[
x(t), p(t),u(t), t

]= pᵀ(t) f
[
x(t),u(t), t

]−L
[
x(t),u(t), t

]
,

and we call it Pontryagin Hamiltonian. One of the Hamilton equations is automatically satisfied:

(A.5) ẋ = ∂Hp

∂pᵀ .

Integrating the last term on the right side of Eq. (A.3) by parts, we yield:

(A.6) J =φ
[
x(t f ), t f

]
+ pᵀ(t f )x(t f )− pᵀ(t0)x(t0)−

t f∫
t0

(
Hp[x(t), p(t),u(t), t]+ ṗᵀ(t)x(t)

)
dt.

Hereafter we neglect second order or higher variations. The variation in J due to variations in
the control vector u(t) for fixed times t0 and t f is of the form:

(A.7) δJ =
[(
∂φ

∂x
+ pᵀ

)
δx

]
t=t f

− [
pᵀ(t)δx

]
t=t0

−
t f∫

t0

(
∂Hp

∂x
+ ṗᵀ

)
δx+ ∂Hp

∂u
δu

dt.

For an extremum, δJ = 0 holds true for arbitrary δu(t) and δx(t). This can happen if and only
if:

(A.8)


ṗ =−

(
∂Hp

∂x

)ᵀ
∂Hp

∂u
= 0; t0 ≤ t ≤ t f

For boundary conditions, there are four options.

1. x(t0) is fixed and x(t f ) is free, i.e. δx|t=t0 = 0 and δx|t=t f 6= 0. Thus, from δJ = 0 it follows:

(A.9) p(t f )=−
(
∂φ

∂x

)ᵀ
t=t f

.

2. x(t f ) is fixed and x(t0) is free, i.e. δx|t=t f = 0 and δx|t=t0 6= 0. Thus, from δJ = 0 it follows:

(A.10) p(t0)= 0.

3. x(t0) and x(t f ) are both fixed, i.e. δx|t=t0 = δx|t=t f = 0. Therefore, we have no boundary
constraints on the adjoint state.

4. x(t0) and x(t f ) are both free, i.e. δx|t=t0 6= 0, δx|t=t f 6= 0. Thus, from δJ = 0 it follows:

p(t0)= 0; p(t f )=−
(
∂φ

∂x

)ᵀ
t=t f

.
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In summary, to find a control vector u(t) that produces a stationary value of the cost J, we
must solve the following coupled differential equations:

ẋ(t)= f
[
x(t),u(t), t

]
(A.11)

ṗ(t)=−
(
∂Hp

∂x

)ᵀ
(A.12)

∂Hp

∂u
= 0.(A.13)

It is worth to mention that the control input u(t) depends on the adjoint state p(t) as it follows
from Eq. (A.13) since the Pontryagin Hamiltonian Hp depends on the adjoint state p(t) in its
turn. Therefore, in general, Eqs. (A.11) and (A.12) are coupled. However, we also have to take
into account the boundary conditions. Simply put, x(t) is either fixed at the endpoints of the
time interval or is free at least at one of the endpoints. In this case, the missing constraint
becomes interchanged with another boundary condition on p(t) at the same endpoint of the
time interval (see Eqs. (A.9), (A.10)). The boundary conditions are said to be split when some
are given at t0, and some are given at t f . It may happen that some of the components of the
state vector x(t) are fixed either at the initial or final times or at both endpoints and some
are required to satisfy another combination of constraints at the fixed times t0 and t f . The
same rules apply here. We impose similar boundary constraints on the components of the
adjoint state vector p(t) at the fixed times t0 and/or t f in case the corresponding components
of the state vector are free. The extremum conditions that we have obtained here are proven to
correspond to the minimum of the cost functional [89]. Here, we have found the weak version
of PMP where the maximization of the Pontryagin Hamiltonian is replaced by an extremum
condition given by the partial derivative with respect to u. For numerical computations, we
interchange the continuous dynamical system with a multistage system by discretizing the time
interval [69].

A.2 Gradient Based Algorithm

It is not always possible to solve the coupled differential Eqs. (A.11), (A.12) and (A.13)
analytically. Fortunately, there have been developed numerical tools over the years. The one
that we use in this manuscript is a gradient based algorithm, a counterpart algorithm of GRAPE
used in NMR [107]. We start with Eq. (A.13), the necessary condition for PMP which can also
be stated as follows:

(A.14) Hp[x(t), p(t),u∗(t)]=max
u

Hp[x(t), p(t),u(t)],

where u∗ is the optimal control pulse. This provides us with a numerical tool that we can apply
to find a local maximum or a candidate for optimality among control inputs. We expand Hp
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into Tailor series in terms of the control pulse:
(A.15)

Hp

[
x(t), p(t),u(t)+ε∂Hp

∂u

]
≈ Hp[x(t), p(t),u(t)]+ ∂Hp

∂u
ε
∂Hp

∂u
= Hp[x(t), p(t),u(t)]+ε

[
∂Hp

∂u

]2

,

where ε is a positive parameter. As one may see, the new control pulse u1(t) = u(t)+ ε
∂Hp
∂u

increases the value of Hp, Hp[x(t), p(t),u1(t)] > Hp[x(t), p(t),u(t)]. The parameter ε must be
sufficiently small such that we remain in the first-order approximation, but large enough to
reduce the number of iterations and the computational time [89]. For a good convergence, we
also need to find a guess field u(t) sufficiently close to the optimal solution. We arrive at the
same conclusion when considering Eq. (A.7). If x(t0) is fixed, p(t) satisfies Eqs. (A.9) and (A.12)
then we deduce from Eq. (A.7) that:

(A.16) δJ =−
t f∫

t0

∂Hp

∂u
δudt.

This suggests that a better control can be achieved with a choice δu = ε
∂Hp
∂u . Thus the new control

is u1(t)= u+δu = u+ε∂Hp
∂u . The consecutive steps of iterative algorithm can be summarized as

follows:

1. Choose a guess control u.

2. Propagate forward the state of the system x from ẋ = f [x(t),u(t), t] with the initial condition
x(t0).

3. Propagate backward the adjoint state of the system p from ṗ =−
(
∂Hp
∂x

)ᵀ
with the terminal

constraint p(t f )=−
(
∂φ
∂x

)ᵀ
t=t f

.

4. Compute the correction δu to the control law, δu(t) = ε
∂Hp
∂u , where ε > 0 is a small

parameter.

5. Define the new control u → u+δu.

6. Go to the 2nd step until a given accuracy is reached.

A.3 Application of the Gradient Based Algorithm

We introduce in this paragraph the basic principles of a gradient iterative algorithm in the
linear case. The dynamics is governed by:

(A.17) ~̇x(t)= A~x(t)+B~u(t),
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where ~x ∈ Rn is the state of the system, ~u ∈ Rm is the control and A ∈Mn,n, B ∈Mn,m are
constant matrices. The goal is to maximize in a fixed time t f the figure of merit (terminal cost)
φ=~x(t f )~x f (we are on the Bloch sphere) where ~x f is the target state (a column vector). The
Pontryagin Hamiltonian is given by:

(A.18) Hp =~pA~x+~pB~u.

The adjoint state ~p ∈Rn (a row vector) is governed by the following dynamics:

(A.19) ~̇p =−~pA.

The general solution of this equation is:

(A.20) ~p(t)=~p(t f )eA(t f −t),

with the final state:

(A.21) ~p(t f )= ∂φ

∂~x
(t f )=~xᵀf .

To find a local optimum we calculate the gradient g:

(A.22) g = ∂Hp

∂u(t)
=~pB =~xᵀf eA(t f −t) B.

Note that the gradient does not depend on the state of the system. The iterative algorithm can
be summarized as follows:

1. guess the initial control ~u0

2. at step k compute the new field ~uk+1 =~uk +εgᵀ

3. go back to step 2

At each step we can propagate forward the state ~xk and compute φk =~xk(t f )~x f :

(A.23) ~xk(t f )= eAt f~x0 +eAt f

t f∫
0

e−AτB~u(τ)dτ.

For a small positive value of ε, φk is an increasing sequence which converges towards a local
maximum.
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ix B
Ensemble of Springs

In this chapter, we go deeper into some of the mathematical details related to the control
of an ensemble of springs. Here, we introduce the method of inversion of a matrix with
its eigenvalues, control of an ensemble of springs reversed in time, and the solution of the

main dynamical equation of an ensemble of springs.

B.1 Inversion of a Matrix Using its Eigenvalues

In this chapter we introduce some helpful mathematical tools which were used in the codes.
Suppose we are required to inverse a N ×N square matrix A. Assume that we have found its
eigenvalues and eigenvectors:

(B.1) A |vi〉 =λi |vi〉 ; i = 1,2, . . . , N

and the eigenvectors |vi〉 are orthonormal:

(B.2) 〈vi|vk〉 = δik, i,k = 1,2, . . . , N

Orthonormal eigenvectors form a basis in the given vector space:

|w〉 =
N∑

i=1
ci |vi〉 ,

where |w〉 is an arbitrary vector, and ci are its expansion coefficients. From the orthonormality
condition (see Eq. B.2) we deduce:

A |vi〉 =λi |vi〉 =
N∑

k=1
λk |vk〉〈vk|vi〉 =

(
N∑

k=1
λk |vk〉〈vk|

)
|vi〉 ,
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hence

(B.3) Θ̂ |vi〉 = 0,

where

(B.4) Θ̂= A−
N∑

k=1
λk |vk〉〈vk|

According to Eq. (B.3):

Θ̂ |w〉 =
N∑

i=1
ciΘ |vi〉 = 0

Since |w〉 is arbitrary it follows that:

(B.5) Θ̂= 0,

whence according to Eq. (B.4):

(B.6) A =
N∑

k=1
λk |vk〉〈vk|

Given that A−1 exists that is det(A) 6= 0 and λ1λ2 · · ·λN 6= 0 we obtain from Eq. (B.1):

A−1 |vi〉 = 1
λi

|vi〉

In other words this means that 1/λi and |vi〉 are respectively the eigenvalues and eigenvectors
of A−1, therefore as it has just been proved (see Eq. (B.6)):

(B.7) A−1 =
N∑

k=1

1
λk

|vk〉〈vk|

Using the built-in function eig of matlab we compute inverse matrices.

B.2 Reversing the Direction of Steering

Suppose we have solved a control problem and found the control u(τ) which steers in a fixed
time T an ensemble of springs with ω ∈ [−ω0;ω0

]
from z0 to z1:

(B.8) z1 = z0 eiωT +eiωT
T∫

0

e− iωτ u(τ)dτ

Since the frequency range is symmetric then:

(B.9) z1 = z0 e− iωT +e− iωT
T∫

0

eiωτ u(τ)dτ
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We now ask the following question: find the control field v(τ) which steers the same system in a
fixed time T backwards from z1 to z0:

(B.10) z0 = z1 eiωT +eiωT
T∫

0

e− iωτ v(τ)dτ

From this equation and Eq. (B.9) it follows that:

(B.11)
T∫

0

e− iωτ v(τ)dτ= z0 e− iωT −z1 =−e− iωT
T∫

0

eiωτ u(τ)dτ

Therefore we get:

(B.12)
T∫

0

e− iωτ v(τ)dτ+
T∫

0

e− iω
(
T−τ) u(τ)dτ= 0

We make a change of variable in the 2nd integral T −τ= t and we arrive at:

(B.13)
T∫

0

e− iωτ v(τ)dτ+
T∫

0

e− iωτ u(T −τ)dτ= 0

or equivalently:

(B.14)
T∫

0

e− iωτ [
v(τ)+u(T −τ)

]
dτ= 0

Since this equation is valid for any T and ω ∈ [−ω0;ω0
]

it follows:

(B.15) v(τ)=−u(T −τ)

Given that the initial and target states are real, we can also go from Eq. (B.8) to Eq. (B.9) and
arrive at the same conclusion Eq. (B.15) in the case of one control input even if the frequency
distribution is not symmetric.

B.3 Different Ways of Solving the Main Dynamical Equa-

tion

Control problems of an ensemble of springs require to solve a linear system of first order
inhomogeneous differential equations

(B.16) d
dt

 xω(t)

yω(t)

=
 0 −ω
ω 0

 xω(t)

yω(t)

+
 u(t)

v(t)


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— namely the evolution equation of harmonic oscillators. Here, as a supplementary material to
what I have already written in the main part of the report, I want to present different ways of
solving this system of differential equations.

1st solution: We rewrite Eq. (B.16) in a different form:

(B.17)

ẋω(t)=−ωyω(t)+u(t)

ẏω(t)=ωxω(t)+v(t).

For simplicity, in the next steps we omit the time variable

zω := xω+ i yω, α := u+ iv.

Summing the equations of Eq.(B.17) and using the newly defined variables we end up with a
single 1st order complex inhomogeneous differential equation:

(B.18) żω = iωzω+α.

The general solution of the corresponding homogeneous equation

(B.19) żω = iωzω

is an exponential function:

(B.20) zω = cω eiωt .

Considering cω as a time dependent variable and substituting it in the inhomogeneous differential
Eq. (B.18) we obtain:

(B.21) cω(t)= cω(0)+
t∫

0

α(τ)e− iωτ dτ,

whence

zω(t)= cω(0)eiωt+eiωt
t∫

0

α(τ)e− iωτ dτ.

cω(0)= zω(0) and therefore:

(B.22) zω(t)= zω(0)eiωt+eiωt
t∫

0

α(τ)e− iωτ dτ.

2nd solution: Introducing new notations:

(B.23) ~Xω :=
 xω

yω

 , A =
 0 −ω
ω 0

 , ~B =
 u

v

 ,
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we can rewrite Eq. (B.16) in a form of a linear imhomogeneous differential matrix equation:

(B.24) d~Xω

dt
= A~Xω+~B.

The general solution of the corresponding homogeneous equation:

(B.25) d~Xω

dt
= A~Xω

gives a matrix exponential:

(B.26) ~Xω = eAt ~Cω,

where ~Cω is a constant vector. Coming back to the initial Eq. (B.24) we assume that ~Cω depends
on time and we insert it into Eq. (B.24):

(B.27) ~Cω(t)= ~Cω(0)+
t∫

0

e−Aτ ~B(τ)dτ.

Equation (B.26) combined with Eq. (B.27) gives the solution of our problem. eAt is a matrix.
To write the solution in an explicit way, first we have to solve the eigenvectors and eigenvalues
problem for the matrix A. Let ~m and Ω be respectively an eigenvector and eigenvalue of A:

A~m =Ω~m,
(
A−ΩIn

)
~m = 0.

We are interested in nontrivial eigenvectors, thus we have:

det(A−ΩIn)= 0.

This quadratic equation has two solutions Ω1 = iω and Ω2 =− iω. The corresponding eigenvectors
satisfy the following equations:

A~m1 = iω~m1, A~m2 =− iω~m2

or (
A− iωIn

)
~m1 = 0,

(
A+ iωIn

)
~m2 = 0.

The corresponding solutions read:

~m1 = m1y

 i

1

 , ~m2 = m2y

 − i

1

 .

These eigenvectors are defined up to a constant, thus they can be normalized:

〈mi|mi〉 = 1; i = 1,2.
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The normalization coefficients m1y,m2y will therefore be defined up to a constant phase:

m1y = m2y = 1p
2

.

The eigenvectors have the final form:

(B.28) ~m1 = 1p
2

 i

1

 , ~m2 = 1p
2

 − i

1


It is important to notice the validity of this statement:

AP = PD,

where P is a matrix whose columns are the right eigenvectors ~m1 and ~m2, and D is a diagonal
matrix of the eigenvalues Ω1 and Ω2:

P = (
~m1, ~m2

)= 1p
2

 i − i

1 1

 , D =
 Ω1 0

0 Ω2

=
 iω 0

0 − iω

 .

In case P is reversible or in other words the inverse matrix P−1 is defined, the last statement
can be rewritten in the form:

A = PDP−1.

A matrix exponential eM of a matrix M is defined by Taylor expansion:

(B.29) eM =
∞∑

k=0

Mk

k!
.

Notice that if M is a number then lim
k→∞

Mk

k! = 0. According to Eq. (B.29):

(B.30) e−At = eP(−Dt)P−1 = P e−Dt P−1.

We recall that D is a diagonal matrix, hence:

(B.31) e−Dt =
 e−Ω1 t 0

0 e−Ω2 t

=
 e− iωt 0

0 eiωt

 ,

and P is a unitary matrix P+P = PP+ = I or in other words P−1 = P+. Inserting the corresponding
expressions of P, P−1 and e−Dt into Eq. (B.30), and doing some simplifications we obtain:

(B.32) e−At =
 cosωt sinωt

−sinωt cosωt

 .

It is useful to mention that e−At is an orthogonal matrix that is
(
e−At

)T
e−At = I or in other

words
(
e−At

)−1 =
(
e−At

)T = eAt. According to Eq. (B.27) (we recall that B = (u v)T):

(B.33) ~Cω(t)= ~Cω(0)+
t∫

0

 ucosωτ+vsinωτ

−usinωτ+vcosωτ

dτ.
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Eq. (B.26) now reads:

(B.34)

 xω
yω

=
 cosωt −sinωt

sinωt cosωt

{ Cx
ω(0)

C y
ω(0)

+
t∫

0

 ucosωτ+vsinωτ

−usinωτ+vcosωτ

dτ

}
,

where Cx
ω(t) and C y

ω(t) are the vector components of ~Cω(t). We introduce new variables zω, aω,
α, and for simplicity we omit mentioning the time dependency:

(B.35) zω := xω+ i yω, aω = Cx
ω+ iC y

ω, α := u+ iv.

After doing the matrix multiplication, summing x and y components of vectors of Eq.(B.34),
and after some straightforward calculations we finally arrive at the expected solution (notice
that aω(0)= zω(0)):

(B.36) zω(t)= zω(0)eiωt+eiωt
t∫

0

α(τ)e− iωτ dτ.
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ix C
Special Integrals and Approximations

This chapter is aimed to introduce a toolbox of integrals which are used in the manuscript.
The two well-known integral functions among others that are presented in the next
section are the Fresnel and the imaginary error functions.

C.1 Fresnel and Imaginary Error Functions

Here, we present the Fresnel and imaginary error functions and the relation between them.
The simulations we make in the manuscript work with both integral functions. Since most
of the simulations of the manuscript are made by "Matlab", we keep the same definitions as
there [118]. The imaginary error function is given by the following form:

(C.1) erfi(x)= 2p
π

x∫
0

et2
dt.

The Fresnel sine and cosine integrals of x are respectively given in the following ways [118]:

f resnels(x)=
x∫

0

sin

(
πt2

2

)
dt

f resnelc(x)=
x∫

0

cos

(
πt2

2

)
dt

For simplicity of the equations, we define a new function which we loosely call Fresnel integral:

(C.2) fresnelz(x)=
x∫

0

e
i
(
πt2

2

)
dt.
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By change of a variable
√

π
2 t = τ, the Fresnel integral can be represented in a different form:

(C.3) fresnelz(x)=
√

2
π

√
π
2 x∫

0

eiτ2
dτ.

We can now express the integral on the right side of the equation with the Fresnel integral:

(C.4)
z∫

0

eiτ2
dτ=

√
π

2
fresnelz

√
2
π

z

 .

Imaginary error function is expressed by means of the Fresnel function in the following way:

(C.5) erfi(x)= (1+ i) fresnelz

√
2
π

e− i π4 x

 .

In the regime of adiabatic control we encounter an integral of specific form:

(C.6) K (α,β)=
t f∫

0

ei(αt2+βt) dt.

By completing the square in the argument of the integrand exponential we arrive at:

(C.7) K (α,β)= e− i β
2

4α

t f∫
0

exp

[
ei π4

p
α

(
t+ β

2α

)]2
dt.

Integration by substitution can be expressed in terms of imaginary error function:

(C.8) K (α,β)= 1
2

√
π

α
e
− i

(
π
4 +

β2

4α

) [
erfi(b)−erfi(a)

]
or in terms of the Fresnel function (see Eq. (C.5)):

(C.9) K (α,β)=
√

π

2α
e− i β

2

4α
[
fresnelz(b′)− fresnelz(a′)

]
,

where the parameters a, b, a′ and b′ are given in the following way:

(C.10) a = ei π4
p
α

β

2α
, b = ei π4

p
α

(
t f +

β

2α

)
, a′ =

√
2α
π

β

2α
, b′ =

√
2α
π

(
t f +

β

2α

)
.

Fresnel function is a special function that can not be represented as a finite sum of elementary
functions. However, representation of the Fresnel function with infinite series is still possible.
First of all, it is useful to recall one important result of complex analysis:

(C.11)
+∞∫
0

ei t2
dt =

p
π

2
ei π4 .
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We now consider the tail of this integral:

(C.12) f (x)=
+∞∫
x

eiτ2
dτ,

where x > 0. By using the substitution τ2 = t, we arrive at:

(C.13) f (x)= 1
2

+∞∫
x2

ei t
p

t
dt.

Continuously integrating by parts the right side of Eq. (C.13), we derive a representation of
f (x) with infinite series:

(C.14) f (x)= i
2

ei x2

x

[
1+

∞∑
n=1

(
− i

2

)n (2n−1)!!
x2n

]
.

According to Eqs. (C.3), (C.11), (C.12):

(C.15) fresnelz(x)=
√

2
π


+∞∫
0

ei t2
dt−

+∞∫
√

π
2 x

ei t2
dt

=
√

2
π

p
π

2
ei π4 − f

(√
π

2
x

) ,

and finally substituting the infinite series representation of f
(√

π
2 x

)
from Eq. (C.14) we get

the representation of the Fresnel function via infinite series:

(C.16) fresnelz(x)= ei π4p
2
− i
π

ei π2 x2

x

[
1+

∞∑
n=1

(
− i
π

)n (2n−1)!!
x2n

]
.

In the main text, however, we use the built-in Fresnel function of "Matlab". Since the K

function is expressed via Fresnel function by Eqs. (C.9), (C.10) then it can also be represented
in infinite series and computed by the built-in Fresnel function. Therefore, in the main work,
the final results contain the function K , which is sufficient.

C.2 Special Integrals

When it comes to calculating the dynamics of ions under the influence of the SWIFT pulse, we
encounter a special type of integrals:Ic(t,ωs,ω)= ∫

sinc(ωs(t− t0))cos(ω(t f − t))dt

Is(t,ωs,ω)= ∫
sinc(ωs(t− t0))sin(ω(t f − t))dt.

For that purpose, we use the sine and the cosine integral functions Si and Ci [118], which are
defined by:

Si(x)=
∫ x

0
sinc(t)dt,Ci(x)=−

∫ ∞

x

cos t
t

dt = γ+ ln x+
x∫

0

cos t−1
t

dt, x > 0,
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where γ is the EulerMascheroni constant [118]:

(C.17) γ= lim
n→∞

(
n∑

k=1

1
k
− ln(n)

)
.

We have the following results:

Ic(t,ωs,ω) = sin[(t0 − t f )ω]
2ωs

(
Ci[(t0 − t)(ω+ωs)]−Ci[(t0 − t)(ω−ωs)]

)+
cos[(t0 − t f )ω]

2ωs

(
Si[(t0 − t)(ω−ωs)]−Si[(t0 − t)(ω+ωs)]

)

Is(t,ωs,ω) = cos[(t0 − t f )ω]
2ωs

(
Ci[(t0 − t)(ω+ωs)]−Ci[(t0 − t)(ω−ωs)]

)+
sin[(t0 − t f )ω]

2ωs

(
Si[(t0 − t)(ω+ωs)]−Si[(t0 − t)(ω−ωs)]

)

C.3 Stationary Phase Approximation

One approximation that we use in the control of an ensemble of springs and ions is the stationary
phase approximation. As a starting point, we consider the following integral:

(C.18) ĥ(ω)=
∞∫

−∞
h(t)eiϕ(t) dt

where ϕ is a smooth function, which is assumed to be rapidly varying with respect to h. A
stationary point t0 satisfies ϕ(1)(t0) = 0, where ϕ(n) denotes the nth time derivative of ϕ. By
expanding ϕ(t) into Taylor series around t = t0:

(C.19) ϕ(t)=ϕ(t0)+ (t− t0)ϕ(1)(t0)+ (t− t0)2

2
ϕ(2)(t0)+·· · .

we deduce that

(C.20) ĥ(ω)' h(t0)eiϕ(t0)
∞∫

−∞
ei ξ

2
2 ϕ

(2)(t0) dξ'
√

2π
ϕ(2)(t0)

h(t0)ei
[
ϕ(t0)+ π

4

]
.

For a chirp excitation, the phase ϕ(t) is defined by ϕ(t)=ωi t+ st2

2 . The instantaneous frequency
ω(t) can be expressed as

(C.21) ω(t)=ϕ(1)(t)=ωi + st,

where s = ω(1)(t). For a linear evolution of ω(t) between ωi and ω f , the rate s is given by
s = (ω f −ωi)/t f . We assume that s > 0. We deduce that the Fourier transform of the control field
is given by

(C.22) û(ω)=
t f∫

0

u(t)e− iωt dt = u0

2

t f∫
0

e
i
(
ωi t+ st2

2 −ωt
)
+e

− i
(
ωi t+ st2

2 +ωt
)dt.
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C.4. ROTATING WAVE APPROXIMATION

We denote by ϕ1 and ϕ2 the arguments of the two exponential terms. It is straightforward to
verify that ϕ(1)

1 (t)= 0 for t = t(ω)
1 = ω−ωi

s and that ϕ(1)
2 (t)= 0 for t = t(ω)

2 = −ω−ωi
s . We neglect the

second contribution since t(ω)
2 < 0. If t(ω)

1 is not too close to 0 and t f , we can consider that the
integral is defined from −∞ to +∞. We finally arrive at

(C.23) û(ω)= u0

√
π

2s
e

i
[
π
4 +ϕ1

(
t(ω)
1

)]
,

The phase spectrum ϕ(ω)= π
4 +ϕ(t(ω)

1 ) can be written as

(C.24) ϕ(ω)= π

4
− (ω−ωi)2

2s
.

In the time evolution of an ensemble of springs and ions we encounter the very integral of
Eq. (C.22). The efficiency of this approximation is illustrated in Fig. 2.27.

C.4 Rotating Wave Approximation

We discuss in this section the validity of the RWA described in Sec. 3.1.2. We consider the
following dynamical system:

(C.25) ż =−iωz+ucos(ω0t)

which corresponds to Eq. (3.6) of the main text. Equation (C.25) describes a spring of frequency
ω/(2π) excited by an external field of constant amplitude u and of frequency ω0/(2π). Introducing
the frame rotating at ω0 with the transformation z = z̃e−iω0 t, we arrive at:

˙̃z =−i∆ωz̃+ u
2

(1+ e2iω0 t),

where ∆ω=ω−ω0 is the detuning. In the RWA, we neglect the fast oscillating term and we get:

˙̃zr =−i∆ωz̃r + u
2

.

where z̃r denotes the approximate z̃- variable. We set δz̃ = z̃− z̃r and obtain:

δ ˙̃z =−i∆ωδz̃+ u
2

e2iω0 t.

This differential system can be exactly integrated:

δz̃(t)=
∫ t

0
e−i∆ω(t−τ) u

2
e2iω0τdτ.

This leads to:
δz̃(t)= ei(ω0−∆ω

2 )t u
2ω0 +∆ω

sin((ω0 + ∆ω2 )t).

We deduce that the relative error due to the RWA can be expressed as:

|δz̃
z̃r

| = |∆ω|
2ω0 +∆ω

|sin((ω0 +∆ω/2)t)
sin(∆ωt/2)

|.
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A rough approximation gives:
|δz̃
z̃r

| ' |∆ω|
2ω0 +∆ω

RWA is therefore justified if |∆ω| ¿ 2ω0. Numerical simulations show that this formula
overestimates the error and that RWA can be used in a quite wide interval around the carrier
frequency of the excitation pulse.
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Conclusions

In this manuscript, we have applied OCT and STA in three different physical systems.
The simplest model that we have considered is RC circuit. This control problem has the
decisive advantage of being linear which simplifies considerably the design of control pulses.

Here, we apply a simple STA approach based on inverse engineering technique. This allows us to
account for local constraints, in particular at time interval boundaries. Contrary to this, OCT
protocols are built on a global constraint, the minimization of a cost functional. A few bases of
functions for the trajectory to be expanded over are considered. Each of them depends on a
finite number of parameters which are determined from the imposed boundary conditions. The
remaining free parameters are used to minimize the cost functional. Our findings reflect that
real exponential functions inspired by regularized optimal solutions give very efficient results
as opposed to polynomial and trigonometric functions. STA protocols can be made robust
against uncertainties at the endpoints of the time interval by canceling the successive time
derivatives at the same endpoints. OCT solutions are however perfectly suited for a well-defined
time interval but fail in case of time interval uncertainties. Inspired by STA local constraints,
we have improved the robustness of OCT solutions by enlarging the parameter space of the
optimal control problem so as to account for local constraints at time interval boundaries. The
findings in this direction can be applied in other linear control problems and also non-linear
control problems in the regime of linear approximation.
The second problem that we discuss in the manuscript refers to control of an ensemble of
springs with dispersion in their natural frequencies. The different methods we have developed
in this area can be used in any linear control system. They also provide interesting alternatives
to design control pulses for two-level quantum systems. We have shown the advantages of STA
and optimal protocols over adiabatic control. Any target state and control duration can be
formally chosen. We have obtained robust broadband, narrowband, selective and ultrahigh
fidelity control pulses. In order to satisfy experimental limitations on the shape of the control
field, additional constraints have to be accounted for. For the two methods, only a finite set of
frequencies (with a regular discretization) are considered. We have also explained how this set
of frequencies can be optimized in a practical application to improve the efficiency of the control
process. It turns out that the regular distribution of offset frequencies is actually far from
being the optimal choice. We have also discussed the relative advantages of the two methods.
The efficiency of the derived control fields is comparable. STA allows to derive simple and
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smooth control solutions, which can be expanded in a given basis of functions. However, it
is difficult to account for additional constraints on the amplitude or the energy of the pulse,
requirements that can be fulfilled with OCT. Another future research direction is the extension
of this approach to other nonlinear dynamical systems. From a mathematical point of view, this
method can be applied in a neighborhood of a fixed point of the dynamics. A major limitation
of this idea is related to the size of the region around the fixed point that can be considered to
reach the target state with a given accuracy. As shown in this study, this size is quite large for
a two-level quantum system because robust or selective excitation processes can be realized
from the linearized system. This characteristic is not known a priori and has to be determined
in each practical case.
The last example we have considered is the robust excitation of ions in FT-ICR. We considered
the simplified conditions of a 2D trajectory and of a homogeneous magnetic field. The study is
not fully realistic. Effects such as the magnetron motion, field geometry, field inhomogeneities
or ion collisions are neglected. However, the presented model system describes quite well the
main cyclotronic behavior and gives the main features of ion trajectories. In the case without
pulse limitation, the linearity of the dynamical equations allows us to use LQOCT, which
has the advantage to lead to an analytic formula of the control law. Very good results were
obtained both for the final radii and phases of the ions. This solution is both in shape and in
amplitude very similar to the SWIFT pulse. The two solutions are expected to be equal for a
continuous range of frequencies. More original control laws are derived when the pulse intensity
is limited. A well-known optimal iterative algorithm, GRAPE, which is used in NMR, has been
adapted to FT-ICR. This algorithm allows reducing the pulse intensity by a factor larger than
three in the examples under study. On the basis of NMR results, this algorithm is expected to
be very efficient in the case of other excitation profiles. The very encouraging and promising
results obtained in this investigation must now be confirmed by experimental implementation.
The relative simplicity of the application of numerical optimal algorithms makes it possible
to adapt it straightforwardly to a new class of control problems. There is therefore confidence
about the extension of optimization procedures to these additional experimental constraints
and limitations.
To summarize, we have completed the toolbox of quantum control by developing and applying
STA and OCT techniques to linear systems. Such control pulses can also be used under some
conditions in non-linear dynamical systems and for quantum dynamics. In this latter case,
we only consider in this manuscript state to state transfer for two level quantum systems. A
next goal would be to generalize this procedure to quantum gates or state to state transfer in
three or four level quantum systems. We have developed STA protocols with motion planning
approach by introducing generating functions for linear systems. It would be interesting to
generalize this approach to other non-linear systems. The problem of FT-ICR has been solved
by considering a simple model. The next step is to take into account the magnetron motion
and the magnetic field inhomogeneity.
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