

UNIVERSITE DE BOURGOGNE ECOLE DOCTORALE ENVIRONNEMENT - SANTE - STIC

UMR Agroécologie INRA 1347/Agrosup/Université de Bourgogne, Pôle Interactions Plantes Microorganismes ERL 6300 CNRS, BP 86510, 21065 Dijon Cedex, France

Département Environnement et Agro-Biotechnologies, Centre de Recherche Public-Gabriel Lippmann, 41, rue du Brill, L-4422, Belvaux, Luxembourg

THÈSE

Pour obtenir le grade de

Docteur de l'Université de Bourgogne Spécialité Biochimie, Biologie Cellulaire et Moléculaire

Par

Cosette ABDALLAH

Technical improvements for analysis of recalcitrant proteins by LC-MS: the mycorrhiza responsive membrane proteome as a case study

Le 26 octobre 2012 devant le jury

Graziella Berta, Professeur, Università del Piemonte Orientale	Rapporteur
André Almeida, Chargé de recherches, Universidade Nova de Lisboa	Rapporteur
Christophe Roux, Professeur, Université Paul Sabatier de Toulouse	Examinateur
Benoit Valot, Chargé de recherches, INRA de Paris	Examinateur
Eliane Dumas-Gaudot, Directrice de recherches INRA de Dijon	Co-directeur de thèse
Ghislaine Recorbet, Chargé de recherches, INRA de Dijon	Co-directeur de thèse
Jenny Renaut, Responsable de la plateforme de protéomique,	
CRP Gabriel Lippmann, Luxembourg	Co-directeur de thèse

Co-directeur de thèse

To my family and Antoine

Acknowledgements

"The teacher who is indeed wise does not bid you to enter the house of his wisdom but rather leads you to the threshold of your mind" Gibran Khalil Gibran.

First and foremost my sincere and deep thanks go to my honourable thesis supervisors Jenny Renaut, Eliane Dumas-Gaudot and Ghislaine Recorbet. Jenny, the joy and enthusiasm you had for research was contagious and motivational for me. I am happy that I witnessed the birth of your adorable daughter, Emily. Eliane, I am deeply thankful for your encouragement and thoughtful guidance all over these years. I want also to express my deep thank to Ghislaine, your willingness, continuous contribution and invaluable advices were mandatory to complete this PhD dissertation.

My debt of gratitude is due to the supportive adviser Kjell Sergeant for sharing my workload and for his unflagging encouragement. This work would not have been possible without your suggestions and comments to improve the legibility of the manuscript.

I would like to acknowledge honorary Lucien Hoffmann, head of EVA department in CRP Gabriel Lippmann, and Daniel Wipf, head of Pôle Interactions Plantes Microorganismes group at INRA, for their confidence and for giving me the opportunity to perform my PhD within the research units of both institutes. My thoughts go as well to the INRA staff, many thanks to Silvio, Vivienne, Franck, Francine and Jonathan.

I am grateful to the jury members for the care with which they accepted to review this work. I am particularly thankful to André Almeida and Graziella Berta, your helpful suggestions will increase the quality and reduce ambiguity of the thesis manuscript.

I would like also to thank Michel Zivy and Benoit Valot for the great collaboration and the constructive data that they have supplied. Special thanks to my thesis committee members Christelle Guillier, Estelle Goulas and Françoise Simon-Plas for their support, guidance and helpful suggestions.

I gratefully acknowledge the funding source Fonds National de la Recherche du Luxembourg, TR-PHD BFR 08-078, that made my PhD work possible.

I would like also to thank the technical staff in the CRP proteomics Platform. Sébastien Planchon who rescued me in many bioinformatics related issues. Céline Leclercq, thank you for your technical support and help. Foremost thanks for your friendship, good mood and your presence has helped to better integrate and carry on throughout all these years.

"In the sweetness of friendship let there be laughter, and sharing of pleasures" Gibran Khalil Gibran.

I would like to use this opportunity to thank all my friends and colleagues who have helped me through all these years. I owe them my heartfelt appreciation.

To start, I would like to thank André Jobard and Germaine Chabanaud for being like a second family for me in Dijon.

The thank goes to Anastasia Georgantzopoulou, spelling and pronouncing properly your family name is another achievement in my life :) thank you for your friendship, for supporting me in my ups and downs and being the guide of "what is must to do in Luxembourg". I am looking forward to make more journeys together :)

Lisa, my cinema partner every Wednesday and with whom I shared the first unforgettable camping experience :) thank you and I wish you all the best.

A big thanks is for my office colleagues, I enjoyed their company in a friendly atmosphere. Raquel, thank you for your good mood, Sebastian, thanks for your informatics skills and keep me updated on your targeted "juicy market". Frédéric, the office secretary thank you for everything. Bruno, I will miss our enthusiastic political debates. Good luck for all of you in finishing your PhD.

My thoughts go as well to my friend Roy, I will miss exchanging mails with you, thank you for all the laughter and good luck in achieving your PhD. Rachid thank you for your support. Laura, Tommaso, Mauricio, Xavier, Hélène, Imad, Ali, Tiphaine and Périne many thanks for your presence and assistance.

"A friend who is far away is sometimes much nearer than one who is at hand" Gebran Khalil Gebran.

I could not complete my work without invaluable friendly assistance that meant more to me than I could ever express. The thank goes to my Lebanese friends: the beautiful bride Diane, Dédé thanks for being so close regardless the distance, Johnny my childhood friend, Charbel thanks for the great time that we shared together, and Zeina thank you for your help in Dijon and I wish you all the best in your personal and professional life.

"Your children are not your children. They are the sons and daughters of Life's longing for itself" Gebran Khalil Gebran.

My sincerest thanks indebted to my parents who raised me with love and supported me in all my pursuits. You accepted to be far away from your children, wishing them to make better future and reach higher issues. Thank you for your prayers, love and financial aids.

The thank goes as well to my sister Marie who was always present and supportive regardless the distance and who encouraged me to seek further knowledge, you deserve all the best in your professional and private life. Thanks for the support of my brother in law Elie. I am not forgetting my brother Gilbert who was always source of enthusiasm and joy, thanks for your encouragements.

"Love is the only flower that grows and blossoms without the aid of the seasons" Gebran Khalil Gebran.

Antoine, I deeply thank you for your love, continuous support to cope with ups and downs, successes and failures, doubts and certainties. "*yesterday is today's memory and tomorrow is today's dream*" I am looking forward to be together.

Résumé

La symbiose mycorhizienne à arbuscules (SMA) est le résultat de l'interaction entre les racines de plus de 80% des familles de plantes terrestres et les champignons MA. Divers types de membranes jouent un rôle crucial dans la mise en place et le fonctionnement de la SMA chez l'hôte végétal. Si l'électrophorèse bidimensionnelle (2-DE) reste la méthode la plus couramment utilisée pour des analyses protéomiques quantitatives dans la SMA, elle résout difficilement les protéines membranaires en raison de leur hydrophobicité, leur précipitation au point isoélectrique (pI) et leur faible abondance comparativement aux protéines cytosoliques. Donc peu nombreuses sont les protéines membranaires identifiées comme étant régulées en réponse à la symbiose. Afin d'avoir accès à cette catégorie de protéines et contourner les défauts de la 2-DE, l'application de nouvelles méthodes permet de réaliser des analyses quantitatives avec marquage chimique (comme l'iTRAQ) ou non (label-free). Dans ce contexte, deux méthodes de protéomique quantitative, iTRAQ-OFFGEL-CL-SM/SM et « label-free » 1-DE-CL-SM/SM, sont adoptées dans ce travail visant à identifier et quantifier les variations d'accumulation des protéines microsomales de racines de Medicago truncatula inoculées par Rhizophagus irregularis, préalable indispensable à l'analyse de leur rôle fonctionnel dans la SMA. Un protocole d'extraction donnant accès à des fractions radiculaires enrichies en protéines microsomales nécessaires pour les analyses ultérieures est décrit dans cette étude. En plus de l'analyse quantitative du protéome membranaire en réponse à la SMA, une approche méthodologique a été mise en place afin d'étudier l'impact du marquage iTRAQ sur le pI des peptides.

Mots-clés : symbiose mycorhizienne à arbuscules, *Medicago truncatula*, protéines membranaires, protéomique hors gel, protéomique sans marquage.

Abstract

Arbuscular mycorrhizas (AM) are widespread symbiotic associations between plant roots and AM fungi. Deep membrane alterations are the foremost morphological changes occurring in the host plant in response to AM symbiosis. Two-dimensional gel electrophoresis (2-DE) is the workhorse method in AM proteomics. Membrane proteins are under-represented in 2-DE because of their hydrophobicity, low abundance, and precipitation at their isoelectric point, thereby few are the identified membrane proteins involved in sustaining the AM symbiosis. Membrane proteomics is still challenging due to 2-DE related shortcomings, however latest trends and advancements in mass spectrometry (MS)-based quantitative proteomics offer enormous potential to monitor membrane protein change in abundance in large scale experiments. In the current work microsomal proteins of *Medicago truncatula* roots inoculated with Rhizophagus irregularis were, for the first time, scrutinised by stateof-the-art MS-based proteomic approaches iTRAQ-OFFGEL-LC-MS/MS and labelfree 1-DE-LC-MS/MS. The applied workflows combine two novel proteomic procedures, label-based and -free, targeting an insight view on the membrane proteome changes in AM symbiosis. A subcellular fractionation method is herein described to access the total membrane-associated proteins with sufficient recovery and purity for their subsequent in-depth analysis. In addition to the biological gain by shedding the light on candidate AM-related membrane proteins, a methodological approach was carried out in the present work in order to elucidate the iTRAQ labelling impact on peptide isoelectric points.

Keywords: arbuscular mycorrhizal symbiosis, *Medicago truncatula*, membraneassociated proteins, gel-free proteomics and label-free proteomics.

List of abbreviations

ACN: Acetonitrile AFC: Affinity chromatography AM: Arbuscular mycorrhiza AMF: Arbuscular mycorrhizal fungi ANOVA: Analysis of variance APEX: Absolute protein expression AX: Anion-exchange chromatography

BN-PAGE : Blue native-PAGE

CHCA: α-cyano-4-hydroxycinnamic acid CID: Collision induced dissociation CX: Cation-exchange chromatography

DDA: Data-dependent analysis DIA: Data-independent analysis DTT: Dithiothreitol

EDTA: Ethylenediaminetetraacetic acid emPAI: Exponentially modified Protein abundance index EMRT: Exact mass retention time ERM: Extra-radical mycelium EST: Expressed sequence tag

FA: Formic acid FDR: False discovery rates

HCD: High energy collisional dissociation HILEP: Hydroponic isotope labelling of entire plants

IAA: 2-iodoacetamide ICAT: Isotope-coded affinity tags ICPL: Isotope-coded protein labelling IEC: Ion-exchange chromatography IEF: Isoelectric focusing IPG: Immobilized pH gradient IRM: Intra-radial mycelium iTRAQ: Isobaric tags for relative and absolute quantitation

JA: Jasmonic acid

LC: Liquid chromatography

MALDI-TOF: Matrix assisted laser desorption ionisation time of flight Mbp: Million base pair MeOH: Methanol MES: 2-(N-morpholino)ethanesulfonic acid ms: Millisecond MS: Mass spectrometry MS^E: High-energy scan mode MudPIT: Multidimensional protein identification technology MW: Molecular weight m/z: Ratio mass/charge

NSAF: Normalized spectral abundance factor NMWL: Nominal molecular weight limit

OGE: OFFGEL electrophoresis

PAI: Protein abundance index PCA: Principle component analysis pI: Isoelectric point PMSF: Phenylmethylsulfonyl fluoride PPA: Pre-penetration apparatus

RNF: Rhizobial nitrogen-fixing ROS: Reactive oxygen species RP: Reversed-phase chromatography Rt: Retention time

s: second SCX: Strong-cation exchange SDS: Sodium dodecyl sulphate SEC: Size exclusion chromatography SILAC: Stable isotopic labelling with amino acids in cell culture SILIP: Stable isotope labelling in planta SL: Strigolactone

TEAB: Triethylammonium bicarbonate TFA: Trifluoroacetic acid TMT: Tandem Mass Tag Tris: Tris(hydroxymethyl)aminomethane

1-DE: One-dimensional gel electrophoresis2-DE: Two-dimensional gel electrophoresis2D-DIGE: Difference gel electrophoresis2D-LC: Two-dimensional liquid chromatography

Table of contents

Synopsis de la thèse	.17
Introduction	.30
Chapter 1.1	.31
Proteins sustaining arbuscular mycorrhizal symbiosis: falling silent for function	
reveals a new generation of underground-working desperate housewives	.31
Summary	.32
I. Casting	.33
II. Fashion victims: copy and paste for guest entry between AM symbiosis and	1
more recently evolved plant interactions	.38
1. The dress code to make friends: branching out before symbiont contact	.38
2. Holding a reception	.43
III. Home sweet corner. A 400-Myr old but any rest housekeeping investment	to
accommodate arbuscules	.50
1. Gossip girls for signalization	.53
2. Interior designers for membrane biogenesis and protein trafficking	.54
3. On a permanent slimming diet: the phosphate price for success	.57
4. Shopping centre addiction: the fuel dispenser	.59
5. The face pack of house-keepers: a plastid-derived colored and hormonal	
control.	.62
IV. The gardener, the chemist, and the trader as desperados' serial lovers	
"Because mycorrhiza worth it":	.66
Chapter 1.2	.67
Gel-based and gel-free quantitative proteomics approaches at a glance	.67
Abstract	.68
1- Introduction	.69
2- Gel-based proteomics	.70
2.1- Iwo-dimensional gel electrophoresis (2-DE): the workhorse of	-
proteomics	.70
2.2- Electrophoretic separations of native proteins	.13
2.3- One-dimensional gerelectrophoresis (1-DE): the birth of proteomics	. 74
3- Proteomics: from gel-based to gel-free techniques	. / 5
4- Peptide tractionation procedures	. / 3
4.1- Ion-exchange chromatography (IEC)	./6
4.2- Reversed-phase chromatography (RP)	./0
4.5- Two-dimensional inquid chromatography (2D-LC)	./0
4.4- OFFGEL electrophoresis (OGE)	.//
5- MS-based quantitation	./8
6- Overview of label-based proteomic approaches	. 79
6.1- Chemical labelling	. 79
6.1.1- Proteorytic labelling	. /9
6.1.2- Isotope-Coded Affinity tags (ICA1)	18.
6.1.3- Isolope-Coded Protein Labelling (ICPL)	.82
6.1.4- Isobaric Tags for Relative and Adsolute Quantification (11 RAQ)	.83
0.1.3- Tanuenii Mass Tag (TMT)	.04 95
6.2.1 Stoble Isotonia I shalling with A mine Asida in Call Culture (SULAC)	.0J 0F
6.2.1- Stable isotopic Laberning with Amino Acids in Cell Culture (SILAC) 6.2.2- ¹⁴ N/ ⁴⁵ N labelling	86 86
7- Label-free quantitative proteomics	.87

7.1 Spectral counting	
7.2- Spectral peak intensities	
7.3- Data-independent analysis (DIA)	90
8- Conclusion	95
Acknowledgements	95
Objectives and outline	96
Results & discussion	99
Chapter 2	99
Optimization of iTRAQ labelling coupled to OFFGEL fractionation as a pro-	oteomic
work flow to the analysis of microsomal proteins of Medicago truncatula ro	ots99
Abstract	101
Background	102
Results and discussion	104
Experimental design	104
In-filter protein digestion	105
Peptide isobaric tagging	107
Peptide OGE fractionation	108
iTRAQ impact on peptide OGE fractionation	111
Acidic and basic amino acid distribution per peptide	116
iTRAQ impact on peptide elution time	118
Conclusions	119
Methods	120
Biological material and growth conditions	
Microsomal protein extraction	120
In-solution protein digestion	120
iTRAQ peptides labelling	121
Peptide OGE	121
LC-MS/MS analysis	122
Abbreviations	123
Competing interests	123
Authors' contributions	123
Acknowledgements	124
Chapter 3	126
Performance of isobaric labelling in quantitative proteomics of arbuscular	
mycorrhized Medicago truncatula roots	126
Abstract	128
Introduction	129
Materials and methods	131
LC-MS/MS analysis	131
Results and discussion	133
Proteomic analysis design for in-depth differential quantitative study.	133
Comparison of peptide and protein identification results	133
Protein abundance changes and iTRAQ labelling accuracy.	136
Conclusion and future prospects	138
Chapter 4	141
A label-free 1-DE-LC-MS/MS workflow for inventorying the root microso	mal
proteome and its modifications upon arbuscular mycorrhizal symbiosis in the	he plant-
microbe interacting model legume Medicago truncatula	141
Graphical abstract	143
Abstract	144

Introduction1	45
Material and methods1	48
Biological material and growth conditions1	48
Root microsomal protein extraction1	49
Sample pre-fractionation using 1-DE1	50
LC-MS/MS analysis1	50
Protein identification and quantification1	51
Protein sequence feature prediction1	52
Results and discussion1	53
Biological parameters, protein identification and curation1	53
The microsomal proteome of R. irregularis-inoculated roots qualitatively	
resembles that of nonmycorrhized plants, thereby defining a core-set of	
membrane proteins in <i>M. truncatula</i> 1	57
AM symbiosis quantitatively modifies the root membrane proteome of M.	
truncatula1	64
Conclusions1	74
Acknowledgments1	75
Chapter 5 1	77
General discussion, conclusion and perspectives1	77
References	82
Additional files	201

List of tables

Table 1.1: List of proteins essential for arbuscules.	64
Table 1.2: The various available isotopic labels, their sites of labelling and structures	80
Table 1.3: An overview of the latest MS-based quantitative proteomic studies on plant	
systems.	91
Table 2.1: Observed basic pI shifts in OGE fractionation after iTRAQ labelling	112
Table 2.2: Co-migration of iTRAQ- and unlabelled peptides in the same OGE fraction	114
Table 2.3: Acidic pI shifts in OGE as a result of iTRAQ labelling.	116
Table 3.1: Summary of the number of MS scans, identified peptides and proteins per	
experiment.	133
Table 4.1. List of the proteins displaying an over-accumulation in mycorrhizal roots relat	tive
to controls.	165
Table 4.2. List of the proteins displaying a down-accumulation in mycorrhizal roots relat	tive
to controls	168

Table of figures

Figure 1.1: Schematic overview of the life cycle of an AM fungus	36
Figure 1.2: Schematic overview of the SL and Myc-LCO-related pathways that mediate AM	[
hyphal and root branching responses4	40
Figure 1.3: Schematic representation of a model protein pattern associated with AM fungal	
entry into plant cells at the early stages of symbiosis 4	19
Figure 1.4: Schematic representation of the structure and regulation of an arbuscule5	51
Figure 1.5: Research outline of the presented study) 7
Figure 2.1: Schematic representation of the experimental workflow of iTRAQ-OGE-LC-	
MS/MS)5
Figure 2.2 Depiction of in-filter protein digestion protocol using Amicon Ultra filter	
devices [™] (Millipore))7
Figure 2.3 Spectrum of an iTRAQ labelled peptide of control (114) and mycorrhized (117)	
protein digest)8
Figure 2.4: Number of peptides identified per OGE fraction	10
Figure 2.5: Average distribution of basic and acidic amino acids per peptide in each OGE	
fraction	17
Figure 2.6: Peptide elution time in LC separation	18
Figure 4.1: Development of <i>R. irregularis</i> within roots of four week-old <i>M. truncatula</i> plants	s. 54
Figure 4.2: Enrichment in root microsomes from four week-old <i>M. truncatula</i> plants 15	55
Figure 4.3: In silico characterization of the 882 putative membrane proteins conserved	
between control and mycorrhizal roots over the 883 root microsomal proteins that were	
recorded	59

List of additional files

Chapter 2, additional file S2.1: Impact of iTRAQ labelling on peptide pI and OGE	
fractionwise12	24
Chapter 2, additional file S2.2: Impact of iTRAQ labelling on peptide retention time in LC	
separation12	24
Chapter 3, additional file S3.1: Table of identified proteins by iTRAQ-OGE-LC-MS/MS. 13	39
Chapter 4, additional file S4.1: List of the 1128 proteins	75
Chapter 4, additional file S4.2: Overlap of the co-identified proteins in two biological	
experiments17	75
Chapter 4, additional file S4.3: List of the 164 (15.6%) proteins (yellow-shaded) out of the	
1047 nonredundant identifications that were discarded as potential contaminants of the	
microsomal fractions isolated from nonmycorrhizal and mycorrhizal roots	75
Chapter 4, additional file S4.4: List of the 883 (84.3%) proteins out of the 1047 nonredundant	nt
identifications that were retained as genuine microsomal candidates from the fractions	
isolated from nonmycorrhizal and mycorrhizal roots	76
Chapter 2, additional file S2.1)2
Chapter 2, additional file S2.2	32
Chapter 3, additional file S3.1	33
Chapter 4, additional file S4.1	14
Chapter 4, additional file S4.2	55
Chapter 4, additional file S4.3	57
Chapter 4, additional file S4.4	77

Synopsis de la thèse

Dans la nature, les relations plantes-microorganismes sont principalement du type parasitisme, commensalisme, ou mutualisme. C'est parmi cette dernière catégorie de relations que s'inscrit la symbiose mycorhizienne à arbuscules (SMA) (Smith & Read, 2008). Les premières traces de la SMA remontent à 400 millions d'années avec la découverte de fossiles de plantes présentant dans leurs tissus les mêmes structures fongiques que les plantes contemporaines (Remy et al., 1994). Ces observations confirment une étude moléculaire datant l'apparition des champignons MA de 353 à 462 millions d'années (Simon et al., 1993). Cette apparition et les premières traces de la symbiose endomycorhizienne coïncideraient avec le début de la colonisation du milieu terrestre par les plantes. Le terme mycorhize provient des mots grecs "mûkes" et "rhiza" signifiant respectivement "champignon" et "racine". Il désigne l'interaction réciproque entre certains champignons du sol et les racines d'une plante. La SMA est le résultat de l'interaction entre les racines de plus de 80% des familles de plantes terrestres et les champignons MA. Ces derniers sont des biotrophes obligatoires c'est-à-dire qu'ils ne peuvent se développer qu'en présence des racines de la plante hôte. Leurs besoins en composés carbonés sont satisfaits via la symbiose grâce aux photosynthétats de la plante permettant ainsi d'accomplir leur cycle de vie (Smith & Gianinazzi-Pearson, 1988). En parallèle, la plante hôte bénéficie d'une meilleure nutrition minérale vis-à-vis de divers éléments y compris des éléments traces engendrant ainsi le plus souvent un gain en biomasse (Smith & Gianinazzi-Pearson, 1988) et une meilleure résistance aux stress biotiques et abiotiques (Pozo & Azcon-Aguilar, 2007). Avant tout contact physique, chaque partenaire décèle la présence de l'autre par l'intermédiaire de signaux moléculaires diffusibles qui contribuent aux mécanismes de reconnaissance entre les deux partenaires (Giovannetti et al., 1993). L'hôte végétal exsude par ses racines de multiples molécules capables de stimuler la germination des spores et/ou la prolifération cellulaire des champignons MA (Buee et al., 2000; Sbrana & Giovannetti, 2005). Découvertes plus récemment (Akiyama et al., 2005; Besserer et al., 2006), les strigolactones sont des apocaroténoïdes à très forte activité biologique capables d'activer en quelques minutes, et à des concentrations inférieures au nanomolaire, le métabolisme mitochondrial du partenaire fongique (Besserer et al., 2006;

Besserer et al., 2008; Besserer et al., 2009). En échange, les champignons MA produisent des signaux diffusibles capables de modifier l'expression des gènes de la plante et de provoquer des réponses racinaires comme des variations calciques cytosoliques ou la production de racines latérales (Weidmann et al., 2004; Kosuta et al., 2008; Kuhn et al., 2010). La mise en place de la SMA requiert une coordination fine des programmes cellulaires du champignon et de la plante. Ainsi, la colonisation de la racine par l'hyphe du champignon s'effectue selon un enchaînement de séquences définies que l'on peut brièvement résumer comme suit: après la germination des spores et la formation d'hyphes, ces derniers interagissent avec la paroi de la racine et forment une structure particulière nommée « hyphopodium », le champignon va coloniser le cortex de la racine en développant des hyphes entre les cellules. Ces hyphes vont croître dans le cortex et se différencier dans les cellules du parenchyme cortical en une structure d'échange privilégiée connue sous le nom d'arbuscule, lieu privilégié d'échange de nutriments entre les deux partenaires. Finalement, le champignon développe un réseau d'hyphes extra-radiculaires en même temps qu'il forme des vésicules ou des cellules auxiliaires et de nouvelles spores représentant des éléments de réserve (Bonfante & Genre, 2008). Durant les 4 à 5 premières heures qui suivent la formation de l'hyphopodium, une structure subcellulaire appelée « PrePenetration Apparatus » (PPA) se forme (Genre et al., 2005). La membrane cytoplasmique de la cellule épidermique s'invagine créant ainsi un tube dont l'orientation est prédéfinie par le noyau (Genre et al., 2005). Le cytosquelette, le réticulum endoplasmique et l'appareil de Golgi interviennent activement dans la formation de ce tunnel. Puis le champignon va progresser par des hyphes intercellulaires en direction de la zone corticale de la racine où il va pénétrer et se ramifier par croissance dichotomique afin de former la structure typique de cette symbiose *i.e.* l'arbuscule. Les arbuscules se développent dans un compartiment résultant de l'invagination de la membrane hôte appelée membrane périarbusculaire (Parniske, 2000). La surface de la membrane plasmique végétale va plus ou moins quadrupler pour former la membrane périarbusculaire. Lors de la formation de l'arbuscule, un certain nombre de modifications des membranes et paroi intervient pour faciliter les échanges entre le champignon et la plante hôte (Harrison 1999). En outre, la mise en place de ces structures en forme de petit arbre (Parniske, 2008) s'accompagne de profonds réarrangements dans les cellules corticales de la plante hôte incluant des mouvements du noyau, la multiplication et réorganisation de

nombreux organites dans les cellules colonisées et l'augmentation de la surface des membranes plasmique et tonoplastique. L'ensemble de ces remaniements suppose donc que divers types de membranes jouent un rôle crucial dans la mise en place et le fonctionnement de la SMA à la fois chez le micro-symbiote et l'hôte végétal. Des études ont permis l'identification de quelques transporteurs localisés dans les zones de colonisation comme les transporteurs de phosphate MtPT4 et de sucrose MtSuc1 chez M. truncatula (Javot et al., 2007; Baier et al., 2010), deux transporteurs ABC (Zhang et al., 2010) et la « blue copper binding protein » (Valot et al., 2006; Pumplin & Harrison, 2009). D'autres travaux effectués sur les protéines membranaires ont révélé aussi la régulation d'une vingtaine de protéines en réponse à la symbiose (Valot et al., 2005; Valot *et al.*, 2006). En dépit des connaissances récemment acquises sur les rôles des protéines dans l'établissement et le fonctionnement de cette symbiose, de nombreuses questions sont encore à résoudre concernant les protéines membranaires et ce d'autant plus que l'étude à grande échelle de cette catégorie de protéines se heurte à des difficultés méthodologiques. Si l'électrophorèse bidimensionnelle (2-DE) reste la méthode la plus couramment utilisée pour des analyses protéomiques quantitatives, elle résout difficilement les protéines membranaires en raison de leur hydrophobicité, leur faible dissolution dans le tampon d'isofocalisation utilisé, leur précipitation au point isoélectrique (pI) et leur faible abondance comparativement aux protéines cytosoliques (Ephritikhine et al., 2004; Haynes & Roberts, 2007). Afin d'avoir accès à cette catégorie de protéines, un recours aux méthodes de protéomique de type « shotgun » s'avère indispensable. En effet, l'utilisation de cette stratégie de protéomique est reconnue pour augmenter le nombre d'identifications des protéines hydrophobes et peu abondantes (Haynes & Roberts, 2007) pouvant ainsi donner accès aux protéines membranaires intrinsèques. Le développement de nouvelles méthodes permet désormais de réaliser des analyses quantitatives sans (label-free) ou avec marquage chimique (ICAT, iTRAQ, SILAC, etc..).

Les objectifs de cette thèse sont de mettre en œuvre des méthodes d'analyse protéomique améliorant la couverture et la quantification des protéines membranaires de plantes. Une introduction sous forme de deux articles de revue permet d'un part de dresser un état des lieux des connaissances actuelles des protéines reliées à la SMA (**publication n**° **1**, **soumise**) et d'autre part des méthodologies envisageables pour la quantification des protéines par spectrométrie de masse (SM) (**publication n**°**2**, **soumise).** La SMA a été choisie comme modèle d'étude en raison des importants remaniements membranaires qui caractérisent cette interaction, particulièrement dans le couple *Medicago truncatula - Rhizophagus irregularis. M. truncatula* est reconnue comme l'une des plantes modèles pour les recherches sur les légumineuses grâce à son petit génome et la disponibilité de nombreux mutants, sa forte synthénie avec la plupart des légumineuses cultivées et la facilité de sa culture et transformation. En outre, *Arabidopsis thaliana* ne pouvant pas établir de symbiose mycorhizienne, *M. truncatula* a été choisie comme plante hôte mycotrophe de choix pour le décryptage des événements moléculaires gouvernant les interactions symbiotiques avec les bactéries fixatrices d'azote et/ou la SMA (Henckel *et al.*, 2009).

L'accès aux protéines membranaires reste très limité par la seule utilisation d'une approche globale. Dans ce contexte, deux méthodes de protéomique subcellulaires sont adoptées dans ce travail visant à caractériser les protéines microsomales des racines de M. truncatula et ceci, afin d'élucider leur rôle fonctionnel dans la SMA. Ces travaux de recherche s'articulent en trois parties : la première approche méthodologique a consisté à mettre en œuvre un protocole de digestion des protéines microsomales en solution et étudier l'impact du marquage iTRAQ (isobaric tags for relative and absolute quantification) sur le pI des peptides (publication n° 3, sous presse). La seconde partie est consacrée à l'utilisation d'une technologie innovante de fractionnement des peptides en solution (OFFGEL) compatible avec le marquage isotopique iTRAQ pour comparer l'abondance des protéines microsomales entre racines témoins et mycorhizées (publication n° 4, soumise). Enfin, dans une dernière partie, nous avons eu recours à la méthode dénommée « label-free » 1-DE-CL-SM/SM, qui n'est pas basée sur un marquage chimique et permet d'accéder à la quantification relative des protéines (publication n° 5, soumise).

Quelle que soit la technique protéomique appliquée, la qualité de l'échantillon de départ est une étape cruciale pour la suite de l'analyse. Dans cet objectif, nous avons utilisé une méthode d'enrichissement en microsomes adaptée de celle décrite par Stanislas *et al.* (2009). L'atout majeur de ce protocole est l'utilisation d'un broyeur électrique qui permet l'obtention d'un broyat homogène et l'accès à des

fractions radiculaires enrichies en microsomes à partir des racines mycorhizées ou non par le champignon *R. irregularis* nécessaires pour les analyses ultérieures.

Dans un premier temps, les protéines microsomales ont été analysées par la méthode iTRAQ-OFFGEL-CL-SM/SM. Le marquage iTRAQ a été décrit pour la première fois par Ross et al. (2004) et permet la comparaison simultanée de 4 à 8 conditions. Il repose sur le marquage des amines primaires en position N-terminale des peptides et en chaîne latérale de la lysine. Les différents échantillons protéiques sont digérés en solution, marqués avec un tag iTRAQ particulier, mélangés, fractionnés et puis analysés en spectrométrie de masse (SM). Les tags étant isobariques, les différents peptides marqués apparaissent lors du scan SM sous la forme d'un seul et même pic. En SM/SM, les différents échantillons sont distingués par la libération des groupements rapporteurs de m/z 114 à 121. L'intensité de ces ions est proportionnelle à la quantité relative du peptide dans chacune des conditions auxquelles ils se rapportent. Le reste du spectre SM/SM est classique et permet de visualiser les différents fragments du peptide et donc de l'identifier. Les étapes d'identification et de quantification sont réalisées simultanément durant l'analyse SM/SM. La fenêtre de m/z 114 à 121 a été choisie car aucun fragment ou ion immonium pouvant fausser la quantification ne se situe dans cette zone. Récemment, la technologie OFFGEL a émergé comme étant d'un grand intérêt en protéomique (Fraterman et al., 2007). Cette technique permet la séparation des peptides en fonction de leur pI en milieu liquide. La séparation se déroule sur une bandelette de gel (bandelette ou « strip » de 12 ou 24 cm), contenant un gradient de pH immobilisé, sur lequel se trouve 12 ou 24 cupules formant des fractions tout au long de la bandelette. L'échantillon peptidique, dilué dans un tampon contenant des ampholytes et du glycérol, est réparti dans chacune des fractions. L'application d'un courant induit la migration des peptides, la bandelette servant de « pont » reliant les différentes fractions les unes aux autres. A la fin de l'IEF, chaque fraction liquide contient l'ensemble des peptides ayant un pI correspondant à la gamme de pH de la fraction. L'avantage majeur de cette approche, outre le préfractionnement de l'échantillon, est de pouvoir déterminer le pI des peptides et de l'utiliser comme un filtre supplémentaire pour valider les identifications en SM.

Nos premiers objectifs méthodologiques sont la vérification de l'efficacité de l'isofocalisation des peptides en OFFGEL, la compatibilité de ce système avec l'iTRAQ et l'effet de ce dernier sur le pI des peptides. Dans cette stratégie, la digestion protéique doit être réalisée en solution avant le marquage des digestats aux iTRAQ. La digestion des protéines en gel génère des extraits peptidiques dépourvus de sels et de détergents, lesquels sont préjudiciables à l'analyse subséquente en SM. En revanche, celle réalisée en solution nécessite des étapes de dessalage et de nettoyage d'échantillons avant de les analyser en SM, en regard des différents réactifs ajoutés au cours de la réduction et alkylation des protéines avant leur digestion à la trypsine. Ces détergents, même en faible concentration, peuvent inhiber la digestion enzymatique et dominer les spectres à cause de leur ionisation facile (Arnaud et al., 2005). Un protocole modifié de la méthode FASP (« filter aided sample preparation ») de Wiśniewski et al., (2009) est décrit, dans cette partie du travail, pour la digestion des protéines en solution. Il s'agit de réaliser les différentes étapes de réduction et alkylation des protéines ainsi que la digestion trypsique dans des tubes à filtre. Le filtre joue un rôle clé de « réacteur protéomique » qui retient les molécules de haut poids moléculaire (protéines) et permet le passage de ceux de faible poids moléculaire (impuretés et peptides) (Wisniewski et al., 2009). Les résultats en SM ont prouvé l'efficacité de cette méthode à éliminer les interférents et assurer le marquage des peptides. Ensuite, la qualité du fractionnement des peptides par OFFGEL a été analysée. Celle-ci est évaluée en étudiant la répartition d'un peptide unique dans des fractions OFFGEL successives. Les résultats ont révélé que 70% des peptides, marqués ou non à l'iTRAQ, sont enrichis dans une fraction unique d'OFFGEL et qu'environ 90% d'entre eux sont présents dans au maximum 2 fractions successives. L'OFFGEL présente donc une bonne qualité de séparation des peptides et ces résultats confirment que le marquage iTRAQ ne perturbe pas la qualité de la focalisation. En outre, un nombre plus élevé de peptides marqués a été identifié dans les fractions au pH basique comparé à leurs homologues non marqués et un effet de marquage sur le pI des peptides est remarqué. En effet, l'ion rapporteur de l'iTRAQ est une pipérazine qui possède deux fonctions amines tertiaires. Lorsque ce groupe vient se lier au Nterminal du peptide et à la chaîne latérale d'une lysine, un remplacement d'une amine primaire par deux autres tertiaires est réalisé ce qui pourrait augmenter la basicité des peptides. Ainsi, il semble que ce marquage induit une modification des pIs des peptides ce qui s'est traduit par un déplacement (« shift ») surtout vers les zones les

plus basiques. Les outils actuellement disponibles pour le calcul des pIs ne prennent pas en considération l'addition d'un réactif iTRAQ sur les N-terminaux des peptides, ainsi leur pI après le marquage ne peut pas être calculé. Afin de mieux comprendre et expliquer cet effet, un autre outil a été employé dans cette étude, disponible en accès libre (http://www.chemaxon.com/marvin/sketch), qui permet de dessiner les structures des peptides (acides aminés et molécules ajoutés aux peptides) et d'ensuite calculer le pI avant et après le marquage. Effectivement, cet outil a conduit à une meilleure interprétation de nos résultats tout en confirmant un changement de pI des peptides à la suite de leur marquage.

Le marquage iTRAQ se présente comme un puissant outil en protéomique quantitative permettant d'étudier l'expression différentielle des protéines entre plusieurs échantillons et de faire des comparaisons intra-échantillons en améliorant la reproductibilité qui fait souvent défaut aux techniques classiques d'électrophorèse. L'intérêt de ce marquage est sa capacité, grâce à la somme des signaux en SM, d'augmenter la sensibilité de détection en favorisant l'identification et la quantification des protéines peu abondantes et récalcitrantes, faisant de cette technique une méthode de choix pour l'étude des protéines membranaires. Malgré son utilisation accrue en protéomique quantitative, uniquement quelques spectromètres de masse sont capables d'analyser des peptides marqués aux iTRAQ. Ceci est dû à la limitation de la méthode de fragmentation en CID (collision induced dissociation) qui génère des spectres non informatifs aux bas poids moléculaires induisant une perte de la zone qui contient les ions rapporteurs de l'iTRAQ. Afin de contourner ce défaut, une complémentarité de méthodes de fragmentation tel que le couple CID-HCD (high collision dissociation) a été proposée et s'est révélée être une méthode de choix pour les analyses des échantillons marqués aux iTRAQ.

Dans une deuxième partie du travail, une démarche choisie pour l'étude différentielle des protéines microsomales en réponse à la SMA a été réalisée en utilisant l'approche iTRAQ-OFFGEL-CL-SM/SM. Tout d'abord, un protocole d'enrichissement en protéines microsomales, indispensable pour une étude plus approfondie du protéome membranaire, a été utilisé. La vérification de l'enrichissement par analyse protéomique a permis de révéler que moins de 12% des protéines identifiées ont été classées comme protéines potentiellement non membranaires ce qui représente une pureté d'enrichissement suffisamment élevée pour la suite de l'analyse. Ce résultat rend robuste le choix du protocole d'extraction des microsomes employé et met en évidence son rendement qualitatif. Dans cette analyse, le spectromètre de masse Orbitrap Elite Velos est utilisé, c'est un appareil hybride de haute résolution capable de combiner différents types de fragmentation. Ainsi, les ions parents (ou précurseurs) sont sélectionnés pour être analysés dans deux cellules de collision différentes et les ions issus de ces fragmentations sont ensuite utilisés ensemble pour la recherche dans les bases de données. Le spectre CID permet l'identification de la séquence peptidique, l'abondance étant quant à elle obtenue grâce au spectre HCD. Ce dernier permet notamment une fragmentation à plus haute énergie que le mode CID sans perte de fragments et contient la signature des ions iTRAQ à m/z 114-121 rendant possible le calcul du rapport des ions rapporteurs. Malgré un nombre élevé de spectres, 151 protéines ont été identifiées avec succès dans l'ensemble des échantillons provenant des fractions enrichies en microsomes des extraits de racines témoins et mycorhizés. Ce nombre limité d'identification protéique a été associée à l'inconvénient majeur du fractionnement en tandem (OFFGEL-CL) qui augmente les risques de pertes durant la préparation de l'échantillon. En outre, le marquage iTRAQ se fait relativement tard dans le procédé de préparation de l'échantillon, après la digestion à la trypsine, ce qui pourrait aussi augmenter les différents biais expérimentaux. Quant aux résultats de quantification, ils se sont avérés peu reproductibles. En effet, l'intensité de l'ion rapporteur à m/z 117 était majoritairement plus forte que celle de l'ion à m/z 114 induisant des biais dans les résultats de quantification et diminuant la confiance dans leur validité. Le même effet était obtenu en analysant ces échantillons au MALDI-TOF/TOF. Malgré sa popularité accrue, plusieurs désavantages ont été liés au marquage iTRAQ, parmi lesquels la distorsion des calculs de ratios des ions rapporteurs causant un vrai problème de crédibilité envers les résultats de quantification. Afin de pallier à ces inconvénients, l'utilisation de la méthode de fragmentation hybride CID-HCD et la décomplexification des échantillons par fractionnement ont été conseillées. Dans notre étude, les deux recommandations ont été prises en compte, puisque les peptides ont été, dans une première dimension, fractionnés selon leur pI en OFFGEL suivi de leur séparation en CL. Les analyses en SM ont été ensuite réalisées en appliquant la méthode de fragmentation hybride et ceci n'a pas permis de réduire les biais liés à la quantification des protéines. Une co-sélection de contaminants dans la même fenêtre de l'ion parent en SM pourrait être à l'origine de ce manque de fiabilité dans la

mesure de l'intensité des ions rapporteurs en SM/SM. Christoforou et Lilley (2012) ont montré que 90% des spectres des peptides non marqués, censés être incapables de produire des ions rapporteurs, contiennent au moins 2 de ces 8 ions d'iTRAQ (Christoforou & Lilley, 2012). Donc cette distorsion imprédictible, due à l'omniprésence des contaminants, pourrait être limitée en réduisant la largeur de la fenêtre de sélection de l'ion parent. En outre, l'addition d'un standard interne dans l'échantillon à analyser permettrait d'évaluer le degré de l'erreur observée. Ainsi l'ajout d'une quantité connue d'un peptide protéotypique particulier à un digestat complexe peut servir d'un standard interne et d'outil de validation de la précision de la quantification. Il est aussi indispensable de souligner l'importance de réaliser des expériences pilotes afin de choisir la technique protéomique la plus appropriée à l'analyse d'un type d'échantillon.

L'approche iTRAQ s'est avérée peu adéquate à l'analyse du protéome membranaire en réponse à la SMA d'où la nécessité de trouver une méthode alternative. Au vu du coût élevé et de la relative difficulté expérimentale du marquage isotopique, différentes alternatives de quantification sans marquage ont été proposées. Dans ces méthodologies les échantillons à comparer sont analysés les uns après les autres dans les mêmes conditions expérimentales pour favoriser la reproductibilité. En effet, il existe un très large panel de techniques pour identification, caractérisation et quantification des protéines en SM. L'avantage clé de ces techniques dites « labelfree » réside dans leur capacité à réaliser la quantification des protéines sans marquage ou modification préalable des échantillons. Deux types de méthodes sans marquage sont distingués : l'une basée sur le dénombrement des spectres et l'autre reposant sur le calcul de l'aire sous le pic d'un peptide. La première méthode est simple et semi-quantitative et consiste à décompter les spectres SM/SM acquis pour chaque protéine. Le nombre de peptides identifiant une protéine augmente avec l'abondance de la protéine : plus une protéine est abondante, plus les signaux de ses peptides seront élevés. Un index d'abondance (PAI) est ensuite calculé, il dépend du nombre de peptides, de la qualité et de l'exactitude des identifications. Le PAI est calculé en normalisant le nombre de peptides observés par le nombre de peptides théoriquement observables pour la protéine d'intérêt. La deuxième méthode de quantification, plus fiable et précise, repose sur le calcul de l'intensité du signal du pic chromatographique. La haute précision des spectromètres de masse et la

reproductibilité de la CL sont des facteurs critiques pour le succès de cette approche et la limitation des variabilités.

Dans une 3^{ème} partie du travail, nous avons adopté la méthode « label- free » 1-DE-CL-SM/SM pour pouvoir discriminer les protéines différentiellement exprimées entre les échantillons témoins et mycorhizés (publication N° 5). La puissance de cette méthodologie est l'assurance de la solubilité des protéines en SDS-PAGE. Le SDS est un agent anionique qui se fixe sur les protéines, en formant un complexe anionique ayant une charge nette négative, et permet une meilleure solubilisation des protéines. Les protéines sont ensuite séparées selon leur poids moléculaire sur gel pour préfractionner les échantillons complexes avant leur analyse en SM. La digestion protéique en gel donne accès à des fractions peptidiques dépourvues de substances interférentes avec les analyses ultérieures. Néanmoins, le pouvoir de cette séparation reste relativement faible vu la présence de nombreuses protéines par bande de gel. Afin de s'affranchir de cette limitation, cette technique est couplée avec un système de CL. Dans cette stratégie, deux étapes de séparations sont donc réalisées, une au niveau protéique et une autre au niveau peptidique. Le principal avantage de cette approche est son aptitude à analyser les protéines basiques et hydrophobes, son principal champ d'application est donc bien l'analyse des protéomes membranaires. L'enrichissement des fractions radiculaires en protéines microsomales a été en premier lieu évalué par des analyses en Western Blot en utilisant l'anticorps, marqueur du cytosol, anti-UDP-glucose pyrophosphorylase (UGPase). L'intensité du signal correspondant à la bande spécifique de cet anticorps à 51 kDa a été fortement diminuée dans les fractions microsomales des racines témoins et mycorhizées, reflétant un appauvrissement de ces 2 fractions en protéines cytosoliques. La quantification des protéines est réalisée en utilisant un logiciel MassChroQ développé dans la plateforme de PAPPSO (http://pappso.inra.fr/). Cette approche a permis l'identification de 1047 protéines de racines de M. truncatula témoins et mycorhizées. Parmi celles-ci uniquement 164 protéines sont potentiellement des protéines solubles, contaminantes de la fraction microsomale. Ceci permet d'estimer l'enrichissement en protéines membranaires à 84.3%, un résultat qui devance les essais préalablement effectués sur le protéome membranaire du mais et de M. truncatula. La majorité de ces protéines est localisée dans le chloroplaste, le noyau et la membrane plasmique et est impliquée dans le transport membranaire, la synthèse protéique et le métabolisme

primaire. L'abondance de 19 protéines diminue significativement dans les racines mycorhizées alors que celle de 22 protéines augmente dans les racines mycorhizées. La protéine associée à la membrane plasmique « Mtha1 » s'est révélée spécifiquement exprimée en réponse à la SMA. Uniquement une protéine est induite et une autre réprimée en réponse à la SMA. Ces résultats ont mis en avant la présence d'un répertoire de protéines membranaires conservé entre les racines de M. truncatula témoins et mycorhizées. Parmi les protéines surexprimées dans les racines mycorhizées, l'expression de la « blue copper protein, MtBcp1 » a 10 fois augmenté en réponse à la symbiose. Cette protéine a été préalablement prouvée pour être induite en réponse à la symbiose et localisée dans les zones de colonisation du champignon MA. En outre, la SMA est connue pour induire de profondes réorganisations du cytosquelette d'où l'accumulation dans les racines mycorhizées de « actin-like proteins », et des protéines impliquées dans la synthèse et le devenir protéique comme des histones, des protéines ribosomales et des «cyclophilins». Ceci est corrélé à l'activation de la machine nucléaire, reflétant une plus forte activité transcriptionnelle de la plante dans le génome des cellules colonisées par rapport aux cellules noncolonisées. Dans cette analyse comparative, les quantités de 3 isoformes de transporteurs de phosphate « plasma membrane-located phosphate transporters, MtPT1, MtPT2 and MtPT3 » diminuent dans les racines mycorhizées. Les plantes mycorhizées possèdent deux voies d'assimilation du phosphate, une voie d'assimilation directe « interface sol/plante » et une voie indirecte à travers le réseau mycélien du champignon MA «sol/MA/plante ». Chez certaines espèces de plantes, la voie directe d'assimilation de phosphate est inactivée par la plante alors que 100% du phosphate est transféré à la plante *via* les hyphes fongiques des champignons. Dans le même contexte de besoins en phosphate satisfaits par la SMA, la sous expression de « vacuolar H⁺PPiase », « UDP-glucose pyrophosphorylase », « protein proteases », «PDR (pleiotropic drug resistant)-like ABC transporter », et « protein phosphatase 2C » a été observée dans les racines mycorhizées de M. truncatula. Les résultats obtenus ont permis l'identification des protéines membanaires qui sont directement ou indirectement impliquées dans les voies de signalisation et transduction de signaux nécessaires entre les deux partenaires.

En se développant, la symbiose mycorhizienne à arbuscules induit un ensemble de modifications morphologiques et physiologiques au niveau des racines de la plante hôte. Ce processus de colonisation se caractérise par un réarrangement des parois et des membranes plasmiques végétales facilitant les échanges entre les deux symbiotes. Notre étude a consisté à développer des approches de protéomique « shotgun » pour l'analyse des protéines microsomales préalablement enrichies en fractions membranaires par centrifugation différentielle. Parallèlement, deux stratégies d'analyse protéomique susceptibles de contourner les biais induits par l'électrophorèse bi-dimensionnelle à l'encontre des protéines membranaires ont été testées et validées afin d'analyser la composition protéique des fractions microsomales obtenues. Tout d'abord, d'un point de vue méthodologique nos travaux ont permis de mettre en œuvre un protocole de digestion des protéines membranaires en solution donnant accès à des fractions peptidiques dépourvues de substances interférentes. Ensuite, un effet du marquage iTRAQ sur le pI des peptides marqués a été pour la première fois démontré. Quant à l'analyse quantitative utilisant l'iTRAQ, elle s'est avérée moins adéquate pour nos échantillons que l'analyse protéomique en « label-free » 1-DE-CL-SM/SM, qui a permis de révéler l'identité de nouvelles protéines membranaires impliquées dans le processus de colonisation.

Les résultats de ce travail de thèse sont discutés dans le chapitre 5 de la conclusion et les perspectives qui découlent de nos recherches sont également présentées. Les différentes méthodes sont regroupées en annexe et la thèse est close par les références bibliographiques.

Introduction

The introduction encompasses two chapters. While the first one presents the state of art of the arbuscular mycorrhizal symbiosis (article $n^{\circ}1$), the second one reviews gel- and mass spectrometry- based quantitative proteomic approaches that are available to date (article $n^{\circ}2$).

Chapter 1.1

Proteins sustaining arbuscular mycorrhizal symbiosis: falling silent for function reveals a new generation of underground-working desperate housewives

Ghislaine Recorbet¹, Cosette Abdallah^{1,2}, Jenny Renaut², Daniel Wipf¹ and Eliane Dumas-Gaudot¹

¹UMR Agroécologie INRA 1347/Agrosup/Université de Bourgogne, Pôle Interactions Plantes Microorganismes ERL 6300 CNRS, BP 86510, 21065 Dijon Cedex, France.

²Département Environnement et Agro-Biotechnologies, Centre de Recherche Public-Gabriel Lippmann, 41, rue du Brill, L-4422, Belvaux, Luxembourg.

Summary

The roots of most land plants can enter a symbiotic relationship with soil-borne fungi belonging to the phylum *Glomeromycota*, whereby helping the host to cope with nutrient-limited and adverse environments. This symbiosis with arbuscular mycorrhizal (AM) fungi belongs to the so-called biotrophic plant-microbe interactions involving the intracellular accommodation of a microorganism by a living plant cell without causing the death of the host. The mechanisms by which this is achieved remain largely unknown but proteins happen to take the lion's share in the paradigms that currently govern biotrophy by playing key roles in mediating signalling, nutrient transport and plant cell differentiation. Although profiling technologies performed during the last decade have generated an increasing depository of plant and fungal proteins eligible as actors of the AM symbiotic program, a bottleneck actually exists for their functional analysis as these experiments turn-out to be time-consuming and difficult to carry out with AM fungi by reason of their obligatory biotrophy together with the absence of sequenced genomes for Glomeromycetes. Nonetheless, in recent years, the expansion of legume genome data banks coupled to gene-to phenotype reverse genetic tools such as RNAi, have been proved very efficient in elucidating some of the plant-related protein candidates sustaining AM symbiosis. Likewise, despite the recurrent absence of transformation tools for AM fungi, host-induced gene silencing succeeded for the first time in knocking-down fungal gene expression in planta, thus unlocking a technological limitation in deciphering the functional pertinence of glomeromycotan gene products in mycorrhizal establishment. This review is thus intended to draw a picture of our current knowledge in the plant and fungal protein actors that have been demonstrated as functionally implicated in sustaining AM symbiosis.

I. Casting

The intracellular accommodation of a microorganism by a living plant cell, which is referred to as a biotrophic association, can either lead to plant beneficial or detrimental effects, so that these interactions play major roles in agriculture (Parniske, 2000; O'Connell & Panstruga, 2006; Paszkowski, 2006; Gianinazzi et al., 2010). The distinction between parasitic and beneficial biotrophs has its origin in the availability of nutrients to the microorganism. Typically, most parasitic biotrophs responsible for devastating plant pathologies like mildews, rusts, and smuts derive nutrients from shoot tissue without having any alternative energy source (Schulze-Lefert & Panstruga, 2003). By contrast, most beneficial biotrophic microorganisms like mycorrhizal fungi and nitrogen-fixing rhizobia colonize root tissues and have access to nutrients outside the plant, raising the possibility for bi-directional nutrient movement and the development of a mutualist rather than a parasitic interaction (Smith & Smith, 1990). In arbuscular mycorrhiza (AM), the symbiosis that most terrestrial plant roots engage with soil-borne fungi of the phylum Glomeromycota, AM fungal extra-radical hyphae absorb from the soil water and mineral nutrients, mainly phosphorus and nitrogen, which are supplied to the host plant in exchange for sugars generated by photosynthesis (Parniske, 2008). Actually, in contrast to plants that can survive in the absence of symbiotic fungi, AM symbionts are categorized within obligate biotrophs in that they strictly depend on carbohydrates from their hosts for growth and reproduction (Bonfante & Genre, 2010). Although leading to different outcomes, mutualistic and parasitic biotrophs share the ability to penetrate the plant cell through the differentiation of specialized intracellular accommodation structures corresponding to haustoria in most pathogenic interactions, haustoria termed arbuscules in the AM symbiosis, or bacteroids in the rhizobial nitrogen-fixing (RNF) symbiosis (Parniske, 2000). Because these structures are always surrounded by a host-derived plant plasma membrane, microbial biotrophs remain separated from the host cytoplasm. A resulting common feature of plant-biotroph associations corresponds to the existence of an interface, thought to be the main site of nutrient and signal flow between cells, which comprises the plant and the microbial membranes separated by a plant-derived apoplast (Smith & Smith, 1990; Harrison, 1999; Parniske, 2000; Perfect & Green, 2001). For a successful interaction, biotrophs have to either avoid or suppress plant defence reactions together with redirecting the host

metabolic flow to their benefit without killing the host. The mechanisms by which this is achieved remain largely unknown but proteins happen to take the lion's share in the paradigms that currently govern this kind of plant-microbe interactions by playing key roles in mediating recognition, signalling, nutrient transport, plant cell differentiation and compatibility (Panstruga, 2003; Schulze-Lefert & Panstruga, 2003; Schmidt & Panstruga, 2011). Although a vast majority of the crop plants used to feed human population form the AM symbiosis, which contributes to an overall improvement of plant fitness as reflected by an increased plant biomass and a better protection of host plants against biotic and abiotic stresses (Smith & Read, 2008; Gianinazzi *et al.*, 2010), the elucidation of key protein actors governing this mutualistic plant-fungus interaction is far from being as developed as that involved in other biotrophic systems (Schmidt & Panstruga, 2011), mainly by reason of typical developmental and genetic traits.

Noteworthy, unlike several pathogens with a complete (Cladosporium fulvum, Ustilago maydis) or hemi-biotrophic (Magnaporthe, Colletotrichum spp.) lifestyle, AM fungi so far have escaped cultivability in the absence of a host plant. A more drastic feature limiting functional analyses in AM symbiosis relates to the fact that Glomeromycota, for which no sexual cycle is known, are unique in that their spores and coenocytic hyphae contain multiple nuclei in a common cytoplasm, making classical Mendelian genetic approaches unsuitable and transformation attempts so far unsuccessful in generating permanent transgenic expression (Bonfante & Genre, 2010). Additionally, knowledge of fungal genetics is essentially based on Ascomycota and Basidiomycota, two phyla highly divergent from glomeromycotan fungi, preventing comparative studies to be confidently achieved reviewed in Sanders & Croll (2010). Finally, the genomes of AMF are not assembled yet, and consequently comprehensive predictions for putative actors sustaining symbiosis yet cannot be performed (Martin et al., 2008). As a result, AM fungi have not yet entered the postgenomics area that many biotrophic pathogens are facing now (Schmidt & Panstruga, 2011). Nevertheless, besides approaches aiming at targeting fungal proteins eligible as being involved in nutrient uptake and assimilation, including phosphate and nitrogen compounds (Harrison & van Buuren, 1995; Lopez-Pedrosa et al., 2006; Cappellazzo et al., 2008), the recent application to AM symbionts of high throughput technologies including proteomics and transcriptomics have pointed out candidate symbiosisrelated traits in the model AM fungus Rhizophagus irregularis (formerly Glomus intraradices) (Recorbet et al., 2009; Tisserant et al., 2012). Noticeably, in the first genome-wide inventory of gene expression in R. irregularis using sequencing of cDNA libraries from germinated spores, extra and intra-mycelium, off the 18751 coding sequences detected by oligoarrays, more than 5% were found regulated in intra-radial mycelium (IRM) relative to germinated spores, among which genes involved in nitrogen, phosphate and lipid metabolism, displayed a higher expression (Tisserant et al., 2012). With regard to the conserved accommodation program displayed by mycotrophic host plants toward AM fungi, whereas depicted as a chronological series of events including the pre-symbiotic phase, contact and fungal entrance, intra-radical fungal proliferation, and cell invagination and nutrient transfer (Figure 1.1), establishment of the AM symbiosis in the whole root is highly asynchronous with all developmental stages being present simultaneously, thus making difficult a specific targeting of symbiosis-related structures and processes after plant penetration (Paszkowski, 2006). Consequently, although plant mutants are key tools for the genetic dissection of mycorrhizal development, the most frequently described phenotypes so far consist of hosts compromised for root penetration events and fungal growth arrest at the plant-fungus contact stage (Marsh & Schultze, 2001; Parniske, 2008). The use of model legumes has paved the way for isolating corresponding genes from loss-of-function mutant backgrounds and defining the common SYM pathway that mediates signalling processes essential for both RNF and AM symbioses, and comprises a plasma membrane-located leucine-rich repeat receptor-like kinase (DMI2 in Medicago truncatula and SYMRK in Lotus japonicus), several components in the nuclear envelope among which two cation-ion channels required for Ca²⁺ spiking (*M. truncatula* DMI1a, DMI1b and *L. japonicus* CASTOR and POLLUX), subunits of nuclear pores (L. japonicus NUP85, NUP133 and NENA), and a nuclear localized calcium calmodulin-dependent kinase (CCaMK) (M. truncatula DMI3 and L. japonicus CCaMK) that acts in cooperation with the nuclear porin MtIPD3/LjCYCLOPS as decoder of Ca^{2+} spiking reviewed in (Groth *et al.*, 2010; Kouchi et al., 2010).

Figure 1.1: Schematic overview of the life cycle of an AM fungus

It is adapted from (Bonfante & Genre, 2010)). A) Hyphae germination at the expense of spore storage lipids.

B) In the vicinity of a host plant, root exudates trigger hyphal branching and concomitantly, the fungal exudates perceived by the host lead to calcium spiking through the activation of the common SYM pathway, which generates a reprogramming of the elicited and adjacent root cells in order to accommodate the fungus. Following contact between the two partners, the AM symbiont differentiates a root-adhering hyphal structure, the hyphopodium that triggers the formation of the prepenetration apparatus (PPA) in the contacted and underlying outer cortical cells. The PPA guides the fungal development from epidermal to inner cortical cells where a highly branched fungal structure, the arbuscule, can differentiate to form an extensive surface area for nutrient exchange. Concomitantly, the AM fungus develops an extra-radical mycelium to explore the soil for resources and new hosts. Blue and dark colours refer to fungal and plant structures or metabolites, respectively.

The early signalling cascade shared by both AM and RNF symbioses is not only essential for successful infection events but it also required to activate a feedback phenomenon referred to as autoregulation (AUT) of mutualism. As very comprehensively reviewed in Hause & Schaarschmidt (2009), host plants indeed are able to control the degree of their associations with rhizobia and AM fungi in order to
minimize the carbon resources they invest in symbiosis. Once first steps of interactions are initiated, further establishment of symbionts above a critical threshold level is restricted, leading to AUT. On the basis of loss-of-AUT mutants that display a supernodulating and supermycorrhizal phenotype (increased abundance of nodules and arbuscules, respectively), the key actor mediating AUT was identified as a CLAVATA1-like leucine-rich repeat receptor-like kinase acting in the shoot. Upon perception of a long distance-transported signal generated in the roots, activation of the AUT receptor kinase leads to the production of a shoot-derived inhibitor that upon its transports down to the roots, negatively affects the early signalling cascade by interfering with DMI3/CCaMK, thus inhibiting subsequent AM and RNF infection events reviewed in Staehelin *et al.* (2011).

By reason of the evolutionary divergent nature of AM and RNF interactions it has nonetheless been anticipated that additional and AM-specific genes might govern endomycorrhizal formation and functioning, pointing to the necessity of performing more holistic approaches to unravel unusual suspects (Harrison, 2005; Parniske, 2008). In this respect, transcriptomics, proteomics, and metabolomics had allowed shedding light on plant proteins and metabolic pathways candidates for the AM symbiotic program by virtue of their differential expression between mycorrhized and nonmycorrhized hosts, including transcriptomic changes (Liu et al., 2003; Manthey et al., 2004; Guimil et al., 2005; Hohnjec et al., 2005; Kistner et al., 2005; Krajinski & Frenzel, 2007), protein abundance modifications (Bestel-Corre et al., 2002; Valot et al., 2005; Amiour et al., 2006; Valot et al., 2006; Aloui et al., 2009; Campos-Soriano et al., 2011), and metabolic reorientations (Lohse et al., 2005; Schliemann et al., 2006; Walter et al., 2007; Walter et al., 2010). Such initiatives have mainly targeted legumes including M. truncatula, Glycine max, L. japonicus but also Oriza sativa and Solanum lycopersicum as non-legume plant hosts, and the technical requirements for such large-scale methods have been reviewed by Ané et al. (Ane et al., 2008) for M. truncatula. Altogether, profiling technologies performed during the last decade led to the identification of hundreds of AM-activated genes and proteins in different plant species among which the phosphate transporter MtPt4 (Harrison et al., 2002), the serine-carboxypeptidase MtScp1 (Liu et al., 2003), the protease-inhibitor MtTil (Grunwald et al., 2004), the lectins MtLec5 and MtLec (Frenzel et al., 2005; Frenzel et al., 2006) the chitinase Mtchit3-3 (Elfstrand et al., 2005), the glutathione-S-

transferase MtGst1 (Wulf et al., 2003), the endo-1,4-B-D-glucanase MtCell (Liu et al., 2003) and the blue copper binding protein MtBcp1 (Hohnjec et al., 2005; Paradi et al., 2010) display an expression pattern driven by mycorrhiza-specific promoters in M. truncatula reviewed in Hohnjec et al. (2005); Krajinski & Frenzel (2007); Kuster et al. (2007). As a result, both targeted and untargeted approaches have generated an increasing depository of plant and fungal candidates eligible as actors of the AM symbiotic program but there is a bottleneck for their functional analysis as these experiments are time-consuming and difficult to carry out with AM fungi (AP & Howlett, 2011). Nonetheless, recent years have seen fascinating contributions in demonstrating the role of proteins in AM symbiosis, which have been driven by the realisation that mutualistic and parastic plant biotrophs shared many parallels together with the progress made in reverse genetics and cell biology tools ((Guimil et al., 2005; Paszkowski, 2006; Ane et al., 2008; Parniske, 2008; Bhadauria et al., 2009; Bonfante & Genre, 2010; Nunes & Dean, 2012) and references therein). This review is thus intended to draw a picture of our current knowledge in the plant and fungal protein actors that have been demonstrated as functionally implicated in sustaining AM symbiosis.

II. Fashion victims: copy and paste for guest entry between AM symbiosis and more recently evolved plant interactions

1. The dress code to make friends: branching out before symbiont contact

The AM symbiosis is the result of a complex exchange of molecular information that starts before the partners engage physical contact. Because root colonization is crucial for AM fungi, the release in the plant rhizosphere of soluble signals is thought to enlarge the ability for symbionts to encounter each other before depletion of the fungal spore resources that sustain a short-term living pre-symbiotic hyphal elongation (Bonfante & Requena, 2011). In this respect, a first major breakthrough in deciphering this pre-symbiotic crosstalk relates to the identification of plant root-exuded metabolites, the so-called strigolactones (SLs), which stimulate branching of germinated hyphae of AM fungi to encourage host-root colonization (Akiyama *et al.*, 2005; Akiyama, 2007). SLs were originally identified as stimulators of the germination of root-parasitic weeds of the genera *Striga*, *Orobanche*, and *Phelipanche*, which are obligate plant biotrophs that threaten resource-limited agriculture (Cook *et al.*, 1966). The finding that parasitic plant infection is partially

controlled though the SYM pathway has reinforced the view that more recently evolved parasitic plants have co-opted part of the AM symbiosis communication program (Fernandez-Aparicio et al., 2009; Kubo et al., 2009). Besides their role as rhizophere signalling molecules, SLs were also identified as a novel class of plant hormones synthesized in roots and stem that inhibit shoot branching after transport through the xylem (Gomez-Roldan et al., 2008; Umehara et al., 2008; Kohlen et al., 2011). Noticeably, it has been demonstrated that up-regulation of SLs biosynthesis during phosphate starvation played a role in the reduced shoot-branching phenotype even in the nonmycorrhizal host Arabidopsis, suggesting that this response enables plants to invest energy in lateral root formation in phosphate limiting environmental conditions (Kohlen et al., 2011). During the last decade, genes encoding enzymes essential for SL biosynthesis or perception/signalling have been identified through their cloning from a series of mutants displaying increased shoot branching phenotypes, referred to as *decreased apical dominance* (dad) in petunia, ramosus (rms) in pea, more axillary growth (max) in Arabidopsis, and dwarf and high tillering dwarf (d/htd) in rice reviewed in Xie & Yoneyama (2010). Results showed that SLs are synthesized from a carotenoid substrate by sequential cleavages involving two carotenoid cleavage dioxygenases (CCD)7 (RMS5/MAX3/D17) and 8 (RMS1/MAX4/D10/DAD1) and a subsequent oxidation by a cytochrome P450 (MAX1). Three other genes D27, D14 and D3 were identified in rice, which encode a plastid-located iron-containing protein involved in SL biosynthesis, an α/β -fold hydrolase and a F-box protein involved in signal perception, respectively (Figure 1.2, (Xie & Yoneyama, 2010)).

Figure 1.2: Schematic overview of the SL and Myc-LCO-related pathways that mediate AM hyphal and root branching responses.

It is adapted according to Xie & Yoneyama (2010); Liu *et al.* (2011); Maillet *et al.* (2011); Kretzschmar *et al.* (2012). Single asterisks indicate plant proteins believed to maximize plant-fungus contact events in that reduced expression of the corresponding genes results into quantitative differences in root colonisation without affecting arbuscule development. Double asterisks correspond to plant proteins belonging to the SYM pathway required for fungal infection.

Initial functional demonstrations for a role of SLs in sustaining the AM symbiotic program come from SL biosynthesis knockout mutants (*ccd8*) in tomato and pea, which display a reduction in mycorrhizal colonization of roots (Gomez-Roldan *et al.*, 2008; Koltai *et al.*, 2010). Likewise, a targeted analysis of strigolactones and AM-induced apocarotenoids revealed major decreases in the levels of these compounds in *cdd7* antisense lines generated in tomato, coupled to a decreased in arbuscule abundance (*S. lycopersicum*) (Vogel *et al.*, 2010). Very recently, new insights in the functional characterization of the SL-dependent symbiotic signalling were obtained from silencing-based experiments performed in barrel medic, rice and petunia. In the search for efflux carriers for strigolactones, Kretzschmar and co-workers isolated ABC transporters of *Petunia hybrida* on the basis of their abundance in phosphate-

starved or in mycorrhizal roots (Kretzschmar et al., 2012). Using promoter-GUS reporter fusion constructs the candidate PDR1 was found to localize to the plasma membrane and gene expression was demonstrated substantial in individual subepidermal cells of the lateral roots that resemble hypodermal passage cells, which are devoid of suberin and serve as entry points for AM hyphae (Sharda & Koide, 2008). Noteworthy, GUS staining was reported more prominent in root grown under phosphate-deficient conditions and in mycorrhizal roots, particularly in regions containing or flanking arbuscules, suggesting a role for PDR1 in AM during presymbiotic development and during intra-radical growth. PDR1 silencing and/or transposon-mediated loss of function allowed demonstrating that PDR1 acts as a strigolactone export carrier in that only extra-radical SL levels (orobanchol) were affected in *pdr1* mutants, in which root exudates showed a reduced activity for stimulating hyphal branching of AM fungi relative to wild-type. Likewise, petunia *pdr1* knockout or down lines display a significant reduced ability to accommodate mycosymbionts without exhibiting defects in arbuscule morphology, suggesting that quantitative differences in colonisation were due to decreased hyphal penetration events and retarded intra-radical expansion, rather than to defects in intracellular development. Overall, a role was proposed to PDR1 in mediating strigolactone secretion from HPCs, which under low phosphate conditions creates local rhizosphere gradients that guide AM hyphae to entry points (Figure 1.2, (Kretzschmar et al., 2012)).

More recently, a second milestone decisive in understanding the pre-symbiotic crosstalk between mycosymbionts and plants roots was the chemical elucidation of some diffusible AM fungal signalling molecules belonging to the so-called Myc factors, which stimulate root growth and branching through a calcium signal that determines the activation of essential symbiotic genes (Bonfante & Requena, 2011). It has been shown that *R. irregularis* secretes symbiotic signals corresponding to a mixture of sulphated and non-sulphated simple lipochitooligosaccharides (Myc-LCOs), thus confirming the working hypothesis that Myc signals, produced by fungi able to synthesize chitin, are ancestors of the more recent LCO-like Nod factors produced by most rhizobia and required for early steps of legume infection and nodule organogenesis (Maillet *et al.*, 2011). Strikingly, recent studies also revealed that the intricacy between Nod and Myc signalling was more complex than previously

anticipated. Initially, the symbiotic signalling pathway identified in *M. truncatula* included genes coding for Nod factor perception (NFP and LYK3), calcium signalling (DM11, DM12 and DM13), and transcription factors (NSP1 NSP2 and ERN). NFP and LYK3 correspond to Nod factor membrane receptors so far described dispensable for AM fungi signal-induced calcium oscillations in epidermal cells and subsequent mycorrhiza formation. Likewise, the three transcription factors were thought specifically activated upon Nod factor perception. On the contrary DMI1, 2 and 3 are required both for nodulation and mycorrhization. However, Op den Camp and coworkers provided evidence that in *Parasponia*, the only nonlegume partner of rhizobia, a single cell surface receptor can recognize both the fungal and bacterial signals and induce the common SYM pathway to promote the intracellular accommodation of AM fungi and rhizobia, in that silencing the unique NFP ortholog in Parasponia impairs the formation of both symbioses (Op den Camp et al., 2011). Likewise, the data obtained by Maillet et al. (Maillet et al., 2011) suggested that NFP is partly involved in the Myc-signal-elicited root branching response, as inferred from the reduced root branching response observed in *nfp* mutants relative to the wild-type. Additionally, by reason of a 40% lower colonisation level than wild-type plants exhibited in the *nsp2* mutant, a NSP2-dependent signalling pathway was found to facilitate mycorrhizal root colonization, thus indicating that the transcriptional activator NSP2 does not function exclusively in rhizobium Nod factor signalling (Maillet et al., 2011). In accord with this view, recent comparative gene expression studies in symbiotic mutants demonstrated that transcriptional reprogramming by AM fungal LCOs strictly depends on MtNSP and largely requires MtDMI3. Noteworthy, none of the genes related to functional AM stages was activated by Myc-LCOs, suggesting that the function of Myc-LCOs is restricted to presymbiotic AM stages (Czaja et al., 2012). On the basis of transcript profiling experiments in nsp1 and nsp2 knockout mutants, which were attempted to identify genes activated by NSP1 and NSP2 under non symbiotic conditions, it was also shown that NSP1 and NSP2 are indispensable for strigolactone biosynthesis in *M. truncatula* and in rice (Liu et al., 2011). The disturbed SL biosynthesis in *nsp1 nsp2* mutant backgrounds was found to correlate with reduced expression of D27 that encodes the plastid-located ironcontaining protein essential for SL biosynthesis. In contrast to nodulation, none of the components of the Nod factor signalling pathway, not even the kinase CCaMK directly active upstream of NSP1 and NSP2, are required for *D27* expression. It was thus proposed that NSP1 and NSP2 proteins fulfil dual regulatory functions to control downstream targets after rhizobium-induced signalling as well as SL synthesis in nonsymbiotic conditions. With regard to AM fungal infection, the *M. truncatula nsp1 nsp2* double mutant shows a reduction in mycorrhizal root infection but without defects in arbuscule development, suggesting that SLs stimulate root colonization exclusively *ex-planta* (Liu *et al.*, 2011).

Overall, it appears from the above-cited data that at least seven plant proteins (NFP, NSP1, NSP2, CCD7, CCD8, D27, PDR1) were recently demonstrated as either directly or indirectly involved in the fungal-root branching-induced crosstalk that takes place during pre-symbiosis as schematized in Figure 1.2. Because reduced expression in the corresponding genes mostly results into quantitative differences in root colonisation without affecting arbuscule morphology, it rather seems likely that these proteins play roles in AM symbiosis through maximizing hyphal penetration events than through mediating intra-radical development.

2. Holding a reception

Following exudates-mediated hyphae and root branching events, the pre-symbiotic phase of AM symbiosis ends up once a hyphal tip has contacted the root epidermis. Unlike aerial pathogens that have to penetrate the hydrophobic leaf cuticle through the differentiation of an appressorium that generates a glycerol-mediated turgor pressure, glomeromycotan root-infecting fungi develop hyphododia, which correspond to glycerol-free, nonmelanized and nonseptate small swellings structures at the hyphal tip that mediate adhesion to epidermal root cells through the formation of protrusions in the fungal cell wall (Genre et al., 2009; Bonfante & Genre, 2010). In this regard, a third outstanding breakthrough in understanding the plant AM symbiotic program relates to the root responses elicited upon hyphopodium formation, among which the formation of a pre-penetration apparatus (PPA) that outlines the route for hyphal growth across the plant cell lumen belongs to (Genre et al., 2005). Following a cytoplasmic aggregation, which consists of a cytoskeleton-driven accumulation of organelles including the plant nucleus, at the contacted epidermal site, the host cell develops a transcellular cytoplasmic column, the PPA, whose elongation follows the migration of the plant nucleus toward the inner cell wall facing the root cortex (Figure 1.1). The PPA has overlap with cell division processes in that it is particularly rich in secretory membranes, ER, cytoskeletal elements, and requires the production of a cell wall within the lumen. This apparatus also appears reminiscent of infection thread formation, which facilitates rhizobium entry into legume root hairs that guide them into the root cortex. In addition, cytoplasmic aggregation in epidermal cells similarly occurs in several pathogenic plant-microbe interactions, where it is believed to form part of a plant defence response that leads to the formation of cell wall appositions (papillae) and the localized release of defence-related compounds (Bonfante & Genre, 2008; Genre et al., 2009; Anderson et al., 2010). In this line, when using roots of M. truncatula expressing a green fluorescent tag for the ER, which were challenged with an AM fungus, a necrotrophic pathogen, a hemibiotrophic pathogen, a noncompatible endomycorrhizal fungus, or abiotic stimuli, a correlation was underlined between physical stimulation at the cell surface and nuclear repositioning. By contrast, cytoplasmic aggregation was only induced by compatible fungi and the PPA only triggered by AM fungi. The DMI3 protein (CCaMK) also turned out to be required both for cytoplasmic aggregation and PPA formation, thus extending the role of DMI3 from symbiotic to pathogenic interactions (Genre et al., 2009). CCaMK, a key conserved component of the common SYM pathway is currently believed to decode the Ca^{2+} spiking that is activated in the host epidermis during initial recognition of endosymbiotic and to trigger appropriate downstream signalling pathways leading to gene transcription in association with LjCYCLOPS/MtIPD3. Recently, it has been reported that distinct Ca^{2+} spiking profiles correlate with specific stages of transcellular apoplastic infection (Sieberer et al., 2012). Outer cortical cells were found to exhibit low-frequency Ca^{2+} spiking during the intracellular remodelling that precedes infection; which appears to be a prerequisite for the formation of either preinfection threads in RNF symbiosis or the PPA in AM symbiosis, both of which are fully reversible processes. Low-frequency spiking cells are characterized by nuclear migration to the site of future cell infection and associated cytoplasmic reorganization in the vicinity of the nucleus. By contrast, there is an increase in the frequency of Ca^{2+} spiking just before and during initial cortical cell entry by both bacterial and fungal symbionts, which involves an irreversible cell wall disassembly and de novo interface synthesis linked to membrane invagination. In this respect, it has been proposed that the protein Vapyrin could mediate Ca^{2+} -mediated membrane and cytoskeleton rearrangements during initial stages of root cell infection by rhizobia and AM fungi ((Ercolin & Reinhardt, 2011; Sieberer et al., 2012), Figure 1.3). Actually, besides the SYM signalling pathway that is crucial for epidermal infection, Vapyrin has been discovered as a new component required for epidermal and cortical cell colonization by rhizobia and AM fungi (Reddy et al., 2007; Feddermann et al., 2010; Pumplin et al., 2010; Murray et al., 2011). In M. truncatula, Vapyrin RNAi roots show a high frequency of hyphopodia that attempt but fail to penetrate the epidermal cells (Pumplin et al., 2010), as observed in the common sym mutants (Parniske, 2008). Interestingly, MtVapyrin was reported to be induced upon Myc-LCOs application, suggesting that the encoded protein already acts in presymbiotic stages (Czaja *et al.*, 2012) (Czajaet al. 2012). When the AM fungus succeeds entering the cortex of Vapyrin RNAi roots, intercellular hypae spread laterally but no arbuscules are formed; a phenotype reminiscent of that displayed in the cyclops/ipd3 and pam1 mutants of L. japonicus and petunia (Reddy et al., 2007). As a result, it has been suggested that a common cellular mechanism may be required to sustain hyphal growth through epidermal cells and arbuscule development in the cortex (Pumplin et al., 2010). Notably, in contrast to common sym mutants impaired in initial endosymbiotic signalisation, in Vapyrin RNAi roots, the fungus attempts to penetrate the cells as exemplified by the hyphal projections existing below hyphopodia. Consequently, Pumplin and co-workers hypothesized that the signalling process necessary to induce fungal penetration was not affected in vapyrin knockdown lines, but that the cellular machinery supporting fungal entry and membrane invagination was impaired (Pumplin et al., 2010). In support for this idea, was the activation of genes related to membrane dynamics and secretion events upon symbiont contact (Siciliano et al., 2007b). the vesicle-like cytoplasmic localization of Vapyrin complexes that may be involved in the deposition of membrane material, which contrasts with the nuclear localization of the signalling proteins CCaMK/DMI3 and CYCLOPS/IPD3, together with the two domains composing the protein that can mediate structural changes within the cell (Pumplin et al., 2010). A critical role for membrane reorganization was also approached for fungal accommodation at the early stage of AM symbiosis by Kuhn and co-workers who reported that down regulation of the membrane steroid-binding protein 1 MtMSBP1 through RNAi led to an aberrant mycorrhizal phenotype characterized by thick and septated hyphopodia with aborted penetration attempts, septated intracellular hyphae, decrease number of arbuscules

and distorted arbuscule morphology, pointing once again to a common mechanism sustaining epidermal and cortical fungus development (Kuhn *et al.*, 2010). *MtMSBP1* expression happened to be DMI2-dependent, induced before fungal contact by a diffusible signal from branched hyphae and observed in epidermal and subepidermal cells in the vicinity of approaching hyphae and in hyphopodium-enriched root areas. Because *MtMSBP1* encodes a membrane steroid-binding protein having role in sterol homeostasis, it has been proposed that alteration of lipid metabolism is required to sustain PM invagination and intracellular accommodation of symbionts in the cortex (Kuhn *et al.*, 2010). Strikingly, both Vapyrin- and MtMSBP1-encoding genes are activated by a diffusible fungal signal, although probably different in nature. Actually, *MtVapyrin* was reported to be induced upon Myc-LCOs application in contrast to *MtMSBP1* (Czaja *et al.*, 2012).

Besides cellular remodelling events in response to AM fungus sensing, evidences were also obtained for the modulation of plant cell defence mechanisms for the initial accommodation of the symbiont. The early stages of AM symbiosis are generally accompanied by a transient induction of markers of defence (Garcia-Garrido & Ocampo, 2002; Liu et al., 2003; Liu et al., 2007), which are thought to represent a first reaction of the plant to unspecific microbial signals (elicitors) from the AM fungus before the recognition of some Myc factors that trigger the switch to the symbiotic program and the concomitant suppression of the plant defence response (Reinhardt, 2007). Consistent with this view, it was recently shown that silencing of the Rac1 GTPase MtROP9 triggers the stimulation of early root colonization by the AM fungus R. irregularis and the pathogenic oomycete Aphanomyces eutiches, coupled to an inhibition of reactive oxygen species (ROS) production and antioxidative compounds production in *M. truncatula* roots (Kiirika et al., 2012). Because RAC proteins are plant-specific small GTPases that function as molecular switches within elementary signal transduction pathways, including the regulation of ROS generation via activation of plasma membrane-associated NADPH oxidases, it was concluded that ROS signalling did play a role in mounting a general defence barrier against fungal and fungal-like invaders, including mycorrhizal mycosymbionts. Most interestingly, the PPA triggered by AM fungi was found to elicit a specific transcriptome response in epidermal cells including the DMI3-dependent upregulation of genes encoding expansin-like and Nod-like proteins, the former likely

having role in cell wall plasticity, and down-regulation of the defence-related gene ACRE264 encoding the Avr9/Cf-9 Rapidity-Elicited protein 264, identified as a protein kinase (ACK1) required for full resistance to Cladosporium fulvum strains expressing the Avr9 gene (Siciliano et al., 2007a; Siciliano et al., 2007b). Consequently, the DMI3-mediated suppression of defence-related genes like ACRE264 after physical contact with the hyphopodium led Siciliano and co-workers hypothesized that plant-AM fungus compatibility requires basal defence responses to be kept under control similarly to what observed in compatible plant-pathogen interactions. In this line of reasoning, a fourth significant recent advance in understanding the early steps mediating symbiont accommodation by plant cells was the discovery that AM fungi do use effector proteins to short-circuit the plant defence program (Kloppholz et al., 2011). Actually, plants are known to have a basal defence system trained to recognize conserved traits of microbial pathogens termed MAMPS for microbial-associated molecular patterns. Recognition of these epitopes by pattern recognition receptors induces MAMP-triggered immunity, a first line of plant defences to prevent further colonization of the host. In return, microbial invaders have evolved the capacity to deliver effector proteins inside host cells to cope with MAMPtriggered immunity often through suppression of host defences or to protect themselves against plant arms (De Wit et al., 2009; Hogenhout et al., 2009; De Jonge et al., 2011; Zamioudis & Pieterse, 2012). When investigating whether AM fungi use effector proteins to short-circuit the plant defence program, Kloppholz and coworkers showed that R. irregularis secreted a protein, SP7, which can crosses plant membranes to interact with the defense-related ethylene (ET)-responsive factor ERF19 in the plant nucleus to block the ERF19-mediated transcriptional program (Kloppholz et al., 2011). ERF transcription factors are known to activate expression of target defence proteins, including pathogenesis-related proteins (PR) PR1, PR2 and PR4, and Osmotin. Interestingly, MtERF19 expression can not only be induced by application of crude extracts of R. irregularis, but also from that of several different fungi, including plant pathogens and non-plant pathogens, pointing to the existence of a common fungal MAMP. The constitutive expression of SP7 in roots was reported to lead to higher mycorrhization while reducing the levels of the fungal pathogen Colletotrichum trifolii-mediated defence responses, as assessed by the PR10 marker. Noteworthy, SP7 expression in the rice blast fungus Magnaporthe oryzae, a hemibiotrophic pathogen that can infect both leaves and roots of host plants, results in the reduced expression of defence genes encoding PR10 proteins in rice roots and extends the length of the biotrophic phase, delaying the root decay that characterized the necrotrophic phase. Overall, the results obtained by Kloppholz and co-workers (2011) support the view that SP7 acts as a universal effector to promote the biotrophic phase of a fungus inside a plant. Aside from this report, the use of transformable hemibiotroph fungal pathogens like *Colletotrichum* spp. and *M. oryzae* whose development share common features with the AM fungal lifecycle (spore, appressoria and/or hyphopodia, haustoria), coupled to comparative analyses of genome sequences from plant-infecting fungi also proved successful in revealing AM fungal proteins mediating plant cell entry. In this regard, Tollot and co-workers investigated whether the transcription factor STE12 that is essential for hyphal penetration of leaf surfaces from appressoria and in some cases for subsequent invasive growth by hemibiotrophic plant pathogens could play role in early steps of AM symbiosis (Tollot et al., 2009). Introduction of GinSTE, a STE12 homolog, isolated from R. irregularis, into a noninvasive mutant of C. lindemuthianum was found to restore penetration and infectivity of the fungal pathogen in *Phaseolus vulgaris* leaves. Additionally, *GinSTE* expression specifically localized in extra-radical AM fungal structures and was upregulated when R. irregularis penetrated roots of wild-type M. truncatula roots as compared to the incompatible dmi3 mutant, suggesting a possible common role of GinSTE in mediating early steps of plant tissue penetration between pathogenic and symbiotic fungi. Likewise, Erl1, a Ras-like GTPase from the rice blast M. oryzae was found to be homologous to the mature amino terminal part of the Gin1 protein of R. irregularis. Deletion of ERL1 in M. oryzae resulted in delayed appressorium formation, slow growth in planta and reduced intracellular colonization without defect in the necrotic ability of the fungus, indicating that ERL1 is required for invasive growth of root tissues. Because root browning defect of $\Delta erll$ strains could be complemented by the AM fungus gene, it was suggested that Erl1 and Gin-N are orthologs and might be involved in the control of polar hyphal growth *in planta*, thus extending the hypothesis of common genetic features underlying plant colonization strategies among different fungi (Heupel et al., 2010).

Taken together, the results described above sustain the view, on the basis of localization, silencing, and/or complementation experiments, that fungal entry within

epidermal plant cells requires the modulation of plant defence reactions coupled to cellular remodelling events in both symbionts. Besides the common SYM pathway, the identification of nine additional proteins involved in the early intracellular accommodation of AM fungi allows proposing a hypothetical model illustrating the protein pattern associated with AM fungal entry into plant cells at the early stages of symbiosis, as schematised in Figure 1.3.

Figure 1.3: Schematic representation of a model protein pattern associated with AM fungal entry into plant cells at the early stages of symbiosis.

It is modified from (Siciliano *et al.*, 2007a; Siciliano *et al.*, 2007b; Ercolin & Reinhardt, 2011; Zamioudis & Pieterse, 2012). Host plants initially recognize arbuscular mycorrhizal fungi (AMF) as potential invaders through pattern-recognition receptors (PRR) that perceive microbe-associated molecular patterns (MAMPs). As a result, a signalling cascade likely involving Rac1-mediated reactive oxygen species (ROS) production (Kirika et al. 2012) is induced, which results in MAMP-triggered immunity (MTI) through the production of defence-related compounds. The perception of Myc factors induces the symbiotic program through the SYM pathway (DMI1, DMI2, DMI3) that triggers suppression of MTI, as exemplified by the DMI3-dependent down-regulation of the defence-related protein ACRE264 (Siciliano et al. 2007 a, b), and activation of cellular remodelling events in plant (MSP1, Vapyrin, Expansin) and fungal (GinSTE12) cells. The AMF *R. irregularis* secretes the SP7 protein effector into the plant cytosol, which upon targeting to the nucleus, interacts with the defence-related transcription factor ERF19 to block the ERF19-mediated transcriptional program. Blue and dark colours refer to fungal and plant structures or proteins, respectively.

III. Home sweet corner. A 400-Myr old but any rest housekeeping investment to accommodate arbuscules

After traversing the epidermis and outer cortical layers, AM fungal hyphae enter cortical cells via invagination of the plasma membrane that is suspected to proceed from fusion of PPA vesicles (Bonfante & Genre, 2008). Inside a cortical cell, the intracellular hypha branches repeatedly to develop the specialized tree-like structure, known as arbuscule, which is enveloped by an extension of the host plasma membrane, the periarbuscular membrane that separates the fungus from the plant cell cytoplasm. This delineates as depicted in Figure 1.4, the interface compartment, an apoplastic space that surrounds the fungus and mediates nutrient exchange (Bonfante & Genre, 2008). Although the composition of the apoplastic space is somehow reminiscent of that of the primary plant cell wall with cellulose, pectins and hemicellulose, a structured cell wall is not present, indicative of the specialized nature of this compartment (Balestrini et al., 2005). Likewise, despite consisting of an extension of the plant plasma membrane, the periarbuscular membrane displays specific protein features compared to the host PM, including the presence of the AM symbiosis-specific phosphate transporters MtPT4 and OsPT11 (Harrison et al., 2002; Kobae & Hata, 2010), the AM-inducible ammonium transporter GmAMT4.1 (Kobae et al., 2010), STR half-ABC transpoters (Zhang et al., 2010; Gutjahr et al., 2012), and VAMP721d/e proteins (Ivanov et al., 2012). Imaging also revealed that the periarbuscular membrane is at least composed of two distinct specific proteincontaining compartments, corresponding to an arbuscule-branch domain that specifically harbours MtPT4, OsPT11, GmAMT4, STR transporters and VAMP721s, as opposed to an arbuscule-trunck domain that contains the blue copper-binding protein MtBcp1 (of unknown function), which also localizes to the host PM (Figure 1.4).

Figure 1.4: Schematic representation of the structure and regulation of an arbuscule.

A) Diagrammatic view of an arbusculated cortical plant cell into which fungal hyphae (a) are enveloped by the periarbuscular membrane, an extension of the host plasma membrane. This delineates (b) the symbiotic arbuscule/cortical cell interface that comprises the plant and the microbial membranes separated by the plant-derived apoplast

B) Illustration according to (Pumplin & Harrison, 2009) of the polarisation of the periarbuscular membrane (PAM) that is at least composed of two distinct specific proteincontaining compartments, corresponding to an arbuscule-branch domain that specifically harbours MtPT4, OsPT11, GmAMT4, STR transporters and VAMP721s (red triangles), as opposed to the arbuscule trunk domain that contains the blue copper-binding protein MtBcp1 (yellow circles), which also localizes to the host PM. This suggests the occurrence of a *de novo* membrane biogenesis process associated with the dichotomous branching of hyphae. **C**) Hypothetical model representing the protein and nutrient-mediated mechanisms involved in the regulation of arbuscular morphogenesis and functioning. Protein roles are inferred from the phenotype(s) displayed in their corresponding loss-of-function backgrounds (Table 1.1). The role of Pi, N and Xyl originate from the data reported in ((Baier *et al.*, 2010), pink arrows) and ((Helber *et al.*, 2011), green arrows).

This suggests the occurrence of a *de novo* membrane biogenesis process associated with the dichotomous branching of the hyphae (Pumplin & Harrison, 2009; Kobae & Hata, 2010; Kobae *et al.*, 2010; Zhang *et al.*, 2010; Ivanov *et al.*, 2012). Interestingly, the polar targeting of MtPT4 to the periarbuscular membrane happens mediated by a

transient reorientation of secretion favouring vesicle fusion with the developing periarbuscular membrane rather than with the PM, and a coincident change in the newly synthesized protein cargo entering the secretory system (Pumplin *et al.*, 2012). In parallel to the development of the periarbuscular membrane, arbusculated cells display a drastic architectural reorganization to support deposition of membrane and newly synthesized proteins, as illustrated by the presence of organelles involved in synthetizing and secreting proteins (nucleus, ER, Golgi, plastids) in the close vicinity of the periarbuscular membrane, together with cytoskeletal components (actins, microtubules) to direct secretion ((Pumplin & Harrison, 2009; Gutjahr *et al.*, 2011) and references therein). In addition to these changes schematized in Figure 1.4, an accumulation of peroxisomes around collapsing arbuscules also has been documented, suggesting either an active lipid breakdown through β -oxidation and/or the sequestration of the ROS generated during membrane breakdown (Pumplin & Harrison, 2009).

Despite this fifth recent major breakthrough in the understanding of arbuscule morphogenesis, the protein-encoding genes sustaining the cortical phase of AM symbiosis have been a long time coming relative to those involved in hyphal penetration. This probably reflects the fact that, historically, mycorrhizal mutant phenotypes were first uncovered through genetic screens for plant defective in nodulation leading to the resolution of the early common symbiosis signalling pathway, together with the difficulty in visually detecting plants compromised for arbuscules in that they reside inside root cells (Morandi et al., 2005; Morandi et al., 2009). Nowadays, the blind dissection of the molecular components sustaining arbuscule development/functioning largely beneficiates from the combination of whole-genome transcriptome profiling of mycorrhizal roots (Liu et al., 2003; Guimil et al., 2005; Hohnjec et al., 2005; Kistner et al., 2005) together with mutant resources and/or reverse genetic screenings for altered mycorrhizal phenotypes (Hirochika et al., 2004; Porceddu et al., 2008; Kuromori et al., 2009; Revalska et al., 2011). Likewise, the ever increasing number of completed plant and fungal genome sequencing projects also has improved the analogy-based targeted search of proteins involved in AM symbiosis (Schmidt & Panstruga, 2011). Overall, the proteins that been demonstrated to play role in sustaining have so far arbuscule formation/functioning can be divided into either two distinct phenotypic classes

corresponding to those already involved in epidermal penetration and those only required for cortical infection/reprogramming, and/or into functional groups, which encompass processes related to signalling, membrane biogenesis/protein trafficking, nutrient transport and plastidial metabolism.

1. Gossip girls for signalization

Regarding the common SYM pathway whose distinctive roles in the early and late accommodation of both rhizobia and AM fungi have been very comprehensively reviewed in Ercolin & Reinhardt (2011), mutations in SYM genes generally lead to an arrest of AM hyphal infection. However, under high inoculum pressure, a few sym mutants can be forced into AM colonization and the development of arbuscules can proceed normally indicating that cortical infection is not strictly dependent on SYM gene signalling (Morandi et al., 2005; Bonfante & Genre, 2010). Nonetheless, two exceptions actually exist in that the common SYM genes CYCLOPS/IPD3 and CCaMK/DMI3 that operate downstream calcium spiking are indispensable both for epidermal infection as well as for cortical infection and arbuscule formation (Levy et al., 2004; Chen et al., 2007; Gutjahr et al., 2008; Yano et al., 2008). CCAMK/DMI3 is thought to transduce calcium signals and physically interacts with and phosphorylates CYCLOPS (INTERACTING PROTEIN OF DMI3 (IPD3)) (Messinese *et al.*, 2007), and act together as a signal transduction complex required for infection (Yano et al., 2008). Interestingly, recent experiments have shown that a dominant active form of CCaMK expressed in sym mutant backgrounds allows successful AM infection despite the fact that the normal signal transduction pathway leading to calcium spiking has been circumvented (Hayashi et al., 2010). These results gave evidence that the common symbiosis genes upstream calcium spiking is only required for the activation of CCaMK and that this activation allows symbiotic accommodation of both rhizobia and AM fungi in L. japonicus. In other words, activation of CCaMK alone is sufficient to mediate symbiont accommodation within cortical cells. Additionally, it has been shown that calcium spiking has different signatures depending on RNF or AM symbiotic interactions, leading to the transmission of RNF- or AM-specific information to the downstream pathways (Kosuta et al., 2008). In contrast, gain-of-function of CCaMK does not discriminate the roots either infected by rhizobia or AM fungi, implying that a specific signal, other than those mediated by common SYM genes, plays role in the determination of downstream pathways responsible for each of the symbioses (Hayashi *et al.*, 2010). Likewise, a transition from low- to high-frequency calcium spiking occurs concomitantly with endosymbiotic microbe entry into cortical root cells and the spiking profiles associated with cell entry are similar in term of periodicity in response to rhizobia and AM fungi (Sieberer et al., 2012). Consequently, it has been proposed that calcium signatures discriminate bacterial and fungal symbionts prior to infection, but that a conserved calcium spiking profile is required for activating pathways required for cortical infection. Finally, as very comprehensively reviewed in Singh & Parniske (2012), recent data also indicate that a negative regulation of CCaMK via autophosphorylation of the CaM binding site is essential for symbiotic infection. Actually, Liao and co-workers showed that the *ccamk-14* mutant that carries a single amino acid substitution in a newly discovered autophosphorylation site in the calmodulin binding domain is impaired specifically in the infection of cortical cells by rhizobia or AM fungi (Liao et al., 2012). Biochemical analysis indicates that phosphorylation at this site inhibits calmodulin binding, thus negatively interfering with CCaMK activation.

2. Interior designers for membrane biogenesis and protein trafficking

As aforementioned (fungal entry), the pattern of impaired epidermal penetration together with lack of arbuscule in the cyclops and ccamk mutants, was also observed in Vapyrin knock-down plants (Feddermann et al., 2010; Pumplin et al., 2010). In petunia and barrel medic, Vapyrin was reported indispensable for arbuscule differentiation in cortical cells, whereas its function is conditional for epidermal colonisation at high infection pressure. Using confocal microscopy, it was shown that the cortical cells of the mutant were indeed colonized, but that arbuscule development was arrest at an early point of branching (Feddermann et al., 2010). By contrast, in wild-type colonized cells, Vapyrin become increasingly localized in areas of intense hyphal branching to membrane-bound structures associated with the tonoplast, referred to as tonospheres, which may function as a mobile reservoir of membrane material. This hypothesis could explain why Vapyrin is more critical in cortical cells than in epidermal cells, by reason of a more extensive need in membrane production (Pumplin & Harrison, 2009). In the same line, aside from resulting in septated hyphopodia with aborted penetration attempts, inactivation of the membrane steroidbinding proteins MtMSBP1 leads to a decreased number of arbuscules, some of them having a distorted morphology, suggesting that alteration of sterol metabolism with regard to membrane biogenesis is required for fungal accommodation (Kuhn et al., 2010). In relation to protein trafficking, Takeda and co-workers investigated in L. *japonicus* the relevance for mycorrhizal development of two AM-specific subtilases, SbtM1 and SbtM3, by negatively interfering with their expression through RNAi (Takeda et al., 2009). Suppression of SbtM1 or SbtM3 caused a decrease in intraradical hyphae and arbuscule frequency without affecting the number of fungal penetration attempts, indicating that the two subtilases play an indispensable role during the fungal infection process in particular arbuscule development. The predicted proteolytic activity of SbtM1 and SbtM3, together with their localization in the apoplastic perifungal and periarbuscular spaces, suggested that cleavage of structural proteins within and between plant cell walls by subtilases might be required for elongation of fungal hyphae in the intracellular space and for penetration into the host cell during arbuscule formation. Interestingly, AM-induced proteases were found to be secreted at the symbiotic interface. Actually, when testing the functionality of the subtilase signal peptide by fusion to the N-terminus of Venus protein, strong fluorescence was detected around fungal hyphae traversing plant cells and in the periarbuscular space, suggesting first that protein trafficking towards the periarbuscular space follows the canonical secretory pathway, and second, that the increase in membrane surface during arbuscule development may cause a significant portion of trans-Golgi vesicles to fuse with the periarbuscular membrane, and then to redirect proteins entering the secretory pathway to the periarbuscular space (Takeda et al., 2009). Very recently, Ivanov and co-workers investigated whether an exocytotic pathway might similarly control the formation of the symbiotic interface in both RNF and AM symbioses (Ivanov et al., 2012). Exocytosis that involves focalized fusion of transport vesicles (with a specific cargo) with their target (plasma) membrane, is mediated in plants by a group of proteins belonging to the VAMP72 (vesicleassociated membrane proteins), which have been shown to be recruited in the Arabidopsis interaction with biotrophic fungi (Kwon et al., 2008). Upon mining of M. EST and genome sequence data, a putative "symbiotic" VAMP721 subgroup, including MtVAMP721d and -e without Arabidopsis homologs, was retrieved as the best candidate to be involved in symbiosis-related membrane compartments. Localisation studies show that the corresponding proteins localize to over the

periarbucular membrane, especially at the fine branches, and subsequent RNAi-based silencing of *VAMP721d/e* genes blocks symbiosome as well as arbuscule formation in RNF and AM symbiosis, respectively. It was thus concluded that arbuscule formation is specifically controlled by the MtVAMP721d/e-regulated exocytotic pathway whose switch-on allows the targeting of vesicles with a different cargo to facilitate the development of a symbiotic interface with specific protein composition. Overall, the current data confirm that the periarbuscular endomembrane compartment is apoplastic despite its intracellular nature (Ivanov *et al.*, 2012).

Also related to the processes that may drive arbuscule extension/differenciation, transcriptional analyses revealed the occurrence of transporter genes that are induced in mycorrhizal roots but happened rather more likely involved in the export of unknown signalling molecules into the periarbuscular space than in the direct uptake of nutrients from the plant-fungus interface (Benedito et al., 2010; Gaude et al., 2012). Actually, in *M*. truncatula, Zhang and co-workers identified from a mycorrhiza-defective mutant background two half-ABC transporters designated STR and STR2 (for stunted arbuscule), which happen essential for arbuscule development but dispensable for RNF symbiosis, as inferred from the wild-type nodulation phenotype displayed in str mutants (Zhang et al., 2010). Expression of both STR genes was induced in cortical cells containing arbuscules and silencing of STR2 by RNA interference resulted in a stunted arbuscule phenotype identical to that of str. Noteworthy, interaction data show that STR and STR2 function as a heterodimer that resides in the periarbuscular membrane, more specifically around arbuscule branches. Based on the transport activity of most ABC transporters coupled to localization data, the authors supposed that unlike the phosphate transporters MtPT4 and OsPT11, STR/STR2 functions as a pump to export from the cortical cells to the periarbuscular apoplastic space in direction to the AM fungus a substrate molecule, which might be a lipid or a secondary metabolite. Previously, it was shown that the lysolipid lysophosphatidylcholine (LPC) may serve as a signal to induce symbiotic Pi transporter gene expression (Drissner et al., 2007), but LPC was excluded as a putative substrate for STR/STR2 because the *M. truncatula* symbiotic Pi transporter *PT4* is expressed appropriately in str backgrounds. By reason of the slow growth and reduced branching phenotype of arbuscules typical of *str* phenotypes, it was thus proposed that strigolactones might play a role in stimulating the dichotomous branching of intraradical hyphae to create the arbuscule (Zhang *et al.*, 2010). However, in a parallel study that analyses the function of STR/STR2 heterologous proteins in rice, this hypothesis was discarded in that *d17* and *d10* rice lines that carry mutations in carotenoid cleavage dioxygenases 7 and 8, respectively, which are required for SL biosynthesis, displayed wild-type like branched arbuscules (Gutjahr *et al.*, 2012). Likewise, not only the expression profile of AM-specific markers including that of the mycorrhiza-specific Pi transporter gene *OsPT11* actually persists in *str* rice lines, which is consistent with what observed in *M. truncatula*, but also the *str* phenotype was not complemented by wild-type nurse plants, suggesting that carbon flux to the AM symbiont is unlikely involved in restricting arbuscule branching. Overall, the hypothesis of either a plant Pi- or fungal carbon malnutrition in mediating stunted arbuscule formation fails to be sustained in rice (Gutjahr *et al.*, 2012), pointing to the possible involvement of membrane-required phospholipid-related compounds as alternative substrates of the STR transporter complex.

3. On a permanent slimming diet: the phosphate price for success

As a central feature of biotrophic mutualism in the AM symbiosis, a bi-directional nutrient flux corresponding to carbon delivery to the fungus versus mineral nutrient import to the plant, has been for a long time anticipated to proceed through protein transporters located to the arbuscule/cortical cell interface that comprises the plant and the microbial membranes separated by the plant-derived apoplast (Smith & Smith, 1990). Regarding phosphorus (P), which remains considered as the main symbiosis-mediated benefit for the host probably by reason of the low mobility of its ionic forms in the soil, two pathways can mediate its acquisition by plants as orthophosphate (Pi): the direct uptake pathway at the root-soil interface that involves high-affinity Pi transporters located to the epidermis and root hairs, as opposed to the mycorrhizal pathway that extends from extra-radical hyphae to cortical arbuscules. Pi is actually believed to translocate to fungal hyphae as polyphosphate, which upon hydrolysis by polyphosphatases in the arbuscule, generates Pi that is exported to the periarbuscular space. Subsequently, plant Pi transporters (PT), which use an H⁺ gradient to drive the transport process (Gianinazzi-Pearson et al., 2000), mediate Pi import to the root cell across the periarbuscular membrane (Parniske, 2008). Currently, AM-inducible Pi transporters, which all belong to the clade Pht1, have

been identified in many plant species and cluster in subfamilies I and III (Javot et al., 2007).

Transporters in subfamily III are expressed in roots, and some members such as such as StPT3 of potato and LjPT3 of *L. japonicus* are induced in cortical cells during AM symbiosis. Noteworthy, in *L. japonicus* roots colonized with *G. mosseae*, *LjPT3* transcripts were detected in arbuscule-containing cells of the inner cortex and partial suppression of *LjPT3* through RNAi led to a two-fold reduction in Pi transfer coupled to a decreased arbuscule number, suggesting that LjPT3 actually contributes to the symbiotic transport of Pi and that insufficient Pi uptake and/or low expression of *LjPT3* prevents further development of fungal structures (Maeda *et al.*, 2006). Relative to subfamily III, Pi transporters belonging to subfamily I such as OsPT11 of rice, MtPT4 of *M. truncatula* and LePT4 of tomato, only accumulate during symbiosis within arbuscule-containing cells, and at least for MtPT4 and OsPT11, the ir location in the perirbuscular membrane, notably in the arbuscule-branch domain, has been demonstrated (Pumplin & Harrison, 2009; Kobae & Hata, 2010), and thereby they are also referred to as mycorrhiza-specific transporters (Javot *et al.*, 2007).

The functional demonstration for a role of subfamily I transporters in sustaining symbiotic Pi transport comes from *mtpt4* knockout mutants in *M. truncatula*, which fail to display mycorrhiza-associated increases in Pi (Javot et al., 2007). Likely as a sixth decisive breakthrough in deciphering mycorrhiza functioning, Pi transport by MtPT4 appears clearly essential for AM symbiosis as inferred from the premature death of arbuscules and fungal growth arrest in mutants lacking MtPT4 function, suggesting that the import of Pi by MtPT4 serves as a signal to the plant cell not only to permit continued arbuscule development but also to sustain fungal existence within plant roots (Javot et al., 2007). Consistent with the idea of a causal relationship between Pi transport and arbuscule maintenance, proteins MtPT4 and OsPT11:GFP were no longer detectable on degenerating arbuscules in wild-type roots of M. truncatula and rice, respectively (Harrison et al., 2002; Kobae & Hata, 2010). Likewise, in petunia plants it was noticed that repression of phosphate transporterencoding genes upon Pi addition precedes the reduction in colonization, indicating that PT loss-of-function actually represents a cause, but not a consequence, of decreased symbiosis (Breuillin et al., 2010). Unexpectedly, the N status of the plant was found to impact the *mpt4* mycorrhizal phenotype in that premature arbuscule

degeneration is relieved when plants are deprived of N, whereas fungal death is not rescued when the fungus has access to carbon from a nurse plant, indicating that arbuscule lifespan is regulated in part by N, but unlikely by C availability (Javot et al., 2011). In this respect, AM symbionts are known to transfer N to the plant (Hodge et al., 2001), and the existence of AM-inducible ammonium transporter genes has been documented especially in L. japonicus and G. max (Guether et al., 2009; Kobae et al., 2010). Interestingly, in soybean the AM-inducible ammonium transporter GmAMT4.1 localizes to the arbuscule-branch domain similarly to MtPT4 in M. truncatula (Kobae et al., 2010). It is therefore conceivable that ammonium symbiotic delivery by the AM fungus at the cortical plant-symbiont interface can also act as a signal to sustain arbuscule functioning in order to provide the plant with N when the environmental conditions are limiting. Unfortunately, it is currently unknown whether the AMT4.1 protein disappears upon arbuscule death in natural mycorrhiza nor whether AMT4 loss-of-function triggers symbiosis arrest as observed for MtPT4. Regarding the putative signalling processes involved in the phosphate control of AM symbiosis, Drissner and co-workers identified LPC as a signalling molecule which activates the expression of LePT3, StPT3 and StPT4, which are mycorrhiza-inducible PT genes in tomato (S. lycopersicum) and potato (Solanum tuberosum) (Drissner et al., 2007). By contrast, in P. hybrida, the mycorrhiza-specific phosphate transporter gene PhPT4, was found suppressed by LPC, suggesting that lysolipid may not act as an universal signal in AM symbiosis (Tan et al., 2012). Whatever the case, a series of promoter truncation and mutation analyses led recently to the identification of two conserved *cis*-acting elements, MYCS and P1BS, involved in the regulation of mycorrhiza-activated Pi transporters in eudicot species, which may provide new insights in the Pi signalling pathways during AM symbiosis (Chen et al., 2011).

4. Shopping centre addiction: the fuel dispenser

Regarding plant carbon delivery to the AM fungus, sucrose (Suc), which channels a substantial portion of the photosynthetic fixed CO_2 , is used for long-distance carbon and energy transport into diverse heterotrophic sinks and represents the preferred carbohydrate translocated to the mycorrhizal interface (Bucking & Shachar-Hill, 2005). Higher transcript levels of sucrose transporters (SUT), as well as accumulation of sucrose and monosaccharides in sink organs were observed in mycorrhized roots of tomato (*Solanum lycopersicum*) and white clover (*Trifolium repens*) plants, indicating

an increased movement of sucrose from photosynthesizing leaves (Wright et al., 1998; Boldt et al., 2011). Very recently, the characterization of the complete sucrose transporter family from *M. truncatula* and the identification of two key members upregulated in mycorrhized plants (MtSUT1.1 and MtSUT4.1) reinforce this idea of an increased movement from source leaves towards mycorrhizzed roots (Doidy et al., 2012). Interestingly, the overexpression of the phoem loading SoSUT1 of potato (Solanum tuberosum) shaped the plant-fungus interaction by increasing *R. irregularis* colonization, compared to WT plants, when high-phosphate conditions were applied (Gabriel-Neumann et al., 2011). The fact that no effects on mycorrhization rates were observed in low-phosphate conditions, nor when antisense inhibition lines of this transporter were assessed; coupled with previous evidences showing an altered leaf Cpartitioning and tuber metabolism when this gene was overexpressed (Leggewie et al., 2003), might suggest a non-direct effect of SoSUT1 on the AM interaction. Additional evidences of transcriptional regulation of genes involved in sucrose transport were reported in the AM interaction between tomato plants and Glomus fasciculatum (Tejeda-Sartorius et al., 2008). Nevertheless, contrasting evidences on SUTs regulation have been reported for the LeSUT1 of tomato, which showed to be down-regulated in AM mycorrhized roots (Ge et al., 2008).

Because intra-radical fungal structures are unable to take-up Suc together with the lack of evidence in favour of Suc-cleaving activities in AM fungi, Suc is believed to be hydrolysed prior to fungal utilization by cytosolic Suc synthases (SucS), producing UDP-Glc and Fru, or invertases (Inv), producing Glc and Fru. Particularly, extracellular invertases have a key function in supporting increasing sink strength, a feature of mycorrhizal roots; and may thus directly deliver utilizable carbohydrates to the apoplast-located fungal structures. Unexpectedly, artificially augmented hexose availability to the AM fungus, obtained by yeast-derived apoplastic Inv active in the arbuscule interface of transgenic mycorrhizal *M. truncatula* roots, failed to improve AM colonization significantly (Schaarschmidt *et al.*, 2007). These data suggested that carbohydrate supply in AM cannot be improved by root-specifically increased hexose levels, implying that under normal conditions sufficient carbon is available in mycorrhizal roots. By contrast, transgenic tobacco plants expressing an inhibitor of Inv functioning showed reduced apoplastic invertase activities in roots that also had lower contents of Glc and Fru coupled to a diminished mycorhization, thus showing

that the carbon supply in the AM interaction actually depends on the activity of hexose-delivering apoplastic invertases in roots (Schaarschmidt et al., 2007). Concomitantly, to study the relevance of the SucS-mediated symplastic sink near the plant fungus interface, Baier and co-workers (Baier et al., 2010) used M. truncatula lines displaying partial suppression of *MtSucS1*, the only *MtSucS* gene currently known as activated under endosymbiotic conditions and for which a role for biological N fixation in root nodules was demonstrated (Baier et al., 2007). Antisensing MtSuc1 led to an internal mycorrhization-defective phenotype as inferred from reduced frequencies in internal hyphae, vesicle and arbuscule development. Strikingly, arbuscules were not only degenerating, similarly to the early symbiosome senescence observed in *Rhizobium*-inoculated *MtSuc1*-knockdown lines, but often showed a lower branching network, resulting in a reduced functional symbiotic interface also evident from the recorded down-regulation of periarbuscular membrane transcript markers. This phenotype, somehow reminiscent of that displayed in MtMTP4-repressed constructs (Javot et al., 2007), correlated with reduced phosphorus and nitrogen levels and was proportional to the extent of MtSuc1 knockdown, as represented in Figure 1.4. Overall, it was concluded that plant sucrose synthase MtSuc1 functioning is directly or indirectly a prerequisite, not to induce, but to sustain normal arbuscule maturation and lifetime (Baier et al., 2010).

In parallel, the long time-dating hypothesis of a subsequent carbon uptake by AM fungi, occurring in form of hexoses at the plant-fungal interface, has been supported by the isolation of a monosaccharide transporter from *Geosiphon pyriformis*, a member of the *Glomeromycota* that undergoes AM-like endosymbiosis with cyanobacteria, but not with higher plants (Schussler *et al.*, 2006; Schussler *et al.*, 2007). Nonetheless, a recent seventh likely-decisive step forward the understanding of mycorrhizal mutualism comes from the first isolation of a *R. irregularis* monosaccharide transporter operating at several symbiotic root locations (Helber *et al.*, 2011). Using a preliminary draft of the sequencing project of *R. irregularis*, which is expressed not only in arbuscules but also in intercellular hyphae, indicating that sugar uptake can proceed in both fungal structures (Helber *et al.*, 2011). MST2 was found able to transport Glc, and Fru, but also Xyl, Man, Gal, glucuronic and galacturonic acids that are components of the no linked primary cell wall-like

apoplastic plant-fungus interface, thus corroborating the idea that AM fungi can indeed feed on cell wall components (Smith & Smith, 1990). Furthermore, MST2 expression *in planta* was clearly found to depend on the symbiotic phosphate delivery pathway. Actually, upon Pi fertilization, the expression of MST2 was down-regulated concomitantly to that of the mycorrhiza-specific Pi transporter PT4. Most interestingly, knockdown MST2 lines through host-induced gene silencing indicates that MST2 is indispensable for a functional symbiosis as inferred from lower mycorhization levels coupled to the appearance of not fully developed and early senescing arbuscules, a phenotype that parallels the abolished expression of MtPT4. Unexpectedly, it also turned out that Xyl can specifically induce the expression of MST2 in the extra-radical mycelium (ERM), a tissue believed so far unable of sugar uptake, suggesting that Xyl may act as a signal to trigger MST2 expression in planta. On the basis of these outstanding data, Helber and co-workers proposed a model according to which AM fungal growth within the cortex induces a signal-mediated increase in carbon sink coupled to Xyl availability that triggers MTS2 expression; and subsequent arbuscule formation induces PT4 activation (Helber et al., 2011). As a feedback control, a high phosphate symbiotic delivery might act by reducing Xyl levels and consequently repress MST2 induction.

5. The face pack of house-keepers: a plastid-derived colored and hormonal control.

Upon AM symbiosis, colonized cortical cells are known to accumulate within the plastids surrounding arbuscules two types of apocarotenoids (carotenoid cleavage products) of unknown function, which lead to the typical macroscopically visible yellow coloration of mycorrhizal roots, and are assumed to originate from a common carotenoid precursor (Fester *et al.*, 2002; Floss *et al.*, 2008). Namely, the chromophor of this yellow complex is an acyclic C_{14} apocarotenoid polyene called mycorradicin that occurs in a complex mixture of derivatives, coupled to the concomitant accumulation of C_{13} cyclohexanone apocarotenoid derivatives (Schliemann *et al.*, 2006). To investigate the elusive role of cyclohexanone and mycorradicin accumulation in AM symbiosis, Floß and co-workers suppressed the expression of *MtDSX2* (1-deoxy-D-ribulose 5-phosphate synthase) that catalyzes the first step of the plastidial methylerythritol phosphate (MEP) pathway, which supplies isoprenoid precursors in parallel to an alternative cytosolic pathway (Floss *et al.*, 2008). RNAi-

mediated repression of *MtDSX2* led to a strong and reproducible reduction in the accumulation of the two AM-inducible apocarotenoids coupled to a shift towards a greater number of older, degrading and dead arbuscules at the expense of mature ones. Overall, these data reveal a requirement for DXS2-dependent MEP pathwaybased isoprenoid products to sustain mycorrhizal functionality at late stages of symbiosis. In accord with this view, Vogel and co-workers reported that a knockdown approach performed in tomato on the *carotenoid cleavage dioxygenase* 7 (*cdd*7) gene located downstream in the pathway of apocarotenoid biosynthesis resulted in major decreases in the levels of AM-induced apocarotenoids in *cdd7* antisense lines, coupled to a decreased in arbuscule abundance (Vogel et al., 2010). Although the role of cyclohexanone and mycorradicin during AM symbiosis still remains to be solved, it turns out that a specific consequence of the absence of apocarotenoids might be the accumulation of older arbuscules (Floss et al., 2008). In this respect, a high exogenous supply of Pi in mycorrhizal petunia roots was found to repress genes involved not only in phosphate transport and intracellular accommodation, but also in carotenoid biosynthesis (Breuillin et al., 2010). Taken together, these data support a hypothesis according to which apocarotenoids sustain directly or indirectly arbuscule maintenance/functioning.

Finally, and as very comprehensively reviewed in (Hause & Schaarschmidt, 2009), the involvement of the plastid-located lipid-derived phytohormone jasmonic acid (JA) as a regulator of AM symbiosis has been observed in diverse plant species. Initially noticed from application experiments that resulted in a promotion of mycorrhizal root colonization, a positive effect of JA on AM symbiotic development was also drawn from the increased endogenous JA levels observed after the initial step of the symbiotic interaction, indicating that partner recognition may not be linked to the expression of JA-biosynthetic genes and to elevated JA levels. A functional demonstration for a role of JA in mycorrhiza establishment comes from a *M. truncatula* antisense line that displays a partial suppressed expression of *MtAOC1*, which encodes the JA-biosynthetic enzyme allene oxide synthase (AOC) (Isayenkov *et al.*, 2005). The reduction in the amount of MtAOC protein through antisense-mediated suppression resulted in a decrease in endogenous JA level in mycorrhizal roots accompanied by an overall reduction in arbuscule frequency rather than to an abnormal infection process. Immunocytology indicated that in mycorrhizal roots

MtAOC clearly localizes to plastids that develop around arbuscules, whereas the cortex cells of nonmycorrhizal roots were label-free. Notably, the AOC protein also seems to be present in arbuscule-containing cells independent of their developmental stage, suggesting the absence of a relationship between JA synthesis and arbuscule maintenance. In this line, when considering genes the repression of which upon Pi fertilization may potentially affect AM colonization in petunia, a homologue of the JA-inducible JA2 transcript was slightly increased, in contrast to the phosphatemediated suppression of those essential for symbiosis (Breuillin et al., 2010). Consequently, the petunia transcriptional Pi-related proxy rather sustains a helper/signalling effect of JA biosynthesis in mycorrhizal colonization rather than a prominent role of the phytohormone in sustaining AM functioning. Nonetheless, because jasmonates can affect mycorhization in multiple ways, including alteration in flavonoid biosynthesis, microtubular pattern, defence reaction, cytokinin action together with an increase in the stimulation of carbohydrate synthesis, additional experiments based on metabolite, protein and/or transcript profiling are required to elucidate the processes mediated by jasmonates during AM symbiosis (Isayenkov et al., 2005).

Overall, contrasting with the last decade that has been essentially dominated by the dissection of the role played by the common SYM pathway in the cortical infection by AM fungi (reviewed in Singh & Parniske, 2012), recent years have seen not only an extraordinary increase in the protein repertoire sustaining arbuscule development and functioning, but also an unexpected specialization of the protein machinery mediating arbuscule morphogenesis coupled to a network of interacting regulators that turns out to be quite more complex than anticipated, a protein scenario we have attempted to schematise and list in Figure 1.4 and Table 1.1, respectively.

Table 1.1: List of proteins essential for arbuscules.

Repertoire of the proteins listed in the current study for which partial or total loss-of-function supports a role in sustaining arbuscule (Arb) development and/or functioning.

Protein	Origin	Function	Location	Origin of loss-of function	Loss-of-function phenotype in AM symbiosis	Main literature cited
ССаМК	Plant	Signalling	Plant nucleus	Nodulation defective mutant	Arb defective	Reviewed in Singh and Parniske (2012)
CYCLOPS	Plant	Signalling	Plant nucleus	Nodulation defective mutant	Arb defective	Reviewed in Singh and Parniske (2012)
Vapyrin	Plant	Membrane biogenesis	Membrane- bound structures	RNAi	Arb branching defective	(Feddermann <i>et al.</i> , 2010; Pumplin <i>et al.</i> , 2010)
MSBP1	Plant	Membrane biogenesis	ER	RNAi	Decreased arb number, arb morphology defects	(Kuhn et al., 2010)
SbtM1/M3	Plant	Protein trafficking	Apoplastic symbiotic interface	RNAi	Decreased IRM and arb number	(Takeda <i>et al.</i> , 2009)
VAMP72s	Plant	Membrane biogenesis	PAM branches	RNAi	Arb defective	(Ivanov <i>et al.</i> , 2012)
STR/STR2	Plant	Transport	PAM branches	RNAi	Slow growth, reduced branching	(Zhang <i>et al.</i> , 2010) (Gutjahr <i>et al.</i> , 2012)
PT4	Plant	Transport	PAM branches	RNAi	Arb premature death, growth arrest	(Javot <i>et al.</i> , 2007)
Inv	Plant	Suc cleavage	Apoplaste	Activity inhibitor	Reduced mycorrhization	(Schaarschmidt et al., 2007)
SucS1	Plant	Suc cleavage	Cytoplasme	RNAi	Decreades IRM and vesicles. Arb branching defects and senescence	(Baier et al., 2010)
MS T2	Fungus	Transport	Arbuscule/ IRM/ERM	HIGS	Reduced mycorrhization, not fully developed arb, arb senescence	(Helber <i>et al.</i> , 2011)
DXS2	Plant	Carotenoid biosynthesis	Plastid	RNAi	Arb senescence	(Floss <i>et al.</i> , 2008)
CDD7	Plant	Carotenoid biosynthesis	Plastid	RNAi	Reduced mycorrhization, arb senescence	(Vogel et al., 2010)
AOC	Plant	JA biosynthesis	Plastid	RNAi	Reduced mycorrhization	(Isayenkov et al., 2005)

IV. The gardener, the chemist, and the trader as desperados' serial lovers. -"Because mycorrhiza worth it":

In recent years, the expansion of legume genome data banks coupled to imaging and gene-to phenotype reverse genetic tools such as RNAi, have been proved very efficient methods to elucidate some of the plant-related protein-related mechanisms sustaining AM symbiosis development and functioning. Although expected, but likely to a lesser extent, most of the resulting data support a drastic role of membrane organogenesis and differentiation in accommodating AM fungal symbionts, through which C, Pi and N turned out to play unsuspected decisive roles. Likewise, despite the multinucleate nature of AM fungi and the recurrent absence of transformation tools, host induced gene silencing succeeded for the first time in silencing fungal gene expression in planta, thus unlocking a methodological bottleneck in deciphering the functional pertinence of Glomeromycotan fungi-gene products during AM symbiosis. In this respect, methodological refinements and future insights regarding AM fungal dependence upon plant metabolites, as above exemplified with Xyl, might help inoculum producers in optimizing an improved propagule delivery for sustainable agricultural processes. Likewise, symbiosis with AM beneficial fungi is known to promote plant fitness and help hosts to cope with biotic and abiotic stresses, a phenomenon somehow anticipated, on the basis of previous results obtained with cadmium tolerance of mycorrhizal plants (Aloui et al., 2009; Aloui et al., 2011), to depend upon the constitutive symbiotic protein program. Consequently, one can expect that "falling for function" might not only help in retrieving functions essential to the AM symbiotic partnership, but also in understanding the processes by which mycorrhiza turn out to be so human-friendly in relieving anthropogenic miss activities.

Acknowledgments: CA, EDG, DW and GR acknowledge financial support by the Burgundy Regional Council (PARI Agrale 8) and "Fonds National de la Recherche du Luxembourg" AFR TR-PHD BFR 08-078 The authors are grateful to H-N Truong-Cellier and D. van Tuinen for their quite kind critical reading and to Morgane who provided the integral season of her every-day favourites. GR would like to sincerely thank Silvio Gianinazzi for his initial trust and his constant human support within a ten year travel through his mycorrhizal world.

Chapter 1.2

Gel-based and gel-free quantitative proteomics approaches at a glance

Cosette Abdallah^{1,2}, Eliane Dumas-Gaudot², Jenny Renaut¹ and Kjell Sergeant¹

¹Département Environnement et Agro-Biotechnologies, Centre de Recherche Public-Gabriel Lippmann, 41, rue du Brill, L-4422, Belvaux, Luxembourg.

²UMR Agroécologie INRA 1347/Agrosup/Université de Bourgogne, Pôle Interactions Plantes Microorganismes ERL 6300 CNRS, BP 86510, 21065 Dijon Cedex, France.

Abstract

Two-dimensional gel electrophoresis (2-DE) is widely applied and remains the method of choice in proteomics; however, pervasive 2-DE-related concerns undermine its prospects as a dominant separation technique in proteome research. Consequently, the state-of-the-art shotgun techniques are slowly taking over and utilising the rapid expansion and advancement of mass spectrometry (MS) to provide a new toolbox of gel-free quantitative techniques. When coupled to MS, the shotgun proteomic pipeline can fuel new routes in sensitive and high-throughput profiling of proteins, leading to a high accuracy in quantification. Although label-based approaches, either chemical or metabolic, gained popularity in quantitative proteomics because of the multiplexing capacity, these approaches are not without drawbacks. The burgeoning label-free methods are tag-independent and suitable for all kind of samples. The challenges in quantitative proteomics are more prominent in plants due to difficulties in protein extraction, some protein abundance in green tissue and the absence of well-annotated and completed genome sequences. The goal of this perspective assay is to present the balance between the strengths and weaknesses of the available gel-based and -free methods and their application to plants. The latest trends in peptide fractionation amenable to MS analysis are as well discussed.

1-Introduction

"In the wonderland of complete sequences, there is much that genomics cannot do, and so the future belongs to proteomics, the analysis of complete complements of proteins" (Fields, 2001).

Originally coined by Marc Wilkins in 1995, proteomics by name is now over 15 years old. The term "proteome" refers to the entire PROTEin complement expressed by a genOME (Wilkins *et al.*, 1996). Proteomics is thus the large-scale analysis of proteins in a cell, tissue or whole organism at a given time under defined conditions. The cutting-edge proteomics techniques offer several advantages over genome-based technologies as they directly deal with the functional molecules rather than genetic code or mRNA abundance. Even though there is only one definitive genome of an organism, it codes for multiple proteomes since the accumulation of a protein changes in relation to the environment and is the result of a combination of transcription, translation, protein turnover, and posttranslational modifications.

The field of proteomics has grown at an astonishing rate, mainly due to tremendous improvements in the accuracy, sensitivity, speed and throughput of the mass spectrometry (MS) and the development of powerful analytical software. It appears to be gaining momentum as proteomic techniques become increasingly widespread and applied to an expanding smorgasbord of biological assays. Recently, proteomics has expanded from mere protein profiling to accurate and high-throughput protein quantification between two or multiple biological samples.

Most of the early developments in quantitative proteomics were driven by research on yeast and mammalian cell lines (Schulze & Usadel, 2010). The incidence of proteomic studies on plants has increased over the past years but still lags behind human and animal proteomics, moreover model organisms and cash crops (e.g., *Arabidopsis* and rice) continue to be dominant in the plant proteomic literature. Most quantitative proteomic techniques used for human, animal or other eukaryotic organisms can essentially also be employed for plant systems but plants, possessing distinct properties with regard to their genome, physiology, and culture, can impose high demands on proteomic sample handling. However, these advanced strategies have helped and facilitated the study of plant proteins and many new reports on differential

70

expression, as well as global and organellar proteomic elucidation, have been put forth.

Quantitative proteomic approaches can be classified as either gel-based or gel-free methods as well as "label-free" or "label-based", of which the latter can be further subdivided into the various types of labelling approaches such as chemical and metabolic labelling. In the present work, the thorough description and current status of commonly used gel-based and -free proteomic methodologies is provided. An overview of their suitability, potential and bottleneck applications in plant proteomics is discussed.

2- Gel-based proteomics

"Electrophoresis today and tomorrow: helping biologist's dreams come true" (Kleparnik & Bocek, 2010)

2.1- Two-dimensional gel electrophoresis (2-DE): the workhorse of proteomics

Since it was first introduced in 1975 (O'Farrell, 1975), 2-DE has evolved at different levels and became the workhorse of protein separation and the method of choice for differential protein expression analysis. Proteins first undergo isoelectric focusing (IEF) based on their net charge at different pH values and in the orthogonal second dimension further separation is performed based on the molecular weight (MW). This technique has an excellent resolving power and today, it is possible to visualize over 10,000 spots corresponding to over 1,000 proteins, multiple spots containing different molecular forms of the same protein, on a single 2-DE gel (Schulze & Usadel, 2010). Due to the pivotal problem of protein solubility, the overwhelming majority of electrophoretic protein separations is made under denaturing conditions. Two types of reagents are used in 2-DE buffers to ensure protein solubility and denaturation. The first type, chaotropes (e.g., urea, thiourea) used at multimolar concentrations, is able to unfold proteins by weakening non-covalent bonds (hydrophobic interactions, hydrogen bonds) between proteins (Gordon & Jencks, 1963). The second one is ionic detergents, in which SDS (Sodium Dodecyl Sulfate) is the archetype. It is made of a long and flexible hydrocarbon chain linked to an ionic polar head. The detergent molecules will bind through their hydrophobic hydrocarbon tail to hydrophobic amino acids. This binding favours amino acid-detergent interactions over amino acid-amino acid interactions, thereby promoting denaturation. Moreover, nonionic or zwitterionic

detergents such as Triton X-100 are also used for protein solubilisation, since IEF requires low ion concentration in the sample (Vertommen *et al.*, 2011). The detection method post-gel migration is achieved either by the use of visible stains such as silver and Coomassie or fluorescent stains such as Sypro Ruby, Lava- and Deep Purple.

Nevertheless, 2-DE has lately come under assault due to its known limitations and in part to the development of alternative MS-based approaches. Some of the reasons behind this trend include issues related to reproducibility (Lilley *et al.*, 2002), poor representation of low abundant proteins (Gygi *et al.*, 2000), highly acidic/basic proteins, or proteins with extreme size or hydrophobicity (Ong & Pandey, 2001), and difficulties in automation of the gel-based techniques (Tonge *et al.*, 2001). Moreover, the co-migration of multiple proteins in a single spot renders comparative quantification rather inaccurate.

Although no technique has a better resolving power than classical 2-DE, many endeavours were made to step forward and make it suitable to study membrane proteins (Vertommen et al., 2011), and to overcome the protein ratio errors due to low gel-to-gel reproducibility by the inclusion of Difference Gel Electrophoresis (2D-DIGE) (Unlu et al., 1997). This technique enables protein detection at subpicomolar levels and relies on pre-electrophoretic labelling of samples with one of three spectrally resolvable fluorescent CyDyes (Cy2, Cy3 and Cy5). These dyes have an NHS-ester reactive group that covalently attaches to the ε -amino group of protein lysines via an amide linkage. The ratio of dye to protein is specifically designed to ensure that the dyes are limiting in the reaction and approximately cover 1-2% of the available proteins where only a single lysine per protein is labelled. Inter-gel comparability is achieved by the use of an internal standard (mixture of all samples in the experiment) labelled with Cy2 and co-resolved on the gels that each contains individual samples labelled with Cy3 or Cy5. Since every sample is multiplexed with an equal aliquot of the same Cy2 standard mixture, each resolved feature can be directly related to the Cy2-labelled internal standard, and ratios can be normalized to all other ratios from other samples and across different gels. This can be done with extremely low technical variability and high statistical power (Alban et al., 2003; Friedman et al., 2004; Karp & Lilley, 2009).

For quantitative analysis, imaging software is required to align gel spots and measure their intensities. To this end, gels need to be digitalised either by using a scanner recording light transmitted through or reflected from the stained gel or fluorescent scanner. The images are subsequently imported into dedicated commercially available 2-DE image analysis softwares such as DeCyder (GE Healthcare), Proteomweaver (Bio-Rad), PDQuest (Bio-Rad), and Progenesis Same Spots (Nonlinear Dynamics). Most of these analysis software tools are user-friendly and allow (i) image alignment and spot matching across the gels, (ii) normalization, background adjustment and noise removal, (iii) spot detection, (iv) quantification by calculation of the spot volumes and statistical analysis to highlighting differentially-present proteins. Background cleaning allows the enhancement of the protein signal and distinguishes the noise from a spot. The global background correction consists of subtraction of all pixels below a set threshold of the maximum intensity. For matching, typically a reference gel is chosen and all gels are then automatically matched to the master one. Matching represents the most laborious step since frequent mistakes are made due to gel-to-gel and spot migration variability. Therefore, user intervention is needed to manually correct the software and improve the accuracy in spot matching. The quantification is performed through a summation of the pixel intensities localized within the defined spot area. The softwares use multivariate statistical packages such as ANOVA (Analysis of Variance) based on spot size and intensity, spots are then assigned to *p*-values, fold changes between groups. Most packages furthermore apply FDR (False Discovery Rates) or q-values to avoid the wrongful assignment of significant changes. PCA (Principle Component Analysis) is also often carried out. These available statistical tests make the 2-DE analyses and quantification more straightforward. However, the challenges associated with computational 2-DE analysis are technical problems such as experimental variation between gels and a high probability of piling several proteins under one spot.

Gel-based proteomics has so far been the main approach used in plant proteomics. 2D-DIGE has been successfully applied to investigate symbiosis- and pathogenesisrelated protein in *Medicago truncatula* (van Noorden *et al.*, 2007; Schenkluhn *et al.*, 2010) and to study the impact of abiotic stresses such as drought in oak (Sergeant *et al.*, 2011), frost in *Arabidopsis* (Li *et al.*, 2011), ozone and heavy metals in poplar
(Kieffer et al., 2008; Durand et al., 2010; Bohler et al., 2011).

2.2- Electrophoretic separations of native proteins

In their endeavour to study the protein complexes of the respiratory chain of mitochondria, Schägger and von Jagow developed a gel-based system able to separate protein complexes involved in oxidative phosphorylation in their native state (Schagger & von Jagow, 1991). This technique enables the separation of protein complexes under native conditions followed by the separation of individual proteins under denaturing conditions, thereby providing insight into the stoichiometry of the complexes. A charge-shifting agent, the dye Coomassie Brilliant Blue G-250, is added to the cathode buffer in order to stick to proteins conferring a uniform electric charge without unfolding the protein structure. Thus, intact protein complexes can be separated on a non-denaturing gradient gel roughly according to their MW, but the size and shape of each complex also influences how far that complex migrates into the gel. The gel lane is then cut out and separated on a second gel, orientated perpendicularly to the first axis of separation. This second dimension, a classic SDS-PAGE, is performed to separate the component proteins of each complex according to their MW. Blue Native-PAGE (BN-PAGE) studies were mainly focused on the analysis of electron transfer chain complexes in plastids and mitochondria; the potential application of this technique in plant proteomics was previously discussed and reviewed (Eubel et al., 2005). More recently, this strategy was used efficiently to analyze the proteome of wheat chloroplast protein complexes (Meng et al., 2011). BN-PAGE was highly linked to membrane proteomics showing a deep interest to improve the hydrophobic proteome coverage of gel-based approaches (Kota & Goshe, 2011).

BN-PAGE appears to be unsuitable to resolve small protein complexes (<100 kDa) due to the small separation distance of the first gel step, nevertheless a protocol for bacteria and eukaryotic cells allowing the identification of complexes in the range of 20-1,300 kDa was recently reported (Lasserre & Menard, 2012). However, distinct complexes of similar molecular masses may co-migrate and the constitutive proteins appear then to be present in the same complex. Despite the trick of the use of a charge-shifting agent, BN-PAGE is difficult to optimize and it is quite common to observe some trailing of the bands, which indicates insufficient protein solubilisation.

To improve the resolution, three-dimensional electrophoresis can be performed, combining 2 variants of native electrophoresis in the first and second dimension and SDS-PAGE in the third dimension (Vertommen *et al.*, 2011).

2.3- One-dimensional gel electrophoresis (1-DE): the birth of proteomics

Soon after its inception, one-dimensional gel electrophoresis (1-DE) became the most popular method for at least two purposes: fast determination of protein MW and assessing the protein purity. Today, this widespread technique is used for many applications: comparison of protein composition of different samples, analysis of the number and size of polypeptide subunits, Western blotting coupled to immuno-detection, and, of course, as a second dimension in 2-DE maps.

Taking advantage of both gel-based protein and gel-free peptide separation properties 1-DE is, nowadays, coupled to subsequent analysis in liquid chromatography (LC) prior to MS. After protein separation on SDS gel, the entire gel lane is excised and divided into slices prior to the proteolytic digestion. Afterwards, peptide fractions are subjected to a second separation in LC prior to MS/MS analysis. The main advantages of this technique are the harsh ionic detergent use of the SDS that ensures protein solubility during the size-separation step and the reduced sample complexity prior to LC which renders the chance of identifying low abundant proteins higher. Recently comparisons of 1-DE-LC approach to other fractionation methods (e.g., cation exchange, isoelectric focusing, etc.) at both protein and peptide level, demonstrated its superior performance and higher proteome coverage (Hahne et al., 2008; Fang et al., 2010; Piersma et al., 2010). Thus, by increasing the solubility (the major bottleneck in protein separations) and dwindling the complexity of the system by cutting the protein gel lane, 1-DE coupled to LC/MS analysis represents an attractive technique in proteomics studies. In plants 1-DE-LC-MS/MS approach has been broadly applied, as an example the study on *M. truncatula* plasma membrane changes in response to arbuscular mycorrhizal symbiosis (Valot et al., 2006) and on Arabidopsis thaliana chloroplast envelope (Froehlich et al., 2003). Lately, this approach has also been used for the compilation of a protein expression map of the Arabidopsis root providing the identity and cell type-specific localization of nearly 2,000 proteins (Petricka et al., 2012).

3- Proteomics: from gel-based to gel-free techniques

"A la carte proteomics with an emphasis on gel-free techniques" (Gevaert et al., 2007).

Two-dimensional gel electrophoresis is a now a mature and well-established technique, however it suffers from some ongoing concerns regarding quantitative reproducibility and limitations on the ability to study certain classes of proteins. Therefore in recent years, most developmental endeavours have been focused on alternative approaches, such as promising gel-free proteomics. With the appearance of MS-based proteomics, an entirely new toolbox has become available for quantitative analysis. In shotgun proteomics (bottom-up strategy) complex peptide fractions, generated after protein proteolytic digestion, can be resolved using different fractionation strategies, which offer high-throughput analyses of the proteome of an organelle or a cell type and provide a snapshot of the major protein constituents.

Although these novel approaches were initially pitched as replacements for gel-based methods, they should probably be regarded as complements to rather than replacements of 2-DE. There are many points of comparison and contrast between the standard 2-DE and shotgun analyses, such as sample consumption, depth of proteome coverage, analyses of isoforms and quantitative statistical power. Both platforms have the ability to resolve hundreds to thousands of features, so the choice between the different platforms is often determined by the biological question addressed. Currently there is no single method, which can provide qualitative and quantitative information of all protein components of a complex mixture. Ultimately, these approaches are both of great value to a proteomic study and often provide complementary information for an overall richer analysis.

4- Peptide fractionation procedures

"The introduction of multidimensional peptide resolving techniques is of unquestionable value for the characterization of complex proteomes" (Manadas et al., 2010).

Since there is no method or instrument that is capable of identifying and quantifying the components of a complex sample in a single-step operation, there is ample evidence that high dimensional fractionation is required for deep exploration of complex proteomes and low abundant proteins. The basic principle of multidimensional fractionation is to separate peptides according to various orthogonal physicochemical properties and/or affinity interactions, resulting in much less complex fractions. There are numerous methodologies of separation available that can be used in tandem to perform a reduction in sample complexity. Each method has its own merits and drawbacks, therefore, the downstream needs of the workflow determine the optimal method for sample analysis.

4.1- Ion-exchange chromatography (IEC)

This type of chromatography involves peptide separation according to their electric charge. In cation-exchange chromatography (CX), negative functional groups attract positively charged peptides at acidic pH, while in anion-exchange chromatography (AX), positive functional groups have affinity for negatively charged peptides at basic pH. Strong cation-exchange chromatography (SCX) encompasses a strong exchanger group that can be ionised over a broad pH range. For peptide separation using SCX columns, the peptide mixture is loaded under acidic conditions so that the positively charged peptides bind to the column. By increasing the salt concentration, peptides are displaced according to their charge, while by applying a pH gradient, peptides are resolved according to their isoelectric point (pI). Thus, positively charged peptides bind to the actual buffer pH is lower than their pI.

4.2- Reversed-phase chromatography (RP)

This most widespread LC-method applied in proteomics allows neutral peptide separation according to their hydrophobicity. The separation is based on the analyte partition coefficient between the polar mobile phase and the hydrophobic (non-polar) stationary phase. The trapped peptides are then eluted using an organic phase gradient, usually acetonitrile. The ion-pair chromatography relies upon the addition of ionic compounds to the mobile phase to promote the formation of ion pairs with charged analytes. These reagents are comprised of an alkyl chain with an ionisable terminus. The introduction of ion pair-reagents increased the retention of charged analytes and improved peak shapes. Trifluoroacetic acid (TFA) and formic acid (FA) have been extensively used as ion-pairing reagents (Manadas *et al.*, 2010).

4.3- Two-dimensional liquid chromatography (2D-LC)

Multidimensional analytical methods, having orthogonal separation power, are required to reduce sample complexity and increase the proteome coverage. The separation of peptide mixtures by 2D-LC has been performed using several orthogonal combinations such as AX coupled to RP (AX/RP), size exclusion chromatography coupled to RP (SEC/RP), and affinity chromatography coupled to RP (AFC/RP). In most shotgun proteomic analyses, the second dimension is performed by RP because the mobile phase is compatible with MS (Fournier *et al.*, 2007).

It has been shown that SCX is an excellent match to RP for multidimensional proteomic separations. In offline mode, the eluted fractions of the first dimension (SCX) are collected and then subjected to the second dimension (RP). Online approaches are faster with less sample loss due to the direct coupling of the two dimensions. In Multidimensional Protein Identification Technology (MudPIT) the SCX and RP stationary phase are packed together in the same microcapillary column. It was developed in the Yates laboratory and the results showed a high number of protein identifications, including low abundant ones (Washburn *et al.*, 2001). This technology shows a good separation power and presents a prime example of the enhanced proteome coverage in bottom-up proteomic approaches (Mathy & Sluse, 2008). Several studies employed MudPIT in plant proteomics and its usage in this field was been previously reviewed (Park, 2004; Jorrin *et al.*, 2007).

4.4- OFFGEL electrophoresis (OGE)

The recently developed OFFGEL fractionator allows liquid phase peptide IEF. The separation is carried out in a two-phase system with an upper liquid phase, containing carrier ampholites and buffer-free solution, divided into 12 or 24 compartments and a lower phase, which is the IPG strip (Horth *et al.*, 2006). After sample loading into the wells and application of a voltage gradient, peptides migrate through the IPG strip until they reach their pI at a given compartment. After IEF, peptides can be easily recovered in solution for further analysis. OGE has high loading capacity and resolution power (Horth *et al.*, 2006). Unlike LC fractionation, OGE provides additional physiochemical information such as peptide pI, which is a highly valuable tool to corroborate MS results, sort false positive rates, and increase the reliability of the identification procedure. While a study comparing MudPIT to OGE fractionation for the high-resolution separation of peptides revealed comparable results using both platforms (Elschenbroich *et al.*, 2009), others showed that the IPG as a first dimension separation strategy is superior to SCX with a salt gradient (Essader *et al.*, 2005) or pH

gradient (Manadas *et al.*, 2009) for the analysis of complex mixtures. In contrast, Yang and co-workers reported that RP-LC offered better resolution and yielded more unique peptide and protein identifications in comparison to OGE in proteomic analysis of differentially expressed proteins in long term cold storage of potato tubers (Yang *et al.*, 2011). During the last few years the use of OGE in plant proteomics has increased. Its unprecedented application allowed the recovering of wheat soluble proteins extracted from leaves (Vincent, 2011). OGE was furthermore compared to classical IEF on microsomal fractions of 5 plant species. OGE performed slightly better in the identification of proteins with transmembrane domains and significantly increased the number of proteins in the alkaline range (Meisrimler & Luthje, 2012). Finally, this technique has also been used on microsomal proteins extracted from *M. truncatula* roots to investigate the iTRAQ labelling effect on peptide isoelectric point and thus their focusing behaviour in OGE (Abdallah *et al.*, 2012).

The long running time of OGE (which varies from few hours to 2-3 days) in comparison with other offline technique was the main disadvantage associated to this novel technique.

5- MS-based quantitation

"Mass spectrometry-based proteomics turns quantitative" (Ong & Mann, 2005).

In the last decade, MS has known a tremendous progress in proteomics and has increasingly established itself as a key tool for the analysis of complex protein samples notably after the availability of protein sequence databases and the development of more sensitive and user-friendly MS equipment (Aebersold & Mann, 2003). A new toolbox of label-based and label-free quantitative proteomic methods is currently available. "To label or not to label", to answer this question and select the appropriate quantitative approach some considerations should be taken into account. Different proteomic approaches vary in their sensitivity, and the variability of each method should be defined *a priori* together with the workflow and sample-specific characteristics (Cairns, 2011). The number of biological and technical replicates is also critical, the greater the number of replicates, the more representative the results will be for the general population. Several studies have focused on the comparison of label-based and label-free methods for quantitative proteomics and the results showed that

there is no superiority and that the accuracy of the acquired results depends on the experimental set-up (Filiou *et al.*, 2012).

6- Overview of label-based proteomic approaches

"Stable isotope methods for high-precision proteomics" (Schneider & Hall, 2005).

The labelling methods for relative quantification studies can be classified into two main groups: chemical isotope tags and metabolic labelling. These approaches are based on the fact that both labelled and unlabelled peptides exhibit the same chromatographic and ionisation properties but can be distinguished from each other by a mass-shift signature. In metabolic labelling, the label is introduced to the whole cell organism through the growth medium, while in chemical labelling, proteins or peptides are tagged through a chemical reaction (Schulze & Usadel, 2010).

6.1- Chemical labelling

6.1.1- Proteolytic labelling

¹⁸O stable-isotope labelling is a simple, fast, and reliable method that takes place during proteolytic digestion in presence of heavy water ($H_2^{18}O$) (Yao *et al.*, 2001). Samples undergo enzymatic digestion either in presence of $H_2^{16}O$ (unlabelled sample) or $H_2^{18}O$ (labelled sample). The natural catalytic activity of serine proteases (e.g., trypsin, Lys-C, Arg-C) can exchange both C-terminal oxygen atoms with a "heavy" ¹⁸O from water in the surrounding solution. The first ¹⁸O atom is introduced upon the cleavage of the peptidic amide bond, while the second ¹⁸O atom is introduced when the cleaved peptide is bound to the enzyme as an reaction-mechanism intermediate (Table 1.2). The resulting peptides, 2 or 4 Da heavier than their unlabelled counterparts, are pooled with the unlabelled peptide mixture and peak intensities of the isotopic envelopes are compared, which can be resolved in medium-high resolution mass spectrometers (Stewart et al., 2001). Trypsin-catalyzed ¹⁸O isotopic labelling has not often been used in plant proteomics and only one application was found (Table 1.3). Nelson and co-authors has used ¹⁸O isotopic labelling for relative quantification of the degree of enrichment of Arabidopsis plasma membrane proteins (Nelson et al., 2006). The main drawback of this technique, despite optimization by Staes et al. (Staes et al., 2004), is that the exchange reaction is rarely complete for all peptides, resulting in a complex isotopic pattern due to the overlap of the unlabelled, singly and doubly labelled peptides.

79 Abdallah *et al.*, 2012 Gel-based and gel-free quantitative proteomics approaches at a glance. *International Journal of Plant Genomics* (accepted)

6.1.2- Isotope-Coded Affinity tags (ICAT)

One of the first labels used for differential isotope labelling consists of three functional elements: a specific chemical reactive group that binds to sulfhydryl groups of cysteinyl residues, an isotopically coded linker with light or heavy isotopes, and a biotin tag for affinity purification (Table 1.2) (Gygi *et al.*, 1999). The proteins containing cysteine residues are labelled either with light or heavy isotopes, where the latter form has eight ¹³C atoms. Afterwards, light and heavy labelled samples are pooled and proteolytically cleaved. Subsequently, the complexity of the sample is reduced prior to MS-analysis through the purification of tagged cysteine-containing peptides by affinity chromatography using biotin-avidin affinity columns. Peptide pairs with 8 Da mass-shifts are detected in MS scans and their ion intensities are compared for relative quantitation. ICAT labelling takes place at the protein level allowing samples to be pooled prior to protease treatment, thus eliminating vial-to-vial

variations. However, cysteine is not very abundant and approximately one in seven proteins do not contain this amino acid, greatly reducing the completeness of the study (Thelen & Peck, 2007).

In plants, Dunkley and co-workers have studied the localization of organelle proteins by isotope tagging (LOPIT) to discriminate endoplasmic reticulum, Golgi, plasma membrane, and mitochondria or plastids proteins in Arabidopsis. This technique involves partial separation of the organelles by density gradient centrifugation followed by the analysis of protein distributions in the gradient by ICAT and MS (Dunkley et al., 2004). Taking advantage of the ICAT labelling specificity to cysteinyl groups, this approach was used to study the redox-status of proteins allowing a quantitative analysis of the redox proteome and ozone stress in plants (Stroher & Dietz, 2006; Hagglund et al., 2008; Miles et al., 2009; Hagglund et al., 2010). To increase the functional information about S-nitrosylation sites in plants, Fares and colleagues combined both "biotin-switch" method (BSM) and ICAT labelling, and succeeded in identifying 53 endogenous nitrosocysteines in Arabidopsis cells (Fares et al., 2011). ICAT was also used to identify wheat seed proteins and to understand their interactions and expression in relation to chromosome deletion, which were reported to be difficult by 2-DE due to co-synthesis of proteins by genes from three genomes, A, B and D (Islam et al., 2003). A cross-comparison of gelbased and -free quantitative methods (2-DE, ICAT, and label-free) was performed by analysing the differential accumulation of maize chloroplast proteins in bundle sheath versus mesophyll cells. Among the 125 chloroplast proteins quantified in the 3 methods, only 20 proteins were quantified in common, demonstrating the complementary nature of these quantitative approaches (Majeran et al., 2005). More applications of ICAT quantitative approach in plant proteomics are listed in Table 1.3. 6.1.3- Isotope-Coded Protein Labelling (ICPL)

This approach termed ICPL is based on isotopic labelling of all free amino groups in proteins. Two protein mixtures are reduced and alkylated to ensure easier access to free amino groups that are subsequently derivatised with the deuterium-free (light) or 4 deuterium containing (heavy) form, respectively (Table 1.2). Light and heavy labelled samples are then mixed, fractionated, and digested prior to high throughput MS analysis. Since peptides of identical sequence derived from the two differentially

labelled protein samples differ in mass (4 Da), they appear as doublets in the acquired MS-spectra. From the ratios of the ion intensities of these sister peptide pairs, the relative abundance of their parent proteins in the original samples can be determined (Schmidt *et al.*, 2005). Recently, a detailed experimental protocol called post-digest ICPL was published highlighting a better protein identification and quantification (Fleron *et al.*, 2010; Leroy *et al.*, 2010) and when compared to iTRAQ, both techniques have shown comparable number of identified and quantified proteins in the endosperm of castor bean seeds at three developmental stages (Nogueira *et al.*, 2012). So far, the latter study is the unique reported quantitative proteomic investigation on plants using ICPL (Table 1.3). The main drawback of this method is the isotopic effect of deuterated tags that interferes with retention time of the labelled peptides during LC (Brunner *et al.*, 2010).

6.1.4- Isobaric Tags for Relative and Absolute Quantification (iTRAQ)

Unlike ICAT and ICPL, iTRAQ tags are isobarics and primarily designed for the labelling of peptides rather than proteins. The overall molecule mass is kept constant at 145 Da and 304 Da for iTRAQ-4plex and -8plex, respectively. The structure of the iTRAQ-8plex balancer group has not been published while the iTRAQ-4plex molecule consists of a reporter group (based on *N*-methylpiperazine), a mass balance group (carbonyl), and a peptide reactive group (NHS ester) (Table 1.2) (Ross *et al.*, 2004). The iTRAQ reagents label peptide N-termini and ε -amino groups of lysine side chains and allow comparison of up to eight samples in the same experiment. Another difference from the pre-cited methods is that the quantification occurs in MS/MS scans after peptide fragmentation. In fact, iTRAQ labelled peptides appear as a single unresolved precursor at the same *m/z* in the MS spectrum. Upon peptide fragmentation, the iTRAQ labels fragment to produce reporter ions in a "silent region", usually unpopulated, at low *m/z* range (e.g., 114-121). Measurements of the reporter ion intensities enable relative quantification of the peptide in each sample.

This method has quickly gained popularity in proteomics and benefits from increased MS sensitivity compared to for instance ICAT due to the contribution of all samples to the precursor ion signal. The iTRAQ reagent was furthermore reported to increase the number of lysine-terminated tryptic peptides identified by database searches to equivalence with arginine-terminated peptides (Ross *et al.*, 2004). Ow and co-authors

evaluated iTRAQ relevance, accuracy, and precision for biological interpretation and entitled their verdict "the good, the bad and the ugly" of iTRAQ quantitation (Ow *et al.*, 2009). "The good" is the potential of iTRAQ to provide accurate quantification spanning two orders of magnitude. However, that potential is limited by two factors: isotopic impurities "the bad", and peptide co-fragmentation (inadvertently selecting two or more closely spaced peptides for MS/MS instead of one) "the ugly" (Perkel, 2009). In the same study, a putative contamination of the reporter ion region with the second isotope of the phenylalanine immonium ion on the 121 m/z peak, which can interfere with peptide quantification was mentioned (Ow *et al.*, 2009).

The iTRAQ has shown a high utility in large-scale quantitative proteomics (Table 1.3) to study plant responses to pathogens: *Pseudomonas syringae* in *Arabidopsis* (Kaffarnik *et al.*, 2009), *Lobesia botrana* and *Erysiphe necator* in grape (Marsh *et al.*, 2010; Melo-Braga *et al.*, 2012), *Huanglongbing* in sweet orange (Fan *et al.*, 2011), *Fusarium graminearum* in maize (Mohammadi *et al.*, 2011). Quantitative shotgun proteomic approaches using iTRAQ were furthermore used for characterizing the differential phosphorylation of *Arabidopsis* in response to microbial elicitation (Jones *et al.*, 2006) and the study of protein degradation in chloroplasts (Rudella *et al.*, 2006). The potency of iTRAQ was used for better understanding mechanisms of plant tolerance to boron in barley (Patterson *et al.*, 2007), cadmium in barley (Schneider *et al.*, 2009) and *Brassica juncea* (Alvarez *et al.*, 2009), and cold in potato and rice (Neilson *et al.*, 2011b; Yang *et al.*, 2011). An example of iTRAQ application in plant membrane proteomics is the study of differentiated state of bundle sheath and mesophyll chloroplast thylakoid and envelope membrane proteomes in maize (Majeran *et al.*, 2008).

6.1.5- Tandem Mass Tag (TMT)

A novel MS/MS-based quantitative method using isotopomer labels, similar to iTRAQ, and referred as "tandem mass tags" (TMT) was recently developed (Table 1.2) (Thompson *et al.*, 2003). Both techniques share several common features: (i) these reagents employ *N*-hydroxy-succinimide (NHS) chemistry that permits specific tagging of primary amino groups. (ii) They were designed to allow multiplexing of several samples by chemical derivatization with different forms of the same isobaric tag that appear as a single peak in full MS scans. (iii) The release of "daughter ions" in

MS/MS analysis (between 126 and 131 Da for TMT) that can be used for relative quantification. The cysteine-reactive TMT (cysTMT) reagents enable selective labelling and relative quantitation of cysteine-containing peptides from up to six biological samples. This technique has been used for the redox proteomic analysis of the tomato leaves in response to the pathogen *P. syringae* pv. tomato strain DC3000 (Table 1.3) (Parker *et al.*, 2012). Aside from this study, TMT labelling approach has so far not been fully exploited for the analysis of plant proteomes.

A study comparing TMT and iTRAQ showed that the performance of both techniques was similar in terms of quantitative precision and accuracy, however the number of identified peptides and proteins was higher with iTRAQ 4-plex compared to TMT 6-plex (Pichler *et al.*, 2010).

6.2- Metabolic labelling

Although chemical labelling presents a wide range of approaches for quantitative proteomics, this group of techniques suffers from sample variability and induces a technical bias since the labelling occurs after the protein extraction or even after proteolytic digestion. In addition, the high cost of these reagents can be a limiting factor for large-scale experiments. Therefore metabolic labelling, which allows protein labelling at the time of protein synthesis, presents a valuable alternative strategy for quantitative proteomics.

6.2.1- Stable Isotopic Labelling with Amino Acids in Cell Culture (SILAC)

In vivo metabolic labelling, in which two populations of cells are cultured either in a medium containing a "light" (unlabelled) amino acid or encompassing a "heavy" (labelled), one typically arginine or lysine labelled with ¹³C and/or ¹⁵N are used (Mann, 2006). The mass shift induced by the incorporation of the heavy amino acid into a peptide, is known and allows comparison between a peptide in both samples (e.g., 6 Da in the case of ¹³C₆-Lys, Table 1.2). Samples are then combined prior to protein extraction, which minimizes technical variation arising during sample processing. In MS spectra, each peptide appears as a pair and the ratio of peak intensities yields the protein abundance in the sample since the light and heavy amino acids are chemically identical and only isotopically distinguished.

Although probably the most general and global labelling strategy, SILAC appears less suited for quantitative proteomic studies in plants. Being autotrophic organisms, plants are metabolic specialists capable of synthesising all amino acids from inorganic nitrogen, and therefore, have lower incorporation efficiency of the exogenously supplied labelled amino acids. The labelling efficiency achieved using exogenous amino acid feeding of *Arabidopsis* cell cultures has been found to average only 70–80% (Gruhler *et al.*, 2005). Considering these limitations and the high cost of isotopically labelled amino acids, SILAC appears likely to be inadequate for quantitative proteomics studies in plants; albeit it seems less restricted to study algae such as *Chlamydomonas reinhardtii* and *Ostreococcus tauri* (Table 1.3) (Naumann *et al.*, 2007; Martin *et al.*, 2012; Mastrobuoni *et al.*, 2012).

$6.2.2 - {}^{14}N/{}^{15}N$ labelling

In this method, the label is introduced to the whole cell or organism through the growth medium. Samples can easily be labelled metabolically *via* growth media containing ¹⁵N-labelled inorganic salts, typically $K^{15}NO_3$ (Ippel *et al.*, 2004). The quantification process is based on the intensity of extracted ion chromatograms of survey scans containing the pair of labelled (¹⁵N, heavy) and unlabelled (¹⁴N, light) peptide isoforms.

Unlike SILAC, this approach achieved more than 98% incorporation in both plants (Ippel et al., 2004) and cell cultures (Engelsberger et al., 2006), and is more efficient at allowing large-scale quantitative analysis. The trade-off is that all amino acids will incorporate the label, thus the mass shift will be peptide-sequence dependent. Metabolic ¹⁵N-labelling is becoming the method of choice for quantitative proteomics in plant studies (Table 1.3). It was used to study plant membrane proteome changes in response to cadmium and cryptogenin elicitor in Arabidopsis and tobacco cells, respectively (Lanquar et al., 2007; Stanislas et al., 2009). Such a quantitative proteomic strategy was applied in quantitative phosphoproteomics to study differentiated proteins in response to fungal or microbial elicitors in Arabidopsis cells (Benschop et al., 2007). Moreover, other metabolic labelling strategies have been developed such as Hydroponic Isotope Labelling of Entire Plants (HILEP) which has proven to be very efficient and robust method to completely label the whole mature plants. Nearly 100% of ¹⁵N-labelling efficiency was achieved in *Arabidopsis* plants by growing them in hydroponic media containing 2.5 mM ¹⁵N potassium nitrate and 0.5 mM ¹⁵N ammonium nitrate (Palmblad et al., 2007a; Bindschedler et al., 2008). A

similar quantitative proteomic method, SILIP (Stable Isotope Labelling In Planta), was developed for labelling tomato plants growing in sand in a greenhouse environment (Schaff *et al.*, 2008). An alternative strategy for quantitative proteomics that relies upon the subtle changes in isotopic envelope shape resulting from partial metabolic labelling to compare relative abundances of labelled and unlabelled peptides has been developed in *Arabidopsis*. Both partial and full labelling have been proven to be comparable with respect to dynamic range, accuracy and reproducibility, and both are suitable for quantitative proteomics characterization (Huttlin *et al.*, 2007).

7- Label-free quantitative proteomics

"Comparative LC-MS: a landscape of peaks and valleys" (America & Cordewener, 2008).

"Less label, more free" (Neilson et al., 2011a).

Quantitative proteomics based on stable isotope-coding strategies often require expensive labelling reagents, high amount of starting samples, multiple sample preparation steps resulting in considerable sample loss and reduced detection sensitivity. Label-free LC/MS methods represent attractive alternatives (Lundgren *et al.*, 2010) since they are amenable to all type of biological samples, are simple, reproducible, cost effective, and less prone to errors and side reactions related to the labelling process.

Given the fact that, theoretically, the peak intensity of any ion should be proportional to its abundance the ion signals in MS have been used, for decades, as a quantification technique for small molecules in analytical chemistry. However, technical variation, at both LC and ionization levels, might render comparisons of peak intensities between experiments unreliable. The recent advances in LC/MS approaches allowed circumvention of the looming replicate biases and recently the observation of a correlation between protein abundance and peak areas (Bondarenko *et al.*, 2002; Chelius & Bondarenko, 2002) or number of MS/MS spectra (Liu *et al.*, 2004) has widened the choice of analytical procedure in the field of quantitative proteomics. The general framework of label-free quantification can be summarised as follows: for the two samples that need to be compared quantitatively, the LC-MS/MS experiment is first performed for both samples separately, and precursor ion m/z and retention time

(Rt) file is generated for all MS/MS spectra of each identified protein, creating a 2D map (m/z, Rt) allowing peptide match in several samples.

Depending on the MS acquisition mode, two analytical methods can be distinguished: the data-dependent analysis (DDA) and the data-independent analysis (DIA). DDA involves acquisition of a MS survey scan followed, for an allotted period of time, by precursor ion selection based on its intensity for subsequent fragmentation (Geromanos *et al.*, 2009). In this approach, quantification can be achieved using DDAbased spectral counting or spectral peak intensities. Venable and co-authors described DIA in which no parent ion is pre-selected; the instrument constantly operates in MS/MS mode and data acquisition of all charge states of eluted peptides is performed by rapid switching of the collision energy between low and high-energy states (Venable *et al.*, 2004).

7.1 Spectral counting

Spectral counting or peptide identification frequency is becoming popular in label-free quantification due to its simple procedure that does not require chromatographic peak integration or retention time alignment. It is based on the rationale that peptides from more abundant proteins will be more selected for fragmentation and will thus produce a higher number of MS/MS spectra. Thus, the number of MS/MS scans is tabulated and the protein abundance is inferred from the total number of MS/MS spectra that match peptides from the protein (Liu et al., 2004). The ability to accurately quantify proteins by spectral counting largely depends on the number of spectra obtained and the coverage of sampling. The relative difference in protein abundance is estimated by calculating the protein abundance index (PAI), which corresponds to the number of observed peptides in the experiment divided by the number of theoretical tryptic peptides for each protein within a given mass range of the employed mass spectrometer (Rappsilber et al., 2002). The exponential form of PAI minus one (10^{PAI}-1), exponentially modified Protein Abundance Index (emPAI) (Ishihama et al., 2005), takes into account the fact that generally more peptides are detected for larger proteins and is directly proportional to the protein content in the sample. The absolute protein expression (APEX) index, a very similar approach to emPAI, is a derived measurement of protein abundance in a given sample based on the analytical features in mass spectrometric analysis (Lu et al., 2007). It has been used to generate a protein

89

abundance map of the *Arabidopsis* proteome (Baerenfaller *et al.*, 2008) and to determine the abundance of stromal proteins in *A. thaliana* chloroplast (Zybailov *et al.*, 2008). Spectral counting based quantitative proteomics has been widely used in the field of plant proteomics (Table 1.3). The accuracy and reliability of label-free spectral counting in the relative quantitative analysis of soybean leaf proteome was evaluated by comparing nine technical replicates (Cooper *et al.*, 2010). Gammulla and co-authors quantified and identified temperature stress responsive proteins in rice leaves by calculating the NSAF (Normalized Spectral Abundance Factor), which is given by the total number of MS/MS spectra (SpC) identifying a protein, divided by the protein's length (L), divided by the sum of SpC/L for all proteins in the experiment (Gammulla *et al.*, 2010; Gammulla *et al.*, 2011). Spectrum counting has been used to study drought stress response in root nodules of *M. truncatula* (Larrainzar *et al.*, 2007) and in large-scale plant proteomics in response to pathogen infection in bean (*Phaseolus vulgaris*) (Lee *et al.*, 2009).

7.2- Spectral peak intensities

Other label-free methods use the signal intensities of individual peptides rather than the spectral counts to compare the relative abundance of proteins between samples (Silva *et al.*, 2005). It is based on the principle that the relative abundance of the same peptide in different samples can be estimated by the precursor ion signal intensity across consecutive LC/MS runs, given that the measurements are performed under identical conditions. In contrast to differential labelling, every biological specimen needs to be measured separately in a label-free experiment. Typically, peptide signals are detected at the MS level, their patterns are then tracked across the retention time dimension and used to reconstruct a chromatographic elution profile of the monoisotopic peptide mass. The total ion current of the peptide signal is then integrated and the measurement of the chromatographic peak areas is used as a quantitative measurement for the original peptide concentration. Profiling methods based on ion intensity were applied to define the sucrose-induced phosphorylation changes in Arabidopsis plasma membrane proteins (Niittyla et al., 2007). It has been furthermore used to detect twelve phosphopeptides from 50 identified phosphoproteins in different amounts during the hypersensitive response in tomato plants (Stulemeijer et al., 2009). Moreover, the ion intensity method was used as strategic track to study soybean plasma membrane proteins following 24 h flooding and 48 h osmotic stress (Table 1.3) (Komatsu *et al.*, 2009; Nouri & Komatsu, 2010).

Spectral counting and spectral peak intensities were compared and results obtained from both methods are generally in good accordance (Old *et al.*, 2005; Wienkoop *et al.*, 2006) with spectral counting covering a slightly higher dynamic range and measurements of ion abundance being more accurate for the identification of protein ratios (Old *et al.*, 2005). Both techniques have also been used to investigate the major allergens in transgenic peanut lines (Stevenson *et al.*, 2009).

Unlike labelling methods, in which quantitative analyses are limited to the tagged peptides, label-free approaches offer the quantitative comparison of all peptide constituents of the sample. However, they are more susceptible to errors due to parallel sample processing and thus suffer from increased analytical variability. Therefore, label-free methods are very replicate dependent. To be statistically significant, chromatographic separation reproducibility must be very high. The high-resolution power of MS, high scanning rates, high accurate mass measurements and exact chromatogram alignment are prerequisite for the success of this quantitative technique (Silva *et al.*, 2005; Palmblad *et al.*, 2007b). The extensive workflow ranging from peptide detection, alignment, normalization, identification, quantitative comparisons and statistical analysis has triggered the development of several sophisticated software algorithms.

7.3- Data-independent analysis (DIA)

LC/MS^E, a quantitative comparison of ions emanating from identically prepared control and experimental samples, was developed by using a reproducible chromatographic separation system along with the high mass resolution and mass accuracy of an orthogonal time-of-flight mass spectrometer (Silva *et al.*, 2005). In this method, the instrument alternates between low and high collision energies in MS analysis. While the low collision energy scan mode leads to the determination of accurate precursor ion masses, the high-energy scan mode (MS^E) generates accurate peptide fragmentation data (Kota & Goshe, 2011). The use of multiplex parallel fragmentation of LC/MS^E yields uniformly product ion information of all peptides across their entire chromatographic peaks (Silva *et al.*, 2005), which provides continuous MS data throughout the entire acquisition. Product ions are time aligned

and correlated to precursor ions to generate a list of Exact Mass Retention Time (EMRT) signatures (Silva *et al.*, 2005). The integrated peak areas of EMRT are compared across different biological replicates to determine the differences in protein abundances.

The LC/MS^E approach is well suited for relative and absolute quantification (Blackburn *et al.*, 2010b) and it was shown to increase the signal-to-noise ratio by a factor 3-5 and could identify peptides undetected in a parent ion scan (Carvalho *et al.*, 2010). This recent achievement in MS-based proteomics has provided a basis to qualitatively and quantitatively assess the transition from dark to light of maize seedlings (Shen *et al.*, 2009) and to study the salicylic acid-induced changes in the *Arabidopsis* and *Apium graveolens* secretome (Cheng *et al.*, 2009; Blackburn *et al.*, 2010a). MS^E has also been implemented to study the changes in barley protein expression in response to UV-B treatment (Table 1.3) (Kaspar *et al.*, 2010).

Table 1.3: An overview of the latest MS-based quantitative proteomic studies on plant systems.

The table shows the implemented quantitative approaches, plant species, biological questions, and reference of the corresponding paper.

Quantitative approach	plant	Biological study	Authors
			(Nelson et
o labelling	Arabidopsis thaliana	Quantification of the degree of plas ma membrane protein enrichment	al., 2006)
	^	Localization of integral membrane proteins by using the localization of organelle proteins by isotope	(Dunkley et
ICAT	Arabidopsis thaliana	tagging (LOPIT)	al., 2004)
		Identification of specific disulfide targets of barley thioredoxin in proteins released from barley	(Hagglund et
ICAT	Hordeum vulgare	aleurone layers	al., 2010)
			(Miles et al.,
ICAT	Arabidopsis thaliana	Understanding of AtMPK6 role in transducing ozone-derived signals	2009)
			(Fares et al.,
ICAT	Arabidopsis thaliana	Functional information about S-nitrosylation sites in plants	2011)
			(Islam <i>et al.</i> ,
ICAT	Triticum aestivum	Identification of wheat seed proteins and their related expression to chromosome deletion	2003)
		Quantitative comparative proteome analysis of purified mesophyll and bundle sheath chloroplast	(Majeran et
ICAT, 2-DE, label-free	Zea mays	stroma in maize	al., 2005)
			(Sun et al.,
ICAT	Oryza sativa	Protein profiling of uninucleate stage rice anther and identification of the CMS-HL related proteins	2009)
		ProCoDeS (Proteomic Complex Detection using Sedimentation) for profiling the sedimentation of a	(Hart man <i>et</i>
ICAT	Arabidopsis thaliana	large number of proteins	al., 2007)
			(Nogueira et
ICPL, iTRAQ	Ricinus communis	Quantitative proteomic comparison of ICPL vs iTRAQ on ricinus communis seeds	al., 2012)
			(Yang et al.,
iTRAQ	Solanum tuberosum	Comparative proteomic approach of potato tubers after 0 and 5 months of storage at 5°C	2011)
		Quantitative study of the secreted proteins from <i>Arabidopsis</i> cells in response to <i>Pseudomonas</i>	(Kaffarnik <i>et</i>
iTRAQ	Arabidopsis thaliana	syringae	al., 2009)
		Comparative proteomic study of dynamic changes in control and infected <i>Vitis vinifera</i>	(Melo-Braga
iTRAQ	Vitis vinifera		<i>et al.</i> , 2012)
			(Marsh <i>et al.</i> ,
iTRAQ	Vitis vinifera	Comparative analysis of differentially expressed proteins in <i>Erysiphe necator</i> infected grape	2010)
			(Fan $et al.$,
ITRAQ	Citrus sinensis	Comparative proteomic approach of the pathogenic process of HLB in affected sweet orange leaves	2011)
	7		(Mohammadi
ITRAQ	Zea mays	Proteomic approach of two maize inbreds in the early infection by <i>Fusarium graminearum</i>	<i>et al.</i> , 2011)
iTRAQ	Arabidopsis thaliana	Changes tack of the <i>Arabidopsis</i> phosphoproteome during the defence response to <i>Pseudomonas</i>	(Jones et al.,

Abdallah et al., 2012 Gel-based and gel-free quantitative proteomics approaches at a glance. International Journal of Plant Genomics (accepted)

		syringae	2006)
			(Rudella et
iTRAQ	Arabidopsis thaliana	Investigation of the proteomic changes in the chloroplasts of clpr2-1	al., 2006)
			(Patterson et
iTRAQ	Hordeum vulgare	Comparative proteomic study of boron-tolerant and -intolerant barley	al., 2007)
		Quantitative proteomic approach to unravel the contribution of vacuolar transporters to Cd ²⁺	(Schneider et
iTRAQ	Hordeum vulgare	detoxification	al., 2009)
iTRAQ, 2D-DIGE	Brassica juncea	Quantitative proteomic approaches to understand the effect of cadmium on Brassica juncea roots	(Alvare z <i>et</i> <i>al.</i> , 2009)
	~ ~ ~		(Neilson et
iTRAQ, label-free	Oryza sativa	Quantitative proteomic response of rice seedling to 48, 72 and 96 h of cold stress	al., 2011b)
iTRAQ, BN-PAGE,		Comparative analysis of protein abundance in chloroplast thylakoid and envelope membrane	(Majeran et
label-free	Zea mays	proteomes in maize	al., 2008)
	Solanum	Study of the redox proteomic analysis of the <i>Pseudomonas syringae</i> tomato DC3000 treated tomato	(Parker et al.,
Cys-TMT	lycopersicum	leaves	2012)
	Chlamydomonas	Dunamia abanaga of menta ama tum ayan undar salt atmas	(Mastrobuoni
SILAC	reinhardtii	Dynamic changes of proteome turnover under sait stress	et al., 2012)
		Quantitative proteomics on synthesis and degradation rate constants of individual proteins in	(Martin et al.,
SILAC	Ostreococcus tauri	autotrophic organisms	2012)
	Chlamydomonas		(Naumann et
SILAC	reinhardtii	Comparative proteomics on the iron deficiency impact in Chlamydomonas reinhardtii	al., 2007)
14 N/ 15 N labelling	Solanum tuberosum	Effectiveness of fully label a plant with ¹⁵ N isotopes	(Ippel <i>et al.</i> , 2004)
			(Engelsberger
¹⁴ N/ ¹⁵ N labelling	Arabidopsis thaliana	Demonstration of plant ¹⁰ N labelling as a powerful comparative quantitative proteomic approach	et al., 2006)
14 15			(Lanquar et
¹⁴ N/ ¹³ N labelling	Arabidopsis thaliana	Comparative analysis of Arabidopsis cells following a cadmium exposure	al., 2007)
1415		Quantitative proteomic approach of the detergent-resistant membranes of tobacco cells in response to	(Stanislas et
¹⁴ N/ ¹⁵ N labelling	Nicotiana tabacum	cryptogenin	al., 2009)
14 15		Quantitative approach of phosphorylated sites in signaling and protein response in flg22 or xy lanase	(Benschop <i>et</i>
¹⁴ N/ ¹³ N labelling	Arabidopsis thaliana	Arabidopsis treated cells	al., 2007)
		Demonstration of HILEP suitability for relative plant quantitative proteomic subjected to oxidative	(Bindschedler
HILEP	Arabidopsis thaliana	stress	<i>et al.</i> , 2008)
	Solanum		(Schaff <i>et al.</i> ,
SILIP	lycopersicum	SILIP development for homogeneously ¹³ N incorporation within the whole plant proteome.	2008)

Abdallah et al., 2012 Gel-based and gel-free quantitative proteomics approaches at a glance. International Journal of Plant Genomics (accepted)

¹⁴ N/ ¹⁵ N labelling	Arabidopsis thaliana	Investigation of both partial and full ¹⁵ N labelling effect on quantitative analysis in a complex mixture	(Huttlin <i>et</i> <i>al.</i> , 2007)
0	1		(Baerenfaller
Spectral counting	Arabidopsis thaliana	Proteome map of Arabidopsis thaliana	et al., 2008)
			(Zvbailov <i>et</i>
Spectral counting	Arabidopsis thaliana	Comprehensive Arabidopsis chloroplast proteome analysis	al., 2008)
			(Cooper et
Spectral counting	Glycine max	Evaluation of the suitability of spectral counting to quantitative soybean proteome study	al., 2010)
		Differential protection region of rise leaves expected to high and leave termoreture stress	(Gammulla et
Spectral counting	Oryza sativa	Differential proteonine response of nee leaves exposed to high- and low-temperature stress	al., 2010)
			(Niittyla et
Peak ion intensity	Arabidopsis thaliana	Sucrose-induced phosphorylation changes of plasma membrane proteins in Arabidopsis	al., 2007)
	Solanum		(Stule meijer
Peak ion intensity	lycopersicum	Quantitative proteomics of phosphoproteins in tomato hypersensitive response	et al., 2009)
Peak ion intensity, 2-			(Komatsu et
DE	Glycine max	Investigation of the soybean plasma membrane function in response to flooding stress	al., 2009)
Spectral counting +		Comparison of two label-free quantitative approaches on nodule protein extracts from Medicago	(Wienkoop et
peak ion intensity	Medicago truncatula	truncatula	al., 2006)
Spectral counting +			(Stevenson et
peak ion intensity	Arachis hypogaea	Investigation of major allergens in transgenic peanut lines	al., 2009)
			(Blackburn et
MS ^E	Apium graveolens	Analysis of the Apium graveolens protein response to salicylic acid	<i>al.</i> , 2010b)
			(Shen et al.,
MS ^E	Zea mays	Proteomic approach assessment of the transition from dark to light in maize seedlings	2009)
			(Cheng et al.,
MS ^E	Arabidopsis thaliana	Proteomic changes in the cell wall proteome in response to salicylic acid	2009)
			(Kaspar et
MS^{E}	Hordeum vulgare	Study of the UV-B irradiation effect on the barley proteome	al., 2010)

8- Conclusion

Proteomics, the promising new "omics", has become an important complementary tool to genomics providing novel information and greater insight into plant biology. The application of gel-based and -free proteomics methods to study plant physiology has strongly increased in recent years. Here, a broad perspective is offered on the available techniques.

So far, most quantitative plant proteomics was performed on Arabidopsis thaliana, the model plant due to various traits including its small (and annotated) genome size (125 MBp), short generation time, high transformation efficiency, and the large panel of available mutants. The completion of more plant genome sequencing projects such as rice, barley, tomato and *M. truncatula* is scheduled for the near future and will permit the proteome probing of these plant systems. In the meantime, extensive EST databases for numerous important crop plants represent alternative sources of sequence information to the full genome sequences. Moreover, with the technical maturity attained in MS and protein/peptide fractionation tools, comparative plant proteomics will move out of the beginner realm and emerge as high valuable discipline to enhance the comprehension of plant systems, their subcellular membranes and organelles. It is worth noting that combining multiple quantitative proteomic techniques is highly beneficial, as these approaches yield complementary datasets which improve the understanding of biological issues and provide in-depth characterization of proteins with respect to their abundance. These technical advancements coupled to well-designed experiments will significantly reveal the protein function in plant growth, development, and provide a wealth of information on plant proteome changes occurring in response to external stimuli, biotic, and abiotic stresses.

Acknowledgements

This work was supported by grants from the "Fonds National de la Recherche du Luxembourg" AFR TR-PHD BFR 08-078 and Conseil Régional de Bourgogne (PARI 20100112095254682-1). Ghislaine Recorbet and Daniel Wipf are thanked for their assistance and support.

Objectives and outline

In plants, MS-based proteomics has been largely used for protein identification while quantitative proteomics is still bourgeoning. The shotgun proteomic approaches may allow the identification of recalcitrant, membrane proteins, which could easily escape to 2-DE, and shed the light on their role in AM symbiosis. The overall work presented here aims at further revealing the membrane proteome changes in *Medicago truncatula* roots colonized by *Rhizophagus irregularis*. To this goal, a not yet implemented label-based and -free approaches on plant roots-AM fungi symbiosis, was herein applied to circumvent the 2-DE related shortcomings in order to study membrane proteins. Whatever the gel-free or gel-based proteomic approach was used, *Medicago truncatula* were cultivated in presence/absence of *R. irregularis* for four weeks. Microsomal proteins were extracted from *M. truncatula* roots by using the differential centrifugation-based strategy originally developed for *Nicotiana tabacum* cultured cells (Stanislas *et al.*, 2009). The following research framework is divided into 3 chapters as depicted in figure 1.5.

Chapter 2 deals with the first application of iTRAQ-OGE-LC-MS/MS proteomic approach on *M. truncatula* microsomal proteins. The main objective of this study is methodological. To this purpose, straightforward and iTRAQ compatible infilter protein digestion is developed. Then, the effective resolution power of OGE fractionator in pI-based peptide separation in solution is assessed on free and iTRAQ labelled samples. Furthermore, the investigation of the iTRAQ labelling effect on peptide electrofocusing in OGE fractionator is carried out on the *M. truncatula* membrane protein digests.

This first exploratory view on iTRAQ-OGE-LC-MS/MS approach is a starting point of its further application on microsomal proteins extracted from *M. truncatula* roots to track their changes in response to AM symbiosis. Therefore, chapter 3 focuses on the ability of this method to perform comparative differential proteomic study on control and mycorrhized roots. Moreover, the enrichment of membrane protein fractions is assessed after the protein identifications to corroborate the ability of the employed fractionation protocol to recover membrane proteins.

Guided by previous results of the aforementioned method, chapter 4 encompasses the application of a label-free 1-DE-LC-MS/MS approach to have an insight view into the membrane proteome changes in response to AM symbiosis. This

chapter forms a first step towards more characterization of membrane proteins orchestrating this interaction.

Finally, chapter 5 presents the general conclusions and prospects for future proteomic research studies on AM symbiosis.

Figure 1.5: Research outline of the presented study

Results & discussion

Chapter 2

Optimization of iTRAQ labelling coupled to OFFGEL fractionation as a proteomic workflow to the analysis of microsomal proteins of *Medicago truncatula* roots

Cosette Abdallah^{1,3}, Kjell Sergeant¹, Christelle Guillier², Eliane Dumas-Gaudot³, Céline C. Leclercq¹ and Jenny Renaut¹

¹Département Environnement et Agro-Biotechnologies, Centre de Recherche Public-Gabriel Lippmann, 41, rue du Brill, L-4422, Belvaux, Luxembourg.

²UMR 1347 Agroécologie, CNRS, ERL CNRS 6300, BP 86510, Dijon 21000, France.

³UMR 1347 Agroécologie, INRA, BP 86510, Dijon 21000, France.

Recently high numbers of robust, sensitive and advanced gel-free proteomic approaches have emerged with a new toolbox of plethora and powerful quantitative proteomic methodologies. Isobaric tagging such as iTRAQ has proven its popularity in quantitative proteomics and shown its compatibility with OFFGEL electrophoresis (OGE), which permits isoelectric point peptide separation in solution. In the current study iTRAQ-OGE-LC-MS/MS has been applied for the first time on microsomal proteins extracted from *Medicago truncatula* roots with foremost analytical objectives starting from sample preparation and up to protein identifications. Given that good sample preparation is the foundation of an analysis success, a protein extraction protocol based on differential centrifugation and allowing membrane-enriched fractions is described. Then a new, straightforward and home-made in-solution protein digestion leading to peptide fractions, free of iTRAQ interfering compounds, is developed for the downstream analysis. Multidimensional peptide separations prior to MS analysis are crucial for low abundant and recalcitrant protein identifications, therefore iTRAQ labelled peptides were pre-fractionated in OGE prior to their separation on a C18 column. Literature lacks critical discussion on the iTRAQ labelling effect on peptide isoelectric point, thus its impact on peptide electrofocusing behaviour in OGE fractionation in a wide pH range (3-10) is herein investigated on Medicago truncatula membrane protein digests, to offer an insight view on the compatibility of iTRAO labelling with OGE.

Abstract

Background

Shotgun proteomics represents an attractive technical framework for the study of membrane proteins that are generally difficult to resolve using two-dimensional gel electrophoresis. The use of iTRAQ, a set of amine-specific isobaric tags, is currently the labelling method of choice allowing multiplexing of up to eight samples and the relative quantification of multiple peptides for each protein. Recently the hyphenation of different separation techniques with mass spectrometry was used in the analysis of iTRAQ labelled samples. OFFGEL electrophoresis has proved its effectiveness in isoelectric point-based peptide and protein separation in solution. Here we describe the first application of iTRAQ-OFFGEL-LC-MS/MS on microsomal proteins from plant material. The investigation of the iTRAQ labelling effect on peptide electrofocusing in OFFGEL fractionator was carried out on *Medicago truncatula* membrane protein digests.

Results

In-filter protein digestion, with easy recovery of a peptide fraction compatible with iTRAQ labelling, was successfully used in this study. The focusing quality in OFFGEL electrophoresis was maintained for iTRAQ labelled peptides with a higher than expected number of identified peptides in basic OFFGEL-fractions. We furthermore observed, by comparing the isoelectric point (pI) fractionation of unlabelled versus labelled samples, a non-negligible pI shifts mainly to higher values.

Conclusions

The present work describes a feasible and novel protocol for in-solution protein digestion in which the filter unit permits protein retention and buffer removal. The data demonstrates an impact of iTRAQ labelling on peptide electrofocusing behaviour in OFFGEL fractionation compared to their native counterpart by the induction of a substantial, generally basic pI shift. Explanations for the occasionally observed acidic shifts are likewise presented.

Keywords

Sample preparation, Membrane proteomics, Gel-free proteomics, OFFGEL peptide fractionation, iTRAQ labelling, *Medicago truncatula*

101

Background

Two-dimensional gel electrophoresis (2-DE) coupled to mass spectrometry (MS) has been the trademark method for relative protein quantification in plant proteomics. Nevertheless, lack of quantitative reproducibility (Lilley *et al.*, 2002), poor representation of low abundant proteins, highly acidic/basic proteins (Gygi *et al.*, 2000), or proteins with extreme size or hydrophobicity (Ong & Pandey, 2001) are the principal shortcomings of 2-DE, this related to the low tolerance of the technique for detergents and ionic compounds. However, handling membrane proteins requires detergent and buffer use for membrane solubilisation and homogenization followed by their removal prior to further analysis in MS. Proteomic analysis of membrane proteins a major challenge and represents an ongoing topic of myriad investigations. Therefore, MS-based 2D-gel-free proteomic approaches have recently bypassed the status of descriptive tool to become the new mainstream method for quantitative proteome studies.

Isobaric tags for relative and absolute quantitation (iTRAQ) are recently developed chemical labelling reagents (Ross *et al.*, 2004) that quickly gained popularity in proteomics (Aggarwal *et al.*, 2006; Zieske, 2006). The iTRAQ label modifies peptide N-termini and ε -amino groups of lysine side chains. It was shown to increase the number of peptides identified by MS, a finding attributed to a greater number of lysine-terminated peptides detected (Ernoult *et al.*, 2008). Protein quantification relies on reporter ions generated in a "silent region" at low molecular mass of peptide MS/MS spectra. iTRAQ labelling proved compatibility with different kind of samples, providing in-depth knowledge in several biological pathways and has been applied in plant shotgun proteomics (Schulze & Usadel, 2010). Majeran and co-workers used iTRAQ for a comparative analysis of the chloroplast envelope proteome in maize (Majeran *et al.*, 2008), and the approach was likewise used to study the changes in the *Arabidopsis* plasma membrane in response to flagellin treatment (Nuhse *et al.*, 2007).

Immobilized pH gradient isoelectric focusing (IPG-IEF) has emerged as a highly promising alternative to strong-cation exchange fractionation as the first separation dimension in shotgun proteomics (Cargile *et al.*, 2005), especially for membrane proteome analysis (Chick *et al.*, 2008; Eriksson *et al.*, 2008). OFFGEL

electrophoresis (OGE) combines the traditional IEF using IPG strips with the convenience of a liquid-based system. Proteins or peptides migrate through the IPG strip until they reach their isoelectric point (pI) at a given compartment, and after completion of the run samples can be easily recovered in solution for further analysis. OGE separation as first step was recently compared to MudPIT for the analysis of membrane proteins and resulted in comparable results for protein/peptide identification and reproducibility (Elschenbroich et al., 2009). The inclusion of OGE into the proteomic workflow furthermore offers the opportunity to determine the pI of peptides which is an independent validating and filtering tool for false positive identifications (Horth et al., 2006). The additional use of a pI filter enhances the stringency of the peptide validation criteria and increases the identification confidence. However, most frequently used pI calculation algorithms use only native peptide sequences, and the addition of modifications such as the iTRAQ label is cumbersome. The question whether an iTRAQ labelled peptide will exhibit the same pI-value as the native counterpart is therefore not trivial. In the present study, an online tool for chemical drawing, MarvinSketch calculator (http://www.chemaxon.com/marvin/sketch) has been used to calculate pI of unlabelled and iTRAQ labelled peptides to explain some experimentally observed pI shifts (Csizmadia, 2000).

A quantitative proteomic approach using iTRAQ-IEF combination was successfully applied on *Staphylococcus aureus* membrane extracts (Scherl *et al.*, 2006). Moreover, Chenau and co-authors evaluated the efficiency of OGE fractionation for iTRAQ labelled peptides from the human secretome and plasma (Chenau *et al.*, 2008). When evaluating OGE fractionation of iTRAQ labelled peptides, one must consider that the iTRAQ-label incorporates a highly basic group "*N*-methylpiperazine" at peptide N-termini and ε -amino groups of lysine side chains. This can alter the pI of peptides and consequently the isoelectrofocusing behaviour in IPG-IEF or OGE. This impact was previously studied using proteins from a colon cancer cell line using a small, acidic pH range between pI 3.4 and 4.9; and there any observed shift in pI could only be small or absent (Lengqvist *et al.*, 2007).

To date, the iTRAQ/OGE couple has been applied on complex eukaryotic samples and different types of matrices, but none dealing with plant membrane proteins (Ernoult *et al.*, 2008; Besson *et al.*, 2011). Here we present, for the first time, the application of an iTRAQ-OGE-LC-MS/MS proteomic approach on microsomal proteins from *Medicago truncatula* roots. A feasible protocol is described for insolution protein digestion allowing the recovery of a "clean" protein digest from *Medicago truncatula* cv Jemalong 5 roots inoculated or not with *Rhizophagus irregularis*. Furthermore by comparing the OGE fractionation of native and labelled peptides, the predictable basic shift induced by iTRAQ labelling was studied using a wide pH-range (3-10).

Results and discussion

Experimental design

During the last decade, proteomics has gained popularity in plant science, but still mostly relies on 2-DE. Not all types of proteins are amenable to gels and this method often falls short to study low-abundant and recalcitrant proteins. Therefore a gel-free proteomic approach was implemented here on Medicago truncatula membrane proteome. For microsome preparation a previously optimised method based on differential centrifugation has been employed (Stanislas et al., 2009). Microsomal proteins were cleaved using a homemade protocol for in-solution protein digestion allowing the recovery of a "clean" peptide fraction. Subsequently, these protein digests from *M. truncatula* roots inoculated or not with *Rhizophagus irregularis*, were labelled with iTRAQ and fractionated using OGE prior to RP-HPLC-MS/MS, a first time this type of approach is used on membrane proteins of plant material. OGE prefractionation was performed in 12 wells using a 12 cm strip covering the pH range of 3 to10. iTRAQ labelled and pre-fractionated samples were then separated using liquid chromatography (LC) followed by MALDI-TOF/TOF analysis. Searches in the databases were carried out using ProteinPilot software. A schematic summary of the work flow performed in the current study is illustrated in Figure 2.1.

The OGE-LC separation of 100 μ g of unlabelled microsomal protein digest allowed the identification of 241 peptides and 107 proteins, whilst 266 peptides and 130 proteins were identified in iTRAQ labelled samples. The enrichment of membrane protein fraction was assessed by the subcellular localisation of the identified proteins. Seventy percent of proteins in both experiments had at least one membrane localisation experimentally demonstrated (results not shown). Furthermore only 7 and 5% of the identified proteins were predicted to be localised in the cytosol in unlabelled and iTRAQ labelled experiments, respectively (results not shown).

Figure 2.1: Schematic representation of the experimental workflow of iTRAQ-OGE-LC-MS/MS.

The flowchart shows the peptide OGE fractionation process designed by Agilent Technologies.

In-filter protein digestion

One of the most critical steps in all proteome analyses is sample preparation. Detergents are indispensable tools for the solubilisation and fractionation of membrane proteins. However, they can dominate mass spectra and preclude peptide analysis in MS, even in minute concentrations. As a consequence, the majority of studies on membrane proteins use in-gel digestion to remove detergents prior to mass spectrometric analysis (Nagaraj *et al.*, 2008). Therefore, gel-free proteomic approaches require adequate protocols for in-solution protein digestion while avoiding the use of high-ionic strength buffers and detergents. To overcome these difficulties,

various alternative approaches have been described and the use of filtration columns appears to be the most promising (Manza et al., 2005). Based on the filter-aided sample preparation (FASP) workflow (Wisniewski et al., 2009) a method has been developed in the current study in which the protein digestion took place in a commercially available ultra-filtration device used for protein retention, buffer exchange and removal (Figure 2.2). The key feature of this method is the ability to remove interfering compounds associated with the sample during protein digestion through the filter device and to recover resulting peptides by centrifugation. Wiśniewski and co-workers compared the distribution of molecular weights of the identified proteins using either a 3k or 10k filter. They found that the 10k filter efficiently retained small proteins (5-10kDa) and efficiently released peptides up to 5,000 Da (Wisniewski et al., 2009). Therefore, Amicon Ultra filter devices (Millipore), with relative molecular mass cut-off of 10,000 NMWL (Nominal Molecular Weight Limit) have been used in the subsequent experiment. The insolution protein digestion protocol was made up of 3 main steps: (1) DTT was first added to reduce protein disulphide bonds. Then, (2) carbamidomethylation of thiols was achieved by the addition of iodoacetamide. All the reagents added during these steps were easily removed by centrifugation. Afterwards, (3) protein digestion was carried out by adding trypsin and leaving it overnight at room temperature. Finally, the peptide fraction, free of unwanted, interfering compounds, was obtained by centrifugation. One of the aims of the current study was to develop an alternative insolution protein digestion to the one proposed by iTRAQ reagent kit in order to be able to produce peptide fraction free of interfering compounds such as urea, Tris and DTT. Consequently, in-filter protein digestion represented the method of choice allowing the removal of residual interfering buffers associated with the sample. At one step to iTRAQ labelling, any buffer added through sample preparation should be "primary amine free" to avoid the quenching of the iTRAQ labelling. Hence, ammonium bicarbonate's substitution was a mandatory step. Triethylammonium bicarbonate (TEAB) was chosen as a good tertiary amine buffer, which is also very volatile, and can therefore be easily removed in vacuum. Thus in our protocol, the infilter protein digestion described above was convenient for protein digestion and sample clean-up prior to iTRAQ labelling.

107

Figure 2.2 Depiction of in-filter protein digestion protocol using Amicon Ultra filter devicesTM (Millipore).

Peptide isobaric tagging

After the labelling process, samples must be ready for OGE separation. Nevertheless, excess iTRAQ reagents in the sample mixture should be removed since their presence can suppress the signal obtained from target peptides and thus reduces the level of achievable sensitivity and reproducibility. The supplier recommended the use of cation exchange (CX) cartridge, delivered with the iTRAQ kit, as a desalting step prior to LC-MS/MS analysis. However since peptides will be eluted of the CX-column in 10 mM potassium phosphate in 25% (v/v) of acetonitrile (ACN) and 350 mM of potassium chloride, when using the OGE fractionator, an alternative desalting steps have been conducted, and it was found that the use of a C18 column was well suited to clean-up iTRAQ labelled samples (results not shown). Ernoult and co-authors have also used C18 cartridge to desalt the iTRAQ labelled samples prior to OGE (Ernoult *et al.*, 2008).

Since we have used an alternative in-solution digestion protocol, which contains DTT, IAA and Tris categorized as potential interfering substances with the labelling process, the utility of this method for the removal of these compounds and thus the creation of an iTRAQ-compatible environment needed to be established. One example of a labelled peptide is shown in Figure 2.3. Figure 2.3A presents the MS/MS spectrum of CALVYGQMNEPPGAR at m/z 1806.94, while 2.3B shows the low mass region covering daughter ions (114 and 117) released in MS/MS. Further empirical evidence that the applied procedure was successful in removing interfering compounds was obtained by researching all datasets but omitting the fixed

modification with the iTRAQ label (not added or added as variable modification). None of these searches resulted in the significant identification of a peptide, so if not all interfering compounds are completely eliminated at least their effect on labelling was not observable in our data.

Figure 2.3 Spectrum of an iTRAQ labelled peptide of control (114) and mycorrhized (117) protein digest.

(A) MS/MS spectrum of iTRAQ labelled CALVYGQMNEPPGAR at m/z 1806.94. (B) iTRAQ reporter ions at m/z 114 and 117, their peak areas are used to calculate the relative abundance of a given peptide

Peptide OGE fractionation

IPG as first dimension separation strategy has proved to be superior to SCX with a salt or pH gradient (Essader *et al.*, 2005; Manadas *et al.*, 2009). Therefore, OGE has been chosen to separate peptides according to their isoelectric point in a liquid phase. The novelty and strengths of this method can be resumed by the ability to directly introduce pI-fractionated peptides to LC-MS/MS analysis. Nonetheless, glycerol in peptide focusing buffer interfered with SpeedVac concentration (increased viscosity), direct injection into reverse phase LC and with crystallization on a MALDI target. This problem was previously mentioned by Fraterman and co-workers (Fraterman *et*
al., 2007), in which study the glycerol content of the focusing buffer was reduced by 50% (v/v) in deviation from the supplier's protocol, while others indicated the use of even lower concentrations (Hubner et al., 2008; Warren et al., 2010). Several other studies did not mention the concentration of glycerol proposed by the OGE manufacturers (6%) as a problem (Chenau *et al.*, 2008; Ernoult *et al.*, 2008). In the present work, reducing the concentration of glycerol by 50% (v/v), final concentration equals 3%, was not enough to avoid the clogging of the pre-column after few runs or to solve the crystallization problem on a MALDI target. According to Agilent Technologies, reducing and even omitting glycerol content in peptide focusing buffer does not affect the efficiency of the IEF, therefore the glycerol concentration was reduced to 5% (v/v) (final concentration equals 0.3%) in deviation of the original protocol. Hubner and co-workers demonstrated that the loading capacity for optimal peptide focusing on 12 cm strip is below 100 µg (Hubner et al., 2008; Warren et al., 2010), therefore in this study, 100 µg of protein digest were separated in OGE. The isoelectrofocusing of peptides offers the possibility to exploit the deviation between expected and observed peptide pI distribution across the IPG strip. It has been reported that the average pI values of peptides fits fairly well with the pH range of the corresponding OGE fractions (Horth et al., 2006; Chenau et al., 2008; Ernoult et al., 2008).

Hence, the effective resolution obtained in the 12 OGE fractions of free and iTRAQ labelled samples was assessed by determining the number of peptides identified in single versus multiple fractions (Figure 2.4). Peptides were unevenly distributed along the IPG strip in both labelled and unlabelled samples. In native samples, over 70% of identified peptides were localized in only one fraction and more than 90% were found in one or two successive fractions. These findings were in agreement with previous studies (Horth *et al.*, 2006). In iTRAQ labelled samples, more peptides were identified in basic region compared to the acidic one. Only 3, 10 and 8 peptides in total were respectively found in fraction 1, 2 and 4 while 63 peptides were identified in fraction 10. Moreover, the fractionation quality in basic fractions was greater than in acidic ones. More than 80% of peptides were recovered in single fraction (fractions 6 to 12) while this percentage fell to 20% in fraction 2 and no unique peptide was found in fraction 1. As Ernoult *et al.* (2008) have shown, more peptides were recovered

in iTRAQ labelled samples giving the fact that iTRAQ improves MALDI ionisation (Horth *et al.*, 2006; Chenau *et al.*, 2008; Ernoult *et al.*, 2008). Our results confirmed that the slightly modified version of the initial OGE protocol applied did not affect the quality of peptide IEF. Interestingly, iTRAQ labelled peptides showed a better OGE fractionation quality in basic fractions where a greater number of peptides have been identified compared to acidic ones. This observation will be discussed in more detail below.

Figure 2.4: Number of peptides identified per OGE fraction.

Brown and light green bars represent the total number of unlabelled and iTRAQ labelled peptides identified in each fraction, respectively. Orange and dark green bars indicate the unique number of unlabelled and iTRAQ labelled peptides identified per fraction, respectively.

iTRAQ impact on peptide OGE fractionation

The assumption that iTRAQ labelling induces a negligible increase in peptide isoelectric point (Lengqvist *et al.*, 2007) prompted us to investigate the validity of this claim on peptide OGE fractionation on a wide pH range (3-10). Hence, peptide distribution on the 12 cm strip pH 3-10 was examined when peptides were either labelled or not with iTRAQ reagents. The current survey delineated 4 different groups of labelled peptides found in at least 3 replicates of labelled samples with a high reproducibility in these independent experiments (Chapter 2, additional file S2.1).

Table 2.1 shows a set of 70 peptides (group A) found in more basic fractions after iTRAQ labelling, this finding being highly related to the incorporation of the basic group "N-methylpiperazine" at peptide N-termini and ε -amino groups of lysine side chains. As an example, 2 ions were assigned to EQMGYTFDALK by Paragon search with 99% of confidence. The unlabelled peptide with a m/z of 1301.58 was found in fraction 1 while the labelled $(m/z \ 1590.80)$ was identified in fraction 3. The mass difference corresponds 289.22 Da or the addition of two labels at the N-terminus and the ε -amino groups of lysine side chain. For peptides only containing one label at the N-terminus the basic shift was, as previously described by Ross and co-workers, in general more important (Ross et al., 2004). For instance NYTNAFQALYR (m/z 1504.76), exhibiting only one potential iTRAO modification site, the labelled form of this peptide was found in fraction 12 while its native counterpart at m/z 1359.65 was focused in fraction 10. Most of the peptides in group A followed the same trend with a shift of 1 to 2 fractions to the basic end of the strip (Table 2.1, group A). Some others (7 peptides) pursued the observed basic shift tendency but are focussed irreproducible using the OGE fractionator (Chapter 2, additional file S2.1, group D).

Table 2.1: Observed basic pI shifts in OGE fractionation after iTRAQ labelling.

This table presents 70 peptides shifted to more basic OGE fraction after iTRAQ labelling. The non-labelled (NL) and iTRAQ labelled (L) peptide masses are shown in this table together with the mass difference induced by the labelling. The OGE fractions (F) of iTRAQ labelled peptides and their native counterparts are as well presented.

	Sequence	Mass	Mass L	Difference	F	FL
		NL			NL	
1	ECADLWPR	1045.46	1190.57	145.11	1	3,4
2	AYLEDFYR	1075.50	1220.61	145.11	1	3,4
3	EQMGYTFDALK	1301.58	1590.81	289.23	1	3,4
4	TMADEGVVALWR	1346.65	1491.77	145.12	1,2	3,4
5	ECSGVEPQLWAR	1430.66	1575.77	145.11	1	3,4
6	NQIDEIVLVGGSTR	1499.78	1644.90	145.13	1	3,4
7	LAEMPADSGYPAYLAAR	1794.84	1939.97	145.13	1	3,4
8	ELEFYMK	958.46	1247.66	289.20	1	3
9	IPSAVGYQPTLSTDLGGLQER	2201.13	2346.24	145.11	1	3,4
10	AQIWDTAGQER	1273.59	1418.71	145.12	1	3,4
11	AGGECLTFDQLALR	1549.77	1694.87	145.10	1	3,4
12	VDFAYSFFEK	1251.61	1540.79	289.18	1	3
13	IFDKPEDFIAER	1478.74	1767.95	289.22	1	3,4
14	GLFTSDQILFTDTR	1612.79	1757.92	145.13	1	3,4
15	TTPSYVAFTDSER	1472.66	1617.79	145.13	1	3,4
16	LDTGNFSWGSEAVTR	1638.76	1783.87	145.11	1	3,4
17	LWQVPETLPAEVVGK	1664.93	1954.13	289.19	2	3,4
18	QLDAHIEEQFGGGR	1555.73	1700.85	145.11	2	3,4
19	GFGFVTFAEEK	1230.61	1519.80	289.19	2	3,4
20	AFLVEEQK	962.51	1251.72	289.21	2	3,4
21	IFEGEALLR	1046.59	1191.69	145.10	2	3,4
22	ISGLIYEETR	1179.61	1324.72	145.11	2	3,4
23	TTAEEGVVALWR	1330.71	1475.80	145.09	2	3,4
24	LLIQNQDEMIK	1343.72	1632.92	289.21	2	3,4
25	IQDKEGIPPDQQR	1522.77	1811.99	289.22	2	3,4
26	TMVYPEAGFELQR	1539.74	1684.85	145.10	2	3,4
27	EQDVSLGANKFPER	1588.77	1878.00	289.22	2	3,4
28	GQGGIQQLLAAEQEAQR	1795.93	1941.03	145.10	2	3,4
29	QYAVFDEK ^{\$}	981.46	1287.68	306.22	2	3,4
30	QLDSHIEEQFGGGR ^{\$}	1554.71	1716.84	162.13	2	3,4
31	FDVGVKEIEGWTAR	1605.84	1895.03	289.19	2	3,4
32	HFEVDLSAFR	1219.61	1364.71	145.10	3	4
33	CALVYGQMNEPPGAR	1661.78	1806.87	145.10	4	6
34	NAVVTVPAYFNDSQR	1679.84	1824.94	145.10	4	5,6
35	QPTELELAQAFHQGK	1695.85	1985.07	289.22	4	5
36	TALTYVDNNDGSWHR	1747.80	1892.90	145.10	4	5

Abdallah et al., Optimization of iTRAQ labelling coupled to OFFGEL fractionation as a proteomic workflow to the analysis of microsomal proteins of *Medicago tunacatula* roots. Proteome Science 2012, 10:37

113

37	QQFPLALYQVDK	1448.78	1737.98	289.20	4	5,6
38	ADGFAGVFPEHK	1273.60	1562.82	289.22	4	5
39	SLEGLQANVQR	1213.63	1358.75	145.13	4	6
40	TFDNVYYK	1048.47	1337.70	289.23	4	5
41	MLSPLILGDEHYQTAR	1842.96	1988.04	145.08	4	5
42	SSFDAFQQILK	1282.67	1571.87	289.20	4	5
43	SSDFLMYGIK	1159.57	1448.77	289.20	4	5
44	SSMDAFQQILK	1282.67	1571.83	289.17	5	5
45	FTQANSEVSALLGR	1491.77	1636.88	145.11	5	6
46	STLVWEVR	988.56	1133.64	145.08	5	6
47	IFLENVIR	1002.62	1147.70	145.07	5	6
48	FFCEFCGK	1093.48	1382.65	289.17	5	6
49	EVAGFAPYEKR	1265.65	1554.85	289.20	5,6	6
50	SFGPAVIFNNEK	1321.70	1610.88	289.18	5	6
51	VALINYGPEYGR	1350.75	1495.80	145.06	5	6
52	YIAPEQVPVK	1142.63	1431.85	289.21	5	5,6
53	VEPLVNMGQITR	1355.72	1500.83	145.12	5	6
54	AYEPILLLGR	1143.67	1288.77	145.10	5	6
55	LVGEYGLR	905.51	1050.61	145.10	5	6
56	EALGGLPLYQR	1215.66	1360.77	145.11	5	6
57	ADAFLLVGTQPR	1286.70	1431.81	145.10	5	6,7
58	HGWEYVVK	1016.51	1305.72	289.21	6	8
59	FVIGGPHGDAGLTGR	1452.75	1597.86	145.10	7	8
60	LVNVFTIGK	989.60	1278.80	289.20	7	9,10
61	THAVVEPFVIATNR	1552.86	1697.95	145.09	7	8,9
62	SVHEPMQTGLK	1225.62	1514.82	289.21	7	8
63	SVVYALSPFQQK	1365.74	1654.94	289.20	7	10
64	YGGGANFVHDGYNK	1497.61	1786.88	289.27	7	8
65	TALTYIDGNGNWHR	1616.76	1761.88	145.12	8	9
66	AHLQDYIQTHYTAPR	1812.89	1958.00	145.11	8	9
67	NYTNAFQALYR	1359.66	1504.77	145.11	10	12
68	TLHPNWSPAAIK	1333.72	1622.93	289.21	10	11
69	FHQYQVVGR	1132.56	1277.69	145.13	11	12
70	FQSLGVAFYR	1186.64	1331.72	145.08	11	12

As shown in Table 2.2, 34 peptides were categorized in group B where peptides in both label-free and iTRAQ labelled experiments are focussed in the same OGE fraction. Among them, 10 peptides were recovered in fraction 12 the most basic fraction. Hence, even if iTRAQ labelling rendered them more basic, fraction 12 stands for the last and most basic region of the 12 cm strip (pH 3-10) a peptide could

Abdallah *et al.*, Optimization of iTRAQ labelling coupled to OFFGEL fractionation as a proteomic workflow to the analysis of microsomal proteins of *Medicago trancatula* roots. *Proteome Science* 2012, 10:37

reach. Furthermore, 10 of the 34 peptides were discerned (marked with an asterisk * in Table 2.2) to register the expected basic shift in at least one experiment but this shift could not be observed in all replicates. The fourteen remaining peptides were focused in the same OGE fraction before and after iTRAQ labelling. The most reliable explanation to this observation was that the iTRAQ tag did induce an increase in the peptide pI, but this shift was not pronounced enough and therefore did not provoke a shift in fraction since every fraction corresponds to 0.6 pH-unit. To look into this further, peptide amino acid structures were manually drawn in MarvinSketch calculator and peptide isoelectric points were calculated for the native and iTRAQ modified peptides. For example, the non-modified peptide GFGFVTFANEK of m/z 1215.62 was found in the same OGE fraction (fraction 6) of its doubly labelled peptide of m/z 1504.80. The calculated pI of the unlabelled peptide is 5.94 while a pI of 5.97 is assigned to the iTRAQ labelled form. Thus, the pI was slightly modified after iTRAQ labelling and remained below the edge of 0.6 pH-units.

Table 2.2: Co-migration of iTRAQ- and unlabelled peptides in the same OGE fraction. Thirty-four peptides focused in the same OGE fraction in both label-free and iTRAQ labelled experiments are shown in this table. Peptides shifted to more basic fractions in at least one experiment are indicated with an asterisk (*).

	Sequence	Mass NL	Mass L	Difference	F NL	FL
1	MFDAGLYEHCR*	1397.58	1542.69	145.12	4	4
2	EAFPGDVFYLHSR*	1536.75	1681.85	145.09	4	5
3	TLHGLQPPESSGIFNEK*	1852.93	2142.14	289.22	4	4
4	ATFDCLMK*	984.49	1273.65	289.16	5	5
5	GIPYLNTYDGR*	1267.67	1412.73	145.06	5,6	5,6
6	GFGFVTFANEK	1215.62	1504.80	289.18	2,6	6
7	GKDFAELIASGR	1262.67	1551.87	289.21	6	6
8	AALNDFDRFK	1195.60	1484.81	289.21	6	6
9	EAQWAHAQR*	1095.52	1240.63	145.11	8	8
10	SRFFHSTGQR*	1221.54	1366.71	145.17	8	8
11	AGDFFHSAQSR*	1221.56	1366.66	145.11	8	8
12	ASALIQHDWSR*	1282.63	1427.75	145.12	8	8
13	AHGGFSVFAGVGER	1389.69	1534.79	145.10	8	8
14	VGPFHNPSETYR	1402.65	1547.77	145.12	8	8
15	GVDKEHVMLLAAR	1437.77	1726.99	289.22	8	8
16	EVHFLPFNPVDKR	1596.85	1886.05	289.20	8	8
17	EIHFLPFNPVDKR	1610.87	1900.07	289.20	8	8

Abdallah et al., Optimization of iTRAQ labelling coupled to OFFGEL fractionation as a proteomic workflow to the analysis of microsomal proteins of Medicago trancatula roots. Proteome Science 2012, 10:37

115

18	ALYHDLNAYR	1234.61	1379.72	145.11	8	8
19	AGVKPHELVF	1095.61	1384.82	289.21	8	8
20	LAWHSAGTFDSK*	1318.61	1607.84	289.23	8	8
21	YDTVHGQWK	1132.52	1421.74	289.22	8	8
22	NGGANFVAPGYTK	1294.54	1583.84	289.31	10	10
23	AASFNIIPSSTGAAK	1433.76	1722.96	289.21	10	10
24	FVTAVVGFGK	1023.57	1312.79	289.21	10	10
25	AGQYNFLIR	1080.58	1225.68	145.10	12	12
26	AYGGVLSGGAVR	1105.59	1250.70	145.10	12	12
27	GFQTSYYNR	1134.50	1279.62	145.12	11,12	12
28	VLNTGSPIS VPVGR	1394.76	1539.90	145.13	12	12
29	SSSVFIPHGPGAVR	1409.73	1554.85	145.12	12	12
30	LVSAHSSQQIYTR	1488.75	1633.88	145.13	12	12
31	GGGHTSQIYAIR	1258.65	1403.75	145.11	12	12
32	HGSLGFLPR	982.53	1127.64	145.12	12	12
33	GGQLIYGGPLGR	1186.63	1331.76	145.12	12	12
34	AGGAYTLNTASAVTVR	1550.79	1695.91	145.12	12	12

Table 2.3 shows the eleven peptides of group C that were focused in more acidic fractions when they were iTRAO labelled. Initially, the native form of these peptides was found in fractions 11 and 12, gathering the most basic peptides. The observed acidic shift is furthermore in agreement with Chenau et al. (2008). These authors found that the peptide pI average in fraction 24 (most basic fraction in their experiment, strip pH 3-10, 24 cm) decreased from 9.22 to 8.74 in non-labelled and iTRAQ labelled samples, respectively (Chenau et al., 2008). To further investigate the acidic shift induced by iTRAQ labels, MarvinSketch Calculator was again implemented for pI calculations. The calculated pI of SKFDNLYGCR is 8.32 and it decreases to 7.72 after labelling, which corresponds to a shift of one OGE fraction. Indeed, the non-modified peptide was focused in fraction 11 while its iTRAQ labelled form was retrieved in fraction 10. Moreover, ASALIQHEWRPK, focused in fraction 12 when non-modified, was found in a more acidic fraction (fraction 10) after iTRAQ labelling. Interestingly, the calculated pI of the native peptide is 9.12 while this is 7.04 for its doubly labelled form, which corresponds accurately to the experimentally observed pI shifts.

Table 2.3: Acidic pI shifts in OGE as a result of iTRAQ labelling.

Eleven peptides shifted to more acidic OGE fraction after iTRAQ labelling are presented in this table

^{\$}Gln->pyro-Glu@N-term

	Sequence	Mass NL	Mass L	Difference	F NL	FL
1	SKFDNLYGCR	1258.56	1547.79	289.22	11	10
2	QFNGLVDVYKK ^{\$}	1292.69	1743.02	450.33	11	9,10
3	KGPLIVYGTEGAK	1331.73	1765.06	433.33	11	9
4	YLQPQESGWKPK	1459.80	1893.06	433.26	11	9,10
5	GVQQVLQNYK	1175.61	1464.84	289.23	12	10
6	KQFVIDVLHPGR	1407.81	1697.01	289.20	12	10
7	ASALIQHEWRPK	1434.76	1723.98	289.22	12	10
8	LSEPYKGIGDCFKR	1668.82	2102.14	433.33	12	9,10
9	GVLPQNQPFVVK	1324.74	1613.96	289.22	12	10,11
10	INWLTNPVHK	1220.65	1509.88	289.22	12	10
11	IAGFSTHLMK	1103.57	1392.79	289.22	12	10

Acidic and basic amino acid distribution per peptide

Some molecular considerations have been introduced to explain the behaviour of the 111 peptides in groups A, B and D presenting the expected basic shift and the 11 peptides in group C showing an acidic shift after iTRAO labelling. Peptide amino acid composition has been investigated with a special attention to the acidic (E and D) and basic (K and R) amino acids. Thus, the average number of each amino acid by peptide per fraction was calculated (Figure 2.5). In peptides that shifted to basic regions (groups A, B and D), the number of acidic amino acids D and E by peptide globally decreased from acidic to more basic fractions to be absent in fraction 10 and above, a finding in agreement with Chenau et al. (2008) (Chenau et al., 2008). Contrary to this, 7 of the 11 peptides that shifted to a more acidic fraction after labelling (Table 2.3, group C) contain at least one acidic residue and were nonetheless found in the fractions 11 and 12 when not labelled. Furthermore, the number of basic amino acids is higher in peptides that have an acidic shift compared to peptides that have a basic shift (Figure 2.5). Exclusively in the group showing acidic shifts, 4 peptides (KGPLIVYGTEGAK, QFNGLVDVYKK, YLQPQESGWKPK and LSEPYKGIGDCFKR) of the 11 had 3 iTRAQ tags due to the presence of two lysines in their sequences while no similar case has been observed in peptides shifting to more basic fractions. The experimental finding that iTRAQ labelling shifts the pI of lysine-containing peptides to more acidic values was corroborated by pI calculations in MarvinSketch Calculator on the different forms of lysine. The calculated pI of native, free lysine (9.82) decreases to 7.60 for the double-tagged amino acid.

Figure 2.5: Average distribution of basic and acidic amino acids per peptide in each OGE fraction.

Average number of acidic (red plot) and basic (black plot) amino acids per peptide in groups A, B and D. Yellow and Green plots correspond to the average number of acidic and basic amino acids per peptide in OGE fractions 11 and 12 in group C, respectively.

iTRAQ impact on peptide elution time

The degree of retention time variation in LC separation after iTRAQ labelling was examined in groups A, B and D. Resulting retention time values were plotted per fraction for the unlabelled and iTRAQ labelled samples as shown in Figure 2.6. Clearly, iTRAQ labelling increased the retention time of 17 peptides initially focused in OGE fraction 1 and shifted to more basic fractions after the iTRAQ modification by approximately 6 minutes (Chapter 2, additional file S2.2). This variation decreased to less than 1 minute in other OGE fractions, to be entirely gone in fractions 3, 4, 8 and 12 where iTRAQ labelled peptides and their native counterparts eluted at approximately the same time. For group C, label-free and iTRAQ labelled peptides recorded almost the same elution time in LC separation (results not shown). Thus, iTRAQ labelling drastically affected peptide retention time in OGE fraction 1 and lost its effect for the more basic fractions.

Average retention time of unlabelled peptide per OGE fraction in groups A, B, & D.
Average retention time of iTRAQ labelled peptide per OGE fraction in groups A, B, & D.

Figure 2.6: Peptide elution time in LC separation.

Average retention time (in minutes) of iTRAQ labelled peptides (red plot) and their native counterparts (black plot) in each OGE fraction in groups A, B and D.

Abdallah *et al.*, Optimization of iTRAQ labelling coupled to OFFGEL fractionation as a proteomic workflow to the analysis of microsomal proteins of *Medicago truncatula* roots. *Proteome Science* 2012, 10:37

Conclusions

In plants, MS-based proteomics has been largely used for protein identification while quantitative proteomics is still fully developing. In the present work microsomal proteins of *Medicago truncatula* roots were, for the first time, scrutinised by the state-of-the-art gel-free proteomic approach iTRAQ-OGE-LC-MS/MS. Herein, we described a straightforward, robust, and iTRAQ compatible method for in-solution protein digestion. Besides, the practical applicability of this tailored workflow allows users to successfully employ it with different kind of matrices. Another positive aspect of the current work includes the power of peptide fractionation according to their pI in OGE with respect to the focusing quality observed in free and iTRAQ labelled peptide electrophoresis.

Although Ross and co-workers described minimal iTRAQ reactivity with tyrosyl residue side-chain (<3%) (Ross et al., 2004), a recent study has reported an evidence of O-acylation of hydroxylated side-chains of amino acid residues with iTRAQ especially in positions near histidyl residue (Wiktorowicz et al., 2012). Herein, the examination of the peptide electrofocusing behaviour before and after iTRAQ labelling revealed a non-negligible basic pI shift in OGE fractionation on a wide pH range 3-10 and an important increase in retention time in LC separation of labelled peptides focused in OGE fraction 1. It was furthermore found that this basic shift is not global, specific peptides, with specific sequence-determined properties, may even have a shift to a more acidic pI. In this study, a first effort was done to describe these properties. It is noteworthy to point out that to date, most pI calculator algorithms use only native peptide sequences without taking into account the iTRAQ tags. Consequently, further experiments in combination with trustworthier, advanced pI calculator software are crucial to enhance our understanding on the observed basic shift and routinely describe the pI of iTRAQ labelled peptides. Thus, the experimental isoelectric points can be used as an efficient additional filtering tool for the validation of peptide identifications and increase the reliability of the identification procedure.

Methods

Biological material and growth conditions

Medicago truncatula cv Jemalong 5 seeds were surface sterilised and germinated at 27°C in the dark on 0.7% sterile agar (Bestel-Corre *et al.*, 2002). Two-day old seedlings were then transplanted into 400 mL plastic pots containing a mix of sterile soil of Epoisses and sand (1:2 v/v). Mycorrhizal inoculation was realized by adding Epoisses soil-based inoculum (spores, roots and hyphae) of the AM fungus *Rhizophagus irregularis* DAOM 181602 (formerly known as *Glomus intraradices*) (Kruger *et al.*, 2012). Seedlings (3 per pot) were grown for 4 weeks under controlled conditions (16 h photoperiod, 23°C/18°C day/night, 60% relative humidity, 220 µEinstein m⁻².s⁻¹ photon flux density). Control and *R. irregularis*-inoculated plants were watered each day with demineralised water and twice a week with a nitrogenenriched nutrient solution. At harvest, roots were removed from their substrate, gently rinsed with deionised water, deep frozen, and stored at -80°C for later protein extraction.

Microsomal protein extraction

Microsome extraction of *M. truncatula* roots was performed at 4°C and obtained by differential centrifugation as previously described by Stanislas and co-authors (Stanislas *et al.*, 2009). Briefly, roots were homogenized using a Waring Blendor in grinding buffer (50 mM Tris-MES, pH 8.0, 500 mM sucrose, 20 mM EDTA, 10 mM DTT and 1 mM PMSF). The homogenate was centrifuged at 16,000xg for 20 minutes (rotor JA 14 Beckman, CA, USA). After centrifugation, supernatants were collected, filtered through two successive meshes (63 and 38 μ m), and centrifuged at 96,000xg for 1 h (rotor 45 Ti, Beckman). Pellets, representing the microsomal fraction, were resuspended in 10 mM Tris-MES, pH 7.3 250 mM sucrose, 1 mM EDTA, 1 mM DTT, 1 mM PMSF, 10 μ g/ml aprotinin and 10 μ g/ml leupeptin. Protein amount was measured using the 2-D Quant Kit (GE Healthcare, Little Chalfont, UK).

In-solution protein digestion

Amicon Ultra-4 10 K centrifugal devices (Millipore, Bedford, MA, USA) were used for in-filter protein digestion. In the filtration devices, proteins (50 μ g) from each control and mycorrhized plants were mixed with 10 mM DTT in solution A (8 M urea in 0.1 M Tris–HCl, pH 8.5) for 20 minutes to reduce protein disulphide bonds, and the excess reducing solution eliminated by centrifugation at 5,000xg for 40 minutes (Sanyo MSE Harrier 18/80, Japan). The protein sample was further cleaned by rinsing with 200 µl of solution A and repetition of the centrifugation step at 5,000xg for 40 minutes. One hundred microliters of 50 mM iodoacetamide in solution A were added on the filter and the filter was incubated in the dark at room temperature (RT) for 30 minutes followed by a centrifugation at 5,000xg for 30 minutes. Afterwards, 100 µl of solution B (8 M urea in 0.1 M Tris–HCl, pH 8.0) was added on the filter to adjust the pH, and centrifuged again. After repeating the latter step twice, trypsin (Trypsin Gold, mass spectrometry grade, Promega, Madison, WI, USA) was added in 30 µl of triethylammonium bicarbonate (TEAB) to an enzyme/protein ratio of 1:100. Protein digestion was carried out overnight at RT. Finally the peptides were collected by centrifugation of the filter units at 5,000xg for 40 minutes.

iTRAQ peptides labelling

Each tryptic digest was either labelled with iTRAQ reagent 114 or 117 following the manufacturer's instructions (AB SCIEX, Foster City, CA, USA). Control and mycorrhized samples were labelled by alternating 114 and 117 tags to avoid labelling bias. Some experiments were labelled with single use of one iTRAQ tag (114, 115, 116 and 117) targeting an overview of the iTRAQ 4-plex effect on peptide pI. iTRAQ reagents were dissolved in 70 μ l of ethanol and added to the protein digest. After 1 h of incubation at RT, equal amounts of the different samples were pooled and concentrated by evaporation using a SpeedVac (Heto, Saskatoon, SK, Canada). The excess of iTRAQ reagents was removed by desalting the labelled peptides using C18 columns Supelco (DiscoveryTM DSC-18, 1 ml, 100 mg, Supelco Bellefonte, PA, USA). Peptides were eluted in 50% ACN (v/v), 0.1% TFA (v/v) and subsequently dried in SpeedVac (Heto) prior to peptides OGE fractionation.

Peptide OGE

3100 OFFGEL Fractionator and OFFGEL Kit pH 3–10 (Agilent Technologies, CA, USA) with 12 wells setup were used. Peptides were diluted in 1.8 ml of the focusing buffer containing only 5% (v/v) of glycerol in deviation from the supplier's protocol. IPG strips were rehydrated by adding 40 μ l of peptide IPG strip rehydration solution per well for 15 minutes. Then, 150 μ l of sample were loaded in each well. Peptide focusing was performed until it reached 20 kVh with a maximum voltage of 8,000 V

and maximum current of 50 μ A. After focusing, the 12 peptide fractions were withdrawn and wells rinsed with 150 μ l of H₂O/MeOH/TFA (49/50/1 v/v) for 15 minutes. Rinsing solutions were pooled with their corresponding peptide fractions and concentrated in SpeedVac (Heto) prior to LC-MS/MS analysis.

LC-MS/MS analysis

The dried peptides were re-dissolved in 25 μ l 0.1% TFA (v/v). Peptide separation was performed using an Ultimate 3000 nano LC system (Dionex, Sunnyvale, USA) equipped with a C18 column (PepMap 100, 3 µm, 100 Å, 75 µm id x 15 cm, Dionex) and connected to a Probot microfraction collector (Dionex). The mobile phase consisted of a gradient of solvents A 2% ACN (v/v), 0.2% TFA (v/v) in water and B 80% ACN (v/v), 0.08% TFA (v/v) in water. Peptides were separated at a flow rate of 0.3 µL/minute using a linear gradient of 60 minutes of solvent B from 0 to 5% in 5 minutes, followed by an increase to 30% in 5 minutes and to 65% in 30 minutes. The column was washed with 95% of solvent B for 5 minutes followed by regeneration with solvent A. Column effluent was mixed with MALDI matrix α-cyano-4hydroxycinnamic acid (CHCA) and collected at a frequency of one spot every 30 seconds on an Opti-TOF LC/MALDI insert blank plate (AB SCIEX). MALDI plates were analyzed with a MALDI-TOF/TOF 4800 Proteomics Analyzer (AB SCIEX). The instrument was calibrated using the 4700 mass standard calibration kit (AB SCIEX). MS spectra between m/z 900 and 4,000 were acquired for every spot using 1,500 laser shots. The 8 most intense ion signals per spot having a S/N > 30 were selected as precursors for MS/MS acquisition.

Peptide and protein identifications were performed with the ProteinPilotTM Software 4.0.8085 revision 148085 (AB SCIEX) using the Paragon algorithm. Combined data and spectra from each OGE fraction were searched against the NCBI viridiplantae database (released on the 5th of May 2011) and a EST database of *M. truncatula* (www.medicago.org, released on the 18th of July 2011). The following search parameters were selected: iTRAQ 4-plex peptide label, cysteine alkylation, trypsin specificity, ID focus on biological modifications, and processing including quantitation and thorough ID. We only report protein identifications with a total ProtScore >1.3, which represents >95% statistical confidence in ProteinPilot. Proteins having at least one peptide above 95% of confidence were recorded.

MarvinSketch Calculator Plugin (http://www.chemaxon.com/marvin/sketch) (Csizmadia, 2000), was implemented in this study to overcome the main bottleneck of the current available pI calculator such as the pI/MW tool of the ExPASy Proteomic Server (www.expasy.org) not giving the opportunity to calculate the pI of chemically modified peptides and consequently the pI of iTRAQ labelled peptides. This tool has been used to calculate pI of unlabelled and iTRAQ labelled peptides to explain some experimentally observed pI shifts

Abbreviations

ACN, Acetonitrile; AM, Arbuscular mycorrhiza; CHCA, α-cyano-4-hydroxycinnamic acid; DTT, Dithiothreitol; EDTA, Ethylenediaminetetraacetic acid; IAA, 2iodoacetamide; IEF, Isoelectric focusing; IPG, Immobilized pH gradient; ITRAQ, Isobaric tags for relative and absolute quantitation; LC, Liquid chromatography; MALDI-TOF, Matrix assisted laser desorption ionisation time of flight; MeOH, Methanol; MES, 2-(N-morpholino)ethanesulfonic acid; MS, Mass spectrometry; MW, Molecular weight; NMWL, Nominal molecular weight limit; OGE, OFFGEL electrophoresis; pI, Isoelectric point; PMSF, Phenylmethylsulfonyl fluoride; SCX, Strong-cation exchange; TEAB, Triethylammonium bicarbonate; TFA. Trifluoroacetic acid; Tris, Tris(hydroxymethyl)aminomethane; 2-DE, Twodimensional gel electrophoresis.

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

CA: has performed the experiment in the frame of her PhD thesis, from plant cultivation until the in-depth analysis of the data; KS: provided help for MS analysis, discussed the results and critically commented and worked on the manuscript; CG: helped for the plant material, and the microsome isolation; EDG: supervised the PhD work and critically commented the manuscript; CL: technical help and support, especially in liquid chromatography steps; JR: supervised the PhD work, discussed the results and critically commented and worked on the manuscript. All authors read and approved the final manuscript

Acknowledge ments

This work was supported by grants from the "Fonds National de la Recherche du Luxembourg" AFR TR-PHD BFR 08-078. The authors appreciate helpful discussions with Ghislaine Recorbet (INRA, Dijon, France) and her proofreading. The authors also thank Sébastien Planchon for his technical help and his support for bioinformatic issues.

Additional files

Chapter 2, additional file S2.1: Impact of iTRAQ labelling on peptide pI and OGE fractionwise.

This table shows the reproducibility of observed peptide pI shifts in at least 3 independent experiments of labelled samples in groups A, B, C and D. It presents peptide sequences, Paragon confidence score, observed (Obs mass) and theoretical masses (Theo mass), the mass modification induced by iTRAQ labelling and OGE fractions (OGF) before and after the labelling. Moreover the retention time (Rt) of non-modified and labelled peptides together with the difference (Diff) in retention time due to the iTRAQ tags are as well shown in this table.

Chapter 2, additional file S2.2: Impact of iTRAQ labelling on peptide retention time in LC separation.

This table presents the 17 peptides that showed an increase in retention time after the labelling. These peptides were focused in OGE fraction 1 when non-labelled (NL) and shifted to more basic fractions after iTRAQ labelling (L) and. The table shows their retention time (Rt) in minutes in LC separation before and after the labelling.

Chapter 3

Performance of isobaric labelling in quantitative proteomics of arbuscular mycorrhized *Medicago truncatula* roots

Cosette Abdallah^{1,2}, Kjell Sergeant¹, Céline C. Leclercq¹, Eliane Dumas-Gaudot² and Jenny Renaut¹

¹Département Environnement et Agro-Biotechnologies, Centre de Recherche Public-Gabriel Lippmann, 41, rue du Brill, L-4422, Belvaux, Luxembourg.

²UMR Agroécologie INRA 1347/Agrosup/Université de Bourgogne, Pôle Interactions Plantes Microorganismes ERL 6300 CNRS, BP 86510, 21065 Dijon Cedex, France.

Abdallah *et al.*, 2012 Performance of isobaric labelling in quantitative proteomics of arbuscular mycorrhized *Medicago truncatula* roots. *Comparative Biochemistry and Physiology - Part D: Genomics and Proteomics*.

Proteomics established itself as an indispensable technology to investigate and describe several biological processes. The plant proteomic field still relies on 2-DE gels and faces significant challenges in membrane proteomics. After the successful establishment of the iTRAQ-OGE-LC-MS/MS framework on Medicago truncatula microsomal proteins (chapter 2, (Abdallah et al., 2012), this proteomic approach was afterwards implemented for in-depth study of *M. truncatula* membrane proteomics in response to the arbuscular mycorrhizal fungi invasion. The iTRAQ labelling quickly gained popularity in proteomics, however the protein quantification, that relies on reporter ions generated in MS/MS spectra, is not feasible through the standard collision induced dissociation (CID) in ion traps. The aforementioned drawback is overwhelmed in this study since iTRAQ labelled samples were analysed in the high performance Orbitrap Elite Velos mass spectrometer, in which the combination of hybrid fragmentation methods is possible. The CID-HCD couple provides a promising tool for iTRAQ labelled protein identification and their relative quantitation, giving that HCD fills the gap of the CID low mass cut-off limitation. This method combines the sensitivity of ion trap instruments with the very high resolution and mass accuracy capabilities. Its suitability in achieving accurate results and studying membrane proteomics in response to mycorrhiza is discussed in the following paper.

Abstract

Arbuscular mycorrhizal (AM) symbiosis, an intimate and mutualistic association between plant roots and fungi, is characterized by bilateral nutrient exchange between the two symbionts. Deep changes in the shape and number of organelles, together with profound modifications in various membrane compartments, are induced within AM symbiosis. Thus, important root microsomal protein modifications are assumed to be required to sustain the functioning of the interaction. However, proteomic analysis of symbiosis-related membrane proteins remains a major challenge due to their hydrophobicity, low abundance and precipitation at their isoelectric point, which precludes the use of two-dimensional electrophoresis (2-DE) for their large scale resolution and identification. In this context, to investigate the membrane-associated proteins that are regulated in the model interaction Medicago truncatula -Rhizophagus irregularis, a not yet implemented approach iTRAQ-OGE-LC-MS/MS to study plant-AM fungi symbiosis is employed as an alternative to 2-DE. The iTRAQ labelling has proven its compatibility with OFFGEL fractionation and has been widely used to study complex proteomes. An appropriate fractionation protocol is herein described allowing the recovery of membrane protein fractions. The suitability of the applied proteomic approach to track membrane proteome changes of *Medicago* truncatula roots in response to mycorrhiza is discussed.

Abdallah *et al.*, 2012 Performance of isobaric labelling in quantitative proteomics of arbuscular mycorrhized *Medicago truncatula* roots. *Comparative Biochemistry and Physiology - Part D: Genomics and Proteomics*.

Introduction

More than 80% of plants including all taxa except for Brassicaceae, and thus the model plant Arabidopsis, develop in their roots intimate association with arbuscular mycorrhizal (AM) fungi. While AM fungi are host dependant, plants can survive without the symbiotic partnership. By delivering phosphate, micronutrients and water, the fungi enhance the nutritional state of their hosts and in exchange benefit from an access to carbohydrates (Parniske, 2008; Bonfante & Genre, 2010). Besides improving the nutritional status, the symbiosis enables plants to perform better under harmful conditions and cope with adverse biotic and abiotic stresses (Parniske, 2008). AM symbiosis establishment elicits profound changes in the host plant and is characterized by the formation of "arbuscules", which are thought to be the major site of nutrient exchange between the two symbionts (Harrison, 1999). The invaded plant cell responds by the fragmentation of the vacuole, migration of the nucleus to a central position within the cell and an increase of the number of organelles (Carling & Brown, 1982; Balestrini et al., 1992; Bonfante & Perotto, 1995). Moreover the plasma membrane extends around fourfold to form the periarbuscular membrane that envelops the arbuscule, therefore concomitant increases in membrane biosynthesis must be occurring (Harrison, 1999). Consequently, studies devoted to track membrane proteome changes in response to AM symbiosis could provide new insight into the understanding of how plants deal with the AM invasion. The Medicago truncatula root proteome is on the forefront of proteomic research and its dynamic alteration during interactions with fungi has been widely investigated as reviewed by Mathesius (2009) with a special focus in case of the symbiotic interaction with arbuscular mycorrhizal fungi (Bestel-Corre et al., 2002; Valot et al., 2005; Amiour et al., 2006; Valot et al., 2006; Recorbet et al., 2010). M. truncatula became a model plant to study root legume-fungi symbiosis due to its diploid genome structure, relatively small genome size of about ~550 million base pair (Mbp) (Bell et al., 2001) and short regeneration time. It is furthermore self-fertile, relatively easy to transform and its genome sequencing program is nearly completed, which offers further advantages through the increased number of available genomic tools (Colditz & Braun, 2010).

Lately, proteomics has emerged as an indispensable tool in the post-genomics era to study protein expression and changes in complex samples. One of the main differences between genomics and proteomics is that the former one is the study of a static entity whereas the protein content of organisms is highly dynamic. Unlike genomics, analogous to the polymerase chain reaction (PCR) does not exist in proteomics which hinders the study of low abundant proteins since they are often masked by high-abundant proteins. Two-dimensional gel electrophoresis (2-DE) remains the most commonly used technique in plant proteomics. More recently, substantial improvements in mass spectrometry (MS) and advances related to protein fractionation methods gave birth to a toolbox of novel and powerful gel-free proteomic approaches. MS-based proteomics is a young discipline and its development in plant biology is proceeding at a slow pace since studies using gel-free proteomics are still scant.

Membrane proteins are hydrophobic in nature and generally escape to 2-DE, thus gelfree quantitative approaches, such as isobaric tag for relative and absolute quantification (iTRAQ) coupled to LC-MS, seems to be well suited to study this class of proteins and has proven its ability to perform quantitative proteomic studies in plant membrane proteins (Kota & Goshe, 2011). The iTRAQ reagent labels peptide N-termini and ε -amino groups of lysine side chains and allows multiplexing of up to 8 samples in the same experiment. Protein quantification relies on reporter ion intensities yielded at low molecular mass (114-121) in MS/MS fragmentation (Ross et al., 2004). To gain insight into the molecular mechanism of root hair cell biology, iTRAQ quantitative proteomics has recently been applied to characterize the phosphoproteome of the Glycine max L. root hairs during rhizobial colonization (Nguyen et al., 2012). A broad range of MS instruments is capable of analysing iTRAQ labelled samples; however it is not feasible through the standard collision induced dissociation (CID fragmentation) in ion traps. This is due to CID low mass cut-off limitations, causing the mass spectra to be void below 25-30% of the precursor mass and thus iTRAQ reporter ions are missed (Kocher et al., 2009). It has been demonstrated that the combination of two fragmentation methods -CID and higher energy collisional dissociation (HCD)- greatly enhances the analytical capacities of identifying and quantifying iTRAQ labelled peptides. While CID is performed in the 130 linear ion trap, HCD is done in an octopole collision cell (Savitski *et al.*, 2005; Falth *et al.*, 2007; Swaney *et al.*, 2008). Hence the same selected parent ion is fragmented twice, CID and HCD spectra are subsequently used for protein identification and quantification, respectively. Accordingly, the MS limitation is circumvented and iTRAQ reporter ions are detected (Kocher *et al.*, 2009).

The OFFGEL electrophoresis (OGE) apparatus, which permits isoelectric point peptide separation in solution, has proven its high resolution power, utility in reducing sample complexity and exclusivity in providing peptide isoelectric points. In recent years it has therefore proven to be a valuable tool for validating and filtering false positive identifications (Horth *et al.*, 2006; Hubner *et al.*, 2008). In addition, it has been shown that OGE is compatible with iTRAQ labelling for quantitative studies (Chenau *et al.*, 2008; Ernoult *et al.*, 2008).

In the current study, iTRAQ-OGE-LC-MS/MS proteomic approach is applied on the model legume *Medicago truncatula* roots inoculated with the AM fungus *Rhizophagus irregularis* to target protein pattern modifications and symbiosis-related microsomal proteins eligible for involvement in sustaining the interaction between the two symbionts.

Materials and methods

Plant material preparation, membrane protein extraction, protein digestion, iTRAQ labelling and OGE fractionation were performed as described in chapter 2 (Abdallah *et al.*, 2012).

LC-MS/MS analysis

The dried peptides were re-dissolved in 25 μ 1 0.1% TFA (v/v). Peptide separation was performed using an Ultimate 3000 nano LC system (Dionex, Sunnyvale, USA) equipped with a C18 column (PepMap 100, 3 μ m, 100Å, 75 μ m id x 15 cm, Dionex). The mobile phase consisted of a gradient of solvents A [2% ACN (v/v), 0.2% TFA (v/v) in water] and B [80% ACN (v/v), 0.08% TFA (v/v) in water]. Peptides were separated at a flow rate of 0.3 μ L/minute using a gradient of 60 minutes of solvent B from 0 to 5% in 5 minutes, followed by an increase to 30% in 5 minutes and to 65% in 30 minutes. The column was washed with 95% of solvent B for 5 minutes followed by regeneration with solvent A. The LC was online coupled to Orbitrap Elite Velos

(Thermo scientific, Bremen, Germany) in which m/z spectra (300-2,000 m/z) were acquired in a positive mode at a resolution of 60,000.

Data-dependent automatic survey MS scan and tandem mass spectra (MS/MS) acquisition were applied. For internal mass calibration the 371.101240 ion was used as a lock mass. Dynamic exclusion was enabled with exclusion size list of 500 and exclusion duration of 30 s. The 10 most intense precursors were selected for subsequent fragmentation, each selected parent ion was first fragmented by CID and then by HCD, the mono-charged precursor ions were excluded. The normalized collision energy was set to 35% and 65% in CID and HCD, respectively. For MS/MS via CID, the fragmentation was acquired in the ion trap with an isolation window of 2.0 m/z, a target value of 5,000, an activation Q of 0.25 and an activation time of 10 ms. For MS/MS via HCD a resolution of 15,000 was set in the Orbitrap with an isolation window of 2.0 m/z, a low mass cut-off at m/z 100, a target value of 30,000 ions and an activation time of 0.1 ms. Combined CID and HCD spectra were processed in Mascot using Proteome Discoverer (beta version 1.2.0.92) by searching against the NCBI viridiplantae database (released on the 5th of May 2011) and EST database of Medicago truncatula (www.medicago.org, released on the 18th of July 2011). The searches were performed with the following parameters: enzyme trypsin, 2 missed cleavage, mass accuracy precursor 10 ppm, mass accuracy fragments: 0.5 Da(CID)/0.02 Da (HCD), fixed modifications carbamidomethyl (C), iTRAQ 4-plex N-terminal and lysine (K) side chain, variable modifications methionine oxidation. Proteome Discoverer calculates reporter ion intensities through the HCD spectra with a target FDR of 5%.

Close homologues of the identified proteins in *M. truncatula* were searched against The *Arabidopsis* Information Resource (TAIR) database (http://www.arabidopsis.org/). Transmembrane domains (TMD) were predicted using the Tmpred server (http://www.ch.embnet.org/software/TMPRED_form.html) with a minimum PREDTMBB score of 1000. The online tool (http://biophysics.biol.uoa.gr/PRED-TMBB/input.jsp) was used to discriminate betamembrane proteins. barrel outer Psort (http://psort.hgc.jp/form.html) was implemented to predict protein localisation.

Abdallah *et al.*, 2012 Performance of isobaric labelling in quantitative proteomics of arbuscular mycorrhized *Medicago truncatula* roots. *Comparative Biochemistry and Physiology - Part D: Genomics and Proteomics*.

Results and discussion

Proteomic analysis design for in-depth differential quantitative study.

Proteomic studies in response to AM symbiosis was to date performed scarcely by 2-DE, which represents the trademark method for plant proteomics. Microsomal proteins are out of the scope of this technique and highly underrepresented. Thus, many candidates involved in the establishment and functioning of the symbiosis remain to be discovered. An alternative approach iTRAQ-OGE-LC-MS/MS is herein discussed with the respect to the specific requirements for membrane proteomics. A protocol allowing the recovery of an enriched membrane protein fraction isolated from non-infected and mycorrhized *Medicago trun*catula roots has been used. Extracted proteins were digested in solution using trypsin, subsequently each digest was either labelled with iTRAQ reagents 114 or 117 and prefractionated in 12 wells using a 12 cm strip covering the pH range of 3-10 in OGE. The iTRAQ labelled and pre-fractionated samples were then separated on a C18 column online coupled to an orbitrap Elite Velos. Acquired MS/MS spectra were then provided to Proteome Discoverer for protein identification and quantification.

Comparison of peptide and protein identification results

Four independent experimental replicates of 100 µg of control and mycorrhized microsomal proteins were analysed by iTRAQ-OGE-LC-MS/MS. Table 3.1 represents a summary of the number of MS scans, peptides and proteins reported in the 12 OGE fractions per experiment. A similar number of proteins (77, 83, 94 and 112) were identified in each of the four replicates with an average of 158 peptides and 91 proteins in all experiments. Although the number of scans is relatively high, the number of identifications remains relatively low.

Table 3.1: Summary	of the number	of MS scans,	ide ntifie d	peptides a	and proteins	per
experiment.						

Experiments	Full scan	MS^2 scans	Number of peptides	Number of proteins
1	12461	83004	121	77
2	10572	100268	182	94
3	10834	97498	192	112
4	11472	96642	137	83

Abdallah *et al.*, 2012 Performance of isobaric labelling in quantitative proteomics of arbuscular mycorrhized *Medicago truncatula* roots. *Comparative Biochemistry and Physiology - Part D: Genomics and Proteomics*.

In order to explore the optimal HCD fragmentation conditions, iTRAQ labelled sample acquisition was performed under different HCD collision energy settings (35, 45, 55 and 65%). We found that 65% was the most appropriate collision energy for our samples yielding to the highest number of quantified peptides. Taking into account that HCD is limited by the low duty cycle of the Orbitrap which might decrease the number of quantified proteins, the number of the most intense precursor ions dedicated for MS/MS fragmentation, initially fixed at 10, was decreased to 5 and 3. Neither top 5 nor 3 parent ion selections were able to improve the overall number of identifications obtained in all experiments (data not shown). A straightforward interpretation of the generated datasets was possible with Proteome Discoverer software capable of searching and interpreting combined CID and HCD spectra. Thus HCD, containing the reporter ion information, was matched to the CID spectra of the corresponding precursor peptide prior to the searches in databases. To prove that the applied strategy is well suited to the quantitative proteomics of iTRAQ labelled samples, a trial search in the databases was done by omitting the CID spectra and keeping only HCD ones. Unsurprisingly the search results were missing a high number of proteins successfully identified when both spectra were combined (data not shown). HCD provides insufficient sequence-specific fragments for confident sequence assignment leading to low Mascot ion score and their minor contribution in increasing the number of identifications has been previously reported (Shen *et al.*, 2011).

The low number of identified proteins in the present study could be related to the offline pre-fractionation method (OGE prior to LC) which could lead to sample loss due to the number of desalting steps prior to MS analysis. Furthermore it has been previously reported that iTRAQ labelling significantly reduces the number of peptide identifications in an LC-MS workflow using CID and HCD peptide fragmentation (Thingholm *et al.*, 2010). This major drawback in isobaric tagging was related to the increased ion charge state of iTRAQ labelled peptides (Nogueira *et al.*, 2012). The setting of a perpendicular flow of ammonia vapour between the needle and MS orifice appeared to reduce the average charge state of labelled peptides, however it is

important to note that maintaining a constant flow of ammonia vapour is difficult (Thingholm *et al.*, 2010).

Degree of soluble contaminant proteins in the microsomal protein fractions.

For quantitative comparative proteomics, all experiments were loaded in Proteome Discoverer and a comparison view was obtained for the 151 proteins identified in all experiments. The first challenge faced in membrane proteomics is the elimination of abundant soluble proteins that contaminate the microsomal protein fractions, which makes an enrichment step crucial for a good membrane proteomic study. Such enrichment step is generally based on differential centrifugation (Santoni et al., 2000). In the current study a previously described method on Nicotiana tabacum cells based on differential centrifugation has been employed (Stanislas et al., 2009). After purification of the membrane protein fractions, the amount of contamination by nontargeted structures, soluble proteins, can be estimated after protein identifications by the use of tools available online and algorithms for protein localisation, transmembrane domain and beta barrel predictions. Close homologues displaying at least 70% pair-wise identity and/or a cut-off expectation value of e^{-40} (Nair & Rost, 2002) of the 151 proteins were found by searching against The Arabidopsis Information Resource (TAIR) database. A protein was considered as membraneassociated when it was experimentally demonstrated to have a membrane localisation on the basis of direct assay (Richly & Leister, 2004). When this criterion was not satisfied, a protein was considered as contaminant unless it displayed at least one transmembrane domain or formed a beta barrel embedded in the membrane lipid bilayer. Applying the aforementioned filters, only 18 out of the 151 proteins were recorded as soluble proteins and thus potential contaminants of the microsomal protein fractions which represent a percentage of 12%. Keeping in mind that membrane protein extraction methods are, by no mean, perfect and that the use of prediction algorithms must be done critically, we consider that the applied protocol gave access to membrane protein-enriched fractions.

Protein abundance changes and iTRAQ labelling accuracy.

The 151 proteins identified in all replicates can be sub-divided into 4 groups (Chapter 3; Additional file S3.1). The first one contained 12 identified proteins without quantitative data, which could be explained by a fragmentation performed better in CID leading to peptide and thus protein identification. The lack of quantitative data could not be fulfilled by HCD spectra as ions at m/z 114 and 117 could not be observed. The second group encompassed 45 proteins quantified in a single experiment while no quantification could be assigned to these proteins in other replicates. The third group included 36 proteins that were quantified in at least 2 experiments and presented the same trend in protein abundance changes even if the reproducibility was relatively low and the reporter ion ratio discrepancy was quite high from one experiment to another. As an example, the VDAC1.1 protein (TA20806_3880) was identified in two experiments and recorded reporter ion ratios (114/117) of 0.66 and 0.511 in both replicates. Although the quantification data showed a down-regulation of the protein expression in mycorrhized M. truncatula roots in both experiments, the low reproducibility of the measurements decrease the confidence in the calculated iTRAQ reporter ion ratios. Fifty eight proteins were classified in the fourth group. As described in material and methods, control and mycorrhized samples were labelled by alternating 114 and 117 tags to avoid labelling bias. In this group of proteins, the intensity of the iTRAO reporter ion in MS/MS spectra at m/z 117 was in general higher than 114 leading to inconsistent quantitative data between experiments. Consequently the calculated ratio of the same protein showed either up- or down-regulation of the protein expression when mycorrhized proteins were labelled with iTRAQ tag 117 (calculated ratio 117/114) and 114 (calculated ratio 114/117), respectively. For instance, an iTRAQ reporter ion ratio (117/114) of 2.116 was assigned to histone H4 (gi22217761) in the fourth replicate while a ratio (114/117) of 0.58 was recorded in the first and second experiments. Aiming at in-depth understanding of the observed results, the same set of samples were analysed on MALDI-TOF/TOF and the same observation was noticed: the intensity of the iTRAQ reporter ion at m/z 117 was mainly higher than the one at 114 independently on the labelled sample (data not shown). Unlike the low accuracy in

Abdallah *et al.*, 2012 Performance of isobaric labelling in quantitative proteomics of arbuscular mycorrhized *Medicago truncatula* roots. *Comparative Biochemistry and Physiology - Part D: Genomics and Proteomics*.

protein quantification, some already known mycorrhiza-related proteins by Valot and colleagues (Valot et al., 2005; Valot et al., 2006) were successfully identified in this study such as lipoxygenase, cytochrome b5, elongation factor 1-alpha, vacuolar proton-inorganic pyrophosphatase and blue copper protein with 70% of query coverage with the one identified by Valot et al. (2006) when both sequences were aligned. The protein expression of putative phosphate transporter (gi97974044) was found to be down-regulated in response to AM symbiosis. Its sequence was aligned with MtPT1 (Javot et al., 2007) and MtPT4 (Harrison et al., 2002), it showed a query percentage of 36% and 35%, respectively. Despite the popularity of iTRAQ labelling for quantitative proteomic studies and its increased application, this technique is not without its shortcoming. Some concerns such as underestimation of ratios and limited accuracy were reported (Wang, H et al., 2012). The expected influence of iTRAQ labelling on peptide fragmentation, by adding a high basic group on peptide Ntermini, was recently proved on singly charged peptides analysed in MALDI (Gandhi et al., 2012). This study has shown that iTRAQ labelling leads to a more pronounced set of b-ion peaks and distinct changes in the abundance of specific peptide types. Gandhi and co-workers highlighted that ion abundance depends on various factor such as instrumental set-up, chemical modifications and the used enzyme of cleavage. These parameters should be taken into account by search programs and it has shown that the relative abundance of ions can be correctly predicted (Gandhi *et al.*, 2012). In our case, the hypothesis that would more likely explain the high variability in reporter ion intensities and the non-homogeneity in reporter ion areas is what has been reported on iTRAQ labelling lack in both precision and accuracy in complex samples (Ow et al., 2009). This imprecision was in part related to reporter ion signal intensity and the signal to noise ratio. The poor accuracy was also attributed to contaminants co-selected in the same precursor ion window leading to MS/MS spectra containing reporter ion derived from mixed sources and thus causing errors in reporter ion measurements (Christoforou & Lilley, 2012). The net effect of this co-selection is the unpredictable and distortion of reporter ion intensities (Christoforou & Lilley, 2012). Christoforou and Lilley reported that 90% of unlabelled sample spectra (supposed to be unable to produce reporter ions) contain at least two of eight "phantom" reporter

ions with almost 70% being fully quantifiable, which makes the co-selection of contaminants ubiquitous.

Conclusion and future prospects

This work aimed at further understanding membrane proteome modifications in Medicago truncatula roots infected by Rhizophagus irregulare. The main challenge in plant membrane proteomics was by-passed by using an appropriate fractionation protocol allowing the recovery of membrane protein-enriched fractions. An approach not yet implemented in the study of plant-AM fungi symbiosis, iTRAQ-OGE-LC-MS/MS, was herein applied to circumvent 2-DE-related shortcomings to study membrane proteins. Although the isobaric tagging method has many attractive attributes, it appeared less suited in the present large-scale study. The major constraints related to the applied labelling method, in the current study, were the low number of identified peptides/proteins and low accuracy in protein quantification. To deal with iTRAQ ratio distortions, many endeavours for robust solutions were suggested, such as preferences for peptide two dimensional separations to reduce sample complexity and application of novel MS fragmentation (introducing of hybrid method CID and HCD fragmentations). In our study both recommendations were respected, however it would be interesting to try narrowing the precursor ion isolation window in order to reduce the co-selection of contaminants and thus improve the reporter ion ratios (Wenger et al., 2011). As previously shown to be compatible for iTRAQ labelled sample analyses, it would be also worthy to try analysing these samples in electron transfer dissociation followed by resonant excitation ETD/CAD, a new MS fragmentation method that could be more suited and lead to better results (Phanstiel et al., 2009). With the increased discussions in the literature about iTRAQ poor quantification accuracy, a new method called iQuARI was recently described to reduce the distortion of the iTRAQ reporter ion ratios (Vaudel et al., 2012). This method, based on the use of decoy sample, estimates the interference level in the sample and computes false discovery rates for reporter ion based quantification. Thus by revealing the substantial interference between the target and decoy samples iQuARI allows the correction of reporter ion ratio measurements (Vaudel et al., 2012). Moreover, pilot experiments are mandatory and should be designed to

Abdallah *et al.*, 2012 Performance of isobaric labelling in quantitative proteomics of arbuscular mycorrhized *Medicago truncatula* roots. *Comparative Biochemistry and Physiology - Part D: Genomics and Proteomics*.

optimize the quantitative platform by adding spiked standard proteins in at known concentrations and test the performance of the system in terms of precision and accuracy. Large-scale multiplexed quantitative proteomics experiments using isobaric methods are suboptimal, therefore many described guidelines should be taken into account to select the best suited quantitative proteomic approach to a given experimental design.

Additional files

Chapter 3, additional file S3.1: Table of identified proteins by iTRAQ-OGE-LC-MS/MS.

For each experimental replicate, this table shows the 4 groups of identified proteins, their accession number and description, number of peptides and the iTRAQ reporter ion ratio of every protein.

Chapter 4

A label-free 1-DE-LC-MS/MS workflow for inventorying the root microsomal proteome and its modifications upon arbuscular mycorrhizal symbiosis in the plant-microbe interacting model legume

Medicago truncatula

Cosette Abdallah^{1,2*}, Ghislaine Recorbet^{2*}, Benoit Valot³, Christelle Guillier², Michel

Zivy³, Diederik Van Tuinen², Daniel Wipf², Jenny Renaut¹and Eliane Dumas-Gaudot²

¹Département Environnement et Agro-Biotechnologies, Centre de Recherche Public-Gabriel Lippmann, 41, rue du Brill, L-4422, Belvaux, Luxembourg.

²UMR Agroécologie INRA 1347/Agrosup/Université de Bourgogne, Pôle Interactions Plantes Microorganismes ERL 6300 CNRS, BP 86510, 21065 Dijon Cedex, France.

³UMR de Génétique Végétale, PAPPSO, Ferme du Moulon, 91190 Gif sur Yvette, Fance.

*These authors contributed equally to this work [§]Corresponding author Email addresses: BV: valot@moulon.inra.fr CA: abdallah@lipmann.lu CG: cguillier@dijon.inra.fr DyT: tuinen@dijon_inra_fr

DvT: tuinen@dijon.inra.fr EDG: dumas@dijon.inra.fr DW: Daniel.wipf@dijon.inra.fr JR: renaut@lippmann.lu MZ: zivy@moulon.inra.fr GR: recorbet@dijon.inra.fr

The iTRAQ-OGE-LC-MS/MS approach appeared to be limited and less suited for large-scale analysis of *Medicago truncatula* microsomal proteins in response to an arbuscular mycorrhizal fungus colonisation, primarily due to the meagre reproducibility of iTRAQ reporter ion ratios. As an alternative, the promising labelfree 1-DE-LC-MS/MS workflow was used for differential quantitative study of symbiosis-related membrane proteins. For in-depth and accurate relative quantification, label-free is more suited than isobaric tagging approaches (Vaudel et al., 2012). This methodology takes advantage of both gel-based protein and gel-free peptide separation properties, which ensures protein solubility in SDS-PAGE and reduces sample complexity prior to LC, leading to higher chances in identifying low abundant proteins. The advent label-free methods are becoming increasingly popular as they do not require expensive protein labelling reagents and can accommodate any type of organism and most frameworks. In the current study, improved membrane protein extraction protocols and advanced techniques for their fractionation, identification and quantification are employed to detect low abundant and membrane proteins. This study can greatly expand the depth and breadth of membrane proteome changes and its fundamental role in the complex network of the AM interaction.

Graphical abstract

Abstract

Arbuscular mycorrhizal (AM) symbiosis, which associates most of plants roots with soil-borne fungi of the phylum *Glomeromycota*, is characterized by reciprocal nutritional benefits whereby plants supply associated fungi with carbohydrates while in turn, fungi provide mainly phosphorus and nitrogen to the host. Fungal colonization of plant roots induces massive changes in root cortical cells where the fungus differentiates into a tree-shaped haustorium, the arbuscule, which drives proliferation of the plasma membrane (PM), and the de novo synthesis of the periarbuscular membrane, an extension of the PM that surrounds the arbuscule, but displays novel biological features. Despite the recognized importance of membrane proteins in sustaining AM symbiosis, the root microsomal proteome elicited upon mycorrhiza, still remains to be explored. In this study, we used a device allowing the isolation of Medicago truncatula root microsomes with sufficient protein recovery and purity for their subsequent in depth analysis by GeLC-MS/MS. The results obtained highlighted the identification of 882 root membrane protein candidates whose cellular and functional classifications predispose plastids and transport as prevalent organelle and function, respectively. Consistently, besides alpha-helical trans-membrane spans, in silico predictions pointed out to the dominance of β-barrels domains coupled palmitate-modified proteins in the currently identified root microsomal proteome of *M. truncatula*, supporting the view of a highly fluent and dynamic membranous environment. Finally, the label-free peak integration strategy we used to quantify root membrane protein abundance changes upon AM symbiosis, indicated the prevalence of quantitative modifications, among which new candidates supporting the importance of membrane signalling/trafficking events in mycorrhiza establishment/functioning were identified.
Introduction

Arbuscular mycorrhizal (AM) symbiosis is the most widespread plant-microbe association on the planet, influencing plant nutrition, diversity and productivity. Plants hosting soil-borne AM fungi in their roots display an overall enhanced growth and a higher tolerance to biotic and abiotic stresses in adverse environments, making mycorrhiza of special interest in sustainable plant production systems (Smith, 1997; Gianinazzi et al., 2010). AM symbiosis dates back to approximately 400 million years (Remy et al., 1994), and is characterized by reciprocal nutritional benefits whereby plants supply associated fungi with carbohydrates while in turn, fungi provide mainly phosphorus and nitrogen to the host (Smith & Read, 2008). Fungal colonization of plant roots induces massive changes in root cortical cells into which the fungus branches dichotomously and differentiates into a tree-shaped haustorium, the arbuscule, which is thought to be the main site of signal and nutrient exchange between the two partners (Harrison, 2005; Parniske, 2008). Arbuscule development involves an extensive architectural reorganization of the colonized cell, including invagination of the plasma membrane (PM) and the tonoplast (Pumplin & Harrison, 2009), a dramatic PM proliferation (Harrison, 1999), and the de novo synthesis of the periarbuscular membrane (PAM), an extension of the PM that surrounds the arbuscule, but displays novel biological features such as the presence of MtPT4, an AM-specific phosphate transporter (Javot et al., 2007), GmAMT4.1, an AM-inducible ammonium transporter (Kobae et al., 2010), and the blue copper binding-like protein MtBcp1 of unknown function (Hohnjec et al., 2005; Valot et al., 2006; Pumplin & Harrison, 2009). Concomitantly, the cytoskeleton is rearranged to guide membrane deposition and the accumulation of Golgi, endoplasmic reticulum (ER), mitochondria, peroxisomes and plastids around the arbuscule (Genre et al., 2005; Lohse et al., 2005; Pumplin & Harrison, 2009). Noteworthy, remodelling of the cellular membrane system in AM roots is especially illustrated by strong alterations in the expression of genes related to lipid metabolism as indicated by up-regulation of transcripts encoding proteins involved in lipid breakdown and glycolipid synthesis, which sustain cell membrane composition and signalling processes (Gaude et al., 2012). Likewise, mycorrhizal roots display a complex reprogramming of transporter gene expression among which belong those required for nutrient exchange and energetic requirements (Benedito et al., 2010). As a result, the reorganization of the aforementioned 145

membranous compartments closely evokes the importance of getting knowledge on root microsomal protein modifications potentially sustaining AM symbiosis establishment and functioning, but also for creating a root membrane proteome database for comparative purposes with more recently evolved plant-microbe interactions that share root morphological commonalties with mycorrhiza (Paszkowski, 2006).

According to analyses of multiple complete genome sequences, it has been estimated that approximately 20 to 30% of the cellular proteome consists of *trans*-membrane (TM) proteins, also known as integral polytopic proteins, which correspond to proteins that are permanently attached to the lipid membrane and span at least once across the membrane. The trans-membrane regions of these proteins are either alphahelical or beta-barrels, the former domains being present in all types of biological membranes including outer membranes, whereas beta-barrels being only found in outer membranes of Gram-negative bacteria, lipid-rich cell walls of a few Grampositive bacteria, and outer membranes of mitochondria and chloroplasts (Wallin & von Heijne, 1998; Schwacke et al., 2004). In parallel, many of other membraneassociated proteins, referred to as extrinsic, are anchored to the membrane via mechanisms that are distinct from those employed by *trans*-membrane proteins. Actually, lipid modifications facilitate the attachment of soluble proteins to biological membranes, but also enable protein-protein interactions and, in some cases, the shuttling of proteins between the plasma membrane and the cytosol or other membrane compartments. These modifications, which are found in all eukaryotic cells, fall into four major classes and are characterized by the type of lipid and the site of modification in the protein, including N-myristylation, palmitoylation and prenylation (Yalovsky et al., 1999). The fourth and best-characterized lipid modification that occurs in the lumen of the secretory pathway is the attachment of glycosylphosphatidylinositol (GPI) anchors. This lipid modification is composed of a phosphatidylinositol connected through a carbohydrate linker to the protein. Following addition of the GPI moiety in the endoplasmic reticulum (ER), the protein traffics through the secretory pathway to the cell surface, where the GPI anchor tethers the protein to the extracellular face of the plasma membrane (Nadolski & Linder, 2007; Helbig et al., 2010).

With regard to root proteomic analyses aiming at recording membrane protein changes elicited upon AM symbiosis, the use of two-dimensional gel electrophoresis (2-DE) performed on a microsome-enriched fraction from Medicago truncatula roots either inoculated or not with the mycorrhizal fungus Glomus intraradices, allowed retrieving 36 differentially-accumulated protein spots following mycorrhizal formation (Valot et al., 2005). Nonetheless, this approach turned out to be limited by a rather low coverage (22%) of TM proteins, pointing to the necessity of increasing the proteomic repertoire of root membrane proteins to further assess their overall response to AM symbionts. Actually, 2-DE suffers from many limitations with respect to certain classes of proteins such as integral membrane proteins, proteins with high/low molecular weights or extreme isoelectric points. Moreover, gel spots can be populated with more than one protein making it often impossible to assign the correct quantitative values to the relevant protein identification (Ong & Pandey, 2001). Such limitations of 2-DE for analytical protein profiling have thus led to the more recent development of shotgun proteomic approaches designed to optimize proteome coverage, including one-dimensional (1-DE)-nanoscale capillary liquid chromatography-MS/MS, namely GeLC-MS/MS, which combines a size-based protein separation to an in-gel digestion of the resulting fractions, and proved valuable in expanding the depth and breadth of membrane protein detection in AM symbiosis (Valot et al., 2006; Recorbet et al., 2009). In parallel, the development of label-free technologies has allowed quantitating peptides in a relative manner using spectral characteristics such as peak area (peak integration) or frequency of peptide fragment spectra (spectral counting) during LC-MS/MS analysis, an advance that has been aided by progress in MS instrumentation (Bindschedler et al., 2011). Spectral counting benefits from faster scan rates, higher sensitivity and faster MS to MS/MS conversions, while peak integration, based on the assumption that the chromatographic peak area of a peptide corresponds to its concentration (Filiou *et al.*, 2012), benefits from stable and precise LC systems and high accuracy mass analyzers (Thelen & Peck, 2007). These advent methods are becoming increasingly popular as they do not require expensive protein labelling and can accommodate any type of organism and most workflows, including plant systems such as beans (Phaseolus vulgaris), rice (Oryza sativa), Arabidopsis thaliana (Bindschedler & Cramer, 2011) and M. truncatula in symbiosis with Sinorhizobium meliloti (Larrainzar et al., 2007), 147

but however they have not yet been applied for tracking changes in root membrane protein abundance in response to mycorrhiza.

The elucidation of the root membrane proteome elicited upon mycorrhiza corresponding to a key milestone in understanding AM symbiosis development/functioning, the current study is thus intended to investigate, using a 2-DE- and label-free approach, the microsomal protein changes in response to the AM fungus *Rhizophagus irregularis* (formely *G. intraradices*) in the model leguminous host *M. truncatula*. For that purpose, a protocol aiming at isolating root microsomal proteins with sufficient recovery and purity for their subsequent in-depth analysis by GeLC-MS/MS was set up, and a new framework is herein described for the first application of quantitative label-free 1-DE-LC-MS/MS on arbuscular mycorrhized roots. Besides depicting the first large-scale depository of membrane proteins of *M. truncatula* roots, this article highlights new protein candidates potentially involved in sustaining the plant symbiotic program on the basis of a peak integration strategy.

Material and methods

Biological material and growth conditions

Medicago truncatula cv Jemalong 5 seeds were surface sterilised and germinated at 27°C in the dark on 0.7% sterile agar (Bestel-Corre *et al.*, 2002). Two-day old seedlings were then transplanted into 400 mL plastic pots containing a mix of sterile soil of Epoisses and sand (1:2 v/v). Mycorrhizal inoculation was realized by adding Epoisses soil-based inoculum (spores, roots and hyphae) of the AM fungus *Rhizophagus irregularis* DAOM 181602 (previously known as *Glomus intraradices*) (Kruger *et al.*, 2012). Seedlings (3 per pot) were grown for 4 weeks under controlled conditions (16 h photoperiod, 23°C/18°C day/night, 60% relative humidity, 220 µEinstein m⁻².s⁻¹ photon flux density). Control and *R. irregularis*-inoculated plants were watered each day with demineralised water and twice a week with a phosphate-starved but nitrogen-enriched nutrient solution, thus allowing mycorrhiza formation but impeding rhizobia development, respectively (Dumas-Gaudot *et al.*, 1994). Two independent biological experiments were conducted, each encompassing three replicates of mycorrhized and nonmycorrhized roots.

At harvest, roots were removed from their substrate, gently rinsed with running tap water and then with deionised water. Mycorrhizal parts were randomly collected from six replicated root systems per biological experiments and stained with trypan blue

148

after clearing with potassium hydroxide (Phillips & Hayman, 1970). Mycorrhizal colonisation parameters were estimated under light microscopy as described in (Trouvelot *et al.*, 1986). Calculations of frequency of mycorrhization (F%), percentage of root cortex colonisation (M%) and percentage of arbuscules (A%) were carried out with the MycoCalc program (http://www.dijon.inra.fr/mychintec/Mycocak-prg/download.html). The remaining root parts were deep-frozen and stored at -80°C for later protein extraction. For mycorrhizal parameters, data were subjected to arcsin square root transformation before comparison of means using Student's *t*-test with a value of *P*<0.01 considered to be statistically significant (Recorbet *et al.*, 2010).

Root microsomal protein extraction

Extraction of microsomal proteins from *M. truncatula* roots was performed at 4°C using a differential centrifugation procedure described by Stanislas and co-authors for tobacco cell cultures (Stanislas *et al.*, 2009). As illustrated in Figure 4.2A, roots were homogenized using a Waring Blendor in grinding buffer (50 mM Tris-MES, pH 8.0, 500 mM sucrose, 20 mM EDTA, 10 mM DTT and 1 mM PMSF). The homogenate was centrifuged at 16,000xg for 20 minutes (rotor JA 14 Beckman, CA, USA). After centrifugation, supernatants were collected, filtered through two successive meshes (63 and 38 μ m), and centrifuged at 96,000xg for 1h (rotor 45 Ti, Beckman). Pellets, representing the microsomal fraction, were resuspended in 10 mM Tris-MES, pH 7.3 250 mM sucrose, 1 mM EDTA, 1 mM DTT, 1 mM PMSF, 10 μ g/ml aprotinin and 10 μ g/ml leupeptin. Protein amount was measured using the Bradford's dye binding assay using BSA as a standard (Bradford, 1976).

To assess the efficiency of the afore-mentioned protocol in enriching membrane proteins from crude root extracts, depletion in the cytosolic marker UDP glucose pyrophosphorylase was compared between the various fractions resulting from the differential centrifugation procedure the in the two biological replicates using Western blot analysis. For that purpose, proteins (15 µg) separated on 12% SDS-PAGE for 45 min at 10°C and 20 mA (Hoefer Mightly Small II, Amersham Biosciences, Uppsala, Sweden) were further electrotransferred onto nitrocellulose membranes (Protan BA85, Shleider & Schuell, 0.45 µm pore size) using Trans-Blot SD semi-dry Electrophoretic Transfer Cell (BioRad). Membranes were incubated with barley UDP glucose pyrophosphorylase antibodies (Agrisera AB, http://www.agrisera.com/) 149 diluted 1:1000 as described in (Daher *et al.*, 2010). Antibody-bound proteins were detected using the ECL system according to the manufacturer's instructions (PerkinElmer, Western Lightning Plus ECL) after incubation with anti-rabbit secondary antibody conjugated to horseradish peroxidase.

Sample pre-fractionation using 1-DE

Twenty micrograms of the six control and six mycorrhized microsomal-enriched protein fractions were pre-fractionated by 0.7cm migration on 1D SDS-PAGE on linear 12%, pH 8.8 (Hoefer Mightly Small II, Amersham Biosciences, Uppsala, Sweden). Gels were stained with Coomassie Brilliant Blue (CBB) (Mathesius *et al.*, 2001). After CBB staining, the 0.7cm migration gel parts of each lane were sliced into 7 bands of equal size (1 mm). In-gel digestions were performed with trypsin in the Progest system (Genomic Solution, East Lyme, CT, USA) according to a standard protocol. Gel pieces were washed twice by successive baths of 10% (v/v) acetic acid, 40% (v/v) ethanol and ACN. They were then washed twice with successive baths of 25 mM NH₄CO₃ and ACN. Digestion was subsequently performed for 6 h at 37°C with 125 ng of modified trypsin (Promega) dissolved in 20% (v/v) methanol and 20mM NH₄CO₃. Peptides were extracted successively with 2% (v/v) TFA and 50% (v/v) ACN and then with pure ACN. Peptide extracts were dried and suspended in 20 μ L of 0.05% (v/v) TFA, 0.05% (v/v) HCOOH, and 2% (v/v) ACN.

LC-MS/MS analysis

Peptide separation was performed using an Eksigent 2D-ultra-nanoLC (Eksigent Technologies, Livermore, CA, USA) equipped with a C18 column (5 μ m, 15cm x 75 μ m, PepMap, LC packing). The mobile phase consisted of a gradient of solvents A 0.1% HCOOH (v/v) in water and B 99.9% ACN (v/v), 0.1% HCOOH (v/v) in water. Peptides were separated at a flow rate of 0.3 μ L/minute using a linear gradient of solvent B from 5 to 30% in 60 minutes, followed by an increase to 95 % in 10 minutes. Eluted peptides were online analysed with a LTQ XL ion trap (Thermo Electron) using a nanoelectrospray interface. Ionization (1.5 kV ionization potential) was performed with a liquid junction and a non-coated capillary probe (10 μ m i.d.; New Objective). Peptide ions were analyzed using Xcalibur 2.0.7, with the following data-dependent acquisition steps (1) full MS scan (mass to charge ratio (*m/z*) 300-2000, centroid mode), (2) MS/MS (qz = 0.25, activation time = 30 ms, and collision

energy = 35%; centroid mode). Step 2 was repeated for the three major ions detected in step 1. Dynamic exclusion was set to 45 s.

Protein identification and quantification

Database search was performed with the X!Tandem software (version 2010.01.01.4) (http://www.thegpm.org/TANDEM/). Enzymatic cleavage was declared as a trypsin digestion with one possible missed cleavage. Cysteine carboxyamidomethylation and methionine oxidation were set to respectively static and possible modifications. Precursor mass precision was set to 2.0 Da with a fragment mass tolerance of 0.5. To minimize the generation of false-positive identifications and measurement time, spectra search was restricted against the *M. truncatula* EST database (http://medicago.toulouse.inra.fr/Mt/EST/). Identified proteins were filtered and grouped using X!Tandem parser (http:// pappso.inra.fr/bioinformatique.html) according to (i) the tolerated presence of only one peptide by reason of homologous search in *M. truncatula* database, with an E value smaller than 0.05 and (ii) a protein E value (calculated as the product of unique peptide E values) smaller than 10^{-4} . These criteria led to a False Discovery Rate (FDR) of 0.3% for peptide and protein identification. To take redundancy into account (i.e. the fact that the same peptide sequence can be found in several proteins), proteins with at least one peptide in common were grouped. When necessary, the protein sequences retrieved in the M. truncatula EST depository, which displayed either no annotation and/or an annotation to be updated according to the latest releases from the International Medicago Genome Annotated Group (IMGAG) V3.5 V3, were Blasted against Uniprot (http://www.uniprot.org/) /or NCBI (http://blast.ncbi.nlm.nih.gov/) non-redundant database.

Label-free quantification was performed using the open source software MassChroQ, which has previously demonstrated its efficiency to align and quantify LC-MS data on the basis of a peak integration strategy (Valot *et al.*, 2011). In order to take into account possible global quantitative variations between LC-MS runs, for each of them, the ratio of all peptide values to their value in the chosen reference LC-MS run was computed and normalization was performed by dividing peptide values by the median value of peptide ratios. To statistically assess significant protein abundance modifications upon AM symbiosis, an ANOVA was performed on log₁₀ normalized data, thus allowing simultaneous comparison between treatments (mycorrhized and

151

nonmycorrhized plants) and biological replicates (independent experiments 1 and 2) by using the model Y= protein + treatment + experiment + interaction protein-experiment + interaction protein-treatment + residual variance. After discarding the effects due to the experiment and the interaction protein-experiment, mean protein abundance between mycorrhizal and nonmycorrhizal microsomal root fractions were compared using *t*-test with a value of P < 0.01 considered to be statistically significant.

Protein sequence feature prediction

As a way to homogenize annotations, the identified proteins in Medicago truncatula EST (http://medicago.toulouse.inra.fr/Mt/EST/) were assigned to a Medtr accession number using (http://www.legoo.org/). Likewise, for comparative purposes with previous studies aiming at analyzing root protein accumulation in M. truncatula, either inoculated or not with AM symbionts (Valot et al., 2005; Valot et al., 2006; Aloui et al., 2009; Recorbet et al., 2009; Daher et al., 2010; Recorbet et al., 2010; Aloui et al., 2011), the use of similar in silico protein predictors were favoured as far as possible in the current study. Accordingly, proteins were functionally classified using the FunCat scheme ((Ruepp et al., 2004) as previously described (Recorbet et al., 2009). Likewise, alpha-helical TM spans were predicted according to the Tmpred server (http://www.ch.embnet.org/software/TMPRED_form.html), with a minimum score of 1000 (Valot et al., 2006) and/or (http://www.cbs.dtu.dk/services/TMHMM/), whereas the online tool (http://biophysics.biol.uoa.gr/PRED-TMBB/input.jsp) was employed to discriminate beta-barrel outer membrane proteins. Localisation prediction was performed by WoLF PSORT (http://wolfpsort.seq.cbrc.jp) as previously described in Daher at al. (2010). The targeting of membrane proteins to chloroplasts, mitochondria or the secretory pathway often accomplished by Nterminal signal sequences was assessed according to the SignalP 4.0 server (http://www.cbs.dtu.dk/services/SignalP). N-myristoylation, and S-palmitoylation predictions were inferred from the ExPASy tools (http://web.expasy.org/myristoylator/) and (http://csspalm.biocuckoo.org/online3.php), respectively. For prenylation prediction, the PrePS online tool (http://mendel.imp.ac.at/sat/PrePS/index.html) was used, while GPI anchor prediction was performed using the GPI Modification Site Prediction in Plants (http://mendel.imp.ac.at/gpi/plant_server.html). Close homologues of the

identified proteins in *Medicago* were searched against The *Arabidopsis* Information Resource (TAIR) (http://www.arabidopsis.org/) database.

Results and discussion

Biological parameters, protein identification and curation

As previously underlined by Zybailow and co-workers (Zybailov et al., 2008), one weakness in quantitative shotgun membrane proteomics is the general lack of biological replicates that generates the inability to carry out standard statistical analyses of replicate datasets for biological interpretation. To satisfy this prerequisite, two independent biological experiments, each encompassing three replicates of each treatment (mycorrhized and nonmycorrhized roots) were performed in the current study. With regard to root colonization by the AM fungus, four weeks after inoculation, R. irregularis had developed symbiotic endomycorrhiza with M. truncatula, and on the basis of six root systems measured per experiment, the degree of root colonization, as estimated by trypan blue staining, was not found to differ between biological replicates, in that, for each of the three parameters (F, M, and A%), no significant differences at P < 0.01 were recorded (Figure 4.1). This result highlights the biological reproducibility of the two experiments conducted, especially with regard to the intensity of root cortex colonization (M%) and mean arbuscule abundance (A%), which likely represent the main root-intrinsic fungal structures factors generating membrane reorganization in established mycorrhiza, although such a phenomenon also occurs upon contact of symbionts (Genre et al., 2005).

Figure 4.1: Development of *R. irregularis* within roots of four week-old *M. truncatula* plants.

Evaluated parameters, expressed as percentages, were frequency of mycorrhization (F%), intensity of root cortex colonization (M%) and arbuscule abundance (A%). For two independent biological experiments (Exp), histograms represent means for six plant replicates and vertical bars indicate SE. For each parameter, no significant differences at P < 0.01 were recorded between experiments after arcsin square root transformation.

In parallel, another main challenge in membrane proteomics is to minimize the presence of abundant soluble contaminants that might otherwise hinder the detection of less represented membrane-associated proteins, thus making crucial the initial enrichment step (Santoni et al., 2000). In the current study, we used a differential centrifugation-based strategy originally developed for Nicotiana tabacum cultured cells (Stanislas et al., 2009), which to our knowledge has never been performed to investigate membrane enrichment/modifications in roots originating from soil-grown plants. As a way to assess the adequacy of this protocol to the root system we investigated, a preliminary test was performed to check for cytosolic protein depletion upon the centrifugation procedure by using an antibody directed against the 51 kDa UDP-Glucose pyrophosphatase (Daher et al., 2010). Figure 4.2B shows that in both AM fungus- free and -inoculated M. truncatula roots, the cytosolic marker was visually detected in a similar extent in all the supernatant fractions of the protocol that were tested, but that the immuno-detection signal fell down to a relative lesser intensity in the final membrane-enriched fractions from mycorrhized and nonmycorrhized roots. This result also holds true in the two biological repeats that were performed (data not shown), thus suggesting a minimum contamination of the membrane-enriched fractions by soluble proteins.

Figure 4.2: Enrichment in root microsomes from four week-old *M. truncatula* **plants.** (A) Schematic depiction of the microsome extraction workflow according to Stanislas *et al.*, 2009. (B) Western-blot analyses of the different purification steps (fractions H, S1, S2 and M) in control and mycorrhized *M. truncatula* roots using antibody directed against the 51 kDa-cytosolic UDP-glucose pyrophosphorylase (UGPase).

Subsequently, GeLC-MS/MS was chosen to resolve microsomal proteins of mycorrhizal and nonmycorrhized *M. truncatula* roots, in that this procedure gathers the advantages of both gel-based and gel-free separation approaches. Actually, the use of SDS ensures successful membrane protein solubilization, and its effectiveness arises from the ability of the nonpolar tail to infiltrate the lipid membrane, binding to protein in a high mass ratio (Jones, 1999). In-gel trapped protein tryptic digestion also allows removing detergents prior to MS analysis, which can otherwise dominate mass

spectra and preclude protein analysis. Additionally, the resolution of 1-DE prior to LC separation is enhanced since it occurs at both protein and peptide level, allowing the identification of less abundant proteins (Vertommen *et al.*, 2011). Using an E value smaller than 10^{-4} as a criterion to assign correct protein identification, a total of 1128 proteins was obtained from the twelve microsomal fractions analysed in the current study (Chapter 4, additional file S4.1). This initial repertoire was curated according to the principles of parsimony described in Nesvizhskii & Aebersold (2005) to provide a minimal list of proteins sufficient to explain all observed peptides, resulting in a final record of 1047 nonredundant proteins. Noticeably, the overlap in the proteins co-identified in the two independent experiments reached a common value of 96% in the mycorrhized and the nonmycorrhized plant roots, which points to the reproducibility of the protocol currently used for protein extraction and identification (Chapter 4, additional file S4.2).

Despite the depletion in the cytosolic marker that was investigated, we anticipated the detection of a pool of potential contaminants within the 1047 proteins initially identified, and the necessity of a curation procedure by reason of the ever-increasing sensitivity of LTQ mass spectrometers coupled to the likely presence of soluble proteins trapped within membrane vesicles. As a point of reference for *M. truncatula*, we used the rationale described by Daher and co-workers (2010) that favours similarity search on the basis of which homologous proteins share the same location in many organisms, a strategy recognized more confident than the use of in silico algorithmic predictors for protein localization (Nair & Rost, 2002). Consequently, the total 1047 pinpointed proteins were first BLASTed against the TAIR database and were considered as genuine microsomal M. truncatula proteins when homologous sequences displaying at least 70% pair-wise identity and a cut-off expectation value of e^{-40} were experimentally demonstrated to have a membrane localisation, including core integral or subunits of membrane complexes, on the basis of direct assays or "traceable author statement" (Daher et al., 2010). When it was not the case, identified proteins were retained as contaminants unless predicted to display at least one TM domain, to form a beta barrel embedded in the membrane lipid bilayer, to be anchored to the membrane owing to hydrophobic tails, and/or to be targeted to plastids, mitochondria or the secretory pathway by signal sequences, as described in Marmagne et al. (2004); Schwacke et al. (2004).

Using these criteria, 164 (15.6%) proteins out of the 1047 nonredundant identifications were discarded as potential contaminants of the microsomal fractions isolated from nonmycorrhizal and mycorrhizal roots, although it is almost certain that authentic membrane proteins could have been included in this list, as exemplified for NADPH oxidase (59% identity, $7e^{-73}$) and protein kinase (69% identity $2e^{-63}$) described as membrane-associated in TAIR, but that escape the cut-of-points we choose, likely by reason of sequence divergence between Arabidopsis and Medicago spp. (Chapter 4, additional file S4.3). Regarding the functions of the retrieved contaminants, known or putative membrane-free ribosomal and histone proteins turned out to be the major sources of contaminations by representing 33 and 19% of the 164 identifications, respectively (Chapter 4, additional file S4.3). This dominant distribution appears consistent with the ability of histones to directly translocate biological membranes into phospholipid liposomes and/or to absorb the membrane surface owing to their positive charge (Hariton-Gazal et al., 2003), together with the previously documented contamination of membrane-bound with free polyribosomes (Andrews & Tata, 1971). Consistent with the previously observed UDP glucose pyrophosphorylase depletion in the microsome-enriched fractions, the protocol used in the current study succeeded in retrieving 883 root membrane candidates (84.3%) out of the 1047 proteins identified (Chapter 4, additional file S4.4), a feature that largely over performs previous attempts in characterizing microsomal proteomes in M. truncatula and maize roots using OFFGEL fractionation of peptides (Abdallah et al., 2012), or 2-DE coupled to either IPG-strips or OFFGEL fractionation (Valot et al., 2005; Meisrimler & Luthje, 2012).

The microsomal proteome of *R*. *irregularis*-inoculated roots qualitatively resembles that of nonmycorrhized plants, thereby defining a core-set of membrane proteins in *M. truncatula*

As a result of the better resolution of microsomal proteins obtained through GeLC-MS/MS relative to 2-DE or OFFGEL fractionation, modifications of the root membrane proteome of *M. truncatula* upon symbiosis with *R. irregularis* could be more representatively assessed. Following the label-free MassChroQ-based analysis coupled to the ANOVA performed on the duplicated biological independent replicates that were conducted, a total of 52 proteins out of the 1047 initially identified in the microsome-enriched root fractions displayed a reproducible 157

significant (P<0.01) differential abundance in mycorrhizal plants relative to controls, which encompassed 29 and 23 up- and down-accumulated gene products, respectively, among which one protein was induced and another repressed (Tables 4.1 and 4.2). Irrespective of their known or predicted membrane location, the latter result strikingly points out to the existence of a rather conserved microsome-enriched fraction between mycorrhizal and nonmycorrhizal roots, as inferred from the only two proteins that turned out to display a differential qualitative accumulation between the two treatments. This observation also persists upon data curation in that only the protein Mtha1 regarded as a plasma membrane-associated happened to be AM-specific in the microsomes extracted in our experimental conditions (Table 4.1). Overall, comparison of the microsomal proteomes of *M. truncatula* between mycorrhized and nonmycorrhized roots allowed defining a core set of membrane proteins that is conserved irrespective of AM symbiosis, which consists of 882 curated accessions upon the exclusion of Mtha1.

When analyzing this core microsomal root proteome for subcellular location according to Wolf PSORT predictions, the three dominant cellular components that were retrieved encompassed the chloroplast, the nucleus and the plasma membrane after discarding the cytosolic-predicted proteins that were previously retained as genuine membrane-located according to the aforementioned criteria (Figure 4.3A). With regard to the first category, chloroplast-located proteins in roots refer to those belonging to non-photosynthetic plastids that have to import sugar phosphates and ATP from the cytosol in order to sustain their anabolic metabolism, thus contrasting with photosynthetic chloroplasts that synthesize sugar phosphates that are catabolized by oxidative processes to produce NADPH and ATP. In *M. truncatula*, the proteomic analysis of the relative contribution of soluble and membrane root plastid proteins to different biological processes had shown that root plastid proteins unique to the membrane-enriched fraction essentially contributed to withstand energy, signalling and transport mechanisms.

Figure 4.3: In silico characterization of the 882 putative membrane proteins conserved between control and mycorrhizal roots over the 883 root microsomal proteins that were recorded.

(A) Subcellular protein location according to Wolf PSORT predictions (Chloro, Cyto, Cysk, ER, Extr, Golg, Mito, Nucl, Pero, PM and Vacu, referring to as Chloroplast, Cytosol, Cytoskeleton, Endoplamic reticulum, Extracellular, Golgi apparatus, Mitochondria, Nucleus, Peroxisome, Plasma membrane, and Vacuolar membrane cellular components, respectively). (B) Functionally classification of root membrane proteins using the FunCat scheme (Ruepp *et al.*, 2004). (C) Distribution of the putative mechanisms by which the recorded proteins associate to root membranes of *M. truncatula*, as predicted according to the Tmpred server (http://www.ch.embnet.org/software/TMPRED_form.html), with a minimum score of 1000

159

Abdallah *et al.*, 2012 A label-free 1-DE-LC-MS/MS workflow for inventorying the root microsomal proteome and its modifications upon arbuscular mycorrhizal symbiosis in the plant-microbe interacting model legume *Medicago truncatula*. *Journal of Proteomics* (submitted)

(Valot et al., 2006) and/or (http://www.cbs.dtu.dk/services/TMHMM/ for alpha-helical TM (TM alpha-helix). the online tool (http://biophysics.biol.uoa.gr/PREDspans TMBB/input.jsp) to discriminate beta-barrel outer membrane proteins (TM beta-barrel), the SignalP 4.0 server (http://www.cbs.dtu.dk/services/SignalP) for membrane proteins targeted to chloroplasts, mitochondria or the secretory pathway (SP), the ExPASy tools (http://web.expasy.org/myristoylator/) and (http://csspalm.biocuckoo.org/online3.php) for assessing N-myristovlation (Myr), and S-palmitovlation (Palm) sites, respectively, the PrePS tool (http://mendel.imp.ac.at/sat/PrePS/index.html for inferring prenylation online modifications (Prenyl), and the the GPI Modification Site Prediction in Plants (http://mendel.imp.ac.at/gpi/plant server.html) for putative GPI anchorage to root membrane (**GPI**).

Consistently, as shown in chapter 4 additional file S4.4, most of the proteins known or predicted as plastid-located currently identified in the conserved root microsomal fraction turned-out to be involved in transport (ABC transporters, plant lipid transfer proteins, Ras small GTPases, ferritin, translocon, importin,...), energy/metabolism (malate dehydrogenases, aconitate hydratases, pyruvate dehydrogenases, fructose biphosphate aldolases, fumarate reductase, ...) and signalling (small GTP-binding proteins, protein kinases, patatin...)-related processes. Proteins known or predicted to be nuclear occupied the second most abundant class (12%, Figure 4.3A) of the root microsomal proteome identified in M. truncatula and essentially consisted of ribosomal proteins that are known to attach the outermost membrane of the nuclear envelope. Actually, the nuclear envelope is a two-membrane system that includes the outer membrane that is continuous with the ER and lined with ribosomes, and the inner membrane that hosts integral proteins interacting with chromatin and the nuclear matrix (Kota & Goshe, 2011), as exemplified by the trans-membrane histories we identified in this study (Chapter 4, additional file S4.4). The eukaryotic nucleus is also important not only for DNA replication and transcription, as represented by the identification of several nuclear translation-initiation factors (Chapter 4, additional file S4.4), but also for cellular homeostasis and genomic responses to stress tolerance (Choudhary et al., 2009). In this respect, numerous thioredoxins, glycoside hydrolases, lipoxigenases, high-mobility- and heat shock-like proteins, associated with cell rescue and defence mechanisms, were retrieved from the predicted membrane nuclear fraction (Chapter 4, additional file S4.4). Finally, 83 accessions, representing 9% of the 882 identifications regarded as genuine root membrane proteins conserved whatever the treatment (Chapter 4, additional file S4.4), were inferred as PM-associated according to Wolf PSORT predictions (Figure 4.3A). 160

Consistent with the role of the plasma membrane to establish a controlled exchange from the inside to the outside side of the cell, and reciprocally, a large majority of these known or putative root plasma membrane proteins was assigned to transporters, including ABC transporters which refer to ATP-binding cassette transporters that utilize the energy of ATP hydrolysis to carry out translocation of various substrates across extra- and intracellular membranes, including metabolic products, lipids and drugs and non-transport-related processes such as translation of RNA and DNA repair (Jones & George, 2004). Noticeably, additional to the presence of plasma-membrane proton-efflux P-type ATPases, we recorded within the list of the proteins annotated as PM transporters, the presence of aquaporins (PIP11, PIP2-7, Nodulin-26 like Intrinsic Protein-like NIP1-2), phosphate (MtPT1, 2, and 3), peptide, sugar, nitrate, nickel/cobalt, sulphate transporters and nonaspanin proteins (TM9SF9 superfamily), the latter group functioning as a channel or small molecule transporter. Likewise, the natural resistance-associated macrophage protein (Nramp) homologs form a family of proton-coupled transporters that facilitate the cellular absorption of divalent metal ions (Me²⁺, including Mn²⁺, Fe²⁺, Co²⁺, and Cd²⁺) (Courville *et al.*, 2006) (Chapter 4, additional file S4.4). Although recent studies have initiated in the model legume M. truncatula the generation of systematic database dedicated to the characterization of all of the putative genome-encoded transporters, predicted to encompass from 3598 to 3830 proteins, data relative to their putative location to the root plasmalemma are missing, thereby making hardly possible assessing the representativeness of our data relative to the PM transporters currently identified (Benedito et al., 2010; Miao et al., 2012). Apart from transporters sensu stricto, putative PM proteins having role in membrane trafficking and signalling were also retrieved in the root microsome of M. truncatula, as demonstrated for example by the presence of secretory carrier membrane proteins (SCAMPs), tretraspanin, or phosphatidylinositol phosphate phosphatase (Chapter 4, additional file S4.4). Actually, SCAMPs are ubiquitously expressed integral membrane proteins with four TM spans. The prevalence and broad distribution of SCAMPs in membranes of endocytic recycling compartments, secretory vesicles, the *trans*-Golgi network, and the plasma membrane has raised the prospects that they participate in a variety of membrane trafficking events, including sorting, the formation of vesicular carriers, exocytosis, and endocytosis (Hubbard et al., 2000). Regarding tetraspanins, which can localize at different membranes, they 161

facilitate cell-to-cell communication or sense the stimulus from the environment at the plasma membrane, and might also act as receptors (Wang, F *et al.*, 2012). Likewise, in plants, Ca^{2+} , phosphatidylinositol phosphates and inositol phosphates are major components of intracellular signalling, with several kinds of proteins and enzymes, such as calmodulin, protein kinase, protein phosphatase, including phosphatidylinositol phosphate phosphatase, and the Ca^{2+} channel, mediating the signalling (Kato *et al.*, 2010).

To obtain an overview of the functional significance of the core microsome of M. truncatula roots, the corresponding 882 identified proteins were classified according the FunCat annotation scheme that assigned them to eight biological processes, in which transport, protein synthesis/fate and energy/metabolism were the most prominent retrieved categories, whereas proteins of unknown function only encompassed 6.3% of the microsomal repertoire (Figure 4.3B). This functional grouping appears consistent with plastids and nucleus as prevalent cellular components of the root micosome in *M. truncatula* as previously described in Figure 4.3A. Actually, plastids, like mitochondria, are double-membrane organelles, the outer membrane representing a barrier to the movement of proteins and the inner a barrier to small metabolites, which perform many metabolic and anabolic biosynthesis tasks, such as N-assimilation (Esposito et al., 2003), starch biosynthesis (Geigenberger et al., 2004), and lipid biosynthesis (Rawsthorne, 2002). Depending on the function they need to play in the plant cell, plastids may differentiate into several forms, including chromoplasts for pigment synthesis, amyloplasts for starch storage, statoliths for detecting gravity or elaioplasts for storing fat (reviewed in Neuhaus & Emes, 2000), thereby implying energy and metabolism as essential functional processes. Although plastids have retained genes for a small number of polypeptides, the majority of plastid proteins are encoded in the nucleus, translated in the cytosol, imported into the organelle and targeted to one of its suborganellar compartments (Lopez-Juez, 2007), supporting a drastic role for transport- and protein synthesis/faterelated mechanisms. According to their denomination, plastids also have the ability to differentiate, or re-differentiate between these and other forms, a process resulting from specific differentiation programs that are controlled by the nucleus (reviewed in Vothknecht & Westhoff, 2001), thus linking plastidial and nuclear functioning as illustrated by our data (Figure 4.3A, B). Overall, both cellular and functional 162 classifications predispose plastids as prominent organelles sustaining membrane protein distribution in the root microsomal proteome currently identified in M. *truncatula*.

Finally, when analysing the root microsomal proteins of *M. truncatula* for the mechanisms by which they may associate to cell membranes, Figure 4.3 C showed that S-palmitoylation, alpha-helical and beta-barrel trans-membrane regions, were the prevalent processes, as predicted for 586, 409, and 187, accessions, respectively. On the whole, integral TM candidate proteins (596) embedded in the membrane bilayer dominate the microsomal proteome, when summing predictions for alpha-helices and beta-barrels. In the field of proteomics, the detection of integral membrane proteins has essentially considered alpha-helical domains that are present in all types of biological membranes, despite the development of beta-barrel prediction algorithms (Schwacke et al., 2004; Imai et al., 2011; Schleiff et al., 2011). However, in plants, the outer membranes of mitochondria and chloroplasts all contain transmembrane β barrel proteins that serve essential functions in cargo transport and signalling and are also vital for membrane biogenesis (Fairman et al., 2011). Supporting this view, most of the β -barrel-containing proteins predicted in the current study were putatively located to plastids, encompassing transport-related proteins (chloroplastic outer envelope pores, importins, phosphate/phosphoenolpyruvate translocator, plant lipid transfer proteins, ABC transporters, phosphate/phosphoenolpvruvate translocator), and signalling/cargo associated components (putative receptor kinase, von Willebrand factor, and Rab-related proteins). Likewise, a putative mitochondrial flotillin referred to as a scaffolding protein was also recorded within those displaying a β -barrel domain (Chapter 4, additional file S4.4). Besides alpha-helices and beta-barrels domains that define integral membrane, S-palmitoylation was predicted as the most important lipid modification associating proteins to the membrane compartments in the root microsome of *M. truncatula* (Figure 4.3C). S-palmitovlation, a posttranslational modification mediating the reversible addition of palmitate and other long-chain fatty acids to proteins at cysteine residues, has diverse functional consequences, among which it provides an important mechanism for regulating protein subcellular localization, stability, trafficking, translocation to lipid rafts, aggregation, and interaction with effectors (Nadolski & Linder, 2007). Noticeably, whereas N-myristoylation and prenylation are considered as irreversible attachments,

163

S-palmitoylation is a reversible process that allows proteins to rapidly shuttle between intracellular membrane compartments, which has been best illustrated for palmitoylated forms of the small GTPase Ras family (Aicart-Ramos *et al.*, 2011). Consequently, the important number of palmitate-modified microsomal proteins actually identified in the root proteome of *M. truncatula*, supports the view of a highly fluent and dynamic membranous environment (Figure 4.3C), a hypothesis that can be corroborated the identification of plastids and transport as prevalent organelles and functions in the root microsomal fractions, respectively (Figure 4.3A, B).

AM symbiosis quantitatively modifies the root membrane proteome of *M. truncatula*.

According to the peak integration label-free strategy we used to quantify protein abundance (MassChroQ), coupled to the ANOVA performed on the duplicated biological independent replicates that were conducted to compare protein accumulation between the curated microsomes of mycorrhizal and noncorrhizal roots, only the plasma-membrane proton-efflux P-type Mtha1ATPase turned-out to be induced upon AM symbiosis, whereas 22 and 19 proteins previously retained as genuine membrane proteins were revealed as up-and down- accumulated in mycorrhizal roots relative to controls, respectively (Tables 4.1 and 4.2). Whereas it cannot be ruled-out that mycorrhiza-specific membrane proteins could have escaped the protocols currently designed for microsome enrichment and protein curation, our data nonetheless corroborate the literature available on mycorrhiza-related membrane proteins, although very few of them so far have been described. Actually, the first reports on membrane proteins displaying an arbuscule-inducible accumulation in mycorrhizal roots were inferred a decade ago to Mtha1, a plasma membrane H⁺ATPase considered to be involved in active uptake of nutrients from the symbiotic interface (Krajinski et al., 2002), and MtPt4, a mycorrhiza-specific phosphate transporter (Harrison et al., 2002). By the use of either reporter gene expression or membrane proteomic analyses, it was also demonstrated that one member of the AMinduced gene family encoding blue copper binding proteins (MtBcp1) was both specifically and strongly up-regulated in arbuscule-containing regions of mycorrhizal roots, suggesting its putative location within the periarbuscular membrane (Hohnjec et al., 2005; Valot et al., 2006). With regard to our results, not only Mtha1 was retrieved as induced in mycorrhizal roots, but MtBcp1 also displayed a near 10 fold over

164

accumulation relative to controls, thus corroborating previous data and the relevance

of our protocol (Table 4.1).

Table 4.1. List of the proteins displaying an over-accumulation in mycorrhizal roots relative to controls.

Yellow-shaded lines refer to identifications escaping our criteria for assigning a protein as membrane associated.

MENS Toulouse 01/2003	Fold change	p value
MtC30183_1_AA Blast: XP_003611447		
GMFP4 tetraspanin [Medicago truncatula].CD9/CD37/CD63 antigen	2,51	0,002
MtD01250_1_Blast: XP_003591547 ABC transporter C family protein [Medicago truncatula].	6,76	0,0004
MtC60823_1_AA Blast: OEP16_PEA Outer envelope pore protein 16, chloroplastic; AltName: Full=Chloroplastic outer envelope pore protein of 16 kDa.	1,62	0,002
Mt C00088_1_AA Blast: XP_002881077 cyclophilin [Arabidopsis lyrata subsp. lyrata].Peptidyl-prolyl cis-trans isomerase, cyclophilin type	5,01	0,004
MtC00605_1_AA Blast: XP_003592453 Blue copper protein [Medicago truncatula].Blue (type 1) copper domain	9,33	3.39279335048737e-06
MtC45467_1_AA Blast: XP_003614713 Transmembrane emp24 domain-containing protein [Medicagotruncatula].emp24/gp25L/p24 IPR001356:Homeobox	2,24	0,0030
MtC10070_1_AA Blast:XP_003627196 Lipoxygenase [Medicago truncatula].	8,13	1.54098955817972e-13
MtC00085.1_1_AA Histone core IPR009072:Histone-fold	2,14	1.81465612403287e-05
MtC60580_1_AA Peptidyl-prolyl cis-trans isomerase, cyclophilin type (blast ok)	2,14	0,0002
MtC20331_1_AA Histone H2A (blast ok)	6,92	5.73861746588911e-05
MtC92000_1_AA Histone core IP R009072:Histone-fold	2,95	4.30015229735403e-06
MtC00621_1_AA Histone H2A (blast ok)	3,55	0,0002
MtC00668_1_AA Ribosomal protein L1 (blast ok)	3,31	0,002
MtC00209_1_AA Ribosomal L28e protein	3,09	0,002
MtC00725_1_AA Ribosomal protein L29	2,45	2.73583877490324e-05
MtC00435_1_AA Ribosomal protein S13 (blast ok)	3,02	0,004
MtC00466_1_AA Blast: XP_003609172 H/ACA ribonucleoprotein complex subunit 2-like protein [Medicago truncatula].Ribosomal_L7Ae	1,7	0,009
MtC00190_1_AA Eukaryotic initiation factor 5A hypusine (eIF-5A)	2,82	0,001
MtD20646_1_AA Blast: XP_003628253 Prohibitin [Medicago truncatula].Band 7 protein	1,95	0,006
MtC10100.1_1_AA Blast: XP_003626103 Cathepsin B [Medicago truncatula].	1,51	0,0051
MtC60431_1_AA Blast: XP_003518654 PREDICTED: ras-related protein RABE1c-like [Glycine max]	1,91	0,0019
Mt C00046_1_AA S-adenosylmethionine synthetase (ok blast)	2,69	0,006
MtC20060_1_AA Blast: A GAMMA carbonic anhydrase, partial [Silene latifolia].	2,04	0,0039
MtC10470_1_AA Act in/act in-like (blast ok) cd00012: NBD_sugar-kinase_HSP70_act in	2,6900	0,0089
MtC10339_1_AA Actin/actin-like (blast ok) cd00012: NBD_sugar-kinase_HSP70_actin	4,37	0,0011
MtD02792_1_AA Reticulon Blast: XP_003525365 PREDICTED: reticulon-like protein B2-like isoform 1 [Glycine max].	1,82	0,001
MtC00185_1_AA unknown Blast: XP_003616043.1 hypothetical protein MTR_5g075520 [Medicago truncatula]	3,16	0,0013

Proteins up-accumulated in mycorrhizal roots relative to controls

Protein induced in mycorrhizal roots relative to controls

MENS Toulouse 01/2003	Fold change	
MtC10290_1_AA Mthal PLASMA MEMBRANE ATPASE (plasma-membrane proton-		
efflux P-type ATPase)	43651,58	0,004

Nonetheless, imaging approaches also have recently revealed that the periarbuscular membrane is at least composed of two distinct specific protein-containing compartments, corresponding to an arbuscule-trunk domain that contains the blue copper-binding protein MtBcp1 (of unknown function) which also localizes to the host PM, as opposed to an arbuscule-branch domain that specifically harbours the AM symbiosis-specific phosphate transporters MtPt4 and OsPT11 (Harrison et al., 2002; Kobae & Hata, 2010), the AM-inducible ammonium transporter GmAMT4.1 (Kobae et al., 2010), STR half-ABC transporters (Zhang et al., 2010; Gutjahr et al., 2012) and vesicle-associated membrane proteins VAMP721d/e (Ivanov et al., 2012). In view of these results that have suggested the occurrence of a *de novo* membrane biogenesis process associated with the dichotomous branching of the hyphae within plant cortical cells, together with the absence of proteins specific for the arbuscule-branch domain from our repertoire, with contrasts with the presence of MtBbp1 (Table 4.1 and Valot et al., 2006), we propose that, unlike the trunk domain, the specific features displayed by the arbuscule-branch domain of the periarbuscular membrane likely make this compartment recalcitrant to the current methods used for PM enrichment. In this regard, the device of new proteomic protocols aiming at isolating the arbusculebranch domain, probably on the basis of immunoassays targeting the enrichment in MtPt4 and/or GmAMT4.1, appears indispensable to increase our knowledge relative to the protein composition of the periarbuscular membrane. Nonetheless, when compared to previous proteomic studies targeting root microsomal proteins upaccumulated upon mycorrhiza (Valot et al., 2005; Valot et al., 2006), new candidates putatively supporting the AM symbiotic program in host plant roots happened to emerge from the current study as mainly exemplified by proteins having role in signalling/membrane trafficking (Table 4.1). Actually, tetraspanins, as previously mentioned, can localize at different membranes where they facilitate cell-to-cell communication or sense the stimulus from the environment at the plasma membrane, and might also act as receptors (Wang, F et al., 2012). Likewise, the increase in membrane surface during arbuscule development may cause a significant portion of trans-Golgi vesicles to fuse with the periarbuscular membrane, and then to redirect proteins entering the secretory pathway to the periarbuscular space (Pumplin &

Harrison, 2009; Takeda et al., 2009). In this regard, transmembrane emp24 domaincontaining protein, prohibitin, ras-related protein RABE1c-like and reticulon-like protein, all having role in secretion or in membrane trafficking were recorded as upaccumulated membrane proteins upon symbiosis (Table 4.1), thus supporting the view of a transient reorientation of secretion favouring vesicle fusion during arbuscular development (Pumplin & Harrison, 2009). In the same line of reasoning, a predicted extracellular cathepsin, having role in both intracellular degradation and turnover of proteins, was currently identified as up-accumulated in symbiotic roots (Table 4.1), a record likely sustaining the previous identification of two AM-specific proteolytic subtilases located in the apoplastic symbiotic interface, for which a function in cleaving structural proteins to sustain hyphal elongation and plant penetration upon secretion to the periarbuscular space has been inferred (Takeda et al., 2009). As illustrated by the aforementioned proteins sustaining membrane trafficking, the development of arbuscules also supposes a modification of architectural features to support newly synthesized membrane proteins (Genre et al., 2005; Pumplin & Harrison, 2009; Gutjahr et al., 2011). In the current study, this could be exemplified by the up-accumulation of cytoskeletal components that might direct secretion such as actin-like proteins, together with proteins playing role in protein synthesis and fate, including histones, ribosomal proteins, and cyclophilins (Table 4.1). Finally, compared to the 44 transporters predicted to be up-regulated in mycorrhizal roots on the basis of transcriptional analysis (Benedito et al., 2010), only Mtha1, an ABC cassette, a pore protein, and a TM transporter, were actually identified as upaccumulated upon AM symbiosis (Table 4.1), thus pointing once again to the complementarities of transcriptional and proteomic approaches to resolve the AM symbiotic program.

When regarding the 19 identifications retained as genuine microsomal proteins that displayed a down-accumulation upon *R. irregularis* inoculation (Table 4.2), three prevalent classes were retrieved, which encompassed plasma membrane H⁺ATPases (3 accessions), phosphate-related proteins (4 accessions), and signal transduction-associated proteins (5 accessions). In plants, H⁺ATPases are primarily responsible for energizing the plasma membrane and generating the proton motive force for secondary membrane transport of cations, anions, sugars, and amino acids, and are of particular interest in AM plants, as a functional symbiosis is characterized by bi-167

directional nutrient transport across a plant–fungal interface. Actually, Pi transporters are thought to operate in conjunction with H⁺ATPases for inward transport of P (Schachtman *et al.*, 1998). Contrasting with previous reports showing the expression of H⁺ATPases-encoding genes in arbuscule-containing cells, including the induction of the specific H⁺ATPase isoform Mtha1 in *M. truncatula*, (Gianinazzi-Pearson *et al.*, 2000; Krajinski *et al.*, 2002), the three plasma membrane H⁺ATPase isoforms we identified showed a reduced abundance upon AM symbiosis (Table 4.2).

Table 4.2. List of the proteins displaying a down-accumulation in mycorrhizal roots relative to controls.

Yellow-shaded lines refer to identifications escaping our criteria for assigning a protein as membrane-associated.

MENS Toulouse 01/2003	Fold change	P value
MtC60362_1_AA Blast: G7JCD0 Plasma membrane H+ ATPase, cation transport ATPase (P- type) family, proton efflux [Medicago truncatula].	0,56	0,005
MtC10646_1_AA Blast: G7JUD3 Plasma membrane H+-ATPase, cation transport ATPase (P- type) family, plasma-membrane proton-efflux P-type ATPase [Medicago truncatula].	0,48	0,000
MtC93235_1_AA Blast: XP_003594954 Plasma membrane ATPase, plasma-membrane proton-efflux P-type ATPase [Medicago truncatula].	0,41	0,001
MtC20134.1_1_AA MtPT2PHOSPHATETRANSPORTER Major facilitator superfamily (Liu et al., 1998)	0,48	0,000
MtC20134.2_1_AA MtPT1 PHOSPHATE TRANSPORTER Major facilitator superfamily (Liu et al., 1998)	0,5	0,003
MtC62284_1_AA Blast: A5H2U5 Phosphatetransporter 3, phosphate:H+ symporter [Medicago truncatula] (Liu <i>et al.</i> , 2008)	0,26	5.31731461084206e-08
Mt D06942_1_AA Blast: XP_003609464 Vacuolar proton-inorganic pyrophosphatase [Medicago truncatula]. IPR004131 Pyrophosphate-energised proton pump	0,49	0,001
Mt D24902_1_AA Blast XP_003625400 Pleiotropic drug resistance protein [Medicago truncatula].	0,5	0,002
Mt D19528_1_AA unknown Blast:XP_003627035.1 ABC transporter family pleiotropic drug resistance protein [Medicago truncatula]	0,5	0,007
MtC10149_1_AA Blast: ACJ83883 unknown [Medicago truncatula].Plastocyanin-like domain	0,47	0,001
MtD01112_1_AA Blast: XP_003517628.1 PREDICTED: probable LRR receptor-like serine/threonine-protein kinase At4g29180-like [Glycine max]	0,56	0,002
MtD11061_1_AA Blast: XP_003531816: probable LRR receptor-like serine/threonine- proteinkinase At1g56130-like [Glycine max]	0,62	0,008
MtD04430_1_AA Blast XP_003616753 Cysteine-rich receptor-like protein kinase [Medicago truncatula].	0,66	0,002
MtC10353_1_AA Blast: XP_003618047.1 Fasciclin-like arabinogalactan protein [Medicago truncatula]	0,59	0,004
MtC00322_1_AA Blast: XP_003597322 60S ribosomal protein L23a [Medicago truncatula].	0,32	0,000
MtD00010.1_1_AA Blast: XP_003618775 Elongation factor 1-alpha [Medicago truncatula].	0,28	0,0004
MtC20279_1_AA Blast: XP_003523765 PREDICTED: 26S protease regulatory subunit S10B homolog B-like isoform 1 [Glycine max].	0,6	0,002
MtC00419_1_AA Blast: BAA19156 HMG-1 [Canavalia gladiata].HMG1/2 (high mobility group) box	0,56	0,008
MtC10218_1_AA Blast: XP_003616180 UTP-glucose 1 phosphate uridylyltransferase [Medicago truncatula].	0,48	0,009
MtC30342_1_AA Blast: XP_003531547 PREDICTED: probable protein phosphatase 2C 10-like [Glycine max].	0,36	0,005
MtC40209_1_AA unknown Blast: ADV35716.2 root determined nodulation 1 [Medicago truncatula]	0,39	0,009

Protein displaying a suppressed accumulation in mycorrhizal roots relative to controls

MENS Toulouse 01/2003	Fold change	
MtC93047_1_AA Unkown Blast: XP_003635272.1 PREDICTED: clathrin light chain 1-like		
[Vitis vinifera]	01,58489E-05	0,0004

This repressed pattern is reminiscent of that reported in tomato plants, which displayed the selective down-expression of the ATPase encoding genes LHA1 and LHA4 in epidermal cells located in regions of the root that contain arbuscules, and could be involved in the generation of the proton gradient necessary for phosphate uptake at the epidermis (Ferrol et al., 2002; Rosewarne et al., 2007). According to the model described by Rosewarne et al. (1999), it has been proposed that a mycorrhizal plant in low-phosphate soils attains much of its P through a route provided by the fungus, thus expressing transport-related proteins at the arbuscular interface and alleviating the need to express plant transporters at sites directly in contact with the soil. As underlined by Ferrol and co-workers (2002), this hypothesis is consistent with the observation that, in some cases, phosphate uptake from the soil by the epidermal root cells becomes almost inactive during the mycorrhizal symbiosis (Pearson & Jakobsen, 1993). In this respect, three PM-located phosphate transporters, namely MtPT1, MtPT2 and MtPT3, were recorded as down-accumulated in response to R. *irregularis* relative to control roots (Table 4.2). These transporters of *M. truncatula* are members of the PHT1 Pi transporter family that mediate transfer of Pi into cells, whereas members of the PHT2, PHT3, PHT4, and pPT families are involved in Pi transfer across internal cellular membranes and organelle membranes. According to their recent characterization by Liu and co-workers (2008), MtPT1, MtPT2 and MtPT3 share a high level of sequence identity and low affinities for Pi, but display tissue-specific patterns in that MtPT2 is expressed in epidermis, cortex, and vascular tissue, whereas *MtPT1* shows the same expression pattern but lacks expression in the vascular tissue, and MtPT3 shows expression only in the vascular tissue. Noteworthy and consistent with our proteomic data, the expression of MtPT1/MtPT2 and MtPT3 was reported down-regulated in mycorrhizal roots, a process that was referred to as a consequence of an increase in the Pi level, which occurs as Pi is delivered to the roots by the AM fungal symbiont. As previously mentioned, during mycorrhiza plants are believed to activate symbiosis-associated Pi transporters to obtain Pi delivered by the AM fungal symbiont, and gradually down-regulate expression of their root Pi transporter genes (Liu et al., 1998; Chiou et al., 2001). Nonetheless, whereas this pattern of regulation holds true for root epidermal/cortical cell transporters having low affinity for Pi, including MtPT1, MtPT2 and MtPT3i, this model does not apply to a high affinity Pi transporter whose expression is maintained at the root-soil interface

170

during the AM symbiosis in *M. truncatula* (Liu et al., 2008). Also in relation to Pi, a vacuolar proton-inorganic pyrophosphatase showed a reduced abundance in mycorrhizal roots relative to control (Table 4.2). Since large amount of inorganic pyrophosphate (PPi) are produced as a by product of macromolecule synthesis, reactions that utilize PPi in place of ATP are considered to confer a bioenergetic advantage to plant cells that have become ATP depleted owning to environmental stresses such as Pi starvation. Actually, the vacuolar H⁺PPiase represents an enzyme that endows plants with the capability of utilizing PPi to circumvent an ATPconsuming cytosolic reaction together with facilitating Pi recycling during Pi stress, since two and one Pi molecules are produced per PPi and ATP hydrolyzed, respectively (Plaxton, 1999). In this respect, the up-regulation of H⁺PPiase during Pi starvation in Brassica napus has been demonstrated, together with the utilization of this enzyme for maintaining vacuole acidification and employing PPi as an energy donor to conserve limited cellular pools of ATP while recycling valuable Pi (Palma et al., 2000). Consequently, the decreased accumulation of the vacuolar protoninorganic pyrophosphatase we recorded in mycorrhizal roots appears consistent when considering Pi supply as one of the main benefices conferred by AM symbiosis to their hosts. In the same line of reasoning, an UTP-glucose 1 phosphate uridylyltransferase also known as UDP-glucose pyrophosphorylase (UGPase) also displayed a reduced abundance upon mycorhization (Table 4.2). UGPase not only represents an important activity in carbohydrate metabolism, catalysing a reversible production of UDPG and PPi from Glc-1-P and UTP, but also constitutes an important mechanism increasing Pi availability during P stress. Noteworthy, in Arabidopsis, UGP expression and UGPase activity/protein content were strongly upregulated by conditions resulting in phosphorus deficiency (Kleczkowski et al., 2004). In pea (Pisum sativum) roots, UGPase protein increased after cadmium-excess stress, possibly reflecting Cd-induced Pi deficiency effects at the UGP expression level (Repetto, 2003). The UGPase step may thus constitute an important mechanism increasing Pi availability during P stress, in that the PPi released in the synthesis of UDPG by UGPase is hydrolyzed to Pi by pyrophosphatase(s), thereby increasing the availability of Pi for P-deprived plants (Kleczkowski et al., 2004). Consequently, the decreased abundance we recorded in both vacuolar H⁺PPiase and UGPase proteins in mycorrhizal roles, both having role in alleviating phosphorus deficiency, may 171

correlate the increased availability of Pi upon AM symbiosis in *M. truncatula* roots. Concomitantly, it has also been demonstrated that genes encoding protein proteases, PDR (pleiotropic drug resistant)-like ABC transporter, and protein phosphatase 2C, the latter acting as a general negative regulator of stress signalling through the regulation of the stress-activated mitogen-activated protein kinase pathway, were also are up-regulated under Pi limited conditions in pea plants (Tian *et al.*, 2007), thereby suggesting that the currently observed down accumulation of these proteins in mycorrhizal plants (Table 4.2), may actually also reflect an improved Pi uptake in *M. truncatula* roots upon AM symbiosis.

With regard to signalling processes, besides the three plant genes (dmil, dmi2, and *dmi3*) relevant for the common early stages of signal transduction during nodulation and AM formation (Cullimore & Denarie, 2003), genes encoding putative AM-related receptors such as a Ser/Thr receptor kinase (TC86597) and a Leu-rich repeat (LRR) receptor-like protein kinase (TC80104) characterized by extracellular LRR domains mediating protein-protein interactions were reported by Hohnjec and co-workers (2005) as up-regulated upon mycorhization. By contract, two probable LRR receptorlike serine/threonine-protein kinases and a cysteine-rich receptor-like protein kinase were recorded in the current study as displaying a reduced abundance in response to R. irregularis inoculation (Table 4.2). Receptor-like kinases (RLKs) are animal receptor kinase orthologs in plants, so classified because of conserved structures that include an extracellular receptor, a transmembrane domain, and an intracellular kinase domain (Shiu & Li, 2004). RLK activation occurs upon binding of an extracellular ligand to the plasma membrane and subsequently, the RLK complex undergoes autotransphosphorylation that activate diverse signal transduction pathways, including those that control hormone and morphogenetic responses, cell differentiation, and defence signalling (Holland & Holland, 2002). Whether the down-accumulation of the three RLKs we observed could mediate reduced plant defence mechanisms in order to accommodate AM fungi is unknown, although previously described for genes encoding PR proteins and enzymes of phytoalexin biosynthesis that showed transcript level declines during the functional stage of the symbiosis (Liu et al., 2003), but regulation of signalling activity at the cell surface (receptor down-regulation) has been documented. Actually, RLK internalization via encocytosis, which leads to degradation and recycling of receptor kinases, has been demonstrated (Shah et al.,

172

2002), thereby linking signal transduction pathways and membrane trafficking (Drakakaki et al., 2009), as discussed above. In this regard, we also recorded the down-accumulation of a fasciclin-like arabinogalactan protein upon AM symbiosis (Table 4.2). Putative plant adhesion molecule include arabinogalactan-proteins (AGPs) having fasciclin-like domains (FLAs), among which 70% are predicted to be glycosylphosphatidylinositol-anchored to the plasma membrane in wheat and rice (Faik et al., 2006). The functions of AGPs in undifferentiated protoplasts and cultured cells of several species have been investigated by using molecules that bind to and inactivate AGPs such as $(\beta$ -d-Gk)₃ or $(\beta$ -d-Gal)₃. Inhibition of cell expansion was evident in Arabidopsis seedlings, in which $(\beta$ -d-Glc)₃ causes a bulging of root epidermal cells (Willats & Knox, 1996). Current models suggest that an integrated control system regulates both the cell cycle and programmed cell death, and the results observed upon perturbation of AGPs in plant cell cultures indicate that AGPs may play a role in this integrated control system (Gao & Showalter, 1999) in that (βd-Gal)₃ disrupts plasmalemma-cell wall connections and thereby activates a signal transduction pathway that directs the cell away from cell cycle progression and toward programmed cell death. The connection of AM symbiosis with reduced amounts in plant AGPs, although quite unclear, may thus nonetheless reflect the reduced root elongation in mycorrhizal roots concomitant to the extension of the fungal extra-radical mycelium that provides extensive pathways for nutrient fluxes through the soil (Purin & Rillig, 2008). Finally, as very comprehensively reviewed in (Hause & Schaarschmidt, 2009), host plants indeed are able to control the degree of their associations with rhizobia and AM fungi in order to minimize the carbon resources they invest in symbiosis. Once first steps of interactions are initiated, further establishment of symbionts above a critical threshold level is restricted, leading to autoregulation (AUT) of mutualism. Recently, a screen for supernodulating M. truncatula mutants defective in this regulatory behaviour yielded loss-of-function alleles of a gene designated ROOT DETERMINED NODULATION1 (RDN1), and a mutation in a putative RDN1 ortholog was also identified in the supernodulating nod3 mutant of pea (Schnabel et al., 2011). Whereas previous key actors mediating loss-of-AUT mutants that display a supernodulating and supermycorrhizal phenotype (increased abundance of nodules and arbuscules, respectively), were identified as receptor-like kinases acting in the shoot, the RDN1 promoter drove expression in the 173

vascular cylinder, suggesting that RDN1 may be involved in initiating, responding to, or transporting vascular signals. In the current study, we retrieved the protein RDN1 as down-accumulated in mycorrhizal roots *versus* controls (Table 4.2), thereby not only pointing out to another regulatory process shared between nitrogen-fixing rhizobial and mycorrhizal symbioses, but also to a mechanism favouring AM colonization in our experimental conditions.

Conclusions

For the first time, a protocol was designed that proved valuable in increasing the coverage of root membrane proteins in the model legume *M. truncatula*, relative to previous studies, as inferred from the 882 putative root microsomal proteins identified in the current study. On the basis of *in silico* predictions, the present work argued for plasticity as the main characteristic of the root microsomal proteins that were retrieved, as inferred from plastids and transport as prevalent organelle and function, respectively, together with the important representation of β -barrels domains coupled palmitate-modified proteins, two processes known to drive membrane signaling and trafficking events. Additionally, the label-free peak integration strategy we employed to record changes in membrane protein abundance in response to AM symbiosis, also gave arguments in favor of a conserved qualitative microsomal proteome upon the inoculation of *R. irregularis*, in that only the protein Mtha1 was recorded as induced in mycorrhizal roots. Altogether, the current results sustain the view according to which the accommodation of AM fungi within root cortical cells implies a dynamic reorganisation of root membrane proteins, rather than the synthesis of AM-specific proteins. However, the present data also suggested that branch-related periarbuscular membrane proteins, by displaying specific features, could have escaped the procedure we employed for extracting root microsomal proteins, thus pointed out to the necessity of developing methods suitable for isolating/enriching periarbuscular membrane proteins. Nonetheless, besides getting knowledge on root microsomal protein modifications potentially sustaining AM symbiosis establishment and functioning, the protocol we described, by giving access to the largest coverage of root membrane proteins so far recorded in *M. truncatula*, may be helpful for creating a root membrane proteome database for comparative purposes with more recently evolved plant-microbe interactions that share root morphological commonalties with mycorrhiza.

Acknowledgments

CA, CG, EDG, DvT, DW, JR and GR acknowledge financial support by the Burgundy Regional Council (PARI Agrale 8) and "Fonds National de la Recherche du Luxembourg" AFR TR-PHD BFR 08-078.

Additional files

Chapter 4, additional file S4.1: List of the 1128 proteins.

Proteins are obtained from the twelve microsomal fractions analysed in the current study by using an E value smaller than 10^{-4} as a criterion to assign correct protein identification. Accessions and annotations refer to the *Medicago truncatula* EST database (http://medicago.toulouse.inra.fr/Mt/EST/).

Chapter 4, additional file S4.2: Overlap of the co-identified proteins in two biological experiments.

Overlap in the proteins co-identified in the two independent experiments (referred to as Exp 1 and Exp 2) after root microsome extractions that reached a common value of 96% both in the mycorrhized (M) and the nonmycorrhized (C) plant roots. Letters a, b, and c refer to each of the three replicates performed per experiment.

Chapter 4, additional file S4.3: List of the 164 (15.6%) proteins (yellow-shaded) out of the 1047 nonredundant identifications that were discarded as potential contaminants of the microsomal fractions isolated from nonmycorrhizal and mycorrhizal roots.

Red characters refer to Blast searches conducted on the NCBI nonredundant database. Purple lines refer to accessions displaying a membrane location according to TAIR but that escape our criteria for genuine microsomal M. truncatula proteins corresponding to homologous sequences displaying at least 70% pair-wise identity and a cut-off expectation value of e⁻⁴⁰ were experimentally demonstrated to have a membrane localisation, including core integral or subunits of membrane complexes, on the basis of direct assays or "traceable author statement". The identified proteins in Medicago truncatula EST (http://medicago.toulouse.inra.fr/Mt/EST/) were assigned to a Medtr accession number using (http://www.legoo.org/). Proteins were functionally classified according to Ruepp et al. predicted (2004).TM domains were using the Tmpred server (http://www.ch.embnet.org/software/TMPRED_form.html), with a minimum score of 1000 (Valot et al., 2006) and (http://www.cbs.dtu.dk/services/TMHMM/). WoLF PSORT (http://wolfpsort.seq.cbrc.jp) was used to predict protein localisation. The prediction of palmitoylation and N-terminal myristoylation sites was done using the ExPASy tools (http://csspalm.biocuckoo.org/online3.php) (http://web.expasy.org/myristoylator/), and prediction, respectively. For prenylation the PrePS online tool (http://mendel.imp.ac.at/sat/PrePS/index.html) was used, while GPI anchor prediction was performed using the GPI Modification Site Prediction in Plants (http://mendel.imp.ac.at/gpi/plant_server.html). SignalP 4.0server (http://www.cbs.dtu.dk/services/SignalP/) was employed to predict the presence of signal peptide cleavage sites in prote in sequences. The online tool (http://biophysics.biol.uoa.gr/PRED-TMBB/input.jsp) was used to discriminate beta-barrel outer membrane proteins.

Chapter 4, additional file S4.4: List of the 883 (84.3%) proteins out of the 1047 nonredundant identifications that were retained as genuine microsomal candidates from the fractions isolated from nonmycorrhizal and mycorrhizal roots.

Red characters refer to Blast searches conducted on the NCBI or Uniprot nonredundant database. Purple lines refer to accessions displaying a membrane location according to TAIR but that escape our criteria for genuine microsomal *M. truncatula* proteins corresponding to homologous sequences displaying at least 70% pair-wise identity and a cut-off expectation value of e⁻⁴⁰ were experimentally demonstrated to have a membrane localisation, including core integral or subunits of membrane complexes, on the basis of direct assays or "traceable author statement". Green lines correspond to proteins satisfying the aforementioned criteria. Nonshaded lines correspond to proteins nonreferred as membrane-located according to TAIR identified prote ins annotations. The in Medicago truncatula EST (http://medicago.toulouse.inra.fr/Mt/EST/) were assigned to a Medtr accession number using (http://www.legoo.org/). Proteins were functionally classified according to Ruepp et al. (2004).domains were predicted using the Tmpred TM server (http://www.ch.embnet.org/software/TMPRED form.html), with a minimum score of 1000 (Valot et al., 2006) and (http://www.cbs.dtu.dk/services/TMHMM/). WoLF PSORT (http://wolfpsort.seq.cbrc.jp) was used to predict protein localisation. The prediction of palmitoylation and N-terminal myristoylation sites was done using the ExPASy tools (http://csspalm.biocuckoo.org/online3.php) and (http://web.expasy.org/myristoylator/), prenvlation PrePS respectively. For prediction, the online tool (http://mendel.imp.ac.at/sat/PrePS/index.html) was used, while GPI anchor prediction was performed using Modification Site Prediction in Plants the GPI (http://mendel.imp.ac.at/gpi/plant_server.html). SignalP 4.0server (http://www.cbs.dtu.dk/services/SignalP/) was employed to predict the presence of signal peptide cleavage sites in prote in sequences. The online tool (http://biophysics.biol.uoa.gr/PRED-TMBB/input.jsp) was used to discriminate beta-barrel outer membrane proteins.

Chapter 5

General discussion, conclusion and perspectives

Most plants live in close association with arbuscular mycorrhizal (AM) fungi, which colonize the plant roots and form typical intracellular structures, i.e. the arbuscules, thought to be the main sites of nutritional exchanges. Such AM fungi form an extensive hyphal network that reaches far beyond the root depletion zone, and are thus capable to acquire nutrients from the soil much more efficiently than the plant root system alone (Smith & Read, 2008). Together with genetics and thorough exploitation of plant mutants defective to the AM symbiosis at various stages, the development of large-scale untargeted approaches such as transcriptomics and proteomics has recently allowed decrypting some of the programmes that govern this particular plant root/AM fungal interaction. However, because the development of AM symbiosis is an asynchronous process, with mycorrhizal roots typically containing several symbiotic structures and various cell types, and in absence of any amplification strategy as for nucleic acids, proteomics of AM symbiosis is still a challenging task which will obviously benefit from subcellular enrichments of particular cell compartments.

Indeed, dynamic proteome alteration analyses in response to AM fungi have mainly used 2-DE gels with a special focus on soluble proteins regarding their ease of purification and high abundance. Because the AM association is mainly characterized by deep membrane changes in the host plant roots, our purpose was therefore to focus on membrane proteins. To achieve this, we choose to study *Medicago truncatula*, one of the key model systems for studying plant root interactions, inoculated with the representative AM fungus *Rhizophagus irregularis*. Moreover, using the substantial improvements in mass spectrometry (MS) and advances related to protein/peptides fractionation methods, we may expect increasing the coverage of the categories of proteins that escape canonical 2-DE separation, expanding the catalogue of membrane proteins. In the meantime, by developing accurate means to quantify the proteins, we look forward to unravelling proteins potentially involved in the functioning of the AM symbiosis.

Based on previous researches of the group "Mycorrhize" at the pole IPM of

the UMR Agroecology, a 4 weeks-AM infection system was deliberately chosen in order to get sufficient amounts of well-colonized young roots with reasonable arbuscule development to allow enrichment in membranes. Although membrane proteins are relatively few in number when compared to cytosolic proteins, almost all major processes and signalling pathways require membrane-associated proteins for proper function and regulation. However, membrane proteomics is still challenging due to 2-DE related limitations, therefore up to now only a few membrane proteins involved in the sustaining of the AM symbiosis were identified (Valot *et al.*, 2005) subsequently extend to some plasma membrane proteins after a first trial of plasma membrane enrichment followed by LC-MS/MS analysis (Valot *et al.*, 2006). However, at this time no convenient label free strategy for quantification was routinely available.

Therefore, first we tentatively improve the process for preparing microsomal proteins by applying to our root extracts a robust protocol for enrichment (Stanislas *et al.*, 2009). Such protocol has been proved to be efficient based on depletion in soluble proteins evaluated by western blots and by scrutinizing the membrane proteins of microsomal *M. truncatula* root fractions using available electronic tools after pilot LC-MS/MS analyses (data not shown).

Currently a large panel of shotgun MS-based proteomic approaches are available but their applications in plants are still scarce. To overcome 2-DE related concerns, microsomal proteins of *Medicago truncatula* roots were, for the first time, scrutinised by state-of-the-art MS-based proteomic approaches iTRAQ-OGE-LC-MS/MS and label-free 1-DE-LC-MS/MS. The applied workflows combine two novel proteomic procedures, label-based and -free, targeting an insight view on the membrane proteome changes in AM symbiosis. While the first approach is based on peptide chemical labelling by iTRAQ, the second one is label-free based on spectral peak intensity.

The first aim of the current work was methodological by analysing the impact of iTRAQ labelling on peptide pI and behaviour in OGE fractionation. In this objective, a straightforward and robust in-filter protein digestion, with easy recovery of a peptide fraction compatible with iTRAQ labelling, was successfully set up. Besides the practical applicability, this tailored workflow allows users to successfully employ it with different kind of matrices. Afterwards, the examination of peptide electrofocusing behaviour before and after iTRAQ labelling revealed a non-negligible basic pI shift in OGE fractionation on a wide pH range (3-10). To further investigate and explain the experimental findings, MarvinSketch calculator was implemented, in which peptide amino acid structures can be manually drawn and peptide pI calculated for native and iTRAQ labelled peptides. To date most pI calculator algorithms use only native peptide sequences without taking into account the iTRAQ tags. In the current study, an effort was done to answer the question whether an iTRAQ labelled peptide will exhibit the same pI-value as its native counterpart. However, further experiments in combination with trustworthier, advanced pI calculator software are crucial to enhance our understanding on the observed basic shift and routinely describe the pI of iTRAQ labelled peptides.

Once iTRAQ-OGE-LC-MS/MS method was set up on *M. truncatula* microsomal proteins, it was subsequently used to track quantitative protein expression changes in response to AM symbiosis. The enrichment of membrane protein fractions, assessed by the subcellular localisation of the identified proteins and by some immunoblottings, highlighted the efficiency of the employed fractionation method to give access to membrane protein-enriched fractions. Isobaric tagging protocols involve multiple desalting steps and many procedures that may lead to sample loss and thus drastically decrease the number of identified proteins (151 proteins). Moreover, the results showed the difficulty in achieving reproducible and reliable quantitative data. Besides the use of a last generation mass spectrometer and application of the hybrid, recommended for iTRAQ labelled samples, fragmentation method (CID-HCD) the gained information was limited in terms of quantification accuracy. This method was suboptimal and appeared to be less suited to the current study. Although isobaric tagging methods have many attractive attributes, there are issues concerning their use in large-scale experiments. Therefore many described guidelines must be, for future application, taken into account such as the addition of spiked standard proteins in at known concentrations in order to test the performance of the system in terms of precision and accuracy.

Giving that iTRAQ approach appeared unable to yield accurate differential protein accumulations in mycorrhized plants, label-free 1-DE-LC-MS/MS technology becomes a surrogate tool to study the membrane proteins. This method benefits from both gel-based protein and gel-free peptide separation properties. Moreover, the in-gel

protein digestion allows detergent removal from peptide fractions prior to their further LC-MS analysis. This experimental strategy led to the identification of more than one thousand proteins with only 15.6% of potential soluble contaminant proteins in our experiments. This finding, coupled to the western blot results showing a depletion of the cytosolic marker "anti-UGPase" in microsomal protein fractions, strongly confirms the effectiveness of the employed protocol for root membrane enrichment with sufficient recovery and purity for their subsequent in-depth analysis. Our findings showed the existence of a conserved microsome-enriched fraction between mycorrhized and nonmycorrhized roots. The identified microsomal proteins were mainly chloroplast, nucleus and plasma membrane residents, while their functional classification revealed that transport, protein synthesis and metabolism are the prominent biological process categories of the core microsome. The expression of 22 and 19 membrane proteins displayed up-and down- accumulation in AM roots, respectively. Among the up-regulated proteins, a blue copper binding protein (MtBcp1) displayed a near 10 fold over accumulation in response to the AM symbiosis. It was previously shown that the arbuscule-trunk-located MtBcp1 is strongly up-regulated in arbuscule-containing regions of mycorrhizal roots. Furthermore, the presented study revealed new candidates putatively playing a role in signalling/membrane trafficking. For instance, transmembrane emp24 domaincontaining protein, prohibitin, ras-related protein RABE1c-like and reticulon-like protein, all having roles in secretion or in membrane trafficking were recorded as upaccumulated membrane proteins upon symbiosis. It was previously demonstrated that the development of arbuscules induces architectural feature modification to support newly synthesized membrane proteins. This could be exemplified by the upaccumulation of cytoskeletal components such as actin-like proteins, together with proteins playing role in protein synthesis and fate, including histones, ribosomal proteins, and cyclophilins. The 19 proteins that showed a down-regulation of their expression in AM roots encompassed three prevalent classes: plasma membrane H⁺ATPases (3 accessions), phosphate-related proteins (4 accessions), and signal transduction-associated proteins (5 accessions). The down-regulation of the plasma membrane H⁺ATPase isoforms could be involved in the generation of the proton gradient necessary for phosphate uptake at the epidermis. Moreover, it has been proposed that a mycorrhizal plant reaches its phosphate needs through the fungus,
thus alleviating the expression of plant transporters. In this respect, three plasma membrane-located phosphate transporters, namely MtPT1, MtPT2 and MtPT3, were recorded as down-accumulated in response to *R. irregularis* inoculation. The protein abundance of vacuolar H⁺PPiase, UDP–glucose pyrophosphorylase, protein proteases, PDR (pleiotropic drug resistant)-like ABC transporter, and protein phosphatase 2C was down-regulated in response to mycorrhiza. This observation may correlate with the increased availability of phosphate in AM *M. truncatula* roots. Our results shed the light on new membrane proteins that strongly support the importance of membrane signalling/trafficking events in mycorrhiza establishment and functioning.

Proteomics has become an important complementary tool to genomics providing novel information and greater insight into plant biology. The development of novel methods for protein quantification in parallel with the use of MS and bioinformatics techniques, as we have develop in our research, undoubtedly help in widening the application of these technologies for achieving a better understanding the key aspects of membrane proteins in AM plants. However, the presented study suggested that branch-related periarbuscular membrane proteins could have escaped the employed protocol for extracting root microsomal proteins. Thus, new proteomic protocols aiming at isolating the arbuscule-branch domain, probably on the basis of immunoassays appears indispensable to increase our knowledge relative to the protein composition of the periarbuscular membrane. Among the proteins differentially accumulated in response to M. truncatula root colonization, to our point of view RDN1, unknown protein (MtC00185, 3 times over-accumulated in AM roots) and unknown protein (MtC10149, plastocyanin-like domain, down-regulated in response to AM symbiosis) constitute good candidates for exploring their precise location and role in AM symbiosis. This could be achieved through different strategies i.e. use of already available M. truncatula mutants as done by Paradi et al. (2010) for a mycorrhizal specific blue copper-binding protein, production of RNA interference (RNAi) mutants, or targeted Rt-PCR of the corresponding genes after laser micro dissection of the appropriate cell compartments.

References

Abdallah C, Sergeant K, Guillier C, Dumas-Gaudot E, Leclercq C, Renaut J. 2012. Optimization of iTRAQ labelling coupled to OFFGEL fractionation as a proteomic workflow to the analysis of microsomal proteins of *Medicago truncatula* roots. *Proteome Sci* **10**(1): 37.

Aebersold R, Mann M. 2003. Mass spectrometry-based proteomics. Nature 422(6928): 198-207.

- Aggar wal K, Choe LH, Lee KH. 2006. Shotgun proteomics using the iTRAQ isobaric tags. Brief Funct Genomic Proteomic 5(2): 112-120.
- Aicart-Ramos C, Valero RA, Rodriguez-Crespo I. 2011. Protein palmitoylation and subcellular trafficking. *Biochim Biophys Acta* 1808(12): 2981-2994.
- Akiyama K. 2007. Chemical identification and functional analysis of apocarotenoids involved in the development of arbuscular mycorrhizal symbiosis. *Biosci Biotechnol Biochem* 71(6): 1405-1414.
- Akiyama K, Matsuzaki K, Hayashi H. 2005. Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi. *Nature* **435**(7043): 824-827.
- Alban A, David SO, Bjorkesten L, Andersson C, Sloge E, Lewis S, Currie L 2003. A novel experimental design for comparative two-dimensional gel analysis: two-dimensional difference gel electrophoresis incorporating a pooled internal standard. *Proteomics* 3(1): 36-44.
- Aloui A, Recorbet G, Gollotte A, Robert F, Valot B, Gianinazzi-Pearson V, Aschi-Smiti S, Dumas-Gaudot E. 2009. On the mechanisms of cadmium stress alleviation in *Medicago* truncatula by arbuscular mycorrhizal symbiosis: a root proteomic study. Proteomics 9(2): 420-433.
- Aloui A, Recorbet G, Robert F, Schoefs B, Bertrand M, Henry C, Gianinazzi-Pearson V, Dumas-Gaudot E, Aschi-Smiti S. 2011. Arbuscular mycorrhizal symbiosis elicits shoot proteome changes that are modified during cadmium stress alleviation in *Medicago truncatula*. BMC Plant Biol 11:75.
- Alvarez S, Berla BM, Sheffield J, Cahoon RE, Jez JM, Hicks LM. 2009. Comprehensive analysis of the *Brassica juncea* root proteome in response to cadmium exposure by complementary proteomic approaches. *Proteomics* 9(9): 2419-2431.
- America AH, Cordewener JH. 2008. Comparative LC-MS: a landscape of peaks and valleys. *Proteomics* 8(4): 731-749.
- Amiour N, Recorbet G, Robert F, Gianinazzi S, Dumas-Gaudot E. 2006. Mutations in DMI3 and SUNN modify the appressorium-responsive root proteome in arbuscular mycorrhiza. *Mol Plant Microbe Interact* 19(9): 988-997.
- Anderson JP, Gleason CA, Foley RC, Thrall PH, Burdon JB, Singh KB. 2010. Plants versus pathogens: an evolutionary arms race. *Funct Plant Biol* 37(6): 499-512.
- Andrews TM, Tata JR. 1971. Protein synthesis by membrane-bound and free ribosomes of the developing rat cerebral cortex. *Biochem J* 124(5): 883-889.
- Ane JM, Zhu H, Frugoli J. 2008. Recent Advances in Medicago truncatula Genomics. Int J Plant Genomics 2008: 256597.
- AP VDW, Howlett BJ. 2011. Fungal pathogenicity genes in the age of 'omics'. *Mol Plant Pathol* 12(5): 507-514.
- Arnaud IL, Josserand J, Jensen H, Lion N, Roussel C, Girault HH. 2005. Salt removal during Off-Gel electrophoresis of protein samples. *Electrophoresis* 26(9): 1650-1658.
- Baerenfaller K, Grossmann J, Grobei MA, Hull R, Hirsch-Hoffmann M, Yalovsky S, Zimmermann P, Grossniklaus U, Gruissem W, Baginsky S. 2008. Genome-scale proteomics reveals Arabidopsis thaliana gene models and proteome dynamics. Science 320(5878): 938-941.
- **Baier MC, Barsch A, Kuster H, Hohnjec N. 2007.** Antisense repression of the *Medicago truncatula* nodule-enhanced sucrose synthase leads to a handicapped nitrogen fixation mirrored by specific alterations in the symbiotic transcriptome and metabolome. *Plant Physiol* **145**(4): 1600-1618.
- Baier MC, Keck M, Godde V, Niehaus K, Kuster H, Hohnjec N. 2010. Knockdown of the symbiotic sucrose synthase MtSucS1 affects arbuscule maturation and maintenance in mycorrhizal roots of *Medicago truncatula*. *Plant Physiol* 152(2): 1000-1014.
- Balestrini R, Berta G, Bonfante P. 1992. The plant nucleus in mycorrhizal roots: positional and structural modifications. *Biol. Cell* **75**: 235–243.

- **Balestrini R, Cosgrove DJ, Bonfante P. 2005.** Differential location of alpha-expansin proteins during the accommodation of root cells to an arbuscular mycorrhizal fungus. *Planta* **220**(6): 889-899.
- Bell CJ, Dixon RA, Farmer AD, Flores R, Inman J, Gonzales RA, Harrison MJ, Paiva NL, Scott AD, Weller JW, May GD. 2001. The *Medicago* Genome Initiative: a model legume database. *Nucleic Acids Res* 29(1): 114-117.
- Benedito VA, Li H, Dai X, Wandrey M, He J, Kaundal R, Torres-Jerez I, Gomez SK, Harrison MJ, Tang Y, Zhao PX, Udvardi MK. 2010. Genomic inventory and transcriptional analysis of *Medicago truncatula* transporters. *Plant Physiol* 152(3): 1716-1730.
- Benschop JJ, Mohammed S, O'Flaherty M, Heck AJ, Slijper M, Menke FL. 2007. Quantitative phosphoproteomics of early elicitor signaling in *Arabidopsis*. *Mol Cell Proteomics* 6(7): 1198-1214.
- **Besserer A, Becard G, Jauneau A, Roux C, Sejalon-Delmas N. 2008.** GR24, a synthetic analog of strigolactones, stimulates the mitosis and growth of the arbuscular mycorrhizal fungus *Gigaspora rosea* by boosting its energy metabolism. *Plant Physiol* **148**(1): 402-413.
- Besserer A, Becard G, Roux C, Sejalon-Delmas N. 2009. Role of mitochondria in the response of arbuscular mycorrhizal fungi to strigolactones. *Plant Signal Behav* 4(1): 75-77.
- Besserer A, Puech-Pages V, Kiefer P, Gomez-Roldan V, Jauneau A, Roy S, Portais JC, Roux C, Becard G, Sejalon-Delmas N. 2006. Strigolactones stimulate arbuscular mycorrhizal fungi by activating mitochondria. *PLoS Biol* 4(7): e226.
- Besson D, Pavageau AH, Valo I, Bourreau A, Belanger A, Eymerit-Morin C, Mouliere A, Chassevent A, Bois dron-Celle M, Morel A, Solassol J, Campone M, Gamelin E, Barre B, Coqueret O, Guette C. 2011. A quantitative proteomic approach of the different stages of colorectal cancer establishes OLFM4 as a new nonmetastatic tumor marker. *Mol Cell Proteomics* 10(12): M111 009712.
- Bestel-Corre G, Dumas-Gaudot E, Poinsot V, Dieu M, Dierick JF, van TD, Remacle J, Gianinazzi-Pearson V, Gianinazzi S. 2002. Proteome analysis and identification of symbiosis-related proteins from *Medicago truncatula Gaertn*. by two-dimensional electrophoresis and mass spectrometry. *Electrophoresis* 23(1): 122-137.
- Bhadauria V, Banniza S, Wei Y, Peng YL. 2009. Reverse genetics for functional genomics of phytopathogenic fungi and oomycetes. *Comp Funct Genomics*: 380719.
- Bindschedler LV, Cramer R. 2011. Quantitative plant proteomics. Proteomics 11(4): 756-775.
- Bindschedler LV, Palmblad M, Cramer R. 2008. Hydroponic isotope labelling of entire plants (HILEP) for quantitative plant proteomics; an oxidative stress case study. *Phytochemistry* 69(10): 1962-1972.
- Blackburn K, Cheng FY, Williamson JD, Goshe MB. 2010a. Data-independent liquid chromatography/mass spectrometry (LC/MS^(E)) detection and quantification of the secreted *Apium graveolens* pathogen defense protein mannitol dehydrogenase. *Rapid Commun Mass* Spectrom 24(7): 1009-1016.
- Blackburn K, Mbeunkui F, Mitra SK, Mentzel T, Goshe MB. 2010b. Improving protein and proteome coverage through data-independent multiplexed peptide fragmentation. J Proteome Res 9(7): 3621-3637.
- Bohler S, Sergeant K, Hoffmann L, Dizengremel P, Hausman JF, Renaut J, Jolivet Y. 2011. A difference gel electrophoresis study on thylakoids isolated from poplar leaves reveals a negative impact of ozone exposure on membrane proteins. *J Proteome Res* 10(7): 3003-3011.
- Boldt K, Pors Y, Haupt B, Bitterlich M, Kuhn C, Grimm B, Franken P. 2011. Photochemical processes, carbon assimilation and RNA accumulation of sucrose transporter genes in tomato arbuscular mycorrhiza. *J Plant Physiol* 168(11): 1256-1263.
- Bondarenko PV, Chelius D, Shaler TA. 2002. Identification and relative quantitation of protein mixtures by enzymatic digestion followed by capillary reversed-phase liquid chromatography-tandem mass spectrometry. *Anal Chem* **74**(18): 4741-4749.
- Bonfante P, Genre A. 2008. Plants and arbuscular mycorrhizal fungi: an evolutionary-developmental perspective. *Trends Plant Sci* 13(9): 492-498.
- Bonfante P, Genre A. 2010. Mechanisms underlying beneficial plant-fungus interactions in mycorrhizal symbiosis. *Nat Commun* 1: 48.
- Bonfante P, Perotto S. 1995. Strategies of arbuscular mycorrhizal fungi when infecting host plants. *New Phytol* 130(1): 3-21.
- Bonfante P, Requena N. 2011. Dating in the dark: how roots respond to fungal signals to establish arbuscular mycorrhizal symbiosis. *Curr Opin Plant Biol* 14(4): 451-457.
- **Bradford MM. 1976.** A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. *Anal Biochem* **72**: 248-254.

- Breuillin F, Schramm J, Hajirezaei M, Ahkami A, Favre P, Druege U, Hause B, Bucher M, Kretzschmar T, Bossolini E, Kuhlemeier C, Martinoia E, Franken P, Scholz U, Reinhardt D. 2010. Phosphate systemically inhibits development of arbuscular mycorrhiza in *Petunia hybrida* and represses genes involved in mycorrhizal functioning. *Plant J* 64(6): 1002-1017.
- Brunner A, Keidel EM, Dosch D, Kellermann J, Lotts peich F. 2010. ICPLQuant A software for non-isobaric isotopic labeling proteomics. *Proteomics* 10(2): 315-326.
- **Bucking H, Shachar-Hill Y. 2005.** Phosphate uptake, transport and transfer by the arbuscular mycorrhizal fungus *Glomus intraradices* is stimulated by increased carbohydrate availability. *New Phytol* **165**(3): 899-911.
- Buee M, Rossignol M, Jauneau A, Ranjeva R, Becard G. 2000. The pre-symbiotic growth of arbuscular mycorrhizal fungi is induced by a branching factor partially purified from plant root exudates. *Mol Plant Microbe Interact* **13**(6): 693-698.
- Cairns DA. 2011. Statistical issues in quality control of proteomic analyses: good experimental design and planning. *Proteomics* 11(6): 1037-1048.
- Campos-Soriano L, Gomez-Ariza J, Bonfante P, San Segundo B. 2011. A rice calcium-dependent protein kinase is expressed in cortical root cells during the presymbiotic phase of the arbuscular mycorrhizal symbiosis. *BMC Plant Biol* 11: 90.
- Cappellazzo G, Lanfranco L, Fitz M, Wipf D, Bonfante P. 2008. Characterization of an amino acid permease from the endomycorrhizal fungus *Glomus mosseae*. *Plant Physiol* 147(1): 429-437.
- Cargile BJ, Sevinsky JR, Essader AS, Stephenson JL, Jr., Bundy JL. 2005. Immobilized pH gradient isoelectric focusing as a first-dimension separation in shotgun proteomics. *J Biomol Tech* 16(3): 181-189.
- Carling DE, Brown MF. 1982. Anatomy and physiology of vesicular-arbuscular and nonmycorrhizal roots. *Phytopathology* 72: 1108–1114.
- Carvalho PC, Han X, Xu T, Cociorva D, Carvalho Mda G, Barbosa VC, Yates JR, 3rd. 2010. XDIA: improving on the label-free data-independent analysis. *Bioinformatics* 26(6): 847-848.
- Catal ano CM, Lane WS, Sherrier DJ. 2004. Biochemical characterization of symbiosome membrane proteins from *Medicago truncatula* root nodules. *Electrophoresis* 25(3): 519-531.
- Chelius D, Bondarenko PV. 2002. Quantitative profiling of proteins in complex mixtures using liquid chromatography and mass spectrometry. *J Proteome Res* 1(4): 317-323.
- Chen A, Gu M, Sun S, Zhu L, Hong S, Xu G. 2011. Identification of two conserved cis-acting elements, MYCS and P1BS, involved in the regulation of mycorrhiza-activated phosphate transporters in eudicot species. *New Phytol* **189**(4): 1157-1169.
- Chen C, Gao M, Liu J, Zhu H. 2007. Fungal symbiosis in rice requires an ortholog of a legume common symbiosis gene encoding a Ca²⁺/calmodulin-dependent protein kinase. *Plant Physiol* 145(4): 1619-1628.
- **Chenau J, Michelland S, Sidibe J, Seve M. 2008.** Peptides OFFGEL electrophoresis: a suitable preanalytical step for complex eukaryotic samples fractionation compatible with quantitative iTRAQ labeling. *Proteome Sci* **6**: 9.
- **Cheng FY, Blackburn K, Lin YM, Goshe MB, Williamson JD. 2009.** Absolute protein quantification by LC/MS^(E) for global analysis of salicylic acid-induced plant protein secretion responses. *J Proteome Res* **8**(1): 82-93.
- Chick JM, Haynes PA, Molloy MP, Bjellqvist B, Baker MS, Len AC. 2008. Characterization of the rat liver membrane proteome using peptide immobilized pH gradient isoelectric focusing. J Proteome Res 7(3): 1036-1045.
- Chiou TJ, Liu H, Harrison MJ. 2001. The spatial expression patterns of a phosphate transporter (MtPT1) from *Medicago truncatula* indicate a role in phosphate transport at the root/soil interface. *Plant J* 25(3): 281-293.
- Choudhary MK, Basu D, Datta A, Chakraborty N, Chakraborty S. 2009. Dehydration-responsive nuclear proteome of rice (*Oryza sativa L.*) illustrates protein network, novel regulators of cellular adaptation, and evolutionary perspective. *Mol Cell Proteomics* 8(7): 1579-1598.
- Christofor ou AL, Lilley KS. 2012. Isobaric tagging approaches in quantitative proteomics: the ups and downs. *Anal Bioanal Chem.*
- Colditz F, Braun HP. 2010. Medicago truncatula proteomics. J Proteomics 73(10): 1974-1985.
- Cook CE, Whichard LP, Turner B, Wall ME, Egley GH. 1966. Germination of Witchweed (*Striga lutea Lour.*): Isolation and Properties of a Potent Stimulant. *Science* 154(3753): 1189-1190.
- Cooper B, Feng J, Garrett WM. 2010. Relative, label-free protein quantitation: spectral counting error statistics from nine replicate MudPIT samples. *J Am Soc Mass Spectrom* 21(9): 1534-1546.

- Courville P, Chaloupka R, Cellier MF. 2006. Recent progress in structure-function analyses of Nramp proton-dependent metal-ion transporters. *Biochem Cell Biol* 84(6): 960-978.
- Csizmadia F. 2000. JChem: Java applets and modules supporting chemical database handling from web browsers. J Chem Inf Comput Sci 40(2): 323-324.
- Cullimore J, Denarie J. 2003. Plant sciences. How legumes select their sweet talking symbionts. Science 302(5645): 575-578.
- Czaja LF, Hogekamp C, Lamm P, Maillet F, Martinez EA, Samain E, Denarie J, Kuster H, Hohnjec N. 2012. Transcriptional Responses toward Diffusible Signals from Symbiotic Microbes Reveal MtNFP- and MtDMI3-Dependent Reprogramming of Host Gene Expression by Arbuscular Mycorrhizal Fungal Lipochitooligosaccharides. *Plant Physiol* 159(4): 1671-1685.
- Daher Z, Recorbet G, Valot B, Robert F, Balliau T, Potin S, Schoefs B, Dumas-Gaudot E. 2010. Proteomic analysis of *Medicago truncatula* root plastids. *Proteomics* 10(11): 2123-2137.
- **De Jonge R, Bolton MD, Thomma BP. 2011.** How filamentous pathogens co-opt plants: the ins and outs of fungal effectors. *Curr Opin Plant Biol* **14**(4): 400-406.
- De Wit PJ, Mehrabi R, Van den Burg HA, Stergiopoulos I. 2009. Fungal effector proteins: past, present and future. *Mol Plant Pathol* 10(6): 735-747.
- Doidy J, Grace E, Kuhn C, Simon-Plas F, Casieri L, Wipf D. 2012. Sugar transporters in plants and in their interactions with fungi. *Trends Plant Sci* 17(7): 413-422.
- Drakakaki G, Robert S, Raikhel NV, Hicks GR. 2009. Chemical dissection of endosomal pathways. *Plant Signal Behav* 4(1): 57-62.
- Drissner D, Kunze G, Callewaert N, Gehrig P, Tamasloukht M, Boller T, Felix G, Amrhein N, Bucher M. 2007. Lyso-phosphatidylcholine is a signal in the arbuscular mycorrhizal symbiosis. Science 318(5848): 265-268.
- Dumas-Gaudot E, Asselin A, Gianinazzi-Pearson V, Gollotte A, Gianinazzi S. 1994. Chitinase isoforms in roots of various pea genotypes infected with arbuscular mycorrhizal fungi. *Plant Science* 99: 27-37.
- **Dunkley TP, Watson R, Griffin JL, Dupree P, Lilley KS. 2004.** Localization of organelle proteins by isotope tagging (LOPIT). *Mol Cell Proteomics* **3**(11): 1128-1134.
- Durand TC, Sergeant K, Planchon S, Carpin S, Label P, Morabito D, Hausman JF, Renaut J. 2010. Acute metal stress in *Populus tremula x P. alba* (717-1B4 genotype): leaf and cambial proteome changes induced by cadmiu m²⁺. *Proteomics* 10(3): 349-368.
- Elfstrand M, Feddermann N, Ineichen K, Nagaraj VJ, Wiemken A, Boller T, Salzer P. 2005. Ectopic expression of the mycorrhiza-specific chitinase gene Mtchit 3-3 in *Medicago truncatula* root-organ cultures stimulates spore germination of glomalean fungi. *New Phytol* **167**(2): 557-570.
- Elschenbroich S, Ignatchenko V, Sharma P, Schmitt-Ulms G, Gramolini AO, Kislinger T. 2009. Peptide separations by on-line MudPIT compared to isoelectric focusing in an off-gel format: application to a membrane-enriched fraction from C2C12 mouse skeletal muscle cells. J Proteome Res 8(10): 4860-4869.
- **Engelsberger WR, Erban A, Kopka J, Schulze WX. 2006.** Metabolic labeling of plant cell cultures with K⁽¹⁵⁾NO₃ as a tool for quantitative analysis of proteins and metabolites. *Plant Methods* **2**: 14.
- Ephritikhine G, Ferro M, Rolland N. 2004. Plant membrane proteomics. *Plant Physiol Biochem* 42(12): 943-962.
- Ercolin F, Reinhardt D. 2011. Successful joint ventures of plants: arbuscular mycorrhiza and beyond. *Trends Plant Sci* 16(7): 356-362.
- Eriksson H, Lengqvist J, Hedlund J, Uhlen K, Orre LM, Bjellqvist B, Persson B, Lehtio J, Jakobsson PJ. 2008. Quantitative membrane proteomics applying narrow range peptide isoelectric focusing for studies of small cell lung cancer resistance mechanisms. *Proteomics* 8(15): 3008-3018.
- Ernoult E, Gamelin E, Guette C. 2008. Improved proteome coverage by using iTRAQ labelling and peptide OFFGEL fractionation. *Proteome Sci* 6: 27.
- **Es posito S, Massaro G, Vona V, Di Martino Rigano V, Carfagna S. 2003.** Glutamate synthesis in barley roots: the role of the plastidic glucose-6-phosphate dehydrogenase. *Planta* **216**(4): 639-647.
- **Essader AS, Cargile BJ, Bundy JL, Stephenson JL, Jr. 2005.** A comparison of immobilized pH gradient isoelectric focusing and strong-cation-exchange chromatography as a first dimension in shotgun proteomics. *Proteomics* **5**(1): 24-34.

- **Eubel H, Braun HP, Millar AH. 2005.** Blue-native PAGE in plants: a tool in analysis of proteinprotein interactions. *Plant Methods* **1**(1): 11.
- Faik A, Abouzouhair J, Sarhan F. 2006. Putative fasciclin-like arabinogalactan-proteins (FLA) in wheat (*Triticum aestivum*) and rice (*Oryza sativa*): identification and bioinformatic analyses. *Mol Genet Genomics* 276(5): 478-494.
- Fairman JW, Noinaj N, Buchanan SK. 2011. The structural biology of beta-barrel membrane proteins: a summary of recent reports. *Curr Opin Struct Biol* 21(4): 523-531.
- Falth M, Savitski MM, Nielsen ML, Kjeldsen F, Andren PE, Zubarev RA. 2007. SwedCAD, a database of annotated high-mass accuracy MS/MS spectra of tryptic peptides. J Proteome Res 6(10): 4063-4067.
- Fan J, Chen C, Yu Q, Brlansky RH, Li ZG, Gmitter FG, Jr. 2011. Comparative iTRAQ proteome and transcriptome analyses of sweet orange infected by "*Candidatus Liberibacter asiaticus*". *Physiol Plant* 143(3): 235-245.
- Fang Y, Robinson DP, Foster LJ. 2010. Quantitative analysis of proteome coverage and recovery rates for upstream fractionation methods in proteomics. *J Proteome Res* 9(4): 1902-1912.
- Fares A, Rossignol M, Peltier JB. 2011. Proteomics investigation of endogenous S-nitrosylation in Arabidopsis. Biochem Biophys Res Commun 416(3-4): 331-336.
- Feddermann N, Muni RR, Zeier T, Stuurman J, Ercolin F, Schorderet M, Reinhardt D. 2010. The PAM1 gene of petunia, required for intracellular accommodation and morphogenesis of arbuscular mycorrhizal fungi, encodes a homologue of VAPYRIN. *Plant J* 64(3): 470-481.
- Fernandez-Aparicio M, Flores F, Rubiales D. 2009. Recognition of root exudates by seeds of broomrape (*Orobanche and Phelipanche*) species. *Ann Bot* 103(3): 423-431.
- Ferrol N, Barea JM, Azcon-Aguilar C. 2002. Mechanisms of nutrient transport across interfaces in arbuscular mycorrhizas. *Plant Soil* 244: 231-237.
- Fester T, Hause B, Schmidt D, Halfmann K, Schmidt J, Wray V, Hause G, Strack D. 2002. Occurrence and localization of apocarotenoids in arbuscular mycorrhizal plant roots. *Plant Cell Physiol* **43**(3): 256-265.
- Fields S. 2001. Proteomics. Proteomics in genomeland. Science 291(5507): 1221-1224.
- Filiou MD, Martins-de-Souza D, Guest PC, Bahn S, Turck CW. 2012. To label or not to label: Applications of quantitative proteomics in neuroscience research. *Proteomics* 12(4-5): 736-747.
- Fleron M, Greffe Y, Musmeci D, Massart AC, Hennequiere V, Mazzucchelli G, Waltregny D, De Pauw-Gillet MC, Castronovo V, De Pauw E, Turtoi A. 2010. Novel post-digest isotope coded protein labeling method for phospho- and glycoproteome analysis. *J Proteomics* 73(10): 1986-2005.
- Floss DS, Schliemann W, Schmidt J, Strack D, Walter MH. 2008. RNA interference-mediated repression of MtCCD1 in mycorrhizal roots of *Medicago truncatula* causes accumulation of C27 apocarotenoids, shedding light on the functional role of CCD1. *Plant Physiol* **148**(3): 1267-1282.
- Fournier ML, Gilmore JM, Martin-Brown SA, Washburn MP. 2007. Multidimensional separations-based shotgun proteomics. *Chem Rev* 107(8): 3654-3686.
- Fraterman S, Zeiger U, Khurana TS, Rubinstein NA, Wilm M. 2007. Combination of peptide OFFGEL fractionation and label-free quantitation facilitated proteomics profiling of extraocular muscle. *Proteomics* **7**(18): 3404-3416.
- Frenzel A, Manthey K, Perlick AM, Meyer F, Puhler A, Kuster H, Krajinski F. 2005. Combined transcriptome profiling reveals a novel family of arbuscular mycorrhizal-specific *Medicago* truncatula lectin genes. *Mol Plant Microbe Interact* **18**(8): 771-782.
- Frenzel A, Tiller N, Hause B, Krajinski F. 2006. The conserved arbuscular mycorrhiza-specific transcription of the secretory lectin MtLec5 is mediated by a short upstream sequence containing specific protein binding sites. *Planta* 224(4): 792-800.
- Friedman DB, Hill S, Keller JW, Merchant NB, Levy SE, Coffey RJ, Caprioli RM. 2004. Proteome analysis of human colon cancer by two-dimensional difference gel electrophoresis and mass spectrometry. *Proteomics* 4(3): 793-811.
- Froehlich JE, Wilkerson CG, Ray WK, McAndrew RS, Osteryoung KW, Gage DA, Phinney BS. 2003. Proteomic study of the *Arabidopsis thaliana* chloroplastic envelope membrane utilizing alternatives to traditional two-dimensional electrophoresis. J Proteome Res 2(4): 413-425.
- Gabriel-Neumann E, Neumann G, Leggewie G, George E 2011. Constitutive overexpression of the sucrose transporter SoSUT1 in potato plants increases arbuscular mycorrhiza fungal root colonization under high, but not under low, soil phosphorus availability. J Plant Physiol 168(9): 911-919.

- Gammulla CG, Pascovici D, Atwell BJ, Haynes PA. 2010. Differential metabolic response of cultured rice (*Oryza sativa*) cells exposed to high- and low-temperature stress. *Proteomics* 10(16): 3001-3019.
- Gammulla CG, Pascovici D, Atwell BJ, Haynes PA. 2011. Differential proteomic response of rice (*Oryza sativa*) leaves exposed to high- and low-temperature stress. *Proteomics* 11(14): 2839-2850.
- Gandhi T, Puri P, Fusetti F, Breitling R, Poolman B, Permentier HP. 2012. Effect of iTRAQ Labeling on the Relative Abundance of Peptide Fragment Ions Produced by MALDI-MS/MS. *J Proteome Res* 11(8): 4044-4051.
- Gao M, Showalter AM. 1999. Yariv reagent treatment induces programmed cell death in *Arabidopsis* cell cultures and implicates arabinogalactan protein involvement. *Plant J* 19(3): 321-331.
- Garcia-Garrido JM, Ocampo JA. 2002. Regulation of the plant defence response in arbuscular mycorrhizal symbiosis. *J Exp Bot* 53(373): 1377-1386.
- Gaude N, Schulze WX, Franken P, Krajinski F. 2012. Cell type-specific protein and transcription profiles implicate periarbuscular membrane synthesis as an important carbon sink in the mycorrhizal symbiosis. *Plant Signal Behav* 7(4).
- Ge L, Sun S, Chen A, Kapulnik Y, Xu G. 2008. Tomato sugar transporter genes associated with mycorrhiza and phosphate. *Plant Growth Regulation* 55: 115-123.
- Geigenberger P, Stitt M, Fernie AR. 2004. Metabolic control analysis and regulation of the conversion of sucrose to starch in growing potato tubers. *Plant, Cell & Environment* 27(6): 655-673.
- Genre A, Chabaud M, Timmers T, Bonfante P, Barker DG. 2005. Arbuscular mycorrhizal fungi elicit a novel intracellular apparatus in *Medicago truncatula* root epidermal cells before infection. *Plant Cell* **17**(12): 3489-3499.
- Genre A, Ortu G, Bertoldo C, Martino E, Bonfante P. 2009. Biotic and abiotic stimulation of root epidermal cells reveals common and specific responses to arbuscular mycorrhizal fungi. *Plant Physiol* 149(3): 1424-1434.
- Geromanos SJ, Vissers JP, Silva JC, Dorschel CA, Li GZ, Gorenstein MV, Bateman RH, Langridge JL 2009. The detection, correlation, and comparison of peptide precursor and product ions from data independent LC-MS with data dependent LC-MS/MS. *Proteomics* **9**(6): 1683-1695.
- Gevaert K, Van Damme P, Ghesquiere B, Impens F, Martens L, Helsens K, Vandekerckhove J. 2007. A la carte proteomics with an emphasis on gel-free techniques. *Proteomics* 7(16): 2698-2718.
- Gianinazzi-Pearson V, Arnould C, Oufattole M, Arango M, Gianinazzi S. 2000. Differential activation of H⁺-ATPase genes by an arbuscular mycorrhizal fungus in root cells of transgenic tobacco. *Planta* 211(5): 609-613.
- Gianinazzi S, Gollotte A, Binet MN, van Tuinen D, Redecker D, Wipf D. 2010. Agroecology: the key role of arbuscular mycorrhizas in ecosystem services. *Mycorrhiza* 20(8): 519-530.
- Giovannetti M, Sbrana C, Avio L, Citernesi AS, Logi C. 1993. Differential hyphal morphogenesis in arbuscular mycorrhizal fungi during pre-infection stages. *New Phytologist* 125: 587-594.
- Gomez-Roldan V, Fermas S, Brewer PB, Puech-Pages V, Dun EA, Pillot JP, Letisse F, Matusova R, Danoun S, Portais JC, Bouwmeester H, Becard G, Beveridge CA, Rameau C, Rochange SF. 2008. Strigolactone inhibition of shoot branching. *Nature* 455(7210): 189-194.
- Gordon JA, Jencks WP. 1963. The relationship of structure to the effectiveness of denaturing agents for proteins. *Biochemistry* 2: 47-57.
- Groth M, Takeda N, Perry J, Uchida H, Draxl S, Brachmann A, Sato S, Tabata S, Kawaguchi M, Wang TL, Parniske M. 2010. NENA, a *Lotus japonicus* homolog of Sec13, is required for rhizodermal infection by arbuscular mycorrhiza fungi and rhizobia but dispensable for cortical endosymbiotic development. *Plant Cell* 22(7): 2509-2526.
- Gruhler A, Schulze WX, Matthiesen R, Mann M, Jensen ON. 2005. Stable isotope labeling of *Arabidopsis thaliana* cells and quantitative proteomics by mass spectrometry. *Mol Cell Proteomics* 4(11): 1697-1709.
- Grunwald U, Nyamsuren O, Tamasloukht M, Lapopin L, Becker A, Mann P, Gianinazzi-Pearson V, Krajinski F, Franken P. 2004. Identification of mycorrhiza-regulated genes with arbuscule development-related expression profile. *Plant Mol Biol* 55(4): 553-566.
- Guether M, Neuhauser B, Balestrini R, Dynowski M, Ludewig U, Bonfante P. 2009. A mycorrhizal-specific ammonium transporter from *Lotus japonicus* acquires nitrogen released by arbuscular mycorrhizal fungi. *Plant Physiol* **150**(1): 73-83.

- Guimil S, Chang HS, Zhu T, Sesma A, Osbourn A, Roux C, Ioannidis V, Oakeley EJ, Docquier M, Descombes P, Briggs SP, Paszkowski U. 2005. Comparative transcriptomics of rice reveals an ancient pattern of response to microbial colonization. *Proc Natl Acad Sci U S A* 102(22): 8066-8070.
- Gutjahr C, Banba M, Croset V, An K, Miyao A, An G, Hirochika H, Imaizumi-Anraku H, Paszkowski U. 2008. Arbuscular mycorrhiza-specific signaling in rice transcends the common symbiosis signaling pathway. *Plant Cell* 20(11): 2989-3005.
- Gutjahr C, Novero M, Welham T, Wang T, Bonfante P. 2011. Root starch accumulation in response to arbuscular mycorrhizal colonization differs among *Lotus japonicus* starch mutants. *Planta* 234(3): 639-646.
- Gutjahr C, Radovanovic D, Geoffroy J, Zhang Q, Siegler H, Chiapello M, Casieri L, An K, An G, Guiderdoni E, Kumar CS, Sundaresan V, Harrison MJ, Paszkowski U. 2012. The halfsize ABC transporters STR1 and STR2 are indispensable for mycorrhizal arbuscule formation in rice. *Plant J* **69**(5): 906-920.
- **Gygi SP, Corthals GL, Zhang Y, Rochon Y, Aebersold R. 2000.** Evaluation of two-dimensional gel electrophoresis-based proteome analysis technology. *Proc Natl Acad Sci U S A* **97**(17): 9390-9395.
- Gygi SP, Rist B, Gerber SA, Turecek F, Gelb MH, Aebersold R. 1999. Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. *Nat Biotechnol* 17(10): 994-999.
- Hagglund P, Bunkenborg J, Maeda K, Svensson B. 2008. Identification of thioredoxin disulfide targets using a quantitative proteomics approach based on isotope-coded affinity tags. J Proteome Res 7(12): 5270-5276.
- Hagglund P, Bunkenborg J, Yang F, Harder LM, Finnie C, Svensson B. 2010. Identification of thioredoxin target disulfides in proteins released from barley aleurone layers. J Proteomics 73(6): 1133-1136.
- Hahne H, Wolff S, Hecker M, Becher D. 2008. From complementarity to comprehensiveness-targeting the membrane proteome of growing *Bacillus subtilis* by divergent approaches. *Proteomics* 8(19): 4123-4136.
- Hariton-Gazal E, Rosenbluh J, Graessmann A, Gilon C, Loyter A. 2003. Direct translocation of histone molecules across cell membranes. J Cell Sci 116(Pt 22): 4577-4586.
- Harrison MJ. 1999. Molecular and Cellular Aspects of the Arbuscular Mycorrhizal Symbiosis. *Annu Rev Plant Physiol Plant Mol Biol* 50: 361-389.
- Harrison MJ. 2005. Signaling in the arbuscular mycorrhizal symbiosis. Annu Rev Microbiol 59: 19-42.
- Harrison MJ, Dewbre GR, Liu J. 2002. A phosphate transporter from *Medicago truncatula* involved in the acquisition of phosphate released by arbuscular mycorrhizal fungi. *Plant Cell* 14(10): 2413-2429.
- Harrison MJ, van Buuren ML. 1995. A phosphate transporter from the mycorrhizal fungus *Glomus* versiforme. Nature 378(6557): 626-629.
- Hartman NT, Sicilia F, Lilley KS, Dupree P. 2007. Proteomic complex detection using sedimentation. Anal Chem 79(5): 2078-2083.
- Hause B, Schaarschmidt S. 2009. The role of jas monates in mutualistic symbioses between plants and soil-born microorganisms. *Phytochemistry* **70**(13-14): 1589-1599.
- Hayashi T, Banba M, Shimoda Y, Kouchi H, Hayashi M, Imaizumi-Anraku H. 2010. A dominant function of CCaMK in intracellular accommodation of bacterial and fungal endosymbionts. *Plant J* 63(1): 141-154.
- Haynes PA, Roberts TH. 2007. Subcellular shotgun proteomics in plants: looking beyond the usual suspects. *Proteomics* 7(16): 2963-2975.
- Helber N, Wippel K, Sauer N, Schaarschmidt S, Hause B, Requena N. 2011. A versatile monosaccharide transporter that operates in the arbuscular mycorrhizal fungus *Glomus sp* is crucial for the symbiotic relationship with plants. *Plant Cell* 23(10): 3812-3823.
- Helbig AO, Heck AJ, Slijper M. 2010. Exploring the membrane proteome--challenges and analytical strategies. *J Proteomics* **73**(5): 868-878.
- Henckel K, Runte KJ, Bekel T, Dondrup M, Jakobi T, Kuster H, Goesmann A. 2009. TRUNCATULIX--a data warehouse for the legume community. *BMC Plant Biol* 9: 19.
- Heupel S, Roser B, Kuhn H, Lebrun MH, Villalba F, Requena N. 2010. Erl1, a novel era-like GTPase from *Magnaporthe oryzae*, is required for full root virulence and is conserved in the mutualistic symbiont *Glomus intraradices*. *Mol Plant Microbe Interact* 23(1): 67-81.

- Hirochika H, Guiderdoni E, An G, Hsing YI, Eun MY, Han CD, Upadhyaya N, Ramachandran S, Zhang Q, Pereira A, Sundaresan V, Leung H. 2004. Rice mutant resources for gene discovery. *Plant Mol Biol* 54(3): 325-334.
- **Hodge A, Campbell CD, Fitter AH. 2001.** An arbuscular mycorrhizal fungus accelerates decomposition and acquires nitrogen directly from organic material. *Nature* **413**(6853): 297-299.
- Hogenhout SA, Van der Hoorn RA, Terauchi R, Kamoun S. 2009. Emerging concepts in effector biology of plant-associated organisms. *Mol Plant Microbe Interact* 22(2): 115-122.
- Hohnjec N, Vieweg MF, Puhler A, Becker A, Kuster H. 2005. Overlaps in the transcriptional profiles of *Medicago truncatula* roots inoculated with two different *Glomus* fungi provide insights into the genetic program activated during arbuscular mycorrhiza. *Plant Physiol* 137(4): 1283-1301.
- Holland KA, Holland IB. 2002. Transmembrane signalling. In Nature Encyclopedia of Life Sciences. London: Nature Publishing Group.
- Horth P, Miller CA, Preckel T, Wenz C. 2006. Efficient fractionation and improved protein identification by peptide OFFGEL electrophoresis. *Mol Cell Proteomics* 5(10): 1968-1974.
- Hubbard C, Singleton D, Rauch M, Jayasinghe S, Cafiso D, Castle D. 2000. The secretory carrier membrane protein family: structure and membrane topology. *Mol Biol Cell* 11(9): 2933-2947.
- Hubner NC, Ren S, Mann M. 2008. Peptide separation with immobilized pI strips is an attractive alternative to in-gel protein digestion for proteome analysis. *Proteomics* 8(23-24): 4862-4872.
- Huttlin EL, Hegeman AD, Harms AC, Sussman MR. 2007. Comparison of full versus partial metabolic labeling for quantitative proteomics analysis in *Arabidopsis thaliana*. *Mol Cell Proteomics* 6(5): 860-881.
- Imai K, Fujita N, Gromiha MM, Horton P. 2011. Eukaryote-wide sequence analysis of mitochondrial beta-barrel outer membrane proteins. *BMC Genomics* 12: 79.
- **Ippel JH, Pouvreau L, Kroef T, Gruppen H, Versteeg G, van den Putten P, Struik PC, van Mierlo CP. 2004.** In vivo uniform ⁽¹⁵⁾N-isotope labelling of plants: using the greenhouse for structural proteomics. *Proteomics* **4**(1): 226-234.
- Isayenkov S, Mrosk C, Stenzel I, Strack D, Hause B. 2005. Suppression of allene oxide cyclase in hairy roots of *Medicago truncatula* reduces jasmonate levels and the degree of mycorrhization with *Glomus intraradices*. *Plant Physiol* **139**(3): 1401-1410.
- Ishihama Y, Oda Y, Tabata T, Sato T, Nagasu T, Rappsilber J, Mann M. 2005. Exponentially modified protein abundance index (emPAI) for estimation of absolute protein amount in proteomics by the number of sequenced peptides per protein. *Mol Cell Proteomics* 4(9): 1265-1272.
- Islam N, Tsujimoto H, Hirano H. 2003. Wheat proteomics: relationship between fine chromosome deletion and protein expression. *Proteomics* 3(3): 307-316.
- Ivanov S, Fedorova EE, Limpens E, De Mita S, Genre A, Bonfante P, Bisseling T. 2012. Rhizobium-legume symbiosis shares an exocytotic pathway required for arbuscule formation. *Proc Natl Acad Sci USA* 109(21): 8316-8321.
- Javot H, Penmetsa RV, Breuillin F, Bhattarai KK, Noar RD, Gomez SK, Zhang Q, Cook DR, Harrison MJ. 2011. *Medicago truncatula* mtpt4 mutants reveal a role for nitrogen in the regulation of arbuscule degeneration in arbuscular mycorrhizal symbiosis. *Plant J* 68(6): 954-965.
- Javot H, Penmetsa RV, Terzaghi N, Cook DR, Harrison MJ. 2007. A Medicago truncatula phosphate transporter indispensable for the arbuscular mycorrhizal symbiosis. Proc Natl Acad Sci USA 104(5): 1720-1725.
- Jones AM, Bennett MH, Mansfield JW, Grant M. 2006. Analysis of the defence phosphoproteome of *Arabidopsis thaliana* using differential mass tagging. *Proteomics* 6(14): 4155-4165.
- Jones MN. 1999. Surfactants in membrane solubilisation. Int J Pharm 177(2): 137-159.
- Jones PM, George AM. 2004. The ABC transporter structure and mechanism: perspectives on recent research. *Cell Mol Life Sci* 61(6): 682-699.
- Jorrin JV, Maldonado AM, Castillejo MA. 2007. Plant proteome analysis: a 2006 update. Proteomics 7(16): 2947-2962.
- Kaffarnik FA, Jones AM, Rathjen JP, Peck SC. 2009. Effector proteins of the bacterial pathogen Pseudomonas syringae alter the extracellular proteome of the host plant, Arabidopsis thaliana. Mol Cell Proteomics 8(1): 145-156.
- Karp NA, Lilley KS. 2009. Investigating sample pooling strategies for DIGE experiments to address biological variability. *Proteomics* 9(2): 388-397.

- Kas par S, Matros A, Mock HP. 2010. Proteome and flavonoid analysis reveals distinct responses of epidermal tissue and whole leaves upon UV-B radiation of barley (*Hordeum vulgare L.*) seedlings. *J Proteome Res* 9(5): 2402-2411.
- Kato M, Nagasaki-Takeuchi N, Ide Y, Tomioka R, Maeshima M. 2010. PCaPs, possible regulators of PtdInsP signals on plasma membrane. *Plant Signal Behav* 5(7): 848-850.
- Kieffer P, Dommes J, Hoffmann L, Hausman JF, Renaut J. 2008. Quantitative changes in protein expression of cadmium-exposed poplar plants. *Proteomics* 8(12): 2514-2530.
- Kiirika LM, Bergmann HF, Schikowsky C, Wimmer D, Korte J, Schmitz U, Niehaus K, Colditz F. 2012. Silencing of the Rac1 GTPase MtROP9 in *Medicago truncatula* stimulates early mycorrhizal and oomycete root colonizations but negatively affects rhizobial infection. *Plant Physiol* 159(1): 501-516.
- Kistner C, Winzer T, Pitzschke A, Mulder L, Sato S, Kaneko T, Tabata S, Sandal N, Stougaard J, Webb KJ, Szczyglowski K, Parniske M. 2005. Seven *Lotus japonicus* genes required for transcriptional reprogramming of the root during fungal and bacterial symbiosis. *Plant Cell* 17(8): 2217-2229.
- Kleczkowski LA, Geisler M, Ciereszko I, Johansson H. 2004. UDP-glucose pyrophosphorylase. An old protein with new tricks. *Plant Physiol* 134(3): 912-918.
- Kleparnik K, Bocek P. 2010. Electrophoresis today and tomorrow: Helping biologists' dreams come true. *Bioessays* 32(3): 218-226.
- Kloppholz S, Kuhn H, Requena N. 2011. A secreted fungal effector of *Glomus intraradices* promotes symbiotic biotrophy. *Curr Biol* 21(14): 1204-1209.
- Kobae Y, Hata S. 2010. Dynamics of periarbuscular membranes visualized with a fluorescent phosphate transporter in arbuscular mycorrhizal roots of rice. *Plant Cell Physiol* 51(3): 341-353.
- Kobae Y, Tamura Y, Takai S, Banba M, Hata S. 2010. Localized expression of arbuscular mycorrhiza-inducible ammonium transporters in soybean. *Plant Cell Physiol* 51(9): 1411-1415.
- Kocher T, Pichler P, Schutzbier M, Stingl C, Kaul A, Teucher N, Hasenfuss G, Penninger JM, Mechtler K. 2009. High precision quantitative proteomics using iTRAQ on an LTQ Orbitrap: a new mass spectrometric method combining the benefits of all. *J Proteome Res* 8(10): 4743-4752.
- Kohlen W, Charnikhova T, Liu Q, Bours R, Domagalska MA, Beguerie S, Verstappen F, Leyser O, Bouwmeester H, Ruyter-Spira C. 2011. Strigolactones are transported through the xylem and play a key role in shoot architectural response to phosphate deficiency in nonarbuscular mycorrhizal host Arabidopsis. Plant Physiol 155(2): 974-987.
- Koltai H, LekKala SP, Bhattacharya C, Mayzlish-Gati E, Resnick N, Wininger S, Dor E, Yoneyama K, Hershenhorn J, Joel DM, Kapulnik Y. 2010. A tomato strigolactoneimpaired mutant displays aberrant shoot morphology and plant interactions. *J Exp Bot* 61(6): 1739-1749.
- Komatsu S, Wada T, Abalea Y, Nouri MZ, Nanjo Y, Nakayama N, Shimamura S, Yamamoto R, Nakamura T, Furukawa K. 2009. Analysis of plasma membrane proteome in soybean and application to flooding stress response. *J Proteome Res* 8(10): 4487-4499.
- Kosuta S, Hazledine S, Sun J, Miwa H, Morris RJ, Downie JA, Oldroyd GE. 2008. Differential and chaotic calcium signatures in the symbiosis signaling pathway of legumes. *Proc Natl Acad Sci USA* 105(28): 9823-9828.
- Kota U, Goshe MB. 2011. Advances in qualitative and quantitative plant membrane proteomics. *Phytochemistry* 72(10): 1040-1060.
- Kouchi H, Imaizumi-Anraku H, Hayashi M, Hakoyama T, Nakagawa T, Umehara Y, Suganuma N, Kawaguchi M. 2010. How many peas in a pod? Legume genes responsible for mutualistic symbioses underground. *Plant Cell Physiol* **51**(9): 1381-1397.
- Krajinski F, Frenzel A. 2007. Towards the elucidation of AM-specific transcription in *Medicago* truncatula. Phytochemistry 68(1): 75-81.
- Krajinski F, Hause B, Gianinazzi-Pearson V, Franken P. 2002. Mthal, a plasma membrane H⁺-ATPase gene from *Medicago truncatula*, shows arbuscule-specific induced expression in mycorrhizal tissue. *Plant Biol* 4: 754-761.
- Kretzschmar T, Kohlen W, Sasse J, Borghi L, Schlegel M, Bachelier JB, Reinhardt D, Bours R, Bouwmeester HJ, Martinoia E. 2012. A petunia ABC protein controls strigolactonedependent symbiotic signalling and branching. *Nature* 483(7389): 341-344.

- Kruger M, Kruger C, Walker C, Stockinger H, Schussler A. 2012. Phylogenetic reference data for systematics and phylotaxonomy of arbuscular mycorrhizal fungi from phylum to species level. *New Phytol* 193(4): 970-984.
- Kubo M, Ueda H, Park P, Kawaguchi M, Sugimoto Y. 2009. Reactions of *Lotus japonicus* ecotypes and mutants to root parasitic plants. *J Plant Physiol* 166(4): 353-362.
- Kuhn H, Kuster H, Requena N. 2010. Membrane steroid-binding protein 1 induced by a diffusible fungal signal is critical for mycorrhization in *Medicago truncatula*. New Phytol 185(3): 716-733.
- Kuromori T, Takahashi S, Kondou Y, Shinozaki K, Matsui M. 2009. Phenome analysis in plant species using loss-of-function and gain-of-function mutants. *Plant Cell Physiol* **50**(7): 1215-1231.
- Kuster H, Vieweg MF, Manthey K, Baier MC, Hohnjec N, Perlick AM. 2007. Identification and expression regulation of symbiotically activated legume genes. *Phytochemistry* **68**(1): 8-18.
- Kwon C, Neu C, Pajonk S, Yun HS, Lipka U, Humphry M, Bau S, Straus M, Kwaaitaal M, Rampelt H, El Kasmi F, Jurgens G, Parker J, Panstruga R, Lipka V, Schulze-Lefert P. 2008. Co-option of a default secretory pathway for plant immune responses. *Nature* 451(7180): 835-840.
- Lanquar V, Kuhn L, Lelievre F, Khafif M, Espagne C, Bruley C, Barbier-Brygoo H, Garin J, Thomine S. 2007. ¹⁵N-metabolic labeling for comparative plasma membrane proteomics in *Arabidopsis* cells. *Proteomics* 7(5): 750-754.
- Larrainzar E, Wienkoop S, Weckwerth W, Ladrera R, Arrese-Igor C, Gonzalez EM. 2007. *Medicago truncatula* root nodule proteome analysis reveals differential plant and bacteroid responses to drought stress. *Plant Physiol* 144(3): 1495-1507.
- Lasserre JP, Menard A. 2012. Two-dimensional blue native/SDS gel electrophoresis of multiprotein complexes. *Methods Mol Biol* 869: 317-337.
- Lee J, Feng J, Campbell KB, Scheffler BE, Garrett WM, Thibivilliers S, Stacey G, Naiman DQ, Tucker ML, Pastor-Corrales MA, Cooper B. 2009. Quantitative proteomic analysis of bean plants infected by a virulent and avirulent obligate rust fungus. *Mol Cell Proteomics* 8(1): 19-31.
- Leggewie G, Kolbe A, Lemoine R, Roessner U, Lytovchenko A, Zuther E, Kehr J, Frommer WB, Riesmeier JW, Willmitzer L, Fernie AR. 2003. Overexpression of the sucrose transporter SoSUT1 in potato results in alterations in leaf carbon partitioning and in tuber metabolism but has little impact on tuber morphology. *Planta* 217(1): 158-167.
- Lengqvist J, Uhlen K, Lehtio J. 2007. iTRAQ compatibility of peptide immobilized pH gradient isoelectric focusing. *Proteomics* 7(11): 1746-1752.
- Leroy B, Rosier C, Erculisse V, Leys N, Mergeay M, Wattiez R. 2010. Differential proteomic analysis using isotope-coded protein-labeling strategies: comparison, improvements and application to simulated microgravity effect on *Cupriavidus metallidurans* CH34. *Proteomics* 10(12): 2281-2291.
- Levy J, Bres C, Geurts R, Chalhoub B, Kulikova O, Duc G, Journet EP, Ane JM, Lauber E, Bisseling T, Denarie J, Rosenberg C, Debelle F. 2004. A putative Ca²⁺ and calmodulindependent protein kinase required for bacterial and fungal symbioses. *Science* 303(5662): 1361-1364.
- Li T, Xu SL, Oses-Prieto JA, Putil S, Xu P, Wang RJ, Li KH, Maltby DA, An LH, Burlingame AL, Deng ZP, Wang ZY. 2011. Proteomics analysis reveals post-translational mechanisms for cold-induced metabolic changes in *Arabidopsis*. *Mol Plant* 4(2): 361-374.
- Liao J, Singh S, Hossain MS, Andersen SU, Ross L, Bonetta D, Zhou Y, Sato S, Tabata S, Stougaard J, Szczyglowski K, Parniske M. 2012. Negative regulation of CCaMK is essential for symbiotic infection. *Plant J*.
- Lilley KS, Razzaq A, Dupree P. 2002. Two-dimensional gel electrophoresis: recent advances in sample preparation, detection and quantitation. *Curr Opin Chem Biol* 6(1): 46-50.
- Liu H, Sadygov RG, Yates JR, 3rd. 2004. A model for random sampling and estimation of relative protein abundance in shotgun proteomics. *Anal Chem* 76(14): 4193-4201.
- Liu H, Trieu AT, Blaylock LA, Harrison MJ. 1998. Cloning and characterisation of two phosphate transporters from *Medicago trunculata* roots: regulation in response to phosphate and response to colonization by arbuscular mycorrhizal (AM) fungi *Mol Plant Microbe Interact* 11: 14-22.
- Liu J, Blaylock LA, Endre G, Cho J, Town CD, VandenBosch KA, Harrison MJ. 2003. Transcript profiling coupled with spatial expression analyses reveals genes involved in distinct developmental stages of an arbuscular mycorrhizal symbiosis. *Plant Cell* **15**(9): 2106-2123.

- Liu J, Maldonado-Mendoza I, Lopez-Meyer M, Cheung F, Town CD, Harrison MJ. 2007. Arbuscular mycorrhizal symbiosis is accompanied by local and systemic alterations in gene expression and an increase in disease resistance in the shoots. *Plant J* 50(3): 529-544.
- Liu J, Versaw WK, Pumplin N, Gomez SK, Blaylock LA, Harrison MJ. 2008. Closely related members of the *Medicago truncatula* PHT1 phosphate transporter gene family encode phosphate transporters with distinct biochemical activities. *J Biol Chem* 283(36): 24673-24681.
- Liu W, Kohlen W, Lillo A, Op den Camp R, Ivanov S, Hartog M, Limpens E, Jamil M, Smaczniak C, Kaufmann K, Yang WC, Hooiveld GJ, Charnikhova T, Bouwmeester HJ, Bisseling T, Geurts R. 2011. Strigolactone biosynthesis in *Medicago truncatula* and rice requires the symbiotic GRAS-type transcription factors NSP1 and NSP2. *Plant Cell* 23(10): 3853-3865.
- Lohse S, Schliemann W, Ammer C, Kopka J, Strack D, Fester T. 2005. Organization and metabolism of plastids and mitochondria in arbuscular mycorrhizal roots of *Medicago* truncatula. Plant Physiol 139(1): 329-340.
- Lopez-Juez E. 2007. Plastid biogenesis, between light and shadows. J Exp Bot 58(1): 11-26.
- Lopez-Pedrosa A, Gonzalez-Guerrero M, Valderas A, Azcon-Aguilar C, Ferrol N. 2006. GintAMT1 encodes a functional high-affinity ammonium transporter that is expressed in the extraradical mycelium of *Glomus intraradices*. *Fungal Genet Biol* **43**(2): 102-110.
- Lu P, Vogel C, Wang R, Yao X, Marcotte EM. 2007. Absolute protein expression profiling estimates the relative contributions of transcriptional and translational regulation. *Nat Biotechnol* 25(1): 117-124.
- Lundgren DH, Hwang SI, Wu L, Han DK. 2010. Role of spectral counting in quantitative proteomics. *Expert Rev Proteomics* 7(1): 39-53.
- Maeda D, Ashida K, Iguchi K, Chechetka SA, Hijikata A, Okusako Y, Deguchi Y, Izui K, Hata S. 2006. Knockdown of an arbuscular mycorrhiza-inducible phosphate transporter gene of *Lotus japonicus* suppresses mutualistic symbiosis. *Plant Cell Physiol* 47(7): 807-817.
- Maillet F, Poinsot V, Andre O, Puech-Pages V, Haouy A, Gueunier M, Cromer L, Giraudet D, Formey D, Niebel A, Martinez EA, Driguez H, Becard G, Denarie J. 2011. Fungal lipochitooligosaccharide symbiotic signals in arbuscular mycorrhiza. Nature 469(7328): 58-63.
- Majeran W, Cai Y, Sun Q, van Wijk KJ. 2005. Functional differentiation of bundle sheath and mesophyll maize chloroplasts determined by comparative proteomics. *Plant Cell* 17(11): 3111-3140.
- Majeran W, Zybailov B, Ytterberg AJ, Dunsmore J, Sun Q, van Wijk KJ. 2008. Consequences of C4 differentiation for chloroplast membrane proteomes in maize mesophyll and bundle sheath cells. *Mol Cell Proteomics* 7(9): 1609-1638.
- Manadas B, English JA, Wynne KJ, Cotter DR, Dunn MJ. 2009. Comparative analysis of OFFGel, strong cation exchange with pH gradient, and RP at high pH for first-dimensional separation of peptides from a membrane-enriched protein fraction. *Proteomics* 9(22): 5194-5198.
- Manadas B, Mendes VM, English J, Dunn MJ. 2010. Peptide fractionation in proteomics approaches. *Expert Rev Proteomics* 7(5): 655-663.
- Mann M. 2006. Functional and quantitative proteomics using SILAC. Nat Rev Mol Cell Biol 7(12): 952-958.
- Manthey K, Krajinski F, Hohnjec N, Firnhaber C, Puhler A, Perlick AM, Kuster H. 2004. Transcriptome profiling in root nodules and arbuscular mycorrhiza identifies a collection of novel genes induced during *Medicago truncatula* root endosymbioses. *Mol Plant Microbe Interact* **17**(10): 1063-1077.
- Manza LL, Stamer SL, Ham AJ, Codreanu SG, Liebler DC. 2005. Sample preparation and digestion for proteomic analyses using spin filters. *Proteomics* 5(7): 1742-1745.
- Marmagne A, Rouet MA, Ferro M, Rolland N, Alcon C, Joyard J, Garin J, Barbier-Brygoo H, Ephritikhine G. 2004. Identification of new intrinsic proteins in *Arabidopsis* plasma membrane proteome. *Mol Cell Proteomics* 3(7): 675-691.
- Marsh E, Alvarez S, Hicks LM, Barbazuk WB, Qiu W, Kovacs L, Schachtman D. 2010. Changes in protein abundance during powdery mildew infection of leaf tissues of Cabernet Sauvignon grapevine (*Vitis vinifera L.*). *Proteomics* **10**(10): 2057-2064.
- Marsh JF, Schultze M. 2001. Analysis of arbuscular mycorrhizas using symbiosis-defective plant mutants. *New Phytologist* 150: 525–532.

- Martin F, Gianinazzi-Pearson V, Hijri M, Lammers P, Requena N, Sanders IR, Shachar-Hill Y, Shapiro H, Tuskan GA, Young JP. 2008. The long hard road to a completed *Glomus intraradices* genome. *New Phytol* 180(4): 747-750.
- Martin SF, Munagapati VS, Salvo-Chirnside E, Kerr LE, Le Bihan T. 2012. Proteome turnover in the green alga *Ostreococcus tauri* by time course ¹⁵N metabolic labeling mass spectrometry. J Proteome Res 11(1): 476-486.
- Mastrobuoni G, Irgang S, Pietzke M, Wenzel M, Assmus HE, Schulze WX, Kempa S. 2012. Proteome dynamics and early salt stress response of the photosynthetic organism *Chlamydomonas reinhardtii*. BMC Genomics 13(1): 215.
- Mathesius U. 2009. Comparative proteomic studies of root-microbe interactions. *J Proteomics* 72(3): 353-366.
- Mathesius U, Keijzers G, Natera SH, Weinman JJ, Djor djevic MA, Rolfe BG. 2001. Establishment of a root proteome reference map for the model legume *Medicago truncatula* using the expressed sequence tag database for peptide mass fingerprinting. *Proteomics* 1(11): 1424-1440.
- Mathy G, Sluse FE. 2008. Mitochondrial comparative proteomics: strengths and pitfalls. *Biochim Biophys Acta* 1777(7-8): 1072-1077.
- Meisrimler CN, Luthje S. 2012. IPG-strips versus off-gel fractionation: advantages and limits of twodimensional PAGE in separation of microsomal fractions of frequently used plant species and tissues. J Proteomics 75(9): 2550-2562.
- Melo-Braga MN, Verano-Braga T, Leon IR, Antonacci D, Nogueira FC, Thelen JJ, Larsen MR, Palmisano G. 2012. Modulation of protein phosphorylation, glycosylation and acetylation in grape (*Vitis vinifera*) mesocarp and exocarp due to *Lobesia botrana* infection. *Mol Cell Proteomics*.
- Meng Q, Rao L, Xiang X, Zhou C, Zhang X, Pan Y. 2011. A systematic strategy for proteomic analysis of chloroplast protein complexes in wheat. *Biosci Biotechnol Biochem* 75(11): 2194-2199.
- Messinese E, Mun JH, Yeun LH, Jayaraman D, Rouge P, Barre A, Lougnon G, Schornack S, Bono JJ, Cook DR, Ane JM. 2007. A novel nuclear protein interacts with the symbiotic DMI3 calcium- and calmodulin-dependent protein kinase of *Medicago truncatula*. *Mol Plant Microbe Interact* 20(8): 912-921.
- Miao Z, Li D, Zhang Z, Dong J, Su Z, Wang T. 2012. *Medicago truncatula* transporter database: a comprehensive database resource for *M. truncatula* transporters. *BMC Genomics* 13: 60.
- Miles GP, Samuel MA, Ranish JA, Donohoe SM, Sperrazzo GM, Elis BE. 2009. Quantitative proteomics identifies oxidant-induced, AtMPK6-dependent changes in *Arabidopsis* thaliana protein profiles. *Plant Signal Behav* 4(6): 497-505.
- Mohammadi M, Anoop V, Gleddie S, Harris LJ. 2011. Proteomic profiling of two maize inbreds during early gibberella ear rot infection. *Proteomics* 11(18): 3675-3684.
- Morandi D, le Signor C, Gianinazzi-Pearson V, Duc G. 2009. A *Medicago truncatula* mutant hyperresponsive to mycorrhiza and defective for nodulation. *Mycorrhiza* 19(6): 435-441.
- Morandi D, Prado E, Sagan M, Duc G. 2005. Characterisation of new symbiotic *Medicago* truncatula (Gaertn.) mutants, and phenotypic or genotypic complementary information on previously described mutants. *Mycorrhiza* 15(4): 283-289.
- Murray JD, Muni RR, Torres-Jerez I, Tang Y, Allen S, Andriankaja M, Li G, Laxmi A, Cheng X, Wen J, Vaughan D, Schultze M, Sun J, Charpentier M, Oldroyd G, Tadege M, Ratet P, Mysore KS, Chen R, Udvardi MK. 2011. Vapyrin, a gene essential for intracellular progression of arbuscular mycorrhizal symbiosis, is also essential for infection by rhizobia in the nodule symbiosis of *Medicago truncatula*. *Plant J* 65(2): 244-252.
- Nadolski MJ, Linder ME. 2007. Protein lipidation. FEBS J 274(20): 5202-5210.
- Nagaraj N, Lu A, Mann M, Wisniewski JR. 2008. Detergent-based but gel-free method allows identification of several hundred membrane proteins in single LC-MS runs. *J Proteome Res* 7(11): 5028-5032.
- Nair R, Rost B. 2002. Sequence conserved for subcellular localization. Protein Sci 11(12): 2836-2847.
- Naumann B, Busch A, Allmer J, Ostendorf E, Zeller M, Kirchhoff H, Hippler M. 2007. Comparative quantitative proteomics to investigate the remodeling of bioenergetic pathways under iron deficiency in *Chlamydomonas reinhardtii*. *Proteomics* 7(21): 3964-3979.
- Neilson KA, Ali NA, Muralidharan S, Mirzaei M, Mariani M, Assadourian G, Lee A, van Sluyter SC, Haynes PA. 2011a. Less label, more free: approaches in label-free quantitative mass spectrometry. *Proteomics* 11(4): 535-553.

- Neilson KA, Mariani M, Haynes PA. 2011b. Quantitative proteomic analysis of cold-responsive proteins in rice. *Proteomics* 11(9): 1696-1706.
- Nelson CJ, Hegeman AD, Harms AC, Sussman MR. 2006. A quantitative analysis of *Arabidopsis* plasma membrane using trypsin-catalyzed ⁽¹⁸⁾O labeling. *Mol Cell Proteomics* 5(8): 1382-1395.
- Nesvizhskii AI, Aebersold R. 2005. Interpretation of shotgun proteomic data: the protein inference problem. *Mol Cell Proteomics* 4(10): 1419-1440.
- Neuhaus HE, Emes MJ. 2000. Nonphotosynthetic Metabolism in Plastids. Annu Rev Plant Physiol Plant Mol Biol 51: 111-140.
- Nguyen TH, Brechenmacher L, Aldrich J, Clauss T, Gritsenko M, Hixson K, Libault M, Tanaka K, Yang F, Yao Q, Pasa-Tolic L, Xu D, Nguyen HT, Stacey G. 2012. Quantitative Phosphoproteomic Analysis of Soybean Root Hairs Inoculated with *Bradyrhizobium japonicum*. Mol Cell Proteomics.
- Niittyla T, Fuglsang AT, Palmgren MG, Frommer WB, Schulze WX. 2007. Temporal analysis of sucrose-induced phosphorylation changes in plasma membrane proteins of *Arabidopsis*. *Mol Cell Proteomics* 6(10): 1711-1726.
- Nogueira FC, Palmisano G, Schwammle V, Campos FA, Larsen MR, Domont GB, Roepstorff P. 2012. Performance of isobaric and isotopic labeling in quantitative plant proteomics. J Proteome Res 11(5): 3046-3052.
- Nouri MZ, Komatsu S. 2010. Comparative analysis of soybean plasma membrane proteins under osmotic stress using gel-based and LC MS/MS-based proteomics approaches. *Proteomics* 10(10): 1930-1945.
- Nuhse TS, Bottrill AR, Jones AM, Peck SC. 2007. Quantitative phosphoproteomic analysis of plasma membrane proteins reveals regulatory mechanisms of plant innate immune responses. *Plant J* 51(5): 931-940.
- Nunes CC, Dean RA. 2012. Host-induced gene silencing: a tool for understanding fungal host interaction and for developing novel disease control strategies. *Mol Plant Pathol* 13(5): 519-529.
- **O'Connell RJ, Panstruga R. 2006.** Tete a tete inside a plant cell: establishing compatibility between plants and biotrophic fungi and oomycetes. *New Phytol* **171**(4): 699-718.
- O'Farrell PH. 1975. High resolution two-dimensional electrophoresis of proteins. J Biol Chem 250(10): 4007-4021.
- Old WM, Meyer-Arendt K, Aveline-Wolf L, Pierce KG, Mendoza A, Sevinsky JR, Resing KA, Ahn NG. 2005. Comparison of label-free methods for quantifying human proteins by shotgun proteomics. *Mol Cell Proteomics* 4(10): 1487-1502.
- Ong SE, Mann M. 2005. Mass spectrometry-based proteomics turns quantitative. *Nat Chem Biol* 1(5): 252-262.
- Ong SE, Pandey A. 2001. An evaluation of the use of two-dimensional gel electrophoresis in proteomics. *Biomol Eng* 18(5): 195-205.
- Op den Camp R, Streng A, De Mita S, Cao Q, Polone E, Liu W, Ammiraju JS, Kudrna D, Wing R, Untergasser A, Bisseling T, Geurts R. 2011. LysM-type mycorrhizal receptor recruited for rhizobium symbiosis in nonlegume *Parasponia*. *Science* 331(6019): 909-912.
- Ow SY, Salim M, Noirel J, Evans C, Rehman I, Wright PC. 2009. iTRAQ underestimation in simple and complex mixtures: "the good, the bad and the ugly". *J Proteome Res* 8(11): 5347-5355.
- Palma DA, Blumwald E, Plaxton WC. 2000. Upregulation of vacuolar H⁽⁺⁾-translocating pyrophosphatase by phosphate starvation of *Brassica napus* (rapeseed) suspension cell cultures. *FEBS Lett* **486**(2): 155-158.
- Palmblad M, Bindschedler LV, Cramer R. 2007a. Quantitative proteomics using uniform ⁽¹⁵⁾N-labeling, MASCOT, and the trans-proteomic pipeline. *Proteomics* 7(19): 3462-3469.
- Palmblad M, Mills DJ, Bindschedler LV, Cramer R. 2007b. Chromatographic alignment of LC-MS and LC-MS/MS datasets by genetic algorithm feature extraction. J Am Soc Mass Spectrom 18(10): 1835-1843.
- Panstruga R. 2003. Establishing compatibility between plants and obligate biotrophic pathogens. *Curr Opin Plant Biol* **6**(4): 320-326.
- Paradi I, van Tuinen D, Morandi D, Ochatt S, Robert F, Jacas L, Dumas-Gaudot E. 2010. Transcription of two blue copper-binding protein isogenes is highly correlated with arbuscular mycorrhizal development in *Medicago truncatula*. *Mol Plant Microbe Interact* 23(9): 1175-1183.
- Park OK. 2004. Proteomic studies in plants. J Biochem Mol Biol 37(1): 133-138.

- Parker J, Zhu N, Zhu M, Chen S. 2012. Profiling thiol redox proteome using isotope tagging mass spectrometry. J Vis Exp(61).
- **Parniske M. 2000.** Intracellular accommodation of microbes by plants: a common developmental program for symbiosis and disease? *Curr Opin Plant Biol* **3**(4): 320-328.
- Parniske M. 2008. Arbuscular mycorrhiza: the mother of plant root endosymbioses. *Nat Rev Microbiol* 6(10): 763-775.
- Paszkowski U. 2006. A journey through signaling in arbuscular mycorrhizal symbioses 2006. New Phytol 172(1): 35-46.
- Patterson J, Ford K, Cassin A, Natera S, Bacic A. 2007. Increased abundance of proteins involved in phytosiderophore production in boron-tolerant barley. *Plant Physiol* 144(3): 1612-1631.
- **Pearson JN, Jakobsen I. 1993.** The relative contribution of hyphae and roots to phosphorus uptake by arbuscular mycorrhizal plants measured by dual labelling with ³²P and ³³P. *New Phytol* **124**: 489-494.
- **Perfect SE, Green JR. 2001.** Infection structures of biotrophic and hemibiotrophic fungal plant pathogens. *Mol Plant Pathol* **2**(2): 101-108.
- Perkel JM. 2009. iTRAQ gets put to the test. J Proteome Res 8(11): 4885.
- Petricka JJ, Schauer MA, Megraw M, Breakfield NW, Thompson JW, Georgiev S, Soderblom EJ, Ohler U, Moseley MA, Grossniklaus U, Benfey PN. 2012. The protein expression landscape of the Arabidopsis root. Proc Natl Acad Sci U S A 109(18): 6811-6818.
- Phanstiel D, Unwin R, McAlister GC, Coon JJ. 2009. Peptide quantification using 8-plex isobaric tags and electron transfer dissociation tandem mass spectrometry. *Anal Chem* 81(4): 1693-1698.
- Phillips JM, Hayman DS. 1970. Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. *Transactions of the British Mycological Society* 55: 157-160.
- Pichler P, Kocher T, Holzmann J, Mazanek M, Taus T, Ammerer G, Mechtler K. 2010. Peptide labeling with isobaric tags yields higher identification rates using iTRAQ 4-plex compared to TMT 6-plex and iTRAQ 8-plex on LTQ Orbitrap. *Anal Chem* 82(15): 6549-6558.
- Piersma SR, Fiedler U, Span S, Lingnau A, Pham TV, Hoffmann S, Kubbutat MH, Jimenez CR. 2010. Workflow comparison for label-free, quantitative secretome proteomics for cancer biomarker discovery: method evaluation, differential analysis, and verification in serum. J Proteome Res 9(4): 1913-1922.
- **Plaxton WC. 1999.** Metabolic aspects of the phosphate starvation in plants. In: Phosphorus in plant biology: regulatory roles in molecular, cellular, organismic, and ecosystem processes. Rockville, Maryland: A merican Society of Plant Physiologists.
- Porceddu A, Panara F, Calderini O, Molinari L, Taviani P, Lanfaloni L, Scotti C, Carelli M, Scaramelli L, Bruschi G, Cosson V, Ratet P, de Larembergue H, Duc G, Piano E, Arcioni S. 2008. An Italian functional genomic resource for *Medicago truncatula*. *BMC Res Notes* 1: 129.
- Pozo MJ, Azcon-Aguilar C. 2007. Unraveling mycorrhiza-induced resistance. *Curr Opin Plant Biol* 10(4): 393-398.
- Pumplin N, Harrison MJ. 2009. Live-cell imaging reveals periarbuscular membrane domains and organelle location in *Medicago truncatula* roots during arbuscular mycorrhizal symbiosis. *Plant Physiol* 151(2): 809-819.
- Pumplin N, Mondo SJ, Topp S, Starker CG, Gantt JS, Harrison MJ. 2010. Medicago truncatula Vapyrin is a novel protein required for arbuscular mycorrhizal symbiosis. Plant J 61(3): 482-494.
- Pumplin N, Zhang X, Noar RD, Harrison MJ. 2012. Polar localization of a symbiosis-specific phosphate transporter is mediated by a transient reorientation of secretion. *Proc Natl Acad Sci* USA 109(11): E665-672.
- Purin S, Rillig MC. 2008. Parasitism of arbuscular mycorrhizal fungi: reviewing the evidence. FEMS Microbiol Lett 279(1): 8-14.
- Rappsilber J, Ryder U, Lamond AI, Mann M. 2002. Large-scale proteomic analysis of the human spliceosome. *Genome Res* 12(8): 1231-1245.
- Raws thorne S. 2002. Carbon flux and fatty acid synthesis in plants. Prog Lipid Res 41(2): 182-196.
- Recorbet G, Rogniaux H, Gianinazzi-Pearson V, Dumasgaudot E. 2009. Fungal proteins in the extra-radical phase of arbuscular mycorrhiza: a shotgun proteomic picture. *New Phytol* 181(2): 248-260.
- Recorbet G, Valot B, Robert F, Gianinazzi-Pearson V, Dumas-Gaudot E. 2010. Identification of in planta-expressed arbuscular mycorrhizal fungal proteins upon comparison of the root

proteomes of *Medicago truncatula* colonised with two *Glomus* species. *Fungal Genet Biol* **47**(7): 608-618.

- Reddy DMRS, Schorderet M, Feller U, Reinhardt D. 2007. A petunia mutant affected in intracellular accommodation and morphogenesis of arbuscular mycorrhizal fungi. *Plant J* 51(5): 739-750.
- **Reinhardt D. 2007.** Programming good relations--development of the arbuscular mycorrhizal symbiosis. *Curr Opin Plant Biol* **10**(1): 98-105.
- **Remy W, Taylor TN, Hass H, Kerp H. 1994.** Four hundred-million-year-old vesicular arbuscular mycorrhizae. *Proc Natl Acad Sci U S A* **91**(25): 11841-11843.
- Repetto O, Bestel-Corre, G., Dumas-Gaudot, E., Berta, G., Gianinazzi-Pearson, V., Gianinazzi, S. 2003. Targeted proteomics to identify cadmium-induced protein modifications in *Glomus mosseae*-inoculated pea roots. *New Phytol* 157: 555–567.
- Revalska M, Vassileva V, Goormachtig S, Van Hautegem T, Ratet P, Iantcheva A. 2011. Recent Progress in Development of Tnt1 Functional Genomics Platform for *Medicago truncatula* and *Lotus japonicus* in Bulgaria. *Curr Genomics* 12(2): 147-152.
- Richly E, Leister D. 2004. An improved prediction of chloroplast proteins reveals diversities and commonalities in the chloroplast proteomes of *Arabidopsis* and rice. *Gene* 329: 11-16.
- Rosewarne GM, Barker SJ, Smith SE, Smith FA, Schachtman DP. 1999. A Lycopersicon esculentum phosphate transporter (LePT1) involved in phosphorus uptake from a vesiculararbuscular mycorrhizal fungus. New Phytol 144: 507-516.
- Rosewarne GM, Smith FA, Schachtman DP, Smith SE. 2007. Localization of proton-ATPase genes expressed in arbuscular mycorrhizal to mato plants. *Mycorrhiza* 17(3): 249-258.
- Ross PL, Huang YN, Marchese JN, Williamson B, Parker K, Hattan S, Khainowski N, Pillai S, Dey S, Daniels S, Purkayastha S, Juhasz P, Martin S, Bartlet-Jones M, He F, Jacobson A, Pappin DJ. 2004. Multiplexed protein quantitation in *Saccharomyces cerevisiae* using amine-reactive isobaric tagging reagents. *Mol Cell Proteomics* 3(12): 1154-1169.
- Rudella A, Friso G, Alonso JM, Ecker JR, van Wijk KJ. 2006. Downregulation of ClpR2 leads to reduced accumulation of the ClpPRS protease complex and defects in chloroplast biogenesis in *Arabidopsis*. *Plant Cell* 18(7): 1704-1721.
- Ruepp A, Zollner A, Maier D, Albermann K, Hani J, Mokrejs M, Tetko I, Guldener U, Mannhaupt G, Munsterkotter M, Mewes HW. 2004. The FunCat, a functional annotation scheme for systematic classification of proteins from whole genomes. *Nucleic Acids Res* 32(18): 5539-5545.
- Sanders IR, Croll D. 2010. Arbuscular mycorrhiza: the challenge to understand the genetics of the fungal partner. *Annu Rev Genet* 44: 271-292.
- Santoni V, Molloy M, Rabilloud T. 2000. Membrane proteins and proteomics: un amour impossible? *Electrophoresis* 21(6): 1054-1070.
- Savitski MM, Nielsen ML, Kjeldsen F, Zubarev RA. 2005. Proteomics-grade de novo sequencing approach. J Proteome Res 4(6): 2348-2354.
- Sbrana C, Giovannetti M. 2005. Chemotropism in the arbuscular mycorrhizal fungus Glomus mosseae. Mycorrhiza 15(7): 539-545.
- Schaarschmidt S, Gonzalez MC, Roitsch T, Strack D, Sonnewald U, Hause B. 2007. Regulation of arbuscular mycorrhization by carbon. The symbiotic interaction cannot be improved by increased carbon availability accomplished by root-specifically enhanced invertase activity. *Plant Physiol* **143**(4): 1827-1840.
- Schachtman DP, Reid RJ, Ayling SM. 1998. Phosphorus Uptake by Plants: From Soil to Cell. *Plant Physiol* 116(2): 447-453.
- Schaff JE, Mbeunkui F, Blackburn K, Bird DM, Goshe MB. 2008. SILIP: a novel stable isotope labeling method for in planta quantitative proteomic analysis. *Plant J* 56(5): 840-854.
- Schagger H, von Jagow G. 1991. Blue native electrophoresis for isolation of membrane protein complexes in enzy matically active form. *Anal Biochem* 199(2): 223-231.
- Schenkluhn L, Hohnjec N, Niehaus K, Schmitz U, Colditz F. 2010. Differential gel electrophoresis (DIGE) to quantitatively monitor early symbiosis- and pathogenesis-induced changes of the *Medicago truncatula* root proteome. J Proteomics 73(4): 753-768.
- Scherl A, Francois P, Charbonnier Y, Deshusses JM, Koessler T, Huyghe A, Bento M, Stahl-Zeng J, Fischer A, Masselot A, Vaezzadeh A, Galle F, Renzoni A, Vaudaux P, Lew D, Zimmermann-Ivol CG, Binz PA, Sanchez JC, Hochstrasser DF, Schrenzel J. 2006. Exploring glycopeptide-resistance in *Staphylococcus aureus*: a combined proteomics and transcriptomics approach for the identification of resistance-related markers. *BMC Genomics* 7: 296.

- Schleiff E, Maier UG, Becker T. 2011. Omp85 in eukaryotic systems: one protein family with distinct functions. *Biol Chem* 392(1-2): 21-27.
- Schliemann W, Schmidt J, Nimtz M, Wray V, Fester T, Strack D. 2006. Accumulation of apocarotenoids in mycorrhizal roots of *Ornithogalum umbellatum*. *Phytochemistry* 67(12): 1196-1205.
- Schmidt A, Kellermann J, Lotts peich F. 2005. A novel strategy for quantitative proteomics using isotope-coded protein labels. *Proteomics* 5(1): 4-15.
- Schmidt SM, Panstruga R. 2011. Pathogenomics of fungal plant parasites: what have we learnt about pathogenesis? *Curr Opin Plant Biol* 14(4): 392-399.
- Schnabel EL, Kassaw TK, Smith LS, Marsh JF, Oldroyd GE, Long SR, Frugoli JA. 2011. The ROOT DETERMINED NODULATION1 gene regulates nodule number in roots of *Medicago* truncatula and defines a highly conserved, uncharacterized plant gene family. Plant Physiol 157(1): 328-340.
- Schneider LV, Hall MP. 2005. Stable isotope methods for high-precision proteomics. *Drug Discov Today* 10(5): 353-363.
- Schneider T, Schellenberg M, Meyer S, Keller F, Gehrig P, Riedel K, Lee Y, Eberl L, Martinoia E. 2009. Quantitative detection of changes in the leaf-mesophyll tonoplast proteome in dependency of a cadmium exposure of barley (*Hordeum vulgare L.*) plants. *Proteomics* 9(10): 2668-2677.
- Schulze-Lefert P, Panstruga R. 2003. Establishment of biotrophy by parasitic fungi and reprogramming of host cells for disease resistance. *Annu Rev Phytopathol* 41: 641-667.
- Schulze WX, Usadel B. 2010. Quantitation in mass-spectrometry-based proteomics. Annu Rev Plant Biol 61: 491-516.
- Schussler A, Martin H, Cohen D, Fitz M, Wipf D. 2006. Characterization of a carbohydrate transporter from symbiotic *glomeromycotan* fungi. *Nature* 444(7121): 933-936.
- Schussler A, Martin H, Cohen D, Fitz M, Wipf D. 2007. Arbuscular Mycorrhiza: Studies on the Geosiphon Symbiosis Lead to the Characterization of the First Glomeromycotan Sugar Transporter. Plant Signal Behav 2(5): 431-434.
- Schwacke R, Flugge UI, Kunze R. 2004. Plant membrane proteome databases. *Plant Physiol Biochem* 42(12): 1023-1034.
- Sergeant K, Spiess N, Renaut J, Wilhelm E, Hausman JF. 2011. One dry summer: a leaf proteome study on the response of oak to drought exposure. *J Proteomics* 74(8): 1385-1395.
- Shah K, Russinova E, Gadella TW, Jr., Willemse J, De Vries SC. 2002. The *Arabidopsis* kinaseassociated protein phosphatase controls internalization of the somatic embryogenesis receptor kinase 1. *Genes Dev* 16(13): 1707-1720.
- Sharda JN, Koide RT. 2008. Can hypodermal passage cell distribution limit root penetration by mycorrhizal fungi? *New Phytol* 180(3): 696-701.
- Shen Y, Tolic N, Xie F, Zhao R, Purvine SO, Schepmoes AA, Moore RJ, Anderson GA, Smith RD. 2011. Effectiveness of CID, HCD, and ETD with FT MS/MS for degradomic-peptidomic analysis: comparison of peptide identification methods. J Proteome Res 10(9): 3929-3943.
- Shen Z, Li P, Ni RJ, Ritchie M, Yang CP, Liu GF, Ma W, Liu GJ, Ma L, Li SJ, Wei ZG, Wang HX, Wang BC. 2009. Label-free quantitative proteomics analysis of etiolated maize seedling leaves during greening. *Mol Cell Proteomics* 8(11): 2443-2460.
- Shiu SH, Li WH. 2004. Origins, lineage-specific expansions, and multiple losses of tyrosine kinases in eukaryotes. *Mol Biol Evol* 21(5): 828-840.
- Siciliano V, Genre A, Balestrini R, Cappellazzo G, deWit PJ, Bonfante P. 2007a. Transcriptome analysis of arbuscular mycorrhizal roots during development of the prepenetration apparatus. *Plant Physiol* 144(3): 1455-1466.
- Siciliano V, Genre A, Balestrini R, Dewit PJ, Bonfante P. 2007b. Pre-Penetration Apparatus Formation During AM Infection is Associated With a Specific Transcriptome Response in Epidermal Cells. *Plant Signal Behav* 2(6): 533-535.
- Sieberer BJ, Chabaud M, Fournier J, Timmers AC, Barker DG. 2012. A switch in Ca²⁺ spiking signature is concomitant with endosymbiotic microbe entry into cortical root cells of *Medicago truncatula*. *Plant J* **69**(5): 822-830.
- Silva JC, Denny R, Dorschel CA, Gorenstein M, Kass IJ, Li GZ, McKenna T, Nold MJ, Richardson K, Young P, Geromanos S. 2005. Quantitative proteomic analysis by accurate mass retention time pairs. *Anal Chem* 77(7): 2187-2200.
- Simon L, Levesque RC, Lalonde M. 1993. Identification of endomycorrhizal fungi colonizing roots by fluorescent single-strand conformation polymorphism-polymerase chain reaction. *Appl Environ Microbiol* 59(12): 4211-4215.

- Singh S, Parniske M. 2012. Activation of calcium- and calmodulin-dependent protein kinase (CCaMK), the central regulator of plant root endosymbiosis. *Curr Opin Plant Biol* 15(4): 444-453.
- Smith SE, Gianinazzi-Pearson V. 1988. Physiological interactions between symbionts in vesiculararbuscular mycorrhizal plants. Annu Rev Plant Physiol Plant Mol Biol 39: 221–224.
- Smith SE, Read DJ. 2008. Mycorrhizal Symbiosis. London, New York: Academic Press.
- Smith SE, Read, D. J. 1997. Mycorrhizal Symbiosis. Academic Press, London: 81–104.
- Smith SE, Smith FA. 1990. Structure and function of the interfaces in biotrophic symbioses as they relate to nutrient transport. *New Phytologist* 114: 1-38.
- Staehelin C, Xie ZP, Illana A, Vierheilig H. 2011. Long-distance transport of signals during symbiosis: are nodule formation and mycorrhization autoregulated in a similar way? *Plant Signal Behav* 6(3): 372-377.
- Staes A, Demol H, Van Damme J, Martens L, Vandekerckhove J, Gevaert K. 2004. Global differential non-gel proteomics by quantitative and stable labeling of tryptic peptides with oxygen-18. J Proteome Res 3(4): 786-791.
- Stanislas T, Bouyssie D, Rossignol M, Vesa S, Fromentin J, Morel J, Pichereaux C, Monsarrat B, Simon-Plas F. 2009. Quantitative proteomics reveals a dynamic association of proteins to detergent-resistant membranes upon elicitor signaling in tobacco. *Mol Cell Proteomics* 8(9): 2186-2198.
- Stevenson SE, Chu Y, Ozias-Akins P, Thelen JJ. 2009. Validation of gel-free, label-free quantitative proteomics approaches: applications for seed allergen profiling. *J Proteomics* 72(3): 555-566.
- Stewart, II, Thomson T, Figeys D. 2001. ¹⁸O labeling: a tool for proteomics. *Rapid Commun Mass Spectrom* 15(24): 2456-2465.
- Stroher E, Dietz KJ. 2006. Concepts and approaches towards understanding the cellular redox proteome. *Plant Biol (Stuttg)* 8(4): 407-418.
- Stulemeijer IJ, Joosten MH, Jensen ON. 2009. Quantitative phosphoproteomics of tomato mounting a hypersensitive response reveals a swift suppression of photosynthetic activity and a differential role for hsp90 isoforms. *J Proteome Res* **8**(3): 1168-1182.
- Sun Q, Hu C, Hu J, Li S, Zhu Y. 2009. Quantitative proteomic analysis of CMS-related changes in Honglian CMS rice anther. *Protein J* 28(7-8): 341-348.
- Swaney DL, McAlister GC, Coon JJ. 2008. Decision tree-driven tandem mass spectrometry for shotgun proteomics. *Nat Methods* 5(11): 959-964.
- Takeda N, Sato S, Asamizu E, Tabata S, Parniske M. 2009. Apoplastic plant subtilases support arbuscular mycorrhiza development in *Lotus japonicus*. *Plant J* 58(5): 766-777.
- Tan Z, Hu Y, Lin Z. 2012. PhPT4 Is a Mycorrhizal-Phosphate Transporter Suppressed by Lysophosphatidylcholine in Petunia Roots. *Plant Molecular Biology Reporter*.
- Tejeda-Sartorius M, Martinez de la Vega O, Delano-Frier JP. 2008. Jasmonic acid influences mycorrhizal colonization in tomato plants by modifying the expression of genes involved in carbohydrate partitioning. *Physiol Plant* 133(2): 339-353.
- Thelen JJ, Peck SC. 2007. Quantitative proteomics in plants: choices in abundance. *Plant Cell* 19(11): 3339-3346.
- Thingholm TE, Palmisano G, Kjeldsen F, Larsen MR. 2010. Undesirable charge-enhancement of isobaric tagged phosphopeptides leads to reduced identification efficiency. J Proteome Res 9(8): 4045-4052.
- Thompson A, Schafer J, Kuhn K, Kienle S, Schwarz J, Schmidt G, Neumann T, Johnstone R, Mohammed AK, Hamon C. 2003. Tandem mass tags: a novel quantification strategy for comparative analysis of complex protein mixtures by MS/MS. Anal Chem 75(8): 1895-1904.
- Tian J, Venkatachalam P, Liao H, Yan X, Raghothama K. 2007. Molecular cloning and characterization of phosphorus starvation responsive genes in common bean (*Phaseolus vulgaris L*). *Planta* 227(1): 151-165.
- Tisserant E, Kohler A, Dozolme-Seddas P, Balestrini R, Benabdellah K, Colard A, Croll D, Da Silva C, Gomez SK, Koul R, Ferrol N, Fiorilli V, Formey D, Franken P, Helber N, Hijri M, Lanfranco L, Lindquist E, Liu Y, Malbreil M, Morin E, Poulain J, Shapiro H, van Tuinen D, Waschke A, Azcon-Aguilar C, Becard G, Bonfante P, Harrison MJ, Kuster H, Lammers P, Paszkowski U, Requena N, Rensing SA, Roux C, Sanders IR, Shachar-Hill Y, Tuskan G, Young JP, Gianinazzi-Pearson V, Martin F. 2012. The transcriptome of the arbuscular mycorrhizal fungus *Glomus intraradices* (DAOM 197198) reveals functional tradeoffs in an obligate symbiont. New Phytol 193(3): 755-769.
- Tollot M, Wong Sak Hoi J, van Tuinen D, Arnould C, Chatagnier O, Dumas B, Gianinazzi-Pearson V, Seddas PM. 2009. An STE12 gene identified in the mycorrhizal fungus *Glomus*

intraradices restores infectivity of a hemibiotrophic plant pathogen. *New Phytol* **181**(3): 693-707.

- Tonge R, Shaw J, Middleton B, Rowlinson R, Rayner S, Young J, Pognan F, Hawkins E, Currie I, Davison M. 2001. Validation and development of fluorescence two-dimensional differential gel electrophoresis proteomics technology. *Proteomics* 1(3): 377-396.
- **Trouvelot A, Kough JL, Gianinazzi-Pearson V. 1986.** Mesure du taux de mycorhization VA d'un système radiculaire. Recherche de méthodes d'estimation ayant une signification fonctionnelle. In Physiological and Genetical Aspects of Mycorrhizae. France: INRA.
- Umehara M, Hanada A, Yoshida S, Akiyama K, Arite T, Takeda-Kamiya N, Magome H, Kamiya Y, Shirasu K, Yoneyama K, Kyozuka J, Yamaguchi S. 2008. Inhibition of shoot branching by new terpenoid plant hormones. *Nature* **455**(7210): 195-200.
- Unlu M, Morgan ME, Minden JS. 1997. Difference gel electrophoresis: a single gel method for detecting changes in protein extracts. *Electrophoresis* 18(11): 2071-2077.
- Valot B, Dieu M, Recorbet G, Raes M, Gianinazzi S, Dumas-Gaudot E. 2005. Identification of membrane-associated proteins regulated by the arbuscular mycorrhizal symbiosis. *Plant Mol Biol* 59(4): 565-580.
- Valot B, Langella O, Nano E, Zivy M. 2011. MassChroQ: a versatile tool for mass spectrometry quantification. *Proteomics* 11(17): 3572-3577.
- Valot B, Negroni L, Zivy M, Gianinazzi S, Dumas-Gaudot E. 2006. A mass spectrometric approach to identify arbuscular mycorrhiza-related proteins in root plasma membrane fractions. *Proteomics* 6 Suppl 1: S145-155.
- van Noorden GE, Kerim T, Goffard N, Wiblin R, Pellerone FI, Rolfe BG, Mathesius U. 2007. Overlap of proteome changes in *Medicago truncatula* in response to auxin and *Sinorhizobium meliloti*. *Plant Physiol* 144(2): 1115-1131.
- Vaudel M, Burkhart JM, Radau S, Zahedi RP, Martens L, Sickmann A. 2012. Integral Quantification Accuracy Estimation for Reporter Ion-based Quantitative Proteomics (iQuARI). J Proteome Res.
- Venable JD, Dong MQ, Wohlschlegel J, Dillin A, Yates JR. 2004. Automated approach for quantitative analysis of complex peptide mixtures from tandem mass spectra. *Nat Methods* 1(1): 39-45.
- Vertommen A, Panis B, Swennen R, Carpentier SC. 2011. Challenges and solutions for the identification of membrane proteins in non-model plants. *J Proteomics* 74(8): 1165-1181.
- Vincent D SP. 2011. Development of an in-house protocol for the OFFGEL fractionation of plant proteins. *J Integrated omics* DOI: 10.5584/jiomics.v2011i2011.59.
- Vogel JT, Walter MH, Giavalisco P, Lytovchenko A, Kohlen W, Charnikhova T, Simkin AJ, Goulet C, Strack D, Bouwmeester HJ, Fernie AR, Klee HJ. 2010. SICCD7 controls strigolactone biosynthesis, shoot branching and mycorrhiza-induced apocarotenoid formation in tomato. *Plant J* 61(2): 300-311.
- Vothknecht UC, Westhoff P. 2001. Biogenesis and origin of thylakoid membranes. *Biochim Biophys* Acta 1541(1-2): 91-101.
- Wallin E, von Heijne G. 1998. Genome-wide analysis of integral membrane proteins from eubacterial, archaean, and eukaryotic organisms. *Protein Sci* 7(4): 1029-1038.
- Walter MH, Floss DS, Hans J, Fester T, Strack D. 2007. Apocarotenoid biosynthesis in arbuscular mycorrhizal roots: contributions from methylerythritol phosphate pathway isogenes and tools for its manipulation. *Phytochemistry* 68(1): 130-138.
- Walter MH, Floss DS, Strack D. 2010. Apocarotenoids: hormones, mycorrhizal metabolites and aroma volatiles. *Planta* 232(1): 1-17.
- Wang F, Vandepoele K, Van Lijsebettens M. 2012. Tetraspanin genes in plants. Plant Sci 190: 9-15.
- Wang H, Alvarez S, Hicks LM. 2012. Comprehensive comparison of iTRAQ and label-free LC-based quantitative proteomics approaches using two *Chlamydomonas reinhardtii* strains of interest for biofuels engineering. J Proteome Res 11(1): 487-501.
- Warren CM, Geenen DL, Helseth DL, Jr., Xu H, Solaro RJ. 2010. Sub-proteomic fractionation, iTRAQ, and OFFGEL-LC-MS/MS approaches to cardiac proteomics. *J Proteomics* 73(8): 1551-1561.
- Washburn MP, Wolters D, Yates JR, 3rd. 2001. Large-scale analysis of the yeast proteome by multidimensional protein identification technology. *Nat Biotechnol* 19(3): 242-247.
- Weidmann S, Sanchez L, Descombin J, Chatagnier O, Gianinazzi S, Gianinazzi-Pearson V. 2004. Fungal elicitation of signal transduction-related plant genes precedes mycorrhiza establishment and requires the dmi3 gene in *Medicago truncatula*. *Mol Plant Microbe Interact* 17(12): 1385-1393.

- Wenger CD, Lee MV, Hebert AS, McAlister GC, Phanstiel DH, Westphall MS, Coon JJ. 2011. Gas-phase purification enables accurate, multiplexed proteome quantification with isobaric tagging. *Nat Methods* 8(11): 933-935.
- Wienkoop S, Larrainzar E, Niemann M, Gonzalez EM, Lehmann U, Weckwerth W. 2006. Stable isotope-free quantitative shotgun proteomics combined with sample pattern recognition for rapid diagnostics. *J Sep Sci* **29**(18): 2793-2801.
- Wiktorowicz JE, English RD, Wu Z, Kurosky A. 2012. Model Studies on iTRAQ Modification of Peptides: Sequence-dependent Reaction Specificity. *J Proteome Res* 11(3): 1512-1520.
- Wilkins MR, Sanchez JC, Gooley AA, Appel RD, Humphery-Smith I, Hochstrasser DF, Williams KL. 1996. Progress with proteome projects: why all proteins expressed by a genome should be identified and how to do it. *Biotechnol Genet Eng Rev* 13: 19-50.
- Willats WG, Knox JP. 1996. A role for arabinogalactan-proteins in plant cell expansion: evidence from studies on the interaction of beta-glucosyl Yariv reagent with seedlings of *Arabidopsis thaliana*. *Plant J* 9(6): 919-925.
- Wisniewski JR, Zougman A, Nagaraj N, Mann M. 2009. Universal sample preparation method for proteome analysis. *Nat Methods* 6(5): 359-362.
- Wright DP, Read DJ, Scholes JD. 1998. Mycorrhizal sink strength influences whole plant carbon balance of *Trifolium repens L. Plant Cell Environ* 21: 881-891.
- Wulf A, Manthey K, Doll J, Perlick AM, Linke B, Bekel T, Meyer F, Franken P, Kuster H, Krajinski F. 2003. Transcriptional changes in response to arbuscular mycorrhiza development in the model plant *Medicago truncatula*. *Mol Plant Microbe Interact* 16(4): 306-314.
- Xie X, Yoneyama K. 2010. The strigolactone story. Annu Rev Phytopathol 48: 93-117.
- Yalovsky S, Rodr Guez-Concepcion M, Gruissem W. 1999. Lipid modifications of proteins slipping in and out of membranes. *Trends Plant Sci* 4(11): 439-445.
- Yang Y, Qiang X, Owsiany K, Zhang S, Thannhauser TW, Li L. 2011. Evaluation of different multidimensional LC-MS/MS pipelines for isobaric tags for relative and absolute quantitation (iTRAQ)-based proteomic analysis of potato tubers in response to cold storage. J Proteome Res 10(10): 4647-4660.
- Yano K, Yoshida S, Muller J, Singh S, Banba M, Vickers K, Markmann K, White C, Schuller B, Sato S, Asamizu E, Tabata S, Murooka Y, Perry J, Wang TL, Kawaguchi M, Imaizumi-Anraku H, Hayashi M, Parniske M. 2008. CYCLOPS, a mediator of symbiotic intracellular accommodation. Proc Natl Acad Sci USA 105(51): 20540-20545.
- Yao X, Freas A, Ramirez J, Demirev PA, Fenselau C. 2001. Proteolytic ¹⁸O labeling for comparative proteomics: model studies with two serotypes of adenovirus. *Anal Chem* 73(13): 2836-2842.
- Zamioudis C, Pieterse CM. 2012. Modulation of host immunity by beneficial microbes. *Mol Plant Microbe Interact* 25(2): 139-150.
- Zhang Q, Blaylock LA, Harrison MJ. 2010. Two *Medicago truncatula* half-ABC transporters are essential for arbuscule development in arbuscular mycorrhizal symbiosis. *Plant Cell* 22(5): 1483-1497.
- Zieske LR. 2006. A perspective on the use of iTRAQ reagent technology for protein complex and profiling studies. *J Exp Bot* 57(7): 1501-1508.
- Zybailov B, Rutschow H, Friso G, Rudella A, Emanuelsson O, Sun Q, van Wijk KJ. 2008. Sorting signals, N-terminal modifications and abundance of the chloroplast proteome. *PLoS One* **3**(4): e1994.

Additional files

		Sequence	Score	Obs mass	Theo mass	Modification	OGF	Rt	Rt	Diff
								(min)		
1	Unlabelled	ECADLWPR	99	1045.46	1045.46		frac 1	17.25		
	iTRAQ 1	ECADLWPR	99	1190.62	1190.57	145.11	frac 3	24	23.63	6.38
	iTRAQ 3	ECADLWPR	99	1190.62	1190.57	145.11	frac 3	23.5		
	iTRAQ 5	ECADLWPR	99	1190.61	1190.57	145.11	frac 4	23.5		
	iTRAQ 6	ECADLWPR	99	1190.48	1190.57	145.11	frac 4	23.5		
2	Unlabelled	AYLEDFYR	99	1075.50	1075.50		frac 1	18.75		
	iTRAQ 1	AYLEDFYR	99	1220.66	1220.61	145.11	frac 3	27	26.41	7.66
	iTRAQ 2	AYLEDFYR	95	1220.62	1220.61	145.11	frac 3	26		•
	iTRAQ 3	AYLEDFYR	99	1220.67	1220.61	145.11	frac 3	26.5		
	iTRAQ 4	AYLEDFYR	99	1220.69	1220.61	145.11	frac 4	27		
	iTRAQ 6	AYLEDFYR	99	1220.67	1220.61	145.11	frac 4	26		
	iTRAQ 7	AYLEDFYR	99	1220.60	1220.61	145.11	frac 2,3	26.25		
	iTRAQ 8	AYLEDFYR	99	1220.60	1220.61	145.11	frac 3	26.25		
	iTRAQ 9	AYLEDFYR	99	1220.54	1220.61	145.11	frac 3	26.25		
									-	
3	Unlabelled	EQM GYTFDA LK	99	1301.57	1301.58		frac 1	18.75		
	iTRAQ 1	EQMGYTFDALK	99	1590.88	1590.81	289.23	frac 3	25.5	24.95	6.2
	iTRAQ 3	EQM GYTFDA LK	99	1590.88	1590.81	289.23	frac 3	25		
	iTRAQ 4	EQMGYTFDALK	99	1590.89	1590.81	289.23	frac 3	25		
	iTRAQ 6	EQMGYTFDALK	99	1590.87	1590.81	289.23	frac 4	24.5		
	iTRAQ 8	EQM GYTFDA LK	99	1590.80	1590.81	289.23	frac 3	24.75		
									-	
4	Unlabelled	TMADEGVVA LW R	99	1346.66	1346.65		frac 1	23.25		
	iTRAQ 1	TMADEGVVALWR	99	1491.86	1491.77	145.12	frac 3	30.5	29.29	6.04

Chapter 2, additional file S2.1. Group A: Peptides shifted to more basic OGE fraction.

			1		1	1	1		1	
	iTRAQ 2	TMADEGVVALWR	99	1491.80	1491.77	145.12	frac 3	29		
	iTRAQ 3	TMADEGVVALWR	99	1491.85	1491.77	145.12	frac 3	30		
	iTRAQ 6	TMADEGVVALWR	99	1491.88	1491.77	145.12	frac 3,4	30		
	iTRAQ 7	TMADEGVVALWR	99	1491.70	1491.77	145.12	frac	28.5		
							1,2,3,4			
	iTRAQ 8	TMADEGVVALWR	99	1491.75	1491.77	145.12	frac 1,2,3	28.5		
	iTRAQ 9	TMADEGVVALWR	99	1491.70	1491.77	145.12	frac 3,4	28.5		
									-	
5	Unlabelled	ECSGVEPQLWAR	99	1430.66	1430.66		frac 1	17.25		
	iTRAQ 1	ECSGVEPQLWAR	99	1575.84	1575.77	145.11	frac 3	24.5	24.13	6.88
	iTRAQ 3	ECSGVEPQLWAR	99	1575.83	1575.77	145.11	frac 3	24		•
	iTRAQ 4	ECSGVEPQLWAR	99	1575.87	1575.77	145.11	frac 4	24		
	iTRAQ 6	ECSGVEPQLWAR	99	1575.83	1575.77	145.11	frac 3	24		
			•					•	1	
6	Unlabelled	NQIDEIVLVGGSTR	99	1499.77	1499.78		frac 1	18.75]	
	iTRAQ 1	NQIDEIVLVGGSTR	99	1644.98	1644.90	145.13	frac 3	26.5	25.64	6.89
	iTRAQ 2	NQIDEIVLVGGSTR	99	1644.91	1644.90	145.13	frac 3	25		•
	iTRAQ 3	NQIDEIVLVGGSTR	99	1644.98	1644.90	145.13	frac 3,4	26		
	iTRAQ 4	NQIDEIVLVGGSTR	99	1644.99	1644.90	145.13	frac 3,4	26		
	iTRAQ 6	NQIDEIVLVGGSTR	99	1644.98	1644.90	145.13	frac 4	25		
	iTRAQ 8	NQIDEIVLVGGSTR	99	1644.89	1644.90	145.13	frac 2,3	25.5		
	iTRAQ 9	NQIDEIVLVGGSTR	99	1644.82	1644.90	145.13	frac 3	25.5		
				•	•			•	4	
7	Unlabelled	LA EMPADS GYPA YLAAR	99	1794.81	1794.84		frac 1	18.75]	
	iTRAQ 1	LA EMPADS GYPA YLAAR	99	1940.06	1939.97	145.13	frac 3	26.5	26.13	7.38
	iTRAQ 3	LA EMPADS GYPA YLAAR	99	1940.07	1939.97	145.13	frac 3	26		•
	iTRAQ 4	LA EMPADS GYPA YLAAR	99	1940.09	1939.97	145.13	frac 4	26.5		
	iTRAQ 8	LA EMPADS GYPA YLAAR	99	1939.95	1939.97	145.13	frac 3	25.5		
					1		•		_	
8	Unlabelled	ELEFYMK	99	958.45	958.46		frac 1	18.75]	
	iTRAQ 1	ELEFYMK	99	1247.72	1247.66	289.20	frac 3	26.5	25.83	7.08
			1			1		1		

	iTRAQ 8	ELEFYMK	99	1247.65	1247.66	289.20	frac 3	25.5		
	iTRAQ 9	ELEFYMK	99	1247.60	1247.66	289.20	frac 3	25.5		
		· · · ·				•	•			
9	Unlabelled	IPSA VGYQPTLSTDLGGLQER	99	2201.03	2201.13		frac 1	18.25	26.58	8.33
	iTRAQ 4	IPSA VGYQPTLSTDLGGLQER	99	2346.39	2346.24	145.11	frac 4	27.5		
	iTRAQ 6	IPSA VGYQPTLSTDLGGLQER	99	2346.25	2346.24	145.11	frac 4	26		
	iTRAQ 8	IPSA VGYQPTLSTDLGGLQER	99	2346.21	2346.24	145.11	frac 3	26.25		
		· · · · · ·					•		1	
10	Unlabelled	A QIWDTA GQER	99	1273.55	1273.59		frac 1	19		
	iTRAQ 1	A QIWDTA GQER	99	1418.76	1418.71	145.12	frac 3	21.5	21.3	2.3
	iTRAQ 2	A QIWDTA GQER	99	1418.70	1418.71	145.12	frac 3	21		
	iTRAQ 3	AQIWDTA GQER	99	1418.77	1418.71	145.12	frac 3	21.5		
	iTRAQ 4	A QIWDTA GQER	99	1418.82	1418.71	145.12	frac 4	21.5		
	iTRAQ 6	AQIWDTA GQER	99	1418.76	1418.71	145.12	frac 4	21		
							<u>.</u>		•	
11	Unlabelled	AGGECLTFDQLALR	99	1549.70	1549.77		frac 1	18.75	27.3	8.55
	iTRAQ 1	AGGECLTFDQLALR	99	1694.94	1694.87	145.10	frac 3	28		
	iTRAQ 4	AGGECLTFDQLALR	99	1694.97	1694.87	145.10	frac 4	28		
	iTRAQ 6	AGGECLTFDQLALR	99	1694.74	1694.87	145.10	frac 4	26.5		
	iTRAQ 8	AGGECLTFDQLALR	99	1694.84	1694.87	145.10	frac 3	27		
	iTRAQ 9	AGGECLTFDQLALR	99	1694.77	1694.87	145.10	frac 4	27		
									-	
12	Unlabelled	VDFA YSFFEK	99	1251.57	1251.61	289.18	frac 1	23	30	7
	iTRAQ 6	VDFA YSFFEK	99	1540.77	1540.79	289.18	frac 3	30		
	iTRAQ 8	VDFA YSFFEK	99	1540.77	1540.79	289.18	frac 3	30		
	iTRAQ 9	VDFA YSFFEK	99	1540.70	1540.79	289.18	frac 3	30		
									-	
13	Unlabelled	IFDKPEDFIA ER	99	1478.68	1478.74	289.22	frac 1	20		
	iTRAQ 6	IFDKPEDFIA ER	99	1767.91	1767.95	289.22	frac 4	26	26.17	6.17
	iTRAQ 7	IFDKPEDFIA ER	99	1767.93	1767.95	289.22	frac 3	26.25		
	iTRAQ 8	IFDKPEDFIA ER	99	1767.93	1767.95	289.22	frac 3	26.25		

14	Unlabelled	GLFTSDQILFTDTR	99	1612.80	1612.79		frac 1	24]	
	iTRAQ 6	GLFTSDQILFTDTR	99	1757.89	1757.92	145.13	frac 4	30	30	6
	iTRAQ 8	GLFTSDQILFTDTR	99	1757.89	1757.92	145.13	frac 3	30		
	iTRAQ 9	GLFTSDQILFTDTR	99	1757.83	1757.92	145.13	frac 3	30		
									_	
15	Unlabelled	TTPSYVAFTDSER	99	1472.60	1472.66	145.13	frac 1	19	22.33	3.33
	iTRAQ 3	TTPSYVAFTDSER	99	1617.86	1617.79	145.13	frac 3	22.5		
	iTRAQ 6	TTPSYVAFTDSER	99	1617.78	1617.79	145.13	frac 4	22		
	iTRAQ 9	TTPSYVAFTDSER	99	1617.72	1617.79	145.13	frac 3	22.5		
16	Unlabelled	LDTGNFSW GSEA VTR	99	1638.69	1638.76		frac 1	22	25.42	3.42
	iTRAQ 6	LDTGNFSW GSEA VTR	99	1783.74	1783.87	145.11	frac 4	25		
	iTRAQ 8	LDTGNFSW GSEA VTR	99	1783.85	1783.87	145.11	frac 2,3	25.5		
	iTRAQ 9	LDTGNFSW GSEA VTR	99	1783.81	1783.87	145.11	frac 3	25.75		
17	Unlabelled	LWQVPETLPAEVVGK	99	1664.87	1664.93		frac 2	28.5	29.67	1.17
	iTRAQ 4	LWQVPETLPAEVVGK	99	1954.26	1954.13	289.19	frac 4	30.5		
	iTRAQ 6	LWQVPETLPAEVVGK	99	1954.09	1954.13	289.19	frac 3	29.25		
	iTRAQ 8	LWQVPETLPAEVVGK	99	1954.09	1954.13	289.19	frac 3	29.25		
				1		1	-		1	
18	Unlabelled	QLDA HIEEQFGGGR	99	1555.68	1555.73		frac 2	21.75	22.6	0.85
	iTRAQ 1	QLDA HIEEQFGGGR	99	1700.90	1700.85	145.11	frac 3	23		
	iTRAQ 3	QLDA HIEEQFGGGR	99	1700.91	1700.85	145.11	frac 3	22.5		
	iTRAQ 4	QLDA HIEEQFGGGR	99	1700.95	1700.85	145.11	frac 4	23		
	iTRAQ 6	QLDA HIEEQFGGGR	99	1700.73	1700.85	145.11	frac 4	22		
	iTRAQ 9	QLDA HIEEQFGGGR	99	1700.79	1700.85	145.11	frac 3	22.5		
19	Unlabelled	GFGFVTFAEEK	99	1230.60	1230.61		frac 2	28.5	28.9	0.4
	iTRAQ 1	GFGFVTFAEEK	99	1519.88	1519.80	289.19	frac 3	29.5		
	iTRAQ 3	GFGFVTFAEEK	99	1519.88	1519.80	289.19	frac 3	29		

	iTRAQ 4 iTRAQ 6	GFGFVTFA EEK	99	1519.90	1519.80	289.19	frac 3,4	29.5		
	iTRAQ 6	GEGEVTEA EEK								
		OI OI VII MELIK	99	1519.68	1519.80	289.19	frac 4	28		
	iTRAQ 8	GFGFVTFA EEK	99	1519.78	1519.80	289.19	frac 3	28.5		
							•	u	1	
20	Unlabelled	AFLVEEQK	99	962.50	962.51		frac 2	21.75		
	iTRAQ 1	AFLVEEQK	99	1251.75	1251.72	289.21	frac 3	21.5	21.91	0.16
	iTRAQ 2	AFLVEEQK	99	1251.70	1251.72	289.21	frac 3	21.5		
	iTRAQ 3	AFLVEEQK	99	1251.76	1251.72	289.21	frac 3	22		
	iTRAQ 4	AFLVEEQK	99	1251.80	1251.72	289.21	frac 4	22		
	iTRAQ 6	AFLVEEQK	99	1251.76	1251.72	289.21	frac 4	21.5		
	iTRAQ 7	AFLVEEQK	99	1251.70	1251.72	289.21	frac 3	22.5		
	iTRAQ 8	AFLVEEQK	99	1251.72	1251.72	289.21	frac 3	22.5		
	iTRAQ 9	AFLVEEQK	99	1251.64	1251.72	289.21	frac 3, 4	21.75		
21	Unlabelled	IFEGEA LLR	99	1046.60	1046.59		frac 2	25.5		
	iTRAQ 1	IFEGEA LLR	99	1191.74	1191.69	145.10	frac 3	28.5	27.86	2.36
	iTRAQ 3	IFEGEA LLR	99	1191.74	1191.69	145.10	frac 3	28		
	iTRAQ 4	IFEGEA LLR	99	1191.77	1191.69	145.10	frac 4	28.5		
	iTRAQ 5	IFEGEA LLR	99	1191.72	1191.69	145.10	frac 4	27.5		
	iTRAQ 6	IFEGEALLR	99	1191.61	1191.69	145.10	frac 4	27		
	iTRAQ 8	IFEGEA LLR	99	1191.67	1191.69	145.10	frac 3	27.75		
	iTRAQ 9	IFEGEA LLR	99	1191.64	1191.69	145.10	frac 3,4	27.75		
			-					-	-	
22	Unlabelled	ISGLIYEETR	99	1179.61	1179.61		frac 2	22.5		
	iTRAQ 1	ISGLIYEETR	99	1324.77	1324.72	145.11	frac 1,2,3	26	25.21	2.71
	iTRAQ 2	ISGLIYEETR	99	1324.73	1324.72	145.11	frac 3	25		
	iTRAQ 3	ISGLIYEETR	99	1324.78	1324.72	145.11	frac 3,4	25.5		
	iTRAQ 4	ISGLIYEETR	99	1324.79	1324.72	145.11	frac 3,4	25.5		
	iTRAQ 6	ISGLIYEETR	99	1324.64	1324.72	145.11	frac 3,4	25		
	iTRAQ 8	ISGLIYEETR	99	1324.72	1324.72	145.11	frac 1,2,3	24.75		
	iTRAQ 9	ISGLIYEETR	99	1324.67	1324.72	145.11	frac 3	24.75		

23	Unlabelled	TTAEEGVVALWR	99	1330.73	1330.71		frac 2	27.75		
	iTRAQ 1	TTAEEGVVALWR	99	1475.87	1475.80	145.09	frac 3	29	28.43	0.68
	iTRAQ 2	TTAEEGVVALWR	99	1475.82	1475.80	145.09	frac 3	28		
	iTRAQ 3	TTAEEGVVALWR	99	1475.87	1475.80	145.09	frac 3	28.5		
	iTRAQ 4	TTAEEGVVALWR	99	1475.90	1475.80	145.09	frac 4	29		
	iTRAQ 6	TTAEEGVVALWR	99	1475.79	1475.80	145.09	frac 4	29		
	iTRAQ 8	TTAEEGVVALWR	99	1475.78	1475.80	145.09	frac 3	27.75		
	iTRAQ 9	TTAEEGVVALWR	99	1475.74	1475.80	145.09	frac 3	27.75		
-									-	
24	Unlabelled	LLIQNQDEMIK	99	1343.72	1343.72		frac 2	23.25		
	iTRAQ 1	LLIQNQDEMIK	99	1632.98	1632.92	289.21	frac 3	25	24.42	1.17
	iTRAQ 2	LLIQNQDEMIK	99	1632.91	1632.92	289.21	frac 3	24		
	iTRAQ 3	LLIQNQDEMIK	99	1632.99	1632.92	289.21	frac 3	24.5		
	iTRAQ 4	LLIQNQDEMIK	99	1633.01	1632.92	289.21	frac 3,4	25		
	iTRAQ 6	LLIQNQDEMIK	99	1632.98	1632.92	289.21	frac 3,4	24		
	iTRAQ 9	LLIQNQDEMIK	99	1632.84	1632.92	289.21	frac 3,4	24		
25	Unlabelled	IQDKEGIPPDQQR	99	1522.75	1522.77		frac 2	20.25		
	iTRAQ 1	IQDKEGIPPDQQR	99	1812.04	1811.99	289.22	frac 3	20	19.79	-0.46
	iTRAQ 2	IQDKEGIPPDQQR	99	1811.98	1811.99	289.22	frac 3	19.5		
	iTRAQ 3	IQDKEGIPPDQQR	99	1812.06	1811.99	289.22	frac 3	18.5		
	iTRAQ 4	IQDKEGIPPDQQR	99	1812.11	1811.99	289.22	frac 3	20		
	iTRAQ 6	IQDKEGIPPDQQR	99	1811.99	1811.99	289.22	frac 4	20		
	iTRAQ 8	IQDKEGIPPDQQR	99	1812.00	1811.99	289.22	frac 3	20.25		
	iTRAQ 9	IQDKEGIPPDQQR	99	1811.91	1811.99	289.22	frac 3	20.25		
									_	
26	Unlabelled	TM VYPEA GFELQR	99	1539.75	1539.74		frac 2	24.75		
	iTRAQ 1	TM VYPEA GFELQR	99	1684.92	1684.85	145.10	frac 3	26.5	25.75	1
	iTRAQ 3	TM VYPEA GFELQR	99	1684.93	1684.85	145.10	frac 3	26		
	iTRAQ 4	TM VYPEA GFELQR	99	1684.95	1684.85	145.10	frac 3,4	26		
			-							

	iTRAQ 6	TM VYPEA GFELQR	99	1684.87	1684.85	145.10	frac 4	25		
	iTRAQ 8	TM VYPEA GFELQR	99	1684.83	1684.85	145.10	frac 3	25.5		
	iTRAQ 9	TM VYPEA GFELQR	99	1684.78	1684.85	145.10	frac 3,4	25.5		
				•	·	•			•	
27	Unlabelled	EQDVSLGA NKFPER	99	1588.76	1588.77		frac 2	21		
	iTRAQ 1	EQDVSLGA NKFPER	99	1878.05	1878.00	289.22	frac 3	21	20.86	-0.14
	iTRAQ 2	EQDVSLGA NKFPER	99	1877.97	1878.00	289.22	frac 3	20.5		
	iTRAQ 3	EQDVSLGA NKFPER	99	1878.07	1878.00	289.22	frac 3	20.5		
	iTRAQ 4	EQDVSLGA NKFPER	99	1878.13	1878.00	289.22	frac 3,4	21		
	iTRAQ 6	EQDVSLGA NKFPER	99	1877.86	1878.00	289.22	frac 3,4	21		
	iTRAQ 8	EQDVSLGA NKFPER	99	1877.99	1878.00	289.22	frac 3	21		
	iTRAQ 9	EQDVSLGA NKFPER	99	1877.91	1878.00	289.22	frac 3,4	21		
									_	
28	Unlabelled	GQGGIQQLLAAEQEAQR	99	1795.94	1795.93		frac 2	25.5		
	iTRAQ 1	GQGGIQQLLAAEQEAQR	99	1941.09	1941.03	145.10	frac 3	27	26.45	0.95
	iTRAQ 3	GQGGIQQLLAAEQEAQR	99	1941.12	1941.03	145.10	frac 3	26.5		
	iTRAQ 4	GQGGIQQLLAAEQEAQR	99	1941.13	1941.03	145.10	frac 4	27		
	iTRAQ 6	GQGGIQQLLAAEQEAQR	99	1941.10	1941.03	145.10	frac 4	25.5		
	iTRAQ 8	GQGGIQQLLAAEQEAQR	99	1940.99	1941.03	145.10	frac 3	26.25		
									_	
29	Unlabelled	QYA VFDEK	99	981.44	981.46		frac 2	23.25		
	iTRAQ 1	Q YA VFDEK	99	1287.72	1287.68	306.22	frac 3	22	21.7	-1.55
	iTRAQ 3	QYA VFDEK	99	1287.73	1287.68	306.22	frac 3	21.5		
	iTRAQ 6	QYA VFDEK	99	1287.63	1287.68	306.22	frac 4	21.5		
	iTRAQ 8	QYA VFDEK	99	1287.68	1287.68	306.22	frac 3	21.75		
	iTRAQ 9	Q YA VFDEK	99	1287.61	1287.68	306.22	frac 3	21.75		
									_	
30	Unlabelled	QLDSHIEEQFGGGR	99	1554.70	1554.71		frac 2	23.25		
	iTRAQ 1	QLDSHIEEQFGGGR	99	1716.89	1716.84	162.13	frac 3	22.5	22.13	-1.13
	iTRAQ 3	QLDSHIEEQFGGGR	99	1716.91	1716.84	162.13	frac 3	22		
	iTRAQ 4	QLDSHIEEQFGGGR	99	1716.95	1716.84	162.13	frac 4	22.5		

	iTRAQ 6	QLDSHIEEQFGGGR	99	1716.88	1716.84	162.13	frac 4	21.5		
	iTRAQ 7	QLDSHIEEQFGGGR	99	1716.81	1716.84	162.13	frac 3	22.5		
	iTRAQ 9	QLDSHIEEQFGGGR	99	1716.83	1716.84	162.13	frac 3	21.75		
					•		·			
31	Unlabelled	FDVGVKEIEGWTAR	99	1605.76	1605.84		frac 2	27	28.67	1.67
	iTRAQ 4	FDVGVKEIEGWTAR	99	1895.15	1895.03	289.19	frac 4	29.5	•	
	iTRAQ 6	FDVGVKEIEGWTAR	99	1894.88	1895.03	289.19	frac 4	28		
	iTRAQ 8	FDVGVKEIEGWTAR	99	1895.00	1895.03	289.19	frac 3	28.5		
					•		·			
32	Unlabelled	HFEVDLSAFR	99	1220.61	1219.61		frac 3	27.75	27.75	0
	iTRAQ 7	HFEVDLSAFR	99	1364.70	1364.71	145.10	frac 4	27.75		
	iTRAQ 8	HFEVDLSAFR	99	1364.69	1364.71	145.10	frac 4	27.75		
	iTRAQ 9	HFEVDLSAFR	99	1364.65	1364.71	145.10	frac 4	27.75		
									-	
33	Unlabelled	CALVYGQMNEPPGAR	99	1661.75	1661.78		frac 4	21.75		
	iTRAQ 1	CALVYGQMNEPPGAR	99	1806.93	1806.87	145.10	frac 6	22	21.79	0.04
	iTRAQ 2	CALVYGQMNEPPGAR	99	1806.89	1806.87	145.10	frac 6	21.5		
	iTRAQ 3	CALVYGQMNEPPGAR	99	1806.94	1806.87	145.10	frac 6	21.5		
	iTRAQ 4	CALVYGQMNEPPGAR	99	1806.98	1806.87	145.10	frac	22		
	TTD 4 0 (00	1006 56	100 < 07	145.10	5,6,7,8	22		
	iTRAQ 6	CALVYGQMNEPPGAR	99	1806.76	1806.87	145.10	frac 6,7	22		
	iTRAQ 8	CALVYGQMNEPPGAR	99	1806.82	1806.87	145.10	frac 6	21.75		
	iTRAQ 9	CALVY GQM NEPPGA R	99	1806.81	1806.87	145.10	frac 6	21.75		
24	** 1 1 11 1		00	1670.01	1650.04		6 4	24	1	
34	Unlabelled	NA VVI VPA YFNDSQR	99	1679.81	1679.84	117.10	frac 4	24	2125	0.04
	iTRAQ I	NA VVT VPA YFNDSQR	99	1825.00	1824.94	145.10	frac 5,6	25	24.36	0.36
	iTRAQ 2	NAVVIVPAYFNDSQR	99	1824.93	1824.94	145.10	frac 5,6	24		
	iTRAQ 3	NA VVT VPA YFNDSQR	99	1825.02	1824.94	145.10	frac 5,6	24.5		
	iTRAQ 4	NA VVT VPA YFNDSQR	99	1825.02	1824.94	145.10	trac 6	24.5		
	iTRAQ 6	NA VVT VPA YFNDSQR	99	1824.82	1824.94	145.10	frac 5,6	24.5		
	ĭΓRAQ 8	NA VVT VPA YFNDSQR	99	1824.89	1824.94	145.10	frac 5, 6,7	24		

	iTRAQ 9	NA VVT VPA YFNDSQR	99	1824.87	1824.94	145.10	frac 5,6	24		
									_	
35	Unlabelled	QPTELELA QAFHQGK	99	1695.85	1695.85		frac 4	24.75		
	iTRAQ 1	QPTELELA QAFHQGK	99	1985.13	1985.07	289.22	frac 4	25.5	25.08	0.33
	iTRAQ 3	QPTELELA QAFHQGK	99	1985.17	1985.07	289.22	frac 5	25		
	iTRAQ 4	QPTELELA QAFHQGK	99	1985.18	1985.07	289.22	frac 5	26		
	iTRAQ 6	QPTELELA QAFHQGK	99	1984.92	1985.07	289.22	frac 5	24.5		
	iTRAQ 8	QPTELELA QAFHQGK	99	1985.01	1985.07	289.22	frac 5	24.75		
	iTRAQ 9	QPTELELA QAFHQGK	99	1984.98	1985.07	289.22	frac 5	24.75		
									•	
36	Unlabelled	TALTYVDNNDGSWHR	99	1747.81	1747.80		frac 4	22.5		
	iTRAQ 1	TALTYVDNNDGSWHR	99	1892.96	1892.90	145.10	frac 5	22.5	22.6	0.1
	iTRAQ 3	TALTYVDNNDGSWHR	99	1892.99	1892.90	145.10	frac 5	22.5		
	iTRAQ 4	TALTYVDNNDGSWHR	99	1893.01	1892.90	145.10	frac 5	23		
	iTRAQ 6	TALTYVDNNDGSWHR	99	1892.76	1892.90	145.10	frac 5	22.5		
	iTRAQ 9	TALTYVDNNDGSWHR	99	1892.84	1892.90	145.10	frac 5	22.5		
37	Unlabelled	QQFPLALYQVDK	99	1448.75	1448.78		frac 4	27		
	iTRAQ 4	QQFPLA LYQ VDK	99	1738.06	1737.98	289.20	frac 6	27.5	26.92	-0.08
	iTRAQ 8	QQFPLALYQVDK	99	1737.92	1737.98	289.20	frac 4,5, 6	27		
	iTRAQ 9	QQFPLA LYQ VDK	99	1737.89	1737.98	289.20	frac 5	26.25		
									_	
38	Unlabelled	ADGFA GVFPEHK	99	1273.58	1273.60		frac 4	23.25		
	iTRAQ 5	ADGFA GVFPEHK	99	1562.87	1562.82	289.22	frac 5	23	24	0.75
	iTRAQ 8	ADGFA GVFPEHK	99	1562.84	1562.82	289.22	frac 5	25		
	iTRAQ 9	ADGFA GVFPEHK	99	1562.76	1562.82	289.22	frac 5	24		
39	Unlabelled	SLEGLQANVQR	99	1213.61	1213.63		frac 4	20.25		
	iTRAQ 1	SLEGLQANVQR	99	1358.82	1358.75	145.13	frac 6	21	21	0.75
	iTRAQ 7	SLEGLQANVQR	99	1358.72	1358.75	145.13	frac 6	21		
	iTRAQ 8	SLEGLQANVQR	99	1358.72	1358.75	145.13	frac 6	21		

	iTRAQ 9	SLEGLQANVQR	99	1358.70	1358.75	145.13	frac 6	21		
40	Unlabelled	TEDNIVVVK	00	1048.46	1048.47		frac 1	21]	
40	iTRAO 1	TFDNVYYK	99	1337.74	1337 70	289.23	frac 5	21	21.9	0.9
	iTRAO 5	TFDNVYYK	99	1337.74	1337.70	289.23	frac 5	21	21.9	0.9
	iTRAO 6	TFDNVYYK	99	1337.59	1337.70	289.23	frac 5	21.5		
	iTRAO 8	TFDNVYYK	99	1337.68	1337.70	289.23	frac 5	21.75		
	iTRAQ 9	TFDNVYYK	99	1337.76	1337.70	289.23	frac 5	23.25		
						•				
41	Unlabelled	MLSPLILGDEHYQTAR	99	1842.91	1842.96		frac 4	27.75		
	iTRAQ 3	MLSPLILGDEHYQTAR	99	1988.16	1988.04	145.08	frac 5	29	28.5	0.75
	iTRAQ 6	MLSPLILGDEHYQTAR	99	1988.04	1988.04	145.08	frac 5	28		
	iTRAQ 8	MLSPLILGDEHYQTAR	99	1987.96	1988.04	145.08	frac 5	28.5		
			-		-		•			
42	Unlabelled	SSFDAFQQILK	99	1282.65	1282.67		frac 4	28.5		
	iTRAQ 3	SSFDAFQQILK	99	1571.95	1571.87	289.20	frac 5	29	28.42	-0.08
	iTRAQ 8	SSFDAFQQILK	99	1571.81	1571.87	289.20	frac 4.5	28.5		
	iTRAQ 9	SSFDAFQQILK	99	1571.79	1571.87	289.20	frac 5	27.75		
	I		1		I	1		1	1	
43	Unlabelled	SSDFLM YGIK	99	1159.55	1159.57		frac 4	27		
	iTRAQ 2	SSDFLM YGIK	99	1448.83	1448.77	289.20	frac 5	28	27.33	0.33
	iTRAQ 8	SSDFLM YGIK	99	1448.73	1448.77	289.20	frac 5	27		
	iTRAQ 9	SSDFLM YGIK	99	1448.71	1448.77	289.20	frac 5	27		
	TT 1 1 11 1		00	1000 65	1000 (7	1		20.7	1	
44	Unlabelled	SSMDAFQQILK	99	1282.65	1282.67	200.15	frac 4	28.5	20.27	0.07
	iTRAQ 7	SSMDAFQQILK	99	1571.75	1571.83	289.17	frac 5	28.5	28.25	-0.25
	iTRAQ 8	SSMDAFQQILK	99	1571.81	1571.83	289.17	frac 4,5	28.5		
	iTRAQ 9	SSMDAFQQILK	99	1571.79	1571.83	289.17	frac 5	27.75		
15	Unlaballad	ETOA NSEVSA LI CP	00	1401 75	1401 77	1	frac 5	25.5	1	
43			99	1471.73	1471.//	145 11	frac S	23.3	27.08	1 50
	11 KAQ 4	FIQANSEVSALLGK	99	1036.97	1030.88	145.11	irac 6	28	27.08	1.58

	iTRAQ 6	FTQANSEVSALLGR	99	1636.87	1636.88	145.11	frac 6	27		
	iTRAQ 8	FTQANSEVSALLGR	99	1636.75	1636.88	145.11	frac 6	26.25		
			•	•	•	·			-	
46	Unlabelled	STLVWEVR	99	988.59	988.56		frac 5	25.5]	
	iTRAQ 1	STLVW EVR	99	1133.70	1133.64	145.08	frac 6	26.5	25.69	0.19
	iTRAQ 2	STLVWEVR	99	1133.67	1133.64	145.08	frac 6	25.5		
	iTRAQ 3	STLVWEVR	99	1133.69	1133.64	145.08	frac 6	25.5		
	iTRAQ 4	STLVWEVR	99	1133.71	1133.64	145.08	frac 6	26		
	iTRAQ 6	STLVWEVR	99	1133.57	1133.64	145.08	frac 6	25.5		
	iTRAQ 7	STLVWEVR	99	1133.67	1133.64	145.08	frac 6	25.5		
	iTRAQ 8	STLVW EVR	99	1133.60	1133.64	145.08	frac 6	25.5		
	iTRAQ 9	STLVWEVR	99	1133.60	1133.64	145.08	frac 6	25.5		
			•	•	•	·			-	
47	Unlabelled	IFLENVIR	99	1002.65	1002.62		frac 5	27.75]	
	iTRAQ 1	IFLENVIR	99	1147.77	1147.70	145.07	frac 6	30.5	29.59	1.84
	iTRAQ 2	IFLENVIR	99	1147.74	1147.70	145.07	frac 6	29.5		
	iTRAQ 3	IFLENVIR	99	1147.75	1147.70	145.07	frac 6	30		
	iTRAQ 4	IFLENVIR	99	1147.77	1147.70	145.07	frac 6	30		
	iTRAQ 6	IFLENVIR	99	1147.65	1147.70	145.07	frac 6	29		
	iTRAQ 7	IFLENVIR	99	1147.65	1147.70	145.07	frac 6	29.25		
	iTRAQ 8	IFLENVIR	99	1147.64	1147.70	145.07	frac 6	29.25		
	iTRAQ 9	IFLENVIR	99	1147.66	1147.70	145.07	frac 6,7	29.25		
			•	•	•	·			-	
48	Unlabelled	FFCEFCGK	99	1093.53	1093.48		frac 5	24]	
	iTRAQ 1	FFCEFCGK	99	1382.72	1382.65	289.17	frac 6	27	26.21	2.21
	iTRAQ 3	FFCEFCGK	99	1382.71	1382.65	289.17	frac 6	26		
	iTRAQ 4	FFCEFCGK	99	1382.71	1382.65	289.17	frac 6	26.5		
	iTRAQ 6	FFCEFCGK	99	1382.55	1382.65	289.17	frac 6	26]	
	iTRAQ 8	FFCEFCGK	99	1382.60	1382.65	289.17	frac 6	25.5]	
	iTRAQ 9	FFCEFCGK	99	1382.60	1382.65	289.17	frac 6	26.25	1	

49	Unlabelled	EVA GFA PYEKR	99	1265.66	1265.65		frac 5,6	21.75		
	iTRAQ 1	EVA GFA PYEKR	99	1554.90	1554.85	289.20	frac 6	22	21.75	0
	iTRAQ 3	EVA GFA PYEKR	99	1554.91	1554.85	289.20	frac 6	21.5		
	iTRAQ 4	EVA GFA PYEKR	99	1554.95	1554.85	289.20	frac 6	21.5		
	iTRAQ 6	EVA GFA PYEKR	99	1554.74	1554.85	289.20	frac 6	22		
	iTRAQ 8	EVA GFA PYEKR	99	1554.80	1554.85	289.20	frac 6	21.75		
	iTRAQ 9	EVA GFA PYEKR	99	1554.81	1554.85	289.20	frac 6	21.75		
50	Unlabelled	SFGPA VIFNNEK	99	1321.74	1321.70		frac 5	26.25		
	iTRAQ 1	SFGPA VIFNNEK	99	1610.96	1610.88	289.18	frac 2,6	27	26.36	0.11
	iTRAQ 2	SFGPA VIFNNEK	99	1610.89	1610.88	289.18	frac 6	26		
	iTRAQ 3	SFGPA VIFNNEK	99	1610.95	1610.88	289.18	frac 6	26.5		
	iTRAQ 4	SFGPA VIFNNEK	99	1610.95	1610.88	289.18	frac 6	26.5		
	iTRAQ 6	SFGPA VIFNNEK	99	1610.77	1610.88	289.18	frac 6	26		
	iTRAQ 8	SFGPA VIFNNEK	99	1610.82	1610.88	289.18	frac 6	26.25		
	iTRAQ 9	SFGPA VIFNNEK	99	1610.81	1610.88	289.18	frac 6	26.25		
				1	1	1				
51	Unlabelled	VALINYGPEYGR	99	1350.80	1350.75		frac 5	24		
	iTRAQ 1	VALINYGPEYGR	99	1495.87	1495.80	145.06	frac 6	25	24.17	0.17
	iTRAQ 2	VALINYGPEYGR	99	1495.82	1495.80	145.06	frac 6	24		
	iTRAQ 3	VALINYGPEYGR	99	1495.86	1495.80	145.06	frac 6	24		
	iTRAQ 6	VALINYGPEYGR	99	1495.69	1495.80	145.06	frac 6	24		
	iTRAQ 8	VALINYGPEYGR	99	1495.76	1495.80	145.06	frac 6,7	24		
	iTRAQ 9	VALINYGPEYGR	99	1495.75	1495.80	145.06	frac 6	24		
52	Unlabelled	YIAPEQVPVK	99	1142.63	1142.63		frac 5	21		
	iTRAQ 1	YIAPEQVPVK	99	1431.88	1431.85	289.21	frac 5,6	21.5	21.5	0.5
	iTRAQ 7	YIAPEQVPVK	99	1431.82	1431.85	289.21	frac 5,6	21.75		
	iTRAQ 8	YIAPEQVPVK	99	1431.82	1431.85	289.21	frac 5,6	21.75		
	iTRAQ 9	YIAPEQVPVK	99	1431.77	1431.85	289.21	frac 5	21		

53	Unlabelled	VEPLVNMGQITR	99	1355.71	1355.72		frac 5	24		
	iTRAQ 1	VEPLVNMGQITR	99	1500.90	1500.83	145.12	frac 6	26	25.41	1.41
	iTRAQ 2	VEPLVNM GQITR	99	1500.84	1500.83	145.12	frac 6	25		
	iTRAQ 3	VEPLVNMGQITR	99	1500.90	1500.83	145.12	frac 6	25.5		
	iTRAQ 4	VEPLVNMGQITR	99	1500.90	1500.83	145.12	frac 6	25.5		
	iTRAQ 5	VEPLVNM GQITR	99	1500.89	1500.83	145.12	frac 6	25.5		
	iTRAQ 6	VEPLVNM GQITR	99	1500.73	1500.83	145.12	frac 6, 7	25.5		
	iTRAQ 8	VEPLVNMGQITR	99	1500.78	1500.83	145.12	frac 6	24.75		
	iTRAQ 9	VEPLVNMGQITR	99	1500.77	1500.83	145.12	frac 6	25.5		
									_	
54	Unlabelled	AYEPILLLGR	99	1143.67	1143.67		frac 5	30		
	iTRAQ 6	AYEPILLLGR	99	1288.66	1288.77	145.10	frac 6	30	30.25	0.25
	iTRAQ 8	AYEPILLLGR	99	1288.72	1288.77	145.10	frac 6	30		
	iTRAQ 9	AYEPILLLGR	99	1288.74	1288.77	145.10	frac 6	30.75		
									_	
55	Unlabelled	LVGEYGLR	99	905.49	905.51		frac 5	22.5		
	iTRAQ 6	LVGEYGLR	99	1050.54	1050.61	145.10	frac 6	23.5	23.31	0.81
	iTRAQ 7	LVGEYGLR	99	1050.60	1050.61	145.10	frac 6	23.25		
	iTRAQ 8	LVGEYGLR	99	1050.58	1050.61	145.10	frac 6	23.25		
	iTRAQ 9	LVGEYGLR	99	1050.57	1050.61	145.10	frac 6	23.25		
									_	
56	Unlabelled	EA LGGLPL YQR	99		1215.66		frac 5	24.75		
	iTRAQ 1	EALGGLPLYQR	99	1360.83	1360.77	145.11	frac 6	26	25.15	0.4
	iTRAQ 2	EA LGGLPL YQR	99	1360.78	1360.77	145.11	frac 6	25		
	iTRAQ 3	EA LGGLPL YQR	99	1360.83	1360.77	145.11	frac 6	25		
	iTRAQ 6	EALGGLPLYQR	99	1360.68	1360.77	145.11	frac 6,7	25		
	iTRAQ 9	EA LGGLPL YQR	99	1360.72	1360.77	145.11	frac 5	24.75		
									_	
57	Unlabelled	ADAFLLVGTQPR	99		1286.70		frac 5	26.25		
	iTRAQ 3	ADAFLLVGTQPR	99	1431.88	1431.81	145.10	frac 6	26	26.83	0.58
	iTRAQ 4	ADAFLLVGTQPR	99	1431.86	1431.81	145.10	frac 7	27.5]	

58 Unlabelled HGW EYVVK 99 1016.50 1016.51 frac 6 22.5 TRAQ 1 HGW EYVVK 99 1305.79 1305.72 289.21 frac 8 23.5 23.22 0.72 TRAQ 3 HGW EYVVK 99 1305.76 1305.72 289.21 frac 8 23.5 TRAQ 4 HGW EYVVK 99 1305.75 1305.72 289.21 frac 8 23.5 TRAQ 6 HGW EYVVK 99 1305.76 1305.72 289.21 frac 8 23.5 TRAQ 6 HGW EYVVK 99 1305.66 1305.72 289.21 frac 8 23.5 TRAQ 8 HGW EYVVK 99 1305.67 1305.72 289.21 frac 8 23.5 TRAQ 8 HGW EYVVK 99 1305.73 1305.72 289.21 frac 8 23.5 TRAQ 9 HGW EYVVK 99 1305.76 1305.72 289.21 frac 8 23.5 TRAQ 8 FVIGGPHGDAGLTGR 99 1452.76 1452.75 frac 7 23.5 0.25 TRAQ 1 FVIGGPHG		iTRAQ 6	ADAFLLVGTQPR	99	1431.72	1431.81	145.10	frac 6	27		
58 Unlabelled HGW EYVVK 99 1016.50 1016.51 frac 6 22.5 TRRQ 1 HGW EYVVK 99 1305.79 1305.72 289.21 frac 8 23.5 23.22 0.72 TRRQ 2 HGW EYVVK 99 1305.76 1305.72 289.21 frac 8 23.5 23.22 0.72 TRAQ 4 HGW EYVVK 99 1305.76 1305.72 289.21 frac 8 23.5 TRAQ 5 HGW EYVVK 99 1305.67 1305.72 289.21 frac 8 23.5 TRAQ 6 HGW EYVVK 99 1305.67 1305.72 289.21 frac 8 23.5 TRAQ 9 HGW EYVVK 99 1305.67 1305.72 289.21 frac 8 23.5 TRAQ 1 FVIGGPHGDAGLTGR 99 1452.76 1452.75 frac 7 23.25 Trac 8 23.5 0.25 TRAQ 1 FVIGGPHGDAGLTGR 99 1597.80 145.10 frac 8 23.5 0.25										_	
TRAQ 1 HGWEYVVK 99 1305.79 1305.72 289.21 frac 8 23.5 23.22 0.72 TRAQ 2 HGWEYVVK 99 1305.71 1305.72 289.21 frac 8 23.5 TRAQ 3 HGWEYVVK 99 1305.75 1305.72 289.21 frac 8 23.5 TRAQ 4 HGWEYVVK 99 1305.77 1305.72 289.21 frac 8 23.5 TRAQ 6 HGWEYVVK 99 1305.66 1305.72 289.21 frac 8 23.5 TRAQ 8 HGWEYVVK 99 1305.66 1305.72 289.21 frac 8 23.5 TRAQ 9 HGWEYVVK 99 1305.67 1305.72 289.21 frac 8 23.5 TRAQ 8 HGWEYVVK 99 1305.73 1305.72 289.21 frac 8 23.5 TRAQ 8 HGWEYVVK 99 1305.73 1305.72 289.21 frac 8 23.5 TRAQ 1 FVIGGPHGDAGLTGR 99 1597.86 145.10 frac 8 23.5 17RA 2 FVIGGPHGDAGLTGR 98 1597.86<	58	Unlabelled	HGWEYVVK	99	1016.50	1016.51		frac 6	22.5		
TRAQ 2 HGWEYVVK 99 1305.71 1305.72 289.21 frac 8 23 TRAQ 3 HGWEYVVK 99 1305.76 1305.72 289.21 frac 8 23.5 TRAQ 4 HGWEYVVK 99 1305.75 1305.72 289.21 frac 8 23.5 TRAQ 5 HGWEYVVK 99 1305.76 1305.72 289.21 frac 8 23.5 TRAQ 6 HGWEYVVK 99 1305.66 1305.72 289.21 frac 8 23.5 TRAQ 8 HGWEYVVK 99 1305.73 1305.72 289.21 frac 8 23.5 TRAQ 9 HGWEYVVK 99 1305.73 1305.72 289.21 frac 8 23.5 TRAQ 1 FVIGGPHGDAGLTGR 99 1452.76 1452.75 frac 7 23.5 0.25 TRAQ 2 FVIGGPHGDAGLTGR 99 1597.94 1597.86 145.10 frac 8 23.5 0.25 TRAQ 4 FVIGGPHGDAGLTGR 98 1597.92 1597.86 145.10 frac 8 23.5 17RAQ 4 FVIGGPHGDAGLTGR 99		iTRAQ 1	HGWEYVVK	99	1305.79	1305.72	289.21	frac 8	23.5	23.22	0.72
TTRAQ 3 HGW EYVVK 99 1305.76 1305.72 289.21 frac 8 23.5 TTRAQ 4 HGW EYVVK 99 1305.75 1305.72 289.21 frac 8 23.5 TTRAQ 6 HGW EYVVK 99 1305.76 1305.72 289.21 frac 8 23 TTRAQ 6 HGW EYVVK 99 1305.67 1305.72 289.21 frac 8 23 TTRAQ 8 HGW EYVVK 99 1305.67 1305.72 289.21 frac 8 23 TTRAQ 9 HGW EYVVK 99 1305.67 1305.72 289.21 frac 8 23 TTRAQ 9 HGW EYVVK 99 1305.73 1305.72 289.21 frac 8 23 TTRAQ 1 FVIGGPHGDAGLTGR 99 1452.76 1452.75 frac 7 23.5 0.25 TTRAQ 2 FVIGGPHGDAGLTGR 99 1597.86 145.10 frac 8 23.5 1 1 1 6 23.5 1 1 1 1 1 6 23.5 1 1 1 1 1 23.5 <td></td> <td>iTRAQ 2</td> <td>HGWEYVVK</td> <td>99</td> <td>1305.71</td> <td>1305.72</td> <td>289.21</td> <td>frac 8</td> <td>23</td> <td></td> <td></td>		iTRAQ 2	HGWEYVVK	99	1305.71	1305.72	289.21	frac 8	23		
iTRAQ 4 HGWEYVVK 99 1305.75 1305.72 289.21 frac 8 23.5 iTRAQ 5 HGWEYVVK 99 1305.77 1305.72 289.21 frac 8 23 iTRAQ 6 HGWEYVVK 99 1305.66 1305.72 289.21 frac 8 23 iTRAQ 8 HGWEYVVK 99 1305.67 1305.72 289.21 frac 8 23 iTRAQ 9 HGWEYVVK 99 1305.73 1305.72 289.21 frac 8 23 iTRAQ 9 HGWEYVVK 99 1305.73 1305.72 289.21 frac 8 23.5 iTRAQ 1 FVIGGPHGDAGLTGR 99 1452.76 1452.75 frac 7 23.5 0.25 iTRAQ 1 FVIGGPHGDAGLTGR 99 1597.85 1597.86 145.10 frac 8 23.5 1 1 iTRAQ 4 FVIGGPHGDAGLTGR 99 1597.92 1597.86 145.10 frac 8 23.5 1 iTRAQ 6 FVIGGPHGDAGLTGR 99 1597.80 145.10 frac 8 23.5 iTRAQ 7 25.5 iTRAQ 8 FVIGGPHGDAGLTGR		iTRAQ 3	HGWEYVVK	99	1305.76	1305.72	289.21	frac 8	23.5		
iTRAQ 5 HGW EYVVK 99 1305.77 1305.72 289.21 frac 8 23 iTRAQ 6 HGW EYVVK 99 1305.66 1305.72 289.21 frac 8 23 iTRAQ 8 HGW EYVVK 99 1305.67 1305.72 289.21 frac 8 23 iTRAQ 9 HGW EYVVK 99 1305.67 1305.72 289.21 frac 8 23 iTRAQ 9 HGW EYVVK 99 1305.73 1305.72 289.21 frac 8 23 59 Unlabelled FVIGGPHGDA GLTGR 99 1452.76 1452.75 frac 7 23.25 iTRAQ 1 FVIGGPHGDA GLTGR 99 1597.94 1597.86 145.10 frac 8 23.5 iTRAQ 3 FVIGGPHGDA GLTGR 99 1597.91 1597.86 145.10 frac 8 23.5 iTRAQ 4 FVIGGPHGDA GLTGR 99 1597.92 1597.86 145.10 frac 8 23.25 iTRAQ 8 FVIGGPHGDA GLTGR 99 1597.81 1597.86 145.10 frac 8 23.25 iTRAQ 9 FVIGGPHGDA GLTG		iTRAQ 4	HGW EYVVK	99	1305.75	1305.72	289.21	frac 8	23.5		
iTRAQ 6 HGW EYVVK 99 1305.66 1305.72 289.21 frac 8 23 iTRAQ 8 HGW EYVVK 99 1305.67 1305.72 289.21 frac 8 23 iTRAQ 9 HGW EYVVK 99 1305.73 1305.72 289.21 frac 8 23 iTRAQ 9 HGW EYVVK 99 1305.73 1305.72 289.21 frac 8 23.25 59 Unlabelled FVIGGPHGDA GLTGR 99 1452.76 1452.75 frac 7 23.25 iTRAQ 2 FVIGGPHGDA GLTGR 99 1597.84 1597.86 145.10 frac 8 23.5 iTRAQ 4 FVIGGPHGDA GLTGR 99 1597.92 1597.86 145.10 frac 8 23.5 iTRAQ 6 FVIGGPHGDA GLTGR 99 1597.92 1597.86 145.10 frac 8 23.5 iTRAQ 8 FVIGGPHGDA GLTGR 99 1597.80 1597.86 145.10 frac 8 23.5 iTRAQ 6 FVIGGPHGDA GLTGR 99 1597.80 1597.86 145.10 frac 8 23.25 iTRAQ 8 FVIG		iTRAQ 5	HGW EYVVK	99	1305.77	1305.72	289.21	frac 8	23		
iTRAQ 8 HGWEYVVK 99 1305.67 1305.72 289.21 frac 8 23 iTRAQ 9 HGWEYVVK 99 1305.73 1305.72 289.21 frac 8 23.25 59 Unlabelled FVIGGPHGDAGLTGR 99 1452.76 1452.75 frac 7 23.25 59 Unlabelled FVIGGPHGDAGLTGR 99 1597.94 1597.86 145.10 frac 8 23.5 0.25 iTRAQ 1 FVIGGPHGDAGLTGR 98 1597.85 1597.86 145.10 frac 8 23.5 0.25 iTRAQ 4 FVIGGPHGDAGLTGR 98 1597.92 1597.86 145.10 frac 8 23.5 iTRAQ 6 FVIGGPHGDAGLTGR 98 1597.92 1597.86 145.10 frac 8 23.5 iTRAQ 6 FVIGGPHGDAGLTGR 99 1597.80 1597.86 145.10 frac 8 23.25 iTRAQ 8 FVIGGPHGDAGLTGR 99 1597.80 1597.86 145.10 frac 8 23.25 60 Unlabelled THA VVEPFVIATNR 99 1697.94 1697.95 145.09 <		iTRAQ 6	HGW EYVVK	99	1305.66	1305.72	289.21	frac 8	23		
ITRAQ 9 HGW EYVVK 99 1305.73 1305.72 289.21 frac 8 23.25 59 Unlabelled FVIGGPHGDA GLTGR 99 1452.76 1452.75 frac 7 23.25 59 ITRAQ 1 FVIGGPHGDA GLTGR 99 1597.94 1597.86 145.10 frac 8 24 23.5 0.25 iTRAQ 2 FVIGGPHGDA GLTGR 98 1597.85 1597.86 145.10 frac 8 23.5 0.25 iTRAQ 3 FVIGGPHGDA GLTGR 99 1597.91 1597.86 145.10 frac 8 23.5 iTRAQ 4 FVIGGPHGDA GLTGR 99 1597.77 1597.86 145.10 frac 8 23.5 iTRAQ 8 FVIGGPHGDA GLTGR 99 1597.80 1597.86 145.10 frac 8 23.25 60 Unlabelled THA VVEPFVIATNR 99 1592.88 1552.86 frac 7 25.5 0.1 iTRAQ 3 THA VVEPFVIATNR 99 1697.95 145.09 frac 8 25.5 25.6 0.1 iTRAQ 4 THA VVEPFVIATNR 99 1697.95 <td< td=""><td></td><td>iTRAQ 8</td><td>HGW EYVVK</td><td>99</td><td>1305.67</td><td>1305.72</td><td>289.21</td><td>frac 8</td><td>23</td><td></td><td></td></td<>		iTRAQ 8	HGW EYVVK	99	1305.67	1305.72	289.21	frac 8	23		
59 Unlabelled FVIGGPHGDAGLTGR 99 1452.76 1452.75 frac 7 23.25 iTRAQ 1 FVIGGPHGDAGLTGR 99 1597.94 1597.86 145.10 frac 8 24 23.5 0.25 iTRAQ 2 FVIGGPHGDAGLTGR 99 1597.85 1597.86 145.10 frac 8 23.5 0.25 iTRAQ 3 FVIGGPHGDAGLTGR 99 1597.91 1597.86 145.10 frac 8 23.5 iTRAQ 4 FVIGGPHGDAGLTGR 98 1597.92 1597.86 145.10 frac 8 23.5 iTRAQ 6 FVIGGPHGDAGLTGR 99 1597.80 145.10 frac 8 23.5 iTRAQ 8 FVIGGPHGDAGLTGR 99 1597.80 145.10 frac 8 23.5 iTRAQ 9 FVIGGPHGDAGLTGR 99 1597.80 1597.86 145.10 frac 8 23.25 60 Unlabelled THA VVEPFVIATNR 99 1697.94 1697.95 145.09 frac 8 25.5 25.6 0.1 iTRAQ 3 THA VVEPFVIATNR 99 1697.94 1697.95 145.09		iTRAQ 9	HGW EYVVK	99	1305.73	1305.72	289.21	frac 8	23.25		
59 Unlabelled FVIGGPHGDAGLTGR 99 1452.76 1452.75 frac 7 23.25 iTRAQ 1 FVIGGPHGDAGLTGR 99 1597.94 1597.86 145.10 frac 8 24 23.5 0.25 iTRAQ 2 FVIGGPHGDAGLTGR 98 1597.85 1597.86 145.10 frac 8 23.5 0.25 iTRAQ 3 FVIGGPHGDAGLTGR 99 1597.91 1597.86 145.10 frac 9 23.5 iTRAQ 4 FVIGGPHGDAGLTGR 99 1597.92 1597.86 145.10 frac 8 23.5 iTRAQ 8 FVIGGPHGDAGLTGR 99 1597.92 1597.86 145.10 frac 8 23.5 iTRAQ 8 FVIGGPHGDAGLTGR 99 1597.80 1597.86 145.10 frac 8 23.5 iTRAQ 9 FVIGGPHGDAGLTGR 99 1597.80 1597.86 145.10 frac 8 23.25 iTRAQ 1 THA VVEPFVIATRR 99 1597.80 1597.86 145.10 frac 8 23.25 iTRAQ 2 THA VVEPFVIATNR 99 1697.94 1697.95 145.09 frac 8					•	·					
iTRAQ 1 FVIGGPHGDAGLTGR 99 1597.94 1597.86 145.10 frac 8 24 23.5 0.25 iTRAQ 2 FVIGGPHGDAGLTGR 98 1597.85 1597.86 145.10 frac 8 23.5 0.25 iTRAQ 3 FVIGGPHGDAGLTGR 99 1597.91 1597.86 145.10 frac 8 23.5 iTRAQ 4 FVIGGPHGDAGLTGR 99 1597.92 1597.86 145.10 frac 8 23.5 iTRAQ 6 FVIGGPHGDAGLTGR 99 1597.77 1597.86 145.10 frac 8 23.5 iTRAQ 8 FVIGGPHGDAGLTGR 99 1597.80 1597.86 145.10 frac 8 23.5 iTRAQ 9 FVIGGPHGDAGLTGR 99 1597.80 1597.86 145.10 frac 8 23.25 60 Unlabelled THA VVEPFVIATNR 99 1552.88 1552.86 frac 7 25.5 25.6 0.1 iTRAQ 3 THA VVEPFVIATNR 99 1697.94 1697.95 145.09 frac 8 26.5 iTRAQ 5 THA VVEPFVIATNR 99 1698.02 1697.95	59	Unlabelled	FVIGGPHGDA GLTGR	99	1452.76	1452.75		frac 7	23.25		
iTRAQ 2 FVIGGPHGDA GLTGR 98 1597.85 1597.86 145.10 frac 8 23.5 iTRAQ 3 FVIGGPHGDA GLTGR 99 1597.91 1597.86 145.10 frac 8 23.5 iTRAQ 4 FVIGGPHGDA GLTGR 98 1597.92 1597.86 145.10 frac 9 23.5 iTRAQ 6 FVIGGPHGDA GLTGR 99 1597.77 1597.86 145.10 frac 8 23.5 iTRAQ 8 FVIGGPHGDA GLTGR 99 1597.77 1597.86 145.10 frac 8 23.5 iTRAQ 9 FVIGGPHGDA GLTGR 99 1597.80 1597.86 145.10 frac 8 23.25 iTRAQ 9 FVIGGPHGDA GLTGR 99 1597.83 1597.86 145.10 frac 8 23.25 60 Unlabelled THA VVEPFVIATNR 99 1697.94 1697.95 145.09 frac 7 25.5 iTRAQ 3 THA VVEPFVIATNR 99 1698.01 1697.95 145.09 frac 8 25.5 iTRAQ 5 THA VVEPFVIATNR 99 1697.95 145.09 frac 8, 9 25.5		iTRAQ 1	FVIGGPHGDA GLTGR	99	1597.94	1597.86	145.10	frac 8	24	23.5	0.25
iTRAQ 3 FVIGGPHGDAGLTGR 99 1597.91 1597.86 145.10 frac 8 23.5 iTRAQ 4 FVIGGPHGDAGLTGR 98 1597.92 1597.86 145.10 frac 9 23.5 iTRAQ 6 FVIGGPHGDAGLTGR 99 1597.77 1597.86 145.10 frac 8 23.5 iTRAQ 8 FVIGGPHGDAGLTGR 99 1597.77 1597.86 145.10 frac 8 23.25 iTRAQ 9 FVIGGPHGDAGLTGR 99 1597.80 1597.86 145.10 frac 8 23.25 iTRAQ 9 FVIGGPHGDAGLTGR 99 1597.83 1597.86 145.10 frac 8 23.25 60 Unlabelled THA VVEPFVIATNR 99 1697.94 1697.95 145.09 frac 7 25.5 iTRAQ 3 THA VVEPFVIATNR 99 1698.01 1697.95 145.09 frac 8 26.5 iTRAQ 5 THA VVEPFVIATNR 99 1698.02 1697.95 145.09 frac 8, 9 25.5 iTRAQ 8 THA VVEPFVIATNR 99 1697.89 1697.95 145.09 frac 8, 9 25.5		iTRAQ 2	FVIGGPHGDA GLTGR	98	1597.85	1597.86	145.10	frac 8	23.5		
iTRAQ 4 FVIGGPHGDA GLTGR 98 1597.92 1597.86 145.10 frac 9 23.5 iTRAQ 6 FVIGGPHGDA GLTGR 99 1597.77 1597.86 145.10 frac 8 23.5 iTRAQ 8 FVIGGPHGDA GLTGR 99 1597.77 1597.86 145.10 frac 8 23.5 iTRAQ 9 FVIGGPHGDA GLTGR 99 1597.80 1597.86 145.10 frac 8 23.25 60 Unlabelled THA VVEPFVIATNR 99 1552.88 1552.86 frac 7 25.5 iTRAQ 2 THA VVEPFVIATNR 99 1697.94 1697.95 145.09 frac 8 25.5 25.6 0.1 iTRAQ 3 THA VVEPFVIATNR 99 1698.01 1697.95 145.09 frac 8 26 iTRAQ 5 THA VVEPFVIATNR 99 1698.02 1697.95 145.09 frac 8, 9 25.5 iTRAQ 8 THA VVEPFVIATNR 99 1697.89 1697.95 145.09 frac 8, 9 25.5 iTRAQ 9 THA VVEPFVIATNR 99 1697.90 1697.95 145.09 frac 8, 9		iTRAQ 3	FVIGGPHGDA GLTGR	99	1597.91	1597.86	145.10	frac 8	23.5		
iTRAQ 6 FVIGGPHGDAGLTGR 99 1597.77 1597.86 145.10 frac 8 23.5 iTRAQ 8 FVIGGPHGDAGLTGR 99 1597.80 1597.86 145.10 frac 8 23.25 iTRAQ 9 FVIGGPHGDAGLTGR 99 1597.83 1597.86 145.10 frac 8 23.25 60 Unlabelled THAVVEPFVIATNR 99 1552.88 1552.86 frac 7 25.5 iTRAQ 2 THAVVEPFVIATNR 99 1697.94 1697.95 145.09 frac 8 25.5 25.6 0.1 iTRAQ 3 THA VVEPFVIATNR 99 1698.01 1697.95 145.09 frac 8 26 17RAQ 5 THA VVEPFVIATNR 99 1698.02 1697.95 145.09 frac 8 25.5 17RAQ 8 THA VVEPFVIATNR 99 1697.89 1697.95 145.09 frac 8, 9 25.5 17RAQ 9 THA VVEPFVIATNR 99 1697.95 145.09 frac 8, 9 25.5 17RAQ 9 143.09 frac 8, 9 25.5 17RAQ 9 144.04 145.09 frac 8, 9 25.5 17RAQ 9 144.04 145.09		iTRAQ 4	FVIGGPHGDA GLTGR	98	1597.92	1597.86	145.10	frac 9	23.5		
iTRAQ 8 FVIGGPHGDA GLTGR 99 1597.80 1597.86 145.10 frac 8 23.25 iTRAQ 9 FVIGGPHGDA GLTGR 99 1597.83 1597.86 145.10 frac 8 23.25 60 Unlabelled THA VVEPFVIATNR 99 1552.88 1552.86 frac 7 25.5 iTRAQ 2 THA VVEPFVIATNR 99 1697.94 1697.95 145.09 frac 8 25.5 25.6 0.1 iTRAQ 3 THA VVEPFVIATNR 99 1698.01 1697.95 145.09 frac 8 26 17RAQ 5 THA VVEPFVIATNR 99 1698.02 1697.95 145.09 frac 8 25.5 17RAQ 8 1100000000000000000000000000000000000		iTRAQ 6	FVIGGPHGDA GLTGR	99	1597.77	1597.86	145.10	frac 8	23.5		
iTRAQ 9 FVIGGPHGDA GLTGR 99 1597.83 1597.86 145.10 frac 8 23.25 60 Unlabelled THA VVEPFVIATNR 99 1552.88 1552.86 frac 7 25.5 iTRAQ 2 THA VVEPFVIATNR 99 1697.94 1697.95 145.09 frac 8 25.5 25.6 0.1 iTRAQ 3 THA VVEPFVIATNR 99 1698.01 1697.95 145.09 frac 8 26 iTRAQ 5 THA VVEPFVIATNR 99 1698.02 1697.95 145.09 frac 8 25.5 iTRAQ 5 THA VVEPFVIATNR 99 1697.89 1697.95 145.09 frac 8 25.5 iTRAQ 8 THA VVEPFVIATNR 99 1697.90 1697.95 145.09 frac 8, 9 25.5 iTRAQ 9 THA VVEPFVIATNR 99 1697.90 1697.95 145.09 frac 8, 9 25.5 iTRAQ 9 THA VVEPFVIATNR 99 1697.90 1697.95 145.09 frac 8, 9 25.5 iTRAQ 9 THA VVEPFVIATNR 99 1697.90 1697.95 145.09 frac 8, 9		iTRAQ 8	FVIGGPHGDA GLTGR	99	1597.80	1597.86	145.10	frac 8	23.25		
60 Unlabelled THA VVEPFVIATNR 99 1552.88 1552.86 frac 7 25.5 iTRAQ 2 THA VVEPFVIATNR 99 1697.94 1697.95 145.09 frac 8 25.5 25.6 0.1 iTRAQ 3 THA VVEPFVIATNR 99 1698.01 1697.95 145.09 frac 8 26 iTRAQ 5 THA VVEPFVIATNR 99 1698.02 1697.95 145.09 frac 8 25.5 iTRAQ 5 THA VVEPFVIATNR 99 1698.02 1697.95 145.09 frac 8 25.5 iTRAQ 8 THA VVEPFVIATNR 99 1697.89 1697.95 145.09 frac 8, 9 25.5 iTRAQ 9 THA VVEPFVIATNR 99 1697.90 1697.95 145.09 frac 8, 9 25.5 iTRAQ 9 THA VVEPFVIATNR 99 1697.90 1697.95 145.09 frac 8, 9 25.5 iTRAQ 9 THA VVEPFVIATNR 99 1697.90 1697.95 145.09 frac 8, 9 25.5 iTRAQ 9 THA VVEPFVIATNR 99 1225.63 1225.62 frac 7 21		iTRAQ 9	FVIGGPHGDA GLTGR	99	1597.83	1597.86	145.10	frac 8	23.25		
60 Unlabelled THA VVEPFVIATNR 99 1552.88 1552.86 frac 7 25.5 iTRAQ 2 THA VVEPFVIATNR 99 1697.94 1697.95 145.09 frac 8 25.5 25.6 0.1 iTRAQ 3 THA VVEPFVIATNR 99 1698.01 1697.95 145.09 frac 8 26 iTRAQ 5 THA VVEPFVIATNR 99 1698.02 1697.95 145.09 frac 8 25.5 iTRAQ 8 THA VVEPFVIATNR 99 1697.89 1697.95 145.09 frac 8, 9 25.5 iTRAQ 8 THA VVEPFVIATNR 99 1697.89 1697.95 145.09 frac 8, 9 25.5 iTRAQ 9 THA VVEPFVIATNR 99 1697.90 1697.95 145.09 frac 8, 9 25.5 iTRAQ 9 THA VVEPFVIATNR 99 1697.90 1697.95 145.09 frac 8, 9 25.5 iTRAQ 9 THA VVEPFVIATNR 99 1697.90 1697.95 145.09 frac 8, 9 25.5 61 Unlabelled SVHEPMQTGLK 99 1225.63 1225.62 frac 7 <t< td=""><td></td><td></td><td></td><td></td><td>•</td><td>·</td><td></td><td></td><td></td><td></td><td></td></t<>					•	·					
iTRAQ 2 THA VVEPF VIATNR 99 1697.94 1697.95 145.09 frac 8 25.5 25.6 0.1 iTRAQ 3 THA VVEPF VIATNR 99 1698.01 1697.95 145.09 frac 8 26 iTRAQ 5 THA VVEPF VIATNR 99 1698.02 1697.95 145.09 frac 8 26 iTRAQ 5 THA VVEPF VIATNR 99 1698.02 1697.95 145.09 frac 8 25.5 iTRAQ 8 THA VVEPF VIATNR 99 1697.89 1697.95 145.09 frac 8, 9 25.5 iTRAQ 9 THA VVEPF VIATNR 99 1697.90 1697.95 145.09 frac 8, 9 25.5 iTRAQ 9 THA VVEPF VIATNR 99 1697.90 1697.95 145.09 frac 8, 9 25.5 iTRAQ 9 THA VVEPF VIATNR 99 1697.90 1697.95 145.09 frac 8, 9 25.5 iTRAQ 1 SVHEPMQTGLK 99 1225.63 1225.62 frac 7 21 iTRAQ 1 SVHEPMQTGLK 99 1514.90 1514.82 289.21 frac 8 20 19.	60	Unlabelled	THA VVEPFVIATNR	99	1552.88	1552.86		frac 7	25.5		
iTRAQ 3 THA VVEPF VIATNR 99 1698.01 1697.95 145.09 frac 8 26 iTRAQ 5 THA VVEPF VIATNR 99 1698.02 1697.95 145.09 frac 8 25.5 iTRAQ 8 THA VVEPF VIATNR 99 1697.89 1697.95 145.09 frac 8, 9 25.5 iTRAQ 8 THA VVEPF VIATNR 99 1697.90 1697.95 145.09 frac 8, 9 25.5 iTRAQ 9 THA VVEPF VIATNR 99 1697.90 1697.95 145.09 frac 8, 9 25.5 iTRAQ 9 THA VVEPF VIATNR 99 1697.90 1697.95 145.09 frac 8, 9 25.5 iTRAQ 1 SVHEPMQTGLK 99 1225.63 1225.62 frac 7 21 iTRAQ 1 SVHEPMQTGLK 99 1514.90 1514.82 289.21 frac 8 20 19.92 -1.08		iTRAQ 2	THA VVEPFVIATNR	99	1697.94	1697.95	145.09	frac 8	25.5	25.6	0.1
iTRAQ 5 THA VVEPF VIATNR 99 1698.02 1697.95 145.09 frac 8 25.5 iTRAQ 8 THA VVEPF VIATNR 99 1697.89 1697.95 145.09 frac 8, 9 25.5 iTRAQ 9 THA VVEPF VIATNR 99 1697.90 1697.95 145.09 frac 8, 9 25.5 iTRAQ 9 THA VVEPF VIATNR 99 1697.90 1697.95 145.09 frac 8, 9 25.5 61 Unlabelled S VHEPM QT GLK 99 1225.63 1225.62 frac 7 21 iTRAQ 1 S VHEPM QT GLK 99 1514.90 1514.82 289.21 frac 8 20 19.92 -1.08		iTRAQ 3	THA VVEPFVIATNR	99	1698.01	1697.95	145.09	frac 8	26		
iTRAQ 8 THA VVEPF VIATNR 99 1697.89 1697.95 145.09 frac 8, 9 25.5 iTRAQ 9 THA VVEPF VIATNR 99 1697.90 1697.95 145.09 frac 8, 9 25.5 61 Unlabelled SVHEPMQTGLK 99 1225.63 1225.62 frac 7 21 iTRAQ 1 SVHEPMQTGLK 99 1514.90 1514.82 289.21 frac 8 20 19.92 -1.08		iTRAQ 5	THA VVEPFVIATNR	99	1698.02	1697.95	145.09	frac 8	25.5		
iTRAQ 9 THA VVEPF VIATNR 99 1697.90 1697.95 145.09 frac 8, 9 25.5 61 Unlabelled SVHEPMQTGLK 99 1225.63 1225.62 frac 7 21 iTRAQ 1 SVHEPMQTGLK 99 1514.90 1514.82 289.21 frac 8 20 19.92 -1.08		iTRAQ 8	THA VVEPFVIATNR	99	1697.89	1697.95	145.09	frac 8, 9	25.5		
61 Unlabelled SVHEPMQTGLK 99 1225.63 1225.62 frac 7 21 iTRAQ 1 SVHEPMQTGLK 99 1514.90 1514.82 289.21 frac 8 20 19.92 -1.08		iTRAQ 9	THA VVEPFVIATNR	99	1697.90	1697.95	145.09	frac 8, 9	25.5		
61 Unlabelled SVHEPMQTGLK 99 1225.63 1225.62 frac 7 21 iTRAQ 1 SVHEPMQTGLK 99 1514.90 1514.82 289.21 frac 8 20 19.92 -1.08										-	
iTRAQ 1 SVHEPMQTGLK 99 1514.90 1514.82 289.21 frac 8 20 19.92 -1.08	61	Unlabelled	SVHEPMQTGLK	99	1225.63	1225.62		frac 7	21		
		iTRAQ 1	SVHEPMQTGLK	99	1514.90	1514.82	289.21	frac 8	20	19.92	-1.08
iTRAQ 6 SVHEPMQTGLK 99 1514.90 1514.82 289.21 frac 8 19.5		iTRAQ 6	SVHEPMQTGLK	99	1514.90	1514.82	289.21	frac 8	19.5		

	iTRAQ 8	SVHEPMQTGLK	99	1514.78	1514.82	289.21	frac 8	20.25		
					-	-			-	
62	Unlabelled	SVVYALSPFQQK	99	1362.72	1365.74		frac 7	25.5		
	iTRAQ 2	SVVYALSPFQQK	99	1654.98	1654.94	289.20	frac 10	27	26.46	0.96
	iTRAQ 3	SVVYA LSPFQQK	99	1654.98	1654.94	289.20	frac 10	27		0.96
	iTRAQ 6	SVVYALSPFQQK	99	1654.81	1654.94	289.20	frac 10	26		
	iTRAQ 7	SVVYA LSPFQQK	99	1654.92	1654.94	289.20	frac 10	26.25		
	iTRAQ 8	SVVYA LSPFQQK	99	1654.85	1654.94	289.20	frac 10	26.25		
	iTRAQ 9	SVVYALSPFQQK	99	1654.84	1654.94	289.20	frac 10	26.25		
									-	
62 [63 [64 [65 [65 [66 [Unlabelled	YGGGA NFVHDGYNK	99	1497.62	1497.61	289.27	frac 7	20.25		
	iTRAQ 1	YGGGA NFVHDGYNK	99	1786.97	1786.88	289.27	frac 8	21	21	0.75
	iTRAQ 8	YGGGA NFVHDGYNK	99	1786.83	1786.88	289.27	frac 8	21		
	iTRAQ 9	YGGGA NFVHDGYNK	99	1786.83	1786.88	289.27	frac 8	21		
									_	
64	Unlabelled	LVNVFTIGK	99	989.49	989.60		frac 7	26		
	iTRAQ 3	LVNVFTIGK	99	1278.84	1278.80	289.20	frac 10	29	28.35	2.35
	iTRAQ 5	LVNVFTIGK	99	1278.86	1278.80	289.20	frac 10	28		
63 64 65 66	iTRAQ 7	LVNVFTIGK	99	1278.81	1278.80	289.20	frac 10	28.5		
	iTRAQ 8	LVNVFTIGK	99	1278.76	1278.80	289.20	frac 10	27.75		
	iTRAQ 9	LVNVFTIGK	99	1278.84	1278.80	289.20	frac 9	28.5		
									-	
65	Unlabelled	TALT YIDGNGNW HR	99	1616.74	1616.76		frac 8	23.25		
65	iTRAQ 1	TALT YIDGNGNW HR	99	1761.97	1761.88	145.12	frac 9	24.5	24.17	0.92
	iTRAQ 2	TALT YIDGNGNW HR	99	1761.90	1761.88	145.12	frac 9	24.5		
	iTRAQ 3	TALT YIDGNGNW HR	99	1761.92	1761.88	145.12	frac 9	24.5		
	iTRAQ 4	TALT YIDGNGNW HR	99	1761.94	1761.88	145.12	frac 9	24		
	iTRAQ 6	TALT YIDGNGNW HR	99	1761.87	1761.88	145.12	frac 9	23.5		
	iTRAQ 8	TALT YIDGNGNW HR	99	1761.81	1761.88	145.12	frac 9	24	1	
	<u> </u>			-		•	•			
66	Unlabelled	AHLQDYIQTHYTAPR	99	1812.89	1812.89		frac 8	22.5]	
									-	
	iTRAQ 3	AHLQDYIQTHYTAPR	99	1958.05	1958.00	145.11	frac 9	23.5	23	0.5
----	------------	-----------------	----	---------	---------	--------	---------	-------	-------	-------
	iTRAQ 4	AHLQDYIQTHYTAPR	99	1958.08	1958.00	145.11	frac 9	23		
	iTRAQ 5	AHLQDYIQTHYTAPR	99	1958.09	1958.00	145.11	frac 9	22.5		
	iTRAQ 8	AHLQDYIQTHYTAPR	99	1958.06	1958.00	145.11	frac 9	23		
			•					•	1	
67	Unlabelled	NYTNAFQALYR	99	1359.66	1359.66		frac 10	27.75		
	iTRAQ 1	NYTNAFQALYR	99	1504.85	1504.77	145.11	frac 12	27.5	27.19	-0.56
	iTRAQ 2	NYTNAFQALYR	99	1504.82	1504.77	145.11	frac 12	27.5		
	iTRAQ 3	NYTNAFQALYR	99	1504.83	1504.77	145.11	frac 12	27.5		
	iTRAQ 4	NYTNAFQALYR	99	1504.83	1504.77	145.11	frac 12	27.5		
	iTRAQ 6	NYTNAFQALYR	99	1504.67	1504.77	145.11	frac 12	26.5		
	iTRAQ 7	NYTNAFQALYR	99	1504.74	1504.77	145.11	frac 12	27		
	iTRAQ 8	NYTNAFQALYR	99	1504.70	1504.77	145.11	frac 12	27		
	iTRAQ 9	NYTNAFQALYR	99	1504.70	1504.77	145.11	frac 12	27		
							•		•	
68	Unlabelled	TLHPNWSPAAIK	99	1333.66	1333.72		frac 10	22.5		
	iTRAQ 1	TLHPNWSPAAIK	99	1623.02	1622.93	289.21	frac 11	24	23.53	1.03
	iTRAQ 2	TLHPNWSPAAIK	99	1622.94	1622.93	289.21	frac 11	23.5		
	iTRAQ 3	TLHPNWSPAAIK	99	1622.96	1622.93	289.21	frac 11	23.5		
	iTRAQ 4	TLHPNWSPAAIK	99	1622.98	1622.93	289.21	frac 11	24		
	iTRAQ 5	TLHPNWSPAAIK	99	1622.97	1622.93	289.21	frac 11	23		
	iTRAQ 6	TLHPNWSPAAIK	99	1622.82	1622.93	289.21	frac 11	24		
	iTRAQ 7	TLHPNWSPAAIK	99	1622.90	1622.93	289.21	frac 11	23.25		
	iTRAQ 8	TLHPNWSPAAIK	99	1622.85	1622.93	289.21	frac 11	23.25		
	iTRAQ 9	TLHPNWSPAAIK	99	1623.91	1622.93	289.21	frac 11	23.25		
						•	•			
69	Unlabelled	FHQYQVVGR	99	1132.54	1132.56		frac 11	21		
	iTRAQ 3	FHQYQVVGR	99	1277.73	1277.69	145.13	frac 12	20.5	20.8	-0.2
	iTRAQ 4	FHQYQVVGR	99	1277.77	1277.69	145.13	frac 12	21		
	iTRAQ 5	FHQYQVVGR	99	1277.72	1277.69	145.13	frac 12	20.5		
	iTRAQ 8	FHQYQVVGR	99	1277.66	1277.69	145.13	frac 12	21		

|--|

70	Unlabelled	FQSLGVAFYR	99	1186.62	1186.64		frac 11	27		
	iTRAQ 6	FQSLGVAFYR	99	1331.65	1331.72	145.08	frac 12	27.5	26.75	-0.25
	iTRAQ 8	FQSLGVAFYR	99	1331.70	1331.72	145.08	frac 12	25		
	iTRAQ 9	FQSLGVAFYR	99	1331.65	1331.72	145.08	frac 12	27.75		

Group B: Peptides focused in the same OGE fraction.

								Rt		
		Sequence	Score	Obs mass	Theo mass	Modification	OGF	(min)	Rt	Diff
1	Unlabelled	MFDA GLYEHCR*	99	1397.57	1397.58		frac 4	23.25		
	iTRAQ 1	MFDA GLYEHCR	99	1542.75	1542.69	145.12	frac 4	24.5	24.42	1.17
	iTRAQ 3	MFDA GLYEHCR	99	1542.77	1542.69	145.12	frac 4	24.5		
	iTRAQ 4	MFDA GLYEHCR	99	1542.78	1542.69	145.12	frac 5	25		
	iTRAQ 6	MFDA GLYEHCR	99	1542.59	1542.69	145.12	frac 5	24.5		
	iTRAQ 8	MFDA GLYEHCR	99	1542.70	1542.69	145.12	frac 4	24		
	iTRAQ 9	MFDA GLYEHCR	99	1542.63	1542.69	145.12	frac 4	24		
2	Unlabelled	EAFPGDVFYLHSR*	99	1536.77	1536.75		frac 4	27.75		
	iTRAQ 1	EAFPGDVFYLHSR	99	1681.93	1681.85	145.09	frac 4	28	28.08	0.33
	iTRAQ 3	EAFPGDVFYLHSR	99	1681.94	1681.85	145.09	frac 4	28.5		
	iTRAQ 4	EAFPGDVFYLHSR	95	1681.96	1681.85	145.09	frac 5	29		
	iTRAQ 6	EAFPGDVFYLHSR	99	1681.87	1681.85	145.09	frac 5	27.5		
	iTRAQ 8	EAFPGDVFYLHSR	99	1681.82	1681.85	145.09	frac 4	27.75		
	iTRAQ 9	EAFPGDVFYLHSR	99	1681.76	1681.85	145.09	frac 4	27.75		
_										
3	Unlabelled	TLHGLQPPESSGIFNEK*	99	1852.92	1852.93		frac 4	24		
	iTRAQ 1	TLHGLQPPESSGIFNEK	99	2142.21	2142.14	289.22	frac 4	24	24.38	0.38
	iTRAQ 2	TLHGLQPPESSGIFNEK	99	2142.25	2142.14	289.22	frac 4	24.5		

	iTRAQ 4	TLHGLQPPESSGIFNEK	99	2142.25	2142.14	289.22	frac 5	25		
	iTRAQ 8	TLHGLQPPESSGIFNEK	99	2142.13	2142.14	289.22	frac 4	24		
4	Unlabelled	ATFDCLMK*	99	984.53	984.49		frac 5	23.25		
	iTRAQ 1	ATFDCLMK	99	1273.70	1273.65	289.16	frac 5	24	23.63	0.38
	iTRAQ 2	ATFDCLMK	99	1273.66	1273.65	289.16	frac 5	23.5	•	
	iTRAQ 3	ATFDCLMK	99	1273.72	1273.65	289.16	frac 5	23.5		
	iTRAQ 4	ATFDCLMK	99	1273.73	1273.65	289.16	frac 5,6	24		
	iTRAQ 6	ATFDCLMK	99	1273.56	1273.65	289.16	frac 6	23.5		
	iTRAQ 9	ATFDCLMK	99	1273.61	1273.65	289.16	frac 5	23.25		
5	Unlabelled	GIPYLNTYDGR*	99	1267.72	1267.67		frac 5,6	24		
	iTRAQ 1	GIPYLNTYDGR	99	1412.79	1412.73	145.06	frac 5,6	25	24.56	0.56
	iTRAQ 2	GIPYLNTYDGR	99	1412.74	1412.73	145.06	frac 5,6	24.5		
	iTRAQ 3	GIPYLNTYDGR	99	1412.79	1412.73	145.06	frac 5,6	24.5		
	iTRAQ 4	GIPYLNTYDGR	99	1412.80	1412.73	145.06	frac 5,6	24.5		
	iTRAQ 6	GIPYLNTYDGR	99	1412.63	1412.73	145.06	frac 5,6	24.5		
	iTRAQ 7	GIPYLNTYDGR	99	1412.71	1412.73	145.06	frac 5,6	24.75		
	iTRAQ 8	GIPYLNTYDGR	99	1412.69	1412.73	145.06	frac 5,6,7	24.75		
	iTRAQ 9	GIPYLNTYDGR	99	1412.69	1412.73	145.06	frac 5,6	24		
6	Unlabelled	GFGFVTFA NEK	99	1215.66	1215.62		frac 2,6	28.5		
	iTRAQ 1	GFGFVTFANEK	99	1504.89	1504.80	289.18	frac 6	29	28	-0.5
	iTRAQ 2	GFGFVTFA NEK	99	1504.85	1504.80	289.18	frac 6	28		
	iTRAQ 3	GFGFVTFA NEK	99	1504.87	1504.80	289.18	frac 6	28		
	iTRAQ 4	GFGFVTFA NEK	99	1504.88	1504.80	289.18	frac 6	28		
	iTRAQ 6	GFGFVTFA NEK	99	1504.71	1504.80	289.18	frac 6	27.5		
	iTRAQ 8	GFGFVTFA NEK	99	1504.74	1504.80	289.18	frac 6	27.75		
	iTRAQ 9	GFGFVTFANEK	99	1504.74	1504.80	289.18	frac 6	27.75		
7	Unlabelled	GKDFAELIASGR	99	1263.65	1262.67		frac 6	25.5		

	iTRAQ 1	GKDFAELIASGR	99	1551.96	1551.87	289.21	frac 6	27	25.83	0.33
	iTRAQ 3	GKDFAELIASGR	99	1551.94	1551.87	289.21	frac 6	26		
	iTRAQ 6	GKDFAELIASGR	99	1551.86	1551.87	289.21	frac 6	25.5		
	iTRAQ 7	GKDFAELIASGR	99	1551.74	1551.87	289.21	frac 6	25.5		
	iTRAQ 8	GKDFAELIASGR	99	1551.81	1551.87	289.21	frac 6	25.5		
	iTRAQ 9	GKDFAELIASGR	99	1551.81	1551.87	289.21	frac 6	25.5		
_										
8	Unlabelled	AALNDFDRFK	99	1195.58	1195.60	289.21	frac 6	23.25		
	iTRAQ 3	AALNDFDRFK	99	1484.87	1484.81	289.21	frac 6	24	24	0.75
	iTRAQ 6	AALNDFDRFK	99	1484.71	1484.81	289.21	frac 6	24		
	iTRAQ 8	AALNDFDRFK	99	1484.77	1484.81	289.21	frac 6	24		
	iTRAQ 9	AALNDFDRFK	99	1484.76	1484.81	289.21	frac 6	24		
9	Unlabelled	EAQWAHAQR*	99	1095.52	1095.52		frac 8	21.75		
	iTRAQ 1	EAQWAHAQR	99	1240.70	1240.63	145.11	frac 8	19	19.07	-2.68
	iTRAQ 3	EAQWAHAQR	99	1240.67	1240.63	145.11	frac 8	19		
	iTRAQ 4	EAQWAHAQR	99	1240.70	1240.63	145.11	frac 9	19		
	iTRAQ 5	EAQWAHAQR	95	1240.68	1240.63	145.11	frac 9	19		
	iTRAQ 6	EAQWAHAQR	99	1240.56	1240.63	145.11	frac 8	18.5		
	iTRAQ 7	EAQWAHAQR	99	1240.65	1240.63	145.11	frac 8	19.5		
	iTRAQ 8	EAQWAHAQR	99	1240.59	1240.63	145.11	frac 8	19.5		
10	Unlabelled	SRFFHSTGQR*	99	1221.48	1221.54		frac 8	21.75	-	
	iTRAQ 1	SRFFHSTGQR	99	1366.73	1366.71	145.17	frac 8	21.5	21.4	-0.35
	iTRAQ 2	SRFFHSTGQR	99	1366.66	1366.71	145.17	frac 8	21.5		
	iTRAQ 3	SRFFHSTGQR	99	1366.70	1366.71	145.17	frac 9	21.5		
	iTRAQ 4	SRFFHSTGQR	99	1366.72	1366.71	145.17	frac 9	21.5		
	iTRAQ 6	SRFFHSTGQR	99	1366.72	1366.71	145.17	frac 8	21		
						1			1	
11	Unlabelled	AGDFFHSAQSR*	99	1221.56	1221.56		frac 8	21.75		
	iTRAQ 1	AGDFFHSAQSR	99	1366.73	1366.66	145.11	frac 8	21.5	21.5	-0.25

	iTRAQ 2	AGDFFHSAQSR	99	1366.66	1366.66	145.11	frac 8	21.5		
	iTRAQ 3	AGDFFHSAQSR	99	1366.70	1366.66	145.11	frac 9	21.5		
	iTRAQ 4	AGDFFHSAQSR	99	1366.72	1366.66	145.11	frac 9	21.5		
	iTRAQ 5	AGDFFHSAQSR	99	1366.72	1366.66	145.11	frac 9	21		
	iTRAQ 6	AGDFFHSAQSR	99	1366.59	1366.66	145.11	frac 8	21.5		
ĺ	iTRAQ 7	AGDFFHSAQSR	99	1366.64	1366.66	145.11	frac 8	21.75		
	iTRAQ 8	AGDFFHSAQSR	99	1366.62	1366.66	145.11	frac 8	21.75		
•										
12	Unlabelled	ASALIQHDWSR*	99	1282.62	1282.63		frac 8	22.5		
	iTRAQ 1	ASALIQHDWSR	99	1427.83	1427.75	145.12	frac 8	23.5	22.83	0.33
	iTRAQ 2	ASALIQHDWSR	99	1427.75	1427.75	145.12	frac 8	22.5		
	iTRAQ 3	ASALIQHDWSR	99	1427.80	1427.75	145.12	frac 8	23		
	iTRAQ 4	ASALIQHDWSR	99	1427.81	1427.75	145.12	frac 8,9	22.5		
	iTRAQ 6	ASALIQHDWSR	99	1427.66	1427.75	145.12	frac 8	23		
	iTRAQ 8	ASALIQHDWSR	99	1427.71	1427.75	145.12	frac 8	22.5		
_										
13	Unlabelled	AHGGFS VFA GV GER	99	1389.69	1389.69		frac 8	26.25		
	iTRAQ 2	AHGGFS VFA GV GER	99	1534.81	1534.79	145.10	frac 8	26	25.92	-0.33
	iTRAQ 3	AHGGFS VFA GV GER	99	1534.85	1534.79	145.10	frac 8	26.5		
	iTRAQ 5	AHGGFS VFA GV GER	99	1534.86	1534.79	145.10	frac 8	26		
	iTRAQ 6	AHGGFS VFA GV GER	99	1534.83	1534.79	145.10	frac 8	26		
	iTRAQ 8	AHGGFS VFA GV GER	99	1534.73	1534.79	145.10	frac 8	25.5		
	iTRAQ 9	AHGGFS VFA GV GER	99	1534.73	1534.79	145.10	frac 8	25.5		
							-			
14	Unlabelled	VGPFHNPSETYR	99	1402.63	1402.65		frac 8	21.75		
	iTRAQ 1	VGPFHNPSETYR	97	1547.85	1547.77	145.12	frac 8	21.5	21.43	-0.32
	iTRAQ 2	VGPFHNPSET YR	99	1547.77	1547.77	145.12	frac 8	21		
	iTRAQ 3	VGPFHNPSETYR	99	1547.82	1547.77	145.12	frac 8	21.5		
	iTRAQ 5	VGPFHNPSET YR	99	1547.83	1547.77	145.12	frac 8	21		
	iTRAQ 6	VGPFHNPSETYR	99	1547.69	1547.77	145.12	frac 8	21.5		
	iTRAQ 8	VGPFHNPSETYR	99	1547.73	1547.77	145.12	frac 8	21.75		

	iTRAQ 9	VGPFHNPSETYR	99	1547.73	1547.77	145.12	frac 8	21.75		
15	Unlabelled	GVDKEHVMLLAAR	99	1437.76	1437.77		frac 8	23.25		
	iTRAQ 1	GVDKEHVMLLAAR	99	1727.08	1726.99	289.22	frac 8	24	23.83	0.58
	iTRAQ 2	GVDKEHVMLLAAR	99	1726.97	1726.99	289.22	frac 8	23.5		
	iTRAQ 3	GVDKEHVMLLAAR	99	1727.04	1726.99	289.22	frac 8	24		
	iTRAQ 4	GVDKEHVMLLAAR	99	1727.05	1726.99	289.22	frac 8	24		
	iTRAQ 6	GVDKEHVMLLAAR	99	1726.89	1726.99	289.22	frac 8	24		
	iTRAQ 8	GVDKEHVMLLAAR	99	1726.93	1726.99	289.22	frac 8	23.5		
16	Unlabelled	EVHFLPFNPVDKR	99	1596.86	1596.85		frac 8	27		
	iTRAQ 3	EVHFLPFNPVDKR	99	1886.12	1886.05	289.20	frac 8	27.5	27.05	0.05
	iTRAQ 4	EVHFLPFNPVDKR	99	1886.13	1886.05	289.20	frac 8	27.5		
	iTRAQ 5	EVHFLPFNPVDKR	99	1886.14	1886.05	289.20	frac 8	27		
	iTRAQ 7	EVHFLPFNPVDKR	99	1886.13	1886.05	289.20	frac 8	27		
	iTRAQ 8	EVHFLPFNPVDKR	99	1885.98	1886.05	289.20	frac 8	26.25		
17	Unlabelled	EIHFLPFNPVDKR	99	1610.87	1610.87		frac 8	28.5		
	iTRAQ 3	EIHFLPFNPVDKR	99	1900.14	1900.07	289.20	frac 8	28.5	28	-0.5
	iTRAQ 4	EIHFLPFNPVDKR	99	1900.16	1900.07	289.20	frac 8	28.5		
	iTRAQ 5	EIHFLPFNPVDKR	99	1900.17	1900.07	289.20	frac 8	28		
	iTRAQ 6	EIHFLPFNPVDKR	99	1900.06	1900.07	289.20	frac 8	27.5		
	iTRAQ 8	EIHFLPFNPVDKR	99	1900.00	1900.07	289.20	frac 8	27.5		
							-			
18	Unlabelled	ALYHDLNA YR	99	1234.63	1234.61		frac 8	22.5		
	iTRAQ 6	ALYHDLNA YR	99	1379.64	1379.72	145.11	frac 8	23	23.19	0.69
	iTRAQ 7	ALYHDLNA YR	99	1379.71	1379.72	145.11	frac 8	23.25		
	iTRAQ 8	ALYHDLNA YR	99	1379.67	1379.72	145.11	frac 8	23.25		
	iTRAQ 9	ALYHDLNA YR	99	1379.70	1379.72	145.11	frac 8	23.25		
19	Unlabelled	AGVKPHELVF	99	1095.58	1095.61		frac 8	25.5		

	iTRAQ 1	AGVKPHELVF	99	1384.90	1384.82	289.21	frac 8	26	25.34	-0.16
	iTRAQ 2	AGVKPHELVF	99	1384.82	1384.82	289.21	frac 8	25.5		
	iTRAQ 3	AGVKPHELVF	99	1384.87	1384.82	289.21	frac 8	25.5		
	iTRAQ 4	AGVKPHELVF	99	1384.85	1384.82	289.21	frac 8	25.5		
	iTRAQ 5	AGVKPHELVF	99	1384.87	1384.82	289.21	frac 8	25		
	iTRAQ 6	AGVKPHELVF	99	1384.73	1384.82	289.21	frac 8	25.5		
	iTRAQ 7	AGVKPHELVF	99	1384.71	1384.82	289.21	frac 8	25		
	iTRAQ 9	AGVKPHELVF	99	1384.77	1384.82	289.21	frac 8	24.75		
20	Unlabelled	LAWHSAGTFDSK*	99	1318.57	1318.61		frac 8	21.75		
	iTRAQ 1	LAWHSA GTFDSK	99	1607.92	1607.84	289.23	frac 8	23.5	23.13	1.38
	iTRAQ 2	LAWHSA GTFDSK	99	1607.83	1607.84	289.23	frac 8	23		
	iTRAQ 6	LAWHSA GTFDSK	99	1607.82	1607.84	289.23	frac 8	22.5		
	iTRAQ 7	LAWHSA GTFDSK	99	1607.82	1607.84	289.23	frac 8	23.25		
	iTRAQ 8	LAWHSA GTFDSK	99	1607.79	1607.84	289.23	frac 8	23.25		
	iTRAQ 9	LAWHSA GTFDSK	99	1607.84	1607.84	289.23	frac 9	23.25		
							-			
21	Unlabelled	YDTVHGQWK	99	1132.49	1132.52	289.22	frac 8	20.25		
	iTRAQ 7	YDTVHGQWK	99	1421.72	1421.74	289.22	frac 8	21	21	0.75
	iTRAQ 8	YDTVHGQWK	99	1421.70	1421.74	289.22	frac 8	21		
	iTRAQ 9	YDTVHGQWK	99	1421.70	1421.74	289.22	frac 8	21		
22	Unlabelled	NGGANFVAPGYTK	99	1294.60	1294.54		frac 10	20.25		
	iTRAQ 7	NGGANFVAPGYTK	99	1583.81	1583.84	289.31	frac 10	21	20.75	0.5
	iTRAQ 8	NGGANFVAPGYTK	99	1523.78	1583.84	289.31	frac 10	21		
	iTRAQ 9	NGGANFVAPGYTK	99	1583.76	1583.84	289.31	frac 10	20.25		
23	Unlabelled	AASFNIIPSSTGAAK	99	1433.72	1433.76		frac 10	22.5		
	iTRAQ 1	AASFNIIPSSTGAAK	99	1723.05	1722.96	289.21	frac 10	24	23.5	1
	iTRAQ 2	AASFNIIPSSTGAAK	99	1722.98	1722.96	289.21	frac 10	23.5		
	iTRAQ 3	AASFNIIPSSTGAAK	99	1723.00	1722.96	289.21	frac 10	23.5		

	iTRAQ 4	AASFNIIPSSTGAAK	99	1723.01	1722.96	289.21	frac 10	24		
	iTRAQ 5	AASFNIIPSSTGAAK	99	1723.00	1722.96	289.21	frac 10	23		
	iTRAQ 6	AASFNIIPSSTGAAK	99	1722.95	1722.96	289.21	frac 10	23		
									_	
24	Unlabelled	FVTA VVGFGK	99	1023.56	1023.57		frac 10	24.75		
	iTRAQ 2	FVTA VVGFGK	99	1312.82	1312.79	289.21	frac 10	27.5	27	2.25
	iTRAQ 6	FVTA VVGFGK	99	1312.77	1312.79	289.21	frac 10	26.5		
	iTRAQ 7	FVTA VVGFGK	99	1312.72	1312.79	289.21	frac 10	27	1	
	iTRAQ 8	FVTA VVGFGK	99	1312.72	1312.79	289.21	frac 10	27		
						•				
25	Unlabelled	AGQYNFLIR	99	1080.59	1080.58		frac 12	26.25		
	iTRAQ 1	AGQYNFLIR	99	1225.75	1225.68	145.10	frac 12	26.5	26.1563	-0.094
	iTRAQ 2	AGQYNFLIR	99	1225.73	1225.68	145.10	frac 12	26.5		
	iTRAQ 3	AGQYNFLIR	99	1225.73	1225.68	145.10	frac 12	26.5	1	
	iTRAQ 4	AGQYNFLIR	99	1225.74	1225.68	145.10	frac 12	26.5	1	
	iTRAQ 6	AGQYNFLIR	99	1225.59	1225.68	145.10	frac 12	26		
	iTRAQ 7	AGQYNFLIR	99	1225.68	1225.68	145.10	frac 12	26.25	1	
	iTRAQ 8	AGQYNFLIR	99	1225.64	1225.68	145.10	frac 12	25.5	1	
	iTRAQ 9	AGQYNFLIR	99	1225.64	1225.68	145.10	frac 12	25.5		
									•	
26	Unlabelled	AYGGVLSGGA VR	99	1105.59	1105.59		frac 12	21.75		
	iTRAQ 1	AYGGVLSGGA VR	99	1250.76	1250.70	145.10	frac 12	22	21.78	0.03
	iTRAQ 2	AYGGVLSGGA VR	99	1250.73	1250.70	145.10	frac 12	22		
	iTRAQ 3	AYGGVLSGGA VR	99	1250.75	1250.70	145.10	frac 12	21.5		
	iTRAQ 4	AYGGVLSGGA VR	99	1250.77	1250.70	145.10	frac 12	22		
	iTRAQ 6	AYGGVLSGGA VR	99	1250.62	1250.70	145.10	frac 12	21.5		
	iTRAQ 7	AYGGVLSGGA VR	99	1250.65	1250.70	145.10	frac 12	21.75		
	iTRAQ 8	AYGGVLSGGA VR	99	1250.67	1250.70	145.10	frac 12	21.75]	
	iTRAQ 9	AYGGVLSGGA VR	99	1250.68	1250.70	145.10	frac 12	21.75		
27	Unlabelled	GFQTSYYNR	99	1134.50	1134.50		frac 11,12	21.75		

	iTRAQ 1	GFQTSYYNR	99	1279.69	1279.62	145.12	frac 12	20.5	20.44	-1.31
	iTRAQ 2	GFQTSYYNR	99	1279.66	1279.62	145.12	frac 12	20.5		
	iTRAQ 3	GFQTSYYNR	99	1279.66	1279.62	145.12	frac 12	20		
	iTRAQ 4	GFQTSYYNR	99	1279.70	1279.62	145.12	frac 12	20.5		
	iTRAQ 6	GFQTSYYNR	99	1279.54	1279.62	145.12	frac 12	20.5		
	iTRAQ 7	GFQTSYYNR	99	1279.61	1279.62	145.12	frac 12	21		
	iTRAQ 8	GFQTSYYNR	99	1279.61	1279.62	145.12	frac 12	20.25		
	iTRAQ 9	GFQTSYYNR	99	1279.58	1279.62	145.12	frac 12	20.25		
28	Unlabelled	VLNTGSPIS VPVGR	99	1394.74	1394.76		frac 12	23.25		
	iTRAQ 1	VLNTGSPIS VPVGR	99	1539.97	1539.90	145.13	frac 12	24	23.7	0.45
	iTRAQ 2	VLNT GSPIS VP VGR	99	1539.94	1539.90	145.13	frac 12	24		
	iTRAQ 3	VLNTGSPIS VPVGR	99	1539.95	1539.90	145.13	frac 12	23.5		
	iTRAQ 4	VLNTGSPIS VPVGR	99	1539.95	1539.90	145.13	frac 12	23.5		
	iTRAQ 6	VLNT GSPIS VP VGR	99	1539.81	1539.90	145.13	frac 12	23.5		
29	Unlabelled	SSS VFIPHGPGA VR	99	1409.72	1409.73		frac 12	23.25		
	iTRAQ 1	SSS VFIPHGPGA VR	99	1554.93	1554.85	145.12	frac 12	23	22.6	-0.65
	iTRAQ 4	SSS VFIPHGPGA VR	99	1554.92	1554.85	145.12	frac 12	22.5		
	iTRAQ 5	SSS VFIPHGPGA VR	99	1554.93	1554.85	145.12	frac 12	22.5		
	iTRAQ 6	SSS VFIPHGPGA VR	99	1554.74	1554.85	145.12	frac 12	22.5		
	iTRAQ 7	SSS VFIPHGPGA VR	99	1554.83	1554.85	145.12	frac 12	22.5		
30	Unlabelled	LVSAHSSQQIYTR	99	1488.72	1488.75		frac 12	21		
	iTRAQ 1	LVSAHSSQQIYTR	99	1633.90	1633.88	145.13	frac 12	20	20.05	-0.95
	iTRAQ 3	LVSAHSSQQIYTR	99	1633.94	1633.88	145.13	frac 12	20		
	iTRAQ 4	LVSAHSSQQIYTR	99	1633.92	1633.88	145.13	frac 12	20		
	iTRAQ 6	LVSAHSSQQIYTR	99	1633.77	1633.88	145.13	frac 12	20		
	iTRAQ 7	LVSAHSSQQIYTR	99	1633.86	1633.88	145.13	frac 12	20.25		
31	Unlabelled	GGGHTSQIYAIR	99	1258.57	1258.65		frac 12	19.5		

	iTRAQ 2	GGGHTSQIYAIR	99	1403.78	1403.75	145.11	frac 12	20.5	20.8	1.3
	iTRAQ 6	GGGHTSQIYAIR	99	1403.66	1403.75	145.11	frac 12	20.5		
	iTRAQ 7	GGGHTSQIYAIR	99	1403.73	1403.75	145.11	frac 12	21		
	iTRAQ 8	GGGHTSQIYAIR	99	1403.72	1403.75	145.11	frac 12	21		
	iTRAQ 9	GGGHTSQIYAIR	99	1403.70	1403.75	145.11	frac 12	21		
32	Unlabelled	HGSLGFLPR	99	988.50	982.53		frac 12	24		
	iTRAQ 5	HGSLGFLPR	99	1127.66	1127.64	145.12	frac 12	24	24.42	0.42
	iTRAQ 6	HGSLGFLPR	99	1127.56	1127.64	145.12	frac 12	24.5		
	iTRAQ 7	HGSLGFLPR	99	1127.62	1127.64	145.12	frac 12	24.75		
							-	_		
33	Unlabelled	GGQLIYGGPLGR	99	1186.60	1186.63		frac 12	23.25		
	iTRAQ 1	GGQLIYGGPLGR	99	1331.82	1331.76	145.12	frac 12	24.5	24.59	1.34
	iTRAQ 2	GGQLIYGGPLGR	99	1331.79	1331.76	145.12	frac 12	24.5		
	iTRAQ 3	GGQLIYGGPLGR	99	1331.80	1331.76	145.12	frac 12	24		
	iTRAQ 4	GGQLIYGGPLGR	99	1331.81	1331.76	145.12	frac 12	24.5		
	iTRAQ 5	GGQLIYGGPLGR	99	1331.61	1331.76	145.12	frac 12	23.5		
	iTRAQ 6	GGQLIYGGPLGR	99	1331.68	1331.76	145.12	frac 12	24		
	iTRAQ 7	GGQLIYGGPLGR	99	1331.65	1331.76	145.12	frac 12	27.75		
	iTRAQ 8	GGQLIYGGPLGR	99	1331.80	1331.76	145.12	frac 12	24		
34	Unlabelled	AGGA YTLNTASA VT VR	99	1550.75	1550.79		frac 12	21		
	iTRAQ 7	AGGA YTLNTASA VT VR	99	1695.90	1695.91	145.12	frac 12	21.75	21.75	0.75
	iTRAQ 8	AGGA YTLNTASA VT VR	99	1695.87	1695.91	145.12	frac 12	21.75		
	iTRAQ 9	AGGA YTLNTASA VTVR	99	1695.86	1695.91	145.12	frac 12	21.75		

		_						Rt	_	
1		Sequence	Score	Obs mass	Theo mass	Modification	OGF	(min)	Rt	Diff
	Unlabelled	SKFDNLYGCR	99	1258.55	1258.56		frac 11	21.75		1
	iTRAQ 1	SKFDNLYGCR	99	1547.86	1547.79	289.22	frac 10	21.5	21.63	-0.13
	iTRAQ 2	SKFDNLYGCR	99	1547.81	1547.79	289.22	frac 10	21.5		
	iTRAQ 3	SKFDNLYGCR	99	1547.82	1547.79	289.22	frac 10	21.5		
	iTRAQ 6	SKFDNLYGCR	99	1547.70	1547.79	289.22	frac 10	22		
_										
						Gln->pyro-				
2	Unlabelled	QFNGLVDVYKK	99	1292.70	1292.69	Glu@N-term	frac 11	26.25		
	iTRAQ 1	QFNGLVDVYKK	99	1743.11	1743.02	450.33	frac 9	24	23.5	-2.75
	iTRAQ 3	QFNGLVDVYKK	99	1743.05	1743.02	450.33	frac 10	23.5		
	iTRAQ 4	QFNGLVDVYKK	99	1743.07	1743.02	450.33	frac 10	24		
	iTRAQ 5	QFNGLVDVYKK	99	1742.77	1743.02	450.33	frac 10	23.5		
	iTRAQ 6	QFNGLVDVYKK	99	1742.96	1743.02	450.33	frac 9	23		
	iTRAQ 8	QFNGLVDVYKK	99	1742.94	1743.02	450.33	frac 10	23.25		
	iTRAQ 9	QFNGLVDVYKK	99	1742.94	1743.02	450.33	frac 9	23.25		
-										
3	Unlabelled	KGPLIVYGTEGAK	99	1331.70	1331.73		frac 11	21.75		
	iTRAQ 1	KGPLIVYGTEGAK	99	1765.15	1765.06	433.33	frac 9	22.5	21.86	0.11
	iTRAQ 2	KGPLIVYGTEGAK	99	1765.05	1765.06	433.33	frac 9	22		
	iTRAQ 3	KGPLIVYGTEGAK	99	1765.11	1765.06	433.33	frac 9	22		
	iTRAQ 5	KGPLIVYGTEGAK	99	1765.14	1765.06	433.33	frac 9	21.5		
	iTRAQ 6	KGPLIVYGTEGAK	99	1765.01	1765.06	433.33	frac 9	21.5		
	iTRAQ 8	KGPLIVYGTEGAK	99	1765.00	1765.06	433.33	frac 9	21.75		
	iTRAQ 9	KGPLIVYGTEGAK	99	1764.99	1765.06	433.33	frac 9	21.75		
	-						-			
4	Unlabelled	YLQPQESGW KPK	99	1459.77	1459.80		frac 11	20.25		
	iTRAQ 1	YLQPQESGW KPK	99	1893.15	1893.06	433.26	frac 9	22	21.81	1.56

Group C: Peptides shifted to more acidic OGE fraction

	iTRAQ 4	YLQPQESGW KPK	99	1893.15	1893.06	433.26	frac 10	22		
	iTRAQ 6	YLQPQESGW KPK	99	1893.03	1893.06	433.26	frac 9	21.5		
	iTRAQ 8	YLQPQESGW KPK	99	1892.99	1893.06	433.26	frac 9	21.75		
5	Unlabelled	GVQQVLQNYK	95	1175.60	1175.61		frac 12	23.25		
	iTRAQ 1	GVQQVLQNYK	99	1464.90	1464.84	289.23	frac 10	23	22.69	-0.56
	iTRAQ 2	GVQQVLQNYK	99	1464.85	1464.84	289.23	frac 10	22.5		
	iTRAQ 3	GVQQVLQNYK	99	1464.87	1464.84	289.23	frac 10	22.5		
	iTRAQ 4	GVQQVLQNYK	99	1464.88	1464.84	289.23	frac 10,11	23		
	iTRAQ 6	GVQQVLQNYK	99	1464.75	1464.84	289.23	frac 11	23		
	iTRAQ 7	GVQQVLQNYK	99	1464.84	1464.84	289.23	frac 10	22.5		
	iTRAQ 8	GVQQVLQNYK	99	1464.78	1464.84	289.23	frac 10	22.5		
	iTRAQ 9	GVQQVLQNYK	99	1464.82	1464.84	289.23	frac 10	22.5		
							•			
6	Unlabelled	KQFVIDVLHPGR		1407.82	1407.81		frac 12	25.5		
	iTRAQ 2	KQFVIDVLHPGR	99	1697.07	1697.01	289.20	frac 10	26.5	26.17	0.67
	iTRAQ 3	KQFVIDVLHPGR	99	1697.06	1697.01	289.20	frac 9,10	26.5		
	iTRAQ 4	KQFVIDVLHPGR	99	1697.07	1697.01	289.20	frac 10	26.5		
	iTRAQ 6	KQFVIDVLHPGR	99	1696.95	1697.01	289.20	frac 10	26.5		
	iTRAQ 7	KQFVIDVLHPGR	99	1697.05	1697.01	289.20	frac 10	25.5		
	iTRAQ 8	KQFVIDVLHPGR	99	1696.95	1697.01	289.20	frac 10	25.5		
7	Unlabelled	ASALIQHEWRPK	99	1434.75	1434.76		frac 12	22.5		
	iTRAQ 1	ASALIQHEWRPK	99	1724.05	1723.98	289.22	frac 10	23	23	0.5
	iTRAQ 2	ASALIQHEWRPK	99	1724.00	1723.98	289.22	frac 10	23		
	iTRAQ 3	ASALIQHEWRPK	99	1724.02	1723.98	289.22	frac 10	23		
	iTRAQ 4	ASALIQHEWRPK	99	1724.05	1723.98	289.22	frac 10	23		
	iTRAQ 6	ASALIQHEWRPK	99	1723.89	1723.98	289.22	frac 10	23.5		
	iTRAQ 8	ASALIQHEWRPK	99	1723.91	1723.98	289.22	frac 10	22.5		
		•								
8	Unlabelled	LSEPYKGIGDCFKR	99	1668.80	1668.82		frac 12	22.5		

	iTRAQ 1	LSEPYKGIGDCFKR	99	2102.25	2102.14	433.33	frac 9	23	22.75	0.25
	iTRAQ 2	LSEPYKGIGDCFKR	99	2102.16	2102.14	433.33	frac 9	23		
	iTRAQ 4	LSEPYKGIGDCFKR	99	2102.22	2102.14	433.33	frac 10	23		
	iTRAQ 6	LSEPYKGIGDCFKR	99	2102.09	2102.14	433.33	frac 9	22.5		
	iTRAQ 8	LSEPYKGIGDCFKR	99	2102.06	2102.14	433.33	frac 10	22.5		
	iTRAQ 9	LSEPYKGIGDCFKR	99	2102.08	2102.14	433.33	frac 9	22.5		
9	Unlabelled	GVLPQNQPFVVK	99	1324.70	1324.74		frac 12	23.25		
	iTRAQ 2	GVLPQNQPFVVK	99	1613.98	1613.96	289.22	frac 11	23.5	22.94	-0.31
	iTRAQ 4	GVLPQNQPFVVK	99	1614.04	1613.96	289.22	frac 10	21		
	iTRAQ 6	GVLPQNQPFVVK	99	1613.86	1613.96	289.22	frac 10, 11	24		
	iTRAQ 9	GVLPQNQPFVVK	99	1613.88	1613.96	289.22	frac 10	23.25		
10	Unlabelled	INW LTNP VHK	99	1220.62	1220.65		frac 12	24		
	iTRAQ 6	INW LTNPVHK	99	1509.82	1509.88	289.22	frac 10	25	25.38	1.38
	iTRAQ 7	INW LTNPVHK	99	1509.80	1509.88	289.22	frac 10	25.5		
	iTRAQ 8	INW LTNP VHK	99	1509.81	1509.88	289.22	frac 10	25.5		
	iTRAQ 9	INW LTNP VHK	99	1509.79	1509.88	289.22	frac 10	25.5		
11	Unlabelled	IA GFSTHLM K	99	1103.54	1103.57		frac 12	23.25		
	iTRAQ 7	IA GFSTHLM K	99	1392.76	1392.79	289.22	frac 10	24.75	24.83	1.58
	iTRAQ 8	IA GFSTHLM K	99	1392.73	1392.79	289.22	frac 10	24.75		
	iTRAO 9	IA GFSTHLM K	99	1392.76	1392.79	289.22	frac 10	25		

Group D: Peptides showing poor focusing quality in OGE.

ſ								Rt		
		Sequence	Score	Obs mass	Theo mass	Modification	OGF	(min)	Rt	Diff
1	Unlabelled	EIAQDFKTDLR	99	1334.69	1334.70		frac 1	15.75		
	iTRAQ 1	EIAQDFKTDLR	99	1623.94	1623.89	289.20	frac 1,3	24	23.34	7.59
	iTRAQ 2	EIAQDFKTDLR	99	1623.89	1623.89	289.20	frac 3	23		
	iTRAQ 3	EIAQDFKTDLR	99	1623.96	1623.89	289.20	frac 3,4	23		
	iTRAQ 4	EIAQDFKTDLR	99	1623.99	1623.89	289.20	frac 2,3,4	23.5		
	iTRAQ 6	EIAQDFKTDLR	99	1623.77	1623.89	289.20	frac 1,2,3,4	23.5		
	iTRAQ 7	EIAQDFKTDLR	99	1623.83	1623.89	289.20	frac 1	23.25		
	iTRAQ 8	EIAQDFKTDLR	99	1623.90	1623.89	289.20	frac 2,3	23.25		
	iTRAQ 9	EIAQDFKTDLR	99	1623.82	1623.89	289.20	frac 3,4	23.25		
_										
2	Unlabelled	VVDLLAPYQR	99	1172.72	1172.69		frac 4,5	26.25		
	iTRAQ 1	VVDLLAPYQR	99	1317.83	1317.76	145.08	frac 1,5,6	28.5	27.71	1.46
	iTRAQ 2	VVDLLAPYQR	99	1317.78	1317.76	145.08	frac 5,6	27.5		
	iTRAQ 3	VVDLLAPYQR	99	1317.84	1317.76	145.08	frac 2,5,6,7	28		
Ī							frac			
	iTRAQ 4	VVDLLAPYQR	99	1317.86	1317.76	145.08	3,4,5,6,7,8	28.5		
						115.00	frac			
-	iTRAQ 6	VVDLLAPYQR	95	1317.68	1317.76	145.08	1,2,3,5,6	27.5		
-	iTRAQ 8	VVDLLAPYQR	99	1317.72	1317.76	145.08	frac 4,5,6	27		
	TPAOO		00	1217.60	121776	145.08	rac	27		
	II KAQ 9	VUDLLAF IQK	77	1317.09	1317.70	145.08	3,4,3,0,7,8	21		
3	Unlabelled	A FL DA TGGI W P	00	1205 69	1205.65		frac 5	20.25		
5		AFLDATCCLWR	99 00	1203.09	1205.05	145.07	frac 6	29.23	20.06	0.71
-		AFLDAT GOL WR	99	1350.81	1330.73	145.07	frac 5 6	20	29.90	0.71
ŀ	TRAQ 5	AFLDATGGLWR	99	1550.79	1350.73	145.07	$\frac{11}{11}$	20.5		
ŀ	TTRAQ 4		99	1050.79	1350.73	145.07	frac 4,0, /	30.5		
ŀ	11 KAQ 5	AFLDATGGLWK	99	1350.80	1350.73	145.07	Trac /	30.5		
-	ITRAQ 6	AFLDATGGLWR	99	1350.68	1350.73	145.07	trac 5,6	29		
	1TRAQ 8	AFLDATGGLWR	99	1350.66	1350.73	145.07	trac 4,5,6	29.25		

4	Unlabelled	QTVAVGVIK	99	913.55	913.56		frac 11	19.5		
							frac			
	iTRAQ 1	QTVAVGVIK	99	1202.82	1202.77	289.22	1,2,10,11	21	20.97	1.47
	iTRAQ 2	QTVAVGVIK	99	1202.78	1202.77	289.22	frac 1,2,11	20.5		
	iTRAQ 3	QTVAVGVIK	99	1202.79	1202.77	289.22	frac 1,2,11	20.5		
	iTRAQ 4	QT VA VG VIK	99	1202.81	1202.77	289.22	frac 10,11	21		
							frac			
	iTRAQ 6	QTVAVGVIK	99	1202.69	1202.77	289.22	1,2,3,10,11	21		
	iTRAQ 7	QTVAVGVIK	99	1202.75	1202.77	289.22	frac 1,2,1	21.75		
							frac			
	iTRAQ 8	QTVAVGVIK	99	1202.74	1202.77	289.22	1,2,10,11	21		
	iTRAQ 9	QTVAVGVIK	99	1202.71	1202.77	289.22	frac 11,12	21		
		r	· · · · · ·			T	1			
5	Unlabelled	FGMMAAQFK	99	1029.49	1029.49		frac 11	25.5		
	iTRAQ 2	FGMMAAQFK	99	1318.72	1318.69	289.20	frac 12	26.5	26.5	1
	iTRAQ 3	FGMMAAQFK	99	1318.73	1318.69	289.20	frac 3,11	26.5		
	iTRAQ 4	FGMMAAQFK	99	1318.74	1318.69	289.20	frac 2,10,11	27		
							frac			
	iTRAQ 6	FGMMAAQFK	99	1318.63	1318.69	289.20	2,3,10,12	26.5		
	iTRAQ 7	FGMMAAQFK	99	1318.63	1318.69	289.20	frac 12	26.25		
	iTRAQ 8	FGMMAAQFK	99	1318.62	1318.69	289.20	frac 2,12	26.25		
6	Unlabelled	IGLFGGA GVGK	97.4	974.56	974.56		frac 12	26.25		
	iTRAQ 1	IGLFGGA GVGK	99	1263.85	1263.77	289.21	frac 1,10,12	26.5	25.9	-0.35
	iTRAQ 2	IGLFGGA GVGK	99	1263.79	1263.77	289.21	frac 12	26		
	iTRAQ 3	IGLFGGA GVGK	99	1263.80	1263.77	289.21	frac 2,10,12	26		
							frac			
	iTRAQ 4	IGLFGGA GVGK	99	1263.81	1263.77	289.21	2,3,10,12	26		
							frac			
	iTRAQ 6	IGLFGGA GVGK	99	1263.69	1263.77	289.21	2,3,10,12	25		
			,			Γ	1	r		
7	Unlabelled	AGLQFPVGR	99	943.51	943.52		frac 12	24		

						frac			-
iTRAQ 1	AGLQFPVGR	99	1088.70	1088.63	145.12	1,2,11,12	24	23.7188	0.281
iTRAQ 2	AGLQFPVGR	99	1088.67	1088.63	145.12	frac 2,12	24		
iTRAQ 3	AGLQFPVGR	99	1088.67	1088.63	145.12	frac 1,2,3,12	23.5		
iTRAQ 4	AGLQFPVGR	99	1088.68	1088.63	145.12	frac 1,2,3,12	23.5		
						frac			
iTRAQ 6	AGLQFPVGR	99	1088.57	1088.63	145.12	1,2,3,4,10,12	23.5		
iTRAQ 7	AGLQFPVGR	99	1088.62	1088.63	145.12	frac 12	24		
iTRAQ 8	AGLQFPVGR	99	1088.59	1088.63	145.12	frac 1,2,12	23.25		
iTRAQ 9	AGLQFPVGR	99	1088.58	1088.63	145.12	frac 2,12	24		

Chapter 2, additional file S2.2.

	Peptides	OGF NL	OGF L	Rt NL	Rt L
1	ECADLWPR	1	3,4	17.25	23.63
2	AYLEDFYR	1	3,4	18.75	26.41
3	EQMGYTFDALK	1	3,4	18.75	24.95
4	TMADEGVVALWR	1	3,4	23.25	24.29
5	ECSGVEPQLWAR	1	3,4	17.25	24.13
6	NQIDEIVLVGGSTR	1	3,4	18.75	25.64
7	LAEMPADSGYPAYLAAR	1	3,4	18.75	26.13
8	ELEFYMK	1	3	18.75	25.83
9	IPSAVGYQPTLSTDLGGLQER	1	3,4	18.25	26.58
10	AQIWDTAGQER	1	3,4	19	21.30
11	AGGECLTFDQLALR	1	3,4	18.75	27.30
12	VDFAYSFFEK	1	3	23	30.00
13	IFDKPEDFIAER	1	3,4	20	26.17
14	GLFTSDQILFTDTR	1	3,4	24	30.00
15	TTPSYVAFTDSER	1	3,4	19	22.33
16	LDTGNFSWGSEAVTR	1	3,4	22	25.42
17	EIAQDFKTDLR	1	2,3,4	15.75	23.34
				19.48	25.49

Chapter 3, additional file S3.1 Group 1 contains 12 identified but not quantified proteins.

	Accession	Description	Σ# Unique Peptides	Exp 1 114/117	Exp 1 114/117 Count	Exp 1 1 14/1 17 Variability [%]	Exp 2: 114/117	Exp 2: 114/117 Count	Exp 2: 114/117 Variability [%]	Exp 3: 117/114	Exp 3: 117/114 Count	Exp 3: 117/114 Variability [%]	Exp 4: 117/114	Exp 4: 117/114 Count	Exp 4: 117/114 Variability [%]
1	357473605	hypothetical protein MTR_4g072130 [Medicago truncatula]	1												
2	21068664	putative quinone oxidoreductase [Cicer arietinum]	0												
3	195616744	14-3-3-like protein [Zea mays]	1												
4	356525661	PREDICTED: ADP,ATP carrier protein 1, mit ochondrial-like [Glycine max]	1												
5	192913032	40S ribosomal protein S11 [Elaeis guineensis]	1												
6	289471845	putative 60S ribosomal protein L10A [Picea schrenkiana]	1												
7	7706837	ATP synthase bet a subunit [Alvaradoa amorphoides]	1												
8	357446813	Somatic embryogenesis receptor-like kinase [Medicago truncatula]	1												
9	357489127	Mitogen-activated protein kinase kinase kinase [Medicago truncatula]	1												
10	AA660683	GTP-binding protein, putative [Brassica oleracea (Wild cabbage)]	1												
11	357494775	Glycerophosphodiesterase- like protein [Medicago truncatula]	2												
12	373501800	cytochrome P450 CYP73A100 [Panax ginseng]	1												

Group 2 encompasses 45 proteins quantified in a single experiment.

	Accession	Description	Σ# Unique Peptides	Exp 1 1 14/1 17	Exp 1 114/117 Count	Exp 1 114/117 Variability [%]	Exp 2: 114/117	Exp 2: 114/117 Count	Exp 2: 114/117 Variability [%]	Exp 3: 117/114	Exp 3: 117/114 Count	Exp 3: 117/114 Variability [%]	Exp 4: 117/114	Exp 4: 1 17/1 14 Count	Exp 4: 1 17/1 14 Variability [%]
1	3789942	polyubiquitin [Saccharum hybrid cultivar H32-8560]	3										1.326	2	2.8
2	357443395	ATP synthase subunit d [Medicago truncatula]	4							1.072	5	17.2			
3	255710055	hypot het ical protein [Jat ropha curcas]	1										0.944	1	
4	357514463	Cytochrome b5 [Medicago truncatula]	1							2.165	1				
5	168063596	histone 2A variant [Physcomitrella patens subsp. patens]	2							0.869	1				
6	168007494	predicted protein [Physcomitrella patens subsp. patens]	1	0.940	1										
7	AL375014	40S ribosomal protein S16 [Euphorbia esula (Leafy spurge)]	1	0.702	1										
8	357477155	Adenylate kinase B [Medicago truncatula]	2							1.807	1				
9	75755833	TO23-2rc [Taraxacum officinale]	1										1.891	1	
10	147772241	hypothetical protein VITISV_004622 [Vitis vinifera]	1							1.224	1				
11	TA21411_3880	Cell elongation protein diminuto [Pisum sativum (Garden pea)]	1	0.520	1										
12	217072000	unknown [Medicago truncatula]	2	0.670	2	42.6									
13	217073079	unknown [Medicago truncatula]	2	0.742	2	8.1									
14	357511727	60S ribosomal protein L13 [Medicago truncatula]	1				0.968	1							
15	81157947	V-type H+ ATP as subunit A [Chlorella pyrenoidosa]	1										1.541	1	
16	297739094	unnamed protein product [Vitis vinifera] blast high affinity nitrate transporter	1				0.358	1							

		2.5 [Vitis vinifera]										
17	357469369	Cytochrome b5 [Medicago truncatula]	1							0.761	1	
18	22759727	putat ive 60S acidic ribosomal protein P0 [Zinnia elegans]	1					0.956	1			
19	357491545	Cytochrome b-c1 complex subunit [Medicago truncatula]	1	0.423	1							
20	217070826	unknown [Medicago truncatula]	1			0.555	1					
21	242074626	hypothetical protein SORBIDRAFT_06g031240 [Sorghum bicolor]	1							0.833	1	
22	357436053	NADH-ubiquinone oxidoreductase [Medicago truncatula]	1	0.797	1							
23	217074646	unknown [Medicago truncatula]	2	0.690	1							
24	357440455	Albumin-2 [Medicago truncatula]	1	0.530	1							
25	224098551	predicted protein [Populus trichocarpa]	1					1.101	1			
26	357460817	NADH-ubiquinone oxidoreductase subunit [Medicago truncatula]	1	1.111	1							
27	218684025	sucrose synthase [Ipomoea batatas]	1					0.679	1			
28	357467107	Sterol 24-C methyltransferase 2-1 [Medicago truncatula]	1					1.435	1			
29	357510473	Endoplasmic reticulum- type calcium-transporting ATPase [Medicago truncatula]	1							1.080	1	
30	357508039	Subtilisin-like serine protease [Medicago truncatula]	1	0.725	1							
31	357515189	Aspartic proteinase nepenthesin-1 [Medicago truncatula]	1	0.791	1							
32	357468717	Bet a-glucosidase G1 [Medicago truncatula]	1							 2.100	1	

33	357461353	Sorting and assembly machinery component-like protein [Medicago truncatula]	1	1.101	1						
34	356503771	PREDICTED: cytochrome P450 76A2-like [Glycine max]	1	1.011	1						
35	357513793	Lipoxygenase [Medicago truncatula]	1			0.930	1				
36	6056372	Very similar to receptor- like serine/threonine kinase [Arabidopsis thaliana]	1					0.906	1		
37	TA34605_3880	Receptor protein kinase, putative [Arabidopsis thaliana (Mouse-ear cress)]	1	0.520	1						
38	BG448717	Vacuolar sorting receptor 1 precursor [Pisum sativum (Garden pea)]	1	0.631	1						
39	DW015683	Blue (Type 1) copper domain [Medicago truncatula (Barrel medic)]	1	0.560	1						
40	BG645999	NADH-ubiquinone oxidoreduct ase [Retama raet am]	1	0.651	1						
41	TA23510_3880	Diacylglycerol kinase-like protein [Arabidopsis thaliana (Mouse-ear cress)]	1			0.764	1				
42	BG448371	Ribosome-sedimenting protein [Pisum sativum (Garden pea)]	1			1.389	1				
43	TA20946_3880	Vacuolar ATP synthase subunit D [Arabidopsis thaliana (Mouse-ear cress)]	1			1.665	1				
44	BQ148528	Remorin-like protein [Arabidopsis thaliana (Mouse-ear cress)]	1			1.238	1				
45	AW776575	Nucleoside diphosphate kinase [Pisum sativum (Garden pea)]	1			1.064	1				

	Accession	Description	Σ# Unique Peptides	Exp 1 114/117	Exp 1 114/117 Count	Exp 1 114/117 Variability [%]	Exp 2: 114/117	Exp 2: 114/117 Count	Exp 2: 114/117 Variability [%]	Exp 3: 117/114	Exp 3: 117/114 Count	Exp 3: 117/114 Variability [%]	Exp 4: 117/114	Exp 4: 117/114 Count	Exp 4: 117/114 Variability [%]
1	1616609	PR10-1 protein [Medicago truncatula]	3	0.463	2	14.5	0.602	2	7.4	0.763	4	12.4	0.578	2	3.9
2	217073838	unknown [Medicago truncatula]/ VDAC1.3 [Lotus japonicus]	7	0.578	10	28.7	0.667	6	7.2	0.873	8	14.3	0.735	2	4.2
3	357477421	Hypersensitive-induced response protein [Medicago truncatula]	2	0.689	1		0.927	1		0.841	1				
4	217071308	unknown [Medicago truncatula]	3				1.153	2	12.6	1.332	3	3.6			
5	AJ388676	40S ribosomal protein S14 [Lupinus luteus (European yellow lupin)]	2							1.175	1		2.202	1	
6	351722086	uncharacterized protein LOC100305477 [Glycine max]	1							1.096	1		2.637	1	
7	TA20806_3880	VDAC1.1 [Lotus japonicus]	3	0.660	1		0.511	2	4.0						
8	217071356	unknown [Medicago truncatula]	1	0.740	1		1.187	1		1.194	3	19.1			
9	357449355	Plasma membrane ATPase [Medicago truncatula]	5	0.570	3	4.0	0.920	3	45.7	0.985	5	3.6	0.783	2	16.9
10	357448421	Peroxidase [Medicago truncatula]	1	0.562	3	22.2	0.785	2	12.3	1.119	1		0.711	2	7.8
11	356539150	PREDICTED: uncharacterized protein LOC100801687 [Glycine max]	1							1.257	1		2.165	1	
12	357513539	Stem 28 kDa glycoprotein [Medicago truncatula]	2	0.684	1					0.875	1				
13	357521321	40S ribosomal protein S2 [Medicago truncatula]	3	1.219	1		1.151	1		1.846	4	13.4			
14	218189340	hypothetical protein OsI_04375 [Oryza sativa Indica Group]	3	0.680	2	1.1	0.810	3	34.5	0.916	1				

Group 3 includes 36 proteins quantified in at least 2 experiments and presents the same trend in protein abundance changes.

15	356524216	PREDICTED: 60S ribosomal protein L18a- like [Glycine max]	1							1.371	1		2.440	1	
16	357513801	Lipoxygenase [Medicago truncatula]	4	0.417	1		0.885	1		0.758	3	7.3			
17	357464351	60S ribosomal protein L6 [Medicago truncatula]	2	1.769	1					2.636	2	51.3			
18	357513307	Ribosomal protein S8 [Medicago truncatula]	1	1.196	1		1.139	1							
19	116786768	unknown [Picea sitchensis]	2	0.840	1		1.072	1							
20	TA20199_3880	Peroxidase1C precursor [Medicago sativa (Alfalfa)]	1	0.618	1		0.988	1							
21	357482599	60S ribosomal protein L26-1 [Medicago truncatula]	1	1.127	1		1.789	1		1.149	1				
22	2493047	RecName: Full=ATP synthase subunit delta', mitochondrial; AltName: Full=F-ATP ase delta' subunit; Flags: Precursor	1	0.861	1		1.043	1		1.220	1		0.897	2	9.3
23	TA20187_3880	Mitochondrial processing peptidase beta subunit [Cucumis melo (Muskmelon)]	5	0.939	2	8.7	1.033	2	2.3	1.213	5	11.9	0.897	1	
24	359478331	PREDICTED: syntaxin- 71-like [Vitis vinifera]	1				0.923	1		1.033	1				
25	357480563	hypothetical protein MT R_4gl 33620 [Medicago truncatula]	1				1.107	1		1.572	1				
26	358344746	hypothetical protein MTR_041s0018 [Medicago truncatula]	2	0.280	1		0.776	1							
27	356539985	PREDICTED: clathrin heavy chain 1-like [Glycine max]	2	0.971	1					1.032	1				
28	TA20001_3880	Protein disulfide- isomerase precursor [Medicago sativa (Alfalfa)]	3				1.098	1		0.942	3	19.8			
29	357473431	V-type proton ATPase 116 kDa subunit a isoform [Medicago	1	0.772	1		0.660	1							

		truncatula]													
30	TA19275_3880	NuM1 protein [Medicago sativa (Alfalfa)]	2							1.275	1		1.794	1	
31	TA20831_3880	Putative dolichyl-di- phosphooligosaccharide- protein [Oryza sativa (japonica cultivar-group)]	1	0.674	1		0.985	1		0.896	1				
32	DY617063	Hypothetical protein OSJNBa0073E05.18 [Oryza sativa (japonica cultivar-group)]	1							1.257	1		2.165	1	
33	TA21586_3880	Putative TATA binding protein associated factor 24kDa subunit [Arabidopsis thaliana (Mouse-ear cress)]	1							1.096	1		2.637	1	
34	357478357	Vacuolar proton- inorganic pyrophosphatase [Medicago truncatula]	1	0.622	1		0.788	1		0.739	1		0.839	2	16.7
35	TA20150_3880	Histone H3.3 [Arabidopsis thaliana (Mouse-ear cress)]	4	1.165	2	7.1	2.001	2	55.3	2.127	4	7.6	2.102	2	14.0
36	97974044	putative phosphate transporter [Eucalyptus camaldulensis]	2	0.247	1		0.248	1							

	Accession	Description	Σ# Unique Peptides	Exp 1 114/117	Exp 1 114/117 Count	Exp 1 114/117 Variability [%]	Exp 2: 114/117	Exp 2: 1 14/1 17 Count	Exp 2: 1 14/1 17 Variability [%]	Exp 3: 117/114	Exp 3: 117/114 Count	Exp 3: 117/114 Variability [%]	Exp 4: 117/114	Exp 4: 117/114 Count	Exp 4: 1 17/1 14 Variability [%]
1	22217761	histone H4 [Daucus carota]	3	0.598	1		0.589	1		1.227	4	11.0	2.116	1	
2	151564660	histone H2B [Arnebia euchroma]	3	0.547	1		0.761	2	97.8	2.511	3	4.3	1.811	1	
3	TA20510_3880	Hypothetical protein [Cicer arietinum (Chickpea) (Garbanzo)]	4	0.462	2	22.4				1.369	1		1.334	1	
4	AL389014	Ribosomal protein L34e [Medicago truncat ula (Barrel medic)]	2	0.647	2	11.6	0.551	1		1.015	1		1.935	1	
5	119394756	GAPDH [Festuca pratensis]	3	0.555	5	22.9	0.706	4	8.2	0.908	5	3.1	0.931	3	7.4
6	217075114	unknown [Medicago truncatula]	2	0.786	1		0.844	1					1.335	1	
7	217075250	unknown [Medicago truncatula]	2	0.443	1					0.938	2	25.4			
8	357441493	40S ribosomal protein S24 [Medicago truncatula]	2	0.319	2	64.1				1.661	1				
0	357473347	40S ribosomal protein S25-2 [Medicago	1	0.509	1		0.761	1		1.609	1				
10	357483185	40S ribosomal protein S4 [Medicago truncatula]	1	0.397	1					1.576	1				
11	111162645	S-adenosylmethionine synthetase [Nicotiana attenuata]	1	0.455	1		0.734	1		1.122	1				
12	357453909	Aquaporin PIP2-7 [Medicago truncatula]	4	0.409	1		0.457	2	15.1	0.808	1		1.101	1	
12	356548937	PREDICTED: ADP, ATP carrier protein 2, mitochondrial-like	1				0.672	1		0.987	1				
13	357507247	60S ribosomal protein L2 [Medicago truncatula]	2	0.783	1					1.025	1				
15	217075298	unknown [Medicago truncatula]	1	0.637	1		0.752	1		1.510	1				
16	356544952	PREDICTED: 40S	1	0.837	1		1.073	1		1.343	2	16.4			

Group 4 presents 58 proteins showing low quantification accuracy.

		ribosomal protein S20-2-													
	2,55566746	60S ribosomal protein	3	1.096	2	18				2.2.16	1		1.723	1	
	2000 007 10	L10, putative [Ricinus	Ű	1.070	-	110				2.210	-		11/20	-	
17		communis]													
	27883932	vacuolar H+-ATPase A1	3	0.722	1					1.090	3	14.6	1.082	3	25.1
		subunit isoform [Solanum													
18		lycopersicum]													
	217071068	unknown [Medicago	1	0.951	1		1.094	1		1.634	1		1.561	1	
19		truncatula]	-												
	168003690	predicted protein	2	0.558	1		1.144	2	4.1	2.669	1				
		[Physcomitrella patens													
20	TE 1 200 47 200 0	subsp. patensj	2				0.7.50	1					1.170		5.2
	TA2094/_3880	Peroxidase2 precursor	3				0./50	1					1.178	2	5.3
21		(Alfalfa)]													
21	145323788	Flongation factor 1-alpha	3	0.646	5	96	0734	6	18.6	1 265	5	68	2 5 3 4	4	27.4
22	143323700	[Arabidonsis thaliana]	5	0.040	5	2.0	0.754	0	10.0	1.205	5	0.0	2.554	-	27.4
	357439781	60S ribosomal protein L4	3	0.680	2	18.6				1.387	2	1.6	1.102	1	
23		[Medicago truncatula]													
	6273331	glycine-rich RNA	1	0.495	1								1.611	1	
		binding protein													
24		[Medicago sativa]													
	BQ255268	Ras-related protein Rab7	2	0.450	2	11.9	0.617	2	8.2	0.871	2	1.1	0.912	2	21.3
		[Pisum sativum (Garden													
25		pea)]													
	3914539	RecName: Full=Ras-	1							0.980	1		1.464	1	
26	475600	related protein Rab/A	2	0.101	1		1 1 2 2	2	50.2	1.007	2	2.0	1.027	1	
27	475002	BIP Isolonn A [Giycine	3	0.181	1		1.132	Z	50.2	1.097	2	2.8	1.237	1	
27	217075747	unknown Medicago	2				0.657	1		0.985	2	44.1	1 1 24	2	7.0
28	211013141	truncatulal	2				0.057	1		0.705	2	++.1	1.124	2	7.0
20	357473829	Ascorbate peroxidase	1	0.777	2	8.9	0.778	1		1.126	1		1.405	1	
29		[Medicago truncatula]													
	217073546	unknown [Medicago	1	0.749	1					1.340	2	2.8	1.126	1	
30		truncatula]													
	357508341	Translocon-associated	1	0.915	1								1.239	1	
		protein subunit beta													
31		[Medicago truncatula]													
	TA19487_3880	Aquaporin-like	1	0.317	1					0.851	1		0.949	1	
		transmembrane channel													
22		(Alfalfa)]													
32		(1111111)									1	1	1	1	

33	357473263	Glycine-rich RNA binding protein [Medicago truncatula]	1	0.456	1		0.862	1		1.569	1		1.306	1	
55	TA20493_3880	Mitochondrial phosphate translocator [Medicago	2	0.477	1		0.626	1		0.843	1		1.029	2	27.8
34	255629067	unknown [Glycine max]	1				0.872	1					1.247	1	
36	357513493	ABC transporter family pleiotropic drug resistance protein [Medicago truncatula]	3	0.632	2	20.8	0.510	1					1.157	1	
37	TA26191_3880	Type IIB calcium ATP ase [Medicago truncatula (Barrel medic)]	3	0.722	3	31.8	0.955	1					1.241	1	
38	CB892562	Fructose-bisphosphate aldolase, cytoplasmic isozyme 2 [Pisum sativum (Garden pea)]	2	0.649	1					1.016	2	6.4	0.873	1	
39	356550048	PREDICTED: prostaglandin G/H synthase 1-like [Glycine max]	2	0.529	2	49.2							0.943	1	
40	TA31091_3880	Put at ive senescence- associated protein [Pisum sativum (Garden pea)]	1	0.947	1		0.900	1		1.334	1		1.829	1	
41	255569710	2-oxoglut arate/malate translocator, chloroplast precursor, put ative [Ricinus communis]	1	0.824	1					1.453	1				
42	255558087	vacuolar ATP synthase subunit h, put at ive [Ricinus communis]	1	0.569	1					1.100	1				
43	357495517	Fasciclin-like arabinogalactan protein [Medicago truncatula]	1	0.431	2	15.7				0.909	1				
44	TA19756_3880	Put at ive cytosolic factor [T rifolium pratense (Red clover)]	4	0.647	3	1.5	0.677	2	18.0	0.967	2	11.4	1.154	2	26.1
45	357453901	Protein disulfide isomerase L-2 [Medicago truncatula]	1	1.135	1								2.104	1	
46	TA20588_3880	Putative ATP synthase subunit [Glycine max	1	0.510	1					0.944	1				

		(Soybean)]												1	
47	TA27868_3880	Putative surface protein [Arabidopsis thaliana (Mouse-ear cress)]	2	0.459	2	63.2	0.799	2	13.1	0.855	1		0.988	1	
48	DW016429	Minor allergen [Arabidopsis thaliana (Mouse-ear cress)]	3	0.420	2	98.0	0.422	1					1.157	1	
49	TA21822_3880	Mitochondrial-processing peptidase alpha subunit, mitochondrial precursor [Solanum tuberosum (Potato)]	4	0.566	2	73.9	0.743	3	18.4	0.985	2	44.1	1.179	1	
50	BE239999	Hypothetical protein upa10 [Capsicum annuum (Bell pepper)] blast high-affinity nitrate transporter 3.1-like [Glycine max]	2	0.863	1		0.986	1		1.493	2	19.6			
51	357444609	ATP synthase subunit beta [Medicago truncatula]	14	0.699	11	28.5	1.036	16	22.4	1.319	28	19.9	0.978	8	13.6
52	372450305	atp1 gene product (mitochondrion) [Lot us japonicus]	8	0.749	5	24.4	1.368	3	32.2	1.327	6	8.6	0.989	3	5.2
52	TA24625_3880	Outer plastidial membrane protein porin [Pisum sativum (Garden	5	0.504	3	32.7	0.802	2	6.4	1.206	2	76.6	0.827	2	3.7
54	357479589	Plasma membrane H+- ATPase [Medicago truncatula]	11	0.481	9	50.1	0.967	4	15.4	1.248	9	12.6	0.950	3	8.1
55	357514853	ADP,ATP carrier protein [Medicago truncatula]	4	0.676	2	3.1	1.251	1		1.235	3	29.7	1.785	1	
56	DY617667	Putative quinone oxidoreductase [Cicer arietinum (Chickpea) (Garbanzo)]	6	0.552	2	27.6	1.095	2	23.7	1.203	4	46.8			
57	TA20044_3880	Probable H+-transporting ATPase [Arabidopsis thaliana (Mouse-ear cress)]	5	0.798	3	12.7	1.068	2	39.7	1.233	2	9.1	0.909	1	
58	217075500	unknown [Medicago truncatula]	1	0.893	1					1.192	1				

Chapter 4, additional file S4.1

 $MtC20305_1_AA\ Protease-associated\ PA\ IPR009030: Growth\ factor,\ receptor\ IPR012336: Thiored oxin-like\ fold$

MtC00361_1_AA Dolichyl-diphosphooligosaccharide-protein glycosyltransferase 48k Da subunit

MtC30299_1_AA Sugar transporter IPR007114:Major facilitator superfamily

MtC10107.1_1_AA Peptidase T1A, proteasome beta-subunit

MtD01618_1_AA Sugar transporter superfamily IPR011701:Major facilitator superfamily MFS_1

MtD00775_1_AA Quinonprotein alcohol dehydrogenase-like

MtC10770_1_AA unknown

MtC00265_1_AA unknown

MtD26036_1_AA Glycosyl transferase, family 8

MtD15246_1_AA Harpin-induced 1

MtC00280_1_AA Glutathione S-transferase, C-terminal IPR012335: Thioredoxin fold

MtD00815_1_AA Tetratricopeptide-like helical

MtC00716.1_1_AA Argonaute and Dicer protein, PAZ IPR003165:Stem cell self-renewal protein Piwi MtD03801_1_AA

MtC50332_1_AA Sodium/sulphate symporter

MtD00588_1_AA Dynamin

MtC20081_1_AA Elongation factor Tu, domain 2

MtC20218_1_AA Annexin, type plant

MtC61308_1_AA Pleiotropic drug resistance protein PDR

MtD13642_1_AA Aldehyde dehydrogenase

MtC00045_1_AA BURP

MtC00422.1_1_AA Kunitz inhibitor ST1-like

MtC20129_1_AA Annexin IPR015472:

MtC60399_1_AA UspA

MtC60841_1_AA SRA-YDG IPR003616:Post-SET zinc-binding region IPR007728:Pre-SET zincbinding region IPR011381:Histone H3-K9 methyltransferase

MtC62278_1_AA High mobility group proteins HMG-I and HMG-Y IPR000873:AMP-dependent synthetase and ligase IPR003216: Linker histone, N-terminal

MtD01238_1_AA Acetyl-CoA carboxylase carboxyl transferase, beta subunit

MtC00063_1_AA unknown

MtC00439_1_AA Ribosomal L38e protein

MtC10324_1_AA Thioredoxin-like fold IP R013740:Redoxin

MtC61727_1_AA Caleosin related

MtC93050_1_AA Xanthine/uracil/vitamin C permease

MtD04471_1_AA Leucine rich repeat, N-terminal

MtC00268_1_AA ATPase, F1/V1/A1 complex, alpha/beta subunit, nucleotide-binding

MtC00010_1_AA Major intrinsic protein

MtC00007_1_AA Major intrinsic protein

MtC10902_1_AA Band 7 protein

MtC10384_1_AA Band 7 protein

MtD23345_1_AA Band 7 protein

MtC10204_1_AA Porin, eukaryotic type

MtC62028 1 AA Porin, eukaryotic type

MtC10996_1_AA Porin, eukaryotic type

MtC00042_1_AA Sucrose synthase, plants and cyanobacteria

MtC20141_1_AA Sucrose synthase

MtC10445_1_AA Major intrinsic protein

MtC10051_1_AA Haem peroxidase, plant/fungal/bacterial

MtC10136.1_1_AA Haem peroxidase, plant/fungal/bacterial

MtC10656_1_AA Haem peroxidase, plant/fungal/bacterial

MtC10033_1_AA Haem peroxidase, plant/fungal/bacterial

MtC00724.1_1_AA Haem peroxidase, plant/fungal/bacterial

MtC00029_1_AA Ubiquitin IPR002906:Ribosomal protein S27a

MtC00769.1 1 AA Histone H4 IPR009072: Histone-fold MtS00050_1_AA unknown MtC00266_1_AA Mitochondrial substrate carrier MtC91290_1_AA Porin, eukaryotic type MtC00630_1_AA Lipoxygenase MtC40075_1_AA Peptidase M16, N-terminal MtC60672_1_AA Peptidase M16A, coenzyme PQQ biosynthesis protein PqqF MtC10612.1_1_AA Adenine nucleotide translocator 1 MtC40017 1 AA Mitochondrial substrate carrier MtC01635_1_AA Adenine nucleotide translocator 1 MtC10717_1_AA Haem peroxidase, plant/fungal/bacterial MtC40026_1_AA Haem peroxidase, plant/fungal/bacterial MtC00030_1_AA Glyceraldehyde-3-phosphate dehydrogenase, type I MtC00021.1_1_AA Glyceraldehyde 3-phosphate dehydrogenase-like MtC00429_1_AA unknown MtD03329_1_AA General substrate transporter IPR005829:Sugar transporter superfamily MtC10259 1 AA Mitochondrial substrate carrier MtC20295_1_AA Ribosomal protein S3Ae MtC10071_1_AA Ribosomal protein S3Ae MtC10403_1_AA Protein disulphide isomerase IPR006663: IPR012336: Thioredoxin-like fold IPR013766: Thioredoxin domain MtC00417_1_AA Thioredoxin-related IPR012336: Thioredoxin-like fold IPR013331: Endoplasmic reticulum ERp29-type, C-terminal IPR013766: Thioredoxin domain MtC00780 1 AA Ribosomal protein L4/L1e, archeabacterial like MtC45278_1_AA Ribosomal protein L4/L1e, archeabacterial like MtC10205 1 AA Ribosomal protein L4/L1e, archeabacterial like MtC00341.1_1_AA Histone core IPR009072:Histone-fold MtC92000 1 AA Histone core IPR009072: Histone-fold MtC00629_1_AA ATPase, V1/A1 complex, subunit E MtC20367 1 AA Band 7 protein MtD20646_1_AA Band 7 protein MtC10315_1_AA Cellulose synthase MtC00519.2_1_AA NAD-dependent epimerase/dehydratase MtC20060_1_AA Trimeric LpxA-like MtC60249_1_AA Trimeric LpxA-like MtC10528_1_AA Trimeric LpxA-like MtC00264 1 AA Ribosomal protein S5, bacterial and chloroplast MtC00149_1_AA Ribosomal protein S5 IPR014720: IPR014721: MtC10441_1_AA Lipoxygenase MtC10070_1_AA Lipoxygenase MtC00480.1_1_AA Lipoxygenase MtD20838_1_AA Lipoxygenase MtC93052.1_1_AA Plant lipoxygenase MtC93151_1_AA ATP ase, F1 complex, gamma subunit MtC00242_1_AA unknown MtC91531_1_AA Histone H2A IPR007124: IPR009072: Histone-fold MtD11604_1_AA Histone H2A IPR007124: IPR009072: Histone-fold MtD12059 1 AA unknown MtC00335 1 AA Histone H2A IPR009072: Histone-fold MtC00621_1_AA Histone H2A IPR007124: IPR009072: Histone-fold MtC10307_1_AA Histone H2A IPR007124: IPR009072: Histone-fold MtC00712_1_AA Histone H2A IPR009072: Histone-fold MtC00574 1 AA Histone H2A IPR007124: IPR009072: Histone-fold MtC00350 1 AA Histone H2A IPR009072: Histone-fold MtC92211_1_AA Histone H2A IPR007124: IPR009072: Histone-fold 245

MtC00278 1 AA Remorin, C-terminal region IPR005518:Remorin, N-terminal region MtC60319_1_AA Remorin, C-terminal region IPR005518:Remorin, N-terminal region MtC20140 1 AA ATPase, V1 complex, subunit B IPR009079:Four-helical cytokine MtC10283 1 AA unknown MtC00226_1_AA Ribosomal protein L7, eukaryotic form MtD00326 1 AA Ribosomal protein L30 MtC60184_1_AA Armadillo-like helical MtC60237 1 AA Ribosomal protein L30 MtC10055_1_AA Concanavalin A-like lectin/glucanase MtC10347 1 AA 14-3-3 protein MtC00791.1_1_AA 14-3-3 protein MtC00020_1_AA 14-3-3 protein MtC00154_1_AA 14-3-3 protein MtC10022_1_AA 14-3-3 protein MtD10763_1_AA 5-methyltetrahydropteroyltriglutamate --homocysteine S-methyltransferase MtC00170.1_1_AA Ribosomal protein L11 IPR001760:Opsin MtC10276 1 AA Ribosomal protein L11 IPR014669: MtC10575_1_AA Ribophorin II MtD04169_1_AA Ribophorin II MtD22966_1_AA Cytochrome bd ubiquinol oxidase, 14 kDa subunit MtD23501_1_AA Cytochrome bd ubiquinol oxidase, 14 kDa subunit MtC00272_1_AA Cytochrome b5 MtD00859_1_AA Peptidase M48, Ste24p MtC00115_1_AA unknown MtC60525_1_AA ATP ase, F1 complex, delta/epsilon subunit MtC00135_1_AA Ribosomal protein S8E MtC00199_1_AA Ribosomal protein S8E MtC00015 1 AA Peptidyl-prolyl cis-trans isomerase, cyclophilin type MtC10908_1_AA Cytochrome b5 MtC10080_1_AA Cytochrome b5 MtC93078_1_AA Sigma-54 factor, interaction region IPR013753:Ras MtC20086_1_AA Sigma -54 factor, interaction region IPR003579:Ras small GTPase, Rab type MtC60316_1_AA Sigma-54 factor, interaction region IPR013753:Ras IPR015595: MtC00594_1_AA Sigma-54 factor, interaction region IPR013753:Ras IPR015595: MtD01385_1_AA Small GTP-binding protein domain IPR015595: MtC62304_1_AA Ras small GTPase, Rab type MtC00162_1_AA Kunitz inhibitor ST1-like MtC61398_1_AA Sigma-54 factor, interaction region IPR013753:Ras MtC30233_1_AA Sigma-54 factor, interaction region IPR003579:Ras small GTPase, Rab type MtC00207_1_AA Sigma-54 factor, interaction region IPR013753:Ras MtC90027 1 AA Sigma-54 factor, interaction region IPR013753:Ras MtC60221_1_AA Sigma-54 factor, interaction region IPR003579:Ras small GTPase, Rab type MtC00385_1_AA Ras small GTPase, Rab type MtC00581_1_AA Ras small GTPase, Rab type MtC10068 1 AA Enolase MtC10113 1 AA Phosphoglucose isomerase (PGI) MtC00100_1_AA Fructose-bisphosphate aldolase, class-I MtC60154_1_AA Fructose-bisphosphate aldolase, class-I MtC60189_1_AA ATPase, V1 complex, subunit C MtC00032.1_1_AA Ribosomal protein S13 MtC00435 1 AA Ribosomal protein S13 MtC10375 1 AA Glycerophosphoryl diester phosphodiesterase MtC00037_1_AA Ribosomal protein S4E MtC00189_1_AA ATP-binding region, ATPase-like IPR009079:Four-helical cytokine 246

- MtC10218_1_AA UTP--glucose-1-phosphate uridylyltransferase
- MtC00040_1_AA Ribosomal protein S11
- MtC00327_1_AA Ribosomal protein S11
- MtC30197_1_AA IQ calmodulin-binding region
- MtC00750_1_AA Complex 1 LYR protein
- MtD00010.1_1_AA Translation elongation factor EF-1, alpha subunit
- MtC00009_1_AA Bet vI allergen
- MtC00227_1_AA Bet vI allergen
- MtC00219_1_AA Bet vI allergen
- MtC20134.2_1_AA Phosphate permease
- MtC00168_1_AA Bet vI allergen
- MtC00552_1_AA DOMON related IP R006593: Cytochrome b561 / ferric reductase transmembrane
- MtC01542_1_AA Translation factor
- MtC62284_1_AA Major facilitator superfamily

MtC50199_1_AA Ubiquinol cytochrome reductase transmembrane region IPR005805: Rieske iron-sulfur protein IPR014349:

- MtC30089_1_AA unknown
- MtD00014_1_AA ATP -binding region, ATPase-like IP R009079:Four-helical cytokine
- MtD00238_1_AA ATP -binding region, ATPase-like IPR015566:
- MtC20003_1_AA Respiratory-chain NADH dehydrogenase domain, 51 kDa subunit
- MtC00460_1_AA Beta-Ig-H3/fasciclin
- MtC20134.1_1_AA Major facilitator superfamily
- MtC00742_1_AA Band 7 protein
- MtC10854_1_AA unknown
- MtS10732_1_AA Elongation factor Tu, C-terminal
- MtC00544_1_AA ETC complex I subunit
- MtC00081_1_AA ARF/SAR superfamily
- MtC20040_1_AA Cytochrome b5 IPR011987:ATPase, V1 complex, subunit H, C-terminal
- MtC00001_1_AA Major intrinsic protein
- MtD00930_1_AA AAA ATPase IPR013525:ABC-2 type transporter IPR013581:Plant PDR ABC transporter associated
- MtC11005_1_AA Glycoside hydrolase, family 18, catalytic domain
- MtS10750_1_AA unknown
- MtC90574_1_AA Pleiotropic drug resistance protein PDR
- MtD03898_1_AA Pleiotropic drug resistance protein PDR
- MtD08577_1_AA ABC-2 type transporter
- MtC10110_1_AA Phosphoglycerate kinase
- MtC20119_1_AA Actin/actin-like
- MtC10470_1_AA Actin/actin-like
- MtC30134_1_AA ATPase, F1 complex, gamma subunit IPR002020: Citrate synthase
- MtC50329_1_AA Actin/actin-like
- MtC10339_1_AA Actin/actin-like
- MtC00550.2_1_AA Peptidase S7, flavivirus helicase (NS3) IPR013126:Heat shock protein 70
- MtC00550.3_1_AA Heat shock protein 70
- MtC00642_1_AA Protein of unknown function DUF588
- MtC10184_1_AA Flavoprotein pyridine nucleotide cytochrome reductase
- MtC10626_1_AA Flavoprotein pyridine nucleotide cytochrome reductase
- MtD24950_1_AA Heat shock protein 70
- MtC93197_1_AA Beta-Ig-H3/fasciclin
- MtC60719_1_AA Tetratricopeptide-like helical
- MtC10116.1_1_AA Sigma-54 factor, interaction region IPR003579:Ras small GTPase, Rab type MtC60431_1_AA Sigma-54 factor, interaction region IPR013753:Ras
- MtC10611_1_AA Sigma-54 factor, interaction region IPR003579:Ras small GTPase, Rab type MtC10076.1_1_AA Sigma-54 factor, interaction region IPR003579:Ras small GTPase, Rab type
- MtC93295_1_AA Sigma-54 factor, interaction region IPR003579:Ras small GTPase, Rab type

- MtC30186_1_AA Sigma-54 factor, interaction region IPR013753:Ras
- MtC00146_1_AA Sigma-54 factor, interaction region IPR003579:Ras small GTPase, Rab type
- MtC61535_1_AA Sigma-54 factor, interaction region IPR013753:Ras IPR015598:
- MtD02358_1_AA Heat shock protein 70
- MtC00477_1_AA Patatin IPR008271:Serine/threonine protein kinase, active site
- MtC10323_1_AA Complex 1 LYR protein
- MtC00239_1_AA Heat shock protein 70
- MtC60886_1_AA Ribosomal protein L15
- MtC00413_1_AA Ribosomal protein L15
- MtC00664.1_1_AA Haem peroxidase, plant/fungal/bacterial
- MtC60441_1_AA Cytochrome b5
- MtC00113_1_AA Ribosomal protein L13e
- MtC00176_1_AA Ribosomal protein L13e
- MtC00424_1_AA Vacuolar (H+)-ATPase G subunit
- MtC00230_1_AA Plectin/S10, N-terminal
- MtD01002_1_AA Tetratricopeptide TPR_1
- MtC00121_1_AA S-adenosyl-L-homocysteine hydrolase
- MtC30011_1_AA S-adenosyl-L-homocysteine hydrolase
- MtC61065_1_AA Reticulon
- MtC10115_1_AA unknown
- MtC60575_1_AA TolB, C-terminal
- MtC00108_1_AA Ribosomal protein L24/L26
- MtC00414_1_AA Ribosomal protein L24/L26 IPR014723:
- MtC45548_1_AA Ribosomal protein L24/L26 IPR014723:
- MtD06379_1_AA unknown
- MtC10213_1_AA ATPase, V0/A0 complex, subunit C/D
- MtC30094_1_AA Protein kinase
- MtC11009_1_AA Tyrosine protein kinase, active site
- MtC00166.1_1_AA Translation factor IPR009022:Elongation factor G, III and V
- MtC20024_1_AA Translation factor IPR009022:Elongation factor G, III and V
- MtC00148_1_AA Ribosomal protein S7E
- MtC00103_1_AA Ribosomal protein L2 IPR008994:Nucleic acid-binding, OB-fold IPR014726:
- MtC00192_1_AA Ribosomal protein L6E IPR005568:Ribosomal protein L6, N-terminal
- MtC00155.1_1_AA Ribosomal protein L6E IPR005568:Ribosomal protein L6, N-terminal
- MtC00008_1_AA Haem peroxidase, plant/fungal/bacterial
- MtC30022_1_AA Malic oxidoreductase
- MtC00747.1_1_AA Cytochrome P450
- MtC60677_1_AA Haem peroxidase, plant/fungal/bacterial
- MtD11469_1_AA Inorganic H+ pyrophosphatase
- MtC00101_1_AA Ribosomal protein S19/S15
- MtC00089_1_AA Ribosomal protein L10 IP R001813: Ribosomal protein 60S
- MtC00072.1_1_AA Major intrinsic protein
- MtC00471_1_AA Tubulin IPR013838:Beta tubulin, autoregulation binding site
- MtC00356.2_1_AA Tubulin
- MtC00047_1_AA Ribosomal protein S24e
- MtC10379_1_AA unknown
- MtD00921_1_AA Alpha/beta hydrolase fold-1
- MtC00077_1_AA S25 ribosomal protein
- MtC00734_1_AA E-class P450, group I
- MtC10905_1_AA Squalene/phytoene synthase
- MtC00177_1_AA GRIM-19
- MtC00566_1_AA Cytochrome oxidase c, subunit VIb
- MtC00128_1_AA Ribosomal protein S7
- MtC00661_1_AA ATPase, V1/A1 complex, subunit D

- MtC00017.2_1_AA RNA-binding S4
- MtC00184.1_1_AA Ribosomal L18ae protein
- MtC93190_1_AA Syntaxin, N-terminal
- MtC10028_1_AA unknown
- MtC00572_1_AA unknown
- MtC00011_1_AA Ribosomal protein L6, signature 2
- MtD01494_1_AA unknown
- MtC00091_1_AA S15/NS1, RNA-binding IPR012606: Ribosomal S13S15 N-terminal
- MtC00306_1_AA Thioredoxin fold
- MtC00104_1_AA Granulin IPR000169:Peptidase, cysteine peptidase active site
- MtC10353_1_AA unknown
- MtD12058_1_AA Nucleotide-binding, alpha-beta plait
- MtD07266_1_AA Protein kinase
- MtC30457.2_1_AA Protein kinase IPR011990: Tetratricopeptide -like helical
- MtD23458_1_AA ATP ase, F1/V1/A1 complex, alpha/beta subunit, nucleotide-binding
- MtC00075_1_AA Ribosomal protein L18e
- MtC60397_1_AA Ribosomal protein L18e
- MtC00676_1_AA Superoxide dismutase, copper/zinc binding
- MtC00299_1_AA Ribosomal protein L18e
- MtC10414_1_AA unknown
- MtC10444_1_AA NADH-ubiquinone oxidoreductase B18 subunit
- MtC10182_1_AA Peptidase S8 and S53, subtilisin, kexin, sedolisin
- MtC00400_1_AA Ribosomal protein L32e
- MtC00744_1_AA unknown
- MtC20114_1_AA Glutamine synthetase type I IPR014746:
- MtC61283_1_AA Protein of unknown function UPF0172
- MtC30184_1_AA Methyltransferase type 11 IPR013705:Sterol methyltransferase C-terminal
- MtC20240_1_AA Multicopper oxidase, type 1
- MtD01450_1_AA Porin, eukaryotic type
- MtC10090.1_1_AA Protein of unknown function DUF250
- MtC00039_1_AA Ribosomal protein L14
- MtC00602_1_AA Ribosomal protein L14
- MtC00124_2_AA unknown
- MtC10536_1_AA Ribosomal protein S9
- MtC00111_1_AA Ribosomal protein S19e
- MtC20311_1_AA Ribosomal protein S19e
- MtC10170_1_AA Alpha-helical ferredoxin
- MtC20110_1_AA Pre-mRNA processing ribonucleoprotein, binding region IPR012974:NOP5, N-terminal IPR012976:NOSIC
- MtC00083.1_1_AA Nascent polypeptide-associated complex NAC IP R009060: UBA-like
- MtC10650_1_AA Ras small GTPase, Rab type IPR013567:EF hand associated, type-2
- MtC20007_1_AA FAD linked oxidase, N-terminal
- MtD15931_1_AA unknown
- MtD07408_1_AA Cytochrome P450
- MtC40021_1_AA Cytochrome P450
- MtC90770_1_AA Calcium-binding EF-hand IPR013027:FAD-dependent pyridine nucleotide-disulphide oxidoreductase
- MtC00093_1_AA Microsomal signal peptidase 25 kDa subunit
- MtC00105_1_AA B12D
- MtD18545_1_AA Sodium/calcium exchanger membrane region IPR011992:EF-Hand type
- MtC10857.1_1_AA unknown
- MtC00698_1_AA Malate dehydrogenase, active site
- MtC00218.1_1_AA Malate dehydrogenase, active site
- MtC60257_1_AA Phosphoenolpyruvate carboxylase IPR015813:
- MtD08369_1_AA Elongation factor 1, gamma chain IPR004046: Glutathione S-transferase, C-terminal

IPR012335: Thioredoxin fold MtC40173 1 AA Elongation factor 1, gamma chain IPR004046: Glutathione S-transferase, C-terminal IPR012335: Thioredoxin fold MtD00118_1_AA GroEL-like chaperone, ATPase MtC20083.1 1 AA GroEL-like chaperone, ATPase MtC00173 1 AA Adenylate kinase MtC30077.1_1_AA Aminoacyl-tRNA synthetase, class I IPR006861: Hyaluronan/mRNA binding protein MtC60898 1 AA Phosphatidylinositol-specific phospholipase C, X region MtD02232_1_AA Phosphoenolpyruvate carboxylase MtC20035 1 AA Dynamin central region IPR001401:Dynamin IPR003130:Dynamin GTPase effector MtC40192 1 AA Dynamin central region IPR001401:Dynamin IPR003130:Dynamin GTP ase effector MtD10710 1 AA AAA ATPase MtC93032_1_AA Dynamin central region IPR001401:Dynamin IPR003130:Dynamin GTP ase effector MtD00070_1_AA Dihydrolipoamide acetyltransferase, long form MtC60502_1_AA Mitochondrial import inner membrane translocase, subunit Tim17/22 MtD05591_1_AA Cytochrome P450 MtC10066 1 AA TRASH MtC61265_1_AA Plant disease resistance response protein MtC00035 1 AA Ribosomal protein L13, archea and eukaryotic form MtC00251_1_AA Ribosomal protein L13, archea and eukaryotic form MtC20341_1_AA Ribosomal protein L13, archea and eukaryotic form MtC00748_1_AA ATP ase, V0 complex, proteolipid subunit C, MtC63141 1 AA Peroxysomal long chain fatty acyl transporter MtC20165_1_AA Peroxysomal long chain fatty acyl transporter MtC30266_1_AA Small GTP-binding protein domain MtC30399_1_AA ATP ase, V1/A1 complex, subunit F MtC00096_1_AA Ribosomal protein S6e IPR014401: MtC00469_1_AA Ribosomal protein S6e IPR014401: MtC00568 1 AA Translocon-associated beta MtC00087.1 1 AA Ras MtC00606_1_AA IPR008089:Nucleotide sugar epimerase MtC10807_1_AA NAD-dependent epimerase/dehydratase MtD03747_1_AA NAD-dependent epimerase/dehydratase MtC00049_1_AA Ribosomal protein L10E MtC20133_1_AA Nonaspanin (TM9SF) MtC30154.1_1_AA unknown MtC30235_1_AA Glycoside hydrolase, catalytic core MtC92247_1_AA E-class P450, group I MtC40093_1_AA Nonaspanin (TM9SF) MtD04425_1_AA von Willebrand factor, type A IPR006692: Coatomer WD associated region IPR010714:Coatomer alpha subunit, C-terminal MtC00059_1_AA Triosephosphate isomerase MtD00173_1_AA Blue (type 1) copper domain MtC00328 1 AA Mitochondrial ribosomal protein L5 MtC20131_1_AA Rubrerythrin IPR009040:Ferritin-like IPR014034: MtC00085.1_1_AA Histone core IPR009072: Histone-fold MtC00508_1_AA Sec61beta MtC91970_1_AA Histone H3 IPR007124: IPR009072: Histone-fold MtC00491_1_AA Histone H3 IPR007124: IPR009072: Histone-fold MtC10405 1 AA Peptidase A1, pepsin MtC10752 1 AA Peptidase A1, pepsin MtC10430 1 AA Major intrinsic protein MtC10909 1 AA Reticulon MtC10407 1 AA ATPase, F1/V1/A1 complex, alpha/beta subunit, nucleotide-binding MtC63279 1 AA Scramblase 250

MtD16182_1_AA Protein of unknown function DUF588

MtC00233_1_AA MIR

MtC00535_1_AA Sigma-54 factor, interaction region IPR003579:Ras small GTPase, Rab type MtD03445_1_AA Sigma-54 factor, interaction region IPR003579:Ras small GTPase, Rab type MtC20143_1_AA Haem peroxidase, plant/fungal/bacterial

MtC00322_1_AA Ribosomal protein L23, N-terminal IPR013025: Ribosomal protein L25/L23

MtC00095_1_AA Ribosomal protein L23, N-terminal IPR013025: Ribosomal protein L25/L23

MtC10251_1_AA Prenylated rab acceptor PRA1

MtC20228.1_1_AA Thioredoxin-related IPR012336: Thioredoxin-like fold IPR013766: Thioredoxin domain

MtC40096_1_AA Protein disulphide isomerase IPR012336: Thioredoxin -like fold

IPR013766: Thioredoxin domain

MtC45398_1_AA Glycoside transferase, six-hairpin, subgroup

MtD05256_1_AA Seryl-tRNA synthetase, class IIa IPR015866:

MtC10984_1_AA AMP-dependent synthetase and ligase

MtD02891_1_AA unknown

MtC91392_1_AA unknown

MtD05399_1_AA unknown

MtC00580.1_1_AA Eukaryotic ribosomal protein L5

MtD06307_1_AA unknown

MtC00137_1_AA Ribosomal protein L1

MtC00668_1_AA Ribosomal protein L1

MtC00506_1_AA Ribosomal protein L1

MtD00252_1_AA Prefoldin IPR010989:t-snare

MtD22970_2_AA unknown

MtC10185.1_1_AA E-class P450, group I

MtD27821_1_AA Dynamin central region

MtC00623_1_AA Cell division protein FtsZ

MtC20031_1_AA Cell division protein FtsZ

MtC00684_1_AA unknown

MtC10241_1_AA Ribosomal protein S10, eukaryotic and archaeal form

MtC10627_1_AA Ribosomal protein S10, eukaryotic and archaeal form

MtC00521_1_AA Ribosomal protein S10, eukaryotic and archaeal form

MtC00138_1_AA Ribosomal protein S17e

MtC00407_1_AA Peroxisomal biogenesis factor 11

MtD25003_1_AA unknown

MtC00194_1_AA unknown

MtC10351_1_AA unknown

MtC60783_1_AA Protein kinase IPR002048: Calcium -binding EF-hand

MtC00304_1_AA unknown

MtC60699_1_AA Protein of unknown function DUF248, methyltransferase putative

MtC30445_1_AA Protein kinase

MtC61176 1 AA Protein kinase

MtD02090_1_AA Protein kinase

MtC00144_1_AA Ribosomal protein L22/L17, eukaryotic and archaeal form

MtC00315_1_AA Ribosomal protein L22/L17, eukaryotic and archaeal form

MtD01335_1_AA Eukaryotic/archaeal ribosomal protein S3

MtC00318_1_AA Eukaryotic/archaeal ribosomal protein S3

MtD01818_1_AA ATP -grasp fold

MtC60808_1_AA ATP ase, P-type cation-transporter, C-terminal

MtC00338_1_AA Transaldolase subfamily

MtC30387_1_AA unknown

MtC10629_1_AA Synaptobrevin IPR011012:Longin-like

MtC10402_1_AA Malate dehydrogenase, active site

MtD02749_1_AA unknown

MtC60899_1_AA Cytochrome b5 MtD12105_1_AA Major intrinsic protein MtC00209 1 AA Ribosomal L28e protein MtC00134_1_AA Ribosomal L28e protein MtD13928_1_AA Cold-shock protein, DNA-binding MtC45457 1 AA unknown MtC10092_1_AA unknown MtC10679_1_AA NADH:ubiquinone oxidoreductase 17.2 kD subunit MtC00556 1 AA unknown MtC10643 1 AA Calcium-binding EF-hand IPR015757: MtC10646_1_AA ATPase, P-type, K/Mg/Cd/Cu/Zn/Na/Ca/Na/H-transporter MtC93235_1_AA ATPase, P-type, K/Mg/Cd/Cu/Zn/Na/Ca/Na/H-transporter MtC10159_1_AA Carbohydrate kinase, PfkB MtC60476_1_AA Carbohydrate kinase, PfkB MtC60362_1_AA Haloacid dehalogenase-like hydrolase MtD10584_1_AA ATPase, P-type, K/Mg/Cd/Cu/Zn/Na/Ca/Na/H-transporter MtD13438 1 AA E1-E2 ATPase-associated region MtC00402_1_AA Nascent polypeptide-associated complex NAC MtC00683_1_AA Nascent polypeptide-associated complex NAC MtC60845_1_AA Protein of unknown function DUF1077 MtC00031_1_AA Major intrinsic protein MtC00086_1_AA Ribosomal protein L19e MtC00051_1_AA Ribosomal protein L19e MtC30080_1_AA Deoxyxylulose-5-phosphate synthase MtC00454_1_AA unknown MtD01246_1_AA Protein kinase MtD05462_1_AA Staphylococcus nuclease subtype MtC20271 1 AA Ubiquinol-cytochrome C reductase, UQCRXQCR9 like MtC30211_1_AA K+ potassium transporter MtC50890_1_AA AAA-protein subdomain IPR005938:AAA ATPase, CDC48 MtD08475_1_AA AAA ATPase, central region MtC90568_1_AA Major sperm protein MtD00721_1_AA Protein of unknown function DUF250 MtC50602_1_AA Major sperm protein MtC00735_1_AA Ribosomal protein 60S MtD08074_1_AA Major intrinsic protein MtC00078_1_AA Ribosomal protein 60S MtC62382_1_AA Ribosomal protein 60S MtC00127_1_AA Ferritin-like MtC00046_1_AA S-adenosylmethionine synthetase MtC00034 1 AA S-adenosylmethionine synthetase MtC30195_1_AA Haem peroxidase, plant/fungal/bacterial IPR002133:S-adenosylmethionine synthetase MtC45479_1_AA Major facilitator superfamily MFS_1 MtC00421_1_AA Haem peroxidase, plant/fungal/bacterial MtC30297_1_AA Major sperm protein MtC30183 1 AA CD9/CD37/CD63 antigen MtD06241 1 AA CD9/CD37/CD63 antigen MtC10659_1_AA C2 calcium-dependent membrane targeting MtC45339 1 AA Sulphate transporter MtC00438_1_AA ATP ase, F1 complex, epsilon subunit, mitochondrial MtC00016_1_AA Nucleoside diphosphate kinase MtC30456.1 1 AA Ribophorin I MtC10855 1 AA unknown
MtD13578_1_AA unknown

MtC00169_1_AA Elongation factor 1, beta/beta/delta chain IPR010987:Glutathione S-transferase, C-terminal-like IPR014038: IPR014717:

MtC10130_1_AA Metallophosphoesterase

MtD00400_1_AA Nonaspanin (TM9SF) IPR005479: Carbamoyl-phosphate synthase L chain, ATPbinding

MtC10600.1_1_AA Nonaspanin (TM9SF)

MtD00397_1_AA unknown

MtC00145_1_AA Ribosomal L22e protein

MtC20223_1_AA GroEL-like chaperone, ATPase

MtC10630_1_AA Ribosomal L22e protein

MtC00653_1_AA Flavoprotein pyridine nucleotide cytochrome reductase IPR008254:Flavodoxin/nitric oxide synthase IPR015702:

MtD00539_1_AA unknown

MtC10663_1_AA Flavoprotein pyridine nucleotide cytochrome reductase IPR008254:Flavo doxin/nitric oxide synthase

MtC10312_1_AA Glycoside hydrolase, family 19, catalytic IPR001002: Chitin -binding, type 1

MtC10145_1_AA Proteasome alpha-subunit

MtC20137_1_AA GroEL-like chaperone, ATPase

MtC10461_1_AA emp24/gp25L/p24

MtC30349_1_AA ER lumen protein retaining receptor

MtD00845_1_AA Protein of unknown function DUF221

MtC30054_1_AA DEAD-like helicases, N-terminal IPR014014:DEAD-box RNA helicase Q motif

MtC10085.1_1_AA Glycoside hydrolase, catalytic core

MtC60333_1_AA Cytochrome c oxidase, subunit Vb

MtD17495_1_AA t-snare

MtD02792_1_AA Reticulon

MtC00069_1_AA Ribosomal protein L14b/L23e

MtC01440_1_AA Peptidase T1A, proteasome beta-subunit

MtC00181.1_1_AA Mitochondrial import inner membrane translocase, subunit Tim17/22

MtC62673_1_AA Peroxysomal long chain fatty acyl transporter

MtD00950_1_AA Porin, eukaryotic type

MtC00161_1_AA Cytochrome b561 / ferric reductase transmembrane

MtC10149_1_AA Blue (type 1) copper domain

MtD04199_1_AA Blue (type 1) copper domain

MtC40087_1_AA Ribosomal protein L7AE

MtD16310_1_AA Ribosomal protein L7A IPR004342:EXS, C-terminal

MtC00722_1_AA Proteasome alpha-subunit

MtC20045_1_AA DnaJ central region

MtC60155_1_AA Heat shock protein DnaJ

MtC10231_1_AA Heat shock protein DnaJ

MtC10221_1_AA Proteasome alpha-subunit

MtC00254_1_AA HMG1/2 (high mobility group) box

MtD04793_1_AA Bacterial surface antigen (D15)

MtD06341_1_AA Leucine rich repeat, N-terminal

MtD03001_1_AA ABC-2 type transporter IPR013581:Plant PDR ABC transporter associated

MtC10121.1_1_AA E-class P450, group I

MtD02601_1_AA Cytochrome P450

MtC50269.2_1_AA Tudor IPR006022:Staphylococcus nuclease subtype

MtC50311_1_AA LMBR1-like conserved region

MtC20142_1_AA Tetratricopeptide region

MtD01112_1_AA unknown

MtC93099_1_AA Growth factor, receptor

MtC30069_1_AA Proteasome alpha-subunit

MtC20048_1_AA unknown

MtC93375_1_AA unknown MtC93047_1_AA Clathrin light chain MtD11061 1 AA Leucine-rich repeat MtC20051.2 1 AA Transketolase, central region MtS00138_1_AA unknown MtD14618 1 AA Mitochondrial carrier protein MtD02555_1_AA unknown MtD07002 1 AA Mitochondrial substrate carrier MtC00167 1 AA Ribosomal protein S17 MtC00024 1 AA Ribosomal protein S17 MtC40004.1_1_AA E-class P450, group I MtC00518_1_AA Major intrinsic protein IPR002208:SecY protein IPR003439:ABC transporter related MtD00748_1_AA Peptidase S8 and S53, subtilisin, kexin, sedolisin IPR015500: MtD03426_1_AA unknown MtC30292_1_AA ATPase, P-type cation-transporter, C-terminal MtC10961_1_AA unknown MtC00416 1 AA Universal stress protein (Usp) IPR014729: MtC40095_1_AA AspartyI-tRNA synthetase, class Ilb IPR004365:nucleic acid binding, OB-fold, tRNA/helicase-type MtC60711_1_AA NADH dehydrogenase (ubiquinone), 20 kDa subunit MtD24909_1_AA Cytochrome c oxidase, subunit Vb MtC30120_1_AA Annexin, type plant IPR015472: MtD00644_1_AA Diacylglycerol kinase, catalytic region MtD09396_1_AA Oligosaccharyl transferase, STT3 subunit MtC10530_1_AA CHCH MtC00092.1_1_AA Peptidase, cysteine peptidase active site MtC62969_1_AA Tetratricopeptide-like helical MtC30030_1_AA Peptidase M16, N-terminal MtC00591_1_AA E-class P450, group I MtC61192 1 AA Ribosomal protein S8 MtC20071_1_AA 2OG-Fe(II) oxygenase MtD06942_1_AA Inorganic H+ pyrophosphatase MtC30210_1_AA Nonaspanin (TM9SF) MtD02094_1_AA Eukaryotic translation initiation factor 3, subunit 7 MtC91364 1 AA Strictosidine synthase IPR011042:ToIB, C-terminal MtC91949 1 AA Protein phosphatase 2C-like MtC00129_1_AA unknown MtC30575.1_1_AA TonB box, N-terminal MtD07674_1_AA Surface antigen variable number MtC93228_1_AA Haem peroxidase, plant/fungal/bacterial MtC20102 1 AA Cupredoxin MtC45631_1_AA Protein of unknown function DUF850, transmembrane eukaryotic MtC60334 1 AA ETC complex I subunit conserved region MtC00312.1_1_AA 20S proteasome, A and B subunits MtC10355_1_AA unknown MtC30087_1_AA E-class P450, group I MtD15950 1 AA SOUL heme-binding protein MtC00122.1 1 AA Ribosomal protein L34e MtC00307_1_AA Major intrinsic protein MtC10229 1 AA unknown MtC00359_1_AA Haem peroxidase, plant/fungal/bacterial MtC00680.1 1 AA Glycoside hydrolase, family 18, catalytic domain MtC61024_1_AA Peptidase S24, S26A and S26B IPR015927: MtC93300 1 AA unknown

- MtC20379_1_AA General substrate transporter
- MtC93387_1_AA Diacylglycerol kinase accessory region
- MtD26107_1_AA Protein of unknown function DUF248, methyltransferase putative
- MtC45338.1_1_AA
- MtC40200_1_AA
- MtC93412_1_AA Cytochrome P450
- MtC00110_1_AA Ribosomal protein S26E IPR008957:Fibronectin, type III-like fold
- MtD18706_1_AA unknown
- MtC00231_1_AA Calcium-binding EF-hand
- MtC90917_1_AA unknown
- MtC00064_1_AA Ribosomal protein L36E
- MtC00005_1_AA Plant lipid transfer protein/seed storage/trypsin-alpha amylase inhibitor
- MtC00590_1_AA unknown
- MtC20389_1_AA Dihydrolipoamide acetyltransferase, long form
- MtC40005_1_AA Glycosyl transferase, family 2
- MtC00066_1_AA Ribosomal protein L21e
- MtC00539_1_AA Ribosomal protein L21e
- MtC10096_1_AA Manganese and iron superoxide dismutase
- MtC00772_1_AA Glycine hydroxymethyltransferase
- MtC00153_1_AA Peptidase S24, S26A and S26B IPR015927:
- MtC10610_1_AA Tetratricopeptide-like helical
- MtC45345_1_AA Concanavalin A-like lectin/glucanase
- MtC10052_1_AA ArgE/dapE/ACY1/CPG2/yscS IPR002715: Nascent polypeptide -associated complex NAC IPR009060: UBA-like
- MtC00689_1_AA Peptidylprolyl isomerase, FKBP-type
- MtC00326_1_AA 6-phosphogluconate dehydrogenase, C-terminal extension
- MtC20220_1_AA Mov34-1
- MtD03607_1_AA 6-phosphogluconate-binding site
- MtC00571_1_AA 6-phosphogluconate dehydrogenase, C-terminal extension
- MtC60231_1_AA Carotenoid oxygenase
- MtC60716_1_AA Nicastrin
- MtC10442_1_AA Annexin
- MtD17397_1_AA ATPase, P-type, K/Mg/Cd/Cu/Zn/Na/Ca/Na/H-transporter
- MtD20233_1_AA Succinate dehydrogenase/fumarate reductase iron -sulfur protein
- IPR012285:Fumarate reductase, C-terminal
- MtC00288_1_AA Cytochrome c oxidase subunit Vc
- MtC93129_1_AA Protein of unknown function UPF0136, Transmembrane
- MtD00177_1_AA Mitochondrial import inner membrane translocase, subunit Tim17/22
- MtC10064_1_AA Adenosine kinase
- MtC10533_1_AA unknown
- MtD07270_1_AA Optic atrophy 3
- MtD13384_1_AA C2 calcium-dependent membrane targeting
- MtC10104_1_AA Peptidase T1A, proteasome beta-subunit
- MtD07825_1_AA Protein kinase IPR001150:Formate C-acetyltransferase glycine radical
- MtC00102_1_AA Eukaryotic initiation factor 5A hypusine (eIF-5A) IPR012340:Nucleic acid-binding, OB-fold, subgroup IPR014722:
- MtC00190_1_AA Eukaryotic initiation factor 5A hypusine (eIF-5A)
- MtC10874_1_AA Disulphide isomerase IPR006663: IPR012336: Thioredoxin-like fold IPR013766: Thioredoxin domain
- MtC00143 1 AA Ribosomal protein S27E
- MtC20393_1_AA Phosphoinositide-specific phospholipase C, C-terminal (PLC) IPR011992:EF-Hand type IPR015359:
- MtC00404_1_AA Ribosomal protein L27e IPR005824:KOW
- MtC00106_1_AA HMG1/2 (high mobility group) box
- MtD00941_1_AA Band 7 protein

MtC00094_1_AA Chalcone-flavanone isomerase

MtD01733_1_AA Linker histone, N-terminal

MtC20234_1_AA IPR013216:Methyltransferase type 11 IPR013705:Sterol methyltransferase C-terminal

MtC30033_1_AA Thiolase

MtC00067_1_AA Flavodoxin/nitric oxide synthase

MtC10046_1_AA Flavodoxin/nitric oxide synthase

MtC10675_1_AA Small GTP-binding protein domain

MtD03039_1_AA Flavodoxin/nitric oxide synthase

MtC01434.1_1_AA Heat shock protein 70

MtD00691_1_AA Heat shock protein 70

MtC40216_1_AA E-class P450, group I

MtD01243_1_AA Concanavalin A-like lectin/glucanase

MtC62070_1_AA Diacylglycerol kinase, catalytic region

MtC10783_1_AA ATP -citrate lyase/succinyl-CoA ligase

MtC50144_1_AA Nuclear transport factor 2 IPR012677: Nucleotide-binding, alpha-beta plait

MtC61028_1_AA Alba, DNA/RNA-binding protein

MtD00232_1_AA Cleft lip and palate transmembrane 1

MtC61888_1_AA Kunitz inhibitor ST1-like

MtC10298_1_AA Flavodoxin/nitric oxide synthase

MtC61089_1_AA Mitochondrial ribosome

MtC20250.1_1_AA Peroxysomal long chain fatty acyl transporter

MtC00348_1_AA Alkaline phosphatase IPR005995: Phosphoglycerate mutase, 2,3-

bisphosphoglycerate-independent

MtC62895_1_AA Band 7 protein

MtD24902_1_AA ABC transporter related

MtD00351_1_AA unknown

MtD07414_1_AA Leucine-rich repeat

MtC00324_1_AA Ribosomal protein L29

MtC00725_1_AA Ribosomal protein L29

MtC10007_1_AA Bet vI allergen

MtC00597_1_AA SCAMP

MtC93030_1_AA Succinyl-CoA ligase, alpha subunit

MtC93061_1_AA SCAMP

MtC00463_1_AA Pyruvate kinase IPR015793: IPR015794: IPR015795: IPR015813:

MtC00531_1_AA Pyrophosphate-dependent phosphofructokinase PfpB IPR015913:

MtD17620_1_AA Protein of unknown function DUF588

MtC90955_1_AA Short - chain dehy drogenase/reductase SDR

MtC10982_1_AA unknown

MtC10331_1_AA WD40-like

MtD11268_1_AA tRNA -binding arm

MtC30086.2_1_AA Protein of unknown function DUF248, methyltransferase putative

MtC40018_1_AA

MtC30114_1_AA unknown

MtC30248_1_AA Reticulon

MtD01059_1_AA Reticulon

MtD11510_1_AA OST3/OST6

MtD17080_1_AA unknown

MtC00200_1_AA Ribosomal protein L30e

MtC91735_1_AA unknown

MtC30185_1_AA Peptidase aspartic, active site

MtC62988_1_AA unknown

MtC30342_1_AA Protein phosphatase 2C-like

MtC20331_1_AA Histone H2A IPR007124: IPR009072: Histone-fold

MtC45435_1_AA Proteasome alpha-subunit

MtD01191_1_AA unknown

MtC00234.1_1_AA NmrA-like

MtC10502 1 AA NmrA-like

MtD12603 1 AA 7-Fold repeat in clathrin and VPS proteins

MtC45570 1 AA Mitochondrial import inner membrane translocase, subunit Tim17/22

MtD11146_1_AA unknown

MtC10417_1_AA SAC3/GANP/Nin1/mts3/eIF -3 p25

MtD00123 1 AA Protein of unknown function DUF248, methyltransferase putative

MtD00856_1_AA Nitrate reductase NADH dependant

MtD11751 1 AA unknown

MtC20025_1_AA Mitochondrial substrate carrier

MtD00535_1_AA Fumarate reductase/succinate dehydrogenase, FAD-binding site IPR013027:FADdependent pyridine nucleotide-disulphide oxidoreductase

MtC00028_1_AA Kunitz inhibitor ST1-like

MtC10385_1_AA unknown

MtD12678_1_AA Cupin 1 IPR007113:

MtD15605 1 AA Cytochrome P450

MtC10267.1_1_AA Proteasome alpha-subunit

MtC93113_1_AA Proteasome component region PCI IPR011990: Tetratricopeptide-like helical

IPR013143:PCI/PINT associated module

MtC00140_1_AA Ribosomal protein 60S

MtC10267.2_1_AA Proteasome alpha-subunit

MtD00114_1_AA Hydroxymethylglutaryl-coenzyme A synthase

MtC00493 1 AA IPR012336: Thioredoxin-like fold IPR013766: Thioredoxin domain

MtS10012_1_AA E-class P450, group I

MtC00249 1 AA Ribosomal protein L37e

MtC00793_1_AA Nucleotide-binding, alpha-beta plait

MtC62546_1_AA ATPase, F0 complex, subunit G, mitochondrial

MtD00571_1_AA Protein of unknown function DUF1682

MtC00159_1_AA emp24/gp25L/p24 IP R001071: Cellular retinal dehyde binding/alpha -tocopherol transport IPR008273:Cellular retinaldehyde-binding/triple function, N-terminal

MtD03626_1_AA Stomatin

MtD14276 1 AA Chaperonin TCP-1

MtD04957_1_AA Soluble quinoprotein glucose dehydrogenase

MtC00082_1_AA Universal stress protein (Usp)

MtC00466_1_AA High mobility group-like nuclear protein

MtC00258_1_AA Ribosomal protein S2, eukaryotic and archaeal form

MtD04430 1 AA

MtC00700 1 AA unknown

MtC30417_1_AA emp24/gp25L/p24 IP R008273: Cellular retinal dehyde-binding/triple function, Nterminal

MtC00088_1_AA Peptidyl-prolyl cis-trans isomerase, cyclophilin type IPR015891:

MtC00732_1_AA unknown

MtC10835_1_AA Nickel/cobalt transporter, high-affinity

MtC20008_1_AA Metal-dependent hydrolase, composite

MtC11011_1_AA Thioredoxin-like fold

MtC61893 1 AA unknown

MtC00366_1_AA Small GTP-binding protein domain

MtC00221_1_AA Ras GTP ase

MtC10242_1_AA Nucleoside diphosphate kinase

MtC90388_1_AA unknown

MtC93035 1 AA Peptidase A1, pepsin

MtD01562 1 AA B-cell receptor-associated 31-like IPR009053:Prefoldin

MtD01568_1_AA Putative rRNA pseudouridine synthase

MtC00688 1 AA Bet vlallergen

- MtC60945_1_AA Natural resistance-associated macrophage protein
- MtC00343.1_1_AA Bet vI allergen
- MtC00074_1_AA Bet vI allergen
- MtC20248_1_AA General substrate transporter
- MtD00484_1_AA DOMON related IP R006593: Cytochrome b561 / ferric reductase transmembrane
- MtC90816_1_AA Fibrillarin
- MtC30296_1_AA Carbohydrate-binding-like fold
- MtC00245_1_AA Bet vI allergen
- MtC00252.1_1_AA Protein of unknown function DUF1138
- MtC10095_1_AA Chalcone-flavanone isomerase
- MtC00054_1_AA Actin-binding, cofilin/tropomyosin type
- MtC30123.1_1_AA unknown
- MtC10018_1_AA Glutathione S-transferase, C-terminal IPR012335: Thioredoxin fold
- MtC60596_1_AA Kunitz inhibitor ST1-like
- MtD00112_1_AA Rh-like protein/ammonium transporter
- MtC10194_1_AA unknown
- MtD00116.1_1_AA DOMON related
- MtC45586_1_AA ATPase, P-type cation-transporter, C-terminal
- MtC30065_1_AA E-class P450, group I
- MtC00320_1_AA O-methyltransferase, family 2 IPR001601: IPR012967:Dimerisation
- MtC20377_1_AA Synaptobrevin IPR011012:Longin-like
- MtC00216_1_AA Synaptobrevin IPR011012:Longin-like
- MtD01574_1_AA E-class P450, group I
- MtC10069_1_AA Tetratricopeptide TPR_1
- MtC00331_1_AA Plant acid phosphatase
- MtC00656_1_AA Protein secE/sec61-gamma protein
- MtC00118.1_1_AA Nucleic acid-binding, OB-fold, subgroup
- $MtC30281.1_1_AA\ Prenyl transferase/squalene\ oxidase$
- MtC60823_1_AA Mitochondrial import inner membrane translocase, subunit Tim17/22
- MtC10091_1_AA DREPP plasma membrane polypeptide
- MtC61096_1_AA emp24/gp25L/p24
- MtD12384_1_AA Protein kinase IPR007090:
- MtC00708_1_AA Protein kinase
- MtC45467_1_AA emp24/gp25L/p24 IP R001356: Homeobox
- MtC30193_1_AA N-acyl-L-amino-acid amidohydrolas e
- MtC20115_1_AA Pyridine nucleotide-disulphide oxidoreductase, class I
- MtC30561_1_AA Plant disease resistance response protein
- MtC61652_1_AA Bacterial surface antigen (D15)
- MtC93137_1_AA emp24/gp25L/p24
- MtC10373_1_AA Peptidase T1A, proteasome beta-subunit
- MtC63034_1_AA Calcium-binding EF-hand
- MtC10547_1_AA ATP ase, F0 complex, subunit G, mitochondrial
- MtD00237_1_AA Protease-associated PA
- MtD26753_1_AA Bacterial surface antigen (D15)
- MtC20277_1_AA unknown
- MtC61099_1_AA Helix-turn-helix type 3 IPR013729:Multiprotein bridging factor 1, N-terminal
- MtC00261_1_AA Thioredoxin-like fold IPR013740:Redoxin
- MtS00040_1_AA unknown
- MtD01344_1_AA Cytochrome P450
- MtD08046_1_AA C2 calcium/lipid-binding region, CaLB
- MtD04304_1_AA AAA ATPase
- MtD03384_1_AA Peroxysomal long chain fatty acyl transporter
- MtD01250_1_AA AAA ATPase
- MtC30059_1_AA Alpha-1,4-glucan-protein synthase, UDP-forming

MtC10969_1_AA Alpha-1,4-glucan-protein synthase, UDP-forming

MtD02820_1_AA Protein kinase IPR002048: Calcium -binding EF-hand

MtC90224_1_AA Alpha-1,4-glucan-protein synthase, UDP -forming

MtC20347_1_AA Concanavalin A-like lectin/glucanase

MtC60191_1_AA E-class P450, group I

MtC10154_1_AA NAD-dependent epimerase/dehydratase

MtC10336_1_AA SAC3/GANP/Nin1/mts3/elF-3 p25 IPR011991:Winged helix repressor DNA-binding

MtC00151_1_AA Ribosomal protein L31e

MtC00367_1_AA Dienelactone hydrolase

MtC00501_1_AA Ctr copper transporter

MtC10483_2_AA unknown

MtD06042_1_AA Protein kinase

MtC00297_1_AA Plant acid phosphatase IPR014403:

MtD01690_1_AA Annexin

MtC40038_1_AA Clathrin light chain

MtC60580_1_AA Peptidyl-prolyl cis-trans isomerase, cyclophilin type IPR015891:

MtD03040_1_AA SCAMP

MtC00534_1_AA C2 calcium-dependent membrane targeting

MtC00778_1_AA General substrate transporter

MtC10834_1_AA Plant disease resistance response protein

MtC62227_1_AA Zinc finger, Tim10/DDP-type

MtD19684_1_AA unknown

MtD19528_1_AA unknown

MtC40039_1_AA Lipase, class 3

MtC10600.2_1_AA Hexokinase

MtC93146_1_AA WD40-like

MtD00178_1_AA Protein of unknown function DUF248, methyltransferase putative

MtD07370_1_AA Protein of unknown function DUF248, methyltransferase putative

MtC00228_1_AA Leucine rich repeat, N-terminal

MtC60137_1_AA Peptidase aspartic, active site

MtD22772_1_AA Ubiquinol-cytochrome C reductase hinge protein

MtC10138_1_AA Ubiquinol-cytochrome C reductase hinge protein

MtC10596_1_AA Alternative oxidase

MtC91778_1_AA Peptidase M17, leucyl aminopeptidase

MtC00726_1_AA Protein of unknown function Cys-rich

MtC60359_1_AA Protein of unknown function Cys-rich

MtC10429_1_AA Heat shock chaperonin-binding IPR011595: Tetratricopeptide-related region

MtC90489_1_AA Protein of unknown function UPF0041

MtC00163_1_AA Ribosomal protein 60S

MtC00208_1_AA Ribosomal protein S28e IPR012340:Nucleic acid-binding, OB-fold, subgroup

MtC40031_1_AA Pectinesterase IPR006501:Pectinesterase inhibitor

MtC10168_1_AA unknown

MtC30101_1_AA Pectinesterase IPR006501:Pectinesterase inhibitor

MtC00423.1_1_AA Deoxyxylulose-5-phosphate synthase

MtC61146_1_AA Prenylated rab acceptor PRA1 IPR014475: IPR014690:

MtD01017_1_AA Purple acid phosphatase, N-terminal

MtD16665_1_AA unknown

MtC00415_1_AA Cytochrome c, monohaem

MtC20107_1_AA Peptidase M24, methionine aminopeptidase

MtC10736.1_1_AA Bet vI allergen

MtC93060_1_AA unknown

MtD09807_1_AA ProlyI-tRNA synthetase, class IIa

MtC10806.1_1_AA Phosphoesterase At2g46880

MtD13497_1_AA ABC transporter, transmembrane region, type 1

MtC00357_1_AA Thaumatin, pathogenesis-related MtC50630_1_AA Lipase/lipooxygenase, PLAT/LH2 MtD06527 1 AA Beta-Ig-H3/fasciclin MtC00212_1_AA Aldo/keto reductase MtC00739.1 1 AA Succinate dehydrogenase or fumarate reductase, flavoprotein subunit, low-GC Gram-positive bacteria MtC90369_1_AA unknown MtC00160 1 AA Thioredoxin-related IPR012336: Thioredoxin-like fold IPR013766: Thioredoxin domain IPR015467: MtC00375 1 AA Thioredoxin-related IPR006663: IPR012336: Thioredoxin-like fold IPR013766: Thioredoxin domain MtD18613_1_AA Sodium/hydrogen exchanger MtC00310_1_AA Thioredoxin-related IPR006663: IPR012336: Thioredoxin-like fold IPR013766: Thioredoxin domain MtD00538_1_AA Short-chain dehydrogenase/reductase SDR MtC10023_1_AA Haem peroxidase MtC30380_1_AA unknown MtD00231_1_AA Peptidase T1A, proteasome beta-subunit MtD02943_1_AA Peptidase S8 and S53, subtilisin, kexin, sedolisin MtC62065_1_AA MtC00269_1_AA unknown MtC93168 1 AA Like-Sm ribonucleoprotein-related, core MtD15227_1_AA Aldehyde dehydrogenase IPR015590: MtD00865 1 AA ENTH/VHS IPR013809:Epsin-like, N-terminal MtD01946_1_AA AB-hydrolase YheT, putative MtD02436_1_AA Phosphatidate cytidylyltransferase MtC10112 1 AA Haem peroxidase, plant/fungal/bacterial MtC30290.1 1 AA Eukaryotic translation initiation factor 2, alpha subunit IPR012340:Nucleic acidbinding, OB-fold, subgroup MtD15465_1_AA Eukaryotic translation initiation factor 2, alpha subunit MtC40189 1 AA Nucleosome assembly protein (NAP) MtC20273.1_1_AA Nucleotide-binding, alpha-beta plait MtC00185_1_AA unknown MtC90316_1_AA E-class P450, group I MtC93021.1_1_AA Importin alpha-like protein, beta-binding region MtC20235_1_AA U2A/phosphoprotein 32 family A, C-terminal IPR007092: MtC00080_1_AA EF-Hand type MtD23826_1_AA EF-Hand type MtC00492_1_AA E1 protein and Def2/Der2 allergen MtC30238_1_AA t-snare MtC60733_1_AA emp24/gp25L/p24 MtC93173 1 AA unknown MtC45043.1_1_AA Acetyl-coenzyme A carboxyltransferase, C-terminal MtC00349_1_AA Aconitate hydratase 1 MtC20002_1_AA Aconitate hydratase 1 MtD00498 1 AA Protein of unknown function DUF579, plant MtD07435_1_AA Glycosyl transferase, family 48 MtD03985_1_AA Protein kinase IPR001452:Src homology-3 MtD08148_1_AA Glycosyl transferase, family 48 MtD23422_1_AA E-class P450, group I MtS10792 1 AA Short-chain dehydrogenase/reductase SDR MtC10150 1 AA Linker histone, N-terminal MtC00323 1 AA Protein kinase MtC60903 1 AA unknown MtC00294 1 AA Aldo/keto reductase

- MtC00308_1_AA Thioredoxin fold
- MtD01122_1_AA Lipase/lipooxygenase, PLAT/LH2
- MtC00419_1_AA HMG1/2 (high mobility group) box
- MtC40030_1_AA Chloroplast protein import component Toc34
- MtC93020_1_AA Dehydrogenase, E1 component
- MtC30278_1_AA Dehydrogenase, E1 component
- MtC00451_1_AA unknown
- MtD18276_1_AA unknown
- MtC10102_1_AA HMG1/2 (high mobility group) box
- MtC00205.1_1_AA Cold acclimation WCOR413
- MtC00502_1_AA Phenylalanine/histidine ammonia-lyase
- MtC20149_1_AA unknown
- MtC00512_1_AA E-class P450, group I
- MtC20026_1_AA Thiolase
- MtC00295.1_1_AA Ribosomal L37ae protein IPR011331: IPR011332:
- MtC00527_1_AA Protein of unknown function DUF791
- MtC30078_1_AA Cupin 1
- MtD00492_1_AA Thymidine kinase IPR001739:MethyI-CpG binding IPR011124:Zinc finger, CW-type
- MtC62650_1_AA unknown
- MtD05586_1_AA unknown
- MtD01393_1_AA unknown
- MtD06161_1_AA C2 calcium-dependent membrane targeting
- MtD07475_1_AA E-class P450, group I
- MtC00012_1_AA Haem peroxidase, plant/fungal/bacterial
- MtC00057_1_AA unknown
- MtC20251_1_AA Adrenodoxin reductase IPR002937:Amine oxidase IPR014103:
- MtC00300_1_AA unknown
- MtC00743_1_AA unknown
- MtC10198_1_AA E-class P450, group I
- MtD00388_1_AA unknown
- MtC00053_1_AA Ribosomal protein 60S
- MtD07462_1_AA Cystinosin/ERS1p repeat
- MtD15850_1_AA ABC transporter, transmembrane region, type 1
- MtD27293_1_AA Heat shock protein DnaJ, N-terminal IPR004179:Sec63
- MtC10419.1_1_AA Annexin, type plant
- MtD01629_1_AA E-class P450, group I
- MtD02821_1_AA unknown
- MtC00058_1_AA Ribosomal L23 and L15e, core
- MtC20018_1_AA Deoxyxylulose-5-phosphate synthase
- MtC30291_1_AA Protein of unknown function DUF1620
- MtC45672_1_AA Aminoacyl-transfer RNA synthetase, class II
- MtC30415_1_AA Signal peptidase 22 kDa subunit IPR008978:HSP20-like chaperone
- MtC90728_1_AA unknown
- MtC00291_1_AA CBS
- MtC61295_1_AA Rhodopsin-like GPCR superfamily IPR001078:Catalytic domain of components of various dehydrogenase complexes
- MtC20039_1_AA Rhodopsin-like GPCR superfamily IPR006256:Dihydrolipoamide acetyltransferase
- MtD01202_1_AA unknown
- MtC61426_1_AA unknown
- MtC91534.1_1_AA Syntaxin/epimorphin family
- MtC10100.1_1_AA Peptidase C1A, papain C-terminal IPR001400:Somatotropin hormone
- MtC10233_1_AA Aldehy de dehydrogenase
- MtC10280_1_AA CD9/CD37/CD63 antigen
- MtC10641_1_AA Cytochrome c, monohaem

- MtC30199_1_AA Xylose isomerase, bacterial type
- MtC20380_1_AA unknown
- MtC00523_1_AA GroES-like
- MtC60645_1_AA Metridin-like ShK toxin IPR005123:2OG-Fe(II) oxygenase
- MtC30566.1_1_AA Proteasome component region PCI
- MtC61244_1_AA Catalase
- MtD00882_1_AA Surfeit locus 4-related
- MtC20047_1_AA Late embryogenesis abundant protein 2
- MtC60757_1_AA Peptidylprolyl isomerase, FKBP-type
- MtS10582_1_AA Eukaryotic initiation factor 1A (eIF-1A)
- MtC61549_1_AA unknown
- MtC00292_1_AA Proteasome alpha-subunit
- MtD07835_1_AA Chalcone-flavanone isomerase
- MtC10613_1_AA Ubiquitin-conjugating enzyme, E2
- MtC61084_1_AA unknown
- MtC93171_1_AA unknown
- MtC10472_1_AA unknown
- MtC60692_1_AA unknown
- MtC60813_1_AA
- MtD02273_1_AA Adenine nucleotide translocator 1
- MtC40045_1_AA Protein of unknown function DUF81
- MtC00314_1_AA Calcium-binding EF-hand
- MtC60275_1_AA Protein of unknown function UPF0016
- MtC00753_1_AA Thiamine biosynthesis Thi4 protein
- MtC30202_1_AA Synaptojanin, N-terminal
- MtC10369_1_AA IPR013210:Leucine rich repeat, N-terminal
- MtC30138_1_AA Aminotransferase, class I and II
- MtC20350.1_1_AA Pyridine nucleotide-disulphide oxidoreductase, NAD-binding region
- MtC93236_1_AA unknown
- MtC10139_1_AA Hyaluronan/mRNA binding protein
- MtC61464_1_AA Pyridine nucleotide-disulphide oxidoreductase, class I
- MtC00201_1_AA Like-Sm ribonucleoprotein-related, core
- MtC30111_1_AA AAA ATPase IPR005937:26S proteasome subunit P45
- MtC30567_1_AA Eukaryotic rRNA processing
- MtC60497_1_AA Major intrinsic protein
- MtC90553_1_AA Expansin 45, endoglucanase-like
- MtC61439_1_AA unknown
- MtD01782_1_AA Zinc finger, C2H2-type IP R009060: UBA-like
- MtC91170_1_AA Ribosomal protein L23, N-terminal IPR013025: Ribosomal protein L25/L23
- MtC00696_1_AA unknown
- MtD01985_1_AA Mitochondrial import inner membrane translocase, subunit Tim17/22
- MtC61447_1_AA Plant lipid transfer protein/Par allergen
- MtC93345_1_AA Ras small GTPase, Rab type IPR015600:
- MtD01540_1_AA Peroxysomal long chain fatty acyl transporter
- MtD15136_1_AA tRNA-binding arm
- MtC00241_1_AA unknown
- MtC00273_1_AA Ribosomal L38e protein
- MtC00395_1_AA Cytochrome c oxidase, subunit Vla
- MtD26762_1_AA unknown
- MtD27326_1_AA unknown
- MtC10243_1_AA Defender against death DAD protein
- MtC10913_1_AA unknown
- MtC20046_1_AA Glycoside transferase, six-hairpin, subgroup
- MtC40209_1_AA unknown

MtC20037_1_AA E-class P450, group I

MtC60727_1_AA Alpha/beta hydrolase fold-1 IP R000379:

MtC61633_1_AA ATPase, P-type, K/Mg/Cd/Cu/Zn/Na/Ca/Na/H-transporter

MtC00443_1_AA Protein of unknown function UPF0041

MtC90041_1_AA Prefoldin

MtC00615_1_AA unknown

MtC10361_1_AA Protein of unknown function UPF0057

MtC60621.1_1_AA Protein of unknown function DUF124

MtC60870_1_AA Ubiquitin

MtC00779_1_AA Thioredoxin-related IPR012336: Thioredoxin-like fold IPR013766: Thioredoxin domain IPR015467:

MtC30132_1_AA unknown

MtD00766_1_AA Peptidase M18, aminopeptidase I

MtC10290_1_AA ATPase, P-type, K/Mg/Cd/Cu/Zn/Na/Ca/Na/H-transporter

MtC10773_1_AA Ribonucleoprotein complex SRP, Srp19 component

MtC10945_1_AA O-methyltransferase, family 3

MtC30106_1_AA Pre-mRNA processing ribonucleoprotein, binding region IPR012974:NOP5, N-

terminal IPR012976:NOSIC

MtD02058_1_AA unknown

MtD00211_1_AA Protease-associated PA IPR007369:Peptidase A22B, minor histocompatibility antigen H13

MtD02197_1_AA unknown

MtC60857_1_AA unknown

MtD00583_1_AA Citrate synthase

MtD07098_1_AA Lipase/lipooxygenase, PLAT/LH2

MtD01586_1_AA unknown

MtD12421_1_AA unknown

MtC10898_1_AA Protein kinase

MtD17959_1_AA Mov34-1

MtC20011_1_AA Aminotransferase, class-II

MtC93344_1_AA Anticodon-binding IPR015263:

MtC00432_1_AA Harpin-induced 1

MtD00256_1_AA Peptidase A22B, minor histocompatibility antigen H13

MtC50546_1_AA Short - chain dehy drogenase/reductase SDR

MtC10273_1_AA Dynamin GTPase effector IPR011993:Pleckstrin homology-type

MtD17572_1_AA 7-Fold repeat in clathrin and VPS proteins

MtC20285_1_AA Cupredoxin

MtC62032_1_AA Protein of unknown function UPF0057

MtC92209_1_AA Nucleotide-binding, alpha-beta plait

MtD00926_1_AA Oligopeptide transporter OPT superfamily

MtC10653_1_AA unknown

MtC10412_1_AA unknown

MtC20303_1_AA Phosphatidylinositol-specific phospholipase C, X region

MtD02247_1_AA Prenylcysteine lyase

MtC61847_1_AA High mobility group-like nuclear protein

MtD17526_1_AA Cytochrome b5

MtD18850_1_AA Mitochondrial substrate carrier

MtC00525_1_AA Glyoxalase/bleomycin resistance protein/dioxygenase

MtC10099_1_AA Fructose-bisphosphate aldolase, class-I

MtC10394_1_AA unknown

MtC10579.1_1_AA Isocitrate dehydrogenase NADP-dependent, C-terminal, plant

MtD03619_1_AA Protein kinase

MtD07207_1_AA Protein kinase

MtD07440_1_AA Protein of unknown function DUF248, methyltransferase putative

MtD22800_1_AA Mpv17/PMP22

MtC10684_1_AA 26S proteasome subunit P45 IPR013093:ATPase AAA-2

MtC10897_1_AA AAA ATPase IPR005937:26S proteasome subunit P45

MtC20279_1_AA AAA ATPase IPR005937:26S proteasome subunit P45 IPR008994:Nucleic acidbinding, OB-fold

MtD25171_1_AA Clathrin propeller, N-terminal

MtC00545_1_AA GroEL-like chaperone, ATPase

MtC00731_1_AA AAA ATPase IPR005937:26S proteasome subunit P45

MtC91353_1_AA Flavodoxin/nitric oxide synthase

MtD00713_1_AA Helix-hairpin-helix motif

MtC30064_1_AA Aldo/keto reductase

MtC00638_1_AA Major facilitator superfamily

MtC10141_1_AA Proteasome component region PCI

MtC10504.1_1_AA ATP citrate synthase, small subunit IPR013816:ATP-grasp fold, subdomain 2

MtC20269_1_AA Paraneoplastic encephalomyelitis antigen

MtC30209_1_AA RNA-binding region RNP-1 (RNA recognition motif) IPR001865: Ribosomal protein S2

MtC10449_1_AA HR-like lesion-inducer

MtC00445_1_AA Heat shock protein DnaJ

MtC45629_1_AA von Willebrand factor, type A IPR010734: Copine

MtC62738_1_AA unknown

MtC00141_1_AA Ribosomal protein S14

MtC91888_1_AA Blue (type 1) copper domain

MtC10060_1_AA Glutathione S-transferase, C-terminal IPR012335: Thioredoxin fold

MtD01219_1_AA AAA ATPase

MtC60311_1_AA Protein kinase

MtC00330_1_AA 2OG-Fe(II) oxygenase

MtC00354_1_AA Ribosomal L38e protein

MtC00387_1_AA Protein of unknown function UPF0136, Transmembrane

MtC00538_1_AA Nitrite and sulphite reductase 4Fe-4S region IPR015825:

MtC10486_1_AA Mov34-1 IPR011002:Flagellar motor switch protein FliG-like

MtD17162_1_AA ATPase, F1/V1/A1 complex, alpha/beta subunit, N-terminal

MtC20198_1_AA unknown

MtC91716_1_AA Membrane-associated proteins in eicosanoid and glutathione metabolism (MAPEG)

MtD05273_1_AA unknown

MtS10375_1_AA General substrate transporter

MtC30180_1_AA Peptidoglycan-binding LysM

MtC40103_1_AA Protein kinase IPR013210:Leucine rich repeat, N-terminal

MtD02573_1_AA E-class P450, group II

MtC60219_1_AA UDP-glucose 4-epimerase

MtD00884_1_AA E-class P450, group IV

MtC00605_1_AA Blue (type 1) copper domain

MtD06497_1_AA FAD-dependent pyridine nucleotide-disulphide oxidoreductase

MtC10285_1_AA NAD-dependent epimerase/dehydratase

MtC30240_1_AA Protein of unknown function DUF284, transmembrane eukaryotic

MtD12444_1_AA unknown

MtD18142_1_AA unknown

MtC30386_1_AA WD40-like

MtC00504_1_AA Ferredoxin

MtC40046_1_AA ATPase, V0/A0 complex, 116-kDa subunit

MtC10131.1_1_AA ATPase, F1 complex, OSCP/delta subunit

MtC10318_1_AA unknown

MtC00558_1_AA unknown

MtC00650_1_AA GHMP kinase, C-terminal IPR014721:

MtC20111_1_AA Glu/Leu/Phe/Val dehydrogenase, dimerisation region

MtC61689_1_AA Protein of unknown function DUF1692

MtD04586_1_AA Cupin 1 IPR007113:

MtD11294_1_AA Mitochondrial glycoprotein

MtD13218_1_AA Importin alpha-like protein, beta-binding region

MtD01837_1_AA unknown

MtC30201_1_AA Proteasome component region PCI IPR013143:PCI/PINT associated module

IPR013586:26S proteasome regulatory subunit, C-terminal

MtC61309_1_AA Thioredoxin fold

MtC93161_1_AA Der1-like

MtC50840.2_1_AA Nucleotide-binding, alpha-beta plait

MtD00747_1_AA Calcium-binding EF-hand IPR003100:Argonaute and Dicer protein, PAZ IPR014811:

MtD01060_1_AA AAA ATPase, central region IPR010339:TIP49, C-terminal

MtC30389_1_AA unknown

MtC30458_1_AA Cupin 1 IPR007113:

MtD06754_1_AA MscS Mechanosensitive ion channel, transmembrane

MtC93153_1_AA unknown

MtC60082_1_AA Aldehy de de hydrogenase

MtD03699_1_AA Protein kinase

MtC00633_1_AA unknown

MtC10209_1_AA ATP ase, F0 complex, subunit C IP R006402: HAD -superfamily hydrolase, subfamily IA, variant 3 $\,$

MtC20030_1_AA Nicotinate phosphoribosyltransferase related

MtC40118_1_AA Alanyl-tRNA synthetase, class IIc

MtD15872_1_AA Late embryogenesis abundant (LEA) group 1

MtD23115_1_AA Alpha/beta hydrolase fold-1 IP R000379:

MtC10930.1_1_AA Glycoside hydrolase, family 47

MtD17510_1_AA IPR013210:Leucine rich repeat, N-terminal

Chapter 4, additional file S4.2.

	Control roots	Total number of nonredundant proteins identified	Number of proteins co- identified in the two experiments
Exp 1	C1 (a+b+c)	1096	
Exp 2	C2 (a+b+c)	1076	1051

	Mycorrhizal roots	Total number of nonredundant proteins identified	Number of proteins co- identified in the two experiments
Exp 1	M1 (a+b+c)	1079	
Exp 2	M2 (a+b+c)	1082	1041

Chapter 4, additional file S4.3.

			Biological	Localisation							N-	% Homologie		Accession	Localisation
	Mt3,5 accession	MENS Toulo use 01/2003	function	WolfPsort	TM	BB	GPI	SP	Palmitoylation	Prenylation	myrostylation	TAIR	E value	TAIR	according TAIR
			Cell rescue and		0.10								4.007.04		
3	Medtr2g035100	MtC00009_1_AA Bet v I allergen	detense	cy to	0/0							31	1.00E-04	AT1G24020	membrane
		M4C0000511 AA TE-to	Cell cycle and												althe second sectors
40	Madtr4c007170	IPP000072; Histone fold	DNA	nual	0//0							07	6 00E 72	AT5C 65260	chioropiast,
40	Medu 4g097170	II K009072.IIIstone-Iolu	Cell cycle and	nuci	0//0							51	0.00E-72	A15005500	nucleosome
		MtC00085.2.1. AA Histore.com	DNA												chloroplast
41	Medtr4g097170	IPR009072:Histone-fold	processing	nucl	0//0							97	2.00E-55	AT5G65360	nucleosome
		MtC00087.1 1 AA Ras Blast: GTP-	Signal												intracellular,
43	Medtr3g107710	binding protein [Cicer arietinum]	transduction	c y to	0//0							96	e-128	AT5G55190	plasmodesma
		MtC00087.3_1_AA Ras Blast:													intracellular,
44	Medtr3g107710	ABM73376.1Ran1 [Pisum sativum]	Transport	c y to	0//0							96	e-128	AT5G55190	plasmodesma
															cell wall,
															chloroplast,
		MtC00001 1 AA S15/NS1 RNA-	Protein												cy tosol, cy tosolic
		binding IPR012606:Ribosomal S13S15	synthesis and												small ribosomal
46	Medtr4g024270	N-terminal	fate	cv to nucl	0//0							91	8.00E-77	AT3G60770	subunit, nucleolus
	Ŭ														Cytosolic ribo,
			Protein												nucleolus,
		MtC00101_1_AA Ribosomal protein	synthesis and												plasmodesma,
49	Medtr4g075450	S19/S15	fate	cy to	0//0							94	2.00E-74	AT5G09510	ribosome
		MC00106 1 AA UMC1/2 (high	Protein												
51	Medtr5g024180	mobility group) box	fate	nucl	0//0							72	2.00E-27	AT1G20696	Chromatin
51	Medi 55024100	moonity group, box	Protein	nuer	0//0							12	2.001 27	111020070	Chromaun
		MtC00122.1 1 AA Ribosomal	synthesis and												
61	Medtr5g040570	protein L34e	fate	pero	0//0							93	2.00E-47	AT1G26880	Nucleolus / Chloro
		MtC00129_1_AA unknow n Blast:		[^]											
		XP_003595072.1 Fiber protein Fb15													Mitochondrion/
65	Medtr2g037990	[Medicago truncatula]	unclassified	cy to	0//0							63	2.00E-29	AT4G30010	Plastid
			Protein												cytosolic small
70	AC146550 1006	MIC00138_1_AA Ribosomal protein	synthesis and	able	0//0							00	6 00E 57	AT5C04800	ribosomal subunit,
70	AC140550_1000	MtC00155.1.1.AA Ribosomal	Protein	CIIIO	0//0							90	0.00E-57	A15004800	Tibosonie
		protein L6E IPR005568: Ribosomal	synthesis and												Cy tos rib / ribos /
81	Medtr3g094570	protein L6. N-terminal	fate	nucl	0//0							72	3.00E-81	AT1G74060	Nucleolus
		MtC00155.2_1_AA Ribosomal	Protein												
		protein L6E IPR005568: Ribosoma l	synthesis and												Cy tos rib / ribos /
82	Medtr3g094570	protein L6, N-terminal	fate	nucl	0//0							72	3.00E-81	AT1G74060	Nucleolus
		MtC00159_1_AA emp24/gp25L/p24													
		hinding/olpho_tocophonol_treesest	1												
		IPR008273. Cellular retinaldebyde		1											
83	Medtr8g095360	binding/triple function, N-terminal	Transport	cyto	0//0							65	e-120	AT1G72160	Chloroplast
	au ogososoo	MtC00162 1 AA Kunitz inhibitor	Cell rescue and	- ,	0.70	+						05	- 120		Linoropiusi
84	Medtr8g059790	ST1-like	defense	extr	0//0							31	2.00E-12	AT1G73260	Mitochondrion
		MtC00190_1_AA Eukaryotic	Protein		1	1	1	1							
		initiation factor 5A hypusine (eIF-	synthesis and	1											
92	Medtr4g130910	5A)	fate	chlo	0//0							91	2.00E-73	AT1G13950	undefined
		MtC00200_1_AA Ribosomal protein	Protein												cytosol, cytosolic
96	Medtr7g021030	L30e	sy nthesis and	chlo	0//0	1	1					86	2.00E-51	AT1G36240	large ribosomal

			fate									subunit
97	Medtr5g072530	MtC00201_1_AA Like-Sm ribonucleoprotein-related, core	Protein synthesis and fate	mito	0//0				89	5.00E-35	AT2G18740	c y tosol
100	Medtr6g013210	MtC00208_1_AA Ribosomal protein S28e IPR012340:Nucleic acid- bindine, OB-fold, suberoun	Protein sy nthesis and fate	cyto	0//0				88	2.00E-16	AT5G03850	cell wall, cytosol, cytosolic small ribosomal subunit, intracellular, plasma membrane, rRNA export from nucleus, ribosome.
101	Medtr2g100410	MtC00209_1_AA Ribosomal L28e protein	Protein synthesis and fate	chlo	0//0				66	6.00E-37	AT2G19730	cell wall, chloroplast, cy tosolic large ribosom al subunit, cy tosolic ribosome, plasm a membrane, plasm odesm a
102	Medtr3g083130	MtC00212_1_AA Aldo/keto reductase	Energy metabolism	chlo	0//0				51	6.00E-91	AT1G59960	Cyto
113	Medtr5g088740	MtC00236_1_AA Ribosomal protein L30e	Protein synthesis and fate	chlo	0//0				88	4.00E-55	AT1G36240	cy tosol, cy tosolic large ribosomal subunit
118	Medtr7g068280	MtC00254_1_AA HMG1/2 (high mobility group) box	Protein synthesis and fate	nucl	0//0				45	2.00E-11	AT1G20693	chromatin, nucleus
126	Medtr4g068040	MtC00273_1_AA Ribosomal L38e protein	Protein synthesis and fate	cyto	0//0				91	2.00E-28	AT3G59540	cy tosolic large ribosom al subunit
133	Medtr4g103340	MtC00295.1_1_AA Ribosomal L37ae protein IPR011331: IPR011332:	Protein synthesis and fate	chlo	0//0				93	6.00E-34	AT3G10950	cy tosol, cy tosolic large ribosomal subunit,
142	Medtr3g096050	MtC00320_1_AA O-methyltransferase, family 2 IPR001601: IPR012967:Dimerisation	Protein synthesis and fate	cy to	0//0				57	e-121	AT3G53140	undefined
145	Medtr4g062410	MtC00324_1_AA Ribosomal protein L29	Protein synthesis and fate	cyto	0//0				79	6.00E-30	AT5G02610	cy tosolic large ribosomal subunit, cy tosolic ribosome, plasma membrane, plasmodesma, ribosome, vacuolar membrane
148	Medtr4g096790	MtC00327_1_AA Ribosomal protein S11	Protein synthesis and fate	cyto	0//0				81	2.00E-54	AT3G11510	cy tosolic ribosome, cy tosolic sm all ribosom al subunit, nucleolus
149	Medtr4g080740	MtC00328_1_AA Mitochondrial ribosomal protein L5	Protein synthesis and fate	cyto	0//0				87	5.00E-79	AT5G45775	vacuole
152	Medtr4g063200	MtC00341.1_1_AA Histone core IPR009072:Histone-fold	Cell cycle and DNA processing	nucl	0//0				98	1.00E-41	AT1G07790	Chloro
153	Medtr3g099900	MtC00341.2_1_AA Histone core IPR009072:Histone-fold	Cell cycle and DNA processing	nucl	0//0				98	4.00E-40	AT1G07790	Chloro
171	Medtr4g071000	MtC00402_1_AA Nascent polypeptide-associated complex NAC	Protein synthesis and fate	mito	0//0				77	7.00E-48	AT1G73230	undefined

175	Medtr2g012450, Medtr2g012440, Medtr2g012110	MtC00414_1_AA Ribosomal protein L24/L26 IPR014723:	Protein synthesis and fate	cy to	0//0				64	3.00E-40	AT5G67510	cy tosolic large ribosom al subunit, cy tosolic ribosome
			Protein									
177	Medtr79082820	MtC00419_1_AA HMG1/2 (high mobility group) box	synthesis and fate	nucl	0//0				70	3.00E-18	AT1G20696	chromatin
			Protein		017.0							
101		MtC00439_1_AA Ribosomal L38e	synthesis and		0.110							cytosolic large
186	Medtr4g068040	protein	fate Cell rescue and	nucl	0//0				53	2.00E-14	AT3G59540	ribosom al subunit
194	Medtr8g018550	MtC00480.1_1_AA Lipoxygenase	defense	cy to	0//0				49	0	AT3G22400	Choro
			Cell cycle and									
195	Medtr7g013610	MtC00491_1_AA Histone H3 IPR007124: IPR009072: Histone-fold	DNA	nucl	0//0				99	9.00E-74	AT5G65360	chloroplast,
175	Medu /g015010	II ROOTILI. II ROOTILIISTOR IOR	processing	nuer	0//0					9.001 74	115005500	cell wall,
			_									mitochondrion,
201	Medtr3g025230	MtC00512_1_AA E-class P450, group I	Energy	cyto	0//0				68	5.00E-70	AT4G22690	plasma membrane, vacuolar membrane
201	Wiedu 5g025250	gi oup i	Protein	cyto	0//0	-			00	5.001 70	114022090	cell wall, cytosolic
		MtC00521_1_AA Ribosomal protein	synthesis and									small ribosomal
203	Medtr4g034030	S10, eukaryotic and archaeal form	fate	c y to	0//0				 90	7.00E-49	AT5G62300	subunit
			Protein synthesis and									
204	AC225518_12	MtC00523_1_AA GroES-like	fate	c y to	0//0				75	1.00E-36	AT1G23100	Mitochondrium
			Protein									
209	AC235488 9	MtC00539_1_AA Ribosomal protein	synthesis and	cyto	0//0				81	5.00E-73	AT1G09690	cytosolic large
207	AC235400_7	1210	Cell cycle and	cyto	0//0				01	5.00E-75	A11007070	Tibosoniai subunit
		MtC00543_1_AA Histone H3	DNA									chloroplast,
210	Medtr7g013610	IPR009072:Histone-fold	processing	nucl	0//0				99	2.00E-57	AT5G65360	nucleosome
220	Medtr2g104440	ribonucleoprotein-related core	metabolism	mito	0//0				89	5.00E-42	AT4G30330	Cytos
220	Medtr2g036260,	Thomacicoprotent-related, eu e	metabolish	iinto	0//0					5.001 42	114050550	Cy 103
	Medtr2g036290,	MtC00680.1_1_AA Glycoside										
228	AC229724_1028, Modtr2c036240	hydrolase, family 18, catalytic	Energy	abla	0//0				20	0.1	AT2C40142	undefined
238	Medu 2g030240	uonann	Protein	cillo	0//0					0.1	A13047142	undermed
		MtC00683_1_AA Nascent	synthesis and									
239	Medtr3g020660	polypeptide-associated complex NAC	fate	c y to	0//0				80	4.00E-50	AT1G17880	undefined
240	Medtr8g045570	MtC00688 1 AABet v Lallergen	Cell rescue and defense	cyto	0//0				35	5.00E-19	AT1G70890	chlo
210	ineda ogo ieb ro	htteooooo_1_http://	Protein	0,10	0//0				55	51001 17	11110/00/0	cytosolic large
		MtC00725_1_AA Ribosomal protein	synthesis and									ribosomal subunit,
245	Medtr4g062410	L29	fate	cyto_nucl	0//0				 88	2.00E-53	AT5G02610	cytosolic ribosome
		MtC00727 1 AA Ribosomal protein	synthesis and									
247	Medtr7g010150	L34e	fate	c y to	0//0				93	3.00E-47	AT1G26880	Nucleolus / Chloro
0.50	M 1: 0. 040150	MtC00750_1_AA Complex 1 LYR	Energy		0.00					6 00E 11	17201226	
253	Medtr8g040150	protein	Call avala and	cy to	0//0				63	6.00E-44	AT3G12260	Mitochondrium / M
		MtC00769.1 1 AA Histone H4	DNA									
255	Medtr4g128150	IPR009072:Histone-fold	processing		0//0				100	4.00E-33	AT5G59970	V
			Cell cycle and									
256	Medtr49128150	IVICUU/09.3_1_AA HIStone H4 IPR009072:Histone-fold	processing	nucl	0//0				100	4.00E-33	AT5G59970	v
200			Protein		0//0				100			· · ·
		MtC00790_1_AA Ribosomal protein	synthesis and									cytosolic small
261	AC146550_1006	S17e	fate	chlo	0//0				90	1.00E-54	AT2G05220	ribosom al subunit

267	M. 4-9-045570	MACIONET 1 AA DAART BURNNESS	Cell rescue and		0.//0					27	5 00E 25	4.71.070900	allow also
207	Medtr8g045570	MtC10007_1_AA Bet v1 allergen MtC10018_1_AA Glutathione S.	derense	суяк	0//0	-		-		57	5.00E-25	ATIG/0890	chioropiast
		transferase, C-terminal	Cell rescue and										
268	Medtr2g066630	IPR012335: Thioredoxin fold	defense	cy to	0//0				 	63	6.00E-83	AT1G17180	cy toplasm
		MtC10066_1_AA TRASH Blast:XP_003590400_1_60S_ribosomal	Protein synthesis and										cytosolic large
276	Medtr1g061670	protein L24 [Medicago truncatula]	fate	nucl	0//0					94	1.00E-62	AT3G53020	nucleolus
		MtC10085.1_1_AA Glycoside	Energy										
281	Medtr4g015460	hydrolase, catalytic core	metabolism	chlo	0//0					45	e-120	AT2G44450	Plasmodesma / CW
		MtC10092_1_AA unknown Blast:											
283	unfound	AAS20985.1 At1g67350-like protein	Unclassified	nucl	0//0					74	1.00E-31	AT1G67350	Mitoch memb
205	uniounu	[Hydemands of rentails]	Chelassified	nuer	0//0					74	1.002 51	111007550	endoplasmic
													reticulum, extrinsic
													to endoplasmic
													membrane
		MtC10095 1 AA Chalcone-	Energy										nucleus, plant-ty pe
284	Medtr1g115840	flavanone isomerase	metabolism	cy to	0//0					50	1.00E-52	AT3G55120	vacuole membrane
295		MtC10096_1_AA Manganese and	Cell rescue and		0.//0					77	C 00E 0C	AT2C10020	Marchandeland
285	unfound	iron superoxide dis mutase	defense	mito	0//0					11	6.00E-96	A13G10920	Mitochondriom
		MtC10102 1 AA HMG1/2(high	synthesis and										Chromatin /
288	Medtr7g068280	mobility group) box	fate	nucl	0//0					49	7.00E-18	AT3G51880	Nucleus
			Cell cycle and										
301	Medtr5a021730	MtC10150_1_AA Linker histone, N- terminal	DNA	nucl	0//0					68	2.00E-13	AT1G06760	nucleosome,
501	Wedu 5g021750		Cell cycle and	nuei	0//0					00	2.001-15	A11000700	nucleus
		MtC10216_1_AA Histone H3	DNA										chloroplast,
310	Medtr7g013610	IPR007124: IPR009072: Histone-fold	processing	chlo	0//0					99	2.00E-58	AT5G65360	nucleosome
214	M. h.c. 08(200	MtC10233_1_AA Aldehyde	Energy		0.//0					50	. 161	A TT2C 48000	Mitochondrium /
514	Medirog080500	denydrogenase	Protein	cyto	0//0						e-101	A13048000	CIII010
		MtC10257.1_1_AA Ribosomal	synthesis and										chloroplast,
317	Medtr7g010150	protein L34e	fate	cy to	0//0					93	4.00E-34	AT1G26880	nucleolus
220	Madur6 2007000	MtC10324_1_AA Thioredoxin-like	Cell rescue and	mita	0//0					70	7.00E 75	172006050	Mitoshondriom
529	Medirog087990	Told IF K015/40: Kedoxiii	Cell cycle and	IIIIIO	0//0					19	7.00E-75	A15000050	WINOCHOIRDIN
		MtC10341_1_AA Histone H4	DNA										
331	Medtr2g096100	IPR009072:Histone-fold	processing	nucl	0//0					100	3.00E-41	AT5G59970	V
		MtC10412_1_AA unknow n Blast:	Protein										cy tosol, cy tosolic
339	Medtr5g081710	I 359A [Heven brasiliensis]	fate	cyto	0//0					91	6.00E-57	AT1G74270	subunit
557	Medu 5goo1710		Cell rescue and	cyto	0//0					71	0.001 57	1110/42/0	Subunit
345	Medtr8g018430	MtC10441_1_AA Lipoxygenase	defense	chlo	0//0					59	1.00E-52	AT3G22400	Chloro
													mitochondrial
													membrane, mitochondrion
		MtC10444_1_AA NADH-ubiqui none											respiratory chain
346	unfound	oxidoreductase B18 subunit	Transport	mito	0//0					75	6.00E-39	AT2G02050	complexI
		MtC10502_1_AA NmrA-like Blast:					I T						
		AP_003612049.1 Isoflavone	Enorm										
351	Medtr5g020740	truncatula]	metabolism	cyto	0//0					68	e-122	AT1G75280	РМ
		MtC10533_1_AA unknown Blast:		<u> </u>		1							
		NP_192621.1 calcium ion binding			0.110						100		
354	Medtr5g069410	protein [Arabidopsis thaliana]	Unclassified	nucl	0//0	1				80	e-128	AT4G12700	undefined

374	unfound	MtC10679_1_AA NADH:ubiquinone	Energy	cyto	0//0					78	8.00E-73	AT3G03100	Mitochondriom
574	uniound	oxidoreductase 17.2 kD subunit	Cell cycle and	cyto	0//0					10	0.00E-75	A15005100	Witteenondrion
		MtC10749_1_AA Histone H4	DNA										
379	Medtr8g038460	IPR007124: IPR009072:Histone-fold	processing	nucl	0//0					100	3.00E-41	AT5G59970	V
386	Medtr2g096660	mtC1080/_1_AA NAD-dependent epimerase/dehy dratase	metabolism	chlo	0//0					89	e-179	AT3G46440	Cytos
	Medtr2g036220,	MtC11005_1_AA Glycoside	Energy										, i i i i i i i i i i i i i i i i i i i
399	Medtr2g036190	hydrolase, family 18, catalytic domain	metabolism	Cy to	0//0					34	0.97	NS	undefined
405	Medtr49024630	MtC20018_1_AA Deoxy xy lulose-5- phosphate sy nthase	Energy metabolism	cyto	0					83	0	AT2G45290	chloroplast, chloroplast stroma
105	inedu igoz ioso	phosphate by humbe	Protein	6910	Ű					00		11120 10270	emoropause su onia
		MtC20081_1_AA Elongation factor	synthesis and										cell wall,
418	Medtr2g021300	Tu, domain 2 MtC20110_1_AA_Bro_mPNIA	fate	chlo	0		 		-	82	0	AT4G02930	mitochondrion
		processing ribonuckoprotein, binding	Cell cycle and										
		region IPR012974:NOP5, N-terminal	DNA										nucleolus,
421	Medtr4g070910	IPR012976:NOSIC	processing	c y to	0					78	0	AT5G27120	plasmodesma
435	Medtr8g038210	MtC20218 1 AA Annexin type plant	Signal	cyto	0					54	6.00E-92	AT5G12380	undefined
455	Medii 0g050210	Mic20210_1_Arr Anniexin, type plant	u unisque uon	cy to	0					54	0.001 72	1115012500	membrane,
													mitochondrial
		MtC20271_1_AA Ubiquinol-	Energy										respiratory chain
444	Medtr7g104570	UOCRXOCR9 like	metabolism	cvto	0					80	2.00E-29	AT3G52730	mitochondrion
		MtC20277_1_AA unknown Blast:	Protein										
115	N. 1. 4. 000000	XP_003607599.1 Multiprotein	synthesis and		0					72	2.005.54	172050600	N 1 1
446	Medtr4g080090	MtC20134 1 AA ATPase E1	fate	nucl	0		 			/3	3.00E-54	A13G58680	Nucleolus
		complex, gamma subunit	Energy										chloroplast,
474	Medtr5g091930	IPR002020:Citrate synthase	metabolism	mito	0					69	0	AT2G44350	mitochondrion
400	Mader2a006020	MtC30235_1_AA Gly coside	Energy	arralı	0					20	0	AT1C52790	manahmana
490	Medil 2g090050	MtC30417 1 AA emp24/gp25L/p24	metabolish	CYSK	0		 			29	0	A11035780	membrane
		IPR008273:Cellular retinaldehy de-											
504	Medtr8g095360	binding/triple function, N-terminal	Transport	nucl	0					62	e-111	AT4G09160	Chloro
		MtC20567 1 AA Eulpry of a rDNA	Protein synthesis and										
509	Medtr5g028350	processing	fate	nucl	0					56	2.00E-61	AT3G22660	undefined
		MtC40030_1_AA Chloroplast protein											Choro/ choro Inner
513	Medtr7g088050	import component Toc 34	Transport	c y to	0					64	e-115	AT5G05000	М
		MtC40200_1_AA Blast: XP_003630288 1 Ankyrin-like protein	Signal										
524	Medtr8g093880	[Medicago truncatula]	transduction	chlo	0					73	e-148	AT5G64030	Golgi
			Cell cycle and										
527	Mader 5 (062620	MtC45254_1_AA unknown Blast:	DNA	nual	0					100	2 00E 41	AT5C 50070	V
521	Wedu 5g005020	MtC50144 1 AA Nuclear transport	processing	nuei	0					100	5.00E-41	A13037770	*
		factor 2IPR012677:Nuceotide-											
538	Medtr4g083150	binding, alpha-beta plait	Transport	cyto	0					37	5.00E-62	AT3G25150	undefined
		MrC50840.2 1 AA Nucleotide	Cell cycle and										
545	Medtr1g108290	binding, alpha-beta plait	processing	cyto	0					59	2.00E-63	AT5G04600	Nucleolus
			Protein	2 ° °									
	M 1: 4 102240	MtC50879_1_AA Ribosom al L37ae	synthesis and		6						4.005	172010050	G
546	medtr4g103340	MtC60141 1 A A Histone H3	fate Cell cycle and	chlo	0	<u> </u>			<u> </u>	95	4.00E-45	A13G10950	Cy to / Cy tos Rib chloroplast
550	Medtr1g023630	IPR007124: IPR009072:Histone-fold	DNA	chlo	0					97	1.00E-71	AT5G65360	nucleosome

1			processing									
		MCC0204.1.1.A.A.Wittens U2	Cell cycle and									
553	Medtr4g097170	IPR009072:Histone-fold	processing	nucl	0				100	8.00E-60	AT4G40030	undefined
		MtC60204.2.1. A.A. Histopa H2	Cell cycle and									
554	Medtr4g097170	IPR009072:Histone-fold	processing	nucl	0				100	8.00E-60	AT4G40030	undefined
579	Medtr70113020	MtC60727_1_AA Alpha/beta	energy metabolism	cysk	0				34	5.00E-50	AT4G02340	Perox
517	inoda /gr15020	hydroxise ford TH Robosty).	Cell cycle and	eysk	0					5.002 50	1111002310	TOTOR
580	Medtr4g063430, Medtr4g063240	MtC60748_1_AA Histone core IPR009072:Histone-fold	DNA processing	nucl	0				98	4.00E-49	AT1G07790	Chloro
		Necconcil 1, AA West	Cell cycle and									
582	Medtr4g071180	MtC60/61_1_AA Histone core IPR009072:Histone-fold	processing	nucl	0				98	5.00E-49	AT1G07790	Chloro
		NGCOTTA 1 A A INDOGRACIUM	Cell cycle and									
584	Medtr4g071180	ore IPR009072:Histone-fold	processing	nucl	0				98	4.00E-49	AT1G07790	Chloro
		MtC60841_1_AA SRA-YDG										
		region IPR007728:Pre-SET zinc-	Cell cycle and									
587	Medtr70088370	binding region IPR011381:Histone H3- K9 methyltransferase	DNA	nucl	0				59	e-165	AT5G04940	Nucleus
507	indu i gooosio	MtC61099_1_AA Helix-turn-helix	Protein	nuer	0				57	0 100	1110001010	Tracicas
601	Medtr4g080090	type 3 IPR013729:Multiprotein bridging factor 1, N-terminal	synthesis and fate	mito	0				70	3.00E-52	AT3G58680	Nucleolus / Nucleus/ Cy tos
			Cell cycle and									
603	Medtr8g092720	IPR007124: IPR009072:Histone-fold	processing	chlo	0				99	1.00E-73	AT5G65360	nucleosome
		MtC61426_1_AA unknown Blast:	Protein synthesis and									
611	Medtr8g037810	dnaJ [Medicago truncatula]	fate	c y to	0				70	e-128	AT2G22730	c y tosol
614	unfound	MtC61464_1_AA Pyridine nucleotide- disulphide oxidoreductase class I	Cell rescue and	cyto	0				70	e-169	AT5G03630	chloroplast stroma,
011	uniounu		derenie	6910	0					0 105	1112003030	plant-type vacuole,
		MtC61893_1_AA unknown Blast: XP_003593890.1_ABC transporter C										plasmodesma, vacuolar
622	Medtr2g019020	family member [Medicago truncatula]	Transport	extr	0				67	3.00E-35	AT1G30400	membrane, vacuole
		MtC62065_1_AA Blast: XP 002278176.1 PREDICTED:	Protein									
626	Mader 8:027810	chaperone protein dnaJ 10 [Vitis	synthesis and	muel	0				64	2 00E 82	AT1C21080	undofined
020	Medil 8g057810	MtC62278_1_AA High mobility group	Tate	nuci	0				04	2.001-83	A11021080	undermed
		proteins HMG-I and HMG-Y	Protein									
		and ligase IPR003216:Linker histone,	synthesis and									cytosol, nuclear
629	Medtr3g065570	N-terminal	fate Cell cycle and	nucl	0				51	9.00E-19	AT1G14900	chromatin, nucleus
	Medtr4g063220,	MtC62627_1_AA Histone core	DNA									
638	Medtr4g063450	IPR009072:Histone-fold	processing Protein	nucl	0	 			98	2.00E-49	AT1G07790	Chloro
(10	M. 4.4.102240	MtC62792_1_AA Ribosomal L37ae	synthesis and	.11.	0					2.005.45	472010050	Cute / Cute D"
642	medtr4g103340	protein	rate	cnio	0	 			93	3.00E-45	A13G10950	cy to / Cy tos Rib cy tosolic ribosome,
		NGC2961 1 AA 625 - Theory 1	Protein									cytosolic small
644	Medtr2g086610	protein	fate	nucl	0				93	1.00E-36	AT2G21580	plasmodesma,

1												vacuolar mem brane
			Protein									
		MtC63127_1_AA Ribosom al protein	synthesis and									cytosolic large
650	Medtr5g081710	L35Ae	fate	c y to	0				 91	2.00E-46	AT1G74270	ribosom al subunit
		MCC22C4 1 AA II'reene II2	Cell cycle and									able as also t
656	Medtr7v013610	IPR007124: IPR009072:Histone-fold	processing	chlo	0				92	4 00E-50	AT5G65360	nucleosome
050	Medii 7g015010	MtC90489 1 AA Protein of unknown	processing	emo					/2	4.002 50	115005500	nucleosome
		function UPF0041 Blast:										
		XP_002518402.1 Brain protein,								4 9 9 7 4 9		
662	Medtr2g025480	putative [Ricinus communis]	Unclassified	extr	0				 87	1.00E-49	AT4G22310	mitochondrion
												chloroplast
		MtC90728_1_AA unknown Blast:										envelope, plastid
		Q41050.1 Chloroplastic outer envelope										outer membrane,
666	Medtr4g121900	pore protein of 16 kDa [Pisum sativum]	Transport	cyto	0				49	6.00E-37	AT2G28900	vacuole
		MtC91063 1 AA Histone H4	DNA									
670	Medtr4g128150	IPR007124: IPR009072:Histone-fold	processing	nucl	0				100	4.00E-33	AT5G59970	V
		MtC91170_1_AA Ribosom al protein	Protein									
	1. 1. 4. 0 400 40	L23, N-terminal IPR013025:Ribosomal	synthesis and							5 00 T 00		Cy tosol,/cy tosolic
6/1	Medtr4g063060	MtC01818_1_A A Kupitz inhibitor	fate Call rescue and	cy to	0				 58	5.00E-23	A13G55280	ribo/ M
679	Medtr89059790	ST1-like	defense	chlo	0				37	7.00E-04	AT1G17860	apoplast, cell wall
			Cell cycle and									
		MtC91970_1_AA Histone H3	DNA									chloroplast,
680	Medtr7g013610	IPR007124: IPR009072:Histone-fold	processing	nucl	0				 83	3.00E-46	AT3G27360	nucleosome
		MtC92000 1 A A Histone core	DNA									Nucleus /
681	Medtr4g071180	IPR009072:Histone-fold	processing	nucl	0				71	2.00E-33	AT5G22880	Nucleolus
	U U		Cell cycle and									
		MtC92211_1_AA Histone H2A	DNA									
683	Medtr2g082510	IPR007124: IPR009072: Histone-fold	processing	nucl	0				65	2.00E-28	AT1G08880	Nucleolus
713	Medtr4g129070	kinase accessory region	transduction	cyto	0				76	2.00E-25	AT5G57690	undefined
115	Medtr5g093300,	MtD00072_1_AA Dihy drolipoamide	Energy	6910	0				70	210012 20	1115057050	membrane,
717	Medtr2g006820	acety ltransferase, long form	metabolism	mito	0				68	e-138	AT4G26910	mitochondrion
			Protein									
728	Medtr6a084450	MtD00231_1_AA Peptidase TTA,	synthesis and	cyto	0				83	e-116	AT1G56450	Cytosol /proteasome.cvp
720	Mcdil 0g004450	proteasone teta-subunit	Tate	Cyto	0				 05	C-110	A11050450	integral to
		MtD00387_1_AA NADPH oxidase	Cell rescue and									membrane,
737	Medtr1g083290	Respiratory burst	defense	nucl	0				59	7.00E-73	AT1G09090	membrane
		MD00415 1 AA NADDU ovideoo	Call assesses and									integral to
740	Medtr7g113130	Respiratory burst	defense	nucl	0				59	7.00E-73	AT1G09090	membrane,
	6	MtD00492_1_AA Thymidine kinase	Protein									
		IPR001739:Methyl-CpG binding	synthesis and									
741	Medtr1g089750	IPR011124:Zinc finger, CW-type	fate	chlo	0	ļ	L		 64	4.00E-52	AT3G63030	Nucleus
1		MtD00539_1_AA unknown Blast:	Signal									
747	unfound	binding protein [Ananas comosus]	transduction	chlo	0				54	e-101	AT5G10010	Nucleolus
			Protein									
		MtD00766_1_AA Peptidase M18,	synthesis and									
755	Medtr3g088860	aminopeptidase I	fate	cy to	0			 	 69	2.00E-89	AT5G60160	V / VM / cytosol
766	Medtr4g097790	XP 003608579.1hy pothetical protein	Unclassified	nucl	0				76	7.1	AT2G22795	undefined
		protection in the otem						1	10	7.1		

1		MTR_4g097790 [Medicago truncatula]]		
-			Signal									
795	Medtr5g083910	MtD02090_1_AA Protein kinase	transduction	c y to	0				69	2.00E-63	AT1G53430	plasmamembrane
		AFK35211.1 unknown [Medicago										
807	Medtr4g083250	truncatula]	Unclassified	nucl	0				58	7.00E-70	AT2G45060	Mitochondrion
		MtD02104_1_AA_Bihasamal matain	Protein									Cy tos Ribos /
816	Medtr4g096790	S11	fate	cyto	0				81	2.00E-61	AT3G11510	mitochondrion
872	Madur2 2006000	MtD03754_1_AA Small GTP-binding	Signal	av. ta	0				05	» 101	AT2C12160	Encoratio accionio
823	Medil 5g080980	protein domain 1P K015595:	transduction	cyto	0				93	e-101	A15012100	chloroplast,
												chloroplast
												chloroplast inner
		MtD06307_1_AA unknown										membrane,
846	Medtr70073340	Blast:AFK48380.1 unknown [Medicago truncatula]	Unclassified	chlo	0				34	7.00E-09	AT2G38550	mitochondrion, plastid
0.0	ineda i govoo io	MtD07674_1_AA Surface antigen	Chemissinieu	emo	0				5.	7.002 07	1112030550	Mitochondrion
866	Medtr3g071450	variable number	Unclassified	cy to	0				49	5.00E-35	AT5G05520	/Plastd
868	Medtr1g115890	isomerase	metabolism	c y sk	0				57	6.00E-65	AT5G05270	undefined
			Protein									
883	Medtr70081660	MtD09/22_1_AA Hy aluronan/m KNA binding protein	synthesis and fate	nucl	0				36	1.00E-21	AT4G16830	Cy tos / Nucleus
005	inedu /goorooo	MtD11268_1_AA XP_003617451	Tuto	inder	0				50	1.002 21	1111010000	cy us / ridereds
806	Moder 5 c 001710	hypothetical protein MTR_5g091710	Unclossified	muel	0				55	4.1	AT5C05870	undafinad
870	Wedu 5g071710	[Medicago il dicattia].t	Onclassified	nuei	0				55	4.1	A15005870	chloroplast,
		MD12652 1 AA Charling S										chloroplast stroma,
		transferase, C-terminal	Cell rescue and									plasma membrane,
919	Medtr8g056940	IPR012335:Thioredoxin fold	defense	c y to	0				65	2.00E-80	AT1G78380	vacuolar mem brane
		MtD12827 1 A A Histone H3	Cell cycle and DNA									chloroplast
923	Medtr1g105310	IPR009072:Histone-fold	processing	chlo	0				94	5.00E-70	AT5G65360	nucleosome
025	Madtr2c024000	MtD13218_1_AA Importin alpha-like	Transport	ablo	0				94	6 00E 87	AT4C16142	Cy tos / Nucleolus /
923	Wedii 2g034900	proteini, beta-binding legion	Transport	cillo	0				04	0.00E-87	A14010145	membrane, plasma
		MD12284 1 AA C2 selving	6'1									membrane,
926	Medtr5g023050	dependent membrane targeting	transduction	cyto	0				64	2.00E-68	AT4G35790	vacuole
	~	MtD14892_1_AA Ras Blast:	<i>a</i>			1						
943	Medtr3g107710	CAC10213.1 GTP-binding protein	Signal transduction	cyto	0				98	e-116	AT5G55190	plasmodesma
745	Medu Sg107710	MtD15872_1_AA Late embry ogenesis	Cell rescue and	cyto	0				20	0 110	115655150	plasifiodeana
956	Medtr7g093170	abundant (LEA) group 1	defense Cell cycle and	mito	0				52	1.00E-19	AT5G06760	undefined
		MtD16132_1_AA Histone core	DNA									
959	Medtr4g092290	IPR009072:Histone-fold	processing	nucl	0				98	1.00E-41	AT1G07790	Chloro
												chloroplast, chloroplast stroma
		MtD16413_1_AA Glutathione S-										cy toplasm, cy tosol,
962	Medtr8a056940	transferase, C-terminal	Cell rescue and	cyto	0				65	6.00E-92	AT1G17180	plasma membrane,
902	wiedu 0g030740	MtD16665_1_AA unknown Blast:	uciciise	Cy IU	0				0.5	0.00E-93	A1101/160	vacuolar menturale
964	Medtr8g091480	XP_003630077.1 hypothetical protein	Unclassified	nucl	0	1			25	1.9	AT2G33700	undefined

		MTR_8g091480 [Medicago truncatula]]		
		MtD17080_1_AA unknown Blast:	Protein									cell wall,
966	Medtr7g081810	protease [Medicago truncatula]	fate	cy sk	0				57	3.00E-56	AT2G04160	sy stem
975	Medtr7g076900	MtD17726_1_AA C2 calcium/lipid- binding region, CaLB	Signal transduction	cyto	0				53	3.00E-30	AT3G57880	Plasmodesma /CW /ER
	-											cytosolic ribosome,
		MtD17745_1_AA unknown Blast: XP 003623908.1 Extended										cytosolic small ribosomal subunit.
976	Medtr4g096790	synaptotagmin-2[Medicago truncatula]	Transport	cyto	0				81	2.00E-54	AT3G11510	nucleolus
		MtD19528_1_AA unknown Blast XP_003627035_1_ABC										
		transporter family pleiotropic drug										chloroplast,
080	Mader 8=014260	resistance protein [Medicago	Troponont	abla	0				61	5 00E 40	AT1C50870	membrane, plasma
989	Medil 8g014500		Cell rescue and	cillo	0				01	5.00E-40	A11039870	membiane
999	Medtr8g018550	MtD20838_1_AA Lipoxy genase	defense	nucl	0				50	5.00E-56	AT3G22400	Chloro
		MtD22210 1 A A Ribosom al protein	Protein synthesis and									
1002	Medtr5g040570	L34e	fate	c y to	0				95	1.00E-28	AT1G26880	Chloro / Nucleolus
		MtD22622 1 AA History H2	Cell cycle and									ahlananlaat
1004	Medtr7g013610	IPR009072:Histone-fold	processing	chlo	0				99	1.00E-73	AT5G65360	nucleosome
	U U		Cell cycle and									
1005	Medtr7x013610	MtD22675_1_AA Histone H3 IPR007124: IPR009072:Histone-fold	DNA	nucl	0				99	7.00E-74	AT5G65360	chloroplast, nucleosome
1005	inical (goloolo	MtC00379_1_AA unknown Blast:	processing	hiter	Ŭ					1.002 / 1	1112002200	mitochondrion
166	Mod#4075160	XP_003540566.1 PREDICTED: NA DH dabydroganasa [ubiquina na]	Transport	avto	0//0				92	3 00E 15	AT1C76200	respiratory chain
100	Wedu 4g075100	NADII denyai ogenase [ubiquillo ne]	Transport	cyto	0//0				65	5.00E-15	A11070200	membrane,
												mitochondrial
												complex III.
												mitochondrion,
1017	Medtr1g011880	MtD23501_1_AA Cytochrome bd ubiquinol oxidase, 14 kDa subunit	Energy metabolism	mito	0				63	7.00E-32	AT4G32470	plastid, vacuolar membrane
	0	MtC00057_1_AA SGNH hydrolase-	Energy									
25	Medtr4g016510	type esterase superfamily protein	metabolism Protoin	chlo	0//0				56	7.00E-71	AT2G38180	undefined
		MtC00077_1_AA S25 ribosomal	synthesis and									plasmodesma /
35	Medtr4g070600	protein McC00280, 1, AA Chatathiana S	fate	nucl	0//0				93	1.00E-36	AT2G21580	Vm
		transferase, C-terminal	Cell rescue and									
128	Medtr7g065630	IPR012335: Thioredoxin fold	defense	cyto	0//0				51	3.00E-53	AT3G09270	Cy to
												Cajal body, chloroplast
												c y toplasm, cy tosol,
		MtC20235_1_AA	Cell cycle and									nucleolus,
439	unfound	terminal IPR007092:	processing	cyto nucl	0				72	5.00E-92	AT1G09760	nucleus
	İ	MtD02821_1_AA unknown Blast:						T	T			ĺ
		XP_003548304.1 PREDICTED: eukaryotic translation initiation factor 3	Protein synthesis and									cy tosol.
810	unfound	subunit J-like [Glycine max]	fate	nucl	0				50	2.00E-36	AT5G37475	plasmodesma
836	Medtr5g093300, Medtr2g006820	MtD04868_1_AA Dihy drolipoamide	Energy metabolism	chlo	0				67	e-137	AT4G26910	M / mitochondrion
0.00	1110 du 2g000020	accy a disclase, long form	metabolian	CIIIO	0				07	0-157	114020710	m/miochonarion
918	Medtr8g040150	MtD12624_1_AA ABC transporter	Transport	c y sk	0				63	4.00E-44	AT3G12260	M / mitochondrion

	related IPR008011:Complex 1 LYR protein										
Medtr2g013220	MtC93047_1_AA Unkown Blast: XP_003635272.1 PREDICTED: clathrin light chain 1- like [Vitis vin ifera]	Transport	Nucl	0				59	2.00E-45	AT3G51890	clathrin coat of coated pit, clathrin coat of trans-Golgi network vesicle

Chapter 4, additional file S4.4.

	Accession MENS Toulo use		Localisation							N-	% Homologie		Accession	
Accession Mt3,5	01/2003_Identification	Functional classification	WolfPsort	TM	BB	GPI	SP	Palmitoylation	Prenylation	myrostylation	TAIR	E value	TAIR	Localisation TAIR
	MtC00005_1_AA Plant lipid			1//1										
Medtr4g101280	alpha amy lase inhibitor	Transport	chlo	TM			SP	Рб			66	2.00E-24	AT1G62510	endomembrane system
	MtC00008_1_AA Haem peroxidase,	*												CW / chloro /cytosol /
Medtr4te061140	plant/fungal/bacterial	Cell rescue and defense	c y to	0//0							70	e-102	AT1G07890	PM / plasmodesma
	MtC00010_1_AA Major intrinsic protein Blast: XP_003600863			5//5										chloroplast membrane
Medtr3g070210	Aquaporin protein PIP11	Transport	plas	TM	BB			P 2			86	e-102	AT1G01620	plasma membrane
														chloroplast envelope,
														cytosolic large ribosomal
	MtC00011_1_AA Ribosomal													subunit, membrane,
Medtr3g093110	protein L6, signature 2	Protein synthesis and fate	cy to	0//0							87	4.00E-94	AT1G33140	plasmodesma, vacuole
Madm4a122110	MtC00012_1_AA Haem peroxidase,	Call measure and defense		0//1 TM			CD	D 2			01	. 152	AT4C21060	an daman brans gratan
Medtr4g132110	MtC00015_1_A A PeptidyLprokl	Cell rescue and defense	cyto	1 M			SP	P 2			81	e-152	A14G21960	chloro / cytosol / PM /
Medtr4g075290	cis-trans isomerase, cyclophilin type	Protein synthesis and fate	chlo	0//0				P 1			76	2.00E-76	AT2G16600	plasmodesma
														Apoplast, chlorop, cy tosol,
Modtr/a104020	MtC00016_1_AA Nucleoside	Energy metabolism	auto	0//0							76	1.00E.64	AT4C00220	perox, PM, plasmodesma,
Wedd 4g104050	upiospilate kilase	Energy inclusionsi	cyto	0//0							70	1.002-04	A1400/320	cytosol, cytosolic small
	MtC00017.3_1_AA 40S ribosomal													ribosom al subunit,
Medtr3g005430	protein S9	Protein synthesis and fate	cy to	0//0		-					92	1.00E-81	AT5G39850	membrane, plasmodesma
Medtr49116410	MtC00024_1_AA Ribosomal	Protein synthesis and fate	cyto	0//0				Р2			82	1.00E-73	AT5G23740	cytosolic small ribosomal subunit membrane
iniouu igiroiro	MtC00027_1_AA Major intrinsic	Trotem by nateous and late	6,10	0//0								11002/15	1110025710	chloroplast, membrane,
N. 1. 2. 00.1270	protein, Blast: XP_003597235			6//6							70	100	172052420	plasma membrane,
Medtr2g094270	Aquaporin PIP2-7 MtC00029_1_A_A_Blast: DE36485	Transport	plas	IM		-					/8	e-128	A13G53420	plasmodesma, vacuole
	ubiquitin extension protein, partial													
Medtr8g088060	[Ageratina adenophora].	Protein synthesis and fate	cy to	0//0				P 3			82	4.00E-69	AT2G47110	Intra Cell / Cy tos Rib
	MtC00032.2.1. A A Ribosomal													Cy tosol / V/ Plamodesma / CW / Nucleolus / cy tos
Medtr1g098220	protein S13	Protein synthesis and fate	cyto	0//0				P 2			84	1.00E-72	AT4G09800	Rib
														cell wall, cy tosol,
Medtr7g110310	MtC00034_1_AA S- adenosylmethionine synthetase	Energy metabolism	cyto	0//0				P 3			89	0	AT1G02500	membrane, plasma
iniouu /gi10510	MtC00035_1_AA Ribosomal	Energy meansonant	0,10	0//0		1		10				Ŭ	1111002500	memolane
N 1 5 000500	protein L13, archea and eukary otic			0.00				D.A.			05	104	1750 10760	
Medtr5g083790	form	Protein synthesis and fate	cyto	0//0				P 2			85	e-104	AT5G48760	Cy tos rib /
	MtC00037_1_AA Ribosomal													cy tosolic small ribosomal
Medtr5g018940	protein S4E	Protein synthesis and fate	chlo	0//0				P 1			91	e-135	AT5G07090	subunit,VM
	MtC00038 1 AA Ribosomal													cytosolic large ribosomal
Medtr5g081710	protein L35Ae	Protein synthesis and fate	chlo	0//0				P 1			89	4.00E-55	AT1G41880	ribosome
														chloroplast, cy tosol,
														cytosolic large ribosom al
	MtC00039_1_AA Ribosomal													ribosome, endoplasmic
Medtr1g075720	protein L14	Protein synthesis and fate	c y to	0//0				P 1	1		85	1.00E-59	AT4G27090	reticulum, nucleolus,

													plasmodesma, ribosome, vacuolar membrane,
	MtC00045_1_AA_BURP												vacuole
	Blast:XP_003596540.1Embry onic			1//1									
Medtr2g081610	trunc atula] (BURP domain)	Cell rescue and defense	extr	TM			SP	P 2		33	5.00E-11	AT5G25610	endomembrane system
	MtC00046_1_AA_S-			0//1									cell wall, membrane,
Medtr4g123810	adenosy lmethionine sy nthetase	Energy metabolism	cy to	TM				Р 3		91	0	AT3G17390	membrane, plasmodesma
	MtC00049 1 AA Ribosomal								FT - CaaX Farnesyltransferase/ GGT1 - CaaX				chloroplast envelope,
AC140545_25	protein L10E	Protein synthesis and fate	chlo_mito	0//0				P 4	Gerany lgerany ltransferase	88	e-114	AT1G26910	membrane, ribosome
													ribosomal subunit,
	MtC00051 1 AA Ribosomal												cy tosolic ribosome, plasma membrane.
Medtr1g088070	protein L19e	Protein synthesis and fate	chlo	0//0				Р4		84	2.00E-61	AT4G02230	ribosome
Medtr7g118060	MtC00053_1_AA Ribosomal protein 60S	Protein synthesis and fate	extr	0//0	BB			P 2		66	1.00E-16	AT5G24510	cytosolic ribosome, ribosome
	MtC00054_1_AA Blast:												Chlore / autosol
	depolymerizing factor (cofilin)												mitochondrion, PM,
Medtr2g028670	[Medicago truncatula MtC00058_1_A A Bibosomal L22	Cytoskeleton	cy to	0//0				P1		82	2.00E-63	AT5G59880	plasmodesma Cytosol /aytosolia ribo/
Medtr2g014220	and L15e, core	Protein synthesis and fate	nucl	0//0						81	4.00E-94	AT4G16720	PM / Vm
Medtr2g035930	MtC00061_1_AA Ribosomal protein L27e IPR005824:KOW	Protein synthesis and fate	nucl	0//0				P 1		74	1.00E-42	AT4G15000	Cy tosol,/cy tosolic ribo/ ribos
8	MtC00063_1_AA unknown Blast:												
Medtr4g082860	inducible [Medicago truncatula]	Cell rescue and defense	mito	0//0	BB					55	2.00E-07	AT2G03440	undefined
Medtr1g100960	MtC00064_1_AA Ribosomal	Protein synthesis and fate	chlo	0//0						80	5.00E-44	AT3G53740	Cytosol, cytosolic ribo, M. Vm
Meduligi00500	MtC00066_1_AA Ribosomal	Trotein syndresis and late	emo	0//0							5.00L 44	115655740	
AC235488_9.1	protein L21e	Protein synthesis and fate	cy to	0//0			SP			81	2.00E-73	AT1G09690	Cy tos rib / rib
Medtr7g098290	protein L14b/L23e	Protein synthesis and fate	c y to	0//0	BB			P 1		98	9.00E-67	AT3G04400	Cy tos rib / ribos
	MtC00073 1 AA Ribosomal												chloro / cy toso / cy tos ribos / nucleolus /
Medtr8g046140	protein L5	Protein synthesis and fate	cy to	0//0				P 1		87	1.00E-88	AT2G42740	plasmodesma / V
Medtr8g045570	MtC00074_1_AA Bet v I allergen	Cell rescue and defense	cyto	0//0				P 1		36	7.00E-22	AT5G28010	ND
N. 1. 1. 002460	MtC00075_1_AA Ribosomal			0.10							2.005.00	175622050	Cy toso / cy tos ribos / M /
Medtr1g083460.	protein L18e	Protein synthesis and fate	nucl	0//0						84	3.00E-88	A15G27850	chloro / cy toso / cy tos
unfound	MtC00078_1_AA Ribosomal	Protein synthesis and fate	chlo	0//1	BB		SP			72	2.00E-16	AT2G27710	ribos / nucleolus / PM / plasmodesma / V
anound	MtC00080_1_AA Blast:	1 rotern sy nucesis and nuc	enio	0//1			Gr			72	2.001 10		passioucanu / v
Medtr5g088320	CALM3_PETHY Calmodulin- related protein.	Signal transduction (calcium - mediated signal transduction)	nucl	0//0	1					99	3.00E-82	AT2G27030	vacuolar mem brane
	MtC00082_1_AA Universal stress			0//1		1					0.007		
Medtr5g077130	protein (Usp) MtC00083.1 1 AA Nascent	Cell rescue and defense	cy to	TM				P1		76	9.00E-66	AT3G53990	Plasmodesma
	poly peptide-associated complex			0.110							0.007		c y tosol, cy tosolic
Medtr7g088680	NAC IPR009060:UBA-like	Protein synthesis and fate	nucl	0//0	BB		1			68	9.00E-61	AT3G49470	ribosome, plasmodesma

	MIC00086 L AA Ribosomal												cy tosol, cy tosolic large ribosom al subunit, cy tosolic ribosome, membrane, nucleolus, plasma membrane
Medtr1g088070	protein L19e	Protein synthesis and fate	nucl	0//0				P 1		85	4.00E-88	AT1G02780	plasmodesma, ribosome
Medtr3g070500	MtC00088_1_AA Peptidy l-proly1 cis-trans isomerase, cyclophilin type IPR015891:	Protein synthesis and fate	extr	0//1 TM	BB		SP			90	1.00E-87	AT5G58710	Chloro / plasmodesma
Medtr4a063060	MtC00095_1_AA Ribosom al protein L23, N-terminal IPR013025:Ribosom al protein L 25/L 23	Protein synthesis and fate	cyto	0//0	BB					81	4 00F-49	AT3G55280	Cytosol /cytosolic ribo/ M
Medtr2g014030	MtC00096_1_AA Ribosomal protein S6e IPR014401:	Protein synthesis and fate	nucl	0//0						79	3.00E-95	AT4G31700	chloro / cy toso / cy tos ribos / nucleolus / PM / plasmodesma / V
Medtr3g078630	MtC00105_1_AA Blast: ACJ84101 unknown [Medicago truncatula].	Unclassified	chlo	1//1 TM				P 1		74	4.00E-34	AT3G48140	Peroxisome
Medtr5g015570	MtC00108_1_AA Ribosomal	Protein synthesis and fate	cyto	1//0 TM					Predicted as my ristoy lated	98	e-104	AT1G10630	cy tosol, membrane, plasma membrane, vacuolar membrane
Indusgorosio	MtC00109.1_1_AA Blast: XP_003618207 ADP- ribosylation factor [Medicago truncatula]. ARF/SAR superfamily; Ras small GTPase, Rab type; ADP-			0//1					Predicted as				cy tosol, membrane, plasma membrane,
Medtr7g109960	ribosylation factor MtC00109.2.1.A.A.A.RE/SAR	Transport	chlo	TM		GPI			my ristoy lated	98	e-103	AT1G10630	vacuolar membrane
Medtr5g034130	superfamily .ARF/SAR superfamily ; Ras small GTP ase, Rab type; ADP- ribosy lation factor	Transport	mito	0//0					Predicted as my ristoy lated	98	e-103	AT1G10630	cy tosol, mem brane, plasm a mem brane, vacuolar mem brane
Medtr5g097200	MtC00110_1_AA Ribosom al protein S26E IPR008957:Fibronectin, ty pe III-like fold	Protein synthesis and fate	c y to	0//0				Р 3		62	6.00E-33	AT3G56340	cy tosolic ribosome, cy tosolic small ribosomal subunit, membrane
Medtr3g013640	MtC00111_1_AA Ribosomal protein S19e	Protein synthesis and fate	c y sk	0//0				P 1		82	7.00E-70	AT5G61170	Cy tosol,/cy tosolic ribo/ ribos / V
Medtr7g111590	MtC00113_1_AA Ribosom al protein L13e	Protein synthesis and fate	chlo	0//0						87	6.00E-98	AT3G49010	Cell wall, cy tosol, cy tosolic ribo, M, PM / plasmodesma / Nucleolus /Vm
Medtr4g070080	MtC00115_1_AA unknown Blast: XP_003606910.1Gly cine-rich RNA binding protein [Medicago truncatula]	Cell rescue and defense	chlo	0//0	BB					81	3.00E-36	AT2G21660	Chloro / cy toso / cy tos ribos / Perosisome / Nucleolus / plasm odesma /
Medtr7g100720	MtC00118.1_1_AA 40S RIBOSOMAL PROTEIN S23	Protein synthesis and fate	cyto	0//0				P1		96	8.00E-76	AT5G02960	cytosolic ribosome, cytosolic small ribosomal subunit, ribosome
Medtr8g083090	MtC00121_1_AA S-adenosy IL- hom ocy steine hy drolase	Energy metabolism	chlo	0//0				P 3		85	e-159	AT4G13940	Cytosol / M / PM / Plasmodesma / Vm / V
Medtr8g106080	MtC00124_2_AA unknown Blast: XP_003535496.1 PREDICTED: conserved oligomeric Golgi complex subunit 1-like [Glycine max]	Transport	nucl	0//0				P 1		89	2.00E-71	AT2G09990	Plasmodesma / Chloro/ Cy tos Rib / CW / M /
Medtr5g083170	MtC00127_1_AA Ferritin-like	Transport (iron ion transport)	chlo	0//0						72	4.00E-84	AT2G40300	chloroplast, chloroplast envelope, chloroplast strom a, mitochondrion

		1		1	1 1	1			1				
													M/Ribos/CW/PM/
	MtC00128_1_AA Ribosomal			0.110							101		cytos / Plasmodesma /
AC235488_13.1	protein S7	Protein synthesis and fate	cy to	0//0				P 2		92	e-101	AT2G37270	Chloro
	MtC00132_1_AA Ribosomal												
	protein S26E												
M 1 5 005200	IPR008957:Fibronectin, type III-like	D		0.00				D 4		(2)	2.005.22	172010500	G
Medtr5g097200	fold	Protein synthesis and fate	cyto	0//0				P 4		62	2.00E-32	A12G40590	Cytos rib
	MtC00134_1_AA Ribosomal L28e												Cy tos ribos /
Medtr2g100410	protein	Protein synthesis and fate	nucl	0//0						73	1.00E-56	AT4G29410	plasmodesma / PM
	MtC00135_1_AA Ribosomal												Cy tosol,/cy tosolic ribo/
Medtr4g016670	protein S8E	Protein synthesis and fate	nucl	0//0				P 1		76	1.00E-85	AT5G59240	Vm
													Cytosol, cytosolic ribo,
	MtC00137_1_AA Ribosomal												PM, plasmodesma,
Medtr3g070930	protein L1	Protein synthesis and fate	c y to	0//0				P1		81	2.00E-99	AT1G08360	ribosome
	MtC00141_1_AA Ribosomal												cytosolic small ribosomal
Medtr5g005130	protein S14	Protein synthesis and fate	nucl	0//0				P 3		92	3.00E-25	AT4G33865	subunit
													cell wall, chloroplast,
													cytosolic ribosome,
	MtC00142_1_AA Ribosomal												plasma membrane,
AC235488_13	protein S7	Protein synthesis and fate	c y to	0//0				P 3		89	e-100	AT3G11940	plasmodesma,vacuole
													cell wall, cy tosolic
													ribosome, cy tosolic small
	MtC00143_1_AA Ribosomal			0//1									ribosomal subunit,
Medtr2g015680	protein S27E	Protein synthesis and fate	vacu	TM			SP	P 2		82	1.00E-36	AT3G61110	plasmodesma, ribosome
	MtC00144_1_AA Ribosomal												Cy tosolic ribo, M,
14 1 2 005400	protein L22/L17, eukary otic and	D		0.00						07	1.005.00	1710(7100	nucleolus, V,
Medtr3g085490	archaealform	Protein synthesis and fate	nucl	0//0				P1		87	1.00E-89	ATIG6/430	plasmodesma, ribosome
	MC00145 1 AA Discourd LOO												Cy tos Ribos / cy tos/
Made 1 008450	MtC00145_1_AA Ribosomal L22e	Ductain grathesis and fate	mual	0//0				D 1		77	4 00E 49	AT2C05560	Nucleolus / PM /
Medii 1g088430	protein	Protein synulesis and late	nuci	0//0				r I		//	4.00E-46	A15005500	Pismodesna
	MtC00147_1_AA Ribosomal			0.110									cytosolic small ribosomal
Medtr/g0/66/0	protein S14	Protein synthesis and fate	nucl	0//0				P 3		 92	3.00E-25	AT4G33865	subunit, ribosome
													cell wall, chloroplast,
	MC00148 1 AA Dikaamal												c y tosol, cy tosolic
Mader6c021670	MICO0148_1_AA KIDOSOIIIai	Protoin synthesis and fate	auto	0//0						91	1.00E.00	AT1C49920	mombrane
Wedu 0g021070	protein 37E	F Totelli sy liulesis aliu late	Cyto	0//0						01	1.00E-90	ATT040050	memblane
M 1: 0 105240	MtC00149_1_AA Ribosomal	D		0//1			CD	D 1			120	172057400	
Medtr8g105340	protein S5 IPR014/20: IPR014/21:	Protein synthesis and fate	plas	IM			SP	PI		 92	e-120	A13G57490	Plasmodesmata /M
	MtC00151_1_AA Ribosomal												Cy tos Ribos
Medtr8g101980	protein L31e	Protein synthesis and fate	c y to	0//0				P1		73	2.00E-43	AT5G56710	/Plasmodesmata / CW
													chloroplast stroma,
													cy toplasm, cy tosol,
Mader 240 077260	MrC00154 1 A A 14 2 2 motoin	Signal transduction	mual	0//0				D 1		75	. 115	ATT2C 42500	nucleus, plasma
Medtr2te0//360	MtC00154_1_AA 14-3-3 protein	Signal transduction	nuci	0//0				PI		/5	e-115	A12G42590	memorane
	MtC00167_1_A A Dihasamal												cell wall, cy tosol,
Medtr8g076830	protein \$17	Protein synthesis and fate	cuto	0//0				P 2		83	6.00E-73	AT3G48030	membrane plasmodesma
Medii 8g070850	protein 317	F Totelli sy liulesis aliu late	Cyto	0//0				12			0.00E-75	A15040750	membrane, plasmotesma
14 1 2 025150	MCCOOLCO 1 A A D - I II	G. 11. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1		0.00	DD						0.000	175015070	
Medtr2g035150.	MtC00168_1_AA Bet v I allergen	Cell rescue and defense	cyto	0//0	BB					 34	0.009	A15G45870	undefined
													cell wall, cy tosol,
													cytosolic large ribosom al
													subuilit, cy tosolic
													ribosome, membrane,
	MrC00176 1 AA Bibasamal												mombrane risma
Medtr7a111500	protein L 13e	Protein synthesis and fato	chlo	0//0						96	1.00E-91	AT3G49010	vacuolar membrane
Mcuu / g111390	PLOTEIN LIDE	1 TOTELLI SY HUIESIS ALLU TALE	CIIIO	0//0	1					00	1.00E-01	A15049010	vacuolar mentu ane

Mader72002800	MtC00181.1_1_AA Mitochondrial import inner membrane translocase,	Tecnonom		3//4	DD				50	2.00E 42	ATT2C 42210	chloroplast, membrane,mitochondrion,
Medu /g092890	subunit 11111//22	Transport	Cylo	I IVI	DD					5.00E-45	A12042210	cy tosol, cy tosolic large
												ribosomal subunit,
	MtC00184.1 1 AA Ribosomal											plasma membrane,
Medtr5g091130	L18ae protein	Protein synthesis and fate	c y to	0//0			P 1		90	2.00E-81	AT2G34480	vacuolar membrane
												cytosol, cytosolic large ribosomal subunit
												cy tosolic ribosome,
Mader2a008000	MtC00184.2_1_AA Ribosomal	Protoin synthesis and fate	nual	0//0			D 1			2 00E 81	AT2G24480	plasma membrane,
Wedu 2g098000	MtC00185_1_AA unknown Blast:	F Totelli sy liulesis allu late	nuci	0//0			11			2.00E-81	A12034480	vacuolar mentu ale
	XP_003616043.1 hy pothetical											
Medtr59075520	protein MTR_5g075520 [Medicago truncatula]	Unclassified	cvto	1//1 TM					24	1.00E-04	AT5G49350	endomembrane system
inclusion of the second s	a anoa tana j	Chemisshied	6910						21	HOOL OT	1115015550	cy tosol, cy tosolic large
	MtC00192_1_AA Ribosomal											ribosomal subunit,
Medtr8g091910	protein L6, N-terminal	Protein synthesis and fate	nucl	0//0						3.00E-82	AT1G74050	membrane, plasmodesma
												chloroplast, chloroplast
	MtC00194 1 AA unknown Blast											envelope, chloroplast
	XP_003603853.1 hy pothetical											chloroplast thy lakoid
Moder2a115020	protein MTR_3g115930 [Medicago	Unclossified	abla	2//2 TM	DD	SD	р)		77	1.00E.27	AT1C42060	membrane, membrane,
Wedu Sg115950		Oliciassified	cillo	1 1/1	DD	Sr	12			1.00E-27	A11042900	cytosolic ribosome,
	MtC00199_1_AA Ribosomal			0.110								cytosolic small ribosomal
Medtr8g012330	McC00202 1 AA Bibaaamal	Protein synthesis and fate	nucl	0//0					12	1.00E-72	A15G59240	subunit, membrane
Medtr5g005130	protein S14	Protein synthesis and fate	nucl	0//0			Р 3		92	6.00E-21	AT4G33865	subunit
	MtC00205.1_1_AA Cold			5//6								plasma membrane,
Medtr4g068510	acclimation WCOR413	Cell rescue and defense	vacu	TM					61	1.00E-51	AT2G15970	vacuole apoplast_chloroplast
												chloroplast stroma,
												membrane, nucleus,
	MtC00218.2_1_AA Malate			0//1								plasmodesma, vacuolar
Medtr1g043040	dehydrogenase, active site	Energy metabolism	chlo	TM	BB		P 2		73	e-137	AT1G04410	membrane, vacuole
Medtr20034640	MtC00221 1 AA Ras GTPase	Signal transduction	cyto	0//1 TM						1.00E-95	AT4G02080	РМ
	MtC00225 1 AA Ribosomal		- ,		1							cytosolic large ribosomal
Medtr7g098290	protein L14b/L23e	Protein synthesis and fate	c y to	0//0			P 1		98	5.00E-67	AT3G04400	subunit
Medtr2g035320												
	MtC00227 1 AA Bet v I allergen	Cell rescue and defense	cyto	0//0	BB				28	AT5G45870	AT5G45870	undefined
	MtC00227_1_AA Bet v I allergen MtC00228_1_AA Polygalacturomase	Cell rescue and defense	cy to	0//0	BB				28	AT5G45870	AT5G45870	undefined
Medtr7g023630	MtC00227_1_AA Bet v I allergen MtC00228_1_AA Polygalacturorase inhibitor precursor, Leucine rich rapeet kuterming	Cell rescue and defense	cyto	0//0 1//1	BB	SD	Р 1		28	AT5G45870	AT5G45870	undefined cell wall, plant-ty pe cell wall, plasmochema
Medtr7g023630	MtC00227_1_AA Bet v I allergen MtC00228_1_AA Poly galacturomse inhibitor precursor, Leucine rich repeat, N-terminal MtC00230_1_AA_40S	Cell rescue and defense Cell rescue and defense	cy to extr	0//0 1//1 TM 1//0	BB	SP	P 2		28 42	AT5G45870 4.00E-30	AT5G45870 AT5G06860	undefined cell wall, plant-ty pe cell wall, plasm odesma
Medtr7g023630 Medtr5g010020	MtC00227_1_AA Bet v I allergen MtC00228_1_AA Poly galacturomse inhibitor precursor, Leucine rich repeat, N-terminal MtC00230_1_AA 40S RIBOSOMAL PROTEIN S10	Cell rescue and defense Cell rescue and defense Protein synthesis and fate	cy to extr	0//0 1//1 TM 1//0 TM	BB	SP	P 2		28 42 87	AT5G45870 4.00E-30 3.00E-47	AT5G45870 AT5G06860 AT5G52650	undefined cell wall, plant-y pe cell wall, plasmodesma cell wall, cy tosolic ribosome, membrane
Medtr7g023630 Medtr5g010020	MtC00227_1_AA Bet v I allergen MtC00228_1_AA Poly galacturomase inhibitor precursor, Leucine rich repeat, N-terminal MtC00230_1_AA 40S RIBOSOMAL PROTEIN S10 MtC00233_1_AA MIR Blast: VD 002202014 Structure 1	Cell rescue and defense Cell rescue and defense Protein synthesis and fate	extr extr	0//0 1//1 TM 1//0 TM	BB	SP	P 2 P 1		28 42 87	AT5G45870 4.00E-30 3.00E-47	AT5G45870 AT5G06860 AT5G52650	undefined cell wall, plant-y pe cell wall, plasmodesma cell wall, cy tosolic ribosome, membrane
Medtr7g023630 Medtr5g010020	MtC00227_1_AA Bet v I allergen MtC00228_1_AA Poly galacturomase inhibitor precursor, Leucine rich repeat, N-terminal MtC00230_1_AA 40S RIBOSOMAL PROTEIN S10 MtC00233_1_AA MIR Blast: XP_003603304.1 Stromal cell- derived factor 2-like protein	Cell rescue and defense Cell rescue and defense Protein synthesis and fate	cy to extr extr	0//0 1//1 TM 1//0 TM	BB	SP	P 2 P 1		28 42 87	AT5G45870 4.00E-30 3.00E-47	AT5G45870 AT5G06860 AT5G52650	undefined cell wall, plant-y pe cell wall, plasmodesma cell wall, cy tosolic ribosome, membrane
Medtr7g023630 Medtr5g010020 Medtr3g106130	MtC00227_1_AA Bet v I allergen MtC00228_1_AA Poly galacturomase inhibitor precursor, Leucine rich repeat, N-terminal MtC00230_1_AA 40S RIBOSOMAL PROTEIN S10 MtC00233_1_AA MIR Blast: XP_003603304.1 Stromal cell- derived facto 2-like protein [Medicago truncatula]	Cell rescue and defense Cell rescue and defense Protein synthesis and fate Protein synthesis and fate	cy to extr extr extr	0//0 1//1 TM 1//0 TM 0//1 TM	BB	SP SP	P2 P1		28 42 87 77	AT5G45870 4.00E-30 3.00E-47 2.00E-93	AT5G45870 AT5G06860 AT5G52650 AT2G25110	undefined cell wall, plant-y pe cell wall, plasmodesma cell wall, cy tosolic ribosome, membrane ER
Medtr7g023630 Medtr5g010020 Medtr3g106130	MtC00227_1_AA Bet v I allergen MtC00228_1_AA Poly galacturomase inhibitor precursor, Leucine rich repeat, N-terminal MtC00230_1_AA 40S RIB0SOMAL PROTEIN S10 MtC00233_1_AA MIR Blast: XP_003603304.1 Stromal cell- derived factor 2-like protein [Medicago truncatula] MtC00234.1_1_AA Blast: XP_003612051_Ice6hvane	Cell rescue and defense Cell rescue and defense Protein synthesis and fate Protein synthesis and fate Cell rescue and defense 'Phytose in biogenthesis	extr extr extr	0//0 1//1 TM 1//0 TM 0//1 TM	BB	SP SP	P2 P1		28 42 87 77	AT5G45870 4.00E-30 3.00E-47 2.00E-93	AT5G45870 AT5G06860 AT5G52650 AT2G25110	undefined cell wall, plant-y pe cell wall, plasmodesma cell wall, cy tosolic ribosome, membrane ER

		biosynthesis.)		1	1	1							
		Cell rescue and defense											
		'Phy toale xin biosy nthesis;											
	MtC00234.2_1_AA Isoflavone	pterocarpan phy toalexin		0.110							1007.00		
Medtr5g020800	reductase [Medicago truncatula].	biosynthesis.)	cyto	0//0				P1		53	4.00E-93	AT1G75280	PM
		'Phy toalexin biosynthesis:											
	MtC00234.3_1_AA Isoflavone	pterocarpan phy toalexin											
Medtr5g020800	reductase [Medicago truncatula].	biosynthesis.)	cy to	0//0				P 1		53	4.00E-93	AT1G75280	PM
Madm2~101000	MtC00249_1_AA Ribosomal	Destain grathesis and fate	ahla	0//0				D 2		00	2.00E 42	AT1C52200	cytosolic large ribosom al
Wedu 2g101900	MtC00251 1 AA Ribosomal	r totelli sy nulesis and late	cino	0//0				1 2		00	2.00E-45	A11052500	cytosolic large ribosomal
	protein L13, archea and eukary otic												subunit, cy tosolic
Medtr1g023590	form	Protein synthesis and fate	chlo	0//0				P 1		80	8.00E-95	AT5G48760	ribosome
	MtC00252.1_1_AA Protein of unknown function DUF1138												
	Blast:BAM13305.1 ozone-												
	responsive stress related protein												
unfound	[Ory za latifolia]	Cell rescue and defense	extr	0//1TM				P 1	-	68	3.00E-26	AT1G01170	M/ Mito
	unknown function DUF1138 Blast:												
	BAM13305.1 ozone-responsive												
	stress related protein [Ory za			0//1				D 1		C 0	2.005.26	171001170	N/NC
unfound	latifolia]	Cell rescue and defense	extr	IM				PI	Due diete dies	68	3.00E-26	ATIG01170	M/ Mito
Medtr6g005820	GTPase, Rab type	Transport	mito	0//0					my ristoy lated	98	e-104	AT1G10630	Cy tosol/PM / PM / VM
	· · · · · ·	Cell rescue and defense											
		(Reduces hydrogen peroxide											
		and alky I hy droperoxides with reducing equivalents provided											
	MtC00261_1_AA Blast:	through the thioredoxin or											
	XP_003620633	glutaredoxin system. May be											
Medtr6g087990	runcatulal	redox homeostasis	cysk	0//0						73	5.00E-70	AT1G65980	PM/Chloro/PM
Medilogooryyo	i uncuturi).	redox noneostasis.)	C y Sk	0//0						15	5.002 70	111005900	cy tosol, cy tosolic
	MtC00264_1_AA Ribosomal												ribosome, membrane,
Medtr8g105340	MtC00265 1 A A unknown Plast	Protein synthesis and fate	cyto	0//0				P1		92	e-116	AT3G57490	nucleolus, plasmodesma
	XP 003549910.1 PREDICTED:												
	NADH dehy drogenase [ubiquinone]												
M. k.4. 101140	1 beta subcomplex subunit 8,	Transact		1//1 TM							0.005 48	1 75 0 175 70	and Card
wedtr4g101140	mnochondriai-like [Giy cine max]	1 ransport	11110	IM					<u> </u>	81	9.00E-48	A1504/570	cell wall, chloroplast.
	MtC00266_1_AA Mitochondrial			0//2									membrane, mitochondrion,
Medtr7g083790	substrate carrier	Transport	chlo	TM				P 3		85	e-144	AT5G14040	vacuolar mem brane
	MtC00269_1_AA unknown Blast XP_003616060_1Cy to chrome												
	b-c1 complex subunit [Medicago			1//1									
Medtr5g075690	truncatula]	Transport	c y to	TM						79	7.00E-25	AT5G05370	Mitochondrium
				1//1									Chloro thy lakoid
Medtr3g092090	MtC00272_1_AA Cytochrome b5	Transport	mito	TM						79	2.00E-58	AT5G53560	membrane / ER / Vm/ PM
	XP 002511833 Remorin.			1									
AC235674_1	putative [Ricinus communis]	Signal transduction	c y to	0//0	BB			P 1		62	1.00E-23	AT3G61260	V / PM / Plasmodesmata
	MtC00286_1_AA Ribosomal												M / Ribosome / Chloro
AC140545_25	protein L10E	Protein synthesis and fate	chlo_mito	0//0				P 3		89	e-110	AT1G26910	envelope

Medtr1g087020	MtC00288_1_AA Cy tochrom e c oxidase subunit Vc	Transport	cy to	2//1 TM			P 1		81	3.00E-25	AT5G61310	endomembrane system, mitochondrial respiratory chain
	MtC00292_1_AA Proteasome											cy tosol, plasma membrane, proteasome complex, proteasome core
Medtr4g012740	alpha-subunit MtC00294_1_AA_Aldo/keto	Protein synthesis and fate	cy to	0//0			P 2		86	e-122	AT5G42790	complex
Medtr5g097910	reductase	Energy metabolism	cy to	0//0			P 2		54	9.00E-83	AT1G59960	Cytos
Medtr1g045120	MtC00297_1_AA Plant acid phosphatase	Energy metabolism	extr	1//1 TM		SP	P 2		50	5.00E-73	AT1G04040	V / CW / Vm / Plasmodesmata
	MtC00300_1_AA unknown Blast: XP_003619561.1 Kunitz-ty pe try psin inhibitor-like 2 protein			0//1								
Medtr6g059410	[Medicago truncatula]	Cell rescue and defense	extr	TM		SP			31	2.00E-10		mitochondrion
Madtr1c006400	MtC00307_1_AA Major intrinsic protein Blast XP_003588369	Transport	VACU	7//7 TM	סס		P 2		70	0.00E.07	AT2G25810	central vacuole, membrane, plant-type
Wedu 1g000490		mansport	vacu	1//1	DD		15			9.00E-97	A12025010	vacuole memorane
Medtr8g105630	MtC00308_1_AA Thioredoxin fold	Cell rescue and defense	chlo	TM			P 1		74	2.00E-65	AT2G31570	cy tosol
Medtr4g111950	MtC00310_1_AA Thioredoxin- related IPR006663: IPR012336:Thioredoxin-like fold IPR013766:Thioredoxin domain	Cell rescue and defense	chlo	0//0			P 1	Predicted as my ristoy lated	69	2.00E-54	AT3G08710	cy tosol, nuc eus, plasma mem brane, plastid
												apoplast, cy tosol, plasma membrane, prote a some
Medtr5g012470	MtC00312.1_1_AA 20S proteasome, A and B subunits	Protein synthesis and fate	cyto	1//0 TM					87	e-105	AT3G22630	core complex, vacuolar membrane, vacuole
Medtr3g085490	MtC00315_1_AA Ribosom al protein L22/L17, eukary otic and archaeal form	Protein synthesis and fate	nucl	0//0			P1		88	3.00E-76	AT1G27400	chloroplast, cy tosol, cy tosolic large ribosomal subunit, plasma membrane, plasmodesma, ribosome, vacuolar membrane, vacuole
Medtr6g052220	MtC00318_1_AA Eukary otic/archaeal ribosom al protein S3	Protein synthesis and fate	chlo	0//0			P 3		92	e-109	AT3G53870	cy tosolic ribosome, cy tosolic small ribosomal subunit, membrane, plasmodesma
Medtr2g096340	MtC00322_1_AA Ribosom al protein L23, N-terminal IPR013025:Ribosom al protein L25/L23	Protein synthesis and fate	nucl	0//0					82	3.00E-41	AT3G55280	cy tosolic large ribosom al subunit, cy tosolic ribosom e, , m em brane
Medtr6g088610	MtC00323_1_AA Blast: XP_003620684 Somatic embry ogenesis receptor kinase [Medicago truncatula].	Signal transduction	nucl	0//0			P 2		74	e-127	AT3G24550	РМ
Medtr2g014220	MtC00325_1_AA Ribosomal L23 and L15e, core	Protein synthesis and fate	nucl	0//0					81	9.00E-79	AT4G16720	cy tosol, cy tosolic large ribosom al subunit, cy tosolic ribosome, plasma mem brane, vacuolar mem brane
AC146721_1013	MtC00326_1_AA 6- phosphogluconate dehydrogenase, C-terminal extension	Energy metabolism	chlo	0//0			P 1		87	0	AT3G02360	chloroplast stroma, cy tosol, peroxisome
Medtr7g090520	MtC00330_1_AA Blast: XP_002284968 gibberellin 20 oxidase 3 [Vitis vinifera].	Energy metabolism	cyto	0//0			P1		65	e-126	AT1G52820	undefined

Medtr7c017700	MtC00335_1_AA Histone H2A	Cell cycle and DNA processing	nucl	0//0	BB				75	3.00E-36	AT5G02560	nucleosome nucleus
Wedu /go1//oo	II R007072.IIIstone-fold	cen eyere and bitter processing	nuei	0//0					15	5.00E-50	A15G02500	nucleosonic, nucleus
Medtr8g045570	MtC00343.1_1_AA Bet v I allergen	Cell rescue and defense	cy to	0//0			P1		38	2.00E-17	AT5G28010	undefined
Medtr5g088320	MtC00346_1_AA Calcium-binding EF-hand	Signal transduction	chlo	0//0					98	1.00E-71	AT2G27030	Vm/PM
Modtr7c074570	MtC00348_1_AA Phosphogly cerate mutase, 2,3-bisphosphogly cerate- independent	Enorgy motobolism	avto	0//0			D 1		87	0	AT1G00780	chloroplast, cy tosol, mitochondrial envelope, plasma membrane, plasmedagma
Medii 7g074570	independent	Ellergy metabolism	Cylo	0//0			11		02	0	A11009780	cell wall, chloroplast,
Medtr2g088360	MtC00349_1_AA Aconitate hy dratase 1	Energy metabolism	chlo	0//1 TM		SP	P 2		85	0	AT2G05710	chloroplast stroma, cy tosol, m itochondrion, vacuolar mem brane
Medtr7g093910	MtC00350_1_AA Histone H2A IPR009072:Histone-fold	Cell cycle and DNA processing	chlo	0//0	BB		P 1		84	3.00E-56	AT1G54690	nucleolus, Nucleus
Medtr4g068040	MtC00354_1_AA Ribosomal L38e protein	Protein synthesis and fate	nucl	0//0			P 1		91	5.00E-26	AT3G59540	cy tosolic large ribosom al subunit
Medtr5g010640	MtC00357_1_AA Thaumatin, pathogenesis-related	Cell rescue and defense	chlo	1//1 TM		SP	P 1		78	1.00E-89	AT4G11650	EndoM system
AC235488_1	MtC00359_1_AA Haem peroxidase, plant/fungal/bacterial	Cell rescue and defense	chlo	1//1 TM		SP	P 4		55	2.00E-95	AT1G05260	ER
Medtr2g034640	MtC00366_1_AA Small GTP- binding protein domain	Signal transduction	cyto	2//2 TM			P 2	FT - CaaX Farnesy ltransferaæ/ GGT1 - CaaX Gerany lgerany ltransferaæ	86	3.00E-96	AT4G02080	plasma mem brane
Medtr3a005060	MtC00367_1_AA Endo-1,3;1,4- beta-D-glucanase, Dienelactone	Energy metabolism	cuto	0//0			Р 1		57	1.00E-80	AT3G23600	Nucleus / PM / Cy tos /
Medtr6g021670	MtC00369_1_AA Ribosom al protein S7E	Protein synthesis and fate	chlo	0//0			P1		81	2.00E-81	AT1G48830	cell wall, chloroplast, cy tosol, cy tosolic ribosome, cy tosolic small ribosomal subunit, plasma membrane
Medtr1g023140	MtC00375_1_AA Thioredoxin- related IPR006663: IPR012336:Thioredoxin-like fold IPR013766:Thioredoxin domain	Cell rescue and defense	cyto	0//0			P1		69	7.00E-42	AT3G51030	Cy tos
Medtr5g076590	MtC00385_1_AA Ras small GTPase, Rab ty pe	Transport	chlo	1//1 TM			P 2	GGT2 - Rab Gerany Igerany Itransferase	80	2.00E-85	AT5G45130	Vm
Medtr5g092160	MtC00387_1_AA Protein of unknown function UPF0136, Transmembrane	Unclassified	plas	4//4 TM	BB				52	AT1G50740	AT1G50740	undefined
Medtr4g097800	MtC00395_1_AA Cy tochrome c oxidase, subunit VIa	Transport	mito	0//1 TM					72	7.00E-34	AT4G37830	Mitochondrium
Medtr8te085740	MtC00400_1_AA Ribosomal protein L32e	Protein synthesis and fate	cyto	0//0			P 1		81	9.00E-55	AT4G18100	cy tosol, cy tosolic large ribosom al subunit, cy tosolic ribosom e, nucleolus,
Medtr2g006610, Medtr2g006170	MtC00404_1_AA Ribosomal protein L27e IPR005824:KOW	Protein synthesis and fate	chlo	0//0			P 2		73	6.00E-38	AT4G15000	cy tosolic large ribosom al subunit, cy tosolic ribosom e
Medtr7g076200	MtC00407_1_AA Unknown Blast: XP_003623838 Peroxisomal membrane protein 11-1 Peroxisomal biogenesis factor 11	Protein synthesis and fate	golg	0//2 TM	BB	SP	P1		80	e-106	AT1G01820	Peroxisome/Intergral to M peroxsisoms/ Plasmodesmata

	MtC00413_1_AA Ribosomal											cy tosolic large ribosom al subunit / nucleus / M/
Medtr5g033090	protein L15	Protein synthesis and fate	nucl	0//0					77	3.00E-54	AT1G70600	plasmodesma
Medtr7g080800	MtC00415_1_AA Cy tochrome c, monohaem	Transport	mito	0//0			P 1		90	5.00E-52	AT4G10040	cy tosol, mitochondrion, vacuolar membrane
AC150841_2,	MC004001 1 A A Knoke in the inc			1.//1								
Medtr3g014870, Medtr3g014820	MtC00422.1_1_AA Kunitz inhibitor ST1-like	Cell rescue and defense	extr	1//1 TM		SP			32	6.00E-11	AT1G73260	mitochondrion
U	MtC00422.2_1_AA Kunitz inhibitor			1//1								
Medtr3g014870	ST1-like	Cell rescue and defense	extr	TM		SP			28	4.00E-11	AT1G17860	apoplast, cell wall
	MtC00423.1_1_AA Pyruvate dehydrogenase E1 component											
Medtr3g076630	subunit beta-like	Energy metabolism	chlo	0//0		SP			73	e-173	AT2G34590	Choro/ Chloro envloppe
	MtC00423.2_1_AA Pyruvate											
Medtr3g076630	subunit beta-like	Energy metabolism	chlo	0//0			P 2		73	e-173	AT2G34590	Choro/ Chloro envloppe
	MtC00429_1_AA unknown Blast:											
	XP_003596038.1 Gly ceraldehy de-3- phosphate deby drogenase [Medicago											
Medtr2g065470	truncatula]	Energy metabolism	chlo	0//0	BB	SP	Р 3		83	0	AT1G79530	Plastid/ M
		a		1//1								
Medtr4g051880	MtC00432_1_AA Harpin-induced 1	Cell rescue and defense	chlo	TM			P 2		64	7.00E-64	AT3G52470	plasmodesma Plasmodesmata/Cell Wall
	MtC00435_1_AA Ribosomal											/ Cy tosol Ribos/ Nucleaus
Medtr1g106900	protein S13	Protein synthesis and fate	nucl	0//0			P 2		82	5.00E-72	AT4G09800	/ V
	MtC00438_1_AA ATPase, F1											
Medtr5g040610	mitochondrial	Transport	chlo	0//0			P 1		78	3.00E-31	AT1G51650	Mitochondrium
	MtC00443_1_AA Protein of											
	Blast:XP 003555865.1											
	PREDICTED: brain protein 44-like			1//1								M / Vm / mitochondrion/
Medtr2g025480	protein-like [Gly cine max]	Unclassified	mito	TM			P 2		85	5.00E-46	AT5G20090	PM
Medtr7g109340	MtC00445_1_AA Heat shock protein DnaJ	Cell rescue and defense	cyto	0//0					75	e-108	AT3G62600	PM/ endoplasmic
	MtC00451_1_AA unknown Blast:											
	XP_003537717.1 PREDICTED:											
	iron-sulfur protein 6. mitochondrial-											
Medtr4g077840	like [Gly cine max]	Transport	mito	0//0			P 1		86	1.00E-36	AT3G03070	Mitochondrium
Medtr1g061630	MtC00463 1 AA Pyruvate kinase	Energy metabolism	cyto	0//0			P 3		87	0	AT3G52990	cy tosol, membrane
	MtC00466_1_AA Blast:	a/										
	XP_003609172 H/ACA											
	2-like protein [Medicago											
Medtr4g112780	truncatula].Ribosomal_L7Ae	Protein synthesis and fate	chlo	0//0			P 3		61	1.00E-50	AT5G08180	Nucleus
Medtr3g113970	MtC00469_1_AA Ribosomal protein S6e IPR014401	Protein synthesis and fate	nucl	0//0			Р7		91	0	AT1G75780	vacuole
	MtC00477_1_AA Patatin	1 rote in sy nulesis and late	inter	0//0					71	0		1404010
	IPR008271:Serine/threonine protein			0.1/5								
Medtr5g017670	kinase, active site MtC00493 1 A A	Signal transduction	chlo	0//0			P1		53	e-119	AT4G37050	undefined
1	IPR012336:Thioredoxin-like fold			0//3								
Medtr2g010750	IPR013766:Thioredoxin domain	Cell rescue and defense	c y to	TM					67	9.00E-41	AT1G11530	Cytos

						 				_		
								FT - CaaX Farnesyltransferase/				
	MtC00501 1 AA Ctr copper			3//3				GGT1 - CaaX				Late endosome / Vm / V /
Medtr3g105330	transporter	Transport	vacu	TM	BB		P 2	Gerany lgerany ltransferase	50	1.00E-36	AT5G20650	Plasmodesma
	MtC00502 1 AA	1										
	Phany la la nine /histidine ammonia			0//1								
Modtr1c064000	hom	Energy metabolism	ablo	TM			D7		82	0	NS	autoplam
Wiedu 1g004070	iy asc	Energy metabolish	CIIIO	1 101		 	1 /		02	0	115	e y topiasii
	McCoorder 1 A A D'I											cytosolic large ribosolitar
M 1 5 010000	MtC00506_1_AA Ribosomal			0.00					01	100	171000260	subunit/ PM / Cy tos /
Medtr5g012930	protein L1	Protein synthesis and fate	chlo	0//0			P 2		81	e-100	ATIG08360	Plasmodesma
				1//1								
Medtr8g086330	MtC00508_1_AA Sec61beta family	Transport	chlo	TM					75	2.00E-22	AT3G60540	undefined
	MtC00518 1 AA Major intrinsic											
	protein IPR002208:Sec Y protein			10//8								
Medtr8g076770	IPR003439:ABC transporter related	Transport	plas	TM			P 3		93	0	AT4G35100	Membrane
	MtC00525_1_AA	^										
	Glyoxabse/Bleomycin resistance											
	protein/dioxy genase domain:											chloroplast envelore
	Glyovahea IXP 003534533											cytosol perovisome
	Dis st. XD, 002524522 sectorized											e y tosoi, per oxisonie,
M. J. 4, 122270	Blast: AP_003534535 putative	Collins and defense		0.//0	DD				70	. 127	AT1C11840	piasma memorane,
Medtr4g132270	lactoy igiutatnione ly ase-like	Cell rescue and defense	cyto	0//0	BB	 			19	e-137	AHGH840	vacuoie
	MtC00527_1_AA Protein of											
	unknown function DUF791											
	Blast:XP_003602305.1Major											
	facilitator superfamily domain-											
	containing protein [Medicago			11//10								
Medtr3g092030	truncatula]	Transport	vacu	TM			P 4		77	0	AT4G27720	plasm a mem brane
	MtC00531 1 AA Pyrophosphate-	*										<u> </u>
	dependent phosphofructokinase											
Medtr1g035230	PfpB IPR015913:	Energy metabolism	cvto	0//0			P 2		81	0	AT1G20950	cy tosol
	MtC00524_1_AA_Coloium		-)	2//2								- ,
M. 4.9.025500	Micousting Land Laid Lindian	Circuit to a sheet's a	.1.1.	2//2	DD				<i>(</i>)	4.000 74	1720(1050	DM / New Jacon M
Medil 8g0555590	dependent lipid bilding	Signal transduction	cillo	1 101	DD				04	4.00E-74	A15001050	PWI/Nuclear Wi
	MtC00545_1_AA GroEL-like											Cy tos / CW / PM
Medtr7g067470	chaperone, ATPase	Protein synthesis and fate	cyto	0//0	BB		P 3		90	e-153	AT5G20890	anchored
	MtC00556_1_AA unknown Blast:											
	XP_003597927.1 NADH-											
	ubiquinone oxidoreductase 24 kDa											
Medtr2g104110	subunit [Medicago truncatula]	Transport	mito	0//0			P 6		85	e-128	AT4G02580	Mitochondrium
<u> </u>	MtC00558 1 AA unknown Blast:	1										
	XP_002523307.1 om.dl. putative			3//2								
unfound	[Ricinus communis]	Protein synthesis and fate	plas	TM					85	2.00E-48	AT5G42000	E.R.
Linounu	MtC00568 1 AA Transloor		r.mo	2//2					05	2.002 40		plasmodama unauch-
M. 4.7.092540	wiccoubte_1_AA Transiocon-	Terrent	.1.1.	3//3	DD		D 2			2.005 50	ATTEC 1 4020	plasmodesina, vacuotar
Medtr /g083560	associated beta	Transport	chio	IM	RB		P 2		62	3.00E-58	A15G14030	membrane
	MtC00571_1_AA 6-			1								
	phosphogluconate dehydrogenase,			0//1								chloroplast, chloroplast
AC146721_1013	C-terminal extension	Energy metabolism	chlo	TM		SP	P 5		88	e-106	AT1G64190	stroma, cy tosol, membrane
	MtC00574_1_AA Histone H2A			1								
	IPR007124: IPR009072:Histone-			1								
Medtr2g082220	fold	Cell cycle and DNA processing	chlo	0//0	BB		P 3		80	5.00E-47	AT5G54640	Nucleolus
~			1	1								cytosol, cytosolic large
				1								ribosom al subunit.
				1								cytosolic ribosome
	MtC00580 1 1 A A Eulary offic			0//1								nucleolus plasma
Moder2a118020	ribosomal protein L 5	Protoin synthesis and fate	ablo	TM	DD				70	0.122	AT5C20740	macheolus, piasina
wiedtrog118030	ribosoinai proein L5	Protein synthesis and rate	cnio	1 1/1	вв				19	e-125	A15039740	membrane, vacuole

					i.									
	MtC00581 1 AA Ras small								GGT2 - Rab	Predicted as				
Medtr3g064390	GTPase, Rab type	Transport	mito	0//0	BB			P 2	Gerany lgerany ltransferase	my ristoy lated	80	3.00E-87	AT5G45130	Vm
														cell wall, cy tosolic large
														ribosomal subunit,
	MtC00586_1_AA Ribosomal													cytosolic ribosome,
Medtr6g091630	protein L31e	Protein synthesis and fate	cyto	0//0				P1			72	3.00E-34	AT5G56710	plasmodesma, ribosome
	MtC00590_1_AA unknown Blast: ML B2.2 protoin [Mediango			1//1										
Medtr/10000120	truncatulal	Unclassified	nucl	TM			SP	P 1			47	7.00E-15	AT3G07568	undefined
Wedu 4g070120	u uncatulaj	Unclassified	nuei	0//1			- 01	11			47	7.001-15	A15007500	undernied
Medtr79027960	MtC00591 1 AA cytochrome P450	Transport	cyto	TM				P 1			48	3.00E-46	AT3G32047	endomembrane system
									FT - CaaX Farnesy ltransferase/					
									GGT1 - CaaX					
	MtC00594_1_AA Ras GTPase								Gerany lgerany ltransferase/					cell plate, cy tosol,
	superfamily; Ras small GTPase, Rab								GGT2 - Rab					endosome, plasma
Medtr2g005510	type	Transport	c y to	0//0				P 2	Gerany lgerany ltransferase		87	e-105	AT1G09630	membrane
		_		4//4										
Medtr2g012560	MtC00597_1_AA SCAMP	Transport	plas	TM							63	e-101	AT1G61250	PM
														entoropiasi, cytosol,
														subunit extosolic
														ribosome, endoplasmic
														reticulum, nucleolus,
	MtC00602_1_AA Ribosomal													plasmodesma, vacuolar
Medtr4g120770	protein L14	Protein synthesis and fate	c y to	0//0							83	1.00E-57	AT2G20450	membrane, vacuole
	MtC00605_1_AA Blue (type 1)			2//2										
Medtr7g086190	copper domain; XP_003592453	Transport	chlo	TM			SP	P1			40	5.00E-18	AT3G17675	undefined
	MtC00606_1_AA NAD-dependent			1.//1										Golgi membrane,
Moder1c088480	binding site "NADP Bossmann"	Transport	avto	1//1 TM							79	0	AT2C52520	membrane, piasna
Wedu 1g088480	binding site NADB_Rossinalin	Transport	cyto	1 1/1					-		/0	0	A15055520	cell wall_chloroplast
														chloroplast envelore.
														membrane.
														mitochondrion, nuckolus,
														plasma membrane, plastid,
	MtC00615_1_AA probable													vacuolar membrane,
Medtr7g009330	mitochondrial porin	Transport	nucl	0//0	BB		-				23	3.00E-08	AT5G15090	vacuole
	INICOUD21_1_AA HIStone HZA													
Medtr10011850	fold	Cell cycle and DNA processing	nucl	0//0	BB			P1			Q1	6.00E-54	AT1G52740	v
Medu 1g011050	MtC00623_1_AA_Tubulin/FtsZ	centered and bittle processing	nuer	0//0	00			••			71	0.001 54	111052740	cell wall cytosol
Medtr4g097830	protein	Cytoskeleton	mito	0//1TM				P 7			93	0	AT1G50010	membrane
	•	-		0//1										
Medtr8g018730	MtC00630_1_AA Lipoxy genase	Cell rescue and defense	c y to	TM				P1			53	0	AT3G22400	chloroplast
	MtC00633_1_AA unknown Blast:													
M. 4.4.007210	XP_003608067.1 15 kDa	Collins and defense		1//1			CD	D 4				C 00E - 55	1005720	and a second second
Medtr4g08/310	selenoprotein [Medicago truncatula]	Cell rescue and defense	c y to	TM	<u> </u>		SP	P 4			76	6.00E-65	ATIG05720	endomembrane system
M. 4.5.069149	MtC00638_1_AA Inorganic	Transact		5//4							50	1.005.15	A TEC 42250	N
Medtr5g068140	phosphate transporter (MIP)	1 ransport	plas	IM	<u> </u>	 					50	4.00E-46	A15G43350	IVI
	Diphosphomevalonate			0//1										
unfound	decarboxy lase	Energy metabolism	cvto	TM				P1			78	0	AT3G54250	undefined
		CV												

	MtC00653_1_AA NADPH- CYTOCHROME P450 REDUCTASE Flavoprotein												
Medtr4g128020	pyridine nucleotide cytochrome reductase	Transport	chlo	1//1 TM			Р 2			64	0	AT3G02280	chloroplast, endoplasmic reticulum
Medtr5g084060	MtC00656_1_AA Protein secE/sec61-gamma protein	Transport	cy to	1//1 TM						70	4.00E-21	AT3G48570	РМ
Medtr7g114240	MtC00676_1_AA Superoxide dismutase, copper/zinc binding	Cell rescue and defense	cyto	0//0	BB		P 1			83	1.00E-68	AT1G08830	c y toplasm, cy tosol
unfound	MtC00700_1_AA unknown Blast: Unknown	Unclassified	chlo	0//0		SP				74	2.00E-31	AT4G20150	Mitochondrium / Vm
Medtr7g108320	MtC00712_1_AA Histone H2A IPR009072:Histone-fold	Cell cycle and DNA processing	nucl	0//0	BB					79	1.00E-45	AT1G54690	Nucleus / Nucleolus
Medtr4g113200	MtC00716.1_1_AA Argonaute and Dicer protein	Cell cycle and DNA processing	c y to	0//0			P 4			83	0	AT1G69440	c y toplasm, cy tosol, nucleus
Medtr8g104870	MitC00/20_1_AA Protein of unknown function Cys-rich Blast: XP_003630909.1 Fruit weight 2.2- like protein [Medicago truncatula]	Unclassified	chlo	1//1 TM			P 14			68	2.00E-44	AT1G14870	РМ
Medtr1g083330, Medtr1g083340	MtC00731_1_AA 26S proteasome	Protein synthesis and fate	cyto	0//0			P1			91	0	AT3G05530	cy toplasm, cy tosol, nucleus, proteasome regulatory particle, base subcomplex
	MtC00732_1_AA unknown Blast: XP_003593680.1 28 kDa heat- and acid-stable phosphoprotein												
Medtr2g014950	[Medicago truncatula] MtC00734_1_AA E-class P450,	Signal transduction	chlo	0//0			P 2			55	1.00E-35	AT5G46020	Cy tos
AC235671_19	group I	Transport	plas	TM		 -	P 3			51	e-150	AT4G37370	PM / ER chloroplast, cytosol,
unfound	MtC00735_1_AA Ribosomal	Protein synthesis and fate	chlo	0//0	BB					67	9.00E-18	AT2G27710	cy tosolic ribosome, membrane, nucleolus, nucleus, plasma membrane, ribosome
unound	protein 000			0,10	55					07	91001 10	111202/110	endoplasmic reticulum, membrane, plant type cell
Medtr5g075450	MtC00747.1_1_AA Cy tochrom e P450	Transport	cyto	1//2 TM			P 1			80	0	AT2G40890	plasmodesma, vacuolar membrane
Medtr4g081130	MtC00753_1_AA Thiamine biosynthesis Thi4 protein	Energy metabolism	chlo	0//0	вв		P 2			81	e-146	AT5G54770	chloroplast, chloroplast envelope, chloroplast strom a, mitochondrion, thy lakoid
Medtr8g083420	MtC00772_1_AA Gly cine hy droxymethy ltransferase	Energy metabolism	chlo	0//0			Р 3			87	0	AT4G13930	cy tosol, membrane, plasma membrane, plasmodesma
Medtr3g118530	MtC00778_1_AA Sugar transporter Blast: XP_003604104 Monosaccharide-sensing protein	Transport	plas	5//5 TM	BB		Р4	FT - CaaX Farnesy Itransferaæ/ GGT1 - CaaX Gerany Iœrany Itransferaæ		69	e-122	AT4G35300	V / Vm
	MtC00779_1_AA Thioredoxin- related IPR012336:Thioredoxin-like fold IPR013766:Thioredoxin domain		-						Predicted as				PM / Mitochiondrium/
Medtr7g009070	IPR015467:	Cell rescue and defense	nucl	0//0	+	 			my ristoy lated	55	1.00E-38	AT5G39950	cytos M / Nucleolus / Cytos
Medtr1g045410	MtC00780_1_AA Ribosom al protein L4/L1e, archeabacterial like	Protein synthesis and fate	cyto	0//1 TM						76	0	AT3G09630	Ribo / CW / Plam odesm ata /PM / V / Chloro
Medtr2g076960, Medtr2te077360	MtC00791.1_1_AA 14-3-3 protein	Signal transduction	nucl	0//0			P 2		76	e-105	AT1G22300	chloroplast stroma, cy toplasm, cy tosol, mitochondrion, plasma membrane, plasmodesma	
----------------------------------	---	----------------------------	--------	------------	----	----	-----	---	----	----------	-----------	--	
Medtr4g063550	MtC00793_1_AA RNA-binding region RNP-1	Protein synthesis and fate	nucl	0//0	BB				53	2.00E-48	AT5G59950	undefined	
Medtr4g092920	MtC01434.1_1_AA Heat shock protein 70	Cell rescue and defense	mito	0//0	вв	SP	P 2		80	0	AT5G09590	cell wall, chloroplast, mitochondrialmatrix, mitochondrion, vacuolar membrane	
Medtr3g109210	MtC01440_1_AA Peptidase T1A, proteasome beta-subunit	Protein synthesis and fate	cyto	0//0	BB				85	e-113	AT4G31300	V / Cytos / Proteasome core cplx / Vm /	
Medtr8g036880	MtC01635_1_AA Adenine nucleotide translocator 1	Transport	chlo	3//3 TM	BB				71	e-144	AT4G28390	M / Chloro m / mitochondrion	
Medtr8g106800	MtC10023_1_AA Haem peroxidase	Cell rescue and defense	cyto	0//0					72	0	NS	endomembrane system	
unfound	MtC10028_1_AA unknown Blast: XP_003549822.1 PREDICTED: high-affinity nitrate transporter 3.1- like [Gly.cine.max]	Transport	plas	1//2 TM		SP	Р3		48	7.00E-41	AT5G50200	plasma membrane	
Medtr2g029850	MtC10033_1_AA Haem peroxidase, plant/fungal/bacterial	Cell rescue and defense	extr	0//1 TM		SP	P 3		52	9.00E-87	AT3G49110	plant-type cell wall, vacuole	
Medtr2g081810	MtC10046_1_AA 1,4-benzoquinone reductaæ-like; Trp repressor binding protein-like	Protein synthesis and fate	mito	0//0					84	3.00E-97	AT5G54500	M/PM/V/Vm	
Medtr3g092970	MtC10052_1_AA ArgE/dapE/ACY1/CPG2/yscS IPR002715:Nascent poly peptide- associated complex NAC IPR009060:UBA-like	Protein synthesis and fate	cy to	0//0	BB				66	5.00E-46	AT3G49470	Cytos	
Medtr2g066630	MtC10060_1_AA Glutathione S- transferase, C-terminal IPR012335:Thioredoxin fold	Cell rescue and defense	cyto	0//0					72	4.00E-89	AT1G19570	Chloro / Mitochondruim / Cy tos / Perox /PM / apoplast / V	
Medtr1g064060	MtC10064_1_AA Adenosine kinase	Energy metabolism	cyto	0//0			P 3		84	e-150	AT3G09820	apoplast, chloroplast, cy tosol, membrane, plasma membrane, plasmodesma	
Medtr6g060570	MtC10068_1_AA Enolase	Energy metabolism	c y to	0//0			P 1		89	0	AT2G36530	Mitochondrial envelope	
Medtr3g072080	MtC10069_1_AA Vesicular-fusion protein SEC17	Transport	chlo	0//0			P 3		69	e-102	AT3G56190	PM / V / Vm / Plasmodesmata / M	
Medtr5g006440	MtC10071_1_AA Ribosomal	Protein synthesis and fate	cyto	0//0			Р 2		84	e-122	AT3G04840	chloroplast, cy tosol, cy tosolic ribosame, cy tosolic small ribosamal subunit, plasma membrane, plasmadesma	
Medtr1g068730,	MtC10076.1_1_AA Sigma-54 factor, interaction region IPR003579:Ras small GTPase, Rab	Transport	nucl	0//0			P 2	fT - CaaX Farnesy ltransferase/ GGT1 - CaaX Gerany lgerany ltransferase/GGT2 - Bab Gerany lgerany ltransferase		2.00F-89	AT3G09900	cytosol plasma membrane	
Medtr3s049400	MtC10090.1_1_AA Protein of unknown function DUF250 Blast: XP_003599946.1 Glucoæ-6- phosphate/phosphate-tmaslocator [Medicago truncanta]	Transport	plas	6//6 TM			P 2	the orang genup munscase	73	e-144	AT1G61800	vacuolar membrare	

Medtr4g071860	MtC10099_1_AA Fructose- bisphosphate aldolase, chas-I	Energy metabolism	chlo	0//0	BB					83	0	AT2G01140	chloroplast, chloroplast stroma, chloroplast thy lakoid, mitochondrion, plastoglobule
Medtr7g079230	MtC10100.1_1_AA Blast: XP_003626103 Cathepsin B [Medicago truncatula].	Protein synthesis and fate	extr	0//2 TM			SP	P 2		71	e-140	AT4G01610	cytosol, vacuole
Medtr7g088490	MtC10107.1_1_AA Peptidase T1A, proteasome beta-subunit	Protein synthesis and fate	chlo	0//0				P1		93	e-112	AT1G21720	Proteasome cpx/ Vm / Cv tos
Medtr2g066120	MtC10110_1_AA Phosphogly cerate	Energy metabolism	cyto	0//0	BB					89	0	AT1G79550	apoplast, chloroplast stroma, cy tosol, membrane, nucleus, plasma membrane, plasmodesma, vacuolar membrane
0	MtC10112_1_AA Haem peroxidase,			1//1									
Medtr2g029910	plant/fungal/bacterial	Cell rescue and detense	extr	TM			SP	P 3		59	3.00E-94	AT5G06730	Vm chloroplast, chloroplast
Medtr5g065880	MtC10113_1_AA Phosphoglucose isomerase (PGI)	Energy metabolism	chlo	0//0	BB			P 2		79	0	AT4G24620	envelope, chloroplast stroma, cy tosol, plastid
C	MtC10115_1_AA unknown Blast: XP_003610804 by pothetical			1//1									
Medtr5g007210	protein MTR_5g007210	Unclassified	chlo	TM						52	5.00E-36	AT5G16660	Choro / Chloro m / M
Medtr5g095230	MtC10121.1_1_AA E-class P450, group I	Transport	cyto	1//1 TM				P 1		53	e-157	AT3G14630	endomembrane system
Medtr2g029800	MtC10136.1_1_AA Haem peroxidase, plant/fungal/bacterial	Cell rescue and defense	extr	1//1 TM		GPI	SP	P 4		55	e-102	AT2G38380	plant-type cell wall
Medtr2g008080	MtC10138_1_AA Ubiquinol- cy tochrome C reductase hinge protein	Transport	mito	0//0				P 1		86	9.00E-29	AT1G15120	Mitochondrium
Medtr7g081660	MtC10139_1_AA Hyaluronan/mRNA binding protein	Protein synthesis and fate	nucl	0//0				P 1		47	8.00E-32	AT4G16830	Cy tos / Nucleus
Medtr8g075320	MtC10145_1_AA Proteasome alpha-subunit	Protein synthesis and fate	cyto	0//0				P 1		91	e-108	AT5G66140	Proteasome cpx V / Cytos/ Chloro
Medtr3g099580	MtC10149_1_AA Blast: ACJ83883 unknown [Medicago truncatula] Plastocyanin-like domain	Transport	extr	0//2 TM	BB	GPI	SP			52	1.00E-24	AT3G60270	M anchored
Medtr1g108530	MtC10154_1_AA NAD-dependent epimeraæ/dehy dratase	Transport	mito	1//1 TM						89	0	AT2G27860	cytoplasm, cytosol
Medtr8g052030	MtC10166.1_1_AA KOW Blast: XP_003611879.1 40S ribosomal protein S4 [Medicago truncatula]	Protein synthesis and fate	chlo	0//0				P1		91	e-135	AT5G07090	cy tosolic ribosome, vacuolar mem brane
Medtr7g081810	MtC10182_1_AA Peptidase S8 and S53, subtilisin, kexin, sedolisin	Protein synthesis and fate	cyto	0//0				P 2		52	5.00E-71	AT5G59810	cell wall, endomembrane sy stem
Medtr4g031820	MtC10185.1_1_AA E-class P450, group I	Transport	plas	1//1 TM						51	e-158	AT3G14680	endomembrane system
unfound	MtC10194_1_AA unknown Blast: NP_001147556 arabinogalactan protein [Zea mays]	Protein synthesis and fate	cyto	0//0				P1		76	5.00E-85	AT5G11680	PM
Medtr5g072930, Medtr5g072980	MtC10198_1_AA E-class P450, group I	Transport	vacu	2//2 TM			SP	P 2		43	e-112	AT4G31500	M / RE /Mitochondrion / PM
Medtr5g025120	MtC10205_1_AA Ribosomal protein L4/L1e, archeabacterial like	Protein synthesis and fate	cy to	0//1 TM						76	e-173	AT3G09630	cell wall, chloroplast, cy tosol, cy tosolic large ribosom al subunit, cy tosolic ribosom e,

												membrane, nucleolus, plasma membrane, plasmodesma, vacuole
Medtr5g013910	MtC10209_1_AA ATPase, F0 complex, subunit C	Transport	cyto	0//0			P1		70	3.00E-95	AT2G38740	Cy tos / PM
Medtr5g077000	MtC10218_1_AA UTPglucose-1- phosphate uridy ly ltransferase	Energy metabolism	mito	0//0			P 1		84	0	AT5G17310	cytosol, plasma membrane
Medtr6g013300	MtC10221_1_AA Proteasome alpha-subunit	Protein synthesis and fate	cyto	0//0	BB				97	e-128	AT3G14290	Cy tos Ribos / Proteasome Core cpx / cy tos
Medtr8g006430	MtC10231_1_AA Heat shock protein DnaJ	Cell rescue and defense	nucl	0//0			P 3	fT - CaaX Farnesyltransferase/ GGT1 - CaaX Geranylgeranyltransferase	69	e-117	AT3G44110	CW / PM / Cy tos / Plasmodesma / Nuckolus
Medtr4g104030	MtC10242_1_AA Nucleoside diphosphate kinase	Energy metabolism	mito	0//1 TM			P 1		68	2.00E-93	AT4G11010	Mitoch memb / Mitochondrion / plastid
Medtr3c023120	MtC10243_1_AA Defender against	Cell rescue and defense	chlo	3//3 TM			рз		80	4.00E-48	AT1G32210	ER / M
Medtr5g016590	MtC10267.1_1_AA Proteasome alpha-subunit	Protein synthesis and fate	chlo	0//0			P1		85	e-119	AT3G22110	Cy tos / Proteasome cpx / V / Cy tos Ribos
Medtr7g070070	MtC10267.2_1_AA Proteasome alpha-subunit	Protein synthesis and fate	chlo	0//0			P1		85	e-119	AT3G22110	Cy tos / Proteasome cpx / V / Cy tos Ribos
Medtr4g030140	MtC10273_1_AA Dy nam in GTPaæ effector; Pbckstrin-like	Transport	nucl	0//0	BB		P1		61	e-128	AT1G59610	clathrin-coated endocy tic vesicle / PM / Cell Plate / Cy tos / V
Medtr4g059400	MtC10276_1_AA Ribosomal protein L11 IPR014669:	Protein synthesis and fate	cyto	0//0	BB		P 1		90	7.00E-74	AT5G60670	cy tosol, cy tosolic large ribosom al subunit
Medtr5g014080	MtC10280_1_AA CD9/CD37/CD63 antigen Blast: NP_194606 Tetraspanin family protein [Arabidopsis thaliana].	Signal transduction	plas	4//4 TM			P 8		43	4.00E-38	AT4G28770	Vm / V / M
Medtr3g109330	MtC10283_1_AA unknown Blast:NP_567873 my osin heavy chain-related protein [Arabidopsis thaliana].	Cytoskeleton	vacu	1//2 TM			P 2		51	3.00E-96	AT4G31340	ER / Vm
Moder1c000600	MtC10285_1_AA NAD-dependent	Transport	avto	0//0					92	0.146	AT1G62000	PM / gytos / plasm odagna
Medil 1g002000	MtCl0290_1_AA Mtha1 PLASMA MEMBRANE ATPASE (ATPase, P-type,	Tansport	Cy to	0//0							ATTOUSOU	r M/ Cy US/ plasmodeana
Medtr4g127710	K/Mg/Cd/Cu/Zn/Na/Ca/Na/H- transporter)	Transport	mito	1//1 TM					45	7.00E-27	AT5G62670	M / PM
Medtr2g011080	MtC10298_1_AA Blast: XP_003593404 Flavoprotein wrbA [Medicago truncatula].	Transport	chlo	0//0					78	1.00E-68	AT5G54500	M/PM/V/Vm
Medtr3g118390	hydrolase, family 19, catalytic IPR001002:Chitin-binding, type 1	Cell rescue and defense	extr	1//1 TM		SP	Р 3		64	e-109	AT3G12500	Vm/ cy tos
Medtr7g079110	MtC10315_1_AA Cellulose synthase	Energy metabolism	plas	4//4 TM			P 2		35	e-115	AT4G23990	Membrane
Medtr2g008050	MtC10339_1_AA Actin/actin-like	Cy toske leton	cysk	0//0			P1		94	e-173	AT5G09810	cell wall, chloroplast envelope, chloroplast stroma, cytoskeleton, cytosol, mitochondrion, nucleolus, plasma membrane, plasmodesma

	MtC10351_1_AA unknown Blast: XP_003612406.1 hy pothetical protein MTR_5g024680 [Medicago			1//1								chloroplast, chloroplast envelope, chloroplast inner membrane, chloroplast thy lakoid membrane, membrane,
Medtr5g024680	truncatula]	Unclassified	nucl	TM	BB		P 2		63	4.00E-37	AT1G42960	mitochondrion, plastid
Medtr4g022580	Gly cosy ltransferase	Energy metabolism	chlo	0//0			P 1		75	e-141	AT3G07020	M / PM
M. 4.4.120670	MtC10361_1_AA Protein of unknown function UPF0057 Blast: XP_003610299.1 Stress-induced hydrophobic peptide [Medicago	Collection of the form		1//1					90	2.00E 21	AT 4C 29099	endomembrane system,
Medil4g150670	MtC10369 1 AA	Cell rescue and delense	cillo	1//1			15		00	2.00E-51	A14028088	cell wall plant-type cell
Medtr7g092730	Polygalacturonase inhibitor	Cell rescue and defense	extr	TM		SP	P 4		50	9.00E-77	AT5G06860	wall, plasmodesma
Medtr2g098010	MtC10373_1_AA Peptidase T1A, proteasome beta-subunit	Protein synthesis and fate	cy to	0//0			P1		87	e-117	AT3G60820	chloroplast, cy tosol, plasm a mem brane, proteasom e core com plex
N. 1. 4. 072120	MtC10394_1_AA unknown Blast: XP_003607087.1 hy pothetical protein MTR_4g072130 [Medicago			1//1	DD					0.005.12	175615220	
Medtr4g0/2130	truncatula]	Unclassified	chlo	TM	BB				80	9.00E-12	AT5G15320	undefined Mitochondrium / M /
Medtr5g014710	dehy drogenase, active site	Energy metabolism	chlo	0//0	BB		P 2		80	e-160	AT3G15020	Apoplast
Medtr5g005100	MtC10414_1_AA Vacuolar-sorting receptor, EGF-like calcium-binding	Transport	cy to	1//1 TM			Р 2		77	e-111	AT2G14740	Golgi transport complex, integral to plasma membrane, intracellular, membrane
Medtr5g063670	MtC10419.1_1_AA Annexin, ty pe	Signal transduction	cy to	0//0			Р 2		69	e-130	AT1G35720	apoplast, cell wall, chloroplast, chloroplast stroma, cy tosol, membrane, mitochondrion, plasma membrane, plasm odesma, thy lakoid, vacuolar membrane, vacuole
Medtr8g107460	MtC10429_1_AA Heat shock chaperonin-binding	Cell rescue and defense	nucl	0//0	BB				63	2.00E-83	AT4G22670	Cytos
	MtC10430_1_AA Aquaporin NIP1-			5//6					05	2.002 05	1111022070	
Medtr8g087710	2	Transport	plas	TM	BB				71	e-103	AT4G18910	PM

								1				
	MtC10440_1_AA Ribosomal			0.10						1.005.00		Cy tos / Nucleolus /cy tos Ribos/ M /Plasm odesma /
Medtr1g088070	protein L19e	Protein synthesis and fate	chlo	0//0			P 4		 84	1.00E-88	AT1G02780	PM
Medtr5te046150	MtC10449_1_AA HR-like lesion- inducer	Cell rescue and defense	plas	2//3 TM	BB				51	5.00E-34	AT4G14420	endoplasmic reticulum
Medtr4g127150	MtC10465_1_AA Protein secE/sec61-gamma protein	Transport	c y to	1//1 TM					75	2.00E-22	AT5G50460	intracellular
	MtC10472_1_AA unknown Blast: XP_003602965.1 Transmembrane			6//6								
Medtr3g100940	protein [Medicago truncatula]	Unclassified	c y to	TM			P 2		 87	e-116	AT1G47640	Mitochondriom
Medtr4g103810	MtC10483_2_AA unknown Blast:AFK46423.1 unknown [Medicago truncatula]	Unclassified	mito	0//2 TM					70	2.00E-27	AT1G22520	Mitochondriom
Medtr2g062920	MtC10504.1_1_AA ATP citrate synthase, small subunit IPR013816:ATP-grasp fold, subdomain 2	Energy metabolism	c y to	0//0			P 2		85	0	AT1G60810	citrate ly ase complex
AC233070_1015, AC225458_90	MtC10530_1_AA BlastXP_003627680 NADH dehy drogemse [Medicago truncatula].	Transport	chlo	0//0			P 1	fT - CaaX Farnesyltransferase/ GGT1 - CaaX Geranylgeranyltransferase	85	3.00E-50	AT5G18800	mitochondrial respiratory chain complex I
Medtr4g085580	MtC10536_1_AA Ribosomal protein S9	Protein synthesis and fate	c y to	0//0			P 2	fT - CaaX Farnesy ltransferase/ GGT1 - CaaX Gerany lgerany ltransferase	89	8.00E-70	AT2G09990	cell wall, chloroplast, cy tosol, cy tosolic ribosome, membrane, plasmodesma
Medtr8g101890, Medtr8g101880	MtC10547_1_AA ATPase, F0 complex, subunit G, mitochondrial	Transport	mito	0//0			P1		80	3.00E-54	AT4G26210	mitochondrial proton- transporting ATP synthase complex, coupling factor F(o)
Medtr5g077070	MtC10579.1_1_AA Isocitrate dehy drogenase NADP-dependent, C-terminal, plant	Energy metabolism	extr	0//0					88	0	AT1G65930	apoplast, chloroplast stroma, cy tosol, plasma membrane, plasmodesma
Medtr5g070680, Medtr5g070880	MtC10596_1_AA Alternative oxidase	Transport	cyto	1//1 TM					65	5.00E-95	AT5G64210	mitochondrialenvelope, mitochondrion
Medtr5g077170	MtC10600.1_1_AA Nonaspanin \(TM9SF\) Blast: ACQ90591 putative transmembrane transporter [Eutrema halophilum].	Transport		3//4 TM			P 2		78	e-152	AT1G14670	Golgi apparatus, integral to membrane, membrane
Medtr6g074910	MtC10600.3_1_AA Nonaspanin (TM9SF)	Transport	plas	9//10 TM		SP	P 2		82	0	AT1G08350	Golgi apparatus, plant- ty pe cell wall, plasmodesma, vacuolar membrane
	MtC10610_1_AA coatomer epsilon											_
unfound	subunit [Medicago truncatula].	Transport	nucl	0//0	+	 SP	P 2		 76	e-127	A12G34840	Cy tos
Medtr7g100020	MtC10611_1_AA Sigma-54 factor, interaction region IPR003579:Ras small GTPase, Rab type	Transport	cyto	0//0	BB		P 2	fT - CaaX Farnesyltransferase/ GGT1 - CaaX Geranylgeranyltransferase/GGT2 - Rab Geranylgeranyltransferase	81	1.00E-91	AT5G59840	intracellular, phsma membrane, plasmodesma
Medtr5g075580	MtC10613_1_AA Ubiquitin- conjugating enzyme, E2	Protein synthesis and fate	mito	0//0	BB				 100	2.00E-67	AT1G16890	cy tosol, plasma membrane
Medtr3g079510, Medtr1g100550	MtC10626_1_AA Flavoprotein py ridine nucleotide cy tochrome	Transport	cvto	0//0			P1		 76	8.00E-90	AT5G17770	PM/RE

	reductase				1								
													cell wall, cy tosol,
	MtC10627 1 AA Ribosomal												cytosolic mall ribosomal
	protein S10, eukary otic and archaeal												subunit, membrane,
Medtr7g092720	form	Protein synthesis and fate	cy to	0//0		-				89	6.00E-59	AT3G47370	nucleolus, plasmodesma
	SYNAPTOBREVIN-LIKE /												
	VESICLE-ASSOCIATED			1//1									
Medtr5g089370	MEMBRANE PROTEIN	Transport	chlo	ТМ				P 3		81	e-104	AT5G22360.1	Golgi / V
													cy tosol, cy tosolic large
													cy tosolic ribosome,
													nucleolus, plasma
Medtr1(083/30	MtC10630_1_AA Ribosomal L22e	Protein synthesis and fate	cyto	0//0				P 1		72	1.00E-46	AT3G05560	membrane, plasmodesma,
Wedu 1g005450	protein	Trotein synucsis and fac	cyto	0//0				11		/2	1.002-40	A13005500	cytosolic ribosome,
													membrane, plant ty pe
M. 4-5-00(420	MtC10643_1_AA Calcium-binding	Constant and the start is a		0.00				D 2		80	. 117	ATTEC 55000	vacuole membrane,
Medir5g096420	EF-nand IPR015/57: MtC10646_1_AA_Blast: G7IUD3	Signal transduction	extr	0//0				P 3		89	e-117	A15G55990	vacuoie
	Plasma membrane H+-ATPase,												integral to membrane,
	cation transport ATPase (P-type)												membrane, nucleus,
Moder/g127710	family, plasma-membrane proton-	Transport	plac	5//5 TM						82	0.154	AT2C18060	plasma membrane,
Medu4g12//10	MtC10650 1 AA Ras small	Transport	pias	1 IVI						62	6-134	A12018900	plasmodesma, vacuoe
	GTPase, Rab type IPR013567:EF			1//1									
Medtr1g082870	hand associated, type-2	Transport	chlo	TM				P 6		64	0	AT5G27540	mitochondrion
	MtC10656_1_AA Haem peroxidase,	a b b b		1//1		GDI					6.007.00		
Medtr2g029820	MtC10663 1 AA Flavoprotein	Cell rescue and defense	vacu	1M		GPI	SP	P 4		54	6.00E-98	A15G06730	Vm
	py ridine nucleotide cy tochrome			1//1									cytosol, endoplasmic
Medtr3g100160	reductase	Transport	chlo	ТМ				P 2		70	0	AT4G24520	reticulum
									fT - CaaX Farnesyltransferase/				
									GGT1 - CaaX				
	MtC10675_1_AA Small GTP-			0.110					Gerany lgerany ltransferase/GGT2		100		cytoplasm, nucleus,
Medtr8g075240	binding protein domain MtC10714_1_A A Bibosomal	Signal transduction	chlo	0//0		-		P 3	- Rab Gerany Igerany Itransferase	88	e-100	AT2G17800	phragmoplast, spindle
	protein S23, eukary otic and archaeal												cytosolic small ribosomal
Medtr7g100720	form	Protein synthesis and fate	cy to	0//0				P 1		95	1.00E-73	AT5G02960	subunit
									fT - CaaX Farnesy ltransferase/				autorlam, ruslaalus
	MtC10715 1 AA Ras small								Gerany lærany ltransferaæ/GGT2				nucleus, phragmoplast.
Medtr5g022600	GTPase, Rab ty pe	Transport	chlo	0//0				P 2	- Rab Gerany Igerany Itransferase	91	1.00E-94	AT1G75840	plasma mem brane
Medtr3g055130	MtC10736.1_1_AA Bet v I allergen	Cell rescue and defense	cy to	0//0	BB					27	0.003	AT1G24020	Membrane
	MtC10752_1_AA Peptidase A1,												
Medtr7g111530	pepsin	Protein synthesis and fate	nucl	0//0				P 3		58	2.00E-78	AT1G11910	V /Cytos/ Plasmodesma
Medtr5g048060	MtC10770 1 AA unknown	Unclassified	golg	3//3 TM				Р3		63	2.00E-45	AT1G48440	intracellular
	Interorro_1_III unatown	C no month lou	5915	1111		<u> </u>		~ ~		05	2.001 45		intracellular, signal
	MtC10773_1_AA												recognition particle,
	Ribonucleoprotein complex SRP,	The second		0.00				D 2			1.005.42	ATTIC 49160	endoplasmic reticulum
unfound	Srp19 component	1 ransport	cyto	0//0	1	1	1	r 3		70	1.00E-43	A11G48160	targeting

M h 2 115000	MtC10782_1_AA unknown Blast: XP_003603847.1 Canopy -like			0//1		(Th			50	1.005.00	171010100	
Medtr3g115880	MtC10783 1 AA ATP-citrate	Unclassified	extr	IM		SP	P 4		59	4.00E-29	A11G42480	undefined
unfound	ly ase/succinyl-CoA ligase	Energy metabolism	cy to	0//0	BB		P 1		92	1.00E-56	AT2G20420	Mitochondriom
Medtr2g038080	MtC10806.1_1_AA Metallo- phosphoesteraæ	Energy metabolism	cy to	1//1 TM		SP	P 1		63	e-145	AT5G63140	endomembrane system
Medtr7g093870	MtC10834_1_AA Plant disease resistance response protein	Cell rescue and defense	vacu	1//1 TM		SP	P 1		47	2.00E-37	AT1G65870	CW
Medtr4g073010	MtC10835_1_AA Nickel/cobalt transporter, high-affinity	Transport	plas	5//5 TM	BB		P 1		68	2.00E-81	AT4G35080	chloroplast, integral to membrane
Medtr 1 g094870	MICI0855 1 AA RIBOPHORIN I	Protein synthesis and fate	plas	2//2 TM		SP			68	e-178	AT2G01720	endoplasmic reticulum, plant-type cell wall, plasma membrane, vacuolar membrane
Meda 1g094070	MtC10868_1_AA Histone H3	1 room sy nucesis and me	pius	1		51			00	0 170	112001720	vacuolar memorale
Medtr8g061940	IPR007124: IPR009072:Histone- fold	Cell cycle and DNA processing	chlo	0//0			P 1		100	5.00E-62	AT4G40030	undefined
Medtr5g084930	MtC10874_1_AA Disulphide isomerase	Protein synthesis and fate	chlo	1//1 TM			P 3		72	e-180	AT2G32920	ER/V/PM
Medtr7a009640	MtC10897_1_AA AAA ATPase IPR005937:26S proteasome subunit	Protain synthesis and fate	Cyto	0//0			P 1		80	0	AT5G19990	proteasome.com.phy
Meda 7g099040	1 +5	Protein synthesis and	Cy to	0//0							115017770	proteusurie compex
		fateMembrane protease										
		homologs										
		[Posttranslational modification,										
		protein										
		chaperones]; COG0330"Band 7										
		protein is an integralmembrane										
		protein which is thought to										
		variety of proteins belong to										
		this family. These include the										
		prohibitins, cy toplasmic anti-										
		stomatin,A subgroup of the										
		band 7 domain of flotillin										
		(reggie) like										
		contains proteins										
		similar to										
		stomatin, prohibitin, flotillin,										
		podicin. Many of										
		these band 7 domain-										
		containing proteins are lipid raft-		1								
	MtC10902_1_AA Band 7 protein	associated. Individual;		1								
M. 4.4.107010	Blast: XP_003608997	cd03407"		1				Des l'arri la				MAUDM/Mar /
Medtr4g107810, Medtr4g107760	ry persensitive-induced response protein [Medicago truncatula].	/db_xref="CDD:48219"	Cyto	0//0			P 2	my ristoy lated	84	e-134	AT5G62740	Plasmodesma
Medtr4g071520	MtC10905_1_AA Squalene/phy toene sy nthase	Energy metabolism	Cyto	2//2 TM			P 2		73	e-174	AT4G34650	integral to membrane

Medtr5g090340	MtC10909 1 AA Reticulon	Transport	plas	3//3 TM		SP	P 2		56	4.00E-75	AT3G10260	endoplasmic reticulum, mitochondrion
Medtr4g127310	MtC10930.1_1_AA Gly coside	Cell rescue and defense	cyto	0//0			Р2		82	0	AT1G51590	Golgi
Medtr7g090890	MtC10982_1_AA unknown	Unclassified	plas	4//4 TM			P 3		54	3.00E-61	AT3G57280	chloroplast, chloroplast envelope, chloroplast inner membrane
Medtr3g082660, Medtr4g027260	MtC10984_1_AA AMP-dependent synthetase and ligase	Energy metabolism	Cy to	1//1 TM			P 3		70	0	AT2G04350	chloroplast envelope, endoplasmic reticulum
Medtr1g116520	MtC11009_1_AA Tyrosine protein kinase, active site	Signal transduction	chlo	1//1TM			P 4		81	e-170	AT3G59350	РМ
Medtr2g038560	MtC11011_1_AA Thioredoxin-like fold	Cell rescue and defense	extr	TM 1		SP	P 1		66	5.00E-41	AT5G20500	undefined
Medtr5g022940	MtC20002_1_AA Aconitate hydratase 1	Energy metabolism	chlo	TM 1		SP	P 2		86	0	AT4G35830	apoplast, cy tosol, mitochondrion, plasma membrane, plasmodesma, vacuole
Medtr5g089200	MtC20008_1_AA Metal-dependent hy drolase, composite	Energy metabolism	chlo	TM 1		SP	P 1		75	0	AT5G12200	endomembrane system
Medtr5g072020	MtC20011_1_AA Aminotransferase, class-II	Energy metabolism	extr	TM 2		SP	P 2		82	0	AT5G23670	endoplasmic reticulum, membrane, vacuole
Medtr2g069310	MtC20024_1_AA Translation factor IPR009022:Elongation factor G, III and V	Protein synthesis and fate	chlo	0			P 6		92	0	AT1G06220	chloroplast, cytosol, membrane, nucleolus, plasma membrane, plasmodesma, vacuolar membrane
Medtr5g009500	MtC20025_1_AA Mitochondrial substrate carrier	Transport	c y to	TM 2	BB		P 2		77	e-164	AT4G01100	membrane, mitochondrion, plastid, vacuolar membrane
Medtr4te022430	MtC20026 1 AA Thiolase	Energy metabolism	cyto	TM1	BB		P1		72	0	AT2G33150	chloroplast, membrane, mitochondrion, nucleolus, peroxisome, vacuolar membrane
Medtr5g017050	MtC20030_1_AA Nicotinate	Energy metabolism	cyto	0			P 2		80	0	AT2G23420	undefined
Modtr2c010640	MtC20037_1_AA E-class P450,	Transport	chlo	TM 2			D 1		70	0	AT2G24500	undefined
Medu 2g019040	MIC20039_1_AA DIHYDROLIPOAMIDE S- ACETYLTRANSFERASE COMPONENT (E2) OF PYRUVATE DEHYDROGENASE COMPLEX	Energy metabolism	chlo	0	BB				71	e-169	AT3G25860	chloroplast, chloroplast envelope, chloroplast strom a, chloroplast thy lakoid, cy tosolic ribosome, mem brane
Medtr2g087660	MtC20045_1_AA DnaJ central region	Cell rescue and defense	nucl	0				fT - CaaX Farnesy ltransferase/ GGT1 - CaaX Gerany lgerany ltransferase	75	e-135	AT3G44110	CW / PM / Cytos / Plasmodesma / Nuckolus
Medtr2g028480	MtC20046_1_AA Gly coside hydrohse	Cell rescue and defense	nucl	TM 1					77	0	AT5G49720	Golgi apparatus, cell plate, early endosome, plasma membrane
Medtr6g084520	MIC20048_1_AA NADH- UBIQUINONE OXIDOREDUCTASE	Transport	c y to	0			P 2		69	2.00E-38	AT3G18410	Mitochondrion
Medtr1g116120, Medtr5g059410	MtC20051.2_1_AA Transketolase, central region	Energy metabolism	chlo	0					84	0	AT3G60750	envelope, chloroplast stroma

1	MtC20060 1 AA Blast: A	1	1	1	1	1 1	1		1	1				
	GAMMA carbonic anhydrase													
Medtr5g020850	partial [Silene latifolia]	Energy metabolism	Cyto	0							87	5.00E-91	AT1G19580	Mitochondrion M
Mcdu 5g020050	partar [biene introna].	Ellergy metabolism	Cyto	Ű							07	5.00E 71	111015500	
	MtC20071_1_AA 2OG-Fe(II)													
Medtr5g022960	oxygenase	Energy metabolism	mito	TM I				PI			-75	e-113	AT2G17/20	undefined
														cy tosol, cy tosolic
														ribosome, mitochondrial
	MtC20083.1_1_AA GroEL-like													matrix, mitochondrion,
Medtr1g090130	chaperone, ATPase	Protein synthesis and fate	Mito	0	BB						83	0	AT5G56500	vacuolar mem brane
	MtC20107 1 AA Peptidase M24													
Medtr7g069390	methionine aminopentidase	Protein synthesis and fate	chlo	0							76	e-119	AT3G51800	PM / Nucleolus
Medu 7g005550	Mc20111 1 AA Ch-A Dh-A-1	Trotein sy nulesis and late	emo	0	-						10	0 11)	115051000	
	MtC20111_1_AA Glu/Leu/Phe/val													
Medtr6g029460	dehydrogenase, dimensation region	Energy metabolism	cy to	0							78	e-141	AT5G0/440	Mitochondrion / Vm
	MtC20114_1_AA Glutamine													Apoplast / V / cy tos /
Medtr6g071070	synthetase type IIPR014746:	Energy metabolism	c y to	0							86	e-172	AT1G66200	cy tos Ribos / Chloro m
	MtC20115 1 AA													
	DIHYDROLIPOAMIDE													chloroplast, mitochondrial
Medtr4g121880	DEHYDROGENASE	Energy metabolism	cyto	0	BB						81	0	AT3G17240	matrix, mitochondrion
	MtC20120 1 AA America													
Mader 0 - 029220	IDD015472	Signal transduction	2016	0				D 1			54	a 100	AT5C 10290	undafinad
Medil 8g058220	IPR013472:	Signal transduction	cyto	0	-			r I			34	e-100	A15012580	undermed
	MC20122 1 AA Normania													Golgi apparatus, plant-
M. J. 1.014090	MtC20135_1_AA Nonaspanin	T		TMO			CD	D 4			70	0	ATT5C 10940	type cell wall, vacuolar
Medtr1g014080	(1M9SF)	Transport	plas	1M 8			SP	P 4			/8	0	A15G10840	membrane
	MtC20134.1_1_AA MtPT2													
	PHOSPHATE TRANSPORTER													
Medtr1g043290	Major facilitator superfamily	Transport	plas	TM 11				P1			71	0	AT5G43360	PM
														apoplast, chloroplast,
														chloroplast envelope,
														chloroplast stroma,
														cytosolic ribosome,
	MtC20137 1 AA GroEL-like													membrane, plasma
Medtr1g090140	chaperone, ATPase	Protein synthesis and fate	chlo	0	BB			P 4			89	0	AT1G55490	membrane
	*													cy tosol, membrane.
														plasma membrane.
Medtr4g124660	MtC20141 1 AA Sucrose synthase	Energy metabolism	cyto	0				Р 2			80	0	AT3G43190	vacuole
incua igiz iooo		Energy metabolian	0,10	Ů								, , , , , , , , , , , , , , , , , , ,	1115015170	Victore
M. 4.7.114010	MtC20142_1_AA Tetratricopeptide	Protein mother is and fate		0				D 2			70	. 124	A T2C04920	
Medtr/g114810	region	Protein synthesis and fate	nuci	0				r 3			/8	e-154	A13G04830	underined
	MtC20143_1_AA Haem peroxidase,													
Medtr5g074970	plant/fungal/bacterial	Cell rescue and defense	extr	TM 1			SP	P 1			65	e-113	AT5G58400	EndoM system
	MtC20149_1_AA Rab GDP													
Medtr8g088620	dissociation inhibitor	Signal transduction	cyto	0				P 1			85	0	AT2G44100	Cytosol
														plant-type vacuole, plasma
1		1		1	1		1							membrane, plasmodesma.
1	MtC20165_1_AA Peroxy som al long			1										vacuolar membrane,
Medtr1g088680	chain fatty acyl transporter	Transport	plas	TM 4				P 2			75	0	AT2G47800	vacuole
	MtC20198 1 AA unknown Blast:	*	*							1				
	XP 003552331 1 PREDICTED	1					1							
	NADH deby drogenose [ubiquinone]													
	1 alpha subcomplex subunit 1-like													mitochondrial respiratory
Medtr8g005360	[Glycine max]	Transport	cyto	TM 1				P 2			75	7.00E-25	AT3G08610	chain complex I
	MtC20223 1 AA GroEL lib	rumport		1.011						1	15	7.001 25	115000010	evtosol plama
Medtr3c086330	chaperone ATPass	Protein synthesis and fate	chlo	0	1		1	P 3			80	0	AT1G24510	membrane plasmocheme
medu Jg000550	MtC20228 1 1 A A Thioradawin	1 rown synucois and late	CIIIO	0	1			1.5		ł	07	0	111024510	membrane, plasmotestila
1	mic_20226.1_1_AA Inforedoxin-	1		1	1		1							
M. 4-2-004100	feld IDD012766 This is dealed	Collection and defense	1		1							. 141	ATECCOCAG	Mary (Chlens (Metall (DD
wedtr2g094180	1010 1F KU15/00:1 nioredoxin domain	Cen rescue and defense	pero	0	1		1			1	/1	6-141	A15G00040	v iii / Chioro / iviitoch / ER

	MtC20234_1_AA (S)-ADENOSYL- L-METHIONINE:DELTA 24-											
Medtr3g032530	STEROL METHYLTRANSFERASE	Energy metabolism	vacu	TM 1			РЗ		86	e-179	AT5G13710	V / Plamodesmata
Meda 5g052550	MtC20250.1 1 AA Peroxy som al	Energy memoonan	vacu	1111 1			10		00	0 119	MISCISTIC	v / Thanodeanata
Medtr4g124000	long chain fatty acyl transporter	Transport	plas	TM 5	BB		P 1		71	e-138	AT5G39040	V / Vm
	MtC20251_1_AA Adrenodoxin											ablenenlest, ablenenlest
Medtr1g081290	IPR014103:	Energy metabolism	chlo	0			P 1		83	0	AT3G04870	envelope
	MtC20261_1_AA Plant lipid											
Mod#7c065210	transfer protein/seed storage/try psin-	Transport	ovtr	TM 1		SD	D 1		69	4.00E 20	AT2C27870	Plasmochemata
Wedu 7g003210	MtC20269 1 AA	Transport	exu	1 1/1 1		ы	1 2		08	4.00E-39	A12037870	riasinouesinata
	POLYADENYLATE-BINDING											
Medtr4g085540	PROTEIN	Protein synthesis and fate	cyto	0	BB		P 3		76	0	AT1G49760	Cy tosol
Medtr4g074800, Medtr4g074930	MtC20273.1_1_AA NUMI-LIKE PROTEIN	Cell cycle and DNA processing	chlo	0	BB				55	3.00E-61	AT3G18610	undefined
0	MtC20279_1_AA Blast:	1										
	XP_003523765											
	regulatory subunit S10B homolog B-											
	like											M / CW / Nucleolus /
Medtr3g117230	isoform 1 [Glycine max].	Protein synthesis and fate	chlo	0					71	e-154	AT1G45000	Plasmodesmata /PM / M
												cytosolic ribosome,
												membrane, nucleolus,
Modtr 5 c006440	MtC20295_1_AA Ribosomal	Protain genthesis and fate	nual	0			P 2		95	0.119	AT4G24670	plasma membrane,
Wedu 5g000440	MtC20305 1 AA VACUOLAR	r toteni sy nulesis and tate	liuci	0			15		85	C-110	A14034070	Golgi apparatus,
Medtr1g106940	SORTING RECEPTOR	Transport	vacu	TM 2		SP	P 9		82	0	AT2G14740	membrane
	MtC20211 1 A A Bibosom al											cell wall, cy tosol,
Medtr3g013640	protein S19e	Protein synthesis and fate	c y sk	0			P 1		81	2.00E-69	AT3G02080	plasmodesma, ribosome
	MtC20331_1_AA Histone H2A											
Madur7a108220	IPR007124: IPR009072:Histone-	Call availa and DNA pressoring	mual	0	DD				77	7.00E 40	AT5C 50970	ale en ede me / Nuele chue
Wedu /g108520	MtC20341_1_AA Ribosomal	Cen cycle and DNA processing	liuci	0	DD				11	7.00E-40	A15059870	plashiodesina/ Nucleolus
	protein L13, archea and eukary otic											cytosolic large ribosom al
Medtr5g083790	form	Protein synthesis and fate	cy to	0	-		P 2		85	2.00E-96	AT4G13170	subunit, membrane
Medtr7g080370	MtC20347_1_AA Calreticulin	Protein synthesis and fate	extr	TM 1		SP	P 1		78	e-159	AT1G08450	ERm / ER
	MtC20350.1_1_AA NADH-											intrinsia to mitachar drial
Medtr5g071250	OXIDOREDUCTASE	Transport	cyto	0					82	e-138	AT2G29990	inner membrane
	MtC20350.2_1_AA NADH-				1							
Moder5c071250	UBIQUINONE	Transport	avto	0					82	0.129	AT2G20000	intrinsic to mitochondrial
1vieuu 3g0/1230	MtC20377 1 AA	1141152011	Cy IO	0	<u> </u>				82	04156	A12029990	inner mentorane
	SYNAPTOBREVIN-LIKE /											
Medtr/m083/00	VESICLE-ASSOCIATED	Transport	cyto	TM 1					80	1.00E-97	AT2G32670	chloroplast, endosome,
141CUII 48003490	MtC20379 1 AA General substrate	mansport	Cy IO	1 101 1					80	1.0012-87	A12032070	plashia incinu anc
Medtr3g116060	transporter	Transport	plas	TM 12	BB		P 4	 	64	0	AT4G35300	V / Vm
	MtC20380_1_AA unknown Blast:											
	envelope pore protein of 24 kDa											Mitochondrial M/ Chloro
unfound	[Pisum sativum]	Transport	c y to	0	BB		P 1		65	6.00E-76	AT5G42960	M / plastid

Medtr3g084340	MtC30011_1_AA S-adenosy IL- hom ocy steine hy drolase	Energy metabolism	cyto	0				P 3			86	e-161	AT4G13940	M / Vm /Plasmodesma /PM / V / Cytos
Medtr5g098310	MtC30033 1 AA Thiolase	Energy metabolism	chlo	0	BB			P1			77	e-179	AT5G48230	cy tosol, peroxisome, plasm a mem brane
Medtr2g099620	MtC30054_1_AA EUKARYOTIC INITIATION FACTOR 4A	Protein synthesis and fate	chlo	0							92	0	AT1G54270	cy tosol, plasma mem brane, plasm odesma, vacuolar mem brane
Medtr7g021820, Medtr7g021680	MtC30064_1_AA Aldo/keto reductase	Energy metabolism	chlo	0				P 1			77	e-154	AT1G60730	Cytosol
Medtr5g095230	MtC30065_1_AA E-class P450, group I	Transport	chlo	TM 1							50	e-150	AT3G14610	endoplasmic reticulum
Medtr2g060830	MtC30069_1_AA Proteasome alpha-subunit	Protein synthesis and fate	c y to	0	BB						94	e-128	AT1G16470	Cy tosol /cy to Rib /
	MtC30077.1_1_AA Aminoacy I tRNA synthetase, class I IPR006861:Hy aluronan/m RNA													
Medtr7g081660	binding protein	Protein synthesis and fate	nucl	0	BB			P1			43	5.00E-23	AT4G17520	cy toplasm, nucleus
Medtr8g088860	MtC30078_1_AA Cupin 1 MtC30086.2_1_AA	Energy metabolism	c y to	0	BB						41	3.00E-80	AT1G07750	cytosol, plasmodesma
Medtr5g026930	methy ltransferase putative	Energy metabolism	c y to	TM 1				P 2			73	0	AT1G31850	golgi apparatus
Medtr7g092620	MtC30087_1_AA E-class P450, group I	Transport	plas	TM 1				P 5			40	e-105	AT2G42250	endomembrane system
	MtC30089_1_AA unknown Blast: XP_003524856.1 PREDICTED:													
unfound	uncharacterized protein LOC100777797 isoform 1 [Glycine max]	Unclassified	plas	TM 1				P 2			66	e-133	AT1G23170	М
Medtr4g103790	MtC30106_1_AA Pre-mRNA processing ribonuceoprotein, binding region	Protein synthesis and fate	nucl	0				P 2			79	0	AT1G56110	cell wall, nucleolus, plasmodesma
Medtr7g099640	MtC30111_1_AA AAA ATPase IPR005937:26S proteasome subunit P45	Protein synthesis and fate	cy to	0				P 1		Predicted as my ristoy lated	92	0	AT4G29040	membrane, nucleus, proteasome regulatory particle, base subcomplex
Medtr2g030560	MtC30114 1 AA unknown	Unclassified	plas	TM 2	BB		SP	Р 2			45	4.00E-73	AT3G24160	ER /M / V
Medtr7g011990	MtC30132_1_AA Generic methyltransferase	Energy metabolism	cvto	TM 1				P 2			48	5.00E-90	AT5G54160	Nucleus /Cy tosol / Plasmpdesma / PM
Medtr5g072020	MtC30138_1_AA Aminotransferase, class L and II	Energy metabolism	chlo	TM 1				P1			24	1.00E-31	AT3G48780	undefined
Medtr3g013890, AC232874 1008,	MtC30154.1_1_AA WOUND- INDUCED PROTEIN LIKE													
AC235748_1009	PROTEIN	Cell rescue and defense	c y to	TM 2				P 2			71	e-171	AT4G24220	Cy tosol
AC235671_2	MtC30180_1_AA Peptidoglycan- binding LysM	Energy metabolism	plas	TM 2		GPI		Р 3			44	2.00E-66	AT2G17120	anchored to mem trate, anchored to plasma mem brane, plasma mem brane, plasmodesma
	MtC30183_1_AA Blast: XP_003611447 DEFINITION GMFP4 tetraspanin [Medicago								fT - CaaX Farnesyltransferase/					
Medtr5g014080	truncatula].CD9/CD37/CD63 antigen	Signal transduction	vacu	TM 4				P 9	GGT1 - CaaX Gerany lgerany ltransferase		56	7.00E-88	AT1G32400	membrane, plasmodesma, vacuole
Medtr1g039270	MtC30185_1_AA Peptidase aspartic, active site	Protein synthesis and fate	chlo	TM 3			SP	P 1			69	e-175	AT1G01300	M /CW

									FT - CaaX Farnesyltransferaæ/ GGT1 - CaaX				
Medtr70081700	MtC30186_1_AA RAB1, SMALL GTP-BINDING PROTEIN	Transport	chlo	TM 1	BB		SP	Р 2	Gerany Igerany Itransferase/ GGT2 - Rab Gerany Igerany Itransferase	86	e-102	AT5G47200	Golgi / PM
Medtr1g038920	MtC30193_1_AA N-acy1-L-amino-	Energy metabolism	chlo	TM 1			SP			68	e_171	AT4G38220	V
Wedd 1g056720	MtC30195_1_AA Haem peroxidase,	Energy metabolism	emo	1 1 1			.51	-		00	0-171	A14030220	v
Medtr7g072480	plant/fungal/bacterial IPR002133:S- adenosy lmethionine sy nthetase	Cell rescue and defense	chlo	0			SP			58	6.00E-99	AT5G05340	Apoplast / CW / cy tosol
AC233577_25	MtC30197_1_AA IQ calmodulin- binding region	Protein synthesis and fate	cy to	0						71	3.00E-67	AT5G62390	PM / plasm odesma / RE
Medtr49128840	MtC30199_1_AA Xy lose isomerase, bacterial type	Energy metabolism	cyto	TM 1			SP	P1		75	e-113	AT5G57655	Vm / V / RE
indu (gr20010	MtC30201_1_AA Proteasome component region PCI IPR013143:PCI/PINT associated module IPR013586:26S proteasome	Line and the second sec											cytosol, plasma
Medtr3g114480	regulatory subunit, C-terminal	Protein synthesis and fate	c y to	0				Р 3		75	0	AT1G20200	membrane, plasmodesma,
Medtr5g023960	MIC30202_1_AA PHOSPHATIDYLINOSITOL PHOSPHATE PHOSPHATASE	Signal transduction	plas	TM 3				Р 5		46	0	AT3G51460	plasma membrane, plasma membrane of cell tip, plasmodesma
	MtC30209_1_AA RNA-binding region RNP-1 (RNA recognition motif) IPR001865:Ribosomal												
Medtr1g019150	protein S2	Protein synthesis and fate	chlo	0	BB			P 3		67	e-171	AT2G23350	Cy tosol
Medtr2g006300	MtC30210_1_AA Nonaspanin (TM9SF)	Transport	chlo	TM 10			SP	P 2		77	0	AT1G10950	Golgi
Medtr4g012940	MtC30233_1_AA Sigma-54 factor, interaction region IPR003579:Ras small GTPase, Rab type	Transport	chlo	0			SP	P 2	GGT2 - Rab Gerany lgerany ltransferase	91	e-111	AT1G52280	Vm / V / PM /
Medtr3g055200	MtC30238_1_AA t-snare (SYNTAXIN-LIKE PROTEIN)	Transport	golg	TM 1				P 3		73	5.00E-86	AT1G79590	V / endosome M
Medtr5g025590	MtC30248_1_AA Reticulon	Transport	c y to	TM 1						70	0	AT1G19360	endoplasmic reticulum
Medtr5g036600	MtC30278_1_AA Dehydrogenase, E1 component	Energy metabolism	chlo	0				P 1		77	e-179	AT1G24180	cy tosol, mitochondrion, nucleus
Medtr4g005190	Preny ltransferase/squalene oxidase	Energy metabolism	nucl	0				P 1		74	0	AT1G78950	undefined
	MtC30290.1_1_AA Eukary otic translation initiation factor 2, alpha subunit IPR012340:Nucleic acid-												
Medtr3g071550	binding, OB-fold, subgroup	Protein synthesis and fate	c y to	0				P 1		81	e-151	AT2G40290	Cy tosol / Nucleus
AC225517 18	MtC30291_1_AA Protein of unknown function DUF1620	Unclassified	cyto	TM 1						73	e-152	AT5G11560	ER/PM/V/Vm
	MtC30297_1_AA Major sperm		.,		1	1							DM / DE M/Vm / musless
Medtr4g027050	MEMBRANE PROTEIN (VAMP)	Transport	chlo	TM 1		GPI				74	1.00E-69	AT3G60600	/ RE
Medtr2g008850	MtC30342_1_AA Protein phosphatase 2C-like	Signal transduction	nucl	0				P 5		67	e-108	AT1G34750	РМ
Mader2a100720	MtC30380_1_AA unknown Blast:ACJ84472.1 unknown	Unclossified	abla	TM 1				D 1			4.005.94	AT2C 40720	M / Golgi / Vm/ Chloro M
wiedtr3g109/30	[medicago truncatula]	Unclassified	chio	IMI				rl		72	4.00E-86	A13G49720	endoplasmic reticulum,
unfound	MtC30386_1_AA WD40-like	Signal transduction	cy to	TM 1						64	e-143	AT3G52190	intracellular, plasma membrane

Medtr5g089370	MtC30387_1_AA unknown Blast:XP_003617238.1 Vesicle- associated membrane protein 7C [Medicago truncatula]	Transport	cyto	TM 1			Р 2		75	8.00E-98	AT4G32150	Intracellular / M / Vm
	MtC30389_1_AA unknown Blast:XP_003517003.1 PREDICTED: cationic peroxidase 1-											
Medtr5g074740	like [Gly cine m ax]	Cell rescue and defense	chlo	TM 1		SP	P 1		62	6.00E-97	AT5G05340	Apoplast / CW / cytosol
Medtr3g027890	MtC30415_1_AA Signal peptidase 22 kDa subunit IPR008978:HSP20- like chaperone	Protein synthesis and fate	vacu	TM 1			P1		78	4.00E-73	AT5G27430	CW
Medtr3g115980	MtC30456 1 1 A A Ribonhorin I	Protein synthesis and fate	plas	TM 2		SP	Р 2		67	0	AT1G76400	endoplasmic reticulum,
Medurogritovoo	MtC30458_1_AA Cupin 1	Trotem syndresis and me	plas	11112		51			07	0	1110/0400	Incirculate
Medtr2g086640	IPR007113: MtC30561_1_A A_Plant disease	Energy metabolism	chlo	TM 1	BB	SP			46	6.00E-26	AT1G09560	CW / Nucleus
Medtr4g122330	resistance response protein	Cell rescue and defense	extr	TM 1	BB				40	4.00E-23	AT1G22900	EndoM system
Medtr5g027960	MtC30566.1_1_AA Proteasome component region PCI	Protein synthesis and fate	c v to	0			P 2		67	e-171	AT5G15610	undefined
Medtr8c088430	MtC40004.1_1_AA E-class P450,	Transport	cyto	TM 1			P 1		62	e-163	AT5G36110	EndoM system
Medtr4g055520,	MtC40005_1_AA Gly cosy1	Transport	Cyto	11011					02	0-105	A15050110	Endow system
AC225518_18	transferase, family 2	Cell rescue and defense	plas	TM 5			P1		78	0	AT5G22740	undefined
	MtC40018_1_AA probable methy ltransferase PMT14-like											Golgi apparatus, plant- ty pe cell wall, vacuolar
		En anors en ataliana	abla	TM 1		CD			74	0	AT4C19020	momhmana
Medtr8g055840	[Glycine max]	Energy metabolism	cillo	I M I		SP			/4	0	A14G18050	memorane
Medtr8g055840 Medtr7g050870	[Glycine max] MtC40031_1_AA Pectinesterase IPR006501:Pectinesterase inhibitor	Protein synthesis and fate	mito	TM 1		SP			44	3.00E-47	AT1G11580	Vm / Cy tosol / CW
Medtr8g055840 Medtr7g050870 Medtr3g079340	[Glycine max] MitC40031_1_AA Pectinesterase IPR006501:Pectinesterase inhibitor MitC40039_1_AA Lipase, class 3	Protein synthesis and fate Energy metabolism	mito cy to	TM 1 TM 1 TM 1		SP	P1		44	3.00E-47 e-109	AT1G11580 AT3G48090	Vm / Cy tosol / CW undefined
Medtr8g055840 Medtr7g050870 Medtr3g079340	[Gycine max] MtC40031_1_AA Pectinesterase IPR006501:Pectinesterase inhibitor MtC40045_1_AA Lipase, class 3 MtC40045_1_AA Protein of unknown function DUF81 Blast: NP_850068.1 Sulfite exporter TauE/SafE family protein [Arabidopsis thaliana]	Protein synthesis and fate Energy metabolism Transport	mito cy to	TM 1 TM 1 TM 1	BB	SP	P1		44 42 68	3.00E-47 e-109 e-163	AT1G11580 AT3G48090 AT2G25737	vm / Cy tosol / CW undefined endomembrane system, integral to membrane
Medtr8g055840 Medtr7g050870 Medtr3g079340 AC225518_18 unfound	[Gycine max] MtC40031_1_AA Pectinesterase IPR006501:Pectinesterase inhibitor MtC40039_1_AA Lipase, class 3 MtC40045_1_AA Protein of unknown function DUF81 Blast: NP_850068.I Sulfite exporter TauE/SafE family protein [Arabidopsis thaliana] MtC40087_1_AA Ribosomal protein L7AE	Protein synthesis and fate Protein synthesis and fate Protein synthesis and fate	mito cyto plas	TM I TM 1 TM 10	BB	SP	P1 P1		68 79	e-163	AT1G11500 AT1G11580 AT3G48090 AT2G25737 AT2G47610	endomembrane system, integral to membrane chloroplast, cy tosol, cy tosolic large ribosomal subunit, cy tosolic ribosome, nucleolus, plasmodesma, vacuohr membrane
Medtr3g055840 Medtr7g050870 Medtr3g079340 AC225518_18 unfound Medtr3g105950	[Gycine max] MtC40031_1_AA Pectinesterase IPR006501:Pectinesterase inhibitor MtC40039_1_AA Lipase, class 3 MtC40045_1_AA Protein of unknown function DUF81 Blast: NP_S50068.1 Sulfite exporter TauE/SafE family protein [Arabidopsis thaliana] MtC40087_1_AA Ribosomal protein L7AE MtC40093_1_AA Nonaspanin (TM9SF)	Protein synthesis and fate Transport Protein synthesis and fate	chlo plas	TM 1 TM 1 TM 10 0 TM 8	вв	SP SP	P1 P1 P2 P3			e-110 e-110	AT1G11530 AT1G11580 AT3G48090 AT2G25737 AT2G47610 AT5G10840	endomembrane system, integral to membrane chloroplast, cy tosol, cy tosolic large ribosomal subunit, cy tosolic ribosome, nucleolus, plasmodesma, vacuokr membrane Golgi apparatus, plant- ty pe cell wall, vacuolar membrane
Medtr3g055840 Medtr3g079340 AC225518_18 unfound Medtr3g105950 Medtr2g036600	[Gycine max] MtC40031_1_AA Pectinesterase IPR006501:Pectinesterase inhibitor MtC40045_1_AA Lipase, class 3 MtC40045_1_AA Protein of unknown function DUF81 Blast: NP_850068.1 Sulfite exporter TauE/SafE family protein [Arabidopsis thaliana] MtC40087_1_AA Ribosom al protein L7AE MtC40095_1_AA Nonaspanin (TM9SF) MtC40095_1_AA Asparty1+tRNA sy nthetase, class IIb IPR004365:nucleic acid binding, OB-fold, tRNA/helicase-ty pe	Protein synthesis and fate Protein synthesis and fate Transport Protein synthesis and fate Transport Protein synthesis and fate	chlo chlo	TM 1 TM 1 TM 10 0 TM 8	вв	SP SP	P1 P1 P2 P3		74 44 42 68 79 79 79	e-163 e-110 e-110	AT1G11580 AT1G11580 AT3G48090 AT2G25737 AT2G47610 AT5G10840 AT3G11710	vm / Cytosol / CW undefined endomembrane system, integral to membrane chloroplast, cytosol, cytosolic large ribosomal subunit, cytosolic ribosome, nucleolus, plasmodesma, vacuohr membrane Golgi apparatus, plant- ty pe cell wall, vacuolar membrane cytosol, plasmodesma
Medtr3g055840 Medtr3g079340 AC225518_18 unfound Medtr3g105950 Medtr2g036600	[Gycine max] MtC40031_1_AA Pectinesterase IPR006501:Pectinesterase inhibitor MtC40045_1_AA Protein of unknown function DUF81 Blast: NP_850068.1 Sulfite exporter TauE/SafE family protein [Arabidopsis thaliana] MtC40087_1_AA Ribosom al protein L7AE MtC40095_1_AA Nonaspanin (TM9SF) MtC40095_1_AA Asparty HRNA synthetase, class Ib IPR004365:mucleic acid binding, OB-fold, tRNA/helicase-ty pe MtC40103_1_AA Protein kinase IPR013210:Leucine rich repeat, N-terminal	Protein synthesis and fate Energy metabolism Transport Protein synthesis and fate Transport Protein synthesis and fate Signal transduction	chlo chlo chlo chlo chlo chlo chlo	TM 1 TM 1 TM 10 0 TM 8	вв	SP SP	P1 P1 P2 P3 P2 P1		74 44 42 68 79 79 79 79 79	e-163 e-109 e-110 e-100	AT1G11580 AT1G11580 AT3G48090 AT2G25737 AT2G25737 AT2G47610 AT5G10840 AT3G11710	Vm / Cy tosol / CW undefined endomembrane system, integral to membrane chloroplast, cy tosol, cy tosolic large ribosmal subunit, cy tosolic ribosome, nucleolus, plasmodesma, vacuohr membrane Golgi apparatus, plant- ty pe cell wall, vacuolar membrane cy tosol, plasmodesma
Medtr8g055840 Medtr7g050870 Medtr3g079340 AC225518_18 unfound Medtr3g105950 Medtr2g036600 Medtr8g023560	[Gycine max] MtC40031_1_AA Pectinesterase IPR006501:Pectinesterase inhibitor MtC40045_1_AA Protein of unknown function DUF81 Blast: NP_850068.1 Sulfite exporter TauE/SafE family protein [Arabidopsis thaliana] MtC40087_1_AA Ribosom al protein L7AE MtC40095_1_AA Nonaspanin (TM9SF) MtC40095_1_AA A sparty HtRNA synthetase, class Ib IPR004365:mucleic acid binding, OB-fold, tRNA/helicase-ty pe MtC4013_1_A A AlanvI-tRNA	Protein synthesis and fate Energy metabolism Transport Protein synthesis and fate Transport Protein synthesis and fate Signal transduction	chlo chlo chlo chlo	TM 1 TM 1 TM 10 0 TM 8 0 TM 3	вв	SP SP SP	P1 P1 P2 P3 P2 P1 P2		74 44 42 68 79 79 79 79 79 79 79 79 79	e-103 e-101	AT14(118030 AT1G11580 AT3G48090 AT2G25737 AT2G25737 AT2G47610 AT5G10840 AT3G11710 AT4G22130	Vm / Cy tosol / CW undefined endomembrane system, integral to membrane chloroplast, cy tosol, cy tosolic large ribosmal subunit, cy tosolic ribosome, nucleolus, plasmodesma, vacuohr membrane Golgi apparatus, plant- ty pe cell wall, vacuolar membrane cy tosol, plasmodesma PM chloroplast, cy tosol,

	MtC40189_1_AA Nucleosome								FT - CaaX Farnesy ltransferaæ/ GGT1 - CaaX				
Medtr2g039680	assembly protein (NAP)	Cell cycle and DNA processing	chlo	TM 1			SP	P 2	Gerany Igerany Itransferase	62	e-106	AT5G56950	Nucleus / cy tos
	region IPR001401:Dy namin												cy toplasm, membrane,
	IPR003130:Dy namin GTPase												plasma membrane,
Medtr8g105580	effector MtC40209 1 A A unknown Blast:	Transport	cy to	0				P 2		84	0	AT1G14830	plasmodesma
	ADV35716.2 root determined												
Medtr8g039290	nodulation 1 [Medicago truncatula]	Unclassified	chlo	TM 1			SP	P 1		71	e-152	AT5G13500	EndoM sy stem
													endoplasmic reticulum,
	MtC40216 1 AA E-class P450.												microsome, mitochondrion, plasma
Medtr8g020940	group I	Transport	chlo	TM 2				P 2		79	0	AT2G40890	membrane
													cell wall, chloroplast,
													cy tosol, cy tosolic large
													cytosolic ribosome,
													membrane, nucleolus,
Medtr1g045410	MtC45278_1_AA Ribosomal	Energy metabolism	cyto	TM 1						74	e-180	AT3G09630	plasma membrane, plasmodesma, vacuole
ineda igo io iro	MtC45398_1_AA ENDO-BETA-	Lineig memorian	6910							 	0 100	1110000000	phoniodeana, acaoc
	1,4-D-GLUCANASE, Glycoside												
Medtr3g113720	transferase, six-hairpin, subgroup	Cell rescue and defense	plas	TM 3		GPI		P 6		65	0	AT1G19940	undefined
Medtr50016590	MtC45435_1_AA Proteasome	Protein synthesis and fate	nucl	0				P 1		81	e-122	AT2G27020	Proteasome.cnx
Modubgorobyo	MtC45457_1_AA unknown Blast:	Trotein sy nates is and take	haer	Ŭ							0 122	111202/020	chloroplast, cy toplasm,
	XP_003548182.1 PREDICTED:												cytosolic ribosome,
Modtr1a101020	tripeptidy l-peptidase 2-like [Glycine	Protain genthesis and fata	ablo	0	DD					61	0	AT4C20850	membrane, vacuolar
Wedd Ig101050	max	Trotein synthesis and late	emo	0	DD					 01	0	A14020050	endomembrane system.
	MtC45467_1_AA Transmembrane												integral to membrane,
Medtr5g058140	emp24 domain-containing protein	Transport	plas	TM 2		-	SP	P 4		63	7.00E-67	AT1G09580	intracellular, membrane
													cv tosolic large ribosom al
													subunit, cy tosolic
													ribosome, large ribosom al
													nucleolus, nucleus, plasma
	MtC45548_1_AA Ribosomal												membrane, vacuolar
Medtr2g012450	protein L24/L26 IPR014723:	Protein synthesis and fate	nucl	0				P 1		69	3.00E-56	AT3G49910	membrane
	MtC45570 1 AA Mitochondrial												mitochondrial inner
	import inner membrane translocase,												membrane presequence
Medtr5g094300	subunit Tim 17/22	Transport	chlo	TM 2				P1		58	6.00E-42	AT5G55510	translocase complex
Modtr7a114120	MtC45629_1_AA von Willebrand	Transport (momb tmft)	avto	TM 1	DD					80	0.126	AT5C61010	undefined
Wedu /g114150	MtC45631 1 AA transmembrane	Transport (memo uari)	cyto	1 1 1	DD					80	0-150	A15001710	undermed
Medtr1g079890	protein 111-like	Unclassified	plas	TM 2						78	e-106	AT4G12590	RE / mitochondrion
	MtC45672_1_AA Aminoacy1-												
Medtr1g014140	transter RNA synthetase, class II	Maternal tudor protein	mito	0			SP	P 3		67	0	AT4G31180	cytosol
													cy tosol, endoplasmic
													reticulum, nuclear
Madm2=008420	MtC50269.2_1_AA Maternal tudor	Motornol tu don motoin	av.ta					D 1		7 9	0	AT5C07250	envelope, plasma
weatr sg098420	protein	waternal tudor protein	cyto	0				F1		68	0	A15G07550	membrane
Medtr7g093260	MtC50329_1_AA Actin/actin-like	Cytoskeleton	extr	TM 1				P 2		71	e-162	AT2G42090	undefined

Medtr2g009220	MtC50332_1_AA Sodium/sulphate symporter	Transport	plas	TM 8				P 4		63	e-150	AT5G64290	M / Chloro m
Medtr3g086210	MtC50546_1_AA Short-chain dehy drogenase/reductase SDR	Energy metabolism	extr	TM 1	BB		SP	P 4		69	5.00E-94	AT3G03330	ER / PM
Medtr4g027050	MtC50602_1_AA Major sperm protein	Transport	chlo	TM 1		GPI				69	1.00E-97	AT3G03330	endoplasmic reticulum, plasma membrane
Medtr1g102420	MtC50630_1_AA Lipase/lipooxy genase, PLAT/LH2	Cell rescue and defense	extr	TM 2		GPI	SP	Р 2		55	2.00E-43	AT5G62200	anchored to M /Vm
Medtr4g131180	MtC60082_1_AA Aldehy de dehy drogenase	Energy metabolism	extr	TM 1				P 2		87	0	AT2G24270	undefined
Medtr7g074570	MtC60086_1_AA Phosphogly cerate mutase, 2,3-bisphosphogly cerate- independent	Energy metabolism	cyto	0				P 1		82	0	AT1G09780	chloroplast, cy tosol, mitochondrial envelope, plasm a membrane, plasm odesm a
Medtr5g091130, Medtr5g091120	MtC60113.2_1_AA Ribosomal L18ae protein	Protein synthesis and fate	nucl	0				P1		90	1.00E-92	AT2G34480	cy tosol, cy tosolic large ribosom al subunit, cy tosolic ribosom e, plasm a membrane, vacuolar membrane
Medtr4g050420	MtC60155_1_AA Heat shock protein DnaJ	Cell rescue and defense	nucl	0				P 4	FT - CaaX Farnesy ltransferase/ GGT1 - CaaX Gerany lgerany ltransferase	71	e-158	AT3G44110	CW / PM / Cytos / Plasmodesma / Nucleolus
Medtr8g020940	MtC60191_1_AA E-class P450, group I	Transport	cyto	TM 2						36	e-102	AT2G40890	Mitochondrium / PM / RE
Madtr8c080180	MtC60219_1_AA UDP-glucose 4-	Energy metabolism	plac	TM 2			SD	D 1		92	0.114	AT2C24850	ND
Mcdirogoo7180	MtC60221_1_AA Sigma-54 factor,	Energy metabolism	plas	1 101 2			51	12		05	0-114	A12034030	ND
Medtr3g064390	small GTP ase, Rab ty pe	Transport	chlo	0				P 1		86	1.00E-92	AT3G54840	Endosome /PM
Medtr5g025270	MtC60231_1_AA Carotenoid oxy genase	Energy metabolism	pero	0				P 1		80	0	AT3G63520	cy toplasm, plasma membrane, plasmodesma, vacuolar membrane, vacuole
Medtr2g038250	MtC60237_1_AA Ribosomal protein L30	Protein synthesis and fate	cyto	0						80	e-104	AT3G13580	chloroplast, cy tosolic large ribosom al subunit, cy tosolic ribosom e, m em brane
Medtr2g076670	MtC60257_1_AA Phosphoenolpyruvate carboxy lase	Energy metabolism	c y to	0				P 1		81	0	AT1G53310	apoplast, cy tosol
AC233660_17	MtC60275_1_AA Protein of unknown function	Unclassified	plas	TM 5	BB			P 1		71	5.00E-89	AT1G68650	М
Medtr2g103950	MtC60311_1_AA Protein kinase	Signal transduction	chlo	0				P 4		61	e-127	AT1G52540	PM /plasm odesma
Medtr20083860	MtC60316_1_AA Sigma-54 factor, interaction region IPR013753:Ras IPR015595:	Transport	cyto	0	BB			Р 2	FT - CaaX Farnesyltransferase/ GGT1 - CaaX Geranylgeranyltransferase/ GGT2 - Rab Geranylgeranyltransferase	80	e-100	AT1G06400	PM
	MtC60359_1_AA Protein of unknown function Cys-rich Blast:							-					
Medtr5g017650	XP_003630909.1 Fruit weight 2.2- like protein [Medicago truncatula]	Unclassified	extr	TM 1				P 13		 63	3.00E-48	AT1G14870	РМ
Medtr1g083460	MtC60397_1_AA Ribosomal protein L18e	Protein synthesis and fate	chlo	0						 77	2.00E-81	AT5G27850	chloroplast, cy tosolic large ribosom al subunit,

												plasma membrane, vacuolar membrane, vacuole
Medtr3g116830	MtC60399_1_ AA Blast: XP_003603940 Universal stress protein A-like protein UspA	Cell rescue and defense	cyto	0			P 3		68	4.00E-70	AT2G21620	undefined
	MtC60431_1_AA Blast: XP_003518654 PREDICTED: ras-related protein											
Medtr1g068740	RABE1c-like [Glycine max]	Transport	chlo	TM 1			P 2		80	1.00E-88	AT5G59840	Plasmodesma / PM
Medtr2g099550	import inner membrane translocase, subunit Tim 17/22	Transport	chlo	TM 2	BB				50	8.00E-45	AT1G72750	inner mem brane mitochondrion
AC233070_1029	MtC60580_1_AA Peptidy l-proly l cis-trans isomerase, cyclophilin type IPR015891:	Protein synthesis and fate	chlo	TM 2			P 1		56	7.00E-66	AT3G66654	PM / Golgi
Medtr6g059650	MtC60596_1_AA Kunitz inhib itor ST1-like	Cell rescue and defense	extr	TM 1		SP			34	1.00E-16	AT1G17860	CW / Apolast
Medtr4g100740	MtC60621.1_1_AA Protein of unknown function DUF124 Blast: NP_199553.2 tryptophan RNA- binding attenuator-like protein [Arabidonsis thaliana]	Protein synthesis and fate	nucl	TM 2			Р1		74	e-118	AT5G47420	FR
	MtC60635.1_1_AA Protein of unknown function DUF588 Blast: NP_001238662.1 CASP-like protein											
Medtr4g118800	7 [Glycine max]	Unclassified	vacu	TM 2	BB				29	6.00E-07	NS	undefined
Medtr4g103340	MtC60636_1_AA Ribosomal L3/ae protein IPR011331: IPR011332: MtC60645_1_AA Matridin like ShK	Protein synthesis and fate	chlo	0			P 1		93	1.00E-41	AT3G10950	Cy to / cy tosolic large ribosom al subunit,
Medtr4g118560	toxin IPR005123:20G-Fe(II) oxy genase	Energy metabolism	nucl	0			P 4		76	e-127	AT5G18900	Nucleus / cy tos
Medtr4g012910	MtC60657_1_AA Ribosomal protein L37e	Protein synthesis and fate	chlo	0		SP	P 2		89	5.00E-30	AT1G52300	cytosolic ribosome
Medtr4g083290, Medtr4g083250	MtC60692_1_AA unknown Blast:XP_003607819.1 hy pothetical protein MTR_4g083250 [Medicago truncatula]	Unclassified	nucl_plas	0	BB		P1		60	2.00E-58	AT4G26410	undefined
Medtr8g055840	MtC60699_1_AA Protein of unknown function DUF248, methyltransferase putative	Energy metabolism	cyto	0					80	6.00E-98	AT1G26850	Golgi apparatus, membrane
	MtC60711_1_AA NADH											
Medtr3g104310	subunit	Transport	chlo	TM 1			P 1		86	1.00E-78	AT5G11770	Mitochondrion
Medtr3g065110	MtC60716_1_AA Nicastrin	Protein synthesis and fate	plas	TM 1	BB	SP	Р 3	FT - CaaX Farne sy Itransferase/ GGT1 - CaaX Gerany Igerany Itransferase/	56	e-164	AT3G52640	Vm / V
Medtr5g080300	MtC60757_1_AA Peptidy lproly l isomerase, FKBP-ty pe	Protein synthesis and fate	chlo	0			P 2		78	5.00E-67	AT3G55520	chloroplast thy lakoid lumen, membrane
Medtr2g005930	MtC60763_1_AA Protein of unknown function DUF1682 Blast: XP_003592937.1 hy pothetical protein MTR_2g005930 [Medicago truncatula]	Unclassified	nucl	TM 1		SP	P1		63	e-126	AT4G24330	ER
Medtr1g041150	MtC60783_1_AA Protein kinase IPR002048:Calcium-binding EF- hand	Signal transduction	chlo	TM 1			Р 3		71	0	AT5G12480	РМ

1	MtC60813_1_AA Phospholipase D/Transphosphatidy lase: Pleckstrin-											
Medtr1g083620	like [Medicago truncatula]	Transport	chlo	TM 1					70	2.00E-63	AT3G16785	undefined
Medtr8g076150	MtC60854_1_AA ATPase, V0 complex, proteolipid subunit C,	Transport	chlo	TM 4	BB				73	4.00E-49	AT4G34720	v
	MtC60857_1_AA unknown Blast:AFK42380.1unknown											
Medtr6g034680	[Medicago truncatula]	Unclassified	cyto	TM 1				FT - CaaX Farnesy Itransferase/	64	5.00E-53	AT1G71780	ER
Medtr7g012560	MtC60870_1_AA Ubiquitin	Protein synthesis and fate	chlo	0			P 3	GGT1 - CaaX Gerany lgerany ltransferase/	64	3.00E-33	AT5G15460	undefined
Medtr4g022350	MtC60899_1_AA Cytochrome b5	Transport	vacu	TM 1					75	2.00E-59	AT2G32720	undefined
Medtr2g010540	MtC60903_1_AA unknown Blast:XP_003593353.1 hy pothetical protein MTR_2g010540 [Medicago truncatula]	Unclassified	chlo	TM 1			P1		63	4.00E-94	AT5G65810	undefined
Medtr1g008700	MtC60941_1_AA Haem peroxidase, plant/fungal/bacterial	Cell rescue and defense	cyto	0					70	e-102	AT1G07890	cell wall, chioroplast, chioroplast stroma, cy tosol, plasma membrane, plasmodesma
Medtr5g016270	MtC60945_1_AA Natural resistance-associated macrophage protein	Transport	plas	TM 10	BB		P1		81	0	AT2G23150	plasmodesma, vacuolar membrane, vacuole
Medtr2g103570	MtC61024_1_AA Peptidase S24, S26A and S26B IPR015927:	Protein synthesis and fate	vacu	TM 1					71	7.00E-72	AT1G52600	endoplasmic reticulum, plasma membrane
Medtr2g103500	MtC61028_1_AA Alba, DNA/RNA- binding protein	Cell cycle and DNA processing	plas	0	BB				85	4.00E-51	AT1G29250	Cytos /PM / Nucleus
Medtr12099500	MtC61065 1 AA Reticulon	Transport	plas	TM 3					71	5.00E-85	AT4G23630	endoplasmic reticulum membrane, endoplasmic reticulum tubular network, integral to cytosolic side of endoplasmic reticulum membrane, plasma membrane, vacuole
	MtC61084_1_AA unknown Blast: XP_003536390.1 PREDICTED: protein disulfide-isomerase 5-2-like											
Medtr2g094180	[Glycine max]	Protein synthesis and fate	c y to	TM 1					49	9.00E-39	AT1G35620	Vm // CW / plasmodesma
Medtr29034290	MtC61089_1_AA Mitochondrial ribosome	Protein synthesis and fate	mito	0			Р3		74	8.00E-41	AT5G47890	Mitochondrion
Modtr2a072600	MtC61096_1_AA	Transport	plac	TM 2		SD	P 2		63	1 00E 76	AT1G00580	endomembrane system, integral to membrane, integrallular membrane
Wedu 5g072000	MtC61146_1_AA Preny lated rab		pias	11112		-51	12		05	1.001-70	A11005580	ind accidiar, include ale
Medtr4g014060, Medtr4g013710	acceptor PRA1IPR014475: IPR014690:	Transport	chlo	TM 2	BB		P 1		67	1.00E-65	AT2G38360	RE / Cy tos
Medtr1g105370	MtC61192_1_AA Ribosomal protein S8	Protein synthesis and fate	cy to	0					98	9.00E-72	AT5G59850	Cytos ribos / M/CW
Medtr8g018770	MtC61295_1_AA Rhodopsin-like GPCR superfamily IPR001078:Cataly tic domain of components of various dehy drogenase complexes, Dihy drolipoy IIy sine-residue acety Itransferase component of py ruvate dehy drogenase complex	Energy metabolism	chlo	0	BB		P 1		86	e-114	AT1G34430	PM/ Chloro / Chloro envel / Cytosol rib

Mader 1 2072570	McC61200 1 AA Thioredowin fold	Call measure and defense	mual	0						Predicted as	70	1.00E 50	AT2C 62080	ED /DM
Medu 1g072370	MtC61349 1 AA Thioredoxin-like	Cell rescue and delense	nuci	0						Predicted as	70	1.00E-30	A15005080	
Medtr2g038560	fold	Cell rescue and defense	extr	TM 1			SP	P 1		my ristoy lated	66	5.00E-41	AT5G20500	undefined
AC225474_12	MtC61398_1_AA Sigma-54 factor, interaction region IPR013753;Ras	Transport	chlo	0				3	GGT2 - Rab Gerany lærany ltransferase		82	e-101	AT4G09720	Vm
110220111_12	incruction region in rors/ositius	Transport	emo	0					ooranji igoranji namoretao			0 101	1111007720	cell wall, cy tosolic small
Medtr1g105370	MtC61411_1_AA Ribosomal protein S8	Protein synthesis and fate	cvto	0							98	9.00E-72	AT5G59850	ribosomal subunit, membrane
0										Predicted as				endoplasmic reticulum,
Medtr1g072570	MtC61419_1_AA Thioredoxin fold	Cell rescue and defense	nucl	0						my ristoy lated	70	5.00E-63	AT3G63080	plasm a mem brane
	Blast:XP_003612923.1 Spinster-like													
Medtr5g030580	protein [Medicago truncatula]	Transport	plas	TM 5				P 1			65	2.00E-80	AT2G22730	membrane
Medtr7g065210	transfer protein/Par allergen	Transport	extr	TM 1			SP	Р 2			69	2.00E-31	AT2G37870	Plasm odesm ata
0	MtC61535_1_AA Sigma-54 factor,	1.												
Medtr8g093740	interaction region IPR013753:Ras IPR015598:	Transport	nucl	0	BB			Р3	GGT2 - Rab Gerany lgerany ltransferase		83	9.00E-90	AT1G43890	peroxisome
	MtC61549_1_AA unknown	^												1
Medtr7g091060	Blast:AFK39184.1 un known [Medicago truncatula]	Unclassified	chlo	TM 1	BB						66	4.00E-16	AT2G43780	Mitochondrion
	MtC61633_1_AA ATPase, P-type,									1				
Medtr4g127710	K/Mg/Cd/Cu/Zn/Na/Ca/Na/H- transporter	Transport	vacu	TM 2							75	3.00E-80	AT3G47950	РМ
0	MtC61652_1_AA Bacterial surface													
	antigen (D15), Blast: XP 003600958 Sorting and													
	assembly machinery component-like													
Medtr3g071450	protein [Medicago truncatula].	Transport	cvto	TM 1				P 1			55	7.00E-69	AT3G11070	М
	MtC61689_1_AA Protein of													
	unknown function DUF1692 Blast: XP_003607653 1 Endoplasmic													
	reticulum-Golgi intermediate													
Medtr4g080800	compartment protein [Medicago truncatula]	Transport	cvto	TM 1							68	8.00E-79	AT4G27080	undefined
0														
AC233676_19	MtC61727_1_AA Caleosin related	Cell rescue and defense	cy to	TM 1							66	8.00E-66	AT1G70670	undefined
Medtr4g114330	group-like nuclear protein	Protein synthesis and fate	cyto nucl	0	BB			P 1			81	7.00E-56	AT4G22380	Nucleolus
	MtC62032_1_AA Protein of	, i i i i i i i i i i i i i i i i i i i												
	unknown function UPF0057 Blast:XP 003610299.1 Stress-													
	induced hy drophobic peptide	a										1 007 10		endomembrane system,
Medtr4g130660	[Medicago truncatula]	Cell rescue and defense	plas	TM I				P 3			57	1.00E-18	A14G30660	chloroplast_cytosol
	MtC62047_1_AA Thioredoxin-like	a.n		_								1.000		mitochondrion, plasma
Medtr8g098410	IPR012335:Thioredoxin fold MtC62049 1 AA AAA ATPase	Cell rescue and defense	chlo	0			SP				74	1.00E-79	AT4G11600	membrane
	IPR005937:26S proteasome subunit									Predicted as				
Medtr7g099640	P45	Protein synthesis and fate	chlo	TM 1	-					my ristoy lated	89	0	AT5G58290	proteasome complex
Medtr3g008260	kinase, cataly tic region	Signal transduction	chlo	0				P 5			65	e-103	AT4G21540	membrane, vacuole
	MC(2007 1 A A 7 in fine		İ	1	1		İ			1				mitochondrial
Medtr4g021710	Tim 10/DDP-type	Transport	nucl	0	1			P 4			78	3.00E-39	AT3G46560	mitochondrion
	· · · · · · · · · · · · · · · · · · ·													

Medtr1g043220, Medtr1g043290, Medtr1g043200	MtC62284_1_AA Blast: A5H2U5 Phosphate transporter 3, phosphate:H+ symporter [Medicago truncatula] Liuet al (2008)	Transport	plas	TM 11			P1		71	0	AT5G43360	PM
Medtr1g043200	MtC62304_1_AA Ras small	Transport	cyto	0			P 6		78	3.00E-60	AT4G09720	Vm
unfound	MtC62382_1_AA Ribosomal	Protein synthesis and fate	chlo	0	BB	SP	10		72	4.00E-20	AT2G27710	chloroplast, cytosol, cytosolic ribosome, membrane, nucleolus, nucleus, plasma membrane, ribosome
Medtr2a082510	MtC62427_1_AA Histone H2A	Cell cycle and DNA processing	chlo	0	BB				80	9.00E-47	AT4G27230	Nucleus
Wedu 2g082510	MtC62534_1_AA Plant lipid	cen eyere and DAA processing	enio	0	DD				00	9.00E-47	A14027250	Nucleus
Medtr4g101280	alpha amy lase inhibitor	Transport	chlo	TM 1	BB	SP	P 6		66	2.00E-24	AT4G12510	endomembrane system
Medtr6g071330	MtCo253/AA unknown Blast: NP_564527.1 protein B-cell receptor-associated 31-like protein [Arabidopsis thaliana]	Transport	vacu	TM 3			Р 2		64	9.00E-39	AT3G17780	endomembrane system, endoplasmic reticulum, integral to membrane
Medtr8g101880	MtC62546_1_AA ATPase, F0 complex, subunit G, mitochondrial	Transport	cyto nucl	0			Р3		67	1.00E-43	AT4G29480	mitochondrion
Medtr2g069310	MtC62591_1_AA Translation factor IPR009022:Elongation factor G, III and V	Protein synthesis and fate	cy to	0			P 5		91	0	AT1G56070	chloroplast, cytosol, membrane, nucleolus, plasma membrane, plasmodesma, vacuohr membrane
AC225519_3	MtC62650_1_AA unknown Blast: AFK48658.1 unknown [Lotus japonicus]	Unclassified	nucl	TM 1					45	3.00E-26	AT1G55160	Mitochondrium / Plastid
Medtr4g062410	MtC62665_1_AA Ribosomal protein L29	Protein synthesis and fate	cy to	0					79	9.00E-48	AT5G02610	cy tosolic large ribosomal subunit, cy tosolic ribosome, plasma membrane, plasmodesma, vacuolar membrane
Medtr6g005540	MtC62738_1_AA unknown Blast: AFK41962.1 unknown [Medicago truncatula]	Unclassified	chlo	TM 3			P 3		52	1.00E-78	AT5G55610	Plastid / Chloro /mitochondrion /M
Medtr8g018430	MtC62828_1_AA unknown Blast:XP_003627187.1 Lipoxy gerase [Medicago truncatula]	Cell rescue and defense	nucl	TM 1			P 1		59	2.00E-56	AT3G22400	Chloro
Medtr3g093220	MtC62895_1_AA Blast XP_003602426 Stomatin-like protein [Medicago truncatula]. Band-7	Protein synthesis and fate (voir raft et band 7)	nucl	0	BB				61	9.00E-23	AT5G54100	mitochondrion
Medtr5g088320	MtC62974_1_AA Calcium-binding EF-hand	Signal transduction	cyto	0		SP			98	4.00E-82	AT2G27030	PM /Vm
Medtr6g091630	MtC62977_1_AA Ribosomal protein L31e	Protein synthesis and fate	cvto	0			P1		72	1.00E-42	AT5G56710	Cy tos Ribos /Plasmodesmata / CW
	MtC62988_1_AA unknown Blast: XP_003596315.1 Ubiquitin domain- containing protein [Medicago							Predicted as				
Medtr2g075840	truncatula] MtC63034_1_AA Calcium-binding	Protein synthesis and fate	chlo	0			P 2	my ristoy lated Predicted as	71	1.00E-42	AT1G53400	undefined
Medtr2g104130	EF-hand	Signal transduction	cyto	0	1		P1	my ristoy lated	78	3.00E-79	AT3G18430	v

Medtr2g035100	MtC63137 1 AA Bet v I allergen	Cell rescue and defense	cyto	0	BB				30	3.00E-04	AT1G24020	membrane
Medtr5g081710	MtC63140_1_AA Ribosomal protein L35Ae	Protein synthesis and fate	chlo	0			P1		89	2.00E-49	AT3G55750	cy tosolic large ribosom al subunit, cy tosolic ribosom e, mem brane, ribosom e
Medtr8g061970	MtC63141_1_AA Peroxy som al long chain fatty acy l transporter	Transport	plas	TM 5			P 3		67	0	AT2G47800	plant-ty pe vacuole, plasma membrane, plasmodesma, vacuolar membrane, vacuole
AC140545_25	MtC63151_1_AA Ribosomal protein L10E	Protein synthesis and fate	chlo_mito	0			P 4	ft - CaaX Farnesy Itransferase/ GGT1 - CaaX Gerany Igerany Itransferase/	88	e-109	AT1G26910	chloroplast envelope, membrane
Medtr4g077510	MtC63279_1_AA Scramblase	Transport	c y to	0	BB				79	5.00E-44	AT2G04940	Mitochondrium / Plastid
Medtr5g072980	MtC63366_1_AA E-class P450, group I	Transport	vacu	TM 2		SP	P 2		43	e-112	AT4G31500	M / RE /Mitochondrion / PM
Medtr8g092020	MtC90027_1_AA Sigma-54 factor, interaction region IPR013753:Ras	Transport	cyto	0			P1	GGT2 - Rab Gerauv lærauv ltransferase	73	6.00E-86	AT1G22740	v
Medtr3g009740	MtC90041 1 AA Prefoldin	Protein synthesis and fate	golg	TM 1			Р3		28	6.00E-21	AT4G26455	Nuclear env. Cell Plate
N 1 5 046020	MtC90224_1_AA Alpha-1,4-glucan-						D.1			170	172502220	Golgi apparatus, Golgi stack, Golgi trans cisterna, cell wall, cy tosol, cy tosolic ribosome,
Medtr5g046030	protein synthase, UDP-forming	Energy metabolism	extr	0			PI	ft - CaaX Farnesy ltransferase/	80	e-1/9	A13G02230	vacuolar mem brane
Medtr1g116890	MtC90316_1_AA E-class P450, group I	Transport	cyto	TM 1			P 1	GGT1 - CaaX Gerany lgerany ltransferase/	40	1.00E-26	AT3G52970	endomembrane system
Medtr1g026020	MtC90553_1_AA Expansin 45, endoglucarase-like	Energy metabolism	extr	0			P 1		77	e-105	AT1G20190	CW
Medtr4g101020	MtC90568_1_AA Major spemn protein	Transport	vacu	TM 1			P1		75	8.00E-51	AT3G60600	cytosol, endophsmic reticulum, endoplasmic reticulum membrane, integral to membrane, nucleus, plasma membrane, protein storage vacuole
Medtr2g102660	MtC90574_1_AA Pleiotropic drug resistance protein PDR	Transport	plas	TM 6			P 1		73	0	AT1G15520	РМ
Medtr2g083180	MtC90770_1_AA Calcium-binding EF-hand	Signal transduction	chlo	TM 1		SP	P 3		73	0		extrinsic to mitochondrial inner membrane, mitochondrion
Medtr1g114000	MtC90816_1_AA Fibrillarin	Protein synthesis and fate	c y to	0	BB				90	e-132	AT4G25630	Nucleolus
Medtr4g101930	MtC90917_1_AA unknown Blast: XP_003608785.1 COX VIIa-like protein [Medicago truncatula]	Transport	cyto	TM 1					75	9.00E-26	AT4G21105	Vm /mitochondrion
Medtr5g019620	MtC91353_1_AA 1,4- BENZOQUINONE REDUCTASE / TRP REPRESSOR BINDING PROTEIN	Protein synthesis and fate	vacu	TM 1			P 1		63	2.00E-84	AT4G36750	РМ
Medtr3g033620	MtC91392_1_AA unknown Blast: XP_003539855.1 PREDICTED: uncharacterized protein LOC100818590 [Glycine max]	Unclassified	chlo	TM 2	BB		P1		73	e-123	AT5G12470	chloroplast, chloroplast envelope, chloroplast inner membrane, mitochondrion, plastid

1	MtC91531_1_AA Histone H2A												
Medtr4g071150	fold	Cell cycle and DNA processing	chlo	0	BB		SP	P 1		69	2.00E-38	AT5G02560	Nucleolus / Nucleus
	MtC91534.1_1_AA												
Medtr8g066340	Syntaxin/epimorphin family	Transport	cy to	TM 1	BB			P1		 65	7.00E-72	AT4G17730	vacuolar membrane
Medtr5g076470	MtC91716_1_AA Syntaxin (MAPEG)	Transport	c y to	TM 3				P 1		 65	4.00E-48	AT1G65820	V/ER/M
	MtC91735_1_AA unknown Blast: XP_003593909.1 hypothetical												
	protein MTR_2g019240 [Medicago												vacuolar membrane,
Medtr2g019240	truncatula]	Unclassified	extr	TM 1				P 2		85	6.00E-07	AT2G34585	vacuole
Medtr4g130860	MtC91778_1_AA Peptidase M17, leucy1 aminopeptidase	Protein synthesis and fate	chlo	TM 1	BB			P 1		75	0	AT2G24200	chloroplast stroma, cytosol, vacuole
	MtC92209_1_AA Nucleotide-												
Medtr3g065490	binding, alpha-beta plait	Protein synthesis and fate	nucl	0	BB					64	7.00E-50	AT5G37720	Nucleolus
Medtr7c092600	MtC92247_1_AA E-class P450,	Transport	civito	TM 1				P 2		52	4.00E-69	AT2G42250	andomembrane system
Wedd 7g072000	MtC93020 1 A A Deby drogenase	Transport	cyto	1111				12		 52	4.00E-07	A12042250	cytosol mitochondrion
Medtr8g062670	E1 component	Energy metabolism	chlo	0				P 2		80	e-177	AT1G59900	nucleus
Medtr1c083810	MtC93021.1_1_AA Importin alpha-	Transport	chlo	0	BB			Р 2		77	0	AT3G06720	cell wall, cy tosol, nuclear
Wedd 1g005010	MtC93024_1_AA Initiation factor	Transport	enio	0	DD			12		 	U	A15000720	envelope, nacionas
	eIF-4 gamma, middle												
Medtr8g008680	IPR003891:Initiation factor eIF-4	Protein synthesis and fate	nucl	0				Р2		56	0	AT3G60240	undefined
Medalogooooo	MtC93030 1 AA Succinyl-CoA	Trotem sy nucesis and me	nuer	0				12		 50	0	115600240	undermed
Medtr6g077820	ligase, alpha subunit	Energy metabolism	chlo	0	BB			P 1		81	e-135	AT5G23250	Mitochondrion
	MtC93032_1_AA Dynamin central												mitochondrion, plasma
	IPR003130:Dy namin GTPase												membrane, plasmodesma, vacuolar membrane.
Medtr8g009510	effector	Transport	cy to	0				P 3		74	0	AT3G60190	vacuole
	MtC93035_1_AA Peptidase A1,												
Medtr8g039540	pepsin McCo2050 1 A A	Protein synthesis and fate	extr	TM 1			SP	P 7		63	e-161	AT5G07030	CW, plant-type cell wall
Medtr4g106750	Xanthine/uracil/vitamin C permease	Transport	plas	TM 12				Р 3		83	0	AT5G62890	vacuole
	MtC93052.1_1_AA Plant		*										
Medtr2g099570	lipoxy genase MtC02060_1_A A upbrown Plast	Cell rescue and defense	cy to	TM 1				P 2		60	0	AT3G22400	Chloro
	AFK38721.1 unknown [Lotus												
Medtr3g106510	japonicus]	Unclassified	vacu	TM 3			SP	P 6		52	2.00E-58	AT2G12400	Plasmodesma
Medtr2g012560	MtC93061_1_AA SCAMP	Transport	plas	TM 4						69	e-123	AT2G20840	РМ
									ft - CaaX Farnesy Itransferase/				
	MtC93078 1 A A Sigma-54 factor				1				GGT1 - Caax Geranylgeranyltransferage/GGT2				
Medtr2g075950	interaction region IPR013753:Ras	Transport	cyto	0	BB			P 2	- Rab Gerany Igerany Itransferase	88	e-111	AT1G16920	Golgi / PM / Vm
	MtC93113_1_AA Proteasome												
	component region PCI IPR011990:Tetratricopentide like												
	helical IPR013143:PCI/PINT												
Medtr1g009010	associated module	Protein synthesis and fate	chlo	0	BB					 76	0	AT1G29150	proteasomecomplex
	MtC93129_1_AA Protein of												
	XP_003609490.1 Transmem brane												chloroplast, chloroplast
unfound	protein [Medicago truncatula]	Unclassified	E.R.	TM 3	BB					 54	7.00E-29	AT3G43520	envelope
M 1 5 000050	MtC93137_1_AA						(TD)	Di			100	172022015	¥7.
Medtr5g098250	emp24/gp25L/p24	1 ransport	cyto	IMI		1	SP	r I		78	e-100	A13G22845	v

Medtr3g116500	MtC93146 1 AA WD40 like	Signal transduction	nucl	0			P 5		76	e-140	AT/G34460	PM //PE /
Wedu 5g110500	MC/5140_1_AA WD40-like	Signal d'ansolucion	nuer	0			1.5		70	0-14)	A14034400	Mitochondrion : CW/
Medtr3g052270	MtC93151_1_AA ATPase, F1 complex, gamma subunit	Transport	chlo	0	BB		P 2		78	e-148	AT2G33040	Nucleus / Nucleolus / Chloro
	MtC93153_1_AA unknown Blast: XP_003539713.1 PREDICTED:											
	uncharacterized protein									1.007.00		
Medtr4g059360	LOC100787578 [Glycine max]	Unclassified	extr	0		SP			58	1.00E-20	A12G28430	undefined
Medtr8g102300	MtC93161_1_AA Der1-like	Protein synthesis and fate	plas	TM 4					71	e-102	AT4G29330	undefined
Medtr8g105890	MtC93168_1_AA Like-Sm ribonucleoprotein-related, core	Protein synthesis and fate	cyto	0			P 1		93	1.00E-54	AT3G62840	undefined
unfound	MtC93171_1_AA unknown Blast:XP_003538104.1 PREDICTED: nicalin-1-like [Glycine max]	Protein synthesis and fate	cyto	TM 1		SP	P 1		55	2.00E-56	AT3G44330	endoplasmic reticulum, mitochondrion, plasma membrane, plasmodesma, vacuolar membrane, vacuole
	MtC93190 1 AA Syntaxin, N-							ft - CaaX Farnesyltransferase/ GGT1 - CaaX				plasma membrane.
Medtr2g088700	terminal	Transport	extr	0		SP	P1	Gerany lgerany ltransferase	58	4.00E-38	AT5G08080	plasmodesma
Medtr5g021060	MtC93228_1_AA Haem peroxidase, plant/fungal/bacterial	Cell rescue and defense	chlo	0			P 4		77	e-120	AT5G66390	EndoM system
	MtC93235_1_AA Blast: XP_003594954 Plasma membrane ATPase, plasma- membrane rroton-efflux P-ty re											
Medtr2g036650	ATPase[Medicago truncatula].	Transport	extr	TM 2		SP			81	3.00E-77	AT1G80660	PM / Vm
	MtC93300_1_AA unknown Blast: XP_003608785.1 COX VIIa-like											
Medtr4g101930	protein [Medicago truncatula] MtC93315_1_AA	Transport	cy to	TM 1					73	5.00E-22	AT4G21105	Vm /mitochondrion
Medtr4g106750	Xanthine/uracil/vitamin C permease	Transport	plas	TM 10			Р 3		83	0	AT1G49960	vacuole
Medtr7g110660	MtC93344_1_AA Anticodon- binding IPR015263:	Protein synthesis and fate	cyto	0			P 2		81	e-126	AT3G62120	Cy tosol /M /Plasm odesma
Medtr50013900	MtC93345_1_AA Ras small GTPase_Rab type IPR015600	Transport	chlo	0			Р 2	GGT2 - Rab Geranv læranv ltransferase	87	1.00E-65	AT2G44610	Golgi membrane, cell, cy tosol, membrane fraction, plasma membrane, plasmodesma, vacuolar membrare
Medalogoroyoo	MtC93375_1_AA unknown	Tuisport	emo					Corany ignaily industriate		11002 05	11120 11010	
Medtr4g094240	Blast:AAP42136.1 erg-1 [Solanum tuberosum]	Protein synthesis and fate	c y to	0	BB		P 1		83	5.00E-45	AT5G64260	Plasm ode sm a / cy tosol / CW
												chloroplast outer membrane, endoplasmic
AC233655_16	MtC93412_1_AA Cytochrome P450	Transport	c y to	0			P1		62	e-102	AT5G25900	reticulum, microsome
	elongation factor EF-1, alpha											mitochondrion,
Medtr4g019170	subunit	Protein synthesis and fate	c y to	1 TM			Р5		98	e-150	AT1G07930	plasmodesma, vacuole
Medtr5g093300,	Dihy drolipoam ide acety ltransferase,											
Medtr2g006820	long form MtD00114 1 AA	Energy metabolism	mito	0		 			68	e-138	AT4G26910	membrane, mitochondrion
Medtr5g011040	Hy droxy methy Iglutary I-coenzyme A synthase	Energy metabolism	extr	0			P5		79	e-156	AT4G11820	Cytosol /Plasmodesma
Moder@c011000	MtD00116.2_1_AA DOMON	Protain synthesis and fata	auto		DD				.,	2.00E 24	AT2C07200	anchored to membrane,
medit og011900	related	1 rowni sy nuiesis anu iate	Cyto	0	вв	1			44	2.00E-24	A15007590	anenoieu to piasina

1	1	1	1	1	1	1 1	1 1	1	1	1		1		
														region plasma membrane
					──									autosol autosolia
														ribosomo mitoshondrial
	MtD00118_1_A A GroEL like													matrix mitochondrion
Medtr10090140	chaperone ATPase	Protein synthesis and fate	cyto	0	BB						90	0	AT3G23990	vacuolar membrane
Medu 1g070140	MtD00123 1 A A Protein of	Tiotem sy nulesis and late	cyto	0									1115625770	vacuolar memorale
	unknown function DUF248													
Medtr5g040360	methyltransferase putative	Energy metabolism	chlo	TM 1				P 3			79	0	AT1G26850	Golgi /M
ineda 550 10500	MtD00145_1_AA Protein of	Energy metabolism	emo		+			10				<u> </u>	1111020000	Congr /m
	unknown function DUF248.													
Medtr8g055840	methyltransferase putative	Energy metabolism	chlo	TM 1				P 3			79	0	AT1G26850	Golgi /M
	MtD00162 1 AA unknown Blast:	a a construction of the second s			<u> </u>			-						
	XP_003610290.1 Eukary otic													
	initiation factor iso-4F subunit p82-													
Medtr4g130570	34 [Medicago truncatula]	Protein synthesis and fate	nucl	TM 1							50	3.00E-27	AT5G57870	Cytosol / Nucleus
	MtD00173 1 AA Blue (type 1)													
Medtr49114870	copper domain	Transport	extr	TM 1		100	SP	P 1			46	2.00E-19	AT5G20230	PM/V/
inedu igri ioro	MtD00177 1 AA Mitochondrial	Transport	onu	1		100				-		2.001 17	1110020200	1117, 17
	import inner membrane translocase													Mitochondrion /
unfound	subunit Tim 17/22	Transport	cyto	TM 2				P1			65	4.00E-52	AT2G37410	mitochondrion M
dinound	MtD00178 1 AA Protein of	Transport	0,10									1002 02	1112037110	
	unknown function DUF248.													
Medtr1g075900	methyltransferase putative	Energy metabolism	chlo	TM 1				P 2			70	e-145	AT5G14430	Golgi / Vm / CW
8	MtD00211 1 AA Protease-									1				
	associated PA IPR007369:Peptidase													
	A22B, minor histocompatibility													endomembrane system,
Medtr1te116950	antigen H13	Protein synthesis and fate	plas	TM 8			SP	Р7			53	e-128	AT1G05820	integral to membrane
	MtD00232_1_A A Cleft lip and		P											
Medtr30098210	palate transmembrane 1	Cell cycle and DNA processing	cyto	TM 2	BB						66	e-132	AT5G08500	undefined
ineda 55070210	MtD00227_1_A A Drotoco	Con office and Britt processing	0,10	12	- 55					Des dists d. s.s.		0 102	1112000200	undernied
Medtr1a106940	MID0025/_1_AA Protease-	Protein synthesis and fate	chlo	TM 1			SD	Р 4		my ristov lated	58	4.00E-88	AT4G20110	M/ golgi network
Wedu 1g100940	associateur A	Frotein synthesis and late	CIIIO	1 1/1 1	4		J	14		my ristoy rateu		4.00E-88	A14020110	ablero / gutoso / gutos
									ft - CaaX Farnesyltransfarase/					ribos / /PM /
	MtD00238 1 A A ATP-binding								GGT1 - CaaX					plasmodesma / V / Vm /
Medtr1g025430	region ATPase-like IPR015566	Energy metabolism	extr	TM 2		GPI	SP	P4	Gerany loerany Itransferase		80	2.00E-85	AT4G24190	ER / Nucleus
1000015020100	MtD00256 1 AA Pentidase A22B	Energy metabolism	ona	1	+	0			Ceruny igrany numbrerus			2.002 05		endoplasmic reticulum
	minor histocom patibility antigen													endoplasmic reticulum
Medtr1g008280	H13	Protein synthesis and fate	nlas	TM 8				P 1			78	e-147	AT2G03120	membrane
Medu 1g000200	MtD00321_1_A_A_6	Trotein sy nulesis and late	pius	1110	+			11			10	0 147	1112005120	memblane
	phosphogluconate deby drogenase													chloroplast stroma
AC146721 1013	C-terminal extension	Energy metabolism	chlo	0				P 1			87	0	AT3G02360	cy tosol, peroxisome
	MtD00326_1_A A Ribosomal				+							~		cytosol Ribos / M / chloro
Madtr 20028250	protein I 20	Protain gunthasis and fata	auto				SD				79	0.114	AT2C12580	
wedu 2g036230	MtD00339 1 A A Deptidee A 22P	r totenii sy nuiesis anu iate	Cylo		┿		sr				18	C-114	A15015580	endoplasmic reticulum
	minor histocompatibility anticer													andoplasmic reticulum,
Medtr1g008280	H13	Protein synthesis and fate	plas	TM 8	1			Р2			76	e-145	AT2G03120	membrane
111cuu 12000200	MtD00351_1_A A unknown Plast	r rotein sy nulesis and late	Pias	11110						1	70	0-145	112005120	membrane
	XP_003607043 1 Signal recognition				4									
	particle receptor subunit beta				4									
Medtr40071550	[Medicago truncatula]	Transport	cyto	TM 1	4			P 2			69	e-104	AT5G05670	ER / PM
	MtD00388 1 A A unknown Blaet	mansport	5,00	1101 1						<u> </u>	57	0 104	1115005070	
	XP_003615846.1 Cytochrome P450				4									M / RE /Mitochondrion /
Medtr5g073020	71B35 [Medicago truncatula]	Transport	plas	TM 2	4		SP	P 3			45	e-120	AT4G31500	PM
modu 5g075020	MtD00400 1 AA Nonasnanin	ransport	Pias	1 101 2	4		51	13		1	45	0-120	714051500	Golgi apparatus plant-
1	11111101103pailli	1	1	1	1				1	1	-			Congrapparatus, plane
	(TM9SE) IPR005479 Carbam ov 1													type cell wall
Medtr6g074910	(TM9SF) IPR005479:Carbamoyl-	Transport	chlo	0			SP	P1			76	4 00E-74	AT2G01970	ty pe cell wall, plasmodesma, vacuebr

1	binding										membrane
Medtr2g012560	MtD00493_1_AA SCAMP	Transport	plas	TM 4				65	e-109	AT1G61250	РМ
	MtD00498_1_AA Protein of unknown function DUE579_plant										
	Blast: AFK44106.1 unknown										
Medtr3g085270	[Medicago truncatula] MtD00512_1_A A Translation	Unclassified	cy to	TM 1		P 3		67	2.00E-90	AT1G27930	undefined
	elongation factor EF-1, alpha										mitochondrion,
Medtr6g021800	subunit	Protein synthesis and fate	cy to	0		P 4		98	e-150	AT1G07930	plasmodesma, vacuole
	reductase/succinate dehydrogenase,										
	FAD-binding site IPR013027:FAD-										
Medtr5g020050	disulphide oxidoreductase	Transport	mito	0		Р 3		83	3.00E-86	AT2G18450	Mitochondrion
	MtD00538_1_AA Short-chain									Í	
Medtr3g086210	dehydrogenase/reductase SDR MtD00571_1_AA Protein of	Energy metabolism	chlo	TM 2		P 4		63	e-124	AT1G67730	ER/M
	unknown function DUF1682 Blast:										
	XP_003592937.1 hypothetical protein MTR_2g005930 [Medicago										
Medtr2g005930	truncatula]	Unclassified	cyto_nucl	TM 2				60	e-120	AT5G49945	ER
											clathrin-coated endocytic
Medtr4g030140	MtD00588_1_AA Dy nam in	Transport	cy to	0	BB			78	3.00E-93	AT1G59610	Cy tos / V
M. 4-4-120070	MtD00644_1_AA Diacy lgly cerol	Circuit to a short in a		0		D 2			. 114	472010720	membrane, plasma
Medtr4g129070	kinase, cataly ic region	Signal transduction	cyto	0		P 2		01	e-114	A12G18/30	cell wall, chloroplast.
											mitochondrialmatrix,
Medtr2g010020	MtD00691_1_AA Heat shock protein 70	Cell rescue and defense	chlo	TM 1	BB	P 3		82	0	AT5G09590	mitochondrion, vacuolar membrane
	MtD00713_1_AA Helix-hairpin-	A B A B B B B B B B B B B									chloroplast, chloroplast
Medtr5g074690	MtD00721 1 AA Protein of	Cell cycle and DNA processing	cy to	0		P 2		71	0	AT1G06950	envelope, membrane
	unknown function DUF250 Blast:										chloroplast, chloroplast
	XP_003601250.1 Phosphate/phosphoe.nolpy.ruyate										envelope, mitochondrion, plastid_plastid_inner
Medtr3g077640	translocator [Medicago truncatula]	Transport	chlo	TM 7	BB	P 1		79	e-144	AT5G33320	membrane
Medtr1g106830	MtD00747_1_AA Calcium-binding EE-hand	Signal transduction	cyto	0		P 1		69	0	AT2G27040	Cajal body, nuclear euchromatin, nucleolus
inclui Igroooso		bightir i unisque don	0,0	U.S.				0,		111202/010	
AC225517_18	MtD00775_1_AA Unknown	Unclassified	cy to	TM 1				63	6.00E-81	AT5G11560	ER/PM/V/Vm
unfound	MtD00815_1_AA Tetratricopeptide- like helical	Protein synthesis and fate	cvto	0	BB	P 2		59	e-152	AT1G67680	undefined
		, , , , , , , , , , , , , , , , , , ,	-								chloroplast, chloroplast
											envelope, membrane,
	MtD00845_1_AA Protein of										plasmodesma, vacuolar
Medtr2g018780	unknown function DUF221	Unclassified	plas	TM 8		P 2		64	0	AT1G30360	membrane, vacuole
	XP_003609284 NADH-										intermembrane space,
M. 4-4-114022	cytochrome b5 reductase-like	Turner		TM 1		DI			100	475020080	mitochondrion, plant-type
Medtr4g114030	MtD00859_1_AA Peptidase M48,	1 ransport e	cyto	1M I		r1		67	e-106	A15G20080	cen wall
Medtr7g078760	Ste24p	Protein synthesis and fate	E.R.	TM 4				80	0	AT4G01320	V / ER

Medtr7g006280	MtD00865_1_AA ENTH/VHS IPR013809:Epsin-like, N-terminal	Transport chlatrin endocy tosis	nucl	0					77	5.00E-94	AT2G43160	PM / Vm / golgi
Medtr5te046150	MtD00882 1 AA Upknown	Unclassified	nlas	TM 3	BB	SD			54	9.00E-36	AT4G14420	FD
Wedu Steo40150	MtD00884_1_AA cytochrome P450		pias	1115	DD	51			54	9.00E-50	A14014420	EK
Medtr1g019410	monooxy genase CYP5IG1 [Medicago truncatula].	Transport €	vacu	TM 1		SP			82	0	AT1G11680	ER/PM
Medtr2g086290	MtD00921_1_AA Alpha/beta hy drokse fold-1	Energy metabolism	chlo	TM 2			P 1		61	e-132	AT2G36290	ER
Medtr7g028250	MtD00926_1_AA Oligopeptide transporter OPT superfamily	Transport	plas	TM 9			P 2		73	0	AT3G27020	Vm
Medtr3g100100	MtD01002_1_AA Tetratricopeptide TPR 1	Protein synthesis and fate	chlo	TM 1	BB				41	2.00E-29	AT5G65520	undefined
Medtr4a103520	MtD01017_1_AA Blast: ADM32503 purple acid phosphatase [Glycine max]Purple acid phosphatase, N-terminal (Calcineurin-like phosphoesterase; pfam00149) metallocesterase.ilike	Energy metabolism	уаси	TM 1		SP			58	3.00E-59	AT4G24890	cell wall
Modtr9r072210	MtD01050 1 AA Batiaulan	Transport	auto	TM 1					72	5.00E 57	Modtr9a072210	ED
Medi 8g072510	MtD01050_1_AA Blast: XP_003600480 RuvB DNA helicase-like protein [Medicago	Transport	cyto						12	0	Medil 8g072310	EK
Medtr3g061640	truncatula]. MtD01112_1_AA_unknown_Blast:	Cell rescue and defense	cy to	0	BB				80	2.00E-86	AT5G67630	Chloro Nucleolus
	XP_003517628.1 PREDICTED: probable LRR receptor-like serine/threonine-protein kinase											
Medtr8g014820	At4g29180-like [Gly cine max]	Signal transduction	extr	TM 1	BB	 SP	P 1		52	e-111	AT4G29180	EndoM sy stem
Made:4:072400	MtD01191_1_AA unknown Blast: XP_003607198.1 Symptotagmin-7 Ubaciioaco tumontoida	Iransport okMay be involved in Ca2+- dependent excey tosis of secretory vesicles through Ca2+ and phospholipid binding to the C2 domain or may serve as Ca2+ sensors in the process of vesicular tafficking and	orte	TM 1					79	1.00E.66	472620000	endosome, internal side of plasm a mem brane, intracellular, mem brane, plasm a mem brane, plasma dama a nausch
Medtr4g073400	MtD01219_1_AA Blast: XP_003602883	e xocy tosis	extr	1 M 1					/8	1.00E-00	A12G20990	piasmodesma, vacuoe
	ABC transporter (lipid) the ABCA subfamily mediates the transport of a variety of lipid											
Medtr3g099990	compounds.	Transport	c y to	0			P 7		72	e-171	AT5G61730	plasm a mem brane
Medtr4g050870	carboxy lase carboxy l transferase, beta subunit	Energy metabolism (Lipid bios)	nucl	0			P 3		72	6.00E-87	ATCG00500	chloroplast, chloroplast envelope, membrane
	MtD01243_1_AA Blast: XP_003630450 Calnexin-like											chloroplast, endoplasmic
Medtr8g095680	protein [Medicago truncatula].	Protein synthesis and fate	vacu	TM 1		SP	P 1		78	8.00E-75	AT5G07340	vacuolar mem brane
Medtr1g088680	MtD01250_1_AA Blast: XP_003591547 ABC transporter C family protein [Medicago truncatula].	Transport	chlo	TM 3			P 5		68	e-176	AT2G47800	plant-ty pe vacuole, plasm a membrane, plasm odesm a, vacuolar membrane, vacuole
	MtD01296_1_AA Blast: XP_003615764 Serine											
Medtr5g072020	paimitoy Itransferase [Medicago truncatula].	Energy metabolism (lipid meta)	chlo	TM 1			P 1		24	1.00E-31	AT3G48780	EndoM sy stem

AC222655_16	MtD01244_1_AA_Cutoabrome_D450	Transport	able	TM 2			D 1		61	1 00E 67	475625000	chloroplast outer membrane, endoplasmic
AC255055_10	MtD01344_1_AA Cytochronie P430	Transport	cillo	1 1/1 2			F I	GGT2 Pab	01	1.00E-07	A13G23900	reuculum, interosome
Medtr7g051940	binding protein domain IPR015595:	Signal transduction	cy to	0			P 2	Gerany lgerany ltransferase	89	2.00E-84	AT2G31680	Cytosol
	MtD01393_1_AA Blast XP_003627062 Receptor-like protein kinase [Medicago											
Medtr8g014700	truncatula].	Signal transduction	extr	TM 1		SP			51	4.00E-57	AT1G51790	EndoM sy stem
Made 7-074070	MtD01494_1_AA unknown Blast: XP_003623651 hypothetical protein MTR_7g074070 [Medicago	Unalassifiad	abla	TM 2	DD				64	5 00E 77	47200640	aklara anyalan (aklara
Medii /g0/40/0	duncatulaj.	Unclassified	cillo	1 1/1 2	DD				04	5.00E-77	A15008040	cell wall, cy tosol.
Medtr7g111590, Medtr5te026750	MtD01561_1_AA Ribosomal protein L13e	Protein synthesis and fate	chlo	0					86	9.00E-98	AT3G49010	cy tosolic large ribosom al subunit, cy tosolic ribosome, membrane, nucleolus, plasma membrane, plasmodesma, ribosome, vacuolar membrane
	MtD01562_1_AA											
Medtr4g049540	Blast:NP_508607 B-cell receptor- associated 31-like protein [Arabidopsis thaliana].	Transport (protein)	plas	TM 3					70	3.00E-84	AT5G42570	ER / Plasmodesma / Vm
	MtD01568_1_AA Blast:											
Medtr70099920	centrom ere/m icrotubule binding protein cbf5, putative, partial [Ricinus communis]	Cell cycle and DNA processing	cyto	0			P 2		89	e-108	AT3G57150	Nucleolus / Cy tso Plam ode sm a
Medu 7g077720	MtD01574 1 AA E-classP450	Centeyele and Divit processing	<i>cy to</i>	Ū			12			0 100	115657150	Thanodeana
Medtr7g027960	group I	Transport	chlo	TM 1		SP			30	4.00E-37	AT5G06900	EndoM system
Mader7-000020	MtD01586_1_AA unknown Blast:XP_003625506.1 Eukary otic translation initiation factor 3 subunit	Destain grathasis and fats	auto	0			D 1		94	a 154	AT4C11400	DM
Medii 7g099920	MtD01618 1 AA Sugar transporter	r toteni sy nulesis and late	Cylo	0			11		04	6-134	A14011420	r ivi
Medtr7g005910	superfamily IPR011701:Major facilitator superfamily MFS_1	Transport	cy to	TM 6	BB				69	e-103	AT2G43330	Vm /V
Medtr8g107640	MtD01690 1 AA Annexin	signal transduction	cvto	0			P 2		51	1.00E-93	AT1G68090	undefined
	MtD01733 1 AA Linker histone,											
Medtr8g106980	N-terminal	Cell cycle and DNA processing	nucl	0	BB				 58	2.00E-14	AT1G48620	chloroplast, nucleolus
Medtr8g085380	MtD01782_1_AA Blast: XP_003629679 Peptide-N(4)-(N- acety l-beta-glucosaminy l)asparagine amidase	Protein synthesis and fate	nucl	0			P1		68	5.00E-70	AT1G04850	Cytosol
~	MtD01837_1_AA unknown Blast:											
Mader2 = 008000	XP_003602786 Protein DEK	Call avala and DNA measuring	mual	0			D 1		69	1.005.55	ATEC (2550	undofine d
wedu 5g098990	MtD01946_1_AA Blast:	Cen cycle and DNA processing	nuci	0			11		08	1.00E-33	A15005550	undefined
M. 4.1.000050	XP_003539999 em bry ogenesis- associated protein EMB8-like			0			D 1		68	. 142	172050700	and fined
Medu 1g090050		Energy metabolism	cillo	U			r I		08	e-145	A15050790	chloroplast, mitochondrial
	MtD01985_1_AA Mitochondrial import inner membrane translocase,											inner membrane, mitochondrial inner
Medtr4g078050	subunit Tim 17/22	Transport	E.R.	TM 2			P 3		52	2.00E-31	AT3G10110	membrane presequence

												translocase complex
Medtr3g116150	MtD02058_1_AA unknown Blast: XP_003602786.1 Protein DEK [Medicago truncatula]	Cell cycle and DNA processing	chlo	TM 1					70	2.00E-36	AT2G33585	undefined
Medtr2g013930	MtD02094_1_AA Eukary otic translation initiation factor 3, subunit 7	Protein synthesis and fate	nucl	0			Р 2		59	e-111	AT4G20980	Chloro
	MtD02197_1_AA unknown Blast: XP_003618550.1 Mitochondrial S1 ribosomal protein [Medicago											
Medtr6g012880	truncatula]	Protein synthesis and fate	chlo	TM 1			P 3		28	1.8	NS	chloroplast
Medtr2g076670	MtD02232_1_AA Phosphoenolpy ruvate carboxy lase	Energy metabolism	chlo	0			P 2		87	e-170	AT3G14940	Cy tosol
Medtr39096670	MtD02247_1_AA Blat: XP_003526874 PREDICTED: farnesy lcy steine ly ase-like [Glycine max].	Protein synthesis and fate	chlo	TM 1	BB	SP	P1		48	2.00E-55	AT5G63910	Vm / V
Medtr4g018750	MtD02273_1_AA Adenine nucleotide translocator 1	Transport	extr	TM 2			P 2		79	e-117	AT3G54110	mitochondrial inner M / mitochondrion / plamsodesma /chloro /
	MtD02291_1_AA	_										
Medtr8g066340	Sy ntaxin/epim orphin fam ily	Transport	cy to	TM 1	BB		P1		65	4.00E-80	AT4G17730	VM apoplast, cell wall,
M. J. 7. 024200	MtD02358_1_AA Heat shock						P 2		86	- 170	472012590	chloroplast, cytosol, cytosolic ribosome, nuclear matrix, plasma membrane, plasmodesma, vacuolar membrane,
Wedii 7g024390	MtD02436_1_AA Blast:	lipid-dependent signal	III IIO	0			F 2		00	e-179	A15012580	vacuoie
Medtr2g025550	XP_003594202 Phosphatidate cy tidy ly ltransferase [Medic ago truncatula].	transduction cascade, phosphoinositide biosy nthesis in the plasma membrane	chlo	TM 1			P 1		63	3.00E-35	AT4G22340	EndoM system / M
Medtr1g087320	MtD02555_1_AA unknown Blast: XP_003591427.1 Transmembrane protein [Medicago truncatula]	Unclassified	plas	TM 5					69	2.00E-83	AT3G62580	EndoM sy stem
Medtr8g035760,	MtD02573 1 AA E-class P450											
AC225458_103	group II	Transport	chlo	TM 1					56	4.00E-53	AT2G45510	ER
Medtr5g095230	MtD02601 1 AA Cytochrome P450	Transport	cyto	TM 1					50	1.00E-51	AT3G14620	EndoM system
Moder 1 c000500	MD00702 1 A A Poticular	Transport endophsmic reticulum tubular network maintenance, May be involved in secretion or in membrane trafficience	ED	TM 2					62	2.00E 60	AT1664000	endoplasmic reticulum membrane, endoplasmic reticulum tubular network, integral to cy tosolic side of endoplasmic reticulum membrane, plaemetheme
wicdu 1g099500	MtD02820_1_AA Protein kinase	u arrie Milg	L.R.	1 1V1 2					02	2.0012-09	A11004050	memorane, prasmouesina
Medtr1g041150	IPR002048:Calcium-binding EF- hand	Signal transduction	c y to	0				Predicted as my ristoy lated	79	e-105	AT3G57530	PM / Cy tosol / plam odesma / nucleus
	MtD02891_1_AA unknown Blast:XP_003607364.1 hypothetical											chloroplast, chloroplast envelope, chloroplast
Medtr4g077000	protein MTR_4g077000 [Medicago truncatula]	Unclassified	chlo	TM 2	BB		P 1		73	e-125	AT5G12470	inner membrane, mitochondrion, plastid

													membrane, vacuole
													chloroplast, chloroplast
N. 1. 2. 101000	MtD03001_1_AA ABC-2 type												mitochondrion, plasma
Medtr2g101090, Medtr2g100990	ABC transporter IPR013581:Plant PDR	Transport	plas	TM 5				P 1		61	e-140	AT1G59870	membrane, vacuolar membrane
	MtD03039_1_AA Flavodoxin/nitric			_									
Medtr2g081810	oxide synthase	Transport €	cyto	0						87	3.00E-93	AT5G54500	M/PM/V/Vm
Medtr59027790	(Secretory carrier-associated membrane protein)	Transport prot_endo_exo	cyto	TM 1				P 3		63	3.00E-45	AT1G32050	Mitochondrion /PM
	MtD03329_1_AA Blast: XP_003541360 REEDICTED: plastidia glugoso												
Medtr3g080240	transporter 4-like [Gly cine max].	Transport (hexose)	vacu	TM 7	BB					78	e-123	AT5G16150	chloroplast envelope,
	MtD03384_1_AA Blast:												plant-type vacuole, plasma
	XP_003628563 Multidrug resistance protein ABC transporter												membrane, plasmodesma, vacuolar membrane
Medtr1g088680	family [Medicago	Transport	extr	TM 4				Р 3		58	e-133	AT2G47800	vacuole
	MtD03445_1_AA Sigma-54 factor,								CCT2 Dat				
Medtr6g021790	small GTPase, Rab type	Transport	cyto	0				Р 3	Gerany Igerany Itransferase	81	e-100	AT4G35860	Chloro
	MtD03607_1_AA Blast:												
	ACM68927 6-	Energy metabolism (Pentose											chloroplast chloroplast
AC146721_1013	[Cucumis sativus].	shunt)	chlo	0	BB					85	e-128	AT1G64190	stroma, cy tosol, membrane
Medtr2g028580	MtD03699_1_AA Protein kinase	Signal transduction	nucl	TM 1				P 1		46	e-118	AT5G49760	plasma membrane, vacuole
Medtr1g088480	MtD03747_1_AA NAD-dependent epimeraæ/dehy dratase	Transport	chlo	0						85	3.00E-58	AT3G53520	M /Golgi /
Medtr4g132110	MtD03755.2_1_AA Haem peroxidase, phnt/fungal/bacterial	Cell rescue and defense	cyto	TM 1			SP	P 2		81	e-152	AT4G21960	EndoM sy stem
	MtD03801_1_AA Blast: XP_003626280 Protein												
M 1 5 112420	AUXIN RESPONSE [Medicago			TN (1						50	1.005.54	171054000	ER / Vm /
Medtr /g113420	truncatula] (auxin polar transport) MtD03898 1 AA Pleiotropic drug	Transport	mito	1 M 1				-		50	1.00E-74	A11G54990	Mitochondrodiun
Medtr7g098370,	resistance protein PDR, ABC												
Medtr7g098760	transporter associated	Transport	chlo	TM 2				P 3		71	e-168	AT1G15520	PM
Medtr7g113420	MtD03927_1_AA Protein AUXIN RESPONSE	Transport	mito	TM 1						50	1.00E-74	AT1G54990	ER / Vm / Mitochondrodiun
													endoplasmic reticulum, membrane, mitochondrion, plant-type cell wall, plasma
unfound	MtD04169_1_AA Ribophorin II	Protein synthesis and fate	chlo	TM 3	BB			P 2		49	4.00E-73	AT4G21150	vacuolar membrane
	MtD04199_1_AA Blue (type 1)												
Medtr2g088990	copper domain	Transport	extr	TM 2	BB	GPI	SP			54	8.00E-30	AT3G60270	Anchord to M
M h 1 000500	XP_003628563 Multidrug resistance protein ABC transporter	T						D .2			107	1720 17000	membrane, plasmodesma, vacuolar membrane,
Medtr1g088680	Tamily [Medicagofruncatula]. MtD04425 1 AA yon Willebrand	1 ransport	chlo	0	+	<u> </u>		P 3		 61	e-137	A12G47800	CUL4 RING ubiquitin
Medtr4g071130	factor, type A IPR006692:Coatomer WD associated region	Transport	chlo	0	BB			P 1		69	0	AT1G62020	ligase complex, cy tosol, intracellular, membrane,

1	IPR010714:Coatomer alpha subunit,				1								plasmamembrane
	C-terminal MtD04430 1 A A Blast												
	XP_003616753 Cysteine-												
Medtr5g083910	rich receptor-like protein kinase	Signal transduction	extr	TM 1			SP			54	2.00E-43	AT3G14840	PM / plasmodsma /
Medal5g005910	MtD04471_1_AA Blast:	Signal a ansate don	exu	1.011			51				2.001 45	1115014040	1 W/ plushodanu /
	XP_003593681 Somatic												
	[Medicago truncatula].Leucine rich												
Medtr2g014960	repeat, N-terminal	Signal transduction	nucl	0	BB		SP	P 1		42	1.00E-35	AT1G79620	EndoM system
Medtr8g020610	MtD04586_1_AA Cupin 1 IPR007113	Energy metabolism	chlo	TM 1	BB		SP	P 1		52	5.00E-56	AT1G72610	extracellular matrix
Medil 0g020010	11100/113.	Energy methodian	emo	1.011	55			••		52	5.001 50	1110/2010	chloroplast, chloroplast
													envelope, integral to chloroplast outer
	MtD04793_1_AA Bacterial surface												membrane, membrane,
Medtr4g064780	antigen (D15) MtD05273 1 A A unknown Blast	Transport	cyto	0						82	e-136	AT3G46740	vacuolar mem brane
	XP_003603422.1 hy pothetical												
Modtr2a107550	protein MTR_3g107550 [Medicago	Unclassified	able	TM 2	DD			P 2		72	5 00E 81	AT5C11280	undefined
Wedu Sg107550		Oliciassified	cillo	1101 5	DD			13		12	5.00E-81	A15011280	cell, cell wall, chloroplast,
	MtD05462_1_AA Blast:												cytosol, endoplasmic
	containing protein [Medicago												envelope, plasma
Medtr3g098420	truncatula].	Protein synthesis and fate	cy to	0	BB			P1		70	2.00E-57	AT5G07350	membrane
Medtr8g101880	MtD05491_1_AA ATPase, F0 complex, subunit G, mitochondrial	Transport	cyto_nucl	0				P 1		75	3.00E-20	AT4G29480	Mitochondrion
Ť	MtD05516_1_AA unknown Blast:		-										
	beta-mannosyltransferase [Medicago												
	truncatula] Cellulose synthase-like	Energy metabolism (cw											
Medtr4g055520	protein	biogenesis, degradation) Transport (vacuolar-sorting	plas	TM 3				PI		84	0	AT5G22740	undefined
		receptor (VSR) involved in											
	MtD05586_1_AA unknown Blast: XP 003610620.1 Vacuolar-sorting	from Golgi apparatus to											
Medtr5g005100	receptor [Medicago truncatula]	vacuoles)	chlo	TM 1			SP			76	8.00E-69	AT2G14740	membrane
Medtr8g035810, AC225458_94													
AC225458_98,													
Medtr8g035820, AC225458_99													
AC233070_1006,													
AC233070_1007, AC233070_1011	MtD05591 1 A & Cytochrome P450	Transport	cyto	0				P 1		58	3.00E-85	AT2G45510	FR
AC255070_1011	MID05571_1_AA Cytochtonic 1450	Transport	Cy to	0				11		58	5.00E-05	A12045510	LK
Medtr3g116500	MtD05593_1_AA WD40-like	signal transduction	nucl	0				P 5		76	e-144	AT4G34460	PM//RE/
	protein SH3-like IPR012340:Nucleic												
M. 4.4.120010	acid-binding, OB-fold, subgroup	Destain mathemic and 64	.1.1.					DI		01	1.005.74	471012050	and Card
wedtr4g130910	MtD06161 1 AA Blast:	Transport (May be involved in	cnio	0				r1		91	1.00E-74	A11G13950	undefined
	XP_003589515	Ca2+-dependent exocy tosis of											
	Synaptotagmin-7 [Medicago truncatula].C2 calcium-dependent	secretory vesicles through Ca2+ and phospholipid binding											
Medtr1g025550	membrane targeting	to the C2 domain or may serve	extr	TM 1						68	e-122	AT1G20080	undefined

	-				-				-				
		as Ca2+ sensors in the process of vesicular trafficking and											
	MtD06341_1_A A_Blact:	exocy tosis)											
	AAK92807 putative receptor												
	protein kinase [Arabidopsis thaliana] Leucine rich repeat N-												
Medtr4g113100	terminal	Signal transduction	chlo	TM 1	BB		SP	P 1		66	6.00E-73	AT2G26730	РМ
	MtD06397_1_AA Blast:	Energy metabolism (This is a family of putative S adapage)											
	probable methy ltransferase PMT20-	L-methionine (SAM)-											
Medtr5g026930	like [Gly cine max].	dependent methy ltransferase)	cy to	TM 1				P 2		74	0	AT4G19120	undefined
Medtr2g035100	MtD06407_1_AA Bet v I allergen	Cell rescue and defense	cyto	0	BB					30	3.00E-04	NS	membrane
	MtD06497_1_AA Blast XP 003524448 PREDICTED:												
	PROTEIN: monodehy droascorbate												
unfound	reductase, chloroplastic-like [Glycine max]	Cell rescue and defense (cold, cad)	cyto	0	BB			P1		79	6.00E-98	AT1G63940	Chloro / M / Mitochondrion
amound	MtD06527_1_AA Blast:	cuu)	0,10	0	55						0.002 70	1111003710	anchored to membrane,
	XP_002316776 fasciclin-like arabinogalactan protein partial	Protein synthesis and fate (cell											anchored to plasma membrane, cell wall
Medtr5g098420	[Populus trichocarpa].	surface adhesion protein)	chlo	0				P 1		61	1.00E-95	AT5G55730	plasma membrane
	MtD06754_1_AA Blast: XP 003622471 Mechanosensitive												
	ion channel domain-containing												
	protein / MS ion channel domain- containing protein [Medicago												chloroplast, chloroplast
Medtr7g038120	truncatula].	Transport	golg	TM 4						63	1.00E-69	AT4G00290	envelope
													chloroplast, cy tosol, membrane, nucleolus,
													plasma membrane,
Medtr2g069310, Medtr2g069050	MtD06868_1_AA Elongation factor Tu	Protein synthesis and fate	chlo	0				P 6		92	0	AT1G56070	plasmodesma, vacuolar membrane
													chloroplast, chloroplast
	MtD06942 1 AA Inorganic H+												envelope, endosome membrane, membrane,
	pyrophosphatase Blast:												mitochondrion, plant-ty pe
	xP_003609464 Vacuolar proton-inorganic pyrophosphatase												vacuole, plant-type vacuole membrane,
	[Medicago truncatula]. IPR004131												plasma membrane,
Medtr4g115970	Py rophosphate-energised proton pump	Transport (proton)	plas	TM 5	BB			P 2		95	2.00E-55	AT1G15690	vacuolar membrane, vacuole
Madus = 020520	MtD07002_1_AA Mitochondrial	Tronomont		TM 2	DD			D 2		74	2.00E 65	ATTEC 46800	chloroplast, mitochondrion,
Medil 5g050550	MtD07207_1_AA Blast:	Transport	cyto	1 IVI 2	DD			F 2		/4	5.00E-05	A15040800	piasuu
	NP_190214 receptor-like												
Medtr2g096160	thaliana]	Signal transduction	c y to	0						81	e-123	AT3G46290	PM / plasmodesma /
	MtD07266_1_AA Blast:												
	protein kinase, putative [Ricinus												
Medtr7g077150	communis].	Signal transduction	cy to	0		ļ		P 4		88	e-129	AT1G63500	PM / plasmodesma /
	XP_003593671 hypothetical												
Mader 2c014960	protein MTR_2g014860 [Medicago	Unplaceified	abla	TM 1						62	4.005-40	AT1C29510	undefined
	I IIIIICAIIIIA I	Unclassified	CHIO			1	1	1		02	4.00E-40	A 10128510	undermed

1	MtD07370 1 AA Blast:	I		1	1	1	l						
	XP_003541361 probable												
	methyltransferasePMT8-like												
Medtr1g075900	[Glycine max].	energy metabolism	mito	0	-			P1		74	0	AT3G23300	Golgi / Nucleus / Vm
	MtD0/390_1_AA unknown Blast:CAA61298 Nuclear												
	migration protein nuM1												
Medtr4g074930,	[Medicago sativa] RNA-binding												
Medtr4g074800	protein	Cell cycle and DNA processing	chlo	0	BB					55	4.00E-61	AT3G18610	undefined
	MtD07414_1_AA Blast:												
	XP_003531816 probable												
	LRR receptor-like serine/threonine-												
Medtr59083910	[Glycine max].Leucine-rich rereat	Signal transduction	extr	TM 1			SP	P3		50	1.00E-56	AT1G56130	M / PM
medalogoosylo	MtD07435_1_AA_Glycosy1	bigini a anouavaon	e.nu							50	11002 50	1111050150	
AC235753_1023	transferase, family 48	Cell rescue and defense	cyto	TM 3				P 1		90	e-117	AT2G36850	PM / plasm ode sma
	MtD07440_1_AA Blast:												
	XP_003528881 probable												
M 1 7 07(150	methyltransferasePMT13-like	energy metabolism (cell wall		0				D 1		70	155	171000740	
Medtr/g0/6150	[Glycine max].	Transport (Custing	cyto	0	-			PI		/5	e-155	A14G00740	Golgi /Integral to M
		Transport (Cysune Transporter) Part of the ABC											
		transporter complex											
	MtD07462_1_AA Blast:	tcy JKLMN involved in L-											
	ADN33725 mannose-P-dolichol	cystine import. Is also involved											
M. 4.1.019900	utilization defect 1 protein [Cucumis	in cy stathionine, djenkolate,		TM 2	DD			D 2		71	C 00E 02	ATT4C07200	
Medir1g018800	melosubsp.meloj.	and S-metny by steine transport	vacu	1M 5	вв			P 2		/1	0.00E-95	A14G07590	M
Medtr6g008530	MtD0/4/5_1_AA E-class P450, group I	Transport	chlo	0				P1		55	2.00E-68	AT4G31940	EndoM system
ineda ogooobbo	MtD07825 1 AA Blast:	Transport	emo	0				• •		55	2.0012 00	1111051910	Endorr by stem
	AAK92807 putative												
	receptor protein kinase [Arabidopsis												
Medtr4g113100	thaliana].	Signal transduction	nucl	0				P 2		81	7.00E-87	AT2G26730	PM
		Transport (Major intrinsic											
		Members											
		of the MIP											
		superfamily function as											
		membrane channels that											
		selectively											
		molecules, and											
		ions out of and											
		between cells. Aquaporins											
	MtD08074_1_AA Blast:	facilitate the transport of water											
Mader2004270	XP_003597235 Aquaporin	and small neutral solutes across		TMG						77	a 121	AT5C 60660	Dia any a da any a
Wedii 2g094270	PIP2-7 [Medicago u ulcatula].	centinemorates	cyto	1 1 1 0						11	e-151	A13000000	Plasifiodestra
Medtr1g116470	transferase family 48	Cell rescue and defense	nucl	TM 3						84	1.00E-71	AT3G07160	PM
	MtD08369 1 AA Blast:	con resource and derense		1111.5						04	1.001 /1	1175007100	
	XP_002264400												
	PREDICTED: elongation factor 1-												cell wall, cy tosol,
	gamma-like [Vitis												membrane, plasma
Medtr2r005570	vinitera]Elongation factor 1, gamma	Protein synthesis and fate	cuto	0				P 2		67	e-170	AT1G57720	membrane, plasmodesma,
wiedu 2g005570	MtD08475 1 AA Blast	1 rowni sy nuiesis and late	Cyto	0				1 4		07	0-170	A11057720	vacuoie
	XP_003521403 PREDICTED:												
AC235487_5	cell division cycle protein 48	Cell cycle and DNA processing	c y sk	0				P 4		94	e-143	AT5G03340	CW / Cy tosl

1	homolog [Gly cine max]												
													the second sector and such as
													cy tosol, cy tosolic
													ribosome, membrane,
	MtD08485_1_AA Ribosomal												nucleus, plasma
Medtr3g095810	form	Protein synthesis and fate	cy to	0						82	e-107	AT1G72370	small ribosomal subunit
Medtr2g101090,	MtD08577_1_AA ABC-2 type												
Medtr2g100990	transporter	Transport	nucl	TM 1						73	2.00E-43	AT3G16340	PM
Modtr1a116120	MtD09740 1 A A Translateloca												chloroplast, chloroplast
Medtr5g059410	central region	Energy metabolism	chlo	0						85	0	AT3G60750	stroma
Medtr8g018690	MtD08844_1_AA Lipoxy genase	Cell rescue and defense	c y to	TM 1						56	0	AT3G22400	Chloro
													ribosom al subunit.
													nucleolus, plasmodesma,
M 1: 1: 0000000	MtD08989_1_AA Ribosomal			0			D.A.				0.005 (0	1.5.1.5.00000	small ribosomal subunit,
Medtr1g098220	MtD09341 1 AA S-	Protein synthesis and fate	cy to	0		 	P 2		-	89	2.00E-60	A14G09800	CW / Plasmodesma /
Medtr4g123810	adenosy lmethionine synthetase	Energy metabolism	c y to	0			P 3			91	0	AT3G17390	Nucleus / PM/ M/ G olgi
	MtD09358_1_AA S-												CW / Plasmodesma /
Medtr4g123810	Adenosy Imethionine synthetase	Energy metabolism	cy to	0			P 3			91	0	AT3G17390	Nucleus / PM/ M/ G olgi
	XP_003620143 Dolichyl-												
	diphosphooligosaccharide-protein												
	gly cosy Itransferase subunit STT3A [Medicago												
Medtr6g077750	truncatula].	Protein synthesis and fate	chlo	TM 2						83	e-162	AT1G34130	M / PM / ER
	MtD09432_1_AA Protein of												
Medtr5r026930	unknown function DUF248,	Energy metabolism	cuto	TM 1			P 2			74	0	AT4G19120	undefined
Wedd 5g020750	inculy in anaciase putative	Energy inclusionali	Cyto	1 1 1 1			12	ft - CaaX Farnesyltransferase/		/4	0	A14017120	undermed
	MtD09637_1_AA Ras small							GGT1 - CaaX					cytoplasm, nucleus,
Medtr5g022600	GTPase, Rab type	Transport	chlo	0			P 4	Gerany Igerany Itransferase		88	1.00E-98	AT2G17800	phragmoplast, spindle
	XP_003626067 Bifunctional												
	aminoacy l-tRNA synthetase												
Medtr7g110660	[Medicago truncatula]. MtD09952_1_AA_S_	Protein synthesis and fate	nucl	0						89	1.00E-68	AT3G62120	Cy tosol /M /Plasm odesma CW / Plasm odesma /
Medtr7g110310	adenosy lmethionine synthetase	Energy metabolism	cyto	0			Р 3			91	0	AT3G17390	Nucleus / PM/ M/ Golgi
													cell wall, cy tosolic
	MtD10024_1_AA_Bibosome1		1										ribosome, cy tosolic small
Medtr2g015680	protein S27E	Protein synthesis and fate	chlo	0			P1			82	6.00E-37	AT3G61110	plasmodesma, ribosome
													cytosolic small ribosomal
Modtr 4c024270	MtD10254_1_AA Ribosomal	Protoin gunthasis and fata	auto nuol	0						80	2.00E.64	AT4G00100	subunit, membrane,
wicuu+g024270	MtD10303 1 AA unknown Blast	1 rotem synucsis and late	cyto_nuci	0					<u> </u>	89	2.00E-04	A14G00100	ndeleoius
	XP_003589133.1 Cysteine		1										apoplast, chloroplast,
Medtr1g018840	proteinase [Medicago truncatula]	Protein synthesis and fate	c y to	TM 1			P 5		ļ	66	0	AT1G47128	plasmodesma, vacuole
	wttD10413_1_AA Protein of unknown function DUF248												
Medtr5g026930	methy ltransferase putative	Energy metabolism	c y to	TM 1			P 1			74	0	AT4G19120	undefined
	MtD10563_1_AA S-			_									CW / Plasm odesma /
Medtr4g123810	adenosy lmethionine synthetase	Energy metabolism	cyto	0			P 3			91	0	AT3G17390	Nucleus / PM/ M/ G olgi

1	MtD10584 1 AA ATPase, P-type,	1	1	1	1				1				
	K/Mg/Cd/Cu/Zn/Na/Ca/Na/H-												
Medtr3g108800	transporter	Transport	plas	TM 3						80	e-106	AT2G24520	PM
	MtD10710_1_AA Blast:												
	XP_003625677 ABC												
	transporter-like protein, partial												
Medtr7g102070	[Medicago truncatula].	Transport	chlo	0	BB					77	e-112	AT2G36910	PM /plasmodesma
	MtD10763_1_AA 5-												Perox / cy tos / Chloro /
	methy ltetrahy dropteroy ltriglutamate-												PM / apoplast /
Medtr7g086300	-hom ccy steine S-methy ltransferase	Energy metabolism	c y to	0				P 1		82	0	AT5G17920	plasmodesma /Vm
	MtD10899.2_1_AA Translation												Cytosol / M /chloro /
	factor IPR009022:Elongation factor												Plasmodesma / Nucleus /
Medtr2g069310	G, III and V	Protein synthesis and fate	cyto	0				P 5		91	0	AT1G56070	V / PM
	MtD111/2_1_AA TCP transcription												
Medtr7a028160	hinding OB-fold subgroup	Protein synthesis and fate	nucl	0				P 1		70	5.00E-55	AT5G23740	membrane
Wiedu /g020100		Trotein synulesis and late	nuci	0				11	 	17	5.00E-55	A15025740	
Made 5 -000000	MtD11294_1_AA Mitochondrial	Unalossified	an ita	0				D 1		40	2.005.20	AT2C20705	mitochondrialmatrix,
Medii 3g080880	giycoprotein	Uliclassified	шио	0				r I	 	42	2.00E-20	A12039793	Innochondrion
M. 4-2-065110	MD11209 1 AA Nie stein	Dents in south size and fate		TN 1			CD	D 1		67	. 121	172052640	Mar / M
Medtr 3g065110	MtD11298_1_AA INICAStrin	Protein synthesis and fate	pias	1 M 1			SP	r I		57	e-151	A13G52640	vm / v
	ADV35716.2 root determined												
Medtr8g039290	nodulation 1 [Medicago truncatula]	Unclassified	chlo	TM 1			SP	P1		71	e-152	AT5G13500	EndoM system
2	MtD11469 1 AA Inorganic H+												
	pyrophosphatase Blast:												
	XP_003609464 Vacuolar												
	proton-inorganic pyrophosphatase												PM /Vm /Cytos / Chloro /
Medtr4g115970	[Medicago truncatula].	Transport	vacu	TM 6	BB			P 1		82	e-180	AT1G15690	V / M / mitochondrion
	MtD11604_1_AA Histone H2A												
1. 1 0 00 00 00	IPR007124: IPR009072:Histone-										5 00 7 00		
Medtr8g086850	told	Cell cycle and DNA processing	nucl	0	BB					73	7.00E-32	AT5G02560	Nucleolus / Nucleus
	MtD11611_1_AA NAD-dependent										195		
Medtr2g096660	epimerase/dehy dratase	Transport	chlo	0						8/	e-1/5	A12G28760	plasma membrane
M. 4.5.009210	MD11657 1 AA Thister	En en en et de l'ente	.1.1.	0	DD			D 1		77	165	ATTEC 49220	Criticael (no many / DM
Medtr5g098510	MtD1165/_1_AA Thiolase	Energy metabolism	chio	0	вв			PI			e-165	A15G48250	Cytosol/perox / PM
	MtD11728_1_AA Ribosomal												
Medtr/g118060	protein 60S	Protein synthesis and fate	chlo	TM I	BB			PI		66	6.00E-16	AT5G24510	cytosolic ribosome
													cytosol, cytosolic large
	MtD11747 1 AA Bibosomal												cytosolic ribosome
Medtr3g077050	protein L15	Protein synthesis and fate	nucl	0						77	3.00E-54	AT1G70600	membrane plasmodesma
ineduogorrooo	MtD11751 1 AA unknown Blast	Trotein sy nucleis and late	naer	Ŭ							51002 51		incirculate, platfocestia
	BAA96978.1 protein transport												
	protein SEC12p-like [Arabidopsis												
Medtr7g076230	thaliana]	Transport	cyto	0				P 2		37	1.00E-15	AT5G50650	undefined
	MtD11890_1_AA												
Medtr5g098250	emp24/gp25L/p24	Transport	c y to	0						75	5.00E-87	AT3G07680	М
													chloroplast, cy toplasm,
	MtD12058_1_AA Nucleotide-												cytosol, nucleus,
Medtr4g070140	binding, alpha-beta plait	Protein synthesis and fate	cyto	TM 1	BB		SP			77	9.00E-29	AT2G21660	peroxisome, plasmodesma
	MtD12059_1_AA unknown Blast:												
	XP_003533972.1 PREDICTED:										1		
	putative substrate translocation pore,										1		
	protein At4g22990-like isoform 1										1		
Medtr10099930	[Glycine max]	Transport	plas	TM 5	BB					70	e-102	AT4G22990	undefined

Medtr1g095070	MtD12105_1_AA Major intrinsic protein, Blast XP_003591905 Aquaporin PIP [Medicago truncatula].	Transport	plas	TM 5	BB		Р 2		79	e-108	AT2G37170	chloroplast, membrane, plasma membrane, plasmodesma
	MtD12192_1_AA, Blast: XP_003597927 NADH- ubiquinone oxidoreductase 24 kDa											
Medtr2g104110	subunit [Medicago truncatula].	Transport	c y to	0			P 6		78	e-116	AT4G02580	Mitochondrion
Medtr4g063090	MtD12237_1_AA Maj cr intrinsic protein Blast: AP275315_1 water-selective transport intrinsic membane protein 1 [Lotus japonicus].	Transport	cyto	TM 4	BB				76	3.00E-44	AT2G36830	central vacuole, chloroplast envelope, plant-ty pe vacuole membrane, protein storage vacuole, vacuolar membrane, vacuole
Medtr8g014930	MtD12384_1_AA Protein kinase	Signal transduction	nucl	TM 1			P 2		44	e-107	AT2G19230	EndoM system
Medtr3g088150	MtD12421_1_AA unknown	Unclassified	nucl	0			P 1		59	3.00E-28	AT1G44170	membrane, plasmodesma, plastid, vacuole
	Mtb12444_LAA Blast: FLOT1_MEDTR Full=Flotillin-like protein 1. ACCESSION D2XNQ8. Band, 7_foltillin: a subgroup of the band 7 domain of flotillin (reggie) like proteins. This subgroup contains proteins similar to stomatin, prohibitin, flotillin, HIFK/C and podicin. These two proteins are											
Medtr3g106480	lipid raft-associated.	Transport	mito	0	BB				52	4.00E-50	AT5G25260	vacuolar membrane
Medtr3g084340	MtD12580_1_AA S-adenosy l-L- hom ocy steine hy drolase IPR015878:	Energy metabolism	cy to	0			P 3		86	e-161	AT4G13940	cy tosol, membrane, plasma membrane, plasmodesma, vacuolar membrane, vacuole
M 1: 5 000000	MtD12603_1_AA 7-Fold repeat in			0			P.A.			101	172000520	chloroplast, cy tosol, membrane, plasma
Modtr1c085140	MtD12678_1_AA Blast: XP_003626121 Rhicadhesin receptor [Medicago truncatula].	Protein synthesis and fate (an attachment protein of rhimbingge)	ablo	TM 1		SD	1 2		67	1.00E 48	AT1G00560	CW / Nucleus
Medir 1g085140	MtD12723.2 1 AA Haem	rnizobiaceae.)	chio	1 1 1		SP			67	1.00E-48	A11G09560	Cw / Nucleus
Medtr4g132110	peroxidase, plant/fungal/bacterial	Cell rescue and defense	c y to	TM 1		SP	P 2		81	e-152	AT4G21960	EndoM system
Medtr1g116520	MtD12821_1_AA Tyrosine protein kinase, active site	Signal transduction	c y to	0			P 4		81	e-170	AT3G59350	РМ
Medtr7g086300	MtD13094.2_1_AA Blast: XP_003624677 Methionine sy nthase	Energy metabolism	cyto	0			P1		82	0	AT5G17920	apoplast, chloroplast, chloroplast stroma, cy tosol, membrane, peroxisome, plasma mem brane, plasm odesma, vacuolar membrane
Medtr4g127710	MtD13438_1_AA Blast: PMA2_SOLLC Plasma membrane ATPase 2; AltName: Full=Proton pump	Transport (cation)	vacu	TM 1	BB				86	e-110	AT5G62670	M/PM

Medtr8g061970	MtD13497_1_AA ABC transporter, transmembrane region, ty pe 1	Transport	c y to	TM 1			P 1		62	6.00E-74	AT3G62700	plant-type vacuole, vacuolar membrane, vacuole
Medtr6g013300	MtD13504_1_AA Proteasome alpha-subunit	Protein synthesis and fate	cy to	0	BB				97	e-137	AT3G14290	cy tosol, cy tosolic ribosome, proteasome core complex
Medtr5g088660	MtD13578_1_AA unknown Blast: XP_003617173.1 Elongation factor 1-beta [Medicago truncatula]	Protein synthesis and fate	nucl	0	BB				68	3.00E-26	AT5G19510	apoplast, cy tosol, plasm ode sm a
Medtr3g088150	MtD13642_1_AA Aldehy de dehy drogenase	Energy metabolism	cy to	0			P 1		74	9.00E-68	AT1G44170	V / M / plamodesma / ER
Medtr5g098310	MtD13848_1_AA Thiolase	Energy metabolism	chlo	0	BB		P1		77	e-179	AT5G48230	Cy tosol/ perox / PM
Medtr8g075560	MtD13928_1_AA Cold-shock protein	Cell rescue and defense	cyto	0	BB				62	5.00E-24	AT2G21060	cy tosol, nucleus
Medtr5g026930	MtD14084_1_AA Protein of unknown function DUF248, methy ltransferase putative	Energy metabolism	cyto	TM 1			P 2		74	0	AT4G19120	undefined
Medtr5g087560	MtD14276_1_AA Chaperonin TCP- 1	Protein synthesis and fate	chlo	0			P 2		95	e-106	AT3G11830	Cytosol
Medtr4g012910	MtD14407_1_AA Ribosomal protein L37e	Protein synthesis and fate	chlo	0			P 2		88	2.00E-43	AT3G16080	cy tosolic large ribosom al subunit
Medtr8g077310	MtD14474_1_AA Sugar transporter IPR007114:Major facilitator superfamily	Transport	plas	TM 11	BB		P 2		76	e-178	AT1G19450	vacuolar membrane, vacuole
Medtr4g063090	MtD14539_1_AA unknown Blast:AAB41809.1 membrane channel protein [Medicago sativa]	Transport	chlo	TM 2					71	5.00E-25	AT2G36830	central vacuole, chloroplast envelope, plant-ty pe vacuole membrane, protein storage vacuole, vacuolar membrane, vacuole
Medtr5g030530	MtD14618_1_AA Mitochondrial carrier protein	Transport	chlo	TM 2	BB		Р 3		76	1.00E-79	AT5G46800	chloroplast, mitochondrion, plastid
Medtr1g018840	MtD14684_1_AA Blast: XP_003589133 Cyseine proteinase [Medicago truncatula].	Protein synthesis and fate	nucl	0			P 5		68	e-180	AT1G47128	apoplast, chloroplast, plasmodesma, vacuole
Medtr2g081610	MtD14864.1_1_AA BURP	Cell rescue and defense	extr	TM 1		SP	P 2		33	4.00E-11	AT1G49320	protein storage vacuole
Medtr2g081770	MtD14864.2_1_AA BURP	Cell rescue and defense	c y to	TM 1		SP	P 1		33	3.00E-11	AT1G49320	protein storage vacuole
Medtr2g039960	MtD14914_1_AA Blast: XP_003595233 Eukary otic initiation factor 4A [Medicago truncatula].	Protein synthesis and fate	chlo	0					91	0	AT3G13920	cell wall, cy tosol, membrane, nucleolus, plasmodesma
	MtD15021_1_AA Blast: XP_003625217 Poly galacturonase inhibitor [Medicago truncatulal Lencine rich											cell wall, plant-type cell
Medtr7g092730	repeat, N-terminal	Cell rescue and defense	chlo	0			Р 5		50	2.00E-76	AT5G06860	wall, plasmodesma
Medtr4g076030	uncharacterized protein	Unclassified	nucl	0			P 2		49	3.00E-52	AT2G32240	РМ
Medtr3g088150	MID 1522/_1_AA Blast: XP_003544699 PREDICTED: aldehy de dehy drogenase family 3 member H1-like isoform 2 [Glycine max].	Energy metabolism	cyto	0	BB				74	3.00E-39	AT1G44170	endoplasmic reticulum, membrane, plasmodesma, plastid, vacuole

1	MtD15465 1 AA Eukaryotic		1	1	1	1 1					1		
	translation initiation factor 2, alpha												
Medtr3g071560	subunit	Protein synthesis and fate	c y to	0				P 1		78	6.00E-71	AT2G40290	Cy tosol / Nucleus
Medtr8g089190	MtD15605_1_AA Cytochrome P450	Transport	cyto	TM 1						36	2.00E-16	AT5G36110	endomembrane system
													chloroplast thy lakoid
													reticulum endoplasmic
													reticulum membrane,
													plasma membrane,
											1005 50		vacuolar membrane,
Medtr3g092090	MtD15630_1_AA Cytochrome b5	Transport	chlo	TMI						79	4.00E-58	AT5G53560	vacuole
													extracellular vesicular
	MtD15632_1_AA S-												exosome, nucleolus,
Medtr7g110310	adenosy lmethionine synthetase	Energy metabolism (aa)	c y sk	0				P 2		85	0	AT4G01850	plasmodesma
unfound	MtD15666_1_AA ORMDL	Protein synthesis and fate	plas	TM 3						85	2.00E-48	AT1G01230	ER
													cell wall, chloroplast,
	MtD15731 1 AA Haem reroxidase.												cy tosol, plasma
Medtr4te061140	plant/fungal/bacterial	Cell rescue and defense	cy to	0						70	2.00E-99	AT1G07890	membrane, plasmodesma
													chloroplast, cy tosol,
													cy tosolic ribosome,
													cytosolic small ribosomal
	MtD15801 1 AA Ribosomal												nucleolus, plasma
Medtr2g014030	protein S6e IPR014401:	Protein synthesis and fate	nucl	0						79	3.00E-95	AT4G31700	membrane, plasmodesma
	MtD15850_1_AA Blast:												
	XP_003628563 Multidrug												plant-type vacuole,
Medtr8c061970	family [Madica gorup catula]	Transport	cuto	TM 1						54	7.00E-35	AT3G62700	vacuolar membrane,
Mediogooi)/0	MtD15929 1 AA Blast:	Transport	cyto	1.011						54	7.002 55	115302700	cy toplasm, cy tosol,
	XP_003591146 26S protease												nucleus, proteasome
Medtr1g083330,	regulatory subunit 6A-like protein											100000000	regulatory particle, base
Medtr1g083340	[Medicago truncatula].	Protein synthesis and fate	cy to	0				P1		94	0	AT3G05530	subcomplex
	AAK15493 1 brassinosteroid												membrane, plasma
	biosynthetic protein LKB [Pisum												membrane, vacuolar
unfound	sativum]	Energy metabolism	c y to	TM 1				P 1		79	e-142	AT3G19820	membrane, vacuole
	MtD16182_1_AA Protein of												
	unknown function DUF588 Blast: XP_003619992.1_by pothetics1												
	protein MTR 6g073040 [Medicago												
Medtr6g073040	truncatula]	Unclassified	vacu	TM 4	BB		SP	P 1		42	2.00E-06	AT2G39530	membrane
													chloroplast, cytosol,
				1									cytosolic large ribosomal
	MtD16310 1 A A Ribosom al												ribosome nucleolus
	protein L7A IPR004342:EXS. C-												plasmodesma, vacuolar
unfound	terminal	Protein synthesis and fate	mito	0				P 1		61	1.00E-39	AT2G47610	membrane
	MtD16472_1_AA ATPase, V0			1									plasma membrane,
Medtr4g071970	complex, proteolipid subunit C,	Transport	vacu	TM 4	BB			P 1		79	9.00E-54	AT4G34720	vacuole
	MtD16981_1_AA Protein kinase												
	PREDICTED: G-type lectin S-												
	receptor-like serine/threonine-												
Medtr3g031610	protein kinase At1g34300-like	Signal transduction	nucl	TM 1						52	3.00E-27	AT4G32300	PM
	[Glycine max].												
---------------------------------	--	---	--------	------	----	----	-------------	--	----	----------	------------	---	
												chloroplast, chloroplast	
	MtD17162 1 AA ATPasa											envelope, membrane, mitochondrion, nuckolus	
Medtr1g005600,	F1/V1/A1 complex, alpha/beta											vacuolar membrane,	
Medtr1g006010	subunit, N-terminal	Transport	cy to	0	BB				88	4.00E-45	AT2G07698	anchored to membrane	
	MtD17248_1_AA											anchored to plasma	
Medtr50094230	Gly cerophosphory I diester	Energy metabolism (gly cerol et lipid)	chlo	TM 1	BB	SP	P4		57	0	AT4G26690	membrane, plant-type cell wall plasma membrane	
inical sgos 1250	phosphoalesterase	npid)	Cillo		55				57		1111020090	chloroplast, plant-ty pe	
	MtD17397 1 AA ATPase, P-type,											vacuole membrane, plasma membrane,	
M. 4-4-042600	K/Mg/Cd/Cu/Zn/Na/Ca/Na/H-	Transact		0			D 1		57	C 00E 20	172057220	vacuolar membrane,	
Medii 4g043090	MtD17510_1_AA Blast:	Transport	Cylo	0			F I		37	0.00E-29	A15057550	vacuole	
	XP_003594434 Somatic												
	[Medicago												
Medtr20028580	truncatula]IPR013210:Leucine rich	Signal transduction	extr	TM 1	BB	SP			57	3.00E-38	AT5G49760	PM / V	
inical 2go20000	ropou, reannai	Signal d'ansade don	C/ILL		55					5.002 50	1112013700	chloroplast outer	
Medtr5g045630	MtD17526_1_AA Cytochrome b5	Transport	c y to	0			P1		67	6.00E-23	AT1G26340	membrane, stromule	
	XP_003600924 Clathrin heavy											PM / Plasmodesma / V /	
Medtr3g070940	chain [Medicago truncatula].	Transport	c y to	0					88	1.00E-91	AT3G11130	Vm	
	XP_002511086 copine, putative												
	[Ricinus communis].Copines are												
Medtr7g114130	calcium/lipid-binding region, CaLB	Transport (M traffick)	chlo	0			P 5		55	1.00E-74	AT5G61910	undefined	
	MtD17619_1_AA unknown Blast:XP_003594829.1												
N. 1. 2. 025100	Pathogenesis-related protein PR10	G 1 1 1 1		0	DD				20	2.005.04	171024020	,	
Medtr2g035100	[Medicago truncatula]	Cell rescue and defense	cyto	0	BR				30	3.00E-04	A11G24020	chloroplast, cy tosol,	
												cytosolic ribosome,	
												subunit, membrane,	
	MtD17767 1 A A Pibesomal											nucleolus, plasma	
Medtr1g081410	protein S24e	Protein synthesis and fate	chlo	0		SP	P 2		90	2.00E-42	AT3G04920	membrane	
	MtD17917_1_AA unknown Blast: CA177501_1 expp1 protein precursor												
Medtr1g056390	[Solanum tuberosum]	Unclassified	nucl	0			P 2		65	2.00E-79	AT3G44150	РМ	
												cell wall, cytosolic small ribosom al subunit	
												nucleolus, plasmodesma,	
Medtr1g106900	MtD17961_1_AA Ribosomal protein S13	Protein synthesis and fate	nucl	0			P 2		88	3.00E-51	AT4G09800	small ribosomal subunit, vacuole	
	MtD18059_1_AA Blast:												
	AP_003590940 Transmembrane protein [Medicago												
M. 4-1-070900	truncatula]Protein of unknown	The description of		TM 2			D .2			. 101	474012500	DE / mite chandelen	
Medtr1g0/9890 Medtr1g083190.	MtD18142 1 AA unknown Blast:	Unclassified	cyto	1M 2			P 2		/6	e-101	A14G12590	KE / mitochondrion	
Medtr3g106420	XP_003591134.1Flotillin-like	Transort	nucl	0	BB		P 2		46	2.00E-25	AT5G25260	vacuolar mem brane	

1	protein [Medicago truncatula]				1]		
												cy tosol, cy tosolic large ribosom al subunit.
												cytosolic ribosome,
	MtD18175 1 A A Eukaryotic											nucleolus, plasma membrane, ribosome
Medtr3g118030	ribosom al protein L5	Protein synthesis and fate	mito	TM 2			P 1		79	e-136	AT5G39740	vacuole
	MtD18210_1_AA Peptidase C1A,											
Medtr1g023210	papain C-terminal	Protein synthesis and fate	chlo	0		SP	P 3		70	e-143	AT4G39090	V / Nucleus
	AAR19085 Na+/H+ antiporter											
Medtr7g114250	[Medicago sativa].	Transport	chlo	TM 4					78	2.00E-75	AT3G05030	undefined
	MtD18/06_1_AA unknown Blast:XP_003551296.1											
	PREDICTED: peptide transporter											membrane, plasma
Medtr7g098200	PTR1-like [Gly cine max] (MFS)	Transport	plas	TM 5			P 1		68	e-106	AT3G54140	membrane, plasmodesma
Medtr5g030530	MtD18850_1_AA Mitochondrial substrate carrier	Transport	chlo	TM 1					79	7.00E-33	AT5G46800	chloroplast, mitochondrion,
6	MtD19186_1_AA Xy lose											I
Medtr4g128840	isomerase, bacterial type	Energy metabolism	mito	TM 1			P 2		75	e-114	AT5G57655	Vm / V / RE
Medtr1g018840	MtD19264_1_AA Peptidase C1A,	Protein synthesis and fate	cyto	0			Р3		70	e-102	AT1G47128	apoplast, chloroplast,
Medu 1g010040	MtD19684_1_AA unknown Blast:	1 Totem sy nulesis and late	<i>cy</i> to	Ŭ	1		15		10	0 102	////04/120	plasmodeana, wedde
	AAB97305.1 NADH ubiquinone											
Medtr7te026930	fabal	Transport€	chlo	0			P 1		95	5.00E-56	ATMG00665	Mitochondrion
												cell wall, chloroplast,
												chloroplast envelope, mitochondrion.
	MtD19776_1_AA Mitochondrial											plasmodesma, vacuolar
Medtr8g086070	substrate carrier	Transport	cy to	TM 1					79	e-142	AT5G19760	membrane
	cytochrome C reductase hinge											
Medtr2g008070	protein	Transport	chlo	0		SP	P 1		86	2.00E-27	AT1G15120	Mitochondrium
Madu 40051880	McD20062 1 AA Harrin induced 1	Call measure and defense	av. 40	0			D 1		65	7.005 40	AT2C11660	un de fine d
Wedu 4g031880	MtD20082_1_AA Harpin-induced 1 MtD20233 1 AA Succinate	Cell rescue and defense	cyto	0			r i		05	7.00E-49	A15011000	undermed
	dehy drogenase/fum arate reductase											
	IPR012285:Fum arate reductase, C-											
unfound	terminal	Energy metabolism (TCA)	chlo	0			P 4		88	e-121	AT5G40650	Mitochondrion
	MtD20401_1_AA Peptidy1-proly1											chloroplast, cy tosol,
Medtr4g075290	IPR015891:	Protein synthesis and fate	cyto	0			P1		77	1.00E-72	AT2G16600	plasmodesma
	MtD20414_1_AA unknown Blast:											
	ACJ11753.1 UDP-D-apiose/UPD-D- xylose synthetase [Gossynjum]											apoplast cytoplasm
Medtr1g108530	hirsutum]	Energy metabolism(galactose)	plas	TM 2		SP	P 1		83	0	AT1G08200	cy tosol
												cell wall, chloroplast,
												ribosome, cy tosolic small
	MtD20427_1_AA Ribosomal											ribosom al subunit,
Medtr5g075240	protein S9 MtD20646 1 A A Blast	Protein synthesis and fate	cy to	0			P 2		89	3.00E-66	AT2G09990	membrane, plasmodesma
	XP_003628253 Prohibitin	transductionBand_7_prohibitin.										mitochondrion, nucleolus,
Medtr3g008250	[Medicago truncatula]. Band 7	A subgroup of the band 7	c y to	0	1	1			76	6.00E-77	AT5G40770	plasma membrane,

Image: State in the state is the state	1	protein	domain	Ì	1	1		1		I	Ì				vacuolar membrane.
Image: State in the s		F	of flotillin (reggie)												vacuole
Image: State in the s			like proteins. This subgroup												
Image in the problem in the proble			group includes proteins												
Interpretended Interp			similar to prohibitin (a lipid												
Image in the strate is the strate i			raft-associated												
Individuation Indi			integral membrane protein).												
Image: Section of the sectin of the section of the section of th			Individual												
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			proteins of this												
And And And And 			cd03401"												
Image: bit is the sector of															
Notice Notice Notice (NNNN NAME (NAME)Name (Name (NAME)Name (Name (NAME)Na			/db_xref="CDD:48213"												
Nedrogeneral Name Participation Paricipation Participation Paricipation <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>Golgi apparatus, plant-</td>															Golgi apparatus, plant-
Mediagram Margam Transport plas p		MtD20873.2.1. A A Nonespanin													plasmodesma vacuolar
M02203: LAA Plantingi March with information of the state provide state of the	Medtr6g074910	(TM9SF)	Transport	plas	TM 10			SP	P 2			82	0	AT2G01970	membrane
Medreg 1010TangortTangortCalTMITM <td></td> <td>MtD22035_1_AA Plant lipid</td> <td></td> <td>1</td> <td></td>		MtD22035_1_AA Plant lipid		1											
Medreja (1)20Japha service inblutor MD22321 J.A. Histori IVA (Figure and PD2352 J.A. A. Bisson Big (Figure and PD2352 J.A. A. Bisson Big (Figure and Big PD2352 J.A. A. Bisson Big (Figure and Big PD2355 J.A. A. Bisson Big (Figure and Big PD2355 J.A. A. Bisson Big (Figure and Big PD2355 J.A. A. Bisson Big (Figure and Big PD2355 J.A. A. Bisson Big (Figure and Big PD2355 J.A. A. Bisson Big (Figure and Big PD2355 J.A. A. Bisson Big (Figure and Big (Figure and Big Big (Figure and Big))Figure and Big (Figure and Big)Figure and Big (Figure and Big) <td></td> <td>transfer protein/seed storage/try psin-</td> <td></td>		transfer protein/seed storage/try psin-													
M022321_1AA uninove Bases LOSSSS114M12M	Medtr4g101280	alpha amy lase inhibitor	Transport	chlo	TM 1			SP	P 6			46	7.00E-20	AT4G12510	EndoM system
Name Name		MtD22323_1_AA unknown Blast:													
MedrogenerationInterpretationConstructionConstructionConstructionMedrogeneration <th< td=""><td></td><td>NADH dehy drogenase [ubiquinone]</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>		NADH dehy drogenase [ubiquinone]													
Medroge0300[Molerand MarkTanaport \mathbf{v}_{00} \mathbf{TM} \mathbf{v}_{00} \mathbf{P} </td <td></td> <td>1 alpha subcomplex subunit 1-like</td> <td></td>		1 alpha subcomplex subunit 1-like													
Medr2g1100Medr2g10272_1_AA Histone- PR007124 Histone- Collegee and DNA precessing of Medr2g00000Collegee and DNA precessing of minoCollegee and DNA precessing minoCollegee and DNA	Medtr8g005360	[Glycine max]	Transport	c y to	TM 1				P 1			77	4.00E-23	AT3G08610	Mitochondrion
Medrg 1400IPR0007124: IPR009724: Isone- foldCell eycle and DNA processinehol0BBII<		MtD22726_1_AA Histone H2A													
Media p11400MD22772_LAA Ubquinol- cyneine C educuse hinge regione C educuse hinge regione C educuse hinge regione C educuse hingeCell cycle and DxA platesing miloCollOOOP1CollANoANOANoANoANo <t< td=""><td>Mader7a114040</td><td>IPR007124: IPR009072:Histone-</td><td>Call availa and DNA measacing</td><td>ahla</td><td>0</td><td>DD</td><td></td><td></td><td></td><td></td><td></td><td>70</td><td>2.00E 45</td><td>AT1C54600</td><td>muala chua muala ua</td></t<>	Mader7a114040	IPR007124: IPR009072:Histone-	Call availa and DNA measacing	ahla	0	DD						70	2.00E 45	AT1C54600	muala chua muala ua
Medr2g0000responserespo	Medii /g114040	MtD22772 1 AA Ubiquinol-	Cell cycle and DNA processing	cino	0	DD						/8	5.00E-45	A11034090	nucleoius, nucleus
Medrag08070Model and the second and the		cytochrome C reductase hinge													
Mp2200_1AA Blast: NP_0325 peroxional membane protei PMP22 Cell rescue and defense No. NM NM </td <td>Medtr2g008070</td> <td>protein</td> <td>Transport</td> <td>mito</td> <td>0</td> <td></td> <td></td> <td></td> <td>P 1</td> <td></td> <td></td> <td>78</td> <td>9.00E-28</td> <td>AT1G15120</td> <td>Mitochondrium</td>	Medtr2g008070	protein	Transport	mito	0				P 1			78	9.00E-28	AT1G15120	Mitochondrium
NP_102350 proxisonal membrane protein PMP2 (Abbdopsis bialiam/Wr17/PM22 Cell rescue and defense mino TM2 L <thl< th=""> <thl< td=""><td></td><td>MtD22800_1_AA Blast:</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></thl<></thl<>		MtD22800_1_AA Blast:													
Medir 1g075540Inditional Mov17.PMP22 Indiana Mov17.PMP22Cell rescue and defensemioTM2LLL <thl< th=""><thl< th="">L<thl< th="">L<th< td=""><td></td><td>NP_192356 peroxisomal</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<></thl<></thl<></thl<>		NP_192356 peroxisomal													
Medra 19075540Indianal MpV17PMP22Cell rescue and defenseminoTM2 \mathbb{N}		[Arabidopsis													
Medtr4g06800 MtD22835_1_AA Ribosomal L38e protein Protein synthesis and fate Image: Construction of the synthesis and fate Im	Medtr1g075540	thaliana]Mpv17/PMP22	Cell rescue and defense	mito	TM 2							63	6.00E-66	AT4G04470	peroxisomal membrane
Medred goodsolprotein y mbesis and fateII<		MtD22835_1_AA Ribosomal L38e													cytosolic large ribosom al
MdD22852_1_A R Bbosonal protein LIAb22e Protein synthesis and face cyto	Medtr4g068040	protein	Protein synthesis and fate		0				P 1			91	2.00E-31	AT3G59540	subunit
Medral g026000protein L14bL22eProtein synthesis and fatecyto0 0		MtD22852_1_AA Ribosomal													cytosolic large ribosom al
MD22970_2_AA unbown Blas: allergen Bet v1-L [Medicago runcatula]Cell rescue and defenseInclInclInclInclInclInclIndefinedMedr2g055100MD23050_1_AA Bet v1 allergenCell rescue and defensecyto0.0BBInclInclIncl0.000AT5G45870IndefinedMedr2g055100MD23050_1_AA Bet v1 allergenCell rescue and defensecyto0.0BBInclIncl0.000AT5G45870IndefinedMedr2g055100MD23050_1_AA Bet v1 allergenCell rescue and defensecyto0.0BBInclIncl0.000AT5G45870IndefinedMudr2g055100MD23052_1_AA Bet v1 allergenCell rescue and defensecyto0.0BBInclIncl0.000AT5G45870IndefinedMuf023152_1_AA Alpha/beta hydrohs ofd-11PR003795Energy metabolismvacuTM2BBInclInclIncl1.000AT5G20500Apolast, cytoplasm, nucleux autooAC225458_1_AA ATPsex, medr1005000Transportcyto0.0InclInclInclInclInclInclInclMD23452_1_AA ATPsex, Muf023452_1_AA ATPsex,InclInclInclInclInclInclInclInclInclInclMuf023452_1_AA ATPsex,InclInclInclInclInclInclInclInclInclInclMuf023452_1_AA ATPsex,InclInclInclInclInclInclInclInclInclIncl <td>Medtr1g026090</td> <td>protein L14b/L23e</td> <td>Protein synthesis and fate</td> <td>cyto</td> <td>0</td> <td></td> <td></td> <td>SP</td> <td></td> <td></td> <td></td> <td>97</td> <td>3.00E-75</td> <td>AT3G04400</td> <td>subunit, ribosome</td>	Medtr1g026090	protein L14b/L23e	Protein synthesis and fate	cyto	0			SP				97	3.00E-75	AT3G04400	subunit, ribosome
Algosphalt AlgosphaltAlgosphaltCell rescue and defensechlo0BBImage: Cell rescue and defensechlo0Cell rescue and defensecyto0BBImage: Cell rescue and defenseCell rescue and defensecyto0BBImage: Cell rescue and defenseCell rescue and defensecyto0BBImage: Cell rescue and defenseCell rescue and defensecytoBBImage: Cell rescue and defenseCell rescue and defenseCell rescue and defenseCell rescue and defenseCell rescue and defenseC		MtD22970_2_AA unknown Blast: XP_003600177.1 Major pollon													
Medir3g055120 Truncatula Cell rescue and defense chlo< 0 BB Image: Cell rescue and defense chlo BB Image: Cell rescue and defense cyto BB Image: Cell rescue and defense BB Image: Cell rescue and defense		allergen Bet v 1-L [Medicago													
Medr2g035130 MtD23030_1_AA Bet v I allergen Cell rescue and defense cyto 0 BB Image: Coll rescue and defense cyto BB Image: Coll rescue and defense cyto BB Image: Coll rescue and defense cyto Coll rescue and defense cyto BB Image: Coll rescue and defense Coll rescue and defense cyto Coll rescue and defense Coll rescue and defense Coll rescue and defense C	Medtr3g055120	truncatula]	Cell rescue and defense	chlo	0	BB						31	0.82	AT1G25141	undefined
Medr2g035130 MtD23030_1_A A Bet v I allergen Cell rescue and defense cyto BB Image: Color Co															
Mdtr23051 MtD23051_AA Alpha/beta unfound Cell rescu and defense cyto BB BB Cell sell Cell sell <thc< td=""><td>Medtr2g035130</td><td>MtD23030_1_AA Bet v I allergen</td><td>Cell rescue and defense</td><td>c y to</td><td>0</td><td>BB</td><td></td><td></td><td></td><td></td><td></td><td>29</td><td>0.002</td><td>AT5G45870</td><td>undefined</td></thc<>	Medtr2g035130	MtD23030_1_AA Bet v I allergen	Cell rescue and defense	c y to	0	BB						29	0.002	AT5G45870	undefined
Medr2g05310MD23062_LAA Bet V I allergenCell rescue and defensecyto0BB $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ $<$ <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>															
MD2315_AA Alpha/beta hydrokse fold-11PR00379: Energy metabolism Yacu TM2 BB BB Company Company Company <t< td=""><td>Medtr2g035130</td><td>MtD23062_1_AA Bet v I allergen</td><td>Cell rescue and defense</td><td>c y to</td><td>0</td><td>BB</td><td></td><td></td><td></td><td></td><td></td><td>29</td><td>0.002</td><td>AT5G45871</td><td>undefined</td></t<>	Medtr2g035130	MtD23062_1_AA Bet v I allergen	Cell rescue and defense	c y to	0	BB						29	0.002	AT5G45871	undefined
unfoundhydrokase fold-11PR000379:Energy metabolismvacuTM 2BB \sim <td></td> <td>MtD23115_1_AA Alpha/beta</td> <td></td> <td>apoplast, cy toplasm,</td>		MtD23115_1_AA Alpha/beta													apoplast, cy toplasm,
AC22548_44 MtD23422_1AA E-classP450, group1 Transport cyto 0 P1 53 6.00E-69 AT3G48290 undefined MtD23458_1AA ATPase, Mcdtr1e005000 MtD23458_1AA ATPase, FUXUAL complex alpha/beta F	unfound	hydrohse fold-1IPR000379:	Energy metabolism	vacu	TM 2	BB						88	1.00E-95	AT5G20520	nucleus, vacuole
AC22.3436_44 gloup 1 fransport Cyto U Itansport Cyto U It	A C225459 44	MtD23422_1_AA E-class P450,	Troponont	av.to	0				D 1			50	6.000 60	AT2C 49200	un da fina d
Medir Je005600 FUVUA1 complex alpha/beta	AC225458_44	group I MtD23458 1 AA ATPase	1 ransport	cyto	0				rl			53	6.00E-69	A13G48290	undefined
	Medtr1g005600.	F1/V1/A1 complex. alpha/beta													
Medtr1g006010 subunit, nucleotide-binding Transport chlo 0 BB 98 8.00E-65 ATMG01190 cell wall, mitochondrion	Medtr1g006010	subunit, nucleotide-binding	Transport	chlo	0	BB						98	8.00E-65	ATMG01190	cell wall, mitochondrion

	MtD23697_1_AA unknown												chloroplast, chloroplast envelope, chloroplast inner membrane,
	Blast:XP_003603853.1 hypothetical protein MTR_3g115930 [Medicago												membrane, membrane,
Medtr3g115930	truncatula]	Unclassified	vacu	TM 1				P1		77	1.00E-29	AT1G42960	mitochondrion, plastid
Medtr5g088320	MtD23826_1_AA EF-Hand type	Protein synthesis and fate	chlo	0						100	1.00E-35	AT2G27030	Vm/PM
	MtD23832_1_AA Histone H2A IPR007124: IPR009072:Histone-												
Medtr2g096570	fold	Cell cycle and DNA processing	nucl	0	BB					75	2.00E-41	AT5G02560	Nucleolus / Nucleus
Medtr1g108530	MtD23863_1_AA NAD-dependent epimerase/dehy dratase	Transport	chlo	TM 1	BB			P 1		73	2.00E-61	AT1G08200	apoplast / cy tosol
Medtr4g068040	MtD24497_1_AA Ribosomal L38e	Protein synthesis and fate	nucl	0				P1		91	3.00E-31	AT3G59540	cytosolic large ribosom al subunit
ineda igotot io	MtD24793_1_AA HMG1/2 (high	Trotom synthesis and me	nuer	Ű							51001 51	1115057510	Subtilit
Medtr7g068280	mobility group) box	Protein synthesis and fate	nucl	0				P 2		56	4.00E-25	AT3G51880	Chromatin / Nucleus
	XP_003625400 Pleiotropic												
Medtr7g098760	drug resistance protein [Medicago truncatula]	Transport	cysk	0						71	7.00E-98	AT1G15520	PM
incut (go) of oo	MtD24909_1_AA Cy tochrome c	Tunsport	eyon	Ű							71002 70		mitochondrialenvelope,
Medtr2g103150	oxidase, subunit Vb	Transport	mito	0			SP			77	3.00E-43	AT1G80230	mitochondrion
	MtD24950 1 AA Heat shock												chloroplast, cytosol, cytosolic ribosome, nuclear matrix, plasma membrane, plasm odesma, vacuolar membrare
Medtr7g024390	protein 70	Cell rescue and defense	c y to	0				P 2		92	e-103	AT3G09440	vacuole
Medtr7g109730	MtD25003 1 AA unknown	Unclassified	cyto	0				Р 2		60	4 00E-42	AT3G62360	endoplasmic reticulum, plant-type cell wall, vacuolar membrane
ineda (gros) (so	Mill 25005_1_111 dilationi	Chemisshied	69.00	Ŭ							11001112	1113002300	chloroplast, cy tosol,
Medtr3g070940	MtD25171_1_AA Clathrin propeller, N-terminal	Transport	chlo	0				P 1		85	6.00E-59	AT3G08530	membrane, plasma membrane, plasmodesma
	MtD25219_1_AA Ribosomal												cy tosolic large ribosom al subunit, cy tosolic
Medtr5g081710	protein L35Ae MtD25998 1 AA unknown Blast:	Protein synthesis and fate	c y to	0						85	9.00E-42	AT3G55750	ribosome, membrane
	XP_003549910.1 PREDICTED: NADH dehydrogenase [ubiquinone]												
Medtr4g101140	mitochondrial-like [Gly cine max]	Transport	chlo	TM 1					 	80	4.00E-47	AT5G47570	mitochondriom
Medtr2g012560	MtD26020 1 AA SCAMP	Transport	E.R.	TM 2						68	6.00E-59	AT2G20840	РМ
	MtD26036_1_AA Glycosy1												
Medtr1g080460	transferase, family 8	Cell rescue and defense	chlo	0	-			P 1		79	2.00E-82	AT5G18480	M chloroplast_chloroplast
	MtD26753_1_AA Bacterial surface												envelope, integral to chloroplast outer membrane, membrane,
Medtr4g064780	antigen (D15)	Transport	c y to	0	BB					85	1.00E-53	AT3G46740	vacuolar mem brane
	Blast:ABB59583.1 putative sulfate												
Medtr3g108190	x Populus alba]	Transport	plas		1			P 1		47	4.00E-38	AT2G25680	V / Mitochondrion

Medtr2g044580	MtD27293_1_AA Heat shock protein DnaJ, N-terminal IPR004179:Sec 63	Cell rescue and defense	cyto	0					74	e-120	AT1G79940	endoplasmic reticulum, integral to endoplasmic reticulum membrane, mitochondrion, plasma membrane
Medtr5g099070	MtD27326_1_AA unknown Blast: XP_003618109.1 Niemann-Pick C1 protein [Medicago truncatula]	Transport	extr	TM 1			P1		78	6.00E-96	AT4G38350	M / Vm /V/
Medtr4g030140	MtD27821_1_AA Blast: XP_003605375 Dynamin- 2B [Medicago truncatula].	Transport (Clathrin-mediated endocutosis: An endocy tosis process that begins when material is taken up into clathrin-cated pits, which then pinch off to fom clathrin- coated endocy tic vesicles.	cyto	0	BB		P1		84	e-108	AT1G59610	cell plate, chthrin-coated endocytic vesick, cytosol, plasm a membrane, plasm odesma, vacuob
Medtr2g060830	MtC00722_1_AA Proteasome alpha-subunit	Protein synthesis and fate	cyto	0//0					88	e-116	AT2G05840	cy tosolic ribosome, proteasome core complex
Medtr3g089040	MtC10104_1_AA Peptidase T1A, proteasome beta-subunit	Protein synthesis and fate	c y to	0//0					83	e-124	AT3G26340	proteasome complex
Medtr6g084450	MtD00231_1_AA Peptidase T1A, proteasome beta-subunit	Protein synthesis and fate	c y to	0					83	e-116	AT1G56450	Cy tosol /proteasome cxp
Medtr3g062510	MtC10684_1_AA 26S proteasome subunit P45 IPR013093:ATPase AAA-2	Protein synthesis and fate	c y to	0//0					98	0	AT5G58290	proteasom e com plex
Medtr3g108800	MtC60362_1_AA Blast: G7JCD0 Plasma membrane H+ ATPase, cation transport ATPase (P-type) family	Transport	plas	TM 6			Р 2		83	0	AT4G30190	integral to membrane, membrane, plasma membrane, plasmodesma, vacuolar membrane
Medtr1g043290	MtC20134.2_1_AAMtPT1 PHOSPHATE TRANSPORTER Major facilitator superfamily (Liu et al. 1998)	Transport	plas	TM 11			P 1		69	0	AT5G43360	membrane, plasma membrane
	MtD11061_1_AA Blast: XP_003531816 : probabe LRR receptor-like serine/threonine- proteinkinase Atl g56130-like									5.00E-57		
Medtr2g0/5250	MtC10353_1_AA unknown Blast: XP_003618047.1 Fasciclin-like arabinogalactan	Signal transduction	Chio	TM 2	DD	CD			50	e-123	AT1G56140	plasm a mem trane anchored to mem trane, anchored to plasma mem brane, mem trane, plasm a mem trane,
Medtr2g034550	MtC60823_1_AA Blast: OEP16_PEA RecName: Full=Outer envelope pore protein 16, chloroplastic; AltName: Full=Chloroplastic outer envelope pore protein of 16 kDa.	Transport	Chlo	TM 1	BB	SP.			52	4.00E-40	AT2G28900	chloroplast, chloroplast envelope, plastid outer membrane, vacuole
Medtr8g018550	MtC10070_1_AA Lipoxy genase	Cell rescue and defense	cyto	TM 2					56	0.00E+00	AT3G22400	chloroplast
Mader2c086500	MtC00668_1_AA Ribosomal	Protoin synthesis and fate	avto				D 1		.01	e-100	AT1008260	cy tosol, cy tosolic large ribosom al subunit, cy tosolic ribosom e, plasm a mem brane,
Medtr7g026230	MtC10470_1_AA Actin/actin-like	Cy toskeleton	Chlo	TM 2	1		P 2		97	0	AT3G12110	chloroplast envelope, chloroplast stroma,

							cytoskeleton,
							mitochondrion, plasma
							membrane, plasmodesma