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Abstract

In this thesis, we show that all the partially hyperbolic automorphisms on the Heisenberg
nilmanifold can be C'-approximated by structurally stable C* diffeomorphisms which exhibit
one attractor and one repeller. This implies that all these automorphisms are not robustly tran-
sitive. Our constructions of attractors and repellers need the analysis of dynamical invariant
contact structures and fiber isotopic invariant Birkhoff sections for these automorphisms. As
a corollary, the holonomy maps of stable and unstable foliations of the approximating diffeo-
morphisms are twisted quasiperiodically forced circle homeomorphisms which are transitive but

non-minimal and satisfying certain fiberwise regularity properties.



Perturbations des automorphismes partiellement hyperboliques
sur la nilvariété de Heisenberg

Resume

Dans cette these, nous démontrons que les automorphismes partiellement hyperboliques de
la nilvariété non Abélienne de dimension 3 peuvent tous étre approchés dans la topologie C'' par
des difféomorphismes structurellement stables, chacun possédant un attracteur et un répulseur
comme seuls ensembles récurrents par chaine. Cela implique que ces automorphismes par-
tiellement hyperboliques ne sont pas robustement transitifs. Nos constructions des attracteurs
et répulseurs requiérent une analyse des structures de contact invariantes, et des sections de
Birkhoff invariante a isotopie dans les fibres pres pour ces automorphismes. Comme corollaire,
nous en déduisons que les holonomies des feuilletages stables et instables des difféomorphismes
approximants sont des homéomorphismes quasi-périodiquement forcés twistés du cercle, qui sont

transitifs mais pas minimaux, qui satisfont a certaines propriétés de régularité dans les fibres.
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Notations

M? will denote a compact connected Riemannian manifold without boundary of dimension
d € N and m(-) the Lebesgue measure on M<?. For any two points x,y € M, we denote by
d(z,y) the distance between x and y. Sometimes, we just denote the manifold by M, ignoring
the dimension d.

For a subset K C M, we denote T M = |J,c T M, where the topology is induced from the
tangent bundle TM. We denote Int(K), CI(K), 0K, K¢ be the interior, closure, frontier and
complement of K respectively. For another subset L C M, we denote K\L = {x : 2z € K,z ¢ L}.

Diff" (M) (r > 0) denote the set of C" diffeomorphisms (homeomorphisms if » = 0) of M
with C"-topology. Moreover, we denote by m(:) the Lebesgue measure on M, and Diff] (M)
denote the set of Lebesgue measure preserving C" diffeomorphisms (homeomorphisms if = 0)
of M with C"-topology. For any f,g € Diff"(M) or Diff] (M), we shall denote dcr(f,g) the
C"-distance between f and g.

For f € Diff'(M), we denote as D, f : T,M — Ty(z)M the derivative of f over the point z, and
sometimes just D f when the base point x is obvious.

We call f € Diff" (M) transitive if for any two open set U,V C M, there exists some n € N
such that f*(U)NV # 0. fis C"-robustly transitive if there exists an open neighborhood
U C Diff" (M) of f, such that any g € U is transitive. Usually, we say f is robustly transitive if
it is C'-robustly transitive.

We call f € Diff] (M) ergodic if for any two set E,F C M both with positive Lebesgue
measure, there exists some n € N such that m(f*(E) N F) > 0. We call f € Diff2,(M) stably
ergodic if there exists a C'-neighborhood U of f, such that any g € U N Diff2, (M) is ergodic.

S' will denote the unit circle R/Z, and T¢ will denote the flat d-dimensional torus R?/Z¢ with
the metric induced by the canonical covering map 7 : R* — T¢ and the Euclidean metric on R

We will denote by H the 3-dimensional real Heisenberg group, and I' the integer lattice of HI,
that is the 3-dimensional real Heisenberg group with integer elements. Since H is a Lie group, we
denote h be the Lie algebra of H. We use Aut(H) denote the set of all Lie group automorphisms
of H, and Aut(h) the set of all Lie algebra automorphisms of h. Moreover, we denote Autp(H)
the set of all Lie group automorphisms of H which also preserving I" invariant. Finally, we denote
H = H/T be the Heisenberg nilmanifold. More accurate definitions will be in the introduction.
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Let f € Diff" (M), the chain recurrent set R(f) of f is defined as: x € R(f) if for any € > 0,
there exists a sequence of points {xzg, z1,- - ,z,} such that x = z¢g = z,, and d(x;_1,x;) < € for
i=1, .

For any map f: X — Y and K C X is a subset. We denote by f|x : K — f(K) CY the map
f restricted to K.

If E is a tangent bundle over some manifold M, and X1, --,X,, are vector fields on M, then
(X1,--+,X,) will denote the subbundle generated by X1, -+, X,,.

For two maps f; : X; — Y;, ¢ = 1,2, we denote by fi X fo: X1 X Xo — Y7 X Y5 the product map:
fix fa (z1,22) = (fi(z1), fa(w2)).

For a Riemannian manifold M and two bundle field F1, Es C T'M, i.e. for any z € M, E;(x) =
E;NT,M is a linear subspace of T, M, i = 1,2, we define the angle between Fi(x) and Es(x) as
L(Er(z), Ea(z)) = max{dr,p(v1,v2) : v1 € E1(x),v2 € Ea(x), ||v1]| = ||va]| = 1}.

And the angle between E; and F5 is defined as

£(Ey, E2) = ng\%{ £(E(z), E2(2)) }-

We use the symbol O to denote the end of a proof of a Theorem, Lemma, Proposition, Claim,
or Corollary.



Chapter 1

Introduction

1.1 Introduction (Francais)

L’éude des systemes dynamiques hyperboliques ! remonte ’éude faite par J.Hadamard dans
les années 1890 [19] sur le flot géodéique des surfaces a courbure négative. Il a introduit alors
les notions de variété stables et instables, et, grace au théoreme de récurrence de Poincaré en a
déduit que les orbites périodiques sont denses dans le fibré unitaire tangent d’une telle surface.

Quelques quarante ans plus tard, E. Hopf trouva ce que 'on appelle de nos jours I’argument
de Hopf, et prouva ’ergodicité du flot géodéique ¢; par rapport a la mesure de Liouville.

La méme année, S. Smale [32] et D.V. Anosov [1] publierent leurs travaux pionniers sur les
dynamiques hyperboliques, prouvant en particulier leur stabilité structurelle. De nos jours, les
systemes possédant une structure hyperbolique globale sont connus sous le nom de systémes

d’Anosov.

L’exemple le plus classique de difféomorphisme d’Anosov est 'application du chat d’Arnold:

A = (? 1 ) : T? =R*/2*> — T?=R*/Z",
qui est également un automorphisme des groupes de Lie commutatifs R? et T?. La structure

hyperbolique définie sur le fibré tangent de T2, c’est & dire sur 'algebre de Lie, correspond aux

espaces propres de la matrice.

Nous ne prétendons pas donner en détails I’histoire de ’étude des systemes dynamiques, mais plutét quelques
résultats, questions, progres historiques qui ont motiv?cette these.
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Anosov a démontré que les difféomorphismes d’Anosov sont structurellement stables. C’est
A dire qu'il existe un voisinage 4 C Diff!(T?) de A, tel que pour tout f € U, il existe un

homéomorphisme hy de T2, vrifiant
hfof = Aohy.

L’application h est appelé la conjugaison topologique, cela entraine en particulier que les orbites
de f et celles de A ont le méme comportement.
De plus, nous savons d’apres les travaux de R. Mané [29] et S. Hayashi [20], que la stabilité

structurelle est en fait équivalente a 'hyperbolicité.

La stabilité structurelle garantit la persistence de certaines propriétés dynamiques. Par
exemple, remarquons que A est transitive, elle est donc robustement transitive, puisque la tran-
sitivité est préservé par conjugaison topologique. En utilisant ’argument de Hopf, Anosov a
également prouver dans [1] que les systémes d’anosov conservatifs de classe C? sont également
stablement ergodiques.

Les notions d’ergodicité et de transitivité sont assez similaires. La premiere est une propriété
topologique, et la seconde est unbe propriété de théorie de la mesure, mais les deux traduisent
certaines propriétés de mélange. Ceci est également le cas des propriétés de robuste transitivité
et d’ergodicité stable.

Les systemes conservatifs ergodiques sont encore transitifs puisque la mesure de Lebesgue
charge les ouverts. La réciproque en revanche est fausse. Furstenberg [14] donne ’exemple d’un
difféomorphisme analytique du tore T2, qui préserve la mesure de Lebesgue, est minimal, mais

pas ergodique.

Apres les travaux de Mané et Hayashi, les chercheurs se sont appliqués aller au-dela de
I’hyperbolicité uniforme, et plus particulierement chercher quelles sont les propriétés des dy-
namiques uniformément hyperboliques qui restent vraies dans le cadre non hyperbolique.

Il est vrai que les propriétés de persistances entrainent certaines propriétés faibles d’hyperbolicité
Mané [28] a prouvé que les difféomorphismes robustement transitifs des surfaces sont des dif-
féomorphismes d’Anosov du tore. Puis C. Bonatti, L.J. Diaz, E. Pujals, et R. Ures [12] [5],

généralisant les techniques de Mafié, ont prouvé que les difféfomorphismes robustement transitifs
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des variété de dimension plus grande doivent étre volume partiellement hyperbolique.

Ils existe également des systemes non-hyperboliques possédant des propriétés persistentes.
Dans les années 90, M. Grayson, C. Pugh, and M. Shub [16](voir également [33]) ont prouvé
que le temps 1 du flot géodésique d’une surface hyperbolique est stablement ergodique, ce qui
donnait le premier exemple de systéme non ergodique stablement ergodique.

Peu de temps apres, C. Bonatti et L.J. Diaz [4] montraient que le temps 1 de n’importe quel
flot d’Anosov transitifs peut étre approché dans la topologie C'* par des systémes robustement
transitifs non hyperboliques. Bien entendu, ces systemes incluent les temps 1 considérés dans
[16] et [33].

Puisque tout systeme conservatif ergodique est transitif, ces deux résultats laissaient & penser

que les systemes stablement ergodiques sont également robustement transitifs.

Dans cette these, nous proposons d’étudier la relation qu’entretiennent robuste transitivité
et stable ergodicité.
Remarquons que les deux résultats importants de [4] et [16], posent également le probléeme

difficile suivant, qui est une motivation importante de cette these:

Le temps 1 map du flot géodésique d’une surface close courbe négativement est-il robustement

transitif 7

Nous renvoyons & [34] pour plus de détails sur ce probleme. Nous devons mentionner le beau
travail de C. Bonatti et N. Guelman [8] traitant de cette question difficile. Ils prouvent 'existence
de difféomorphismes partiellement hyperboliques sur le fibré tangent de telles surfaces, qui sont
conjugués dans les feuilles au temps 1 du flot géodésique, et pourtant ne sont pas transitifs.
Dans ce travail, ils donnent une construction appelé DA centrale pour séparer la dynamique,

qui joue un role crucial dans cette these.

Nous étudions une sorte de difféomorphismes qui peut étre vue comme un modele simplifié
du temps 1 des flots géodésiques, ce sont les automorphismes partiellement hyperboliques des

nilvariété de Heisenberg.
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Considérons le groupe de Heisenberg réel de dimension 3 H, qui est le group de Lie non
commutatif le plus simple. Nous étudions les automorphismes de groupe de H qui préservent le
réseau entier I'. Ces automorphismes induisent des difféomorphismes sur la nilvariété quotient
H = H/T" qui est compacte. De plus, nous demandons ce que ces automorphismes soient
partiellement hyperboliques.

La nilvariété H fibre en cercles au dessus du tore T2, avec un nombre d’Euler 1. Tout
automorphisme partiellement hyperbolique de H a la fibration en cercle pour feuilletage central,
et la somme des fibré stable et instable forme une structure de contact invariante sur H. Cela
entraine que ces automorphismes sont des contactomorphismes, comme le temps 1 d’un flot

géodésique.

Récemment les difféomorphismes partiellement hyperboliques sur H a été grandement étudiés,
donnant plusieurs jolis résultats. F. Rodriguez Hertz, J. Rodriguez Hertz, et R. Ures ont prou-
vé que les difféomorphismes partiellement hyperboliques conservatifs de classe C? sur H sont
ergodiques [22]. Ainsi, les automorphismes partiellement hyperboliques doivent étre stablement
ergodiques. Cette propriété de mélange persistente découle de propriétés topologiques de H.

Plus tard, A. Hammerlindl et R. Potrie [17] [18] ont prouvé que les difféomorphismes par-
tiellement hyperboliques de ‘H sont conjugués dans les feuilles aux automorphismes partiellement
hyperboliques, c’est a dire qu’ils admettent un fibré en cercles en tant que feuilletage central, et
qu’en passant au quotient par le feuilletage central ce sont des homéomorphismes topologique-

ment Anosov sur le tore.

Notre résultat principal est le suivant:

Théoréme. Pour tout automorphisme partiellement hyperbolique fa : H — H, il existe une
suite de difféomorphismes de classe C*™ {f,} convergeant vers fa dans la topologie C', qui
sont structurellement stables, et dont les ensemble de récurrence par chaines sont réduits a un

attracteur et un répulseur.

Ce théoreme entraine que f4 n’est pas robustement transitifs, donnant ainsi le premier

exemple de dynamique stablement ergodique qui n’est pas robustement transitif.
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De plus, remarquons que la minimalité de I'un des feuilletages stable ou instable d’un d-
ifftomorphisme partiellement hyperbolique implique la transifivité de celui-ci. Les deux feuil-
letages stables et instables de f4 sont minimaux, et f4 est stablement accessible [18]. Nous
pouvons donc prouver que f4 est le premier exemple satisfaisant ces deux propriétés, sans étre

robustement transitif. Cela donne une réponse négative au Probléme 50 de [21].

Comme application, en analysant les holonomies des feuilletages stables et instables de f,

nous obtenons le corollaire suivant:

Corollaire. Pour tout 1 < r < oo, il existe des homéomorphismes du cercle forcés quasi-
périodiquement:

T T2 — T2, (6,t) — (604 w,, hy(t)) ,
qui sont homotopes a un twist de Dehn, tels que A" est transitifs mais non minimal, et chaque

homéomorphisme induit sur les fibres en cercles hj sont des difféomorphismes de classe C".

Nous renvoyons le lecteur a [3] pour des constructions de tels homéomorphismes homotopes

a I'identité. Pour plus de détails sur ces systemes, nous renvoyons également a [26] [27].
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1.2 Historical Account

The study of hyperbolic dynamics? could be traced back to J. Hadamard in about the 1890’s
[19] who studied of the geodesic flows on negatively curved surfaces. Hadamard introduced
the notions of stable manifolds and unstable manifolds, which combined with the Poincaré
recurrence allows one to deduce that the periodic orbits are dense in the unit tangent bundle of
these surfaces.

About forty years later, E. Hopf applied what we called the Hopf argument now in [24],
which showed that the geodesic flow ¢; is ergodic with respect to the Liouville measure.

In the same year, S. Smale [32] and D.V. Anosov [1] both published their milestone works
on hyperbolic dynamics concerning their structural stability. Nowadays, we call the systems
that admitting the global hyperbolic structure on the tangent space of manifolds, the Anosov

systems.

For instance, the most classical example of Anosov diffeomorphisms is the Arnold’s cat map:

A = (? i) : > =R*/2*> — T?=R%*/Z*,
which is also a Lie group automorphism on the commutable Lie groups R? and T?. And the
hyperbolic structure defined on the tangent bundle of T?, which is the Lie algebra, corresponds

to the eigenspaces of the matrix.

Anosov showed that Anosov diffeomorphisms must be structurally stable. That is there exists
a neighborhood U C Diff!(T?) of A, such that for any f € U, there exists a homeomorphism
hy of T?, satisfying
h fo f = Aoh f -

Here h is called the topological conjugation, which implies that f admits the same orbit structure
with A.
Moreover, from the work of R. Mané [29] and S. Hayashi [20], we know that actually structural

stability is equivalent to hyperbolicity for dynamical systems.

The structural stability guarantees some persistence properties of hyperbolic dynamics. No-
tice that A is transitive, thus it is robustly transitive since transitivity is preserved by topological
conjugation. By applying the Hopf argument, Anosov also showed in [1] that the C? conservative

Anosov systems must be ergodic, thus also stably ergodic.

2We do not intend to give a complete and accurate historical story of the study of dynamical systems, but
some historical results, questions, and progresses which motivate this thesis.
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We can see that from the definitions of transitivity and ergodicity, they are quite similar. One
is from the topology viewpoint, the other one is from the measure viewpoint, but both concerning
the mixing property of dynamics. The same to robust transitivity and stable ergodicity.

For a conservative system, if it is ergodic, then it must be transitive since open sets have
positive Lebesgue measure. However, the contrary is not true. Furstenberg [14] gave an example
of an analytic diffeomorphism on T2, which preserves the Lebesgue measure, is minimal, but is

not ergodic.

After the work of Mané and S. Hayashi, researchers turned to focus on the dynamics beyond
uniformly hyperbolicity, especially whether some properties of hyperbolic dynamics also holds
for the non-hyperbolic systems.

However, it has been found that the persistent property also implies some hyperbolicity.
Mané [28] showed that robustly transitive diffeomorphisms on 2-dimensional manifolds must
be Anosov diffeomorphisms on the torus. Then Bonatti, Diaz, Pujals, and Ures [12] [5] gen-
eralized the techniques of Mané showed that the robustly transitive diffeomorphisms on higher

dimensional manifolds should be volume partially hyperbolic.

There are also some examples of non-hyperbolic systems admitting the persistent properties.
In the nineties of last century, M. Grayson, C. Pugh, and M. Shub [16](see also [33]) proved
that the time-1 map of the geodesic flow on closed surface with constant negatively curvature
is stably ergodic, which is the first non-hyperbolic system that was shown to be stably ergodic.

Very soon, C. Bonatti and L.J. Diaz [4] showed that the time-1 map of any transitive Anosov
flow could be C*°-approximated by non-hyperbolic robustly transitive systems. Of course, this
includes the time-1 map appeared in [16] and [33].

Since the ergodic systems must be transitive, these two results convinced people to tend to

believe that stably ergodic systems need to be robustly transitive.

In this thesis, we will try to discuss the relation between robust transitivity and stable
ergodicity these two persistent mixing properties of dynamical systems.
Notice that in the two great results [4] and [16], both concern another difficult problem,

which is also an important motivation of this thesis:

Is the time-1 map of the geodesic flow on closed surface with constant negative curvature is

robustly transitive?

For this problem, we refer to [34] for more backgrounds. There is a more general open
question about the time-1 map of Anosov flows. J. Palis and C. Pugh asked ([30]) whether

the time-1 map of Anosov flow can be approximated by an Axiom-A diffeomorphism. Even for
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the suspension of an Anosov diffeomorphism, we just knew the explicit answer when the roof
function of suspension is constant. It has been showed that [10] for any C? volume preserving
Anosov flow on a 3-manifold, its time-1 map is stably ergodic if and only if it is not a suspension
flow with constant roof function. This result implies that the question of Palis and Pugh would
be very difficult.

We have to mention the beautiful work of C. Bonatti and N. Guelman [8] concerning this
difficult question, which is also the only known partial result. They showed that there exist
partially hyperbolic diffeomorphisms on the unit tangent bundle of such surfaces, which are leaf
conjugate to the time-1 maps of geodesic flows and not transitive. Their work shows that there
are no topological obstructions for the existence of partially hyperbolic structually stable diffeo-
morphisms on the 3-manifold supporting transitive Anosov flows, where the partially hyperbolic
structurally stable diffeomorphisms are leaf conjugacy to the Anosov flows. In their work, they
provide what we called central DA-constructions to separate the dynamics, which plays a crucial

role in this thesis.

1.3 Heisenberg Nilmanifold and Partial Hyperbolicity

We first introduce the manifold we deal with and the known results of partially hyperbolic
diffeomorphisms on it.

Consider the 3-dimensional Heisenberg group

1

with the usual matrix operation. We can also denote H = {(z,y,2) : z,y,z € R} with the
operation
(a,b,¢) - (x,y,2) = (a+z,b+y,c+ z+ ay).
The integer lattice of H is quite natural:

I'={(z,y,2) eH: z,y,z € Z}.

And the homogeneous space H = H/T" is defined as H modulo the equivalent relationship ~:
(a,b,c) ~ (x,y, z) if and only if there exists (k,l,m) € ' such that (a,b,c) = (k,l,m) - (z,y, 2).

If we view it in R?, and consider a fundamental domain
{(z,y,2) eH: 0<z,y,x <1},
on its boundary, then we have the following equivalent relationship:
(,9,2) ~ (1,0,0) - (z,9,2) = (z+1,y,2+y)
~ (0,1,0) - (z,y,2) = (z,y+1,2)
~ (0,0,1) (x,y,2) = (z,y,2+ 1)
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From this we can see that H = H/I" is an S'-bundle over T? with Euler number 1.

A 24

s T

Figure 1.1: Heisenberg Nilmanifold: constructed from a cube by identifying left and right faces
by a Dehn twist, and the other faces are identified by standard translations.

Actually, any lattice of H is isomorphic to
1
Iy ={(z,y,2) eH: z,y,€Z,z € EZ}’

k is a positive integer (See Section 4.3.1[21]). And the homogeneous space Hj = H/T'j could
be defined similarly as above. Hj is an S'-bundle over T? with Euler number k. Thus H is
a k-cover of Hj. Together with the 3-dimensional torus T3, these gave all the nilmanifolds in
dimension 3.

For the simplicity of notations, we will restrict ourselves in the case H, but all our results

also holds for any Hy.

For the Heisenberg group H, we denote by Aut(H) the set of all Lie group automorphisms.
That is for any f € Aut(H), f : HH — H is a diffeomorphism which preserve the group

operation:

f(g1)f(g2) = f(9192), Vg1, g2 € H.

Moreover, if the automorphism f satisfies f(I') = I', we denote by f € Autp(H). This
allowed us to define a diffeomorphism f on H = H/I'. That is for any g € H, and we denote
I'-g € H, we have

fT-g) =T flg).

Here f is a well-defined diffeomorphism on H since f(I') = I'. This definition makes the following

diagram commutable:

H N H
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We call a diffeomorphism f on H is partially hyperbolic, if the tangent bundle TH admits a
D f-invariant splitting
TH = E°® E°® E*,
and there exists an integer k£ > 0 and a constant 0 < p < 1, such that for any p € H, and unit
vectors v* € E*(p), v € E°(p), and v* € E*(p), we have

IDFF @I < p< IDFFEAI < p™ < D]

In chapter 2, we will give a very detailed descriptions of partially hyperbolic automorphisms.
We will see that all the partially hyperbolic automorphisms on H preserve the S'-fiber structure
of H. The S'-fibers are tangent to the central bundle E°, and are isometries restricted on each
fiber. Thus we can modulo the S'-fibers, and the automorphism will induce a linear action A on
H/S' = T2 A € GL(2,Z) is a hyperbolic matrix(the absolute values of eigenvalues not equal
to 1). To be more precisely, f4 : H = T2xS* — T2xS! could be represented as

fA(l‘,y,Z) = (A(x,y) s ¢z,y(z) ) s (ﬂc,y,z) € T2§51 .

Here A € GL(2,7) is a hyperbolic action, and each 1, , is a circle isometry (see theorem 2.2.2).
Moreover, the invariant bundle E*@®E" is a contact plane field on A which transverse to S'-fibers

of H. Thus the partially hyperbolic automorphisms are contactomorphisms.

Recently, the study of partially hyperbolic diffeomorphisms has achieved great progress. In
[22], F. Rodriguez Hertz, J. Rodriguez Hertz, and R. Ures proved that all the C? partially
hyperbolic volume preserving diffeomorphisms of H are ergodic. This surprising result strongly
relies on the topological property of H.

After that, A. Hammerlindl and R. Potrie [17],[18] showed that every partially hyperbolic
diffeomorphisms on H is leaf conjugate to some partially hyperbolic diffeomorphism. This results
gave very accurate descriptions of partially hyperbolic diffeomorphisms on H.

For any partially hyperbolic automorphism f4 of H, its invariant plane field £* @ E* is a
contact plane field (theorem 2.2.2). This implies that the accessible class of any point in H is an
open set, the connectedness of H ensures that f4 is accessible and stably accessible (this actually
holds for all partially hyperbolic diffeomorphisms of H, see [18]). Since the central bundle of
fa is one dimensional, it automatically satisfies the center bunching condition. This implies
that fa is stably ergodic [11]. From this observation, we can see that the invariant plane field
E° @ EY is contact is a basic fact that guarantee fa is stably ergodic. Moreover, the partially
hyperbolic automorphisms on torus T? could be perturbed to be structurally stable, just because
its invariant plane field E* @ E" is integrable (naive example in chapter 8). So all these analysis
tell us that the invariant contact structure E° & E" of f4 is the main obstruction for breaking

the transitivity of fa.
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1.4 Main Results and Corollary

In this thesis, we will prove the following result.

Main Theorem. Let va € Autp(H) be partially hyperbolic and fa : H — H be the diffeo-
morphism induced on H, there exists a sequence of C*®-diffeomorphisms {f,} converging to fa
in C'-topology, such that each f, is structurally stable and the chain recurrent set of f, consists

of one attractor and one repeller.

We want to point out that the construction of f,, comes from the perturbation of f4. All
our perturbations are along the S'-fibers. So the f, still preserves the S'-fibers structure of H
and induce the same linear action A on T? = H/S?.

We now give several remarks about the dynamical consequence of this theorem.

Remark.
o Combined with [22], this theorem shows that all the partially hyperbolic automorphisms on
H are stably ergodic in the conservative category, but not robustly transitive from the topological

viewpoint, which is the first ezample been found. This also answers one question in [21](Problem

49).

e Notice that the strong stable foliation of each partially hyperbolic automorphisms on H is min-
imal, and all the partially hyperbolic diffeomorphisms on H are stably accessible([22],[17],[18]).
So we answer a question in [21](Problem 50), show that minimality of stable foliation and stable
accessibility does not implies robust transitivity. See [6] for more discussions on the minimality

of stable and unstable foliations for robustly transitive partially hyperbolic diffeomorphisms.

e Recall the time-1 map of geodesic flow on surfaces with constant negative curvature, is also
a partially hyperbolic contactomorphism. That is E° & E" are invariant contact structure and
the derivative is isometry on E€. So our partially hyperbolic automorphisms could be seen as a
simplified model of it. Our result gives strong evidence that the time-1 map of geodesic flows are

not robustly transitive.

e In our theorem, the approzimation only works in C'-topology. The author tend to believe
that the partially hyperbolic automorphism f4 should be C?-robustly transitive. But there are no
strong evidence to support this point. Actually, we seriously know very few things about robustly
transitive systems, especially in higher reqularities. In C'-topology, all the known examples are
admitting the whole manifolds as a homoclinic class of the systems. So this relates to another
conjecture: the Cl-robustly transitive system must admit a hyperbolic periodic orbit. Our f4

could be seen as a good candidate for robustly transitive system without hyperbolic periodic orbits,
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however we showed it is not C'-robustly transitive.

For the strong stable and unstable foliations of f;,, their holonomy maps will also admit some
special properties. We first introduce the quasiperiodically forced systems. A homeomorphism

is called a quasiperiodically forced circle homeomorphism if
ho:T? — T2, (0,t) — (0+w, he(t)),

where w is irrational, and the fiber maps hg are all orientation preserving circle homeomorphisms.
Such homeomorphisms have been seen as a natural generalization of the circle homeomorphisms,
and been widely studied for the case where the homeomorphism is homotopic to identity. We

refer to [26] and [27] for more information.

Now we consider an embedded torus T% in . Lifting in H and under the coordinates of R?,

this torus could be represented as

{(z,y,2) : x=0, y,z€[0,1] }.

Recall that when we project H to T2, the partially hyperbolic automorphism f4 will be the
linear action A on torus. This implies that the center stable and unstable foliations of f4 are
the lift of the stable and unstable foliations of A on T? to H, that is times the S'-fibers. Since
our perturbations of f, are along S'-fibers, which implies f,, admits the same center stable and
unstable foliations of f4. From this, we deduce that the center stable and unstable foliations of
fa and f, are transverse to ']I‘(Q).

Since for each connected component of a center stable manifold of f4 (also f,,) intersecting
with T% is a central S!-fiber, this implies that the strong stable foliations of f4 and f, is
transverse to T3. Moreover, the angle between the central S!'-fibers and the strong stable
foliations of f4 and f, are uniformly bounded from zero. This implies that ’]I’(% admits a global
holonomy map of the strong stable foliations of f4 and f,. The same is true for unstable

foliations.

We use the coordinate (6,t) instead of (y,z). Since the central S'-fibers are also the S'-
fibers of T%, this implies the center stable and unstable foliations intersect Tg get the S'-fibers
structure {6 x S : 0 € S1}.

Recall both f4 and f, will project into the same linear hyperbolic action A on the base T2,
where the stable and unstable foliations of A are linear irrational foliations on torus. Thus the
holonomy map of the stable foliation h® : ’]I‘g — ’H‘% must be a quasiperiodically forced circle

homeomorphism:

h*(0,t) = (6 +ws, hg(t)) .
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Notice that h® must homotopic to a Dehn twist due to the topology of H. The same to unstable
foliations.

In [3], the authors constructed examples of quasiperiodically forced systems homotopic to
identiy map, that are transitive but non-minimal. But the fiber circle homeomorphisms could
only be C'. And it is also an open question whether the transitivity of these homeomorphisms

with higher smoothness implies minimality([3],[26]).

H

! -
o] t h¥(p)
|

>

JP A A o

P €T

Figure 1.2: Holonomy Map
The holonomy maps of stable and unstable foliations of our f,, gives the following corollary.

Corollary. For any 0 < r < oo, there exists a quasiperiodically forced circle homeomorphism
T T2 — T2, (0,t) — (0 +w,, hy(1))

which is homotopic to a Dehn twist, such that h" is transitive but non-minimal, and each fiber

circle homeomorphism hy is a C"-diffeomorphism.

Proof. We first show that the holonomy maps of stable foliations of f,, associated to ’]I’(% are
transitive but non-minimal. Then we prove that the fiber map could be arbitrarily smooth as n
tend to infinity.

The transitivity of such homeomorphisms has been proved in section 6 of [18]. Since f,
admit a hyperbolic repeller, which is a stable saturated set, the repeller of f, intersects ']I'% in a
minimal invariant set of the holonomy map. This proves the non-minimality of holonomy maps.

For the smoothness of fiber maps, we first point out that the fiber maps of holonomy map
are the holonomy map of strong stable foliations restricted to center stable manifolds. As f,

will converge to f4 in C'-topology, the norm of central derivative || D f,|gc| will converge to 1.
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This allows us to apply Theorem 3.2 of [21] showing that for any 0 < r < oo, there exists some
n, such that the the holonomy map of strong stable foliations of f,, restricted in each center
stable manifold is C".

This finishes the proof of corollary. O

1.5 Ideas and Sketch of Proof

In this section, we try to illustrate the ideas of our construction and give the organization of
this thesis.

The Lie structure of the Heisenberg group and the fact that f4 is a group automorphism
makes the invariant bundle E° @& E“ is a contact plane field defined on H. This is the main
reason that f4 is stably ergodic, and also the main obstruction for our perturbations to break
the transitivity of f4.

Since f4 is partially hyperbolic and admits the S'-fibers as its central foliations, so from the
structural stability of central foliations (the central foliation of fa are smooth, we can applying

Theorem 7.1 of [25]), our perturbations only focuses on the direction of S'-fibers.

However, H admits neither any closed surfaces nor any foliations transverse to the S'-fibers.
What we could have is only the Birkhoff sections, that is the compact surfaces whose interior
transverse to S'-fibers, and the boundary consists of finitely many S!-fibers.

The central DA-construction in [8] allows us choose two parallel such kind Birkhoff sections
to be the candidates of our attractor and repeller of new diffeomorphism. However, there are

two difficulties here.

e One is that we need to require the Birkhoff section > we choose to be dynamically invariant:
fa(¥) is fiber isotopic to X.

e The other one is we want some control of the tangent plane field of 3, which is necessary

for estimating the C'-distance of our future perturbations.

These two difficulties will be managed in theorem 4.0.9, which can be stated in the following
way:

There exists a sequence of open book decompositions whose pages are fa-invariant up to
fiber isotopy, and the tangent plane field of each page will approximate the dynamical invariant
contact structure E° @ EY of fa.

Here the open book decomposition means we fix a Birkhoff section and rotate along the S'-
fibers to get a decomposition of H. It satisfies the Giroux [15] correspondence to the invariant

contact structure E* @ EY.
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We can see that this result deserve its own interests in the geometric topology field. The
work of W. Thurston and Y. Eliashberg shows that the tangent plane field of a 2-dimensional
foliation could be approximated by a contact plane field in dimension 3. The converse could
not to be true. For example, in our case, there even does not exists any foliation transverse to
Sl-fibers of H.

Theorem 4.0.9 actually gives us a sequence of open book decompositions of H, which are
all fa-invariant up to fiber isotopy. Moreover, there exists a sequence of corresponding subsets
of H, whose Lebesgue measure will converge to full measure of H, such that for any point
in the subsets, the angle between the tangent plane of the page of corresponding open book
decomposition and the contact plane at this point will uniformly converge to 0 as the sequence
tend to infinity. So we actually construct a sequence of foliations on a sequence of subsets, where
the subsets converge to H and the foliations converges to invariant plane field.

We want to point out that for the time-1 maps of geodesic flows, if we can prove theorem
4.0.9 also works in this situation, then we almost finish the proof of the open question. Here
the main difficulty is the unit tangent bundles and the invariant contact structures are more
complicated then the nilmanifold case. However, the easier part is the time-1 map is isotopic to

identity map, so there are no algebraic obstructions.

Now the new diffeomorphism can be constructed in the following way:

e When far from the boundary fibers, the diffeomorphism on the two sections is one central

contracting, the other one is central expanding.
e When close to the boundary fibers, we apply the central DA-construction in [8].

Then we try to glue these two parts together and get the new diffeomorphism which is struc-

turally stable, admits one hyperbolic attractor and one hyperbolic repeller.

Organization of the Paper.

In chapter 2, we give a detailed description of the partially hyperbolic automorphism f4 on
‘H, including what the invariant bundle £* @& E* associated to fa looks like.

In chapter 3, we will introduce the definition of Birkhoff sections, and give some examples.
Moreover, we will discuss the fiber isotopic class of Birkhoff sections.

In chapter 4, we will give the proof of theorem 4.0.9, which states the existence of invariant
Birkhoff sections, and the estimations of their tangent plane fields.

We will prove the main theorem in chapter 5 by admitting the central-DA construction, that
is proposition 5.2.1.

Finally, we will give a proof of proposition 5.2.1 in chapter 6.



Chapter 2

Partially Hyperbolic Automorphisms

In this chapter, we will first study all the partially hyperbolic automorphisms on H, including
give the explicit formula for such kind automorphisms and their invariant tangent bundles. All
these parts are simple Lie groups calculations, the reader could also find them in [21] Section
4.83.1. We include them just for completeness. The main results we will need in the future are
contained in theorem 2.2.2. Then we show some basic properties of the invariant contact plane
field E° & E™.

2.1 Automorphisms on H and H

We first state some basic facts about the automorphisms on the Heisenberg group H. Notice
that H is a simply connected Lie group, where R3 is a global coordinate of it. So we have a
one-to-one correspondence between automorphisms of its Lie algebra and automorphisms of H.

For e = (0,0,0) € H, we choose a basis in the tangent space T.H as {0/0x,0/dy,0/0z}.
Then by the left action, we get three left invariant vector fields on H, which can be represented

in R3 as:

0 0 0 0

=2, Y=—tz -, Z==.
ox’ oy e 0z’ 0z

Notice they forms a basis of the Lie algebra h of H. Actually, if view H as a Lie subgroup of

GL(3,Z) and b form a Lie sub-algebra of gl(3,Z), then we can represent X,Y, Z by the matrix

0

10 0
X = 00|, Y=
0

0 0 001
o1 |, and Z = 0 0
0 0
The Lie bracket operation is quite simple:

(X,Y] =2, Y, 7] =[Z,X]=0.

So all the automorphisms on § are the linear transformation on R? and preserve the Lie brackets

23
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operation, which means any automorphism ¢ acting on X,Y, Z must be

X a c D X
e(l Y )= 0b d q Y
Z 0 0 ad—bc Z
Here we require A = ( CCL 2 > € GL(2,R) and p,q € R. That is, if we identify h = R? under
the basis of {X,Y, Z}, we have
a b 0
Y = c d 0 : R3S — R3.
p q ad—bc

Now applying the exponential map, we could see that any automorphism f, € Aut(H) which
associated to ¢ € Aut(h) as above, and any (z,y, z) € H,
) Ty
felz,y,z) =expo o exp (2, y, 2) =expo @ (z, y, 2~ )
x
=exp (ax + by, cx +dy, pr+ qy+ (ad — be)(z — ?y))
1 1
= (azx + by, cx +dy, (ad —bc)z + iacx2 + ibdy2 + bexy + px + qy).

Actually, from the representation above, we can view that any automorphisms on H is a lift
A € GL(2,R), which defines an action on R?. So in the future, we will denote the automorphisms

on H by fA to emphasis the matrix A acting on R2.

If we further require that the automorphism fA € Autr(H), which could define a diffeomor-
phism on H. Then we can get more information about such kind automorphisms. Since f4 is a

group automorphism, it must preserve the centralizer of H:
C(H) ={(0,0,z) e H: z € R}.

This implies }’VA|C(H) is a group automorphism on the real line and preserve all the integers. So
fA’C(H) could only to be Id or —Id. So we must have |det(A)| = |ad — bc| = 1. Moreover, we
can see that f4 induce an automorphism on Z2 = I'/T' N C(H), which shows that

A= <Z Z) € GL(2,7).

If we still use the Lie algebra automorphisms to represent automorphisms in Autr(H), then
we can associated each f4 € Autp(H) the matrix which acting on the Lie algebra h. Here we
identify h = R? on the basis of X, Y, and Z, so what we get is the transpose matrix:

b 0

a
c d 0 ,
T+p %-i-q ad — bc
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d
From another point of view, any automorphism on I' could uniquely extended to an automor-

phism on H [2]. The elements (1,0,0) and (0, 1,0) will generate I', and the first two coordinates
of their images are determined by the action of A € GL(2,7Z). Then their images in the third

where ( Z b ) € GL(2,7Z) and p,q € Z.

coordinates are two degrees of freedom chosen in Z?, which corresponding to p,q € Z in the

above.

2.2 Partially Hyperbolic Automorphisms

Assume fa : H — H is a partially hyperbolic automorphism with the invariant splitting
TH = E° @ E°é EY, and va be its lift on H. Recall that we have three left invariant vector
fields 5 5 5 5

X:%, Y:8—y+x-£, Z:&,
which form a basis of the Lie algebra h. It could see that X, Y, and Z are also to be smooth
vector fields defined on H, so we can represent the partially hyperbolic invariant bundle by them.

We first consider on the group H, where the lift fA also have partially hyperbolic splitting.
Denote by L, the left action by g on H. Since fA(e) = e, recall e = (0,0,0), so DfA(TeH) = T H.

Assume that F. is an invariant bundle in T.H by DfA. Then for any g € H, we define
Ey, = DLy(E.) C T,H.

Then we could see that £ = LjegF, is a smooth vector bundle on H. Moreover, it is DfA—

invariant:

Dfa(Eg) = DfaoDLy(E.) = D(faoLy)(Ee)
= D(Lf,, 0 fa)(Ee) = DL, (Ee)

= B~ .

falg)

Furthermore, if E. = E is uniformly contracting by D.]?A, i.e. there exists £ > 0, and
0 < p < 1, such that

7
IDfAlEl <

then DfA| g is also uniformly contracting;:

IDFAlE, | = ID(Fi o Lyo Lo-)l,ll = IID(fh 0 L)l |
= IDLp ) DRI < D7 msl- 1D Pl
< u.

Here we use the fact that for any g € H, £, is an isometry on H.
Similar argument works for the expanding bundle and the relation for dominated splitting.

This gives us the following lemma:
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Lemma 2.2.1. For any automorphism ]?A € Aut(H), it is partially hyperbolic if and only if
DfA restricted on T H is a partially hyperbolic linear transformation. Moreover, for any g € H,

we have
B = L4(E7), og=s, ¢ U.

It is also holds for any fA € Autp(H) and the projection f4 € Aut(H).

Now we try to give a more detailed description of the stable, unstable, and central invariant
bundle of the partially hyperbolic automorphism f4 € Aut(#H). Then we show that the union
of stable and unstable bundle E* & E* form a D f4-invariant contact plane field.

As stated in lemma 2.2.1, f4 € Aut(#) is partially hyperbolic if and only if Df4 acting
on T, H is partially hyperbolic. We still assume that on the basis of {X,Y,Z}, Df4 could be

represented as matrix:

a b 0
c d 0 ,
T +p %—l—q ad — bc
where A = <z Z) € GL(2,Z) and p,q € Z.

Notice that the bundle generated by Z:
(Z)é{veTg’H: geH, v=t-Z, wheret € R}.

is invariant by Df4, and we must have |ad — bc| = 1. This implies E¢ = ( Z ), and we must
require the matrix A to be hyperbolic to get the hyperbolicity of D f4.

Denote one of the eigenvalues of A is A, where |A| > 1, then the other one is (ad — bc)/A
with modulo smaller than 1. It could easily see that when we projects E° and E* on the first
two coordinates, that is the plane generated by X and Y, the images would be the eigenspaces
of A acting on R?2. We will not try to give the explicit formula of £ and E* respectively, but
E° o B

We can assume that F°® E" is equal to the linear space generated by X +«a-Z and Y +5- 72
for some «, 8 € R. Then by the invariance of E® & E“, we have:

Dfa({ X +0aZ, Y+BZ)) = (X+aZ Y +BZ).

This deduce two equalities:

a b 0 1 a 1 0
c d 0 0 | = c =al| O | 4+c| 1 ],
L+p %—l—q ad — be « T 4+ p+ (ad — be)a B
and
a b 0 0 b 1 0
c d 0 1 = d =b| 0 |+d| 1
“ip Ytg ad-be B 5+ g+ (ad —be)s a B
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This reduce to the following:
a ¢ o oY L4 >
. = (ad — bc) - +( 2 .
(5 6)(5)=tmso-(5)+ (427
> is a hyperbolic matrix, we can see that the determinant of the matrix

<a_(alil_b0) d—(ail—bc))

is a non-zero integer. We denote it by m = det(A —detA-I) € Z\ {0}.

Thus we can formulate «, 3 as:

Since no @ c
ince now { -,

a = E[g(a—b)—5+(d—(ad—bc))p—CQ],
5= L% 0) % byt (a— (ad — be))a)

Actually, here the accurate formulas of a and 3 are not so important for us in the future work.

We only need to remember that for partially hyperbolic automorphism f4,

k l
E°@FE" = (X+—Z,Y+—Z7), k,l € Z.
2m 2m
Notice that E* & E" is a contact plane field defined on H. We will deal with its properties in

next subsection.

Remark. It seems a little bit confusing that all our calculation is restricted on T.H, but our
formulas for the invariant bundles could defined on all H and H. This is just because all the
vector fields X, Y, Z, and all the invariant bundles E°, E¢, E“ are left invariant. So we can

extend the formula to all the group and nilmanifold.

Now we can summarize all the descriptions about the partially hyperbolic automorphisms

on the Heisenberg group H and nilmanifold H as the following theorem.

Theorem 2.2.2. For any partially hyperbolic automorphism fa € Aut(H) with partially hy-
perbolic TH = E® & E° & EY, and denote its lift fA € Autp(H). If we denote

0 0 0 0
x=2 y=2..9 z-2
ox’ ay—i_waz’ 0z’

to be a basis of the Lie algebra by, then the automorphism on b induced by fA could be represented

as the matrix:
a b 0

c d 0 ,
Cip Ytq ad—be
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where A = ( Ccl Z ) € GL(2,Z), and p,q € Z. Moreover, for any (z,y,z) € H,

fa(z,y,z) = (ax+by, cx+dy, (ad—bc)z+ Ppq(z,y) ) .

where Yy q(z,y) = Faca® + bdy* + bexy + (% + p)z + (% +q)y, for some p,q € Z.

Furthermore, since X, Y, and Z are also smooth vector fields defined on H, then the invariant

bundles satisfy

k l
E‘=(Z d EoFE'=(X+—-Z,Y+—-Z
(z). an BB =(X+. 2, Y+5--7),

where m = det(A —detA-I) € Z\ {0} and k,l € Z.

2.3 Invariant Contact Structure

In this subsection, we will focus on studying some properties of E* @& E" as an invariant
contact plane field.
Recall that

k l
EFoFEY = (X+—-Z, Y+— 7).
© (X+ 2m + 2m )
So the Lie bracket operation
X+ 2z vyl oz=z
2m 2 -

which does not belong to the plane field. This implies that the plane field E® & E" is not
integrable everywhere.
Actually, if we represent the two vector fields which generated E* @ E* in R? coordinate,

then we get
0 k 0 0 [ .0

s omds 3y T )
Notice that these two vector fields 9/0x + k/2m - 0/0z and 9/0y + (x +1/2m) - 0/0z are well
defined on both H and H.

Now we consider the 1-form

Ef@E" = {

k l
a = dz—%-dl‘—(x-i-%)-dy

on H. Notice that it can also be projected on H which also defined a smooth 1-form (still

denoted by «) on H. Easy calculation shows that
ker « = E°@ E"“.
Moreover, we have

da = —dz A dy, and aANda=—dxAdy Adz #0.
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This implies « is a contact 1-form defined on both H and H, and E® @& E" is its kernel, thus a

contact plane field.

In the rest of this subsection, we will state a lemma about the twisting property of piecewise

smooth curves which tangent to E* & E".

First we recall some symbols. We misuse 7 : H — R? denote the projection to the first two
coordinates, and also 7 : H — T? the projection along the S'-fibers.

Now we consider a piecewise smooth simple closed curve v : [0,1] — R? with v(0) = ~(1).
Moreover, we require that ~ has positive orientation in R?. Since « is a Jordan curve and
piecewise smooth, it will bound a region D, with finite area A(ID»).

Since 7 is piecewise smooth, so for any ¢ € [0,1), we have a well defined +/, (t) € T,HR*. For
any

penl(y) = {(w.y.2) €H: (z,y) € ~(0,1])},
it exist a unique vector
v, € dn (v (7(p))) N E,® E; .

This is just because £, @ £, transverse to (Z),.

veE E°QE"
length(J) = Area(D5)

Figure 2.1: Twisting of Contact Structure

Lemma 2.3.1. For any piecewise smooth curve 5 : [0,1] — H = R3 satisfying
e 7 tangent to E* @ E" everywhere.

e v = mo7 is a positively oriented simple closed curve in R?, which bounds a region with
area A(D-).
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e 7 is an injection on Y((0,1)), and we have w0 5(0) = wo~(1).
If we denote by 7(0) = (zo, Yo, 2z0) and (1) = (zo, Yo, 21), then the twisting height
2 — z = AD,) .

Proof. The proof is applying the fact that

0 k 0 0 [ .0
Fopi=(2 422 9 e
© <8$+2m8z’8y+($+2m)6z>’

then do the basic Riemann integration in R3.



Chapter 3

Birkhoff Sections

In this section, we will introduce the Birkohff sections in H, which will play the central role
in our future construction of attractors and repellers of new diffeomorphisms. For showing the

necessary of such notion, we first consider a trivial example.

Naive Example. Consider the simplest partially hyperbolic automorphisms of commutative
Lie groups

AxId : TP=T?xS' — T3 =T%x S,
Notice that such kind diffeomorphisms are not transitive but chain-transitive. We can break the
chain-transitivity very easily. Just choose a sequence of Morse-Smale diffeomorphisms {g,} C
Diff>°(S!) such that g, — Id in C* topology. Then f, = A x g, are hyperbolic systems

approximating A x Id with attractors and repellers.

In this naive example, the attractors and repellers we built for f, are actually the integral
tori of E* @ E*, which are transverse to S'-fibers.

In the situation of Heisenberg nilmanifold #, things becomes a little subtle. Since the
absolute value of Euler number of H as a fibre bundle is large than the absolute value of Euler
number of the base surface T2, Milnor-Wood inequality [35] shows that there do not exist either
any closed surfaces or foliations transverse to the S!-fibers.

This requires we that we find something else to substitute for them. That is the Birkhoff

sections.

3.1 Definition and Half Helicoids

Definition 3.1.1. A smooth embedded surface ¥ — H is called a Birkhoff section associated to
Sl_fiver, if it satisfies

e The boundary of ¥ consists of finitely many S*-fibers:
0¥ =5, USp, U---US,, ,

31
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where p; € T? and Sp; = 7 Yp), fori=1,--- k.
o The interior of ¥ is transverse to the S'-fiber of H:

T.H=T,X®T,S, Vzreht(®).

Remark.

e The name ”Birkhoff sections” comes from G. Birkhoff who defined similar sections for the
geodesic flows. The flows do not always admits global sections, but sometimes they have sections
whose interior transverse to the flow and boundary to to be some periodic orbits. See [13] for the
Birkhoff sections of the transitive Anosov flows. The role of flow lines is similar to our S*-fibers

here.

e From the definition of Birkhoff sections, we could see that the interior of ¥ is a covering
surface of T*\ {p1,--- ,pr}, so there exists | > 0 such that for any p € X, \ {p1, - ,px}, the
fiber Sy, intersects ¥ with exactly | points.

e The most well-known surface looks like a Birkhoff section is the half helicoid X C R? x S,
which is given by the equations:

x =p-cos2mf ,

y = p-sin270 ,

z=0 (mod 1) .
Here 0 € R, and p > 0. We can see that the boundary of Xg is (0,0) x S, and its interior
transverse to the the vector field 8/0z, thus the S*-fibers.

Before we give the examples of Birkhoff sections, we need to spend some time on the helicoid
and its deformations, which will be our future model in a neighborhood of the boundary fibers
of Birkhoff sections.

Since for the partially hyperbolic automorphism f4 : H — H, the matrix A € GL(2,Z) is
hyperbolic, so there exists a non-degenerate matrix P with det(P) > 0 such that

P loAoP = <det(A)'A 0 >

0 1/A

Here A satisfies |A| > 1. Then for the half helicoid ¥z C R? x S, we consider the image
P x 1d(Xfr), which we will show admits the same boundary as ¥y and whose interior is also
transverse to S!-fibers.

Actually, here P induces a smooth diffeomorphism on the unit circle Co = {(z,y) : 22 +y% =

1},
P(z,y)

Peey) = 1pa gl

V(.’L', y) € C’0'
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If we consider it in the polarizing coordinate, for Cy = {(p,0) : p=1,0 € R (mod 1)}, P defines
a diffeomorphism p : Cy — Cj, where for any § € R (mod 1),

P(cos27m0,sin270) = (cos2mp(0),sin27p(h)) € Cy .

Moreover, since p : Cy — Cp is a diffeomorphism, so there exist some 6y € (0,1) satisfying
p(bo) = 1/2.
Thus we can present the new surface P x Id(Xg) by using the formula:

x = p-cos(2m-p(h)) ,

y = p-sin(2m - p(h)) ,
z=0 (mod 1) .

And it can be easily checked that (P x Id(Xg)) = (0,0) x S, and the interior is transverse to
Sl-fibers of R? x S*.

3.2 Examples of Birkhoff Sections

In this subsection, we give several examples of Birkhoff sections in H and show how to
build them. Especially, we will introduce the affine Birkhoff sections, which will be our future

candidates of attractors and repellers.

3.2.1 Section in [0, 1]3

We first try to construct some surfaces in [0, 1]3, which will be the basic stones and bricks
for our future constructions.

Consider an imbedded surface g C [0, 1]? satisfying the following properties:

1. The boundary 93¢ = S, U St U S;, where

o Sy ={(3.3)}x[0,1],

o S =1[0,3]x{(3,0),(3, 1)},

o So={0}x[0,3] x {0} U {0} x[5,1] x {1} U [0,1] x {(0,0),(1,1)}
U {(1,t,t): te[0,1]}.

2. The interior of ¥ is the image of a smooth function

6:(0,1) x (0,1)\ (0,

SlxGE — o),

which can extend smoothly to the boundary. Moreover, Int(Xg) is transverse to the z-axis,
that is 0¢/0x and 0¢/Jy are bounded everywhere.
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— S

C

Yo C [0, 1]
9% = S, USIU S,

Figure 3.1: Surface g in [0,1]?

3. There exists 0 < § < 1/2 such that ¥ restricted to
A 9 11
B(S,,26) £ {(2.9) € 0.1+ d((w9).(5,3)) < 20} x [0,1]

is the image of the helicoid under the action of P x Id:

x = p-cos2m-p(0+ 0y)] +1/2,
y=p-sinf2m 50+ 00)] +1/2,
z=140.

Here 0 € [0,1], and 0 < p < 2§. Notice that p(fy) = 1/2, so close to the boundary, i.e.
2o N B(Sp,20) intersects [0,1]% x {0,1} with two segments [1 — 26, %] x {(},0), (3, 1)},
which are contained in S7j.

4. Since ¥ is smoothly extended to its boundary, we can define the tangent space of ¥y on

its boundary. Moreover, for any (¢, %, 0), (¢, %, 1) € Sy and i,j € N, we require

8¢i+j
lim P
(2,,6(x.y)—(t,4,0) 0L DY

i+J
(,y) = lim 00

—(z,y) .
(z,y,8(2y)—=(t,3,1) awzayy( v)

5. For any point (z,y, z) € S, we have

o 0 0

TounSo = ( =, L 122y,
(z,y,2)~0 <6.’L'7 8y+$82>

This tells us on the boundary part S., g is tangent to the canonical contact plane field

generated by X and Y. Obviously, this required that for points in S7, we have

0 0
IimT,, 1 — ., — .
R O <8$’8y>

50 ( ’2’0)20 — 11m T(t 1 1)20 —

t—0 ‘"2’
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Remark. It seems that our construction of g is a little bit cumbersome. However, our future
Birkhoff sections are fully relies on ¥, which will be achieved by gluing the image of Yo by some
affine maps, just like the small chambers of honeycomb. So it is worthy for us to describe it very
carefully. From now on, when we talking about Yo, we refer to a fized surface in [0,1]> which

satisfying the above properties.

3.2.2 Single Boundary Sections in H

Now we can give the first example of Birkhoff sections in ‘H, denoted by ;. Remember that
[0,1]? is a fundamental domain of H, and on the boundary of [0, 1], we have the identification

~

(,y,2) ~(x+ Ly, z4+y) ~ (x,y+1,2) ~ (z,y,2 + 1).

Lemma 3.2.1. For the section Y9 — [0,1]3, $1 = 3o/ ~ is a Birkhoff section with single
boundary fiber in H = [0,1]3/ ~.

NN

lezo/NCH

Figure 3.2: Birkhoff Section with Single Boundary Fiber
Proof. Considering ¥/ ~, we have two parts of identification. First for S7, it can see that

1 1 1
(taivo)N(tv§al)7 VtE [Oa 5]

Since we already assumed in property 4 of ¥y, that T(t 1 0)20 = T(t 1 1)20, so we can glue
727 727

[0,2] x {(3,0)} to [0, 2] x {(3,1)} smoothly. This implies (S;/ ~) C Int(Zo/ ~).

Second consider the identification for S.. We have

(0,£,0) ~ (0,£,1) ~ (1,,8), and  (£.0,0)~ (£,1,1),  Vte [0,1].
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The smoothness of gluing comes from property 5 of ¥y, that ¥y is tangent to (X,Y) when
restricted on S, where (X,Y) is also a smooth plane field on H.

Combining these two parts together, we get a smooth imbedded surface ¥1 = (£¢/ ~) — H.
The boundary of 3 consists of S,/ ~= 7"1({(1/2,1/2)}), which is a S'-fiber. And the interior
of 31 is transverse to the S'-fibers. This gives us the most simplest example of Birkhoff sections.

O]

3.2.3 Multiple Boundaries Sections in H

We are ready to construct some more complicated Birkhoff sections in ‘H. The way are
somehow similar to the single boundary one. We plan to use affine maps to imbedding a lot
of [0,1]® into H, and glue them together, which makes the image of all ¥y will be our Birkhoff
sections with multiple boundary fibers.

Fix an integer ng € N, and denote
[Z/no)> N'T? = {(i/no,5/n0) € T?: 4,5 €{0,1,--- ,ng — 1}}.
Lemma 3.2.2. There exists a Birkhoff section ¥, — H, such that
O, = 7 Y[Z/no]* N'T?).

Proof. We will need a new fundamental domain

1 1
1 —2x[0,1]/ ~.
oo 2n0] x [0,1]/

Ho= |

First we define the two dimensional skeleton in [—~1/2ng, 1 — 1/2n¢]? as:

A i1 5 1 1 1

Sko :{(7_777_70):iaje{ovla"'an(]}}x[ ]

“2n T 2mg
1 1 i1 51
—7,1—7>< T S s T 5 )¢ .7.6 0717"'7 )
U [ QTLQ QTL()} {(no 2n0 no QTLO) b { nO}}
which cuts [~1/2ng, 1 —1/2n¢]? into n3 small squares:
i1 i1 i1

1
_——— —+ —x [+ —, L+ —]:4,j€{0,1,--- g —1
[no 2n0 no + 2’)”Lo] [no 2’)10 no + QTL()] bJ { 1o }}

Then for each 4, j, we try to cut

) 1 ) 1 ] 1 ] 1
no 2710 no 2110 no 2710 no 2n0

into nZ small cubes, and imbedding [0, 1]® inside, which satisfying simultaneously that all the

images of ¥y can also glue smoothly. Define

i1 i1 i1 5 1
Vijg t [ —+ X[ — =+

) ) 7] — [07 1]7
no 2710 no 2’/10 no 2’/10 no 27”&0
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9
(z,y) — W+ 5.0
We can get a cube
i 1 4 1 j 1 1
A" = IR : ) 67_777 Xl 5 FYRE
o= { @) @) el - gt b o (Lo L

1
and z € [¢i,j($7y)7¢i,j($;y) + ﬁ](mod 1) }
0
Rotate A; ;o through the z-axis over 1/nZ, we get a new cube A, j 1, here notice that we may
need modulo 1 if necessary. Repeat this process n3-times, we cut [nio - ﬁ7 nio + ﬁ] % [nio _

ﬁ, nio + ﬁ] x S1 into n small cubes. Thus we separate H into ng small cubes, and labeled

by i,j € {0,1,--+ ,ng — 1} and k € {0,1,--- ,n% — 1}, which is defined as

Aigr={ @52 @y) €l =545 x[L - Ly

k E+1
and z € [wi,j(«f,y) + ﬁ?wl}j(wvy) + n2 ](mOd 1) }
0 0

Now we try to define the affine map
U, ik - [0, 1]3 — Ajjr — H.
As for any (z,y, 2) € [0,1]3,

x 1/ng-x+ (20 —1)/2ng
Vigr(l v | )= 1/ng-y+ (2§ —1)/2no
z 1/nd-y+i/no-(y+1/2n0) + k/n3 (mod 1)

Wi gk

=T /\ g )
| . /7

— - T AT AT T

I

EOC[Ovl]S | /9‘—/—|—— ——
” /7
LT J L - L /

\Iji’,j’,k’ _Q) Ad H

Figure 3.3: Birkhoff Section with Multiple Boundaries
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Finally, we get the new Birkhoff sections ¥,,, as follows:

So = || Wisn(Zo).
i7j7k

Furthermore, we denote the skeleton of X, to be:

Sk(X,,) = |_|‘1’z‘,j,k(5c(20))a
ik

which one can easily check that Sk(X,,) = L, N7 1(Ska).

Here X, is a Birkhoff section comes from the way we cut the small cube A, ;;, the affine
map U, ; r, and the boundary properties of ¥ in [0, 1]3. All these guarantee that U, ; ,(Xo) could
be glued smoothly with the images of ¥y in the cubes surrounding it. And the only boundary
part after gluing for 3, would be

P
Oy = 7 ({(— 1) €T dj € {0,1,+ ,no — 1}}).
The fiber transversal property comes from the affine map preserve the z-axis. Thus %, is a

Birkhoff section with n%—ﬁbers boundary.
O

3.2.4 Different Birkhoff Sections with Same Boundary

In the last subsection, we have construct a Birkhoff section ¥,,, with nZ-fibers boundary. It
is obviously that if we fix the section X in [0, 1]3, then the new section just relies on the way how
we cut H into small cubes. The rest is just imbedding [0, 1] into these cubes by affine maps,
and check the images of all ¥ps could be smoothly glued together to achieving the new Birkhoff
section. The gluing procedures between different cubes are mostly at the skeleton of ¥,,,. So we
call the Birkhoff sections constructed by this way to be affine Birkhoff sections. Moreover,
if a Birkhoff section X, is affine, then its way for cutting H into small cubes is determined by
Sk(3,,), so does X,,.

We try to consider this construction in a different point of view. In [~1/2ng, 1 — 1/2n¢)?,

which is a fundamental domain of T2, we consider two segments:

Fo 1= )X gk ad {—poyx (g, 1o o

!

“2n9" T 2n9° " 2mg 29" T 2mg

Notice that in T?, they will be two simple closed curves, which form a generator of my(T?).
Denote these two curves by I3 and lg, and T;, = 7~1(l;) is the torus consists of S!-fibers for
1 =1,2. We can see that

0Xn, NTy, = 0, 1 =1,2.
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Under the coordinates of the fundamental domain [—1/2ng, 1 — 1/2ng]? x [0,1], we could
see that

1 1 1 1 nd —1
Yo NT;, = |[——, 1 — — e 0,—, - 0
no 1 [ 2TLO’ 2n0] X { 2”0} X { ’7137 ) TL% }7
and )
1 1 1 1 ns —1
Yoo NTp, = {—tx|[—, 1——|%x{0,—, - 0 .
no l2 2n0} [ 2”07 2n0] { Y n%’ 9 n% }

Then, our affine Birkhoff section ¥,,, is determined by these two family of simple closed curves.

Actually, since we do not want to distinguish 3, to another Birkhoff section R, (X, ), which
is rotate ., along all the S'-fibers with angle . So we just need to remember %,, N T}, is
tangent to the vector field X in H, and X,, NT;, is tangent to the vector field ¥ + ﬁZ. Then
we could see that X, N7~ 1(Sky) are tangent to (X,Y + ﬁZ ) everywhere. The last thing is
guarantee that all these curves need to intersect appropriately on the S'-fibers of lattice points
in Skg. That makes X, N 7~ 1(Ska) is still a cover of Ska. This fixed the skeleton Sk(%,,),
thus X,,,.

Lemma 3.2.3. There exists infinitely many different affine Birkhoff sections, which admits the

same boundary of Yn,, and are not equal to the rotation of ¥, along the S*-fibers.

Proof. We try to create the new Birkhoff section X from the way stated above. The new one
admits the same boundary and the same two dimensional skeleton Ska(X,,,) with 3.

For any (ko,lp) # (0,0) € Z%, choose two family of simple closed curves in T;, and T,
respectively. In Tj,, these curves intersect each S'-fiber exactly n-points with equal distance
l/n% one by one, and tangent to X + i—%Z. In T,,, these curves also intersect each S'-fiber
exactly n3-points with equal distance 1/n one by one, and tangent to Y + (ﬁ + 717%)2 . Then
the same way extended the two families to the whole 71(Ska(3,,)), which gives us a new
skeleton. This allowed us to construct a new affine Birkhoff section X}, which depends on two
integers kg and [g.

Notice here ¥, ' could not deformed from ¥, by rotations. This is because for any Ra(2y,),
it intersection curves with T;; will have the same homology with ¥,,) N'T;,. But this is impossible
for X7, .

O]

3.3 Fiber Isotopy Class of Birkhoff Sections

We have showed that for some family of S!-fibers, there are infinitely many different affine
Birkhoff sections which admits them to be the boundary. Here the different we means they could
not deform to each other by rotations along the S'-fibers. But how could we define ”different”

for general Birkhoff sections? We need the following definition.
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Definition 3.3.1. For any two Birkhoff sections ¥ and ¥ in H, we say that they are fiber
isotopic if there exists a family of diffeomorphisms F; : H — H, t € [0, 1], which satisfying:

o F; continuously depends on t, and Fy = Id|y.
e F, preserve each S*-fiber invariant: Fy(S,) = Sp, for any p € T?.
o Y = F(%).

Roughly speaking, ¥ is fiber isotopic to ¥ if it can be deformed form ¥ along the S'-fibers of
H. We call F; be a fiber isotopy function.

From the definition, we can see that for the affine Birkhoff sections, they are still different in
the meaning of fiber isotopy. In this section, we will try to give the conditions when two Birkhoff

sections are fiber isotopic. The most obvious one is they need to have the same boundary fibers.

3.3.1 Boundary Conditions

Now we will consider the local homology of a boundary fiber. Denote by
0% = |JSn,  pieT.

There exists 0 < € < 1 such that for any ¢ € {1,--- ,n}, the e-neighborhood B(p;,¢) of p;

in T? do not contain any pj for j #i. Then we consider the local trivial bundle
A1 1
D(Sp,,e) =7 (B(pi,e)) = B(pi,e) X S~

Since D(Sp,,€) is a solid torus, for its boundary torus T),, there exists a unique homology
element in H;(T),,Z) which representative closed curve could bound a disk in D(S),, ¢), and also
admits the positive orientation on T? when projected down. We denote this homology element
by < med > which means the meridian direction.

On the other hand, we know that T,, = 7 1(dB(p;,€)). So it could naturally define the
Sl-fibers in T), represent the longitude direction < long > in H1(T),,Z). Here the orientation

is the same as the fiber orientation.

Since we have assume that D(S),, ) contains a single boundary fiber S),, it implies T), N X
is a simple closed curve 7;, and if we further assume 7(7;) has positive orientation in T2, then

the homology of n; could only to be
< >=1-<med >+ <long >, or <n>=I <med>— <long > .
We define the corresponding local twisting number of the boundary S, as

T(pi, X) = 1/1, or T(pi, ) = —1/L.
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Lemma 3.3.2. The sum of all the twisting number over all the boundary fibers of any Birkhoff

section % is equal to the Euler number of the circle bundle H.:

7(pi, X) = x(H) = L.
i=1
Remark. For any 3-manifold which is an S'-bundle over closed surface, we can similar define
the Birkhoff sections and the local twisting number of boundary fibers. Then it also has the same
formula holds. The most trivial way is that if the bundle is a trivial bundle, then we can find
a Birkhoff section without boundary, that is a transversal surface. And of course the sum of

twisting number is zero, equal to the Euler number of trivial bundles.

Proof. We prove this lemma by induction. First we look at the case where the Birkhoff section X
admits only one boundary fiber. From the definition of Euler number, if we consider T3 = T2 x S!
and a disk D? C T?, and do the Dehn surgery(meridian direction to meridian plus fiber direction)
on the solid torus D? x S, then we get H. Thus if we consider a T? C T? which transverse to
Sl-fibers and intersect on each fiber only once, then the Dehn surgery acting on this torus will
give us the Birkhoff section with single boundary, and the local twisting number of boundary
fiber must be 1.

Now we consider the case where all the local twisting number on the boundary fibers are
positive. Assume that if ¥ admit [-boundary fibers and all with positive local twisting number,
then each no-boundary S!-fiber intersects ¥ at I-points, and all local twisting numbers are 1/I.

For the Birkhoff section 3 admit [ + 1-boundary fibers and all with positive local twisting
number, then it can be achieved by consider the union of two Birkhoff sections. One is with
l-boundary fibers and all with twisting number 1/I. The other one admits single boundary and
twisting number 1. Then we consider the union of them and do the operations in [13] to get the
Birkhoff section X. It can be shown that each interior fiber will intersect ¥ with [ 4+ 1 points,
and all the local twisting number of boundary fibers are 1/(I + 1).

For the case there exist some boundary fibers with negative twisting number —1/I, we need
do some operation to demolish these negative ones.

Consider any disk D? C T2, where D? x S! C H containing two boundary fibers of ¥, one
admits positive twisting number, the other one is negative. Then 9(D? x S!) must intersect ¥
with [ parallel circles which transverse to S'-fibers. This allowed us to substitute ¥ N D? x S*
by [-disks which all transverse to S'-fibers, and get a new Birkhoff section.

Repeating such procedures, we will get a new Birkhoff section ¥/ without any boundary fibers
with negative twisting numbers. During this procedures, the number of positive and negative
boundary fibers that been demolished are equal. Since ¥’ satisfies the equation in the lemma,

so does Y. This finishes the proof of the lemma.
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O]

Lemma 3.3.3. If two Birkhoff sections ¥ and X' are fiber isotopic, then they must have the

same boundary fibers, and they admit the same local twisting number in each boundary fiber.

Proof. The same boundary part is obvious. So assume that 0¥ = 9%’ = [JI, Sp,. Since X is
fiber isotopic to X', for each ¢, we can define the surrounding torus T), as before. The intersecting
curve n; = X NT,, is also fiber isotopic 7, = ¥/ N T,,, which means 7; is isotopic to 7, in Tp,. So

they must admit the same homology as

T(pi,X) = 7(pi,Y) .
O

We say that two Birkhoff sections admit the same boundary conditions, if they have the

same boundary fibers, and their local twisting number are equal in each boundary fiber.

3.3.2 Global Conditions

In this subsection, we will give the necessary and sufficient conditions for two Birkhoff sec-

tions, which have the same boundary conditions, will be fiber isotopic.

Lemma 3.3.4. Assume that ¥ and X' are two Birkhoff sections have the same boundary con-

ditions:

o =05 =[JS,, and 7% = 7(p:,Y).
=1

Then ¥ and X' are fiber isotopic, if and only if:
For any two simple closed curves v; C T2, i = 1,2, which could generate w1 (T?) and do not
intersect m(OX) = {p1,--+ ,pn}, the simple closed curves contained in X N7~ 1(v;) have the same

homology type with the curves contained in X' N7 1(vy;), fori=1,2.

Remark. Notice here both ¥ N w~1(v;) may be consists of several simple closed curves. But
these curves must be parallel, that is they have the same homology type. The same holds to
Y Nnr~l(y;). The condition here is that all these curves need to define the same homology
element in Hy (7= 1(v;),Z).

Proof. The ”only if” part is exactly the same with lemma 3.3.3, just substitute the surrounding

torus by T, = 71 (7).

On the other hand, since 7; and 7, could generate T2, choose them appropriately, we can

assulne

T>\(mUr) = | 4,
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where the number of A; is finite, and each A; is a contractible open region contained in T?.
This means

1(4;) = A;x S
is a trivial bundle.

Claim. There exists a global isotopy function between ¥ and X' when restricted on 71 (1 Uv2).

Proof of the Claim. Fix a point p € 1 N y2 and the fiber S,. Choose two points y € ¥ N .5,
and y' € £ N S,. The intersecting curves in X N 7~ *(y;) have the same homology type with

Y Nr~Y(y), for i = 1,2, implies there exists a unique fiber isotopy function
Fioooa ) < [0,1] — 77 (y),  i=12
such that
o Fj = Id|z-1(y,) ;
o Fi(Znm(y) = ¥nr () ;
o Fi(y) = v

Here "unique” means for any = € ¥, Fi(z) € ¥’ has been uniquely determined.

If 41 N2 = {p}, then modify the isotopy function of F} on a small neighborhood of the fiber
S,, such that F} s, = F?| s,- Here we can do this modification since we just care about the
Fi-image of the points contained in ¥ N S,. The property Fi(y) = F2(y) = y' guarantee that
for any point z € X N S,, we have Fil(2) = FZ(z) € ¥’ N S,. Then we just define the isotopy

function on 771(y; U~vg) as the union of F! and F?, and we are done.

Otherwise, for some ¢ € v1 N2 \ {p}, we need to verify that the isotopy functions F}' and
F? are coincide when restricted on the fiber Sq. However, here we just need to show that for
any z € £ NS, it must have F} (z) = FE(z) € ¥' NS, Then modify F}!|;e0,1) and FZ|ic(0,1) on
a neighborhood of S, can guarantee that they coincide on S,.

To prove this, we can assume that both p and ¢ are in the boundary of A;, and we can
separate 0A; into two segments o; C y; for ¢ = 1,2, both with end points p and ¢g. Then there

exists fixed curves
5 crna Yoy), and gy na (o), i=1,2,

where y € 0; is an endpoint of 7;, and ¢’ € 7, is an endpoint of o} for i = 1, 2.
If AjNoX = A;NOY =0, then the other endpoint (not y) of & coincides with the other
endpoint (not y) of o5. The same is true to o}, i.e. the other endpoint (not y’) of &} coincides

with the other endpoint (not y’) of 5.



CHAPTER 3. BIRKHOFF SECTIONS 44

Otherwise ¥ and ¥/ admit the same boundary conditions, this implies the number of points
contained in S;NY between the other two endpoints (not y) of o1 and o3, is equal to the number
of points contained in S; N ¥’ between the other two endpoints (not y’) of o} and ), Figure
3.4. This number plus 1 is equal to the number of boundary fibers of ¥ (also ¥') with positive
local twisting number minus the number of boundary fibers of ¥ (also ') with negative local

twisting number.

Sq
.EE

D ey

.. number(e) =

\_/

number ()

Figure 3.4: The red points are the points contained in Sy N Y between the other two endpoints
(not y) of o1 and oa; the green points are the points contained in Sy MY between the other two
endpoints (noty') of o) and 7).

Since F¥ maps the endpoints of &; to the endpoints of o) for ¢ = 1,2, it must have F} also
maps the endpoints of o3 to the endpoints of 5. The reverse is also true. This implies that we
have

F11|Eﬁsq = Ff’zmsq .
This finishes on the fiber S,.

Then we repeat this procedure to all the points contained in v; N ~s. Here the set 1 Nys is
a finite set since we can assume that 7; intersects ~» transversely and they are smooth. Thus
we could define the isotopy functions satisfying

F}|

= Flla vt €[0,1] .

7=l (y1Ny2) 11MY2) >
Finally we can define a global isotopy function between ¥ and ¥’ is equal to the union of F}!
and F? when restricted to 77 1(y; U~2). This finishes the proof of the claim.

O

For any Aj, we have defined the isotopy function on 7T_1(8Aj). Applying the contractibility
of Aj, this fiber isotopy function could extended to the whole m71(A;). Glue all these fiber
isotopy functions restricted on 7—1(A;) for all j together, we get a fiber isotopy function defined
on H. This proves that X and Y’ are fiber isotopic to each other.

O
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3.3.3 Global Twisting

Definition 3.3.5. A Birkhoff section ¥ — H is called an equidistant Birkhoff section if for any
St_fiber S, C H\ 0%, S, \ ¥ are the union of finitely many intervals with equal lengths.

Remark. From the definition of Birkhoff sections, we know that if 0¥ = S, U Sp, U---U S, ,
then Int(X) is an l-cover of T?\ {p1,--- ,pr} for somel € N. So if ¥ is equidistant, then ¥ cuts
Sy into 1 intervals with length 1/1.

Lemma 3.3.6. We have the following simple facts:
o Any Birkhoff section % could be fiber isotopic to some equidistant Birkhoff section.
e The affine Birkhoff sections are all equidistant.

e The image of an equidistant Birkhoff section by a partially hyperbolic automorphism is also

an equidistant Birkhoff section.

We lift a Birkhoff section ¥ C H to a surface & C HB. If 9% = Sp, USp, U---US,, , and for
simplicity also denote {p1,--- ,pr} C [0,1) x [0,1) which is a fundamental domain of T2, we can

easily see that
0¥ = ({p1,- - ,pk}+Z2) x{z: z € R}.
And of course m(9%) = {p1,- -+ ,pr} + Z* C R,

So for some p = p; + (m,n) € 7(d%), where (m,n) € Z2, we can also define the local twisting

number

7(p, X)) = 7(pi, ).
Now if ¥ is equidistant and
{(x0,90,2) : z € R} noxY =0,

then ¥ cuts {(z0,90,2) : z € R} into infinitely many intervals all with length 1/1.
Now we can state a lemma, which shows the twist of curves in 5. This lemma looks quite sim-
ilar to lemma 2.3.1, and perfectly explained where the name local twisting number of boundary

fibers came from.
Lemma 3.3.7. For any piecewise smooth curve 7 : [0,1] — Int(f)), which satisfying
e v =mo7 is a positive oriented simple closed curve in R?, which bounds a region D,.

e 7 is a injective on Y((0,1)), and wo5(0) = wo7(1).

If denote by 7(0) = (zo, Yo, z0) and Y(1) = (zo, Yo, 21), then the twisting height

21— 2 = Z T(ﬁ,i)

peD,
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Remark. The proof of this lemma is quite simple, just recall the definition of local twisting
number for boundary fibers. From this lemma, we can see that if we lift a simple closed curve in
the base space to the equidistant Birkhoff sections, its twisting height depends on the boundary
fibers it bounds.

Notice this lemma is quite similar to lemma 2.3.1, both concerning lifting some simple closed
curve to H, but one is tangent to E° @ E", the other is contained in some Birkhoff section. And

it shows our idea that use the Birkhoff sections to approximate the contact structure.



Chapter 4

Invariant Birkhoff Sections

In this chapter, we will show the existence of invariant Birkhoff sections associated to a
partially hyperbolic automorphism f4, and give the estimations of their tangent plane fields.
These Birkhoff sections will be our candidates of attractors and repellers for our structurally
stable hyperbolic diffeomorphisms.

As we promised before, it will see that such invariant Birkhoff sections will approximate the
invariant contact structure E°@ E" of f4. This is the key fact that we needed for the estimation
of the C'-distance of our perturbations.

First we define the invariant Birkhoff sections.

Definition 4.0.8. Let fa be a partially hyperbolic automorphism on H. We call a Birkhoff
section 3 is fiber isotopic invariant by fa, if fa(X) is fiber isotopic to . For shortly, we call ¥

s invariant by fa.

Recall that for a fixed partially hyperbolic automorphism f4 € Aut(#), where A € GL(2,7Z)
is hyperbolic, we denote
m = det(A —det(A)-I) € Z\{0}.
Then for the corresponding partially hyperbolic splitting TH = E° @ E€@® E* of fa, we know
that E°¢ is tangent to the S'-fibers of H, and

k l

here k,l € Z are fixed integers. For any § > 0, we denote B(0%,0) C X the set of points which
is contained in the d-neighborhood of 0.

Theorem 4.0.9. There exists a sequence of affine Birkhoff section {¥,}n>1, such that:

e 0%, = nY([Z/(2m)"]? N'T?), and on each boundary fiber, the local twisting number is
1/(2m)?".

o X, is fa tnvariant, i.e. fo(X,) is fiber isotopic to L.

47
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e For the tangent plane of X, we have

lim max £ (T2, , E(z)® E"(x) ) = 0.
=00 geX\B(0%n, —myr)

n-(2m)"n

Remark. The third item of this theorem means that for any x which is not too close to the
boundary of ¥, TpX, uniformly converge to E*(x) @ E"(x). Moreover, from the affine point of

view, here x could be chose more and more close to the boundary fibers.

The proof of the first two items of this theorem is in theorem 4.3.1, the estimation in the

third item is proved in lemma 4.4.2.

4.1 Homology Invariants

In lemma 3.3.4, we have showed that the fiber isotopic class of Birkhoff sections with fixed
boundary conditions, is determined by the homology type of the intersecting curves of the
Birkhoff sections with two vertical tori which are not homotopic.

Now we will consider the case where the boundary conditions of Birkhoff sections are de-

scribed as theorem 4.0.9. That is we consider affine Birkhoff section ., with

1

0% =n N Z/Cmy PO, and 1) = o

for any p € 7(0%,).

For describe the homology type of Birkhoff sections intersect with some vertical torus, we
need to introduce some invariants that are helpful for our future computations. In T? = R?/Z2,

we denote

y1:8'=R/Z — T? with ~(t) = (t,0) € T?,
vo: S' =R/Z — T? with ~(t) = (0,t) € T?,

are two simple closed curve which generate m1(T?) = H;(T?,Z). We can see that their homology
form a basis of Z2 = Hy(T?,Z).

Consider v : S' — T2\ 7(9%,,) is a simple closed curve with the homology type
<7> =pr<m> + pr<7>,

where p; = pi(vy) € Z, and pi,ps are coprime since v is simple closed. The assumption that
yNw(8%,) = 0, implies that %, intersects T = 7~ 1(v) with a union of finitely many parallel

simple closed curves.
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Since we have assumed that 3, is an affine Birkhoff section, thus it is equidistant. We still
denote it lifts to 3, in the universal cover H. Notice that for v C T2, it will have infinitely many
different lifts in R2. Choose 7 be one of these lifts with 5(0) = (70, %0) € R?, then we must have
7(1) = (zo0 + p1,90 + p2) € R?.

Then we consider the segments contained in

7 1F(0,1) N S = F([0,1)) xR N S,y

It could be checked that if we use the coordinates H = R3, this intersection can be formulated

as

= k
~[0, 1) xRN, = { (F(t),2(¢ R?: te0,1,keZ}.
7([0,1]) xRN { (7(2) Z()+(2m)2n)€ €0,1,keZ}
Here z(t) is a smooth function from [0, 1] to R. Moreover, for each k € Z,

{ (3(0), 2(t) + (275)2”) €R’: te(0,1])

is a connect component of F([0,1]) x RN 2,,.

Lemma 4.1.1. There exists some integer k,, € Z which decided only by ¥, and v(0) = (xo,yo),
such that

o

(2m)2n '

Moreover, the homology of the curves contained in TN, is uniquely determined by the integer
k.

z(1) — 2(0) = p1-yo +

Proof. Notice that the two vertical lines (xg,y0) X R and (2o + p1,yo + p2) X R will be projected
into the same S'-fibers in H. So X, will intersect this fiber with exactly (2m)?"-points with
mutually distance 1/(2m)?". And both two points (z0, yo, 2(0)) and (zo + p1, yo + p2, 2(1)) will
be projected into two of these (2m)2"-points. By the equivalent relationship that define H from
R3, we get some integer k, satisfies the equation in the lemma. Notice that here the term
p1 - Yo comes from the geometry of Heisenberg group, where the equivalence relationship in R?
is (20, Y0, 2(0)) ~ (zo + p1, Yo + p2, 2(0) + p1 - Yo)-

To prove that k,, is the invariant for deciding the homology of intersecting curves in T, N X,
we just need to fix a basis in H{(T,,Z). The longitude direction we still choose the fiber
circles as < long >. For the meridian direction, we consider the segment in 7([0, 1]) x R which
homeomorphic to ([0, 1]) by projection 7, and connecting two points (o, yo, 2(0)), (zo+p1,y0+
p2,2(0) 4+ p1 - yo), which are the same point in . Then this segment will define a simple closed
curve in T, and its homology is independent of < long >. We denote its homology by < med >.
We want to point out that here the choice of < med > depends on (xg, yo).

In Hy(T,,Z), we can check that the homology of the curves contained in T N Y%, is

2 2n
(2m) < med> +

(@m)2 kn]) (@) k) <197
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where ((2m)?", |ky|) is the biggest common factor of (2m)?"* and |k,|. Thus we can see that k;,

determines the homology of the simple closed curves contained in T, N %,,.

O]

Remark. Notice that this lemma just require the Birkhoff section ¥, is equidistant. And the
difference of z(1) — z(0) just depends on two things, one is the homology of curves in T N X,;

the other is the homology of v and starting point v(0).

In this lemma, we can see that the integer k,, depends both on the fiber isotopy class of X,
and the choice of starting point v(0) = (0, o) € R?. So if we fix the Birkhoff section ¥,,, then
we can view the integer k, = ky(x0,y0) is a continuous function defined on the lifting of v in
R?, since we can choose any point in the lifting set as the starting point of 7.

However, if we lift the simple closed curve v to R?, its universal cover are infinitely many
parallel infinite curves in R?. More precisely, we have denote 7 : [0, 1] — R? is one path curve
of the lift of v with F(1) = (2o + p1, yo + p2), then all the lift set of v in R? could be represented

as

U UG + pia,pea) + (,0) € R2: £ [0,1]},  if pp £0;
r€Z qEL

U UG®) + (pra,p20) + (0,7) e R?: t€[0,1]},  if p1 #0.
reZ Q€L

Since F(1) = (x0 + p1, Yo + p2), we know that for any fixed r € Z, the set

U a0 + (010, 020) + (,0) e R?: t€[0,1]},  if pp #0;
q€Z

U0 + (14 p2q) + (0,7) €R*: t€ (0,1}, if p1 £0.
qEZ

is one connected component of the lifting of v in R2. By the continuity, we can see that k, is a

constant integer in each connected components.

For the case where the simple closed curves are canonical generator of Hy(T?,Z), we can get

more accurate estimation of the central difference by applying the boundary properties of X,,.
Lemma 4.1.2. Consider a curve 3y : [0,1] — Int(X,,) which projects down on R? as:

T oy : [0,1] — R\ [Z/(2m)")?, with mo(t) = (xo +t,y0),

and we denote 7€ o yo(1) — 7€ 0 Yo(0) = yo + kn/(2m)**. Then for any parallel curves 7 :

[0,1] — Int(X,,) with wo71(t) = (x1 + t,y1), we have

e if the interval between yy and y1 in R does not intersect Z./(2m)"™, it will admit

[ [ kn
T oM(l) =7 oM (0) = yl‘i‘W;
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e if y1 =yo+ q1/(2m)™ for some integer q1 € Z, it will admit

n
T o1(1) =70 y1(0) = y0+(2:2n)2n = fn 1 (2m)"
Proof. We choose a curve oy : [0, 1] — R?\ [Z/(2m)"]?, which connect (x¢,%0), (z1,71) € R? as
its endpoints. Then the curve oy : [0, 1] — R?\[Z/(2m)"]? which defined as o (t) = o¢(t)+(1,0)
will admit (zo + 1,y0) and (z1 + 1,y1) as its endpoints.

We first assume that yo < y;. Then we can see that the curve mo7g, 01, —m 071, —0g bound
a closed region in R?. Moreover, the number of the boundary fibers of ¥, contained in this
region is equal to

(2m)" x ${Z/(2m)" O (yo, 1) C R} .

Notice that in the first item, {Z/(2m)" N (yo,y1) C R} is zero; in the second item, it is equal
to q;.
Finally, 7~ (09) N, and 7~ 1(o1) N £, would be projected into the same set in H, and we
apply lemma 3.3.7 to get this lemma. The case yg > y; is the same.
O

Similarly, we also have these properties for the curves generating another canonical element
in H(T?,7Z).

Lemma 4.1.3. Consider a curve ¥ : [0,1] — Int(%,,) which projects down on R? as:
oy 1 [0,1] — R?\ [Z/(2m)")?, with moyy(t) = (x2,y2 + 1),

and we denote 7€ o0 73(1) — 7€ 0 Y(0) = 1,,/(2m)?™. Then for any parallel curves 3 : [0,1] —

Int(X,) with wo~3(t) = (x3,y3 + t), we have

e if the interval between xo and x3 in R does not intersect Z/(2m)™, it will admit

moq3(1) =m0 3(0) =

o if w3 =xo+ q2/(2m)" for some integer q2 € Z, it will admit

.~ .~ In +q2- (2m)"
m¢o73(l) — 1€ o0q3(0) = (22771)(2")

4.2 Homology Equations of Invariant Sections

Since we have fixed the boundary properties of 3, thus from lemma 3.3.4, the fiber isotopy
class of ¥, is determined by the homology of the intersecting curves of ¥, with two vertical

tori, which do not intersect 9%, and projected into two generator of Hi(T?,7Z).
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Our plan for proving the existence of invariant Birkhoff sections is, first choose two simple
closed curves 71,72 C T2\ 7(0%,), and see the homology of curves in £, N T,,, 3, N T,,. Then
we calculate the homology of curves in ¥, N Ty, and X, N Ta,,. Finally we need to show
that there exists some homology type of curves in ¥, N'T,,, ¥, NT,,, such that the homology of
curves in X, NT 4, , X, NT 4, are equal to the homology of curves in fa(3,NT,), fa(X,NTs,).
The Birkhoff section ¥, decided by this homology is an invariant Birkhoff section.

All our calculation will use the homology invariants introduced in last section, which will be
helpful for our future estimations about the tangent plane field of X,,.

We consider two curves 7y, 1, Vn,2 : [0,1] — Int(%,,) such that

_ =~ _ 2
anl(t) - 7r0’yn71(t) - (t7 2(2m)") € R,
- 1 2
() = mednalt) = (555 t) € R
Moreover, we assume that
kn 1

Wcoﬁn,l(l) - 7Tco§n,1(0) =

T oYn2(l) — 7 o,2(0) =

As we explained before and lemma 4.1.1, the two integers k,, [, decided the fiber isotopy class
of X,,.

On the other hand, give any two integers ki, [,,, as section 3.2.4, we have showed there exists
an affine Birkhoff section 3,, admitting the boundary property we named, and satisfies these

two equations.

Now we need to calculate for fixed kj,[,, what is the homology invariants of the curves
contained in the intersections of A7y, x R and Ay, x R with f]n.
We could see that the two curves Ay, 1, Ayn2 : [0,1] — R2 \ 7(0%,,) could be expressed as

b d
Aypi(t) = (z7m—+a-t, ———+c-t),

2(2m)n 2(2m)n
Avna(t) = (%er-t, m—l—d-t).

And we denote A7, ; : [0,1] — Int(X%,) to be the curve which is one connected component of
Ay xRN f)m such that for ¢ = 1, 2:

o AVni(t) = Ayi(t) € R2\n(8%,),  Vtelo,1].
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Since the two curves Ay, 1 and A7, 2 project on T? are two simple closed curves, we could

see that there exists two integers k/,, [/, such that

ny»'n
c ~ (& >~ d k':l
e A1) = 700 AYna(0) = a 2(2m)" i (2m)?n
c I

€0 AYp2(1) — 70 Ay,2(0) = b-

2em)y” T @m)r
/ l/

Now we will try to calculate &/, 1,

from k,,,l,. That is the following lemma.

Lemma 4.2.1. There exists two sequence of integers {vn 1} and {t, 2}, which all admitting m

as a factor and satisfying

im —2L = Jim -2 —
n— oo (2m)2” n— oo (Zm)zn ’

such that, the two integers ki, and I}, could be given by the following equations:

ki + Sign(ac) a Ll _ Fn + ¢ In + ac:
(2m)2n & 2 T 2m> Y emm (2m)2n ’

I bd ln2 kn In

n ign(bd) - = 2 g g
Gmym T Senld) -5+ Gl emz T amm

Proof. This lemma is possible since we have showed that the fiber isotopic class of ¥, is deter-
mined by k;,, and [, which make that calculate k], and I/, is possible. We will give a complete
proof of first formula, the second one is the same.

For the first formula, there are two cases:

Case I. For the matrix A, a = 0. Since A € GL(2,7Z), we must have |b| = |¢| = 1. In this case,

we just need to apply lemma 4.1.3, then we get

_ - ln b—1 (2m)"
meo Al =t Ana(0) = e Gt T
This implies we get the equation
58 1—-b (2m)" ln
. = C- .
(2m)2n 2 (2m)?n (2m)2n

In this case, we can easily check that it satisfies the formula in the lemma, where ¢, 1 = (1 —
b)(2m)™ /2.

Case II. For the matrix A, a # 0. This case is a little complicated, we mainly need to applying
lemma 3.3.7 for calculation.

The equation of strict line containing the segment A%, 1 in R? is

b d
2(2m)") - 2(2m)"

C
y = g'(x—
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We fix an irrational number 0 < r; < 1, then this strict line will intersect with the line

y =711/(2m)™ at the point (220‘1(217;)%1, @fnﬁ) Notice that the matrix A € SL(2,Z) is hyperbolic

guarantees that b, c # 0.

We consider the compact region A, ; bounded by three lines in R?:

c b d 1

y=—(z- )+2(2m)”’ y=1

q 2ar; — 1
and = =
a 2(2m)»

2m)n’ 2¢(2m)™

We will find a curve in Int(%,,) which will project down as the boundary of A,, 1, then try to use
lemma 3.3.7 and the homology invariants k,,, l,, to give the formula of the invariant k], of A%, ;.

First we have the following lemma for showing the number of boundary fibers in A,, 1. Notice
that if we choose the irrational number r; small enough, then the number of Z% N Ap 1 is a fixed

integer does not depend on n.

Lemma 4.2.2. If we denote Th = jj{ZQ NAp1}, then we must have 0 < Ty < ac. Moreover, we
have )
AN
Toa = ${Z/Cm)" PN A1} = Ti-(2m)" + ac- (2m)"[(2m)" —1] .

Remark. Notice that here T;, 1 admits m as a factor. Moreover, we have

. Thi ac
i s = G = Arabu).

2ar1—1
2¢(2m)™

to apply lemma 4.1.2. First we need to calculate the number of points contained in Z/(2m)?"

To calculate the homology invariant of f]n restricted on the line x =

+ a, it needs

intersecting with interval between 2(27171)” and zzca(gn_)}l 4+ a. Since we have required that 71 is

small enough, this number must equal to an integer a(2m)"™ + u;, where |uj| < 1.
Now we apply lemma 3.3.7, which consider a piecewise smooth curve contained in f; and
projets down as the boundary of A, ;. The local twisting property of Birkhoff section gives us

the following equation:

k!, . Toy kn lp + [a - (2m)" + ui](2m)"
m)z + Sign(ac) - @m)? = q- @m)? + c- 2m)? )

Here T}, is the number of boundary fibers contained in the region A, 1, and [,, + [a - (2m)"™ +

u1](2m)™ is the homology invariant of ¥,, restricted on the line z = 220‘2217;)11 + a.

Since T,,1 admit m as a factor, and lim,,—,~ Tn,l/(Qm)zn = ac/2, so the integer

tn,1 = Sign(a-c)- [Ty, —m - ac(2m)" ']

. —c-ui(2m)”

will admit m as a factor, and lim, o0 tn,1/ (2m)2" = 0. Moreover, we have the equation

k;L + S n( ) ac + In,1 . kny, + I
(2m) ) em ~ Y ommzm T ©

+ ac.
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This finishes the proof of the first formula.

Similarly, we can get a formula for I/, this finishes the proof of this lemma.

4.3 Existence of Invariant Sections

Now we can prove the first part of theorem 4.0.9, which shows the existence of invariant
Birkhoff sections.

Theorem 4.3.1. There exists a sequence of affine Birkhoff section {¥,},, where n > 1, which
satisfying:

e 0%, = n Y([Z/(2m)™]? N T?), and on each boundary fiber, the local twisting number is
1/(2m)?".

o X, is fa invariant, i.e. fo(X,) is fiber isotopic to L.

Proof. By the invariance of the lattice [Z/(2m)"]?> N T? under the action of A on T?. Thus we
need to show that the Birkhoff section f4(X,) admits the same homology invariants associated
to ¥,,. Lifted on the universal cover R3, we denote fA the lift of fa.

Consider the intersection Av, ; x RN fA(in), we could see that Y, is an invariant Birkhoff

section if and only if

70 fa(Fn1(1)) — 70 fa(n1(0)) = 7°0 AF,1(1) — 7°0 A7y 1(0) ;

70 fa(na(1)) = 70 fa(Fn2(0) = 70 AFpa(1) — 70 An2(0) .

In these two equations, the left side are the homology invariants of f4(X,,) restricted on Ay, ; xR
for ¢ = 1,2, and the right side are the corresponding homology invariants of >,.

Notice that when we restricted on #, f4 maps the vertical torus 7! (Yn,i) into W_I(A’Ynyi). So
it must map the simple closed curves contained in ﬂ_l(’ym-) into simple closed curves contained
in 77 1(Av,,:). In other words, this observation is equivalent to fa(l) =T.

Moreover, f4 restricted on each S! fibers are isometries. If det(A) = 1, then they are
rotations; otherwise, they are the combinations of rotations and reflections. Thus we have the

following claim:

Claim. There exists two integers K, 1 and K, 2 such that

~ ~ d kn
™0 falini) = 70 [aGnaO) = @ g+ Kaa + det(d) -
c ln

70 fa(na(1)) — 70 fa(Tn2(0)) = b-

+ K, + det(A)-

2(2m)n (2m)?

Moreover, when n is large enough, these two integers K, 1, Ky 2 do not depend on n.
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Proof of the Claim. First we notice that the two points (0 0), (1, 57507, 5790w ) in H

1
N ’ 2(2m)™? 2(2m)™? 2(2m)™
will be the same points in H. This implies their f4-images will also be projected in the same

point in H. Thus from lemma 4.1.1, we must have

1 1
2(2m)"’ 2(2m)"

1 d
0) = a-—— + K,
) a 3@m) + Kn1

7o fa(l, ) — 70 fa(0, 5

@mym

holds for some integer K, 1.
Since we know that f4 restricted on the central direction would be isometry, i.e. it preserve

orientation if det(A) = 1; otherwise, it reverse the orientation. So from the assumption that

kn n 1
(2m)%  2(2m)n’

o 1(l) — 1 07,1(0) =

we get the first equation in the claim.

For K, 1 will be constant when n large enough, we just need to notice that

1 1

(©, 2(2m)™’ 2(2m)

0) — (0,0,0) and (1,

2(2;)”, ) (1,0,0)

as n — oo. So from the continuity of fA and K, ;1 would be integer, we know that they will be
constant when n large enough.

The proof of second equality and K, 2 is exactly the same. O

This implies that there exists some invariant Birkhoff section ¥, admitting the boundary
property we assumed before, if and only if there exists two integers k, and [, satisfying the

following equations
Koy \ | det(d) (kn N (a e\ (ka/@mpP N e L/ (2m)2"
Ko (2m)?n ln N b d In/(2m)%" m - Lpa/(2m)* ) -
Here L, 1, Ly 2 are two integers, and the equations are equivalent to
a — det(A) c . ky, B Ky - (2m)?" —m - Lpa
b d — det(A) ln N Kno-(2m)> —m-Lps )~
Notice that we have assumed that |det(A” — det(A) - I)| = m, so this implies there exists

two integer k, and [, satisfies this equation, and we get an invariant Birkhoff section X,,.

O

Remark. Notice that |det(AT — det(A) - I)| # 0 implies we can always solve some rational
numbers satisfies this equation. But if the solution are not integers, then do not get the imbedded
Birkhoff sections, but the immersed surfaces. For example, when m > 1, then there does not
exist any invariant Birkhoff sections with single boundary fiber. That is the reason that we need

to choose the boundary fibers very carefully.
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The following corollary state the properties of the curves contained in the invariant Birkhoff
sections, which is crucial for our future estimations of tangent plane fields of invariant Birkhoff
sections. It is a direct consequence of lemma 4.2.1 and the claim contained in the proof of
theorem 4.3.1.

Corollary 4.3.2. If 3, is an invariant Birkhoff section, and consider two curves Yp1,Vn2 :

[0,1] — Int(X,) where

Tn,1(t) =T oFn1(t) = (¢, ) € R? | Tn2(t) =moYpa(t) = ( t) € R? .

2(2m)" 2(2m)n’

Then the endpoints of these two curves must satisfy the following equations:

ot (3= ) (s 8 )+ (562

_(a ¢\ [ 7oFni1(l) =7 07,,:1(0) A b1/ (2m)?"
-\ b d 7€ 0 Yp2(1) — 7€ 0 Yy 2(0) bd L;%Z/(Qm)%
Here the two integers v, | and 1], 5 satisfy imy o0 1), 1 /(2m)*" = limy, 00 1], 5/ (2m)*" = 0.

4.4 Estimation of Tangent Spaces

The rest of our task is to get the estimation of the tangent plane field of the invariant Birkhoff
section. We first show that for the sequence of affine invariant Birkhoff sections we proved in
theorem 4.3.1, their tangent plane field restricted on the skeleton will uniformly converge to
B o E™.

Lemma 4.4.1. For the affine invariant Birkhoff sections ¥, in theorem 4.3.1, they will satisfy

lim max A (T1,%,, Ef(zx)®E%(z)) = 0.
n—00  zeSk(Ty)

Proof. From the definition of affine Birkhoff sections, to estimate the tangent plane of ¥,, at the
skeleton Sk(X,,), we just need to see that at the two curves ¥, 1 and ¥, 2, how their tangent line
field close to E* @ E".

If we consider two curves J,,; : [0,1] — R3, i = 1,2, which satisfying for any ¢ € [0, 1]:

o ToTni(t) = Yn,i(t);

® Vi) € E*(ni(t)) ® E"(n,i(t))-

Then by the contact property of E* @ E* which is preserved by D fa, and f4 is an isometry
on the central direction, these two curves must satisfy

( 7€ o fA('/Y\n,l(l)) —7¢o fA /’)77171(0)) ) I ( Sign(ac) . CLC/2 > _
7€ 0 fa(n2(1)) — 7€ 0 fa(Fn,2(0)) Sign(bd) - bd /2

a ¢\ ([ mo1(1l) =7 0%,1(0) + ac
b d €0 qp2(1) — € 07y 2(0) bd |

~— — o~ —
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Actually, recall we have denote E* @ E* = ( X + % -2, Y + ﬁ - Z ), then

~ - k 1
moTna(l) = A 0Aa0) = g+ g
~ - l
€0 2(1) — moq,2(0) = o

Recall that the curve which is tangent to the contact structure also admits the local twisting
property (lemma 2.3.1). Notice that the curves fa(7n,1) and fa(7n2) are also tangent to the
contact plane field. So we can formulate the equations like corollary 4.3.2, which the only
difference is the local twisting term of the equations for Birkhoff sections are the sum of local
twisting numbers, but for the curves tangent contact plane field are the area of bounded regions.

This shows that two integers k/2m and [/2m satisfy

k/2m Sign(ac) - ac/2 Kni\ _ (a c k/2m ac
det(A)‘( 1/2m >+ < Sign(bd) - bd/2 ) T\ Kno ) "\ b @) \yom )T ea )
Notice that here we proved again that K, 1 and K, 2 are constant integers.

Comparing with the formula in corollary 4.3.2, let n — oo, since lim,, ;o L%71/(2m)2” =

limy,—s00 L;L72/(2m)2” = 0, we know that

lim 70 %,,1(1) = 7°0%,1(0) = lim kn/(2m)*" = k/2m

n—oo

lim 7€ 03,2(1) — 70 F,2(0) = lim 1,,/(2m)*™ = 1/2m .
n—o0 n—oo

This convergence guarantees that we can construct ¥, satisfying the tangent line field of
7 (Yni) N By, will converge to E° @ E"|z-1(4, ), for i = 1,2. Form the affine property of %,
we get

li £ (TS, , E° E" = 0.

O]

The next lemma shows that the estimation of tangent plane fields on the skeleton can be

extended to almost the whole Birkhoff section.

Lemma 4.4.2. If the sequence of Birkhoff sections ¥, satisfies

li L (T2 E? EY = 0.
Jim persrif?)zin) (1,2, , E*(p)® E"(p) )

Then it must admit

lim max L (T, ES(99 @ E“(q)) = 0.
n—00 qu\B(BEn,W)
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Proof. Recall that in our definition of the imbedded surface X < [0, 1]3, we can see that there

exists some constant Ly, such that for any ¢’ = (z,y, 2) € X satisfying

11 1
Z2)) > -
d(@). (5. 3) >+
it will admit
o 0
L ( Ty, <%’87y> ) < n-Ly.

11
272
Now we consider the construction of affine Birkhoff section ¥,,. Recall that there exists a

This is from the property that close to (3, 5) x [0, 1], ¥ is a linear transformation of a helicoid.

family of affine maps
P (0,17 — AP = M,

where i, € {0,1,---,(2m)" — 1} and k € {0,1,---,(2m)?" — 1}, such that

S = | Wisk(So) -
Z‘?j’k
Here the small cube A?j i is determined by the skeleton Sk(X,,) and 4, j, k.
The assumption that the tangent space of ¥, restricted on Sk(3,,) will converge to E* @ E*

implies we have

lim £ ( DU?, 0 9

n—00 m,k(<%7afy>) , PO F ) =0.

On the other hand, notice that the affine map U7 ;& compress much more strong along the

0/0z direction, which implies

o 0 (2m)™ o 0
DU (T;%0) , DU (=, 2N ) = (TS, (—, =) ).
£ ( z,],k:( q 0) ) z,j,k(<axa 61/)) ) (2771)2" £ ( q'~0 » <8x’ (‘9y> )
Thus we get for any ¢ = \I/ij(q') e ¥\ B(0%,, m), we must have
s u n 0 0
LTS, B@)@B"0) <L (T DVl g0 +

£ (pur (22

i7j7k(<%’ 6Ty>) , B%(q) © E"(q) ) -

Notice that Ty, = DU, (TyXo), and we have

o 0 1
£ (T, %, , DV ({(=—,— < ‘n- Ly .
( q ’L,],k’(<8x 8y>) ) (Qm)” n 0
Combining with the convergence on the skeleton, we have
lim max £ (142, , E°(q) @ E“(q)) = 0.

n—00 qGZ\B(Z)En,m)



Chapter 5

Construction of Diffeomorphisms

In this chapter, we will give the proof of the main theorem assuming the existence of central
DA-construction on the boundary fibers. Actually, all our constructions and perturbations of
the diffeomorphisms preserve the S'-fibers. That is all these diffeomorphisms project on T2
would be equal to the linear Anosov map A. So our perturbations are all through the S fibers.

The construction of f,, consists of two steps. First we perturb f4 on a neighborhood of the
boundary fibers of the invariant Birkhoff section ¥, to get the diffeomorphism g,, where g,
admits some product structure close the the boundary fibers. Our g, will converge to f4 in
C'-topology as n — oo.

Then we separate the nilmanifold H as the union of two open sets, called E,, and B,. Both
of them are saturated by the S'-fibers. And we try to construct f,, on E, and B,, respectively.

Since our perturbations are all preserve S'-fibers, we will have:
fa(Bn) = gn(Bn) = fa(Bn) -

Actually, we will construct fy c,¢ on Ej, in this section, and the C'-distance between frext
and g, |g, will tend to 0 as n — oo. Then we admit the existence of unit model f;, ;04 defined

on By, and also fy, med tend to gn|p,. We require that

fn,ezt|EnﬂBn = fn,mod|EnﬂBna

which allow us to define f,, = fn ezt U fn,mod, and consequently C'-distance between f, and g,
will converge to 0. Thus f,, will C'-approximate f4.
Finally, we will prove that f, is structurally stable with one attractor and one repeller as its

chain recurrent set.

5.1 Product Structure on Boundary Fibers

In this section, we will perturb fa to ¢, to get the local product representations on a
neighborhood of boundary fibers of ¥,,. We will show that the perturbations could be C*-small.

60
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Actually, here g,, is mainly used for estimating the C''-distance between f, and f4.

We first fix some notations. We will usually denote by p = (x,y, z) a point belongs H or H
with the coordinates R3. Denote by p, ¢ points belong R? or T?, and § > 0, we will denote by
Bjs(p) the d-neighborhood of the point p in R? or T?.

Now we recall some properties of the invariant Birkhoff sections X,,. X, is an affine Birkhoff

section, which means there exists a family of affine maps
Zjvk . [0, 1]3 — AZ]7k — H,

where 4,7 € {0,1,---,(2m)" — 1}, and k € {0,1,---,(2m)?*® — 1}. Notice that the Birkhoff
section X, satisfying
T NAL e = Vi k(Xo).
Here Yo C [0, 1] was defined at the introduction of Birkhoff sections.
Moreover, from theorem 4.3.1 and continuity, we know that there exists ¢, > 0 such that for

any p € Int(¥7; ([0, 1]%2 x {0})), we have

£ (V75 (10,17 x {0}), E*(p) ® E“(B) ) < en.

And ¢, — 0, as n — oc.

We first fix some notations. for any p € R? or T2, and 6 > 0, we will denote by Bs(p) the
d-neighborhood of the point p in R? or T2.
Fix n € N and for any i,j € {0,1,---,(2m)" — 1}, we pick a fixed k € {0,1,---, (2m)** -1},

and consider p = (¥}, 1(3,3,0)) € (9%,) C T?. Then we denote the disk

) 11
D(p, W) = \PZj,k(Bé((§’ 5)) x {0}) = *H,
which is an imbedded disk in H.
In the rest of this paper, we will give a coordinate of the disk D(p, ﬁ) by identify p be

the original point in R?, and by the projection

1)
i) = B, ) C T

m(D(p,

which B( g (p) could also be seen as a disk in R?, and we move p to the original point.
2m)"n
Then we can also give a coordinate of

U s = D(p, -0 ) x 8 A

q (2m)"
q€D(p,6/(2m)")

Here every point in D(p, ﬁ) is the zero point of its S! fiber.
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From the construction of affine Birkhoff sections, we can see that X, ND(p, (27;1),1) x ST could

be parameterized as the helicoid

p - cos2m - p((2m)2"0 + 6p)],
p - sin2m - p((2m)?"0 + 6p)],
=6 (mod 1).

x
Y
z
Here 6 € R, and 0 < p < §/(2m)".
Now we can state the following lemma.
Lemma 5.1.1. There exists a sequence of diffeomorphisms {gy }nen which satisfying:
1. mog, = A: T? = T2, and g, is an isometry restricted on every S'-fiber, i.e. ||Dg,| = 1.

2. For the constant Ko > max{| 4], ||A7}, gn|D( yxg1 could be represented as

P, KO(gm)"
0 1
Ko(2m)" ) <

gulast) = (Ala) , det(A) -1+ 5B (mod 1) )

Here (q,t) € D(p, m) x S, and sy, € Z is a fived integer.

gn : D(p, ) x St — D(A(p),

3. The diffeomorphisms g, converge to fa in C-topology as n — co.

Remark. Notice that here our choice of the disk is not unique. Actually, if we find a disk
D(p, ﬁ) for gn, then rotate D(p, ﬁ) along the S fibers i/(2m)** for any i € Z is still
a disk satisfying all our requirements. And this corresponding to another k for the affine map

n
ik

Proof. The proof relies on the facts that the tangent plane of the disk D(p, W) will converge to

Es @ E" as n — oo. For simplicity, we do not distinguish the disk D(p, ﬁ) and its projection

on T2.

The perturbation of f4 to get g, is just combine f4 with some rotations along the S'-fibers.
That is we define a real function 6,, : T?> — R, and

9n = R, o fa.
For any (q,t) € T?2xS' = H, if fa(q,t) = (A(q), s) € H, then
9gn(q:t) = (A(g); s + 0.(A(q)))-

So to prove that g, — fa, we just need to show 6, — 0 in C'-topology.



CHAPTER 5. CONSTRUCTION OF DIFFEOMORPHISMS 63

Recall that we required that § < 1, so we pick a constant K7 > Ky which satisfying

4K16 < 1. So on the boundary fiber S, for ¥,, we can similar define the disk D(p, (2217;1)‘21)

as before. Then we will try to construct g, restricted on D(p, 2(Kl‘s)n) x S!, and we have

Fa(D(p, 22525) x S1) € D(A(p), 245 x S,
For the fixed boundary fiber S,, we can represent f4 locally as:

210
(2m)"

2K16
fa : D(p .

( 7W> x 5t — D(A(p),

) x S°,
and for any (q,t) € D(p, K2K15n) x St

0(2m)

fa(g;t) = (Alg) , w(A(g)) +det(A) - (mod 1) ) .

Here w : A(D(p, %)) — S is smooth and its graph is equal to f4(D(p, K(?KT#E)”) x {0}).

Denote the two coordinates are z and y on A(D(p, KQ(K 1‘5) )) C R2, we have the following claim:

Claim. The partial derivatives of the function w satisfying

ow Ow
H%H < 2Koép , and ”@H < 2Kopey .
As a consequence, for any q € A(D i (p)), we have
Ko2m)™
20 K€
lw(g) —w(0)] < n

(2m)"

Proof of the Claim. We proof the claim by some symbolic computation. Notice that the tangent
plane at the point f4(q,0) generated by

I S S I )
Oox Oxr 0z’ oy Oy 0z
is equal to D f4({ %, 8% >’(q,0))'
There exists two smooth function a and S defined on D(p, ﬁ), such that for any point
q = (g,t) € D(p, ﬁ) x S, we have

E*(q) @ E“(q) = <aax+a(q)-82, 87y+5(q).7>'

Since 5 5

“Uggle g la), B@@ENQ)) < e
we know that |a| < €,, and |5| < €,. Here the constant €, comes from the beginning of this
section.

So from the equality

Dia({ 5o +alo)g 5+ Bl)5)) = {5 +ald@) g« 5+ BA@)5 )
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we know that
Ow Ow
I 1 < (Al +1) - €0 < 2Koep,  and y\@yy < (IAIl+1) - &n < 2Koen.

Finally, .
[o(a) = w(O0)] < max{| 51, 151} - o= 0] < G 60

This finishes the proof of the claim.

Now assume that for some integer s, it has Z’ "in) <w(0) < (;p 2”n) Then we define

_ _Spm
en‘A(D(I%W))_(Qm?n) “

with the estimations

nIA( IDJ(I%K 2m - (Qm)n (2m)2”’
00, a0,
”%|A(D(p7W))H < 2Kopep, and ”67|A<D<Mo<ém)n>)|| < 2Kope, .

Extending 6,, smoothly to D(A(p), é{%‘i), where on the boundary of this region, 6, = 0.

Then we can still get

20K e, 1
0,, .
1Ol 29801 < “gmmye + Gy

For the estimation of the partial derivatives, it becomes a little bit complicated. Actually,

Onlp, iy 200 |
89 H ]D) 4810 )
I 3;|]D>(A( 1 2K15 )H < max { 2Kpe, , 2K16 )\ G )5 1,
G@mym Ko@m)" — (@m)"
)
S max { 2K06n 5 2K0€n + W } 5
S 2K06n .
Similarly we have
6n < 2K,
Haiy‘]l))(A( ), (22K15 H 0€n -

Finally, we do this process for all p € m(90%,) and define #,, = 0 when restricted on

It could check that g, = Ry, o fa satisfies the first and second items of the lemma. And since

6,, will converge to 0 in C'-topology, g,, will also converge to f4 as n — co.
O
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5.2 Unit Models on Boundary Fibers

In last section, we built the diffeomorphisms g,, which admitted some kind local product
structure. We will state the construction near the boundary fibers, which we called the central
DA-construction first appeared at [8].

In the sketch of ideas for our construction, we say that the two parallel Birkhoff sections X,
and ¥/ will be our candidate for attractor and repeller. So we need to separate them on their

intersection 0%, = 03/,.

First consider the space to be R? x S with the natural coordinates z,y,z. Then for any

n € N, we can define a sequence of deformed half helicoid surfaces S,, C R? x S! as

p - cos2m - p((2m)?"0 + 6y)],
p - sin2m - p((2m)?"0 + 6p)],
=6 (mod 1).

x
Y
z

Here the parameter § € R and p > 0.
Then rotate S,, along the S'-fibers with distance W, we get another deformed half

helicoid S/, € R? x S'. Notice that S, NSS!, = {(0,0)} x S, and for any (x,y) # (0,0) in R?,

{(z,y)} x S intersects S,, and S/, alternatively with the distance 5 for adjacent points in

e
Sy, and S, respectively.

Since all the diffeomorphisms we will handle are preserve the S'-fibers, so for any diffeo-
morphism f of R? x S, we denote the central derivative of f at point p is Df(p) = D folz,s1-
Moreover, for any p € R? x S' and 0 < s,t < 1/2, we use [p — s,p + t]° denote the interval
contained in the S'-fiber of p, with two endpoints to p with distance s and ¢. The orientation is
the same with the natural orientation of S!-fibers.

We will denote the rotation through the S'-fibers with the angle § by Rp, in both the case

R? x S! and H which is the S!-fiber over TZ2.

First we introduce a family of interval diffeomorphisms. Fix a constant 0 < o < 1, we call a
smooth diffeomorphism
©q: I =10,1 — I=1]0,1],

is a model map associated to « of the interval [0, 1], if it satisfies:
1. O4(t) =a-t, for t € [0,1/2];
2. 0,t)=a - (t-1)+1,fort €[l —a/21];
3. O4(t) is smooth on [1/2,1 — /2], and a < O/ (t) < a™ L.

Moreover, we can extended O, to the [—1,1] by defining O,(t) = —©,(—t) for any t € [—1,0],
and still call it the model map.
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1
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Figure 5.1: The Model Map ©,,

Now we can state the main technical proposition and will prove it after we finish the whole

construction of f,.

Proposition 5.2.1. Consider the diffeomorphism fo : R? x ST — R? x S which defined as
fo(g,t) = (A(q),det(A) - t). There exists a sequence of diffeomorphisms fnmoa : R? x ST —
R? x S, and

e a sequence of real numbers 0 < ay, < 1, where limy,_ o0 oy = 1,

e a sequence of model maps Oy, : [—1,1] — [—1,1] associated to oy,
which satisfying the following properties:

1. Every fnmoa preserves the S1-fibers, and 7o frmod = A : R? — R2.

2. There exists two disjoint closed region Up mod, Vi,mod C R? x S, where Un.,mod 15 strictly
invariant by fonmod: frmod(Unmod) C Int(Up mod); and Vi moed is strictly invariant by
fT:rlnod‘. fn_,rlnod(vnymle) - Int(vnmwd)'
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3. Denote the region M, = {(x,y,2) : /2% + y> > m}, then

1 1
U, NnNM, = | | - c
n,mod n [p 4(2m)2n bl p+ 4(2m)2n ] )
pESL,NM,,
oy, oy,
Vimoa "M, = |} - —__ .
mamod " [P 4(2m)2n ’ P+ 4(2m)2n ]
peS!,NMy

4. The restriction of fn.moa on the fized fiber (0,0) x S* is a Morse-Smale diffeomorphism of
the circle having 4 - (2m)*" periodic points, 2(2m)*" of them are in U, moq and the others

are 1m Vi mod-

5. frmod(Sn N My) C Sy, and frnmoea(Sy, N My) C S;,. Moreover, for any p € Sy, N My, if we

parameterize [p — 2(272)2” ,p+ 2(2;1)2”]6 naturally to be [—W, W], and the same to

[frmod(P) — W, frmod(D) + W]C, then for all t € [—W, W], we have

- 1 2n 1 —1-
° fn,mod‘[p_ 2(2%)271 7p+2(27}z)2n]c t) = 202m)?n (")n( 2(2m) t ) s Zf det(A) =1,
[ ] fn,mod‘[p_ 2(27,11)271 ’p+2(27,11)2n]c t) = 2(2”11)2n . @n( - 2(2m)2n -t ) s zf det(A) =—1.

6. The central derivative || D€ fp, modl|| and HDcfn_}de are small or equal to o, in Uy moq and

Vin,mod Tespectively.

7. For any integer ko € Z, fn.mod 18 commutable with the rotation R,  through the S*-

(2m)2"
fibers:

R kg O fn,mod = fn,mod oR ko
(Qm)Qn (Qm)Zn

8. fn,moa converge to fo uniformly in C'-topology as n — co.

Remark. We can see that the sequence of diffoemorphisms { fn mod} admits some kind flexibility.
Actually, for any sequence of integers 1, if(%ln% — 0 asn — oco. Then the new diffeomorphism

sequence { R b O fnmod } also satisfies all the properties in the proposition.
(2m)2n

5.3 Building the Diffeomorphisms f, ..

In this section, we try to construct the diffeomorphism f, ¢;+ which defined on the region

Bo=1\ J e ) =T\ U D(p,n(;n)n)xsl.

pET(0Xn) pET(9Xn)

The idea is quite simple. Denote the invariant Birkhoff section X! which is derived form
rotate ¥,, along the S'-fibers with angle W We will construct f, ¢z¢ preserve the Birkhoff
sections ¥, N E,, and X! N E,, invariant, and on X,, the central direction is contracting, on X/,
is expanding.

Here the two parallel Birkhoff sections %, and 3/, would be our future candidates of attractor

and repeller for f,.
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5.3.1 Invariance of Birkhoff sections

Lemma 5.3.1. There exists a sequence of smooth functions
O m(gn(En)) = A(n(E)) — R,
which satisfying:

e The diffeomorphism Ry, o gnlg, : En, — H preserve the Birkhoff sections %, and X!,

nvariant:

Ry, o gnlE,(EnNE,) C Xy, and Ry, o gnlg, (Z, NE,) CX, .

o lim, , |[|[Un, — O||c1 = 0, and consequently, we have
lim dei(Ry, o gnlE, 5 9nlE,) = 0.
n—oo

Proof. Since the Birkhoff section 3/, is achieved from 3, through rotation, and g, restricted on
Sl-fibers are all isometries, we know that if Ry, o gnl|E, preserve ¥, N E, invariant, then it must
also preserve ¥/ N E,, invariant.

Recall that ¥, is an invariant Birkhoff section, ¥, is fiber isotopic to fa(X%,), and also to

9gn(Xy). This implies we can define a global function
U w(gn(Ep)) = A(w(Ey)) — R,

such that
Ry, (gnlE,(Zn N Ep)) = Tn N gn(En).

Moreover, it could easily see that here 1,, is not unique for preserving ¥,, invariant. For any

integer 7 € 7Z, it will also have

S R— (gn|E,(En N ER)) = En N gn(Ep).

(2m)2"

We need to show that 1J,, could be chosen C'-converge to 0.

First we fix some ¢, € 7(gn(Fy)), then we can require that 0 < ¥,(¢g,) < W

Since g, is isometries on each S!'-fiber, so it commutes with the constant rotation Ry,:
Ry 0gn = gn o Ry,
for any ¢p € R. This implies the constant rotation Ry, preserve the plane field £, & Eg :

DRy (Eg, ® Bg,) = Eg, © By,
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For any p € ¥, N E,, we have
LB (5 ® L (5) , TySa)
< L BB SELD , B0 @ EL®F ) + 4 B[ & ELF) » TS ).

Then dci(gn, fa) — 0 implies £( E] (p) © Ey (p) , E},(p) ® EY, (p) ) converge to 0. And we

have
£( E;A(f)')GBE}‘A(ﬁ) < e — 0.

Thus there exists k, — 0, as n — oo, such that .

L(E; (p)© Ey (p), T3%n ) < kn .

Moreover, for any q € fa(3, N E,), it admits

L( By, (@) © Eg,(7) » Tagn(Zn N En) ) < Ko ki

Here recall that Ky < max{||A|,||A~!||} is a constant.

For any ¢ € 7(gn(Er)), locally we choose a very small neighborhood V;, C m(gn(Ey)) of g,
then 3, N7~ 1(V,) and g,,(X,) N7~1(V;) are both (2m)?"-cover of V,. We choose one connected
component for each of them, denoted by ¥, (V;) and g, (X,,)(V;) respectively. Notice that 3,(V;)
and g,,(3,)(V,) intersect each S'-fiber in 7~1(V,) with exact one point. This allowed us define
a function ¥,,(V;) — gn(X,)(V;) which denote the oriented distance from the point in 3, (V;) to
the point in g,,(X,)(V,) in each S'-fiber. It could see that for some integer i, € Z, we have

Onlv, = Sa(Ve) = n(En) (Vo) + (5
Since we have know that the constant rotation preserve E; @& Eg , we get the estimation

Oty

H || < N5, 1+ £(Eg, ® By, Tgn(En N En)) + £(Ey, @ By, Tn)

< 0+/€n+K0'an = (Ko—Fl)/ﬁn.

Here tq is the constant rotation distance at the base point where we take the partial derivative.
Similarly, we have ||09,/0y|| < (Ko + 1)kn.
These two estimations deduce that for any ¢ € W(gn(En)) we will have
[Un(q) = Un(gn)| < C- InaX{II H H H} 19— qnl
< ! '(Ko—f-l)-Kn

Thus we have [|9,] < 1/(2m)?" + C" - (Ko + 1) - k, — 0, as n — oo. Combining with
max{||0¢,,/0x||, ||00,/0y|} < (Ko + 1)Ky, we proved that

Tim [|d, = 0flc1 = 0.

This finishes the proof of the lemma.
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5.3.2 Building f,.,; on central fibers

Now we will define the last perturbation of Ry, o g,|g, on the S'-fibers for constructing
frext-

For each Sl-fiber S, C gn(E,) = Ry, ognl|g, (En), we know that S, intersects %, with (2m)?"
points with neighboring distance 1/(2m)?*. S, N ¥}, is equal to rotate S, N %, with distance
1/2(2m)?". So for any q € Sy N Ly, we can find an interval
C 8¢,

- 1 -
=10~ 55— 0+

2(2m) 2(2m)?n ]

where I7;N Y, = {q¢}, and I;N3;, = 0I;. Parameterize I; by its length, and denote g is the zero

pOint, then [ZI" — [—W, W]

We want point out that, we have known that Ry, o gn|g, () € ¥,. If we also consider the

central interval

1 1
TRonconlzn@ = | Fon ©nl2n(@) = 56 Fow 0 9nln (@) + 5655

] )

also with the parameter identification I, o4, |, @ = [— 53 L |, then we can see that

1
3@m)? 2(2m)2"

o if det(A) =1, then Ry, o gn|1, = id defined on : [—W, W],

o if det(A) = —1, then Ry, o gn|r, = —id defined on [—W, W]

1

Define the diffeomorphism hy, |, : Iz = [—W, W] — Iz
1
holi-(t) = ———— - 0,(2(2m)*" - 1) , t e I

Here ©,, is the model map of the interval [—1, 1] defined in proposition 5.2.1. Moreover, we can

see that the derivative satisfying

an < (halp)(t) < o', Viel

Since gn(E,) = Uaeznﬂgn(En) I, and hn|15 fix the end points of Iz, we can define a diffeo-
morphism

h,, = |_| hn‘qu gn(En) — gn(En) :
g€XnNgn(En)

Actually, we have the following lemma.

Lemma 5.3.2. The sequence of maps hy, : gn(Eyn) — gn(Ey) are smooth diffeomorphisms, which
satisfying the following properties:
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1. mohy =1id: 7(gn(Eyn)) = 7(gn(En));
2. hp(En N gn(Ey)) = Xn Ngn(Er), and hy (X, N gn(ER)) = X0 N gn(EL);
3. llmni)oo dCl(hnvidgn(En)) =0.

Proof. The first item comes from h,, maps each S'-fiber to itself. The second one comes from
hn’Ia keep ¢ and the the end points of I invariant. We need to show that dgi1 (hn, idgn(En)) —0
as n — oo.

The map h,, preserve interval I, invariant, and the length of I3 tends to 0 allows us to get
dco(hn,idg, (k,)) — 0 as n — co. For the smoothness of h, and the estimation of its C''-norm,

we need some analysis of g, (Ep).

Notice that {R¢(X, Ngn(Er)) : t € R} defines an C*° foliation of g, (E,,). From the definition
of h,, we can see that it preserve the foliation structure. i.e. h, maps leaves to leaves, where

Y, Ngn(Ey) and X N g, (E,) are two invariant leaves.

For any fixed ¢, we can define two smooth vector field {9/0%,}, {0/0yn} C TR(XNgn(Er))
on R¢(3,Ngn(Ey)), such that these two vector fields projected down by D will be the canonical
vector field basis {0/0z},{0/0y} of Tm(gn(Ey)) on 7(gn(Ey,)) C T2

Combined with the vector field {9/0%, = 0/9z} which are unit vectors tangent to S'-fibers
with positive orientation, we defined a smooth base filed on T'g,,(E,). Under this base field, Dh,,
at the point ¢ € Iz C g,(£y) could be represented as the following matrix function on g, (£y):

10 0
01 0
0 0 (halr,)'(t)
Here we have ay, < (hy|z,) () < ot and lim, o0 ay = 1.
Since we already know that the tangent plane field of the foliation {Ry(X, Ngn(Ern)) : t € R}

will converge to the invariant contact plane field. This implies for any point ¢ € g,,(Fy ), we have

o o k.0 9 8 L)oo
0Tp dr 2m 9Oz’ OYn oy 2m’ 0z’
as n tend to infinity. Combining with the fact that 0/0z, = 0/0z, we know that under the fixed
base field on g, (Ey):

{ 0 4 k0 0 bo4 l ) 0 0 )

JE— —_— —— —_— x — - —_—— [

ox 2m 0z 0Oy 2m’ 0z 0z

we have Dh,, uniformly converge to the identity matrix at each point of g, (E,,). Thus we showed
dei (b, idg, (g,)) — 0 as n — oo. This finishes the proof of this lemma.

d
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5.3.3 Definition of f, ., and basic properties

Now we can formally define the diffeomorphism f, ezt : B — fa(En) C H as

AN
fn,e:vt = hn o Rﬂn O gn-

From the properties of Ry, and h,, we can summarize the basic properties of fy c;t as the

following lemma.

Lemma 5.3.3. The sequence of diffeomorphisms satisfy the following properties:
1. o fpext = A w(E,) — A(n(Er)).
2. freat(En NEL) =3, N fa(Ey), and fpnen(X, N E,) = X0 N fa(Ey).

3. If we denote Iz C S1(q) be the segment centered at § € X, where Iz "%, = 01y, then for
any q € X, N E,,

freatll; © Iy =[=1/2(2m)*",1/22m)*"] — I; @ = [-1/2(2m)*",1/2(2m)*"]

is defined as fort € I:

o ifdet(A) =1, then fn’em\la(t) = W - 0,(2(2m)>" - 1) |
o if det(A) = —1, then fueut|r,(t) = W O, (—2(2m)2" - 1) .
4. Denote

Unext = Uger,nE, [ q-— 1/4(2m)2n . G+ 1/4(2m)2n ] )
Vn,emt = UZ[GE;LOEn [ q- an/4(2m)2n , g4+ a;1/4(2m)2n ] :

Then we have

fn,emt(Un,ext)mEn C Int(Un,ext) s
T i Vneot) NEy C Int(Viyent)

n,ext

5. hmn_)oo dcl( f?’L7€£Et ’ gn|En ) = 0

The proof of this lemma is the direct consequence of lemma 5.3.1 and lemma 5.3.2.

5.4 Construction of f,

Now we can gluing the model map f, ;04 defined on the neighborhood of the boundary fibers
to fn,ext, this will finish our construction of f,. We will also prove that the diffeomorphisms f,

will converge to f4 in C'-topology as n — oc.
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Recall the for every boundary fiber S, C %,,, we have defined an embedding disk D(p, (2m) =)
which allow us to parameterize the neighborhood 7~ (B( s (P (p)) as D(p, W) x S1. Moreover,
2m)"n

gn - D(p, W) x ST — D(A(p), ﬁ) x St could be represented as

gn(a,t) = (Alq) , det(A)-t+spn/(2m)*" ),
where (q,t) € D(p, W) x S, and s, € Z. Moreover, under this coordinate, the two
Birkhoff sections satisfy

Y, ND(p, ——— ' = 6 nNnB 1
N D(p, Ko(2m)") x S Sp N - (0) x S,
Y ND(p, ———— St = S’ NB s St

Now we try to glue f, ezt t0 frmod On every boundary fibers. Consider the annulus

5 5 A 5 5
nem Ko~ PP e T PP gy

Annu( )s

we will focus on fj, ¢q¢ restrict on Annu(w, W) x 81, and glue to frmod-

Actually, identifying Annu(—>—~x C R? and ]D)(A(p)ﬁ) C R?, we have

b Toom)
n(2m)™’ Ko(2m)™

1) 1 Y 1
fn,e:ct = R(;ﬂ::)gn o fn,mod . Annu(n(2m)n7 K0(2m)n) x5 — D(A(p), (Qm)") xS )
where t),,, € Z.
This express comes from the fact that restricted on Annu(m, W) x S, both fi ext

and f,, moa preserve the helicoid S,, and 5], invariant. Moreover, on the intervals contained in
Sl-fibers, which centered at points in S,,, and bounded by neighboring points in S/, they are
also equal. This shows that the difference between f, it and fy, moq is just a rotation with the
angle is an integer ¢, , times W

Furthermore, since

st (@) = (A(g) s det(A) -t +sp0/(2m)*" )

) )
" |Annu(n(2m)” P Kg(2m)™

we must have

o T oo d
|(2m2n) (szn)| <C ( Cl(fn,ext’gn|En) + Cl(fn,modafO))v

— 0 as n — o0.

Thus we can define that for any p € w(%,),

A . 1
falpp, 3 5 st SRty O frmod : D, T (2m)n) x ST — D(A(p),

(2m)2n
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and
AN
fn‘En = fn,ezt B, — fA(En)

We have the following lemma.
Lemma 5.4.1. The diffeomorphism f, is well defined on H, and
lim dei(fp, fa) =0.
n— o0

Proof. f, is well defined since f, ¢;¢ is coincide with Rtp n/(2m)2n © fn,mod on the intersection of
their defining domains.

For the estimation of Cl-distance between, we have

dei(fa, fn) < der(fa,gn) + dei(gn, fn),

< dcl (fA, gn) + max{dcl (gn|Ena fn,e:vt)a dcl (fmmodv fO)}
Spn tpn
+ o oz ~ @mz b

— 0 as n —» 00.

This proved that f,, converge to f4 in C'-topology as n — oo.

5.5 Hyperbolic Properties of f,

We have construct the smooth diffeomorphisms f,, and show that they can C'-approximate
fa as n — co. Now we will prove that f, is structurally stable. The proof is almost exactly the
same to the case in [8], we just sketch it. Similarly, the chain recurrent set of is one attractor

and one repeller we left after we finish the unit model of boundary fibers.

Proposition 5.5.1. f, satisfies Axiom-A and strong transversality condition, thus structurally
stable.

Proof. Recall that on the neighborhood of each boundary fiber S}, we have the local coordinate
D(p, W) x 8. Under this coordinate and the way we define f,, we can check that

B 0 1
Un7m0d|D(P7KO(§m)n)><Sl Nk, = Un,ezt Q]D(p’ K0(2m)n) x S s

o 1
Vn,mod‘D(n RaTamym) <S" NE, = Viert ND(p, W> x S,

This allowed us to define the attracting region and repelling region:

Un = U Un,mod|]1))(p7ﬁ)xsl U Un,e:):ta
0 m
peET(En)
Vo = U anm(’d’ﬂ)(p,m)xsl U Vn,ewt .
0 m

pET(Xn)
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Thus U,, and V,, are disjoint compact sets. Moreover, we can check that f,(U,) C Int(U,,) and
fn(V2) € Int(V;,). We denote A, = Niezfi(Uy), and R, = Niez f2(Va)-

Claim. The chain recurrent set R(fy) is contained in A, U R,,.

Proof of the Claim. By the contracting of U,, and repelling of V,,, we know that R(f,)NU, C A,,
and R(f,) NV, C R,.

By the construction of fy, cxt, we know that for any point = € H\Uper(ax,)D(p, W) x St
if x ¢ Uy, UV, then f,(x) € U,. So it is impossible that this point € R(f,). This implies

R(f”) n (7-[ \ UpEﬂ’(BEn)D(pa n) X Sl) CALUR, .

K()(Qm)

. . . . . 5 .
On the other hand, the maximal invariant set contained in U,cr(as,)D(p, W) x St is
equal to 0%,,. For any point x € R(f,) N0%,, since f, restrict on each boundary fiber is Morse-
Smale, so w-limit set of x is a periodic orbit in 9%,, which also in U,,. This implies x € U,,. This

finishes the proof of the claim. O

We continue to prove the proposition. Since the norm of central derivative D¢f,, and D°f;*
are small or equal to «, in U,, and V,, respectively, we can see that A, and R, are both hyperbolic
sets with stable dimension 2 and 1. This implies R(f,) is hyperbolic. So f, is Axiom-A and
has no cycle.

Furthermore, for any two hyperbolic set K and L of f,,, such that W*(K)NW?*(L) # (), then

e cither K UL C Uy,
e or KUL CV,,
e or KCV,and L CU,.

In all these three cases, we gets dimW"(K)+dimW?#(L) > 3 =dimH. By the partial hyper-
bolicity and dynamical coherence of f,,, this guarantees the strong transversality property of

Jo-
O



Chapter 6

Central DA-Construction

In this chapter, we will give a proof of proposition 5.2.1. That is construct a family of
diffeomorphisms { f;, mod }nen, which will be the stand models for our hyperbolic diffeomorphisms
when close to the boundary fibers of the Birkhoff sections.

Actually, it can be seen that all these diffeomorphisms are derived from the DA-construction
along the central direction of a fixed partially hyperbolic diffeomorphism. Such kind construction
first appeared in the paper of Bonatti and Guelman [8]. However, they did not require any
estimations about the C!-distance of the stand models with the original partial hyperbolic

diffeomorphism, which is a significant task and demand for us.

6.1 Proof of Proposition 5.2.1

We will first state a simplified technical lemma, and give the proof of proposition 5.2.1 by
admitting this lemma.

Recall some notions and symbols. For the classical helicoid Yz C R? x S, we rotate Xg
along the S'-fibers with distance 1/2, we get a parallel helicoid X/;. We can see the formula of
X is

r=p-cos2m-(0+1/2),
y=p-sin2r-(0+1/2),
z=10 (mod 1) .

For the hyperbolic matrix A € GL(2,Z), there exists a matrix P with det(P) > 0, such that
P~'o Ao P = Diag{det(A) - \,1/\}. Here det(A) - \,1/\ are eigenvalues of A, and |\| > 1.
We fix the constant Ty > max{||P||,||P~!||}. Since we will also consider diffeomorphisms on

R? x S, so we will denote the central segments and central derivatives as before.

Lemma 6.1.1 (Technical Lemma). For any constant A\ > 1, there exists a sequence of diffeo-
morphisms Fy, : R? x ST — R? x S and real numbers 0 < oy, < 1 where lim,_o0 o, = 1, such
that:

76
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1. F, preserve the S'-fibers, and w o Fy,(z,y) = (M- x,1/)\ - y) is a linear hyperbolic diffeo-

morphism on R2.

2. There exists two disjoint closed region U™, V"™ C R? x S, where U™ is strictly invariant
by F: Fo(U™) C Int(U™); and V™ is strictly invariant by F,;1: FE-H V™) C Ing(V™).

3. Denote the region Q, = {(x,y,2) : /22 + y?> > (2TZL7):}, then

1 1 (679 anc
vrnQn= U [p—5.pt51% V= U lp-5 . pt5 0"

PELHNQn PEXNQn
4. The restriction of F,, on the fized fiber (0,0) x S is a Morse-Smale diffeomorphism of the

circle having four periodic points, two of them are in U™ with distance 1/2, and two are
in V™ also with distance 1/2.

5. Fo(2g N Qn) C X, and Fo (X N Q) C XYy Moreover, for any p € Xy N Qn, if we
parameterize [p — 1/2,p + 1/2]¢ naturally to be [—1/2,1/2], and the same to [F,(p) —
1/2, F,,(p) + 1/2]¢, then we have

1
Falp 1 pr11e(t) = 5'@71(2'75),
for allt € [-1/2,1/2].

6. The central derivative D°F,, and D°F ' are uniformly contracting when restricted on U™

and V™ respectively.

7. The norm of partial derivatives ||0F, ,/0x| and ||0F, ./0y| are uniformly bounded on

R? x S, and the upper bound is independent on n .

8. The central derivative DCF,, uniformly converge to 1 on R? x S as n — oo.

We will first do some normalization of this lemma.

For every n, we consider the space R? x (R/(2m)?"Z), which is naturally a (2m)?"-cover of
R2x S!. So we will have the lift of half helicoid ¥y and diffeomorphisms F, on R? x (R/(2m)*"Z),
and the corresponding lift attracting region U™ and lift repelling region V™. (Here we do not
change the symbols on the (2m)?"-cover R? x (R/(2m)?"Z).)

Define the homothety H,, : R? x (R/(2m)?"Z) — R? x S,

1 1 1

(2m)2” 7 n(2m)? Y (2m)2n

Hn(:v,y,z) = ( Z)

Then we can see that the image of half helicoid H,, (X ) could be represented as:

(
= p-cos2m-(2m)?"0 ,
y = p-sin2r - (2m)?"0 |
z=10
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Where § € R, p > 0, and we have H,(X) = R_ 1 o Hy(Xy). Furthermore, recall the

2(2m)2n

deformed half helicoid S,,, S/, C R? x S!, if we denote Py = P x Id : R? x S — R? x S!, then

we can see that

Sp = R 20011 0o Pyo Hy(Xp), and 5'7/1 = R 20941 OPOOHTL(E}I).

2(2m)2n 2(2m)2n

Lemma 6.1.2. The sequence of diffeomorphisms
HnanoH;1 c R?2x 81— RZx S
satisfies the following properties:

e H,oF,oH,! preserve the S*-fibers, and 7 o Hy o F, 0o H, Y (z,y) = (\-2,1/\-y) is a

linear hyperbolic diffeomorphism on R2.
e The two disjoint closed region H,(U™), H,(V") C R? x S satisfy
H,oF,oH;Y(H,(U")) = H, 0 F,(U") C Hy(Int(U™)) = Int(H,(U")),
(Hy, 0 F 0o HyY) Y (H, (V™) = Hy 0 ;Y (V™) € Hy(Int(V™)) = Int(H, (V™).

e For the region H,(Qyn) = {(z,y,2) : V& > T n2 Sy =}, then
1 1

pEHn(EH)NHR(Qn)
n an an C
PEH (S )N H (Qn)

e The restriction of Hy, o F, o H;! on the fived fiber (0,0) x St is a Morse-Smale diffeo-
morphism of the circle having 4 - (2m)?" periodic points, 2(2m)?* of them are in H,(U™)
with neighboring distance 1/2(2m)?", and the others are in H,(V™) also with neighboring
distance 1/2(2m)*"

e For H,(Xp) and Hy(XY;), we have the invariant property:

HyoFyo HyY( Hy(SH) N Hn(Qr) ) = Hyo Fo(Sp NQn) C Ho(Sh),
HypoF,o Hn_l( Hn(E}{) N Hn(Qn) ) =H,o Fn(E/H N Qn) C Hn(E/H)~

e Foranyp € H,(Xy)NHy,(Qp) If we parameterize [p— )2n Pt ) ~1¢ naturally to be

[— W,W],andthesameto[}[ oF,oH 1(p)— W’H oF,oH (p)+ W]C’

then we have

1
H,oF,oH; SO, 22m)*" -t ),

1
((t) = 553
n ‘[p_2(2771L)2n 7p+2(2771l)2n] ( ) 2(2m)2”

fOT' all t € [—W, W]
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o There exists a sequence of real numbers {ay,}, where 0 < oy, < 1 and limy, o0 oy, = 1,such
that the central derivative D°H,, o I}, o Hgl and D¢H,, o F,, o Hn_1 are small or equal to ay,

in Hy(U™) and Hy, (V™) respectively.
e For any integer ko € Z, H, o F,, o H; ! is commutable with the rotation R,  through
(Qm)Qn
the S*-fibers:

R & o(HpoF,oH,") = (HyoF,oH, )oR &

(27n)2" (2m)2"

e H, oF,oH," uniformly converges to
Fy = Diag{\,1/A} xId : RZx 1 — R?2x S!,
in the C'-topology as n — oo.

Proof. We will focus on the last item, all the others could be translated directly from the
technical lemma.

Since the central derivative of HyoF, 0 H, I converge to 1 uniformly, H,, o F}, oH; L converges
to Fp in the C%-distance could be deduced from the fact that 7o H, o F}, 0 H, ! = Diag{\, 1/},

and
1 1

(2m)2n ’ (2m)2n]

Since the differential matrix of DF,, could be represented as

H,oF,oH, ' (R? x0) c R? x [-

OF,./0x 0F,,/0x OF,./0x A 0 O0F,./0z
DF, = OF, /0y 0F,,/0y OF,./0y = 0 1/Xx 0F,./0y
OF, /02 0F,y,/0z OF,./0z 0 O D°F,

So we can see that

D(H,oF,oH,YY = DH,-DF,-DH,!

n(2111)2" 0 0 n(2m)>" 0 0
- 0 L@mm O -DF, - 0 n(2m)> 0
0 0 G 0 0 (2m)™

A 0 1/n-0F,./0x
= 0 1/Xx 1/n-0F,./0y
0 O DeF,

From the technical lemma, we know that ||0F, /0| and ||0F, ./0y|| are uniformly bounded.
Combined with the fact D¢F, tends to 1, we know that

A0 0
lim D(H,oF,oH,") = [ 0 1/\ 0 | = DF,.

This proves that H,, o F,, o H, ! converge to Fy in C'-topology as n — oo.
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Now we can prove proposition 5.2.1 from the technical lemma and its normalized version.

Proof of Proposition 5.2.1. We need to separate into three cases. The first two cases are
det(A) = 1, one is the eigenvales of A are positive, the other is the eigenvales of A are negative.
The third case is where det(A) = —1.

Case I. The two eigenvalues of A are both positive, denoted by A > 1 and 0 < 1/X < 1.

Since we have already known that for the deformed helicoid S,, and S],, we have

Sn =R 20p+1 OPOOHn(ZH), and S,ll =R 20p+1 OPQOHn(Z}{)

2(2m)2n 2(2m)2n

where Py = P x Id : R? x §1 — R? x S! and the matrix P satisfies P71 o Ao P = Diag{\, 1/A}.

So we define f, ;04 as follows:

AN _ _
fromod = R 20041 0 PyoHpoFpoHyto Pyt o R a0 @ R*x ST — R*x St

2(2m)2n 2(2m)2n

Now we can check that f,, ;04 satisfies all the properties stated in proposition 5.2.1 one by one.

1. All the diffeomorphisms appeared in the definition preserve S'-fibers, so does Jnmod-

Moreover, for 7o f mod : R? — R?, we have

70 frmod = Idom(Py)on(Hy,)on(F,)om(Hy)om(Pyt)old

1 . 2n -1
= Po (W -1d) o Diag{\, 1/A} o (n(2m)*" -1d) o P
= PoDiag{\,1/A\}o P!
= A.

2. For the attracting region and repelling region, we define

Upmod = R 20911 0 Pyo Ho(U™),  Vimod 2 R 2041 0 Poo Hy(V7).

2(2m)2n 2(2m)2n

Then from the property that F,(U™) C Int(U") and F, (V") C Int(V"), we get Uy mod

and V;, ;moq are strictly contracting by fp moqd and f,~ }n od

3. Since we know that Ty > ||P7|| and H,(Qn) = {(z,y,2) : V22 + 42 > m}v we

have
1
My, ={(z,y,2) : Va2 +y? > W} C Pyo Hp(Qn).

respectively.
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Combined with S, = R 20041 o Pyo H,(Xg), we get

2(2m)2n
1 1
U NnM, = - — ¢
n,mod U [p 4(2m)2n , P+ 4(2m)2n ] )
pESKNMy
On On
Vimod N M;, = = ¢
n,mod U [p 4(2m)2n , P+ 4(2m)2n ]
peS!,NMy

4. frmodl(0,0)xs1 = R _200+1 oH,oF,0H 1oR 2941 |(0,0)xs1- From lemma 6.1.2, we know
2(2m)2"n T2@2mn

that H, o F,, o H, ! is Morse-Smale and have 4 - (2m)?" periodic points on (0,0) x S*.

Moreover, notice that

Un,mod’(o,o)xsl = R 20011 OHn(Un)’(O,O)XSl7

2(2m)2n

Vn,mod|(0,0)><$‘1 = R 20911 OHn(Vn)|(D,O)><Sl'
2(2m)2n

So this shows 2(2m)?" of these periodic points are in Un.,mod, and the others are in V;, 1,04,
and the neighboring distance both are 1/2(2m)?".

5. The invariance of S, and ), comes from the way we define f,, ;04 and M,, C Pyo Hp(Qn).
For the action of f, n0q restricted on central fibers, we just notice when we guarantee S,
is invariant by fo4n, that is we fix the zero point of the central segment, Py and the

rotation R 2¢y4+1 does not change the dynamics restricted on the central segment.
2(2m)2n

and Dcfn_1 odlViomoa 18 the same to D¢(H, o F, o

6. The central derivatives D[, modalu, m

1,mod

H, Y|y, wny and D¢(Hy 0 F, 0 H')7 Y g, (vny, respectively. So from lemma 6.1.2, o, is
their upper bound.

7. Notice that H, o F,, 0 H, ! is commutable with R, for any ko € Z. The same property
(2m>2n
holds to Py and R 205+1 , SO fp mod is commutable to R &,
2(2m)2n (2m)2n

8. Since H,, o F,, o H, ! converges to Diag{\,1/A} x Id, we get in C*-topology,

lim Pyo HyoF,0H,'oP;! = Pyo(Diag{\,1/\} x Id)o P;’!

n—o0
= AxId.
Finally, % tends to zero as n — 0o, we get f,, moq converges to A x Id.

Case II. The two eigenvalues of A are both negative, denoted by —A < —1 and —1 < —1/A < 0.
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We consider —A x1d, then it could reduce to case I, and we denote ?mmod the diffeomorphisms
satisfying the properties of this proposition with respect to —A x Id, and Un,moda Vn,mod be the
corresponding attracting and repelling regions.

Notice that both surfaces S, and S), is invariant under the symmetric action of

Sym, : R?x St — R? x St
1

(r,y,2) — (—x,—y,z—i—m).

Then we can define

Frmod = Syma © Fromod:
and Uy mod = Symn(Un,mod), Vimod = Symn(meod). Repeat the process in case I, it can
prove that f, 04 satisfies all the properties we required. We omit it here, just remark that
the 4th item need to use the neighboring distance of periodic points in Ummod and Vn,mod are
1/2(2m)?".

Case III. Now det(A) = —1, one of the eigenvalue is positive, the other one is negative. We

can assume the two eigenvalues of A are A > 1 and —1 < —1/A < 0.

Now there exists a matrix P with det(P) > 0, such that P~' o Ao P = Diag{\, —1/\}. We
define the reflection map Refl: R? x S' — R? x S! as:

R@fl : (az,y,z) — (.CC, -y, _Z) .
Then we can see that
RefloPyto(Ax —1d)o Py = Fy = Diag{), 1/A\} x Id.

Notice that the reflection map Refl preserve both the half helicoids ¥z and ¥, invariant.
And it is also commutable with the homothety H,,, which implies preserve Hy,(Xg) and Hy (X))

Invariant.

The same construction like case I., we define f, moq : R2 x St — R2 x ST as follows:

Frmod 2 R 30931 0 PyoRefloHyoFyoH o Py o R angir .

2(2m)2n 2(2m)2n

Then we can check the items in propostition 5.2.1 one by one, which is almost exactly the same
of case 1. Here we just point out the key fact is that the reflection map Refl preserve the helicoid

H,(Xp) invariant. The convergence comes from the fact that
lim Pyo RefloH,oF,oH, ' oPy' = PyoRefloFyoP;*
n—o0
= Ax-Id.

This finishes the proof of the proposition.
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6.2 Proof of Lemma 6.1.1

For the rest part of this chapter, we will give the proof of the technical lemma 6.1.1. Actually,
our constructions of the sequence of diffeomorphisms is quite similar to [8]. However, we need
do some estimation about the Jacobian derivative of these diffeomorphisms.

For completeness, we repeat the constructions appeared in [8], and do the estimation step

by step.

We first want to make some remarks about the technical lemma. Notice that the lemma
requires to construct a sequence of diffeomorphisms Fj, : R? x S' — R? x S, satisfying some
properties. We will assume that n is large enough, since from [8], it is no difficulties to construct
a single, or finitely many diffeomorphisms like the central DA-construction. Our main task is to

get the control of the derivatives of these diffeomorphisms.

6.2.1 Strategy and Sketch of Constructions

Our F, need to preserve the S!'-fibers and satisfying 7 o Fj,(z,y) = (A - :c,% -y), SO we can

separate R? x S! into quadrants which will be invariant by F,:

CT = {(x,y,2): x>0,y >0}, C = {(z,y,2) :2 >0,y <0},
Ct = {(z,y,2):2<0,y>0}, C 7 = {(z,9,2): 2 <0,y<0}.

We will first do some surgery of the helicoid ¥ and X', which intends to separate them
and make the new branching surfaces’ tubular neighborhoods be our attracting and repelling
regions.

Then we will construct Fnii on each quadrants, and gluing them to the Morse-Smale dif-
feomorphisms F), o defined on the invariant fiber (0,0) x S1, which guarantees that the gluing
diffeomorphisms ng[ coincide with F, o on a neighborhood of (0,0) x S', and equal to F*
when far from the center fiber.

The last and most difficult part is gluing ngt on the intersection of their definition domains,

and all these steps need us handle carefully to estimation the derivative of diffeomorphisms.

We define a fixed C* bump function 1 : (—oo, +00) — [0, 1], which satisfying the following

properties:
o GO0z = 1 683 400) = 0, and $(5/2) = 1/2;
e the derivatives ¢ admits —2 < ¢'(t)23) < 0;

o " (t)|(—o0,5/2) < 0, and ¥ (t)|[5/2,400) = 0
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It allowed us to define a sequence of bump functions 1, : [0,00) — [0, 1], which becomes

more and more flat as n — oo:

Un(t) = ¥(tn),  Vtel0,00).
We can see that 1, satisfying the following properties:
o ¢, (t) =1 for every t € [0,22];
o 1, (t) = 0 for every t € [3%,00);

e there exists some constant K, such that for any ¢t > 0, we have

n () — (- 1)) < K@L‘”

The last item is achieved by applying the mean value theorem. Since we have explained that we

focus on the case where n is large enough, so we will always assuming that A - (3% +1)< %
in the future.
6.2.2 Surgeries on Yy and Y/,

From the definition of helicoid, we know that ¥y = ¥y N {y < 0} is diffeomorphic to

[1/2,1] x [0, +00). It intersects with the annulus {y = 0} C R? x S! is equal to
1 1
{(‘T’yaz) tx < an = OaZ = _5} U {(x,y,z) =Y = O,Z € [_5’0]}
U {(z,y,2) :2 >0,y =2z =0}.

Since our aim is to deform X5 and ¥/, in order to separate them, so the region where need
to do surgery is mainly on the neighborhood of the fiber (0,0) x S'. We will make a convex sum
of ¥y _ and the half plane {(z,y,2) :y <0,z = —%}. More accurately, the new surface derived
from Sy, will be equal to {(z,y,2) : y <0,z = —1} when close to (0,0) x S?, and no change
when the radius r = \/aﬁy2 large enough.

As before, we need do a sequence of different surgeries. Denote

_ 1
2A,n = {( z, Yy, =z _T;Z)n(r)(z ‘|‘Z) ) : (m,y,z) € ZH,—, r= \/W}
So it can be checked that 3 4, is smooth and satisfying
. ngnﬂ{"rgQ%} = {(x,y,z):ygo,z:_%}m{TSQ%} ;

o X,,N{r>32} = Sy_n{r=>32}.
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Similarly, for Sy 4 = Sy N {y > 0} C {(z,y,2) : z € [0, 3]}, we can define the convex sum
of it with the half plane {(z,y,2) 1y > 0,z = 1 }:

1
Ejl_,n = {(=z, ¥y, 2 —|—¢n(7”)(1 —2)): (@,9,2) €EXHy, = z? + y?}.
Notice that
I 11, " ) n
EAmmEA,n:{y:O’ZZi:_i €S r<-32}U{y=0,z2=0€ 5",z >32}.
We define ¥4, =3, U Ej ,,» then it satisfies the following properties:
1. ¥4, is a branched surface with boundary and corners, its interior is smooth.

2. 9%an C {y =0,z € [~32,33]} consists of two segments:

o {z= —iwn(x),:c € [0,3%]} U{z= iwn(—x) —
o {z=1y,(2),2€[0,32]}U{z =L (—a)+

Jx € [=32,0]} C 0%, ,;
€[-32,0]} € 9%},

NI N
|3

3. The angle between the tangent plane field of TX 4 ,,, where it could be defined, and the
x, y-plane tend to zero uniformly as n — oco. Notice that for any point in the half helicoid,
its tangent plane will converge to the x,y-plane when its distance to the original fiber
(0,0) x S! tend to infinity. Both Y4, and Zzn are the convex sum of the half helicoid
with some half plane parallel to the z,y-plane. Moreover, the regions of Ez,n and Zzn
that are not parallel to the z,y-plane will be uniformly far away from the original fiber
(0,0) x S*. And the convex sum of two surface whose plane fields are close the x, y-plane
field will be also close to the x,y-plane field. This shows that angle between the tangent

plane field of T'¥ 4 ,, and z, y-plane uniformly converge to 0 as n tends to infinity.

In the same way, we surgery X', but along the y-direction. That is make the convex sum
of ¥y =¥y Nn{z <0} and Xy, = ¥y N{z > 0} to the planes {z = 0} and {2 = 1/2}
respectively.

For (z,y,2) € ¥ _ C {(z,y,2) : z € [-1, 1]}, define:

Siw = (2 v, 2= ta(n)z): (@y.2) €Sy, r =22+ ).

For (z,y,2) € ¥y, C{(z,y,2) 1 2 € [3.3]}, define:

1
Sha = {0y 2005 —2)) ¢ (0,02) € Sy, 7= VAT 4}

Then we have

1 n 3 n
2&7,102;%”:{3::0,2:1 eSl,y§—35}U{x:O,z:Z cSly>321)

Denote ¥ppn = ¥p U Eg,n’ then it satisfies the following properties:
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1. ¥R, is a branched surface with boundary and corners, its interior is smooth.
2. 0¥pn C{z =0,y € [—3%,3%]} consists of two segments:

o {z=1vn(y) — 5,y €032} U{z = —J¥n(-y) + 5,y € [-35,0]} C O%%,;
o {z=—1tu(e) + }.2 €[0,32]} U {2 = juu(-2) + j,z € [-32,0]} C O%f,.

3. The angle between the tangent plane field of TX g ,,, where it could be defined, and the

x, y-plane tend to zero uniformly as n — co.

Figure 6.1: Separating ¥4, and Xg,

Lemma 6.2.1. For any n, the surfaces X4, and Xg, are disjoint.
This is lemma 7.1 of [8], we sketch the proof for completeness.

Proof. Notice that two annulus {z = 0} and {y = 0} cut R? x S! into four disjoint regions,
which are the interior of C*%. On the invariant fiber (0,0) x S*, ¥4, intersect it at z = 1 and
z = %, Y R,n intersect it at 2 =0 and z = 1

5-
For {z > 0,y = 0}, we have

11
YanN{z>0,y=0}C{z>0,y=0,2z € [—Z,Z]},
and Xp, N{x > 0,y = 0} is equal to {z > 0,y = 0,z = %}, so they are disjoint. Similarly
results hold for {x > 0,y =0}, {x =0,y > 0}, and {z =0,y < 0}.
We just need do deal with inside the regions Int(C**). Int(C*+), for instance, we can check

that

1
Int(CT)NEa, C {2>0,y>0,2z€ [0,1] },

13
Int(CTH)NXg, C {x>0,y>0,z€[§,z]}.
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This implies Int(CT*) N X4, and Int(CT) N Xg, are disjoint. The same analysis works for
other three regions.

O]

We now define a projection map from X4, \ (0,0) x S* to g \ (0,0) x S which will be
needed in the last part of this paper.

Definition 6.2.2. We define the projection map
Tsan @ San\(0,0)x S — S\ (0,0) x S
as

o forx e Ejn \ (0,0) x S1, s, () is the intersecting point of the SL-fiber containing x
with X ;

o forx e X, \(0,0)x St s, () is the intersecting point of the SL-fiber containing x
with X ;

Then we can see that Ty, , is an injection when restricted on Int(¥a,); and maps two points

into one point when restricted on X4, \ (0,0) x St.

6.2.3 Central segments cut by ¥, , and X3,

We will give some estimations about the segments cut by ¥4 , and g, for each S Lfiber.
For any (z,y) x S' € CT, it intersects with X and £}, with exactly one point respec-
tively. Denote them by pf*(z,y) € ¥}, and ¢ " (2,y) € ¥ . Then we can define the central

interval with positive orientation:

L (zy) =it (@), ¢ (2,9, and  J T (zy) = (g} (2,9), 00T (2,9)]° .

From the way we do surgeries, it can see that these two intervals satisfying 1 < [T (z,y)| < 1,
and £ < |J7(z,y)| < 3. Moreover, there exists a sequence of real numbers 0 < 3, < 1, where
Bn — 1 as n — 00, such that

It (\z, 1 1 JH (A, 1 1
LRSS V) P S Vs ) B

(L (@,y)| — B |Jn (@, y)l T B
This properties can achieved by the fact that the bump function ¢, we used to make the convex
sum of surface satisfying [ty (t) — (A - t)] < @.

Similarly, for other three quadrants, we have

Bn <

e For (z,y) x St € C*~, we consider it intersects with Zjn and Y5, at pi~(z,y) and
gt~ (z,y) respectively. Similarly define I,' = (2, y) and J;7 ~(z,y), then 1 < |IF~(z,y)| < 3,
and i < |J;f_(x,y)| < %
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o For (z,y) x S' € C~F, we consider it intersects with X7  and 3% at p,*(z,y) and
q,, " (x,y) respectively. Similarly define I, *(z,y) and J,, *(z,y), then % < |7 H (2, y)| < 3,
and ; <|[J; " (z,y) < 5.

e For (z,y) x S' € C7~, we consider it intersects with X3 and ¥ at p, (z,y) and
g, ~(z,y) respectively. Similarly define I,, ~(z,y) and J,, ~(,y), then § < |I; " (z,y)| < 3,
and 3 < |J; " (z,9)| < §.

And we have the following lemma.

Lemma 6.2.3. There exists a sequence of real numbers 0 < 3, < 1 which satisfying limy,_, o Bn =
1, such that on each quadrant where we can define the cutting central interval I=*(x,y) and

JEE(z,y), we have

g ekl 1 el 1
T L ()| T B T it (my)l T B
Moreover, the norm of partial derivatives for their length
Ox ’ oy ’ Ox ’ oy ’

are uniformly converge to zero as n tend to infinity.

As remarked before, we focus on the case where n large enough, so it can be assumed that
B, is very close to 1.
Notice that the four quadrants have some intersections, and for the intersecting sets, we have

the following lemma.
Lemma 6.2.4. In the intersecting set of different quadrants, we have

o Ifx>32,y=0, then pf*(z,y) = pf~(z,y) € B}, NE,,,, and ¢+ (z,y) = ¢f ~(z,y) €
DIE
Rn

o Ifx =0,y > 32, then p, " (z,y) = piT(z,y) € 4, and ¢, (2,y) = ¢/ " (x,y) €
+ -
S N Shn-

o Ifx<—32,y=0, thenp, (z,y) = p, " (x,y) € 5, NS4, and g, (x,y) = ¢, " (z,y) €

o Ifx =0,y < =33, then py~(z,y) = p, (2,9) € 4, and ¢~ (z,y) = ¢, (2,y) €
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6.2.4 A family of segment diffeomorphisms

First we state a lemma about the existence of a smooth family of interval diffeomorphisms,

which we will admit it directly.

Lemma 6.2.5. There is a smooth function o : [0,1] x (0,+00)® — [0,1] such that for any
a,b> 0, the map gy : [0,1] — [0, 1] is an increasing diffeomorphism satisfying:

o o.p(x) =ax, for 0 <z < 1.

e oop(z)=1—-b(1—2x), for 0<(1—2z) <K 1.

© 011 = Id|[071].

e max{|o’(t) — 1| : t € [0,1]} < 2max{|a —1]|,]b— 1|}.

® 0,41 = a;,ll,a, for any a > 0.

Then for two segment I, J, we consider the diffeomorphism defined as

Ua,b,I,J:(bjloaal ) pUD) ody : I — J,

(I
1) 7T

where ®; : I — [0,1] and ®; : J — [0, 1] are the canonical affine diffeomorphisms. Then o, 1,

satisfying the following properties:
e The derivative of o, 1,7 at the origin of I is a, at the end point of I is b.
e The derivative of 0,y 1,7 uniformly tends to 1 as a,b and [()/I(J) tend to 1.

Since for our construction of diffeomorphisms, we also need to prove the boundedness of

partial derivatives, we need the following lemma.

Lemma 6.2.6. For any constant Ly > 1, we consider two family of intervals {I1(s), J(s) : s €
(—0,0)}, where the lengths [(I(s)) and I(J(s)) various smoothly with the parameter s, and two
smooth function a(s),b(s) : (—0,0) — (0, +00), which satisfies the following properties:

o 1/Ly <I(J(s))/l(I(s)) < Lo, and I(I(s)),l(J(s)),1(I(s)),1(J(s)) < Lo;
e 1/Ly < als),b(s) < Lo, and a'(s),b'(s) < Lo;

then there exists a constant K = K (o, L), such that for the diffeomorphism

AN
G(s:1) = Oa(s)b(s),1(s),0(s)(1) © (=0,0) X I(s) — (=6,6) x J(s),
where s € (—4,8) and t € I(s), it admits

0G(s,t)

H 0G(s,t)
ot

Os

| < K and || | < K.
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Proof. We can see that this lemma is the consequence of a compactness argument if we assume
that length I(I(s)) and I(J(s)) are uniformly bounded and away from zero. Our main difficulties
comes from the analysis when [(I(s)) and {(J(s)) tend to zero.

From the definition of 044 7 7, we can see that it composed by following maps:

e Gr(s,t) : (=6,0) x I(s) — (—9,0) x [0,1] is the canonical affine maps on each vertical
intervals from I(s) to [0, 1];

KI(s) oy LI(s)) (t): (=0,0) x [0,1] = (=4,0) x [0,1];

* Gols)t) = 7o) i T

o G '(s,t) : (=0,8) x [0,1] — (—0,8) x I(s) is the canonical affine maps on each vertical
intervals from [0, 1] to J(s).

Then we have G(s,t) = G (s,t) 0 Go(s,t) o Gy (s,1).
Now we try to give some estimation of the vectors 0/9t and 0/0s acting by the differential

operators of above smooth maps.

For the estimation of 0G(s,t)/0t, it just need to notice that G preserve the vertical segments

for each steps of mapping, and ll((ﬁ((‘:)))) ,a(s) g((ﬁ((z)))) ,b(s) ll((f]((i)))) are all uniformly bounded and away

from zero. So it is a result of compactness of the domain for o, .

For the estimation of 0G(s,t)/0s, it is more complicated. First, there exists some constant
K = Ki(Lg) such that

0
IG5 sl < H*II

5 ||
(1 (S))
Then there exists some constant Ko = Ka(Lo) such that HDGO(%)](&”H < Ky H%H This
is because DGy preserve the vertical segments and the vertical derivatives only depends on
a(s)f((ﬁ((‘z)))) and b(s) f((ﬁ((z)))) which are both belong to the range [1/L2, L3].

Moreover, we have

U(I(s)) I(I(s))
9700 NN i7Y) 1 0 5+ \\a”“bd(b()’<J(s>)rr 15
Oa ds ds

£2Kz-[Lo+L s %l( ””1-||§t||+||§s||

9
M5, || 551

0
IDGo(5 )l <l S+ H*H

(I (8))
Here the constant K3 also only relies on Lg. The first inequality is the chain rule. The second

and third inequalities all came from the boundedness of a(s),b(s),d’(s),b'(s), and l(( J((S))))

Combine these two steps of estimations, we have

0 KKy + K3 0
D D —_—
I1DGo o DG1(5 )|l < 106) 5, H 5511
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And finally, we have some constant Ky, such that

_1, 0
IDG (Dol < Lo- 10 + H*H

DG (gt)l( pll = Ka-i(J(s) - I, ||

Thus we applying the boundedness of I(J(s))/I(I(s)) again, which shows that there exists some

constant K satisfying
IDG (5 )!(st < K-l H + II*H

This finishes the proof of boundedness of partial derlvatlves of 0G(s,t)/0s.
O

Remark. For our future constructions, they are all from central fibers to central fibers with the
segments diffeomorphisms like o, 1.7. And it is unavoidable to dealing with the cases where [(I)
and I(J) tend to zero. This lemma tell us that for the estimation of partial derivatives, we don’t
need to worry this problem, just guarantee that [(J)/I(I) and the partial derivative of I(J),1(I)

is uniformly bounded is enough.

Lemma 6.2.7. For any sequence of real numbers {By,}, which satisfying 0 < B, < 1 and

lim,, o0 B = 1, there exists {c,} such that
e 0 <oy < B <1, and limy, 00 vy = 1.
o lim, (1 —fy)/(1 —ay) =0.
Now we can define a family of segments diffeomorphisms.

Definition 6.2.8. Let I = [0,a], J = [0,b] be two segments where B, < b/a < 1/B,. We denote
by \I’;I’J : I — J the diffeomorphism defined as follows:

oForteU;I:[O g1, \I/:{IJ()—ant.
. ForteVnT[: [a — %5~ al, \I/:J,J(t) =b—(a;(a—1)).

e Denote I} = [%,a — %3], JF = [%92,b— 4]. Fort € I}, one defines U, ,(t) =

O-anuaT_leI;';ijL_ (t)

Here we require the constant oy, satisfying the above lemma. And we can similarly define V. ; ;-

I — J as follows:
e ForteV, ;=10,%2], ¥ (1) = a;lt.

e ForteU, ;=|[3,al, \If:;](]():b—(ozn(a—t)).
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e Denote I, = [*5~, 5], J, = [5,0—"5~]. Fort € I, one defines @:7I7J(t) =041 0 1= (1)

Actually, here Urjf[ and VniI will be our attracting and repelling regions restricted on the
center fibers. Notice that their definition do not depend on J, only n and [ itself. Then it can
seen that \I'f 7y satisfying properties.

Lemma 6.2.9. The derivative of \I’:I g and W . 5 converge to 1 uniformly as n tend to infinity.

Moreover, we have

\Iff;LJ(U,fI)cInt(U;J), and (\piw)—l(vnﬁ,)cInt(Vn%I).

Proof. The convergence of derivatives comes from the fact that o, — 1, and lim,, o0 (1—5,)/(1—
ay,) = 0 guarantees that lim,, o I(J)/I(I;F) = 1. The second part is correct since oy, < 33 and
Bn < bja < 1/B,. O

Remark. From the definition of \Ifflj, we can see that if we consider a family of such kind
segment diffeomorphisms, then the partial derivatives with respect to the parameters of the family

are uniformly bounded, if it satisfies
o [(J)/U(I) are uniformly bounded and away from zero;

e the partial derivatives of I(I),1(J), a, with respect to the parameters of the family are

uniformly bounded;

o [(JF)/U(IF) are uniformly bounded and away from zero, which is guaranteed by the fact
that limy, oo (1 — By) /(1 — o) = 0.

This implies we can also deal the case where 1(I),1(J), I(IF), and I[(JF) tend to zero. The proof

n

is exactly the same with lemma 6.2.6.

6.2.5 Diffeomorphisms on the quadrants

Definition 6.2.10. We define a sequence of diffeomorphisms Fi+ : CT™t — CT1 as follows,
for every (z,y) € n(CTT) ={z >0,y > 0}:

o for pi*(a,y) € BE, NCH, we name i+ (i (a,9) = v O, by) € T3,
o for gt (w,y) € Sh, VO, we name Ff (g (n,9) = 4 O, o) € S,

o for I7"(z,y) = [Py " (2, y), ¢ " (2, )% and J7 (2, y) = g " (2,), py " (2,9)]%, we define

- F'rj+|1:[+(a:7y) = qj:,li+(x,y),fi+(/\r,%y) : ITT+('%'? y) — IJ‘F()\w, %y%
B FJ—+|JI+(I7Q) - \I’;,J7T+(x,y),J7T+()\r,%y) : J;Li__'_(x’y) — JT—LF_‘_()\J"’ %y)
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From the definition of F,S " restricted on I (x,y) and J}+(z,y), we can define two closed

disjoint regions U and V.1 contained in CTF as follows:

o + -
Un - U Un,I]lur(x,y) Y UTL,J;jL (zy) ’
(zy)emr(CTT)
o + -
Vn o U Vn,[,f+(z,y) Y Vn7J;+(z7y) ’

(zy)en(CHT)
Lemma 6.2.11. The map F " is a well defined diffeomorphism on CTF, and we have
EFH (Ut c Int(U), and  (FFO)~"Y V) ¢ Int(V,[ ).
Furthermore, there exists a constant Ko > 0 such that
e for each n, we always have supg++{ [|0F,F/0x|, |OF,F /0yl } < Ko.
o limy, o0 DOFHH = 1.

Proof. F;f* is a smooth diffeomorphism since the two surface Ejgm and Eﬁn are smooth, and
the central derivative of /T restricted on them are a, and o, ! respectively. The attracting
and repelling region comes from the definition and the properties of diffeomorphisms on central
segments.

Since the angle between 0/0z and the tangent plane fields of Ejg’n, E;Sm are uniformly bound-
ed away from zero, which implies the partial derivatives two smooth functions I(I;F(x,y)) and
I(J;F T (x,y)) are uniformly bounded on C* and for n. Moreover, here we also have the property
that lim,, 00 (1 — 5p)/(1 — ay) = 0, so from lemma 6.2.6 and the remark of the definition of the
segments diffeomorphisms, we manage to show that the partial derivatives of F;r + are uniformly
bounded with respect to C** and n.

The estimation of central derivatives comes from «, and S, both converge to 1. For the
partial derivatives, it can be controlled by the estimation of tangent plane fields of E;n and

EE ,,» Which actually becomes more and more flat as n — oo.
O

Now we can define analogously the diffeomorphisms sequences {F, "}, {F,; 1}, and {F,,~}
on the C*t—, C~*, and C~—, respectively, with corresponding attracting regions sequences
{U7}, {U;; "}, and {U,,; "}, and repelling regions sequences {V,F~}, {V,- "}, and {V,7~}. All
these sequences of diffeomorphisms satisfy that the partial derivatives are uniformly bounded,
and the central derivatives converge to 1.

Notice that they are not coincide on their intersecting domains. The rest of our task is to

gluing them together. We first look at what happens on the invariant fiber.
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6.2.6 On the invariant fiber (0,0) x S*
Recall that we have

Y4, N(0,0)x ST = {(0,0,1/4),(0,0,3/4 = —1/4)} ,
YR N(0,0)x ST = {(0,0,0),(0,0,1/2)} .

We consider the diffeomrophisms fy,, : S' — S1 defined as follows:

e For Iy = [0,1/4], we state fonlr, =¥ Iy — Iy;

n.Io.Io
e For I} = [1/4,1/2], we state fon|r, = \I/;ILI1 I — Iy;
e For I = [1/2,3/4], we state fonlr, =¥, 1,1, : Io — Iy;
o For I3 = [3/4,1=0], we state fonlr, =¥, [, ;. : I3 — Is.

It can be seen that fq,, is a Morse-Smale diffeomorphism on S 1 with exactly 4 fixed points,
(0,0,1/4) and (0,0, 3/4) are two sinks, (0,0,0) and (0,0,1/2) are two sources. Notice that fo,
will converge to identity map on S! as n — oo.

Then we define

Fon : R2x St — R?*x S,
1
(SL’,y,Z) — ()\Q?, X'y7f0,n(z))-

It is obviously Fy,, has 4 saddle fixed points. This will be the diffeomorphisms when the domain
restricted on the neighborhood of invariant fiber (0,0) x S*.

6.2.7 Gluing Fp, with Ffi

Now we will try to glue Fp ,, with each FF* to get new diffeomorphisms Foif on C**, which
are coincide on the neighborhood of invariant fiber.

Notice that ¥ NC** contains the intersection of horizontal disk {\/22 + y? < 23,2 = 1/4}
with C*F; and X3 NC* contains the intersection of horizontal disk {/2? + y? < 22,2 =1/2}
with C*F. This implies F/ T coincide with Fp, on {y/z2+y2 <22,z € [1,1 + 2]}nCTT,

Definition 6.2.12. We define the diffeomorphisms Fotj :CTT = CT oas follows:
o ifpc sz U EE”, then Fy\.F (p) = F,(p);
o if p€Upyso It (2,y), then Fif,f(p) = Fit(p);

° ifpe U\/W22 Jit(z,y), then .M (p) = F,*(p);
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e for any x,y > 0 and \/x2 + y2 < 2, notice that the

Loy s =1/2,1/4]

1
FH (I (@) = FonlJ (e, y) = T O, 1w) = O, 5

So this allowed us to define the conver sum of Ff T and Fy,, restricted on JI*(z,y) =

(x,y) x [=1/2,1/4], for r = /22 +y?, and t € [—1/2,1/4],
FJJ|J;+(I,Z,)(75) =(r+1) - Fonl j+ g, () + (1 —o(r+ 1)) - F7—L"_+|J:+(z7y)(t)'

Lemma 6.2.13. The map Fotj is a well defined smooth diffeomorphism of CT1. Moreover, it

satisfies

o restricted on the domain Ct N {\/22 +y? < 1}, it admits F&J{ = Fon;

n

o restricted on the domain Ct+ N {\/22 +y? > 2}, it admits F&j =Frt;
e the partial derivative of FS’; are uniformly bounded on CTT and for all n;
e lim, .o DCF(;’:Ir =1, here the convergence are uniformly on C*T.

Proof. The first two items came from the definition of Fo'f T, For the last two items, it could see
that both Fp, and F, T satisfy the boundedness of partial derivatives and the convergence of
central derivatives, so we only need check this for their convex sum.

Restricted on the region where F(;r ; is defined by convex sum, we have

DeFy,m = D(p(r+1) - Fon) + D(1—o(r+1))-F )
= Y(r+1)-DFon + (1—9¢(r+1))-DEST

—1 as n —» 00.

For the partial derivatives,

OFy (1) O (1 + 1) Fon i+ (5.4 (1)) (L= (r + 1)) ESH| vy (1)

TP+ 1) OFonlsray® | OF |y ()
e R e B B e T

Notice that the end points of J}*(z,y) are contained in Zg’n and ij, which various s-
moothly with respect to x,y, and the partial derivatives are uniformly bounded. This implies
Hé’F&r (t)/0z| are uniformly bounded on C*+ and the upper bounds are independent of n. The
same property holds for 8F&' F(t)/0y. This finishes the proof of the lemma.

(]
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Now we need to define the attracting region and repelling region of FOJf ;’ very carefully. We

first define a series of smooth bump function sy, : [0, +00) — [1/8,3/8] as

3 1 1

salt) = 5= ¥lG 072 +1]

As before, here we require n > 2, and it can be checked that s,[(g 9 = 1/8, snl[ﬁ o) = 3/8, and

sn(%(%)%) = 1/4. Moreover, it admits similar flatness properties as v, we defined before, and

sh (t) is decreasing on [0, %(%)%]

Definition 6.2.14. We define Uaf: C C*™* as follows:
o Ugd n{z,y>0,v/a2 +y? > 25} = U 0o,y 2 0,V/a2 +42 > 23 )
o Usin{w,y>0,/a2+y2 <22} = U, /rrryicat (2:0) X (2 —sn(r), 3.
And we define VO'ZF as:
o Vb N {z,y 2 0,0/a? +y? 225} = VI 0 {z,y 2 0,(/a2 +42 2 25}
o Vihn{a,y>0,/a2+y2 < 23} = UT:\/WS2%(x,y) x[—2 Lo, s,(r).

Remark. We can see that U&': C U* is actually the union of intervals which generate a
tubular neighborhood of Ej oy and VOTHJF C VI is the union of intervals which generate a

tubular neighborhood of Ejgn. If we describe them in another point of view, it can be seen that
for U@fj{

® U(Si,_;_ N Ux,yZOIr—l_Jr(x?y) = Ux,yZO[p:Jr(xay) ) p:+(xay) + % l(I;_—F(:B,y)) ]C;

o Ugy N Upyzo /i "(@,0) = Upysol 27 (2,0) = sn(Va2® +4) , pif*(,y) I°

Here recall that pi+(x,y) € X, and I(I} T (z,y)) is the length of I T (x,y). In the same spirit,
we have

® ‘/O—j_n—i_ N Um,yZO I7—1~_+<‘T7y) = Ux,yZO[ q;——i_(ﬂf,y) - % l(ITTJ'_(:D,y)) ’ q;-"r(x?y) ]c;
o Vobr 0 Upyso it (@ y) = Upysol 6t (@,9) 5 ¢ (2,9) + an - su(Va?2 +42) |
Here also have g, " (z,y) € 5% .

Lemma 6.2.15. F&FJ coincide with F;I when restricted on the two closed disjoint regions U&Fn+

and V0+n+. Moreover, we have

Fr (Ugh) cnt(Ug) . and (B THVEED) € Int(Vehr) -
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Proof. The first part of the lemma comes from the definition of FOJf : . For the second part,
notice that U(f;r C Uf* and VOJ;LJF C VI implies DCFOTVJ”UH = DC(FJJ)_HV&.; = ap.

From the fact that FJ;(EJA&TZOCJ”L) = Ej’nﬂC’j“r, we just need analysis FOJF; acting on each
Sl fiber intersecting with Ud:r. Notice that as n tend to infinity, both functions I(I;} T (z,y))
and sn(\/m) become more and more flat. Actually, we can still denote by 0 < 5, < 1 a

sequence of real numbers with lim,, .~ 8, = 1, such that

L O, dy)) 1 su(y/(A2)* +(39)) 1
E ey S B M ST e B

This implies for every (z,y) € m(C*T1), we have

F U0 SG,,) € nt(Ug,Fn S(lm&y)).

This proves that U&r :[ is an attracting region for F&“ ; . The same argument shows that VOTT;“
is an repelling region for F0+ -
O

In the analogous way, we can define all the diffeomorphisms FJ n s Fo, :Lr , and [~ on the
other three quadrants respectively, such that they coincide with Fj,, on {\/aﬁy2 < 1} on each
quadrants, and coincide with F,f~, F,” " and F,~ on {\/:Wy2 > 2} respectively. Moreover,
restricted on the attracting regions U(i n o U, ; ; and Uy, their central derivatives are all equal
to an; And the central derivatives of their reverse on the repelling regions Vofnf, VOTnJr, and Vg~

are also equal to a,.

6.3 Gluing Diffeomorphisms

In last section, we have defined the four diffeomorphisms on the four quadrants, and they
coincide with Fp,, on the neighborhood of invariant fiber. In this section, we will try to glue
them mutually with each others to manage our final constructions F,.

The main difficulties for gluing is on the control of attracting and repelling regions, and

control the central derivatives of the gluing diffeomorphisms simultaneously.

We will focus on gluing FOJf - with F(f — which will be defined on C*+ U C*~, and dealing
with other gluing procedures in the same way. Denote C*+ = CT+ N C+~ = {2 > 0,y = 0},
and we first define a diffeomorphism FOJf +on Ot

6.3.1 Constructing F,; on C**

For the cylinder C** = {z > 0,y = 0}, it can checked that F(f,j and Fofn_ satisfying the

following properties:
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- .
* = o |{0§x§1,y:0}u{x23%,y:0} ’

++
Fom ‘{OSxSl,yzO}U{xZ3%,y=0}

e for the attracting and repelling regions, we have

Ugad {235,y =0} = Uy n{z>3%,y=0},
Vol n{z >3%,y =0} = Vi{rn{z>3%y=0}

e for the union of two attracting regions, we have

UdE 2 Ut uUg, |ovs
4 3. n 3 1 1 3

- { S [075(5)2]7?/ =0,z ¢ [_gvsn(‘r) - 4_1] U [_ - Sn(.’L‘)7§] }
1 1

S e R S S R S D

e for the intersection of two repelling regions, we have

A _ 1 « 1 «
Vot = Vo NV lovs = {220,y =0,z €[5~ =" ¥ala). 5 + 5 - tn(@)]}-

W == ool w wl’_‘

01w il oo =

+£
Von

I

|
ol

—

[N

[\
[SCRIEN
N W

(SR

(\)

[N

w

V[3

Figure 6.2: Uatf and Vofni in O+

Lemma 6.3.1. There exists a sequence of smooth diffeomorphisms Fd':ff on Ct* ={x>0,z¢

S} admitting the following properties:

o FfE({z} x SN ={\-x} x S* for all z > 0;
0,n
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F&fE coincide with FJ: and F&’n_ on the set {z € [0,1]U[32,400),z € S'};

FO':—L(UJ;E) C Int(Ugff), and DCF(]E;t restricted on Ug'féc is uniformly contracting;

(F(ir f)_l(%fni) C Int(VOJ,rni), and DC(FOf Y1 restricted on VOJ’rni is uniformly contracting;

the partial derivatives 8F0J7r fz /0z is uniformly bounded on Ct* and for all n, the central

derivatives DcFoJriE uniformly converge to 1 as n — oo.

Remark. This lemma is the most significant part of our construction. Since we already build
the diffeomorphisms on each quadrants, and they coincide when close to the invariant fiber and
on the region very far from invariant fiber, the only problem is to glue them together. Here the
diffeomorphism F(ir f 18 the key part for their gluing, and we will make the convex sum of it with

the diffeomorphisms on quadrants, to get the constructions we desired.

Proof of Lemma 6.3.1. By the symmetry of Udf and Vo'fni with respect to the two rays
{z =0} and {z = 1/2}, we just need to construct the diffeomorphisms on [0, +00) x [0,1/2] and
for any (z,z) € [0,4+00) x {0,1/2}, we have F(ﬁc(av,z) = (A-z,2).

The main difficulty of the construction is how to keep the attracting region U(f ;t positive

invariant by the action of F&r ;t

1__1
2 2 .
3 :
8 \ UOJrn=t
1 G
4
1 FE(Ughn)
8
e
_1
8
_1
4
_3
8
1_ 1 N :
2 2 =
+

Figure 6.3: FO":f(Uo—ff) - Int(Uo—Zmi)

We first look at U(féc restricted on {x € [0, %(%)%],z € [0, 1]}. Recall that

Ui 0 Ao = (re i el - nw. ).

We will map the upper boundary {z € |0, %(%)%], z = g} to its image by FOT:, which equal to

{z €10, A5( %)%], z =1+ %}. For the image of lower boundary, we need the following claim.



CHAPTER 6. CENTRAL DA-CONSTRUCTION 100

Claim. 1. There exists a sequence of smooth function ry : [O,Ag(%)%] — [0,1/2] and real

numbers T, € [2, %(%)%], such that

1. for each x € |0, f(%)%], we have + — s, (z) < rp(z) < 1 4+ %;

2. for each z € [0,2], we have rp(\-x) =

Qn .
8’

N

3. for each x € [T, 3(%)%], we have rp(X - x) = 22n . [1 — 5, (2)];

4. limy, 00 7, () = 0;

5. for each x € [0,/\3(%)%], we have W <1

(2+an)/8—rn(Ax)

6. limy, o0 inf ]{ (2+an)/8—rn(x)

} > limy, o0 ap = 1;

v hmn—>oo sup ]{ - Tn()\a? 1/4 Sn(l‘)} =1.

z€[0,3(2) /4—sn(z)

2

We first make some remarks about this claim.

Remark. Since we want the image if r,, will be the Fgf—image of lower boundary of Ugrf, s0

in the claim:
e item 1-8 are used to guarantee the positive invariance of Ug’r ;E

o item 4 is used for the estimation of partial derivatives ||8F0+7;tz/8:cH

e item 5 and 6 aim to insure that the the length of central segments in U&r f are large
than the length of its Fgf-image, and the ratio will converge to 1 as n tend to infinite.
This allowed us to build Foti is central uniformly contracting on Ugr;f, and the central

derivatives converge to 1.

e item 7 guarantees that the central segments between z = 0 and lower boundary of U&rff
will be mapped by F&f to a central segments almost have the same length. This is for

estimating the central derivatives of F&f i the region between z = 0 and lower boundary
++
of Uy, -

Proof of Claim 1. Recall that the lower boundary of U(ﬁt N 1o, %(%)%] x [0,1/2] is the image

of the function z =  — sp(z) = 1 - [(3 t)% +1] — £. And we define the smooth function
[0734A( )2 ]—>]Ras
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Then for the function e,(x), we can see that eljg2/y = Loan > 0, and en(%\(%)%) =
— 2o L[4 — sn(%(%)%)] < 0. Moreover, since 9/(t) is decreasing on [0,5/2], some calculation

shows that e],(¢) < 0 on its definition domain, and there exists a unique T), € [2, %(%)%] such
that e, (7, — 1) = 0, that is
1 24a, .1

1_(5;71()\.(:/%_1)) = 5 = sn(T — 1))

Actually, from the flatness of s,, we know that T,, — oo as n — co.

From the analysis above, we can denote that

o= T ) - s @) > 0

Moreover, here we can have lim, oo 0n/[% — $n(X - (T},))] = 0. On the other hand, we denote

@0 = (30— [ - sa(2V)] > 0,

then we have lim,,_, @n /[ — 5n(2A)] = 0.

Notice that the smooth function z = 4 — s,,(z) is decreasing on [0, \(T}, + 1)], this allowed

us to define a smooth function &, : [2A, AT,,] — [0, 1] such that = € [2A, AT},], we have

1 1 1
1~ 5n(@) = k() - [ = 50 A+ (1 = kn (@) - [ = sn(A-Tn)]-
We define a smooth curve contained [0, )\%(g)%] x [0,1/2] as the image of the function 7, :

[O,)\%(%)%] — [0,1/2], where

1/4 — an/8 zel0,2),
ro(z) =< 1/4 —sp(x) + kn(z) - wp + (1 — Kn(x)) - 00 x € 2\, \T,] , §
(24 @) /3 - (1/4— sn(2/3)) | v € N, A3(3)3]

From the construction of r,, we check it satisfies the properties in the claim one by one.
The first three items came from the definition of r,. The fourth item came from the fact
that the derivatives of s,(x) and k,(z) are all uniformly converge to zero on their domain.
Item 5 can be shown by the monotonous decreasing of r,(z). Item 6 is a little bit tricky.

Notice that when x € [0, 2], %

equal to (24 a;)/3 > ay,. Notice that we build 7, as some kind convex sum , which will make

(2+an)/8—rn(Ax)
Btan)Brn()

The last item just the results that a,, will converge to 1 as n tend to infinity.

is just equal to a,,. But when x > T,,, it will be

is monotonous increasing. This proves item 6.

Continue proving Lemma 6.3.1
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Now we can define the sequence of diffeomorphisms F&’ £ on [0,400) x [0,1/2]. The con-
struction of F(irni will be separated into three parts, [0,2] x [0,1/2], [2,3%] x [0,1/2], and
32, +00) x [0,1/2].

The first and third parts are very clearly. we define
® FJ:|[0,2]><[0,1/2} = F(f;r|[0,2]x[o,1/2];

++ ++
F |[32,+oo) x[0,1/2] FO,n

| n = F+7 n .

[32,400)x[0,1/2] = 7 0 1[32 1 +00)x[0,1/2]

Here we want to point out that by the symmetry, Fdi:nihoz}x[l/z” will equal to F&;“GQ]X[OJ/Q].

And for F(;rn |[37 ooy x[L/2.1]’ it coincide with both FJ; and FOT”_.
We define F0 o

tions.

|[232]X[0 K 1 [2,32] x [0,1/2] — [2X,32 )] x [0,1/2] as following construc-

e Restricted on VOJrni, we define F(Tni = Foﬂf

e To describe UO FEM12,32] x [0,1/2], for every z € [2,3%], we denote
Ly(z) = inf{z: (x,2) € U0 FEn{z} x [0,1/2]} .
Un(z) = sup{z: (x,z2) € U&'ni N{z} x[0,1/2]} .

Notice that when z € |2, f(%)%} Ln(z) = 3 — sp(z); and for z € [%(%)% 32], Ln(z) = 0.
Un(z) = 1+ 5 - ¥n(@).
For every = € [A2, A32], we denote

<M(3):
gy = @) if @ 5)2
n(@) {0, if ©> A3
U (z) = WCOFJ:J<Q?/)\,Un(.%'/A ) -
This allowed us to define
(2, Lo(x)) = Az, L,(Az)) ,  and  Fi' (2, Un(x)) = (A, Up(Ax)) -

And we define F&f][Ln(”Un(x)}c [ Ln(2), Up(x)]¢ — [L),(Ax), U}, (Az)]¢ be the affine map.

From item 5 and 6 of the claim, we know that

oy & Up(Az) — Ly (Ax)
an, < a,(r) = Un (@) = Ln(2) < 1.

This gave the definition of FJ f on Udf ﬁf
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e In the region between Uaff and %ani, every z € [2,32], we denote K, (x) be the central
segment between U&r ni and Vofni. Since we have already know the F(fni—images of U&r ni
and VOTni, we actually already know that

Fyfy (Kn(2)) = Flf (Ka(2)) .

And the derivatives of F(f = on the end points of K, (s) are o/,(x) and «, respectively. So
we define FJ:\KH(@ Ky (z) — FJJ(KH(:U)) as

1>

FOJ,rﬁt‘Kn(x)(z) O (x),an,Kn(x),F;;(Kn(z))(Z)v Vz € Kn(z) .

n

It could easily check that F0+7 f defined on this region can smoothly glue to FOJf ni restricted
on U&rf and ‘/()Tni.

e The last part we need to deal with is on the region between {z = 0} and Uy, . This region
could be expressed as [2, %(%)%] x [0, Up(x)], and for each = € [2, %(%)%], we have
Fyfn ({2} x [0,Un(@)]) = {x-2} x [0,U5(A-2)] .
Notice that at the point (2, 0), the central derivative of FOJFf is a;, 1; at the point (%(%)%, 0),
the central derivative of F()Jrf is (24 a,)/3. We define a smooth decreasing function
Gt (2 —¢, %(%)% + ) — R such that

-1

Snl(2—e2 = 0y and = (24 an)/3.

w8 43340
So we can define that Fofﬂ{m}x[oﬂn(m)] [0, U (z)]© — [0, U}, (X - )] as
o @y x 0,0 )] (2) = O @),ats (@), 0,0 @) 005 va))e (), ¥ 2 € [0,Un(@)]° .

Now we can finish the proof of this lemma by the following claim.

Claim. 2. The diffeomorphisms F(ff is well defined and smooth on CtE. Moreover, they

satisfying all the properties stated in the lemma.

Proof of Claim 2. For proving F(]Jrf is well defined and smooth, the only difficulty appears

at we need to glue the region [2,%(%)%] x [0,Up(x)] to U&r;f. Here we just notify that for

T, <zx< %(%)%, on their intersection part, they are all equal to the map

24+ ap
3

(x,2) — (A- 2z,

- z) .

So they can smoothly glue together.
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For all the properties in the lemma, the coincide with FOJf ;’ and F&r , can be seen from the
definition of FOJ’r ni The attracting and repelling region is also from the construction. We only
need to take care the estimations of central derivatives and partial derivatives.

All these estimations came from lemma 6.2.6. We just need to realize that all the boundary
of these central segments are varying smoothly, so does the central derivatives on these boundary
points. All these partial derivatives are uniformly bounded.

O]

This claim closed the proof of lemma.

6.3.2 Extension of F0+f

In this subsection, we want to extend F(f f in a neighborhood of C**. We first define the

neighborhood of CT*. Fix a small constant 0 < ¢ < 1, and we consider the closed region
Wji = {£>0, —e<y<e z€8}.

We want to define the diffeomorphisms which are extensions of Fof f on WX+, Recall that

we can express Fdf ,ﬁc defined on Ct* as
Fif o (2,0, 2) — (Ax, 0, 70 FyiE(z,2) ) .

So the most natural way for extension is map the point (z,y, z) to (Az, %y, WCFJ;L‘:(Z', 2)).
However, this definition does not coincide with the diffeomorphisms we required in the tech-

nical lemma, since when z > 3%, the contracting region of this diffeomorphism are not the union

of intervals centered at the helicoid, but centered at the plane {z = 0}. Beside this, FOT f satisfies

all the properties we required.

Recall that for the surface ZEW every Sl-fiber (z,y) x S' C WX* intersects with Eﬁn

exactly one point, denote by ¢;*(x,y). Moreover, we denote the central segment LI+ (z,y) =

[ (2, ), ¢ (z,y)]¢ to be the closure of (x,y) x S\ ¢F*(z,y), which is a closed segment of

length 1, and we will identify it with the interval [0, 1].

Definition 6.3.2. We define the extension diffeomrophism F[ﬁc Wt — W;;f C WHE as
the following way:
o Fif(z,y. g% (x,y) = Az, 1y, ¢f T (A, 30));
+ + +
hd F(;t_n (L:i(.ﬂf’y)) = L’;’ti()\x7 %y)7 and F(i_’n, ’Lii(qj,y) = F(;’,_n ’Lii(qxo)
Notice that this definition relies on Fd’:f has already been defined on CT*. Then we define the
attracting and repelling regions UZE, VIAE C W as

g,n

Ule N Ly (2,y) = Uy N LE5(2,0),  VEFN LI (2,y) = Vol N Li*(2,0).
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Here we actually identify the interval L= (z,y) to L}*(z,0), and pull the attracting and repelling
sets Ugf, Vofni back on LI*(x,y) by this identification.

Then we can summarize all the properties of these diffeomorphisms and regions into the

following lemma.

Lemma 6.3.3. For the diffeomorphism F(;rni : Wji — W;;f - Wji and the corresponding

regions UXE and VA they admit the following properties:
) em

en ’
® FOJ?((%Q) x S1) = (A, %y) x St

o Ffy(Sh, nWiE) =xf n W;;j\—L;

o Foff coincide with Fy," and Fy, on the intersections of {x € [0,1] U 32 + 1, 400)} with

where their definition domain intersecting respectively;

o FJ:(U;%) c Int(UAEN W;in), and DCFOTE restricted on UXE is uniformly contracting;

. (Fgﬁ)_l(%fni N W;;in) C Int(V;‘ni), and DC(Fgff)_l restricted on Vg'ni N W;in is uni-

formly contracting;

F+i

e the partial derivatives 0 0%2/8;10 is uniformly bounded on Ct* and for all n, the central

derivatives DCF(;FTLi uniformly converge to 1 as n — oo.

All these properties are came from the definitions, and we have prove similar results several

times. So we skip the proof here.

Similarly, we can also define the diffeomorphisms in a neighborhood of the other intersection
parts of each quadrants. We can define the diffeomorphism F{, ni on the e-neighborhood of
C~* = C~t N C~ . Actually here we can see that

Wt = {(z,y,2): (—x,—y,2) € WL
And we can define Fo_f Wt — WE_/f\E C W7 as:

1
3 )

This definition is purely by the symmetry, we cam similar define the attracting region and

- 1
Foﬂff(x,y, 2) = (Ao, o WCF(ff(—x, —y,2) +

repelling region in this way, which could be verified that satisfying all the properties in lemma
6.3.3.

For the diffeomorphisms Foi; and F&En_ defined on the neighborhood of C*+ = CTtnC—*
and C*~ = Ct~ N C~~, we just need to consider the inverse of FJni and Fy f respectively.
Then get two diffeomorphisms

++ . ++ ++ +— . +— +—
FOm .Wa/)\ — W, and Fo,n 'Wa/)\ — W,
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which both admitting the corresponding attracting and repelling regions, and satisfying all the

properties stated in lemma 6.3.3.

6.3.3 Gluing all these diffeomorphisms

Now we have defined the diffeomorphisms FOJr ; , F(Tn_ , Fy, o and F, ; on each quadrants,

and the diffeomorphisms FJ ff, Fy, f, Foii , and F&En_ on the neighborhood of the intersection
parts of these quadrants.
It’s time to glue all these diffeomorphisms together. As before, we just focus on illustrating

the gluing of F,;' ", I~ and Fdf;f, which will be defined on CTTUCT~. The other parts could

On >~ 0n>

be defined by symmetry and the inverses of diffeomorphisms.

Let us first state some observations of the diffeomorphisms FJ ;r , F0+, o F0+, f and their at-

tracting repelling regions, which will be helpful in our gluing process.

e All the three diffeomorphisms preserve the S'-fibers. Moreover, they all keep the sur-
face Eﬁn invariant. This allowed us to represent for any (z,y) x S' C W%, we can
express these three diffeomorphisms restricted on (z,y) x S! to be diffeomorphisms from
LiE(z,y) = [gf=(z,v), ¢ (2, 9)]° to LiF(\z, 3y) = (61 (A, 59), 615 (A, 3y)]° here
g = (2, y) € (x,y) x STNEE and ¢ = (e, xy) € (Ar, 3y) x S' N2} .. Notice all these
intervals could be identified with [0, 1].

° FJ ; coincide with F&r f on the region
{0§x§1,0§y§5,z€SI}U{m23%+1,O§y§5,zESI};
FJ ., coincide with F(ﬁf on the region
(0<2<1,-e<y<0,zeSYuU{z>32+1,-<y<0,zeS'}
e For any x > 0,0 <y < &, we have V;rni N (z,y) x St C VE]J;j N (z,y) x S
For any z > 0,—¢ <y < 0, we have V.1 N (z,y) x S C Vojrn_ N (z,y) x St

e For any x > 0,0 < y < ¢, we have U;fﬂ(x,y) x St QUOJf;ﬂ(x,y) x St

For any z > 0, —¢ < y < 0, we have U:niﬂ(x,y) x St D UJJ N (z,y) x St

Similarly properties hold for the other diffeomorphisms on each quadrants and the neighbor-

hood of their intersection parts.

Definition 6.3.4. We define the diffeomorphisms F,, : R? x S — R? x S' as follows:
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o If (x,y,z) does not belong to

W. £ WHuWIEuWE uWE

then Fy(x,y,z) is equal to F()J’r;(:n,y,z), F()J;;(m,y,z), Fo, (x,y,2), or F&J(:E,y, z) ac-
cording to the point (x,y, z) belong to which quadrant.

o If (x,y,2) € Wg‘i, we separate into three cases

- fOT’ (x,y, Z) € W;;fz Fn(‘rayaz) = F()J,rf(l'ayaz);

— fore/\ <y < e, we consider Fn’(z’y)xsl = Fn’Lii(x Y Lf{i(ac,y) — L,fi()\x, %y)
as

Here the bump function ((y) = ¢(y7§ +2);
A

e—%

— for —e <y < —¢/A, we consider Fu|(zy)xs1 = Fulpi+, ) Li*(z,y) — Li*(\z, 1y)
as
Fn(z)|L:;i(g;,y) =¢(y)- F0+,7’L:|:|L;';i(x’y) (2) + (1 =<()) 'FoJ,rqﬂL;i(z,y)(z)S

Here the bump function ((y) = w('y‘_j +2).
A

e—

o If (z,y,2) € W%, then we define Fy,(x,y,z) = (\z, %y, T (—x, -y, 2z) + %) Here we
use the fact that F,, already been defined on W=,

o If (x,y,2) € W;;j\L U Wj;, then we define

1
>\y7

1
TrCOFnil(y)x}Z)_*

Fo(z,y,z) = ( Az, 4).

Here we applying Fn(Wji U We_i) = W;;f U W;/f is already defined, and we can define

its inverse map.

Lemma 6.3.5. For any n, the map F, is a well defined smooth diffeomorphism on R? x S*.
Moreover, they satisfy

o ||0n°F,,/0x| and ||0n°F,/0y| are uniformly bounded on R? x S', and the upper bounds

are independent on n;
e lim, ,o, D°F,, = 1, the convergence is uniform on R? x S*.

Proof. To show that F), is well defined smooth diffeomorphism, we just need to take care about

the gluing construction of Fdf;, Fofn_, and F&fﬁ Since for e/\ <y < e, we have
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From the definition of ((y), we can see that when y = ¢/\, this definition shows that
F,=F'* and wheny = ¢, F,, = FOJ,FJ by the smoothness of {(y), we know that F,, is smooth.

0,n

Moreover, for the central derivatives, we have
D Fal it (0 = CW) - DG it gy + (1= ) - DUFG 4

This shows F}, is diffeomorphisms on each S'-fibers, thus on R? x S'. In the meanwhile, since
we know that both DCFJ f and DCF&r ; converge to 1 uniformly, so does DF,,.

The last mission is to verify the uniform boundedness of partial derivatives. We just check
for On°F,, /0y:

|2 < 2Ty (2O T,
oy - oy oy

, OmeFyy o OnCFS Y P
el +1 - (=5~ I+ =7, =) + K-li5

IN

Notice that the function ¢ does not depend on n, both ||87TCF()J;§F/8y|| and H@WCF(EL/OQ/H are
uniformly bounded with respect to R? x S' and n. This shows the uniformly boundedness of

partial derivatives.
O

6.3.4 Contracting and repelling regions
Now we can define the attracting and repelling regions for F,.
Definition 6.3.6. We define the two closed regions U™, V"™ C R? x St as follows:

o U™ restricted on R? x S*\ Int(W.) is equal to (U&f U U@fn_ ul,, U U(;:) \ Int(W;). V"
restricted on R? x S1\ Int(W.) is equal to (%J;;r U VO’;L_ UVp, U VOTnJr) \ Int(W;).

o For U" N W, we have Ur "W = ULENWIET: and Uy 0 (WIE\WIT) = (U, U

Uy ) N (WHENWIT). We define V' 0 W+ = VIE.

o For U™ N VVE_i and V' N W%, we also defined by symmetry:
1
Urnwo= = { (z,y,2): (—z,—y,z+ 5) e U, "W}

1
VrNwWoE = { (2,9, 2) (—ac,—y,z+§)EVnOVVEJri }.

o ForUm™nN (V[/{_:i/;\r U Wj;) and V"N (Wjj U Wj)_\), we defined them as:

_ 1 _
UM (WEFUWE) = { (59,2) (5024 5) € FalVa (W UW5) 1

n — 1 —
\% ﬂ(Wj/;\"UW;/A) = { (z,y,2): (y,x,z—f—z)GFn(Unﬂ(W;iUWE i)) }.
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For U™ and V", we have the following lemma holds associated to Fy,.

Lemma 6.3.7. The two closed regions U™ and V" are disjoint. Moreover, U™ 1is positively
invariant: F,(U™) C Int(U™), and DCF,|yn is uniformly contracting; V,, is negatively invariant:
F-H V™) C Int(V™), and DCF; |y is uniformly contracting.

Proof. To prove this lemma, we just need to check the invariant properties of U",V"™, and the
central contracting and expanding properties restricted on each S'-fibers.

Furthermore, from the way how we define U™,V and F},, we only need to check that Fn‘W;r;t
maps U™ N W;r Ei positively invariant and central contracting, and F} 1|W€+i maps V" N W +

positively invariant and central contracting.

First we look at U™. Form the definition of U™, we know that when we convex sum of F&' Tj
F+:|: F+:t

On 0,n

F, |y~ is central contracting. We only need to verify the positively invariant. Notice that

and or F(f o and they restricted on U™ are all central contracting. This shows that

this guarantees that
Fo(UM 0 (WZAWEE)) C Inb(U" N (W A\ W) -

For U N (WX+\ W;f), things became a little bit tricky. Since F}, are defined as convex
sum in this region. But we know that this region coincide with U&r : or U(f » > Whose image
by FOTTT and F&r ,are contained in ani N W;;f In the meanwhile, itself also contained in
U;ﬁ, so positively invariant by FJ ni Some simple calculation shows that the convex sum of

diffeomorphisms also map U™ N (W \ W;f) into the interior of U;r +n ng This show the
positive invariance of F), acting on U".

Then we look at Fj,|y«. Notice that for any (z,y) x S* € WX+ and y > 0, we have
VPN (2,y) x ST =VEEN (2,y) x ST C VLN (2,y) x ST

which is the interval centered at ¢+ (z,vy) € E}En. And both (F&r;)_l and (Fgf)_l restricted
on V"N(z,y) xS maps the central point to central point contained in E+7n, with the contracting
rate g, which both admit the invariant property with respect to V,. So the same properties
holds for their convex sum. This guarantees the negatively invariant and central expanding of
F,, acting on V".

O

6.3.5 Proof of lemma 6.1.1

Now we can close this section by give a proof of the technical lemma 6.1.1.
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Proof of Lemma 6.1.1. We have already defined the diffeomorphisms F;,, and two disjoint

regions U™ and V™. We check they satisfy all the properties listed in the lemma one by one.
Item 1 came from the definition of F,,. Item 2 and 6 concerned about the invariant region

U™ and V", which has been showed in lemma 6.3.7. Item 3 and 5 are the consequence we

have assumed X - (32 4 1) < (ZT?ZT. Thus all the diffeomorphisms we defined satisfied these

two properties, so does F;,. Item 4 is the result of our definition of diffeomorphisms Fp, on a
neighborhood of invariant fiber (0,0) x S*. Ttem 7 and 8 have been verified in lemma 6.3.5. This
finishes the proof of lemma 6.1.1.

O

6.4 Transitivity of Attractor and Repeller

In this section, we will discuss the transitivity of the maximal invariant sets A, and R,
contained in the attracting and repelling regions U,, and V,,. This implies that the chain recurrent
set R(fn) of f, consists of one hyperbolic attractor and one hyperbolic repeller.

The proof is exactly the same with [8], we just sketch it for completeness.

We will focus on the attracting region U, and the corresponding Birkhoff section ¥,. The
repelling region V,, and the transitivity of R, is exactly the same.
If we collapsing each boundary component of ¥,, into one point(singularity), then we get a

2n_gingularities. We will show that f, restricted on the maximal

closed surface P, with (2m)
invariant set A, of U, is semi-conjugate to a pseudo-Anosov map on P,. Especially, the stable
and unstable foliations of this pseudo-Anosov map is induced by the intersections of the center
stable and center unstable manifold of f4 (the same with f,,) with X,,.

Finally the minimality of unstable foliations of the pseudo-Anosov map will help us get the

minimality of unstable foliations of A,,, thus the transitivity of A,.

First we illustrate the pseudo-Anosov map on the closed surface P,. Recall that in our
construction of f,,, when far from the boundary fibers (restricted on E, C H), we have defined
the diffeomorphism f,, ¢+ maps the Birkhoff section ¥, |, into ¥,. This means that we have

defined a unique fiber isotopy function F; : H x [0,1] — H such that:
o o= fa;
o F1(Xn) = Xp;
o Fi(S,NEy) = fu(SnNEyp) C Sy

Claim. If we collapsing each boundary components of ¥, into singularities to get a closed surface

P, then I defines a pseudo-Anosov map PA, : P, — P,. Moreover, the stable and unstable
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foliations of P, is induced by the intersections of the center stable and center unstable manifold
of fa with %,.

Proof of the Claim. First we can see that the intersections of the center stable and center un-
stable manifold of f4 with >, defines two family of foliations on ., which are transverse to each
other. When we collapse one boundary component into one singularity, we can see that both
these two foliations has 2(2m)?" prolongs at each singularity.

Since the F} is fiber isotopic to f4, which preserve the center stable and center unstable
foliations of H, this implies the map PA, : P, — P, induced by F} preserve two family of
foliations above. Moreover, since if we modulo the center S'-fibers, F} is still the linear Anosov
action A on T2. Thus it contracts the intersection of center stable foliations with 3,,, and expands
the intersection of center unstable foliations with X,,. This proved that PA,, is a pseudo-Anosov
map.

d

Now we can state the main proposition of this section, which will closed the proof of the

main theorem.

Proposition 6.4.1. For each f,, it admits exactly two basic pieces, where one is the mazximal
invariant set A, of U, which is a connected mizing hyperbolic attractor, the other is is the
mazimal invariant set Ry, of V,, which is a connected mixing hyperbolic repeller.

Moreover, there exist a continuous surjective projection ma, : A, — P, which induces a

semi-conjugacy between f,|a, and PAy, such that

o For any x € P, which does not belong to the unstable manifold of any singularities, Wzi ()

18 a single point;

e For any x € P, which belongs to the unstable separatriz of a singularity, w;i (z) consists

of exactly two points;

e For any x € P, is a singularity, ﬂ'Zi (z) consists of 2(2m)?" periodic points of A, which

belongs to one boundary fiber of ¥y,.

As we said at the beginning of this section, the key fact of the proof relies on the semi-

conjugacy. Now we try to construct the conjugate projection.

Recall that in the central DA-construction where we proof the technical lemma, the first step
of our proof is deforming the half helicoid ¥ into a branch surface with boundary and corners
¥ A,n- Mapping this deformation into the nilmanifold H, we can get a branch surface By, with
boundary and corners. For any p € 0%, restricted on the neighborhood of a boundary fiber S,

we have

BE,n

s 1 = R tp.n oR 20p+1 OPOOHn(EAjn” ) 1.
]D)(p, (2m)2n )XS (2m)2n 2(27n)2” D(p7 (2m)2” )XS
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And for from the boundary fibers(restricted in E, C H), Bs»|g, is equal to Xy g, .
It is clear that By, contained in U,. Now we can define a new region Us;,, as the union of

central segment components in U, which contained a point in By, ,.
Lemma 6.4.2. We have A, C Uy, C U,.

Proof. From the central DA-construction, we know that the periodic points in the boundary
fibers are also boundary periodic points. That means if the stable manifolds of these periodic
points minus the center S!-fiber will consist of two components, and one of these two components
will not intersect the maximal invariant set A,,. This also holds for the points contained in the
unstable manifolds of these boundary periodic points.

From the construction of U, in last section, we can see that Uy, is the set U, minus the
region in these components, thus the part been deleted does not intersect the maximal invariant
set A,,.

O

Now we can construct a projection from Us, to P,. We denote the projection by 7y, :
Ugm — Pn.

We can first define a projection
7'('32’” : Bg,n — Pn

in the following way. When far from the boundary fibers, that is restricted on £, C H, Bx, N
E,=%,NE,=P,NE,. So the projection is identity.

When close to the boundary fibers, that is in the unit model (section 6.2.2), we have defined
in Definition 6.2.2,

Tsan @ Zan\(0,0) x S8 — S\ (0,0) x 5.

Here we ignore the linear transformation for simplicity. And the interior of ¥, is equal to P,
minus all the singularities. For the points contained in 0By ,, intersects with boundary fibers
of ¥, (the boundary periodic points of f,, in A;,), 7y, , maps them into the singularities which
collapsed from the boundary fibers.

From this definition, we have the following claim holds.

Claim. 7p,, , is a continuous surjective projection from By, to P,. It is injection when re-
stricted on the interior of By, ,. When restricted on 0By ,,, the points in boundary fibers of 3y,
be mapped into the corresponding singularities, the image points of the other boundary points all

have exactly two preimages.

Thus we defined the projection from By, to P,. Then 7y, is defined as mapping the

central segment containing point x € By, to TS An (z) € P,.
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Lemma 6.4.3. The projection myy,, 15 a continuous surjective map, and induces a semi-

conjugacy between fy restricted on By, and the pseudo-Anosov homeomorphism PA,,.

Proof. The semi-conjugacy property comes from the fact that the projection 7y, induce a
semi-conjugacy between f, acting on By, and the pseudo-Anosov map Py, and it maps the

central segment in Us,, into the interior of another central segment in Us ,,. (]

Proof of Proposition 6.4.1. First, there must exists a transitive attractor A,, C A,, which
could not be a periodic orbit. For any p € A,,, we have W*(p) C A, C Us,. If we further
require that p does not belong to the unstable manifolds of boundary periodic points and denote
Ay, 0 be the closure of W*(p), then A, o is a mixing component of A,,.

Moreover, Ty, , (W"(p)) is a regular leaf of the unstable foliation of the pseudo-Anosov map
PA, in Py, which implies TI'UE’H(AW()) = Py. Thus each central segment in Uy, contains at
least one point in A, g.

Now for any compact set K C A,, C Us,, which is invariant by f} for some integer I. There
must exists two points € K and y € A, which contained in one central segment of Us,,.
Iterate this segment by f!, which the length will tend to zero. This implies K N Ano # 0. So
Ay0 is the unique mixing component in A,. This implies 4, = A, is a mixing connected
attractor.

We define the semi-conjugacy 74, from f,|a, to PA, asm4, = TUs, |4, So it is continuous
and surjective.

For the analysis preimages, first we look at the boundary periodic points. Since we collapse
the boundary fibers of ¥, into singularities of Py, so the preimage of these singularities is
2(2m)?" periodic points.

For the unstable manifolds of these periodic points, each one separatrix of the neighboring
two periodic points will be asymtoptic, and will be projected into one separatrix of the unstable
manifold of a singularity.

So we only need to show that the for any p does not belong to the unstable manifolds of
boundary periodic points, w4, is injection on p. Assume that 74, (q) = w4, (p), then they are in
the same central component J of Us ,,. Since both p, ¢ do not belong to the unstable manifolds
of boundary periodic points, then f,!(J) intersect Us. ,, could only be in one component, for any
[ > 0. This implies the f,!(p) and f,!(q) are always in the same central component of Us: ,,,
thus with uniformly bounded central distance. By the uniformly central contracting of f,, in
Us: n, we have

d°(p,q) < lgrgoafydc(fffl(p),fil(@) = 0.

This proves that p = q and 74, is injective on p. O
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