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1

INTRODUCTION

“The three R’s of Vision : Recognition, Reconstruction, Reorganization.”

- Jitendra Malik, UC Berkeley

1.1/ CONTEXT AND MOTIVATION

A grand goal of Computer Vision is to provide computers with the ability to recover the

three-dimensional structure of a scene and to understand its content while relying on vi-

sual data. Such attributes would allow machines to recognize objects, identify people and

actions, build environment maps for navigation, and deduce semantic relationships bet-

ween objects in the scene. Traditionally, the visual information was limited to 2D images

mainly obtained from conventional imaging sensors such as consumer cameras. The

recent surge in consumer and high-end visual sensors of various modalities, along with

powerful computer hardware, makes it viable in the present time to consider acquiring

and jointly processing large amounts of data obtained from different sources such as 3D

scanners, color, thermal or multispectral images. In particular, 2D consumer cameras are

now capable of capturing high quality texture information while 3D sensors, such as lidar

sensors and RGB-D cameras, provide 3D range data of various resolutions and quality in

the form of 3D point coordinates. Jointly acquiring and processing 2D and 3D data may

undoubtedly yield exciting and potentially revolutionary applications beyond the realm of

Computer Vision. Indeed, the measurements obtained from such modalities are comple-

mentary to one another and therefore may leverage high quality 3D scene modeling with

texture mapping as well as scene understanding algorithms. Such a fusion may turn also

useful for change detection, filling scene gaps, camera pose correction or refinement, and

1



2 CHAPITRE 1. INTRODUCTION

visual odometry.

A common practice for acquiring 2D and 3D visual information involves the use of a

“packaged solution” consisting of a rigidly coupled pair of fully calibrated sensors. In its

simplest form, such solution comprises a 2D camera and a 3D sensor capable of carrying

out synchronous acquisitions. Maintaining such setup may turn out to be both tedious and

difficult due to differences in acquisition frequencies, possible changes in the calibration

parameters and the presence of a dedicated hardware required for synchronization. Note

that good acquisition conditions, for example in terms of viewing angle and lighting, for

capturing quality measurements with one modality may not be compatible with those ne-

cessary for obtaining decent measurements with the other. In this regard, the ability of

acquiring 2D images and 3D data independently from one another adds a great deal of

flexibility and freedom in order to achieve higher quality modeling results. Furthermore,

one may be interested in processing corpora of data in which 2D images and 3D scans

have been obtained independently, possibly at different times or because of application-

specific restrictions. However, when images and scans are acquired independently, the

problem of registering the data obtained from both modalities becomes very challenging

and difficult to solve. The present thesis is precisely concerned with the automatic regis-

tration of independently captured data emanating from 2D and 3D cameras.

1.2/ SCOPE AND CHALLENGES

In this thesis we address the problem of registering 2D image sets and a 3D point cloud,

i.e. a set of 3D point coordinates, of the same rigid scene. By registering such data,

we mean finding “enough” correspondences between 3D points and image pixels and

retrieving the unknown rigid transformation relating the 3D sensor (or reference frame)

and each 2D camera. In particular, we have investigated solutions to the following three

cases in which one or more requirements of packaged solutions, namely calibration, rigid

coupling or synchronous acquisitions, are dropped :

1. Fully calibrated coupled acquisition set-up : in this case, a rigidly attached set of

sensors comprised of 2D cameras and a 3D sensor is used. Such acquisition set-

up is assumed to be fully calibrated, i.e. the 2D cameras are internally calibrated

and the rigid transformation between the 3D sensor and cameras are known and
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unchanged at all time. However, unlike in “packaged solutions”, the acquisitions

obtained from individual sensors are allowed to be asynchronous.

2. Uncoupled acquisition set-up with internally calibrated 2D cameras : a 3D sen-

sor and two or more 2D cameras (or a moving camera) are independently employed

to capture the scene. The 2D cameras are again assumed to be internally calibrated

but the rigid motion relating the 3D sensor and any given 2D camera is unknown

and possibly changing (e.g. cameras in motion). Acquisitions are allowed to be syn-

chronous and asynchronous.

3. Uncoupled acquisition set-up with uncalibrated 2D cameras : a 3D sensor and

two or more 2D cameras (or a moving camera) independently capture the scene.

The rigid motion relating the 3D sensor and any given 2D camera is unknown and

possibly changing. However, this time, the 2D cameras are assumed to be uncali-

brated. Again, acquisitions may be either synchronous or asynchronous.

These three cases are further discussed below.

FULLY CALIBRATED COUPLED ACQUISITION SET-UP

When a fully calibrated coupled acquisition set-up is used to capture a scene, the 3D and

2D measurements may or may not be acquired synchronously. In the case in which the

acquisition set-up is not moving, synchronization of all sensors is irrelevant so long as the

scene is static : the 3D-2D relationship between 3D points and pixels can be established

via the known rigid transformation relating the two considered sensors. However, when

the acquisition set-up is moving, all sensors require perfect synchronization : any motion

of the set-up between acquisitions from a 2D camera and a 3D sensor undermines the

use of the sensors’ rigid transformation as a basis for establishing 2D and 3D correspon-

dences. Furthermore, most common synchronization methods use time-stamps from the

synchronized clocks of each sensor. The closest frames in time are considered to be syn-

chronous. This solution is not accurate enough for applications that involve fast motion,

especially when the acquisition frame-rate of any sensor is considerably low. Other sys-

tems use dedicated hardware that synchronizes the frames by monitoring the sensors’

readout time. When the readout times of sensors vary significantly, as in 2D cameras and

3D sensors, accurate synchronization requires more advanced hardware. Therefore, low-

cost fast moving systems very often suffer from synchronization issues, particularly when
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the mechanical parts – as in Lidar sensors – are involved during acquisition. Note that for

fast moving cameras, a small synchronization delay may lead to a big error in pose.

In view of the above synchronization issues, as part of the present thesis, we investigate

the problem of registering 3D data and 2D images emanating from a moving fully calibra-

ted, yet asynchronous, coupled acquisition set-up. Doing so offers the potential to avoid

the burden of resorting to extra hardware altogether. We regard this problem as that of re-

gistering a set of coupled acquisition set-ups, each with vaguely known or inaccurate rigid

relationships between its internally calibrated 2D cameras and its 3D sensor. The interest

in addressing this problem manifests in accurately estimating the pose of 2D cameras in

the 3D camera coordinate frame or vice versa. Note that, because the acquisition set-up

is fully calibrated, the initial relationships between the 2D cameras and the 3D sensor are

known. However, the exact pose information is lost due to the synchronization delay and

our goal is to recover the pose corresponding to the delayed acquisition.

Another aspect that we are concerned with in this work is to accurately estimate the ca-

mera motion using both 2D and 3D information. Estimating camera motion from visual

data is also known as visual odometry. Once the asynchronous 3D sensor and cameras

are registered, they can be considered as synchronized. Fusing information from both

modalities for accurate motion estimation becomes highly desirable. However, synchroni-

zing the acquisition set-up is not sufficient to estimate the motion of the acquisition set-up

and inter-frame motion estimation is required.

UNCOUPLED ACQUISITION SET-UP WITH INTERNALLY CALIBRATED 2D CAMERAS

Some application-specific requirements prohibit the rigid coupling constraint of the 2D

cameras and the 3D sensor. This situation may arise either because of the difference

in suitable acquisition conditions or the nature of the problem itself. Several applications

concerned with uncoupled camera set-ups are discussed below.

Applications such as photo-realistic rendering demand very high quality of both 2D and

3D data. Usually, the acquisition of high quality 3D data is carried out by using one or mul-

tiple slow moving 3D cameras over a long duration of time. However, when illumination

is changing, typical to outdoor scenes, investing the same amount of time for acquiring a

2D image may intricate a problem. Under such conditions, 2D images need to be rather
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captured using a fast (or at least faster than the 3D sensor) moving camera covering the

whole scene. If rendering under different lighting conditions is required, it is recommended

to use one set of images for each lighting condition. This happens mainly because images

captured under different illumination conditions can deteriorate the photo-realistic rende-

ring effect. Moreover, this also creates difficulty in establishing correspondences across

images. Therefore, for such applications, 2D and 3D cameras are better kept uncoupled.

Acquiring shape and texture information in parallel using independently moving 2D came-

ras and a 3D sensor (such as a 2D camera on a drone and a 3D sensor on a terrestrial

vehicle) may also prohibit us from establishing the direct relationship between 2D and 3D

acquisitions. The main difficulty in registering 2D and 3D acquisitions lies in establishing

reliable correspondences between 2D and 3D data. This process is highly undermined

by unreliable 3D feature descriptors, especially when the 3D data lacks the texture in-

formation or when the 2D images and the 3D data are captured under different lighting

conditions. Additionally, in the case of uncoupled cameras, it is very difficult to find a good

2D camera pose initialization with respect to a 3D sensor such that locally convergent re-

gistration methods – typically Iterative Closest Point (ICP) or its variants – could provide

satisfactory results. Consequently, in the absence of feature correspondences, the pro-

blem of registering uncoupled 2D cameras and a 3D sensor demands devising methods

that are insensitive to local minima traps. In other words, we are interested in registering

a set of images, obtained from internally calibrated, possibly moving, 2D cameras and a

3D point cloud originating from a 3D sensor while all cameras and the sensors are uncou-

pled. Note that in such set-up, whether the acquisitions are synchronous or asynchronous

is irrelevant since no initial information on sensors’ relationships are known.

UNCOUPLED ACQUISITION SET-UP WITH UNCALIBRATED 2D CAMERAS

We consider the case in which a scene is captured by a 3D sensor and a set of possibly

moving 2D cameras. All sensors, whether 2D or 3D, are uncoupled. Observe that if one

manages to register a 2D image and the 3D scene, then the intrinsic parameters of the 2D

camera at hand can be recovered. This is very much as if the 2D camera was calibrated

using a known calibration pattern. This observation indicates that it may not be necessary

to use internally calibrated 2D cameras after all in order to register 2D and 3D data.

Doing without internal calibration certainly provides an additional unprecedented level
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of flexibility and freedom as the cameras are allowed to vary their intrinsic parameters

through zooming and focusing to capture better quality images.

When cameras undergo changes in their intrinsic parameters, the registration between 2D

images and 3D data faces extra challenges. Local refinement methods such as Bundle

Adjustment (BA) may correct these changes provided these are small. However, there

is no indication whatsoever in the set-up under consideration that changes in the inter-

nal calibration of any camera ought to be small. There remains the improbable option

of a pattern-based re-calibration of the cameras which is clearly impractical along with

that of camera autocalibration that, due to numerous critical motions rendering such task

inapplicable, cannot unfortunately be relied upon. The registration problem we address

in this thesis is that of uncoupled 2D cameras and 3D sensors with altogether unknown

internal calibration of all 2D cameras. Again, whether the sensors are synchronous or

asynchronous has no relevance in this case.

1.3/ CONTRIBUTIONS

In this thesis, several contributions related to all three aforementioned acquisition set-

ups are proposed. These contributions appeared in [1, 2, 3, 4, 5, 6]. In the following, we

provide a brief summary of contributions for each of the three cases separately.

FULLY CALIBRATED COUPLED ACQUISITION SET-UP

In the case of an asynchronous fully calibrated coupled acquisition set-up, we propose

a joint synchronization and motion refinement framework based on alternating minimi-

zation. The synchronization part uses the coupled set-up’s known rigid transformation

relating 2D and 3D sensors for initialization whereas the motion parameters are initialized

using up to scale rigid motion computed from 2D-to-2D correspondences across images.

The proposed method does not require an accurate set of 2D-to-3D correspondences,

handles occlusions, and works for partially known scenes. It goes without saying that if

the data are already synchronized (or acquired by a synchronized setup), our method

refines only the motion parameters. In such cases, initialization of motion parameters is

obtained from approximate 2D-to-3D correspondences. Our contributions with regard to
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this acquisition set-up have been published as follows :

— our work dealing with a synchronous acquisition set-up was published in [1] :

Danda Pani Paudel, Cédric Demonceaux, Adlane Habed, Pascal Vasseur, and

In So Kweon. 2d-3d camera fusion for visual odometry in outdoor environments.

In the Porceedings IEEE/RSJ International Conference on Intelligent Robots and

Systems (IROS 2014), pages 157-162. IEEE, 2014 (∼ 45% acceptance rate) ;

— the case of an asynchronous acquisition set-up was reported in our papers [2, 3] :

• Danda Pani Paudel, Cédric Demonceaux, Adlane Habed, and Pascal Vasseur.

Estimation de la pose d’une caméra dans un environnement connu à partir

d’un recalage 2D-3D. In Reconnaissance de Formes et Intelligence Artificielle

(RFIA). 2014.

• Danda Pani Paudel, Cédric Demonceaux, Adlane Habed, and Pascal Vasseur.

Localization of 2d cameras in a known environment using direct 2d-3d registra-

tion. In the Proceedings of the 22nd IAPR International Conference on Pattern

Recognition (IAPR ICPR 2014), pages 196-201. IEEE, 2014.

The paper was orally presented at the conference (∼ 15% acceptance rate for

oral papers).

UNCOUPLED ACQUISITION SET-UP WITH INTERNALLY CALIBRATED 2D CAMERAS

We propose a deterministic globally optimal method for registering a set of images and

associated 3D data under the assumption that the scene can be well-represented by

planes or planar patches. The planar segmentation assumption is particularly valid when

dealing with man-made environments, including (but not limited to) Manhattan World, ur-

ban and indoor scenes that are abundant with planes. This entails that the 3D point set is

sufficiently dense to be segmented efficiently and robustly into planes. We also assume

that sparse pixel correspondences across images are provided and reconstructed via a

Structure-from-Motion (SfM) approach up to an unknown scale using the internally cali-

brated cameras. In particular, the proposed method optimally aligns planes extracted from

the 3D point-set with the SfM-induced 3D points. We use a robust inlier set maximization

approach within a branch-and-bound framework to explore the registration parameters’

space. In this regard, our contribution is threefold : (a) a novel formulation of the point-to-

plane correspondence problem using polynomial sum-of-squares optimization theory ; (b)



8 CHAPITRE 1. INTRODUCTION

incorporating constraints that are specific to the problem (plane visibility, camera position,

etc.) so as to reduce the search space ; and (c) globally optimal point-to-plane inlier set

maximization with or without putative correspondences.

This work has been accepted for publication in - and oral presentation at - the IEEE/CVF

ICCV conference [4] :

— Danda Pani Paudel, Adlane Habed, Cédric Demonceaux, and Pascal Vasseur. Ro-

bust and optimal sum-of-squares-based point-to-plane registration of image sets

and structured scenes. In Proceedings of the IEEE Conference on Computer Vi-

sion (IEEE/CVF ICCV 2015), 2015.(∼ 3% acceptance rate for oral papers)

UNCOUPLED ACQUISITION SET-UP WITH UNCALIBRATED 2D CAMERAS

We also propose a method for the direct 2D-3D registration of a set of uncalibrated images

of a scene and the latter’s Euclidean 3D point-set. Our method assumes that an unknown

subset of Euclidean scene points have their projections detected and matched across

the images. The correspondences obtained from the image-based matching are used to

obtain a consistent set of camera matrices up to a projective ambiguity and expressed

in some arbitrarily chosen projective frame. For the sake of direct 2D-3D registration, we

propose a Linear Matrix Inequality (LMI) framework that facilitates the process of estima-

ting the projective homography relating the cameras’ projective frame and the Euclidean

scene coordinate frame. This process requires neither 2D-to-3D correspondences nor

explicit image-based reconstruction of the points. This LMI framework allows one to es-

tablish reconstruction-free putative correspondences between 2D matched points and a

3D volume represented by a convex polyhedron (a cuboid in all our experiments, also

referred to as a “Box”). Furthermore, an extra set of LMIs are also derived to check the

reconstruction-free so-called cheirality conditions.

Based on the proposed LMI framework, we develop two algorithms for 2D-3D registration

that employ a Branch-and-Prune(BnP) paradigm. In our first algorithm, all points detected

and matched across images are assumed to have a 3D counterpart in the 3D point could.

Branching is carried out in the scene’s space and the LMI conditions allow to associate

2D points to non-empty 3D boxes. This is done while taking the structure of the scene

into account. Our second algorithm is more concerned with robustness : it allows image
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points not to have counterparts in the 3D point cloud as well as mismatches across the

images. This algorithm branches on the homography parameters’ space and allows a pre-

defined fraction of 2D points to correspond to empty boxes in the scene. Both algorithms

provide the guarantee of convergence to a globally optimal solution under some mild

initial bounding conditions.

This work has been published in IEEE/CVF CVPR 2015 [5] and has been filed for US

patent [6] :

— Danda Pani Paudel, Adlane Habed, Cédric Demonceaux, and Pascal Vasseur.

LMI-based 2d-3d registration : From uncalibrated images to euclidean scene. In

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,

pages 4494-4502, 2015. (acceptance rate ∼ 28%)

— Danda Pani Paudel, Adlane Habed, Cédric Demonceaux, and Pascal Vasseur.

Vasseur. Method for free Registration of a Euclidean 3-Dimensional Scanned

Scene and Image Sets. US Provisional Patent, No 62/165,433, United States, May

22, 2015.

1.4/ ORGANIZATION

This thesis is divided into seven different chapters. Chapter 2 introduces the geometric

concepts and existing 2D-3D registration approaches. In Chapter 3, we discuss the local

and global optimization techniques. This chapter also provides different tools that we use

to devise our registration methods. The registration methods for fully calibrated coupled

acquisition set-ups have been proposed in Chapter 4. Similarly, the registration methods

for acquisition set-ups with internally calibrated and uncalibrated 2D cameras are propo-

sed in Chapter 5 and Chapter 6, respectively. Finally, Chapter 7 concludes our work, and

also summarizes its future prospective.





2

THE GEOMETRY OF IMAGE SETS AND

3D SCENES

“There is no royal road to geometry.”

- Euclid, 325 BC – 265 BC

This chapter introduces the basic notations and the geometric concepts that are neces-

sary to both understand and reproduce this thesis’ contributions. In addition to an over-

view of the geometry of single and multiple cameras, we derive the relationships between

a 3D scene and 2D images for asynchronous, uncoupled, and uncalibrated camera set-

ups. In this context, we discuss the classical approaches from the literature for solving the

2D-3D registration problem.

2.1/ 3D AND 2D ACQUISITIONS

Acquiring object’s shape and texture using optical devices has for long been a major

topic of interest for accurate data representation, reasoning, and communication. Inven-

tions that allowed one to successfully capture objects’ surface and structure date back to

as early as the beginning of Photography. The first known method is traced back to the

1860’s decade when François Willème (1830-1905) used a process for producing portrait

sculptures using 24 synchronized photo projections to create photo-sculptures. So much

has happened since then to now. Indeed, the sensational and steady progress in various

fields of science and technology (electronics, photonics, optics, computer vision, compu-

ter graphics) has enabled the emergence of reliable high resolution 3D sensors. These

11
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sensors can be broadly categorized in to two categories discussed below ; namely, active

and passive sensors.

2.1.1/ ACTIVE SENSING

Active optical 3D sensors use external projecting devices that emit light patterns targe-

ting the object of interest. The reflection of each pattern on the object’s surface back onto

a camera is measured and converted into the 3D location. This conversion can be car-

ried out in many ways depending upon the type of sensor used. Based on their working

principles, there are mainly two types of active sensors : (a) structured-light and (b) time-

of-flight. The active sensors are called active because they capture the 3D information

using their own light source rather than the ambient lighting.

Structured-light based sensors project bi-dimensional patterns to estimate the dense

depth information of the object surface points. Depending upon the application, the pro-

jected patterns can be of single or multiple frames. The main role of the projected patterns

is to establish correspondences between the known pattern and camera measurements

in a relatively easy manner. Note that the location of the camera measurements varies

according to the surface structure. This variation encodes the scene depth information,

which can be recovered using a triangulation diagram similar to the one discussed in

Section 2.3 – as the geometry of the structured-light system remains equivalent to that

of a par of 2D cameras. As far as the projection patterns are concerned, a large number

of strategies have been developed in the literature. The most popular patterns include

grids [7], dots [8], multiple slits with cuts [9] and colored patterns [10]. However, the fringe

patterns [11, 12] are considered to be the most suitable for maximum reconstruction den-

sity. More detailed information regarding structured light for 3D surface imaging can be

found in [13].

Time-of-flight cameras consist of emitter and receiver units. The emitter unit generates a

laser pulse that impinges on the targeted object surface. The reflected laser pulse is then

detected by the receiver unit along with the roundtrip travel time from transmitter to the

receiver. This round-trip travel time provides the 3D position of the object surface point

using the speed of light and the ray projection angle. Time-of-flight cameras in principle

perform point-to-point reconstruction. However, multi-sensor arrangements allow to cover
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large bi-dimensional scenes as well. These cameras can cover large distances and also

provide accurate depth estimation though the coverage is limited by the allowed laser

power. Additionally, time-of-flight cameras are rather costly and face scanning difficul-

ties with surfaces exhibiting certain reflective, gloss or color properties. To improve the

sensitivity and accuracy, both amplitude and frequency modulated strategies have been

adopted in [14, 15] for close range distance measurements.

Other active sensing technologies include interferometry, laser triangulation, Moiré fringe

range contours, etc. A detailed study about existing active as well passive sensors can

be found in [16]. Some of the recent commercial systems use active sensing to capture

dense 3D along with its texture information, also known as RGB-D cameras. One example

of such cameras include the know well-established and known Microsoft Kinect sensor.

2.1.2/ PASSIVE SENSING

Passive cameras use the ambient light source to capture 3D measurements from the

scene. This includes shape from focus, texture gradient based reconstruction, stereo or

monocular structure from motion. Most of these methods use 2D cameras as a sensing

device as these are allow capturing high-quality details. Most common methods, namely

stereo vision and monocular or multiple-view structure from motion, recover depth infor-

mation from two or multiple such projections using the concept of image parallax. In the

case of a stereo camera pair, the image parallax is generated due to their positioning. Ho-

wever, monocular cameras must go under motion to generate the parallax. This approach

is referred to as Structure-from-Motion (SfM). In recent days, the SfM-based techniques

are very popular because they offer a simple, inexpensive, and accurate solution. Additio-

nally, it allows us to reconstruct large scenes by moving the cameras covering the whole

scene or using acquisitions from many cameras [17].

The high quality images acquired from 2D cameras are due to a combined technological

progress in both optics and CCD or CMOS sensors. These advanced sensors allow us

to capture high-quality texture information, therefore making them suitable for parallax-

based scene reconstruction. Nowadays, these cameras are very popular and widespread

as they are affordable and reliable. The reconstruction from 2D cameras has recently

become even more appealing as an unprecedented amount of data are being collected
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and made accessible by common users from all over the world every day.

Although their exists varieties of acquisition models for 2D cameras, some have limited

usage scope for professionals (fisheye, panoramic, etc.). The principle of image formation

for most off-the-shelf consumer camera follows, to a large extent, the so-called pinhole

or perspective camera model. In the following sections, we discuss the geometry of the

image formation and image to scene registration for the perspective camera model.

2.2/ PERSPECTIVE CAMERA MODEL

We consider a static scene represented by Euclidean 3D point coordinates expressed in

a common arbitrary world coordinate frame O, acquired using either offline 3D acquisition

systems or online one or multiple 3D cameras. In the case of online 3D acquisitions, we

assume, without loss of generality, that the scene and first 3D camera coordinate frames

coincide.

A perspective 2D camera P, with intrinsic camera matrix K, captures an image of the

scene points as shown in Figure 2.1. The position of the camera in world coordinate

frame is defined by a 3-space rotation matrix R and a translation vector t. The camera

coordinate frame is attached to a special point C, also known as camera center. If C is the

homogeneous coordinate vector of C and P is the 3 × 4 camera matrix representation of

camera P, then C is the null vector of P such that PC = 0 is satisfied. In the world frame,

the coordinates of the camera center are given by C = −RTt. Without loss of generality , we

assume that the image coordinate frame is attached to a special point p, also known as

principal point representing the projection of the camera center C onto the image plane I.

Note that, the matrix K encodes, among other parameters, the location of p. For unknown

K, the location of p is also unknown. If Y and X are the homogeneous coordinate vectors

of a scene point Y and its representation X in camera frame C, the relationship between

them is given by X =

 R t

0T 1

 Y. Hence, the projection of Y in image coordinates can be

expressed as

x ∼ K[R|t]Y, (2.1)

where, x is the homogeneous coordinate vector of the 2D image point x and ‘ ∼′ refers to

the equality up to an unknown scale factor. The camera P is represented by its projection
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FIGURE 2.1 – Single view geometry.

matrix P = K[R|t]. The terms K and [R|t] are referred to as, respectively, the intrinsic and

extrinsic parameters of a camera.

Within the scope of the present thesis, the three acquisition set-ups introduced in Sec-

tion are now briefly discussed in the context of this camera model.

Fully calibrated coupled acquisition set-up : For jointly moving coordinate frames at-

tached to O and C, 2D-3D camera setups are called synchronous if the scene points and

images are acquired simultaneously in time such that the extrinsic parameters [R|t] are

preserved. On the contrary, asynchronous cameras fail to preserve their relative extrinsic

parameters coupling due to change in pose during acquisition time gap.

Uncoupled acquisition set-up with internally calibrated 2D cameras : When the ex-

trinsic parameters [R|t] between coordinate frames attached to O and C are unknown, the

2D and 3D cameras are considered to be uncoupled. This could happen mainly in two

different scenarios : (a) 2D image and 3D scene are captured independently, e.g. : online

2D and offline 3D acquisitions ; (b) even when the acquisitions are started with known

extrinsic parameters, allowing 2D and 3D cameras to have independent and unknown

motions leaves no guess opportunity on extrinsic parameters anymore.

Uncoupled acquisition set-up with internally calibrated 2D cameras : In general, ca-
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mera with unknown intrinsic matrix K is called an uncalibrated camera. However, in the

context of 2D-3D registration, we consider a camera to be uncalibrated if both extrinsic

[R|t] and intrinsic K parameters are unknown. In practice, the problem of unknown ex-

trinsic parameters appears to be similar to that of uncoupled cameras. Meanwhile, the

problem of unknown intrinsic parameters appears either because the available images

are captured by a camera with unknown or changing internal geometry during acquisi-

tions due to zooming and/or focusing.

2.3/ CALIBRATED GEOMETRY

A primary interest in 3D vision is to recover both scene structure and camera motion

using single or multiple moving cameras. Given point correspondences between at least

two 2D cameras and their intrinsic parameters, it is possible to recover both the motion

between cameras and the scene structure. In this context, we discuss the geometry for

reconstruction from two views as shown in Figure 2.2. Let x1 and x2 be corresponding

image feature points given in camera coordinate frames attached to C1 and C2 respecti-

vely. If [R12|t12] is the motion from C1 to C2, the special points e1 and e2 are called epipoles.

The epipole e1 and e2 are the projections of C2 on I1 and C1 on I2 respectively. From the

projection model Equation (2.1), the coordinate vectors of the epipoles in their respective

camera frames can be expressed as e1 ∼ t21 and e2 ∼ RT
21t21.

2.3.1/ EPIPOLAR GEOMETRY

The two-view imaging model is based on the fact that, given a point in one image, its

corresponding point in another image must lie in a one-dimensional space known as epi-

polar line. Every epipolar line intersects in the epipole. This is shown in Figure 2.2, where

x2 (the point corresponding to x1) lies on the epipolar line l2 that also passes through the

epipole e2. This happens because the camera centers, epipoles, image points, together

with the observed 3D point X, lie on the same plane such that back-projected rays from

image points intersect in 3-space. Since the line l2 must contain e2 and x2, l2 must also lie

on the epipolar plane defined by C1, C2, and X. It is straightforward to express the normal

vector of the epipolar plane as [t21]×R21x1. The symbol [.]× denotes a skew-symmetric

matrix constructed from its vector argument and representing the cross-product between
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FIGURE 2.2 – Two view geromety.

vectors as a linear operation. Considering, without loss of generality, the reference frame

attached to C1, the vector emanating from C1 and heading to x1 and the epipolar plane

normal must be orthogonal to one another. In such case, their inner product must vanish

giving rise to the so-called epipolar relationship between the corresponding points x1 and

x2 as follows :

x2
T [t21]×R21︸     ︷︷     ︸

E21

x1 = 0. (2.2)

The matrix E21 is also known as the Essential matrix. By construction, the Essential ma-

trix is of rank 2. Geometrically, this degeneracy brings non-unique mapping of a point,

i.e. point in one image being mapped to its corresponding epipolar line in another. In fact,

the vector [t21]×R21x1 is the homogeneous representation of the epipolar line l2. In other

words, the coordinates of the epipolar line can be safely expressed as : l2 = E21x1. The

essential matrix has five degrees of freedom – three from the rotation matrix and two

from the translation vector. Therefore, it can be estimated from at least five point cor-

respondences, as every pair of correspondences provides one equation of the form of

Equation (2.2). Then, the rotation and translation can be recovered by direct decomposi-

tion of the Essential matrix. The estimation and decomposition of Essential matrix are out

of the scope of this work. The reader may refer [18] for more information on its estimation.

The entries of E21 can be estimated only up to an unknown scale factor using Equa-
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tion (2.2). In other words, if any matrix Ê21 satisfies Equation (2.2), the solution δÊ21 is

equally valid for every scalar δ. This eventually prohibits us from recovering the transla-

tion’s scale. In fact, by the virtue of rotation matrix, the rotation matrix can be recovered

uniquely from a finite possible solution by exploiting its orthogonality along with point visi-

bility conditions. However, the exact scale associated with the translation vector can never

be known unless extra information are fed into the problem. In this context, the extra in-

formation of scale is always necessary for its unique recovery. Therefore, the translation

vector is usually computed with a unit norm hence losing the true scale of the scene.

2.3.2/ TRIANGULATION

Once the rotation and translation are recovered, the scene structure can be reconstructed

by back-projecting image points to 3D-space. The 3D point X can be recovered by solving

two sets of linear equations in X, each set representing a ray passing through an image

point and one of the camera center. If these two rays do not intersect, the optimal X

is obtained by searching for a point that minimizes the projection error in both images.

Various triangulation methods can be found in [19]. In fact, the ray back-projection is

performed in a fixed coordinate frame, usually attached to one of the cameras. Therefore,

the obtained reconstruction is often represented in (or with respect to) camera coordinate

frame.

It is important to notice that the scale associated with translation vector is arbitrarily cho-

sen, allowing the camera centers to move along the translation vector. More specifically,

for a different scale factor and fixed C1, C2 can move anywhere along the vector contai-

ning C1 and e1. This means that the back-projected ray containing C2 and x2 can slide

over the ray containing C1 and x1 resulting in a different X for every scale factor. There-

fore, the scale of the reconstruction depends upon the scale of the translation vector. If

this reconstruction is compared against the scene represented in the world coordinate

frame, neither the reconstruction scale nor the rotation and translation (between world to

camera) is known. If α is the unknown scale factor, the scene and reconstructed points

can be related as follows :
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FIGURE 2.3 – An image illustrating the loss in scale information. It is impossible to tell
whether this an image of a real or a toy car. (source : www.123hdwallpapers.com)

X =

 1
αR 1

α t

0T 1

︸     ︷︷     ︸
HM

Y. (2.3)

The transformation defined by HM in Equation (2.3) is called a “similarity transform”. HM is

also known as a metric homography matrix. It goes without saying that the image-based

reconstruction differs from the true Euclidean scene by a metric ambiguity. Intuitively, the

reason behind this can be interpreted in two aspects : (i) loss in camera absolute pose

[R|t] due to unknown world coordinate frame ; (ii) loss of scale information due to camera

projection model. More informally, images of two different scales of the same object may

look exactly the same. For example, as shown in Figure 2.3, a real car and a toy car can

have exact same images, making it impossible to differentiate them.

2.4/ UNCALIBTRAED GEOMETRY

This section introduces the epipolar and multiple view geometry for uncalibrated came-

ras. Our interest focuses on obtaining the (projective) camera matrices of uncalibrated
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cameras and discussing some related concepts. In particular, we will also discuss about

methods that provide bounds on the plane at infinity, a key ingredient for upgrading a

projective structure and in the contributions we detail in the subsequent chapters.

2.4.1/ TWO-VIEW RELATIONSHIP

When the cameras are not calibrated, the feature points can be measured only in the

image coordinate frame. Hence, the measured coordinates of points x1 and x2 are given

(in pixels) by K1x1 and K2x2, respectively. The relationship between these two measure-

ments can be established using Equation (2.2) in the following form :

(K2x2)T K−T
2 [t21]×R21K−1

1︸               ︷︷               ︸
F21

K1x1 = 0. (2.4)

The matrix F21 is also known as the Fundamental matrix. Similar to the Essential matrix,

the Fundamental matrix is, by construction, of rank 2. Geometrically, the fundamental

matrix establishes exactly the same relationship as the Essential matrix, but only in a

different measurement system – the image coordinate frames. In fact, it is straightforward

to express the relationship between Fundamental and Essential matrices in the following

form :

E21 = KT
2 F21K1. (2.5)

2.4.2/ MULTIPLE VIEW RECONSTRUCTION

The Fundamental matrix encapsulates all the necessary (projective) geometric relation-

ships for the two-view imaging model. However, when more than two views are involved,

more sophisticated relationships (analogous to the Fundamental matrix), involving mea-

surements from all the views, are required. These relationships are known as N-view

multilinear tensors such as the trifocal tensor for three views and the quadrifocal tensor

for four.

Although N-view tensors successfully encapsulate the geometric relationships upto 4

views, their usage is limited due to their computational complexities. Therefore, a common
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practice of incorporating measurements from multiple views involves the projective fac-

torization method. The process of projective factorization takes 2D point measurements

from multiple views and decomposes it into a scene structure and camera matrices that

are consistent with this structure.

PROJECTIVE FACTORIZATION

Consider 3D points {X j}
m
j=1 observed by cameras {Pi}ni=1. The observed image points are

given by {xi
j}. For given point correspondences {x1

j ↔ xi
j}

n
i=1 across images I1,I2, . . . ,In,

the reconstruction task is to find 3D point coordinates X j and camera matrices Pi such

that

xi
j ∼ PiX j, for all i and j. (2.6)

If we write this equation explicitly by introducing scale variables (or Projective depth), we

have, λi
jx

i
j = PiX j. Provided that the points are visible in all views (i.e. xi

j is known for all i

and j), the complete set of equations may be written by stacking the vectors and matrices

in the following form



λ1
1x1

1 λ1
2x1

2 . . . λ1
mx1

m

λ2
1x2

1 λ2
2x2

2 . . . λ2
mx2

m
...

...
. . .

...

λn
1xn

1 λi
jx

n
2 . . . λn

mxn
m


=



P1

P2

...

Pn


[
X1 X2 . . . Xm

]
. (2.7)

Note that the matrix on the left-hand side is known as the measurement matrix, say M.

By construction, the matrix M is of rank 4. This equation involves the scale variables λi
j,

which are not part of the measurement, for each measured point xi
j. Furthermore, note

that the decomposition on the right-hand side of the above equality is not unique. To see

this, observe that with any non-singular 4 × 4 matrix H, we have that xi
j ∼ PiH−1HX j is

also satisfied. Such reconstruction {Pi, X j} is a projective reconstruction and the matrix

H is called a projective homography matrix. There are several approaches that allow

decomposing the measurement matrix M in the form of Equation (2.7).

Sturm/Triggs Factorization : The first solution was proposed by Sturm and Triggs [20]
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where the initial estimate of projective depths λi
j is assumed to be known. This may be

obtained either from initial Projective reconstruction (for example, using fundamental ma-

trix) or simply setting all λi
j = 1. Once the Projective depths are known, the measurement

matrix M is complete. In case of noisy measurements, the M can be enforced to have

rank 4 using Singular Value Decomposition. Thus, if M = UDVT , all except the largest four

diagonal entries of D are forced to zero resulting in D̂. Then, the rank constrained mea-

surement matrix is M = UD̂VT . The camera matrices and the scene points are retrieved

from [
P1T P2T . . . PnT

]T
= UD̂ and

[
X1 X2 . . . Xm

]
= VT . (2.8)

CIESTA : Oliensis and Hartley [21] have shown that the Sturm/Triggs Factorization me-

thod (or its variants) can converge to trivial false solution, if constraints on the projective

depths are not imposed. Especially when the measurement matrix is built using noisy

measurements, they showed that the Sturm/Triggs Factorization method may converge

to a wrong solution or exhibit undesirable convergence behavior. To overcome this pro-

blem, CIESTA minimizes a regularized target objective

min
Λ, rank(Z)≤4

||M(Λ) − Z||2f ro

||M(Λ)||2f ro

+ µ

n∑
i=1

m∑
j=1

||xi
j||

2(1 − λi
j)

2, (2.9)

where, µ > 0 is the regularization constant. The operation ||.|| f ro stands for Frobenius

norm and the symbol Λ is a n × m matrix with λi
j entries. The optimization problem of

Equation (2.9) is solved by alternately minimizing the error with respect Z and Λ. The first

term of the error aims to estimate the closest rank-4 matrix Z to the measurement matrix M

(as a function of unknown protective depths). However, the regularization term favors the

projective depths that are close to 1. Hence, although CIESTA has proof for convergence,

its solution, whether globally or locally optimal, does not necessarily converge to the

correct solution even in the absence of noise. In practice, however, this problem is not

very critical. CIESTA behaves very well in the presence of noise. One major disadvantage

of using CIESTA is that it cannot handle the case of missing data, at least in its original

form.

Element-wise Factorization : Dai et. al. [22] recast the problem of projective factoriza-

tion as semi-definite programming one by relaxing the original problem. The offered so-

lution is globally optimal up to some relaxation gap. This method estimates the projective
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depths by minimizing the rank of the measurement matrix M. In this case, the measure-

ment matrix is represented by the depth matrix Λ and a matrix W (constructed only from

the image points) such that M = Λ � W is satisfied. Here, � denotes the element-wise

matrix multiplication. More formally, the element-wise factorization methods attempts to

solve the following problem :

min
Λ

rank(M(Λ))

subject to M(Λ) = Λ �W,
n∑
i
λi

j = n, for j = 1, . . . ,m,
m∑
j
λi

j = m, for i = 1, . . . , n,

λi
j > 0, for all i, j.

(2.10)

This problem is solved using semi-definite programming after converting it to a relaxed

dual problem by minimizing the nuclear norm of the measurement matrix rather than

is rank. Similar to Sturm/Triggs factorization method, the final projective reconstruction

is obtained by decomposing the optimal matrix M(Λ∗). A variant of this method can also

handle missing data and outliers. Although the variant behaves well for low levels of noise

and few outliers, it is very sensitive to moderate and higher levels of noise, outliers, and

missing data.

Other methods for projective reconstruction use unit row norm [23] or unit column

norm [24] constraints. Some methods also fix row and column norms [25], row and co-

lumn elements [26], or row and column sums [22]. A comparative discussion about these

methods can be found in [27].

GEOMETRIC INTERPRETATION

A projective reconstruction does not preserve the aspect ratio, angle, and parallelism

of the scene due to the lack of knowledge of cameras’ intrinsic parameters. Figure 2.4

shows the imaging model for the two-view case, where as Figure 2.5 illustrates the

geometry of the projective reconstruction (the two images have been made available

at http://www.robots.ox.ac.uk/). In fact, for some homography matrix H, the recons-

truction {HX j}
n
j=1 and the projection matrices {PiH−1}mi=1 represent their Euclidean counter-

parts, say {XE
j }

n
j=1 and {Pi

E}
m
i=1 respectively. Let HE be the homography matrix that relates
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the projective reconstruction to the Euclidean scene. Figure 2.6 shows the relationship

established by this homography matrix. Furthermore, as per the definition of HE, the fol-

lowing must be satisfied

Pi
E ∼ PiH−1

E and XE
j ∼ HEX j for all i and j. (2.11)

C1
C2

FIGURE 2.4 – Two-view imaging.

C1
C2

FIGURE 2.5 – Projective reconstruction.

HE

FIGURE 2.6 – Homography relating a projective reconstruction to the Euclidean scene.
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2.4.3/ PROJECTIVE-EUCLIDEAN RELATIONSHIP

We are interested in deriving the analytical expression for HE such that the criteria defined

in Equation (2.11) are satisfied. For simplicity and without loss of generality, we assume

that the coordinate frame of the first camera in the projective space coincides with the

world frame such that P1 = [I | 0], where I is a 3 × 3 identity matrix. Similarly, recall that

Equation (2.1), the projection matrix of the first camera in the Euclidean space, is given

by P1
E = K1[R1 | t1]. Using Equation (2.11), one can establish the following relationship :

K1[R1 | t1] ∼ [I | 0]H−1
E . (2.12)

For simplicity, we consider that the inverse of the homography matrix has the form

H−1
E =

 A b

cT d

 . (2.13)

From Equations (2.12) and (2.13), it is straightforward to establish the following relation-

ships :

A ∼ K1R1 and b ∼ K1t1. (2.14)

However, the expressions for c and d require extra-knowledge.

One of the most distinctive properties of a projective reconstruction can be described with

the help of parallel lines. In the general case, it fails to preserve parallelism. In other words,

the parallel lines in the scene do not remain parallel in the projective reconstruction. All

the parallel lines meet at a point, the so-called ideal point. Figure (2.7) shows three sets of

parallel lines meeting at their respective ideal points. The plane that passes through all the

ideal points is called the plane at infinity, say Π∞. In fact, HE establishes the relationship

Π∞

Ideal points

FIGURE 2.7 – Projective reconstruction showing the plane at infinity and ideal points.
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between Π∞ and the canonical plane at infinity with the help of point-to-plane duality.

Definition 1 : Projective transformation of points and planes

Consider a homogeneous vector Π = (πT 1)T representing the coordinates of the

plane Π. For a point Y that lies on the plane Π, ΠT Y = 0 must be satisfied. If Y

gets transformed via the 4 × 4 transformation matrix H such that Y → HY, the

plane must go under the transformation Π → H−TΠ such that (H−TΠ)T HY = 0 is

satisfied.

Let the coordinates of Π∞ be Π∞ = (πT
∞ 1)T . For the known coordinates of the canonical

plane at infinity ΠE
∞ = (0 0 0 1)T , with the help of Equation (2.11) and Definition 1 the

following relationship can be established :

ΠE
∞ ∼ H−T

E Π∞. (2.15)

Now, the terms c and d of Equation (2.13) can be expressed using Equations (2.15) and

(2.14) as follows :

c ∼ −ATπ∞ = −(K1R1)Tπ∞ and d ∼ 1 − bTπ∞ = 1 − πT
∞K1t1. (2.16)

Therefore, the homography matrix HE and its inverse are written as

HE ∼

 R1T K1−1
− R1T t1πT

∞ −R1T t1

πT
∞ 1

 and H−1
E ∼

 K1R1 K1t1

−πT
∞K1R1 1 − πT

∞K1t1

 . (2.17)

2.4.4/ CHEIRALITY

When a projective reconstruction is obtained using Equation (2.6), the constraint of a

camera seeing only in the front direction is ignored. In the general case, this allows the

reconstructed scene to split across the plane at infinity as demonstrated in Figure 2.8.

Correction of such reconstruction so that the split parts correctly stick together as one

object is extremely simple, if one neglects the corresponding correction for the cameras.

Note that the reconstruction obtained after such correction is also called “quasi-affine”

reconstruction.
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Π∞

FIGURE 2.8 – Projective reconstruction when the plane at infinity passes through scene.

Without loss of generality, we start from an assumption that all points {X j}
n
j=1 are visible in

all the cameras. Consider the corrected projection matrices and reconstructed points are

P̂i = ±Pi and X̂ j = ±X j, respectively. If we introduce the implied scalar constant ζ i
j explicitly

in the Equation (2.6), since all the points are visible in all the cameras, the following must

be true :

ζ i
jx

i
j = P̂iX̂ j, ζ i

j > 0, for all i and j. (2.18)

Note that we are interested in correcting the reconstruction so that the positive scalar

constants exist, rather than knowing their exact values. One can always perform this

correction, multiplying projection matrices and/or reconstructed points by −1, if necessary.

These multiplication factors are also called the signatures. To find all signatures, one can

first fix the signature of one of the cameras, say P̂1 = P1. Then, the signatures of all

the points can be chosen such that ζ1
j x

1
j = P̂1X̂ j, ζ1

j > 0, is satisfied. Once the point

signatures are obtained, the camera signatures can be easily obtained in a similar manner

using Equation (2.18). In what follows, we refer as a projective reconstruction the one

obtained after the sign correction. Furthermore, we will be using Pi for P̂i and X j for X̂ j,

unless mentioned otherwise.

QUASI-AFFINE UPGRADE

Now, we are interested in finding the homography H that transforms the projective re-

construction to a quasi-affine frame. Since only the relative camera orientations can be

measured in the projective space, it is in fact impossible to enforce the constraint of front-

seeing cameras for the quasi-affine upgrade. At best, one can enforce all cameras poin-
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ting towards or away from the scene. In this regard, we wish to simultaneously transform

cameras and points such that the plane at infinity passes through neither the scene points

nor the cameras centers. In other words, the plane at infinity must be transferred to a new

location. Doing so, is very straightforward, if the exact location of the plane at infinity is

known. However, finding the location of the plane at infinity in the projective reconstruc-

tion is, at best in the absence of scene knowledge and under some favorable conditions,

a challenging non-linear problem. Therefore, we seek a surrogate plane at infinity that

does not cut through the scene and cameras. For the sought plane, the following must be

true

(ΠT
∞X j)(ΠT

∞Ci)δ > 0, for all i and j. (2.19)

where δ is the sign of the determinant of homography matrix H. Since we are free to

multiply Π∞ by −1 if necessary, one can assume that ΠT
∞C1 > 0 for the center C1 of the

camera P1. Therefore, the following inequalities can be expressed easily :

δΠT
∞Ci > 0, for all i

ΠT
∞X j > 0, for all j. (2.20)

The Equations (2.20) are also called “cheiral inequalities”. The existence of a feasible

Π∞ satisfying these inequalities is a necessary condition to upgrade the reconstruction

from projective to Euclidean (or more specifically a quasi-affine). In practice, the value of

δ is not known in prior. Therefore, it is necessary to seek the solution for both δ = ±1. If

the solutions exist for both cases, two oppositely-oriented reconstruction realizations are

possible.

Any feasible solution of Equations (2.20), say Π̃∞, is a surrogate plane at infinity. As soon

as Π̃∞ is a solution, so is αΠ̃∞ for any positive α. Therefore, the addition constraints may be

added to bound the solution space. If Π∞ = (π1, π2, π3, π4)T , then inequalities −1 < πk < 1

for k = 1, 2, . . . , 4, are sufficient for bounding the solution space as a polyhedron. While

searching for a unique solution, it is a good idea to look for the farthest possible plane from

all the point and cameras (as the real plane at infinity obeys this property in affine space).
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To do so, we introduce a new variable, say d. Then, the quasi-affine plane at infinity Π̃∞ is

obtained by solving the following optimization problem using Linear Programming.

max
Π∞

d

subject to δΠT
∞Ci > d, for all i,

ΠT
∞X j > d, for all j,

1 > πk > −1, for all k.

(2.21)

Once the quasi-affine plane at infinity is recovered, one can choose the desired transfor-

mation matrix H such that its last row is Π̃T
∞, and the sign of its determinant is same as

that of δ. In fact, the first three rows of H can be chosen to have a simple form of ±[I | 0].

One instance of a quasi-affine reconstruction obtained after such upgrade is shown in

Figure 2.9. It shows the sign corrected scene points and the cameras before the upgrade,

together with estimated quasi-affine plane at infinity.

Π∞ Π̃∞

FIGURE 2.9 – An instance of the quasi-affine upgrade.

BOUNDING THE PLANE AT INFINITY

One may often be interested in finding the bounds of plane at infinity. To do so efficiently,

the origin of reconstruction is first moved at the centroid (or at least inside the convex hull

of scene points) of the reconstructed scene. As the plane at infinity cannot pass through

the origin anymore (otherwise, it will cross the convex hull of reconstruction), we can sa-

fely fix the last entry of plane at infinity to one, such that Π∞ = (π1, π2, π3, 1)T . Note that

unlike the problem of Equation (2.21), the entries πk must not be bounded in this case.
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Then, the bounds on the entries of Π∞ can be obtained by solving the following optimi-

zation problem six times (twice for each entry, one to minimize and another to maximize)

using Linear Programming

min/max
Π∞

πk for k = 1, 2, 3,

subject to δΠT
∞Ci > 0, for all i,

ΠT
∞X j > 0, for all j.

(2.22)

ROBUST CHEIRALITY

A robust algorithm for quasi-affine upgrade was first proposed by Nistér [28] where he

argues that the upgrade process using all scene points, as in [29], is very sensitive to mis-

matched points. Rather than using both scene points and cameras, Nistér suggests to use

only the camera centers – so called quasi-affine with respect to the cameras (QUARC).

Although, QUARC preserves the convex hull of only the cameras, which is weaker than

simultaneously preserving the separate convex hulls of both points and cameras, it is

very robust because the cameras are computed from many points with robust algorithms.

In contrast, relying on the correctness on every single reconstructed point is not recom-

mended, due higher chances of incorrect point reconstruction. More importantly, if any

point does not satisfy the constraint of Equation (2.20), the problem of Equation (2.21)

becomes infeasible.

The QUARC method first corrects the sign of cameras such that the majority of points lie

one side. This is carried out by multiplying each camera Pi by ηi defined for i = 2, 3, . . . , n,

as

ηi = sgn[
1
2

+

m∑
j=1

sgn{(PiX j)3(Pi−1X j)3}], (2.23)

where the operation (.)3 selects the third entry of the vector. Then, the quasi-affine plane

at infinity is obtained by solving the following optimization problem

max
Π∞

d

subject to ΠT
∞C
|Ci |

i
> d, for all i,

1 > πk > −1, for all k.

(2.24)
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2.5/ 2D AND 3D REGISTRATION METHODS

The problem of 2D and 3D registration appears in several contexts, including scene mode-

ling [30], robotics [31], medical imaging [32], and virtual reality [33]. In these applications,

2D and 3D cameras need to be registered either (or both) to localize the cameras or

fuse 2D and 3D information. Usually, camera localization is the major interest for robotics

and virtual reality applications, whereas scene modeling and medical imaging attempt to

benefit form both modalities. Nevertheless, the existing registration methods may vary

largely depending upon the quality of 2D-3D measurements and their adequacy. Here,

we discuss how common techniques handle the various scenarios.

2.5.1/ SINGLE IMAGE REGISTRATION

Single image based registration aims to estimate the absolute pose of a 2D camera in the

3D scene (equivalently, 3D camera with respect to 2D ). A generalized 2D-3D absolute

pose problem aims to estimate the location of the camera such that the mapping of 2D

and 3D measurements are respected. These mappings can be geometric features, scene

and image intensities, or higher level information. If Z j and z j are corresponding 3D and

2D measurements respectively, whose mapping is given by as function Φ, the objective

of single image registration problem is to find the camera matrix P such that :

find P,

subject to z j = Φ(P,Z j), for all j.
(2.25)

Feature-based registration : One of the oldest paper considering this problem dates

back to 1841 by Grunert [34]. However, a commonly used 2D-3D registration method

method, also known as Direct Linear Transformation (DLT), was proposed by Aziz et

Karara [35] which solves the perspective-n-point problem to register a 2D image to the

3D scene or vice versa. This method minimizes an algebraic error using a simplified

camera model. The algebraic error minimization is performed using a linear least square

method, where a system of linear equations is constructed from multiple matched feature

points between the image and the scene. The perspective-n-point problem attempts to

recover the absolute pose of the camera, from where the image is captured.
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The first analytical solution to the absolute pose problem was proposed by Horaud et

al. [36] by solving the Prespective-4-Point (P4P) problem. This method offers the solution

by replacing the four points with a pencil of three lines, while exploring the geometric

constraints available with the perspective camera model. The final solution of P4P pro-

blem is obtained by casting it into a biquadratic polynomial equation in one unknown.

However, the minimal absolute pose problem was solved by Haralick and Lee [37] by de-

signing it as the prespective-3-point (P3P) problem. The extension and detailed analysis

of P3P problem can be found in [38, 39]. More recent fast and robust 2D-3D registration

based on point correspondences can be found in [40, 41, 42]. Furthermore, a similar me-

thod for uncalibrated cameras was proposed in [43] using 4 or 5 point correspondences.

As the above mention methods rely upon the feature point correspondences between 2D

images and 3D scene, they are also called feature based registration methods. However,

the category of features are not limited only to points. Many geometric features such as

lines [44], colinear points [45], spheres [46], cylinder [47], and hybrid features [48], are

also used to register an image to the scene. For feature based registration methods, the

registration parameters (or the camera pose) are obtained using geometric relationships

between the matched features.

Feature based method are widely used for many computer vision applications such as

scene modeling and camera localization. In this context, Yang et al. [49] estimate the lo-

cation of a camera with respect to a 3d model using SIFT feature descriptors [50]. Liu

et al. [30] have used building bounding boxes represented by lines for the photo-realistic

rendering of laser acquired 3D models. A fast version of feature matching methods, for

feature descriptors known both in 2D and 3D, is proposed in [51]. Feature based methods

require the 3D scene along with the 2D as well as 3D representation invariant feature des-

criptors so that a set of putative correspondences could be established. The registration

process is performed using these putative correspondences, which is usually supported

by Random consensus maximization (RANSAC) [52] based methods.

Intensity-based registration : An image can also be registered to the scene using the

information of raw intensity [53], intensity gradient [54], or their hybrid [55]. In contrast to

the feature-based registration, these methods solely depend upon the information contai-

ned all 3D points and 2D pixels. The points that coincide to pixels are considered to be

correspondences, and the registration is performed by computing the pixelwise similarity
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measure. A major breakthrough in this category proposed by Viola et al. [56] aligns a 2D

image with respect to the 3D model by maximizing the mutual information between them.

In fact, starting from a good initialization on the registration parameters, these methods

in practice result into highly accurate registrations.

Advanced parameterization-based registration : Other single image based methods

use more complex parameterizations such as skyline detection [57] and scene segmen-

tation [58]. The registration tasks have also been addressed using the image edges [59],

active contour [60] and polyhedral-silhouette [61] models, in the context of object tra-

cking. More recently, complete 3D model specific registration methods (not necessarily

for rigid motion) have also been proposed [62, 63, 64] for the object detection, recognition,

and reconstruction.

2.5.2/ IMAGE-SET REGISTRATION

When a set of images acquired from different viewpoints are registered using single image

registration methods, each image is treated individually. Doing so, introduces two major

problems : (i) for local methods, each image requires its own initialization ; many initia-

lizations make the problem more difficult, and (ii) registered images may fail to satisfy

the multiview geometric constraints (such as the epipolar constraint in two images). Fur-

thermore, methods relying on higher level features, such as lines, and building bounding

boxes, are generally suitable for Manhattan World scenes (or the like) and hence appli-

cable only in such environments. Skylines-based methods are restricted to outdoor envi-

ronment. Methods relying on a predefined surface model are, likewise, have limited ap-

plicability. Therefore, the problem of registering an image set must be treated differently.

In literature, the image set to 3D scene registration problem is addressed two different

ways.

Direct vs. indirect registration methods : We refer as a direct registration method

when the registration process establishes the direct relationships between 2D and 3D

measurements. One example of direct method includes 2D and 3D feature matching

based registration. On the otherhand, registration methods that involve intermediate step,

such as the relationship between SfM induced reconstruction and the scene, are called

the indirect 2D-3D registration. The work flow for these two registration methods is shown
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in Figure 2.10. Based on the application suitability, direct and indirect methods perform

the registration to match the scene representing features of the complete geometry.

2D Images Reconstruction X 3D CamerasXE

3D-3D Registration

2D-3D Registration

FIGURE 2.10 – Direct and indirect 2D-3D registration pipeline. Methods that use 3D re-

construction in the process are called indirect methods. The method is direct, if direct 2D

and 3D relationshps are established.

FEATURE-BASED REGISTRATION

When 2D-to-2D as well as 2D-to-3D correspondences are known (or can be obtained),

the image set to 3D scene registration problem can be address in two steps : SfM-based

reconstruction and 3D-3D (reconstruction-to-scene) registration. It is trivial to obtain the

reconstruction from image correspondence for calibrated cameras. Then the registration

can be carried out by estimating the metric Homography between the reconstruction and

the scene as discussed in Section 2.3. This process can also be supported by RANSAC-

based method, in the presence of outliers. An efficient way of doing so has been proposed

in [65]. Basically, given m point correspondences X j ↔ Y j between reconstruction and the

scene, the registration process minimizes the following objective function

min
HM

m∑
j=1

d(X j,HMY j). (2.26)

Where HM is the metric Homography matrix as in Equation (2.3) and d(X,Y) represents

the distance between points X and Y. The success of feature-based single or multiple

image methods is often undermined by the absence of reliable 3D descriptors and their

lack of compatibility with 2D descriptors. They may also be undermined by the likewise

unreliable descriptors for certain image features such as lines. For example, intensity ba-

sed descriptors may change significantly if the illumination conditions differ during the
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2D and 3D acquisitions. To address the problem with intensity based feature descriptors,

Zheng et al.[66] represent spatial geometric features using local geodesic descriptors and

refined the final results by maximizing the mutual information [56]. The feature descriptors

extraction and matching to establish the feature correspondences was avoided with the

help of manual intervention to establish the coarse alignment in [67, 68]. Pintus et al.[67]

use Sparse Bundle Adjustment [69] (SBA) technique to refine their results, whereas, Neu-

gebauer and Klein [68] minimize a blend of objective functions of texture and geometric

information.

POINT-SETS-BASED REGISTRATION

When the feature correspondences are not known (or cannot be established), the image-

set and the 3D scene are usually registered using SfM-induced 3D points. Two point sets,

one from 3D cameras and another from SfM pipeline, are aligned using the appropriate

registration parameters. The point-sets-based methods aim to find registration parame-

ters and point correspondences simultaneously.

Most commonly used point-sets registration methods are iterative in nature. Each ite-

ration alternates between finding point correspondences and estimating the registration

parameters. While finding the correspondences, a point in one set is assigned to the clo-

sest point in another. Once the correspondences are known, the registration parameters

are then estimated by minimizing the cumulative distance between all the corresponding

points. If {Yk}
p
k=1 is the set of 3D points, the indirect registration method minimizes the

following objective (cost) function,

min
HM

m∑
j=1

min
k=1,2,...,p

d(X j,HMYk). (2.27)

Finding the global optimal solution of the problem in Equation (2.27) is very difficult. The-

refore, almost all the methods require a good initialization on the registration parameters

to find a satisfactory solution.

scaled-ICP /With initialization : Note that the registration parameters in Equation (2.3)

is encapsulated by the metric Homography matrix HM, as in Equation (2.3). Unlike the

classical Iterative Closest Point (ICP) methods [70], it also includes the scale parameter
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along with rotation and translation. The required extension of the ICP algorithm (conside-

ring the scale factor) has been proposed in [71, 72]. Zhao et al. [72] use sensor/GPS data

to align a video sequence onto the 3D scene. This is performed by estimating HM (using

ICP) between 3D data from laser scanner and the SfM reconstruction, obtained from the

video sequence. Given a good initialization, these methods work very well in practice,

however, their success is highly biased upon the registration parameters’ initialization.

Go-ICP /Without initialization : One of the very first (and only known to us) globally

optimal point-sets registration method was proposed by Yang et al. [73] (Go-ICP). Go-

ICP performs the registration on the same-scale point-sets by searching for the optimal

rigid transformation parameters. If R and t are the rotation matrix and translation vec-

tor, the sough registration parameters (of rigid body transformation), the Go-ICP method

minimizes the following objective function in a globally optimal manner.

min
R,t

m∑
j=1

min
k=1,2,...,p

||RYk + t − X j||
2. (2.28)

Note that since SfM reconstructions suffer from a scale ambiguity. Therefore, Go-ICP can

be used for image-set registration, only if the scale of the reconstruction is also known.

ALTERNATIVE METHODS

In the absence of feature correspondences, scale knowledge, and registration parame-

ters’ initialization, other methods of image-set registration appear in various flavors. In this

context, image photo-consistency property has been exploited to register two or multiple

images to the 3D surface model of the face in [74]. To address the unknown scale pro-

blem, Pham et al. [75] perform registration using mean-shift in the scale invariant space.

Similarly, the method proposed by Crosini et al. [76](RISAG) employs a RANSAC-based

inlier set maximization, in which the scale problem is handled by an extension of the

4-point congruent sets (4PCS) algorithm.

4PCS : The 4PCS algorithm was first used by Aiger et al. [77] to align pairs of same-

scale point-sets in arbitrary initial poses, under the RANSAC framework. The main idea

of 4PCS is to represent the target point-set by a set of 4 coplanar points, defining a

fixed number of quadruples, such that their approximately congruent quadruples (i.e. two
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FIGURE 2.11 – A set of four coplanar points with their intersection and ratios(left). Four
possible intersecting points, two for each assigments two assignments {a, b} and {c, d}.

quadruples differing under a rigid transformation) could be extensively searched in the

data point-set. For every candidate quadruple in the data, the potential transformations

is computed and then applied to the whole point-set. The final transformation parameters

are select among all the candidate transformation based on the maximum consensus of

the transformed points.

A set of four coplanar points (not all collinear), say a, b, c, and d from the target set as

shown Figure 2.11(left), define two independent ratios of three points including there

intersecting point e as follows

r1 =
||a − e||
||a − b||

and r2 =
||c − e||
||c − d||

. (2.29)

The ratios r1 and r2 are invariant that uniquely define four points upto affine transforma-

tions. Now given a pair of points, say q1 and q2 from the data (transformed space), two

possible intersecting points can be be computed as

e1 = q1 + r1(q2 − q1),

e2 = q1 + r1(q2 − q1) (2.30)

For any data point-pair, there can be two assignments corresponding to {a, b} and and

another two corresponding to {c, d} leading to four possible intersecting points, as shown

in Figure 2.11(right). If two pairs of data points have coinciding intersecting points (i.e. e1 ≈

e2), two sets of points (each set with four points), one from data and another from target,

are considered to be the potential corresponding point sets – also known as congruent

sets. For every pair of congruent sets, 4PCS computes the rigid transformation and counts
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the number of remaining points that respect the computed transformation. If any point

successfully finds it corresponding point for the given transformation, the point is called

inlier for the given transformation parameters. 4PCS algorithm aims to maximize the set

of inlier points using the RANSAC framework, were each iteration of RANSAC randomly

selects four coplanar points from the target point-set.

RISAG : Although the 4PCS relationships are invariant upto affine transformation, algo-

rithm Aiger et al. handles the points-sets only under the rigid transformation. The main

problem of applying it on scaled point-sets aeries due to the unbalanced number of qua-

druple sampling in source and target point-sets, because of the unknown scale. To over-

come sampling problem, Crosini et al., in [76], express the point cloud as a set of planar

regions and resample them using the object shape information. The object shape in-

formation is represented by a set of quasi planar regions using the Variational Shape

Approximation algorithm [78] followed by uniform resampling with respect their area.

CALIBRATED VS. UNCALIBRATED SETUPS

All the feature matching-free methods described above are designed and tested only for

the calibrated camera setups. Even most of the feature-based methods require the ca-

librated cameras. When the cameras are not calibrated, only the methods presented in

[43, 30, 67] are extensively tested for uncalibrated setups. It is needless to say that given

sufficient number of feature correspondences, most of the feature based methods can be

extended to uncalibrated case. However, correspondence-free 2D-3D registration has not

received enough attention until recently. Given a good initialization on registration para-

meters, it may not be very difficult to offer local methods that can handle the registration

for uncalibrated case. However, upto our knowledge, there does not exist any globally

optimal method (direct or indirect) which can register uncalibrated image sets to the 3D

scene, without requiring the feature correspondences.

We will be discussing the related works specific to three different camera setups in their

respective chapters. These discussions will also include the potential alternative methods,

along with their application (demonstrated in this report) related previous works. The re-

lated works will also cover the literature review on the techniques that we will be using to

solve the above mentioned problems.
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OPTIMIZATION

“Local optimization methods are more art than technology.”

- Boyd and Vandenberghe, Convex Optimization

In this chapter, we introduce the optimization tools and techniques that we use throughout

this thesis work. Using a standard optimization problem formulation, we discuss both lo-

cal and global optimization methods. Our discussion mainly focuses on global and robust

techniques. In the context of global optimization, search-based methods are discussed in

detail. On the other hand, robust optimization methods, commonly used to solve geome-

tric problems, are also presented.

3.1/ MATHEMATICAL OPTIMIZATION

Definition 2 : The Optimization Problem

A mathematical optimization problem (or optimization problem) on a vector of

optimization variables x = (x1, x2, . . . , xn)T is generally defined, for an objective

f : Rn → R and constraints g j : Rn → R, in the following form :

min
x

f (x)

subject to g j(x) ≥ b j, for j = 1, . . . ,m.
(3.1)

A vector x∗ is an optimal solution of the problem 2 if the objective function satisfies f (z) ≥

f (x∗) for any z satisfying g1(z) ≥ b1, . . . , gm(z) ≥ bm. In other words, the solution to an

39
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optimization problem is a vector that minimizes the objective function while satisfying all

the constraints.

The difficulty of solving problem 2 depends upon many factors : the nature of the objective

and constraints, the number of variables and constraints, etc. Even in the cases where the

objective and constraints are smooth polynomials, solving the optimization problem 2 in its

generic form remains surprisingly difficult. This very often leads to a scenario where one

needs a compromise between speed and optimality. Broadly speaking, local methods that

compromise global optimality are often, although not always, only guaranteed to provide a

local minimum. On the other hand, other methods are designed to find a globally optimal

solution, very often at the cost of speed, are called global methods.

3.2/ LOCAL VS. GLOBAL OPTIMIZATION

Local optimization methods seek a solution that minimizes the objective only in the local

region. Even when the solution reached is globally optimal, such methods cannot provide

an optimality certificate. These methods generally require an initialization of the optimi-

zation variables. The initialization is very critical because it can greatly affect the final

solution. Therefore, local optimization methods are suitable for applications where finding

the globally optimal solution is either not of interest, or a good initialization is already

known. In fact, local optimization methods are usually fast, can handle large-scale pro-

blems and are widely applicable. In many cases, local optimization methods are the only

choice available due to the difficulty of the problem at hand.

Global optimization methods seek a solution that best minimizes the objective function

throughout the search space. These methods do not generally require an initialization on

the optimization variables. Global optimization methods are more suitable for problems

that are small in size (in terms of both variables and constraints), when the value of

finding the best solution is very high, and when the computation time is not critical. The

main problem with global optimization is that there are no effective methods for solving a

generic problem 2.

When both objective and constraints are linear in the optimization variables, a globally

optimal solution can be found efficiently using the Linear Programming (LP) technique.

However, the problem becomes difficult even when both objective and constraints are
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convex in nature – so called convex optimization problems. Although generic convex opti-

mization problems do not have any analytical solutions, there exist very effective methods

(e.g. interior-point methods) for solving them. The main challenge of global optimization is

the appropriate problem formulation. If any problem formulation fits into some given tech-

nique, such as Quadratic Programming (QP), Geometric Programming (GP), or Semi-

Definite Programming (SDP), it can be solved efficiently as well [79].

When the objective or constraint function are non-linear, there does not exist any effec-

tive globally optimal method that solves generic non-linear optimization problems. Even

a simple looking non-linear problem can become extremely challenging and very often

becomes numerically intractable with a small increase in the number of variables or

constraints. Therefore, the global optimization of non-linear optimization problems de-

mands special care and is very problem-specific. In practice, non-linear optimization

problems are solved using several different approaches. A common practice includes

Branch-and-Bound(BnB) or Branch-and-Prune(BnP) search paradigms which we employ

in this work and discuss in the following Section.

3.3/ SEARCH METHODS

Optimization methods based on search methods proceed by enumerating possible so-

lutions. Depending upon the problem, the enumeration process can either be implicit or

explicit. When the solution space is continuous, the search-based methods discretize the

space for implicit enumeration. The BnB and BnP paradigms perform a hierarchical dis-

cretization on the optimization variables via a dynamically-built search-tree. The process

of hierarchical discretization is also know as branching. The branching process requires

maximum and minimum possible values of the optimization variables. The maximum and

minimum values are called the upper and lower bounds and the enclosed interval is the

subspace that contains the sought solution. In practice, variable bounds can initially be

obtained either from a rough guess or the vague knowledge. The initial subspace defined

by the given bounds can in fact be significantly large. In some cases, the optimization

variables are intrinsically bounded.

While seeking the optimal solution, the search methods recursively divide the solution

space into non-overlapping subspaces. During this process, every subdivision (or bran-
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ching) produces two or more smaller subspaces, each of them represented by a node

in the tree. The aim of the branching-based search methods is to reduce the size of the

potential solution-subspace, in a recursive manner. The process of reduction involves

the rejection of unpromising subspaces. This is carried out by pruning the unpromising

branches as soon as possible during branching. However, such optimization methods lar-

gely rely on finding efficient pruning conditions. In most cases, the pruning is carried out

either by comparing the objective function bounds or by checking the solution feasibility

within the variable bounds. These two approaches are broadly categorized as Branch-

and-Bound and Branch-and-Prune paradigms, respectively.

3.3.1/ DYNAMIC TREE CONSTRUCTION

Every node of the dynamic tree represents a closed convex subspace of the sought opti-

mization variables. It is defined by the lower and upper bounds of the variables in the form

of two vectors x and x in Rn, respectively. The lower and upper bound entries xi and xi

satisfy the conditions xi ≤ xi for all i = 1, . . . , n. Thus a node is defined by the variables’ in-

terval [x, x]. For a given level of the tree, there exists no interval that overlaps with another.

Starting from a known interval, say B0 = [xinit, xinit], the tree is constructed by recursively

dividing the interval into two or more tighter intervals. If B0 is divided into Bk, k = 1, . . . , p

intervals, it must satisfy Bk ⊂ B0 for all k = 1, . . . , p and B0 = B1 ∪ B2 . . . ∪ Bp.

We illustrate the tree construction process with an example of two variables, say x =

(x1, x2)T , scenario. Let a0 be the first node representing the interval B0. The interval B0

can be divided into smaller intervals by breaking each variable bounds into two. Two va-

riables, each with two bounds produce four combinations of smaller intervals, which are

represented by first level nodes a1, a2, a3, and a4. The complete tree construction process

is then carried out by similar branching in a recursive manner. Figure 3.1 provides the

graphical illustration of two level branching. The nodes created in this fashion are dyna-

mically stored in a tree structure as shown in Figure 3.2. In case of higher dimensional

search space, trees are constructed in a very similar fashion. However, the number of

branching per node can vary as per the convenience.
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a1 a2

a3 a4

a11 a12 a21 a22

a13 a14 a23 a24

a31 a32 a41 a42

a33 a34 a43 a44

x1

x 2

FIGURE 3.1 – Hierarchical barnching in two dimensional space. The subspaces represen-

ted by nodes ai and ai j are the results of the first and second level branching respectively.

a1 a2 a3 a4

a0

a11 a12 a13 a14 a11 a22 a23 a24 a11 a32 a33 a34 a41 a42 a43 a44 Level 2

Level 1

Level 0

FIGURE 3.2 – Two level branching results represented as a tree structure.

3.3.2/ BRANCH-AND-BOUND PARADIGM

The Branch-and-Bound search paradigm relies on finding the best and worst possible

values of the objective function (while respecting the constraints) within the variables’

interval. While minimizing the objective function, the potentially best possible value is

also called the lower bound. Similarly, the worst possible value is known as the upper

bound of the objective. Although the bounds on the objective function do not need to be

strict, the performance of BnB highly depends on its effectiveness. In fact, the worst value

(the upper bound) can, very often, be found using a simple local optimization method. Any

solution obtained using a randomly picked sample from the given interval, as a starting
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a1 a2 a3 a4

a0

f (x) ∈ R

f1 f1 f2 f2 f3 f3 f4 f4

f1 < f4

FIGURE 3.3 – Branch-and-Bound pruning based on the objective function bounds. The
node a4 is pruned because the lower bound of its objective function is larger than the
upper bound of the objective function of a1.

point, can serve as the upper bound. However, the most challenging part is that of finding

the lower bound of the objective in an efficient manner. We will be discussing the specific

way of finding the upper and lower bounds in its related chapter. Here, we discuss the

BnB search process with an example while assuming that the bounds can be estimated

for any given interval (or the node). Note that the objective function can also be maximized

(if required) in a very similar manner, with the straightforward change in conventions.

Let us assume f and f are, respectively, the lower and upper bounds of the objective

function f (x), estimated for the interval [x, x]. We represent the node-specific bounds

using the subscript corresponding to that node. For the first level nodes, mapping of both

bounds to the real number axis are shown in Figure 3.3. One can observe from this

diagram that the minimum possible value of node a4 is greater than the maximum possible

value of a1 (i.e. f1 < f4). Due to this condition, the optimal solution cannot lie in the

subspace defined by node a4. Therefore, in this tree, a4 can be safely pruned. In fact,

in general, if the lower bound of any node is greater than the upper bound of any other

node, the node with bigger lower bound can always be pruned. This process can be

applied repeatedly in a recursive manner to obtain the globally optimal solution. In case

of multiple optimal solutions, the BnB search method allows us to obtain all the possible

solutions. In practice, the branching process is carried out until the variables’ interval (or

the bound gap) becomes small enough such that the local method safely converges to

the desired solution. The complete BnB search process is summarized in Algorithm 1.
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Algorithm 1 Branch-and-Bound Search
Input : B0 Output : f ∗ := f (x∗)

1: f 0 = computeUpperBound(B0) . Intialization
2: f ∗ = processNodeBnB(B0, f 0) . Recursive function

3: function PROCESSNODEBNB(B, f )
4: t = computeLowerBound(B) . Lower bound of objective function
5: t = computeUpperBound(B) . Upper bound of objective function
6: if t < f then
7: f ← t . Objective function value update
8: end if
9: if (|t − t| < ε) ∨ (t > f ) then . BnB stopping criteria

10: return f
11: else
12: (B1,B2, . . . ,Bn) = divideBranches(B) . Branching step
13: for i = 1, 2, . . . , n do
14: return processNodeBnB(Bi, f ) . Recursive call
15: end for
16: end if
17: end function

3.3.3/ BRANCH-AND-PRUNE PARADIGM

The Branch-and-Prune search paradigm relies on finding a certificate of feasibility for the

constraints within the variables’ interval. During the search process, every node is exa-

mined with the feasibility test to obtain a certificate. A negative certificate (infeasibility)

for any node ensures that there exist no feasible solution within its represented interval.

Therefore, every infeasible node can safely be pruned. In fact, the BnP search method

is solely driven by the negative feasibility certificates because any node with affirmative

certificate can never be pruned. Therefore, the efficiency of BnP search depends upon

strict feasibility conditions. Early detection of infeasible nodes leads to a faster search.

However, finding efficient feasibility conditions is the most challenging part of BnP me-

thods. We will discuss about our application-specific feasibility conditions in the chapter

dedicated to our registration using uncalibrated cameras.

We now illustrate the working principle of BnP on an example under the assumption

that the feasibility conditions for every node can be derived and tested. In this context, Fi-

gure 3.4 the pruning process for the first-level nodes of the tree is presented in Figure 3.2.

In this example, the node a4 does not qualify the feasibility test. Therefore, it can be be

safely pruned following the discussion presented above. If this process is carried out re-
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a1 a2 a3 a4

a0

Feasible

Feasibility test Feasibility test Feasibility test Feasibility test

FeasibleFeasible Infeasible

FIGURE 3.4 – An example illustrating the Branch-and-Prune pradigm. In this example, the
node a4 is prunned because it doesn’t qualify the feasibility test.

peatedly in a recursive manner, the feasible region is better represented by the union of

leaf nodes in every next level. Figure 3.5 shows an example of a four-level BnP process

for finding a region that is feasible for two constraints. Note that the performed branching

is similar to that of Figure 3.1.

FEASIBILITY REGION SEARCH

Depending upon the problems, one can be interested only in identifying the feasibility

regions. In such cases, BnP alone can efficiently provide the desired solution without ta-

king care of the objective function value. However, the standard optimization problem 2

demands a feasible solution that minimizes the objective function. BnP-based approach

for objective function minimization has its own share of problem-specific difficulties. In

this regard, we will be deriving an extra set of implicit constraints from the object function

which, when not satisfied, certifies the nonexistence of the optimal solution within that in-

terval. Although the details will be discussed in its corresponding chapter, these methods

are considered to be very suitable for goal attainment problems.

GOAL ATTAINMENT

Goal attainment problems are optimization problems whose objective function has a tar-

geted minimum value. These methods are particularly suitable when the objective func-
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x1

x 2

g1(x)

g2(x)
Feasible region for a constraint

Partial

Feasible node for all constraints

Complete

Constraints := {g1(x), g2(x)}

FIGURE 3.5 – Four level branching using Branch-and-Prune pradigm. Both “partial” and
“complete” nodes are feasible as forth level leaves. Further branching of “partial” nodes
result into tighter estimation of feasible region for all the constraints.

tions are derived from the equality constraints. When the equality constraints are perfectly

satisfied, the objective function stays at zero. Otherwise, any deviation from the equality

increase its value. In such cases, setting the targeted minimum value to zero is always a

safe choice. In fact, the implicit constraints derived from the objective function, when not

satisfied, guarantee that the solution with targeted minimum value does not lie within the

processed interval.

Typically, during a BnP search, if a node qualifies the feasibility test, it is further processed

using a local method. While doing so, the local solution is enforced to lie within the interval

of the current node. Every local solution is then stored before proceeding to the next step.

At the end, if there exists no solution with the targeted minima, the final solution is the

best local solution obtained throughout. Otherwise, the method automatically returns, as

soon as the target is reached. In case of multiple branches reaching the targeted value,

all the solutions are returned. One of the main advantage of using BnP search is that,

unlike when using BnB, the search process can be parallelized because each branch

is processed independently from the others. Algorithm 2 presents the workflow of BnP-

based search methods.

Although the algorithms based on the BnB and BnP paradigms have been discussed here

under the prism of a Depth-First-Search tree traversal, other methods such as Breadth-

First-Search and Best-First-Search can likewise be used depending upon their suitability.
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Algorithm 2 Branch-and-Prune Search
Input : B0 Output : f ∗ := f (x∗)

1: f 0 = feasibilityTest(B0) . A feasible objective function value
2: f ∗ = processNodeBnP(B0, f 0, τ) . Recursive function

3: function PROCESSNODEBNP(B, f , τ)
4: (B1,B2, . . . ,Bn) = divideBranches(B) . Branching
5: for i = 1, 2, . . . , n do
6: ( fi, feasFlag) = feasibilityTest(Bi) . Feasibility flag
7: if feasFlag then
8: if f > fi then
9: f ← fi . Objective function value update

10: end if
11: if boundGap(Bi)< ε then . BnP stopping criteria
12: return f
13: else
14: return processNodeBnP(Bi, f , τ) . Recursive call
15: end if
16: else
17: return f . Return if infeasible
18: end if
19: end for
20: end function

Moreover, the recursive operations, especially when the memory is limited, can be repla-

ced using iterative methods.

3.4/ LINEAR MATRIX INEQUALITY

Definition 3 : Linear Matrix Ineqality (LMI)

When dealing with matrices, A > 0 (resp. A ≥ 0 ) means that the symmetric ma-

trix A is positive-definite (resp. positive semi-definite). A Linear Matrix Inequality

(LMI) is a constraint on a real-valued vector x = (x1, x2, . . . , xn)T such that

A(x) = A0 +

n∑
i

xiAi > 0. (3.2)

The matrix A(x) is an affine function of x involving symmetric matrices

A0,A1,A2 . . . ,An.

The Equation (3.2) is a convex function on x because for any A(x1) > 0 and A(x2) > 0, if
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there exists a solution set, then A(αx1+βx2
α+β ) > 0 is always true for α, β ∈ R+. Such solution

is a convex subset of Rn and it is called the feasible set.

A set of LMIs {A j(x) = A j
0 +

∑n
i=1 xiA

j
i > 0}mj=1 can always be written as a single LMI, using

the block-diagonal matrices, in the following form :



A1
0 0 . . . 0

0 A2
0 . . . 0

...
...

. . .
...

0 0 . . . Am
0


+

n∑
i=1

xi



A1
i 0 . . . 0

0 A2
i . . . 0

...
...

. . .
...

0 0 . . . Am
i


> 0. (3.3)

When a LMI A(x) > 0 arises in homogeneous form, i.e. A(x) =
∑

i xiAi, it is replaced by a

non-homogeneous counterpart A(x) ≥ I as to avoid numerical issues since A(0) = 0.

3.4.1/ THE LMI FEASIBILITY PROBLEM

A LMI feasibility problem consists in finding x that satisfies the considered LMIs or deter-

mining that no solution exists. In other words, it searches for the existence of non-empty

subspace defined by the intersection of the cone of positive semidefinite matrices within

the affine space. Establishing the feasibility of LMIs is a convex optimization problem that

can be efficiently solved using interior-point methods [80]. By duality, it is a problem of

finding a nonzero G < 0 such that Trace(GAi) = 0 for i = 1, 2, . . . , n and Trace(GA0) > 0.

The interested reader can refer [79] for the details. The feasibility test tells us whether

there exists a convex subset of Rn for which the given constraints are always satisfied.

A feasible solution is any sample from this subset which when discovered justifies the

existence of such convex subset. In fact, the feasibility problem is of concern only to LMI

constraints. The problem of minimizing objective function under the LMI constraints is

discussed below.
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3.4.2/ SEMIDEFINITE PROGRAMING

Definition 4 : Semidefinite Programing (SDP)

Semidefinite Programming (SDP) consists in minimizing or maximizing a linear

objective function subject to LMI constraints. Among its many varieties, a typical

SDP solves the following problem :

min
x

cT x

subject to A(x) > 0.
(3.4)

Here, c ∈ Rn is a vector whose entries define the weight assigned to their cor-

responding decision variables being multiplied.

Note that the objective function can also be maximized by inverting the sign of the entries

of the vector c. Furthermore, any optimization variable is minimized or maximized by

changing the sign of its corresponding coefficient in c. As the SDP is a special case of

cone programming [79], its globally optimal solution can be obtained using the interior-

point method. An efficient interior-point method for SDP is presented in [81].

In our work, the following lemma plays a key role in expressing some geometric constrains

as a LMIs system :

Lemma 3.4.1 (Finsler’s). Let Y be a vector, Q a symmetric matrix, B a rectangular matrix -

all real-valued and of appropriate dimensions - and γ a scalar. The following statements

are equivalent :

(i) YᵀQY > 0 ∀Y , 0 : BY = 0.

(ii) ∃ γ : Q + γBᵀB > 0.

Lemma 3.4.1 is due to Paul Finsler [82]. It allows converting the problem of checking the

sign of a quadratic form over a subspace into one of solving a LMI problem.
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Number of Variables
Degree 1 2 3 4 5 6 7

2 3 3 3 3 3 3 3

4 3 3 7 7 7 7 7

6 3 7 7 7 7 7 7

8 3 7 7 7 7 7 7

TABLE 3.1 – Polynomial degree vs. number of variables for PSD and SoS equivalence.

3.5/ SUM-OF-SQUARES THEORY

Definition 5 : SoS and PSD

Let R[x] be the ring of polynomials in n variables, x = (x1, x2, . . . , xn)T , with real-

valued coefficients. A polynomial f (x) ∈ R[x] is

- Positive Semi-Definite (PSD) (or nonnegative) if f (x) ≥ 0 for all x ∈ Rn ;

- Sum-of-Squares (SoS) if there exist polynomials fk(x) ∈ R[x] such that

f (x) =

p∑
k=1

fk(x)2. (3.5)

A SoS is obviously always PSD and the converse is generally untrue. Establishing the

conditions for the equivalence of classes of SoS and PSD polynomials is known as Hil-

bert’s 17th problem [83]. Indeed, Hilbert [84] proved that, for some classes of polynomials

including quadratic ones, a polynomial is PSD if and only if it is SoS. Equivalence bet-

ween SoS and PSD for other classes of polynomials is shown in Table 3.1. Checking

whether a polynomial is PSD is NP-hard (though decidable) while checking whether a

polynomial is SoS is computationally tractable using Semidefinite Programming. Semide-

finite Programming employs a matrix to represent the polynomial – the so-called Gram

matrix.

Definition 6 : Gram matrix [85]

Consider a polynomial f (x) ∈ R[x] of degree 2d. Let Zd(x) be the vector of mo-

nomials of f (x) up to monomials of degree d. The matrix G such that f (x) =

Zd(x)ᵀGZd(x) is a Gram matrix of f (x).

The following theorem shows the role of the Gram matrix representation for expressing

the condition for a polynomial to be a SoS.
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Theorem 3.5.1 ([86, 85]). A polynomial f (x) ∈ R[x] of degree 2d is SoS if and only if there

exists a real symmetric positive semidefinite Gram matrix of f (x).

Note that since odd-degree polynomials cannot be SoS, only even-degree polynomials

are concerned by such test. Checking for the existence of a positive semidefinite Gram

matrix G boils down to solving a LMI feasibility problem. Recall that LMI feasibility can

be efficiently checked using interior-point methods. Theorem 3.5.1 allows us to check

whether a polynomial f (x) is nonnegative for every x ∈ Rn. One is often interested in

checking whether f (x) is nonnegative in a semi-algebraic set K defined by polynomials

g j(x) ∈ R[x] such that

K = {x ∈ Rn : g j(x) ≥ 0, j = 1 . . .m}. (3.6)

This can be answered via the so-called Stengle’s Positivstellensatz (Psatz) [87].

Theorem 3.5.2 (Stengle’s Positivstellensatz [87]). A polynomial f (x) is nonnegative on K

(defined by (3.6)), if there exist SoS polynomials σv(x) such that

f (x) =
∑

v∈{0,1}m
σv(x)g1(x)v1g2(x)v2 . . . gm(x)vm . (3.7)

In fact, Stengle’s Psatz can be thought of as an ordered analogue of Hilbert’s Nullstel-

lensatz. Nullstellensatz is considered to be the seminal work on algebraic geometry that

establishes a fundamental relationship between geometry and algebra. However, exploi-

ting Stengle’s Psatz is difficult and may turn numerically intractable in practice because

(3.7) requires 2m SoS σv polynomials. But on the other hand, Putinar [88] provides a much

simpler Psatz under Archimedean condition on the so-called quadratic module of the g j(x)

polynomials. Before presenting the Putinar’s Psatz, we first define the quadratic module

and Archimedean condition.

Definition 7 : Quadratic module [89]

The quadratic module M(g) = M(g1, . . . , gm) ⊂ R[x] of polynomials g1(x), g2(x),

. . . , gm(x) is the set

M(g) = {σ0(x) +

m∑
j=1

σ j(x)g j(x) : each σ j is S oS }. (3.8)
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Definition 8 : Archimedean [89]

The quadratic module M(g) of polynomials g1(x), g2(x), . . . , gm(x) is Archimedean

if N − ‖x‖2 ∈ M(g) for some N ∈ N.

In this work, we are interested in finding the zeros of multivariate polynomials – which

is also a major interest of algebraic geometry. Although the details of our work will be

presented later, the following theorem is a key ingredient for us.

Theorem 3.5.3 (Putinar’s Positivstellensatz [88]). Assume the quadratic module M(g) is

Archimedean. If f (x) > 0 on K (defined by (3.6)), then f (x) ∈ M(g).

3.6/ ROBUST OPTIMIZATION METHODS

The primary reason for solving an optimization problem is to find the optimal solution, ra-

ther than evaluating the minimum objective function value. In many geometric problems,

the optimization variables are the transformation parameters whose estimation allows one

to perform tasks such as detection, registration, and reconstruction of geometric objects.

In such cases, the optimization problems are designed such that the optimal transforma-

tion parameters minimize (or maximize) the objective function. Very often, the objective

function is derived from multiple measurements. Multiple measurements result into mul-

tiple residual errors (usually, one for each measurement). The objective function is built

by combining these residuals. However, doing so is not always straightforward. Here, we

discuss some techniques of building an objective function from multiple measurements,

which we will be using in the following chapters.

3.6.1/ LEAST-SQUARES APPROXIMATION

Least-squares minimization method – the most commonly used approach – combines

the residuals such that their sum of squares is minimized. Let r1(x), r2(x), . . . , rp(x) be the

residuals that are expected to be minimized by the sought optimal solution. Then, the

least-squares optimization method minimizes an objective function of the following form :

f (x) =

p∑
k=1

rk(x)2. (3.9)
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In general, least-squares minimization methods are considered to be robust towards

noise under the assumption that the noise follows Gaussian distribution with zero mean.

For linear residual functions, this formulation allows us to obtain the globally optimal solu-

tion in a very efficient manner. However, least-squares methods are unstable in the pre-

sence of outlier measurements or a non-Gaussian distribution of residuals. This happens

mainly because the outlier measurements (or non-Gaussian residuals) affect the objec-

tive function in a way that distorts the optimal solution. More robust methods address this

problem by introducing penalty functions so that the affect of outliers is minimized.

3.6.2/ PENALTY FUNCTION APPROXIMATION

Penalty function approximation problems reduce the effect of outliers by introducing a

penalty function of the residuals, yielding

f (x) =

p∑
k=1

ρ(rk(x)). (3.10)

where ρ : R → R is called the (residual) penalty function. In many cases, the penalty

function ρ is symmetric and nonnegative with unique minima at zero, satisfying ρ(0) = 0.

Although minimizing the objective function of Equation (3.10) produces a more robust es-

timation of optimization variables, solving this problem is not straightforward. The possibi-

lity of finding its globally optimal solution largely depends upon the property of residuals,

and also remains problem specific. Therefore, the objective function is usually minimized

locally using an iterative reweighted least-squares method. This is carried out by iterati-

vely solving the weighted least-squares problems where the weights are generated using

the following vanishing condition of first order derivative.

p∑
k=1

ψ(rk(x))
∂rk(x)
∂xi

= 0, for i = 1, 2, . . . , n. (3.11)

Here, ψ(x) =
∂ρ(x)
∂x is called the influence function. The weight function is defined as

ω(x) =
ψ(x)

x
. (3.12)

Hence, Equation (3.11), after introducing the weight function, takes the following form
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p∑
k=1

ω(rk(x))rk(x)
∂rk(x)
∂xi

= 0, for i = 1, 2, . . . , n. (3.13)

One can solve the exact problem of Equation (3.13) using the iterative reweighted least-

squares problem whose lth iteration solves the following weighted least-squares pro-

blem [90]

min
x

p∑
k=1

ω(rk(x)l−1)rk(x)2 (3.14)

It can be seen from Equation (3.14) that the weights for the current iteration must be

computed in the previous one. Therefore, this method also requires the initialization on

weights or optimization variables. Note that the special class of penalty function approxi-

mation methods discussed here are also known as M-estimators.

The influence function ψ(x) measures the residuals’ influence on the optimization va-

riables. For example, the penalty function of least-squares is given by ρ(x) = x2/2 whose

influence function is ψ(x) = x. This behavior of linear increase in influence with the in-

crease in residual makes the least-squares method susceptible to outliers. A penalty

function is considered to be robust if a single residual cannot make significant influence

on the optimization variables. Table 3.6.2 shows a list of commonly used penalty func-

tions (for M-estimators) along with their influence and weight functions. We will be using

the Tukey penalty function, whose graphical representation is shown in Figure 3.6.

Name ρ(x) ψ(x) ω(x)
Least-squares x2/2 x 1

L1-norm |x| sgn(x) 1/|x|
Lp-norm |x|p/p sgn(x)|x|p−1 |x|p−2

Fair ξ2( |x|ξ − log(1 +
|x|
ξ )) x

1+|x|/ξ
1

1+|x|/ξ

Cauchy ξ2

2 log(1 + x2/ξ2) x
(1+x2/ξ2)

1
(1+x2/ξ2)

Huber

|x| ≤ ξ|x| > ξ

x2/2
ξ(|x| − ξ/2)

x
ξsgn(x)

1
ξ/|x|

Tukey

|x| ≤ ξ|x| > ξ

 x6

6 −
ξ2 x4

2 +
ξ4 x2

2
ξ6

6

x
(
ξ2 − x2

)2

0


(
ξ2 − x2

)2

0

TABLE 3.2 – Commonly used penalty functions along with their influence and weight func-
tions. The variable ξ stands for the defined threshold.
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FIGURE 3.6 – Tukey : penalty function (left), influence function (middle), and weight func-
tion (right), for the threshold value of ξ.

3.6.3/ CONSENSUS-SET MAXIMIZATION

The penalty function approximation-based methods work well in practice when the resi-

duals are computed from noisy measurements with few outliers. Besides the difficulty of

obtaining the initialization, these methods are fast, efficient, and easy to implement. Ho-

wever, in the presence of an overwhelmingly high number of outliers, the penalty-based

objective functions fail to serve their purpose. In such cases, direct detection and ca-

tegorization of the inlier and outlier measurements is required. Basically, for any given

configuration of the optimization variables, each measurement can be assigned either

into an inlier or an outlier set, based on its residual. The configuration that results into

maximum consensus of the inlier set is considered as the optimal solution – also known

as consensus-set maximization.

The problem of consensus-set maximization can be formulated as an optimization pro-

blem by introducing a set of binary variables. Let Z = {zk}
p
k=1 be a set whose entry

zk ∈ {0, 1} decides whether the measurement that generates residual rk is an inlier or

an outlier. More precisely, if zk = 1, the measurement with residual rk is an inlier, and

vice-versa. Now, the consensus-set maximization problem can be formulated as follows :

max
Z, x

p∑
k=1

zk

subject to zk|rk(x)| ≤ ε, ∀k,

zk ∈ {0, 1}, ∀k.

(3.15)

A measurement is considered to be an inlier if its residual lies within the interval of [−ε, ε].

This problem is, however, very difficult to solve. One major difficulty arises due to the



3.6. ROBUST OPTIMIZATION METHODS 57

binary constraints on the optimization variables zk. The problem becomes more difficult

for a non-linear residual function. If the residual functions are non-convex, this problem

becomes even more difficult. In most cases, the optimization problem of Equation 3.15 is

solved using Random SAmple Consensus (RANSAC) paradigm [52].

Random sample consensus : RANSAC-based methods assume that the optimization

variables can always be estimated from a subset of measurements. If all the members

of this subset are inliers, the optimization variables are correctly estimated, therefore the

remaining inliers must also satisfy the solution. Any measurement that satisfies the solu-

tion is assigned to the inlier set of the offered solution. Then, the solution that maximizes

the consensus-set is chosen as the optimal solution. The inlier set corresponding to the

optimal solution is accepted as the inlier set for the original optimization problem.

The process of selecting an initial subset of measurements is the main bottleneck of

consensus-based optimization methods. Therefore, RANSAC-based methods construct

the subset by randomly selecting the minimum number of required measurements, at the

cost of optimality. The process of random selection is performed several times, until the

desired target or upper limit on the number of iterations is reached. For the measurements

H = {hk}
p
k=1 associated with residuals {rk}

p
k=1, (i.e. hk measurement results rk residual

error), RANSAC’s work flow is given in Algorithm 3. When the measurements consist of

a moderate number of outlier measurements, RANSAC-based methods are both fast and

robust. Thanks to its simplicity, it is also very easy to implement/adopt for a wide range

of problems. The main drawback of these methods lies in the exponential complexity with

the increase in number of outliers.

Algorithm 3 Random Sample Consensus Search
Input : H , numIter Output : Z

1: Initialization : f = 0,Z = ∅ . Initial count and inlier set
2: for i = 1, 2, . . . , numIter do
3: Ai = selectRandomSamples(H) . Ai ⊂ H

4: xi = fitModel(Ai)
5: (Zi, fi) = countNumInliers(xi,H)
6: if fi > f then
7: f ← fi and Z ← Zi . Update
8: end if
9: end for

10: return Z . The maximum consensus set
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ASYNCHRONOUS CAMERAS

“If everything seems under control, you’re just not going fast enough.”

- Mario Andretti, Formula One

This chapter is dedicated to fully calibrated coupled acquisition set-ups – asynchronous

cameras. The problems associated with asynchronous cameras predominantly arise in

robotic applications. In robotics, the 2D and 3D cameras whenever used, are, usually

calibrated, rigidly attached on the robot, and endeavored to stay synchronized. Howe-

ver, either due to the hardware limitations or due to fast motion, it is difficult to remain

synchronized all the time. This introduces errors in extrinsic parameters, hence the ex-

trinsics need to be corrected while fusing 2D and 3D information, or preferably before.

Therefore, this chapter is mainly focused on solving the 2D-3D registration problem in the

context of robot localization and map building using asynchronous/synchronous 2D and

3D cameras.

4.1/ INTRODUCTION

The problem of accurately localizing cameras is of prime importance in many application

involving visual Simultaneous Localization and Mapping (vSLAM). An accurate environ-

ment map is generally required for an accurate localization. In turn, building an accurate

environment map is not possible without an accurate localization, hence, making it a pa-

radoxical “chicken and egg” problem.

Contemporary mobile robots are, or can easily be, equipped with either or both 2D and 3D

cameras [91][92][93][94][95]. As far as 3D cameras are concerned, the Iterative Closest

59
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Point (ICP) algorithm (or one of its variants), applied on neighboring 3D point cloud mea-

surements, is overwhelmingly used for robot localization. However, in the case of abrupt

or long run displacements, localization based on 3D information alone is difficult mainly

because of local minima traps (typical to ICP) and unreliable 3D feature descriptors. When

a robot is equipped with both 3D and 2D sensors, 2D images are used to estimate the

motion of the cameras (visual odometry) whereas the mapping is obtained directly from

the 3D cameras. Indeed, the emergence of reliable 2D image feature descriptors (such

as the Scale-Invariant Feature Transform (SIFT)), 2D-to-2D matching, generally suppor-

ted by Random Sample Consensus (RANSAC), has become more reliable. However, the

accuracy of the camera motion estimation from images, on which the robot localization

relies, is undermined by the error amplitude of the extracted 2D features. When localiza-

tion is based on 2D-to-3D correspondences and 2D-2D based refinement, it may suffer

from significant error accumulation. One example of such error accumulation is shown

in Figure 4.1. This error is usually minimized by a loop closing technique as described

in [96]. However, in particular when robots travel long distances, loop closing is not always

possible and may not adequately compensate for error accumulation thus leaving visible

artifacts in the map. Performing small and frequent loops is recommended as to keep

the accumulated error under control. In practice, making such small loops while building

large maps is undoubtedly a burden for the task at hand and often impossible. Though

incorporating information from extra sensors such as GPS has been proposed [95][97], it

is often argued that such information is neither accurate nor reliable enough.

In this work, we propose a method for direct 2D-3D registration when 3D and 2D ca-

meras are asynchronous. Once the asynchronous images are registered with the scene,

they can be treated as synchronous acquisitions for which we propose a complete visual

odometry framework that combines both 2D and 3D data. The proposed asynchronous

2D-3D registration method demands only a rough knowledge of the pose of only one

of the cameras and, apart from 3D scene point coordinates, requires no other know-

ledge regarding the geometry of the input scene. We assume that point correspondences

across images are available but 2D-to-3D correspondences are unknown. To our know-

ledge, there is no method that makes use of both 2D and 3D information without 2D-to-

3D correspondences. Note that methods employing Bundle Adjustment (BA) with known

scene [69] and PnP [35] require such 2D-to-3D correspondences to be established. In

practice, good 2D correspondences between instantaneously captured images can be
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obtained by using state-of-the-art feature descriptors such as SIFT. The proposed me-

thod does not require a precise set of 2D-to-3D correspondences, handles occlusions,

and works even when only a part of the 3D scene is known. This framework computes

the pose by localizing a set of cameras at once with respect to the 3D scene acquired in

the previous frame using a minimum of three corresponding points among all the views.

Furthermore, a constrained nonlinear optimization framework is also proposed for pose

refinement. The first step of visual odometry uses only the known part of the scene whe-

reas our refinement process uses the constraints that arise from the unknown part as

well. The refinement step minimizes the projection errors of 3D points while enforcing the

existing relationships between images. Both steps handle the problem of occlusion and

that of missing scene parts by confronting the image-based reconstruction and the 3D

sensor measurements. They also minimize the effect of data inaccuracies by using an M-

estimator based technique. Unlike [98], our method makes no prior assumption regarding

the geometry of the scanned scene.

This chapter is organized as follows. Related works are presented in Section 4.2. Asyn-

chronous cameras related setups and the background are introduced in Section 4.3. We

formulate the optimization problem to obtain the optimal odometry parameters in Sec-

tion 4.4. The solution to this problem is presented in the form of an algorithm in the same

section. In Section 4.5, experiments with synthetic and four real datasets are presented

and discussed. Section 4.6 concludes this part of our work.

4.2/ RELATED WORKS

The problem of asynchronous cameras usually appears in the robotic applications invol-

ving visual Simultaneously Localization and Mapping (vSLAM). With the ongoing surge

in affordable high quality 3D and 2D capture technologies, many mobile robots are, or

can easily be, equipped with either or both vision modalities [91, 92, 93, 94, 95]. Although

these methods assume the setup to be synchronized, the asynchronous case may easily

arise due to the various reasons discussed in Section 4.1.

In literature, visual odometry is generally carried out by relying on 2D-2D, 3D-3D, or 2D-

3D information. 2D-2D based methods typically track features in monocular or stereo

images and estimate the motion between them [99, 100]. Some of these methods im-



62 CHAPITRE 4. ASYNCHRONOUS CAMERAS

FIGURE 4.1 – An example of error accumulation around a loop : Map built by a Laser-
Camera system around a large structure (top-left). Image taken at a loop closing point
with only one tree at the corner (top-right). Map built before (red) and after (white) the visit
around the loop using 2D-2D based refinement [95] (bottom-left). Refined map obtained
using our method (bottom-right) : the scan of the same tree come significantly closer after
refinement.

prove the localization accuracy by simultaneously processing multiple frames, while using

Sparse Bundle Adjustment (SBA) for refinement. Some other methods obtain the motion

parameters by registering images such that the photometric error between them is mi-

nimized [101, 102]. For the same purpose, most 3D-3D based methods use ICP or its

variants [103, 70, 104] between consecutively acquired point clouds obtained from the

3D camera [105, 106]. However, ICP-based methods are computationally expensive due

to the calculation of the nearest neighbors for every point at each iteration. Both of these

methods use the information from either camera only and, hence, do not fully exploit all

the available information. Methods that rely upon only one camera type may suffer from

significant error accumulation during the localization process. This error is usually mini-

mized by a loop closing technique as described in [96]. Though incorporating information

from extra sensors such as GPS has been proposed [95, 97], it is often argued that such

information is neither accurate nor reliable enough.

Recent works [98, 107] propose the use of information provided from both cameras du-
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ring the process of localization. The work in [98] refines the camera pose obtained from

Structure-from-Motion (SfM) using an extra constraint of a plane-induced homography via

scene planes. This method provides a very good insight for a possibility to improve the

camera pose when the partial 3D is known. However, it uses only the information from

planes that are in the scene. The methods presented in [106, 107, 108] have been tested

in indoor environments mainly with a Kinect sensor. Extension of these methods to out-

door environments with possibly different kinds of 3D cameras is not trivial due to various

unhandled situations that may arise. Typical issues arising in outdoor scenes and/or dif-

ferent camera setups occur, for example, when 2D and 3D cameras do not share the exact

same field of view, when the 3D points are sparse (as opposed to pixel-to-pixel mapping

of RGB-D cameras), in the absence of required scene structures, and in the event of low

frame rates and/or large displacements of the cameras. Note that other existing 2D-3D

based refinement methods, such as SBA and loop closing, are not applicable under these

circumstances because they require precise 2D-to-3D correspondences across frames.

4.3/ NOTATION AND BACKGROUND

The setup consists of a 3D camera and multiple calibrated 2D cameras as shown in Fi-

gure 4.2. At any given instant, the 3D camera captures the scene points Yk, k = 1, 2, . . . , p

in its coordinate frame O1. A set of calibrated cameras at Ri|ti, i = 1, 2, . . . , n, not necessa-

rily overlapping field of views, capture n images, from which a set of 2D feature points are

extracted. Let x1
i j, j = 1, 2, . . . ,m represent those feature points in the ith image. P(R, t,Y)

is the projection function that maps a point Y to its 2D counterpart in the image captured

from R|t. When the system moves by R′|t′ to next position, corresponding variables are

represented by the same notations with change in superscript. The poses of the second

set of cameras with respect to O1 are expressed as Ri|ti. Similar to Equation (2.2), the

Essential matrix between two views of the same camera in different frames is expressed

as

Ei(R′, t′) = [t′i]×R′i, (4.1)

where R′i|t′i is the pose of ith camera in the second frame with respect to the first one. For

synchronous setups, it is related to R′|t′ as follows
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R′i t′i

0 1

 =

Ri ti

0 1


R′ t′

0 1


Ri ti

0 1


−1

. (4.2)

If x1
i j and x2

i j, j = 1 . . .m are corresponding feature points in two consecutive images taken

by the ith camera, their 2D-to-3D correspondences are specified by a function φ. Let φi( j)

be a function that maps each pair of 2D points x1
i j ↔ x2

i j to the corresponding 3D point Yk.

Every rotation matrix R is represented by a 4×1 vector of quaternions q unless mentioned

otherwise (similarly, q′ for R′). Both 3D and 2D points are represented by 3 × 1 vectors,

the latter being the homogeneous representation in the camera coordinate system. The

distance between two rotation matrices is measured by computing the spectral norm of

their difference. For a matrix A, its spectral norm is denoted as |||A|||.

4.4/ 2D-3D VISUAL ODOMETRY

In this section, we establish the relationships between a set of image pairs and scene

points. Using these relationships, we propose an optimization framework whose opti-

mal solution is the required odometry parameters. A complete algorithm for solving this

optimization problem is also discussed. The proposed method deals with both the asyn-

chronous and synchronous cases separately. In the asynchronous case, the camera’s

extrinsic parameters R′i|t′i are assumed to be unknown. In the synchronous case these

parameters are known and fully exploited during the motion estimation process. We also

assume that the 2D-to-2D correspondences between image pairs acquired by the same

camera are known.

4.4.1/ PROBLEM FORMULATION

The relationship between 2D and 3D points is depicted in the ray diagram given in Fi-

gure 4.2. The projection error of points on the first set of cameras is given by

e1(Ri, ti, φi( j)) = ||x1
i j − P(Ri, ti,Yφi( j))||2. (4.3)
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FIGURE 4.2 – Ray diagram of the experimental setup.

Similarly, for the second set of cameras, the projection error is given by

e2(Ri,R′, ti, t′, φi( j)) = ||x2
i j − P(RiR′,R′ti + t′,Yφi( j))||2. (4.4)

Furthermore, the epipolar constraint that relates the points in two views of different frames

can be written as

(x2
i j)

T Ei(R′, t′)x1
i j = 0. (4.5)

While (4.3) locates the first camera, (4.4) locates the second camera with respect to the

world reference frame while preserving its relationship to the first one. Similarly, (4.5)

localizes the second camera with respect to the first one. Equations (4.3), (4.4) and (4.5)

are obviously redundant. However, in the presence of noise in the data and unknown

correspondences all constraints must be enforced : satisfying only the non-redundant

conditions does not necessarily satisfy all of them. In addition, (4.5) makes use of the

unknown part of the scene as well. Therefore, all three equations will be incorporated in

our optimization framework in which (4.4) is chosen to be the objective (as it includes the

pose of both the cameras) while the rest are used as constraints.
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Our problem is to localize a set of 2D cameras with known 2D-to-2D (x1
i j ↔ x2

i j) and

unknown 2D-2D-to-3D (x1
i j ↔ x2

i j ↔ Yφi( j)) correspondences in the presence of noise.

Hence, finding the optimal φi itself is part of the optimization process. Therefore, the

optimization framework can be written as

min
qi,ti,q′,t′,φ

n∑
i=1

m∑
j=1
||x2

i j − P(RiR′,R′ti + t′,Yφi( j))||2,

subject to ||x1
i j − P(Ri, ti,Yφi( j))||2 = 0,

(x2
i j)

T Ei(R′, t′)x1
i j = 0,

||qi||
2 = 1, ||q′||2 = 1, i = 1, 2, . . . , n, j = 1, 2, . . . ,m.

(4.6)

The optimization problem (4.6) considers that every image point has its corresponding

3D point in the scene. In practice, there could be extra 2D or missing 3D points resulting

in invalid 2D-to-3D correspondences. We address this problems by assigning the weights

derived from a scale histogram to each correspondence. Furthermore, we also relax the

strict equality of constraints to avoid the infeasibility that would arise due to the noisy data

(or the discretisation during the image formation process).

If Xi j is the two-view reconstruction, the relative scale of reconstruction for known 3D-to-

3D correspondences Xi j ↔ Yφi( j) can be computed as

si( j) =
||RT

i Xi j − RT
i ti||

||Yφi( j)||
, j = 1, 2, . . . ,m. (4.7)

Since the reconstructed points from each pair share a common scale, in the ideal case,

we have si( j) = ci, ∀ j ∈ 1, 2, . . . ,m (for constants ci-s). In practice, when the histograms

Hi(u), u = 1, 2, . . . , b of these scales are built, they hold the highest number of samples

in the bin corresponding to the true scale. If those bins are Ui, then the weights are

distributed as follows :

wi( j) =


1 si( j) ∈ H(Ui)

0 otherwise.
(4.8)

Furthermore, the effect of data inaccuracies is reduced by introducing a robust estimation

technique. Hence, the optimization problem (4.6) with robust estimation and histogram-

based weighting can be re-written as
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Input Estimation

Asynchronous 2D-2D corresp. Ri, ti and Ri, ti
Synchronous 2D-2D corresp., Ri, ti R′, t′

TABLE 4.1 – Known and estimated parameters.

min
qi,ti,q′,t′,φ

n∑
i=1

m∑
j=1

wi( j)ρ(||x2
i j − P(RiR′,R′ti + t′,Yφi( j))||),

subject to wi( j)ρ(||x1
i j − P(Ri, ti,Yφi( j))||) = 0,

ρ((x2
i j)

T Ei(R′, t′)x1
i j) = 0,

||qi||
2 = 1, ||q′||2 = 1, i = 1, 2, . . . , n, j = 1, 2, . . . ,m.

(4.9)

where ρ(.) is Tukey bi-weighted potential function as discussed in Section 3.6, defined in

Table 3.6.2, and illustrated in Figure 3.6.

Note that any 2D-to-3D correspondence that does not vote for the valid scale is conside-

red to be an outlier. Here, the derived cost depends only upon the known part of the scene

whereas the constraint includes the unknown part as well. The optimal odometry para-

meters are obtained by iteratively solving this optimization problem. Each iteration breaks

the problem down into two subproblems : (a) 2D-to-3D registration and (b) Camera pose

refinement.

4.4.2/ 2D-TO-3D REGISTRATION

The registration step coarsely localizes the cameras with respect to the scene. Here, we

discuss the registration methods for asynchronous and synchronous cases as two se-

parate subproblems. In the asynchronous case, finding the 2D-to-3D correspondences

required for registration is not trivial. This is done by iterating between camera poses and

the correspondence estimation. On the other hand, finding the precise cross-frame cor-

respondences for the synchronous case is not easy either. Cross-frame image-to-scene

registration in synchronous acquisition is carried out by using minimal point RANSAC-

based pose estimation. The choice of registration methods depends upon the experi-

mental setup. The known input and estimated parameters for two different cases are

summarized in the Table 4.1.
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ASYNCHRONOUS CASE

The main problem in the asynchronous acquisition is that the poses of the camera with

respect the scene are unknown. This makes solving 2D-to-3D correspondence problem

very challenging. Since these correspondences are unknown, the reconstruction that can

be obtained from images is related to the scene by an unknown scale factor. To avoid the

role of this unknown scale, we minimize a cost function which is independent of it, while

imposing the epipolar constraint between images. The proposed optimization problem for

asynchronous cameras registration is as follows :

min
qi,ti,φ

n∑
i=1

m∑
j=1

wi( j)ρ(||(x2
i j)

T Ei(R′, t′)P(Ri, ti,Yφi( j))||),

subject to wi( j)ρ(||x1
i j − P(Ri, ti,Yφi( j))||) = 0,

||qi||
2 = 1, i = 1, 2, . . . , n, j = 1, 2, . . . ,m.

(4.10)

The initial estimate of R′i , t
′
i is obtained using the SfM-based relative pose estimation me-

thod. Note that R′|t′ is the motion between the 3D cameras, whereas R′i |t
′
i are the same for

2D cameras. Although Ei(R′, t′) is shown as the function of R′ and t′ in Equation (4.1), it is

actually the function of R′i and t′i , which are again dependent upon both (R′, t′) and (Ri, ti)

as shown in Equation (4.2). We choose φ such that it maps every pair of image points to

a 3D point that respects the constraint while minimizing the cost. The constraint viola-

tion is penalized by a simple but effective static penalty function as discussed in [109].

Therefore,

φi( j) = arg min
k∈{1,...,p}

||x1
i j − P(Ri, ti,Yk)|| + ||(x2

i j)
T Ei(R′, t′)P(Ri, ti,Yk)||. (4.11)

Hence, the optimal poses of the first set of cameras are obtained, for each camera i

separately, by solving

arg min
qi,ti

m∑
j=1

wi( j)ρ(||(x2
i j)

T Ei(R′, t′)P(Ri, ti,Yφi( j))||),

subject to wi( j)ρ(||x1
i j − P(Ri, ti,Yφi( j))||) = 0,

||qi||
2 = 1, i = 1, 2, . . . , n, j = 1, 2, . . . ,m.

(4.12)

This is a constrained nonlinear optimization problem on the quaternion parameters whose

local optimal solution can be obtained by the iteratively re-weighted least-squares (ILRS)
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technique. In fact, depending upon one’s choice, it can also be solved linearly on R and t

using singular value decomposition. However, the linear solution does not constrain R to

be a rotation matrix. Therefore, the obtained solution needs to be enforced as a rotation

matrix before extracting the quaternion parameters.

For each pair of images, the scale of the reconstruction is finally estimated by averaging

the scales of inliers as follows

µi =

m∑
j=1

wi( j)si( j)

m∑
j=1

wi( j)
, i = 1, 2, . . . , n. (4.13)

Finally, the absolute poses of the second set of cameras in O1 can be obtained through

Ri ti

0 1

 =

R′i µit′i

0 1


Ri ti

0 1

 . (4.14)

Once the cameras are fully registered, they can be thought as synchronized ones. This

is because the second set of cameras can be localized in the first coordinate frame. Hen-

ceforth, we assume that the unsynchronized cameras are synchronized once registered

to the scene.

SYNCHRONOUS CASE

It is trivial to find the 2D-to-3D correspondences xi j ↔ P(Ri, ti,Yk) in one frame. Howe-

ver, cross-frame correspondences are required in order to estimate the motion R′|t′. Such

correspondences can be obtained by matching the 2D feature points between images.

Note that most P(Ri, ti,Yk), when considered as feature points, are unlikely to result in re-

liable feature descriptors for matching. Therefore, we extract a separate set of 2D feature

points to obtain better 2D-2D correspondences x1
i j ↔ x2

i j. Methods based on relative pose

require at least 5 such correspondences to compute the motion with an unknown scale.

On the other hand, if 2D-to-3D correspondences x2
i j ↔ Yk can be found, it would require

only 3 points to estimate the motion including the scale. In order to benefit from this, the

required 2D-to-3D correspondences are computed for each image which is established
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by the mapping function φi( j) computed as

φi( j) = arg min
k∈{1,...,p}

||x1
i j − P(Ri, ti,Yk)||, j = 1, 2, . . . ,m. (4.15)

It is important to notice that the correspondences obtained in this manner are not perfect.

We make a strong consideration of this restriction while refining the estimated motion. The

search required to minimize (4.15) can be performed using a KD-tree like structure where

the projections of all 3D points build one tree in each image. The detected feature points

traverse these trees in search for the best possible match. Once the required correspon-

dences are obtained, the set of cameras in the second frame can be localized with respect

to previously acquired 3D scene using the method presented in [110]. The advantage of

using this method is that it requires a minimum of 3 correspondences among all the views

and does not require a complex scene as demanded by ICP or SfM. For example, even

a planar scene with sufficient texture can be processed. For low frame rates and/or large

displacements, feature matching methods still work better than tracking them. Since only

3 correspondences are needed, finding them from already matched 2D-2D to sparse 3D

is very much achievable in practice.

4.4.3/ CAMERA POSE REFINEMENT

Recall that in both asynchronous and synchronous cases the final result is the registration

of next frame images to the previous scene. In fact, the obtained registration parameters

are the absolute poses of the cameras. However, in practice, the motion obtained in this

manner is not very accurate. In this step, we refine these coarse motion/registration pa-

rameters while making use of scene information. The refinement process optimizes the

motion parameters such that the SfM reconstruction is the closest to the known scene.

During this process, the asynchronous setups are refined by directly solving the equa-

tion presented in (4.9) for the known correspondence function φ. The correspondences

required in this step are obtained directly from the registration process. However, the

synchronous setups are refined by solving the following optimization problem :
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min
q′,t′

n∑
i=1

m∑
j=1

wi( j)ρ(||x2
i j − P(RiR′,R′ti + t′,Yφi( j))||),

subject to ρ((x2
i j)

T Ei(R′, t′)x1
i j) = 0,

||q′||2 = 1, i = 1, 2, . . . , n, j = 1, 2, . . . ,m.

(4.16)

Note that the refinement process uses all the cameras simultaneously to refine R′ and t′,

unlike in Equation (4.12) of the asynchronous case. This is again a constrained nonlinear

optimization problem that can be solved by ILRS technique. Each iteration of IRLS uses

the interior-point method to solve the constrained nonlinear least-squares problem.

4.4.4/ THE ALGORITHM

Starting from known 2D-to-2D correspondences, the algorithm iteratively estimates the

odometry parameters mentioned in Table 4.1. Every iteration reduces the cost function

(4.9) in two steps while satisfying its constraints. Here, we present two different algorithm

for asynchronous and synchronous cases separately.

Algorithm 4 Asynchronous case
For known initial guess on Ri|ti and R′i|t′i obtained from relative pose estimation, refine
them through the following two steps :

1. Camera alignment : iteratively align the cameras to scene until convergence,

(a) estimate the relative pose using 2D-to-2D correspondences ;

(b) compute 2D-to-3D correspondences using (4.11) ;

(c) build multiple scale histogram Hi(u) and compute weights wi( j), j = 1, 2, . . . ,m ;

(d) update the pose of the first set of cameras using (4.12).

2. Simultaneous pose refinement : starting from the results obtained in the “Camera
alignment” step, refine poses of both sets of cameras by solving (4.9).

Obtain real scale µi and compute the absolute pose using (4.14).

Discussion : The problem addressed here is similar to that of scaled-ICP /with initializa-

tion described in Section 2.5.2. The solution to Equation (4.10) provides the scaled-ICP-like

registration of image-sets in a direct manner. Our solution can be thought at that of [72].

However unlike [72], where the 3D-to-3D correspondences are searched, we established

2D-to-3D direct correspondences using Equation (4.11). Once the correspondences are

found, the Equation (4.12) is basically refining the registration parameters, in a very usual

ICP-based methods. Algorithm 4 describes the steps for Asynchronous case. Here, step
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Algorithm 5 Synchronous case

1. 2D-3D registration : for known extrinsics Ri|ti, i = 1 . . . n, iterate over the following
steps until convergence :
For each Camera i = 1, 2, . . . , n

(a) compute P(Ri, ti,Yk), k = 1, 2, . . . , p and build a KD-tree ;

(b) find 2D-to-3D correspondences maps φi( j), j = 1, 2, . . . ,m using (4.15).

Using all Cameras : perform 2D-3D-based RANSAC and estimate R′i,0|t′i,0 using
[110].

2. 2D-2D-to-3D based refinement : starting from R′i,0|t′i,0, iterate until convergence,

(a) Reconstruct the scene Xi j, j = 1, 2, . . . ,m and compute scales si( j) for each
point ;

(b) Build a combined scale histogram H(u), u = 1, 2, . . . , b for all cameras ;

(c) Compute weights wi( j), j = 1, 2, . . . ,m using H(u) ;

(d) Update the pose by optimizing (4.9) for known φi( j) obtained from 2D-3D re-
gistration.

1 (Camera alignment) only aligns the image-sets with respect the 3D scene, whereas

step 2 (Simultaneous pose refinement) refines the pose using coarse alignment obtained

from step 1.

Regarding the choice of Ri and ti, once the essential matrix is fixed, for a dense 3D scene,

one can always find a 3D point that lies on the ray back-projected from the image point.

However, for any Ri and ti, the 3D point lying on the ray does not share a common scale

with rest of the others. Thanks to the scale histogram, a 3D point belonging to common

scale with rather some error (due to inaccurate current Ri and ti estimates) is selected.

Now, since the 3D point is not error free, its projection on the image doesn’t necessarily

satisfy either the cost or the constraint. Furthermore, due to such tread off between scale

and the point on back-projection ray, satisfying the constraint doesn’t necessarily satisfy

the cost, or vice versa.

NORMALIZATION AND POSE RECOVERY

For the sake of numerical stability, the 3D scene points are normalized such that the

distance between the scene’s centroid to the first camera is approximately equal to 1. If

the initial estimate of the ith camera pose is {Ri,0, ti,0}, such normalization corresponds to

Ŷi
k = (Ri,0Yk + ti,0)/||ti,0||, i = 1, 2, . . . , n, k = 1, 2, . . . , p. After this transformation, Ri,0 and
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ti,0 simplify to I3×3 and 03×1 respectively. We also normalize the data during the robust

estimation is scaled with twice of its median value and ξ for Tukey penalty function is set

to 1 whenever it is used. The iterations are terminated when the improvement of the pose

between two consecutive iterations l−1 and l of both cameras becomes insignificant. The

improvements on the rotational (R) and transnational (t) components are computed using

eR = |||Rl − Rl−1||| and et = cos−1
 tTl tl−1

||tl||||tl−1||

 . (4.17)

Improvements on R′ and t′ are also computed similarly. The algorithm terminates when

eR < τ1, eR′ < τ1, et < τ2, and et′ < τ2 for some given thresholds τ1 and τ2.

4.5/ EXPERIMENTS

We tested our methods using both synthetic and real datasets. Our results with synthetic

data were compared against those of ICP with classical SfM. For real data, experiments

with four different datasets captured under different setups were performed. In all the

cases, the constrained nonlinear least-squares optimization problem was solved by using

MATLAB-R2012a Optimization Toolbox with interior-point method.

4.5.1/ SIMULATIONS

We generated a set of 800 random 3D points scattered on the surface of four faces of

a [−10 10]3 cube. The cameras were placed about 20 ± 2 units away from the origin with

randomly generated rotations while roughly looking towards the centroid of the scene. All

scene points were projected onto 256 × 256 images with zero-skew, 100 pix. focal length

and an image-centered principal point. The 2D data were obtained by adding various

levels of zero-mean Gaussian noise to the pixel coordinates. 400 out of 800 projected

points were randomly selected and used to localize the second camera with respect to

the first one using classical SfM. During this process, half of the points are rejected to

minimize the effect of outliers thus leading to the reconstruction of only 200 points. The

same data were used in our method to perform the registration and the refinement. We

ran 100 tests for each noise level of standard deviation from 0 to 2.0 with a 0.25 step. The

simulation results are presented for the two-view case only.
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The roughly known R was generated by introducing an error of [0.05 0.075]c in roll, pitch

and yaw each. We introduced these relatively small errors in R to observe the improve-

ment when the iterative scheme converges. Similarly, a small error of ±5% was introduced

in each translation axis. Nevertheless, these errors are very significant since the scene is

relatively far from the cameras. The histogram was built with auto adjustable 10 bins after

discarding the scales of less than 0.1 and greater than twice its median. First, we obtai-

ned the best possible R, t, R′, and t′ using classical SfM [18] and ICP[111]. As ICP cannot

be performed without the knowledge of relative scale, the extra information of scale is re-

covered with the assumption of the image-based reconstruction being spread all over the

provided 3D scene. Note that, our method does not require this extra information of scale.

To analyze the improvement on camera pose, we computed the deviation of these results

from their ground truth values. The errors ∆R, ∆t, ∆R′, and ∆t′ correspond to the residuals

computed as in Equation (4.17). Figure 4.3 shows the Root-Mean Square (RMS) plots of

the computed errors for various levels of noise. It can be seen that our method performs

significantly better than SfM with ICP even when the ICP is favored with extra information

of scale.
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FIGURE 4.3 – SfM+ICP vs. Our method with noise ; ∆R (left-top), ∆t (right-top), ∆R′ (left-
bottom), and ∆t′ (right-bottom).
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4.5.2/ REAL DATA

Three benchmark and one in-house real datasets were used to test the proposed algo-

rithms. Two out of these four datasets were acquired asynchronously and the other two

synchronously. Each of these datasets were acquired by very different setups as dis-

cussed below. The results obtained were compared against the ground truth (whenever

available) or the known desired output. Required 2D-to-2D correspondences for all the

experiments were obtained by the SURF descriptor based matching.

ASYNCHRONOUS CASE

Scene and images were captured by two different devices. The first dataset was captu-

red by a Kinect sensor and a separate 2D camera. The second dataset consists of two

different scenes scanned by a laser-scanner and multiple images captured by a camera.

Results for the second dataset were compared against the provided ground-truth values.

However, the results of the first dataset were compared against the desired reconstruc-

tion.

Kinect Dataset : For the first experiment with real data, we built the prior 3D scene by

registering multiple frames acquired from a 3D sensor (Kinect). This scene was then

down-sampled to about 50,000 points as shown in Figure 4.4 (left). After the 3D scene

is acquired, a standard-sized football was placed in the same scene and two 1080 × 1920

images were captured by a moving camera. These images and their 1198 correspon-

dences are shown in Figure 4.4 and Figure 4.5. 14 manually selected points from the

corners of the Truncated Icosahedron (TI) (Figure 4.5 (right)) were retained for assessing

the quality of the reconstruction. To overcome the problem of initialization, the first views

of both 2D and 3D cameras are captured approximately from the same location while

facing towards the same part of the scene.

The final metric reconstruction of the scene is upgraded to Euclidean for the measured

length of polygon sides equal to 4.5 cm. Reconstructed TI from two views is placed in

the given 3D scene and shown in Figure 4.6. We have approximated the circumference

of the football by fitting a sphere passing through the vertices of the reconstructed TI.

For a quantitative analysis, the following geometric parameters of reconstructed TI are

computed : (i) LS : RMS error of the length of sides. (ii) AH : RMS error of the internal
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FIGURE 4.4 – Left : Kinect 3D scene ; Right : image pair.

FIGURE 4.5 – Left : Correspondences ; Right : feature points.

LS
AP AH A-HP A-HH

CS
(cm) (cm)

SfM 0.201 4.267 2.008 6.195 140.19 76.25
Our method 0.117 2.943 0.863 3.342 139.20 73.10

TABLE 4.2 – Geometric parameters.

angles of hexagons. (iii) AP : RMS error of the internal angles of pentagons. (iv) A-HP :

RMS error of Dihedral angles between hexagons and the pentagons. (v) A-HH : Dihedral

angle between two hexagons (expected : 138.19). (vi) CS : Circumference of the sphere

(expected : 68-70 cm). Table 4.2 compares these parameters against FIFA’s standard.

This is an example of 2D-to-3D data fusion where the reconstruction from two views

is added to the 3D scene. This example also demonstrates the handling of occlusion

problem because of the football placed in the scene after the 3D acquisition. Furthermore,

even when the 3D data is not very accurate, as it is the case in this case, it shows that

our method still benefits from the scene information.
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FIGURE 4.6 – Two views of the 3D scene with TI.

FIGURE 4.7 – Left : Fountain-P11 ; Right : Herz-Jesu-K7.

EPFL dataset : We also tested our method with the public datasets Fountain-P11 and

Herz-Jesu-K7 (Figure 4.7 from http://cvlabwww.epfl.ch/∼strecha). These datasets consist,

respectively, of 11 and 7 images of size 3072 × 2048 along with ground truth partial 3D

point clouds of the scenes. To validate the ground truth, the texture was mapped on the

scene by back-projecting images using their ground truth projection matrices. Figure 4.8

shows that the provided camera poses are very satisfactory (unlike M. Corsini et al. re-

ported in [76]). First, the 3D reconstructions for every consecutive pair of images are

obtained using classical SfM. All these results are then refined separately using our me-

thod. Results before and after the refinement are compared against the ground truth in

Table 4.3. The 3D errors shown here are the mean 3D RMS error of all the pairs. During

the implementation, we have decimated the 3D scenes to about 50,000 points by uniform

down-sampling for a faster computation. About 2000-3000 feature points were selected

in each pair of views for the reconstruction.

For the multiview case, reconstructions from each consecutive pair of views are registe-

red. Such registration undergoes error accumulation and scale factor drift. We separately

refined these results using our method and sparse BA [112]. The results using our method

http://cvlabwww.epfl.ch/~strecha
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FIGURE 4.8 – Texture mapping of Herz-Jesu-K7.

Method Fountain Herz-Jesu

∆R′(RMS)
SfM 0.0044 0.0072

Our method 8.49e-4 0.0013

∆t′(RMS)
SfM 0.0404 0.0757

Our method 0.0031 0.0052

3D error
SfM 0.0011 0.0025

Our method 5.95e-4 0.0018

TABLE 4.3 – SfM vs. our method (two views).

were found to be significantly better than those of BA. We also considered refining our

results using BA. Results obtained from BA, our method, and BA performed to refine our

results are shown in Table 4.4. It is observed that BA performed on our results diverges

from the ground truth instead of further refinement. Since BA takes only the image infor-

mation into account and cannot incorporate the 3D knowledge, noise present in the image

might be the reason for BA to diverge. For qualitative analysis, results obtained from BA

as well as our method were used to map the texture (Figure 4.9). Texture mapping using

BA contains many artifacts the most visible of which has been circled in this figure. Note

that, as the scene being relatively far from the cameras, even a small error in pose can

significantly affect the texture mapping. It clearly shows the pose refinement using our

method is very accurate and visually no different from the ground truth.

Discussion : In 2-views case, in Table 4.2–4.3, the results are significantly different, as

the proposed method uses extra knowledge of 3D during the pose refinement (because

the given 3D scenes are highly accurate than that could be obtained from 2-views re-

construction). In case of multiple views, it is really difficult to conclude its significance,

shown in Table 4.4. In fact, the experiments for multiple-views asynchronous cameras are
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Method Fountain Herz-Jesu

∆R′(RMS)
BA 0.0436 0.0123

Our method 0.0020 0.0067
Refined 0.0251 0.0080

∆t′(RMS)
BA 0.0311 0.0402

Our method 0.0019 0.0224
Refined 0.0172 0.0241

3D error
BA 0.0020 0.0069

Our method 0.0015 0.0068
Refined 0.0020 0.0069

TABLE 4.4 – BA vs. Our method and unsuccessful refinement of our results using Bundle
Adjustment - BA (multiview).

FIGURE 4.9 – Texture mapping : Bundle Adjustment (left), our method (right).

not conducted extensively to make very strong conclusions. Although 2-views asynchro-

nous case has extensive simulations in Figure 4.3, further investigation on asynchronous

cameras in multiple-views case remains as a future work.

SYNCHRONOUS CASE

We have also tested our method using two different real and synchronous datasets. Both

datasets were acquired by a moving vehicle equipped with a laser-camera system. Ho-

wever, these two setups greatly differ from one another.

KAIST Dataset : We conducted our first Synchronous experiment using data obtained

from a Laser-Camera system dedicated to reconstructing very large outdoor structures.

This system uses two 2D laser scanners and four 2D cameras which are synchronized

and calibrated for both intrinsic and extrinsic parameters. Laser scanners used here pro-

vide a wide angle of view of the scanning plane so that the system can observe tall objects

as well as the ground making its suitable to scan the environment from a close distance.
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The 3D map (reconstruction) of the environment is made by collecting these 2D scans

at their proper location. Therefore, this system requires a very precise localization for a

good reconstruction. Extrinsic parameters of 2D cameras were estimated by laser points

and a pattern-based calibration method. However, it still possesses a mean projection

error of about 0.5 pixels. The interested reader may refer to [95] for details regarding the

experimental setup. The dataset we have tested is a continuous trip of the Laser-Camera

scanning system within the compound of KAIST (Korea) for a distance of about 3 KM.

The system made seven different loops during its travel. The original reconstruction and

the loops are shown in Figure 4.10. The lengths of the loops, as shown in Table 4.5, range

from about 200 meters to 1.5 KM. Each camera captured 480×640 pix. images with a rate

of about 20 frames/sec. The 2D-to-2D correspondences are computed between images

escaping each 10 frames. The original reconstruction obtained by the Laser-Camera sys-

tem was used as the required 3D information for our method. Note that this reconstruction

was not very accurate. Nevertheless, we were still able to refine the motion using such

inaccurate data.

The qualitative and quantitative results are presented in Figure 4.11 and Table 4.5 res-

pectively. The errors were computed by performing the ICP between two point clouds

captured at the loop closing point before and after the loop travel. Note that loop closing

methods are not applied to the presented results. Our goal is to obtain a better localiza-

tion so that it would be suitable for the loop closing methods. We strongly believe that the

localization with such accuracy can be a very suitable input for loop closing. Our experi-

ments clearly show significant improvement in loop closing errors by our method for all the

loops tested. Since, most of the loop closing methods used in practice provide only the

local optimal solution ; these improvements contribute to their convergence to the desired

one. It can also be seen that the error reduction is independent of the loop length. In fact,

the improvement is dependent upon the quality of feature points. The remaining residual

error is the combined effect of the errors in calibration, matching, and measurements.

To analyze reconstruction accuracy, we fitted the surface on the reconstructed points

cloud using an algorithm that we have developed in-house. This algorithm takes advan-

tage of the camera motion and the order of scanned points. The reconstructed surface

was mapped with texture from the same images that were used for localization. The

textured scene with its various stages is shown in Figure 4.12 for only one side of the
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Loop Size (m) Bok et al. (m) Our method (m)
1 351.76 4.063 1.548
2 386.38 4.538 1.469
3 224.37 4.765 4.398
4 242.87 1.696 1.077
5 931.14 3.884 2.858
6 1496.4 7.182 6.381
7 546.05 5.502 2.115

TABLE 4.5 – Loop size and loop closing errors in meters for Bok et al. [95] and our method.

FIGURE 4.10 – Large map reconstructed using Laser-Camera system in a single trip
shown with starting and end points (left). Closed loops made during the travel. Boxes
shown are the loop closing locations of seven different loops (right).

reconstruction around the first loop (about 350 meters). This part of the reconstruction

consists of about 1.3 × 106 3D points and 2.5 × 106 triangles.

KITTI Dataset : The proposed method was also tested on the benchmark dataset avai-

lable at (http ://www.cvlibs.net/datasets/kitti/). The details of the experimental setup is

described in [113]. We have used the stereo pair of gray images and the 3D data scan-

ned from a Velodyne laser scanner. The results obtained before and after refinement for

5 different sequences were compared against the provided ground truth. Errors in rota-

tion and translation were computed by using the evaluation code provided along with the

dataset which uses the ground truth obtained using GPS and other odometry sensors.

Although this ground truth might not be very accurate for local poses comparison, it is re-

levant over a long sequence due to no error accumulation process. Therefore, the errors

were measured at the sequence steps of (100,200,...,800) and are presented in Table 4.6.

Figure 4.13 shows the map obtained for the fifth sequence. A close observation shows

that the localization before the refinement is already quite satisfactory. Its further refine-
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FIGURE 4.11 – Results similar to Figure 4.1 for seventh Loop. Reconstruction with a red
box at the loop closing location (top), obtained using Bok et al. (bottom-left) and our
method after refinement (bottom-right). The double sided arrows show the gap between
two different reconstructions of the same scene.

FIGURE 4.12 – Surface reconstruction and texture mapping showing the accuracy of lo-
calization. Reconstructed 3D, fitted surface, and texture mapping in a close view (top row,
left to right). Texture mapping of the structure scanned around loop 1 (bottom).
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FIGURE 4.13 – Map built by our method (Initial Estimate and Refined Motion) vs. Ground
Truth for the fifth sequence.

Sq.N N.Frames
Initial Estimate Refined

∆T (%) ∆R(◦/m) ∆T (%) ∆R(◦/m)
3 801 1.6774 0.000432 1.6398 0.000216
5 2761 1.9147 0.000245 1.8679 0.000162
7 1101 2.3410 0.000231 1.5689 0.000192
8 4071 2.3122 0.000447 1.9799 0.000196
9 1591 1.7562 0.000270 1.5604 0.000197

TABLE 4.6 – Translation (∆T ) and Rotation (∆R) errors in Initial and Refined results for
five different sequences.

ment makes the result very close to the ground truth itself. Here again, the results are

presented without the loop closing.

ASYNCHRONOUS-TO-SYNCHRONOUS CASE

We also processed the results obtained by asynchronous method using the synchro-

nous data processing algorithm. Basically, the camera poses in asynchronous case are

obtained by using Equation (4.2). Starting from the obtained poses of the first set of ca-

meras, we used Algorithm 5 under the assumption that Algorithm 4 synchronizes the

camera pairs. Results obtained in each step for Fountain and Herz-Jesu sequences are

shown in Table 4.7. Figure 4.14 shows cameras in the scene for one of the sequences.

It can be observed that the camera poses obtained after the synchronous assumption
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FIGURE 4.14 – Ground truth, Asynchronous-to-Synchronous Cameras in the scene.

Asynchronous Synchronous
∆R(mean) ∆t(mean) ∆R(mean) ∆t(mean)

Fountain-P11 0.0214 0.0074 0.0230 0.0111
Herz-Jesu 0.0222 0.0182 0.0196 0.0191

TABLE 4.7 – Error measured during Asynchronous-to-Synchronous case.

are very satisfactory. However, they are not always as good as the ones obtained from

asynchronous algorithm. This happens mainly because the synchronous algorithm is re-

latively more sensitive to the pose gaps. In few cases, when the asynchronous algorithm

does not produce results very close to ground truth, the synchronous algorithm rather

deteriorates the results instead of further improvement. Nevertheless, the absolute poses

obtained from the asynchronous algorithm remains unaffected.
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4.6/ CONCLUSION

In this chapter, we have proposed an optimization framework to accurately localize two or

more cameras in a known environment. We have demonstrated the possibility of precisely

registering 2D images to 3D scene using only feature points. Usage of a known 3D scene

to refine the camera pose is key to achieve such accuracy. To make it possible, a direct

2D-to-3D registration method has also been integrated in the optimization process. When

the 3D scene is known, even up to some inaccuracies, it is better to use this information

for the refinement of the SfM reconstruction than using general-purpose techniques such

as Bundle adjustment.





5

UNCOUPLED CAMERAS

“The art of doing mathematics is finding that special case that contains all

the germs of generality.”

- David Hilbert, 1862 AD – 1943 AD

In this chapter, we present a globally optimal method for 2D-3D registration in the case

of uncoupled acquisition set-up with internally calibrated 2D cameras. Our method, one

presented here, registers a set of images to the scene using SfM-induced reconstruc-

tion. Therefore, it belongs to the indirect 2D-3D registration methods. We search for the

optimal Metric homography, similar to Equation (2.27), using RANSAC framework, defined

by Equation (3.15), under the Branch-and-Bound paradigm, discussed in Section 3.3. Up-

per bounds required for BnB-based search are derived using Sum-of-Squares conditions,

presented in Section 3.5 , whereas, the lower bounds are obtained using scaled-ICP (a

local method) registration discussed in Section 2.5.

5.1/ INTRODUCTION

2D-3D registration problem for asynchronous cameras has become evident with the

emergence of affordable 3D and high quality 2D cameras. Indeed, 3D cameras allow

us to obtain faithful 3D scene models in the form of dense 3D point clouds while images

can be used to extract texture information. High quality 3D models with mapped texture

can be obtained provided the 2D and 3D cameras are registered in a common reference

frame. The two imaging modalities are generally registered off-line and the 2D and 3D

sensors kept rigidly attached at all time during acquisition. Doing so may, however, be

87
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either impractical or impossible. On the one hand, suitable acquisition conditions for one

sensor may not be adequate for the other (e.g. lighting conditions for cameras, surface

orientation for 3D sensor, etc.) and, on the other hand, some application-specific require-

ments (e.g. camera on a drone and a 3D scanner on a vehicle) may altogether prohibit

the sensors to be rigidly attached. When the cameras and the 3D sensor are free, re-

liable methods for registering the two modalities are highly desirable. This consists in

establishing feature correspondences between the two modalities and estimating the ri-

gid transformation aligning their respective reference frames.

Structure-from-Motion (SfM) techniques allow us to compute 3D point coordinates from

pixel correspondences across images. It is thus tempting to regard the registration of

3D and 2D sensors as that of two 3D point sets : one set induced by the images and

the other obtained from scanner measurements. Registering 3D point clouds is a well-

studied problem. Most methods use the Iterative Closest Point (ICP) algorithm (or its

variants) [114, 70, 115]. While ICP is a local method, recent work by Yang et al. [73] (Go-

ICP) provides the very first globally optimal solution to same-scale point set registration.

However, because SfM reconstructions suffer from a scale ambiguity, methods devised

for registering same-scale data cannot be employed.

Most methods handling the scale ambiguity rely on establishing correspondences either

between the 3D measurements obtained by both modalities or directly between scanned

data and images [30, 116, 117]. The sought transformation parameters are then obtai-

ned either by minimizing the registration loss function or maximizing the consensus set

of inliers. Note that Random Sample Consensus (RANSAC) [52] is the most widely used

method for finding the maximum set of inliers. Methods based on loss function minimiza-

tion are more prone to outliers than their inlier-set-maximization counterparts [118]. Some

methods exploit scene knowledge or the Manhattan World assumption. In this regard, me-

thods have been devised based on line segment matching [30], target segmentation [58],

repeated patterns detection [119], mutual information maximization [120], and extended

Chamfer matching [121]. Registration methods that are based on establishing correspon-

dences may be undermined by unreliable visual feature descriptors. Alternative methods,

not establishing initial correspondences, have also been proposed [76, 1, 71]. The me-

thods in [1, 71] use variants of the ICP algorithm and hence remain susceptible to partial

scene overlap, scene occlusion, and high levels of outliers. The method in [76] employs



5.1. INTRODUCTION 89

a RANSAC-based inlier set maximization in which the scale problem is handled by an

extension of the 4-point congruent sets algorithm.

As far as the problem of maximizing the set of inliers is concerned, RANSAC is non-

deterministic and provides no guarantee with respect to the optimality of its solution.

Globally optimal inlier set maximization methods [122, 118] have recently been proposed

for problems that can be described using linear equations. However, extensions to pro-

blems with nonlinear equations [123] is problem-specific, difficult and may result in much

more complicated (possibly numerically intractable) mathematical formulations. Note that

a variety of methods for solving systems of nonlinear polynomial equations exist. While

some are based on Gröbner bases or homotopy continuation [124], others use Sum-

of-Squares (SoS) polynomial optimization [125, 126, 127]. However, such methods are

dedicated to solving outlier-free nonlinear systems and dealing with outliers is carried out

through RANSAC.

In this work, we address the problem of registering the 3D scan and a set of images of

a structured scene captured by calibrated cameras. Our assumption is that the scene

is structured in the sense that it can be segmented into and represented by planes (or

planar patches). Such representation is compact [128] and can also be useful for scene

knowledge-based refinement methods [98]. The plane-based assumption is particularly

valid when dealing with man-made environments, including (but not limited to) Manhattan

World, urban and indoor scenes that are abundant with planes. In our approach, we seek

the metric transformation relating the scene’s planes and SfM-induced 3D points. Note

that point-to-plane registration methods are known to perform better than their point-to-

point counterparts [129]. We rely on the fact that, under metric ambiguity, a point-to-

plane assignment can be expressed as a second degree polynomial in scaled-quaternion

and translation parameters. Our approach aims at maximizing the set of point-to-plane

inliers with guaranteed optimality of the consensus set. The consensus set maximization

methods [122, 118] discussed above are not applicable because of the nonlinearity of

the problem at hand. In our approach, we use the Branch-and-Bound (BnB) algorithmic

paradigm to explore the scaled-quaternion and translation parameter space. As in [122,

118], we rely on establishing optimistic and pessimistic sets of point-to-plane inliers for

pruning branches whose most optimistic sets are worse than the best pessimistic one.
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5.2/ RELATED WORKS

We address the problem of image set to 3D scene registration using an indirect approach.

Given the calibrated cameras and correspondences across a set of images, we first re-

construct the 3D scene using SfM technique. The registration is then carried out by esti-

mating the metric Homography between the reconstruction and the scene. Most methods

handling the scale ambiguity rely on establishing correspondences either between the

3D measurements obtained by both modalities or directly between scanned data and

images [30, 116, 117]. The sought transformation parameters are then obtained either by

minimizing the registration loss function or maximizing the consensus set of inliers. Note

that Random Sample Consensus (RANSAC) [52] is the most widely used method for fin-

ding the maximum set of inliers. Methods based on loss function minimization are more

prone to outliers than their inlier-set-maximization counterparts [118]. Some methods ex-

ploit scene knowledge or the Manhattan World assumption. In this regard, methods have

been devised based on line segment matching [30], target segmentation [58], repeated

patterns detection [119], mutual information maximization [120], and extended Chamfer

matching [121]. Registration methods that are based on establishing correspondences

may be undermined by unreliable visual feature descriptors. Alternative methods, not es-

tablishing initial correspondences, have also been proposed [71, 76]. The methods in [71]

use variants of the ICP algorithm and hence remain susceptible to partial scene overlap,

scene occlusion, and high levels of outliers. The method in [76] employs a RANSAC-

based inlier set maximization.

As far as the problem of maximizing the set of inliers is concerned, RANSAC is non-

deterministic and provides no guarantee with respect to the optimality of its solution.

Globally optimal inlier set maximization methods [122, 118] have recently been proposed

for problems that can be described using linear equations. However, extensions to pro-

blems with nonlinear equations [123] is problem-specific, difficult and may result in much

more complicated (possibly numerically intractable) mathematical formulations. Note that

a variety of methods for solving systems of nonlinear polynomial equations exist. While

some are based on Gröbner bases or homotopy continuation [124], others use Sum-

of-Squares (SoS) polynomial optimization [125, 126, 127]. However, such methods are

dedicated to solving outlier-free nonlinear systems and dealing with outliers is carried out

through RANSAC. Note that the RANSAC based methods fail to provide the certificate for
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global optimality.

5.3/ SOS POINT-TO-PLANE ASSIGNMENT CONDITIONS

We consider a set of two or more calibrated cameras observing a scene consisting of a

set P of at least four distinct planes in general positions. The scene has been scanned by

a 3D sensor and segmented into these planes. We also consider the set Y of seven or

more points (lying on at least four distinct scene planes) whose projections are matched

across two or more cameras. Let Y ∈ R3 be the SfM-induced [130] cartesian coordinate

vector of a point Y ∈ Y (with change in notation for reconstructed points). The coordi-

nates of the SfM-reconstructed points and those of the scene planes are represented in

two distinct reference frames. A plane Π ∈ P is given by its normal 3-vector π and signed

distance to the origin d. Recall that the image-induced reconstruction is metric, the trans-

formation aligning the SfM-reconstructed points and the scanned scene is given by the

metric Homography, as in Equation (2.3). We represent the sought metric Homography by

a 3 × 3 scaled-rotation matrix Q and a translation 3-vector t (representing the inverse Ho-

mography, i.e. HM
−1, of Equation (2.3)). A quaternion representation with no enforcement

of unit quaternion q = ( z u v w )ᵀ is used to represent the scaled-rotation matrix Q

as follows :

Q =


z2 + u2 − v2 − w2 2uv − 2wz 2uw + 2vz

2uv + 2wz z2 − u2 + v2 − w2 2vw − 2uz

2uw − 2vz 2vw + 2uz z2 − u2 − v2 + w2

 .

Let A ⊂ Y×P be the set of putative point-to-plane assignments (× refers to the cartesian

product) and a = (Y,Π) ∈ A is one such assignment. Furthermore, we denote by x ∈ R7

the vector x = (qᵀ, tᵀ)ᵀ and let fa(x) be the polynomial in R[x] induced by a such that :

fa(x) := πᵀ(QY + t) − d. (5.1)

If x is the true registration parameter vector, then for every correct assignment a ∈ A,

fa(x) = 0. Our goal is to simultaneously estimate the registration parameters x and as-

sociated set of correct point-to-plane assignments. For Z = {za| a ∈ A} be a set whose
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FIGURE 5.1 – Polynomials from inlier and outlier assignments. All polynomials with com-
mon zero crossing x∗ are from the correct point-to-plane assignments. If any plynomial
fa(x) crosses zero within the interval [x, x], it is considered as an inlier for that interval.

entry za ∈ {0, 1} decides whether the assignment a is an inlier or an outlier (i.e. if za = 1,

assignment a is an inlier and vice versa), the desired registration can be formulated as an

optimization problem as follows :

max
Z, x

∑
a∈A

za

subject to za fa(x) = 0, for all a ∈ A,

za ∈ {0, 1}, for all a ∈ A.

(5.2)

We solve this problem using BnB algorithmic paradigm, where branching is carried out on

the space of registration parameters x. At each iteration, we are given parameter intervals,

in the form of two vectors x and x in R7 whose respective entries xk and xk satisfy xk ≤ xk

for k = 1 . . . 7. Although the full approach is detailed further in the thesis, the idea is that

such intervals are to be probed for point-to-plane potential assignments by attempting to

solve the following problem :

Problem 5.3.1. For a given a ∈ A, is there a vector x ∈ R7 satisfying xk ≤ xk ≤ xk, k = 1 . . . 7

such that fa(x) = 0 ?

In other words, one would like to know whether the polynomial crosses zero within the
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considered bounds. The point-to-plane assignment would then qualify as a potential inlier,

i.e. possible correct assignment, within the considered bounds. This is however difficult

to answer, unless the zero crossing are searched based on the optimization variable in-

tervals, as shown in Figure 5.1. Therefore, we consider the following alternative problem :

Problem 5.3.2. For a given a ∈ A, is there a λa ∈ R such that λa fa(x) > 0 for every x

satisfying xk ≤ xk ≤ xk f or k = 1 . . . 7 ?

If λa fa(x) > 0, then the assignment a is definitely an outlier, i.e. incorrect assignment, within

the bounds. Otherwise, it is a potential inlier. Indeed, if the question of Problem 5.3.2 is

answered in the affirmative, the one of Problem 5.3.1 is answered in the negative : i.e.

there exist no x in the interval with which fa(x) crosses zero. Furthermore, one can rely

on Putinar’s Theorem 3.5.3 to solve Problem 5.3.2. To do so, assume we are given a set

of polynomials gi(x) whose quadratic module M(g) is Archimedean : if, for λa a scalar,

λa fa(x) > 0 for all x ∈ K = {x ∈ R7 : gi(x) ≥ 0, i = 1 . . .m}, then λa fa(x) ∈ M(g). Hence, there

must exist SoS polynomials σi such that :

λa fa(x) −
m∑

i=1

σi(x)gi(x) is SoS. (5.3)

Note that, in general, if Equation (5.3) is satisfied, then λa fa(x) may not be necessarily

positive in K since K could possibly be empty. However, so long as K is not empty and

σi SoS polynomials can be found, one is guaranteed that λa fa(x) > 0 everywhere in K

since
∑m

i=1 σi(x)gi(x) > 0 in K .

There are two main pending issues before one is able to use Equation (5.3). First, one

needs to find a set of polynomials gi(x), representative of the parameter intervals, whose

quadratic module M(g) is Archimedean. Second, it is so far unclear how the σi SoS po-

lynomials can be found. Let us explore now the first of these issues. Note that the Ar-

chimedean property is a matter of representation and the quadratic module of the set

constructed from the linear interval constraints xk − xk ≥ 0 and xk − xk ≥ 0 is not Archime-

dean. In the following, we show that quadratic polynomial inequalities derived from such

bound constraints yield an Archimedean quadratic module.

Proposition 5.3.3. Consider the polynomials gk(x) = (xk − xk)(xk − xk), k = 1 . . . 7. The

quadratic module M(g) of these polynomials is Archimedean.
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Proof As per Definition 8, for M(g) to qualify as Archimedean, one must show that N −

‖x‖2 ∈ M(g) for some N ∈ N. In other words, there exist SoS σ0(x) and σk(x), k = 1 . . . 7,

such that

N −
7∑

k=1

x2
k = σ0(x) +

7∑
k=1

σk(x)gk(x). (5.4)

Equivalently, one needs to show that

N −
7∑

k=1

x2
k −

7∑
k=1

σk(x)gk(x) is SoS. (5.5)

Upon expanding and factorizing the latter polynomial, we obtain

7∑
k=1

(σk(x) − 1)x2
k −

7∑
k=1

σk(x)(xk + xk)xk + (N +

7∑
k=1

σk(x)xkxk). (5.6)

Using zero-degree SoS polynomials σk, i.e. nonnegative real scalars, one can always find

σk > 1 and sufficiently large value of N such that this polynomial is always positive. Notice

that the polynomial is quadratic in which case PSD and SoS are equivalent [84].

Let us now consider the problem of checking whether or not Equation (5.3) is SoS when

considering the polynomials gk(x), k = 1 . . . 7 of Proposition 5.3.3. If so the assignment a

is definitely an outlier within the bounds. If one knows beforehand that λa fa(x) must be

positive, a sequence of σk(x) of increasing degree can be used until a positivity certificate

is obtained. However, for the problem at hand, when a set of σk(x) of some degree fails

to deliver such certificate, it is either because λa fa(x) indeed crosses zero (inlier) or the

required degree for a positivity certificate has not been reached. The good news here is

that, within a BnB search, the considered bound intervals [x, x] get smaller and we show

in the following that using nonnegative scalars σk rather than SoS polynomials of higher

degree suffices. To see this, consider the following proposition :

Proposition 5.3.4. Let x̂ ∈ R7 with known entries. The following statements are equivalent

(i) λa fa(x̂) > 0.
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(ii) ∃ nonnegative scalars σk ∈ R, k = 1 . . . 7 :

λa fa(x) +

7∑
k=1

(xk − x̂k)2σk > 0. (5.7)

Proof (ii) =⇒ (i) is straightforward. For (i) =⇒ (ii), consider fa(x)’s Gram matrix G f and Gx

that of
∑7

k=1(xk − x̂k)2. These matrices are defined by : fa(x) = xᵀG f x and
∑7

k=1(xk − x̂k)2 =

xᵀGxx. Note that Gx is PSD and can be written as Gx = UᵀU with Ux̂ = 0. The Gram matrix

of the polynomial in Equation (5.7) is then written as λaG f + Uᵀdiag(σ1, σ2, . . . , σ7)U. A

direct application of Finsler’s lemma [82] is that the latter matrix is positive-definite if and

only if λax̂ᵀGfx̂ > 0. This not only shows (i) =⇒ (ii) but also proves the equivalence.

We now state the following preliminary result :

Result 5.3.5. Consider two vectors x and x in R7 whose respective entries xk and xk satisfy

xk ≤ xk for k = 1 . . . 7. Let Kb be the set

Kb = {x ∈ R7 : gk(x) := (xk − xk)(xk − xk) ≥ 0}. (5.8)

If ∃ a scalar λa and nonnegative scalars σk such that

λa fa(x) −
7∑

k=1

gk(x)σk is SoS, (5.9)

then λa fa(x) > 0 for every xk ≤ xk ≤ xk. In this case, the assignment a is guaranteed to

be an outlier (a point-to-plane mismatch) within the considered bounds. Otherwise, a is a

potential inlier. Furthermore, a consequence of Proposition 5.3.4 is that when xk−xk tends

towards zero, we are guaranteed that any outlier within the bound is detected. Indeed, this

can be seen by noticing that when xk = xk = x̂k, polynomial (5.9) turns into (5.7).

Whether (5.9) is SoS can be tested by converting it into its corresponding Gram ma-

trix LMI feasibility problem for the λa and σk indeterminates. Although the guarantee of

identifying outliers using scalar σk multipliers is demonstrated with a zero-gap bound, in

practice, outliers are detected very early in the process. As demonstrated in our experi-

ments, the ability to detect outliers is improved with every size reduction of the investi-

gated bounds. It may be tempting to use higher degree σk(x) SoS polynomials to boost

the process. However, this is unnecessary and yields slower performances compared to
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branching.

5.4/ REGISTRATION

Our goal is to register a SfM-induced reconstruction and a plane-segmented scene. Un-

like when dealing with 3D-3D registration, additional constraints emanating from the ca-

meras can be exploited. Some may be implicit such as plane visibility, others, as vague

camera locations, may be obtained from extra knowledge. In addition, when dealing with

segmented scenes, one is given planar patches rather than infinite planes. Such addi-

tional constraints can augment the set Kb derived from the bound constraints for earlier

outlier detection. Note that adding new polynomials inequalities in Kb has no effect on the

Archimedean property of its quadratic module and Proposition 5.3.4 still holds.

Patches : Consider a scene plane Π and three or more planes Φk, not necessarily from

the scene, orthogonal to it. The Φk planes must be chosen such that their intersection

with Π defines a convex region on Π. The set of points on Π within this convex region

is a patch. In practice, four such planes are adequate to represent meaningful patches

in man-made environments. Each Φk is described by its normal vector φk and signed

distance dk. Let us denote by Φ the set {Φk}
4
k=1 and let δk = ±1 be the known sign, with

respect to Φk, of a scanned point lying within the considered region. One can then identify

outliers by checking whether fa(x) is positive everywhere within x′s bounds and in the set

KΦ
a = {x ∈ R7 : pk(x) := (φᵀk (Qy + t) − dk)δk ≥ 0, k = 1 . . . 4}. (5.10)

Plane visibility : Consider a point Y (not lying on the corner) on a scene plane Π. If this

point is imaged by two cameras, then these can only observe the same side of the plane :

the one on which the point lies. In order for the cameras to observe the same side of

the plane, their camera centers must lie on one side with respect to Π. Camera centers

can easily be obtained from the SfM-calculated camera matrices : they are their right null

space. Let Ck be the camera centers of n ≥ 2 cameras with cartesian coordinates ck. We

define the set Kδ
Π

such that

Kδ
Π

= {x ∈ R7 : vk(x) := (πᵀ(Qck + t) − d)δ ≥ 0, k = 1 . . . n} (5.11)
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where δ = ±1. We denote K+
Π

the set Kδ
Π

obtained using δ = +1 and K−
Π

otherwise. A

given assignment a is a definite outlier if fa(x) > 0 in K+
Π

and in K−
Π

(in addition to patch

and bounds conditions). Furthermore, planes for which v1(x) and v2(x) (for two cameras

1 and 2) always have opposite signs within x′s bounds cannot be assigned any points

visible in those cameras. This would indicate that the plane always cuts the base-line of

the two camera and cannot contain points visible in both cameras. Testing this can be

carried out by checking, for δ = ±1, whether

 ∃σk : v1(x) −
∑7

k=1 gk(x)σk is S oS

∃σk : −v2(x) −
∑7

k=1 gk(x)σk is S oS
(5.12)

If for both values of δ, each polynomial in Equation (5.12) is SoS, plane Π shall not be

considered for assigning SfM points emanating from those cameras.

Camera bounds : A camera center C may lie within a box delimited by six planes in

the set Ψ = {Ψk}
6
k=1 defined by their normal vectors ψk and signed distances dk. Such

information can be obtained from application-specific knowledge (GPS, moving vehicle,

etc.). This knowledge can be used for further enforcing the search for point-to-plane out-

liers and turns very useful when no putative point-to-plane correspondences are initially

known. Consider the cartesian coordinate vector c of the camera center and let

Kc = {x ∈ R7 : hk(x) := (ψᵀ
k (Qc + t) − dk)δk ≥ 0, k = 1 . . . 6} (5.13)

where δk is the known sign, with respect to Φk, of any point within the considered box.

If hk(x) are positive, the camera center is within the box. One can now test if λa fa(x) > 0

whenever the camera center is in the box defined by Kc.

Quaternions and scale : In the absence of scale indeterminacy, quaternion parameters

demand that qᵀq = 1. When dealing with a scaled scene, the rotation is represented

by a scaled quaternion matrix and one can only enforce that qᵀq > 0. It is understood

that, in order to keep the problem numerically tractable via the Archimedean property,

all registration parameters need to be bounded. The scale of the scene is no exception.

When a better lower bound s > 0 on the scale s is available, it is preferable to enforce

that qᵀq ≥ s. This condition does not appear in the set Kb and hence must be accounted

for. Assuming the entries xk, k = 1 . . . 4 of x correspond the quaternion parameters, we
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consider the set

Kq = {x ∈ R7 : q(x) := −s +

4∑
k=1

x2
k ≥ 0} (5.14)

Furthermore, since both q and −q yield the same rotation matrix, the initial lower bound

of one of the quaternion parameters may arbitrarily be chosen nonnegative. The rest of

the quaternion parameters may be initially bounded between −
√

s and
√

s where s is the

scale’s upper bound.

We now state our main result :

Result 5.4.1. Assume we are given a putative point-to-plane assignment a = (Y,Π) ∈

A, a patch on Π delimited by the planes in the set Φ = {Φk}
4
k=1, lower x and upper x

bounds on the registration parameter vector x, bounds s and s on the scale of the scene,

and (optionally) bounds defined by planes Ψ = {Ψk}
6
k=1 on the location of the camera

centers of one (possibly more) camera. One would like to know whether or not the SfM-

reconstructed point Y may lie on Π, while Π is visible by the cameras observing Y, within

the patch Φ with registration parameters in the bounds x and x. In order to establish

whether such assignment is possible, we consider the set

K = {x ∈ R7 : x ∈ Kb ∩ K
Φ
a ∩ K

δ
Π ∩ Kc ∩ Kq) (5.15)

resulting from the intersection of all the sets defined by (5.8),(5.10),(5.11), (5.13) and

(5.14). If there exist a scalar λa and nonnegative scalars σk, σ′k, σ
′′
k , σ′′′k and σ such that

λa fa(x) −
∑7

k=1 gk(x)σk −
∑4

k=1 pk(x)σ′k −
∑n

k=1 vk(x)σ′′k −
∑6

k=1 hk(x)σ′′′k − q(x)σ (5.16)

is SOS, then λa fa(x) > 0 in K and the assignment a is a definite outlier. It is a potential

inlier otherwise. Recall that this can be solved as a LMI feasibility problem.

Our registration approach is based on Result 5.4.1. We use in the following the term point-

to-plane to refer to both point-to-plane and point-to-patch assignments. The goal of the

BnB algorithm is to estimate the registration parameters yielding the largest number of

inliers. Our algorithm is provided a set of putative point-to-plane correspondences. In the

absence of such correspondences, we consider every point to be putatively assigned to

all the planes. A dynamically-built search tree, whose nodes are registration parameters’

bounds, allows to explore the space of parameters. Given point-to-plane assignments
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and bounds on the registration parameters, the algorithm (see Algorithm 1) estimates

the optimistic number of potential inliers using Result 5.4.1. A local method, a variant of

the scaled-ICP algorithm [71] (please refer, point-set-based registration in Section 2.5), is

used to obtain a pessimistic number of inliers for each given node. The local algorithm is

started in the mid-values of the registration parameters’ bounds. It’s variation from [71]

resides in constraining the registration solution to be within the investigated bounds in

order to be representative of the node. We keep track of the highest (bestPessimistic

in Algorithm 1) of the pessimistic number of potential inliers over all bound intervals.

Any node whose optimistic number of inliers is worse than bestPessimistic is rejected.

Otherwise, the node is qualified and branched along its longest edge resulting in two new

nodes to be processed. The node corresponding to the bestPessimistic number of inliers

is processed first. The algorithm terminates when no node has an optimistic number of

inliers that is better than bestPessimistic.

Algorithm 6 Node processing
Input : bestPessimistic

Bounds on the registration parameters
Output : bestPessimistic

1. Compute the Optimistic number of inliers
using Result 5.4.1.

2. If Optimistic < bestPessimistic, reject the bounds.

3. Compute the Pessimistic number of inliers
using a local method.

4. If bestPessimistic < Pessimistic,
then bestPessimistic← Pessimistic.

To qualify a point as an inlier, we distinguish two cases :

1. Putative point-to-plane correspondences are provided : a point qualifies as a poten-

tial inlier if (5.16) is not proven SoS when assigned to the considered plane.

2. No putative correspondences are provided : the point is considered a potential inlier

as soon as (5.16) is not proven SoS when the point is assigned to one plane.

Discussion : In general, our method converges while the explored bounds are still quite

large. The solution maximizing the inlier consensus set is the one returned by the local

method. When the bounds are large enough, polynomials constructed from noisy data

would still cross zero within the bounds allowing inliers, although affected by noise, to be

accounted for. Therefore, the robustness to noise is more influenced by the local method
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than it is by the SoS tests. In our implementation, no special care was taken to further

deal with noise when using SoS tests. However, in the case of highly noisy data, the

proposed SoS framework may allow to deal more efficiently with noise by incorporating

an extra bounded variable ε (bounded by the allowed threshold), accounting for noise, in

each point-to-plane assignment polynomial fa(x). In other words, though the assignment

polynomial does not cross zero at the sought solution, fa(x) + ε (for some value of ε)

would. Furthermore, we have assumed throughout that the camera information fed to our

algorithm is, to some extent, reliable. Should incorrect/noisy information about a camera

be used, it may cause, especially with small camera bounding boxes, the registration to

fail. In such cases, it is advised to include the camera-to-box constraints in the set of

assignments to be accounted for when maximizing the consensus set.

5.5/ EXPERIMENTS

We conducted experiments with seven different benchmark real datasets shown in Fi-

gure 5.2 and whose details can be found in [131] and [132]. Our algorithm was imple-

mented in MATLAB2014b and the SoS problems solved using the LMI Control Toolbox. All

experiments were carried out on a 8GB RAM Pentium i7/3.40GHz. The SfM reconstruc-

tions and segmented scene planes were obtained using the openMVG Toolbox [133] and

Hough Transform based plane detector [128]. For all the experiments, the initial bound

on reconstruction scale was set to 0.2–5.0 (five times in scale in both directions). Four

different error measurement metrics were defined to evaluate the registration quality : the

RMS 3D error on normalized point sets, errors in rotation R, translation t, and scale s. For

N experiments, these are defined as follows :

∆R =

√√√
1

3N

N∑
i=1

‖r∗i − r‖2, ∆T =

√√√
1

N(‖t‖2)

N∑
i=1

‖t∗i − t‖2, ∆S =

√√√
1

N(s2)

N∑
i=1

(s∗i − s)2,

where r is a vector obtained by stacking three rotation angles in degrees. The estimated

variables are represented with * and variables without it are their ground truth.



5.5. EXPERIMENTS 101

FIGURE 5.2 – Sample image and corresponding segmented scene next to each other
shown in different colors for each plane (In order : Scene23, Scene24, Scene27,
Scene29, Scene73, Fountain, and Herz-Jesu).

5.5.1/ INLIER SET MAXIMIZATION WITH CORRESPONDENCES

The method was first tested for known putative correspondences where the synthetic

inliers/outliers were generated under real data setups. No bounds on cameras were used

in these experiments. To test the robustness, we varied the number of outliers up to 90%

for Scene73 and compared the results against the linear 12-point RANSAC. Figure 5.3

shows that our method consistently detects 21 inliers for every experiment while RANSAC

fails to detect the least number of required inliers starting from 45% of outliers. Note that

the numbers of inliers reported here are true-positive inliers. Furthermore, our method

does not detect any false positive inliers. Figure 5.5(left) shows the errors in rotation,

translation, and scale for the same scene with various levels of outliers. The convergence

graph of our method with 50% outliers is shown in Figure 5.5(right) for Scene23, Scene73,

and Fountain whose quantitative results are shown in Table 5.1. Figure 5.4 shows the

evolution of the volume and the number of nodes remaining to be processed for the first

50 iterations on Scene23 with 50% outliers. The qualitative results for scene73 is shown

in Figure 5.6.

5.5.2/ INLIER SET MAXIMIZATION W/O CORRESPONDENCES

In the absence of initial correspondences, each point was assigned to all available planes.

We conducted several experiments with bounded cameras by changing the number of
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∆R (degree) ∆T (%) ∆S (%) 3D error Time (sec)
Scene23 0.785 1.75 0.21 0.0163 168.95
Scene73 1.263 4.63 1.68 0.0219 153.39
Fountain 0.524 1.21 0.53 0.0056 546.41

TABLE 5.1 – Experiments with correspondences and no camera bounds : quantitative
results obtained with 50% outliers.
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FIGURE 5.6 – Top : Sample image and segmented scene ; bottom : point-to-plane corres-
pondences (left) and registered reconstruction (in green) and scene .

bounded cameras and camera bounding box size. The number of iterations taken for

these configurations are shown in Figure 5.7(left) for Scene23. The average time per ite-

ration is 1.15sec. In the same figure, we also provide the number of iterations taken for

the “with correspondences” case with 50% outliers and 2m camera bounding boxes. The

case of a single bounded camera is equivalent to unbounded cameras but bounded trans-

lation : plane visibility criterion cannot be used in this case. We recall that initial bounds

on all the registration parameters are indispensable to ensure an Archimedean quadratic

module of the constraints set and hence employ Putinar’s Psatz. Figure 5.7(right) shows

the convergence graph, using Scene23, obtained with 3 1m-box bounded cameras. It

also shows how the residual error on the registration parameters varies with the increase

in the number of pessimistic inliers. The reported box size is for a normalized scene size

of about 10 meters. In Figure 5.8, we report the results obtained on Scene23 (with 3 1m-

box bounded cameras) using our method and a randomly started scaled ICP (RS-ICP)

for 100 independent trials. In each trial, the scaled ICP was started at randomly picked

registration parameter values satisfying bound and visibility constraints. The results show

that, unlike RS-ICP which provides very large 3D errors, our method consistently detects

the same number of inliers with the same 3D error.
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FIGURE 5.9 – Top : Sample image and segmented scene ; middle : reconstruction, and
registered pointsets ; bottom : two views of texture mapped scene for Scene24.
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The results of our method for all scenes (with their corresponding configurations) are sum-

marized in Table 5.2. In the reported parameters, Points, Planes, Iter, and Inlier represent

their numbers. “Recon.” is the quality of the SfM reconstruction measured as the median

reprojection error in pixels while “Rep.” is the fraction of the scene points represented

by fitted planes. Observe that the registration quality depends upon the reconstruction

quality, representation factor, and the number and size of the camera boxes. For a quali-

tative evaluation, the results obtained for Scene24 are shown in Figure 5.9 along with the

registered point sets and textured scene (after further refinement using [56]).

We also provide the results for two datasets obtained using RISAG [76], Go-ICP [73], and

our method in Table 5.3. Our method was used without correspondences in the setting

given in Table 5.2. Note that Go-ICP requires an Euclidean reconstruction, which was

obtained by upgrading the metric reconstruction using ground truth measurements. Com-

parison of these methods may be unfair because each requires different initial conditions.

Note that the poor performance of RISAG could be due to its RANSAC-driven nature (we

used 104 RANSAC iterations). Nevertheless, both RISAG and Go-ICP were conducted in

their favorable conditions.

5.6/ CONCLUSION

We proposed a method for registering a 3D scan and a set of images of a structured

scene represented by planes (or planar patches). Using the Branch-and-Bound algorith-

mic paradigm and SoS theory, we were able to devise a robust and optimal method for

inlier set maximization of point-to-plane correspondences. Although the problem at hand

is nonlinear and combinatorial, our method has provided outstanding results in terms of

robustness : it worked with as many as 90% outliers. In the absence of initial assign-

ments, the proposed method still remains non-combinatorial and can incorporate additio-

nal constraints that arise from plane visibility criterion and optional vague constraints on

the positions of the camera. The optimization framework used in our approach has the

potential to be efficiently applied to several other nonlinear problems in Computer Vision.
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UNCALIBRATED CAMERAS

“Projective geometry is all geometry.”

- Arthur Cayley, 1821 AD – 1895 AD

In this chapter, we present a globally optimal method for 2D-3D registration in the case of

uncoupled acquisition set-up with uncalibrated 2D cameras. We address this problem by

directly registering two or more uncalibrated 2D images to the scene. The proposed ap-

proach assumes the cameras only known in some arbitrary projective frame as discussed

in Section 2.4. Our solution is based on a Linear Matrix Inequality framework presented

in Section 3.4. We assume that the readers are familiar with cheirality conditions of Equa-

tion (2.20) and Branch-and-Prune search paradigm discussed in Section 3.3.

6.1/ INTRODUCTION

We investigate the problem of registering a scanned scene, represented by Euclidean

3D point coordinates, and two or more uncalibrated cameras. An unknown subset of the

scanned points have their image projections detected and matched across images. The

proposed approach assumes camera matrices to be calculated in some arbitrarily cho-

sen projective frame and no calibration or autocalibration is required. We argue here that

camera calibration may turn out to be impractical due to possible changes in the cameras’

internal geometry when zooming and focusing. As for camera autocalibration, although

globally convergent methods [134, 135, 136, 137] do exist, the process fails for numerous

critical motions of the cameras and is generally sensitive to 2D pixel localization errors.

When cameras are uncalibrated, the transformation relating the cameras to the scene is

109
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projective. Our proposed registration solution is based on a Linear Matrix Inequality (LMI)

framework that allows simultaneously estimating this unknown projective transformation

and establishing 2D-3D correspondences without triangulating image points. The propo-

sed LMI framework allows both deriving triangulation-free LMI cheirality conditions and

establishing putative correspondences between 3D volumes (boxes) and 2D pixel coor-

dinates. Directly using raw 2D points in lieu of triangulated 3D points is believed to yield

more accurate motion computation [138]. In practice, triangulation results are rather un-

certain in the depth direction. Using a small set of such reconstructed points for alignment

may have a devastating effect on the results [100].

Two registration algorithms, one exploiting the scene’s structure and the other concer-

ned with robustness, are presented. Both algorithms employ the Branch-and-Prune pa-

radigm and guarantee convergence to a global solution under some mild initial bounding

conditions. Our algorithms require initial box-2D correspondences with 5 non-overlapping

boxes to guarantee convergence to a global solution. Alternatively, non-overlapping

bounds on camera centers can also be used. Finding initial bounds on camera posi-

tions is relatively easy as far as hand-held or GPS-equipped cameras are concerned.

The results of our experiments, on both simulated and real data, are also presented.

6.2/ BACKGROUND AND NOTATIONS

Recall the notations used for uncalibrated geometry in Section 2.4. Here, we briefly dis-

cuss the concepts of triangulation and Cheirality for uncalibrated reconstruction. These

concepts will later be used derive the LMI conditions for direct 2D-3D registration.

Triangulation : Any point X j can be triangulated in a 3D coordinate frame given camera

matrices and 2D pixel correspondences {xi
j}

n
i=1 across images. So long as at least two

2D points are matched in at least two images, if a xi
j is unknown in one given image

(no corresponding feature point detected and/or matched in that image), it can safely

be replaced by the null vector without prejudice for what follows. Let S j be the 3n × 3n

block-diagonal matrix
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S j =



[ x1
j ]× 0 . . . 0

0 [ x2
j ]× . . . 0

...
...

. . .
...

0 0 . . . [ xn
j ]×


(6.1)

with matrices [ xi
j ]×, i = 1 . . . n, on the diagonal blocks and zeros elsewhere. [ xi

j ]× denotes

the 3× 3 skew-symmetric matrix associated with the cross-product and constructed using

the projection xi
j of X j on camera Pi. Let M be the 3n × 4 matrix obtained by stacking all

camera matrices :

Mᵀ = [ P1ᵀ P2ᵀ P3ᵀ . . . Pnᵀ]. (6.2)

The coordinate vector of X j can then be obtained by solving S jMX j = 0 to least squares.

Note that matrix S jM must be of rank-3, or else assumed to be enforced as such throu-

ghout this Chapter.

Cheirality : As far as the true Euclidean camera matrices and 3D points are concerned,

the depth of any scene point, relative to a camera in which it is visible, must be positive.

The sign of this depth is referred to as the cheirality of the point with respect to the

considered camera [130, 139]. However, in addition to the projective ambiguity, projective

points and cameras are each retrieved up to a different unknown scale generally not

preserving cheirality. It is possible though to assign signatures ζi = ±1 to cameras and

signatures η j = ±1 to points to ensure that : (i) each point has a consistent cheirality with

respect to all cameras in which it is visible, and (ii) all points have a consistent cheirality

with respect to any one camera in which they are visible.

Camera signatures : Let X be a point visible in camera P. The cheirality of X with respect

to any camera Pi in which it is also visible must be identical to that of its cheirality with

respect to P. This can be enforced by considering the signatures ζ and ζi of, respectively,

P and Pi such that

(ζPX)3(ζiPiX)3 > 0 for X visible in P and Pi. (6.3)

Note that (6.3) can be used to deduce the signature of one camera given the signature

of the other. Indeed, this can be done by initially assigning an arbitrarily chosen signature

ζ to one given camera P and iteratively assigning signatures to all cameras observing X.

Every Pi with assigned signature can in turn be used to deduce signatures of cameras
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sharing visible points with it. A robust version of such algorithm may be found in [28].

Point signatures : Correcting the signatures of cameras suffices to enforce identical

cheirality for any given point in all the views in which it is visible. It, however, remains that

any two points X and X j, visible in the same camera P, may have different cheiralities,

(PX)3(PX j)3 < 0, with respect to that camera. To make such points share the same chei-

rality relative to one such camera, one seeks the signatures η and η j of these points such

that

(ηPX)3(η jPX j)3 > 0 for X and X j visible in P. (6.4)

Using (6.4), one may arbitrarily assign a signature η to one of the points X and recover

the signatures of the remaining visible points. Once a signature is assigned to a point, it

can be used to assign signatures to points visible in other views.

Cheirality inequalities : Note that (6.3) allows to assign signatures to cameras indepen-

dently from the homogeneous representation of the considered visible points. Likewise,

signatures are assigned to points through (6.4) independently from the camera signa-

tures. However, this suffices to guarantee that the cheirality of any point to be identical

with respect to all cameras in which it is visible. It also guarantees that all points visible

by one camera carry the same cheirality with respect to it. As in the Euclidean frame,

once signatures are assigned to cameras and points, the plane at infinity Π∞ neither cuts

through the convex hull of scene points nor does it cut through the convex hull of camera

centers. The projective coordinates of Π∞ must satisfy :

η jΠ
ᵀ
∞X j > 0 for j = 1 . . .m, (6.5)

δζiΠ
ᵀ
∞Ci > 0 for i = 1 . . . n (6.6)

for some δ = ±1. Note that the coordinate vectors Ci referred to in (6.6) ought to be

obtained exactly through the identity Cᵀ
i Π = det([Piᵀ | Π]) for some 4-vector Π.

Upgrade : The plane at infinity plays a key role in upgrading a projective reconstruction to

its Euclidean or affine counterpart. For instance, the Euclidean coordinates XE
j of points

X j and Euclidean camera matrices PEi of Pi, satisfying xi
j ∼ PEiXE

j , are only a projective

transformation, say H, away from their projective counterparts : XE
j ∼ HX j and PEi ∼ PiH−1.

The full-rank 4 × 4 matrix H is the matrix representation of H. Unless the cameras are

calibrated and their pose calculated, H is unknown. However, the last row of H is the

homogeneous coordinate vector Π∞ of the plane at infinity in the projective frame. If the
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latter is known, for arbitrarily chosen remaining rows of H, points at infinity in the true

scene are mapped back onto the canonical plane. In this case, the scene and cameras

are said to be reconstructed in an affine frame. Π∞ being generally unknown, one may use

a surrogate plane, say Π̃∞ whose coordinate vector Π̃∞ in the projective frame satisfies

(6.5) and (6.6). The resulting reconstruction is then said to be quasi-affine with respect to

the considered points and camera centers.

Further notations : Additional notations are used throughout the paper : the canonical

vectors are denoted ek, k = 1, 2, 3, such that e1 = (1 0 0)ᵀ, e2 = (0 1 0)ᵀ and e3 =

(0 0 1)ᵀ. The superscript ? refers to the symmetric part of a square matrix. For example,

the symmetric part Q? of a square matrix Q is given by Q? = 1
2 (Q + Qᵀ).

6.3/ LMI-BASED 2D-3D REGISTRATION

In this section, we first introduce a set of LMI and bounding conditions that constitute the

backbone of our 2D-3D registration algorithms. The proposed algorithms are also presen-

ted in this section. We consider the scene imaged by a sequence of uncalibrated cameras

and scanned by a 3D sensor. In addition to 2D point correspondences across images, the

scanned scene points are given by their Euclidean coordinates XE
j , j = 1 . . .m. In the ab-

sence of Euclidean-to-projective (3D-3D) point correspondences and Euclidean-to-image

(3D-2D) point correspondences, the scanned points are an unknown projective transfor-

mation away, XE
j ∼ HX j, from the image-induced 3D points X j. Recall, Equation (2.17),

hereafter we refer HE of Equation (2.17) by H only. Note that H can be linearly calcula-

ted if 3D-3D point correspondences are available. It can also be estimated from 3D-2D

point correspondences via xi
j ∼ PiH−1XE

j . It goes without saying that, if H is known, then

the correspondences can be established. However, when neither H nor 3D-3D or 3D-

2D correspondences are known, the problem is particularly challenging and difficult to

solve. Our goal is precisely to simultaneously establish such unknown correspondences

and estimate H while using only 2D pixel coordinates and the Euclidean coordinates of

the scanned points : i.e. without triangulating image points in 3-space. Once the cor-

respondences established and H estimated, the Euclidean matrices PEi, camera pose

and internal calibration parameters can be extracted. Our proposed solution heavily de-

pends upon finding a surrogate plane at infinity Π̃∞ that wouldn’t cross the scene and
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cameras. This however traditionally requires the so-called cheirality inequalities involving

image points to be triangulated. Therefore, prior to presenting our registration conditions

and methods, we first provide a LMI formulation of the cheirality inequalities for obtaining

such “quasi-affine” plane without triangulating image points.

6.3.1/ CHEIRALITY LMIS

Consider a point X visible in camera P. The signature ζ of P and that of any ca-

mera Pi in which X is also visible must satisfy (6.3). Note that (6.3) can be rewritten

as ζζiXᵀPᵀe3eᵀ
3PiX > 0. One can only notice that the latter inequality is equivalent to

ζζiXᵀ(Pᵀe3eᵀ
3Pi)?X > 0 when employing the symmetric part of the involved matrix. Fins-

ler’s lemma can then be used to deduce the LMI

∃γi : ζζi(Pᵀe3eᵀ
3Pi)? + γi(SM)ᵀSM > 0 (6.7)

for X visible in P and Pi. In (6.7), γi is a scalar and matrices S and M are constructed as

in (6.1) and (6.2) from the image projections of point X and camera matrices. Note that

LMI (6.7) is equivalent to (6.3). It allows to correct the signature of a camera given the

signature of another camera. Unlike (6.3), LMI (6.7) does not require triangulating any

point X. As in (6.3), an arbitrary signature ζ can initially be assigned to camera P and

every matrix whose signature is recovered can be used to deduce the signatures of other

cameras.

An alternative to (6.4) would be to enforce that all points X j visible in some camera

Pi have positive cheirality, i.e. ζiη je
ᵀ
3PiX j > 0 as demanded when using the true Eucli-

dean points and cameras. From (6.5), one can deduce that η j and Xᵀ
jΠ∞ must carry the

same sign. Because Π∞ is homogeneous, we can choose the plane at infinity such that

ζiX
ᵀ
jΠ∞eᵀ

3PiX j > 0. The latter inequality remains true when considering the symmetric part

of the matrix involved : Xᵀ
j (ζiΠ∞eᵀ

3Pi)?X j > 0. Using Finsler’s lemma and accounting for

homogeneity, we deduce that LMI

(ζiΠ∞eᵀ
3Pi)? + γi

j(S jM)ᵀS jM > I (6.8)

must hold for any point X j visible in Pi for some scalar γi
j and the true Π∞. Given the signa-

tures of all cameras obtained via (6.7), LMI (6.8) is an equivalent alternative to using (6.5)
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to calculate a “quasi-affine” plane Π̃∞, satisfying (6.8), not cutting through the convex-hull

of visible points. Unlike (6.5), LMI (6.8) neither requires the calculation of point signatures

nor does it require the reconstruction of the observed points in 3-space. A surrogate plane

at infinity Π̃∞ can be obtained by solving the LMIs (6.8) along with inequalities (6.6) (with

δ = ±1) for all cameras and visible points.

6.3.2/ BOUNDING LMIS

Definition 9 : Positive vs. negative sides of a plane

Consider a plane Π with Euclidean coordinate vector ΠE. We say that a point

X with coordinates XE in this frame lies on the positive side with respect to this

plane if and only if XEᵀΠE
∞Π

EᵀXE > 0. The coordinate vector ΠE
∞ = (0 0 0 1)ᵀ is

that of the plane at infinity in the Euclidean frame. Points on the negative side

with respect Π satisfy XEᵀΠE
∞Π

EᵀXE < 0.

Definition 10 : Boxing a point

Let B = {(Πk,Πk)}3k=1 be a set of three pairs of planes with Euclidean coordinate

vectors ΠE
k = (eᵀ

k − dk)ᵀ and Π
E
k = (eᵀ

k − dk)ᵀ such that the signed distances dk

and dk of the planes to the origin of the frame satisfy dk < dk. Without loss of

generality, the normal vectors ek of the planes are assumed to be the canonical

basis vectors. We say that a point X is boxed by B if for each pair (Πk,Πk), X is

on the positive side with respect to Πk and negative side with respect to Πk.

Let S j be the matrix constructed as in (6.1) from 2D matches. Let ME (resp. M) be, as

in (6.2), the stack of Euclidean (resp. projective) camera matrices PEi (resp. Pi) , i =

1 . . .m. Based on the above definitions, the following corollary can be directly deduced

from Finsler’s lemma.

Corollary 6.3.1. A point X j projecting onto xi
j in cameras {Pi}ni=1 is boxed by B j =

{(Πk,Πk)}3k=1 if and only if the following LMIs are simultaneously feasible for some sca-

lars γ jk and γ jk :

(ΠE
∞Π

Eᵀ
k )? + γ jk(S jME)ᵀS jME > 0 k = 1, 2, 3 (6.9)

γ jk(S jME)ᵀS jME − (ΠE
∞Π

Eᵀ
k )? > 0 k = 1, 2, 3. (6.10)
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Remark 6.3.2. Note that if any of LMIs (6.9) and (6.10) is feasible for some γ jk, then the

same LMI is also feasible for any γ > γ jk. Hence, one can seek a single γ simultaneously

satisfying (6.9) and (6.10) rather than six scalars γ jk, γ jk (k = 1, 2, 3) for each point. This

also means that a single γ can be sought for the LMIs induced by multiple points X j. We

henceforth express all our LMIs using a common γ.

Corollary 6.3.1 allows to express the correspondence between a box in 3D and 2D point

matches. It basically states that if the 3D point X j was to be triangulated from 2D cor-

respondences {xi
j}

m
i=1, then it would be within the box B j if LMIs (6.9) and (6.10) were

feasible and outside this box otherwise. However, LMIs (6.9) and (6.10) depend upon the

unknown Euclidean camera matrices and the true plane at infinity. Let us now consider

the block-diagonal matrix

B j = diag(B1
j ,B

2
j ,B

3
j ,B

1
j ,B

2
j ,B

3
j) (6.11)

whose blocks Bk
j = (Π̃∞Π

Eᵀ
k H)? + γ(S jM)ᵀS jM and B

k
j = γ(S jM)ᵀS jM − (Π̃∞Π

Eᵀ
k H)? are

expressed using projective camera matrices, an unknown 4 × 4 transformation matrix H,

and the surrogate plane at infinity Π̃∞ (calculated as in Section 6.3.1). The following holds

for visible scene points :

Proposition 6.3.3. Let Sx = {(X j,B j)}mj=1 be a set of putative point-to-box correspondences

(i.e. each point X j, projecting onto image points {xi
j}

n
i=1, is assigned to a box B j). If Sx’s

correspondences are correct then LMIs

B j ≥ I, j = 1 . . .m (6.12)

must be simultaneously feasible for a scalar γ and at least the true transformation matrix

H satisfying XE
j ∼ HX j.

Proof The proof relies on Corollary 6.3.1. Recall that ME ∼ MH−1 and Π∞ = HᵀΠE
∞. It is

well-known that congruence transformations preserve definiteness. Hence, pre- and post-

multiplying the left-hand side of each of LMIs (6.9) and (6.10) by H and Hᵀ, these can be

respectively rewritten as (Π∞Π
Eᵀ
k H)? + γ(S jM)ᵀS jM > 0 and γ(S jM)ᵀS jM − (Π∞Π

Eᵀ
k H)? > 0.

As per Remark 6.3.2, a common γ is used. Because Xᵀ
jΠ∞Π̃

ᵀ
∞X j carry the same sign for

all points X j, one can replace Π∞ by Π̃∞ thus leading to all Bk
j and B

k
j being simultaneously
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either positive or negative definite. Since H is unknown, one may choose to enforce posi-

tive rather than negative definiteness. B j > 0 then arises naturally since a block-diagonal

matrix is positive-definite if and only if each of its diagonal blocks is positive-definite. Be-

cause B j > 0 is homogeneous, it is replaced by (6.12).

Similarly, consider the matrix

Di = diag(D1
i ,D

2
i ,D

3
i ,D

1
i ,D

2
i ,D

3
i ) (6.13)

with blocks Dk
i = δ(Π̃∞Π

Eᵀ
k H)? + γPiᵀPi and D

k
i = γPiᵀPi − δ(Π̃∞Π

Eᵀ
k H)?. Given Π̃∞ and δ,

both obtained by solving (6.6) and cheirality LMIs (6.8), the following holds :

Proposition 6.3.4. Let Sc = {(Ci,Ci)}ni=1 be a set of putative camera-to-box correspon-

dences (i.e. each camera center Ci is assigned to a box Ci). If Sc’s correspondences are

correct, then LMIs

Di ≥ I, i = 1 . . . n (6.14)

must be simultaneously feasible for a scalar γ and at least the true transformation matrix

H satisfying XE
j ∼ HX j.

Proof The proof, omitted here, is along the lines of that of Proposition 6.3.3. It employs

Finsler’s lemma while relying on the fact that PiCi = 0 and that δCᵀ
i Π∞Π̃

ᵀ
∞Ci > 0.

When a set of points and/or camera centers are putatively assigned to bounding boxes

B j and/or Ci, LMIs (6.12) and (6.14) can be simultaneously tested for feasibility. Should

they be infeasible, one is guaranteed that at least one point or one camera center has

wrongly been assigned to a box. Alternatively to assigning multiple points to boxes, one

may use bounds on the entries of the sought matrix H to check whether or not a single

point (or camera center)-to-box hypothesis is viable. Assuming the origin of the projective

scene/cameras frame coincides with the centroid of the camera centers and SfM-deduced

points, δ and (H)44 can both be set to 1 (the last row of H being the plane at infinity -

see [130] p. 526). The following corollary can be deduced :

Corollary 6.3.5. Let H and H be the 4 × 4 matrices whose entries are valid, respectively,

lower and upper bounds on the entries of the sought matrix H. If a point X (resp. camera
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center C) is boxed by B (resp. C), the LMI problem

B > 0 (resp. D > 0), (H)44 = 1

(H)k` < (H)k` < (H)k` k, ` = 1, 2 . . . 4
(6.15)

is feasible for a scalar γ and the true matrix H.

6.3.3/ REGISTRATION

We have devised two algorithms for registering 2D corresponding points across images

with their 3D scanned counterparts. The first algorithm, named here SSR (Scene Struc-

ture Registration), is based on Propositions 6.3.3 and 6.3.4 and exploits the scene’s

structure. SSR is relatively fast, considering the problem at hand, but requires that mat-

ched 2D features have their corresponding 3D points scanned. This requirement is re-

laxed in our second registration method, named RR (Robust Registration), that allows a

predefined number of 2D matches not to have scanned 3D counterparts. RR is based

on Corollary 6.3.5 and considers each point-to-box assignment independently from the

others. Both algorithms exploit the Branch-and-Prune (BnP) paradigm but explore dif-

ferent spaces. On the one hand, SSR subdivides non-empty bounding boxes to which

points are assigned in order to iteratively obtain tighter boxes. This algorithm exploits

the fact that scanned scenes consist of surface points and much of the explored space is

void. A point that can only be assigned to an empty box indicates that the correspondence

hypotheses for such assignment are surely incorrect. On the other hand, RR subdivides

the space of parameters defined by the 15 bounded entries of the sought transformation

matrix in order to obtain tighter bounds on this matrix while guaranteeing that at least a

predefined number of points are assigned to non-empty boxes.

Initialization : In both SSR and RR algorithms, all scanned points are initially assigned

to the scene’s bounding box. Some applications and/or setups may allow to assign some

of the points to smaller boxes. Camera centers are initially assigned to bounding boxes

obtained either from GPS information or a good guess (possibly application-specific).

Because estimating H requires 5 pairs of 3D-3D correspondences (no 4 points on one

plane), 5 distinct non-overlapping bounding boxes in general position are required for

the boundedness of the optimization problems at hand. These could be non-overlapping

boxes on 4 cameras in addition to the scene’s bounding box, or boxes around 3 came-
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ras and 2 boxes in the scene, etc. Such assumption is considered satisfied throughout.

In principal, this equivalent to already having a weak (or quasi) Euclidean reconstruction

which lies somewhere between Projective and Euclidean reconstructions. Based on Co-

rollary 6.3.5, the initial bounds on the entries of H can be obtained by solving a series of

SDPs. That is, for each entry (H)k`, solve

max
H,γ

/min
H,γ

(H)k` s.t.B j > 0, Di > 0, (H)44 = 1. (6.16)

In the absence of sufficient bounding boxes, one can also use the structure of H given by

Equation (2.17). Note that the entries of H consists of the first camera intrinsic K1, rotation

R1, translation t1, and the plane at infinity π∞. Given the bounds on all these entries, the

bounds on H can be obtained using interval analysis technique[140]. In fact, the entries

of rotation matrix is always bounded between -1 and 1. It is trivial to find the bounds

on intrinsic using an informed guess (as in [134],[137],[141]). The bounds on plane at

infinity can be estimated by solving the optimization problem of Equation (2.21). Similarly,

the translation bounds can also be obtained as in Chapter 5, from the vague knowledge

about the location of first camera.

SSR : At any given iteration of the SSR algorithm, one is given the sets Sx = {(X j,B j)}mj=1

and Sc = {(Ci,Ci)}ni=1 of respectively point-to-box and camera-to-box assignments. The

set Sx∪Sc defines a node in a dynamically-built search tree. The point or camera-to-box

assignments therein have feasible H and γ simultaneously satisfying their corresponding

LMIs (6.12) and (6.14). Algorithm 7, that requires solving Problem 1 below, is used to

reassess the boxes of all points and camera centers such that smaller boxes contribute to

shrinking larger ones and all boxes best fit the scanned points within. If any box assigned

to a point turns out to be empty, the branch is marked for dismissal and the hypothetical

assignments are dropped. If a branch is not dismissed, then the feasible H for LMIs (6.12)

and (6.14) is used to initialize a projective ICP-like refinement (discussed below). The

branch with the lowest cost (6.19) is processed first. The box in Sx with the longest edge

is subdivided (along the latter edge) into two boxes resulting in two new branches to be

explored.

Problem 1 : Let Sx = {(X j,B j)}mj=1 and Sc = {(Ci,Ci)}ni=1 be sets of putative, res-

pectively, point-to-box and camera-to-box assignments. Let X ∈ {X j}
m
j=1 be boxed by



120 CHAPITRE 6. UNCALIBRATED CAMERAS

Algorithm 7 [Sx,Sc] = SSR-NodeProcessing(Sx,Sc)
for each a ∈ Sx ∪ Sc do

(a ∈ Sx ∪ Sc consists in a tuple (a.X, a.B))
Refine a.B by solving Problem 1
if a ∈ Sx (i.e. a.X is a point) then

if refined a.B is empty (i.e. no scanned points) then
Sx← ∅ ; Sc← ∅ (branch to dismiss)

else
Shrink a.B to best fit scanned points within
Update a in Sx

end if
else

Update a in Sc
end if

end forreturn [Sx, Sc]

B = {(Πk,Πk)}3k=1 ∈ {B j}
m
j=1 for which a possibly tighter box may exist. Recalling that

ΠE
k = (eᵀ

k − dk)ᵀ and Π
E
k = (eᵀ

k − dk)ᵀ, a new upper bound dk for some fixed k can be

obtained by solving

max
H,γ,dk

dk

s.t. (Π̃∞(eᵀ
k − dk)H)? + γ(SM)ᵀSM > I,

B j ≥ I j = 1 . . .m, Di ≥ I i = 1 . . . n.

(6.17)

This can be solved by binary search over dk in the range [dk, dk]. Intuitively, this is equiva-

lent to pushing ΠE
k towards Π

E
k until either the two planes coincide (no smaller bound on

dk) or X cannot be mapped on the positive side of (eᵀ
k − dk)ᵀ. This latter case means that

X can only be mapped on the negative side of (eᵀ
k − dk)ᵀ thus making the resulting dk the

new upper bound dk. A new lower bound dk can be obtained by solving a similar problem

to (6.17) by minimizing dk while γ(S jM)ᵀS jM− (Π̃∞(eᵀ
k −dk)H)? > I and subjected to points

and cameras’ bounding LMIs.

RR : At any given iteration of the RR algorithm, one is given bounds on the 15 entries

of H (given (H)44 = 1) and a set Sx of point-to-box putative assignments. The set Sx and

H’s bounds define a node in a dynamically-built search tree. Algorithm 8 refines the box

assigned to each point based on the bounds on H it has been provided. This algorithm

returns a new set Sx with updated boxes and, more importantly, empty box assignments

taken away. The cardinality of Sx hence provides the number of points actually assigned

to non-empty boxes. The node is dropped if the number of such point-to-box assign-
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ments is below a predefined threshold or LMIs (6.15) are infeasible when considered

simultaneously for all assignments in the refined Sx. Otherwise, the feasible H satisfying

LMIs (6.15) due to Sx is used to initialize the projective ICP-like refinement. The branch

with the lowest cost (6.19) is processed first. In this case, H is branched along its longest

edge thus creating two new branches (inheriting the refined Sx) to explore.

Algorithm 8 Sx = RR-NodeProcessing(Sx,H,H)
for each a ∈ Sx do

Refine a.B by solving Problem 2
if a.B is empty (i.e. no scanned points) then

Remove a from Sx
else

Update a in Sx
end if

end forreturn Sx

Problem 2 : Now consider bounds on H are given and B = {(Πk,Πk)}3k=1 be the box to

which X is assigned. With tighter bounds on H one can obtain new tighter bounds on X.

A new upper bound dk can be obtained by solving

max
H,γ,dk

dk

s.t. (Π̃∞(eᵀ
k − dk)H)? + γ(SM)ᵀSM > 0,

(H)k` < (H)k` < (H)k` k, ` = 1, 2 . . . 4,

(H)44 = 1

(6.18)

assuming the SfM-scene and cameras centered at the origin of the projective frame. As

in (6.17), this can be solved by binary search over dk in the range [dk, dk]. The largest

dk is the new dk. A lower bound dk can very much be obtained in the same manner as

discussed for Problem 1.

Termination : Both SSR and RR algorithms terminate when the cost of the projective

ICP-like refinement reaches a predefined objective or when all branches have been pro-

cessed (up to bound gap in the branching parameters). In the latter case the best solution

is returned.

Projective ICP-like refinement : Let X j be the set of scanned 3D points boxed by some
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box B j. Given initialization on H, it can be refined by minimizing the cost,

{(H) =

n∑
i=1

m∑
j=1

min
X∈X j

d(xi
j,P

iH−1XE)2 (6.19)

where d(., .) is the Euclidean distance. This is carried out by alternating matching 3D

scanned points in bounding boxes and 2D points (based on re-projection error) and re-

estimating H.

Discussion : Both algorithms (proposed above) search the optimal registration para-

meters using the goal attainment-based BnP paradigm. If there exists any solution that

minimizes the cost below desired threshold, these methods safely return the first available

solution. Otherwise, the methods return the best solution found so far. In the context of

outliers, we recommend to use a variant of RR that maximizes the inlier set, similar to the

problem stated in Equation (5.2). The variant of RR uses BnB paradigm (unlike RR), and

maximizes the inlier assignment while searching for the optimal registration parameters.

This is important mainly because it provide the guarantee of finding optimal solution for a

different objective function (of the previous Chapter). The implementation of this method

provides similar solution to that of RR, while guaranteeing that there exists no other better

solution. In terms of processing time, the time it takes to reach to the optimal solution is

very similar to that of RR, however the finding the optimal certificate requires extra time.

The extra time again depends upon the experimental setups.

6.4/ EXPERIMENTS

We tested the proposed methods using synthetic and real images. Projective recons-

truction was obtained using [21] and refined via Bundle Adjustment [69] in [112] using

Rabauds SfM Toolbox [142]. The algorithms were implemented in MATLAB2012a and

the LMI problems were solved using the LMI Control Toolbox. All experiments were

carried out on a Pentium i7/2.50GHz with 8GB RAM.

Synthetic data : We generated a set of 800 random 3D points scattered on the surface of

four faces of a 20m× 20m× 20m scene box. The cameras were placed about 20± 2m away

from the scene’s centroid with randomly generated rotations while looking towards the
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scene. 800 additional points were also generated on the surface of a hemisphere placed

at a corner of the box. Of these points, 1000 were randomly selected and projected onto

512 × 512 images with zero-skew, 200 pix. focal length and an image-centered principal

point. The projected points were imposed 0.0 to 2.0 pixels random noise (with a step of

0.4). Only 20 image points were assumed to be matched across the image sequence.

The SSR method was tested by changing various parameters while conducting 50 expe-

riments for each setup. The number of views was varied from 5 to 15 (with a step of 2)

while bounding camera centers inside cubic bounding boxes (denoted Bbx) of different

sizes (sides of 20cm, 2m, and 4m), with no constraints on the scene points. The number

of branching was allowed to be no more than 50 to restrict the maximum processing time.

The 2D projection error threshold was set to 10−2.

The median time taken for various experiments against the number of bounded cameras

and image noise are shown in Figure 6.1. Similarly, Figure 6.2 shows the success count

over 50 experiments. 2D-to-3D registration accuracy was measured by computing the

3D registration error of all 1000 reconstructed points to the scene. Measured 3D RMS

registration error is shown in Figure 6.3. An experiment is assumed to be successful

if it produces less than 0.1 3D error. The estimated camera intrinsics and pose were

compared against that of ground truth. The Euclidean projection matrix of the first camera

was recovered using PE1 = K1[R1 t1] = P1H−1. For the evaluation, error measurement

metrics for N number of experiments are defined as follows

∆ f =

√√√√√√ N∑
i=1

(α1
i − α)2 + (β1

i − β)2

N(α2 + β2)
, ∆R =

√√√√√ N∑
i=1
||r1

i − r||2

3N
,

∆uv =

√√√√√√ N∑
i=1

(u1
i − u)2 + (v1

i − v)2

N(u2 + v2)
, ∆t =

√√√√√√ N∑
i=1
||t1i − t||2

N(||t||2)
,

where α1, β1 represent two focal lengths, and (u1, v1) is the principal point. r1 is a vector

obtained by stacking three rotation angles in degrees. These angles are obtained from R1

after enforcing its orthogonality. The corresponding variables without subscript represent

the ground truth. The errors in camera intrinsics and pose are shown in Figure 6.4. The

success, speed, and accuracy improve with the increase in number of views and decrease

in the box size.
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FIGURE 6.1 – Time vs. number of views and noise.
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FIGURE 6.2 – Success count vs. number of views and noise.
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FIGURE 6.3 – Registration error vs. number of views and noise.

Critical motion sequence : we also tested our method on one particular critical motion

sequence for camera auto-calibration. Tested sequence consists cameras moving in a cir-
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FIGURE 6.4 – Intrinsic and pose errors vs. number of views.

cular motion around the scene. These cameras maintain a constant distance of 20m from

the centroid of the scene, while going thought the rotation about only z-axis. We conduc-

ted two sets of experiments (20 each set) for 15 cameras bounded inside the bounding

boxes of 20cm and 2m. All the experiments with 20cm bounding boxes were successfully

converged to the desired solution in 82.38 seconds of median time. On the otherhand, 17

out of 20 experiments were converged to the desired solution within the median time of

232.21 seconds. All the experiments were ended with failure when conducted using both

[136] and [137]. Note that the tested motion is not critical motion for the problem at hand

because of the 3D knowledge of the scene.

Real data : We tested our method with two real datasets : Fountain-P11 and Herz-

Jesu-P8 (from [132]). These datasets consist, respectively, of 11 and 8 images of size

3072 × 2048 captured by a moving camera of α = 2759.5, β = 2764.2, u = 1520.7 and

v = 1006.8, along with the laser scanned 3D scenes. Our results were compared against

two methods : RISAG [76] and Go-ICP [73]. RISAG requires metric reconstruction, hence

works only for the calibrated case. Likewise, Go-ICP requires an Euclidean reconstruc-
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FIGURE 6.5 – Fountain : (left) 11 cameras 2m Bbx and scene, (right) estimated cameras
in textured scene using SSR.

FIGURE 6.6 – Herz-Jesu : (left) matched 2D features with outliers in red, (right) texture-
mapped scene using RR.

tion, which was obtained by upgrading the metric reconstruction using ground truth pro-

jection matrices. The metric reconstruction was obtained using openMVG [133]. The re-

sults obtained for all four methods are shown in Table 6.1. For qualitative analysis, esti-

mated projection matrices were used for texture mapping. The obtained results using our

methods were very accurate. These are shown in Figures 6.5-6.6 which also provide the

results after further refinement using [56]. Note that a small error in pose can significantly

affect the texture mapping. For the Fountain sequence, both SSR and RR converged to

the same solution. RR, however, converged to a better solution for Herz-Jesu.
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6.5/ CONCLUSION

We have presented a novel approach for registering two or more uncalibrated cameras

to a 3D scanned scene. The proposed approach only assumes point correspondences

across images. Our solution allows estimating the unknown projective transformation rela-

ting the cameras to the scene and establishing 2D-3D correspondences. A LMI framework

was used to overcome the image-induced point triangulation requirement. Using this fra-

mework, we have derived triangulation-free LMI cheirality conditions and LMI constraints

for establishing putative correspondences between 3D boxes and 2D points. Two globally

convergent algorithms, one exploiting the scene’s structure and the other concerned with

robustness, have been presented.



7

CONCLUSION AND FUTURE WORK

“We can only see a short distance ahead, but we can see plenty there that

needs to be done.”

- Alan Turing, Computing Machinery and Intelligence

In this thesis, we studied three different cases of 2D and 3D registration. When a moving

set-up of 2D cameras and 3D sensor are calibrated, synchronized and rigidly attached,

we showed that the 2D and 3D information can be fused in a relative ease. Fusing 2D

and 3D information not only allowed us to obtain better scene modeling (as in texture-

mapped scenes), but also helped us to recover the accurate motion parameters (as in

visual odometry). We also showed that even when the 2D cameras and 3D sensor are

not synchronized (as in asynchronous set-up), it is possible to register 2D and 3D data

so that they could still be fused together. We presume that the failure to synchronization

demands the re-calibration of extrinsic parameters. Re-calibration was carried out using

a local refinement method, under the assumption that the extrinsic parameters obtained

from the set-up at rest serves as an initialization.

The problem of registering 2D and 3D data becomes more difficult when the 2D came-

ras and 3D sensor are allowed to move freely. This results into no reliable guess on

registration parameters, making it impossible to use local registration methods. For the

uncoupled camera set-ups, we have devised a globally optimal method of 2D-3D regis-

tration. Our method registers a set of calibrated images to the structured scene, with

the help of SfM-induced reconstruction. In this context, the metric homography that re-

lates the reconstruction to the scene is sought using the Branch-and-Prune paradigm.

Our registration method assumes that the scene can be segmented and meaningfully re-

129
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presented by planar patches, and the bounds on the position of one camera (translation

with respect to the 3D scene coordinate frame) are known. The registration process was

carried out by assigning reconstructed points to the segmented planar patches. While

doing so, we searched for the registration parameters such that it maximizes the set of

inlier assignments using sum-of-squares-based outlier detection conditions. With several

experiments, we showed that our method is very robust to outliers, so much so that it

worked even when each point was assigned to all the available planes.

The challenge of registering 2D and 3D data becomes even more difficult when the 2D

images are captured by uncalibrated cameras. The possible reconstruction that can be

obtained in this case relates to the 3D scene by a projective homography. In this work,

we proposed a global method of finding that homography by establishing the direct rela-

tionships between 2D and 3D measurements, under the framework of Branch-and-Prune

search paradigm. This process of registration allowed us to devise two kinds of algo-

rithms : one that relies on scene structure and the other concerned with robustness. Our

experiments showed that although the scene structure-based method demands strong

criteria of complete 3D scene parts with no 2D point outliers, it successfully exploits the

fact that the scene points are from a surface, for a faster registration process. On the other

hand, another proposed algorithm that doesn’t require complete scene parts and handles

the presence of 2D point outliers, provided very robust results in the practical scenarios,

at the cost of extra computation time.

Inline with [138, 100], our experiments showed that the 2D-3D registration (or camera

pose estimation) is more accurate when the 2D re-projection error is minimized, compa-

red to registration based on 3D-to-3D relationships. When given good initialization (like

in asynchronous case), it is safe to assume that local method serves the purpose of re-

gistration and fusion. In fact, we have also demonstrated that the local method can also

play an important role even inside the global optimization framework. Furthermore, one

can always refine the results from global registration methods, if necessary, in the light

of the local method developed in Chapter 4. Based on our observations, the key of accu-

rate registration is either because of the final refinement process or the local refinement

conducted inside the global framework. Despite the fact that the global methods are of

very high value for approximating the correct solution, local methods remain important

when highly accurate solutions are desired.
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Although the optimization method developed in Chapter 5 has been discussed and tested

for inlier set maximization of point-to-plane assignments, it is not limited to the calibrated

2D-3D registration problem alone. In fact, one must be able to successfully exploit the

proposed method for solving many more problems, as long as the problem can be mode-

led as in Equation (5.2). As a prospect, it would be interesting to test our method on inlier

set maximization for other polynomial problems. Furthermore, it would also be interesting

to explore the cases when the polynomials do not belong to the category of PSD and

SoS equivalence (please, refer Table 3.1). The holy grail of consensus set maximization

for non-linear polynomial systems would be to develop a generic framework that does not

require PSD to SoS equivalence for the optimality certificate. This indeed may require

more understanding and exploitation of algebraic geometry concepts and more efficient

search techniques.

In case of uncalibrated camera set-ups, we look forward to incorporate the camera auto-

calibration LMI conditions, as in [137], during the registration process. This will allow us

to jointly benefit from both auto-calibration and registration constraints, simultaneously.

As the current version of the registration method requires the rank-3 enforcement on

the measurement matrix (S jM) before using Finsler’s lemma 3.4.1, one other interes-

ting direction will be to consider the effect of noisy data during triangulation process, as

discussed in [19] for the uncalibrated case. We we have so far tested the uncalibrated

registration using the projective reconstruction method [21] that does not consider any

missing entry in the measurement matrix. One other interesting direction will be to deve-

lop the registration method that successfully considered the presence of outliers during

the projective reconstruction itself, as in [22].
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lage 2d-3d. In Reconnaissance de Formes et Intelligence Artificielle (RFIA) 2014,

2014.

[3] Danda Pani Paudel, Cédric Demonceaux, Adlane Habed, and Pascal Vasseur. Lo-

calization of 2d cameras in a known environment using direct 2d-3d registration. In

Pattern Recognition (ICPR), 2014 22nd International Conference on, pages 196–

201. IEEE, 2014.

[4] Danda Pani Paudel, Adlane Habed, Cedric Demonceaux, and Pascal Vasseur. Ro-

bust and optimal sum-of-squares-based point-to-plane registration of image sets

and structured scenes. In Proceedings of the IEEE Conference on Computer Vi-

sion (ICCV), 2015.

[5] Danda Pani Paudel, Adlane Habed, Cedric Demonceaux, and Pascal Vasseur. Lmi-

based 2d-3d registration : From uncalibrated images to euclidean scene. In Pro-

ceedings of the IEEE Conference on Computer Vision and Pattern Recognition

(CVPR), pages 4494–4502, 2015.

[6] Danda Pani Paudel, Adlane Habed, Cedric Demonceaux, and Pascal Vasseur. Me-

thod for free registration of a euclidean 3-dimensional scanned scene and image

sets. In No 62/165,433, United States, US Provisional Patent, May 22, 2015.

[7] Jacqueline Le Moigne and Allen M Waxman. Projected light patterns for short

range navigation of autonomous robots. In Proc. Int. Conf. on Pattern Recognition,

volume 1, pages 203–206, 1984.

133



134 REFERENCES

[8] Hiroyoshi Morita, Kaanyasn Yajima, and Shojiro Sakata. Reconstruction of surfaces

of 3-d objects by m-array pattern projection method. In Computer Vision., Second

International Conference on, pages 468–473. IEEE, 1988.

[9] Minoru Maruyama and Shigeru Abe. Range sensing by projecting multiple slits

with random cuts. Pattern Analysis and Machine Intelligence, IEEE Transactions

on, 15(6) :647–651, 1993.

[10] Kim L Boyer and Avinash C Kak. Color-encoded structured light for rapid active

ranging. Pattern Analysis and Machine Intelligence, IEEE Transactions on, (1) :14–

28, 1987.

[11] V Srinivasan, HC Liu, and Maurice Halioua. Automated phase-measuring profilo-

metry of 3-d diffuse objects. Applied optics, 23(18) :3105–3108, 1984.

[12] Shouhong Tang and Yau Y Hung. Fast profilometer for the automatic measurement

of 3-d object shapes. Applied Optics, 29(20) :3012–3018, 1990.

[13] Jason Geng. Structured-light 3d surface imaging : a tutorial. Advances in Optics

and Photonics, 3(2) :128–160, 2011.

[14] David Nitzan. Three-dimensional vision structure for robot applications. Pattern

Analysis and Machine Intelligence, IEEE Transactions on, 10(3) :291–309, 1988.

[15] T Nielsen, F Bormann, S Wolbeck, H Spiecker, MD Burrows, and P Andresen.

Time-of-flight analysis of light pulses with a temporal resolution of 100 ps. Review

of scientific instruments, 67(5) :1721–1724, 1996.

[16] Giovanna Sansoni, Marco Trebeschi, and Franco Docchio. State-of-the-art and

applications of 3d imaging sensors in industry, cultural heritage, medicine, and cri-

minal investigation. Sensors, 9(1) :568–601, 2009.

[17] Sameer Agarwal, Yasutaka Furukawa, Noah Snavely, Ian Simon, Brian Curless,

Steven M Seitz, and Richard Szeliski. Building rome in a day. Communications of

the ACM, 54(10) :105–112, 2011.

[18] David Nistér. An efficient solution to the five-point relative pose problem. In IEEE

Trans. Pattern Anal. Mach. Intell., pages 756–777, June 2004.

[19] Richard I Hartley and Peter Sturm. Triangulation. volume 68, pages 146–157.

Elsevier, 1997.



REFERENCES 135

[20] Peter Sturm and Bill Triggs. A factorization based algorithm for multi-image projec-

tive structure and motion. In Computer Vision—ECCV’96, pages 709–720. Sprin-

ger, 1996.

[21] John Oliensis and Richard Hartley. Iterative extensions of the sturm/triggs algo-

rithm : Convergence and nonconvergence. Pattern Analysis and Machine Intelli-

gence, IEEE Transactions on, 29(12) :2217–2233, 2007.

[22] Yuchao Dai, Hongdong Li, and Mingyi He. Element-wise factorization for n-view

projective reconstruction. In Computer Vision–ECCV 2010, pages 396–409. Sprin-

ger, 2010.

[23] Anders Heyden, Rikard Berthilsson, and Gunnar Sparr. An iterative factorization

method for projective structure and motion from image sequences. Image and

Vision Computing, 17(13) :981–991, 1999.

[24] Shyjan Mahamud, Martial Hebert, Yasuhiro Omori, and Jean Ponce. Provably-

convergent iterative methods for projective structure from motion. In Computer

Vision and Pattern Recognition, 2001. CVPR 2001. Proceedings of the 2001 IEEE

Computer Society Conference on, volume 1, pages I–1018. IEEE, 2001.

[25] Bill Triggs. Factorization methods for projective structure and motion. In Computer

Vision and Pattern Recognition, 1996. Proceedings CVPR’96, 1996 IEEE Compu-

ter Society Conference on, pages 845–851. IEEE, 1996.

[26] Toshio Ueshiba and Fumiaki Tomita. A factorization method for projective and eucli-

dean reconstruction from multiple perspective views via iterative depth estimation.

In Computer Vision—ECCV’98, pages 296–310. Springer, 1998.

[27] Behrooz Nasihatkon, Richard Hartley, and Jochen Trumpf. A generalized projective

reconstruction theorem and depth constraints for projective factorization. Interna-

tional Journal of Computer Vision, pages 1–28, 2015.

[28] David Nistér. Calibration with robust use of cheirality by quasi-affine reconstruction

of the set of camera projection centres. In Computer Vision, 2001. ICCV 2001.

Proceedings. Eighth IEEE International Conference on, volume 2, pages 116–123.

IEEE, 2001.

[29] Richard Hartley, Eric Hayman, Lourdes de Agapito, Ian Reid, et al. Camera calibra-

tion and the search for infinity. In Computer Vision, 1999. The Proceedings of the

Seventh IEEE International Conference on, volume 1, pages 510–517. IEEE, 1999.



136 REFERENCES

[30] Lingyun Liu and Ioannis Stamos. Automatic 3d to 2d registration for the photorea-

listic rendering of urban scenes. In CVPR, pages 137–143, 2005.

[31] Michel Dhome, Ali Yassine, and Jean-Marc Lavest. Determination of the pose of an

articulated object from a single perspective view. In BMVC, pages 1–10, 1993.
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Abstract:

In this thesis, we study the problem of registering 2D image sets and 3D point clouds under three

different acquisition set-ups. The first set-up assumes that the image sets are captured using 2D

cameras that are fully calibrated and coupled, or rigidly attached, with a 3D sensor. In this context,

the point cloud from the 3D sensor is registered directly to the asynchronously acquired 2D images.

In the second set-up, the 2D cameras are internally calibrated but uncoupled from the 3D sensor,

allowing them to move independently with respect to each other. The registration for this set-up is

performed using a Structure-from-Motion reconstruction emanating from images and planar patches

representing the point cloud. The proposed registration method is globally optimal and robust to

outliers. It is based on the theory Sum-of-Squares polynomials and a Branch-and-Bound algorithm.

The third set-up consists of uncoupled and uncalibrated 2D cameras. The image sets from these

cameras are registered to the point cloud in a globally optimal manner using a Branch-and-Prune

algorithm. Our method is based on a Linear Matrix Inequality framework that establishes direct

relationships between 2D image measurements and 3D scene voxels.

Keywords: Registration, Camera Calibration, Structure-from-Motion, Projective Geometry, Mathematical

Optimization
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