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Abstract

We consider the robust inverse geometric optimization of arbitrary population trans-
fers and single-qubit gates in a two-level system. Robustness with respect to pulse
inhomogeneities is demonstrated. We show that for time or energy optimization,
the pulse amplitude is constant, and we provide the analytic form of the detuning
as Jacobi elliptic cosine.

We deal with the task of robust complete population transfer on a 3-level quan-
tum system in lambda configuration. First, we use the Lewis-Riesenfeld method to
derive a family of solutions leading to an exact transfer. Among this family, we iden-
tify a tracking solution with a single parameter to control simultaneously the fidelity
of the transfer, the population of the excited state, and robustness. The ultrahigh-
fidelity robustness of the shaped pulses is found superior to that of Gaussian and
adiabatically-optimized pulses for moderate pulse areas. Second, we apply robust
inverse optimization now to generate a stimulated Raman exact passage (STIREP)
considering the loss of the upper state as a characterization parameter. Control
fields temporal shapes, robust against pulse inhomogeneities, that are optimal with
respect to pulse area, energy, and duration, are found to form a simple sequence
with a combination of intuitively (near the beginning and the end) and counter-
intuitively ordered pulse pairs. Alternative robust optimal solutions featuring lower
losses, larger pulse areas, and fully counter-intuitive pulse sequences are derived.
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Résumé

Depuis l’invention du transistor et son utilisation en informatique, les composants
électroniques qui composent un ordinateur se miniaturisent en suivant la loi de
Moore, une observation empirique remarquablement précise concernant une techno-
logie aux multiples facettes. Cette miniaturisation continue a fait passer les ordina-
teurs de la taille d’une pièce à celle d’un livre d’une haute complexité technologique
que nous utilisons aujourd’hui. Malheureusement, ce schéma atteindra, atteint et a
atteint ses limites : comment décrire les transistors et autres composants électro-
niques classiques lorsqu’ils ont été réduits à quelques atomes ?

L’électronique, application technologique de l’électromagnétisme classique, ma-
térialise l’informatique. Lorsque l’électromagnétisme classique perd de sa validité
et que la miniaturisation aboutit à des constructions sans comportement électro-
nique usuel, il nous reste la théorie la plus aboutie pour décrire les phénomènes à
l’échelle atomique : la mécanique quantique. Devant d’une part l’impasse apparente
de l’électronique et, d’autre part, la difficulté apparemment insurmontable de simu-
ler des systèmes quantiques avec un ordinateur classique, un dispositif basé sur la
mécanique quantique pour effectuer la manipulation, le stockage et la transmission
de l’information, c’est-à-dire un ordinateur quantique traitant l’information avec les
principes quantiques, sera au cœur des prochains développements technologiques.

Le calcul quantique consiste à appliquer des opérations logiques spécifiques sur
des informations quantiques afin d’obtenir un résultat dépendant de l’entrée. Ces
opérations sont appelées portes quantiques. Concevoir une porte quantique consiste
à manipuler avec précision n’importe quel état quantique afin de le transformer en
—ou, compte tenu de la dynamique du processus, de le faire évoluer vers— un nouvel
état quantique représentant le résultat de l’opération logique souhaitée.

La tâche consistant à contrôler expérimentalement des systèmes quantiques uni-
ques, entreprise depuis les années 1970, comprend le développement des “pièges
à atomes” (piégeant des atomes uniques pour permettre le contrôle de l’état de
l’électron ou du noyau tout en restant isolé de l’environnement), l’utilisation du mi-
croscope à effet tunnel pour déplacer des atomes uniques et les arranger comme on
le souhaite, entre autres [1, p. 3]. Des aspects fondamentaux de l’informatique quan-
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tique, tels que les algorithmes quantiques simples de quelques qubits, des formes
simplifiées de correction d’erreurs quantiques, la simulation quantique et la télé-
portation quantique, ont été mis en œuvre sur des circuits supraconducteurs, des
photons uniques, des spins nucléaires et des ions piégés [1, p. xix].

Bien que de nombreuses avancées aient été réalisées dans le contrôle des systèmes
mentionnés, y compris la technologie qui nous permet aujourd’hui de façonner le
champ électromagnétique (EM) interagissant avec un atome [2, p. xi], des questions
de mécanique quantique très fondamentales nécessitent des investigations spécifiques
pour le calcul quantique pratique. Selon DiVincenzo, deux obstacles principaux ont
été identifiés : le problème de la correction des erreurs et le problème de la dé-
cohérence [3]. La décohérence est un terme souvent utilisé pour désigner plusieurs
phénomènes quantiques, dépendant également du système physique utilisé, condui-
sant à une perte de cohérence due à l’interaction avec l’environnement ; l’isolement
imparfait affecte l’évolution du système dans la mesure où il n’est plus unitaire
(les portes quantiques doivent être unitaires). D’autre part, la correction d’erreurs
traite du fait que de légères imperfections dans la mise en œuvre d’une opération de
contrôle (par exemple, une impulsion inexacte, une phase incorrecte, des systèmes
ou des contrôles présentant du bruit, etc.) peuvent conduire à l’échec du calcul.

L’objectif central du travail présenté dans ce document est d’approfondir cette
forme de correction d’erreur, par la conception de ce que nous appelons des contrôles
robustes.

En ce qui concerne le contrôle quantique, nous pouvons différencier les approches
selon qu’elles sont adiabatiques ou non. Alors que les schémas adiabatiques tirent
parti, en général, de la dynamique approximative des systèmes lorsque les contrôles
sont suffisamment forts et/ou lents, satisfaisant ainsi l’objectif du fonctionnement
à la limite de l’annulation idéale des termes non-adiabatiques ; l’approche non-
adiabatique utilise des prescriptions directes de contrôles plus rapides et plus éco-
nomiques en énergie.

Les exemples de méthodes adiabatiques sont les passages adiabatiques [4-8] et
superadiabatiques [9, 10]. L’exemple classique d’une méthode diabatique (c’est-à-
dire non-adiabatique) est l’utilisation des oscillations de Rabi avec ses impulsions π
caractéristiques (pour les systèmes à deux niveaux) [11]. L’adiabaticité est intrin-
sèquement insensible aux déviations des contrôles et, en même temps, elle est très
consommatrice de ressources (puisque l’exigence d’adiabaticité correspond stricte-
ment à l’utilisation d’énergies infinies). Ces circonstances ont motivé la création
de méthodes telles que les raccourcis vers l’adiabaticité, où les conditions formelles
d’adiabaticité sont satisfaites en utilisant des champs de contrôle supplémentaires
ou en façonnant les contrôles [12]. Diamétralement opposés, les schémas diabatiques
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requièrent de faibles énergies mais souffrent d’une grande sensibilité aux conditions
non-idéales. De la même manière que des progrès ont été faits pour réduire les exi-
gences énergétiques des processus adiabatiques tout en maintenant leur robustesse,
des techniques qui augmentent la robustesse des contrôles diabatiques ont également
été développées, comme les impulsions composites [13-18], largement utilisées en ré-
sonance magnétique nucléaire (RMN), et les impulsions façonnées à coup unique
(SSSP) comme proposition plus récente [19-21]. Alors que les impulsions composites
utilisent une succession de contrôles, généralement des champs EM, avec différentes
phases à l’origine constantes afin d’annuler les déviations produites par rapport à
l’exécution idéale, les SSSP façonnent les champs —et les phases— dynamiquement
pour produire le même type de correction d’erreur.

Le SSSP nécessite la paramétrisation du propagateur du système. Pour le système
quantique le plus simple et idéalisé, l’atome à deux niveaux, la paramétrisation
générale du propagateur est bien connue. Cependant, même pour un système comme
l’atome à trois niveaux, le propagateur général n’est pas directement disponible
dans la littérature. Une façon de produire des propagateurs paramétrisés menant
à des descriptions exactes de la dynamique du système est d’utiliser des invariants
dynamiques ; mais nous pouvons aussi utiliser des méthodes de la théorie des groupes
pour écrire le propagateur selon leur groupe de symétrie et à partir de ses générateurs
différentiels [22].

En paramétrisant le propagateur, par ingénierie inverse des champs de contrôle,
ont les décrit par un ensemble de paramètres angulaires. Ces paramètres, qui repré-
sentent le degré de mélange entre les niveaux peuplés et les phases relatives dans
l’opérateur d’évolution, peuvent être prescrits en leur faisant suivre un chemin res-
pectant les conditions aux limites, où nous pouvons lui permettre une certaine liberté
ou, au contraire, en la restreignant.

L’ingénierie inverse, telle que nous l’utilisons, fait référence à la résolution du
problème de contrôle “inverse” : à partir d’une certaine dynamique pour le système
on obtient des contrôles, par opposition au problème de contrôle “direct” qui résout
la dynamique du système pour un certain contrôle.

Le contrôle optimal est une méthode mathématique de plus en plus populaire
en particulier dans son application au contrôle quantique. On peut l’utiliser pour
optimiser le réglage fin des solutions de suivi ou pour rechercher des dynamiques
exactes qui sont optimales par rapport à une certaine condition [2, 23, 24].

Pour le calcul quantique ou, plus généralement, pour la manipulation pratique
de l’information quantique, les opérations doivent inéluctablement être effectuées de
manière robuste. Malgré de légers écarts par rapport aux conditions non optimales,
les opérations doivent être effectuées avec précision et efficacité. Qu’il s’agisse de
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Résumé

modifications indésirables des champs de contrôle qui interagissent avec le système
quantique, de la connaissance imparfaite du système à contrôler, de la présence de
bruit ou de toute autre condition non idéale des mises en œuvre dans le monde
réel, nous devons contrôler le système et obtenir les résultats souhaités de manière
résiliente.

Plusieurs approches ont été adoptées à cet égard, dont certaines seront abor-
dées dans les chapitres suivants, notre principal sujet d’intérêt étant les impulsions
formées en un seul coup, son extension à l’optimisation inverse robuste et sa com-
paraison avec des méthodes plus traditionnelles.

Ce document est organisé comme suit : le chapitre 1 aborde les principes de la
méthode “robuste inverse optimisée” (RIO). Le chapitre 2 démontre la méthode RIO
sur des systèmes à deux niveaux, pour lesquels nous obtenons des expressions analy-
tiques pour la forme des contrôles. Le chapitre 3 aborde les principes fondamentaux
du contrôle des systèmes à trois niveaux : schémas adiabatiques et non-adiabatiques.
Le chapitre 4 présente le développement d’un équivalent exact et robuste du passage
adiabatique Raman stimulé (STIRAP) basé sur les impulsions formées en un seul
coup (SSSP) et l’ingénierie inverse via la méthode Lewis-Riesenfeld ; nous l’appe-
lons passage exact Raman stimulé (STIREP). Le chapitre 5 applique la méthode
RIO sur le STIREP pour produire la première solution optimale et robuste à notre
connaissance pour un transfert Λ. Enfin, les conclusions générales de ce manuscrit
sont présentées.

xviii



Introduction

Since the invention of the transistor and its use in computation, the size of the
electronic components that compose a computer is reduced following Moore’s Law,
a remarkably accurate empirical observation regarding a multifaceted technologi-
cal enterprise. The creation of microprocessors and their subsequent continuing
miniaturization has driven computers from room-sized constructs to the handheld
booklet-sized multi-cored marvels of high technological complexity we use nowadays.
Unfortunately, this scheme will reach, is reaching, and has reached its limits: how to
speak of transistors and other classical electronic components when they have been
reduced to a few atoms?

Electronics, the technological application of classical electromagnetism, is used
to materialize the work of computer and information scientists while also providing
their toolkit. When classical electromagnetism loses validity and miniaturization
arrives to constructs with no clear electronic behavior, we are left with the most
successful theory describing the phenomena at atomic scales: quantum mechanics.
We can hold in one hand the apparent dead-end of electronics and, in the other, the
seemingly insurmountable difficulty at simulating quantum systems with a classical
computer, to claim that only a device based purely on quantum mechanics to perform
manipulation, storage, and transmission of information, i.e. a quantum computer
dealing with quantum information, may eventually open the gates towards next
technological developments.

Quantum computation is the action of applying specific logical operations on
quantum information in order to obtain an input-dependent result. These opera-
tions are called quantum gates. To design a quantum gate is to engineer a control
that accurately manipulates any quantum state in order to transform it into —or,
considering the dynamics of the process, evolve it to— a new quantum state rep-
resenting the result of the desired logical operation. Indeed, to produce quantum
gates, besides the other numerous applications in multiple fields of physics and chem-
istry, it is necessary to know how to manipulate accurately any quantum state and
produce any other from it.

The task of controlling experimentally single quantum systems, undertaken since
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the 1970s, includes the development of: “atom traps” (trapping single atoms to
allow the control of the state of electron or nucleus while remaining environmentally
isolated), the use of the scanning tunneling microscope to move single atoms and
arrange them as desired, among others [1, p. 3]. Fundamental aspects of quantum
computation, such as simple quantum algorithms of few qubits, simple forms of
quantum error correction, quantum simulation and quantum teleportation, have
been implemented on superconducting circuits, single photons, nuclear spins, and
trapped ions [1, p. xix].

Although many advances have been made in the control of the mentioned sys-
tems, including the technology that allows us nowadays to shape the electromagnetic
(EM) field interacting with an atom practically as desired [2, p. xi], very fundamental
quantum mechanical issues require extra nuance when practical quantum computa-
tion is the end goal. According to DiVincenzo, two principal obstacles have been
identified: the error correction problem and the decoherence problem [3]. Decoher-
ence is a term often used to refer to several quantum phenomena, depending also
on the physical system in use, leading to loss of coherence due to interaction with
the environment; the imperfect isolation affects the system evolution in that it is no
longer unitary (quantum gates must be unitary). On the other hand, error correc-
tion deals with the fact that slight imperfections in the implementation of a control
operation (e.g., inexact pulse area, incorrect phase or chirp, noisy media or controls,
etc.) can lead, ultimately, to the failure of the computation.

It is the central goal of the work presented in this document to delve into this
form of error correction, by the design of what we refer as robust controls.

Regarding quantum control, we may differentiate approaches with respect to
if they are adiabatic or not. While adiabatic schemes take advantage, for general
guidelines, of the approximate dynamics of systems when the controls are sufficiently
strong and/or slow, thus satisfying the target of the operation at the limit of the
ideal nullification of the non-adiabatic terms; the non-adiabatic approach uses direct
prescriptions of faster and more energy-economic controls.

Examples of adiabatic methods are the adiabatic passages [4–8] and superadia-
batic driving [9, 10]. The classical example of a diabatic (i.e. non-adiabatic) method
is the use of Rabi oscillations with its characteristic π pulses (for two-level systems)
[11]. Adiabaticity is inherently insensitive to deviations of the controls and, at the
same time, it is very resource-consuming (since the adiabaticity requirement may
be understood as the use of infinite energies). These circumstances motivated the
creation of methods such as shortcuts to adiabaticity, where the formal adiabaticity
conditions are satisfied by using additional control fields or by shaping the controls
[12]. Diametrically opposed, the diabatic schemes require desirably low energies but
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suffer from high sensitivity to non-ideal conditions. In the same manner that efforts
were made to lower the energy requirements of adiabatic processes while hoping to
maintain their robustness, techniques that increase the robustness of diabatic con-
trols have also been developed, such as composite pulses [13–18], broadly used in
nuclear-magnetic resonance (NMR), and single-shot shaped pulses (SSSP), a more
recent proposal [19–21]. While composite pulses use controls, usually EM fields,
repeated with different constant phases in order to cancel out the produced devia-
tions from the ideal execution; SSSP shape fields —and, often, phases— in time to
produce the same type of error correction.

SSSP requires the parametrization of the propagator of the system. For the sim-
plest and idealized quantum system, the two-level atom, the general parametrization
of the propagator is well known. However, even for the next simplest system, the
three-level atom, the general propagator is not readily provided by the literature.
A way to produce parametrized propagators leading to exact descriptions of the
system dynamics is to use dynamical invariants; though we may also use methods of
group theory to write the propagator according to their symmetry group and from
its differential generators [22].

Parametrizing the propagator, inverse-engineering the control fields, we translate
the necessity of prescribing the controls into describing a set of angular parameters.
These parameters, representing the degree of mixing between populated levels or
relative phases in the evolution operator, may be prescribed using tracking (assigning
a certain function of time to them in agreement with boundary conditions), where
we can allow for some freedom of fine-tuning the dynamics, or by more restrictive
means.

Inverse-engineering, as we use it, refers to solving the “inverse” control problem:
searching for a certain dynamic for the system and obtaining the controls from it;
as opposed to the “direct” control problem that solves the dynamic of the system
for a certain control.

Optimal control, as a mathematical method that has gained traction in its ap-
plication for quantum control, may be used to optimize the fine-tuning of tracking
solutions or to search for exact dynamics that are optimal with respect to some
condition [2, 23, 24].

For practical quantum computation or, more generally, for the practical manip-
ulation of quantum information, operations must inescapably be made in a robust
manner. Slight deviations from non-optimal conditions must be acceptable and the
operations must be effectuated precisely and efficiently regardless. Be it undesired
changes to the control fields actually interacting with the quantum system, be it the
imperfect knowledge of the object to be controlled, or be it the presence of noise
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and any other non-ideal conditions of real-world implementations, we must act such
that we resiliently produce the desired results.

Several approaches have been taken on this regard, some of which will be dis-
cussed in the following chapters, being our main scheme of interest the single-shot
shaped pulses, its extension to robust inverse optimization, and their comparison
with more traditional methods.

This document is organized as follows: Chapter 1 discusses the principles of the
robust inverse optimization (RIO) method; Chapter 2 demonstrates RIO on two-
level systems, for which we obtain analytical expressions for the controls; Chapter
3 discusses the fundamentals of the control of three-level systems: adiabatic and
non-adiabatic schemes; Chapter 4 presents the development of an exact and robust
equivalent of stimulated Raman adiabatic passage (STIRAP) based on single-shot
shaped pulses (SSSP) and inverse-engineering via the Lewis-Riesenfeld method, we
call this stimulated Raman exact passage (STIREP); Chapter 5 applies the RIO
method on STIREP, instead of tracking, to produce the first-to-our-knowledge opti-
mal and robust solution for a Λ transfer; finally global conclusions of this manuscript
are presented.
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Chapter 1

Principles of robust optimal
control by inverse optimization

1.1 Introduction

Quantum mechanics as a branch of science that studies and explains certain natural
phenomena was developed between year 1900 and the late 1920s. However, it is in
the 1970s and 1980s, after the development of lasers, that a change of mindset began
to take root: looking at quantum systems as phenomena to be designed instead
of merely observed, take control of the quantum world instead of being satisfied
explaining away nature’s queer behaviors at this most mysterious scale. It was this
new perspective that led to the combination of aspects of physics, mathematics,
computer science, and information theory, to give birth to the field of quantum
control and quantum information [1, p. xvii].

From the observational point of view, a quantum system is such an object that
can be identified by a set of energetic states that may be discrete (levels) or con-
tinuous (bands). These energetic states are investigated with electromagnetic (EM)
radiation and their characterization makes up the spectroscopic literature. The shift
to quantum control occurs when limiting our attention to a few energetic states, con-
sidering the application of relevant EM fields, and designing such controls to make
the system reach the target configuration (defined by quantum state populations
and phases —coherences—). The minimal system that can be examined is that of
two levels, widely used to design, test, and analyze strategies of quantum control.
It was the consideration of a simple two-level atom that led to the discovery of the
Rabi oscillations and from which the π-pulse is born. Being the logical next step,
in terms of complexity and usefulness, is the three-level system, when the desired
operation may not be reduced to a two-level interaction.
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1.2 Quantum control and robustness

We approach the task of robustly controlling a quantum system with the single-shot
shaped pulses (SSSP) technique [19–21, 25]. The SSSPs technique is fundamentally
defined by two steps: first, the inverse engineering of the desired transfer using an
appropriately parametrized quantum state, and second, the study of the robustness
of the transfer by applying perturbation theory in the vicinity of the perfect process.

The evolution of an isolated quantum system is described by the Schrödinger
equation,

ih̄∂t|ψε(t)〉 = Hε(t)|ψε(t)〉, (1.1)

where i =
√
−1 is the imaginary unity, h̄ is Planck’s constant divided by 2π, ∂t ≡

∂/∂t is the partial derivative with respect to time t, |ψε〉 is the quantum state of
the system and Hε is its corresponding Hamiltonian. The state and Hamiltonian of
the system are taken as time-dependent objects, while the basis on which they are
written is taken as time-independent bare states, the |n〉’s.

The Schrödinger equation can be written in terms of the propagator of the sys-
tem, defined by |ψε(t)〉 = Uε(t, ti)|ψ(ti)〉, and omitting the redundant initial-time
statevector |ψi〉 ≡ |ψ(ti)〉, as

ih̄U̇ε = [H(t) + Vε(t)]Uε, (1.2)

where the Hamiltonian has been split into a term corresponding to the perfect
inverse-engineered dynamics, H, and another containing unknown deviations (la-
beled ε) from the ideal desired control fields, Vε. Given that we are interested in
the dynamics of the system governed by the deviation term, we write the Schrö-
dinger equation in the interaction picture with the interaction propagator UI(t) =

U †(t)Uε(t),
ih̄U̇I = U †[(H + Vε)U − ih̄U̇ ]UI = U †VεUUI , (1.3)

given that H is the inverse-engineered solution producing the desired dynamics in
U (ih̄∂tU = HU). The superscript dagger denotes complex transpose.

By considering these unknown control deviations ε to be only perturbations on
the propagator of the system, which contains the effect of the implemented control
regardless of the initial condition of the system, we can apply perturbation theory
to the interaction propagator with the orders of the perturbative terms given by the
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multiplicity of the interaction Hamiltonian in the expression,

UI(tf , ti) = 1− i

h̄

∫ tf

ti

U †VεU dt

+

(
− i
h̄

)2 ∫ tf

ti

U †VεU

∫ t

ti

U ′†V ′
εU

′ dt′ dt+ Ô(ε3), (1.4)

where the primed objects indicate dependence on the primed time, e.g., U ′ ≡
U(t′, ti). With the perturbative expression for the interaction propagator we can
obtain the state and populations fidelities at the end of the process with respect to
the desired final state, the target state |ψ(tf )〉 = U(tf , ti)|ψ(ti)〉 = |ψT 〉, i.e.,

〈ψT |ψf〉 = 1− i

h̄

∫ tf

ti

〈ψ|Vε|ψ〉 dt+
(
− i
h̄

)2 ∫ tf

ti

∫ t

ti

〈ψ|VεUU ′†V ′
ε |ψ′〉 dt′ dt

+ 〈ψi|Ô(ε3)|ψi〉 = 1−O1 −O2 − · · · , (1.5)

|〈ψT |ψf〉|2 = 1− Õ1 − Õ2 − · · · , (1.6)

where we have used the identity matrix, explicitly as the initial-time ideal propagator
(which is true by the definition of a propagator) for an N -level system,

1 = U(ti, ti) =
N∑
n

|ψn(ti)〉〈ψn(ti)|, (1.7)

with |ψn(t)〉 a dynamical basis, to write the final-state deviation terms, On.

1.2.1 Two-level system

For the two-level system, the identity matrix is

1 = |ψ0(ti)〉〈ψ0(ti)|+ |ψ⊥(ti)〉〈ψ⊥(ti)|, (1.8)

where |ψ0〉 and |ψ⊥〉 are an orthonormal basis for the solution of the time-dependent
Schrödinger equation (TDSE) for the Hamiltonian H, i.e., 〈ψ⊥(t)|ψ0(t)〉 = 0 and
the propagator of the unperturbed Hamiltonian is

U(t, ti) = |ψ0(t)〉〈ψ0(ti)|+ |ψ⊥(t)〉〈ψ⊥(ti)|. (1.9)

The first three deviation terms read

O1 = −(−i)
∫ tf

ti

〈ψ0|V |ψ0〉 dt ≡ i

∫ tf

ti

e dt ∈ I, (e ∈ R) (1.10a)
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O2 = −(−i)2
∫ tf

ti

∫ t

ti

(ee′ + ff ′) dt′ dt

= −(−i)2
{
1

2
|O1|2 +

1

2

∣∣∣∣∫ tf

ti

f dt

∣∣∣∣2
+ i

[
2

∫ tf

ti

∫ t

ti

f I(t)fR(t′) dt′ dt−
∫ tf

ti

fR(t) dt

∫ tf

ti

f I(t) dt

]}
, (1.10b)

O3 = −(−i)3
∫ tf

ti

∫ t

ti

∫ t′

ti

(ee′e′′ + ef ′f ′′ + ff ′e′′ − fe′f ′′) dt′′ dt′ dt,

= −(−i)3
[
1

3

∫ tf

ti

e dt

∫ tf

ti

∫ t

ti

ee′ dt′ dt+

∫ tf

ti

e dt

∫ tf

ti

∫ t

ti

ff ′ dt′ dt

− 2

∫ tf

ti

∫ t

ti

∫ t′

ti

fe′f ′′ dt′′ dt′ dt

]
, (1.10c)

with the real and complex variables

e ≡ 〈ψ0|Vε/h̄|ψ0〉 = −〈ψ⊥|Vε/h̄|ψ⊥〉, (1.11a)

f ≡ 〈ψ0|Vε/h̄|ψ⊥〉, (1.11b)

respectively. The other terms can be determined from a symbolic diagram [19].

We denote the state and population fidelities at a certain order n

〈ψT |ψε(tf )〉n = 1−O1 −O2 − · · · −On, (1.12a)

|〈ψT |ψε(tf )〉|2n = 1− Õ1 − Õ2 − · · · − Õn. (1.12b)

For population transfer, the relevant figure of merit is the population fidelity, for
which the deviation terms are

Õ1 = O1 +O1 = 2ReO1 = 0, (1.13a)

Õ2 = O2 −O1O1 +O2 = 2ReO2 − |O1|2 =
(∫ tf

ti

e dt

)2

+

∣∣∣∣∫ tf

ti

f dt

∣∣∣∣2, (1.13b)

Õ3 = O3 −O1O2 −O1O2 +O3 = 2ReO3 + i2O1 ImO2. (1.13c)

1.2.2 Three-level system

For the three-level system, the identity matrix is

1 = |ψ0(ti)〉〈ψ0(ti)|+ |ψ+(ti)〉〈ψ+(ti)|+ |ψ−(ti)〉〈ψ−(ti)| (1.14)
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and the first four final-state deviation terms are

O1 = −(−i)
∫ tf

ti

mdt ∈ I, (m ∈ R) (1.15a)

O2 = −(−i)2
∫ tf

ti

∫ t

ti

(mm′ + nn′ + pp′) dt′ dt

=
1

2

[
|O1|2 +

∣∣∣∣∫ tf

ti

n dt

∣∣∣∣2 + ∣∣∣∣∫ tf

ti

p dt

∣∣∣∣2]+ i

[∫ tf

ti

nR dt

∫ tf

ti

nI dt

+

∫ tf

ti

pR dt

∫ tf

ti

pI dt− 2

∫ tf

ti

∫ t

ti

(nRn′I + pRp′I) dt′ dt

]
, (1.15b)

O3 = −(−i)3
∫ tf

ti

∫ t

ti

∫ t′

ti

[m(m′m′′ + n′n′′ + p′p′′) + n(n′m′′ + q′n′′ + r′p′′)

+ p(p′m′′ + r′n′′ + s′p′′)] dt′′ dt′ dt, (1.15c)

= −(−i)3
{
|O1|O2 −

1

3
|O1|3 +

∫ tf

ti

n dt

∫ tf

ti

∫ t

ti

rp′ dt′ dt

+

∫ tf

ti

p dt

∫ tf

ti

∫ t

ti

rn′ dt′ dt− 2Re
[∫ tf

ti

(∫ t

ti

n′ dt′
)(∫ t

ti

p′ dt′
)
r dt

]
+

∫ tf

ti

∫ t

ti

∫ t′

ti

[n(m′ + q′)n′′ + p(m′ + s′)p′′] dt′′ dt′ dt

}
, (1.15d)

O4 = −(−i)4
∫ tf

ti

∫ t

ti

∫ t′

ti

∫ t′′

ti

{m[m′(m′′m′′′ + n′′n′′′ + p′′p′′′) + n′(n′′m′′′ + q′′n′′′

+ r′′p′′′) + p′(p′′m′′′ + r′′n′′′ + s′′p′′′)] + n[n′(m′′m′′′ + n′′n′′′ + p′′p′′′)

+ q′(n′′m′′′ + q′′n′′′ + r′′p′′′) + r′(p′′m′′′ + r′′n′′′ + s′′p′′′)] + p[p′(m′′m′′′

+ n′′n′′′ + p′′p′′′) + r′(n′′m′′′ + q′′n′′′ + r′′p′′′) + s′(p′′m′′′ + r′′n′′′

+ s′′p′′′)]} dt′′′ dt′′ dt′ dt, (1.15e)

where the bar over terms of the expression denotes their complex conjugate, and the
superscripts R and I mean real and imaginary parts, respectively. We have used
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the properties∫ tf

ti

∫ t

ti

(ab′ + ba′) dt′ dt =

∫ tf

ti

a dt

∫ tf

ti

b dt, (1.16a)∫ tf

ti

∫ t

ti

∫ t′

ti

ab′c′′ =

∫ tf

ti

a dt

∫ tf

ti

(∫ t

ti

c′ dt′
)
b dt

−
∫ tf

ti

(∫ t

ti

a′ dt′
)(∫ t

ti

c′ dt′
)
b dt (1.16b)∫ tf

ti

∫ t

ti

∫ t′

ti

(ab′c′′ + ba′c′′ + bc′a′′) dt′′ dt′ dt =

∫ tf

ti

a dt

∫ tf

ti

∫ t

ti

bc′ dt′ dt, (1.16c)∫ tf

ti

∫ t

ti

∫ t′

ti

∑
σ

a(σ1)b(σ2)c(σ3) dt′′ dt′ dt =

∫ tf

ti

a dt

∫ tf

ti

b dt

∫ tf

ti

c dt, (1.16d)

where
∑

σ is the summation over all possible permutations of the primed functions,
and the last two properties can be generalized for more than three nested integrals,
e.g., ∫ tf

ti

∫ t

ti

∫ t′

ti

∫ t′′

ti

(ab′c′′d′′′ + ba′c′′d′′′ + bc′a′′d′′′ + bc′d′′a′′′) dt′′ dt′ dt

=

∫ tf

ti

a dt

∫ tf

ti

∫ t

ti

∫ t′

ti

bc′d′′ dt′′ dt′ dt. (1.17)

The vectors |ψ+〉 and |ψ−〉 are orthonormal vectors perpendicular to |ψ0〉, with which
they form a complete basis (thus allowing the previous definition of the identity
matrix), and the elements of the interaction Hamiltonian on this basis are

m = 〈ψ0|Vε/h̄|ψ0〉, n = 〈ψ0|Vε/h̄|ψ+〉, p = 〈ψ0|Vε/h̄|ψ−〉, (1.18a)

q = 〈ψ+|Vε/h̄|ψ+〉, r = 〈ψ+|Vε/h̄|ψ−〉, s = 〈ψ−|Vε/h̄|ψ−〉, (1.18b)

where m, q and s, are real quantities since Vε is Hermitian. The final population
deviations from the perfect transfer, the Õn’s, are straightforwardly given by

Õ1 = O1 +O1 = 2ReO1 = 0, (1.19a)

Õ2 = O2 −O1O1 +O2 = 2ReO2 − |O1|2 =
∣∣∣∣∫ tf

ti

n dt

∣∣∣∣2 + ∣∣∣∣∫ tf

ti

p dt

∣∣∣∣2, (1.19b)

Õ3 = O3 −O1O2 −O1O2 +O3 = 2ReO3 + i2O1 ImO2, (1.19c)

Õ4 = O4 −O1O3 −O2O2 −O1O3 +O4 = 2ReO4 − |O2|2 + i2O1 ImO3. (1.19d)

A pictorial representation of the scheme to obtain the On’s is shown in Fig. 1.1.
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−

0

+

−

0

Figure 1.1: Pictorial representation of the obtainment of the On’s

1.2.3 Procedure to control the robustness of the control

The only requirement for this treatment is that the interaction Hamiltonian Vε needs
to represent only a perturbation to the perfect inverse-engineered Hamiltonian H.
Satisfied this condition, we can identify the terms that provoke the deviations on
the perfect transfer to the target state as the On’s (or Õn’s if the target fidelity is
measured for population). Then, with an appropriately parametrized propagator U ,
we can obtain the basis vectors |ψn〉 and attempt to improve the robustness of the
process by minimizing the deviations.

It is worth noting that the propagator involved in the obtainment of the deviation
terms is the one corresponding to the perfect transfer, the system with no pertur-
bations ε. This implies that we can treat a complicated system with a simplified
propagator if the complications of the system come only from perturbations.

The parametrization necessary for the inverse-engineering procedure is described
in the following sections, depending on the symmetry of the system Hamiltonian.
Multiple methods of obtaining propagators, with the purpose of providing freedom
to choose more convenient parametrizations, are presented before choosing a pair
of specially relevant representations, according to their physical interpretation and
practicality of their manipulation.

1.2.4 General SU(2) propagator for SSSP on the two-level
system

It is easy to show that a general parametrization for a propagator in U(2) (a unitary
2× 2 matrix) is

Uφ = eiφ/2

[
ei(ϕ−γ)/2 cos(θ/2) −ei(ϕ+γ)/2 sin(θ/2)
e−i(ϕ+γ)/2 sin(θ/2) e−i(ϕ−γ)/2 cos(θ/2)

]
, (1.20)

11



Chapter 1. Principles of robust optimal control by inverse optimization

where φ is a global dynamical phase and the necessary initial conditions are θi =
φi = 0 and ϕi = γi. The special unitary group SU(2) is that of matrices in U(2)
with determinant equal to 1; in this case, the global phase must be null at all times
and the general parametrized propagator is

U =

[
ei(ϕ−γ)/2 cos(θ/2) −ei(ϕ+γ)/2 sin(θ/2)
e−i(ϕ+γ)/2 sin(θ/2) e−i(ϕ−γ)/2 cos(θ/2)

]
. (1.21)

Given that the Schrödinger equation for traceless Hamiltonians demands the prop-
agator to have a constant global phase,

ih̄Tr(U̇φU
†
φ) = −h̄φ̇+ ih̄������:0

Tr(U̇U †) = TrH = 0, (1.22)

and that a constant global phase for the propagator is irrelevant,

ih̄���eiφ/2U̇ = H���eiφ/2U, (1.23)

we can always use a propagator of the form U , in SU(2), to consider the dynamics
of traceless Hamiltonian systems.

Similarly, for a Hamiltonian with non-zero trace the global dynamical phase of
the propagator in U(2) could be absorbed into the system statevector and we would
be again considering an evolution in SU(2).

A well-known way to produce a SU(2) matrix with a general Euler angle param-
etrization, though with a set of required initial conditions, is with the product of
the generators of its algebra, like

U = eiσzϕ/2e−σyθ/2e−σzγ/2 =

[
ei(ϕ−γ)/2 cos(θ/2) −ei(ϕ+γ)/2 sin(θ/2)
e−i(ϕ+γ)/2 sin(θ/2) e−i(ϕ−γ)/2 cos(θ/2)

]
. (1.24)

1.2.5 Lewis-Riesenfeld invariant for SSSP on the two-level
system

For a Hamiltonian

H =
h̄

2

[
−∆ Ω

Ω ∆

]
, (1.25)

with Rabi frequency Ω and detuning ∆, the Lewis-Riesenfeld (L-R) invariant [21,
22, 26, 27] is

I = α1σx + α2σy + α3σz, (1.26)

12



1.2. Quantum control and robustness

where
∑3

n=1 α
2
n = α2

0, α0 is a constant (positive by choice) and the generators of the
algebra, σn, are, as usual, the Pauli matrices

σx =

[
0 1

1 0

]
, σy =

[
0 −i
i 0

]
, σz =

[
1 0

0 −1

]
. (1.27)

The eigenvalues of this invariant are ±α0 and the eigenvectors

|φ±〉 =
1√

2α0(α0 ± α3)

[
±(α0 ± α3)

α1 + iα2

]
, (1.28)

with their corresponding populations,

P± =

[
|〈1|φ±〉|2

|〈2|φ±〉|2

]
=

1

2α0

[
α0 ± α3

α0 ∓ α3

]
. (1.29)

From the Schrödinger equation for the invariant, ih̄İ = [H, I], the Rabi frequency
and detuning are

Ω =
α̇3

α2

, ∆ =
α̇1

α2

. (1.30)

The L-R phases, η± =
∫ t

ti
〈φ±|ih̄∂t −H|φ±〉/h̄, are given by

η̇± =
α̇1

2α2

∓ α1α̇3

2α2(α0 ± α3)
(1.31)

The propagator, U =
[
U|1〉 U|2〉

]
/2α0, is then

U|1〉 =

[
eiη−

√
(α0 − α3)(α0 − α3i) + eiη+

√
(α0 + α3)(α0 + α3i)

eiη12
[
−eiη−

√
(α0 + α3)(α0 − α3i) + eiη+

√
(α0 − α3)(α0 + α3i)

]] , (1.32a)

U|2〉 = e−iη12i

[
−eiη−

√
(α0 − α3)(α0 + α3i) + eiη+

√
(α0 + α3)(α0 − α3i)

eiη12
[
eiη−

√
(α0 + α3)(α0 + α3i) + eiη+

√
(α0 − α3)(α0 − α3i)

]] ,
(1.32b)

where α̃12 = α1 + iα2 = α12e
iη12 . α̃12 is a complex number with modulus α12 and

phase η12, thus α12 =
√
α2
1 + α2

2 and eiη12 = (α1 + iα2)/α12.

We can parametrize the αn’s in terms of angular variables as

α1 = α0 cosϕ sin θ, α2 = −α0 sinϕ sin θ, α3 = α0 cos θ, (1.33)

thus producing α̃12 = α0e
−iϕ sin θ and making the states, populations, Rabi fre-

13



Chapter 1. Principles of robust optimal control by inverse optimization

quency, detuning, L-R phases, and propagator be

|φ+〉 =

[
cos(θ/2)

e−iϕ sin(θ/2)

]
, |φ−〉 =

[
− sin(θ/2)
e−iϕ cos(θ/2)

]
, (1.34a)

P+ =

[
cos2(θ/2)
sin2(θ/2)

]
, P− =

[
sin2(θ/2)

cos2(θ/2)

]
, (1.34b)

Ω =
θ̇

sinϕ
, ∆ = ϕ̇− θ̇ cosϕ cos θ

sinϕ sin θ
, (1.34c)

η̇± =
ϕ̇

2
∓ θ̇ cosϕ

2 sinφ sin θ
, (1.34d)

U|1〉

2α0

=

[
eiη− sin(θ/2) sin(θi/2) + eiη+ cos(θ/2) cos(θi/2)

e−iϕ [−eiη− cos(θ/2) sin(θi/2) + eiη+ sin(θ/2) cos(θi/2)]

]
, (1.34e)

U|2〉

2α0

= eiϕi

[
−eiη− sin(θ/2) cos(θi/2) + eiη+ cos(θ/2) sin(θi/2)

e−iϕ [eiη− cos(θ/2) cos(θi/2) + eiη+ sin(θ/2) sin(θi/2)]

]
, (1.34f)

respectively. We can rewrite the L-R phases as

η± =
ϕ− ϕi

2
∓ γ − γi

2
, (1.35)

by introducing

γ̇ =
θ̇ cosϕ

sinϕ sin θ
. (1.36)

It is worth noting that this propagator is such independently of the initial conditions,
unlike the “general” SU(2) parametrization in (1.21). Thus we are free to choose any
initial conditions for the parameters in the propagator and obtain the system state
afterwards. A choice that simplifies greatly the propagator is θi = 0, while ϕi = γi

makes it equal to (1.21). Then, the aesthetically simplified but general propagator
is

U =

[
ei[(ϕ−ϕi)−(γ−γi)]/2 cos(θ/2) −ei[(ϕ+ϕi)+(γ−γi)]/2 sin(θ/2)
e−i[(ϕ+ϕi)+(γ−γi)]/2 sin(θ/2) e−i[(ϕ−ϕi)−(γ−γi)]/2 cos(θ/2)

]
. (1.37)

For a not-type gate U11f = 0 and U21f = 1, θf = π, and κ = (ϕf + ϕi + γf − γi)/2
produce

Unot =

[
0 −eiκ

e−iκ 0

]
. (1.38)

A Hadamard-type gate, U11f = ei(ϕ0−γ0)/2/
√
2 and U21f = e−i(ϕ0+γ0)/2/

√
2, requires

14
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(a)

|1〉
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Figure 1.2: From left to right: (a) a general three-level system in lambda (Λ) con-
figuration, (b) a resonant three-level system in Λ configuration with real couplings
and no coupling between states |1〉 and |3〉, (c) a three-level system in ladder (Ξ)
configuration with no couplings between |2〉 and |3〉 nor between |1〉 and |2〉.

θf = π/2, ϕf − ϕi = ϕ0, and γf − γi = γ0 to produce

UH =
1√
2

[
ei(ϕ0−γ0)/2 −ei(ϕ0+γ0)/2

e−i(ϕ0+γ0)/2 e−i(ϕ0−γ0)/2

]
. (1.39)

We can use it to generate a maximum superposition if the system is initially in either
of |1〉 or |2〉.

1.2.6 General SU(3) propagator for SSSP on the three-level
system

The dynamics of a general three-level system (as the ones in Fig. 1.2), a system
comprehending three states, one coupling for each pair of states, and one detun-
ing between coupling and the corresponding transition frequency, as the one with
Hamiltonian (1.40), is governed by a propagator belonging to the SU(3) group [when
the Hamiltonian is traceless, and U(3) otherwise].

H̃ =
h̄

2


2(∆23 −∆12)/3 Ω12 e−i(η̃12−η̃23)Ω̃13

Ω12 2(∆23 + 2∆12)/3 Ω23

ei(η̃12−η̃23)Ω̃13 Ω23 −2(∆12 + 2∆23)/3

 , (1.40)

The SU(3) group is characterized by the eight (hermitian and traceless) genera-
tors λn, commonly known as the Gell-Mann matrices, and obeys the su(3) algebra
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Chapter 1. Principles of robust optimal control by inverse optimization

described by their commutation relations, i.e.,

λ1 =

0 1 0

1 0 0

0 0 0

 , λ2 =

0 −i 0

i 0 0

0 0 0

 , λ3 =

1 0 0

0 −1 0

0 0 0

 , (1.41a)

λ4 =

0 0 1

0 0 0

1 0 0

 , λ5 =

0 0 −i
0 0 0

i 0 0

 , λ8 =
1√
3

1 0 0

0 1 0

0 0 −2

 , (1.41b)

λ6 =

0 0 0

0 0 1

0 1 0

 , λ7 =

0 0 0

0 0 −i
0 i 0

 , [λi, λj] =
8∑

k=1

Ck
ijλk, (1.41c)

with C1
23 = 2i, C1

47 = C1
65 = C2

46 = C2
75 = C3

45 = C3
76 = i, C4

58 = C6
78 = i

√
3,

satisfying the properties Ck
ij = −Ck

ji, Ck
ij = Ci

jk and the normalization condition
Tr(λiλi) = 2δij, with δij the Kronecker Delta.

The su(3) algebra is composed by a few sets of closed algebras, such as the
su(2) subalgebras constituted by {λ1, λ5, λ6} and {λ1, λ2, λ3}, or as the extended
{λ1, λ2, λ3, λ8}, with its equivalents {λ3, λ6, λ7, λ8} and {λ5, λ4, λ3, λ8}. Other sub-
algebras of su(3) exist, but they are redundant in their physical interpretation when
considering Hamiltonians written in terms of their generators. Even though the
general SU(3) propagator obeying the su(3) algebra is necessary when treating a
general Hamiltonian involving a three-state system, some cases significant in their
practicality can be described restricting the propagator to the subalgebras of su(3),
e.g., the subalgebra constituted by

• {λ1, λ5, λ6} is appropriate to treat fully resonant three-level systems with real
couplings Ω12 and Ω23, and no coupling Ω13, while the one generated by

• {λ5, λ4, λ3, λ8} can describe a three-level system with a single coupling, the
complex coupling Ω̃13, a detuning with respect to the target level |1〉 and
another to the desirably uncoupled level |2〉. This system reduces to one of
two levels, since the third level becomes irrelevant, unless a deviation from
this algebra is included in the form of a small coupling with level |2〉.

The physical systems described by the su(3) algebra and the mentioned subalgebras
are pictured in Fig. 1.2. Additional subalgebras may be found, e.g., using equal
couplings Ω̃12 = Ω̃23 = Ω̃ and detunings such that ∆23 = −2∆12, the corresponding
generator λ16 = λ1 + λ6 obeys the su(2) algebra with λ27 = λ2 + λ7 and λ38 =

(λ3 +
√
3λ8)/2.
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1.2. Quantum control and robustness

The propagator corresponding to these three-level Hamiltonians is an element
of SU(3). In fact, we can write the general Hamiltonian (1.40) in terms of the
generators of such algebra as

H̃ =
h̄

2

[
Ω12λ1 + Ω23λ6 −∆12λ3 + (∆12 + 2∆23)λ8/

√
3.

+ cos(η̃12 − η̃23 − η̃13)Ω13λ4 + sin(η̃12 − η̃23 − η̃13)Ω13λ5

]
. (1.42)

The formula to write a general element belonging to the SU(3) group is known and
provided by [28], i.e.,

Ũ = eiλ3xe−iλ2θeiλ3zeiλ5(φ+π/2)eiλ3aeiλ2(η+π/2)eiλ3ceiλ8

√
3y, (1.43)

where we have taken some liberties when defining the Euler angles. We can reshape,
or reparametrize, this propagator by applying unitary transformations using expo-
nential matrices of the same generators (and thus with unity determinant) but with
fixed factors, fixed rotations on the abstract eigth-fold parameter space that will
only affect the parametrization and not the generality of the group element.

Two versions of this propagator can be highlighted, both general representations
of an element of the SU(3) group, but where the Euler angles take different physical
interpretations by effect of specified aesthetically-convenient transformations. On
one hand, we have a version of the propagator that facilitates the study of population
evolution on the bare states when the system is initially in state |1〉,

Ũp = eiλ5π/2eiλ2π/2eiλ5π/2Ũeiλ5π/2 =
[
|ψ̃p1〉 |ψ̃p2〉 |ψ̃p3〉

]
, (1.44)

with

|ψ̃p1〉 = e−2iy

 e
i(x+z) cos θ sinφ
− sinφ

ei(−x+z) cosφ sin θ

 , (1.45a)

|ψ̃p2〉 = ei(−c+y)

e
i(a+x+z) cos η cos θ sinφ− ei(−a+x−z) sin η sin θ

eia cos η cosφ
ei(a−x+z) cos η sin θ sinφ+ ei(−a−x−z) cos θ sin η

 , (1.45b)

|ψ̃p3〉 = −ei(c+y)

e
i(a+x+z) cos θ sin η sinφ+ ei(−a+x−z) cos η sin θ

eia cosφ sin η
ei(a−x+z) sin η sin θ sinφ− ei(−a−x−z) cos η cos θ

 , (1.45c)

where the first column, corresponding to the parametrization of the solution to the
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Chapter 1. Principles of robust optimal control by inverse optimization

Schrödinger equation if the system satisfies |ψi〉 = |1〉 has been simplified, thus
providing simple physical interpretation to the Euler angles, i.e., as the state of the
system is then parametrized as |ψ〉 = Ũ |ψi〉 = |ψ̃p1〉 we can see θ as the mixing angle
between the states |1〉 and |3〉 while φ is the mixing angle between them and state
|2〉. The initial conditions of this propagator are given by

φi = n1π, θi = n2π, ηi = n3π, (1.46a)

xi + zi − 2yi = (2n4 + n1 + n2)π, ai − ci + yi = (2n5 + n1 + n3)π, (1.46b)

where the nk’s are positive and/or negative integers, i.e., nk = 0,±1,±2, . . .

On the other hand, the propagator Us,

Ũs = eiλ7π/2Ũeiλ7π/2 =
[
|ψ̃s1〉 |ψ̃s2〉 |ψ̃s3〉

]
, (1.47)

with columns

|ψ̃s1〉 =ei(c+y)

 ei(a+x+z) cos θ sin η sinφ+ ei(−a+x−z) cos η sin θ
eia cosφ sin η

−ei(a−x+z) sin η sin θ sinφ+ ei(−a−x−z) cos η cos θ

 , (1.48a)

|ψ̃s2〉 =e−i2y

−e
i(x+z) cos θ cosφ

sinφ
ei(−x+z) cosφ sin θ

 , (1.48b)

|ψ̃s3〉 =ei(−c+y)

−e
i(a+x+z) cos η cos θ sinφ+ ei(−a+x−z) sin η sin θ

−eia cos η cosφ
ei(a−x+z) cos η sin θ sinφ+ ei(−a−x−z) cos θ sin η

 , (1.48c)

exhibits the complementary dynamical behavior for the evolution of the state of
the system when it is initially in any given superposition of the ground states,
|ψi〉 = c1|1〉 + c3|3〉. Thus, making it ideal for the design of gates between such
states. The initial conditions for Us include the global and straightforward

φi = (2n1 + 1)π/2, yi = (2n2 + n1)π/2, (1.49)

and two variants:

(1) One where the pair of independent initial values is constituted by one value
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1.2. Quantum control and robustness

from each set {θi, ηi}, {ai, zi}, and {ci, xi}, with

θi + (−1)n1+n4ηi = (2n3 + 1)π/2, ai + zi = n4π/2, (1.50a)

ci + xi = (n4 − n1)π/2 + (n2 + n3 + 2n5)π, (1.50b)

(2) and one where three initial values taken from the set {ai, zi, ci, xi} are inde-
pendent, with

ηi = n3π/2, θi = (n3 + 2n4 + 1)π/2, (1.51a)

ãi − (−1)n3 c̃i = [n2 + (1 + n1)n3 + n4 + 2n5]π + (−1)n3n1π/2, (1.51b)

ãi = ai + zi, c̃i = ci + xi. (1.51c)

The general SU(3) propagators lead to very complicated relations, even the ob-
tainment of their boundary conditions is nontrivial, then making the whole system
potentially intractable [29]. Luckily, the subalgebras described by

Ω̃13 = ∆12 = ∆13 = ∆23 = 0, (1.52a)

Ω12 = Ω23 = η̃12 = η̃23 = 0, ∆23 = ∆13 −∆12 + ˙̃η13, ∆12 = ω2 − ω1, (1.52b)

correspond to the physically realistic, highly relevant and very widely implemented
situations depicted by the systems in Figs. 1.2(b) and 1.2(c). Thus, we can focus
on obtaining the propagators, boundary conditions and solutions of the Schrödin-
ger equation for particular cases of the three-level system, specifically for the fully
resonant Λ system in Fig. 1.2(b) corresponding to a Hamiltonian of the form

H =
h̄

2

 0 ΩP 0

ΩP 0 ΩS

0 ΩS 0

 , (1.53)

where ΩP and ΩS are the real-valued pulse envelopes of the control fields coupling
state |2〉 with states |1〉 and |3〉, respectively; the three-level system is discussed in
detail in chapter 3.

These reduced SU(3) propagators U , i.e., the general SU(3) propagators for the
subalgebras corresponding to simplified systems, are obtainable by fixing some of the
angular variables (or phases) to their initial conditions and restricting the acceptable
initial conditions of others, but the minimal set of variables to be fixed in order to
obtain the general propagator for the simplified system remains unknown until a
direct representation of the subalgebra can be provided.
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Chapter 1. Principles of robust optimal control by inverse optimization

We will now proceed to demonstrate the direct obtainment of propagators for
the subalgebra of SU(3) given by the set of generators {λ1, λ5, λ6} using the product
of exponential matrices with the generators and angular variables as arguments.

General propagator for the fully resonant system: product of the expo-
nentials of generators

By analogy with the SU(2) algebra, whose elements are produced with the well-
known product of exponentials of the Pauli matrices σn and Euler angles, i.e., the
generators of SU(2) and free angular variables, where a common representation is
given by

USU(2) = eiσzϕ/2e−iσyθ/2e−iσzγ/2 =

[
ei(ϕ−γ)/2 cos(θ/2) −ei(ϕ+γ)/2 sin(θ/2)
e−i(ϕ+γ)/2 sin(θ/2) e−i(ϕ−γ)/2 cos(θ/2)

]
, (1.54)

we can write a propagator in SU(3), in the su(2) subalgebra formed by the set of
generators {λ1, λ5, λ6}, i.e.,

[λ1, λ6] = iλ5, [λ6, λ5] = iλ1, [λ5, λ1] = iλ6, (1.55)

with a general parametrization in terms of Euler angles, as a product such as

Up = e−iλ5θeiλ1φeiλ6η =
[
|ψp1〉 |ψp2〉 |ψp3〉

]
, (1.56)

whose columns |ψpn〉, corresponding to the tilded versions |ψ̃pn〉 of (1.45) to which
the variables x and a have been fixed to their initial conditions xi and ai in (1.46)
with the additional restrictions

n2 = 2n6 + n1, n3 = 2n7 + n1, (1.57a)

ci = (4n8 + 3)π/4, yi = (4n9 + 1)π/4, zi = (2n10 + 1)π/2, (1.57b)

leading to the initial conditions

φi = n1π, θi = (2n6 + n1)π, ηi = (2n7 + n1)π, (1.58)
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are explicitly

|ψp1〉 =

cos θ cosφ
i sinφ

cosφ sin θ

 , (1.59a)

|ψp2〉 =

i(cos θ sinφ cos η − sin θ sin η)
cosφ cos η

i(sin θ sinφ cos η + cos θ sin η)

 , (1.59b)

|ψp3〉 =

− sin θ cos η − cos θ sinφ sin η
i cosφ sin η

cos θ cos η − sin θ sinφ sin η

 . (1.59c)

The simplified propagator Up, just like its general form Ũp, presents an ideal appear-
ance to represent the dynamics of population transfer, or state evolution, |1〉 → |3〉.
Without the phases in Ũp, |ψp1〉 clearly presents θ and φ as mixing angles between
the bare states |n〉, and thus as a measure of the superposition of such states that
constitutes the state of the system if this is initially in |1〉.

The general SU(3) propagator we have deemed most appropriate for logical quan-
tum gates between states |1〉 and |3〉, Ũs, has also a simplified version obeying the
su(2) subalgebra of {λ1, λ5, λ6}. We can write it by using a different product of
exponentials of generators, namely,

Us = eiλ5θe−iλ1(φ−π/2)eiλ5(η−π/2) =
[
|ψs1〉 |ψs2〉 |ψs3〉

]
, (1.60)

with columns

|ψs1〉 =

cos η sin θ + cos θ sin η sinφ
i cosφ sin η

cos η cos θ − sin θ sin η sinφ

 , (1.61a)

|ψs2〉 =

i cos θ cosφ
sinφ

i sin θ cosφ

 , (1.61b)

|ψs3〉 =

sin η sin θ − cos θ cos η sinφ
−i cosφ cos η

sin η cos θ + sin θ cos η sinφ

 . (1.61c)

The columns |ψsn〉 correspond to the tilded versions |ψ̃sn〉 of (1.48) to which the
variables y, a (ã), and c (c̃) were fixed to their initial conditions in (1.50) [or (1.51)]
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with the additional restrictions

(1) n1 = 2n6, n3 = 2n7, n4 = 2n8, x = n9π, z = (4n10 + 2n9 + 3)π/2, or

(2) n1 = 2n6, n4 = 2n11 + n3, x = n9π, z = (4n10 + 2n9 + 3)π/2, c = n12π.

Leading to the initial conditions

(1) φi = (4n6 + 1)π/2, θi = (4n7 + 1)π/2− ηi, or

(2) φi = (4n6 + 1)π/2, ηi = n3π/2, θi = (4n11 + 3n3 + 1)π/2.

1.3 Optimal control: Euler-Lagrange principle

Optimal control deals with the problem of finding the controls that minimize a
certain quantity, denominated cost, satisfying certain constraints. In the Lagrange
problem, the boundary conditions are fixed, i.e., xn(tf ) ≡ xnf are known, and the
cost functional takes the form [2]

J [xn(t)] =

∫ tf

ti

L[xn(t), ẋn(t), t] dt, (1.62)

where L is the Lagrangian of the system and is a functional dependent of the dynam-
ical variables xn, their derivative, and time. The first condition of optimality, from
the calculus of variations [2, 30], is given by the Euler-Lagrange principle expressed
by the satisfaction of the Euler-Lagrange (E-L) equations,

gradL =
∂L
∂xn
− d

dt

∂L
∂ẋn

= 0. (1.63)

The trajectories or controls that are solutions of the E-L equations are called ex-
tremals of the optimization (minimization) problem, candidates to be the global
optimal solution.

When the system is subjected to constraints of the form∫ tf

ti

fm[xn(t), ẋn(t), t] dt = F (1.64)

one must consider the modified E-L equation

gradL+
∑
m

λm grad fm = 0, (1.65)

often referred to as the E-L equations for the modified Lagrangian Lλ = L +∑
m λmfm, where the λm’s are constants known as the Lagrange multipliers chosen
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1.4. Robust inverse optimization: two-level system

to satisfy the constraints. More general dynamical constraints, as those of the form
fm[xn(t), ẋn(t), t] = 0, require the Lagrange multipliers to be treated as dynamical
variables, effectively augmenting the dimensions of the E-L equations.

1.4 Robust inverse optimization: two-level sys-
tem

1.4.1 The model and the inverse-engineering method

We consider the Hamiltonian Hλ = H0 + λV , where

H0 =
h̄

2

[
−∆ Ω

Ω ∆

]
(1.66)

represents the qubit {|0〉, |1〉} driven by the controls: the pulsed Rabi frequency
Ω ≡ Ω(t) (considered real without loss of generality) and the detuning ∆ ≡ ∆(t). λ
gathers unknown real (and time-independent) parameters, which, multiplied by V ,
represents the errors in the description of the model, as detailed in 1.4.3.

The solution of the time dependent Schrödinger equation (TDSE) ih̄ ∂
∂t
|φ0(t)〉 =

H0|φ0(t)〉 is conveniently parameterized with three angles: the mixing angle θ ≡
θ(t) ∈ [0, π], the internal (or relative) phase ϕ ≡ ϕ(t) ∈ [−π, π] and a global phase
γ ≡ γ(t) ∈ [0, 2π] as

|φ0(t)〉 =

[
eiϕ/2 cos(θ/2)
e−iϕ/2 sin(θ/2)

]
e−iγ/2. (1.67)

Inserting it into the TDSE, we obtain

θ̇ = Ω sinϕ, (1.68a)

ϕ̇ = ∆+ Ω cosϕ cot θ, (1.68b)

γ̇ = Ω
cosϕ
sin θ

= θ̇
cotϕ
sin θ

, (1.68c)

where the dot represents the derivation with respect to time t.

Adding a static phase η0 to the control field Ω allows the modification of the
internal phase of the state. In this case, we have indeed to consider the Hamiltonian

H0;η0 =
h̄

2

[
−∆ Ωe−iη0

Ωeiη0 ∆

]
, (1.69)
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associated to the state |φ̃0(t)〉. The phase transformation

T (η0) =

[
e−iη0/2 0

0 eiη0/2

]
(1.70)

leads to the Hamiltonian originally considered

T †(η0)Ĥ0,η0T (η0) =
h̄

2

[
−∆ Ω

Ω ∆

]
≡ H0 (1.71)

with the state featuring the added internal phase η0:

|φ̃0(t)〉 = T (η0)|φ0(t)〉 =

[
ei(ϕ−η0)/2 cos(θ/2)
e−i(ϕ−η0)/2 sin(θ/2)

]
e−iγ/2. (1.72)

The inverse-engineering method consists in determining the Hamiltonian elements
from the dynamics by inverting the TDSE:H0 = ih̄[∂tU0(t, ti)]U

†
0(t, ti) with the prop-

agator U0(t, ti) such that |φ0(t)〉 = U0(t, ti)|φ0(ti)〉. From inversion of Eqs. (1.68),
one can determine more specifically the detuning and the Rabi frequency as func-
tions of θ, ϕ̇ and γ̇:

∆ = ϕ̇− γ̇ cos θ, (1.73a)

Ω = ±
√
θ̇2 + γ̇2 sin2 θ = ±|θ̇|

√
1 +

(dγ̃
dθ

)2
sin2 θ, (1.73b)

= ±|γ̇|

√(
dθ̃

dγ

)2

+ sin2 θ̃. (1.73c)

We will consider Ω > 0.

One can determine from (1.68c), the phase

ϕ = atan
(

θ̇

γ̇ sin θ

)
,

{
0 ≤ ϕ ≤ π, for θ̇ ≥ 0,

−π < ϕ < 0, otherwise.
(1.74)

Equation (1.68c) links the three angles: we can thus consider two independent dy-
namical variables, e.g., θ(t) and γ(t) providing a geometric representation of the
problem, and the third dynamical variable ϕ(t) is given by (1.68c), cotϕ = γ̇ sin θ/θ̇,
from which we obtain

ϕ̇ = [θ̈γ̇ sin θ − γ̈θ̇ sin θ − γ̇θ̇2 cos θ]/[θ̇2 + γ̇2 sin2 θ]. (1.75)

In the right part of Eq. (1.73b), we have assumed that one can write γ(t) as a
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function of θ: γ̃(θ) ≡ γ(t). In Eq. (1.73c), we have assumed on the other hand
that one can write θ(t) as a function of γ: θ̃(γ) ≡ θ(t). More generally, we can be
led to consider piecewise functions γ̃(θ) or θ̃(γ). We note that the pulse area from
the initial ti to the final tf times [denoting θi ≡ θ(ti), θf ≡ θ(tf ) and assuming a
monotonic θ(t), such that θ̇ > 0]

∫ tf

ti

Ω(t) dt =

∫ θf

θi

√
1 +

(dγ̃
dθ

)2
sin2 θ dθ ≡ A(γ̃) (1.76)

does not depend on the time-dependence of θ(t), but only on the derivative of the
expansion γ̃(θ). Alternatively, one can write the pulse area [denoting γi ≡ γ(ti),
γf ≡ γ(tf ) and assuming a monotonic γ(t) such that γ̇ > 0] as

∫ tf

ti

Ω(t) dt =

∫ γf

γi

√(
dθ̃

dγ

)2

+ sin2 θ̃ dγ ≡ A(θ̃), (1.77)

which does not depend on the time-dependence of γ(t), but only on θ̃(γ) and its
derivative.

On the other hand, the pulse energy

E(γ, θ) =
∫ tf

ti

Ω2(t) dt =

∫ tf

ti

(θ̇2 + γ̇2 sin2 θ) dt, (1.78)

depends on the time-parametrization of the angles θ(t) and γ(t).

We will optimize the cost defined either as the pulse area A, the pulse energy E
(for a fixed duration tf − ti), or the duration of the process (i.e., time optimization)
(for a fixed peak amplitude of the control).

We denote |φλ(t)〉 the state of the complete dynamics, solution of the TDSE
ih̄∂t|φλ(t)〉 = Hλ|φλ(t)〉.

1.4.2 Complex Hamiltonian

Alternatively, one can consider an equivalent model with a zero detuning and a
complex Rabi frequency:

Ĥ0(t) =
h̄

2

[
0 Ωx(t)− iΩy(t)

Ωx(t) + iΩy(t) 0

]
=
h̄

2
[Ωx(t)σx + Ωy(t)σy] (1.79)
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with Ωc(t) = Ω(t)e−iη(t) = Ωx(t)− iΩy(t), Ω(t) ≥ 0, i.e. with the two controls Ωx,Ωy

or Ω, η linked as follows:

Ωx = Ω cos η, Ωy = Ω sin η, (1.80)

and the TDSE ih̄∂t|ψ0(t)〉 = Ĥ0|ψ0(t)〉. The connection with Hamiltonian (1.66)

T †(t)Ĥ0(t)T (t)− ih̄T †(t)
dT

dt
=
h̄

2

[
−∆ Ω

Ω ∆

]
≡ H0 (1.81)

is made by the phase transformation

T (t) =

[
e−iη(t)/2 0

0 eiη(t)/2

]
, (1.82)

with the detuning ∆ = η̇ and the corresponding solution |φ0(t)〉 = T †(t)|ψ0(t)〉,
leading to

|ψ0(t)〉 =

[
eiχ/2 cos(θ/2)
e−iχ/2 sin(θ/2)

]
e−iγ/2, χ = ϕ− η. (1.83)

In this case, inserting (1.83) in the TDSE, we get:

θ̇ = Ωx sinχ+ Ωy cosχ = Ω sin(η + χ), (1.84a)

χ̇ tan θ = γ̇ sin θ = Ωx cosχ− Ωy sinχ = Ω cos(η + χ), (1.84b)

∆ = η̇. (1.84c)

This gives for the Rabi frequencies

Ωx = θ̇ sinχ+ χ̇ tan θ cosχ, (1.85a)

Ωy = θ̇ cosχ− χ̇ tan θ sinχ. (1.85b)

1.4.3 The single-shot shaped-pulse method for robust pro-
cess.

From an initial condition at ti, we assume that the Hamiltonian H0(t) [or Ĥ0(t))
leads to a given target at the end of the process tf (from which one can require that
the field is off, i.e., Ω(tf ) = 0, but this is not obligatory]. The process is robust if a
perturbation added to the Hamiltonian leads to a close target at tf in a way that is
defined below.

The perturbed Hamiltonian Hλ = H0 + λV takes the form for the real Hamilto-
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nian

Hα,β,δ =
h̄

2

[
−∆ Ω

Ω ∆

]
+
h̄

2

[
−δ αΩ + β

αΩ + β δ

]
(1.86)

where α, β, γ are real constant coefficients taking into account the inaccuracy of the
model, more precisely: α is a coefficient modifying the Rabi field amplitude (pulse
inhomogeneities), δ features inhomogeneous broadening or a slow stochastic noise
in the energy levels of the qubit (i.e., considered in a quasi-static representation),
and β a slow stochastic transverse noise.

We show that the robustness can be formulated with constraint integrals at a
certain order. We will consider in this paper pulse inhomogeneities, referred to as
α-robustness, i.e., δ = γ = 0.

Formulation in terms of state

The SSSP method, detailed in 1.2.1, can be summarized as follows [where λ ≡
(α, β, δ)]. The perturbative expansion of |φλ(tf )〉 with respect to α, β, and δ reads

〈φT |φλ(tf )〉 = 1−O1 −O2 −O3 − · · · , (1.87)

where On denotes the term of total order n: On ≡ O(λn) and |φT 〉 the target state.
The first three terms can be found in Eqs. (1.10), for which the relevant variables
become, explicitly,

e = 〈φ0(t)|V (t)|φ0(t)〉

= −1

2
(δ cos θ − αγ̇ sin2 θ − β sin θ cosϕ) ≡

∑
λ=α,β,γ

λeλ, (1.88a)

f = 〈φ0|V |φ⊥〉 =
1

2

[
δ sin θ + α

(1
2
γ̇ sin 2θ − iθ̇

)
+ β(cosϕ cos θ − i sinϕ)

]
eiγ ≡

∑
λ=α,β,δ

λfλ. (1.88b)

In the expansion (1.12a), since the first-order integral O1 (1.10a) is imaginary,
ReO1 = 0, cancellation of the first order O1 corresponds thus to∫ tf

ti

e(t) dt = 0. (1.89)
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The second-order integral O2 can be simplified using the properties described in
Appendix 1.A:

O2 =
1

2

[∫ tf

ti

e(t) dt

]2
+

∫ tf

ti

∫ t

ti

f(t)f(t′) dt′ dt. (1.90)

Defining f(t) = a(t) + ib(t), we calculate the above double integral:∫ tf

ti

∫ t

ti

f(t)f(t′) dt′ dt =
1

2

∣∣∣∣∫ tf

ti

f(t) dt

∣∣∣∣2 + i

∫ tf

ti

∫ t

ti

[a(t′)b(t)− a(t)b(t′)] dt′ dt. (1.91)

The real part then reads

ReO2 =
1

2

[∫ tf

ti

e(t) dt

]2
+

1

2

∣∣∣∣∫ tf

ti

f(t) dt

∣∣∣∣2, (1.92)

which is zero when ∫ tf

ti

e(t) dt = 0,

∫ tf

ti

f(t) dt = 0. (1.93)

The imaginary part of O2, given by ImO2 = Im
[∫ tf

ti

∫ t

ti
f(t)f(t′) dt′ dt

]
, involves higher

order corrections that are not considered in the present document.

We now consider the real part of the third order assuming that the first order and
the real part of the second order terms are both zero. It is determined in Appendix
1.B, see Eq. (1.126):

ReO3 = ImO2

∫ tf

ti

e(t) dt. (1.94)

It implies that ReO3 = 0 when the first order is canceled: O1 = 0 (1.89).

Formulation in terms of propagator

We define the propagator associated to the unperturbed Hamiltonian H0 ≡ H0,0,0:

U0(t, ti) =

[
a ≡ e

i
2
(ϕ−γ) cos(θ/2) −b

b ≡ e−
i
2
(ϕ+γ) sin(θ/2) a

]
(1.95)

with |a|2 + |b|2 = 1. We define the interaction representation:

UI(t, ti) = U †
0(t, ti)U(t, ti) (1.96)
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with U(t) associated to the Hamiltonian H(t) governed by

ih̄
dUI(t, ti)

dt
= εVI(t)UI(t, ti). (1.97)

with
εVI(t) = εU †

0(t, ti)V (t)U0(t, ti). (1.98)

The perturbative solution reads:

U(tf , ti) = U0(tf , ti)

[
1+

ε

ih̄

∫ tf

ti

VI(t) dt

+
( ε
ih̄

)2 ∫ tt

ti

∫ t

ti

VI(t)VI(t
′) dt′ dt+ · · ·

]
, (1.99)

where

VI(t) = h̄

[
e(t) f(t)

f(t) −e(t)

]
. (1.100)

Canceling the first order of the expansion (1.99) of the propagator corresponds thus
to canceling each term of the matrix, which coincides with the conditions (1.93),
ReO2 = 0.

1.4.4 Figures of merit

Population transfer

For the case of a population transfer to a target state |φT 〉 (of given angle θ0 and
internal phase ϕ0), the final phase is irrelevant, one can consider the figure of merit

Fpt = |〈φT |φλ(tf )〉|2

= (1−O1 −O2 − · · · )(1−O1 −O2 − · · · )

≡ 1− Õ2 − Õ3 − · · · (1.101)

The deviation with respect to one at the second order of Fpt reduces to a single
integral:

Õ2 ≡ O2 −O1O1 +O2 =

∣∣∣∣∫ tf

ti

f(t) dt

∣∣∣∣2. (1.102)

The third order is zero:

Õ3 ≡ O3 −O1O2 −O2O1 +O3 = 2ReO3 −O1O2 +O2O1 = 0, (1.103)
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since 2ReO3 given in (1.126) cancels out with

O1O2 +O2O1 = −2 ImO2

∫ tf

ti

e(t) dt. (1.104)

Quantum gate

For the case of a quantum gate, a traceless Hamiltonian generates the SU(2) gate,
which is taken as the targeted propagator:

U0 =

[
a −b
b a

]
(1.105)

with |a|2 + |b|2 = 1. A figure of merit often adopted to determine the fidelity of a
quantum gate is defined as the trace fidelity

Fg =
1

2

∣∣Tr(U †
0U)

∣∣, (1.106)

where

U =

[
c −d̄
d c̄

]
(1.107)

is the actual propagator with |c|2 + |d|2 = 1. It is based on the fact that, when
U = eiϑU0, we have Fg = 1. Here ϑ is a global phase at the level of the propagator,
i.e., connected to the choice of the energy reference, which is physically irrelevant.
This gives:

Fg = Re(ac+ bd). (1.108)

If we consider the initial condition

[
1

0

]
, we obtain |φλ(tf )〉 =

[
c

d

]
and |φT (tf )〉 =[

a

b

]
, i.e., 〈φT (tf )|φλ(tf )〉 = ac+ bd, which finally gives

Fg = Re〈φT (tf )|φλ(tf )〉 = 1 + ReO2 + ReO3 + · · · (1.109)

As noticed with (1.94), the cancellation of the error at the third order ReO3 = 0 is
satisfied when ReO2 = 0, i.e., when the conditions (1.93) are satisfied.

One notes the remarkable property that, when one considers the robustness with
respect to solely α (i.e., β = δ = 0), then the integrals On do not depend on the
particular time-parametrization of θ(t) [in the case of a monotonic θ(t), for which
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one can define a function γ̃(θ)] since∫ t

ti

e(t) dt =
1

2
α

∫ t

ti

γ̇ sin2 θ dt =
1

2
α

∫ θ

θi

dγ̃

dθ
sin2 θ dθ, (1.110a)∫ t

ti

f(t) dt =
1

2
α

∫ θ

θi

(
1

2

dγ̃

dθ
sin 2θ − i

)
eiγ̃ dθ. (1.110b)

We have considered the situation of an increasing θ(t), i.e., θ̇(t) > 0. The opposite
situation [i.e., a decreasing θ(t), θ̇(t) < 0] would add a minus sign in the right hand
sides of Eq. (1.110a) and of Eq. (1.110b).

The nullification of the real part of the second order (1.93) can be further sim-
plified in this case [θ̇(t) > 0] as

0 =

∫ tf

ti

e(t) dt =

∫ θf

θi

dγ̃

dθ
sin2 θ dθ,

= [γ̃ sin2 θ]
θf
θi
− 2

∫ θf

θi

γ̃ sin θ cos θ dθ, (1.111a)

0 =

∫ tf

ti

f(t) dt =

∫ θf

θi

(
1

2

dγ̃

dθ
sin 2θ − i

)
eiγ̃ dθ,

=
1

4
[eiγ̃ sin 2θ]

θf
θi
+

∫ θf

θi

eiγ̃ sin2 θ dθ. (1.111b)

Alternatively, in the case of a monotonic γ(t), for which one can define a function
θ̃(γ), when one considers the robustness with respect to solely α (i.e., β = δ = 0),
then the integrals On do not depend on the particular time-parametrization of γ(t)
since ∫ t

ti

e(t) dt =
1

2
α

∫ t

ti

γ̇ sin2 θ dt =
1

2
α

∫ γ

γi

sin2 θ̃ dγ, (1.112a)∫ t

ti

f(t) dt =
1

2
α

∫ t

ti

(
1

2
γ̇ sin 2θ − iθ̇

)
eiγ dt

=
1

2
α

∫ γ

γi

(
1

2
sin 2θ̃ − i dθ̃

dγ

)
eiγ dγ. (1.112b)

We have considered the situation of an increasing γ(t), i.e., γ̇(t) > 0. The opposite
situation (i.e., a decreasing γ(t), γ̇(t) < 0) would add a minus sign in the right hand
sides of Eq. (1.112a) and of Eq. (1.112b).

One can conclude that the design of a trajectory solely robust with respect to α
does not depend on a specific time-parametrization.

The nullification of the real part of the second order (1.93) can be expressed in
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this case [γ̇(t) > 0] as

0 =

∫ tf

ti

e(t) dt =

∫ γf

γi

sin2 θ̃ dγ, (1.113a)

0 =

∫ tf

ti

f(t) dt =
1

2

∫ γf

γi

eiγ sin 2θ̃ dγ − i
∫ γf

γi

dθ̃

dγ
eiγ dγ

=
1

2

∫ γf

γi

[eiγ(sin 2θ̃ − 2θ̃)− i(θfeiγf − θieiγi)] dγ, (1.113b)

i.e., ∫ γf

γi

sin2 θ̃ dγ = 0, (1.114a)∫ γf

γi

(sin 2θ̃ − 2θ̃) cos γ dγ = 2(θi sin γi − θf sin γf ), (1.114b)∫ γf

γi

(sin 2θ̃ − 2θ̃) sin γ dγ = 2(θf cos γf − θi cos γi). (1.114c)

Since the argument of Eq. (1.114a) is positive, the integral cannot be 0 θ 6= 0.
Thus, γ(t) cannot be monotonic if Eq. (1.114a) has to be satisfied. We have then
to consider in this situation a piecewise defined function θ̃(γ):

θ̃(γ) =

{
θ̃+(γ) for γ̇ ≥ 0, γ = [γi, γm]

θ̃−(γ) for γ̇ < 0, γ = [γf , γm)
(1.115)

with θm = θ̃+(γm) = θ̃−(γm) and the integrals (1.113) to be nullified become:

0 =

∫ γm

γi

sin2 θ̃+ dγ −
∫ γm

γf

sin2 θ̃− dγ, (1.116a)

0 =
1

2

∫ γm

γi

eiγ(sin 2θ̃+ − 2θ̃+) dγ − i(θfeiγf − θieiγi)

− 1

2

∫ γm

γf

eiγ(sin 2θ̃− − 2θ̃−) dγ. (1.116b)

1.5 Conclusions

We have presented a method to measure, quantify, and potentially control the ro-
bustness of a quantum process. This, the SSSP scheme, necessitates the inverse-
engineering of the dynamics, and this is facilitated by the parametrization of the
propagator of the system. The Lewis-Riesenfeld method and the usage of the differ-
ential generators of the algebras corresponding to specific Hamiltonians was demon-
strated to parametrize the propagators of interest (for two- and three-level systems).
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1.5. Conclusions

The figure of merit to evaluate the fidelity of quantum processes was also discussed.
The basic concept of optimal control via the Euler-Lagrange equation was intro-
duced.
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Appendices

1.A Properties of the integrals

The integrals can be simplified using the general property:∫ T

τ

∫ t

τ

[a(t)b(t′) + a(t′)b(t)] dt′ dt =

∫ T

τ

a(t) dt

∫ T

τ

b(t) dt (1.117)

from ∫ T

τ

v du+

∫ T

τ

u dv = [uv]Tτ , (1.118)

where

u(t) =

∫ t

τ

a(t′) dt′, du = a(t) dt, v(t) =

∫ t

τ

b(t′) dt′, dv = b(t) dt. (1.119)

For a = b ≡ e, (1.117) becomes∫ tf

ti

∫ t

ti

[e(t)e(t′) + e(t′)e(t)] dt′ dt =
[∫ tf

ti

e(t) dt
]2
. (1.120)

For a ≡ f and b ≡ f̄ , (1.117) becomes∫ tf

ti

∫ t

ti

[f(t)f(t′) + f(t′)f(t)] dt′ =
∣∣∣∫ tf

ti

f(t) dt
∣∣∣2. (1.121)

1.B Determination of the Error Re(O3)

We determine the real part of the third order assuming that the first order and and
the real part of the second order terms are both zero:

ReO3 =

∫ tf

ti

∫ t

ti

∫ t′

ti

Im[e(t)f(t′)f(t′′) + f(t)f(t′)e(t′′)− f(t)e(t′)f(t′′)] dt′′ dt′ dt

=

∫ tf

ti

∫ t

ti

∫ t′

ti

Im[e(t)f(t′)f(t′′) + f(t)f(t′)e(t′′) + f(t)e(t′)f(t′′)] dt′′ dt′ dt,

(1.122)

where we have used Im[−f(t)e(t′)f(t′′)] = Im[f(t)e(t′)f(t′′)] = Im[f(t)e(t′)f(t′′)]

to obtain the latter expression. It can be simplified using the property (1.117) as
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follows. The first term of (1.122) gives:∫ tf

ti

∫ t

ti

∫ t′

ti

ef ′f ′′ dt′′ dt′ dt =

∫ tf

ti

e dt

∫ tf

ti

∫ t

ti

ff ′ dt′ dt

−
∫ tf

ti

f

(∫ t

ti

f ′ dt′
)(∫ t

ti

e′ dt′
)
dt (1.123)

where the last term is the complex conjugate of the second term of (1.122):∫ tf

ti

∫ t

ti

∫ t′

ti

ff ′e′′ dt′′ dt′ dt =

∫ tf

ti

f dt

∫ tf

ti

∫ t

ti

fe′ dt′ dt

−
∫ tf

ti

f

(∫ t

ti

e′ dt′
)(∫ t

ti

f ′ dt′
)
dt

= −
∫ tf

ti

f

(∫ t

ti

e′ dt′
)(∫ t

ti

f ′ dt′
)
dt, (1.124)

since
∫ tf
ti
f dt = 0, and their imaginary parts involved in (1.122) cancel each other

out. The last term of (1.122) finally gives∫ tf

ti

∫ t

ti

∫ t′

ti

fe′f ′′ dt′′ dt′ dt =

∫ tf

ti

f dt

∫ tf

ti

∫ t

ti

ef ′ dt′ dt

−
∫ tf

ti

e

(∫ t

ti

f ′ dt′
)∫ t

ti

f ′ dt′
)
dt

= −
∫ tf

ti

e

∣∣∣∣∫ t

ti

f ′ dt′
∣∣∣∣2 dt, (1.125)

since
∫ tf
ti
f dt = 0. The imaginary part of this term gives then 0 since e(t) is real.

We finally obtain

ReO3 =

(∫ tf

ti

e dt

)
Im
(∫ tf

ti

∫ t

ti

ff ′ dt′ dt

)
= ImO2

∫ tf

ti

e dt. (1.126)
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Chapter 1. Principles of robust optimal control by inverse optimization
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Chapter 2

Optimal robust quantum control
against pulse inhomogeneities:
Analytical solutions

2.1 Introduction

Engineering time-dependent quantum systems in a controlled way offers various ap-
plications in particular in quantum technologies [1]. This requires ultra-high fidelity
(typically with relative errors below 10−4) induced by robust and fast controls [24].

Robustness are naturally taken into account using adiabatic, i.e., slow, approxi-
mate, and energetic techniques [6, 31]. Robustness can be quantified by considering
transfer profile as a function of the deviation of the ideal controls. Cancellation of
its derivatives, leading to constraint integrals, can be treated by composite [13–17],
combined [32] or shortcut to adiabaticity [12, 19, 21] techniques. However, these
methods, while exact, are not optimal and cost unnecessary energy and time.

Optimization with respect to a cost (usually time, pulse area or energy) including
the constraint integrals promise very efficient, typically robust time-optimal, control
methods. Numerical techniques using time discretization and gradient methods,
such as GRAPE [33], have been studied. Alternative techniques involving from
a few tens [34] to a few [19, 20] parameters to be optimized, based on specific
parametrizations, have been developed, but they do not provide global optimum.
Pontryagin’s maximum principle (PMP) in an extended Hilbert space has been
shown to provide a global optimum [35] for very simple targets, typically complete
population transfers.

Geometric approaches [36, 37] have been have been recently proposed. The latter
[37] is an optimization procedure treated by Euler-Lagrange equations constrained
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by the robustness integrals with boundaries ensuring exact fidelity in the dynamical
variable space. The controls are next inversely determined from the time dependent
Schrödinger equation and the derived geodesic. It is referred to as robust inverse
optimization (RIO).

We explore the method to determine time-optimal geodesics, robust with respect
to the pulse area or amplitude, more generally referred to as pulse inhomogeneities
(chosen as the cost) at the lowest order, for various partial population transfers and
quantum gates. We show that the solutions of all these problems feature a constant
pulse and a detuning of Jacobi elliptic cosine form.

2.2 Optimal robust control against field inhomo-
geneities for arbitrary population transfer

Optimal robust control is developed as an inverse method: we first optimize the
trajectory in the parameter space spanned by the dynamical angles γ, θ with respect
to a given cost and constrained by the robustness integrals [i.e., at the lowest order,
nullification of (1.102) for the case of population transfer, or conditions (1.93) for
the case of quantum gate]; we next derive the controls using the geodesic resulting
from this constrained optimization and the inverted Schrödinger equation (1.73).

The optimal process for unconstrained (non-robust) complete population transfer
is known to lead to the π-pulse transfer [23]. We proceed to rederive this result using
the Euler-Lagrange method. This method is then used for the constrained (robust)
dynamics.

2.2.1 The (non-robust) unconstrained optimization problem

Let’s consider the (non-robust) unconstrained optimization problem. In this case,
optimizing with respect to the pulse area, to the energy, or to the duration leads to
the same trajectory, as it is shown below.

The problem of minimization of the pulse area

A(γ, θ) =
∫ tf

ti

Ω(t) dt =

∫ tf

ti

√
θ̇2 + γ̇2 sin2 θ(t) dt (2.1)

leads to a cost which is by definition time-parametrization invariant. The problem
can be formulated by the Euler-Lagrange equations

gradA(γ, θ) = 0, (2.2)
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where the gradient is defined as

gradA(γ, θ) =

[
∂L0

∂γ
− d

dt

(
∂L0

∂γ̇

)
∂L0

∂θ
− d

dt

(
∂L0

∂θ̇

)] (2.3)

with the Lagrangian L0 defined from the pulse area as the cost:

A(γ, θ) =
∫ tf

ti

√
θ̇2 + γ̇2 sin2 θ(t) dt ≡

∫ tf

ti

L0(γ̇, θ, θ̇) dt, (2.4)

i.e.,
∂L0

∂θ
− d

dt

(
∂L0

∂θ̇

)
= 0,

∂L0

∂γ
− d

dt

(
∂L0

∂γ̇

)
= 0. (2.5)

This formulation of optimization problems is well known, see for instance [30].

We remark that the original problem (1.68) features three differential equations
(the Schrödinger equation) and three dynamical angles θ, γ, ϕ, and two controls: Ω

and ∆. Minimizing the pulse area by the Euler-equations, as shown above, leads to
two constraint equations which will then give a single solution for the three angles
and the controls. We notice that this minimization induces a natural parametriza-
tion of the problem in terms of the two angles θ and γ, i.e., in terms of the solution of
the Schrödinger equation, and the controls are derived from it (inverse procedure).
This will also be the case when the robustness constraints are taken into account,
as shown below.

On the other hand, the PMP method is expressed directly in terms of the controls
[35] (without explicit knowledge of the solution).

The optimal solution, which satisfies the Euler-Lagrange equations, can be found
by inspecting the integral (2.1): it is simply achieved for γ̇ = 0 for any given θ̇ (note
that θ̇ cannot be 0 to accomplish a given transfer), i.e., γ = const. This gives
ϕ = π/2 from (1.68c), θ̇ = Ω from (1.68a), ∆ = 0 from (1.68b), and Amin =∫ tf
ti

Ω(t) dt =
∫ tf
ti
θ̇ dt =

∫ θf
θi
dθ = θf −θi [assuming a monotonic θ(t) such that θ̇ > 0,

i.e., Ω(t) > 0].

Minimizing the pulse energy

E(γ, θ) =
∫ tf

ti

Ω2(t) dt =

∫ tf

ti

(θ̇2 + γ̇2 sin2 θ) dt, (2.6)

is for the same reason achieved when γ̇ = 0, leading to the same trajectory γ = const
as for the minimization of the pulse area. The function θ(t) that minimizes the
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energy is given by the Euler-Lagrange equation

grad E(θ) = 0, E(θ) =
∫ tf

ti

θ̇2 dt ≡
∫ tf

ti

L0(θ̇) dt, (2.7)

with
grad E(θ) = ∂L0

∂θ
− d

dt

(
∂L0

∂θ̇

)
. (2.8)

This leads to θ̈ = 0, i.e., to a linear evolution of θ(t):

θ = (θf − θi)
t− ti
tf − ti

+ θi, (2.9)

which gives a constant pulse, Ω0 = (θf − θi)/(tf − ti), and the minimum energy:

Emin = Ω2
0(tf − ti) =

(θf − θi)2

tf − ti
. (2.10)

This shows that the minimum energy, for given θi and θf , depends on the duration
of the process tf − ti: The energy minimization problem has thus to be considered
for a given fixed duration tf − ti.

For the time-minimization problem, we can reparametrize the trajectories by the
(normalized) arclength

ds =
Ω(t)

Ω0

dt, (2.11)

i.e., s(t) = si +
∫ t

ti
[Ω(t′)/Ω0] dt

′, and the TDSE becomes:

ih̄
∂

∂s
|φ̃0(s)〉 =

h̄

2

[
−∆̃ Ω0

Ω0 ∆̃

]
|φ̃0(s)〉, ∆̃ = ∆Ω0/Ω, (2.12)

with the cost A = Ω0

∫ sf
si
dt, which corresponds to a time minimization problem

with a bounded control Ω̃ = Ω0, It follows that, for the initial control system, the
problem of minimizing the pulse area A is equivalent to minimizing the time under
the constraint on the control Ω ≤ Ω0, and the minimum time is achieved when
the pulse reaches its maximum at all times: Ω = Ω0. The minimum time is thus
T ≡ Tmin = (θf − θi)/Ω0.

Another formulation of the time-minimization problem uses the Lagrangian L0 =

1:
T =

∫ tf=T

ti=0

dt (2.13)
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with the inequality constraint |Ω(t)| = |θ̇/ sinϕ| ≤ Ω0, leading to the action

S =

∫ T

0

{
1 + λ(t)

[
θ̇

sinϕ
− Ω0 tanhω(t)

]}
dt ≡

∫ T

0

L0(θ̇, ϕ, λ, ω) dt, (2.14)

with the slack variable ω(t) that takes into account the above inequality and the
Lagrangian multiplier λ(t). The Euler-Lagrange equations read

∂L0

∂ϕ
= 0,

d

dt

(
∂L0

∂θ̇

)
= 0,

∂L0

∂λ
= 0,

∂L0

∂ω
= 0, (2.15)

i.e.,
ϕ =

π

2
, λ̇ = 0, Ω = Ω0 tanhω, 1

cosh2 ω
= 0, (2.16)

of solution ω = ±∞, Ω = ±Ω0.
For instance for a complete population transfer from ti = 0 to tf = T , requiring

θi = 0 and θf = π, we have: θ = πt/T , Ω = π/T , Amin = π (i.e., the so-called
π−pulse), Emin = π2/T and Tmin = π/Ω0.

2.2.2 Constrained Euler-Lagrange optimization

We consider the optimal robust transfer from the ground state to an arbitrary target
state defined by given mixing angle θ0 and internal phase ϕ0 (up to a global phase
γ0/2 irrelevant for the problem of population transfer):

|φ(tf )〉 = |φT 〉 ≡

[
eiϕ0/2 cos(θ0/2)
e−iϕ0/2 sin(θ0/2)

]
e−iγ0/2. (2.17)

The internal phase ϕ0 is not fixed, but controlled in a robust way. It can be modified
via a static phase η0 added to the control field, see Eqs. (1.69-1.72).

Equation (1.68c) implies ϕi = π/2, ϕf = π/2.
This problem imposes thus the boundaries

θi = 0, θf = θ0, γi = ϕi = π/2, ϕf = ϕ0. (2.18)

Nullification of the second order (1.102) reduces to the two (real) conditions (1.111b)
for a trajectory γ̃(θ): ∫ θf

0

cos γ̃ sin2 θ dθ +
1

4
cos γ̃f sin 2θf = 0, (2.19a)∫ θf

0

sin γ̃ sin2 θ dθ +
1

4
sin γ̃f sin 2θf = 0, (2.19b)
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or to the two conditions (1.114b) and (1.114c) for a trajectory θ̃(γ):∫ γf

π/2

(sin 2θ̃ − 2θ̃) cos γ dγ + 2θf sin γf = 0, (2.20a)∫ γf

π/2

(sin 2θ̃ − 2θ̃) sin γ dγ − 2θf cos γf = 0, (2.20b)

which are all time-parametrization invariant.

Pulse-area optimization

We determine the optimal trajectory θ̃(γ) considering a monotonic γ(t). The de-
termination of the inverse optimal trajectory γ̃(θ) is treated in Appendix 2.A. The
problem can be formulated as an optimization problem under constraint: finding
the trajectory θ̃(γ) that minimizes the pulse area (1.77)

A(θ̃) =
∫ γf

γi

√( ˙̃
θ
)2

+ sin2 θ̃ dγ ≡
∫ γf

γi

L0(θ̃,
˙̃
θ) dγ (2.21)

with ˙̃
θ ≡ dθ̃

dγ
, under the two constraints (2.20) rewritten for convenience as

ψ1(θ̃) = −
1

4

∫ γf

γi

(sin 2θ̃ − 2θ̃) sin γ dγ ≡
∫ γf

γi

ϕ1(γ, θ̃) dγ = −π
2

cos γf , (2.22a)

ψ2(θ̃) =
1

4

∫ γf

γi

(sin 2θ̃ − 2θ̃) cos γ dγ ≡
∫ γf

γi

ϕ2(γ, θ̃) dγ = −π
2

sin γf . (2.22b)

Since the final phase is irrelevant for the population transfer problem, the final
value γf is not fixed, but θf = θ̃(γf ) = θ0. When the constraints have such integral
form, i.e., are defined as functionals of the trajectory, the problem is referred to as
isoperimetric [30]. Several generalizations can be found in [30], including functional
with multiple integrals (needed if higher order robustness is considered).

This can be solved by the constrained Euler-Lagrange optimization as follows:
The trajectory θ̃(γ) is solution of

gradA(θ̃) + λ̃1 gradψ1(θ̃) + λ̃2 gradψ2(θ̃) = 0, (2.23)

with λ̃j, j = 1, 2, the Lagrangian multipliers associated to the constraints, where

gradA(θ̃) = ∂L0

∂θ̃
− d

dγ

(
∂L0

∂
˙̃
θ

)
, (2.24)
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and j = 1, 2

gradψj(θ̃) =
∂ϕj

∂θ̃
− d

dγ

(
∂ϕj

∂
˙̃
θ

)
. (2.25)

We obtain the differential equation:

¨̃
θ = 2

( ˙̃
θ
)2 cot θ̃ + sin θ̃ cos θ̃ + (λ̃1 sin γ − λ̃2 cos γ)

[( ˙̃
θ
)2

+ sin2 θ̃
]3/2

. (2.26)

In order to analyze the initial singularity of
( ˙̃
θ
)2 cot θ̃, with ˙̃

θ = 1/ ˙̃γ → ∞ (see
Appendix 2.A.3) and θ̃ → 0, we multiply this equation by sin θ̃, and set θ̃ → 0

(initial time) with γ = π/2:

¨̃
θ sin θ̃ =

( ˙̃
θ
)2
(2 + λ̃1

˙̃
θ sin θ̃). (2.27)

This shows that ¨̃
θ is initially infinite. This is also symmetrically the case at the final

time for the problem of complete population transfer (when θf = π).
The optimal robust trajectory θ̃opt(γ), solution of (2.26), is obtained for the set

of values of λ̃1 and λ̃2, which satisfies (2.22) (and we select the trajectory of smallest
pulse area in case of more than one solution). We remark that the value of γf results
from this solution (and that γf is not robust in the considered case of population
transfer).

Optimization with respect to pulse energy or time

In this case, since the robustness integrals (1.111b) do not depend on the time-
parametrization, optimizing with respect to the pulse area, to the energy, or to the
duration leads to the same trajectory, as in the unconstrained case. This is precisely
shown in Appendix 2.B.

Concerning the time optimization problem, the reparametrization of the trajec-
tory, through the change of variable (2.11), can be applied as in the case of the
unconstrained problem. Since the constraints are time-parametrization invariant,
the conclusions derived for the unconstrained case still apply: The problem of min-
imizing the pulse area A is equivalent to minimizing the time under the constraint
on the control Ω ≤ Ω0, and the minimum time is achieved when the pulse reaches
its maximum at all times: Ω = Ω0. We obtain from (2.111) for the minimum time

Tmin =
1

Ω0

∫ γf

γi

√( ˙̃
θ
)2

+ sin2 θ dγ. (2.28)

The optimization with respect to the pulse energy (1.78) uses the same formula but
interpreted differently: The minimum (constant) pulse amplitude Ω0,min is deter-
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mined from a given duration T of the interaction as:

Ω0,min =
1

T

∫ γf

γi

√( ˙̃
θ
)2

+ sin2 θ dγ. (2.29)

2.2.3 Analytic expression of the detuning for time-optimiza-
tion

One can express the detuning as a function of the angles θ and γ as follows: The
derivation of (1.68c) with (1.68a) leads to

γ̈ sin θ + γ̇θ̇ cos θ = −ϕ̇Ω0 sinϕ = −ϕ̇θ̇, (2.30)

which allows the substitution of ϕ̇ in (1.68b) to give

∆ = −1

θ̇
(γ̈ sin θ + 2γ̇θ̇ cos θ). (2.31)

From the equations of motions (2.104)

γ̈ + 2γ̇θ̇ cot θ + θ̇(λ1 sin γ − λ2 cos γ) = 0, (2.32a)

γ̇2 sin θ cos θ + γ̇ sin2 θ(λ1 sin γ − λ2 cos γ) = θ̈, (2.32b)

where we have redefined λ1/2 → λ1 and λ2/2 → λ2 for convenience, we obtain for
the detuning

∆ = sin θ(λ1 sin γ − λ2 cos γ). (2.33)

This gives in particular at initial time ∆i = 0.
We show in Appendix 2.D the general form of the detuning:

∆ = ∆0 cn (ωt+K(m),m) , t ∈ [0, Tmin] (2.34)

with

∆0 = −2 sgn(λ1)ω
√
m, (2.35a)

|λ1|Ω0 = 2ω2
√
m
√
1−m, (2.35b)

λ1Θ0x,f − λ2Θ0y,f = −∆0ω sn[ωTmin +K(m),m]

×
√

1−m sn2[ωTmin +K(m),m]. (2.35c)

From the knowledge of the trajectory θ̃(γ), obtained from λ1 and λ2, and Tmin
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Table 2.1: Parameters of the RIO process for various transfers.
Parameter

θ0 (×π) 1 2/3 1/2 1/3
λ1 (×Ω0) -1.11886 -1.40714 -1.69741 -2.21305
λ2 (×Ω0) -0.29960 -0.51803 -0.64653 -0.84521
Tmin (/Ω0) 5.84 4.7161 4.05 3.29
A (×π) 1.86 1.50 1.29 1.05
γf (×π) 5/3 1.50 1.48 1.43
ϕ0 (×π) 1/2 0.615 1/2 0.335

m 0.235 0.338 0.398 0.465
ω (×Ω0) 1.149 1.220 1.317 1.489
∆0 (×Ω0) 1.114 1.418 1.660 2.032

from (2.28), one can calculate m and ω from the system of equations (2.35b–2.35c),
where we substitute ∆0 from (2.35a). We next obtain ∆0 from (2.35a), which fully
determines the detuning (2.34).

2.2.4 Results

Some results are reported in Table 2.1 for complete population transfer, half transfer,
one-quarter θ0 = π/3 (i.e., sin2(θ0/2) = 1/4) and three-quarter θ0 = 2π/3 (i.e.,
sin2(θ0/2) = 3/4) transfers. In each case, we have numerically determined λ1 (taking
the negative solution), λ2, the optimal time Tmin (giving the pulse area), the final
γf and ϕ0 from the differential equation (2.26). For complete population transfer,
we have determined the value γf = 5π/3 in Appendix 2.C using the symmetry of
the trajectory.

The other parameters are determined according to (2.35).
Equation (2.35c) gives for the duration a complete period of the elliptic cosine:

Tmin =
4K(m)

ω
(2.36)

in the case of complete population transfer, and three-quarters of the elliptic cosine
period:

Tmin =
3K(m)

ω
(2.37)

in the case of half population transfer. The trajectory θ̃(γ) and the detuning (for
the optimal time) are shown in Figs. 2.1, 2.2, 2.3, and 2.4, [37], for the two cases of
complete and half population transfers.
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Figure 2.1: Optimal α-robust geodesic θ̃(γ) in the dynamical variable space (γ, θ)
leading to complete population transfer determined from numerical solution of (2.26)
corresponding to λ̃1 ≈ −1.11886, λ̃2 ≈ −0.29960 (with γf = 5π/3).

Figure 2.2: Detuning and dynamics of the populations Pj, j = 1, 2 resulting from
the geodesic θ̃(γ) of Fig. 2.1, for robust time-optimal control [obtained for a flat
pulse of Rabi frequency Ω0 according to (2.28)] showing the complete population
transfer with the optimal time Tmin ≈ 5.842/Ω0.

46



2.2. Optimal robust control against field inhomogeneities for arbitrary population
transfer

Figure 2.3: Optimal α-robust geodesic θ̃(γ) for half population transfer correspond-
ing to λ̃1 ≈ −1.69741, λ̃2 ≈ −0.64653 (leading to γf ≈ 1.48π and ϕ0 = π/2).

Figure 2.4: Detuning and dynamics of the populations Pj, j = 1, 2 resulting from
the geodesic θ̃(γ) of Fig. 2.3, for robust time-optimal control (for a flat pulse of
Rabi frequency Ω0) showing the half superposition. We obtain the optimal time
Tmin ≈ 4.05/Ω0.

47



Chapter 2. Optimal robust quantum control against pulse inhomogeneities:
Analytical solutions

Figure 2.5: Optimal α-robust geodesic θ̃(γ) for a quarter population transfer deter-
mined from numerical solution of (2.26). Inset: Resulting detuning and dynamics
of the populations Pj, j = 1, 2, for robust time-optimal control [obtained for a flat
pulse of Rabi frequency Ω0 according to (2.28)].

Figure 2.6: Same as Fig. 2.5 for three-quarter population transfer.
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The trajectories are shown in Figs. 2.5 and 2.6, respectively. We notice the
turning point of the trajectory in Fig. 2.6 near the end, indicating a non-monotonic
γ. In fact, in this situation, it is much simpler to solve the problem in the time
domain as it is done below for the case of quantum gates, i.e., with Eqs. (2.54) and
λ0 = 0. Such a feature occurs for a population transfer above 1/2 and different from
1 (i.e., π/4 < θ0 < π).

We have considered several other examples of θ0 transfer. The resulting param-
eters have been gathered in Fig. 2.7. We notice the discontinuity of the phase ϕ0

when one tends to the complete transfer. This is due to the fact that the phase
ϕ0 becomes not well defined at the complete transfer; what matters is the total
phase ϕ0+ γf . We have checked that the latter is continuous when one tends to the
complete transfer.

The transfer profile has been calculated for the case of complete population
transfer in Fig. 2.8, compared to the single π-pulse and the optimal composite pulse
[featuring three pulses of respective areas, π/2–π–π/2 (2.146)], as determined in
Appendix 2.E.

Figure 2.9 shows the robustness profile for the half superposition (2.17) with
ϕ0 = π/2. It is compared to the 2π composite pulses of Ref. [17] (where they have
been defined with a figure of merit as the absolute value squared of the amplitude of
the superposition, disregarding the internal phase). As anticipated, it shows a lower
robustness than RIO when using the complete target state (up to a global phase)
as figure of merit (1.101).

As expected, the profile given by the composite pulses is similar to that of RIO
since they are of the same order. We notice that the optimal composite pulse
technique perform relatively well for the complete population transfer as its total
area is 2π, only approximately 10% more than the optimal RIO (1.86π).
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Figure 2.7: Parameters (λ1, λ2, ϕ0, Tmin) characterizing the optimal α-robust tra-
jectories θ̃(γ) and those (m, ω, ∆0) of the time- or energy-optimal detunings for
arbitrary population transfer given by θ0.
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transfer

Figure 2.8: Robustness profile for complete population transfer: Fidelity (lower
panel) and its deviation with respect to 1 in logarithmic scale (upper panel) as a
function of the error α for RIO, for the corresponding optimal three-pulse composite
technique, and the single π-pulse.
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Figure 2.9: Same as Fig. 2.8, but for half population transfer.
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2.3 Optimal robust control against field inhomo-
geneities for quantum gate

2.3.1 General SU(2) gate

An arbitrary SU(2) gate corresponds to (1.105):

U(θ0, ϕ0, γ0) =

[
c ≡ e

i
2
(ϕ0−γ0) cos(θ0/2) −d

d ≡ e−
i
2
(ϕ0+γ0) sin(θ0/2) c

]
(2.38)

with the given angle θ0 and the two phases ϕ0, γ0 to be controlled in a robust way.

We recall that the internal phase of the state can be modified via a static phase
η0 added to the control field, see Eqs. (1.69-1.72). The corresponding propagator
reads indeed in this case at the end of the process

Ũ(θ0, ϕ0, γ0, η0) = T (η0)U(θ0, ϕ0, γ0)T
†(η0) =

[
c −de−iη0

deiη0 c

]
. (2.39)

Application of a preliminary phase gate (of phase κ) (see Sec. 2.3.5 for its imple-
mentation)

Φκ =

[
e−iκ/2 0

0 eiκ/2

]
(2.40)

allows one to modify the global phase γ0:

Ũ(θ0, ϕ0, γ0, η0)Φκ =

[
c −de−iη0

deiη0 c

][
e−iκ/2 0

0 eiκ/2

]

=

[
ce−iκ/2 −de−iη0eiκ/2

deiη0e−iκ/2 ceiκ/2

]
. (2.41)

We can thus consider without loss of generality the construction of a robust process
driving the ground state |0〉 to the state

|φ(tf )〉 = |φT 〉 ≡

[
eiϕ0/2 cos(θ0/2)
e−iϕ0/2 sin(θ0/2)

]
e−iγ0/2 (2.42)

with the two phases ϕf = ϕ0, γf = γ0, while robust, not fixed a priori. They
will result from the optimization procedure. This control implies, as in the case of
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population transfer, the boundaries

θi = 0, θf = θ0, γi = ϕi = π/2. (2.43)

From the fidelity (1.109) we aim at nullifying ReO2 = 0 (which automatically nul-
lifies ReO3 = 0).

Optimization with respect to pulse area

Nullification of the second order (1.93) reduces to the three conditions (1.114) for a
trajectory θ̃(γ) with γ̇ > 0:

0 =

∫ γf

π/2

sin2 θ̃ dγ, (2.44a)

0 =

∫ γf

π/2

(sin 2θ̃ − 2θ̃) cos γ dγ + 2π sin γf , (2.44b)

0 =

∫ γf

π/2

(sin 2θ̃ − 2θ̃) sin γ dγ − 2π cos γf . (2.44c)

We obtain the equation of motion for the trajectory θ̃(γ):

¨̃
θ = 2

( ˙̃
θ
)2 cot θ̃ + sin θ̃ cos θ̃ + 2λ̃0 cot θ

[
sin2 θ̃ +

( ˙̃
θ
)2]3/2

+ (λ1 sin γ − λ2 cos γ)
[
sin2 θ̃ +

( ˙̃
θ
)2]3/2

. (2.45)

It generalizes Eq. (2.26) obtained for the problem of population transfer.

We have seen that γ(t) cannot be monotonic when Eq. (1.114a) has to be satis-
fied. We have then to consider a piecewise defined function θ̃(γ):

θ̃(γ) =

{
θ̃+(γ) for γ̇ ≥ 0, γ = [π/2, γm],

θ̃−(γ) for γ̇ < 0, γ = [γf , γm),
(2.46)

with θm = θ̃+(γm) = θ̃−(γm). We use this formulation to determine the trajectory
for the not gate below.
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Optimization with respect to energy and time

We rewrite the constraints (1.93) as functions of time:

ψ0(γ, θ) ≡
∫ tf

ti

γ̇ sin2 θ dt ≡
∫ tf

ti

ϕ0(γ̇, θ) dt = 0, (2.47a)

ψf (γ, θ) ≡
∫ tf

ti

γ̇ sin 2θeiγ dt− 2i

∫ tf

ti

θ̇eiγ dt = 0. (2.47b)

The latter equation can be rewritten, after integration by parts, as∫ tf

ti

γ̇(sin 2θ − 2θ)eiγ dt− 2i(θfe
iγf − θieiγi) = 0, (2.48)

giving for the gate:

ψ1(γ, θ) ≡
∫ tf

ti

γ̇ cos γ(sin 2θ − 2θ) dt ≡
∫ tf

ti

ϕ1(γ, γ̇, θ) dt = −2θf sin γf , (2.49a)

ψ2(γ, θ) ≡
∫ tf

ti

γ̇ sin γ(sin 2θ − 2θ) dt ≡
∫ tf

ti

ϕ2(γ, γ̇, θ) dt = 2θf cos γf . (2.49b)

The problem can be formulated by the Euler-Lagrange equations

grad E(γ, θ) +
∑
j

λj gradψj(γ, θ) = 0 (2.50)

with λj, j = 0, 1, 2, the Lagrangian multipliers associated to the constraints, where
the gradient is defined as

grad E(γ, θ) =

∂L0

∂γ
− d

dt

(
∂L0

∂γ̇

)
∂L0

∂θ
− d

dt

(
∂L0

∂θ̇

) , (2.51a)

gradψj(γ, θ) =

∂ϕj

∂γ
− d

dt

(
∂ϕj

∂γ̇

)
∂ϕj

∂θ
− d

dt

(
∂ϕj

∂θ̇

) , (2.51b)

with the Lagrangian L0 defined from the energy as the cost:

E(γ, θ) =
∫ tf

ti

(θ̇2 + γ̇2 sin2 θ) dt ≡
∫ tf

ti

L0(γ̇, θ, θ̇) dt. (2.52)

55



Chapter 2. Optimal robust quantum control against pulse inhomogeneities:
Analytical solutions

This gives

∂L0

∂γ
− d

dt

(∂L0

∂γ̇

)
+ λ0

[
∂ϕ0

∂γ
− d

dt

(∂ϕ0

∂γ̇

)]
+ λ1

[
∂ϕ1

∂γ
− d

dt

(∂ϕ1

∂γ̇

)]
+ λ2

[
∂ϕ2

∂γ
− d

dt

(∂ϕ2

∂γ̇

)]
= 0, (2.53a)

∂L0

∂θ
− d

dt

(∂L0

∂θ̇

)
+ λ0

[
∂ϕ0

∂θ
− d

dt

(∂ϕ0

∂θ̇

)]
+ λ1

[
∂ϕ1

∂θ
− d

dt

(∂ϕ1

∂θ̇

)]
+ λ2

[
∂ϕ2

∂θ
− d

dt

(∂ϕ2

∂θ̇

)]
= 0, (2.53b)

i.e.,

γ̈ + 2γ̇θ̇ cot θ + λ0θ̇ cot θ − 2θ̇(λ1 cos γ + λ2 sin γ) = 0, (2.54a)

θ̈ − γ̇2 sin θ cos θ − λ0γ̇ sin θ cos θ + 2γ̇ sin2 θ(λ1 cos γ + λ2 sin γ) = 0. (2.54b)

We notice that the λj’s are different from the ones obtained in (2.104) and (2.32)
since we have taken the constraints (2.49) written differently from (1.111b).

In order to determine a constant of motion, Eqs. (2.54) are rewritten as

γ̈γ̇ sin2 θ + 2γ̇2θ̇ cos θ sin θ + θ̇γ̇ sin θ[λ0 cos θ − 2 sin θ(λ1 cos γ + λ2 sin γ)] = 0,

(2.55a)

θ̈θ̇ − γ̇2θ̇ sin θ cos θ − γ̇θ̇ sin θ[λ0 cos θ − 2 sin θ(λ1 cos γ + λ2 sin γ)] = 0, (2.55b)

which give after substitution of the terms containing the Lagrangian multipliers:

γ̈γ̇ sin2 θ + θ̈θ̇ + γ̇2θ̇ cos θ sin θ = 0, (2.56)

i.e.,

0 =
d

dt
(θ̇2 + γ̇2 sin2 θ). (2.57)

The corresponds to a constant of motion corresponding to a constant pulse Ω ≡
Ω0 = const:

θ̇2 + γ̇2 sin2 θ = Ω2
0. (2.58)

To determine additional conditions, we make an analysis of the initial condition
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on (2.58) considering the limit θ → θi = 0:

θ̇2i + γ̇2i θ
2
i = Ω2

0. (2.59)

If we assume that |γ̇i| <∞, we conclude:

|θ̇i| = |Ω0|. (2.60)

The analysis is made on (2.54a) by multiplying it by sin θ (and assuming the above
condition meaning that |θ̇i| <∞):

γ̈iθi + (2γ̇i + λ0)θ̇i = 0. (2.61)

If we additionally assume that |γ̈i| <∞, we conclude

γ̇i = −λ0/2. (2.62)

We do not fix γ0 = γf , neither ϕ0 = ϕf . The latter is given by (1.68c):

cosϕf = γ̇f/Ω0, sinϕf = θ̇f/Ω0. (2.63)

The problem is numerically solved with the initial condition γi = π/2, θi = 0, and
γ̇i = −λ0/2, |θ̇i| = |Ω0|, such that θf = θ0 (and both γf and ϕf are undefined).

Appendix 2.F shows that optimizing with respect to the pulse area, to the energy,
or to the duration leads to the same trajectory, as in the problem of population
transfer.

2.3.2 Analytic expression of the detuning for time-optimiza-
tion

Using (2.54a) in (2.31), the detuning reads

∆ = λ0 cos θ − 2 sin θ(λ1 cos γ + λ2 sin γ). (2.64)

This gives in particular at initial and final times

∆i = λ0, (2.65a)

∆f = λ0 cos θf − 2 sin θf (λ1 cos γf + λ2 sin γf ), (2.65b)

respectively.
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We show in Appendix (2.G) that the detuning has still the form of the elliptic
cosine :

∆ = ∆0 cn (ωt+ νi,m) , t ∈ [0, Tmin], (2.66)

but with a modified initial phase νi comparing to the case of population transfer:

∆0 = −2 sgnλ1 ω
√
m, (2.67a)

λ0 = ∆0 cn (νi,m) , (2.67b)

λ1Ω0 = −∆0ω sn (νi,m)
√

1−m sn2 (νi,m), (2.67c)

λ1Θ0x,f − λ2Θ0y,f − λ0θ̇f sin θf = −∆0ω sn (ωTmin + νi,m)

×
√

1−m sn2 (ωTmin + νi,m), (2.67d)

and λ1 = −2λG2 , λ2 = 2λG1 , where we have denoted λGj found for the present gate
problem (2.54), (2.64).

We find the parameters ω and m as solutions of the system (2.67c–2.67d) after
substituting ∆0 from (2.67a) and νi from (2.67b).

2.3.3 not gate

We consider the not-type gate:

Unot(κ) =

[
0 −eiκ

e−iκ 0

]
, (2.68)

corresponding to |φ(ti)〉 = |0〉, |φ(tf )〉 = |φT 〉 ≡ e−iκ|1〉, where the phase

κ = (ϕf + γf )/2 (2.69)

is also robust (but not fixed a priori).
This control implies, as in the case of population transfer, the boundaries θi = 0,

θf = π, γi = ϕi = ϕf = π/2, giving κ = π/4 + γf/2.

Symmetric trajectory

We consider the symmetric situation :

θm = π/2, γf = γi = π/2, θ̃−(γ) = 2θm − θ̃+(γ) (2.70)
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Figure 2.10: Optimal robust geodesic θ̃(γ) corresponding to the not gate.

giving κ = π/2, θf = 2θm, for which the integrals (1.113) to be nullified become
[with the use of (1.116)]:

0 =

∫ tf

ti

e(t) dt =

∫ γm

π/2

sin2 θ̃+ dγ −
∫ γm

π/2

sin2 θ̃+ dγ, (2.71a)

0 =

∫ tf

ti

f(t) dt =

∫ γm

π/2

cos γ(sin 2θ̃+ − 2θ̃+) dγ + π sin γm

+ i

∫ γm

π/2

sin γ(sin 2θ̃+ − 2θ̃+) dγ − iπ cos γm. (2.71b)

We see that the nullification of the integral (2.71a) is automatically satisfied, which
allows one to avoid considering the additional Lagrange multiplier λ0. The nullifi-
cation of the integral (2.71b) with θ̃+(γm) = π/2 leads to Eqs. (2.20) for the half
transfer (θf = π/2) where γf is replaced by γm. This means that the optimal ro-
bust not gate is achieved when two consecutive optimal robust half transfers are
achieved [37], i.e., Tmin = 8.1/Ω0 giving the pulse area Aopt

not = Ω0Tmin = 2.58π.

The resulting trajectory is shown in Fig. 2.10. This leads to the standard not
gate, Unot, up to a global phase

Unot(π/2) = −i

[
0 1

1 0

]
≡ −iUnot. (2.72)
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General formulation for optimization with respect to energy and time.

For the final condition on (2.58) considering the limit θ → θf = π, assuming |γ̇f | <
∞, and for (2.54a), assuming |γ̇f | <∞, we have the following symmetric boundaries:

|θ̇f | = |Ω0| = |θ̇i|, γ̇f = −λ0/2 = γ̇i. (2.73)

We have checked numerically that the optimum is obtained for λ0 = 0, validating
the above analysis with the symmetric trajectory.

Figure 2.11 shows the robustness profile for the NOT gate. It is compared to
the SCROFULOUS composite pulse technique [14] of 3π area (see Appendix 2.E),
approximately 20% longer than the RIO NOT gate.

Figure 2.11: Same as Fig. 2.8, but for the not gate
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2.3.4 Hadamard-type gate

Robust quantum gate of Hadamard-type is defined as

Uh(ϕ0, γ0) =
1√
2

[
e

i
2
(ϕ0−γ0) −e i

2
(ϕ0+γ0)

e−
i
2
(ϕ0+γ0) e−

i
2
(ϕ0−γ0)

]
. (2.74)

We can consider without loss of generality the construction of a robust process
driving the ground state |0〉 to the state (2.42) with θ0 = π/2.

We consider optimization with respect to energy and time. The boundaries read:

θi = 0, θf = π/2, γi = ϕi = π/2, γf = γ0, ϕf = ϕ0, (2.75)

and
|θ̇i| = |Ω0|, γ̇i = −λ0/2. (2.76)

We do not fix γ0 = γf , neither ϕ0 = ϕf .

We determine numerically from the system of differential equations (2.54): λ0 ≈
1.50581/Ω0, λ1 ≈ 0.04270/Ω0, λ2 ≈ 1.19287/Ω0, γ0 = ϕ0 ≈ 0.77135π, and the
optimal time Tmin ≈ 5.76955/Ω0, i.e., the pulse area TminΩ0 ≈ 1.8365π. We obtain
from (2.67) m ≈ 0.5091, ω ≈ 9.3406/Tmin, νi ≈ 0.9154, ∆0 = 2ω

√
m ≈ 2.3103Ω0.

The trajectory and the dynamics are shown in Fig. 2.12.

Figure 2.13 shows the robustness profile for the Hadamard gate. It is compared
to the optimal SCROFULOUS composite pulse technique [14, 17] of 2.28π area,
more than 20% longer than the RIO Hadamard gate.

Considering an additional static phase η0 of the control, we obtain the following
gate (since γ0 = ϕ0):

Uh(ϕ0, γ0 = ϕ0, η0) ≡ T (η0)Uh(ϕ0, γ0 = ϕ0)T
†(η0)

=
1√
2

[
1 −ei(ϕ0−η0)

e−i(ϕ0−η0) 1

]
, (2.77)

which leads to the pseudo-Hadamard gate

Ũph ≡ Ũh(ϕ0, ϕ0, ϕ0) =
1√
2

[
1 −1
1 1

]
, (2.78)

when η0 = ϕ0.

The standard Hadamard gate Ũh can be obtained (up to a global phase) by
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Figure 2.12: Same as Fig. 2.5 for the Hadamard gate from the ground state.

applying a preliminary phase gate of phase π, Φπ, according to (2.41):

Ũh = ŨphΦπ =
−i√
2

[
1 1

1 −1

]
. (2.79)
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Figure 2.13: Same as Fig. 2.8, but for the Hadamard gate

2.3.5 Phase gate

The phase gate of phase κ (2.40) can be generated (up to a global phase) by applying
two successive optimal robust not gates, where the second not gate is produced
by a control of (static) phase κ/2 [see Eq. (2.39)]:

Ũnot

(π
2
,
κ

2

)
Unot

(π
2

)
= −Φκ. (2.80)

2.4 Smooth quasi-square pulses

In this section, we analyze a way to smooth the constant (square) pulse amplitude
determined by (time) optimization. We use the flexibility of the RIO method in
terms of the solutions dynamics. The optimal robust trajectory in Fig. 2.1, leading to
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a complete population transfer, offers infinitely many optimal solutions (robust with
respect to the pulse area) depending on the time parametrization of γ(t). In order
to approach the ideal time-optimal robust dynamics, we impose a parametrization
given by a smooth quasi-square pulse of same peak amplitude and same area as that
of the square pulse. This is modeled by a hyper-Gaussian pulse of high-order even
n and width σ:

Ω(t) = Ω0 exp[−(t/σ)n], (2.81)

such that
∫ tf
ti

Ω(t) dt = 2Ω0σΓ(1/n)/n = Ω0Tmin, i.e.,

σ =
nTmin

2Γ(1/n)
. (2.82)

The parametrization of γ(t) is more precisely determined from the identity of the
partial pulse areas:

Ω0

∫ t

ti

exp[−(t/σ)n] dt =
∫ γ(t)

γi

√( ˙̃
θ
)2

+ sin2 θ dγ. (2.83)

Figure 2.14 presents the dynamics driven by RIO with a hyper-Gaussian pulse (of
high order n = 14 and σ ≈ 1.095T , i.e., Ω0 ≈ 2.77/T ) replacing the ideal optimal
square pulse (of same area 5.84). We may refer to this, in short, as hyper-Gaussian
RIO (hG-RIO). As expected the corresponding detunings are very similar. The de-
tuning associated to the hyper-Gaussian pulse also appears smooth (i.e., regularized
at the beginning and at the end of the process).
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Figure 2.14: Lower frame: Quasi-square hyper-Gaussian pulse (solid lines) and time-
optimal ideal square pulse (dashed line) and the corresponding oscillating detunings
(almost undistinguishable at the scale of the figure, except at the beginning and
at the end). Upper frame: resulting hG-RIO population dynamics showing the full
transfer.

2.5 Conclusions

The basis of robust inverse optimization to produce optimal robust complete popu-
lation transfer, half transfer, and not gate has been presented in Ref. [37]. We have
completed and extended the work by proposing robust optimal schemes to produce
arbitrary population transfers, Hadamard gates, and phase gates. A remarkable
result is the analytical solution we have found for all the operations described. The
proof uses Ref. [35] as starting point that we could determine the form of all such so-
lutions (as they all obey the same differential equations and differ only in boundary
conditions), and generalize them by turning some constants into tunable parame-
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ters. Knowing the basic form, we could find the corresponding Lagrange multipliers
for each problem and fit the solution to the analytical form.

The generalization of [35] lacks rigorous mathematical proof, but it is supported
by numerical evidence.

It should be highlighted that these optimal and robust detuning shapes corre-
sponding to flat Rabi frequencies can be use to determine solutions for any pulse
shape: (i) Using a certain detuning and field amplitude (in units of pulse duration),
that are area-optimal and robust, we can obtain the corresponding geometric trajec-
tory θ̃(γ); (ii) as this trajectory does not depend on the temporal dynamics, we can
use the corresponding optimal pulse area and design any pulse shape that satisfies it;
(iii) finally, we can recalculate the temporal shape of the detuning that will display
the optimal area for the operation, will be robust with respect to pulse inhomo-
geneities, and will use the desired pulse amplitude shape; obviously, the temporal
duration will not be optimal (the interaction will last longer than with a constant
control).
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2.A. Determination of the optimal robust trajectory γ̃(θ) for a monotonic θ(t)

Appendices

2.A Determination of the optimal robust trajec-
tory γ̃(θ) for a monotonic θ(t)

2.A.1 General case

The problem can be formulated as an optimization problem under constraint : find-
ing the trajectory γ̃(θ) that minimizes the pulse area (1.76)

A(γ̃) =
∫ π

0

√
1 +

(
˙̃γ
)2 sin2 θ dθ ≡

∫ π

0

L0( ˙̃γ, θ) dθ (2.84)

with ˙̃γ ≡ dγ̃
dθ

, under the two constraints (2.19) rewritten as

ψ1(γ̃) =

∫ π

0

cos γ̃ sin2 θ dθ ≡
∫ π

0

ϕ1(γ̃, θ) dθ = 0, (2.85a)

ψ2(γ̃) =

∫ π

0

sin γ̃ sin2 θ dθ ≡
∫ π

0

ϕ2(γ̃, θ) dθ = 0. (2.85b)

Since the final phase is irrelevant for the population transfer problem, the final
value γf ≡ γ̃(θf ) is not fixed. The problem can be solved by the Lagrange multiplier
method extended to the function space as follows: The trajectory γ̃ is solution of

gradA(γ̃) + λ̃1 gradψ1(γ̃) + λ̃2 gradψ2(γ̃) = 0, (2.86)

with λ̃j, j = 1, 2, the Lagrangian multipliers associated to the constraints, where the
gradient is defined according to the Euler-Lagrange equation (which is zero without
constraint):

gradA(γ̃) = ∂L0

∂γ̃
− d

dθ

(
∂L0

∂ ˙̃γ

)
. (2.87)

This definition also applies for the constraints, j = 1, 2

gradψj(γ̃) =
∂ϕj

∂γ̃
− d

dθ

(
∂ϕj

∂ ˙̃γ

)
. (2.88)

We obtain the differential equation:

0 = ¨̃γ + 2 ˙̃γ cot θ + ( ˙̃γ)3 cos θ sin θ + (λ̃1 sin γ̃ − λ̃2 cos γ̃)[1 + ( ˙̃γ)2 sin2 θ]3/2. (2.89)
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2.A.2 Connection to the trajectory θ̃(γ)

We notice that one can recover the differential equation (2.26), derived for the
trajectory θ̃(γ), from (2.89) by inverting the derivatives:

˙̃γ =
dγ̃

dθ
= 1/

(
dθ̃

dγ

)
= 1/

˙̃
θ (2.90a)

d

dθ

(
˙̃γ
˙̃
θ
)
= 0 = ¨̃γ

˙̃
θ + ˙̃γ

d

dγ

( ˙̃
θ
)dγ̃
dθ

= ¨̃γ
˙̃
θ +

(
˙̃γ
)2 ¨̃
θ, (2.90b)

i.e.,

¨̃γ = − ¨̃θ/
( ˙̃
θ
)3
. (2.91)

We indeed obtain from (2.89):

¨̃
θ( ˙̃
θ
)3 =

2
˙̃
θ

cot θ̃ + 1( ˙̃
θ
)3 cos θ̃ sin θ̃ + (λ̃1 sin γ − λ̃2 cos γ)

[
1 +

sin2 θ̃( ˙̃
θ
)2
]3/2

. (2.92)

which is (2.26) for θ 6= 0.

2.A.3 Treatment of the initial singularity

In order to lift the initial singularity of ˙̃γ cot θ, we multiplying this equation by sin θ:

0 = ¨̃γ sin θ + 2 ˙̃γ cos θ + ( ˙̃γ)3 cos θ sin2 θ + sin θ λ̃1 sin γ̃ − λ̃2 cos γ̃
[1 + ( ˙̃γ)2 sin2 θ]−3/2

. (2.93)

Setting the limit θ → 0 (initial time) and assuming that ¨̃γ(0) is finite such that
¨̃γ sin θ = 0 for θ = 0, leads to ˙̃γi = 0.

2.A.4 Particular case of complete population transfer: Sym-
metric trajectory

We consider the situation of complete population transfer θf = π. It is useful
to consider the backward equation: γ̂(u) = γ̃(θ) with u = θf − θ, i.e., satisfying
γ̂(0) = γ̃(θf ) and γ̂(θf ) = γ̃(0). This gives ˙̂γ = − ˙̃γ, ¨̂γ = ¨̃γ, and

0 = ¨̂γ − 2 ˙̂γ cot(θf − u)− ( ˙̂γ)3 cos(θf − u) sin(θf − u)

+ (λ̃1 sin γ̂ − λ̃2 cos γ̂)[1 + ( ˙̂γ)2 sin2(θf − u)]3/2. (2.94)
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For the complete population transfer case, the above differential equation becomes

0 = ¨̂γ + 2 ˙̂γ cotu+ ( ˙̂γ)3 cosu sinu+ (λ̃1 sin γ̂ − λ̃2 cos γ̂)[1 + ( ˙̂γ)2 sin2 u]3/2, (2.95)

which is of the same form as the original one (2.89): this shows the central symmetry
of the trajectory around θ = π/2 for the problem of complete population transfer,
since ˙̂γ = − ˙̃γ. By symmetry, we have thus

˙̃γ(0) = ˙̃γ(π), ¨̃γ(0) = −¨̃γ(π), γ̃(π/2) =
1

2
[γ̃(π) + γ̃(0)]. (2.96)

The symmetry implies that we can identify the differential equations at early and
late times, i.e., in the limit θ → 0 and u = π − θ → π:

0 = ¨̃γ(θ) + 2 ˙̃γ(θ) cot θ + (λ̃1 sin γ̃i − λ̃2 cos γ̃i)

= ¨̃γ(u) + 2 ˙̃γ(u) cotu+ (λ̃1 sin γ̃f − λ̃2 cos γ̃f )

= −¨̃γi − 2 ˙̃γi cot θi + (λ̃1 sin γ̃f − λ̃2 cos γ̃f ), (2.97)

which using γ̃i = π/2, leads to

λ̃1 = λ̃2 cos γ̃f − λ̃1 sin γ̃f . (2.98)

We remark that this symmetry is not preserved for a partial (incomplete) transfer.

2.B Invariance of the optimal trajectory with the
different costs for population transfer

In this section we show that optimizing with respect to the pulse area, to the energy,
or to the duration leads to the same trajectory.

We first assume we have determined the optimal trajectory γ̃(θ) (possibly piece-
wise defined), solution of Eq. (2.89), that minimizes the pulse area (1.76) under the
robustness constraints (1.111b). We now consider the energy minimization:

E(γ, θ) =
∫ tf

ti

(θ̇2 + γ̇2 sin2 θ) dt ≡
∫ tf

ti

L0(γ̇, θ, θ̇) dt, (2.99)
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and the constraints (1.111b) rewritten in a time representation

ψ1(γ, θ) =

∫ tt

ti

ϕ1 dt = (cos γi sin 2θi − cos γf sin 2θf )/4 (2.100a)

ψ2(γ, θ) =

∫ tt

ti

ϕ2 dt = (sin γi sin 2θi − sin γf sin 2θf )/4 (2.100b)

with

ϕ1 = θ̇ cos γ sin2 θ, ϕ2 = θ̇ sin γ sin2 θ, (2.101)

for consistency with the energy minimization representation.
The trajectory [γ(t), θ(t)] solution of the optimal problem can be formulated by

the Euler-Lagrange equations:

grad E(γ, θ) + λ1 gradψ1(γ, θ) + λ2 gradψ2(γ, θ) = 0 (2.102)

with λj, j = 1, 2, the Lagrangian multipliers associated to the constraints, and the
gradient

grad E(γ, θ) =

∂L0

∂γ
− d

dt

(
∂L0

∂γ̇

)
∂L0

∂θ
− d

dt

(
∂L0

∂θ̇

) , gradψj(γ, θ) =

∂ϕj

∂γ
− d

dt

(
∂ϕj

∂γ̇

)
∂ϕj

∂θ
− d

dt

(
∂ϕj

∂θ̇

) . (2.103)

Note that we have changed the notation of the Lagrangian multipliers (without tilde
here) to distinguish them from the calculation with the trajectory γ̃(θ) or θ̃(γ).

The Euler-Lagrange equations lead to the differential equations

0 =
∂L0

∂γ
− d

dt

(
∂L0

∂γ̇

)
+
∑
i=1,2

λi

[
∂ϕj

∂γ
− d

dt

(
∂ϕj

∂γ̇

)]
= −2 sin2 θ[γ̈ + 2γ̇θ̇ cot θ + θ̇(λ1 sin γ − λ2 cos γ)/2] (2.104a)

and

0 =
∂L0

∂θ
− d

dt

(
∂L0

∂θ̇

)
+
∑
i=1,2

λi

[
∂ϕj

∂θ
− d

dt

(
∂ϕj

∂θ̇

)]
= γ̇2 sin 2θ − 2θ̈ + γ̇ sin2 θ(λ1 sin γ − λ2 cos γ). (2.104b)

Equations (2.104a) and (2.104b) can be combined to substitute the term of the
Lagrange multipliers:

0 = γ̈γ̇ sin2 θ + γ̇2θ̇ sin θ cos θ + θ̈θ̇,
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i.e.,

0 =
d

dt
(θ̇2 + γ̇2 sin2 θ). (2.105)

The solution gives a constant of motion corresponding to a constant pulse Ω ≡ Ω0 =

const:

θ̇2 + γ̇2 sin2 θ = Ω2
0. (2.106)

Using γ̈ = θ̇2 ¨̃γ + θ̈ ˙̃γ, (2.104a) reads

0 = 2(¨̃γ + θ̈ ˙̃γ/θ̇2) + 4 ˙̃γ cot θ + 1

θ̇
(λ1 sin γ − λ2 cos γ), (2.107)

which becomes, using (2.104b):

0 = ¨̃γ + 2 ˙̃γ cot θ +
(
˙̃γ
)3 sin θ cos θ + 1

2θ̇
(λ1 sin γ − λ2 cos γ)

[
1 +

(
˙̃γ
)2 sin2 θ

]
.

(2.108)

Using the constant of motion (2.105), rewritten as:

θ̇ =
Ω0√

1 +
(
˙̃γ
)2 sin2 θ

, (2.109)

Eq. (2.108) leads to (2.89) (with the Lagrangian multipliers renormalized by 2Ω0,
i.e., λj = 2Ω0λ̃j).

This means that the two initial equations (2.104) can be equivalently rewritten as
(2.89) and (2.109); they produce a particular parametrization θ(t) [given by (2.109)]
of the trajectory γ̃(θ) obtained for the problem of minimization of the pulse area
A [given by (2.89)]. The resulting trajectory θ(t), γ̃(θ(t)) minimizes thus both the
pulse area A and the energy E .

Equation (2.109) can be rewritten as∫ θ(t)

θi

√
1 +

(
˙̃γ
)2 sin2 θ dθ = Ω0 (t− ti), (2.110)

or equivalently for a trajectory θ̃(γ)∫ γ(t)

γi

√( ˙̃
θ
)2

+ sin2 θ̃ dγ = Ω0 (t− ti), (2.111)
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where the left-hand side is the partial pulse area [see Eq. (1.76)].

2.C Calculation of γf for the complete population
transfer

The expression of the detuning (2.33) leads to the exact value of γf as follows:
Considering the middle time, t1/2 = Tmin/2, for which we have by symmetry θ1/2 =
π/2, γ1/2 = (γf + γi)/2 = (γf + π/2)/2, and ∆1/2 = 0 (odd function), (2.33) gives
λ1 sin γ1/2 − λ2 cos γ1/2 = 0. With the equation (2.98), λ2 cos γf − λ1 sin γf = λ1,
they form the system:

λ1 sin γ1/2 − λ2 cos γ1/2 = 0, λ2 cos γf − λ1(1 + sin γf ) = 0, (2.112)

which has a solution when the determinant of the system is zero: − sin γ1/2(1 +

sin γf )+ cos γf cos γ1/2 = 0, of exact solution γf = 5π/3. As a consequence, we have
the relation between the λj’s:

λ2 = λ1 tan γ1/2 ≈ 0.26795λ1. (2.113)

2.D Analytic expression of the detuning for pop-
ulation transfers

In this Appendix, we show that the detuning has the form of a Jacobi elliptic cosine.
From (2.33), we calculate ∆̇ as a function of the two dynamical angles (θ, γ),

and redefine it as a function of the two dynamical angles (θ, χ) via two parameters
I1 and I2 following [35]:

∆̇ = λ1Θ0x − λ2Θ0y = I1Ω0x − I2Ω0y (2.114)

with

Θ0x = θ̇ cos θ sin γ + γ̇ sin θ cos γ, Θ0y = θ̇ cos θ cos γ − γ̇ sin θ sin γ, (2.115)

and

Ω0x = θ̇ sinχ+ χ̇ tan θ cosχ, Ω0y = θ̇ cosχ− χ̇ tan θ sinχ (2.116)
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with

χ̇ = γ̇ cos θ, (2.117)

and χi to be defined.

We obtain:

Ω̇0x = θ̈ sinχ+ θ̇χ̇ cosχ+ γ̈ sin θ cosχ+ γ̇θ̇ cos θ cosχ− γ̇χ̇ sin θ sinχ, (2.118a)

Ω̇0y = θ̈ cosχ− θ̇χ̇ sinχ− γ̈ sin θ sinχ− γ̇θ̇ cos θ sinχ− γ̇χ̇ sin θ cosχ, (2.118b)

i.e., using the equations of motion (2.32) and (2.117):

Ω̇0x = sin θ(γ̇ sin θ sinχ− θ̇ cosχ)(λ1 sin γ − λ2 cos γ), (2.119a)

Ω̇0y = sin θ(γ̇ sin θ cosχ+ θ̇ sinχ)(λ1 sin γ − λ2 cos γ)). (2.119b)

This leads to the three equations of motion

Ω̇0x = −Ω0y∆, Ω̇0y = Ω0x∆, ∆̇ = I1Ω0x − I2Ω0y. (2.120)

The solution of the first two equations allows one to recover the properties of Ω0x,
Ω0y (1.80), and ∆ (1.84c):

Ω0x = Ω0 cos η, Ω0y = Ω0 sin η, Ω0 = const, ∆ = η̇. (2.121)

From Eq. (2.120), the function η can be determined as [35]:

η = ±
[

sn(ν,m)

|sn(ν,m)|
acos

√
1−m sn2(ν,m)− acos

√
1−m

]
(2.122)

with the phase

ν = ωt+ νi, (2.123)

where the sign + [−] stands for negative [positive] I1, and the detuning has the form
of the elliptic cosine :

∆ = ∆0 cn (ωt+ νi,m) , t ∈ [0, Tmin] (2.124)
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with

ω =
√

Ω0(I
2
1 + I22 )

1/4, (2.125a)

m =
1

2
− Ω0

2ω2
(I2 cos ηi + I1 sin ηi), (2.125b)

∆0 = −2 sgnλ1 ω
√
m. (2.125c)

At the initial time θi = 0 (γi = π/2, θ̇i = Ω0), we have ∆i = 0 from (2.33), inducing

νi = K(m) (2.126)

in (2.124), with K(m) the complete elliptic integral of the first kind. This gives
ηi = 0 from (2.122), i.e., χi = π/2 (since χ = ϕ − η and ϕi = π/2), and from
(2.114):

λ1 = I1, (2.127)

i.e., from (2.125b) and (2.125a),

m =
1

2

(
1−

√
1− λ21

Ω2
0

ω4

)
. (2.128)

Identifying the initial derivative (2.114) and (2.124) gives

|λ1|Ω0 = 2ω2
√
m
√
1−m. (2.129)

The last two equations are in fact identical.

Identifying the final derivative (2.114) and (2.124) gives:

λ1Θ0x,f − λ2Θ0y,f = −∆0ω sn [ωTmin +K(m),m]
√

1−m sn2 [ωTmin +K(m),m]

(2.130)

with Θ0x,f ≡ Θ0x(tf ) and Θ0y,f ≡ Θ0y(tf ).

From the knowledge of the trajectory θ̃(γ), obtained from λ1 and λ2, and Tmin

from (2.28), one can calculate m and ω from the system of equations (2.129–2.130),
where we substitute ∆0 from (2.125c). We next obtain ∆0 from (2.125c), which fully
determines the detuning (2.124) [also using (2.126)].
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2.E Composite pulses technique – Complete pop-
ulation transfer and not gate

The technique is based on the composition of resonant pulses [13–17] each corre-
sponding to the propagator:

Uθ,ϕ =

[
cos(θ/2) −i sin(θ/2)e−iϕ

−i sin(θ/2)eiϕ cos(θ/2)

]
, (2.131)

where θ is the pulse area and ϕ its (static) phase. We determine in this Appendix the
optimal composite pulse technique for some population transfers and gates accurate
to third order, considering robustness with respect to field inhomogeneities. This
means a systematic error in the pulse area proportional to it: θ(1 +α) = θ+ ε with
ε = αθ.

A single pulse process, for which the population transfer reads

P
(1)
θ0

= sin2 [(θ0 + ε)/2] = sin2 (θ0/2) [1 + ε cot θ0 + · · · ] (2.132)

with θ0 the targeted mixing angle, shows in general a first order deviation in the
error, O(ε). As a particular case, the complete π-pulse population transfer (θ0 = π)
produces a second order deviation in the error:

P (1)
π = sin2 (θ0/2)

[
1 +O(ε2)

]
. (2.133)

A sequence of two pulses Uθ1,ϕ1Uθ2,ϕ2=0, with the same relative error in the mixing
angles θ1(1+α), θ2(1+α) does not improve the accuracy of the single-pulse complete
π-pulse population transfer, but it does for the other transfers when θ1 = θ2 = π/2

(π/2-pulses) with a quadratic improvement [17]:

P
(2)
θ0

= sin2 (θ0/2)
[
1 + πε2/4 + · · ·

]
. (2.134)

A sequence of three symmetric pulses Uθ2,0Uθ1,ϕ1Uθ2,ϕ2=0 leads to the propagator,
which includes the errors [using the notation c′1 ≡ cos(θ′1/2), s′1 ≡ sin(θ′1/2), c′2 ≡
cos θ′2, s′2 ≡ sin θ′2]:

U = Uθ′2,0
Uθ′1,ϕ1

Uθ′2,0

=

[
c′1c

′
2 − s′1s′2 cosϕ −ic′1s′2 − s′1(ic′2 cosϕ+ sinϕ)

−ic′1s′2 − s′1(ic′2 cosϕ− sinϕ) c′1c
′
2 − s′1s′2 cosϕ

]
≡

[
U11 U12

U21 U22

]
(2.135)
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We have the same error for the angles: θ′1 = θ1(1 + α) = θ1 + ε1 with ε1 = αθ1 and
θ′2 = θ2(1+α) = θ2+ε2 with ε2 = αθ2 = ε1θ2/θ1. For a complete population transfer
(population inversion), |φ(tf )〉 = U [1 0]T = [U11 U21]

T , |U11|2 + |U21|2 = 1, it is
sufficient to consider the U21 matrix element of the propagator, which has to satisfy
|U21|2 = 1 in absence of errors (since the global phase is irrelevant) and to prove
|U21|2 = 1 +O(ε4) for a robust transfer at third order.

It reads

U21 = −i cos(θ′1/2) sin θ′2 − sin(θ′1/2)(i cos θ′2 cosϕ− sinϕ) (2.136)

with at second order

cos(θ′1/2) = cos(θ1/2)(1− ε21/8)− sin(θ1/2)ε1/2 +O(ε31)

sin(θ′1/2) = sin(θ1/2)(1− ε21/8) + cos(θ1/2)ε1/2 +O(ε31)

cos θ′2 = cos θ2(1− ε22/2)− ε2 sin θ2 +O(ε32)

sin θ′2 = sin θ2(1− ε22/2) + ε2 cos θ2 +O(ε32).

This leads to

U21 = −i[cos(θ1/2)(1− ε21/8)(sin θ2(1− ε22/2) + ε2 cos θ2)

− (ε1/2) sin(θ1/2)(sin θ2(1− ε22/2) + ε2 cos θ2)]

− [sin(θ1/2)(1− ε21/8)(i cos θ′2 cosϕ− sinϕ)

+ (ε1/2) cos(θ1/2)(i cos θ′2 cosϕ− sinϕ)] +O(ε31, ε
3
2). (2.137)

Analysis of the above expression shows that cancellation of the first order term of
|U21|2 implies θ1 = π (necessary condition). This leads to

U21 = sinϕ− i cosϕ cos θ2 + i(ε1/2 + ε2 cosϕ) sin θ2

− (ε21/8) sinϕ+
i

2
cos θ2[ε1ε2 + cosϕ(ε22 + ε21/4)]. (2.138)

When ε1 = ε2 = 0 (no error), we have

|U21|2 = sin2 ϕ+ cos2 ϕ(1− sin2 θ2) = 1− cos2 ϕ sin2 θ2, (2.139)

which gives

|U21|2 = 1 when ϕ = π/2 or θ2 = π. (2.140)
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We first consider θ2 = π (for which ε2 = ε1 ≡ ε):

U21 = sinϕ+ i cosϕ− ε2

8
sinϕ− i

2
ε2[1 + (5/4) cosϕ] (2.141)

i.e.

|U21|2 = 1− ε2

2
[cosϕ+ (5/4) cos2 ϕ+ (1/4) sin2 ϕ], (2.142)

giving |U21|2 = 1 + O(ε4) for ϕ = ±2π/3. Making the expansion further shows in
fact that |U21|2 = 1 +O(ε6) featuring a total pulse area of 3π:

Uπ,0Uπ,2π/3Uπ,0, |U21|2 = 1 +O(ε6). (2.143)

This sequence is known as SCROFULOUS, producing a not gate robust at third
order [14].

We alternatively consider ϕ = π/2 to satisfy (2.140):

U21 = 1 + i
ε

2
sin θ2 −

ε2

8
+
iε2

2

θ2
π

cos θ2, (2.144)

i.e.,

|U21|2 = 1 +
ε2

4
(−1 + sin2 θ2), (2.145)

giving |U21|2 = 1 + O(ε4) for θ2 = π/2. The latter result shows that the composite
sequence

Uπ/2,0Uπ,π/2Uπ/2,0, |U21|2 = 1 +O(ε4), (2.146)

of 2π total pulse area leads to a complete population transfer robust at third order.
This represents the optimal composite sequence with respect to pulse area for robust
complete population transfer against pulse inhomogeneities.

2.F Invariance of the optimal trajectory with dif-
ferent costs for quantum gates

In this section we show that optimizing with respect to the pulse area, to the energy,
or to the duration leads to the same trajectory for the problem of robust quantum
gates. To show the equivalence of the trajectory (2.54) with that (2.45) for the pulse
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area optimization, we proceed as follows: Using θ̈ = γ̇2
¨̃
θ + γ̈

˙̃
θ, (2.54b) reads

γ̇2
¨̃
θ + γ̈

˙̃
θ − γ̇2 sin θ cos θ − λ0γ̇ sin θ cos θ

+ 2γ̇ sin2 θ(λ1 cos γ + λ2 sin γ) = 0, (2.147)

which gives, using (2.54a) and θ̇ = γ̇
˙̃
θ:

¨̃
θ − [2 cot θ + 1

γ̇
λ0 cot θ − 2

γ̇
(λ1 cos γ + λ2 sin γ)]

( ˙̃
θ
)2 − sin θ cos θ − λ0

1

γ̇
sin θ cos θ

+
2

γ̇
sin2 θ(λ1 cos γ + λ2 sin γ) = 0, (2.148)

i.e.,

¨̃
θ − [sin2 θ + 2

( ˙̃
θ
)2
] cot θ − 1

γ̇
λ0 cot θ[sin2 θ +

( ˙̃
θ
)2
]

+
2

γ̇
[sin2 θ +

( ˙̃
θ
)2
](λ1 cos γ + λ2 sin γ) = 0. (2.149)

Using the constant of motion (2.58) rewritten as Ω2
0 = θ̇2+γ̇2 sin2 θ = γ̇2[sin2 θ+

( ˙̃
θ
)2
],

we obtain:

¨̃
θ − (sin2 θ + 2

( ˙̃
θ
)2
) cot θ − λ0

Ω0

cot θ[sin2 θ +
( ˙̃
θ
)2
]3/2

+
2

Ω0

(λ1 cos γ + λ2 sin γ)[sin2 θ +
( ˙̃
θ
)2
]3/2 = 0, (2.150)

i.e.,

¨̃
θ = 2

( ˙̃
θ
)2 cot θ̃ + sin θ̃ cos θ̃ + 2λ̃0 cot θ[sin2 θ̃ +

( ˙̃
θ
)2
]3/2

+ (λ1 sin γ − λ2 cos γ)[sin2 θ̃ +
( ˙̃
θ
)2
]3/2, (2.151)

where we have redefined the Lagrange multipliers

λ̃0 = λ0/(2Ω0), λ̃2 = 2λ1/Ω0, λ̃1 = −2λ2/Ω0. (2.152)

We recover Eq. (2.45) obtained for designing a robust trajectory minimal with
respect to the pulse area under the constraints (2.44).
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2.G Analytic expression of the detuning for quan-
tum gates

The detuning can be written as in the case of population transfer, (2.114), leading
to (2.124) with

∆0 = −2 sgnλ1 ω
√
m, (2.153)

but with a modification of the initial phase of the Jacobi elliptic cosine given by the
initial detuning ∆i = λ0:

λ0 = ∆0 cn (νi,m) = −2 sgnλ1 ω
√
m cn (νi,m) . (2.154)

Identifying the initial derivative (2.114) and (2.124) gives:

λ1Ω0 = −∆0ω sn (νi,m)
√

1−m sn2 (νi,m), (2.155)

and the final derivative:

λ1Θ0x,f − λ2Θ0y,f − λ0θ̇f sin θf = −∆0ω sn (ωTmin + νi,m)

×
√

1−m sn2 (ωTmin + νi,m). (2.156)

We find the parameters ω and m as solutions of the system (2.155–2.156) after
substituting ∆0 from (2.153) and νi from (2.154).

One can remark that the above formulation can be reduced to the case of pop-
ulation transfer by considering λ0 = 0.
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Chapter 3

Control in three-level systems

3.1 Introduction

Having studied extensively the control of a two-level quantum system, we can delve
into larger and more complex systems armed with tested techniques; being the next
task in complexity, the three-level system. Three-level systems are most relevant
when we do not dispose of appropriate controls for a certain two-level system, but
we do for a pair that shares one of its levels, or when the control to be used on a
two-level system is expected to have a non-negligible interaction with a third level.

Three-level systems are ubiquitous in quantum processes, either with two-field
linkages in Lambda (Λ), ladder (Ξ) or Vee (V) configuration; or with three-field
linkages in Delta (∆ or loop or triangle) configuration [7]. Their control, be it
through diabatic or adiabatic methods, has found many applications, particularly
in quantum control. The system configuration transmits at a glance the general
situation to consider for the task of control and to discriminate between the available
real systems in the laboratory. However, the theoretical models applied for any such
configuration may be translated onto another if the physical constraints of the system
allow it.

Many applications, particularly in quantum control, are based on our ability of
controlling the population transfer in the three-level Λ system [11, 38–41]. Such Λ

configurations are most relevant when the two quantum levels of interest, typically
two stable ground states, are difficult, impossible, or impractical, to couple while
there is a third, more energetic level, accessible from both others. Fine control com-
patible with quantum information requirements imposes producing robust transfer
of population with ultra high fidelity (UH-fidelity), i.e. under the quantum compu-
tation infidelity benchmark of ε < 10−4 [42], between the two ground states of the
system, while maintaining a low transient population on the intermediate (and often
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lossy) excited state during the dynamics. We can transfer population between the
two ground states, referred in short as Λ transfer, using pump and Stokes controls,
both names kept for historical reasons, each connecting the excited state to the ini-
tial and target states, respectively, which produce Rabi oscillations when they fully
overlap [11, p. 197]. However, this places significant transient population on the
excited lossy state, which lead to an incomplete population transfer to the target
state. A way to overcome this difficulty was found in the technique known as stimu-
lated Raman adiabatic passage, commonly known as STIRAP [5]; widely used with
applications in many physical and chemical problems [5, 6, 11, 38–41]. STIRAP
uses adiabaticity in order to avoid populating the intermediate state of a three-level
system and to produce a robust transfer, at the expense of the process duration and
pulse energy. In STIRAP, the fields coupling the ground states with the excited one
must be counter-intuitively ordered (Stokes pulse switched on before pump pulse
with both pulses of the same duration) and exhibit high pulse areas and/or long
time durations (technically any combination of factors fulfilling the adiabatic condi-
tion) in order to produce an adiabatic transfer (following the adiabatic dark state)
with small transient population on the excited state. Pulsed fields with increasingly
higher areas and a counter-intuitive order, signatures of STIRAP, jointly with an
optimized delay between the pulses, improve the adiabaticity and, in consequence,
the robustness of the process offered by it, particularly with respect to any specific
design of the pulses, while minimizing the unwanted transient population of the
excited state.

Even though STIRAP is the ‘go-to’ standard protocol when to increase the pro-
cess robustness becomes necessary, it is only at the adiabatic limit that it produces a
complete transfer to the desired state and maintains the excited state depopulated.
That is to say that the target state |ψT 〉 is approached asymptotically by the system
state |ψ(t)〉 while the pulses areas AP =

∫∞
−∞ΩP (t)dt and AS =

∫∞
−∞ ΩS(t)dt grow

without limit. Concretely, the precision of the transfer can be measured with the
fidelity F = |〈ψT |ψ(tf )〉|2 = 1−I: a quantity equal to 1 when the transfer is perfect
(target state achieved exactly by the system state at the process final time tf ) and
to 0 when the final state is orthogonal to the target. Thus, in STIRAP, the fidelity
tends to unity (F → 1) as the pulses areas tend to infinity ({AP ,AS} → ∞). In
this manner, STIRAP provides a robust but inexact way of transferring population
between the ground states of a three-level system. Additionally, the use of high area
pulses hinders the application of such technique. Be it due to the destructive effects
the usage of high intensity fields can produce, like ionization, or to the decoherence
and experimental instabilities to which slow processes are susceptible, fields of mod-
erate areas are most desirable for quantum state manipulation, especially for the
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Figure 3.1: From left to right: (a) a general three-level system with all its linkages
in Delta (∆) configuration, (b) a resonant three-level system in Lambda (Λ) con-
figuration with real couplings (the absence of coupling between states |1〉 and |3〉,
Ω13 = 0, makes it a Λ system).

UH-fidelity we aim at.

3.2 General three-level Hamiltonian

The general three-level Hamiltonian, corresponding to the systems in Fig. 3.1, in the
bare-states basis and in the rotating wave approximation (RWA) can be written, in
terms of the energies of the three bare states ωn and the three complex couplings

Ω̃ij(t) = Ωij(t)e
iη̃ij(t) (3.1)

with real-valued amplitudes Ωij and dynamical phases (including central frequency,
carrier-envelope phase, and chirp)

η̃ij = ωijt+ ηij(t), (3.2)

as

Ĥ =
h̄

2


2ω1 Ω̃12 Ω̃13

¯̃
Ω12 2ω2

¯̃
Ω23

¯̃
Ω13 Ω̃23 2ω3

 . (3.3)

This Hamiltonian can be rewritten to show explicitly the detunings between control-
fields central frequencies and transition frequencies, either as dynamic quantities

∆13(t) = ω1 − ω3 − ˙̃η13, (3.4a)

∆12(t) = ω2 − ω1 − ˙̃η12, (3.4b)

∆23(t) = ω1 − ω3 + ˙̃η12 − ˙̃η23, (3.4c)
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by applying a unitary transformation T onto the Schrödinger equation, ih̄∂t|ψ̂〉 =
Ĥ|ψ̂〉, with |ψ̂〉 = T |ψ′〉; or as time-independent ones

∆̃13 = ω1 − ω3 − ω13, (3.5a)

∆̃12 = ω2 − ω1 − ω12, (3.5b)

∆̃23 = ω1 − ω3 + ω12 − ω23, (3.5c)

by applying a unitary transformation |ψ̂〉 = T̃ |ψ′′〉. The detunings ∆12 (∆̃12) and
∆23 (∆̃23) are usually called one- and two-photon detunings, respectively, due to
the role they play on the transfer of population between the ground states of the
Λ system. The Schrödinger equation for |ψ′〉 effectively presents, as the system’s
Hamiltonian,

H ′ = T †ĤT − ih̄T †Ṫ , (3.6)

=
h̄

2

 0 Ω12 e−i(η̃12−η̃23−η̃13)Ω13

Ω12 2∆12 Ω23

ei(η̃12−η̃23−η̃13)Ω13 Ω23 −2∆23

 , (3.7)

for a transformation leading to real couplings |1〉 ↔ |2〉 and |2〉 ↔ |3〉 given by

ζ1 = −ω1t,

ζ2 = −ω1t− η̃12,
ζ3 = −ω1t− η̃12 + η̃23,

T =

e
iζ1 0 0

0 eiζ2 0

0 0 eiζ3

 , (3.8)

and a Hamiltonian

H ′′ = T̃ †ĤT̃ − ih̄T̃ † ˙̃T , (3.9)

=
h̄

2

 0 Ω12e
iη12 Ω13e

i[η̃13−(ω12−ω23)t]

Ω12e
−iη12 2∆̃12 Ω23e

−iη23

Ω13e
−i[η̃13−(ω12−ω23)t] Ω23e

iη23 −2∆̃23

 , (3.10)

for a transformation like (3.8) but applying the substitution η̃ij → ωijt in ζn to
obtain time-independent detunings.

Since we can always factorize the state by an unimportant global phase, Hamil-
tonians can always be made traceless. It suffices to write the traceless Hamiltonian
as H̃ [′] = H ′[′] − 1

3
Tr
(
H ′[′]) and apply the transformation

|ψ′[′]〉 = exp
[
− i

3h̄

∫
Tr
(
H ′[′])dt] |ψ〉. (3.11)
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Thus, we obtain the following traceless Hamiltonian with real couplings for the
general three-level system (left-side diagram in Fig. 3.1):

H̃ =
h̄

2

2(∆23 −∆12)/3 Ω12 e−i(η̃12−η̃23)Ω̃13

Ω12 2(∆23 + 2∆12)/3 Ω23

ei(η̃12−η̃23) ¯̃Ω13 Ω23 −2(∆12 + 2∆23)/3

 , (3.12)

and the following with time-independent detunings:

H̃ ′ =
h̄

2

2(∆̃23 − ∆̃12)/3 Ω12e
iη12 Ω̃13e

−i(ω12−ω23)t

Ω12e
−iη12 2(∆̃23 + 2∆̃12)/3 Ω23e

−iη23

¯̃
Ω13e

i(ω12−ω23)t Ω23e
iη23 −2(∆̃12 + 2∆̃23)/3

 . (3.13)

Naturally, we can also obtain the traceless Hamiltonian (3.12) [(3.13)] by directly
applying the transformation T with

ζ1 = [2η̃12 − η̃23 − (ω1 + ω2 + ω3)t]/3, (3.14)

ζ2 = −[η̃12 + η̃23 + (ω1 + ω2 + ω3)t]/3, (3.15)

ζ3 = [2η̃23 − η̃12 − (ω1 + ω2 + ω3)t]/3, (3.16)

on the general RWA three-level Hamiltonian (3.3), [with the substitution η̃ij → ωijt].
The Hamiltonian (3.12) will be from now on the default general one for the three-

level systems that will be discussed in this document regarding the special case with
broad practical relevance of the fully resonant system shown in Fig. 3.1(b), i.e. with

Ω̃13 = ∆12 = ∆13 = ∆23 = 0. (3.17)

3.3 Fully resonant system

A physically realistic, highly relevant, and very widely implemented configuration is
that depicted in the system in Fig. 3.1(b). This system has been studied extensively
and the results of such investigations have found many applications even beyond
the quantum mechanical system for which they were designed [5, 6, 8]. STIRAP, to
take one example, has been at the heart of numerous developments in the 30 years
of its existence and many other approaches exist that make this system a cauldron
for development of innovative protocols and applications beyond the scope of the
two-level system limitations. Thus, in this document, we strive to focus on obtaining
the propagators, boundary conditions and solutions of the Schrödinger equation for
particular cases of the three-level system, specifically for the fully resonant Λ system
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on Fig. 3.1(b) corresponding to a Hamiltonian of the form

H =
h̄

2

 0 ΩP 0

ΩP −iΓ ΩS

0 ΩS 0

 , (3.18)

where ΩP and ΩS are the real-valued pulse envelopes of the control fields coupling
state |2〉 with states |1〉 and |3〉, respectively, and Γ is the dissipation rate modeling
the excited state’s loss. Moreover, we will particularly study optimal processes,
which will be achieved in the fully resonant situation.

3.3.1 Fields with phases

Considering that we can apply a transformation HΦ = Φ†HΦ, with the constant-
phase transformation matrix

Φ =

e
−iΦP 0 0

0 1 0

0 0 e−iΦS

 , (3.19)

then we may generalize the Hamiltonian (3.18), the lossless (hermitian) part of
which is covered by the su(2) algebra (with the general two-level system as its prime
member), to

HΦ =
h̄

2

 0 eiΦPΩP 0

e−iΦPΩP −iΓ e−iΦSΩS

0 eiΦSΩS 0

 , (3.20)

corresponding to a propagator UΦ = Φ†UΦ,

UΦ =

 U11 eiΦPU12 ei(ΦP−ΦS)U13

e−iΦPU21 U22 e−iΦSU23

e−i(ΦP−ΦS)U31 eiΦSU32 U33

 , (3.21)

non-unitary if Γ 6= 0.
The effect of these phases is most appreciated with the following examples:

1. A system in state |1〉 [|3〉] under a population inversion propagator would result
in the state e−i(ΦP−ΦS)|3〉 [ei(ΦP−ΦS)|1〉]. These phases are irrelevant in an
isolated system, thus their relevance would only be evident if a superposition
is produced, i.e.

2. a system in state |1〉 under a propagator producing a maximal superposition
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will evolve into the state |1〉+ e−i(ΦP−ΦS)|3〉, then the dephasing between the
fields is the relative phase of the superposition.

3.3.2 Loss model

Loss of population can occur through multiple channels. This is modeled phe-
nomenologically via the dissipation rate, the rate at which coherent population is
lost. Using the Schrödinger equations for the statevector elements cn,Γ = 〈n|ψΓ〉
with cn = cn,Γ=0,

ċ1,Γ = −iΩP

2
c2,Γ, (3.22)

ċ2,Γ = −iΩP

2
c1,Γ −

Γ

2
c2,Γ − i

ΩS

2
c3,Γ, (3.23)

ċ3,Γ = −iΩS

2
c2,Γ, (3.24)

we can find the total-population time-derivative, with PΓ,Σ =
∑3

n=1|cn,Γ|2, to be

ṖΓ,Σ =
d

dt
(|c1,Γ|2 + |c2,Γ|2 + |c3,Γ|2) = −Γ|c2,Γ|2, (3.25)

implying a transient population PΓ,Σ(t) = 1 −
∫ t

ti
Γ|c2,Γ|2 dt. Eq. (3.25) shows that

the total population decreases for any pulse shape of ΩP and ΩS (even if Γ were also
time-dependent), as Γ ≥ 0.

Dealing with the Hamiltonian (3.18) increases the difficulty of the computations,
specially since it is non-hermitian, thus we consider the dissipation rate to produce
a small deviation from the lossless evolution and we apply perturbation theory up
to first order in Γ for the population loss. It is clear that we need only consider
c2,Γ = c2 +O(Γ), to attain a first-order–corrected population loss of

Ploss = 1− PΓ,Σ(tf ) = Γ

∫ tf

ti

|c2|2 dt+O(Γ2) ≈ Γ

∫ tf

ti

|c2|2 dt, (3.26)

where Γ has been assumed time-independent. This expression allows us to compute
the system’s dynamics in absence of loss and to estimate the effect of such loss
afterwards. Basically, the least we populate the upper state, the better, but we can
quantify it via (3.26).

More accurately speaking, it is the ratio of Γ with ΩP and ΩS what measures
the magnitude of the deviation that the dissipation rate will produce. Eq. (3.26) is
then valid when the dissipation rate is much smaller than the peak Rabi frequency,
typically at least 10 times smaller.
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3.3.3 Consecutive π pulses

We can think of the Λ system as a pair of two-level systems with a common excited
state. In this manner, we can apply a π pulse on each branch consecutively to trans-
fer population between the lower levels. The π pulse is the well-known Rabi solution
for the two-level system, i.e., for a two-level resonant system with Hamiltonian

H =
h̄Ω(t)

2

[
0 1

1 0

]
, (3.27)

the corresponding evolution of the system is given by the propagator

U
SU(2)
∆=0 =

[
cos A

2
−i sin A

2

−i sin A
2

cos A
2

]
, (3.28)

where the partial area is A(t) =
∫ t

ti
Ω dt and population inversion is obviously ac-

quired when A = π, 3π, . . .

Splitting the transfer |1〉 → |3〉 into two steps: first, in the interval ti ≤ t ≤
ti + T/2, ΩP = Ω while ΩS = 0 and the propagator USU(2)

∆=0 acts on the |1〉 ↔ |2〉
transition with A = AP ≡

∫ ti+T/2

ti
P dt, then, in the interval ti + T/2 ≤ t ≤ tf ,

ΩS = Ω while ΩP = 0 and the propagator acts on the |2〉 ↔ |3〉 transition with
A = AS ≡

∫ tf
ti+T/2

ΩS dt. The loss of population is then, explicitly,

Ploss = Γ

[∫ ti+T/2

ti

sin2 AP (t)

2
dt+

∫ tf

ti+T/2

cos2 AS(t)

2
dt

]
. (3.29)

Assuming a monotonic linear increase in the pulse area A = AP + AS, that is
to say, using constant amplitude Rabi frequencies, e.g., ΩP = 2(2n + 1)π/T and
ΩS = 2(2m+1)π/T , the approximate population loss due, using (3.26), to dissipation
is

Ploss = Γ

[∫ ti+T/2

ti

sin2 (2n+ 1)π(t− ti)
T

dt

+

∫ tf

ti+T/2

cos2 (2m+ 1)π(t− ti − T/2)
T

dt

]
=

ΓT

2
. (3.30)

This is the lossiest method since it deliberately produces complete population trans-
fer to the lossy excited state.
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3.3.4 Rabi method

One can obtain an exact solution for the fully resonant Λ system using the Rabi
method just like for the two-level system, i.e. taking fully-overlapping controls
(fields having the same time-dependence and equal Rabi frequencies). Thus, taking
ΩP (t) = ΩS(t) = Ω(t), the Hamiltonian becomes

H =
h̄Ω

2

0 1 0

1 0 1

0 1 0

 =
h̄Ω

2
λ16, (3.31)

where λ16 is the linear combination of generators of the SU(3) group: λ16 = λ1+λ6.

The solution of the Schrödinger equation writes

|ψ(t)〉 = exp
[
− i
2
λ16

∫ t

ti

Ω(t′) dt′
]
|ψ(ti)〉, (3.32)

since the time-dependent term, Ω(t), factorizes in (3.31), i.e., the Hamiltonian H(t)

commutes with itself at different times. This means, for the evolution operator,

UP=S = exp
[
− i
2
λ16

∫ t

ti

Ω(t′) dt′
]

(3.33)

=
1

2

 1 + cos A
2
−i
√
2 sin A

2
cos A

2
− 1

−i
√
2 sin A

2
2 cos A

2
−i
√
2 sin A

2

cos A
2
− 1 −i

√
2 sin A

2
1 + cos A

2

 , (3.34)

with A(t) =
∫ t

ti

√
Ω2

P (t
′) + Ω2

S(t
′) dt′ =

√
2
∫ t

ti
Ω(t′) dt′.

For a transfer |1〉 → |3〉, the area of each control field is required to rise until
it reaches A = 2(2n − 1)π, with n = 1, 2 . . . , which necessitates to populate the
intermediate state transiently up to P2 = 1⁄2 when the area passes by A(tn) =

(2n− 1)π; occurring n times. This transfer leads to a loss of

Ploss =
Γ

2

∫ tf

ti

sin2 A(t)
2

dt, (3.35)

which becomes, for rectangular pulses of constant amplitude Ωm =
√
2(2n− 1)π/T ,

Ploss =
Γ

2

∫ tf

ti

sin2 (2n− 1)π(t− ti)
T

dt =
ΓT

4
, (3.36)

i.e. half of the loss resulting of using consecutive π pulses.
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3.4 STIRAP

In STIRAP, the state of the system is written in terms of the eigenstates of the
Hamiltonian and these are parameterized with trigonometric functions of angular
variables, or a single one of these for the resonant Hamiltonian (3.18). The so-called
mixing angle ϑ(t), is given by

sinϑ = ΩP/
√

Ω2
P + Ω2

S, cosϑ = ΩS/
√
Ω2

P + Ω2
S, (3.37)

and serves as an indicator of the distribution of population between states |1〉 and
|3〉, the states among which we want to transfer population, as it is clear from the
expressions of the Hamiltonian eigenstates,

|Φ0〉 =

 cosϑ
0

− sinϑ

 , |Φ±〉 =
1√
2

sinϑ
±1

cosϑ

 , (3.38)

where both eigenstates present an invariable excited state population while P1 and
P3 are, consequently, complementary to each other. The eigenvectors |Φ0〉 and |Φ±〉
correspond to the eigenvalues

ε0(t) = 0, ε±(t) = ±
h̄

2

√
Ω2

P + Ω2
S. (3.39)

Our goal is to follow a parametrized state that would allow us to control the transfer
of population between the ground states with a controlled transient population in
the excited state (imposed low in general to minimize the loss) by providing a
suitable tracking solution to the parameters, which would translate, in turn, into
shapes or conditions for the pulses ΩP and ΩS. For this purpose, STIRAP attempts
to follow the Hamiltonian eigenstate |Φ0〉 whose projection on the excited state is
always null, called dark state. However, writing the Schrödinger equation in the
basis of the Hamiltonian eigenstates |Φn〉 shows that these states are coupled by the
derivatives of the mixing angle, i.e. applying the transformation

Tad(t) =
∑
n

|Φn〉〈n| =
1√
2

sinϑ
√
2 cosϑ sinϑ

−1 0 1

cosϑ −
√
2 sinϑ cosϑ

 , (3.40)

that takes the state of the system from the adiabatic states basis to the bare states
basis, we obtain the adiabatic Hamiltonian (the effective Hamiltonian in the adia-
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batic basis) and non-adiabatic coupling:

Had(t) = T †
adHTad − ih̄T †

adṪad =

ε− 0 0

0 0 0

0 0 ε+

− i h̄ϑ̇√
2

0 −1 0

1 0 1

0 −1 0

 , (3.41a)

ϑ̇(t) =
Ω̇PΩS − ΩP Ω̇S

Ω2
P + Ω2

S

. (3.41b)

The non-adiabatic correction is given at the lowest order by the strength of this
non-adiabatic coupling between the adiabatic states |Φn〉 with respect to the energy
gap between them, i.e.,

h̄|ϑ̇|/
√
2

|ε±|
=
√
2
|Ω̇PΩS − ΩP Ω̇S|
(Ω2

P + Ω2
S)

3/2
∼ (Ω2

0/T )

Ω3
0

|fS∂sfP − fP∂sfS|
(f 2

P + f 2
S)

3/2
=
f(s)

Ω0T
, (3.42)

where T is the pulse duration, Ω0 the maximum amplitude of each pulse (assumed
to be equal for both pulses), fP,S(s) are the time-shapes of the ΩP and ΩS fields,
respectively, s = t/T is a unitless normalized time, and f(s) is a function of time
provided by the pulse shapes. This shows that the non-adiabatic connection is
smaller for larger pulse areas.

This non-adiabatic term implies that even if we prepare our pulses to follow the
|Φ0〉 state (naturally, also preparing the system such that |ψ(ti)〉 = |Φ0(ti)〉 at the
beginning of the process), the population would be transferred to the other states,
i.e. the system would not follow exactly the prescribed dynamics of the |Φ0〉 state.
The derivative of the mixing angle, the speed of population change between the
ground states, is a measure of the departure from adiabaticity the process suffers
and is due to this that it is referred as the non-adiabatic coupling. A fast process, a
swift population evolution, means a strong coupling between the eigenstates of the
Hamiltonian. In contrast, an infinitely slow process means an infinitesimally weak
coupling.

The eigenstates of the Hamiltonian, the so-called adiabatic states, are the key-
stones of STIRAP and can then be followed exactly by the system only at the
adiabatic limit (when the diabatic coupling tends to zero, i.e. ϑ̇ → 0). Under this
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condition, the propagator is then

lim
ϑ̇→0

U(t) = lim
ϑ̇→0

Tad(t)U
ad(t)T †

ad(ti)

= Tad(t) exp
[
− i
h̄

∫ t

ti

lim
ϑ̇→0

Had(t′) dt′
]
T †

ad(ti),

=
3∑

n=1

exp
[
− i
h̄

∫ t

ti

εn(t
′) dt′

]
|Φn〉〈Φn(ti)|, (3.43a)

=
[
|Ψ−〉 |Ψ0〉 |Ψ+〉

]
, (3.43b)

where the column vectors, with h̄ξ ≡
∫ t

ti
ε+(t

′) dt, are

|Ψ−〉 =

 cosϑi cosϑ+ sinϑi sinϑ cos ξ
−i sinϑi sin ξ

− cosϑi sinϑ+ sinϑi cosϑ cos ξ

 ,
= cosϑi|Φ0〉+

sinϑi√
2

(
eiξ|Φ−〉+ e−iξ|Φ+〉

)
, (3.44a)

|Ψ0〉 =

−i sinϑ sin ξ
cos ξ

−i cosϑ sin ξ

 =
1√
2

(
e−iξ|Φ+〉 − eiξ|Φ−〉

)
, (3.44b)

|Ψ+〉 =

− sinϑi cosϑ+ cosϑi sinϑ cos ξ
−i cosϑi sin ξ

sinϑi sinϑ+ cosϑi cosϑ cos ξ

 ,
= − sinϑi|Φ0〉+

cosϑi√
2

(
eiξ|Φ−〉+ e−iξ|Φ+〉

)
. (3.44c)

Equation (3.43a) means that the system will remain in whatever superposition of
adiabatic states it was initially found to be and only the relative phase between
them will change along the evolution. The accumulated relative phases being given
by the integral of the eigenenergies ε±.

Three initial conditions are most notable: ϑi = nπ, ϑi = (2n + 1)π/2, and
ϑi = (2n+1)π/4. In the first case, achieved for a Stokes–pump sequence of pulses, a
system initially in state |1〉 would evolve along the dark state |Φ0〉, thus never pop-
ulating the excited state (in the adiabatic limit). This is not the case if, instead, the
system is prepared to be in any other state —or a superposition of, or with, them—.
In the second case, achieved for a pump–Stokes sequence, the situation is inverted
and only a system initially in |3〉 would evolve along |Φ0〉 while any other initial
state would lead to populating the excited state along the dynamics. Although
we may produce a not gate of sorts between the ground states, i.e. a propagator
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Unot = einπ

[
0 ±1
1 0

]
, by using ϑ = mπ and ϑ = (2l + 1)π/2 as initial and final

conditions, respectively and viceversa, while enforcing ξf = pπ (a generalized pulse
area multiple of 2π), the excited state will be populated “asymmetrically” depend-
ing on the initial distribution of populations. The third and last case is meant as
the middle point between the other two when the goal is to produce a not gate:
the excited state is populated up to P2 = 1⁄2 irrespective of the initial superposition,
compared to the transiently complete population in the excited state for the asym-
metric not gate. For a population transfer |1〉 → |3〉, the first and second cases
correspond to counter-intuitively– and intuitively–ordered control fields, while the
third case correspond to equal couplings |ΩP | = |ΩS|. As a side note, ϑi = π/4 leads
to a not gate with Unot

13 = |Unot
31 | when ξf = (2n+ 1)π and ϑf = (4n+ 1)π/4, and

Unot
13 = −|Unot

31 | when ξf = 2nπ and ϑf = (4n+ 3)π/4.

The idea with STIRAP is to follow the dark state, whose desired dynamics pre-
scribes the signature counterintuitive ordering of ΩP and ΩS, by minimizing the
diabatic coupling as to make negligible the deviations to other adiabatic states.
Meanwhile, utilizing intuitively-ordered fields is referred to as bright STIRAP since
it leads to larger transient populations on the excited state. Adiabaticity is then the
condition in which the coupling between the adiabatic states, or at least between the
dark state (the one where the excited state remains unpopulated) and the brights
(those who allow population in the excited state), are negligible. Naturally, very
slow-evolving pulses would minimize the derivative of the mixing angle and prac-
tically uncouple the adiabatic states in consequence. Nevertheless, the adiabatic
states can never be followed exactly in real-world implementations.

3.4.1 Loss in STIRAP

Using perturbation theory we may estimate the loss due to imperfect adiabatic-
ity incurred during the application of STIRAP. Considering the adiabatic coupling
to be a small deviation to the Hamiltonian in the adiabatic basis (3.41a), i.e.,
Had = H0 + εV , where H0 = limϑ̇→0H

ad = T †
adHTad, V = −ih̄T †

adṪad, and ε only
labels the perturbation term, we can write the Schrödinger equation in the interac-
tion representation with the interaction propagator UI = Uad

0
†
Uad and interaction

Hamiltonian HI = εVI = εUad
0

†
V Uad

0 , ih̄U̇I = εVIUI , where Uad
0 = limϑ̇→0 U

ad =∑3
n=1 e

−i
∫ t
ti
εn(t′) dt′/h̄|n〉〈n| is the propagator solution of the Schrödinger equation for

H0 shown in (3.43b) with (3.44). The factor ε takes into account the non-adiabatic
strength with respect to the gap between the considered adiabatic energies.
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The interaction propagator can be obtained perturbatively as

UI = 1− iε

h̄

∫ t

ti

VI(t
′) dt′ − ε2

h̄2

∫ t

ti

∫ t′

ti

VI(t
′)VI(t

′′) dt′′dt′ −O(ε3). (3.45)

Here, ε allows one to keep track of the perturbation order and will be set to 1 at
the end of the calculation. The system propagator in the bare states basis is then
U = U0 + U1 + U2 + Õ(ε3), with

U0 = TadU
ad
0 T †

ad(ti),

= eiξ|Φ−〉〈Φ−(ti)|+ |Φ0〉〈Φ0(ti)|+ e−iξ|Φ+〉〈Φ+(ti)|, (3.46a)

U1 = −
iε

h̄
TadU

ad
0

∫ t

ti

V ′
I dt

′ T †
ad(ti),

=
ε√
2

[
eiξ|Φ−〉〈Φ0(ti)|

∫ t

ti

ϑ̇′e−iξ′ dt′ + e−iξ|Φ+〉〈Φ0(ti)|
∫ t

ti

ϑ̇′eiξ
′
dt′

− |Φ0〉〈Φ−(ti)|
∫ t

ti

ϑ̇′eiξ
′
dt′ − |Φ0〉〈Φ+(ti)|

∫ t

ti

ϑ̇′e−iξ′ dt′
]
, (3.46b)

U2 = −
ε2

h̄2
TadU

ad
0

∫ t

ti

∫ t′

ti

V ′
IV

′′
I dt

′′dt′ T †
ad(ti),

= −ε
2

2

[
eiξ|Φ−〉〈Φ−(ti)|

∫ t

ti

∫ t′

ti

ϑ̇′ϑ̇′′e−i(ξ′−ξ′′) dt′′dt′

+ eiξ|Φ−〉〈Φ+(ti)|
∫ t

ti

∫ t′

ti

ϑ̇′ϑ̇′′e−i(ξ′+ξ′′) dt′′dt′

+ e−iξ|Φ+〉〈Φ−(ti)|
∫ t

ti

∫ t′

ti

ϑ̇′ϑ̇′′ei(ξ
′+ξ′′) dt′′dt′

+ e−iξ|Φ+〉〈Φ+(ti)|
∫ t

ti

∫ t′

ti

ϑ̇′ϑ̇′′ei(ξ
′−ξ′′) dt′′dt′

+ 2|Φ0〉〈Φ0(ti)|
∫ t

ti

∫ t′

ti

ϑ̇′ϑ̇′′ cos(ξ′ − ξ′′) dt′′dt′
]
. (3.46c)

and

VI(t) = −i
h̄ϑ̇(t)√

2

 0 −e−iξ(t) 0

eiξ(t) 0 e−iξ(t)

0 −eiξ(t) 0

 . (3.47)

The dynamics of the excited state for a system initially in |1〉 would be, perturba-
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tively,

c2(t) = c
(0)
2 + εc

(1)
2 + ε2c

(2)
2 + · · · =

∑
n

〈2|Un(ε
n)|1〉,

= −i sinϑi sin ξ − iε cosϑi Im
(
eiξ
∫ t

ti

ϑ̇′e−iξ′ dt′
)

+ iε2 sinϑi Im
(
eiξ
∫ t

ti

ϑ̇′e−iξ′
∫ t′

ti

ϑ̇′′ cos ξ′′ dt′′dt′
)
+O(ε3), (3.48)

with its corresponding population

|c2|2 =
∣∣c(0)2

∣∣2 + 2εRe
[
c̄
(0)
2 c

(1)
2

]
+ ε2

{∣∣c(1)2

∣∣2 + 2Re
[
c̄
(0)
2 c

(2)
2

]}
+O(ε3). (3.49)

We can illustrate the loss of each method by prescribing a simple analytical
model for the coupling fields. For the population transfer |1〉 → |3〉 we may consider
the three dynamics mentioned before for ϑ: 0 → π/2, π/2 → 0, and π/4 → π/4

(since a sign-change of the fields is undesirable). A simple model for the evolution
π/4 → π/4 with ξf = 2A = (2n + 1)π to achieve the transfer, which has already
been discussed to be a NOT gate between the ground states, is that of fields with
equal and constant amplitudes (corresponding to the model we used for the Rabi
method). In the case of equal couplings the dynamics corresponds exactly with the
Rabi model since the non-adiabatic coupling ϑ̇ is null.

A very relevant and analytically solvable model for the other two cases, tradi-
tional (dark) and bright STIRAP, is that of cosine–sine pulses: using the sine and
cosine functions, truncated to a quarter of their period, as the fields which are also
taken to have the same maximum amplitude Ω0. For STIRAP we would use the
sine function for the pump and the cosine for the Stokes, we invert this association
for bright STIRAP. Then

ξ =
Ω0

2
(t− ti), ϑ̇ =

Ω̇PΩS − Ω̇SΩP

Ω2
P + Ω2

S

= (δd − δb)
π

2T
, A = Ω0T, (3.50)

where δd and δb are equal to 1 for dark and bright STIRAP, respectively, and zero
otherwise, and

c
(0)
2 = −iδb sin

[
Ω0

2
(t− ti)

]
, (3.51a)

c
(1)
2 = −i2δd(δd − δb)π

Ω0T
sin2

[
Ω0

4
(t− ti)

]
, (3.51b)

c
(2)
2 = i

δbπ
2

4Ω2
0T

2

{
2 sin

[
Ω0

2
(t− ti)

]
− Ω0 (t− ti) cos

[
Ω0

2
(t− ti)

]}
. (3.51c)
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∫ tf

ti

∣∣c(0)2

∣∣2 dt = δb
T

2

(
1− sinA

A

)
, (3.52a)∫ tf

ti

c̄
(0)
2 c

(1)
2 dt = 0, (3.52b)∫ tf

ti

∣∣c(1)2

∣∣2 dt = δd
π2T

2A2

[
3− 8 sin(A/2)− sinA

A

]
, (3.52c)∫ tf

ti

c̄
(0)
2 c

(2)
2 dt = −δb

π2T

8A2

(
2 + cosA− 3 sinA

A

)
. (3.52d)

Thus, the losses up to second order of the non-adiabatic coupling with cosine–sine
fields, are

P d
loss =

ΓT

2(A/π)2

[
3− 8 sin(A/2)− sinA

A

]
−−−→
A�1

3ΓT

2(A/π)2
, (3.53a)

P b
loss =

ΓT

2

[
1− sinA

A
− 1

2(A/π)2

(
2 + cosA− 3 sinA

A

)]
−−−→
A�1

ΓT

2
, (3.53b)

for dark and bright STIRAP, respectively. We notice that the loss of bright STIRAP
does not decrease for better adiabaticity (i.e. larger pulse area), contrarily to the
dark STIRAP.

The fidelity of the transfer

|c3(tf )|2 =
∣∣∣∑

n

〈3|Un(tf , ti)|1〉
∣∣∣2,

=
∣∣c(0)3 (tf )

∣∣2 + 2εRe
[
c̄
(0)
3 (tf )c

(1)
3 (tf )

]
+ ε2

{∣∣c(1)3 (tf )
∣∣2 + 2Re

[
c̄
(0)
3 (tf )c

(2)
3 (tf )

]}
+O(ε3)

= δb cos A
2

(
cos A

2
− ε2 π

2

2A
sin A

2

)
+ δd

(
1− ε24π

2

A2
sin2 A

4

)
+O(ε3). (3.54)

With a target state population of, up to the second order of non-adiabatic deviation,

P3f = 1− 4π2

A2
sin2 A

4
, (3.55)

for dark STIRAP. Considering up to the second order non-adiabatic correction, we
visualize the first message of STIRAP: for a large enough area, the system will evolve
towards the target state and reach it asymptotically (limA→∞ P3f = 1). According to
this expression, A = 4π is the minimum pulse area to produce complete population
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transfer. Up to this order, the transfer is exact (P3f = 1) for A = 4nπ, with respect
to which the first nonzero order of deviation on the area would be

∆P3f (A → 4nπ) = P3f (4nπ +∆A)− P3f (4nπ) = −
∆A2

4(A/π)2
. (3.56)

From this, we extract the second message of STIRAP: transfer sensitivity decreases
as we increase the pulse area. While the Rabi transfer displays a squared robustness
profile on the area deviations, ∆P3f ∝ −(∆A)2, negative signifying the target-state–
population reduction caused by any area deviation, STIRAP diminishes this relation
by making it inversely proportional to the magnitude of used area, ∆P3f ∝ A−2.

Regarding the loss of population due to dissipation during STIRAP,

Ploss ≈
3ΓT

2(A/π)2
, (3.57)

the third and last main message of STIRAP is exhibited: the loss is inversely pro-
portional to the pulse area, thus, in the ideal adiabatic evolution, there is no loss
of population, limA→∞ Ploss = 0, as the excited state is not at all populated in the
adiabatic limit. For the “exact” transfers of this model, with A = 4nπ, Eq. (3.57)
is valid exactly.

In the case of bright STIRAP with intuitively-ordered sine–cosine pulses, the final
population on the target state up to second order of non-adiabatic perturbation,

P3f = cos2 A
2
− π2

4

sinA
A

, (3.58)

tends to Rabi oscillations between complete and zero population transfers for large
areas, i.e. limA→∞ P3f = cos2(A/2), with the exact (up to second order) transfer
condition being A = 2nπ. The population deviation around these points up to
second order,

∆P3f (A → 2nπ) = P3f (2nπ +∆A)− P3f (2nπ)

= −π
2

16

∆A
A
− 1

4

(
1− π2

A2

)
∆A2 −−−→

A→∞
−∆A2

4
, (3.59)

is linearly dependent on the area deviations for small areas and quadratic for large
areas. However, the sensitivity is not further reduced by an increase of the area, as
with traditional counter–intuitive STIRAP. With respect to the loss up to second
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order and about the pseudo-exact transfers of A = 2nπ,

Ploss ≈
ΓT

2

(
1− ∆A

A
− 3π2

2A2

)
, (3.60)

it finds its minimum at the lowest transfer-producing area for this model, A = 2π,
while remaining still larger than the Rabi-method result, and tends to the consecu-
tive π-pulses result for large areas, i.e.

Ploss −−−→
A=2π

Pmin
loss ≈

5ΓT

16
, Ploss −−−→

A�1
Pmax

loss =
ΓT

2
. (3.61)

3.5 Counter-diabatic driving via superadiabatic-
ity

3.5.1 Superadiabatic transformation

The adiabatic technique means that the dynamics follows approximately one (or
more) instantaneous eigenstate(s) of the Hamiltonian. A transfer is achieved when
one eigenstate is initially connected to the initial state and finally connected to the
target state.

The adiabatic transfer from the initial ground state (connected to the pump cou-
pling) to the target ground state (connected to the Stokes coupling) is ensured when
ϑ(ti) = 0 and ϑ(tf ) = π/2 (with ti and tf the initial and final times, respectively),
since, in this case, the adiabatic dark state connects the initial state initially and
the target state finally, Eqs. (3.44) and (3.38). This is achieved by a counterintuitive
Stokes–pump sequence.

In order to improve the approximation (3.43a), one can iterate the procedure
of diagonalizing the Hamiltonian and deriving their superadiabatic iterations, e.g.,
we provide, by diagonalizing Had, the second iteration (to which we refer as second
order):

Hsa
2 ≡ T †

2H
adT2 − ih̄T †

2 Ṫ2 = (TadT2)
†HTadT2 − ih̄(TadT2)

† d

dt
(TadT2). (3.62)

We obtain, for Had|χn〉 = ζn|χn〉,

T2 =
∑
n

|χn〉〈n| =

 cos2(ϑ2/2) i sin(ϑ2)/
√
2 sin2(ϑ2/2)

i sin(ϑ2)/
√
2 cosϑ2 −i sin(ϑ2)/

√
2

sin2(ϑ2/2) −i sin(ϑ2)/
√
2 cos2(ϑ2/2)

 , (3.63)
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where

sinϑ2 ≡ 2ϑ̇/Ω1, cosϑ2 ≡ Ω0/Ω1, (3.64a)

Ω0 ≡
√

Ω2
P + Ω2

S, Ω1 ≡
√

Ω2
0 + 4ϑ̇2. (3.64b)

This corresponds to the effective superadiabatic Hamiltonian

Hsa
2 =

ζ− 0 0

0 0 0

0 0 ζ+

+
h̄ϑ̇2√
2

0 1 0

1 0 −1
0 −1 0

 , ζ± = ± h̄Ω1

2
, (3.65)

and the second-order non-adiabatic coupling (deviation)

ϑ̇2 =
2

1 + 4(ϑ̇/Ω0)2
∂

∂t

(
ϑ̇

Ω0

)
= 2

ϑ̈Ω0 − ϑ̇Ω̇0

Ω2
0 + 4ϑ̇2

. (3.66)

The superadiabatic correction is

h̄|ϑ̇2|/
√
2

|ζ±|
=

2
√
2|∂t(ϑ̇/Ω0)|

Ω0

[
1 + 4(ϑ̇/Ω0)2

]3/2 ∼ |∂sf |/
√
f 2
P + f 2

S

Ω2
mT

2
[
1 + 4f 2/(Ω2

mT
2)
]3/2 , (3.67)

where s = t/T is a unitless normalized time, f(s) and fP,S(s) are shape functions
[see Eq. (3.42)], both fields have the same maximum amplitude Ωm, and T is the
pulse duration. The superadiabatic limit, under which the superadiabatic correction
is neglected and the superadiabatic Hamiltonian is diagonal, is equivalent to the adi-
abatic limit in that it requires large areas to be negligible; moreover, it corresponds
to a smaller (higher-order) correction.

The superadiabatic propagator at the superadiabatic limit,

U sa
0 = lim

ϑ̇2→0
U sa =

∑
n

e
−i

∫ t
ti
ζn(t′)/h̄ dt′|n〉〈n|, (3.68)

leads us to the zeroth order of the expansion of the propagator of the system, with
h̄κ ≡

∫ t

ti
ζ+(t

′) dt′,

U0 = TadT2U
sa
0 T

†
2 (ti)T

†
ad(ti),

=
∑
nml

e
−i

∫ t
ti
ζm(t′)/h̄ dt′〈n|χm〉〈χm(ti)|l〉|Φn〉〈Φl(ti)|. (3.69)
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The first column of the propagator,

U0|1〉 =
1√
2

sinϑi

{
i2 sinκ

[
cos2(ϑ2/2)

(
|Φ−〉 − |Φ+〉

)
+

i√
2

sinϑ2|Φ0〉
]
+ eiκ|Φ+〉+ e−iκ|Φ−〉

}
+ cosϑi

{
cosϑ2i

[
i√
2

sinϑ2

(
|Φ−〉 − |Φ+〉

)
+ cosϑ2|Φ0〉

]
− i√

2
sinϑ2i

{
2 cosκ

[(
|Φ−〉 − |Φ+〉

)
cos2 ϑ2

2

+
i√
2

sinϑ2|Φ0〉
]
+ eiκ|Φ+〉 − e−iκ|Φ−〉

}}
, (3.70)

is of particular importance since its parametrization can be used as that of the system
state when |ψi〉 = |1〉. Although no initial value of ϑn is invalid for the propagator
nor for the system initial condition, some values facilitate the understanding of the
corresponding dynamics; three conditions are most relevant:

1. ϑi = 0, ϑ2i = 0, i.e.

U0|1〉 = cosϑ2|Φ0〉+
i√
2

sinϑ2

(
|Φ−〉 − |Φ+〉

)
,

=

 cosϑ2 cosϑ
−i sinϑ2

− cosϑ2 sinϑ

 , (3.71)

which corresponds to equalizing the superadiabatic basis of second order to
the dark state of the adiabatic basis (superadiabatic basis of first order) at
initial time. To reach the target state |ψf〉 = ±|3〉 in the most direct way
demands the terminal value ϑf = ±π/2 and, trying to avoid populating the
excited state, ϑ2f = 0.

Under these conditions, we may describe (super)adiabatic following of the
dark state with a deviation, given by the second order mixing angle ϑ2, that
accounts for the more realistic condition of allowing to transiently populate the
excited state. As with STIRAP, the conditions ϑi = 0, ϑf = ±π/2 correspond
to counter-intuitively ordered pump–Stokes pulses; while ϑ2i,2f = 0 correspond
to the nullification of the first order non-adiabatic coupling at the beginning
and end of the process, i.e. ϑ̇i,f = 0. This model does not require, though,
a null non-adiabatic coupling along the dynamics (as in STIRAP); now, only
its second order counterpart, ϑ̇2, needs to be negligible such that the system
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dynamics obeys (3.71). The minimization of ϑ̇2 does imply also a small ϑ̇, but,
as the deviation is of higher order, the requirement of large areas is less strict
(lower areas should be sufficient to achieve the same degree of correction).

2. ϑi = 0, ϑ2i = π/2, i.e.

U0|1〉 = −
i√
2

{
2 cosκ

[
cos2(ϑ2/2)

(
|Φ−〉 − |Φ+〉

)
+

i√
2

sinϑ2|Φ0〉
]
+ eiκ|Φ+〉 − e−iκ|Φ−〉

}
,

=

 sinϑ2 cosϑ cosκ+ sinϑ sinκ
i cosϑ2 cosκ

− sinϑ2 sinϑ cosκ+ cosϑ sinκ

 , (3.72)

which, as in the previous case, corresponds to the adiabatic dark state at the
initial time. However, unlike it, this propagator contains the monotonically
growing κ term (the area separating the eigenvalues of the adiabatic Hamil-
tonian), implying the appearance of an oscillatory evolution. To reach the
target state |ψf〉 = ±|3〉, directly and while hoping to maintain a low tran-
sient population on the excited state, the conditions ϑf = ±π/2, ϑ2f = π/2,
and κf = nπ must be satisfied.

The requirement κf = nπ, given that κ is related to the area of the pulses, is
reminiscent of the bright STIRAP in that the final state population oscillates
between the ground states as a function of pulse area. It differentiates from
it, though, by maintaining a low population on the excited state.

These conditions are not physically feasible exactly since ϑ2i,2f = π/2 require
both pulses to be off while ϑ̇ isn’t. Nevertheless, they may be approximated
by fast growing pulses still counter-intuitively ordered since ϑi = 0 and ϑi =

±π/2.

3. ϑi = π/2, i.e.

U0|1〉 =
1√
2

{
i2 sinκ

[
cos2(ϑ2/2)

(
|Φ−〉 − |Φ+〉

)
+

i√
2

sinϑ2|Φ0〉
]
+ eiκ|Φ+〉+ e−iκ|Φ−〉

}
,

=

sinϑ cosκ− sinϑ2 cosϑ sinκ
−i cosϑ2 sinκ

cosϑ cosκ+ sinϑ2 sinϑ sinκ

 , (3.73)
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for which the transient excited state population may be limited by ϑ2i = ϑ2f ,
and, for both ϑ2i = ϑ2f = 0 and π/2, ϑf = 0 (or π) and κf = nπ (n > 1).

The most convenient conditions are clearly the ones that reproduce a kind of dark
state in the superadiabatic basis, which is not exactly a dark state but a slightly
changed dark state from the adiabatic basis (first order). Thus, if the pulses are
such that ϑi = 0 and ϑf = π/2 (counter-intuitively ordered), and ϑ2i = 0 and
ϑ2f = 0, which is equivalent to ϑ̇i = ϑ̇f = 0 (zero derivative of the nonzero field at
the boundary), then T2(ti) = T2(tf ) = 1. This means that the transformation T2,
Eq. (3.63), would not change the adiabatic connection with the initial and target
states.

Since T2(tf ) = 1 (as it is the case for all the transformations Tn(tf ) = 1), the
superadiabatic basis does not modify the transfer at the end of the process, i.e. it
does not improve the transfer efficiency of the adiabatic following in STIRAP. It
rather corresponds to a basis closer to the actual dynamics, as we have evidenced
that it allows for a limited transient population in the excited state. Thus, we do
not expect a convergence ϑ̇ −−−→

n→∞
0.

In practice, the superadiabatic basis which describes best the dynamics is given
by the order n for which ϑ̇n is minimum [9, 10, 43]. In this case, we expect a projec-
tion of the non-adiabatic dynamics in this basis evolving monotonically (typically
via a smooth error function).

3.5.2 Loss in superadiabatic passage

The evolution of 〈2|ψ〉 for |ψi〉 = |1〉 is, at the zeroth order of the deviation caused
by the non-adiabatic coupling of second order,

〈2|U0|1〉 = −i cosϑi

(
cosϑ2i sinϑ2 − sinϑ2i cosϑ2 cosκ

)
− i sinϑi cosϑ2 sinκ. (3.74)

We can see now how the superadiabatic basis is closer to the actual dynamics of
the system, as from the superadiabatic propagator the loss for STIRAP becomes
visible already at the zeroth order of the non-adiabatic coupling of second order. It
is worth noting that this result generalizes and reduces to (3.48) at the adiabatic
limit (ϑ̇→ 0).

The sine–cosine pulse sequence we have used to illustrate STIRAP is not ap-
propriate to do the same for the second order iteration. Since, recalling (3.50),
the non-adiabatic coupling of second order, the rate of change of the mixing angle
between the adiabatic states |Φn〉, is exactly zero, i.e. ϑ̇2 = 0, the superadiabatic
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3.5. Counter-diabatic driving via superadiabaticity

transformation of second order offers only a superposition of adiabatic states with
static coefficients, making the transformation redundant. ϑ2 is only zero for infinite
pulse areas, the first order non-adiabatic coupling is only nil for infinite pulse du-
ration, meaning that only strictly at the adiabatic limit the superadiabatic states
match the adiabatic ones. The benefit of changing the basis is to picture the system
in such a dynamic combination of states that new paths of system evolution may be
devised (additional controls become available); a constant ϑ2 adds nothing to the
representation of the system, nothing that wasn’t already obvious using the (first-
order super)adiabatic basis. For this very reason, at its most fundamental level,
the non-adiabatic coupling can never be made exactly zero but taken only to be
sufficiently small.

A simple model we may use instead is a since–cosine pulse sequence with com-
mon maximum amplitudes Ωm, area A ≡ ΩmT , and a nonlinear time-dependent
argument for the trigonometric functions, η(t), satisfying ηi = 0 and ηf = π/2, e.g.,

ΩP = Ωm sin η, ΩS = Ωm cos η, η =
π

4

{
1− cos

[
π

T
(t− ti)

]}
. (3.75)

This corresponds to a counterintuitive pulse ordering (ϑi = 0 and ϑf = π/2), the
intuitive version is obtained by swapping the sine and cosine functions (ϑi = π/2

and ϑf = 0). The modified sine–cosine model leads to

ϑ = (δd − δb)η + δb
π

2
, (3.76a)

ϑ̇ = (δd − δb)η̇ = (δd − δb)
π2

4T
sin
[
π

T
(t− ti)

]
, (3.76b)

κ =
A
2

∫ s

0

[
1 +

π4

8A2
sin2(πs′)−O

(
1

A4

)]
ds′ −−−→

A�1

Ωm(t− ti)
2

, (3.76c)

cos2 ϑ2 ≈ 1− π4

4A2
sin2

[
π

T
(t− ti)

]
+O

(
1

A4

)
−−−→
A�1

1, (3.76d)

sin2 ϑ2 =
π4 sin2(πs)

4A2 + π4 sin2(πs)
, (3.76e)

considering the necessity of large areas, to neglect the non-superadiabatic deviation,
for the κ term that is given exactly by an elliptic integral of second order. The loss
Ploss = Γ

∫ tf
ti
|〈2|U0|1〉|2 dt,

P b
loss = Γ

∫ tf

ti

cos2 ϑ2 sin2 κ dt −−−→
A�1

ΓT

2
, (3.77a)

P
d(ϑ2i=0)
loss = Γ

∫ tf

ti

sin2 ϑ2 dt −−−→
A�1

π2

4

ΓT

2(A/π)2
, (3.77b)
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which reproduce the dependence on the area of the first nonzero terms in (3.53),
thus the discussion is the same.

Similar results for P3f and ∆P3f may be obtained as for STIRAP, identical
if we were to use the same pulse shapes, with exactly the same area-dependence,
i.e. P3f = 1 − |〈3|U1(tf )|1〉|2 − O(A−3) with |〈3|U1(tf )|1〉|2 ∝ A−2. Although trun-
cated expressions for the final state population may present exact results for specific
areas, there is no exact transfer possible short of reaching exactly the adiabatic
limit, which is not realistically feasible, i.e., the transfer is never exact for finite
areas (A <∞).

3.5.3 Shortcut to Adiabaticity (STA): counter-diabatic driv-
ing

Shortcut to superadiabaticity consists in compensating the non-adiabatic coupling
by an additional term, named counter-diabatic Hamiltonian: Hcd, i.e., at the first
adiabatic iteration,

T †
ad(H +Hcd

1 )Tad − ih̄T †
adṪad = D′

0 (3.78)

with the counter-diabatic–modified Hamiltonian:

H̃1 = H +Hcd
1 . (3.79)

D′
0 is a diagonal Hamiltonian, which can be exactly D0 = T †

adHTad or a modification
of it. We can derive

Hcd
1 = Tad(D

′
0 + ih̄T †

adṪad)T
†
ad −H. (3.80)

If we choose D′
0 to be a general traceless diagonal matrix,

D′
0 = h̄

a 0 0

0 b− a 0

0 0 −b

 , (3.81)

we obtain, with a+ = a+ b and a− = a− b,

TadD
′
0T

†
ad =

h̄

4

−a
−(1 + 3 cos 2ϑ) −2a+ sinϑ 3a− sin 2ϑ

−2a+ sinϑ 2a− −2a+ cosϑ
3a− sin 2ϑ −2a+ cosϑ −a−(1− 3 cos 2ϑ)

 , (3.82)
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leading to the counter-diabatic Hamiltonian

Hcd
1 = TadD

′
0T

†
ad + ih̄ϑ̇

 0 0 1

0 0 0

−1 0 0

− h̄

2

0 P 0

P 0 S

0 S 0

 , (3.83)

which utilizes, in general, modified pump and Stokes fields but, most importantly,
adds a non-desirable (and unavoidable) direct coupling between the two ground
states. Particularly, if we choose D′

0 = D0, i.e. b = −a = Ω0/2, the counterdiabatic
Hamiltonian

Hcd
1 = ih̄ṪadT

†
ad = ih̄ϑ̇

 0 0 1

0 0 0

−1 0 0

 (3.84)

is exactly the coupling between the two ground states, producing the “corrected”
Hamiltonian

H̃1 =
h̄

2

 0 ΩP i2ϑ̇

ΩP 0 ΩS

−i2ϑ̇ ΩS 0

 . (3.85)

We determine Acd
1 = 2

∫ tf
ti
ϑ̇ dt = 2

∫ π/2

0
dϑ = π, which corresponds to a π pulse

between the two ground states. This is also true in the limit maxt(ΩP ,ΩS) → 0,
which ensures a complete transfer by a π-pulse. This is the straightforward solution,
making the three-level model unnecessary.

The second adiabatic iteration corresponds to

T †
2

[
T †

ad(H +Hcd
2 )Tad − ih̄T †

adṪad
]
T2 − ih̄T †

2 Ṫ2 = D′
1, (3.86)

giving, for D′
1 = D1 ≡ T †

2 (T
†
adHTad)T2 − ih̄T †

2T
†
adṪadT2,

Hcd
2 = ih̄TadṪ2T

†
2T

†
ad = h̄ϑ̇2

 0 cosϑ 0

cosϑ 0 − sinϑ
0 − sinϑ 0

 , (3.87)

with the counter-diabatic modified Hamiltonian:

H̃2 = H +Hcd
2 =

h̄

2

 0 ΩP + 2ϑ̇2 cosϑ 0

ΩP + 2ϑ̇2 cosϑ 0 ΩS − 2ϑ̇2 sinϑ
0 ΩS − 2ϑ̇2 sinϑ 0

 . (3.88)

This corresponds to a modification of the original pump and Stokes fields, with no
undesirable coupling between the ground states.
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The associated propagator Ũ = TadT2Ũ
saT †

2 (ti)T
†
ad(ti) = U0, from (3.68), pro-

duces

c3f = −δd
(
cosϑ2f cosϑ2i + cosκf sinϑ2f sinϑ2i

)
+ δb cosκf , (3.89)

for dark and bright STIRAP. The boundary conditions are as presented in Sec. 3.5.1,
however, the result is not identical: |c3f |2 is the exact final state population in the
target state, not the zeroth order as in Eqs. (3.71)–(3.73), and it does not assume
the validity of neglecting the non-(super)adiabatic coupling; instead, it is valid if the
boundary conditions are satisfied. The dark transfer with ϑ2i = 0 is then achieved
for any pulse area as long as ϑ2f = 0. The other two alternatives produce a successful
transfer only at specific areas given by κf = nπ.

It is clear from the expressions of the corrected fields that, for a standard coun-
terintuitive sequence, the correction corresponds to the addition of an intuitive com-
ponent to the fields, and viceversa.

Recalling (3.75) and (3.76), let’s use the modified sine–cosine model to observe
the effect of the counter-diabatic correction:

ϑ̇2 = 2
(δd − δb)η̈Ωm

Ω2
m + 4η̇2

, η̈ =
π3

4T 2
cos
[
π

T
(t− ti)

]
=
π2

T 2

(
π

4
− η
)
, (3.90a)

η̇2 =
π4

16T 2
sin2

[
π

T
(t− ti)

]
=
π2

T 2
η

(
π

2
− η
)
, (3.90b)

Ω̃P = ΩP + 2ϑ̇2 cosϑ = Ω0 sinϑ+ 2ϑ̇2 cosϑ

= δdΩm

[
sin η +

(π
4
− η) cos η

( A
2π
)2 + η(π

2
− η)

]
+ δbΩm

[
cos η −

(π
4
− η) sin η

( A
2π
)2 + η(π

2
− η)

]
, (3.90c)

Ω̃S = ΩS − 2ϑ̇2 sinϑ = Ω0 cosϑ− 2ϑ̇2 sinϑ

= δdΩm

[
cos η −

(π
4
− η) sin η

( A
2π
)2 + η(π

2
− η)

]
+ δbΩm

[
sin η +

(π
4
− η) cos η

( A
2π
)2 + η(π

2
− η)

]
, (3.90d)

Ω̃2
0 = Ω̃2

P + Ω̃2
S = Ω2

m + 4(ϑ̇2)
2. (3.90e)

Then, following the dark state involves a corrected pump that is unchanged at the
final time (Ω̃Pf = ΩPf = Ωm) but nonzero initially, Ω̃Pi = 2ϑ̇2, and a corrected
Stokes that is unchanged at the initial time (Ω̃S = ΩS = Ωm) but nonzero finally,
Ω̃Sf = −2ϑ̇2, with 2ϑ̇2 = π3/(ΩmT

2) for the modified sine–cosine model. The mag-
nitude of the correction depends on the area of the original fields, i.e., larger the area
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smaller the correction, with the largest modification occurring at the boundaries.

3.6 Conclusions

We have summarized in this chapter the main protocols of control regarding a three-
level system in Λ configuration, implying we take into account the population loss
via dissipation that populating the intermediate state causes. Offering robustness
and control of the losses, the main exponent is STIRAP and its associated short-
cuts. Using them as inspiration new techniques may be devised and using these as
benchmarks novel approaches can be evaluated.

The presented simple diabatic methods, consecutive π pulses and the Rabi
method, exhibit the highest losses, lowest robustness (highest propensity to de-
viations), and no way to improve these measures. Adiabatic passage, in the form of
STIRAP, brings forward control of the robustness and loses in exchange for as ap-
proximated (design of the) dynamics and an energy-costly accuracy. The dynamics
can be modeled more closely using a superadiabatic basis, opening adiabatic paths
with higher order approximations though unchanging the expensive accuracy.

With counter-diabatic driving we attain both an exact dynamics and accuracy by
reshaping the control fields with the superadiabatic-correction–dependent term. The
drawback being that we are left blind searching for pulse shapes satisfying certain
boundary conditions and, even though the specific shapes control the nonadiabatic
aspects of robustness, we do not dispose of any means to control it.
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Chapter 4

Robust stimulated Raman exact
passage by single-shot shaped
pulses

4.1 Introduction

In this chapter, we propose a scheme for robust UH-fidelity transfers similar to
STIRAP, but exact and with moderate areas, to which we refer as stimulated Raman
exact passage (STIREP) [23, 27, 44]. Exact, in this context, refers to schemes
that provide the dynamics of the system “exactly”, i.e. approaches that prescribe a
mathematical description of the complete dynamics of the system (the control fields
and, consequently, the state are known for all instances of time).

We do not consider loss in this chapter, i.e., Γ = 0. Loss will be considered in
the next when optimization (while satisfying robustness) becomes the goal.

Improvements of STIRAP have been proposed by optimizing single properties:
nonresonant fast STIRAP [31] but with large transient population in the excited
state and robust but slow STIRAP [45]. However, there are exact methods avail-
able that take different approaches on their search to compete with STIRAP’s well-
stablished robustness, such as single-shot shaped pulses (SSSP) [19, 20] and compos-
ite pulses [16, 32, 46–50], among others. Techniques as SSSP and composite pulses
deal with error reduction directly, while methods as shortcuts to adiabaticity [26,
27, 31, 45, 51–59] rely on optimizing the adiabaticity of the process as their source
of robustness. In a way, the first ones are bottom-up techniques, starting with en-
ergy economic strategies and remolding them to gain robustness; while the latter
are top-down technologies, starting with the adiabatic and infinitely energetically
costly paradigm and working their way down towards faster and cheaper processes.
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Physically speaking, exact methods are all those that offer detailed mathematical
solutions for the desired task, i.e. a description of the process with which to obtain
the goal at a finite time. Meanwhile, adiabatic methods rely on the asymptotic
behavior of the system under the adiabatic condition. To use an exact technique
instead of an adiabatic one means to sacrifice the freedom that adiabaticity affords
on field shapes for the rigidity of prescribed pulses and state dynamics. These
prescriptions, provided by means of inverse engineering, are applied in order to gain
the advantage of reaching the desired target state with finite pulse areas in a finite
time.

SSSP is a technique that takes exact transfer inverse-engineering as a first step,
and error resistance through the transfer perturbative expansion as a second step.
Firstly, SSSP applies inverse-engineering from the desired process onto the control
fields by means of the prescription of a tracking solution for a certain parametrization
of the quantum state of the system. Then, it uses perturbation theory to gradually
diminish the susceptibility of the transfer fidelity to deviations from the optimal
experimental conditions. Perturbation theory is applied in terms of deviations from
the ideal conditions, taking into consideration realistic experimental complications,
and is analyzed through the Schrödinger equation. The minimization of the devi-
ation terms, representing the result of non-optimal conditions, is expected to have
the systematic decimation of the dynamics sensitivity to perturbations as a conse-
quence, i.e. improving the robustness. In order to manipulate the deviation terms,
the tracking expression of the reverse-engineered dynamics must contain a suitable
parameterization, meaning that the desired system evolution is prescribed with ex-
pressions containing free parameters to be chosen afterwards regarding they nullify
or at least reduce the terms of the perturbative expansion.

In this chapter, we introduce SSSP for the robust UH-fidelity transfer of pop-
ulation between the ground states of a three-level Λ-system. We show a scheme
similar to STIRAP but exact (thus not actually adiabatic) and highly robust using
the Lewis-Riesenfeld (L-R) method driving a single dynamical mode [22, 26]. The
second section contains the parameterization of the propagator and Hamiltonian
in terms of Euler angles. Section 4.3 shows the application of perturbation theory
on the Hamiltonian, a working tracking solution (based on [23, 27, 44]) and an
analysis of the origin of robustness for this chosen tracking solution. We propose
the direct study of the robustness of any given process for a range of pulse areas
through the usage of a measurement of robustness based on the minimum UH-fidelity
confidence range around the unperturbed ideal system. Additionally, definitions of
STIRAP, considering Gaussian-shaped fields, and the adiabatically-optimized pulses
with which we compare our SSSP are described. Section 4.4 presents the discussion
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and conclusions.

4.2 The Hamiltonian and its state angular param-
eterization

Let’s consider a three-level system driven by two resonant fields, ΩP (t) and ΩS(t),
for which the Hamiltonian, on the bare states basis {|1〉, |2〉, |3〉} and under the
rotating wave approximation, is

H(t) =
h̄

2

 0 ΩP 0

ΩP 0 ΩS

0 ΩS 0

 . (4.1)

In STIRAP, the state of the system is written in terms of the eigenstates of the
Hamiltonian,

Φ0 =

 cosϑ
0

− sinϑ

 , Φ± =
1√
2

sinϑ
±1

cosϑ

 , (4.2)

where ϑ(t) is the so-called mixing angle, given by

sinϑ = ΩP/
√

Ω2
P + Ω2

S, cosϑ = ΩS/
√

Ω2
P + Ω2

S. (4.3)

The idea is to follow the dark state, the Hamiltonian eigenstate |Φ0〉, whose projec-
tion on the excited state is always null. This state allows for control of population
transfer between the ground states without populating the intermediate state, the
desired dynamics, which prescribes the signature counter-intuitive ordering of ΩP

and ΩS. However, the derivatives of the mixing angle, the non-adiabatic coupling,
couple the |Φn〉’s, the adiabatic states, preventing their exact following (since popu-
lation would be uncontrollably exchanged via it). Then, adiabaticity, the condition
in which the non-adiabatic coupling is negligible (with ϑ̇ → 0 being the adiabatic
limit), is paramount to minimize the deviations of the dynamics from the dark state
and produce the desired transfer. Naturally, very slow-evolving pulses would min-
imize the non-adiabatic coupling and practically uncouple the adiabatic states in
consequence. Nevertheless, the adiabatic states can never be followed exactly in
real-world implementations.
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4.2.1 Lewis-Riesenfeld invariant

A method that has taken notoriety in recent years is the use of dynamical invariants,
also referred to as Lewis-Riesenfeld (L-R) invariants [22, 26, 27, 60, 61]. The L-R
invariant I(t) is defined by having a time-invariant expectation value, i.e., a constant
〈ψ(t)|I|ψ(t)〉, where |ψ〉 is the state of the system. This condition is equivalent to
ih̄İ = [H, I] when considering the evolution of such system as described by the
Schrödinger equation ih̄|ψ̇(t)〉 = H|ψ(t)〉, where the dotted function denotes its
partial derivative with respect to time.

We can use the eigenstates of this invariant, |ϕn(t)〉, to write the state of our
system with the advantage that, unlike with the adiabatic states, the coupling be-
tween these is always null under any condition. This can be shown by applying
the transformation operator TLR(t) =

∑
n |ϕn〉〈n|, that writes the system into the

basis of the L-R eigenstates, onto the Schödinger equation and demonstrating the
effective Hamiltonian on the new basis, HLR(t) = TLRHT

†
LR − ih̄TLRṪ

†
LR, to have

only the diagonal elements HLR
n = 〈ϕn|H|ϕn〉. Thus, we can describe the complete

dynamics of our system by a fixed combination of the L-R eigenstates and, with a
suitable parameterization and tracking solution, we can follow exactly the system
evolution and, consequently, reach exactly the desired target state.

A simple picture of the difference between the use of adiabatic states (key of
STIRAP) and of the eigenvectors of the dynamical invariant (L-R method) is: while
the adiabatic states represent the dynamics of the system under the adiabatic con-
dition, the L-R eigenvectors contain the whole dynamics of the system; the firsts are
a particular case of the seconds, as we will show at the end of this section.

In order to write the solution of the Schrödinger equation in terms of the eigen-
vectors of the L-R invariant we first need to write the latter explicitly in terms of
practical parameters. For this purpose, we can exploit the property that establishes
that, for an invariant that is member of the Lie algebra with (Hermitian) generators
Qn, i.e. I =

∑N
n αn(t)Qn, these coefficients must obey the relation

∑N
n α

2
n = α2

0,
where the αn’s are real quantities, α0 is a constant and N is the number of generators
of the algebra.

Considering that the propagator of the Hamiltonian (4.1) belongs to the SU(3)
symmetry group, we can write said Hamiltonian as a linear combination of the
well-known Gell-Mann matrices λn of the group [27, 62, 63] [generators of the Lie
algebra of SU(3) as the Pauli matrices are the generators of the algebra of SU(2)],
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i.e., H = (h̄/2)(ΩPλ1 + ΩSλ6), with

λ1 =

0 1 0

1 0 0

0 0 0

, λ5 =
0 0 −i
0 0 0

i 0 0

, λ6 =
0 0 0

0 0 1

0 1 0

 . (4.4)

Moreover, given that the matrices λ1, λ5 and λ6 form a closed algebra, fulfilling the
Lie algebra of SU(2), i.e. their commutation relations require no other generator
([λi, λj] = Ck

ijλk for i, j, and k taking any combination of values 1, 5 and 6 without
repetitions, Ck

ij = −Ck
ji = Ci

jk = Cj
ki and C5

16 = i), we can now write the L-R
invariant in terms of only these three matrices and three αn’s:

I(t) = α1λ1 + α2λ6 + α3λ5. (4.5)

This is a much simpler case than that of a general member of the SU(3) algebra that
contains up to 8 αn’s (7 of which are independent). With this simple expression for
our dynamical invariant we can solve the eigenvalue equation.

Using the eigenvectors |ϕn(t)〉 of this invariant to write the state of the system
solution to the Schrödinger equation:

|ψ(t)〉 =
3∑

n=1

Cn eiηn(t) |ϕn(t)〉, (4.6)

with the Lewis-Riesenfeld phase

ηn(t) =
1

h̄

∫ t

ti

〈
ϕn(t

′)

∣∣∣∣ih̄ ∂

∂t′
−H(t′)

∣∣∣∣ϕn(t
′)

〉
dt′, (4.7)

we can also write the evolution operator U(t, ti), to which we refer as the propagator
of the system, in terms of the αn’s through U =

∑3
n=1 exp[iηn(t)]|ϕn(t)〉〈ϕn(ti)|. The

Lewis-Riesenfeld phase corresponding to the null eigenvalue, e.g., η1, is a constant
we set to 0. Considering we intend to prescribe the time evolution of the αn’s,
we facilitate the search for the boundary conditions by imposing a single-mode
driving, i.e. a dynamics along a single eigenvector of the invariant, setting C1 = 1

and C2 = C3 = 0, which makes |ψ〉 = |ϕ1〉. This dynamics can be seen as a
generalization of adiabatic passage, occurring along a single eigenstate, to an exact
passage.

Given the relation between the αn’s, we can propose the following representation
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in terms of time-dependent Euler angles:

α1 = α0 cosφ sin θ, α2 = −α0 cosφ cos θ, α3 = α0 sinφ, (4.8)

which consequently makes the other two L-R phases

η ≡ η2 = −η3 = −
∫ t

ti

θ̇(t′)/ sin[φ(t′)] dt′. (4.9)

Defining the desired transfer to be |ψ(ti)〉 = |1〉 → |ψT 〉 = |3〉, we can now say that,
for a Hamiltonian fulfilling the closed algebra of λ1, λ5 and λ6, with no coupling
|1〉–|3〉, the propagator of the system can be written as

U = [|ϕ1〉 |ψ+〉 |ψ−〉] , (4.10)

with the composing column vectors described by

|ϕ1〉 =

cosφ cos θ
i sinφ

cosφ sin θ

 , (4.11a)

|ψ+〉 =

i cos η sinφ cos θ − i sin η sin θ
cos η cosφ

i cos η sinφ sin θ + i sin η cos θ

 , (4.11b)

|ψ−〉 =

− sin η sinφ cos θ − cos η sin θ
i sin η cosφ

− sin η sinφ sin θ + cos η cos θ

 , (4.11c)

where the first column of the propagator corresponds to a parameterization in Euler
angles of the solution of the Schrödinger equation. With the representation in (4.8),
the control fields can also be expressed in terms of these so-called Euler angles as

ΩP/2 = −θ̇ cotφ sin θ − φ̇ cos θ, (4.12a)

ΩS/2 = θ̇ cotφ cos θ − φ̇ sin θ, (4.12b)

which provide the remaining boundary conditions when demanding the pulses to
have finite area, i.e. 0← ΩP → 0 and 0← ΩS → 0, thus

0← {φ, φ̇, θ̇, η̇} → 0, and 0← θ → π/2, (4.13)

where the arrows to the right and left represent the limits when t→ tf and t→ ti,
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respectively. It can be noted that the transient population of the excited state in
this representation is given exactly by

P2(t) = |〈2|ψ(t)〉|2 = sin2 φ(t). (4.14)

We can interpret the invariant’s eigenstate |ϕ1〉 as equivalent to the dark state
of STIRAP, |Φ0〉, where the latter has been allowed to exhibit a non-zero transient
excited state population in order to make the dynamics exact. In fact, the particular
case of single-mode driving corresponding to adiabatic following is given by |Φ0〉 =
|ϕ1(θ = −ϑ, φ = 0)〉; for which the excited state population (4.14) remains exactly
null, the fields (4.12) are infinite and, thus, the adiabatic condition is fulfilled.

Equations (4.12) and (4.13) define a family of exact transfer solutions. Con-
sequently, if such tracking solutions satisfying the previous conditions can be engi-
neered, then we are able to control at will, in principle, the population on the middle
state and we would be exposing an exact method for realizing stimulated Raman
passage.

4.3 Perturbed Hamiltonian, exact tracking and
the measure of robustness

Having set the requirements the angles must fulfill to describe the desired process,
we proceed to deal with its robustness. Firstly, we add an unknown deviation V (ε) to
the Hamiltonian (4.1), introducing the possibility of a non-optimal implementation
of the control strategy that contains an error ε in the area of the pulses interacting
with the system, i.e., Hε = H + V (ε), where V = εH; thus,

Hε =
h̄

2

 0 (1 + ε)ΩP 0

(1 + ε)ΩP 0 (1 + ε)ΩS

0 (1 + ε)ΩS 0

 . (4.15)

Secondly, we apply standard perturbation theory at the transfer profile regarding
the perfect realization, or

〈ψT |ψε(tf )〉 = 1−O1 −O2 − · · · , (4.16a)

|〈ψT |ψε(tf )〉|2 = 1− Õ1 − Õ2 − · · · = F . (4.16b)

The deviation terms On ≡ O(εn) are integral expressions whose level of complexity
increases accordingly to the corresponding perturbation orders. Given that the
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evolution of the state of our system coincides with that of |ϕ1〉, and that conjointly
with |ψ+〉 and |ψ−〉 these form a complete basis, the deviation terms are, explicitly,

O1 = 0, (4.17a)

O2 = −(−i)2
∫ tf

ti

∫ t

ti

[nn′ − pp′] dt′ dt ∈ R, (4.17b)

O3 = −(−i)3
∫ tf

ti

∫ t

ti

∫ t′

ti

[pr′n′′ − nr′p′′] dt′′ dt′ dt ∈ I, (4.17c)

O4 = −(−i)4
∫ tf

ti

∫ t

ti

∫ t′

ti

∫ t′′

ti

[nn′n′′n′′′ − nn′p′′p′′′ + nr′r′′n′′′ − pp′pn′′n′′′

+ pp′p′′p′′′ − pr′r′′p′′′] ∈ R, (4.17d)

and so on, where the non-null elements of the Hamiltonian deviation, for an unknown
pulse area scaling error ε, on the basis of the vectors in (4.11), are identified as n =

〈ϕ1|V /h̄|ψ+〉, p = 〈ϕ1|V /h̄|ψ−〉 and r = 〈ψ+|V /h̄|ψ−〉, with the primed function rep-
resenting the function with its argument primed, e.g., n′ = 〈ϕ1(t

′)|V (t′)/h̄|ψ+(t
′)〉.

To consistently increase the robustness of the process via the nullification of the
first orders of infidelity, Õn ≡ Õ(εn), is the goal of our strategy. These terms are,
from (4.16), given by Õ1 = O1 + O1, Õ2 = O2 − O1O1 + O2 and so on, where the
odd orders are automatically null. However, the prescription of adequate tracking
solutions with free parameters is the actual core of our recipe and also its sole non-
systematic step.

Finally, we propose a tracking solution where the maximum transient population
on the excited state, Pmax

2 = max [|〈2|ψ(t)〉|2], is the control parameter.

4.3.1 Population cap parameterization

The first found successful parameterization contains a unique free coefficient fixing
a cap for the transient population on the excited state. The mixing angle of the
levels |1〉 and |3〉 with |2〉, identified as φ(t), is written in terms of the other one,
θ(t), which describes the state evolution from |1〉 to |3〉, and, in this manner, we
propose the following suitable (fulfilling the requirements on (4.13)) and convenient
tracking solutions (based on [23, 27, 44]):

θ(t) = (π/4) {tanh[(t− ti − T/2)/v0] + 1} , (4.18a)

φ̃(θ) = (4φ0/π)
√
θ(π/2− θ), (4.18b)
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Figure 4.1: Second and fourth orders of infidelity, Õ2 and Õ4, maximum excited state
population Pmax

2 and the corresponding generalized area A vs the free parameter
φ0.

where the tilde signals functions of θ. These give, with ˙̃
φ ≡ ∂φ̃/∂θ,

˜̇θ(θ) = (4/πv0)θ(π/2− θ), (4.19a)
˙̃
φ(θ) = (4φ0/π)

π/4− θ√
θ(π/2− θ)

, (4.19b)

where T = tf − ti is the total duration of the process and v0 is a parameter setting
the speed of the function change (chosen as v0 = 0.028T to provide a numerical
error below 10−6 for the normalized field at the boundaries of the process).

The free parameter φ0 allows us to control simultaneously the maximum pop-
ulation on the excited state, parameterized as Pmax

2 = sin2 φ0, and the robustness
of the transfer, by means of the nullification or minimization of the first orders of
population infidelity Õn’s; the first two non-zero orders are shown in Fig. 4.1.

The relationship between φ0 and the generalized area of the pulses,

A =

∫
T

√
Ω2

P + Ω2
S dt, (4.20)

corresponds to that which is well known from STIRAP: higher the area A of the
pulses, lower the maximum transient population on the excited state Pmax

2 , which
can be noted straightforwardly in Fig. 4.1, to where we can also refer to extract the

117



Chapter 4. Robust stimulated Raman exact passage by single-shot shaped pulses

correspondence between φ0 and A. It can be highlighted that the additional amount
of pulse area ∆A = A (Pmax

2 (φ0) + ∆Pmax
2 ) −A (Pmax

2 (φ0)) that would be required
to decrease the maximum intermediate state population by a certain amount ∆Pmax

2

rises rapidly when considering ever lower values of φ0, i.e., ∆A/∆Pmax
2

φ0→0−−−−→ ∞,
thus exhibiting the asymptotic behavior of the adiabatic condition (the adiabatic
limit).

4.3.2 Measurement of robustness

Single-shot shaped pulses

With the purpose of generating simple pulses, we choose to nullify the terms of
the perturbative expansion of the infidelity maintaining a single control parameter.
Since we only have one free variable, we can’t, in general, use it to nullify more
than one term; this is visible in Fig. 4.1. However, given the particularity of our
control, the absolute value of the perturbations, like the maximum population of
the excited state, decreases in average as φ0 is decreased, contrary to the increase
of the required pulse areas. We use this feature to restrict our focus to the range of
φ0 corresponding to moderate pulse areas, e.g., A ≤ 15π, and examine the resultant
robustness of the fidelity for the desired transfer.

Considering the limited character of a single-parameter parametrization, we opt
to not search to nullify individual terms of the perturbative expansion of the fi-
delity, but to search for particular values of φ0 for which the robustness of the
transfer presents local maxima. Figure 4.2 permits to analyze the dependence of the
infidelity I on generalized pulse area and area scaling error ε; this figure presents the
contours of the regions with very high fidelities (over 99%), showcasing them with
the logarithm of the infidelity at the evaluated conditions, where we give special
attention to the region of the so called ultra high fidelity (UH-fidelity) for which the
infidelity I ≡ 1− P3(tf ) ≤ 10−4.

The desired robustness can be understood as the non-susceptibility of the fidelity
transfer (over a certain limit set to 10−4 for UH-fidelity) for different values of ε, or
how large does ε need to be (qualitatively around the unperturbed ε = 0 condition) to
fall below the UH-fidelity definition. In Fig. 4.2 we can observe how the robustness,
in its qualitative sense from the broader UH-fidelity regions, tend to increase when
more energy (or generalized pulse area) is invested.

The oscillatory behavior of the robustness is obtained from the oscillations of the
infidelity orders Õn’s, shown in Fig. 4.1, and the global increase of robustness with
A from the damping of such oscillations (the asymptotic decrease on the average
of the absolute value of the infidelity orders). The asymmetry in Fig. 4.2 arrives
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Figure 4.2: Contour plot of infidelity I (log base 10) vs generalized area A and area
perturbation ε.

naturally from the fact that a positive ε increases the effective amplitude of the
pulses, decreasing the generalized area required to achieve the UH-fidelity transfer,
and vice versa.

In order to have a quantitative measure of robustness, appropriate for its ex-
haustive analysis and for establishing grounds of comparison with other techniques,
we extract the maximum absolute area deviation, max |ε|, at which transfers with
ultra high fidelity are achieved for ε < 0 and ε > 0 separately. To the minimum of
these two quantities we will refer as UH-fidelity radius and it is shown in Fig. 4.3
in comparison with equal measures for Gaussian pulses and adiabatically-optimized
pulses built from hypergaussians [45]. We can remark that the discontinuous char-
acter of its definition, the operation of obtaining the minimum between the left and
right values |ε| where the infidelity goes over 10−4, produces a UH-fidelity radius
function with discontinuous derivatives.

STIRAP with Gaussian pulses

One of the most commonly used pulse shapes, especially for STIRAP, is Gaussian.
Gaussian pulses have three free parameters: peak, waist and delay. The pulse areas
AP and AS depend on the first two, and the generalized area A depends on the
three of them. Fixing the waist we can control the area by tuning the peak, but the
efficiency of the process will also depend greatly on the delay. Thus, we optimize

119



Chapter 4. Robust stimulated Raman exact passage by single-shot shaped pulses

Figure 4.3: UH-fidelity radius vs generalized area A. A comparison between selected
techniques.

the delay and show the UH-fidelity radius in terms of A to serve as a base reference
for STIREP in Fig. 4.3.

For the Gaussian pulses, we use

Ω
(G)
P = −Υ exp

[
−(t̂− τ/2)2/σ2

]
, Ω

(G)
S = Υ exp

[
−(t̂+ τ/2)2/σ2

]
, (4.21)

with t̂ = t − ti − T/2. Where Υ, τ and σ are the peak, delay and waist of the
gaussian pulses, respectively, which we restrict, while setting σ = 0.04T , to a set of
values that produce moderate area fields with smaller amplitudes (in their absolute
values) than 10−6 × Υ at the boundaries of the process [ti, tf ], in order to have a
proper numerical implementation with high precision.

Adiabatically-optimized pulses

The conditions for adiabatic optimization of pulse shapes, or designing adiabatically-
optimal pulse shapes, are shown in [45] while also proposing a combination of hy-
pergaussian and trigonometric shapes as an example of pulses that fulfill these con-

120



4.4. Discussions and conclusions

ditions for UH-fidelity STIRAP. The formulas for these pulses are:

Ω
(O)
P = −Υ exp

[
−
(

t̂

mσ

)2n
]

sin
[
π/2

f(t̂)

]
, (4.22a)

Ω
(O)
S = Υ exp

[
−
(

t̂

mσ

)2n
]

cos
[
π/2

f(t̂)

]
, (4.22b)

with f = 1 + exp(−λt̂/σ). The dependence of the transfer robustness on area for a
fixed waist σ, in order to be compared with Gaussian pulses of the same waist, has
three remaining free parameters: m (waist factor relative to the Gaussian pulses), n
(power of the hypergaussian) and λ (speed of change of the trigonometric function).

These adiabatically-optimized pulses are shown [45] to be superior to Gaussian
pulses regarding the pulse area they require to achieve UH-fidelity standards when
implemented for STIRAP. Moreover, these pulses are area-wise robuster than Gaus-
sians when sufficiently (for UH-fidelity) high areas are used. The UH-fidelity radius
of a pair of adiabatically-optimized pulses, labeled as OPT#1 (m = 1, n = 1, λ = 4)

and OPT#2 (m = 1, n = 2, λ = 5) for two of the parameter sets (from sets with
natural numbers as parameters) performing well at low to moderate pulse areas, is
shown in Fig. 4.3 for the purpose of comparison.

4.4 Discussions and conclusions

The UH-fidelity radius for the SSSP pulses developed in this paper, for Gaussian
pulses and for adiabatically-optimized pulses is shown as a function of generalized
area in Fig. 4.3.

SSSP is shown to be superior, for most areas under A ≤ 15π at the very least, to
the two other methods considered. The maximum of the UH-fidelity radius of SSSP
is about 13% over the Gaussian pulses with the highest performance and almost twice
the maximum for the pulses OPT#2, which is the second best performing technique,
even though the latter requires over 2π higher pulse areas and is supposed to be, in
that regard, more adiabatic than the presented single-parameter SSSP.

Comparing Fig. 4.3 with Fig. 4.1 we can discuss the locations of the maxima
of the UH-fidelity radius for SSSP. From the low and insufficient pulse areas to
the first maximum at about 6π we are observing the first minimum of the first
non-null infidelity order Õ2. The second most notable peak (neglecting the almost
imperceptible one at 7.5π) is located at about 10π, an intermediate position between
the second minimum of Õ2 and the fourth of Õ4. Finally, the largest, broadest and
most relevant maxima to extract from this work is located beyond the third minimum
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of Õ2 and closer to, presumably, higher infidelity orders Õn’s. This UH-fidelity radius
maxima at ∼ 12π is the consequence of the simultaneous and local minimization of
multiple infidelity orders and the best robustness obtained for A ≤ 15π and among
the comparable implementations of STIRAP shown on this study.

The highest UH-fidelity radius reached by our SSSP, of 22.36% for A = 12.23π

or φ0 = 0.12815, generates the pulse shapes shown in Fig. 4.4 with its corresponding
temporal population evolution and state’s projection onto the adiabatic eigenvectors,
time axis is limited to 40% of the full time interval considered of duration T .

The projection of the state’s dynamics onto the adiabatic states shows that
the system doesn’t follow the dark state along the evolution, it departs from it
to populate a superposition of bright states, and, even though it comes back to
it towards the end of the process, this differentiates it from the ideal STIRAP. In
practice, this result would be similar for all counter-intuitively ordered control fields
and differ only in the degree in which the excited state is populated during the
dynamics.

The pulses shapes are quite simple and similar to Gaussians but clearly asym-
metric. The absolute value of the pump pulse, |ΩP |, is shown instead of its direct
value ΩP , as it is shown for ΩS, because observation is simplified this way, providing
the figure with the only relevant information about the pulses: their shapes. For
the same pulse shapes, pulses with equal or different relative signs will lead to iden-
tical results for the population fidelity; only the actual states involved would vary
between |1〉 → −|3〉 (or −|1〉 → |3〉) for ΩP and ΩS of same sign, and |1〉 → |3〉 (or
−|1〉 → −|3〉) for ΩP and ΩS of different sign. The population of the excited state
finds its maximum in the middle between the pulses, or t− ti = T/2, and it has the
reduced maximal value of P2 = 0.016.

The UH-fidelity radius has been defined through the implementation of a Hamil-
tonian perturbation, shown in (4.15), that can be seen as considering a lack of
perfect knowledge over the quantum system while having perfect control over the
fields, some practical examples can be readily provided:

• Pump and Stokes beams with equal intensity profiles (like Gaussian profiles
with the same waist) interacting with atomic systems of no perfectly known
location [64].

• Certain variations on the dipole moment of the transitions, such as on their
orientation, can affect both pump and Stokes fields on equal manner.

• All those cases in which both controls are produced by the same source and
thus any unexpected deviation affecting field amplitudes would be equal for
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Figure 4.4: Time evolution of populations and the corresponding shaped fields, at
best performing conditions, i.e., A ≈ 12π (regarding the UH-fidelity radius shown
in Fig. 4.3).
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the fields [6], such as when the considered transition frequencies are so close to
each other that a single field can excite them. Another case would be that of
when the addressed transitions involve Zeeman sublevels, where the coupling
fields are only required to differ in polarization (right- and left-handed circular
polarization for example). Having fields that originate from the same source
impose them to have the same temporal shape, or to be mirror images of each
other if we can use counter-propagating fields.

In conclusion, we have optimized robustness from an exact solution derived from the
Lewis-Riesenfeld method with one mode, which allowed a full shaping of the fields.
This strongly contrasts with respect to most of the previous attempts at optimizing
STIRAP (fidelity and robustness) which were based on the optimization of a set of
natural parameters, e.g., delay, waist, amplitude, among others. We have derived a
parametrization achieving high robustness for moderate pulse areas. Additionally,
this solution opens further prospects for designing various exact and robust solutions
based on STIRAP, or its extensions, such as N -pod STIRAP [65] or other multilevel
systems [66–70].
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Chapter 5

Optimal Robust STIREP by
inverse optimization

5.1 Introduction

Adiabatic passage requires, in principle, infinite pulse areas to perform complete pop-
ulation transfers and to maintain the excited state completely depopulated along
the dynamics, as it would be desirable. Alternative protocols with realistic phys-
ical conditions have been recently investigated. One can mention acceleration of
the transfer by parallel adiabatic passage [31], but still featuring a large transient
population in the excited state, shortcut to adiabaticity by counterdiabatic driving
[58, 71–74], and, as seen in the preceding chapter, inverse engineering, where the
controls are derived from a given dynamics [21, 27, 75, 76]. We have shown that the
formulation of the latter allows one to generate infinitely many exact solutions and
one can select among them the ones with specific features such as robustness [19–21,
36, 77–79] or stability in the case of non-linear dynamics [44, 80]. Disadvantageously,
this method is strongly dependent on the protocol used for the prescription, both in
dynamical behavior and in the consequent field characteristics such as pulse area,
energy, duration, and robustness.

A method combining inverse engineering and optimization, where the controls
are derived from a trajectory that is optimal with respect to a given cost, has been
proposed. Robust inverse optimization (RIO) incorporates robustness as additional
constraints. It has been demonstrated for a two-level system using a variational
procedure based on a geometric representation of the dynamics, producing ultimate
solutions that featured exactness, robustness, and absolute optimality (for instance
with respect to pulse area, energy, and duration of the controls) [37].

In this work, we apply the RIO technique to derive resonant control pulses in a
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Λ system featuring exact, robust, and optimal transfers, taking into account a given
admissible total loss. These result from an optimization via the resolution of the
Euler-Lagrange equations with the constraints of robustness up to third order (con-
sidered in terms of a common scaling inhomogeneity factor for both fields). We find
numerically the optimal and robust family of solutions, each of them correspond-
ing to a given loss. These numerical solutions lead to control fields of remarkably
simple temporal shapes featuring, when a low loss is considered, a combination of
intuitively and counter-intuitively ordered pairs. Their area is only about twice as
large as the optimal unconstrained (i.e. non-robust) Λ transfer [23, 81].

A simple guide to the results of this chapter can be pictured as follows: (i)
The resonant Λ system, Eq. (5.1), is parametrized in terms of angular variables,
Eq. (5.10), and we solve the Euler-Lagrange equations (5.19) for these, with pulse
area being the cost function to optimize. (ii) The solutions of the explicit equation
(5.22), which depend on a geometrical parameter ( ˙̃φi), are systematically derived
with their corresponding pulse areas in Fig. 5.1(a) and 5.1(b), and result in the tra-
jectories shown in Figs. 5.2(a) and 5.2(b) for representative values of the parameter
˙̃
φi. (iii) The robustness of these trajectories is found in Fig. 5.3 compared with the
optimal non-robust solution [23, 81]. (iv) Energy optimization leads to temporal
pulse shapes and their respective population dynamics, shown in Figs. 5.5 and 5.6
for selected values of the parameter ˙̃

φi. (v) The selected robust and optimal pulse
shapes are entirely characterized in Table 5.1.

In section 5.2 we present the model for a resonant three-level system consider-
ing a lossy intermediate state; we propose a geometric (angular) parametrization of
state, propagator, and loss, while declaring the corresponding boundary conditions
appropriate for the Λ transfer. Section 5.3 contains the parametrization of the fields
and definition of the cost functions to optimize, pulse area and energy; the funda-
mentals of robustness and its manipulation are also discussed. Section 5.4 gathers
the geometric constraints to be enforced, dealing with both: boundary conditions
and robustness, and introduces the corresponding Euler-Lagrange equation for the
trajectory. Section 5.5 presents the results on the robust area-optimization, the op-
timal trajectories and its defining parameters and characteristics, irrespective of any
specific time parametrization (thus a geometric trajectory in contrast with a tempo-
ral dynamics). Section 5.6 shows the Euler-Lagrange equations for the optimization
of the state evolution with respect to the generalized pulse energy, leading to a time
parametrization that also minimizes the duration of the transfer. The temporal
shape of the coupling fields, the population dynamics, and the corresponding losses
are all discussed in Section 5.7, where also the numerical details of the results are
gathered. Finally, conclusions are presented.
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Appendixes are included with details for the obtainment of the deviation inte-
grals and the numerical resolution of the trajectory equation. Some useful geometri-
cal relations for symmetric trajectories and the time-evolution of the angles are also
presented as Appendixes.

5.2 The model

We consider a three-level system driven by two resonant fields of Rabi frequencies
ΩP (t) and ΩS(t) for which the Hamiltonian, on the bare states basis {|1〉, |2〉, |3〉}
and under the rotating wave approximation, is:

HΓ(t) =
h̄

2

 0 ΩP 0

ΩP −iΓ ΩS

0 ΩS 0

 , (5.1)

and the state of the system is denoted by |ψΓ(t)〉, solution to the time-dependent
Schrödinger equation (TDSE) describing the dynamics from the initial to the final
times ti and tf , accounting for dissipation losses of state |2〉. We have considered,
as it is standard, that the upper state is lossy through the dissipation rate Γ.

As analyzed in Section 3.3.2, when the dissipation rate is much smaller than
the peak Rabi frequency (typically at least 10 times smaller), the total loss of the
system during the interaction time T = tf − ti is well approximated by (3.26):

Ploss ≈ Γ

∫ tf

ti

dt P2(t), (5.2)

where P2 = |〈2|ψΓ=0〉|2 is the population in the excited state in absence of dissipa-
tion. We will thus consider the dynamics with the lossless Hamiltonian (with Γ = 0)
and the expected loss will be taken into account via (5.2).

Prescribing the desired transfer to be |ψ(ti)〉 ≡ |ψi〉 = |1〉 → |ψ(tf )〉 ≡ |ψf〉 =
|ψT 〉 = ±|3〉, while hoping to maintain a small excited state population (to minimize
the loss), we can parametrize the state of the system, solution of the TDSE for the
lossless Hamiltonian, |ψΓ=0〉 ≡ |ψ〉, as

|ψ(t)〉 =

cosφ cos θ
i sinφ

cosφ sin θ

 , (5.3)

whose time-dependent angular parametrization must satisfy the boundary condi-
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tions:

φi = 0← φ(t)→ φf = 0, (5.4a)

θi = 0← θ(t) → θf = θ±f = ±π/2. (5.4b)

The arrows to the right and left indicate the limits when t → tf and t → ti,
respectively. The sign ± indicates the two possible options for the terminal θ. The
phase of the target state |ψT 〉 is irrelevant for the transfer of population and can be
interpreted, and controlled, as a constant carrier-envelope phase difference between
the control fields. Vector (5.3) and

|ψ+(t)〉 =

i cos η sinφ cos θ − i sin η sin θ
cos η cosφ

i cos η sinφ sin θ + i sin η cos θ

 , (5.5a)

|ψ−(t)〉 =

− sin η sinφ cos θ − cos η sin θ
i sin η cosφ

− sin η sinφ sin θ + cos η cos θ

 , (5.5b)

form a complete dynamical basis and constitute the propagator of the system,
U(t, ti) =

[
|ψ〉 |ψ+〉 |ψ−〉

]
, where η(ti) ≡ ηi = 0 is required by definition. This

parametrization for the propagator can also be obtained from the Lewis-Riesenfeld
invariant, as in [21].

The TDSE for the propagator, HΓ=0 = ih̄U̇U †, due particularly to the lack of
coupling 〈1|HΓ=0|3〉, imposes the condition

θ̇ = −η̇ sinφ (5.6)

on the parametrization of the propagator. From (5.3) and (5.5), and by integrating
it, we obtain: ∫ tf

ti

η̇ sinφ dt = −θ±f = ∓π
2
, (5.7)

which translates the terminal condition θ(tf ) ≡ θf , (5.4b), into a constraint on the
time-dependence of η̇ and φ.

It can be noted that the transient population of the excited state in this repre-
sentation is given exactly by

P2 = |〈2|ψ〉|2 = sin2 φ, (5.8)
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and the total time-area of the population on the excited state can be written as:

A2 =

∫ tf

ti

sin2 φ dt ≈ Ploss

Γ
. (5.9)

This area A2 represents thus the loss of the problem normalized by Γ. We can see
that the presence of the dissipation rate Γ 6= 0 on the upper state induces necessarily
a loss to accomplish a Λ transfer. This is true for any pump and Stokes configuration
and shaping, since no loss (A2 = 0) would require constant φ(t) = 0 (for Γ 6= 0),
hence constant θ(t) = 0 [θ̇(t) = 0 from (5.6)], and thus no transfer.

As a general strategy to deal with a dissipation rate Γ, leading to a population
loss Ploss, we will solve for the lossless dynamics while striving for low A2’s.

5.3 Inverse engineering and robustness

The parametrization of the TDSE allows one to define the inverse engineering prob-
lem: the controls in the Hamiltonian (5.1), with Γ = 0, are expressed in terms of
the angles, from the parametrization of the propagator defined by (5.3) and (5.5),
as

ΩP/2 = η̇ cosφ sin θ − φ̇ cos θ, ΩS/2 = −η̇ cosφ cos θ − φ̇ sin θ. (5.10)

It can be noticed that the values of the time-derivatives at the initial and final time,
η̇i,f and φ̇i,f , give the value of the control fields evaluated at the boundaries, i.e.,
using (5.4),

Ωi
P = −2φ̇i, Ωf

P = ±2η̇f , Ωi
S = −2η̇i, Ωf

S = ∓2φ̇f . (5.11)

We define the generalized pulse area (referred simply as pulse area from here on) to
be

At ≡
∫ tf

ti

√
Ω2

P + Ω2
S dt = 2

∫ tf

ti

√
φ̇2 + η̇2 cos2 φ dt, (5.12a)

which can be rewritten as an integral in terms of η if we assume that φ(t) can be
expressed as a function of η(t), i.e.,

A = 2

∫ ηf

ηi

sgn η̇
√( ˙̃

φ
)2

+ cos2 φ̃ dη, (5.12b)
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where φ̃(η) ≡ φ[η(t)], ˙̃
φ ≡ ∂ηφ̃, and ∂η is the partial derivative operator with respect

to η. Once the sign of η̇ is fixed, Eq. (5.12b) will not depend on time but only on
the trajectory φ̃(η). Equation (5.7) has a similar property. The dynamic behavior
of η can be considered to be monotonic or not, requiring to segment the integral in
the latter case and to consider a piecewise function φ̃(η).

The issue of robustness can be dealt with by adding perturbation terms to the
Hamiltonian, representing errors or imperfections of the practical implementation.
We consider an error originated by pulse inhomogeneities, taken as identical for
both pulses, modeled by the modified Hamiltonian Hε = HΓ=0 + V = (1 + ε)HΓ=0,
which translates into a deviation on the desired state dynamics and generalized pulse
area. We denote |ψε(t)〉 as the state of the complete dynamics including the error,
solution of the TDSE ih̄∂t|ψε(t)〉 = Hε|ψε(t)〉. The single-shot shaped pulse method
[19, 20] allows one to define trajectories, in the dynamical variables space, resistant
to errors. It can be formulated by a perturbative expansion of |ψε(tf )〉 with respect
to ε, 〈ψT |ψε(tf )〉 = 1−O1−O2−O3−· · · , where On denotes the error term of order
n: On ≡ O(εn), and |ψT 〉 is the target state.

In practice, we search to attain the optimal solution in terms of certain cost
parameter. For instance, we can define the cost to be the required pulse area to
reach the target state, and strive to minimize it; or, we can define the cost to be a
specific measure of robustness (e.g., the maximum range of ε for which the target
state is reached with under 10−4 deviation), and maximize it. Here, we will consider
both, optimization and robustness, which technically corresponds to searching the
optimal solution with respect to a cost (pulse area, energy, or duration) under the
constraint of robustness.

When we consider both optimization and robustness with respect to the gen-
eralized pulse area A (or identically to both pulse amplitudes for a given time of
interaction), Eqs. (5.7) and (5.12) show that one can consider the problem in the
parameter space formed by the angles (η, φ̃), without invoking a specific time pa-
rametrization; thus providing a purely geometric representation of the problem.

In fact, it is known that, in the absence of robustness constraints, minimizing
the pulse area (5.12) is equivalent to minimizing the pulse energy,

E = h̄

∫ tf

ti

(
Ω2

P + Ω2
S

)
dt = 4h̄

∫ tf

ti

(
φ̇2 + η̇2 cos2 φ

)
dt, (5.13)

and to minimize the time for a given bound of the pulse amplitudes [23] (equivalently,
to minimize the pulse amplitudes for a certain pulse duration). We will show that
this property still applies for our constrained problem.
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A robust optimal transfer of population corresponds to a special trajectory
φ̃opt(η) that, satisfying the boundary conditions (5.4), minimizes the generalized
pulse area (5.12b) while attaining robustness up to a certain order. The construc-
tion of the actual time-dependent pulses ΩP and ΩS from (5.10) necessitates the
use of a specific temporal parametrization, η(t), which may be chosen at will (it
is inconsequential) for the optimization solely with respect to the pulse area. On
the other hand, optimization with respect to the pulse energy, corresponding to the
minimization of Eq. (5.13), defines a specific temporal parametrization ηE(t) for the
same optimal trajectory φ̃opt(η), which also minimizes the pulse duration for a fixed
maximum of the pulse amplitudes.

5.4 Robust optimal population transfer

For the task of population transfer to a target state |ψT 〉, the final global phase is
not a priori fixed and, since it is irrelevant, its robustness is not cared for. The
figure of merit up to the third order of robustness reads

F = |〈ψT |ψε(tf )〉|2 = 1− Õ2 − Õ3, (5.14)

where the first order is nil (real part of a purely imaginary number which, in this
case, is anyway zero), and the second and third orders are

Õ2 =

∣∣∣∣∫ tf

ti

n dt

∣∣∣∣2 + ∣∣∣∣∫ tf

ti

p dt

∣∣∣∣2, (5.15a)

Õ3 = 2i

[∫ tf

ti

n dt

∫ tf

ti

∫ t

ti

rp′ dt′ dt−
∫ tf

ti

p dt

∫ tf

ti

∫ t

ti

rn′ dt′ dt

]
, (5.15b)

with

n =
〈ψ|V |ψ+〉

h̄
= −η̇ sin η sinφ cosφ− φ̇ cos η, (5.16a)

p =
〈ψ|V |ψ−〉

h̄
= i(η̇ cos η sinφ cosφ− φ̇ sin η), (5.16b)

r =
〈ψ+|V |ψ−〉

h̄
= −η̇ cos2 φ. (5.16c)

ε was used merely to keep track of the orders of the expansion. It has been omitted
in the above expressions. We note from (5.15) that the only perturbation we need
to be concerned about up to third order is Õ2, (5.15a), since (5.15b) shows that the
third order deviation is null for any trajectory φ̃(η) that nullifies the second order
[i.e., the areas under n(t) and p(t)]. Some properties used to obtain Eqs. (5.15) are

131



Chapter 5. Optimal Robust STIREP by inverse optimization

presented in Appendix 5.A.

5.4.1 Lagrangian formulation of the optimization

The problem of optimal nullification up to the third order can be formulated as a
classical optimization problem: finding the trajectory φ̃(η) that minimizes the pulse
area (5.12b), which is the action (in the language of Lagrangian mechanics) and
integral of a Lagrangian L,

A = 2

∫ ηf

ηi

sgn η̇
√( ˙̃

φ
)2

+ cos2 φ̃ dη ≡
∫ ηf

ηi

L
(
η̇, φ̃,

˙̃
φ
)
dη, (5.17)

under the constraints θ±f = ±π/2, from (5.7), and Õ2 = 0; rewritten for convenience
as

ξ0 =

∫ ηf

ηi

|sgn η̇| sin φ̃ dη ≡
∫ ηf

ηi

ϕ0

(
φ̃
)
dη = −θ±f = ∓π

2
, (5.18a)

ξ1 =

∫ ηf

ηi

|sgn η̇|
(
˙̃
φ cos η + sin η sin φ̃ cos φ̃

)
dη ≡

∫ ηf

ηi

ϕ1

(
η, φ̃,

˙̃
φ
)
dη = 0, (5.18b)

ξ2 =

∫ ηf

ηi

|sgn η̇|
(
˙̃
φ sin η − cos η sin φ̃ cos φ̃

)
dη ≡

∫ ηf

ηi

ϕ2

(
η, φ̃,

˙̃
φ
)
dη = 0, (5.18c)

while satisfying the boundary conditions, for which the initial state is characterized
by the angles (θi = 0, φi = 0, ηi = 0) and the target (final) state by (θ±f = ±π/2, φf =

0, ηf ). The factor |sgn η̇| was added only as a reminder that we are dealing with a
piecewise function φ̃(η), where the interval of integration must be split each time η̇
has a sign change. A way to detect such change of sign can be achieved geometrically
during the determination of the trajectory φ̃(η) from the initial condition (starting
with a given sign of η̇). The change of sign can occur at a point η0 only when
| ˙̃φ(η0)| → ∞. We will see that this does not happen in our problem, and that a
monotonic η(t) can be considered.

In this representation it is thus relevant to consider the trajectories φ̃(η), con-
strained by the conditions (5.18), in the parameter space (η, φ̃).

5.4.2 Derivation of the trajectory φ̃(η)

We consider the representation of the trajectory φ̃(η). Robust optimal control can be
attained by solving the Euler-Lagrange equations and using the Lagrange multiplier
method to account for the constraints. The task of complete population transfer,
for the lossless system, is part of the constraints to be imposed, which is equivalent
to enforcing the boundary conditions. In this context, complete population transfer
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refers to satisfying the boundary conditions (5.4), leaving the loss to be estimated
a posteriori via (5.2).

The optimal trajectory φ̃(η) is a solution of

gradA+
2∑

j=0

λj grad ξj = 0, (5.19)

where λj (j = 0, 1, 2) is the Lagrangian multiplier associated to each one of the three
constraints, and the gradients,

gradA =
∂L
∂φ̃
− d

dη

(
∂L

∂
˙̃
φ

)
, grad ξj =

∂ϕj

∂φ̃
− d

dη

(
∂ϕj

∂
˙̃
φ

)
, (5.20)

are defined according to the Euler-Lagrange equations.
We proceed to obtain the differential equation for the trajectory φ̃(η) from:

∂L
∂φ̃
− d

dη

(
∂L

∂
˙̃
φ

)
+

2∑
j=0

λj

[
∂ϕj

∂φ̃
− d

dη

(
∂ϕj

∂
˙̃
φ

)]
= 0,

which leads, after simplification by 2 cos2 φ̃, to

−
¨̃
φ+

[
2
( ˙̃
φ
)2

+ cos2 φ̃
]

tan φ̃

sgn η̇
[( ˙̃
φ
)2

+ cos2 φ̃
]3/2 + |sgn η̇|

(
λ0 sec φ̃+ λ1 sin η − λ2 cos η

)
= 0. (5.21)

Note that we have redefined λ0/2 as λ0 without loss of generality.
Solving (5.21) means to find a trajectory φ̃(η) with the λj’s as free parameters

to be set to satisfy the constraints (5.18). We can solve this numerically assuming
a monotonic behavior for η(t), i.e.

∓
¨̃
φ± +

[
2
( ˙̃
φ±)2 + cos2 φ̃±

]
tan φ̃±[( ˙̃

φ±
)2

+ cos2 φ̃±
]3/2 + λ0 sec φ̃± + λ1 sin η − λ2 cos η = 0, (5.22)

where we have used φ̃± ≡ φ̃sgn η̇=±1.

5.5 Robust area-optimal trajectory φ̃(η)

We determine the solution for the robust area-optimal trajectory via the numer-
ical implementation of (5.22) into an ordinary differential equations solver [see
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Figure 5.1: Area-optimal solutions vs ˙̃
φi regarding (a) the λj’s and (b) the pulse

area and maximum value of φ̃. The parameters defining the highlighted extrema are
summarized in Table 5.1. Thin horizontal gray lines mark a zero.

system (5.44) in Appendix 5.B] and use its solution, in terms of the parameters( ˙̃
φi, λ0, λ1, λ2

)
, for a subsequent nonlinear equations solver that seeks to satisfy the

four trajectory constraints by searching in that four-parameter space. It turns out
that for each value of ˙̃

φi there is a trajectory solution to the Euler-Lagrange equa-
tions satisfying the imposed constraints. The parameters solution of this system are
presented in Fig. 5.1(a) for values of 0 ≤ ˙̃

φi ≤ 16.
The corresponding generalized pulse areas and the value of φ̃ at the summit of the

respective trajectories (related to the normalized loss A2) are shown in Fig. 5.1(b).
The maximum and minimum generalized pulse areas on the plot, Fig. 5.1(b),

are, respectively, Amax = 5.7498π and Amin = 3.4608π, while the corresponding
minimum and maximum values of φ (inversely related to the area) are φmin = 0.2566

and φmax = 0.5893. If to extend the plot to a large value, much beyond the point
were significative change occurs on the trajectory, e.g., ˙̃

φi = 250, we would obtain
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Figure 5.2: Trajectories φ̃(η) and θ̃(η), for selected extrema of the area minimization
problem, are shown in (a) and (b). Respective Pump and Stokes fields, dynamically
scaled by 2η̇, are shown in (c) vs η. The parameters defining the corresponding
extrema are summarized in Table 5.1. The line style in the legend applies to all
plots irrespective of the line color. The thin vertical gray lines are located at the ηf
corresponding to each trajectory. Thin horizontal gray lines mark a zero.
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A = 3.4603π and φ̃max = 0.5975.
The trajectories represented by each set of points corresponding to a single value

of ˙̃
φi are the extrema of the optimization problem, candidates to be an optimal

solution. The optimum trajectory is obtained among all these solutions for the one
corresponding to the minimum generalized pulse area: Amin ≈ 3.4603π, associated
to | ˙̃φi| → ∞ and to a normalized loss A2 ≈ 0.1291. However, we highlight that all
the other extremal solutions, featuring larger pulse areas, represent physical optimal
and robust solutions, but with corresponding lower normalized losses.

We notice that these solutions, defined by Fig. 5.1(a) and extensible to ˙̃
φi →∞,

are symmetrically mirrored (with identical pulse areas) for ˙̃
φi ≤ 0, with a sign

change in the λj’s (and φmax), thus the sign-changed alternative solution at ˙̃
φi = 0

was omitted for clarity. These alternative trajectories, namely with sign-changed φ̃

and θ̃, produce sign-changed pumps and final states, ΩP and |ψf〉, and do not differ
in any other way; hence, we limit our analysis to ˙̃

φi ≥ 0.
Although it is far from being actually adiabatic (much lower areas compared to

usual adiabatic requirements), the behavior of this family of solutions is reminiscent
of adiabatic solutions in terms of correlation between pulse area and normalized
loss: higher the invested pulse area, lower the maximum of the transient excited
state population and the corresponding normalized loss (see Fig. 5.7).

It is worthy of mention that Eq. (5.22) was solved [i.e. the system (5.44) was
integrated] without demanding the symmetry of the trajectory, see Appendix 5.C.
Each trajectory was computed from η = 0 to a large ηmax (typically ηmax = 3π).
Then, the solutions were obtained by taking φf to be a point where the trajectory
crossed the φ = 0 line boundary (thus truncating there the trajectory).

Having left the symmetry (or lack of it) of the trajectories to be decided by the
solution of the dynamical system and satisfaction of the constraints, we obtained
symmetric (of even parity) trajectories with ηf matching (one of) the expected values
(5.47) naturally, as it can be seen in Figs. 5.2(a)–5.1(c).

The values of ηf are lower for higher maximum state populations, but the re-
sultant areas are lower; trajectories and pulses are then shorter (in η), leading,
presumably, to the optimal time: the fastest way to go from ηi ≡ 0 to ηf , which
would naturally be faster for lower values of ηf .

We notice that all solutions for ˙̃
φi ≤ 5.5 were obtained by choosing φf as the

first zero-crossing, while for ˙̃
φi > 5.5 we had to truncate at the third one.

Other families of solutions, families of extrema of the optimization problem,
were found for larger boundaries of the integration (ηmax > 3π) and for second- and
third-zero–crossings, some of them even displaying asymmetric trajectories. How-
ever, all of them presented larger areas to the family in Fig. 5.1 and 5.2, thus they
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are irrelevant to the problem of optimization. For example, the asymmetric trajec-
tories corresponding to the second–zero-crossing family of solutions present areas of
5.715π ≤ A ≤ 5.750π. Meanwhile, the next immediate family of trajectories (third–
zero-crossing) exhibit about three times the area and value of ηf , in the vicinity of
˙̃
φi = 0, of the optimal family.

The extremum trajectories φ̃(η) in Fig. 5.1(a) display a double peak structure,
although it is only slight for the the largest-area extremum, ˙̃

φi = 0. The well
between the persistent positive peaks becomes a negative peak (though of much
smaller magnitude) for the optimal trajectory. By comparison between the shown
trajectories with the largest ˙̃

φi it is clear that the system geometric evolution is
optimal at infinity, but values in the order of the tens already describe it well.

The evolution of the mixing angle θ̃(η) behaves as a symmetrical two-step pro-
cess, two identical consecutive evolutions 0 → π/4 → π/2; however, it can not be
regarded as twice a robust half-transfer, since, although we can take the extrema
whose half-point is nil as its endpoint, φhalf

f = φm = 0, this half-transfer is not robust
[since it does not satisfy (5.18) for ηhalf

f = ηm].
Having treated the dynamics as a geometric trajectory φ̃(η), we are left only

with the dynamically-scaled fields

Ω̃P (η) ≡ ΩP/(2η̇) = cos φ̃ sin θ̃ − ˙̃
φ cos θ̃, (5.23a)

Ω̃S(η) ≡ ΩS/(2η̇) = − cos φ̃ cos θ̃ − ˙̃
φ sin θ̃, (5.23b)

to picture the control fields in terms of η. These equations show that the initial and
final values of these parametrized ratios are:

Ω̃i
P = − ˙̃

φi, Ω̃f
P = sgn θf , Ω̃i

S = −1, Ω̃f
S = − sgn θf

˙̃
φf . (5.24)

The absolute value of the dynamically-scaled control fields Ω̃P and Ω̃S is shown
in Fig. 5.2(c), evidencing the boundary Eqs. (5.24). Although the actual time-
dependent control fields will be described only after a time-parametrization of η(t)
is decided, we can already note that the couplings present a marked counter-intuitive
ordering. This is obvious for the largest-area extrema, but it is still mostly true for
the optimum with the exception of the spikes near the boundaries of the trajectory.

The ideal robust optimum solution would demand infinite scaled amplitudes at
one of the boundaries for each field, but this does not require the actual pulses to
have infinite magnitudes at any point in time. The fields as functions of time may
be made indeed finite with a proper choice of the time parametrization, i.e. of η(t).

The quantities
(
Ω̃P , Ω̃S

)
are sufficient to solve the TDSE parametrized in terms
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of η, with H̃ε(η) ≡ Hε(t)/η̇,

ih̄∂η|ψ̃ε(η)〉 = H̃ε(η)|ψ̃ε(η)〉, (5.25)

which can be reparametrized back to time, to observe populations actual temporal-
dynamics, by simply providing the time-dependence of η(t).

The non-robust optimal exact Λ transfer has been derived in [23] and their
corresponding analytical pulse shapes for pulse-energy optimization were given in
[81], producing the coupling fields:

ΩP =

√
3π

T
cos
[π(t− ti)

2T

]
, ΩS =

√
3π

T
sin
[π(t− ti)

2T

]
, (5.26a)

where T is the pulse duration. These coupling fields of generalized area
√
3π are the

equivalent of the π-pulse Rabi solution, the diabatic solution by excellence, for the
three-level Λ system. It exhibits the minimum area and energy necessary to perform
the complete population transfer |1〉 → |3〉, while the pulse duration fixes the cap
on the field amplitudes (equivalently we may fix the pulse amplitudes and extract
the minimum time). Hence, it is the ideal benchmark to test the gained robustness
of our optimal robust solution; just as the π-pulse would be used to compare with
population-inversion schemes in a two-level system [19, 37]. This optimal solution, as
it differentiates from our robust optimal results in the fact that it doesn’t satisfy the
robustness constraints, will be referred to as the unconstrained optimal, or simply
optimal, solution. Therefore, another use of this basis for comparison is to use it to
understand what is the minimum energy required to gain or acquire a certain order
of robustness.

Solving the TDSE taking into account pulse area scaling error up to ±20%, we
obtain the robustness profile of the population transfer fidelity and base 10 logarithm
of the infidelity, presented in Figs. 5.3(a) and 5.3(b), respectively. The profile is
slightly broader for larger-area extrema, but all extrema are much more robust
than the unconstrained pulse area-optimal solution (5.26). Particularly, the fidelity
profile for the optimal extrema is symmetric around the unperturbed condition,
while the extrema with larger areas present an advantageous slanted profile towards
the positive area-scaling deviations (ε > 0).

The symmetry of the optimal solutions is a remarkable feature which is certainly
not shared with adiabatic processes (or any other scheme for that matter). For the
robustness profile, an increase on energy (equivalently, area) in the adiabatic regime
is indeed not equivalent to a decrease. This is shown in ref. [21], where the robustness
profile is determined for an exact Λ transfer: the slanting of it is evident for larger

138



5.5. Robust area-optimal trajectory φ̃(η)

0.8

0.9

1.0

(a)

F
=

|〈3
|ψ

ε
〉|2

˙̃
φi = 0

˙̃
φi = 0.4

˙̃
φi = 16

˙̃
φi = 250

Λ opt

-20 -10 5 0 5 10 20

−4

−2

(b)

ε (%)

lo
g 1

0
(1

−
F
)

Figure 5.3: Fidelity (a) and logarithm base 10 of the infidelity (b), for the selected
optima highlighted in Fig. 5.1 (with trajectories and control fields in Fig. 5.1) with
numeric data summarized in Table 5.1, and for the Λ transfer optimized with no
constraints of robustness, with respect to the pulse area scaling error ε. The thin
horizontal gray line denotes the ultrahigh-fidelity benchmark of 10−4 infidelity.
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areas where adiabaticity starts to prevail. Understanding adiabaticity as the general
behavior or tendency of the evolution approaching the dynamics at the adiabatic
limit. We can note that the optimal with no constraints of robustness displays a
strictly symmetrical robustness profile, which is a shared characteristic with our
optimal robust solution.

The effect of investing about one time more the area of the optimal pulse
(ARobOpt ≈ 2Aopt) is remarkable: almost 13 times gain in the width of the ro-
bustness between ε = 0 and the closest point where infidelity goes above 10−4,
i.e. ∆εRobOpt ≈ 0.051 while ∆εopt ≈ 0.004. It is worth noting that the unconstrained
optimal pulses are intuitively ordered while our robust optimal pulses feature an
overall counter-intuitive ordering. As observed in Fig. 5.2(c), the largest-area ro-
bust extrema (for ˙̃

φi = 0) presents the most simple and clearly counter-intuitively–
ordered pulse pair. Meanwhile, the actually-minimal–area extrema (global opti-
mum), corresponding to ˙̃

φi → ∞, exhibits counter-intuitive behavior at most in-
stances of the “dynamics” (actually, geometric evolution along η), i.e. except near
the beginning and the end of the evolution.

5.6 Robust energy-optimal dynamics η(t)

The time dependence of the area-optimal geometrical trajectory is free to be cho-
sen. However, it is most interesting to consider optimality with respect to the pulse
energy, which would also satisfy optimality with respect to time for a certain maxi-
mum amplitude, as shown below. We can do this with the Euler-Lagrange equations
with constraints, as we have done for the area optimization, but using the energy
definition

E = h̄

∫ tf

ti

(
Ω2

P + Ω2
S

)
dt = 4h̄

∫ tf

ti

(
φ̇2 + η̇2 cos2 φ

)
dt ≡

∫ tf

ti

LE(φ, η̇, φ̇) dt, (5.27)

as the cost to be minimized. In this case, the time-representation of the constraints
(5.18) writes:

ξt0 =

∫ tf

ti

η̇ sinφ dt ≡
∫ tf

ti

ϕt0(φ, η̇) dt = −θ±f = ∓π
2
, (5.28a)

ξt1 =

∫ tf

ti

(φ̇ cos η + η̇ sin η sinφ cosφ) dt ≡
∫ tf

ti

ϕt1(η, φ, η̇, φ̇) dt = 0, (5.28b)

ξt2 =

∫ tf

ti

(φ̇ sin η − η̇ cos η sinφ cosφ) dt ≡
∫ tf

ti

ϕt2(η, φ, η̇, φ̇) dt = 0, (5.28c)
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which are satisfied, regardless of the time dependence of η, by the trajectories φ̃(η)
from (5.21) with their appropriate choices of the λj’s.

The dynamics {θ(t), η(t), φ(t)} can be formulated as the solution of the optimal
problem, as the evolution satisfying the Euler-Lagrange equations

grad E + µ0 gradψt0 + µ1 gradψt1 + µ2 gradψt2 = 0, (5.29)

where the µj’s (j = 0, 1, 2) are the Lagrangian multipliers associated to the con-
straints, and the gradients are

grad E =

∂LE
∂η
− d

dt

(
∂LE
∂η̇

)
∂LE
∂φ
− d

dt

(
∂LE
∂φ̇

) , grad ξtj =

∂ϕtj

∂η
− d

dt

(
∂ϕtj

∂η̇

)
∂ϕtj

∂φ
− d

dt

(
∂ϕtj

∂φ̇

) . (5.30)

The Euler-Lagrange equations lead to

0 = − d

dt

(
∂LE

∂η̇

)
+

2∑
j=0

µj

[
∂ϕtj

∂η
− d

dt

(
∂ϕtj

∂η̇

)]
, (5.31a)

0 =
∂LE

∂φ
− d

dt

(
∂LE

∂φ̇

)
+

2∑
i=0

µi

[
∂ϕtj

∂φ
− d

dt

(
∂ϕtj

∂φ̇

)]
, (5.31b)

which are, for cosφ 6= 0,

η̈ =
φ̇

4

[
8η̇ tanφ− 1

h̄

(
µ0

2
secφ+ µ1 sin η − µ2 cos η

)]
, (5.32a)

φ̈ = − η̇
4

cos2 φ
[
4η̇ tanφ− 1

h̄

(
µ0

2
secφ+ µ1 sin η − µ2 cos η

)]
. (5.32b)

We can combine these, by performing η̇ cos2 φ (5.32a)+φ̇ (5.32b), to obtain a relation
not encumbered by the Lagrange multipliers:

d

dt

(
φ̇2 + η̇2 cos2 φ

)
=

d

dt

{
η̇2
[(

˙̃
φ
)2

+ cos2 φ̃
]}

=
1

4h̄

dLE

dt
= 0. (5.33)

This relation exhibits a constant of motion, which demonstrates that the energy-
optimal dynamics is that whose energy presents a constant argument of integration
LE = h̄L2 = h̄Ω2, where Ω is a constant Rabi frequency, i.e

2|η̇|
√( ˙̃

φ
)2

+ cos2 φ̃ =
√

Ω2
P + Ω2

S = Ω = const, (5.34)
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thus, the partial pulse area is given by:

Ã(t) =
∫ t

ti

dtL =

∫ t

ti

dtΩ = Ω (t− ti). (5.35)

Furthermore, for a given Rabi frequency Ω, the optimal time is then

Topt = Ã(tf )/Ω = A/Ω. (5.36)

Using φ̇ = η̇
˙̃
φ, φ̈ = η̇2

¨̃
φ+ η̈

˙̃
φ, (5.34), and (5.32a), (5.32b) reads

0 = −
¨̃
φ+

[
2(

˙̃
φ)2 + cos2 φ̃

]
tan φ̃

sgn η̇
[( ˙̃
φ
)2

+ cos2 φ̃
]3/2 +

1

2h̄Ω

(
µ0 sec φ̃+ µ1 sin η − µ2 cos η

)
, (5.37)

where µ0 has been redefined as µ0/2 → µ0. The latter is exactly (5.21) for µj =

2λjh̄Ω, i.e., it gives the same trajectory as for the pulse-area optimization.
Equation (5.34) can be rewritten as

Ã
[
η(t)

]
= 2

∫ η(t)

ηi

sgn η̇
√( ˙̃

φ
)2

+ cos2 φ̃ dη = Ω(t− ti), (5.38)

for a trajectory φ̃(η), where the left-hand side is the partial generalized pulse area,
see Eq. (5.12b), i.e. Ω = A/(tf−ti). As a consequence, the energy-optimal dynamics
for the trajectory (5.21) is also its time-optimal solution for a given constant Rabi
frequency Ω = Ω0, i.e (tf − ti)|opt = A/Ω0.

Enforcing (5.34) and (5.21) guarantees the resultant dynamics to be globally
area-, energy-, and time-optimal.

5.7 Discussion

Fields and populations dynamics are shown in Figs. 5.4–5.6. The double-dot–
dashed lines represent the optimal solution for the problem of population transfer
without constraints of robustness, the fields are intuitively-ordered cosine-sine pulses
(5.26). For the unconstrained optimization the transient population of the excited
state is much larger than for the robust extrema. It can be observed that, while
the unconstrained solution transfers most of the population from |1〉 to |2〉 and |3〉,
with predominance of the excited state, in the first half of the process, the optimal
robust solution transfers only about 40% of the population from the initial state to
a superposition of the others (with much lower transient population on the excited
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Figure 5.4: Fields and populations vs time for the unconstrained optimum Λ trans-
fer. Numerical parameters details are summarized in Table 5.1.
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Figure 5.5: Fields and populations vs time for the first two selected robust optima.
Numerical parameters details are summarized in Table 5.1. The line style in the
legend applies to all plots irrespective of the line color.
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Figure 5.6: Fields and populations vs time for the selected robust optima nearing
the asymptotic absolute optimum. Numerical parameters details are summarized in
Table 5.1. The line style in the legend applies to all plots irrespective of the line
color. The dynamics for ˙̃

φi = 16 and ˙̃
φi = 250 are almost indistinguishable at the

scale of the figure.
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Figure 5.7: Loss-proportional term A2 vs generalized pulse area for optimal robust
family of solutions. To compare with A2 = (3/8)T = 0.3750T at A =

√
3π ≈

1.7321π and E = 3π2h̄/T for the optimal Λ transfer with no constraints of robust-
ness. Numerical details have been gathered in Table 5.1.

state), proceeds to deplete the excited state into the target state, and only then
executes the last part of the transfer like the first part. In this manner, while the
unconstrained optimal transiently populates the excited state along the transfer,
the robust optimal solution only does this in two temporally separated stages of
40% of the process duration and maintains it depopulated 20% of the time. At the
middle of the process we obtain maximal superposition of the ground states and
no population on the excited state, showing that the robust optimal full transfer
appears as a two consecutive unconstrained (non-robust) half transfers (as already
noticed in the preceding section).

The pulses corresponding to the extrema of the robust optimization go from a
counter-intuitively–ordered pair of fields, to what could be described as a train of
nonvanishing pulse pairs with intuitive–counter-intuitive–intuitive orderings. One
can remark that composite-pulses STIRAP exhibits precisely the opposite ordering
[49]. From the intermediate extremum it can be seen that the optimum is achieved
by raising the bounded boundary of the field towards its maximum, Ω, and lowering
the other boundary towards 0. All field pairs are complementary to each other and
exhibit, as a whole, symmetry around half of the duration.

Now that we have the time-dependence of the angles, we can calculate the loss
term A2, we show its dependence with the generalized pulse area in Fig. 5.7. The
minimum energy for the produced losses, calculated elsewhere with no robustness
constraints, is between 1.92π . A . 2π or 5.43 . ET/(π2h̄) . 27 with mostly
overlapping pulses.

The fact that, in addition to the robust optimal solution, we have obtained
a family of solutions which perform the desired task robustly and for fairly low
areas (compared to adiabatic procedures with A > 10π) suggests the following
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Table 5.1: Identifying parameters of the highlighted extrema.

Parameter Λopt
˙̃
φi = 0

˙̃
φi = 0.4

˙̃
φi = 16

˙̃
φi = 250

A2/T 0.3750 0.0371 0.0596 0.1256 0.1291
A/π 1.7321 5.7498 4.1904 3.4615 3.4603
ET
π2h̄

3 33.0599 17.5597 11.9819 11.9739
∆εuhf 0.4% 6.4% 5.6% 5.1% 5.1%
λ0 0.1930790914 0.14013 -0.52403 -0.56596
λ1 0 -0.0838224029 -0.04747 0.86793 0.93853
λ2 0 0.0102504990 0.22984 1.05836 1.08283
ηf/π 2.9225 2.1297 1.5627 1.5454

practical strategy: These solutions could be used as options that become more or
less preferable depending on the constraints of the implementation, e.g., when a
A2 = 0.1291T is an acceptable cost, the actual optimal robust solution may be
used; however, when that is too high to be acceptable, a larger-area optimum may
be chosen, effectively lowering the associated loss term as low as A2 = 0.0371T .
Recalling Fig. 5.3, we can highlight that for roughly the same robustness profile
we can choose among the extrema solutions, varying in area and loss parameter,
according with the physical limitations of a particular practical implementation and
the loss that can be considered acceptable.

The corresponding loss parameters and pulse areas, together with pulse energy
and the values of the Lagrange multipliers, for the selected extrema in Figs. 5.5, 5.6,
and 5.7 are presented in Table 5.1. Data regarding the nonrobust optimal solution,
Fig. 5.4, is also included for comparison. The shown precision of the Lagrange
multipliers is the minimum necessary to produce the selected results with their
displayed precision (while guaranteeing Õ2 < 10−4). It can be noted that the largest
area extrema requires the most precision on the multipliers, this is only due to the
rapid dependence of the areas for small ˙̃

φi’s.
The existence of a continuous family of optima of robust solutions, controlled

mathematically by the quantity ˙̃
φi, but interpreted physically as the consequent loss,

as extracted from Figs. 5.1 and 5.7, is a remarkable result of the applied method
of inverse optimization with robustness as constraints. For the chosen family of
robust optimal solutions, we have control of the loss parameter A2 via the pulse
area (equivalently, energy) and, like for adiabatic protocols, the relation is inversely
proportional: lower loss requires higher energies, although, unlike the adiabatic
behavior, there are lower and upper bounds to them.
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We can use the relation (5.2) to estimate the upper bound on the time dura-
tion or lower bound on the pulse amplitude of the robust optimal pulses (absolute
optimum and largest-area extrema) with respect to the dissipation parameter Γ (in-
verse of relaxation time) considering an admissible loss below the ultrahigh-fidelity
benchmark Ploss . 10−4, i.e. T . 7.7× 10−4Γ−1 and (consequently) Ω & 1.4× 104Γ,
for A = 3.4603π, else T . 27.0× 10−4Γ−1, Ω & 0.7× 104Γ, for A = 5.7498π.

5.8 Conclusions

We have demonstrated a method to obtain robust quantum transfers while opti-
mizing area, energy, and time. We have presented, for the first time, the optimal
resonant Λ transfer with robustness up to the third order in terms of field inhomo-
geneities. The resultant pulse shapes are smooth and very energy economical, far
below requirements of STIRAP, while also exhibiting a robust behavior comparable
to robust STIREP and STIRAP [21] but with 2π ∼ 3π lower areas. Losses remain
below the ultrahigh-fidelity benchmark of 10−4 for pulse durations in the order of
Γ−1× 10−4, e.g., for the relaxation time of the excited state 1D2 of a praseodymium
ion in a Pr3+:Y2SiO5 crystal, which is Γ−1 = T1 ≈ 164µs [50, 82], the largest pulse
duration and smallest amplitude necessary to avoid dissipation losses with the global
optimal robust fields are 0.13µs and 85.4MHz, respectively.

The method could be extended to the search of robustness with respect to detun-
ing and for field inhomogeneities unequal between the fields, and to consider higher
orders of robustness.

The protocol to produce the pulses can be summarized as follows, focusing on
the representative values in Table 5.1:

1. The values of λ0, λ1, λ2, ηf , and the pulse area A for the chosen representative
values of ˙̃

φi allow the user to choose between the members of the robust
candidates for optimal pulses, for a given admissible loss of the problem.

2. Once ˙̃
φi is chosen, taking the other properties summarized in Table 5.1 as

deciding factors, the values of the λn’s, ηf , and pulse area are also taken and
φ̃(η), ˙̃

φ(η), and θ̃(η) are calculated by

(a) introducing the λn’s in (5.44), which can then be solved using a standard
method for solving ordinary differential equations,

(b) the system is solved for the chosen ˙̃
φi, with φ̃i = ηi = 0 as additional

initial conditions, “integrating” up to ηf .
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3. η̇(t) is then obtained, in units of 1/T , from (5.34) choosing the maximum pulse
amplitude to be Ω = A/T .

4. φ̃(η), ˙̃
φ(η), θ̃(η), and η̇(t) are finally introduced in (5.23) to obtain the pump

and Stokes pulses, ΩP (t) and ΩS(t), in units of 1/T .

Other values than the ones of Table 5.1 can be used with Fig. 5.1(a) and ηf given
by (5.47) where ηf ∈ [0, 2π) for ˙̃

φi > 0.5798 and ηf ∈ [2π, 4π) for 0 ≤ ˙̃
φi ≤ 0.5798.
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Appendices

5.A Property of nested integrals

Double nested integrals may be simplified as follows∫ tf

ti

∫ t

ti

[a(t)b(t′) + a(t′)b(t)] dt′ dt =

∫ tf

ti

a(t) dt

∫ tf

ti

b(t) dt, (5.39)

from ∫ tf

ti

v(t) du(t) +

∫ tf

ti

u(t) dv(t) = [u(t)v(t)]
tf
ti , (5.40)

where

u(t) =

∫ t

ti

a(t′) dt′, du = a(t) dt, v(t) =

∫ t

ti

b(t′) dt′, dv = b(t) dt. (5.41)

For the triple nested integrals, we have∫ tf

ti

∫ t

ti

∫ t′

ti

ab′c′′ dt′′ dt′ dt =

∫ tf

ti

∫ t

ti

b(t′)w(t′) dt′ du(t) =

∫ tf

ti

x(t) du(t)

= [u(t)x(t)]
tf
ti −

∫ tf

ti

u(t) dx(t)

=

∫ tf

ti

a dt

∫ tf

ti

bw dt−
∫ tf

ti

ubw dt, (5.42)

with

w(t) =

∫ t

ti

c(t′) dt′, dw = c(t) dt, x(t) =

∫ t

ti

b(t′)w(t′) dt′, dx = b(t)w(t) dt.

(5.43)

5.B Numerical implementation

For a given set
( ˙̃
φ±
i , λ0, λ1, λ2

)
, the differential equation (5.22) is solved numerically

from η = ηi = 0 to η = 3π (a large enough bound for the low pulse areas we are
looking for). A search in this parameter space is then launched in order to find a
certain set such that φ̃ = 0 is satisfied at some point η > 0 which we then denote
with the coordinate (ηf , φf ), while the constraints (5.18) are also fulfilled.

The implementation for the numerical resolution, via a solver using the Runge-
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Kutta method, is then

ẏ1 =
˙̃
φ± = y2, (5.44a)

ẏ2 =
¨̃
φ± = −

(
2y22 + cos2 φ̃±) tan φ̃± ±

(
λ0 sec φ̃± + λ1 sin η − λ2 cos η

)
×
(
y22 + cos2 φ̃±)3/2 = 0. (5.44b)

The numerical solutions show that the derived optimal family of trajectories is actu-
ally symmetric, implying that the assumptions in Appendix 5.C are valid and that
Eqs. (5.47) are satisfied.

5.C Symmetric trajectory

In this Appendix we consider a symmetric solution via the standard forward evolu-
tion of (5.22) and its backward counterpart, i.e. we consider the trajectory evolving
from η = 0 to η = ηf and its reversal starting from the end point of the trajectory
and ending at the starting point. The backward-propagating equation is obtained
making φ̃±(η)

η=ηf−u
−−−−→ φ̂±(u), where φ̂±(u) is the backward-propagating trajectory

and u is the counterpart of η (i.e. identical to η but time-reversed). Consequently,
˙̂
φ± = − ˙̃

φ± and ¨̂
φ± =

¨̃
φ±. Then,

∓
¨̂
φ± +

[
2
( ˙̂
φ±)2 + cos2 φ̂±

]
tan φ̂±[( ˙̂

φ±
)2

+ cos2 φ̂±
]3/2 + λ0 sec φ̂± + λ1 sin(ηf − u)

− λ2 cos(ηf − u) = 0. (5.45)

The symmetric solution is implemented demanding symmetry about the axis η(t =
ti + T/2) = ηm = ηf/2, where T is the pulse duration, implying φ̂±(u) = φ̃±(η)

(i.e. the equality of the counterpropagating trajectories), which leads to:

0 = λ1(1 + cos ηf ) + λ2 sin ηf , 0 = λ1 sin ηf + λ2(1− cos ηf ). (5.46)

From Eqs. (5.46), we have λ1,2 6= 0 when the determinant of the right-hand side
matrix form is zero, i.e., (1 + cos ηf )(1 − cos ηf ) − sin2 ηf = 0, which is always
satisfied. We can alternatively express the cosine and sine as:

cos ηf =
λ22 − λ21
λ21 + λ22

, sin ηf = − 2λ1λ2
λ21 + λ22

. (5.47)
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Equation (5.47) gives ηf with modulus 2π, hence ηf is known once we know in which
interval ηfn ∈

[
2nπ, 2(n + 1)π

)
, with n = 0,±1,±2, . . . (where the sign is fixed

by the sign of η̇), it is located. For the obtained cosine and sine in Eq. (5.47), the
backward-propagating equation (5.45) becomes identical to the forward-propagating
one (5.22) (albeit in terms of u).

We may refer to the controls (5.10) to note that the pulses are mirror images of
each other, ΩP (t) = ΩS(tf − t+ ti), when we apply the time-reversal symmetry:

θ → π

2
− θ̂, φ→ φ̂, φ̇→ − ˙̂

φ, η̇ → − ˙̂η. (5.48)

5.D Dynamics of the angles

The dynamics of the angles and their derivative is presented in Fig. 5.8. The descrip-
tion of the trajectories φ̃(η) and θ̃(η) can be recalled to discuss their corresponding
time-dependent evolutions, although it is worth noting that the process duration T
for all solutions was made equal only after proper choice of the generalized pulse am-
plitude Ω. Unlike for the geometrical trajectory, the time-dependent functions are all
finite. The evolution of η is almost a straight line of slope 3/T for the maximum-area
extrema, however the optimum is obtained when η approaches a slightly oscillating
line with zero derivative at the boundaries. All the presented dynamics display a
certain parity with respect to t = T/2: all functions are mirrored or anti-mirrored
(sign-changed) around that point, except θ and η. θ and η are odd functions only
when also regarded about their value when evaluated at that point, i.e., the func-
tions f(t) = θ(t− T/2)− θ(T/2) and g(t) = η(t− T/2)− η(T/2) are odd. The only
function that is not null-valued at neither of its boundaries is φ̇, giving the pump
and Stokes fields their respective nonzero boundary.
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Figure 5.8: Dynamics of the angular parametrization (φ, η, θ) for the selected optima
from Fig. 5.1 corresponding to the trajectories and fields in Fig. 5.2. Numerical
parameters are summarized on Table 5.1. Thin gray lines mark the zero. The
process duration T , equal to the pulse duration, is taken to be common among the
extrema by letting the pulse amplitudes be given by Ω = A/T for each corresponding
area.
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Conclusions

We have presented the concept of optimal robust control of quantum processes.
We have evaluated robustness via a perturbative approach, exposing the distinction
between the population transfer and gate corresponding figures of merit (fidelities).
The combination of this evaluation of robustness with the inverse-engineering of the
controls of the system is exposed as the single-shot shaped-pulses (SSSP). With the
addition of optimization of the inverse-engineered controls, we describe the robust
inverse optimization (RIO) scheme.

We have demonstrated the application of the RIO method for the control of a
two-level system, producing robust and optimal (with respect to area, energy, or
pulse duration) arbitrary population transfers and single-qubit quantum gates such
as the: not, Hadamard, and phase gates. The results of the RIO method are
further extended by the analytical forms we have found for the controls for all the
aforementioned operations.

We have presented standard methods for the control of a three-level system in Λ

configuration. Throughout this document, we have put together a picture of different
techniques for quantum control how they relate in terms of the population loss
they incur and the robustness of the population transfer, maintaining the ultrahigh-
fidelity (UHF) requirement of quantum computation in mind.

The SSSP technique allowed us to put forward a scheme of exact control as an
alternative to conventional STIRAP. This technique, that we call STIREP, is more
robust for UHF population transfers at low and moderate areas than any of the
conventional techniques we compared it with. The control fields designed with this
approach displayed simple shapes and other fields may still be obtained following the
recipe here described. Although the use of tracking was effective to produce an exact
transfer with smooth simple pulses, the results of this protocol are heavily reliant on
the tracking functions used; being it likely to produce strongly oscillating controls
with widely varying energy requirements depending on the tracking functions.

Based on the classical principle of optimization via the Euler-Lagrange (E-L)
equations, the RIO technique exchanges the freedom of the tracking approach in
SSSP for an unique pulse shape and dynamics that exhibits both robustness and
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the minimal area, energy, or time to achieve the population transfer with said de-
gree of insensitivity to imperfect experimental conditions. We have applied RIO
onto the three-level system and obtained relatively simple pulse shapes exhibiting
a combination of intuitive and counter-intuitive behavior. These controls produce
a transfer robust up to third order (the first nonzero order) and use the minimum
area, energy, or time required to perform it.

Perspectives.— We have demonstrated the RIO method for two- and three-level
systems subjected to error due to field inhomogeneties (amplitude scaling), equal
for pump and Stokes fields in the latter. This method can be used to consider fields
subjected to different amplitude scaling errors. Robustness with respect to detuning
or transversal noise may also be tackled with the RIO method, though, in those cases,
the optimization may not be reduced to a geometrical trajectory and will require
the solution of the time-dependent system of E-L equations. We have also provided
the required parametrization and recipe to produce robust optimal gates between
the ground states of the Λ system. For the two-level system, we have compared our
results from the RIO method to those of composite pulses; and we have observed
about 20% gain in robustness obtained from allowing a continuous variation of the
control fields phase. It remains an interesting study to extend to comparison to
various orders of robustness, this to try to answer the question: “at what point does
the gain become superfluous and the composite sequence more efficient (if to consider
pulse –amplitude and phase– shaping as with a higher difficulty than the constant
phases control) ?”. This issue will have to be studied in concrete experimental
systems such as superconducting qubits [83].
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Titre : Contrôle robuste pour les technologies quantiques
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Résumé : Nous considérons l’optimisation
géométrique inverse robuste de transferts de
population arbitraires et de portes à un seul
qubit dans un système à deux niveaux. La
robustesse vis-à-vis des inhomogénéités d’im-
pulsion est démontrée. Nous montrons que
pour l’optimisation du temps ou de l’éner-
gie, l’amplitude de l’impulsion est constante,
et nous fournissons la forme analytique du
désaccord en fréquence comme cosinus ellip-
tique de Jacobi.
Nous traitons la tâche de transfert complet et
robuste de population sur un système quan-
tique à 3 niveaux en configuration lambda.
Tout d’abord, nous utilisons la méthode de
Lewis-Riesenfeld pour dériver une famille de
solutions conduisant à un transfert exact.
Parmi cette famille, nous identifions une so-
lution de suivi avec un seul paramètre pour
contrôler simultanément la fidélité du trans-
fert, la population de l’état excité, et la ro-

bustesse. La robustesse de l’ultra-haute fidé-
lité des impulsions formées s’avère supérieure
à celle des impulsions gaussiennes et des
impulsions optimisées adiabatiquement pour
des aires d’impulsion modérées. Deuxième-
ment, nous appliquons une optimisation in-
verse robuste pour générer un passage exact
Raman stimulé (STIREP) en considérant la
perte de l’état supérieur comme un para-
mètre de caractérisation. Les formes tempo-
relles des champs de contrôle, robustes vis-à-
vis des inhomogénéités d’impulsion, qui sont
optimales par rapport à l’aire d’impulsion,
l’énergie et la durée, forment une séquence
simple avec une combinaison de paires d’im-
pulsions intuitive (près du début et de la
fin) et contre-intuitive (au centre). D’autres
solutions optimales robustes présentant des
pertes plus faibles, des aires d’impulsion plus
grandes et des séquences d’impulsion totale-
ment contre-intuitives sont dérivées.

Title: Robust control for quantum technologies and quantum information pro-
cessing

Keywords: Coherent control, quantum optics, quantum technologies

Abstract: We consider the robust inverse
geometric optimization of arbitrary popula-
tion transfers and single-qubit gates in a two-
level system. Robustness with respect to
pulse inhomogeneities is demonstrated. We
show that for time or energy optimization,
the pulse amplitude is constant, and we pro-
vide the analytic form of the detuning as Ja-
cobi elliptic cosine.
We deal with the task of robust complete
population transfer on a 3-level quantum sys-
tem in lambda configuration. First, we use
the Lewis-Riesenfeld method to derive a fam-
ily of solutions leading to an exact transfer.
Among this family, we identify a tracking
solution with a single parameter to control
simultaneously the fidelity of the transfer,
the population of the excited state, and ro-

bustness. The ultrahigh-fidelity robustness
of the shaped pulses is found superior to
that of Gaussian and adiabatically-optimized
pulses for moderate pulse areas. Second,
we apply robust inverse optimization now to
generate a stimulated Raman exact passage
(STIREP) considering the loss of the upper
state as a characterization parameter. Con-
trol fields temporal shapes, robust against
pulse inhomogeneities, that are optimal with
respect to pulse area, energy, and duration,
are found to form a simple sequence with a
combination of intuitively (near the begin-
ning and the end) and counter-intuitively or-
dered pulse pairs. Alternative robust opti-
mal solutions featuring lower losses, larger
pulse areas, and fully counter-intuitive pulse
sequences are derived.
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