
THESE DE DOCTORAT DE L’ETABLISSEMENT UNIVERSITE BOURGOGNE
FRANCHE-COMTE

PREPAREE A L’UNIVERSITE DE BOURGOGNE

Ecole doctorale no 37

Sciences Pour l’Ingénieur et Microtechniques (SPIM)

Doctorat de Instrumentation, Informatique de l’Image

Par

Yu LIU

Lightweight Architectures for Spatiotemporal Action Detection in Real-Time

Thèse présentée et soutenue à Dijon, le 25/05/2022

Composition du Jury :

Professeur Olivier SENTIEYS Université de Rennes Rapporteur
Professeur Stéphane CANU INSA de Rouen Rapporteur
Professeure Catherine ACHARD Sorbonne Université Examinatrice
Professeur Fabrice MERIAUDEAU Université de Bourgogne Franche-Comté Examinateur
Professeure Fan YANG Université de Bourgogne Franche-Comté Co-directrice de thèse
Professeur Dominique GINHAC Université de Bourgogne Franche-Comté Directeur de thèse

iii

Declaration of Authorship
I, Yu LIU, declare that this thesis titled, “Lightweight Modeling of Spatiotem-
poral Action Detection in Real-Time” and the work presented in it are my
own. I confirm that:

• This work was done wholly or mainly while in candidature for a re-
search degree at this University.

• Where any part of this thesis has previously been submitted for a de-
gree or any other qualification at this University or any other institu-
tion, this has been clearly stated.

• Where I have consulted the published work of others, this is always
clearly attributed.

• Where I have quoted from the work of others, the source is always
given. With the exception of such quotations, this thesis is entirely my
own work.

• I have acknowledged all main sources of help.

• Where the thesis is based on work done by myself jointly with others,
I have made clear exactly what was done by others and what I have
contributed myself.

Signed:

Date: 15.08.2022

v

“Most memory of my Ph.D. study was filled with wonders when it would finish,
until when I am actually close to complete then I wished I could start over and
explore more.”

vii

Abstract
Title: Lightweight Modeling of Spatiotemporal Action Detection in Real-Time

In the last decade, the explosive growth
of video content has driven numerous ap-
plication demands for automating action de-
tection in space and time. Aside from ac-
curate detection, vast sensing scenarios in
the real-world mandate incremental, instan-
taneous processing of scenes under restricted
computational budgets. The main challenge
here lies in dependence on heavy 3D Convo-
lutional Neural Networks (CNN) or explicit
motion computation (e.g., optical flow) to ex-
tract pertinent spatiotemporal information.

To this end, we propose three
lightweight action detection architectures
coupling various spatiotemporal modeling
schemes with compact 2D CNNs. Our first
intuition was to accelerate frame-level action
detection by allocating computationally ex-
pensive feature extraction to only a sparse
set of video frames while approximating the
rest. Meanwhile, we accumulated multiple

observations over time to efficiently model
temporal variations of actions.

Subsequently, we explored processing a
series of video frames and predicting the un-
derlying action-specific bounding boxes con-
currently (i.e., tubelets). Specifically, model-
ing of an action sequence was decoupled into
multi-frame feature aggregation and trajec-
tory tracking for enhanced action classifica-
tion and localization, respectively.

Finally, we devised a flow-like motion
representation that can be computed on-the-
fly from raw video frames. Our aforemen-
tioned tubelet detector was extended into
two-CNN pathways to jointly extract ac-
tions’ static visual and dynamic cues. We
demonstrate that our online action detectors
progressively improve and obtain a superior
mix of accuracy, efficiency, and speed perfor-
mance.

Titre: Architectures compactes pour la détection spatiotemporelle d’actions en temps réel

Depuis la dernière décennie, la crois-
sance explosive de vidéos fait naître un large
éventail d’applications nécessitant l’analyse
et la compréhension des actions humaines.
Les recherches connexes actuelles se con-
centrent principalement sur l’amélioration
des performances de détection de reconnais-
sance d’actions. Cependant, certains scé-
narios du monde réel exigent des réponses
spontanées réalisées sur des systèmes em-
barqués avec des ressources limitées. Les
méthodes existantes sont difficilement dé-
ployables dans ce contexte, puisqu’elles
utilisent des architectures lourdes comme
réseaux de neurones convolutifs 3D pour ex-
traire les caractéristiques spatiotemporelles
d’un vidéo ou calculent explicitement le
flux optique des mouvement. Dans cette
thèse, nous explorons la faisabilité de réaliser
la détection spatiotemporelle d’action satis-
faisant simultanément plusieurs contraintes
d’applications grand publique : robustesse,
temps réel, bas coût, ergonomie, bonne
portabilité et longue autonomie énergétique.

Pour ce faire, nous proposons trois archi-
tectures de détection d’action couplant dif-
férents schémas de modélisation spatiotem-
porelle avec des CNN 2D compacts. La pre-
mière réalise la détection au niveau d’une
image statique en approximant les carac-
téristiques de la plupart des frames d’une
séquence vidéo pour accélérer le traitement.
Nous explorons ensuite un paradigme de
détection multi-images pour traiter simul-
tanément la détection temporelle et la pré-
diction des boîtes englobantes des actions
spécifiques pour former des tubelets. En-
fin, nous concevons une représentation de
mouvement de type flux calculé à la volée
à partir d’images vidéo brutes, et éten-
dons l’approche de détection de tubelet
à deux CNN pour extraire conjointement
les caractéristiques spatiales et temporelles
des actions. Les résultats expérimentaux
obtenus sur des bases de données publiques
montrent les améliorations progressives de
nos approches en termes de précision,
d’efficacité, et de vitesse de traitement.

viii

ix

Acknowledgements
First and foremost, I would like to express my earnest gratitude to my di-
rector Prof. Dominique Ginhac, and co-supervisor Prof. Fan Yang for their
invaluable time, guidance, and support for my thesis. Dominique and Fan’s
openness to various state-of-the-art breakthroughs, and their unending trust
in me approaching research problems steadily at my own pace, have moti-
vated me to always explore and push myself beyond the limits. I am also
grateful to their patience to discussions, thorough reviews on my works, as
well as assisting me to handle different administrative activities. Moreover,
I deeply appreciate their compassion and generosity to prolong my research
duration under the influence of the COVID-19 pandemic, permitting me to
focus on my research at ease.

I would also like to thank all the staffs of the ACHIEVE Innovative Train-
ing Network, which funds and grants me such an exceptional opportunity to
pursue a doctorate well aligned with my area of interest. A special thanks to
the project coordinator Ricardo Carmona, who devotes to gather such a tal-
ented group of young researchers, encourage collaborated research, and or-
ganize a variety of training events to hone our skills. Another special thanks
to Walther Hernandez, a close colleague in the project for numerous discus-
sions and advises on my research topics.

My acknowledgement would not be complete without mentioning a few
names of my colleagues at the ImViA laboratory, who have instigated plenty
of brainstorming moments and assisted me in different ways: Reda Belaiche,
Deivid Botina, Yuly Castro, Abir Zendagui, Ramamoorthy Luxman, David
Lewis, Rita Meziati, Romain Cendre, Antoine Leger, Arsalan Khawaja, Houda
Rafi, and Youssef Skandrani. Due acknowledgement goes to my Master the-
sis supervisor Prof. Sen Wang, for his time and guidance that helped me
formulate a healthy, persevering attitude toward research and gave inspira-
tion to further deepen my scientific understanding through Ph.D. studies.

Last but not least, I am deeply thankful to my parents, George Liu and
Cathy Lin, for their unconditional support in my decision of pursuing a doc-
torate. Their ceaseless encouragement has led me out of many challenging
situations. I cannot imagine under any circumstance that I would be writing
this manuscript today without them at my back. I would also like to specially
thank my twin brother, Tso Liu, who happened to start a new career the same
time as my Ph.D. studies began. Throughout the years, our continuous inspi-
ration and motivation to each other at ups and downs help us grow stronger,
stay positive and surmount countless obstacles together.

x

xi

Contents

Declaration of Authorship iii

Abstract vii

Acknowledgements ix

1 Introduction 1
1.1 Context . 1
1.2 Types of action understanding tasks 2

1.2.1 Types of action understanding tasks 3
1.2.2 Why targeting online spatiotemporal action detection? 5

1.3 Toward real-time and lightweight detection 5
1.4 Thesis overview . 6

2 Related Work 9
2.1 Action recognition . 9

2.1.1 Recognition from hand-crafted features 9
2.1.2 Recognition from learned features: 2D CNNs 10
2.1.3 Recognition from learned features: 3D CNNs 11
2.1.4 Toward lightweight and efficient action recognition . . 13

2.2 Action detection . 15
2.2.1 Spatial localization (object detection) 15
2.2.2 Spatiotemporal action detection/localization 16

Single-frame based methods 16
Short-clip based methods 17
Clip-based 3D CNN representation for contextual sup-

port . 19
2.3 Related datasets . 20

2.3.1 Overview on action detection datasets 20
2.3.2 Datasets used in this thesis 20

2.4 Evaluation metrics . 21
2.4.1 Frame-level mean Average Precision (frame-mAP) . . . 21

xii

2.4.2 Video-level mean Average Precision (video-mAP) . . . 23
2.4.3 Model efficiency . 23

2.5 Recap on our research directions 24

3 ACDnet: Action detection framework based on flow-guided feature
approximation and memory aggregation 25
3.1 Introduction . 25
3.2 Review on SSD (Single Shot MultiBox Detector) 27
3.3 Overview: flow-guided detection framework 27

3.3.1 Feature approximation by motion guidance 28
3.3.2 Memory feature aggregation 30
3.3.3 Training ACDnet . 31
3.3.4 Adaptation for multi-scale detection 32

3.4 Experimental validation . 33
3.4.1 Implementation details 34
3.4.2 Impact of FA and MA 35
3.4.3 Efficiency analysis . 37
3.4.4 Impact of varied temporal strides at train/test time . . 38
3.4.5 Global detection performance and comparison 40

3.5 Summary and limitations . 43

4 TEDdet: Temporal feature exchange-difference network 45
4.1 Introduction . 45
4.2 Review on CenterNet . 46
4.3 Overview of TEDdet and temporal sub-modules 48

4.3.1 Overview . 48
4.3.2 Temporal Feature Exchange: multi-frame feature ag-

gregation . 48
4.3.3 Temporal Feature Difference: pair-wise displacement

as motion . 51
4.4 Temporal Feature Exchange-Difference action tubelet detection

framework . 53
4.4.1 TE and Center branch 53
4.4.2 TD and Trajectory branch 54
4.4.3 Box branch . 55
4.4.4 Coarse-tubelet inference 55
4.4.5 Online tubelet linking and tube generation 56

4.5 Experimental validation . 57
4.5.1 Implementation details 57

xiii

4.5.2 Effect of feature aggregation and tracking 58
4.5.3 Effect of sequence coverage 59
4.5.4 Effect of varying sequence coverage at train/test time . 61
4.5.5 Action tube generation and runtime 62
4.5.6 Global detection performance and comparison 63

4.6 Summary and limitations . 67

5 AMMA: Accumulated micro-motion features for real-time spatiotem-
poral action localization 69
5.1 Introduction . 69
5.2 How optical flow facilitates action understanding? 71
5.3 Overview of the detection framework 72
5.4 AMMA - Backbone . 73

5.4.1 Clip-level appearance information 73
5.4.2 Accumulated micro-motion: clip-level action dynamics 75
5.4.3 Multi-scale spatiotemporal fusion 76

5.5 AMMA - Detector branches . 77
5.5.1 Center branch . 77
5.5.2 Trajectory branch . 79
5.5.3 Box branch . 79
5.5.4 AMMA - loss . 80

5.6 Online detection and tube generation 80
5.6.1 Incremental detection via feature-caching-dequeueing 80
5.6.2 Linking coarse tubelets into action tubes 81

5.7 Experimental validation . 82
5.7.1 Implementation details 82
5.7.2 Effect of input duration 84
5.7.3 Effect of micro-motion generation and fusion 86
5.7.4 From lightweight to ultra-lightweight 88
5.7.5 Global detection performance and comparison 90

5.8 Summary and limitations . 92

6 Diving more deeply into AMMA 95
6.1 Introduction . 95
6.2 Accuracy and error breakdown analysis 96

6.2.1 Recap on AMMA and TEDdet 96
6.2.2 Unveiling frame-mAP 97
6.2.3 Evaluation on JHMDB-21 98
6.2.4 Evaluation on UCF-24 101

xiv

6.3 Computational complexity . 107
6.4 Runtime . 108
6.5 Summary, limitations, and looking ahead 110

7 Conclusion and Future perspectives 113
7.1 Summary of contributions . 113

7.1.1 Detection acceleration and spatiotemporal modeling via
flow-guided features . 113

7.1.2 Spatiotemporal Modeling via feature-channel exchange
and feature-map displacement 114

7.1.3 Leveraging accumulated motion boundaries 115
7.2 Limitations in our models . 115

7.2.1 Drastic inter-class variations 116
7.2.2 Pruning low-confidence predictions 116
7.2.3 Temporal localization 117
7.2.4 Long-temporal relations 117

7.3 Future works . 117
7.3.1 Short-term future tasks 117
7.3.2 Long-term future research directions 119

xv

List of Figures

1.1 An overview of the main action understanding problems . . . 4

2.1 Two-stream CNN architecture for action recognition 11
2.2 Illustration of an integrated two-stream CNN 12
2.3 Illustrations of four architectural variants 14
2.4 Illustration of the complete action detection pipeline (single-

frame based approach) . 17
2.5 Illustration of the action tubelet detector 18
2.6 Illustrations of two types of intersection-over-union (IoU). . . 22

3.1 Illustration of ACDnet’s inference pipeline. 29
3.2 ACDnet’s training procedure. 32
3.3 ACDnet’s flow estimation sub-network 33
3.4 Examples where ACDnet (FA, MA) improves the baseline SSD. 36
3.5 Position-wise scale maps produced by our modified FlowNet. 37
3.6 Robustness evaluation: ACDnet’s Frame-mAP under varied

key frame intervals. 39
3.7 Robustness evaluation: ACDnet’s FPS under varied key frame

intervals. 40
3.8 Examples of false detection in JHMDB-21. 42

4.1 Overview of TEDdet. 49
4.2 Architecture of Temporal Feature Exchange module. 50
4.3 Architecture of Temporal Feature Difference module. 52
4.4 Stacking multiple TE modules 54
4.5 Accuracy comparison over varied input length (T frames) and

temporal stride (δ). 60
4.6 Per-class frame-mAP performance on forward (correct) and re-

versed testing input sequence (JHMDB-21). 61
4.7 Accuracy comparison (JHMDB-21) over trained models (δtr =

3, 5, 10) tested with varied temporal strides (δte = 3, 5, 7, 10). . 62
4.8 Examples of action sequences where actors undergo signifi-

cant location shift. 66

xvi

5.1 Overview of AMMA. 74
5.2 Overview of AMMA’s detector branches. 78
5.3 AMMA’s incremental feature-caching-dequeueing mechanism 81
5.4 Frame-mAP performance under varied input duration (i.e., num-

ber of clips). Here, "MM" denotes micro-motion. 84
5.5 Examples of short-tubelet (T = 2) and long-tubelet (T = 5)

detection on JHMDB-21. 85
5.6 Visualization of micro-motion cues between pairs of action frames. 87
5.7 Comparisons of runtime-accuracy trade-off between AMMA

and state-of-the-arts on UCF-24 (video-mAP). 91

6.1 Error breakdown of AMMA and TEDdet’s frame-mAP on JHMDB-
21 (only on split 1). 99

6.2 Examples of difficult action categories from JHMDB-21. 101
6.3 Error breakdown of AMMA’s frame-mAP on UCF-24. 102
6.4 Error breakdown analysis on UCF-24 for AMMA18 (T = {3, 4, 5})

and TEDdet (T = 5). 103
6.5 Mean action overlap between a box in a groundtruth tube and

its box n frames later. 104
6.6 AMMA18’s runtime breakdown over varied sequence length

(T) evaluated on UCF-24. 111

xvii

List of Tables

3.1 ACDnet’s frame-mAP performances under different architec-
tural configurations. 35

3.2 ACDnet’s performances under different configurations and de-
tector backbones (on UCF-24). 38

3.3 State-of-the-art comparison in frame-mAP and runtime (FPS). 41
3.4 State-of-the-art comparison in architectural and input config-

urations. 41

4.1 Accuracy, MACs and model size comparison over variants of
TEDdet (JHMDB-21). 59

4.2 TEDdet’s runtime, frame-mAP, and video-mAP performance. 63
4.3 State-of-the-art comparison on JHMDB-21. 64
4.4 State-of-the-art comparison on UCF-24. 64
4.5 State-of-the-art methods’ speed, architectural and input con-

figurations. 65

5.1 Performance summary of different forms of micro-motion fu-
sion on JHMDB-21. 86

5.2 Performance summary of varied extents of fusion between ap-
pearance and micro-motion features on JHMDB-21. 88

5.3 Performance summary of integrating different 2D CNN back-
bones. 89

5.4 Comparison with the state-of-the-art methods. 90

6.1 Accuracy recap on AMMA and TEDdet. 97
6.2 Class-wise frame-APs on JHMDB-21 (split 1). 100
6.3 Class-wise frame-APs and statistics of UCF-24. 106
6.4 Measure of AMMA and TEDdet’s computation complexity (GMACs)

and model size (number of trainable parameters). 108
6.5 Measure of AMMA and TEDdet’s runtime (millisecond and

FPS). 110

xix

List of Abbreviations

CNN Convolutional Neural Network
SVM Support Vector Machine
RoI Region of Interest
RPN Region Proposal Network
FPS Frame-per-Second
MAC Multiply–Accumulate
IoU Intersection-over-Union
R-CNN Region-based CNN
RNN Recurrent Neural Network
LSTM Long Short-Term Memory
mAP mean Average Precision
SSD Single Shot (Multibox) Detector
NMS Non-Maximal Suppression

xxi

To my beloved parents, without whom none of my
success would be possible.

1

Chapter 1

Introduction

1.1 Context

A video consisting of a series of ordered frames can encompass a vast va-
riety of information that supersedes any single image. In recent years, ac-
quisition and distribution of video data have become increasingly cheap via
easily accessible mobile platforms and applications from consumers, record-
ing from millions of closed-circuit cameras, as well as video broadcast of
various events and a rapidly growing number of creative content (e.g., by
Netflix and Amazon). In 2019, it was estimated that 500 hours of content
were uploaded to YouTube every minute, and nearly 80% of the internet traf-
fic was associated with transferring video data [1]. Given such an explosive
growth of visual information to process anytime, everywhere in the world,
it becomes crucial to interpret the underlying video content automatically
by machines. Meanwhile, the field of artificial intelligence, more specifically,
computer vision, has progressed significantly in the last decade with the aim
of empowering machines to address specific vision-based tasks at human-
level capacities. This makes computer vision techniques highly sought-after
to solve the video understanding problem.

The introduction of deep learning, particularly Convolutional Neural Net-
work (CNN) [2], has re-defined modern approaches toward computer vision
problems. As the receptive fields of its filters progressively expand in deep
layers of the network, a CNN hierarchically learns image representations
from low-level shapes to abstract semantics. Due to their superior capac-
ity to model highly complex visual cues, along with the rising availability of
large-scale annotated image datasets and graphical processing units (GPU)
for accelerating model training and inference, CNNs have become the de
facto standard since 2012 [3] to approach the majority of computer vision
tasks in the image domain (for example, image classification, object detec-
tion and segmentation).

2 Chapter 1. Introduction

Replicating the successes of CNNs in image-space to the realm of video
understanding is a non-trivial task, however. Due to the additional temporal
dimension to consider in videos, the span of a video understanding problem
is much wider than that in images. Some of the most visited topics by the sci-
entific community include but are not limited to human action understand-
ing, video compression, object tracking, optical flow, and video captioning.
These problems pose a number of different challenges such as variations in
the viewpoint of the camera, occlusion of salient targets, motion blur, and
changes in luminance, etc.

Among the variety of problems associated with video analysis, this the-
sis particularly focuses on human action understanding. We argue that
most videos seeking automated analysis tend to be human-centric. In other
words, they are created around humans and their activities, such as footage
for surveillance monitoring, interactive marketing, and customer experience
analysis. Additionally, the task of action understanding implicitly requires
addressing several of the above-mentioned problems. For instance, an auto-
mated analysis system may need to simultaneously detect and track moving
humans and possibly surrounding objects via optical flow in order to capture
their dynamic interactions for action classification.

1.2 Types of action understanding tasks

We first and formally define a human action in our thesis as an event which
is intentionally or purposely carried out by the human actor from which an ob-
server could derive meaning, e.g., walking, running, jumping, skateboard-
ing, etc. There are other terms such as an activity and an event that have also
been used when describing human behavior. While some studies interpret
an activity as an ensemble of actions [4], e.g., playing basketball, salsa danc-
ing, etc., the distinction between an activity and action is actually weak and
the two terms have been used interchangeably throughout literature [5][6].
Here, we choose to use action throughout this manuscript for consistency.
On the other hand, an event is defined as an incident that does not necessar-
ily take place intentionally by the actor (such as falling and yawning), which
is related but not within the scope of this thesis.

1.2. Types of action understanding tasks 3

1.2.1 Types of action understanding tasks

There are several sub-tasks falling under the umbrella of action understand-
ing. We describe three major ones and pin-point their distinctions from the
others as referred from the survey article by Hutchinson et al. [7].

1. Action recognition can be considered one of the most fundamental
and studied problems in action understanding. In the most common setup,
it classifies a complete video input by the action occurring in the video and
outputs a video-level label. The task can be further categorized into trimmed
or untrimmed action recognition, depending on whether the underlying ac-
tion spans the entire duration of the video or not.

2. Temporal action detection/localization concerns identifying the tem-
poral boundaries, i.e., start and end timestamps (frames) of each action in-
stance in the video along with its action category. Multiple action instances
can be present in a video with different temporal extents.

3. Spatiotemporal action detection/localization, corresponds to the task
where the action category, temporal boundaries and spatial bounding boxes
all need to be inferred for each action instance in the video. In this case,
each action instance is represented as an action tube composed of a set of
bounding boxes linked across time; the temporal extent of each instance can
be determined by the start and end frames of the tube.

Other action understanding problems are typically derived from the above
ones. For example, the task of early action prediction is a variant of action
recognition. It requires predicting the action label of a video after only ob-
serving a few frames from the initial part of the video. Similarly, online spa-
tiotemporal action detection concerns predicting the bounding boxes and la-
bel of an action tube only in the observed part of the video (only current and
past video frames can be accessed). We illustrate some of these related tasks
in Figure 1.1.

In this thesis, we solely focus on addressing spatiotemporal action de-
tection in an online fashion. Note that the terms detection and localization are
used interchangeably throughout this manuscript, while the prefix spatiotem-
poral is sometimes omitted to avoid redundancy. Overall, action detection is
more challenging as it needs to cope with both spatial and temporal localiza-
tion of co-occurring actions (possibly with different categories).

4 Chapter 1. Introduction

FIGURE 1.1: An overview of the main action understanding problems. A video
is depicted as a 3D volume where N frames are stacked along the temporal axis.
Action recognition assigns an action class label to the entirety of the input video
(a). Temporal action detection/localization predicts the action-specific temporal
regions bounded by the start and end frames (b). Spatiotemporal action detec-
tion/localization proposes action-specific tubes formed by bounding boxes linked
across frames (c). Its online variant concerns predicting the bounding boxes and
label of an action tube only in the observed part of the video (d). In the detec-
tion/localization problems, multiple co-occurring action instances can be present
(each captured by a temporal region or action tube).

1.3. Toward real-time and lightweight detection 5

1.2.2 Why targeting online spatiotemporal action detection?

Our incentives to tackle online spatiotemporal action detection are three-fold.
First, we consider action-tube detection in space and time a highly compre-
hensive action understanding problem. To produce co-occurring action tubes
in a video involves several related tasks such as tracking of each actor, action
recognition, and space-time tube proposal, etc. As opposed to providing only
video-level labels, we believe that orienting toward an instance-based solu-
tion requires a much more thorough understanding of the video content that
can benefit more application scenarios.

Second, we are convinced that the identification of actions is a stepping
stone for understanding complex human behavior. In this sense, instance-
level detection provides means of characterizing each actor ranging from the
coordinates, static appearance to dynamic context descriptors. The instance-
level information can subsequently serve as metadata for more complicated
analysis such as person re-identification or modeling of group activities.

Finally, we target action-tube detection in an online mode where the video
is processed incrementally for any arriving new frame (the detector could only
rely on the present and past observations). Such a style of processing is cru-
cial in real-world scenarios such as human-robot interaction and automated
security where video contents are streamed continuously (rather than being
stored on disk as complete video files).

1.3 Toward real-time and lightweight detection

In recent years, action detection has received much more attention in the re-
search community as driven by numerous vision and internet-of-things (IoT)
application demands, such as automated security systems, service robotics,
unmanned aerial vehicle monitoring, autonomous driving, interventional
healthcare, and unmanned stores, to name a few. Capacities of modern action-
tube detectors have progressed significantly thanks to multiple advancements
in related domains: object detection for precisely localizing humans and scene
elements; two-stream CNN facilitates appearance-motion modeling on top
of raw video frames and optical flow; 3D CNN enables direct spatiotemporal
encoding from video volumes; the emergence of large-scale, labelled video
datasets, and so on. Despite their promising progresses, existing approaches

6 Chapter 1. Introduction

have been tailored to obtain superior accuracy in public benchmarks. In re-
turn, their heavy architectural designs and detection pipelines typically incur
long processing time and high computational cost.

Meanwhile, moving the computation closer to the sensor has become a
fundamental system requirement for real-world deployment in order to man-
age the enormous data flow (i.e., video streams). Such a sensing paradigm
shifts dependence from more capable, high-end systems of workstation ma-
chines (e.g,. NVIDIA Titan GPUs) to embedded/edge devices under a re-
stricted computing and power budget (e.g., NVIDIA Jetson GPUs). Although
embedded systems are more energy efficient, their computation capabilities
fall short by an order of magnitude when compared to the server-level hard-
ware with high core counts and memories. For instance, An NVIDIA Jetson
TX2 has 12 times fewer CUDA cores and a theoretical slowdown of 9.23 times
in total than a Titan X [8]. Inherently, current action-tube detectors fail to
meet the realistic application specifications which mandate on-site, real-time
and highly efficient interpretation of the scene. Deploying state-of-the-art
action detection methods onto power-aware embedded vision systems while
retaining accuracy and real-time performance remains a great challenge until
this day.

1.4 Thesis overview

Based on the above insights, the core of this thesis is to investigate ultra-
efficient CNN architectures and detection pipelines for solving spatiotempo-
ral action detection. Ultimately, we seek to uncover a lightweight, real-time
action-tube detection solution that is pertinent to the criteria of realistic ap-
plications and their deployment.

The rest of this manuscript begins with a thorough review on related
works, followed by four contribution chapters in a chronological order as
how the problem has been approached. It finishes upon our summary of
contributions & future perspectives. In detail, the remaining chapters are
structured as follows:

Chapter 2: Related Work. In this chapter, a literature review is first made
to familiarize with two highly-associated tasks: action recognition and spa-
tiotemporal action detection. We first study the advancement of video repre-
sentation extraction, from hand-crafted descriptors to learned CNN features
(two-stream CNN and 3D CNN) within the context of action recognition.

1.4. Thesis overview 7

Next, we concentrate on modern progresses of spatiotemporal action detec-
tion based on the CNN approach, upon which we identify suitable research
paths that meet our global objective of lightweight and high-speed detection.
Following literature review, action-related datasets as benchmarks are intro-
duced. Finally, we explain the evaluation protocols that are widely used in
the research community and in this manuscript.

Chapter 3: Action detection framework based on flow-guided feature
approximation and memory aggregation. This chapter presents our first
proposed action detector aiming to enhance detection efficiency by exploit-
ing the temporal coherence of continuous video frames. This is embodied by
leveraging motion information to help generate visual features for the ma-
jority of frames in the video, mitigating redundant re-extraction of features
from nearby frames that are visually similar. Also making use of motion cues,
we explore implicit spatiotemporal modeling based on a multi-frame feature
aggregation schema which recursively accumulates appearance context from
sparsely sampled frames over time.

Chapter 4: Temporal feature exchange-difference network. Instead of
inferring actions from a single frame at a time as presented in Chapter 3, in
this chapter we propose to concurrently process a series of video frames and
predict the underlying action tubelets (sequences of action-specific bounding
boxes). Specifically, two lightweight temporal modules based on channel-
exchange and spatial-displacement are applied on top of the input sequence’s
CNN features, aggregating actions’ context and model their movement over
time, respectively. We further introduce a tubelet linking algorithm to asso-
ciate detection results in a timely and incremental manner for online action
tube generation and spatiotemporal localization.

Chapter 5: Accumulated micro-motion features for real-time spatiotem-
poral action localization. Unlike the previous two chapters where we at-
tempt to implicitly model actions’ dynamics via raw video frames and their
features, in this chapter we generate explicit micro-motion representations
on-the-fly to facilitate temporal modeling. The proposed method (AMMA)
adopts the tubelet detection paradigm introduced in Chapter 4 while par-
tially leveraging a two-stream CNN architecture to fuse appearance and com-
plementary motion cues at multiple scales. Moreover, we demonstrate the
generalization ability of our method through successfully integrating with
multiple lightweight CNN architectures built for embedded platforms.

Chapter 6: Diving more deeply into AMMA. This chapter extends from

8 Chapter 1. Introduction

Chapter 4 and 5, providing a more profound inspection to uncover our meth-
ods’ accuracy, computation complexity, and speed performance. Multiple
breakdown analysis on each detector’s error rates, class-wise accuracy, com-
putational cost and runtime bottlenecks are conducted and compared.

Chapter 7: Conclusion and Future perspectives. Finally, we summarise
our contributions proposed in this thesis and discuss prominent research di-
rections in both short-term and long-term perspectives.

9

Chapter 2

Related Work

In this chapter, we first review the advancement in action recognition, a
highly related video understanding task which has established a concrete
foundation for spatiotemporal information extraction from video clips. A
brief overview is first presented on methods utilizing hand-crafted features
in combination with a classifier. We then move on to prominent works based
on learned features derived from designated objective functions, i.e., Con-
volutional Neural Networks (CNN). Following the above overview, recent
progresses of spatiotemporal action detection and related topics are studied.

2.1 Action recognition

2.1.1 Recognition from hand-crafted features

Action recognition has been widely studied and most often tackled as a video
classification problem. Traditionally, an action recognition pipeline can be
broken down into three phases. In the first phase, local visual cues are ex-
tracted from hand-crafted image features and extended temporally into video
representations. For instance, Laptev et al. [9] proposed the space-time in-
terest points by extending the 2D Harris corner detector [10] into 3D space.
Other local spatiotemporal features such as HOG3D [11], SIFT-3D [12], Ex-
tended SURF [13], HOF [14], and dense trajectory features [15] have also
been explored. Subsequently, the extracted local features are combined into
a fixed-sized video-level descriptor following high-order encodings such as
Bag-of-Words [16] or Fisher Vectors [17]. Lastly, a classifier such as a Support
Vector Machine (SVM) [10] is trained on the resulting video-level spatiotem-
poral representations to distinguish among different action categories.

Manual crafting of feature descriptors leaves room for improvement as
the process is agnostic to the specific classification task (only the classifier
"adapts" to distinguish different actions; no action-specific pattern is learned).

10 Chapter 2. Related Work

Consequently, traditional methods which are limited by these predefined set
of features struggle to fully extract complex, action-relevant information em-
bedded in videos.

2.1.2 Recognition from learned features: 2D CNNs

The advent of deep convolutional architectures [3][18][19] and their impres-
sive performances to hierarchically extract complex, abstract spatial informa-
tion makes 2D CNNs the dominating paradigm in the image domain (e.g.,
object classification and detection, semantic segmentation, and image cap-
tioning, etc.). Recently, 2D CNNs have also been adopted to tackle the video-
based action recognition problem.

The early attempt by Karpathy et al. [20] proposed to fuse multiple frame
information over various convolutional configurations. Nevertheless, their
different fusion strategies did not lead to significant improvement from nei-
ther their single-frame baseline model, nor other top-performing methods
based on hand-crafted representations. Such findings suggested 2D CNNs’
limited capability to model temporal variations from video frames alone.
Loosely inspired by the human visual cortex, Simonyan and Zisserman [21]
later devised the two-stream CNN architecture, combining a spatial CNN to
learn static visual cues from regular RGB frames, and a temporal CNN to
model motion information from stacked optical flows. In such a framework
(as illustrated in Figure 2.1), separate training was performed for the two
CNNs; the softmax scores of both streams were combined by late-fusion.

A plethora of research have extended from two-stream CNNs. In lieu of
applying late-fusion from two independently processed streams, Feichten-
hofer et al. [22] investigated intermediate feature-level fusion strategies to
jointly model actions’ appearance and motion correspondences. Park et al.
[23] proposed a multiplicative fusion paradigm to combine two-stream fea-
tures which demonstrated better performance than the regular addictive fu-
sion (e.g., feature concatenation or averaging CNNs’ output scores). In order
to model long-range temporal structures, Wang et al. [24] sparsely sampled
frames spanning the whole video as inputs. Different segments are fed to
the same CNN with shared parameters to predict action independently, fol-
lowed by a segmental consensus module to aggregate their results. With a
similar objective, Donahue et al. [25] and Ng et al. [26] both leverage Re-
current Neural network models (RNN), more specifically, Long Short-Term

2.1. Action recognition 11

FIGURE 2.1: Two-stream CNN architecture for action recognition [21]. The spatial
and temporal stream CNNs separately feed-forward RGB and stacked optical flow
input to extract actions’ appearance and motion cues. Late-fusion is applied to com-
bine softmax activations of two streams for classifying actions.

Memory (LSTM) [27] RNNs on top of extracted two-stream CNNs features
to capture long-temporal range context embedded in video clips.

Even though optical flow is found to be a useful motion representation,
calculating optical flow externally remained inefficient and time-consuming
(over 90% of the whole runtime [28]). To incorporate motion cues that are
simpler to compute, Sun et al. [28] derived optical-flow-like features by tak-
ing the spatial and temporal gradients of video frames’ feature maps using
Sobel filters and element-wise difference operators. Other lightweight mo-
tion representation variants such as motion vectors [29], RGB difference [24],
dynamic images [30], and feature-level displacement [31], etc. had also been
explored to distill temporal information. Another line of works attempted
to generate optical flow from CNNs [32][33], which not only exceeded hand-
crafted flow in terms of speed, but also permitted an end-to-end architecture
that could jointly refine motion information and classify actions [34][35].

2.1.3 Recognition from learned features: 3D CNNs

Introducing the motion modality empowers 2D CNNs to incorporate tem-
poral information and obtain competitive recognition accuracy. In the afore-
mentioned methods however, visual cue extraction from video frames is iso-
lated. Temporal modeling is also mostly restricted to late-fusion of abstracted
RGB and motion cues. The pixel-level spatiotemporal evolution across suc-
cessive video frames was not fully exploited.

A video sequence can be seen as a 3D volume of stacked RGB frames. To

12 Chapter 2. Related Work

FIGURE 2.2: Illustration of an integrated two-stream CNN by Zhu et al. [35], an
exemplary, end-to-end architecture where motion estimation can be jointly modeled
and refined along with the designated task (i.e., action recognition). Here, Motion-
Net takes consecutive video frames as input and estimates motion. The rest of the
architecture follows that of a standard two-stream CNN.

simultaneously encode the spatial and temporal pattern from the video vol-
ume, Ji et al. [36] and Tran et al. [37] extended the standard 2D convolutional
and pooling kernels into 3D. Given a stack of frames as input, 2D convolution
treats them as different channels and collapses the temporal structure, while
applying 3D convolution results in another volume that preserves temporal
information of the input. Nevertheless, early attempts based on 3D CNN ar-
chitectures (e.g., C3D [37]) received limited performance gain mainly due to
the high parameterization as well as the lack of labelled video data to prop-
erly generalize spatiotemporal feature learning.

Later, Carreira et al. [38] proposed the Inflated 3D CNN architecture (I3D)
which inflated 2D convolutional and pooling kernels, as well as ImageNet
pre-trained weights of existing 2D CNNs (i.e., by expanding into the tempo-
ral axis). This enabled spatiotemporal modeling on top of well-established
ImageNet networks and their spatial feature extractors. Leveraging the two-
stream configuration and their large-scale human action dataset Kinetics for
pretraining, I3D had proved highly effective, making 3D CNNs the domi-
nant approach for action recognition. Subsequent works such as Feichten-
hofer et al. [39], took inspiration from two-stream CNN and proposed a dual
3D-CNN architecture, with each sub-network taking RGB frames of differ-
ent frame rates as input to model varied extent of spatial and spatiotemporal
cues. Wang et al. [40] inserted non-local blocks based on the self-attention
mechanism in existing 3D CNN to enable capturing long-range temporal de-
pendency in videos. Very recently, extensive research [41][42][43] have been
conducted based the attention-derived transformer architecture [44].

2.1. Action recognition 13

2.1.4 Toward lightweight and efficient action recognition

Although 3D CNNs are suited for learning highly complex video representa-
tions, they introduce substantially more parameters, computational burden,
and training difficulties than their 2D counterparts. For instance, C3D, which
consisted of 11 layers of 3D convolutions, exceeded the model size of a 152-
layer 2D-ResNet model (≈ 321 vs. 235MB) [45]. Moreover, 64 and 128 GPUs
were used for model training in [38] and [39], respectively.

Numerous works have aimed toward improving the efficiency of 3D CNNs
with alternative convolutional blocks. Qui et al. [45] proposed the Pseudo-
3D Residual Networks which decomposed a 3 × 3 × 3 3D convolution into
separate spatial (1× 3× 3) and temporal kernels (3× 1× 1) interacted in var-
ious forms (e.g., stacking, parallel pathways, and residual connection, etc.).
Similarly, Tran et al. [46] factorized 3D convolution into successive 2D spatial
and a 1D temporal convolution (referred to as "R(2+1)D") and demonstrated
that such sequential decomposition facilitated complex representation learn-
ing by doubling the number of nonlinearities.

Aiming also for computation reduction, Xie et al. [47] achieved the best
accuracy-speed trade-off by replacing many 3D convolutions with 2D ones at
the bottom of the I3D network, suggesting that temporal relation modeling is
more effective on high-level semantics. Their resulting architecture (referred
to as separable 3D CNN, or S3D) also leveraged the separate spatial-temporal
convolutional block. Zolfaghari et al. [48] adopted a similar schema of mix-
ing 2D/3D convolutions along with a sparse sampling strategy [24] for ef-
ficient online action recognition over long video sequences. The practice of
decoupling 3D convolution had also been explored in the context of group
convolutions, endowing two groups of filters to focus on modeling static
and dynamic cues separately [49]. Other research such as Feichtenhofer’s
X3D [50] progressively expands a tiny 2D image classification architecture
along multiple network axes (such as temporal duration, frame rate, spatial
resolution, and network depth) to monitor different levels of computational
complexities and memory usage.

Notably, architectures based on integrating dedicated temporal modules
on top of 2D CNNs have received more attention in recent years. This general
design aimed to achieve comparable spatiotemporal reasoning and accuracy
of 3D CNNs while maintaining the computational complexity at 2D. Lin et al.
[51] introduced the Temporal Shift Module (TSM) which partially shifted the
feature channels of multiple-frame features along the temporal dimension.
Inserting the shift module in hierarchies of 2D convolutional blocks induces

14 Chapter 2. Related Work

FIGURE 2.3: Illustrations of four architectural variants by Xie et al. [47] to ex-
tract spatiotemporal information. I2D (top-right) operates on multiple frames via
a shared 2D CNN; I3D (top-left) is a full 3D CNN which convolves over space and
time; Bottom-Heavy I3D (bottom-left) uses 3D convolution in the lower layers and
2D in the higher layers; Top-heavy I3D (bottom-right) employs 2D CNN in the lower
layers and 3D in the upper ones. Top-heavy I3D achieves the best accuracy-speed
trade-off, which implies that temporal relation modeling is more effective on high-
level semantics.

feature interactions and forms temporal dependency across video frames.
Lee et al. [52] proposed the Motion Feature Network (MFNet), which com-
prises hierarchies of motion filters to encode motion context between any
two successive feature maps by aggregating their feature-level displacement
in multiple directions. Building upon TSM, Jiang et al.[53] and Li et al.[54]
further relaxed the shift operator into an 1D channel-wise temporal convo-
lution with designated weight initialization, permitting a more adaptive and
fully convolutional temporal aggregation schema. Similar to MFNet, effi-
cient motion encoding is performed either via feature-level displacement [53]
or motion-derived attention maps to highlight motion-salient regions [54].
Following the success of leveraging feature map displacement over time,
Wang et al.[55] devised a two-level difference modeling paradigms to cap-
ture both high-resolution local motion pattern over consecutive frames and
cross-segment spatiotemporal structures spanning long videos.

2.2. Action detection 15

2.2 Action detection

Different from action recognition (i.e., video-level classification), spatiotem-
poral action detection/localization concerns generating space-time propos-
als to cover individual action instances. The detection pipeline broadly com-
prises three levels of sub-tasks: 1) frame-wise spatial localization of actors;
2) action classification, i.e., inferring the action category for each individual
actor; and 3) temporal linking and trimming, i.e., temporally linking actions’
bounding boxes and determining their temporal extent in the videos. Effec-
tive spatiotemporal modeling is essential in both action recognition and de-
tection. Transitioning from hand-crafted video features to deep CNN paradig-
ms (e.g., two-stream CNN or 3D CNN) had been prominent in both tasks
thanks to CNNs’ superiority in modeling complex scenes.

Here, we review recent progresses of spatiotemporal action detection with-
in the context of CNN. Prior to that, a non-exhaustive overview on related
object detection techniques is provided, which have been widely employed
to spatially localize action instances. In later chapters, we will present more
extensive reviews on the works relevant to our contributions.

2.2.1 Spatial localization (object detection)

Localizing human actors in each video frame is a fundamental step for spa-
tiotemporal action detection. Naturally, this sub-task could be achieved us-
ing object detection techniques. Earlier attempts to detect salient objects re-
lied on region-proposal algorithms based on local hand-crafted features, such
as Selective Search [56] and EdgeBoxes [57]. In the last decade, object detec-
tion also benefits from the advancement of deep CNN architectures. Main-
stream detectors make use of anchors (i.e., pre-defined proposals) sampled
across every feature grid to expedite localizing objects at arbitrary locations
in the image. For example, Faster R-CNN [58], R-FCN [59], and FPN [60]
leverage a two-stage detection pipeline, first extracting potential regions-of-
interest (RoI) from the convolutional Region Proposal Network (RPN). In the
second stage, object features are pooled from each proposal region, which
are then used to classify and refine the object-specific bounding box. Two-
stage detectors achieve state-of-the-art accuracy. However, their sequential
pipeline imposes a bottleneck to real-time inference speed.

Alternatively, other detectors such as YOLO [61], SSD [62], and RetinaNet
[63] removed the intermediate step of region proposal. In a single forward-
pass, they directly perform bounding box regression and classification from

16 Chapter 2. Related Work

anchors densely sampled across every grid of the image feature. In most
scenarios, the number of background samples significantly outweigh that
of salient objects during training. To address the imbalance between fore-
ground and background instances, Lin et al. [63] designed a novel focal loss
to automatically reduce the contribution of easy examples (i.e., background)
and focus on hard examples. One-stage detectors are capable of real-time in-
ference without compromising much accuracy, hence are widely considered
when high speed is of priority.

More recently, anchor-free object detectors such as CornerNet [64], Cen-
terNet [65] and FCOS [66] have gained more popularity as they are not bounded
by the heuristic anchor design. These detectors generally tackle the detection
problem by estimating class-specific "keypoints" in the image feature, upon
which they regress objects’ spatial sizes.

2.2.2 Spatiotemporal action detection/localization

Single-frame based methods

Early attempts of CNN-based action detection generally extracted potential
actor regions in video frames leveraging salient-object proposal algorithms.
Each actor proposal would be fed to the CNN for classification; frame-wise
detections were then linked over time to construct action tube. For instance,
Gkioxari and Malik [67] generated region proposals on each frame using Se-
lective Search and inputted the concatenated appearance-motion features as-
sociated to each region to SVM classifiers. Following that, frame-wise detec-
tions over all video frames were linked in a timely manner using the Viterbi
algorithm [68] to iteratively find optimal paths that maximize temporal co-
herence, i.e., action regions with high confidence scores were strongly linked
if their spatial extent largely overlapped. Similarly, Weinzaepfei et al. [69]
applied EdgeBoxes to obtain frame-level proposals and then link them via
a tracking-by-detection paradigm. Temporal localization was achieved by a
multi-scale sliding window strategy.

The above works followed an expensive multi-stage detection pipeline
that consists of proposal generation by external modules, CNN fine-tuning
and feature extraction for each proposal, caching of these features on disk,
and action classification by SVMs. To overcome such inefficiency, Saha et
al. [70] adopted Faster R-CNN to detect class-specific action instances in an
end-to-end fashion. Their proposed pipeline included two parallel RPNs and
detection networks to take into account both RGB and motion cues. Action

2.2. Action detection 17

FIGURE 2.4: Illustration of the complete action detection pipeline (single-frame
based approach) by Singh et al.[73].

tube construction was formulated into two energy maximization problems,
ensuring optimal temporal coherence when linking frame-wise detections
and smoothing the resulting links. Peng and Schmid [71] adopted a similar
detection pipeline as in [70] while further introducing complementary infor-
mation from stacked optical flow and human body parts. Further exploiting
the sequential information across adjacent video frames to render more pre-
cise localization, Yang et al. [72] proposed a location anticipation network for
inferring movements of action instances.

The advent of unified CNN object detectors greatly simplified the work-
flow of action detection; however, the two-stage detection scheme, optical
flow computation, and two-pass tube generation algorithms over the entire
video made the above methods intrinsically slow and offline. Aiming at real-
world applications, Singh et al. [73] proposed the first real-time action de-
tector, which leveraged the more recent SSD to acquire frame-wise action
instances, a fast flow estimator to obtain motion cues, and an incremental
tube linking & trimming algorithm to construct action tubes. Figure 2.4 sum-
marized the workflow their detector. Behl et al. [74] extended the work in
[73] by formulating a unified cost function to jointly solve the sub-tasks of
linking, action labeling and temporal trimming.

Short-clip based methods

Temporal reasoning is constrained to fusing optical flow cues in the single-
frame based approach. Distinguishing actions in such a way can lead to am-
biguity, as the appearance evolution and temporal continuity in successive
frames are not exploited. Kalogeiton et al. [75] surpassed the above limita-
tion by temporally expanding the SSD and its 2D-anchor framework for 3D
anchor cuboid regression. As depicted in Figure 2.5, their detector maps a
series of consecutive video frames into a high-dimensional latent space upon

18 Chapter 2. Related Work

FIGURE 2.5: Illustration of the action tubelet detector by Kalogeiton et al. [75]. Given
a sequence of frames, 2D convolutional features are extracted and stacked (left) to
predict action scores and regress coordinates for the anchor cuboids (middle). The
final outputs are regressed action tubelets (right) spanning the input frames.

which it directly detects action tubelets, a sequence of bounding boxes with
associated confidence scores spanning the input frames. Saha et al. [76][77]
proposed two similar tubelet frameworks as in [75] while relaxing the con-
straint of processing consecutive frames. Training and testing can therefore
be conducted more flexibly on frame sequences of varied intervals accord-
ing to the attributes of video data, such as various frame rates or whether
densely-annotated groundtruths are available. Huang et al.[78] introduced
an encoder-decoder block based upon Convolutional Gated Recurrent Unit
[78] prior to the detection network to facilitate fusing the dynamic context
across multiple clips.

A number of action tubelet variants have been proposed. For example,
the above-mentioned methods first infer class-specific tubelets, and then link
them over time into action tubes for each class independently. Alternatively,
the works in [79][80][81][82] first processed a short-clip at a time to gener-
ate class-agnostic tubelet proposals. Multiple proposals are linked over time
into class-agnostic tubes, from which spatiotemporal modeling takes place
(such as 3D pooling or LSTM) to categorize each tube. A few other literature
focused more on cost-effective detection pipelines. To avoid the heuristic an-
chor design of SSD, Li et al. [83] adopted the anchor-free CenterNet detector,
modeling each action instance in time as a moving point. Aiming at reducing
the computational cost associated with having two separate CNNs for visual
and motion reasoning, Zhao et al. [84] jointly processed the RGB and optical
flow streams in a single two-in-one CNN architecture for extraction of ap-
pearance information, while learning motion-conditioned maps to modulate
the appearance features.

2.2. Action detection 19

Clip-based 3D CNN representation for contextual support

In Section 2.1.3, we learned that 3D CNNs are able to effectively capture
space-time information. Consequently, leveraging 3D CNNs to encode video
representations have become the dominant approach for action detection in
recent years. For example, Gu et al. [4] employed Faster R-CNN to first ob-
tain actor proposals on the target frame. The authors then applied I3D on top
of surrounding video sequence (e.g., 50 frames) near the target frame, aggre-
gating action-specific video context for refining and classifying each proposal
in the target frame. Kopuklu et al. [85] fuses 2D-Darknet and 3D-ResNet’s
CNN features extracted from the respective target frame and its neighboring
video clip as context-augmented representations for frame-wise bounding
box regression and classification. Li et al. [86][87] proposed two sparse-to-
dense detection paradigms based on 3D CNN, first estimating coarse spa-
tiotemporal action tubes spanning long video sequences, and then refining
the tubes’ precise locations from key timestamps. The adoption of the trans-
former architecture for modeling over long sequences also gains more atten-
tion in recent action detection research [88][89].

Lately, the AVA dataset [4] was released and contained challenging ac-
tions that required advanced contextual reasoning (e.g., interactions between
actors and other actors/objects in the scene). To differentiate similar actions,
spatiotemporal modeling in terms of relations between actors and scene ele-
ments have been investigated, such as global-context fusion [90], graph con-
volutional network [91], and non-local attention [92], etc. For instance, Sun et
al. [90] treated every spatial grid of the video-level S3D feature as a weakly-
supervised scene element. Specifically, they modeled pair-wise relations be-
tween any designated actor and the rest of scene elements via neural net-
works, generating relation features to enhance action classification. Wu et al.
[92] focused on finding actor-actor interactions over a long temporal window.
The authors stored actor features from the past in a long-term feature bank,
which can be retrieved to augment present actors’ features via feature pool-
ing or non-local attention. Despite its outstanding spatiotemporal modeling
and accuracy, this line of method relies on very deep 3D convolutions over
long video clips to aggregate contextual information for target-frame detec-
tion. In most cases, they also require an additional 2D proposal network to
locate potential actor regions in advance [4][90][92].

20 Chapter 2. Related Work

2.3 Related datasets

Labelled datasets provide means to train accurate and robust deep learning
models. In addition, they serve as suitable benchmarks for a direct com-
parison between different methods, leading to better understanding of the
algorithmic advantages and limitations. In this section, we describe some of
the most widely used datasets in the action detection community.

2.3.1 Overview on action detection datasets

Datasets for spatiotemporal action detection require action tube annotations.
Specifically, an arbitrary action tube consists of the underlying action cate-
gory and frame-wise bounding box coordinates of the action instance. Inher-
ently, each action instance’s temporal extent can be inferred from the frame
indices containing bounding boxes.

There exists a number of datasets that have been actively used in the ac-
tion detection community. To name a few, UCF-24 [5] was produced for
the THUMOS-2013 [93] challenge and contained mostly sports actions in
untrimmed videos. JHMDB-21 [6] was initially created for pose-based action
recognition. It primarily includes instant actions such as sitting, standing,
and waving, etc. from short video clips. DALY [94], as the name suggests,
focuses on daily activities such as applying make-up on lips, brushing teeth,
etc. Upper body pose and bounding box annotations around object(s) taken
part in actions are also provided. Recently, more complex architectures have
pushed the requirements for large-scale video datasets such as Atomic Vi-
sual Actions (AVA) [4]. The AVA dataset annotates 80 atomic actions sourced
from movie clips, where every person is localized and attached multiple la-
bels corresponding to the actor’s pose, interactions with objects and other
actors.

2.3.2 Datasets used in this thesis

UCF-24 contains 3207 videos and 24 human action classes of sports-related
action categories, such as Basketball, Fencing, IceDancing, and Volleyball-
Spiking, etc. Released for the THUMOS-2013 challenge, this dataset is a spa-
tiotemporally labelled subset of UCF101 [5], a diversified action recognition
dataset with 101 action classes and videos sourced from YouTube. In aver-
age, each video in UCF-24 lasts approximately 7 seconds (acquired at a fixed
frame rate of 25). Note that the original annotations released by [5] was found

2.4. Evaluation metrics 21

prone to errors, and corrected annotations were later released by Singh et al.
[73], which are used throughout this thesis.

Even though every video is associated with only one action class, it may
contain multiple action instances with different spatial and temporal bound-
aries. Here, a video is likely to contain multiple action instances in a couple
of scenarios. First, there exist multiple actors in the scene. Second, a single
action may be interrupted (e.g., actor being out of frame due to camera move-
ment, or an action is repeated interleaved with pauses). In average, there are
approximately 1.4 action instances per video, each action instance covering
70% of the duration of the video. In some classes, an instance’s average du-
ration can be as low as 30%. More detailed statistics of individual classes will
be presented in Chapter 6. The untrimmed nature of UCF-24 allows us to
evaluate temporal localization of our proposed methods.

JHMDB-21 is a relatively smaller dataset, consisting of 928 videos and
21 action classes. It is a subset of the HMDB-51 dataset [95]. Compared to
UCF-24, JHMDB-21 is made up of shorter video clips (40 frames at maxi-
mum). Its actions are less associated with sports and instead include various
classes that are more instantaneous (i.e., lasting only a few frames) and in-
dependent from the visual scene, such as Sit, Stand, and Walk, etc. Each
video is trimmed to the action’s duration and contains only a single action in-
stance. In addition to bounding box annotation, 2D joint masks and human-
background segmentation are also provided in this dataset but are not ex-
ploited in this thesis. JHMDB-21 is divided into three train-test splits; our
experimental results are reported over the mean of all three splits.

2.4 Evaluation metrics

In this section, we briefly describe some standard evaluation metrics that are
commonly adopted for assessing spatiotemporal action localization.

2.4.1 Frame-level mean Average Precision (frame-mAP)

Mean Average Precision (mAP) has been commonly adopted in measuring
how an object detector performs. The frame-mAP for action detection is cal-
culated similarly. To briefly recap, APc corresponds to the area under the
precision-recall curve produced by the model (c denotes a designated class).
The area can be easily approximated by the 11-point interpolation algorithm
[96]. Precision is measured as TP

TP+FP , where TP and FP denote true-positive

22 Chapter 2. Related Work

FIGURE 2.6: Illustrations of two types of intersection-over-union (IoU). The spatial-
IoU (left) is used to compute frame-mAP, while both IoUs are used in video-mAP.

and false-positive detection, respectively. In the context of a detection prob-
lem, precision reflects how reliable the model’s detection results are. On the
other hand, the recall is computed as TP

TP+FN which measures the model’s
ability to detect positive samples. The two metrics provide different perspec-
tives; a detector with high-precision but low-recall misses detecting many
objects in the scene, while a detector with high-recall but low-precision sim-
ply predicts many unreliable detections.

In detail, to calculate frame-APc, all the model’s outputs of class c are
ranked and assessed in decreasing confidence. The prediction at a particular
rank is a true-positive detection if 1) there exists a groundtruth action in-
stance of the same class in the same frame, 2) the predicted and groundtruth
instances have a spatial overlap exceeding the designated threshold τ (typi-
cally at 0.5), and 3) the matched groundtruth had not been associated previ-
ously. Otherwise, the prediction is considered false-positive. Specifically, the
extent of spatial overlap is determined by the intersection-over-union (IoU)
as illustrated in Figure 2.6 (left).

At each rank, precision and recall can be derived from the calculated true-
positive and false-positive metrics. The points to reconstruct the precision-
recall curve can thus be obtained progressively as one iterates through the list
of detection by the model. Once APc of each class is acquired independently,
the frame-mAP metric is simply the arithmetic mean of them all.

2.4. Evaluation metrics 23

2.4.2 Video-level mean Average Precision (video-mAP)

Video-mAP evaluates the model’s space-time action proposals against groun-
dtruth action tubes. The metric takes into account both frame-level predic-
tion and the linking strategy which connects bounding boxes of the same
class label in adjacent frames. Similar to the computation of frame-APc, once
bounding boxes of class c are linked into tubes, every predicted tube of that
class is ranked in decreasing confidence for computing video-APc. At any
particular rank, a predicted tube is true-positive if there exists a groundtruth
action tube of the same class against a spatiotemporal overlap threshold τ,
and that groundtruth has not been associated previously. Otherwise, the pre-
diction is considered false-negative.

Specially, the extent of overlap between predicted and groundtruth tubes
is defined by spatiotemporal-IoU (ST-IoU). The ST-IoU is composed of the
spatial-IoU and temporal-IoU computed separately. The spatial-IoU is cal-
culated as the mean IoU between the groundtruth and detected bounding
boxes of an action instance across their overlapped frames (the computation
is the same as that for frame-AP). On the other hand, the temporal-IoU only
concerns the frame-level temporal overlap between the groundtruth and pre-
dicted tubes. Both spatial and temporal IoUs are depicted in Figure 2.6.

Lastly, the product of spatial and temporal-IoU is taken to obtain the mea-
sure of ST-IoU. The final video-mAP metric is simply the arithmetic mean of
video-APc of all action classes. In a typical evaluation setup, multiple over-
lapping thresholds (τ) are considered in video-mAP to inspect varied qual-
ities of resulting action proposals. A common practice is to evaluate video-
mAP at τ = 0.2, 0.5, and 0.75. In addition, τ ranging from 0.5 to 0.95 (with
an increment of 0.05) are examined and averaged as a measure of the global-
scale performance.

2.4.3 Model efficiency

Our thesis focuses on well-balanced, efficient detection architectures that can
be potentially deployed on power-restricted devices. As a result, measures
of models’ efficiency are needed. Specifically, we evaluate the speed perfor-
mance (millisecond/frame or frame-per-second) of our proposed detectors in
later chapters. Models’ complexity is also measured by the number of train-
able parameters and multiply–accumulate operations (MACs) at test time.

24 Chapter 2. Related Work

2.5 Recap on our research directions

For starters, the single-frame detection pipeline proposed by Singh et al. [73]
achieved online and real-time action detection, conforming to realistic use
cases. However, optical flow is the only means of temporal reasoning under
such an approach, as frame features are extracted independently throughout
the entire video. The temporal coherence embedded in continuous videos
was not exploited. In Chapter 3, we will explore utilizing the temporal coher-
ence among nearby video frames to guide the generation of new frame fea-
tures, not only enhancing detection efficiency, but also enabling current ob-
servations to recursively accumulate precedent context for long-range tem-
poral modeling.

Further, despite modeling actions from video clips which theoretically
should also capture short-term dynamic cues, many tubelet detectors [75][77]
[83][97] still rely on computationally-expensive optical flow to enhance accu-
racy. This implies insufficient temporal reasoning from stacking frame fea-
tures alone. Alternatively, we present an adaptive, multi-frame feature ag-
gregation schema based on partial channel-wise exchange, while exploiting
dynamic information to trace moving actors in Chapter 4. Partially building
upon this work, we devise an on-the-fly motion representation in Chapter 5
and 6 that accumulates motion boundaries as complementary action context,
giving rise to a lightweight, real-time action detector with highly competitive
accuracy.

On the other hand, as it hinders our objective of achieving lightweight
and online action detection for power-constrained devices, the clip-based 3D
CNN approach is not considered within the scope of this thesis.

To recapitulate, the theme of our thesis focuses on seeking lightweight
architectures along with cost-effective pipeline for real-time (yet competi-
tively accurate) action detection. To validate our reduced spatiotemporal
models, we primarily evaluate on the UCF-24 and JHMDB-21 dataset. These
two datasets, which will be detailed in the following sections, have been
among the most representative and foundational benchmarks for assessing
untrimmed and trimmed action videos since the beginning of this thesis.

25

Chapter 3

ACDnet: Action detection
framework based on flow-guided
feature approximation and memory
aggregation

3.1 Introduction

The task of action detection explicitly addresses space-time localization of
action instances in videos. In reality, a video can comprise a single or mul-
tiple instances, of the same or different actions, each can even begin or end
independently. Rather than reasoning the global video-level action category,
the most fundamental building block of a spatiotemporal action detector con-
cerns modeling action-specific pattern from videos and acquiring frame-wise
localization (i.e., bounding boxes) for the underlying action instances.

In this chapter, we tackle the action detection problem by building upon
the latest CNN-based detectors equipped with spatial localization ability. Re-
cently, advances in object detection have led to a number of state-of-the-art
detectors such as Faster R-CNN [58], YOLO [61] and SSD [62], all of which
can be potentially integrated within an action detection pipeline. Naively
adopting image-based object detectors in the video domain is inherently in-
sufficient to capture discriminitive video representations for actions. Instead,
common practices for modeling action-specific representations leverage two-
stream CNN or 3D CNN, as introduced in Chapter 2. However, the above
inevitably raise computational requirements (time-consumption and compu-
tational cost) associated with optical flow computation or 3D convolutional
operations, which we argue are sub-optimal (and even unfeasible) for prac-
tical deployment on low-end devices.

26
Chapter 3. ACDnet: Action detection framework based on flow-guided

feature approximation and memory aggregation

Most notably, consecutive video frames contain continuous and highly
resembling appearance information; extracting frame-wise features without
taking into account the intra-frame continuity and similarity incurs signifi-
cant redundancy. With the above insight, we propose ACDnet, a real-time
action detector which exploits the temporal coherence among nearby video
frames to enhance detection efficiency. This is embodied by performing fea-
ture approximation at the majority of frames in a video, mitigating re-extract-
ion of similar features for neighboring frames. Furthermore, we hypothesize
that a less expensive framework can effectively extract meaningful temporal
contexts. ACDnet adopts a multi-frame feature aggregation module, which
recursively accumulates 2D spatial features over time to encapsulate long
temporal cues. Such feature aggregation implicitly models temporal varia-
tions of actions and facilitates understanding degenerated frames with lim-
ited visual cues.

The proposed action detector leverages SSD to handle frame-level feature
extraction and detection. It also employs a lightweight variant of FlowNet
[32] to quickly generate optical flow for the feature approximation and mem-
ory aggregation modules. Integration of all the above CNN sub-networks
formulates an efficient detection solution that is capable of accumulating spa-
tiotemporal context over time and inferring actions well beyond real-time
speed.

Related publication: The work presented in this chapter is published in
Pattern Recognition Letters, 2020 [98]. The primary investigator in [98] is also
the author of this manuscript.

Outline. The rest of the chapter is organized as follows. In Section 3.2,
we first briefly review SSD, which consists the core feature extraction and de-
tection block of ACDnet. Next, we present technical details of the proposed
flow-guided detection framework, including the feature approximation and
memory aggregation sub-modules, and how they are integrated with SSD
in Section 3.2. We report various experimental validation of the proposed
detector in Section 3.3. Finally in Section 3.4, the chapter is concluded by a
summary of ACDnet and its limitations.

3.2. Review on SSD (Single Shot MultiBox Detector) 27

3.2 Review on SSD (Single Shot MultiBox Detec-

tor)

SSD performs object detection by enumerating over a collection of pre-defined
proposals (i.e., anchor boxes) densely sampled at every image feature loca-
tion. These anchors are defined with different scales and aspect ratios, serv-
ing to capture presence of all possible objects in the scene. Unlike earlier
works based on a two-stage detection pipeline [58][59], SSD does not depend
on the intermediate region proposal step to first sample potential object re-
gions, therefore enabling significant improvement in speed performance.

To extract image features, the default SSD employs VGG16 [18] while
discarding its fully connected layers. To handle objects of various scales,
SSD leverages multiple feature maps of decreasing spatial dimensions to de-
tect objects independently. This is achieved by appending 6 auxiliary layers
(composing of 1× 1 and 3× 3 convolution layers) after VGG16. Among these
feature maps of various spatial scales, i.e., (38 × 38), (19 × 19), (10 × 10), (5 ×
5), (3 × 3), and (1 × 1), the largest one is used to locate objects of the smallest
spatial scale whereas the smallest corresponds to objects of the largest scale.

After extracting the feature maps, SSD applies two separate 3 × 3 convo-
lutional filters to conduct classification and regression predictions on every
grid of each feature map independently. The classification branch outputs
M × (C + 1) class confidence scores for M anchor boxes and C + 1 action
classes (one of which is added to represent the background class). The re-
gression head outputs M × 4 coordinate offsets with respect to M anchor
boxes, which can then be converted to actual bounding-box coordinates of
objects. At test time, due to the nature of dense anchor design and place-
ment, SSD tends to detect the same object multiple times from overlapping
anchor boxes. To address this, non-maximal suppression (NMS) is applied to
recursively remove less confident detection which largely overlap with those
having higher confidence scores.

3.3 Overview: flow-guided detection framework

The proposed ACDnet which consists of the feature approximation and ag-
gregation modules, is summarized in Figure 3.1. Our objective is to perform
detection in an online manner for every incoming frame of a video. At the
beginning of the video, action features are obtained from the first frame by
the feature extraction sub-network N f eat (Figure 3.1 (a)). This initial frame

28
Chapter 3. ACDnet: Action detection framework based on flow-guided

feature approximation and memory aggregation

is also labeled as the key frame. Following the key frame are consecutive
non-key frames, whose action features are not extracted from N f eat; instead,
the flow sub-network N f low estimates a pair of flow field and position-wise
scale map between the non-key frame and its preceding key frame. The re-
sulted flow field is used to propagate appearance feature of the preceding
key frame to the current timestamp, which is then refined by the scale map
via element-wise multiplication (Figure 3.1 (b)).

As new frames continue to arrive in a streaming video, we sample a new
key frame for every temporal stride Tmem→k. Two steps are taken at key
frames (except for the initial one). First, appearance features are extracted
by N f eat. They are then fused with those from the past key frames (mem-
ory features) via N f low and the aggregation sub-network Naggr (Fig. 3.1 (c)).
Note that regardless of the way action appearances are obtained (extracted by
N f eat, warped via motion, or aggregated in time), the resulting features will
be fed to the detection sub-network Ndet to obtain action bounding boxes and
class-specific confidence scores. The fused feature is not only used for detec-
tion but also will be cached as the updated memory for the subsequent key
frame.

Further technical details and demonstrations of ACDnet are elaborated in
the following sections.

3.3.1 Feature approximation by motion guidance

In a video, the appearance content varies slowly over consecutive frames.
This phenomenon is even more prominently reflected in the correspond-
ing CNN feature maps which capture high-level semantics. Intuitively, the
shared appearances among neighboring frames can help to propagate essen-
tial information for a given task. The practice of propagation by Zhu et al.
[99] has established success to enhance object detection efficiency in videos,
which motivates our feature approximation module.

Within our feature approximation paradigm, the heavier feature extrac-
tion sub-network N f eat only operates on a coarse set of key frames during
inference. The features of successive non-key frames are obtained by spa-
tially transforming those from their preceding key frames via two-channel
flow fields. The workflow can be summarized by the following equations.
Let Mi→k be the two-channel flow field capturing relative motion (horizontal
and vertical direction) from the current frame Ii to its previous key frame Ik.

3.3. Overview: flow-guided detection framework 29

FIGURE 3.1: Illustration of ACDnet’s inference pipeline. (a) At the initial frame,
features are obtained from the feature extraction sub-network (N f eat). (b) For non-
key frames (dense), the flow sub-network (N f low) estimates a pair of flow field and
position-wise scale map between any non-key frame and its preceding key frame.
The resulted flow field is used to propagate appearance feature, which is then re-
fined by the scale map via element-wise multiplication. (c) At key frames (sparse),
new features are extracted. They are then aggregated with those from the past key
frames (memory features) via N f low and the aggregation sub-network (Naggr). The
fused features will be used for detection (Ndet) and also passed along as the updated
memory.

Then, feature approximation (also referred as feature propagation) is realized
according to inverse warping:

Fi = W(Fk, Mi→k), (3.1)

where Fk is the key frame feature, and Fi is the newly warped feature cor-
responding to Ii. Here, W denotes the inverse warping operation to sam-
ple the correct key frame features and assign them to the warped ones. In-
verse warping is necessary to ensure every location p at the warped feature
can be projected back to a point p + ∆p at the key frame feature, where
∆p = Mi→k(p). Concretely, the inverse warping operation W is performed
as:

f c
i (pi) = ∑

pk

G(pk, pi + ∆p) f c
k (pk). (3.2)

In Equation 3.2, f c
i and f c

k denote the cth channel of feature Fi and Fk, re-
spectively; G denotes the bilinear interpolation kernel. Every location pi in
the warped feature map undergoes this warping scheme to sample features
from key frames for each feature channel c independently. The warping op-
eration is much lighter compared to layers of convolution resided in N f eat.

30
Chapter 3. ACDnet: Action detection framework based on flow-guided

feature approximation and memory aggregation

Consequently, by applying feature approximation on the dense set of non-
key frames, computation is greatly reduced.

Previous works on action-related tasks mostly acquire motion informa-
tion from traditional optical flow estimation methods [100]. These methods
are generally time-consuming; computing optical flow in such a way inher-
ently imposes a major speed bottleneck. On the other hand, pre-computing
optical flow prohibits online detection and incurs additional storage space.
Different from precedent approaches, ACDnet integrates a fast flow estima-
tion sub-network, N f low, to predict flow fields. In our case, optical flow
serves to spatially transform CNN features; it does not need to capture fine-
grained motion details and has the same spatial resolution as the target fea-
ture to be warped. Using such a learning-based flow estimator also allows it
to be jointly trained with all other sub-networks specific to the task of action
detection.

In the proposed detector, the flow sub-network takes a pair of frames (Ik,
Ii) as input and generates a pair of motion field and position-wise scale map.
Given that H, W, and C denote height, width and channel of Fk, the produced
flow field Mi→k has dimension H × W × 2 (encoding horizontal and vertical
offsets); the scale map has dimension H × W × C. Both motion-related ten-
sors have spatial dimensions matching that of Fk to be warped.

After the inverse warping described by Equation 3.1, the warped feature
Fi is refined by multiplying the scale map in an element-wise fashion. Any
Fk and Fi would be fed to the shared detection sub-network, Ndet, to regress
action-specific bounding boxes. The above workflow is illustrated in Figure
3.1 (a) and (b).

3.3.2 Memory feature aggregation

Propagating features across frames in time reduces the computational cost
associated with bottom-up feature extraction. However, since most features
are now approximated, they are heavily dependent on the quality of the
precedent key frame features. Moreover, the temporal receptive field of any
frame’s feature remains as 1, which lacks temporal cues to distinguish ac-
tions. To address both aforementioned limitations, we propose the memory
aggregation module as inspired by [101] to encode video representation by
accumulating multi-frame context.

Given incoming video frames, the core of memory aggregation is to rein-
force features of the target frame by recursively incorporating discriminating

3.3. Overview: flow-guided detection framework 31

context from the past. This allows implicit spatiotemporal modeling without
explicitly extracting motion features. In addition, in cases when the current
frame is deteriorated, an action can still be inferred with the supportive vi-
sual cues from memory. Figure 3.1 (c) gives an example when such memory
aggregation could be useful (when the actor is temporally not visible in the
scene). In practice, memory aggregation shares the same warping operation
used for feature approximation. Specifically, ACDnet takes a sparse and re-
cursive approach to aggregate memory features only at key frames, due to
similar appearances shared among nearby frames. Given two succeeding
key frames Ik1 and Ik2, where Ik2 is the more recent one in time, memory
aggregation is depicted in Equation 3.3:

Fk2_aggregated = wk1 ⊗ F′
k1 + wk2 ⊗ Fk2, (3.3)

where F′
k1 = W(Fk1, Mk2→k1) corresponds to the warped feature of Ik1 to

spatially align its position with that of Ik2 according to their relative motion.
The position-wise weights wk1 and wk2 both have the same height and width
as F′

k1 and Fk2 (⊗ denotes element-wise multiplication). These weights are
normalized and determine the importance of memory feature (F′

k1) at each
location p with respect to the target frame feature map (Fk2), i.e., wk1(p) +
wk2(p) = 1. In our design, wk1 and wk2 are shared by all the channels of their
respective features.

In detail, the weights wk1 and wk2 are adaptively calculated based on the
similarity of memory and target features. We estimate feature similarity by
first projecting them into an embedding space via convolutional layers, and
then computing the cosine similarity between the embedded features. Fi-
nally at the current key frame, the weighted sum of the memory and current
features will be fed to the detection sub-network and also passed along as
the new memory.

3.3.3 Training ACDnet

ACDnet follows a three-frame training scheme as depicted in Figure 3.2.
From each training mini-batch, frame Ii and two precedent video frames (Ik

and Imem) are sampled. The features of Ik and Imem simulate the key frame
and memory features, respectively. To select three frames for training, we
randomize the offset between Ii and Ik between 0 and Tk→i while fixing the
offset between Ik and Imem at Tmem→k.

32
Chapter 3. ACDnet: Action detection framework based on flow-guided

feature approximation and memory aggregation

FIGURE 3.2: ACDnet’s training procedure. Each mini-batch consists of three frames
(Imem, Ik, and Ii) and the groudtruth of Ii.

Both feature maps Fmem and Fk are first extracted from Imem and Ik, respec-
tively by N f eat. Two sets of flow fields, namely, the relative motion between
Ik-Imem, and Ii-Ik are estimated using N f low. The former flow is used to prop-
agate Fmem to Fk to simulate the occurrence of memory feature aggregation
following Equation 3.3. Then, the fused feature is warped with the second
flow (simulating feature approximation) following Equation 3.1, which will
be the target feature map upon which Ndet conducts action detection. Un-
der this training paradigm, ACDnet leverages information from Imem and Ik

while predicting action instances on Ii; in other words, only the groundtruth
of Ii is taken into account. The loss incurred by Ndet is back-propagated to
update all sub-networks of ACDnet. Specifically, ACDnet adopts SSD; as a
result, its training objective in terms of the classification and regression loss
follows that of Liu et al. [62].

3.3.4 Adaptation for multi-scale detection

The feature approximation and aggregation modules are designed to be generic
and can be plugged into a wide range of detectors. In our design, ACDnet
integrates SSD to fulfill our global objective of high-speed action detection
potentially for embedded vision systems. In particular, the SSD300 model is
chosen due to its superior inference speed.

As mentioned in Section 3.2, SSD progressively appends a set of auxiliary
convolutional layers after the VGG16 base network to learn and extract ob-
ject representations at multiple scales. The creation of multiple feature maps
allows the detector to infer objects of various sizes. Consequently, adopting
such a multi-scale framework in ACDnet requires feature approximation and
memory aggregation to be handled for features at all scales.

3.4. Experimental validation 33

FIGURE 3.3: ACDnet’s flow estimation sub-network adapted for multi-scale feature
approximation and aggregation.

To carry out multi-level feature approximation, we duplicate N f low’s flow
prediction layer into several branches. The number of branches matches that
of the feature maps upon which detection will take place. Prior to flow pre-
diction, each branch’s feature tensor is also progressively resized via average
pooling. Finally, a pair of 2-channel flow field and scale map is reconstructed
by every branch, each being used to handle feature approximation and ag-
gregation at a designated scale level (refer to Figure 3.3).

To cope with multi-level feature approximation and aggregation, Equa-
tion 3.1 and 3.3 are also generalized to execute at each feature level indepen-
dently. Note that the standard SSD300 applies detection at six feature scales.
However, we only utilize the first five features, as the dimension of the last
feature map becomes a 1D vector resulting from progressive resizing, which
is no longer feasible for feature approximation governed by 2D spatial warp-
ing.

3.4 Experimental validation

The proposed detection framework has been evaluated on UCF-24 and JHMDB-
21 datasets in terms of accuracy, efficiency, and robustness over several net-
work configurations. The standard frame-level mean Average Precision (frame-
mAP) and frame-per-second (FPS) have been used as the evaluation met-
rics. Specifically, we measure the FPS of the complete detection pipeline,
including data loading and model inference using mini-batch size of 1. The

34
Chapter 3. ACDnet: Action detection framework based on flow-guided

feature approximation and memory aggregation

Intersection-over-Union threshold is set to 0.5 throughout all experiments.
For brevity, we interchangeably refer to feature approximation and memory
feature aggregation as FA and MA when presenting their results.

3.4.1 Implementation details

Network architectures. ACDnet (implemented in MXNet [102]) incorporates
the following sub-networks: SSD300, FlowNet, and feature embedding. Our
feature embedding sub-network comprises five branches for measuring fea-
ture similarity at five different scales. Each embedding branch has a bottle-
neck design of three 1 × 1 convolutional layers interleaved with ReLU non-
linearity: featl

channel/2, featl
channel/2, and featl

channel ×2, where the number
of filters varies according to the number of channels at feature level l.

As addressed previously, our FlowNet is modified to also generate five
sets of flow fields and position-wise scale maps, each pair being used for
warping and refining designated features. We initialize the weights of the
first two branches of flow generation layers using FlowNet’s pre-trained wei-
ghts. Considering that the remaining three flow outputs are spatially much
smaller than that of the original FlowNet, we randomly initialize the weights
of those branches.

Training and evaluation. All input frames are resized to 300 × 300 for
training and inference. ACDnet is trained using the stochastic gradient de-
scent optimizer. To address data imbalance among different actions (due to
varied sequence length), from each training video clip of UCF-24, 15 frames
spanning the whole video are evenly sampled as the training set. Since
video clips of JHMDB-21 are generally short (i.e., maximum of 40 frames),
we evenly sample 10 frames from each clip for training. Specifically, both
temporal strides Tmem→k and Tk→i are set to 10 during training. These chosen
values correspond to the key frame interval used during inference, which is
also fixed at 10 in our experiments unless specified.

We apply different hyperparameters on the two datasets. Specifically,
UCF-24 is trained for 100K iterations; the learning rate is initialized as 5e−4

and reduced by a factor of 10 after the 80Kth and 90Kth iteration. Weights of
VGG16’s first two convolutional blocks are frozen. For JHMDB-21, due to its
smaller training and testing size, we observe that detection accuracy tends
to fluctuate significantly between successive epochs. Hence, we empirically
train this dataset for 20K iterations with learning rate initialized as 4e−4 and

3.4. Experimental validation 35

TABLE 3.1: ACDnet’s frame-mAP performances under differ-
ent architectural configurations.

ACDnet (a) (b) (c) (d) (e)
SSD ✓ ✓ ✓ ✓ ✓

FA ✓ ✓ ✓ ✓

Scale map ✓ ✓

MA ✓ ✓

Frame-mAP
UCF-24 67.32 65.84 67.23 68.06 70.92
JHMDB-21 47.90 46.65 46.69 49.37 49.53

reduced by a factor of 2 after the 8Kth and 16Kth iteration. During its train-
ing, the first three convolutional blocks of VGG16 are frozen. In addition, all
layers of the modified FlowNet until the five flow generation branches are
frozen to further reduce the risk of overfitting.

All sub-networks are trained jointly on an NVIDIA Quadro P6000 GPU
using a training mini-batch size of 8. For the rest of hyperparameters and
data augmentation setups, we follow the same configurations as those in the
original SSD. The weights of VGG16 and FlowNet are pre-trained using Im-
ageNet and the Flying Chair dataset in that order.

3.4.2 Impact of FA and MA

We first assess ACDnet’s frame-mAP performance over various architectural
configurations, which are reported in Table 3.1. In this experiment, the base-
line method (a) consisting of only the stand-alone SSD is first established and
compared against models incorporating FA/MA modules (b-d).

From the results of both datasets, we observe a consistent decrease in ac-
curacy (∼ 1.5 frame-AP) when feature approximation (b) is applied to replace
the bottom-up per-frame extraction. The accuracy drop can be compensated
by the addition of memory aggregation (d, e), which exceeds the accuracy of
the stand-alone SSD. Figure 3.4 shows some examples of how the memory
aggregation module improves detection by accumulating useful visual cues.
Overall, we remark that aggregating multiple-frame features over time, even
in a sparse manner, improves models’ abilities to more confidently discrim-
inate among different actions. In addition, we examine the effect of having
separate branches of position-wise scale maps in N f low, which aim to aug-
ment visual features with motion information. Our results (b vs. c and d vs.

36
Chapter 3. ACDnet: Action detection framework based on flow-guided

feature approximation and memory aggregation

FIGURE 3.4: Examples where ACDnet (FA, MA) improves the baseline SSD.
Green/Red boxes correspond to correct/incorrect detection, respectively. Memory
aggregation helps to accumulate useful visual cues over time and enhance detection
consistency. For instance, ACDnet correctly and consistently detects SoccerJuggling
in the bottom row despite the fact that strong visual cues pertinent to the action are
present only at the beginning.

e) indicate that such refinement mildly improves detection accuracy. As elab-
orated in Figure 3.5, the scale maps serve as implicit attention maps which
reinforce feature responses associated with moving actors.

Notably, even though ACDnet benefits from FA and MA modules as re-
flected in both datasets, the effect of memory aggregation appears less promi-
nent in JHMDB-21. This could result from the fact that each video clip in
JHMDB-21 is much shorter (40 frames or fewer). As MA is performed sparsely
at every 10th frame, its impact is limited to 2-3 aggregation per clip. Fur-
thermore, we observe that motions in several JHMDB-21 clips are relatively
small, and that key frames far apart still largely resemble. We suspect that
in such sequences, memory features do not carry enough contextual variety
over time to help distinguish among actions.

3.4. Experimental validation 37

FIGURE 3.5: Position-wise scale maps produced by our modified FlowNet. The
scale maps reinforce activation associated with moving actors. For example, filter 3
and 56 (TOP) capture visual cues of the actor, and are up-scaled by corresponding
motion scale maps (BOTTOM) which express high responses near moving parts. On
the other hand, scale map 49 does not significantly alter filter 49’s activation that
responds to background cues.

3.4.3 Efficiency analysis

Along with accuracy assessment, ACDnet is further evaluated in terms of its
runtime performance and number of parameters under various configura-
tions. Here, we conduct this part of the experiment with UCF-24 and assume
the use of scale map refinement when feature warping takes place.

As shown in Table 3.2, ACDnet (SSD, FA, MA) outperforms the stand-
alone SSD in both speed and accuracy. This suggests that it is crucial to
exploit intra-frame redundancy and that long-range memory fusion is effec-
tive for collecting more discriminating features. Regarding the number of re-
quired parameters, the increase in ACDnet (SSD, FA) from stand-alone SSD
is associated with the addition of FlowNet, which can be replaced by much
lighter architectures in the future. Likewise, the increase with the addition of
MA module corresponds to the extra embedding layers for measuring fea-
ture similarity at multiple scales. In terms of runtime, the speed drop with
MA is incurred by the additional operations at key frames (except for the
first one), where flow estimation, feature extraction, similarity measure and
aggregation all take place.

To examine how our generic architecture performs on a different detec-
tion framework, we conduct the same experiments while integrating the R-
FCN detector [59] with ACDnet. The results are presented in the bottom part
of Table 3.2. Different from SSD, R-FCN is a two-stage detector which makes
use of a intermediate region proposal network to first select feature regions

38
Chapter 3. ACDnet: Action detection framework based on flow-guided

feature approximation and memory aggregation

TABLE 3.2: ACDnet’s performances under different configurations and detector
backbones (on UCF-24).

Frame-mAP FPS # param.
SSD 67.32 70 26.8M
ACDnet (SSD, FA) 67.23 85 50.8M
ACDnet (SSD, FA, MA) 70.92 75 57M
R-FCN 68.2 15 60M
ACDnet (R-FCN, FA) 66.19 34 85.7M
ACDnet (R-FCN, FA, MA) 68.31 32 89.6M

more likely to contain objects. One can observe that even though the run-
time performance of R-FCN is significantly lower (15 FPS), the improvement
brought by feature approximation is much more evident (34 FPS, which is
2.6 times faster) as compared to that in SSD (1.2 times faster). This is due
to R-FCN leveraging the much deeper ResNet101 backbone and larger input
frame size (800 × 600) for detection, incurring more time to extract feature
from scratch. Furthermore, the number of additional parameter needed to
carry out memory aggregation is less too for R-FCN, as it is designed to
perform prediction on a single-scale feature map (i.e., only one branch is
needed for the embedding and flow sub-networks). Meanwhile, both detec-
tion frameworks obtain similar accuracy under most configurations except
when including memory aggregation, where the SSD variant outperforms
the R-FCN by 2.61 mAP.

Overall, we perceive a more prominent efficiency gain when the feature
approximation and memory aggregation modules are integrated with the
computationally more costly R-FCN backbone. However, when taking into
account runtime, memory consumption, and accuracy as a whole, our results
still strongly favor the SSD-based ACDnet.

3.4.4 Impact of varied temporal strides at train/test time

Concerning the generalization ability of our ACDnet models trained with
fixed temporal strides Tmem→k and Tk→i (at 10), we evaluate their perfor-
mances under various key frame intervals (k) during inference. Such an ex-
perimental setup allows us to understand how robustly ACDnet copes with
video streams having unexpected movement or varied frame rates. Figure
3.6 shows the frame-mAP results on both datasets where k ranges from 2 to
20.

In the case for UCF-24, both our models (with and without MA) retain
their frame-mAP when k ≤ 10 (reaching maximum at k = 6). Beyond k = 10,

3.4. Experimental validation 39

2 4 6 8 10 12 14 16 18 20
60

65

70

75
F

-m
A

P
 (

U
C

F
-2

4
)

2 4 6 8 10 12 14 16 18 20

Key frame interval (k)

40

45

50

F
-m

A
P

 (
J
H

M
D

B
-2

1
)

ACDnet (FA, MA)

ACDnet (FA)

SSD

FIGURE 3.6: Robustness evaluation: ACDnet’s Frame-mAP under varied key frame
intervals. The key frame interval is adjusted only at test time.

we observe a steady drop in accuracy, which can be explained by the fact that
flow fields’ ability to correctly encode pixel correspondence is compromised
under large motions. Similar behaviors can be seen on JHMDB-21. Note that
even when k is large, ACDnet with MA still retains decent accuracy which
outperforms or is comparable with the best scores of other configurations,
reflecting its adaptive capacity toward certain degree of motion variations in
videos.

We conduct runtime analysis under the same setting as the above one.
The results are shown in Figure 3.7. It can be observed that ACDnet (FA,
MA) exceeds the speed of SSD starting around k = 8, while the FA-only
model is consistently faster. In theory, larger key frame intervals intuitively
should only lead to further speed boost, as higher ratio of frame features
are approximated. Interestingly, we observe that this pattern is neatly pre-
sented when k ≤ 10. After that, the runtime of the examined models begin
to saturate. This phenomenon is associated with two factors. On the one
hand, as key frame interval continues to increase, the ratio between the num-
ber of key and non-key frames alters more slowly in a video. On the other

40
Chapter 3. ACDnet: Action detection framework based on flow-guided

feature approximation and memory aggregation

2 4 6 8 10 12 14 16 18 20
40

50

60

70

80

90

F
P

S
 (

U
C

F
-2

4
)

2 4 6 8 10 12 14 16 18 20

Key frame interval (k)

40

50

60

70

80

90

F
P

S
 (

J
H

M
D

B
-2

1
)

ACDnet (FA, MA)

ACDnet (FA)

SSD

FIGURE 3.7: Robustness evaluation: ACDnet’s FPS under varied key frame inter-
vals. The key frame interval is adjusted only at test time.

hand, larger key frame intervals introduce more motion which could com-
promise the quality of approximated features. This results in an increase of
low-confidence predictions, incurring a longer duration for SSD to remove
via NMS post-processing.

3.4.5 Global detection performance and comparison

To demonstrate the strength of our detection framework, we compare the full
ACDnet (including FA and MA) against several state-of-the-art methods as
presented in Table 3.3. Since the proposed detector targets lightweight ac-
tion inference for realistic deployment (rather than solely obtaining superior
accuracy), only top-performing methods which highlight both accuracy and
detection speed are considered for fair comparison.

Alongside detection performance, we briefly summarize each method’s
architectural and input configuration in Table 3.4 to better visualize distinc-
tions between ACDnet and the others. Under this table, methods such as
ACT, STEP, and MOC perform clip-based detection. In other words, they
take clips of multiple RGB frames and predict action tubelets (i.e., sequence

3.4. Experimental validation 41

TABLE 3.3: State-of-the-art comparison in frame-mAP and runtime (FPS).

Method Frame-mAP@0.5 FPSUCF-24 JHMDB-21
ROAD-RTF[73] 65.7 −− 28

ROAD-AF 68.3 −−
ACT[75] 69.5 65.7 25

Two-stream YOLO[103] 71.7 −− 25
STEP[97] 75 −− 21

YOWO-Res[85] 80.4 74.4 34
YOWO-Shuffle 71.4 55.3 −−
YOWO-Mobile 66.6 52.5 −−
MOC-RGB[83] 73.1 −− 53

MOC-TS 78.0 70..7 25
ACDnet 70.9 49.5 75

TABLE 3.4: State-of-the-art comparison in architectural and input configurations.
*For any key frame, ACDnet fuses the precedent key frame feature from the past
with the current one (considered 2RGB implicitly). For any non-key frame, its fea-
ture is approximated based on the preceding key frame feature (considered 1RGB).
In the table, "AF", "RTF", and "TS" denote accurate flow, real-time flow and two-
stream CNN architecture, respectively.

Method +2nd-stream OF +3D CNN No. input frames : det

ROAD-RTF[73] Kroeger[104] ✗ (1RGB+1OF) : 1
ROAD-AF Brox[100] ✗ (1RGB+1OF) : 1
ACT[75] Brox ✗ (6RGB+30OF) : 6

YOLO-TS[103] FlowNet2[33] ✗ (1RGB+1OF) : 1
STEP[97] Brox 3x3D Conv. layers (6RGB+30OF) : 6

YOWO-Res[85] ✗ 3DResNet101 16RGB : 1
YOWO-Shuffle ✗ 3DShuffleNetV2 16RGB : 1
YOWO-Mobile ✗ 3DMobileNetV2 16RGB : 1
MOC-RGB[83] ✗ ✗ 7RGB : 7

MOC-TS Brox ✗ (7RGB+35OF) : 7
ACDnet ✗ ✗ 2 (1) RGB* : 1

42
Chapter 3. ACDnet: Action detection framework based on flow-guided

feature approximation and memory aggregation

FIGURE 3.8: Examples of false detection in JHMDB-21. (a) Correct action: Jump.
(b) Correct action: Sit. (c). Correct action: Stand; ACDnet incorrectly predicts two
actions (Stand and Run).

of bounding boxes) spanning these RGB frames. In opposition to clip-based
detection, methods such as YOWO gather supportive contextual cues from
multiple frames to augment the target one. Along with RGB frames, sin-
gle/stacked optical flow frames ("OF") are optionally fed to a secondary CNN
and fused with the appearance information.

As shown in Table 3.3, ACDnet largely outperforms the other methods
in terms of speed. This is ascribed to the feature approximation module
and our less complex architectural configuration overall. Methods such as
ROAD, ACT, STEP, and MOC-TS all adopt the two-stream CNN framework,
which depends on additional optical flow estimation and motion feature ex-
traction (from a separate CNN). In fact, producing optical flow via Brox [100]
or FlowNet2 [33] is particularly time-consuming; as a result, most methods
employing the flow stream do not take into account optical flow acquisition
when measuring runtime (except for ROAD). In contrast, ACDnet only en-
codes low-resolution optical flow for abstract feature warping, lifting off the
need to compute fine-grained flow fields nor two-stream CNN inference.
In a similar spirit, YOWO models based on 3D CNNs also prove effective
to model actions by accumulating spatiotemporal cues over 16 consecutive
frames. However, such an approach inevitably raises the processing cost and
time; not only from the model inference aspect, but also data loading (which
is excluded in their reported speed performance). It is also worth men-
tioning that ACDnet achieves comparable accuracy when YOWO employs
lightweight 3D CNN architectures (YOWO-Shuffle and YOWO-Mobile), im-
plying the necessity of deeper 3D CNN architectures to effectively reason
spatiotemporal context.

In terms of accuracy, ACDnet scores competitively on UCF-24. On the
other hand, its performance on JHMDB-21 is less impressive compared to
the other methods. As opposed to UCF-24, whose classes of sports activities

3.5. Summary and limitations 43

are visually more distinctive at each frame, JHMDB-21 contains more classes
sharing ambiguous visual context (for example, Sit v.s. Stand, and Run v.s.
Walk, etc.). Figure 3.8 demonstrates a few falsely detected examples by our
model which result in lower frame-mAP in JHMDB-21. Such ambiguity in
the scene is challenging even for human to confidently infer the correct ac-
tion unless viewing consecutive frames. As shown in column 4 of Table 3.3,
ACDnet applies detection on frames far fewer than other methods, which
limits its ability to model detailed variations of visual cues over time. In addi-
tion, JHMDB-21 consists of short clips for which sparse memory aggregation
can only take place minimally. The above factors lead to ACDnet’s less sat-
isfactory accuracy on JHMDB-21. This visual ambiguity could generally be
mitigated when examining more frames at once (i.e., via clip-based/tubelet-
based methods).

3.5 Summary and limitations

Summary. In this chapter, we present ACDnet, a compact action detection
network with real-time capability. By exploiting temporal coherence among
video frames, it utilizes feature approximation on frames with similar visual
appearances, which significantly improves detection efficiency. Additionally,
a memory aggregation module is introduced to fuse multi-frame features, en-
hancing detection stability and accuracy. The combination of the two mod-
ules and SSD implicitly reasons temporal context in an inexpensive manner.
ACDnet demonstrates real-time detection (up to 75 FPS) on public bench-
marks while retaining decent accuracy against other best performers at far
less complex settings, making it more appealing to edge device deployment
in practical applications.

Concretely, our contributions of this work is three-fold:

• We propose an integrated detection framework, ACDnet, to address
both detection efficiency and accuracy. It combines feature approxi-
mation and memory aggregation modules, leading to improvement in
both aspects.

• Our generalized framework allows for smooth integration with state-
of-the-art detectors. When incorporated with SSD (single shot detec-
tor), ACDnet could reason spatio-temporal context well over real-time,
more appealing to resource-constrained devices.

44
Chapter 3. ACDnet: Action detection framework based on flow-guided

feature approximation and memory aggregation

• We conduct detailed assessment in terms of our models’ accuracy, ef-
ficiency, robustness and qualitative analysis on public action datasets
UCF-24 and JHMDB-21.

Limitations. The proposed action detector produces remarkable runtime
performance compared to the previous state-of-the-arts while retaining de-
cent accuracy in scene-related actions (e.g., UCF-24). Nevertheless, it still
suffers from limitations, which are described below.

First and foremost, ACDnet localizes action instances only at the frame-
level. In order to fully achieve spatiotemporal localization for any given ac-
tion in a video, proposals in the form of action tubes need to be constructed
from the frame-wise detection. Our proposed method is currently not equipped
to build action tubes on top of its detection results, which is also reflected in
the lack of video-mAP assessment for ACDnet.

Second, ACDnet captures limited temporal cues from the memory aggre-
gation module which recursively accumulates visual cues from past frames.
Our inclusion of optical flow only serves to carry out feature warping, thus
contributing minimally to reason action-specific pattern. Hence, the detec-
tor is challenged to perform effective temporal reasoning when coping with
actions embedded with weak appearance context (e.g., JHMDB-21).

Third, even though the proposed feature approximation module aims to
raise detection efficiency by reducing the bottle-top feature extraction in most
video frames, attempting to detect action instances one frame at a time is in-
trinsically inefficient and redundant (not to mention the need for an addi-
tional optical flow module).

Looking ahead. The above-mentioned limitations provide us several in-
sights to approach the action detection problem in a different manner. In the
next chapter, we propose to overcome all the above limitations with the help
of a tubelet-based action detection framework and coarse detection paradigm,
along with an online detection linking algorithm (addressing limitation 2, 3,
and 1, respectively). We will cover these aspects in detail in the next chapter.

45

Chapter 4

TEDdet: Temporal feature
exchange-difference network

4.1 Introduction

As established in previous chapters, the task of spatiotemporal action local-
ization concerns constructing space-time action proposals to capture indi-
vidual action instances in videos. The problem is inherently challenging ow-
ing to actions’ inter-class variety and intra-class ambiguity, as well as action
tubes’ deformable nature in time. It becomes even more complex when de-
tection needs to take place in a real-time and continuous (online) manner on
streaming videos, which are considered crucial criteria in a host of scenarios
such as unmanned surveillance and human-robot interaction.

Toward the end of Chapter 3, we highlight the limitations of our first ac-
tion detector, ACDnet. First, frame-wise bounding-box results need to follow
a linking strategy in order to formulate long-range action proposals for spa-
tiotemporal action localization, which is missing from ACDnet. Second, we
observe that the single-frame approach lacks sufficient feature-level interac-
tions and modeling capacity to effectively reason temporal information em-
bedded in action sequences. Consequently, the accuracy of ACDnet remains
low when coping with temporal-related actions (e.g., JHMDB-21), making
the detector incompatible with real-world applications.

In this chapter, we devise a new online detection framework to overcome
the above limitations. First, instead of the single-frame approach, we concur-
rently process a series of video frames and predict action tubelets (i.e., a se-
quence of bounding boxes of the same action category) spanning the input se-
quence. This allows our detector to learn and infer from video-level represen-
tations across successive frames. Specifically, we integrate two lightweight
temporal modules on top of multi-frame features to aggregate actions’ con-
text and model their movement over time. The above are jointly performed

46 Chapter 4. TEDdet: Temporal feature exchange-difference network

on cooperative detector branches derived from the CenterNet detector [65]
(as opposed to the SSD detector used in the previous chapter). Lastly, an on-
line tubelet linking algorithm is introduced to associate detection results in
a timely manner for action tube generation and spatiotemporal action local-
ization.

The proposed action tubelet detector directly operates on a single RGB
stream and does not depend on 3D CNN nor optical flow. We refer to it as
the Temporal feature Exchange and Difference action detector, or TEDdet.
Throughout the chapter, we validate TEDdet’s design choice via a series of
experimentation and show that it achieves competitive accuracy at an un-
precedented speed (110 FPS).

Related publication. The work presented in this chapter is published in
the IEEE Access journal, 2021. The primary investigator in that piece is also
the author of this manuscript.

Outline. The rest of the chapter is organized as follows. In Section 4.2, we
first evaluate some of the less-desirable qualities of SSD for tubelet adapta-
tion. The foreseen drawback can be alleviated by the anchor-free CenterNet,
which is briefly reviewed. Next, we present an overview of our action tubelet
detector and its two temporal modeling sub-modules in Section 4.3. We then
describe the integration of our temporal sub-modules with the cooperative
detector branches derived from CenterNet to form TEDdet’s complete detec-
tion framework, in Section 4.4. In the same section, we also elaborate how
TEDdet carries out online tube generation at test time. We report various ex-
perimental validation (quantitative, qualitative, multiple evaluation metrics,
etc.) of the proposed detector in Section 4.5. Finally in Section 4.6, the chapter
is concluded by a summary of TEDdet and its limitations.

4.2 Review on CenterNet

Limitations of SSD. Even though SSD is widely employed for spatiotempo-
ral action localization thanks to its well-balanced accuracy and speed perfor-
mance, its detection workflow heavily revolves around pre-defined anchors.
More specifically, localizing objects depends on classifying and regressing
over numerous anchors densely sampled across every location of the image
feature. The anchor-based paradigm not only incurs complicated IoU calcu-
lation when matching anchors and groundtruth objects during training, but
also generates an enormous amount of highly-overlapped bounding boxes to

4.2. Review on CenterNet 47

be filtered by the non-maximal suppression (NMS) algorithm. Often, achiev-
ing precise localization on specific datasets also hinges on heuristic anchor
design and placement, hampering the generalization ability of the detectors.

Extending SSD for tubelet detection has been realized and proven suc-
cessful [75][77][84]. However, we argue that constructing tubelets from an
anchor-based backbone is sub-optimal, especially when efficiency is of pri-
ority. In most existing tubelet detectors, action tubelets are regressed from a
dense collection of 3D cuboids created by expanding 2D image-space anchors
in the temporal dimension. One can infer the escalating computational com-
plexity associated with calculating IoUs. For example, any positive cuboid
sample used for training is determined by first calculating the mean IoU be-
tween all its enclosed anchors and groundtruth action tubes. Similarly at test
time, the NMS filtering now concerns computing the IoUs among tubelets
in order to remove those that are densely overlapped (rather than individ-
ual bounding boxes in image-space). In consequence, we hypothesize that
a detector free of anchor operations is conceptually easier when adapted for
tubelet detection.

CenterNet. Unlike mainstream CNN-based detectors which infer objects
from pre-defined anchors, CenterNet represents objects by their bounding
boxes’ center points, converting detection to a keypoint estimation problem.
Concretely, given an input RGB frame I ∈ R3×H×W where H and W corre-
spond to the height and width of the input image, CenterNet extracts high-
resolution feature maps from an encoder-decoder architecture: a designated
2D CNN backbone followed by an up-scaling decoder block. The resulted
feature F ∈ RC× H

R ×W
R , where C and R denote the feature channel and down-

sampling ratio, is used to predict object centers in the form of a multi-channel
keypoint heatmap. Within this heatmap of dimension cls × H

R × W
R where cls

corresponds to the number of object classes, each peak represents a poten-
tial object center of a certain class. Meanwhile, detected centers allow ob-
jects’ bounding boxes to be regressed directly from the corresponding loca-
tions in image feature F. In practice, keypoint estimation and size regression
are handled by two separate branches (commonly recognized as Center and
Box branch, respectively). As each feature location is no longer manifested
by overlapping anchors, CenterNet’s detection pipeline mainly involves the
feed-forward inference without the need for the exhaustive NMS filtering to
remove redundant detection.

The notion of keypoint estimation is extended in our action tubelet de-
tector to capture moving action instances’ centers over time, which will be

48 Chapter 4. TEDdet: Temporal feature exchange-difference network

elaborated in the remaining of this chapter.

4.3 Overview of TEDdet and temporal sub-modules

4.3.1 Overview

The design of TEDdet builds upon architectural components of CenterNet
and two temporal modeling modules, namely, the Temporal Feature Exchange
(TE) and Temporal Feature Difference (TD) modules. The TE module per-
forms partial feature exchange among neighboring frames, adaptively ag-
gregating supportive and contextual information from adjacent frames to the
target one on which actions will be detected. While TE induces interaction
among multiple frame features, TD serves to approximate relative motion
based on feature-level displacement to facilitate tracking actors’ location shift
over the input sequence. The full architecture of TEDdet is illustrated in Fig-
ure 4.1.

Given a series of T frames with a temporal stride δ, TEDdet leverages their
spatiotemporal features aggregated by TE to categorize and localize action
instances’ centers on the target frame (Center branch). To model movement
of actions, we exploit stacked pair-wise motions produced by TD to estimate
actions’ trajectories and refine their center locations over the input sequence
(Trajectory branch). Finally, each action instance’s bounding box on any of
the input frame is regressed at the predicted center location of its feature
map (Box branch). The above sub-tasks are carried out cooperatively by their
respective detector branches.

Combining our coarse-detection scheme (when δ > 1) and online tube
generation algorithm, TEDdet is capable of proposing action tubes from on-
line video streams at high localization precision in real-time. We will delve
into the technical details of each build block in the following sections.

4.3.2 Temporal Feature Exchange: multi-frame feature aggre-

gation

It has been established that even though 3D CNNs excel to capture rich
spatiotemporal context over successive frames, they tremendously raise the
computational cost and training complexity. Alternatively, we present the
Temporal Feature Exchange (TE) module to facilitate modeling action-specific
pattern on top of 2D CNN. Given a set of successive video frames, the TE

4.3. Overview of TEDdet and temporal sub-modules 49

FIGURE 4.1: Overview of TEDdet. Input to the model is a series of T RGB frames
(T = 3 in this figure) with temporal stride δ. Similar to CenterNet, TEDdet’s back-
bone consists of ResNet18 followed by a decoder block (for adaptive up-sampling).
TEDdet’s detector head comprises three branches. The TE and TD modules are in-
serted prior to Center and Trajectory branch, respectively for action center prediction
on the key frame and trajectory modeling over the input sequence. Box branch re-
gresses actions’ spatial extent independently on each input frame. The outputs of
TEDdet are coarse tubelets (according to δ). Note that we also insert an additional
TE module between ResNet18 and the decoder block (omitted in this figure) to en-
dow feature interaction upon up-sampling.

50 Chapter 4. TEDdet: Temporal feature exchange-difference network

FIGURE 4.2: Architecture of Temporal Feature Exchange module.
The left displays the workflow of TE, while its effect on features is
illustrated on the right. The grids in white represent features filled
with zeros (due to zero-padding at temporal borders).

module aggregates supportive context among nearby frames by partially ex-
changing their spatial features in a channel-wise manner. The resulting fea-
tures have now interacted with those at different time steps; therefore, any
subsequent 2D convolution can implicitly reason spatiotemporal information
from these temporal-aware 2D features.

Figure 4.2 illustrates the architecture of our TE module. Formally, given
a series of T RGB frames, they can be fed to a standard 2D CNN in parallel
(concatenated in the batch axis) and transformed to abstract feature tensor F
∈ RT×c×h×w, where c, h and w denote the number of channels, height and
width of the feature. The TE module takes such a tensor as input and oper-
ates as follows. First, F is reshaped and transposed to F′ ∈ Rhw×c×T, where
spatial dimensions h and w are collapsed into one. Feature exchange between
adjacent frames is then carried out by a 1D channel-wise temporal convolu-
tion defined by kernel K ∈ Rc×1×3. Here, each 1 × 3 kernel of K convolves
with a feature channel of F′ independently. The weight of these kernels are
specifically initialized as: [1, 0, 0], [0, 0, 1] or [0, 1, 0], each corresponding to a
temporal forward-shift, backward-shift, and no-shift operation, respectively.
The proportion of the three shift operators dictates the extent of interaction
among nearby features. The above operation can be summarized as follows:

4.3. Overview of TEDdet and temporal sub-modules 51

F′
x = K ∗ F′ (K ∈ Rc×1×3, F′ ∈ Rhw×c×T)

K[c f , 1, :] = [1, 0, 0], f orward − shi f t

K[cb, 1, :] = [0, 0, 1], backward − shi f t

K[cn, 1, :] = [0, 1, 0], no − shi f t

1 ≤c f < c/div,

c − c/div ≤cb < c,

cn ∈ c − {c f , cb},

(4.1)

where * and div denote the convolutional operation and feature exchange
ratio. In Equation 4.1, c f and cb indicate the channel indices where forward-
and backward-direction feature exchange take place. The rest of the chan-
nels (cn) does not exchange with those of neighboring features. When taking
div = 4 as an example, Equation 4.1 depicts 1/2 of the total feature channels
interacting with those of adjacent frames, i.e., 1/4 forward and 1/4 back-
ward.

During the exchange, we perform zero-padding accordingly to fill up fea-
ture channels at the temporal borders. Finally, the resulted F′

x is transformed
back to the original shape as F (i.e., T × c × h × w). Additional convolution
can be seamlessly appended after F′

x to further extract visual cues of higher
semantics. As each of the T features in F′

x has partially interacted with others
in adjacent times, the temporal receptive field of any subsequent 2D convo-
lution is implicitly expanded by 3 for spatiotemporal modeling.

4.3.3 Temporal Feature Difference: pair-wise displacement

as motion

Similar to the notion of CenterNet’s keypoint estimation, we predict action
instances by their centers on the target input frame (i.e., key frame) while
modeling their movement to other frames via an additional regressor. To
achieve this, we propose the Temporal Feature Difference (TD) module for
encoding relative motion between any two designated frames. Specifically,
the relative motion between frames is encoded by the displacement in their
abstract feature maps.

Figure 4.3 depicts the workflow of TD, whose objective is to model ac-
tion instances’ offset with respect to the key frame. Given a feature tensor F

52 Chapter 4. TEDdet: Temporal feature exchange-difference network

FIGURE 4.3: Architecture of Temporal Feature Difference module.

∈ RT×c×h×w extracted from T frames, a 1 × 1 2D convolutional layer is first
applied to transform F into a compressed latent space for efficiency (Fr ∈
RT× c

r×h×w). Next, we slice Fr into T portions along the temporal axis, result-
ing in T features of dimension c

r × h × w. For Fr
key and any Fr

t , which denote
the key and tth frame features, we compute their spatial displacement by
element-wise subtraction. Note that prior to the subtraction, we follow the
standard practice of applying a 3 × 3 2D channel-wise convolution to all Fr

t .
This additional operation has been proven useful for spatially aligning and
matching high-level instances acquired at different time steps [53][54][55].
The above procedure is described in Equation 4.2:

Fr
dsp(t) = convtrans ∗ Fr(t)− Fr

key, 1 ≤ t ≤ T, (4.2)

where convtrans denotes the 3 × 3 2D channel-wise convolution. Here, Fr
dsp

∈ RT× c
r×h×w corresponds to all the displacement features between the key

frame and others. Finally, we apply another 1 × 1 convolution to restore the
channel number of Fr

dsp back to c. We will describe how the displacement fea-
ture is utilized for modeling the trajectory of input sequence in the following
section.

4.4. Temporal Feature Exchange-Difference action tubelet detection
framework

53

4.4 Temporal Feature Exchange-Difference action

tubelet detection framework

The full architecture of TEDdet, which integrates two complementary tempo-
ral modules (TE and TD) and three detetor branches, is summarized in Figure
4.1. To keep TEDdet effective yet compact, we employ the most lightweight
ResNet variant, ResNet18 as the feature backbone. The input to TEDdet is T
successive frames: [It, It+δ, ..., It+(T−1)δ], where δ denotes the temporal stride
between any two sampled frames. Unlike precedent methods which predict
tubelets densely across consecutive frames [75][83], our detector does not re-
strict δ to 1. In TEDdet, we select the middle frame of an input sequence as
the key frame (Ikey), which is the target frame for keypoint heatmap estima-
tion.

4.4.1 TE and Center branch

The TE module can theoretically be inserted prior to any 3 × 3 convolu-
tional layer in ResNet18. This will enable the following 2D filters to exploit
temporal-aware features from precedent layers while still benefiting from
ImageNet pre-trained weights. However, unlike previous studies focusing
on video-level action recognition [51][54], performing temporal exchange in
early CNN layers risks distorting well-learnt spatial cues that could be es-
sential for the localization task in hand. Instead, inspired by [47][48] which
apply spatiotemporal modeling only on top of features of higher semantics,
we mainly insert the TE module right before Center branch to aggregate ab-
stract multi-frame context for the key frame.

In practice, we implement two variants of temporal exchange: TEbi and
stacked TEuni. The former conducts bi-directional exchange to simultane-
ously collect 1/2 adjacent-frame features for the key frame (i.e., 1/4 for-
ward and 1/4 backward by setting div = 4 in Equation 4.1). The latter
performs two uni-directional exchange that separately aggregates 1/2 for-
ward/backward information into two key frame features (div = 2), which
we then fuse by stacking along the channel dimension. Note that while a sin-
gle TE module increases the temporal receptive field by 3, stacking multiple
TE modules can further enlarge the receptive field for longer-range temporal
modeling, as illustrated in Figure 4.4.

Our TE module is composed of learnable shift-operators to adaptively
accumulate multi-frame visual context upon which Center branch uses for

54 Chapter 4. TEDdet: Temporal feature exchange-difference network

FIGURE 4.4: Stacking multiple TE modules. The above example sequentially applies
two TE with different exchange ratios to enlarge the temporal receptive field of key
frame feature (row 3) by 5.

keypoint heatmap estimation. The design of Center branch follows that of
CenterNet with minor adjustment. It consists of a 3 × 3 and 1 × 1 convolu-
tional layer interleaved with ReLU non-linearity. The number of filters is set
to 256 and #actionclasses for the 3× 3 and 1× 1 convolution, respectively. The
training objective for Center branch (lCenter) follows the same focal loss as in
the related work by Li et al. [83]. At test time, the obtained heatmap is further
filtered to only keep local peaks that are greater than their 8-connected neigh-
bors. The top remaining N peaks across all classes are considered candidate
action centers where N is fixed to 100 in our study.

4.4.2 TD and Trajectory branch

The predicted keypoint heatmap encodes centers of action instances in the
key frame; it does not guarantee actions’ locations in the rest of input frames.
To address precise localization over the entire input sequence, we introduce
Trajectory branch to track the movement of action instances with respect to
the key frame. Prior to this branch, we insert our TD module which generates
T displacement features Fdsp ∈ RT×C× H

R ×W
R . Each displacement feature esti-

mates pair-wise offset between the corresponding frame from the key frame.
To model the trajectory of the whole sequence, we stack every pair-wise fea-
ture along the channel dimension (CT × H

R × W
R) and feed as input to Trajec-

tory branch.
The design of Trajectory branch follows that of our Center branch, con-

sisting of a 3 × 3 and 1 × 1 convolutional layer interleaved with ReLU non-
linearity. The output of Trajectory branch is the movement map m̂Ikey ∈

4.4. Temporal Feature Exchange-Difference action tubelet detection
framework

55

R2T× H
R ×W

R , where 2T denotes the center offsets (in X and Y directions) be-
tween [It, It+δ, ..., It+(T−1)δ] and Ikey sequentially. In other words, each loca-
tion in the movement map encodes horizontal and vertical offsets used for
repositioning action centers on the non-key frames.

To train Trajectory branch, we first acquire groundtruth action centers on
each input frame the same way as for Center branch. Then, the groundtruth
movement (mIkey) of any action instance with respect to Ikey is simply the
offset between its center at Ikey and those at other frames. Finally, Trajectory
branch is optimized based on L1 loss as follows:

lTrajectory =
1
n

n

∑
i=1

|m̂Ikey
i − m

Ikey
i |, (4.3)

where i indicates the ith out of n action instances.

4.4.3 Box branch

In TEDdet, we extend CenterNet’s Box branch to regress the spatial extent of
action instances on multiple frames. We assume that class-agnostic bound-
ing box generation does not benefit from temporal modeling. Consequently,
Box branch takes every single frame’s feature as input and regresses actions’
bounding boxes independently for each frame. Specifically, it generates a size
map of dimension 2 × H

R × W
R ; each location of the map encodes the height

and width of a potential action instance. We optimize this branch based on
L1 loss as suggested in [65].

The overall training objective of TEDdet is shown in Equation 4.4, where
hyperparameter a, b, and c are set to 1, 1, and 0.1 respectively in accordance
with [83]. At test time, action centers over input frames are first deduced
by Center branch and then refined by Trajectory branch. Finally, the spatial
extent of potential action instances are regressed by Box branch based on the
localized action centers.

lTEDdet = alCenter + blTrajectory + clBox. (4.4)

4.4.4 Coarse-tubelet inference

Given an action video of sufficient length, TEDdet predicts coarse action
tubelets for every sequence of T frames (i.e., [It, It+δ, ... It+(T−1)δ]). The
next sequence of length T frames to detect begins at It+δ where there exist
T − 1 overlapping frames between the former and latter. As each frame is

56 Chapter 4. TEDdet: Temporal feature exchange-difference network

propagated through the shared 2D CNN backbone independently for fea-
ture extraction, obtaining overlapping tubelets at two time steps can be per-
formed at an extremely low cost by reusing T − 1 previously obtained fea-
tures cached in the buffer. In other words, only the new features correspond-
ing to the current (latest) frame needs to be extracted from the 2D CNN back-
bone.

The retrieved and newly captured visual cues can be simply fed to the
detector branches together for action keypoint heatmap, trajectory and size
estimation. Once the resulting tubelets are acquired, TEDdet’s feature buffer
updates the cache to keep the latest T − 1 features while dequeueing the old-
est one. Conducting action inference in such a way well conforms to the
online detection paradigm where input video frames are streamed continu-
ously.

4.4.5 Online tubelet linking and tube generation

We adopt the online linking algorithm similarly employed by Kalogeiton et
al. [75]. Given an input video stream, TEDdet detects N initial tubelets from
which the top 10 (in terms of confidence scores) are initialized as "active" ac-
tion links. As the video continues to be streamed and new tubelet candidates
are detected, TEDdet enumerates through active links in descending order
of their confidence scores and associates them with new tubelet candidates
when matched.

In detail, whenever a collection of new tubelet candidates temporally
overlaps with an active link, we associate the best-matched tubelet to that
link in accordance with the mean-IoU of their bounding boxes on overlapped
frames. Additionally, two conditions are respected during the linking pro-
cess. First, the best-matched tubelet should have a mean-IoU exceeding thresh-
old τ = 0.5. Secondly, each candidate tubelet can only be assigned to an
active link. After including a new tubelet, each link’s confidence score is
updated as the average score of all appended tubelets. An active link stops
extending and is terminated ("inactive") either when there no longer exist
temporal overlap with newly detected tubelets, or the video stops being
streamed.

The final action tubes are derived from all the inactive action links. The
temporal extent of any action tube is determined by the starting frame of
the initialized tubelet and the end frame of the lastly linked tubelet. Finally,
we discard any resulting action tube having either a low confidence score or a

4.5. Experimental validation 57

short temporal duration. Action tube generation is carried out independently
for each class.

Bounding box interpolation. When the temporal stride (δ) of the input
sequence exceeds 1, a fully linked action tube starting at frame 1 comprises
coarse detection across [I1, I1+δ, I1+2δ, ..., etc.]. To obtain dense frame-wise
detection, we calculate bounding box results for intermediate frames using
a simple coordinate-wise linear interpolation between any two available de-
tection. Such a simple approach reasonably assumes that actions are smooth
and continuous in videos.

4.5 Experimental validation

We evaluate the proposed detection framework on UCF-24 and JHMDB-21
datasets. As TEDdet is equipped with tubelet linking capability for tem-
poral action localization, we employ the standard frame-mAP as well as
video-mAP to measure the accuracy of generated action tubes. We remind
our readers that the former metric examines the IoU between detected and
groundtruth boxes for each frame separately and does not depend on the
online linking strategy. For frame-mAP, the IoU threshold τ is fixed at 0.5
throughout all experiments. On the other hand, video-mAP inspects spa-
tiotemporal overlaps between linked action tubes and groundtruth tubes at
multiple IoU thresholds: 0.2, 0.5, 0.75, [0.5 : 0.05 : 0.95]. Besides accuracy, we
also measure TEDdet’s detection efficiency in terms of its model size (num-
ber of trainable parameters), MACs (number of multiply-accumulate opera-
tions), and runtime (FPS: frame-per-second).

4.5.1 Implementation details

We implement TEDdet in Pytorch [105]. Note that the original CenterNet
attaches a decoder block of three deconvolution layers at the final convolu-
tional output of ResNet [19]. This serves to adaptively up-scale highly ab-
stracted feature maps by 8 times (each deconv layer spatially up-scales the
feature by 2) to better detect small/overlapped objects. Different from object
detection, we assume the likelihood of small actors emerging densely in a
scene is low. Aiming to conduct highly accelerated and efficient detection,
TEDdet’s backbone re-uses ResNet18 but reduces the decoder block to one
deconvolution layer followed by a bilinear upsampling layer. We also insert

58 Chapter 4. TEDdet: Temporal feature exchange-difference network

an extra TE module before the decoder block to introduce additional tempo-
ral modeling upon feature up-scaling.

Each RGB frame of an input sequence is resized to 288 × 288. Propagat-
ing the input sequence of T frames (input tensor: 3T × 288 × 288) through
ResNet18 and our reduced decoder block transforms the input to its video
representation (of dimension 256T × 36 × 36). Prior to the detector branches,
we apply a 1 × 1 convolutional layer to reduce the number of channels by a
factor of 4 for efficiency gain.

Training details. TEDdet is trained with the Adam optimizer. We set the
initial learning rate to 2.5e−4 for both datasets while initializing ResNet18
with COCO pre-trained weights. On JHMDB-21, we train our model for 10
epochs, during which we reduce the learning rate by a factor of 10 at the 5th

epoch. Likewise, UCF-24 is trained for 10 epochs; the learning rate is reduced
by half at the end of each epoch since the second one. During training, we
freeze ResNet18’s first convolutional layer (to reduce chances of overfitting)
and apply the same data augmentation as in [75]: photometric transforma-
tion, scale jittering, random cropping/expansion and location jittering, etc.
In our experiments, all training has been conducted on an NVIDIA Titan V5
GPU with a training mini-batch size of 16.

4.5.2 Effect of feature aggregation and tracking

We first conduct ablation study to validate inclusions of the TE module and
Trajectory branch (including TD). A baseline tubelet detector with no feature
aggregation nor action center refinement is first established. In other words,
given T frames as input, the baseline directly predicts the keypoint heatmap
from the key frame and assumes that action centers remain at the same loca-
tion in time. In this ablation study, we report frame-mAP as the evaluation
metric on JHMDB-21; temporal stride δ and T are fixed to 5 and 3, respec-
tively.

Table 4.1 summarizes varied configurations and performances of TED-
det. From the top of the table, it can be observed that all configurations ben-
efit from Trajectory branch by approximately 2.5 frame-mAP. As Trajectory
branch does not concern any aspect of classification, these results highlight
the importance of refining action centers in time to cope with moving actors
in videos. Notably, the increase of model parameters and GMACs are fairly
minimal when adding the TD module with Trajectory branch, as they only

4.5. Experimental validation 59

TABLE 4.1: Accuracy, MACs, and model size comparison over variants of TED-
det (JHMDB-21). TEDdet performs best in terms of accuracy when incorporating
stacked TEuni and Trajectory branch.

CenterNet ✓ ✓ ✓ ✓ ✓ ✓

TEbi ✓ ✓

stacked TEuni ✓ ✓

TD+Traj. branch ✓ ✓ ✓

Frame-mAP 51.33 53.98 55.82 58.15 58.34 61.15
GMACs 3.44 3.48 3.44 3.48 3.45 3.49

Param. (M) 13.74 14.48 13.74 14.48 13.89 14.63

consist of a few convolutional layers and operate on low-resolution feature
maps.

When equipped with TD and Trajectory branch, TEDdet’s accuracy boosts
significantly from the baseline when incorporating feature exchange (nearly
7 and 10 mAP in TEbi and stacked TEuni, respectively). This phenomenon is
expected. When T = 3, a bidirectional exchange essentially aggregates 1/4
features each from the forward and backward direction into the key frame.
On the other hand, stacked TEuni is able to aggregate and retain more infor-
mation from all three frames, endowing more context to distinguish among
actions. Since TE only introduces the shift-operators implemented by 1D
channel-wise convolution, it is highly efficient and barely increases compu-
tation and model size.

4.5.3 Effect of sequence coverage

Intuitively, videos spanning a longer duration can embed richer and more
discriminative spatiotemporal context. However, longer sequences could po-
tentially introduce irrelevant background cues, as well as raising difficulty to
track actions’ trajectories. To investigate how video duration affects the ac-
curacy of the proposed detector, we conduct experiments on both JHMDB-21
and UCF-24 by varying the input sequence length T and temporal stride δ.

Figure 4.5 summarizes results of the above experiments. From there we
observe that when T = 3, TEDdet’s accuracy continues to arise on JHMDB-
21 when the temporal stride expands (δ = 3, 5, 7, and10). This not only re-
flects the advantage of accumulating more diverse context, but also vali-
dates Trajectory branch’s ability to track action centers further away from
the key frame. We also experiment increasing T to 5 (while keeping δ at 5).
Even though this configuration essentially has the same temporal coverage as
(T, δ) = (3, 10), it slightly improves the accuracy due to incorporating more

60 Chapter 4. TEDdet: Temporal feature exchange-difference network

baseline (T,)=(3,3) (T,)=(3,5) (T,)=(3,7) (T,)=(3,10) (T,)=(5,5)
52

54

56

58

60

62

64

66

68

70

72

F
ra

m
e

-m
A

P

JHMDB-21

UCF-24

FIGURE 4.5: Accuracy comparison over varied input length (T frames) and temporal
stride (δ).

intermediate frame features. To verify whether TEDdet correctly models ac-
tion’s temporal structure (rather than naively gathering contextual informa-
tion from multiple frames), we repeat the experiment for (T, δ) = (5, 5) while
reversing the order of the input video at test time. The resulting frame-mAP
of each action class is displayed in Figure 4.6. It can be noted clearly that
actions that depend more on static visual cues (e.g., BrushBair, ClimbStairs,
Golf, and ShootBow, etc.) remain unaffected. On the other hand, those rely-
ing on strict temporal modeling suffers when the testing video sequences are
reversed (e.g., Sit, Stand, Pick, and ShootBall, etc.), confirming that TEDdet
correctly models the temporal relation of actions.

For UCF-24, our detector also improves from the baseline method via spa-
tiotemporal feature aggregation. In opposition to JHMDB-21, increasing the
temporal stride for UCF-24 exhibits little influence in terms of accuracy, sug-
gesting that strong spatial context around the key frame more or less suf-
fices to determine the corresponding actions. UCF-24 is recognized having
strong scene-related cues [53] where background information highly corre-
lates with an action category. Hence, the efficacy of temporal modeling satu-
rates quickly. Lastly, we observe that setting (T, δ) as (5, 5) significantly out-
performs (3, 10) by 2.5 mAP even though the two configurations share the

4.5. Experimental validation 61

FIGURE 4.6: Per-class frame-mAP performance on forward (correct) and reversed
testing input sequence (JHMDB-21). The baseline performance is also included for
ease of comparison.

same temporal coverage. We suspect that in the former case, the TD mod-
ule and Trajectory branch manage to trace action centers’ movement more
precisely from the extra intermediate frame-features.

4.5.4 Effect of varying sequence coverage at train/test time

In the previous experiment, we train and evaluate target models with match-
ing δ. To assess the robustness/generalization ability of the trained models
during inference, we examine them (i.e., models trained by δtr = [3, 5, 10]) on
JHMDB-21 by varying δ at test time (δte = [3, 5, 7, 10]). JHMDB-21 is selected
as it more prominently reflects the effect of temporal modeling according to
our previous experiments.

The robustness experiment is reported in Figure 4.7. We observe that
models trained at larger δtr consistently performs comparably or better than
others when tested on different δte. This remains true even when δtr and
δte are far apart, e.g., δtr, δte) = (10, 3). It can also be seen that at δtr = 5
and δtr = 3, our models manage to adapt at first when tested at slightly
larger temporal strides, but soon degrade in accuracy. These results imply
that training with sparsely annotated frames (especially at higher temporal
strides) potentially introduces a higher variety of visual pattern for TEDdet
to learn and robustly discriminate actions. Such an attribute not only helps

62 Chapter 4. TEDdet: Temporal feature exchange-difference network

te
=3

te
=5

te
=7

te
=10

56

58

60

62

64

66

F
ra

m
e
-m

A
P

tr
=3

tr
=5

tr
=10

FIGURE 4.7: Accuracy comparison (JHMDB-21) over trained models (δtr = 3, 5, 10)
tested with varied temporal strides (δte = 3, 5, 7, 10).

to reduce training complexity over long video sequences, but also relaxes our
detector’s reliance on densely annotated groudtruth boxes.

4.5.5 Action tube generation and runtime

To evaluate TEDdet’s spatiotemporal localization capability, we apply the
online tube generation algorithm and compute video-mAP based on our top-
performing configuration (i.e., T and δ as 5). We also measure runtime (FPS)
to support our claim of real-time detection. These results along with frame-
mAP are summarized in Table 4.2. Specifically, detection runtime is recorded
over the complete time span to obtain action tubes for all videos (including
data loading, tubelet inference & linking, and intra-frame interpolation) and
then divided by the total number of frames. We set the testing mini-batch
size as 1 to simulate processing a continuous video stream.

TEDdet significantly accelerates tubelet prediction and linking with its
coarse-detection strategy. It achieves an overall inference speed greater than
110 FPS on both datasets. One may observe that even though the total run-
time is similar between the two datasets, the time distribution is notably dif-
ferent. Specifically, data loading takes longer in JHMDB-21 as this dataset
comprises shorter videos where TEDdet can not fully exploit feature caching-
dequeuing. Instead, it needs to frequently clear its feature buffer and await
for a new sequence of T frames upon any new video. On the other hand,

4.5. Experimental validation 63

TABLE 4.2: TEDdet’s runtime, frame-mAP, and video-mAP performance. The total
duration of action tube detection is broken down into three phases (top three rows
under "Runtime") and reported in ms (millisecond/frame). We remind our readers
that video-mAP is evaluated based on four detection thresholds (i.e., 0.2, 0.5, 0.75,
and [0.5:0.05:0.95]).

JHMDB-21 UCF-24
Runtime (ms)

Data loading 3.76 1.09
Detection 1.63 1.60
Tube generation 3.67 6.08
Speed (FPS) 110 114

Accuracy
Frame-mAP 64.74 70.76
Video-mAP 67.86 67.39 53.74 44.71 74.57 50.41 21.82 25.04

tube generation takes perceivablely longer in UCF-24. This is attributable to
the fact that tubelet linking and intra-frame detection interpolation handle
each action class independently. Unlike previous methods leveraging multi-
thread CPU to complete this task [73][75], our current implementation uses
only a single CPU thread, thus taking longer to process UCF-24 (24 classes)
than JHMDB-21 (21 classes). We provide more qualitative analysis on TED-
det’s video-mAP in the following section.

4.5.6 Global detection performance and comparison

After the ablation study, we compare the best configuration of TEDdet with
state-of-the-art action detectors to have a holistic view of its performance.
Similar to Chapter 3, only the methods which explicitly consider both accu-
racy and runtime performance are taken into account for fair comparison.
Results of frame-mAP and video-mAP are reported in Table 4.3 and Table 4.4
for JHMDB-21 and UCF-24, respectively. Beyond accuracy, we also present
comprehensive summaries of these top-performing methods (i.e., backbones
and input types) along with their runime (FPS) in Table 4.5.

As shown in Table 4.3 and 4.4, even when prioritizing detection speed
and low computation in its design, TEDdet retains decent accuracy on both
datasets (more reflected in frame-mAP). Without relying on optical flow and
two-stream CNN, our detector obtains comparable and even higher scores
than ACT and Zhang et al. Notably, MOC-TS achieves impressive accuracy
on both datasets but still counts on optical flow inputs as well as a stronger
2D backbone. When we adapt their pipeline into MOC-lite that is closer to

64 Chapter 4. TEDdet: Temporal feature exchange-difference network

TABLE 4.3: State-of-the-art comparison on JHMDB-21. See Table 4.5 for architectural
and input configuration.

Method
JHMDB-21

Frame-mAP@0.5 Video-mAP
@0.2 0.5 0.75 0.5:0.95

MR[71] 58.5 74.3 73.1 −− −−
ROAD-AF[73] −− 73.8 72.0 44.5 41.6

ROAD-RTF −− 67.5 65.0 36.7 38.8
ACT[75] 65.7 74.2 73.7 52.1 44.8

AMTnet-TS[77] −− 73.5 72.8 59.7 48.1
Two-in-One[84] −− −− 58.0 42.8 34.6
Two-in-One-TS −− −− 74.7 53.3 45.0

Zhang et al.[106] 37.4 −− −− −− −−
YOWO[85] 74.4 87.8 85.7 58.1 −−

MOC-TS[83] 70.8 77.3 77.2 71.7 59.1
MOC-lite 57.3 59.8 61.6 55.4 44.7
TEDdet 64.7 67.9 67.4 53.7 44.7

TABLE 4.4: State-of-the-art comparison on UCF-24. See Table 4.5 for architectural
and input configuration.

Method
UCF-24

Frame-mAP@0.5 Video-mAP
@0.2 0.5 0.75 0.5:0.95

MR[71] −− 73.5 32.1 2.70 7.30
ROAD-AF[73] −− 73.5 46.3 15.0 20.4

ROAD-RTF −− 70.2 43.0 14.5 19.2
ACT[75] 69.5 76.5 49.2 19.7 23.4

AMTnet-TS[77] −− 78.5 49.7 22.2 24.0
Two-in-One −− 75.5 48.3 22.1 23.9

Two-in-One-TS −− 78.5 50.3 22.2 24.5
Zhang et al.[106] 67.7 74.8 46.6 16.7 21.9

YOWO[85] −− 75.5 48.8 −− −−
MOC-TS[83] 78 82.8 53.8 29.6 28.3

MOC-lite 68.8 76.3 49.1 23.7 25.1
TEDdet 70.8 74.6 50.4 21.8 25.0

4.5. Experimental validation 65

TABLE 4.5: State-of-the-art methods’ speed, architectural and input configurations.
In the table, "AF", "RTF", and "TS" denote accurate flow, real-time flow and two-
stream CNN, respectively. Methods with * output action tubelets over multiple
frames (those without * perform frame-wise detection). Having repeated backbones
and two input streams both indicate adoption of the two-stream CNN.

Method Backbone Input frames FPS

MR[71] VGG16×2 1RGB+5OF 4
ROAD-AF[73] VGG16×2 1RGB+1OF 7

ROAD-RTF VGG16×2 1RGB+1OF 28
ACT*[75] VGG16×2 6RGB+30OF 30

AMTnet-TS*[77] VGG16×2 2RGB+10OF 21
Two-in-One*[84] VGG16 6RGB 25
Two-in-One-TS* VGG16×2 6RGB+30OF 12.5
Zhang et al.[106] VGG16×2 3RGB 38

YOWO[85] Darknet19+3DResNext101 16RGB 34
MOC-TS*[83] DLA34×2 7RGB+35OF 25

MOC-lite* ResNet18 7RGB 24
TEDdet* ResNet18 5RGB 110

TEDdet’s lightweight setting (i.e., replacing DLA34 by ResNet18 and remov-
ing the optical flow stream), the strength of TEDdet becomes evident. YOWO
also demonstrates superior spatiotemporal modeling capacity through fus-
ing 2D and 3D CNN features. However, their detection in every target frame
depends on extracting contextual information from 16 nearby RGB frames by
a very deep 3D CNN.

Specifically, we observe that the proposed action detector has more rooms
for improvement in its video-mAP at lower detection thresholds (more promi-
nent in JHMDB-21). The relatively low performance in this metric mainly re-
sults from TEDdet retaining a higher number of low-confidence action tubes
after tubelet-linking (which contributes to more false-positive samples). Typ-
ically, low-confidence tubelet predictions tend not to be consistent in time
and can be progressively discaarded during the linking phase by dense-tubelet
detectors (δ = 1) [75][77][83][84]. In contrast, TEDdet coarsely detects from
an extended video sequence followed by intra-frame detection interpolation.
Such a coarse-to-fine approach presumes the consistency of any action in-
stance within a longer duration, making TEDdet more difficult to suppress
false-positive detection later via tubelet linking/association.

In addition to retaining more low-confidence detection, it comes to our
attention that in a few extreme cases when actors undergo drastic location

66 Chapter 4. TEDdet: Temporal feature exchange-difference network

FIGURE 4.8: Examples of action sequences where actors undergo significant location
shift. Here, we only show predicted tubelets of the correct class (with confidence
score above 0.1). In the first row, TEDdet could not precisely track the "Jump" in-
stance throughout the whole sequence due to drastic motion (blur) and ambiguous
background. On the other hand, other actions (Run, ShootBall and Pick) with per-
ceivable location shift are tracked properly. In the above examples, both T and δ are
set to 5.

4.6. Summary and limitations 67

shift in time, TEDdet’s Trajectory branch is challenged to precisely track ac-
tion centers away from key frames (refer to the top-most example in Figure
4.8). In this case, the IoU-based linking strategy no longer guarantees the va-
lidity of linked action tubes, which negatively impacts video-mAP accuracy.
Overall, TEDdet still demonstrates high robustness coping with most other
situations where highly perceivable shift in actors’ locations is present).

Lastly, it can be observed from Table 4.5 that TEDdet significantly outper-
forms others in terms of runtime. This is mainly attributable to its coarse-to-
fine detection paradigm which accelerates action tube generation. Among all
detectors listed in the table, TEDdet is also equipped with the most lightweight
backbone and does not depend on a second set of CNN to extract optical flow
features (nor calculating optical flow). Note that any method that utilizes re-
peated backbones adopts the two-stream CNN framework and makes use
of optical flow (denoted by "OF" in the table). Last but not least, our model
leverages the least number of input frames to carry out action inference, in-
herently reducing computational cost (i.e., MACs) by many folds. Overall,
TEDdet’s lightweight design, real-time inference capability and competitive
accuracy makes it more compatible with computation-constrained devices
and appealing to deployment in real-world applications.

4.6 Summary and limitations

Summary. In this chapter, we propose a lightweight action tubelet detector
coined TEDdet. Its Temporal Feature Exchange module facilitates channel-
wise feature interaction by aggregating action-specific visual patterns over
successive frames, enabling spatiotemporal modeling on top of 2D CNN. To
address actors’ location shift in the sequence, our Temporal Feature Differ-
ence module approximates pair-wise motion among designated frames in
their abstract latent space. The two modules are integrated with an exist-
ing anchor-free detector (CenterNet) to cooperatively model action instances’
categories, sizes and trajectories for precise tubelet generation. TEDdet ex-
ploits larger temporal strides to efficiently infer actions in a coarse-to-fine and
online manner. Our experimental results on the public UCF-24 and JHMDB-
21 datasets demonstrate that without relying on any 3D CNN or optical flow,
our action detector achieves competitive accuracy at an unprecedented speed
(110 FPS), suggesting a much more feasible solution pertinent to realistic ap-
plications.

The main contributions of our work can be summarized as follows:

68 Chapter 4. TEDdet: Temporal feature exchange-difference network

• We present two lightweight temporal modeling modules: Temporal
Feature Exchange (TE) and Temporal Feature Difference (TD) to facili-
tate learning action-specific spatiotemporal pattern and trajectory.

• We propose TEDdet, an integrated action tubelet detector on top of 2D
CenterNet and TE-TD plug-in. Our detector operates in a coarse-to-
fine manner; alongside the online tube generation algorithm, TEDdet’s
detection speed well exceeds real-time requirement (110 FPS).

• We conduct comprehensive analysis and comparison in terms of TED-
det’s accuracy, robustness, and efficiency on public UCF-24 and JHMDB-
21 datasets.

Limitations. We claim that TEDdet provides a balanced spatiotemporal
localisation performance between accuracy and efficiency. Its architectural
design composing a lightweight 2D CNN backbone, cooperative detector
branches and coarse detection scheme makes it more compliant with com-
putationally constrained devices in real-world deployment. Meanwhile, we
observe two less desirable attributes as described below.

First, TEDdet’s performance in video-mAP is somewhat compromised by
the manifestation of false-positive detection which can’t be easily removed
during the linking process. Leveraging successive RGB frames improves ac-
tion modeling at a large margin when compared to the single-frame approach
(e.g., ACDnet), but it remains challenging to distinguish among action cate-
gories that rely less on scene-related cues.

Second, scaling up TEDdet is a non-trivial task. More specifically, the clas-
sification task is performed on top of partially-exchanged features produced
by the TE module. Such a partial exchange mechanism retains incomplete
visual cues from each frame. In other words, the longer an action sequence
is (i.e., more participating frames), the less discriminative information each
individual frame contributes after feature exchange.

Looking ahead. In the next chapter, we address the aforementioned draw-
backs by devising a closer-to-optimal formulation for spatiotemporal action
detection. Mainly, we take a step back to revisit the well-established two-
stream CNN framework modeling appearance-motion correspondences. The
inspiration leads to our following detector which captures action-specific
pattern simultaneously from visual and explicit motion cues. As will be pre-
sented in Chapter 5, the new approach further helps to distinguish challeng-
ing action categories and reduce false-positive detection.

69

Chapter 5

AMMA: Accumulated
micro-motion features for real-time
spatiotemporal action localization

5.1 Introduction

So far in this manuscript, we have covered two single-stream action detection
methods (based on the RGB modality) for trimmed/untrimmed videos in an
online fashion. The single-frame detection approach such as ACDnet pre-
sented in Chapter 3 induces little interaction among action sequences over
time, thus offering limited temporal modeling capacity. The above can be
alleviated by concurrently inferring actions from a series of video frames
(such as TEDdet in Chapter 4), whose combined visual cues encode the spa-
tiotemporal nature of the underlying actions. The latter, also referred to as
the tubelet-based approach, demonstrates significant improvement captur-
ing actions’ contextual evolution, and therefore is widely adopted by the re-
search community of spatiotemporal action localization.

In spite of taking into account the contextual information from RGB se-
quences at once, our experimental results from Chapter 4 still indicate no-
table presence of miss-classified action instances. Moreover, it may appear
unorthodox that most existing action tubelet detectors [75][97][83] need to
leverage both consecutive RGB frames and complementary optical flow fields
to enhance detection accuracy. Intuitively, the motion of actions should al-
ready be embedded and can be inferred from consecutive RGB frames. The
dependence on the additional optical flow suggests that motion cues carry
relevant spatiotemporal information that cannot be implicitly reasoned from
RGB series alone.

Even with the insight that explicit motion representations are critical for
action inference, directly re-adopting optical flow is out of the question for

70
Chapter 5. AMMA: Accumulated micro-motion features for real-time

spatiotemporal action localization

real-time, online action detection. More specifically, it is timely and compu-
tationally costly to acquire dense optical flow on-site. Instead, we attempt to
first identify the most essential information carried by optical flow that helps
to distinguish among actions. Once these subtle yet highly relevant features
are clarified, an alternative, easy-to-compute motion representation retaining
these critical attributes can be devised in lieu of optical flow.

Following the clarification of optical flow’s role in actions, we present
Accumulated Micro-Motion Action detector, or AMMA in this chapter. AMMA
is a real-time tubelet detector based on 2D CNN backbones. It adopts a
coarse-level tubelet detection paradigm similar to TEDdet from Chapter 4,
acquiring actions’ spatiotemporal context from sparsely sampled visual cues,
while additionally incorporating their complementary motion dynamics. Spe-
cifically, to lift reliance on the computationally expensive optical flow, we de-
sign a learnable, implicit motion approximator that accumulates short-term
motion dynamics ("micro-motion") of actions. In AMMA, micro-motion is
computed on-the-fly from RGB frames. Motion features can then be extracted
and adaptively fused with the appearance ones at multiple scales via lateral
connections to produce temporal-aware features based on the 2D CNN back-
bone.

Unlike the single-stream approaches introduced in Chapter 3 and Chap-
ter 4, AMMA partially adopts the two-stream CNN framework which in-
duces learning motion-appearance correspondence from both visual and dy-
namic cues. Beyond its spatiotemporal feature backbone, AMMA aggre-
gates multiple temporal-aware features at its detector head to permit long-
range action modeling. Precisely, the detector head consists of three co-
operative branches for coarsely recognizing and localizing action instances,
modeling their movement over time, and regressing their sizes. In addition,
AMMA’s detection pipeline is generic and can be easily integrated with ultra-
lightweight CNN architectures for resource-constrained edge devices.

Related publication. The work presented in this chapter aims to be sub-
mitted to Elsevier’s Neurocomputing journal.

Outline. The rest of the chapter is organized as follows. In Section 5.2,
we briefly retrace how motion cues (specifically optical flow) facilitate ac-
tion understanding. The finding inspires us to devise an alternative motion
representation that is effective yet more efficient. Next, we provide a high-
level overview and illustration of AMMA in Section 5.3. In Section 5.4 and
5.5, technical details of AMMA’s backbone and detector branches are elabo-
rated in that order, followed by description of the complete tubelet inference

5.2. How optical flow facilitates action understanding? 71

and linking procedures in Section 5.6. It is worth mentioning that in these
sections, we re-visit (and even expand upon) several concepts/techniques
shared with TEDdet from Chapter 4 in order to make this chapter more self-
contained. Similarly, we report various experimental validation (quantita-
tive, qualitative, multiple evaluation metrics, etc.) of the newly proposed
detector in Section 5.7. Finally, the chapter is concluded by a summary and
the proposed approach’s limitations in Section 5.8.

5.2 How optical flow facilitates action understand-

ing?

Optical flow encodes apparent motion of moving objects in the scene. When
combining optical flow with RGB frames as input, two-stream CNN net-
works consistently achieve better accuracy than their counterparts inputting
only RGB frames. As a result, selecting optical flow as the designated mo-
tion representation has been widely exploited for video action recognition
[21][23][24][38]. Such a common practice has also been extended to many
works in spatiotemporal action detection [73][75][84][83].

At first glance, it may seem natural to use explicit motion estimation for
action-related tasks. As a counter point, however, Sevilla-Lara et al. [107]
argue that the underlying interaction between optical flow and action recog-
nition is unclear and rarely studied. Hence, the authors conduct a series of
experiments with regards to clarifying the relation between motion cues and
actions. In their experimental setup, one RGB frame and a block of five op-
tical flow fields are used as separate modalities within a two-stream CNN
framework.

Sevilla-Lara et al. observe that in the temporal stream, when temporal co-
herence is disrupted (e.g., by randomly shuffling the order of the flow fields)
while flow fields still capture the shapes of moving objects, recognition ac-
curacy only marginally decrease. Further examination such as altering the
colormap of the input demonstrates that recognition accuracy is greatly com-
promised only when the modified target is an RGB frame. These results sug-
gest that beyond the temporal structure embedded in this motion cue, optical
flow serves to improve action recognition largely due to it being appearance
invariant. In brief, optical flow results in simpler learning and generaliza-
tion, as the classification model does not need to learn from vast inter-class
appearance variations popularized in action videos.

72
Chapter 5. AMMA: Accumulated micro-motion features for real-time

spatiotemporal action localization

Furthermore, current approaches tend to follow a sequential procedure
when applying motion cues for action recognition. In this case, optical flow
is separately estimated and then used as input (in parallel with RGB frames)
to the subsequent action recognition module. Such a two-stage paradigm as-
sumes that more accurate flow (measured by end-point-error, or EPE, which
computes the Euclidean distance between the estimated and groundtruth
flow) is associated with superior recognition accuracy. On the contrary, sev-
eral studies found that this correlation is weak [35][34][107]. Instead, the
unified approach which fine-tunes flow estimation in accordance with the
learning objective of action recognition (i.e., cross-entropy, or CE), yields su-
perior accuracy (assuming that the optical flow module is learnable such as
[32][33]). When the two sets of flow fields are compared, namely, either being
optimized against EPE or CE loss, the most salient differences consistently
take place around motion boundaries and where humans are located.

To summarize, optical flow is found useful for action recognition mainly
because it is invariant to appearance (even when flow vectors are inaccu-
rate). In addition, numerical improvements on action recognition accuracy
mainly arise from changes in the flow near boundaries of the human body.
These observations serve as the basis of our newly devised micro-motion
representation, which will be elaborated in the following sections.

5.3 Overview of the detection framework

The newly proposed action detector termed Accumulated Micro-Motion Ac-
tion detector (AMMA) is an end-to-end 2D-CNN-based tubelet detector. As
summarized in Figure 5.1, AMMA takes multiple short video clips as in-
put and produces coarse action tubelets spanning the input sequence. Each
video clip comprises t consecutive frames. From each video clip, appearance
information is extracted from the latest frame (It) via the 2D CNN backbone.
Alongside appearance feature extraction, each clip is fed to our micro-motion
module which generates and accumulates short-term dynamics of actions.
From the micro-motion, temporal cues are further extracted and fused with
the appearance features of It via multiple lateral connections to encode short-
term spatiotemporal context for the clip.

To model longer spatiotemporal structures across multiple video clips,
AMMA aggregates their respective short-term temporal-aware features by
stacking them in the channel dimension at its detector head. In essence, the

5.4. AMMA - Backbone 73

aggregated features are fed to three branches to recognize and spatially lo-
calize action instances’ centers, model the trajectories of action centers over
time, and regress their spatial extent (e.g., height and width). Cooperative
modeling of the three branches produces action tubelets that are temporally
coarse, where detection takes place only at It of each clip. Action tubelets
can be incrementally detected and linked over time following the designated
matching strategy, forming long-range action tubes for spatiotemporal local-
ization. Finally, dense frame-wise detection is acquired by intra-frame inter-
polation between any two detection. The following sections describe each
working module of AMMA in detail.

5.4 AMMA - Backbone

As pointed out earlier, the fact that existing action tubelet detectors still de-
pend on optical flow to reach competitive accuracy implies insufficient spa-
tiotemporal information embedded in dense RGB frames alone. Alterna-
tively, our proposed tubelet detector learns and infers actions by coarsely ex-
tracting appearance features spanning a longer sequence, thus incorporating
richer contextual variations. Further, instead of the computationally more
expensive optical flow, AMMA’s backbone extracts short-term dynamics of
actions in the form of accumulated micro-motion, enabling 2D CNN to adap-
tively model appearance-motion correspondences and acquire temporal-awa-
re appearance features.

5.4.1 Clip-level appearance information

We define an input video clip Vcp to contain t consecutive RGB frames, where
Vcp = [I1, I2, ..., It]. The dimension of each frame is H ×W × 3. Since neighbor-
ing frames share highly resembling visual cues, we only extract appearance
information from It via a 2D CNN. Formally, we adopt a reduced variant of
the encoder-decoder architecture used by Zhou et al.’s CenterNet [65] as the
2D backbone. In their work, three deconvolution layers have been added
at the end of ResNet’s final convolutional layer as the decoder block. This
serves to adaptively project highly abstracted features onto a spatially larger
feature map to facilitate dense detection of small/overlapped objects. Differ-
ent from object detection, it can be reasonably assumed that the likelihood of
actors emerging densely in a scene is low. With this insight, AMMA’s back-
bone decoder is implemented with only one deconvolution layer followed

74
Chapter 5. AMMA: Accumulated micro-motion features for real-time

spatiotemporal action localization

FIGURE 5.1: Overview of AMMA. AMMA’s backbone (BOTTOM) takes an input
clip of t frames at a time (t = 4 in this study), encodes short-term action dynamics
as accumulated micro-motion, and outputs a motion-aware feature tensor by merg-
ing appearance (from It) and complementary motion information via lateral fusion.
(TOP) Beyond a single clip, AMMA enables long-range spatiotemporal modeling
by aggregating multiple clip-level features at its detector head consisting of three
cooperative branches. After merging results of the detector branches, the predicted
tubelets are coarse in time. From the coarse tubelets, dense frame-wise detection can
be interpolated between any two clips in a later stage.

5.4. AMMA - Backbone 75

by bilinear upsampling. The resulted appearance feature is a tensor with di-
mension H

R × W
R × D, where D corresponds to the channel dimension of the

feature. In practice, R and D are 8 and 256, respectively.
A single clip of t frames only covers a narrow temporal window, which

could fail to encode distinctive spatiotemporal patterns of certain actions. To
address this, we aggregate clip-wise features from T consecutive clips, en-
abling richer spatiotemporal context to be captured from a longer sequence.
The aggregated features are further processed at AMMA’s detector branches
to infer action tubelets, which will be covered in depth in Section 5.5.

5.4.2 Accumulated micro-motion: clip-level action dynamics

A short sequence of t frames still potentially embeds crucial dynamic infor-
mation which It alone does not carry. Alternative to optical flow which is
commonly prepared in advance due to its high computational cost, we de-
vise a simpler, adaptive motion cue which highlights the small displacements
of motion boundaries, as derived from the observations mentioned in Section
5.2. Specifically, we uncover motion information of a clip by simply accumu-
lating the appearance variation between It and its precedent frames in the
shallow-CNN feature space. The implicit motion representation is referred
to as accumulated micro-motion.

Shallow-CNN features tend to reflect local patterns (e.g., edges or tex-
tures) with low receptive fields. The difference map between two such low-
level features within close temporal proximity inherently encapsulates the
temporal evolution of various general patterns. Likewise, the recent study by
Zhang et al. [31] demonstrates that motion boundaries derived from deeper-
CNN features with large receptive fields do not improve recognition well, as
high-level features have been overly abstracted and lost critical information
on the spatial boundaries of moving targets.

Formally, we define the shallow convolutional block, Conv5×5, as eight
5 × 5 convolutions with strides of 1 and paddings of 3. The input to the con-
volutional block is any clip Vcp where all its frames are first downsampled
by two via a max pooling layer. The downsampling operation comes from
our observation that the difference map between two shallow features within
close temporal proximity retains very small values in most areas, i.e., it only
contains high responses in motion salient regions. As the difference map ex-
hibits high sparsity, it is more efficient to process it in a low-resolution space

76
Chapter 5. AMMA: Accumulated micro-motion features for real-time

spatiotemporal action localization

without much loss of information. Concretely, the above steps are described
as follows:

[F1, F2, ..., Ft] = Conv5×5(MaxPool([I1, I2, ..., It])), (5.1)

MMd
i (x, y) = Fd

t (x, y)− Fd
i (x, y), f or i = 1 : t − 1, (5.2)

where in Equation 5.1, F1, F2, ..., Ft represent shallow-CNN features of fra-
mes in Vcp, each with a dimension of H

2 × W
2 × 8. In Equation 5.2, the Fd(x, y)

denotes the intensity of a feature at its dth channel and pixel location (x, y).
As expressed in this equation, each micro-motion MMi corresponds to the
feature-level difference between the respective frame Ii and It.

To efficiently encode motion variation across different feature spaces and
time steps, all MMd are first accumulated into one channel to manifest the
motion magnitude, as shown in Equation 5.3:

AMMi(x, y) =

√√√√ 8

∑
d=1

(MMd
i (x, y))2 , f or i = 1 : t − 1. (5.3)

Note that unlike optical flow fields which typically encode horizontal and
vertical motion vectors, our motion cue is an appearance-invariant saliency
map reflecting small displacement of motion boundaries which satisfies the
observations brought up in Section 5.2. To further incorporate temporal struc-
ture, we concatenate resulted micro-motion acquired at different time steps
(i.e., t − 1 AMMi) in the channel dimension, followed by a bilinear upsam-
pling operation so that the final clip-level micro-motion matches the spatial
dimension of the original frames (we first downsample the frames via max
pooling in Equation 5.1). In practice, clip length t is defined as 4; the accumu-
lated micro-motion of a clip thus has the same dimension as an RGB frame
(i.e., H × W × 3).

5.4.3 Multi-scale spatiotemporal fusion

In AMMA’s backbone, multi-scale lateral fusion is utilized to incorporate
micro-motion features into the appearance ones. We partially duplicate the
2D CNN from the RGB stream, and apply the network on accumulated micro-
motion. With the above setup, each CNN backbone dedicates to extract-
ing clip-level spatial and temporal information. Then, lateral connections,
which are common practices in action-related domains [39][84] are attached

5.5. AMMA - Detector branches 77

between designated layers of the two CNNs, where weighted summation is
carried out to fuse their respective features. Specifically, we devise uni-lateral
fusion connections; only the spatial CNN is aware of the complementary mo-
tion context when a clip is inputted.

In AMMA, the weights to sum spatial and temporal information are learn-
able scalars that add up to 1. In addition, the number of lateral connections
dictates the extent of fusion between actions’ visual and dynamic cues, which
will be studied more thoroughly in Section 5.7. Since feature fusion is con-
ducted by summation at the spatial CNN, the dimension of the short-term
motion-aware features remains H

R × W
R × D.

5.5 AMMA - Detector branches

Once clip-level features are extracted from their respective clips, AMMA’s
detector head aggregates multiple of them for long-range spatiotemporal
modeling and action tubelet inference. The detector head is composed of
three branches similar to those of TEDdet from the previous chapter: Center
branch, Trajectory branch, and Box branch. The function of each branch is
reviewed in Figure 5.2.

5.5.1 Center branch

Given a sequence of T clip-level features, Center branch aggregates all clips’
spatiotemporal information and locates action instances by their centers at
the end of the sequence. In other words, it finds centers of actions with
respect to the final frame of the Tth clip (i.e., IT

t). To aggregate clip-wise
context, all T features are first stacked along the channel dimension to form
video representation Fstack ∈ R

H
R ×W

R ×TD. Afterwards, Fstack is fed to a stan-
dard 3× 3 and 1× 1 convolutional layer in that order interleaved with ReLU
non-linearity, outputting action heatmap L̂ ∈ R

H
R ×W

R ×C for IT
t , where C cor-

responds to the number of action classes. Each value of L̂x,y,c indicates the
probability of detecting action instance of class c at location (x, y) of the
heatmap.

We train Center branch following the setup in [65]. In detail, the groundtruth
heatmap L ∈ R

H
R ×W

R ×C associated with a T-clip sequence is derived from the
groundtruth center location (xci , yci) of IT

t , where ci corresponds to the true
class of action instance i. We set heatmap Lx,y,c = 0 for all classes except for
the true class. When c = ci, a Gaussian kernel is applied to generate soft

78
Chapter 5. AMMA: Accumulated micro-motion features for real-time

spatiotemporal action localization

FIGURE 5.2: Overview of AMMA’s detector branches. Given an input sequence of
T clips (T = 4 in this figure), Center branch (TOP) detects action centers at IT

t (i.e.,
the key frame). Trajectory branch (MIDDLE) predicts center offsets with respect
to Center branch’s prediction, and adjusts action centers for I1

t , I2
t , ...IT−1

t (i.e., non-
key frames) accordingly. Finally, Box branch (BOTTOM) regresses action instances’
height and width at action centers deduced by the other two branches.

heatmap Lx,y,ci = exp(− (x−xci)
2+(y−yci)

2

2σ2), where the salient region surrounds
(xci , yci) and its dimension is determined by σ2 derived from the groundtruth
instance’s size. The training objective for Center branch follows the focal loss
as shown below:

lCenter = − 1
n ∑

x,y,c

(1 − L̂xyc)αlog(L̂xyc), if Lxyc = 1

(1 − Lxyc)β(L̂xyc)αlog(1 − L̂xyc), otherwise,
(5.4)

where n is the number of groundtruth instances, while α and β are hyperpa-
rameters of the focal loss.

In the inference stage, the resulted heatmap is further filtered indepen-
dently for each class to only keep local peaks that are greater than their 8-
connected neighbors. Finally, the top N peaks across all classes are consid-
ered candidate action centers. In this study, we set α, β, and N to 2, 4, and
100 respectively.

5.5. AMMA - Detector branches 79

5.5.2 Trajectory branch

Trajectory branch complements Center branch by modeling action instances’
movement at frames I1

t , I2
t , ..., IT−1

t with respect to IT
t . Similar to Center branch,

Trajectory branch aggregates T clip-level features by concatenation across the
channel dimension, followed by a standard 3× 3 and 1× 1 convolution inter-
leaved with ReLU non-linearity. The output of the branch is movement map
m̂IT

t ∈ R
H
R ×W

R ×2T, where 2T denotes the center offsets (in X and Y directions)
sequentially for I1

t , I2
t , ..., IT

t with respect to action centers at IT
t as references.

For training, groundtruth action centers at I1
t , I2

t , ..., IT
t are first computed

the same way as in Center branch. Then, the groundtruth movement (mIT
t) of

any action instance with respect to IT
t is simply the offset between its center

at IT
t and those at other frames. Finally, movement map m̂IT

t
i is optimized

based on L1 loss as follows:

lTrajectory =
1
n

n

∑
i=1

|m̂IT
t

i − mIT
t

i |, (5.5)

where i indicates the ith out of n action instances.
During inference, Center Branch obtains action centers at the end of the

input sequence as references, while Trajectory branch adjusts all action cen-
ters at the end of each clip according to the predicted offsets with respect to
the reference centers. Note that the predicted center offset at IT

t from itself is
expected to be zero; as a result, we do not adjust action centers at IT

t .

5.5.3 Box branch

Box branch serves to regress the spatial extent of action instances at [I1
t , I2

t , ..., IT
t],

whose locations have been previously deduced by Center and Trajectory
branch. Unlike the other two branches, incorporating temporal informa-
tion from multiple frames intuitively does not benefit frame-wise predic-
tion of class-agnostic bounding boxes. Hence, our Box branch regresses ac-
tions’ width and height for each clip independently. It comprises a 3 × 3 and
1 × 1 convolutional layer in sequence (interleaved with ReLU) as the other
branches, and generates spatial prediction map ŝ ∈ R

H
R ×W

R ×2, where 2 corre-
sponds to the height and width prediction. As Box branch is shared by all T
clip-level features, it outputs T spatial maps, each one being associated with
the size prediction at I1

t , I2
t , ..., IT

t . We optimize this branch by summing the
L1 loss at all clips as follows:

80
Chapter 5. AMMA: Accumulated micro-motion features for real-time

spatiotemporal action localization

lBox =
1
n

n

∑
i=1

T

∑
j=1

|ŝj
i − sj

i |, (5.6)

where sj
i corresponds to the groundtruth height and width of the ith action

instance (out of n instances) that belongs to the jth clip.

5.5.4 AMMA - loss

The overall training objective of AMMA is shown in Equation 5.7, where
hyperparameter a, b, and c are set to 1, 1, and 0.1 respectively in accordance
with [83]:

lAMMA = alCenter + blTrajectory + clBox. (5.7)

5.6 Online detection and tube generation

5.6.1 Incremental detection via feature-caching-dequeueing

Our proposed action detector requires only RGB frames as input. As it gen-
erates motion representations on-the-fly, AMMA can be applied directly to
real-time video streams. To efficiently and continuously handle incoming
video frames, we employ a simple feature-caching mechanism that allows
AMMA to focus on extracting relevant features only from the current clip
while still being able to retrieve clip-level features from the past for spa-
tiotemporal reasoning. Figure 5.3 illustrates such an online detection work-
flow.

In detail, given that T clips are needed for action inference, AMMA’s
backbone initially obtains T clip-level features from which action tubelets
are produced at the detector branches. Meanwhile, the T clip-level features
are also cached in AMMA’s buffer. Once enough incoming frames are gath-
ered as a valid new clip (i.e., reaching t frames), our detector only extracts the
Tth clip-level features from this new clip. The past T − 1 clip-level features
can be efficiently retrieved from the buffer and combined with the current
one, from which the detector branches predict new action tubelets. Clip-level
feature-caching and dequeuing enable AMMA to incrementally infer action
tubelets covering past and incoming new frames while processing only the
newly arrived clip. During video streaming, AMMA’s buffer will continue
to be updated accordingly to keep the latest T features.

5.6. Online detection and tube generation 81

FIGURE 5.3: AMMA’s incremental feature-caching-dequeueing mechanism for on-
line action detection on video streams.

5.6.2 Linking coarse tubelets into action tubes

Given an incoming video stream, AMMA detects tubelets on top of the latest
T clips. Notably, the lastly detected tubelets have a temporal overlap with
the previous ones by (T − 1) clips (as illustrated in the bottom-right corner
of Figure 5.3). When tubelet results within these temporal overlaps is con-
sistent, AMMA can incrementally link local tubelets over time into action
tubes, yielding long-range spatiotemporal action detection for trimmed or
untrimmed video.

We adopt the same online tubelet linking algorithm as introduced in Chap-
ter 4. To recap, given a video stream as input, AMMA detects N initial
tubelets. Among these tubelets, the top ten tubelets with the highest con-
fidence scores are kept as "active" action links for subsequent tubelet linking.
As the video continues to be streamed, we incrementally extend active links
with new tubelet candidates if their detections at corresponding temporal
positions match. i.e., the average IoU exceeds threshold τ = 0.5. It is note-
worthy that each candidate tubelet can only be assigned to an active link. On
the other hand, an active link stops extending and is terminated ("inactive")
either when there no longer exists temporal overlap with the newly detected
tubelets, or the video stops being streamed.

82
Chapter 5. AMMA: Accumulated micro-motion features for real-time

spatiotemporal action localization

The final action tubes are constructed from all the inactive action links,
where each tube’s confidence score is calculated as the average score of all
its enclosed tubelets. The temporal extent of any action tube is determined
by the starting frame of the initialized tubelet and the end frame of the last
tubelet. Lastly, we discard any final action tube having either a low confi-
dence score or a short temporal duration. Note that AMMA shares the same
coarse-detection scheme as that of TEDdet from Chapter 4. To acquire dense
frame-wise detection, we apply coordinate-wise linear interpolation between
bounding boxes located at two separate clips to infer detection for interme-
diate frames. This design form is reasonable as transitions of actions across
consecutive frames are typically smooth and continuous.

5.7 Experimental validation

Following the same evaluation protocol presented in Chapter 4, we investi-
gate various architectural configurations of AMMA on UCF-24 and JHMDB-
21. For efficient exploration, the following studies are conducted based on
ResNet18 unless specified otherwise. As a reminder, frame-mAP and video-
mAP are used to evaluate the performance of our detector. The former met-
ric validates the IoU between the detected and groundtruth boxes at each
frame and is independent of the online linking strategy. For frame-mAP, the
IoU threshold (τ) is fixed at 0.5 throughout all experiments. On the other
hand, video-mAP inspects spatiotemporal overlaps between linked action
tubes and groundtruth tubes at multiple IoU thresholds (τ = [0.2, 0.5, 0.75,
0.5:0.95:0.05]). Furthermore, to evaluate the efficiency of AMMA, we also
report its model size (number of trainable parameters), MACs (number of
multiply-accumulate operations), and speed (FPS: frame-per-second).

5.7.1 Implementation details

We implement AMMA in Pytorch [105]. Aiming to conduct highly acceler-
ated and efficient detection, we adopt ResNet18 [19] as AMMA’s main CNN
backbone. All inputted RGB frames to our model are resized to 288 × 288.
AMMA’s backbone includes an encoder-decoder feature extractor followed
by a bilinear upsampling layer, transforming video clips to clip-level rep-
resentations of dimension 36 × 36 × 256. Prior to AMMA’s detector head,
clip-level features are first fed to a 1 × 1 convolutional layer to reduce their

5.7. Experimental validation 83

channel dimension by 4 in order to gain efficiency at Center and Trajectory
branches (who work on channel-wise stacked features).

Within AMMA’s backbone, spatial and temporal information are com-
bined via uni-lateral fusion. In the case of ResNet18, we establish uni-lateral
connections at the "stage" level. To investigate the influence of fusing micro-
motion and RGB features at different scales, we vary the extent of fusion by
incrementally adding a lateral connection at the output of each stage (up to
five connections for ResNet18).

To verify our detection framework on ultra-lightweight architectures for
resource-constrained devices, we also evaluate its integration with MobileNet-
V2 [108] and ShuffleNetV2 [109]. The weights of all 2D CNN backbones
are initialized with COCO pretrain (except for ShuffleNetV2 using ImageNet
pretrain).

During training, we apply common practices of data augmentation such
as photometric transformation, scale jittering, random cropping/expansion
and location jittering, etc. To train AMMA on T-clip sequences, each action
tubelet is expected to last T × t frames. In practice, observing that consec-
utive video frames occasionally repeat (in JHMDB-21), we omit sampling
the second-last frame of each clip to avoid accumulating zero-value micro-
motion; hence the actual duration spans T × (t + 1) frames. For any action
video having a shorter duration, we pad the beginning of its T-clip sequence
by the first frame of the video until the minimum length requirement is met,
simulating an action without movement at the beginning. At AMMA’s detec-
tor head, only the groundtruth associated with the final frame of a clip (i.e.,
IT
t) is used to train Center branch. On the other hand, Trajectory branch and

Box branch learn to regress movement and spatial extent of action instances
over all clips, thus requiring groundtruth labels of I1

t , I2
t , ..., IT

t .
We use the Adam optimizer to train our models. An initial learning rate of

5e−4, 2.5e−4, and 2.5e−4 is applied when employing ResNet18, MobileNetV2
and ShffleNetV2 as AMMA’s backbone, respectively. For JHMDB-21, we
train AMMA for 10 epochs while reducing the learning rate by a factor of
10 at the 6th and 8th epoch. Likewise, UCF-24 is trained for 10 epochs, but
with the learning rate reduced by half at every epoch after the second one. In
our experiments, all the training is conducted on an NVIDIA Titan V5 GPU
while fixing the mini-batch size at 16.

84
Chapter 5. AMMA: Accumulated micro-motion features for real-time

spatiotemporal action localization

1 2 3 4 5

Input duration (T)

50

55

60

65

70
JHMDB-21

RGB

RGB+MM

1 2 3 4 5

Input duration (T)

60

65

70

75
UCF-24

RGB

RGB+MM

F
ra

m
e

-m
A

P

FIGURE 5.4: Frame-mAP performance under varied input duration (i.e., number of
clips). Here, "MM" denotes micro-motion.

5.7.2 Effect of input duration

The core of AMMA lies in detecting action tubelets across a sequence of video
clips. Intuitively, combining more clips as input encapsulates richer spa-
tiotemporal context. However, longer sequences could potentially introduce
irrelevant background cues, as well as raising difficulty to track tubelets’ tra-
jectories. To investigate how the input duration affects the proposed detec-
tor, we conduct experiments on both JHMDB-21 and UCF-24 by varying the
number of input clips under two setups (with or without micro-motion fu-
sion). To control the extent of motion fusion in these experiments, we uni-
formly attach one lateral connection at the end of the first three stages of
ResNet18. The corresponding frame-mAP results are depicted in Figure 5.4.

From the above experiments, we observe that AMMA generally produces
more accurate tubelets the longer video sequences it sees. This result matches
our hypothesis that reasoning from longer video clips enriches spatiotempo-
ral feature learning. In contrast, the configuration of T = 1 without micro-
motion is essentially frame-wise detection, which is the least accurate due
to a complete lack of temporal modeling (incorporating neither short-term
dynamic nor long-term appearance evolution).

Notably, AMMA’s accuracy continues to benefit on JHMDB-21 as T in-
creases. We observe that longer input sequences improve accuracy mainly
by reducing false-positive detection in videos where ambiguous visual cues
are present. Figure 5.5 displays several examples where AMMA manages
to detect correctly when enlarging its temporal receptive field across longer
video sequences. We stop increasing the number of clips at 5. When T = 5,
AMMA takes 5 × (4 + 1) = 25 consecutive frames as input, which are more

5.7. Experimental validation 85

FIGURE 5.5: Examples of short-tubelet (T = 2) and long-tubelet (T = 5) detection
on JHMDB-21. The groundtruth actions (from top to bottom) are Catch, Sit, and
ShootBall. The green and red boxes correspond to correct and incorrect detection,
respectively. Each colored box also displays the detected class and associated confi-
dence score. Longer input sequences help to reduce false-positive detection which
are prone to occur in the presence of ambiguous visual cues (e.g., confusion between
Sit and Stand, Catch and ShootBall, etc.)

than half of the frames in most videos of this dataset. We adopt a similar
setup when evaluating UCF-24. Interestingly, although input duration and
accuracy still positively correlate, AMMA performs best when T = 3. We
deduce that as UCF-24 consists of temporally untrimmed videos, AMMA is
prone to produce more false-positive detection associated with time when as-
signing a unified action label to a longer sequence, i.e., making predictions on
frames without an action. Alongside varied input duration, all architectures
with micro-motion feature fusion consistently outperform those using only
appearance cues, confirming the efficacy of introducing short-term dynamic
motion to help differentiate actions.

86
Chapter 5. AMMA: Accumulated micro-motion features for real-time

spatiotemporal action localization

TABLE 5.1: Performance summary of different forms of micro-motion fusion on
JHMDB-21. Input duration is fixed to 5 clips, and three lateral connections are at-
tached to the outputs of the first three stages in ResNet18.

Frame-mAP GMACs # param. (M)
RGB only 65.08 3.51 15.07
RGB + MMDi f f 67.69 4.95 15.75
RGB + MMConv_Di f f 69.74 5.21 15.75

5.7.3 Effect of micro-motion generation and fusion

The previous experiment demonstrates AMMA’s extensible temporal mod-
eling capacity with micro-motion feature fusion. We further investigate the
influence of different forms of micro-motion generation and fusion.

Table 5.1 summarizes AMMA’s detection accuracy and complexity on
JHMDB-21 in accordance with varied input forms. Building upon the input-
duration experiment, we adopt 5-clip input and three stages of lateral con-
nection (when fusion is applied). To approximate our model’s complexity
under a streaming-video setup, we report the MACs of tubelet detection
over T clips and then divide by T. In addition, to verify the necessity of
our micro-motion sub-network (expressed as MMConv_Di f f), we implement
a simpler micro-motion variant (coined MMDi f f) by directly accumulating
RGB difference maps.

Our experiment shows that with minor increase in the model size, fus-
ing MMConv_Di f f features largely enhances AMMA’s accuracy from that of
only using RGB frames by nearly 5 frame-mAP. Relative to the model size,
which arises due to adding the micro-motion sub-network and duplicating
three early stages of ResNet18, the elevation is more prominent in the re-
quired GMACs. We found that the additional operations associated with
fusing MMConv_Di f f all take place toward early layers of AMMA’s backbone
where target tensors still retain large spatial dimensions, resulting in a more
noticeable raise in multiply-accumulate computation than in model size. On
the other hand, fusing MMConv_Di f f obtains higher accuracy than MMDi f f by
more than 2 frame-mAP at a negligible increase in GMACs and model size.
This suggests that the temporal evolution of general patterns better encodes
motion dynamics than raw RGB differences, which are more likely to carry
local noises. In Figure 5.6, we show some examples of our micro-motion
representation which successfully captures motion boundaries near moving
actors.

5.7. Experimental validation 87

FIGURE 5.6: Visualization of micro-motion cues between pairs of action frames.

Next, we explore different extents of fusion between appearance and micro-
motion information by incrementally raising the number of lateral connec-
tions. As shown in Table 5.2, the more stages of lateral fusion take place,
the more accurate AMMA becomes. This correlation indicates that our ac-
cumulated micro-motion embeds rich temporal cues, from simple motion
boundaries to abstract dynamic information. Multi-scale lateral fusion there-
fore ensures AMMA to simultaneously learn complementary spatiotemporal
information throughout the backbone. In exchange for enhanced accuracy,
more lateral fusion inherently raises the model size and computation asso-
ciated with extracting micro-motion features at deeper layers. To conclude,
AMMA’s capacity to jointly model actions’ visual and dynamic information
can be improved when adopting deep fusion. In spite of that, with the global
aim of keeping an efficient detection architecture, we continue leveraging 3
stages of lateral fusion throughout the rest of the experiments.

88
Chapter 5. AMMA: Accumulated micro-motion features for real-time

spatiotemporal action localization

TABLE 5.2: Performance summary of varied extents of fusion between appearance
and micro-motion features on JHMDB-21. Input duration is fixed to 5 clips.

Frame-mAP GMACs # param. (M)
—– 65.08 3.51 15.07
Stage1 66.58 3.76 15.08
Stage1,2 68.74 4.53 15.23
Stage1,2,3 69.74 5.21 15.75
Stage1,2,3,4 70.22 5.89 17.85
Stage1,2,3,4,5 72.48 6.57 26.24

5.7.4 From lightweight to ultra-lightweight

Ultimately aiming at deploying the detector onto resource-constrained de-
vices, we examine AMMA’s generalization ability on ultra-lightweight mo-
bile architectures: MobileNetV2 and ShuffleNetV2. Both detection accuracy
(e.g., frame-mAP and video-mAP) and model efficiency (e.g., inference speed,
model complexity, and size) are assessed. In particular, speed is recorded
based on the per-frame processing time of the entire action detection pipeline,
i.e., the total runtime of generating action proposals for all videos divided by
the total number of their frames.

Integration of micro-motion and lateral fusion in these mobile architec-
tures closely follows our design with the ResNet18. With MobileNetV2 as
the backbone, we append three lateral connections at the output of the 1st,
3rd, and 6th bottleneck residual block (MobileNetV2 consists of 17 of these
building blocks). For ShuffleNetV2, three lateral connections are established
at the output of "Conv1", "Stage2", and "Stage3" (naming conventions of these
layers/blocks follow those in [109]). The resulting models are represented by
AMMA18 (ResNet18), AMMAM (MobileNetV2), and AMMAS (ShuffleNetV2)
for simplicity. Note that we apply different clip-lengths on the two datasets
following the best configuration found in Figure 5.4.

Results of the three AMMA variants are reported in Table 5.3. We observe
that AMMA18 consistently obtains higher accuracy than the other two (espe-
cially reflected in video-mAP at high detection thresholds). This is expected
as ResNet has higher capacity to extract richer visual context in general than
the mobile architectures prioritizing efficiency. Indeed, both datasets consist
of actions embedding prominent appearance cues such as ShootBow and Pol-
eVault that could benefit from a more powerful feature extractor. In terms of
efficiency, the average GMACs of AMMAM and AMMAS are approximately
1/4 and 1/5 of that of AMMA18. Similarly, the model size of AMMAM and
AMMAS are also significantly smaller.

5.7. Experimental validation 89

TABLE 5.3: Performance summary of integrating different 2D CNN backbones.

JHMDB-21 (T=5)

F-mAP
Video-mAP

@0.2 0.5 0.75 0.5:0.95
GMACs Param. (M) FPS

AMMA18 69.7 73.7 72.7 60.1 50.3 5.2 15.8 80
AMMAM 66.1 70.0 69.0 53.7 45.3 1.3 6.8 77
AMMAS 67.7 72.3 70.9 47.9 43.0 1.0 6.0 75

UCF-24 (T=3)

F-mAP
Video-mAP

@0.2 0.5 0.75 0.5:0.95
GMACs Param. (M) FPS

AMMA18 74.6 81.1 53.5 24.6 26.3 5.2 15.8 115
AMMAM 71.8 78.0 49.7 22.0 23.5 1.3 6.8 110
AMMAS 71.3 78.7 47.4 20.9 22.5 1.0 6.0 100

Countering the above observations, the two ultra-lightweight variants
have slightly slower runtime than AMMA18 even though their computa-
tional cost is substantially lower. On the one hand, this phenomenon has
been addressed in [110], which points out that the implementation of depth-
wise separable convolution is not optimized in the cuDNN library (therefore,
MobileNetV2 tends to be slower than ResNet18 in standard experimental se-
tups). Moreover, computational complexity does not necessarily guarantee
faster runtime as GMACs do not take into account factors such as memory
access cost and platform characteristics [109]. Further, even though all three
AMMAs are equipped with three lateral connections, their extent of spatial-
temporal fusion still differs according to the architectural designs of their
backbone CNNs. For example, ShuffleNetV2 has more convolutional layers
in "Stage3" than those in ResNet18 to process motion cues. All of our models
still exceed real-time performance by a large margin.

Interestingly, it can be observed that AMMA’s runtime varies significantly
between the two datasets. This is attributed to videos having drastically dif-
ferent lengths in these datasets. Videos in JHMDB-21 are generally short and
thus benefit less from the feature-caching mechanism, as AMMA’s buffer
will be frequently cleared and await to be initialized by features from new
videos. In addition, each initialization takes more time for JHMDB-21 than
UCF-24, since JHMDB-21 is configured to take a longer input sequence for
action tubelet inference (pending for 5 clip-level features rather than 3).

90
Chapter 5. AMMA: Accumulated micro-motion features for real-time

spatiotemporal action localization

TABLE 5.4: Comparison with the state-of-the-art methods. Under column "Input",
"+OF" indicates using optical flow as the additional input modality (alongside RGB
input).

Method Input
JHMDB-21 UCF-24

F-mAP Video-mAP
0.2 0.5 0.75 0.5:0.95 F-mAP Video-mAP

0.2 0.5 0.75 0.5:0.95
2D backbone

Saha et al. [70] +OF −− 72.6 71.5 43.3 40.0 −− 66.7 35.9 7.9 14.4
Peng et al. (MR) [71] +OF 58.5 74.3 73.1 −− −− −− 73.5 32.1 2.70 7.30

Saha et al. (AMTnet) [77] +OF −− 73.5 72.8 59.7 48.1 −− 78.5 49.7 22.2 24.0
Kalogeiton et al. (ACT) [75] +OF 65.7 74.2 73.7 52.1 44.8 69.5 76.5 49.2 19.7 23.4

Singh et al. (ROAD) [73] +OF −− 73.8 72.0 44.5 41.6 −− 73.5 46.3 15.0 20.4
Yang et al. (STEP) [97] +OF −− −− −− −− −− 75 76.6 −− −− −−

Zhao et al. (Two-in-One) [84] +OF −− −− 74.7 53.3 45.0 −− 78.5 50.3 22.2 24.5
Song et al. (TACnet) [112] +OF 65.5 74.1 73.4 52.5 44.8 72.1 77.5 52.9 21.8 24.1

Zhang et al.[106] +OF 37.8 −− −− −− −− 67.7 74.8 46.6 16.7 21.9
Li et al. (MOC) [83] +OF 68.0 76.2 75.4 68.5 54.0 76.9 81.3 54.4 29.5 28.4

AMMA18 - - - 69.7 73.7 72.7 60.1 50.3 74.6 81.1 53.5 24.6 26.3
AMMAM - - - 66.1 70.0 69.0 53.7 45.3 71.8 78.0 49.7 22.0 23.5
AMMAS - - - 67.7 72.3 70.9 47.9 43.0 71.3 78.7 47.4 20.9 22.5

3D backbone
Hou et al. (T-CNN) [79] - - - 61.3 78.4 76.9 −− −− 67.3 73.1 −− −− −−

Gu et al.[4] - - - 73.2 −− −− −− −− 77.0 −− −− −− −−
Qiu et al.[113] - - - −− 77.3 74.2 −− −− −− 69.3 −− −− −−

Zhao et al. (TubeR) [89] - - - −− −− 79.5 −− 58.0 −− −− 52.0 −− 25.2

5.7.5 Global detection performance and comparison

In this section, we evaluate AMMA against several state-of-the-art meth-
ods on JHMDB-21 and UCF-24. The comparison follows the same princi-
ple as stated in previous chapters: since our tubelet detector not only seeks
competitive accuracy, but also requires low complexity and real-time run-
time for compact deployment, only state-of-the-arts with loosely comparable
architectures as AMMA are listed in Table 5.4. Other top-performing ap-
proaches [90][111] which employ much heavier detection frameworks (e.g.,
two streams of 3D CNN) are excluded for fair comparison.

It can be observed from Table 5.4 that AMMA18 achieves competitive
accuracy on both datasets. Notably, our proposed model utilizes the most
lightweight feature backbone than all other methods on the list. These in-
clude two-stream VGG16, two-stream DLA-34, C3D, I3D, and S3D, etc. Fur-
thermore, leveraging only RGB frames as input, AMMA18 still outperforms
most of the other two-stream methods relying on fine-grained optical flow,
(especially reflected in its frame-mAP and video-mAP at high detection thresh-
olds). On the other hand, we notice that AMMA tends to keep a higher num-
ber of false-positive action tubes after the tubelet-linking process, decreasing
its video-mAP at lower IoUs (more evident on JHMDB-21). This is likely
caused by AMMA’s coarse-detection scheme which assumes a unified action

5.7. Experimental validation 91

0 10 20 30 40 50 60 70 80 90 100 110 120 130

Inference runtime (FPS)

15

17.5

20

22.5

25

27.5

30

V
id

e
o

-m
A

P
 (

0
.5

:0
.9

5
)

Kalogeiton et al. [75]

Zhao et al. [84]-two-stream

Zhao et al. [84]-two-in-one-stream

Singh et al. [73]-AF

Singh et al. [73]-RTF

Saha et al. [77]

Li et al. [83]-two-stream

Li et al. [83]-RGB

Zhang et al. [106]

Zhao et al. [89]

AMMA-ResNet18

AMMA-MobileNetV2

AMMA-ShuffleNetV2

FIGURE 5.7: Comparisons of runtime-accuracy trade-off between AMMA and state-
of-the-arts on UCF-24 (video-mAP). "AF" and "RTF" denote accurate flow and real-
time flow, respectively. It is note-worthy that methods that depend on externally
calculated optical flow typically omit this part of the computation in their runtime
measurement.

class over an extended duration for any action instance. Consequently, un-
like dense-tubelet detectors [75][97][83], it is more difficult to suppress false-
positive detection simply by discarding short action tubes at the end. Finally,
AMMA18 scores competitively against most 3D CNN-based methods even
though ResNet18 has far less capacity to reason spatiotemporal information,
indicating the effectiveness of fusing coarse-scale visuals and complemen-
tary dynamic cues. For AMMAM and AMMAS, due to their CNN backbones
being less capable of abstracting visual patterns in exchange for substantially
lower computational cost, there remains a perceivable margin from the accu-
racy of other top-performing detectors.

Beyond competitive accuracy, the evident strength of AMMA lies in its
cost-effective architecture and workflow tailored for real-world scenarios and
deployment. Specifically, the vast improvement in AMMA’s processing effi-
ciency is attributed to its coarse-detection paradigm as well as being free of
optical flow extraction. The former not only bypasses redundancy associated
with dense per-frame detection, but also facilitates capturing actions’ promi-
nent appearance variation over time. Adopting on-the-fly motion cues in-
stead of pre-computed optical flow, AMMA supports detecting actions in an

92
Chapter 5. AMMA: Accumulated micro-motion features for real-time

spatiotemporal action localization

online manner from video streams when exploiting feature-caching and in-
terpolation from coarse-level detection. As shown in Figure 5.7, while retain-
ing competitive video-mAP on UCF-24, our models considerably outperform
other action detectors reporting real-time or near-real-time performance.

5.8 Summary and limitations

Summary. In this chapter, we propose a cost-effective 2D-based tubelet de-
tection framework coined Accumulated Micro-Motion Action detector (AMMA).
It adopts a coarse-level detection paradigm which sparsely extracts visual
and complementary dynamic cues of actions spanning a longer sequence.
Lifting reliance on optical flow, AMMA utilizes accumulated micro-motion
to encode actions’ short-term motion dynamics, which can be efficiently learned
and generated on-the-fly from RGB frames. On top of AMMA’s motion-
aware CNN backbone, we adopt the state-of-the-art anchor-free detector, co-
operatively modeling action instances’ categories, locations, sizes, and trajec-
tories as moving points in the time span. When compared to other methods,
the proposed action tubelet detector achieves competitive accuracy on UCF-
24 and JHMDB-21 benchmarks, while incurring substantially lower compu-
tation and exceeding real-time speed by multiple folds.

The main contributions of our work can be summarized as follows:

• We propose an integrated action tubelet detector which builds upon
lightweight 2D CNN feature backbones (ResNet18, MobileNetV2, and
ShuffleNetV2) and an anchor-free detector. It follows a coarse-to-fine
detection paradigm, enabling learning rich spatiotemporal cues of ac-
tions over larger temporal fields.

• We design a novel micro-motion representation to efficiently encode
and accumulate subtle motion dynamics of actions on-the-fly, replac-
ing optical flow and permitting real-time detection over online video
streams.

• Our detailed ablation studies on public JHMDB-21 and UCF-24 datasets
demonstrate AMMA’s competitive accuracy (both frame and video-
mAP) at significantly lower computation and faster runtime.

Limitations. Producing action tubelets in a timely coarse manner, AMMA
demonstrates being a more generic detector that performs better spatiotem-
poral localization than TEDdet in both frame and video-mAP. However, the

5.8. Summary and limitations 93

"global" mAP metric does not fully reflect the strengths/limits of our newly
proposed detector. Does the addition of motion information help AMMA to
better localize moving targets with weak visual cues? Or does distinct mo-
tion pattern facilitate more confident classification? From the perspective of
real-world deployment, AMMA’s transparency and its ability to scale under
more complicated actions and dynamic scenarios require further investiga-
tion.

Looking ahead. In the next chapter, we continue to examine AMMA’s
performance at a deeper level. Mainly, the global accuracy evaluation met-
ric, frame-mAP, is decomposed into mutually-exclusive sources of error cat-
egories to help understand what AMMA struggles to detect. Similar analysis
on the computation and time cost of all variants of AMMA as well as TED-
det, will also be conducted to identify potential computational bottlenecks
for future design references.

95

Chapter 6

Diving more deeply into AMMA

6.1 Introduction

In Chapter 5, we propose a unified action tubelet detector coined AMMA.
It utilizes approximated motion representations calculated on-the-fly from
RGB frames, lateral feature fusion to combine spatial and temporal cues, co-
operative detector branches, and a coarse-to-fine detection paradigm for ac-
celerated detection. Our experimental results attest that AMMA, even when
paired with lightweight CNN backbones (e.g., ResNet18, MobileNetV2, and
ShuffleNetV2) that favor deployment on resource-constrained devices, re-
tains highly competitive accuracy while largely excelling in detection speed
(≥ 75 FPS).

In this chapter, we further investigate AMMA in terms of its accuracy,
computational complexity, and speed performance. To assess accuracy, the
previous chapter mostly provides numeric metrics (e.g., frame-mAP or video-
mAP) which partially disclose the underlying performance of the detector on
a global scale. Alternatively, we take a step back and attempt to address the
following question: what contributes to AMMA’s mAP score on designated
datasets? In other words, what are the sources of errors that lead to mAP
loss?

Besides re-evaluating the accuracy, we also carry out complexity and run-
time breakdown analysis to identify computational bottlenecks (if any) and
comprehend the time-consumption of each working module. Detailed anal-
ysis and comparison are conducted among different AMMA variants, as well
as TEDdet introduced in Chapter 4.

Note that ACDnet (presented in Chapter 3) has been excluded for com-
parison in this chapter. ACDnet is one of our earliest work whose detection

96 Chapter 6. Diving more deeply into AMMA

pipeline substantially differs from those of AMMA and TEDdet. These dis-
crepancies include the line of adopted detectors (anchor-based vs. anchor-
free), the way to obtain frame-wise detection (motion-guided feature prop-
agation vs. coarse-to-fine detection accompanied by intra-frame interpola-
tion), whether tube linking is supported (only by TEDdet and AMMA), im-
plementation frameworks (MXNet vs. Pytorch), and an inconsistent evalua-
tion protocol (UCF-24 was temporally trimmed prior to evaluation in Chap-
ter 3). In spite of omitting this piece of comparison, our in-depth analysis
on AMMA and TEDdet’s performance shall suffice to make their advan-
tages/limitations more transparent and palpable than simply reporting the
benchmark accuracy. We believe our findings will provide meaningful and
seminal insights for future designs of real-time spatiotemporal action detec-
tors in the research community.

Outline. This chapter is organized as follows. We begin by analyzing the
breakdown of errors contributing to AMMA’s frame-mAP loss in Section 6.2.
In this section, the global error distribution and class-wise AP are assessed
quantitatively and qualitatively on both datasets. Second, we look into the
computational cost of our detectors in Section 6.3, on a global scale as well
as down to individual working modules. Next, Section 6.4 re-evaluates and
compares the inference speed of our detection models. The relation of tubelet
length and runtime is also uncovered in this section. Finally, we present an
assessment summary with brief insights into plausible improvements in Sec-
tion 6.5.

6.2 Accuracy and error breakdown analysis

6.2.1 Recap on AMMA and TEDdet

We first revisit the frame-mAP and video-mAP acquired by AMMA (Chapter
5) and TEDdet (Chapter 4). Throughout the chapter, variants of AMMA are
represented by AMMA18, AMMAM, and AMMAS, each employing ResNet18,
MobileNetV2, and ShuffleNetV2 as the feature extractor backbone, respec-
tively. Here, we only cover the best configuration of each method from the
previous chapters unless specified otherwise.

In Table 6.1, one can see that AMMA18 consistently outperforms the other
variants on both datasets by approximately 2-3 frame-mAP. This is expected
as MobileNetV2 and ShuffleNetV2 are tailored to prioritize efficiency for
low-end devices such as mobile platforms. Such superiority in accuracy is

6.2. Accuracy and error breakdown analysis 97

TABLE 6.1: Accuracy recap on AMMA and TEDdet. The below results correspond
to the best performing models found in Chapter 4 and 5.

JHMDB-21
Input length

(T)
Frame-mAP

@0.5
Video-mAP

@0.2 0.5 0.75 0.5:0.95
AMMA18 5 69.7 73.7 72.7 60.1 50.3
AMMAM 5 66.1 70.0 69.0 53.7 45.3
AMMAS 5 67.7 72.3 70.9 47.9 43.0
TEDdet 5 64.7 67.9 67.4 53.7 44.7

UCF-24
Input length

(T)
Frame-mAP

@0.5
Video-mAP

@0.2 0.5 0.75 0.5:0.95
AMMA18 3 74.6 81.1 53.5 24.6 26.3
AMMAM 3 71.8 78.0 49.7 22.0 23.5
AMMAS 3 71.3 78.7 47.4 20.9 22.5
TEDdet 5 70.8 74.6 50.4 21.8 25.0

also prominently shown in video-mAP at higher detection thresholds, espe-
cially reflected on JHMDB-21. We also observe that AMMAM’s video-mAP
significantly exceeds that of AMMAS at higher thresholds, which can be as-
sociated with more precise localization. Since the two models apply a slightly
different training protocol (AMMAS is initialized with ImageNet instead of
COCO pretrain weights), we believe that the discrepancy can be mitigated.

When compared to TEDdet, which also leverages ResNet18 as the fea-
ture extraction backbone, AMMA18 demonstrates much higher capacity to
distinguish among actions and generate better action proposals, mainly due
to the addition of micro-motion feature fusion. The benefit of incorporating
motion information can also be inferred from AMMAM and AMMAS, which
both obtain higher frame-mAP and comparable video-mAPs than TEDdet
even though employing much more compact feature extractors.

6.2.2 Unveiling frame-mAP

Frame-mAP and video-mAP convey the global precision of our detectors
with respect to state-of-the-art methods. Of the two metrics, video-mAP re-
flects the tubelet linking performance based on IoU matching, which can be
considered a measure of consistency on detected tubelets over time. On the
other hand, frame-mAP gives insights on how well our detection models in-
fer action tubelets from video clips. To better understand predicted tubelets
and their accuracy, we examine five mutually exclusive factors of possible

98 Chapter 6. Diving more deeply into AMMA

errors and analyze which percentage of the mAP is lost due to each of them.
The five sources of errors are described as follows:

1. Localization error (EL): a detection is in a frame containing the correct
class, but its localization is incorrect (i.e., IoU < τ with the groundtruth
box).

2. Classification error (EC): a detection has IoU > τ with the groundtruth
box of another action class.

3. Time error (ET): a detection is in an untrimmed video for the correct
class, but the groundtruth temporal extent of the action does not cover
this frame.

4. Other error (EO): a detection appears in a frame without the class and
has IoU < τ with groundtruth boxes of any other class.

5. Missing detection error (EM): there is no detection for a groundtruth
box.

Among the different types of errors, EM refers to false-negative detection,
which is computed by measuring the percentage of missed detections, i.e.,
ratio of groundtruth boxes for which there are no correct detections. In con-
trast, EL, EC, ET, and EO all correspond to false positive detections. Through-
out the following error breakdown analysis, we fix τ at 0.5 in accordance with
the threshold used for computing frame-mAP throughout this manuscript.

6.2.3 Evaluation on JHMDB-21

Error breakdown analysis. Figure 6.1 presents the error distribution (%) of
AMMA and TEDdet’s frame-mAP on JHMDB-21 (only on split 1). At first
glance, one can perceive that most of AMMAs’ mis-detection comes from EC

while the rest of errors are small and scattered (ET = 0 as JHMDB-21 is a
temporally trimmed dataset). Specifically, AMMA18 obtains 27.02% of EC,
which is very close to 26.76% of AMMAM and 27.11% of AMMAS. These re-
sults imply that the three AMMA variants are almost equally competent for
classification. Thanks to having a more powerful CNN backbone, AMMA18’s
higher frame-mAP lies in localizing actions more precisely (lower EL), as well
as reducing inconfident, noisy detection (lower EO) and false-negative detec-
tion (lower EM).

6.2. Accuracy and error breakdown analysis 99

E
L

E
C

E
T

E
O

E
M

0

5

10

15

20

25

30

35

%

AMMA
18

AMMA
M

AMMA
S

TEDdet

FIGURE 6.1: Error breakdown of AMMA and TEDdet’s frame-mAP on JHMDB-21
(only on split 1).

Equipped with the same feature extractor, AMMA18 significantly outper-
forms TEDdet in EC by nearly 5%, which gives rise to the discrepancy be-
tween the two methods’ frame-mAP as recapped in Table 6.1. Here, we re-
mind our readers that when excluding micro-motion feature fusion, AMMA18

with a sequence length T = 5 achieves similar frame-mAP as TEDdet (≈65.0
frame-mAP; see Figure 5.4 for reference). Inherently, integrating micro-motion
features plays an essential role to induce learning action-specific dynamics
and reduce false-positive classification. Our results are aligned with many
previous studies which find optical flow cues particularly useful for JHMDB-
21. In a similar spirit, even though TEDdet slightly outperforms both AMMAM

and AMMAS throughout EL, EO (only AMMAM) and EM due to integrating
a more powerful feature extractor, lacking motion-specific cues largely raises
its EC, resulting in lower frame-mAP overall.

Class-specific AP and error. In Table 6.2, we present the complete class-
wise performance comparison between AMMA18 and TEDdet to better visu-
alize how micro-motion feature fusion influences individual action classes.
The first two rows of the table consists of class-wise frame-AP of the two
methods, followed by their respective EC, which is the dominating source of
error for JHMDB-21.

As shown in Table 6.2, AMMA18 obtains better APs than TEDdet in 17
out of 21 classes. In particular, action classes such as "6-Jump", "12-Run",

100 Chapter 6. Diving more deeply into AMMA

TABLE 6.2: Class-wise frame-APs on JHMDB-21 (split 1). All 21 classes are presented
in the following order: BrushHair (1-BH), Catch (2-CT), Clap (3-CP), ClimbStairs (4-
CS), Golf (5-GF), Jump (6-JP), KickBall (7-KB), Pick (8-PK), Pour (9-PR), PullUp (10-
PU), Push (11-PS), Run (12-RN), ShootBall (13-SB), ShootBow (14-SW), ShootGun
(15-SG), Sit (16-SI), Stand (17-ST), SwingBaseball (18-SL), Throw (19-TW), Walk (20-
WK), and Wave (21-WV).

Actions 1-BH 2-CT 3-CP 4-CS 5-GF 6-JP 7-KB
AMMA18 (AP) 90.0 31.0 66.9 81.8 98.7 42.4 66.7
TEDdet (AP) 82.6 10.3 74.0 81.6 92.6 20.4 64.4
AMMA18 (EC) 9.6 67.8 32.2 16.9 1.3 35.5 30.8
TEDdet (EC) 16.1 86.7 24.9 14.2 7.4 49.3 32.3

Actions 8-PK 9-PR 10-PU 11-PS 12-RN 13-SB 14-SW
AMMA18 (AP) 87.9 94.7 98.1 91.0 41.6 52.8 94.1
TEDdet (AP) 84.4 92.6 97.2 94.5 16.7 53.4 81.5
AMMA18 (EC) 10.7 5.3 1.9 7.0 50.8 41.4 5.8
TEDdet (EC) 15.3 7.5 2.8 5.3 71.2 41.0 18.5

Actions 15-SG 16-SI 17-ST 18-SL 19-TW 20-WK 21-WV
AMMA18 (AP) 66.3 74.9 82.5 76.9 28.0 79.0 27.3
TEDdet (AP) 58.9 71.1 70.6 71.1 23.4 59.7 35.4
AMMA18 (EC) 33.2 20.3 16.5 23.0 69.8 20.1 67.7
TEDdet (EC) 40.9 25.6 24.9 28.6 71.0 37.2 56.0

and "20-Walk", which do not depend on scenery cues improve the most from
micro-motion (> 15 APs). From the table, it is also apparent that these classes
gain accuracy mainly due to lower rates of false-positive classification (EC).
Similar outcomes (but less prominent) are also reflected in other classes such
as "1-BrushHair", "2-Catch", "5-Golf", "14-ShootBow", and "19-Throw". Con-
versely, TEDdet achieves better detection for "3-Clap" and "21-Wave". These
two action classes happen to share fairly similar action dynamics, e.g., move-
ment around the hand/arm. We suspect that AMMA18 is prone to confusion
when seeing similar motion cues around the arms.

Difficult classes. There exist a few action categories that remain chal-
lenging for our methods. These actions include "2-Catch", "13-ShootBall",
"12-Run", and "19-Throw", whose classification errors are all above 40%. To
reason possible causes behind such high false-positive rates in classification,
we qualitatively inspect the action data and deduce two potential limitations
of our methods, both of which are illustrated in Figure 6.2. First, it is re-
marked that certain actions (e.g., "2-Catch" and "13-ShootBall") consist of a
large number of redundant video frames which lack action-specific pattern
(but still labeled as parts of the actions). AMMA’s coarse detection scheme

6.2. Accuracy and error breakdown analysis 101

FIGURE 6.2: Examples of difficult action categories from JHMDB-21. (TOP) The
selected action sequences for training/testing may not contain "discriminative"
frames which prevents AMMA/TEDdet from learning/extracting relevant action
cues. (BOTTOM) Strong inter-class variation also poses great challenges for learn-
ing generic action-specific pattern. When trained on a small dataset, our models are
likely to overfit on non-essential spatiotemporal context.

has a temporal receptive field of 25 frames (when T = 5), which is occa-
sionally insufficient to accommodate meaningful context/motion embedded
in these actions (as shown in the top rows of the Figure 6.2). Second, we
suspect that due to JHMDB-21’s small data size, AMMA could not learn
well-generalized pattern of specific groups of actions, especially those hav-
ing drastic inter-class variations (examples are depicted in the bottom rows
of the same figure). The problem is likely to be alleviated when more suitable
pretrain weights specific to action-related tasks are applied.

6.2.4 Evaluation on UCF-24

We conduct a similar error breakdown analysis on UCF-24 as presented in
Figure 6.3. Different from JHMDB-21, the highest frame-mAP loss for UCF-
24 originates from time error ET while the remaining loss is scattered across

102 Chapter 6. Diving more deeply into AMMA

E
L

E
C

E
T

E
O

E
M

0

2

4

6

8

10

12

%

AMMA
18

AMMA
M

AMMA
S

FIGURE 6.3: Error breakdown of AMMA’s frame-mAP on UCF-24.

all other types of error.
Among different AMMA architectures, AMMA18, AMMAM, and AMMAS

obtain 10.60%, 9.87%, and 11.22% ET, respectively. These results do not in-
dicate clear correlation between a stronger feature backbone (i.e., ResNet18)
and better temporal localization performance. On the other hand, AMMA18

acquires the highest frame-AP overall (as reported in Table 6.1) by reducing
false-positive detection throughout all other error categories as well as false-
negative rates.

Relation between input sequence length and accuracy. In our earlier
study from Section 5.7, we discovered that even though AMMA’s frame-
mAP on JHMDB-21 continues to rise upon increasing sequence length (T),
it appears to saturate and even slightly degrade beyond T = 3 on UCF-24.
To uncover possible causes of this frame-mAP drop, we assess changes of er-
ror distribution for AMMA18 under the influence of varied sequence length
(T = {3, 4, 5}). The results are shown in Figure 6.4 (green bars). From this ex-
periment, ET actually expresses little correlation with varied sequence length.
Instead, error rates in EL, EC, and EO arise consistently when T increases.

We refer to the study by Kalogeiton et al. [75] and come to understand
that JHMDB-21 may be better at coping long-range temporal modeling than
UCF-24 due to the different extent of motion embedded in the two datasets.
Particularly, actors in UCF-24 undergo larger movement and location shift.
Kalogeiton et al. quantify the extent of actors’ movement by computing the

6.2. Accuracy and error breakdown analysis 103

E
L

E
C

E
T

E
O

E
M

0

2

4

6

8

10

12

AMMA
18

 (T=3)

AMMA
18

 (T=4)

AMMA
18

 (T=5)

TEDdet (T=5)

FIGURE 6.4: Error breakdown analysis on UCF-24 for AMMA18 (T = {3, 4, 5}) and
TEDdet (T = 5).

mean action overlap over time. In detail, for each box in a groundtruth action
tube, the overlap between this box and those n frames after is measured.
The average action overlap among all groundtruth tubes and action classes
is shown in Figure 6.5. One can observe that the overlap curve descends
more quickly in UCF-24; the mean overlap is below 55% at n = 16 while
that in JHMDB-21 still exceeds 66%. When an actor undergoes a significant
location shift in the scene over time, action prediction (via 3× 3 convolution)
on top of their stacked features (i.e., the design of AMMA’s Center branch) is
prone to aggregate irrelevant background cues which inherently could lead
to higher rate of EC (and potentially EO). In addition, large location shifts
also raise the difficulty to track corresponding actors via Trajectory branch,
which in turn negatively impacts EL.

104 Chapter 6. Diving more deeply into AMMA

0 2 4 6 8 10 12 14 16

Frame gap (n)

50

60

70

80

90

100

M
e
a
n
 a

c
ti
o
n
 o

v
e
rl
a
p
 (

%
)

JHMDB-21

UCF-24

FIGURE 6.5: Mean action overlap between a box in a groundtruth tube and its box n
frames later.

In Figure 6.4, we also compare AMMA18 with TEDdet (blue bar) based on
the same input sequence length (T = 5). We find that their different frame-
mAP (73.5 vs. 70.8) are mainly tied with AMMA18 managing to reduce lo-
calization and miss-detection error. For localization, even though AMMA
and TEDdet both leverage stacking multi-frame features to model the trajec-
tory of action instances, AMMA stacks features directly obtained from the
backbone while TEDdet makes use of the displacement maps (i.e., via its
Temporal Feature Difference module). The results in EL show that model-
ing action movement on top of raw visual features is sufficient and arguably
more general-purpose than the engineered displacement features adopted by
TEDdet. Moreover, explicitly incorporating motion cues enables AMMA to
better classify and recall action-specific pattern (improvement in EC and EM).
On the downside, AMMA is more inclined to believe presence of actions out-
side the correct temporal extent (higher ET).

It is note-worthy that in Figure 4.5, TEDdet did not seem to suffer from
the aforementioned drawback of location shift (T = 5 being the best configu-
ration on UCF-24). From the tracking perspective, TEDdet selects the middle
frame of the input sequence as the reference one to model actors’ movement,
which is indeed less vulnerable than AMMA (selecting the final frame as ref-
erence) against location shift. From Center branch’s point of view, the final
feature used for classification by TEDdet is a "partial" collection of multiple
frame features (results of TEDdet’s TE module). Even though it contains less

6.2. Accuracy and error breakdown analysis 105

information compared to directly stacking multi-frame features, we suspect
that the partial-exchange mechanism has a repressive effect which prevents
exceedingly aggregating irrelevant background cues.

Class-specific AP and error. Table 6.3 provides the class-wise frame-
AP of AMMA18 and TEDdet along with the distribution of errors (only on
AMMA18). For fair comparison, both presented models employ an input se-
quence length of 5. Additionally, the first two rows of the table report class-
wise statistics of UCF-24 (testset). The average number of action instances
per video is shown in the first row. The second row "Action span" reports
the average duration of each action instance over its video (i.e., action-video
ratio).

As shown in Table 6.3, AMMA18 obtains higher APs than TEDdet in 17
out of 24 classes. From the per-class APs, time error, and action-video ra-
tio, it is apparent that the most difficult classes are actions which span a
shorter fraction of the video, highlighting the challenge of precise temporal
localization in continuous action videos. These include "1-Basketball", "5-
CricketBowling", "21-TennisSwing", and "23-VolleyballSpiking", each having
a relatively large number of temporally untrimmed test videos. Note that
the class "15-SalsaSpin" obtains high AP even though it appears to have a
low action-video ratio. In fact, most test videos under this action category
comprise a few actors lasting an extended duration, many of which are dis-
connected into separate instances due to disappearing from the scene for a
few frames (e.g., blocked by other dancers). We also observe that the above
action categories with high ET tend to also express higher classification error
(except for "23-VolleyballSpiking)". The high rate of ET is likely an indicator
that AMMA did not fully learn the most discriminative features embedded
in these difficult classes, which in turn could lead to confusion among others,
e.g., categorizing a running actor doing "PoleVault" as "CricketBowling", as
both classes contain the running activity.

Further, actions such as "2-BasketBallDunk", "4-CliffDiving", and "12-LongJump"
show higher rate of EM, i.e., AMMA/TEDdet tend to miss detecting these ac-
tions more often. We qualitatively inspect their sequences and find that they
contain a relatively large portion of non-discriminative frames with groundtruths.
In other words, the class "2-BasketBallDunk" and "12-LongJump" expect cor-
rect action predictions during actors’ run-up portion alone, which remain
challenging under AMMA and TEDdet’s detection framework.

Last but not least, localization error is more prominent for "2-BasketballDunk"
and "22-TrampolineJump", whose video sequences often consist of more than

106 Chapter 6. Diving more deeply into AMMA

TABLE 6.3: Class-wise frame-APs and statistics of UCF-24. The first row (No.
actions) refers to the average number of action instances per video. The second
row (Action span) corresponds to the average action instance’s duration relative
to its full-video duration (action-video ratio). All 24 classes are presented in fol-
lowing order: Basketball (1-BB), BasketballDunk (2-BD), Biking (3-BK), CliffDiving
(4-CD), CricketBowling (5-CB), Diving (6-DV), Fencing (7-FC), FloorGymnastics (8-
FG), GolfSwing (9-GS), HorseRiding (10-HR), IceDancing (11-ID), LongJump (12-LJ),
PoleVault (13-PV), RopeClimbing (14-RC), SalsaSpin (15-SS), SkateBoarding (16-SB),
Skiing (17-SK), Skijet (18-SI), SoccerJuggling (19-SJ), Surfng (20-SF), TennisSwing (21-
TS), TrampolineJumping (22-TJ), VolleyballSpiking (23-VS), and WalkingWithDog
(24-WD).

Actions 1-BB 2-BD 3-BK 4-CD 5-CB 6-DV 7-FC 8-FG
No. actions 1.0 1.0 1.8 1.0 1.1 1.0 2.4 1.0
Action span 0.35 0.62 0.74 0.65 0.39 0.67 0.90 1.00
AMMA18 (AP) 32.2 52.3 86.4 60.4 30.2 83.5 89.0 92.7
TEDdet (AP) 26.5 32.3 84.9 52.9 36.7 80.5 89.3 88.4
ET 42.6 12.1 0.8 10.5 33.5 12.7 4.0 0.0
EC 10.4 3.6 1.7 8.8 29.2 0.4 0.7 3.8
EM 0.3 11.1 5.4 13.0 0.5 1.3 4.7 1.5
EL 0.7 16.6 4.3 5.4 1.8 1.4 1.0 1.1

Actions 9-GS 10-HR 11-ID 12-LJ 13-PV 14-RC 15-SS 16-SB
No. actions 1 1.0 2.3 1.0 1.1 1.0 4.9 1.0
Action span 0.79 0.94 0.85 0.97 0.85 1.00 0.37 1.00
AMMA18 (AP) 57.6 94.1 87.5 67.8 72.7 97.2 87.7 87.6
TEDdet (AP) 53.5 93.6 88.7 62.3 62.5 97.5 86.9 81.9
ET 35.0 2.5 0.0 0.2 7.1 <0.1 <0.1 0.0
EC 4.1 0.1 5.4 7.5 4.2 0.8 1.4 9.3
EM <0.1 1.6 0.9 15.0 6.5 0.8 2.6 0.4
EL 0.7 1.5 5.4 6.9 5.6 0.6 7.4 1.0

Actions 17-SK 18-SI 19-SJ 20-SF 21-TS 22-TJ 23-VS 24-WD
No. actions 1.0 1.0 1.1 1.6 1.3 2.5 1.1 1.1
Action span 1.00 0.96 0.94 0.57 0.36 0.68 0.34 0.83
AMMA18 (AP) 77.4 86.6 95.2 91.1 28.8 77.2 42.5 87.3
TEDdet (AP) 80.0 87.6 94.4 88.0 31.8 74.8 38.6 84.7
ET <0.1 0.1 0.2 2.5 32.2 3.1 41.6 6.9
EC 11.2 0.9 2.3 0.7 21.5 1.6 1.4 2.7
EM 2.5 5.3 0.2 2.6 1.5 4.7 6.4 0.8
EL 5.6 5.6 0.8 2.6 1.4 11.9 6.9 1.2

6.3. Computational complexity 107

one actors (regardless if they are labeled as groundtruth actions). For in-
stance, "2-BasketBallDunk" videos are made up of highlights from multi-
player games in full court, raising the difficulty to distinguish among players.
On the contrary, "8-FloorGymnastics", "10-HorseRiding", "19-SoccerJuggling",
and "14-RopeClimbing" are the easiest classes to detect as their sequences
contain mostly one actor at a time with salient appearance features.

6.3 Computational complexity

Besides accuracy, a model’s computational complexity is another important
aspect to consider for real-world tasks and often approximated by the num-
ber of multiply-accumulate operations (MACs). The size of a model (mea-
sured by the number of trainable parameters) also indirectly expresses its
degree of compactness.

In Table 6.4, we present the GMACs needed for AMMA and TEDdet to
produce coarse tubelets over T frames. The total GMACs is reported along
with the breakdown cost of individual sub-modules, comprising feature ex-
traction from RGB frames, micro-motion (MM) generation & temporal fea-
ture extraction (for AMMA), and cooperative detection from three detector
branches. The relative cost (%) of each sub-module is shown in parenthesis.
Note that in practice, both AMMA and TEDdet exploit the feature-caching
and dequeueing mechanism which reuses the previously acquired T − 1 fea-
tures for tubelet inference. As a result, their streaming GMACs can be ap-
proximated by dividing the total computation by T. Under this streaming-
video setup, total GMACs reflect the cost to initialize AMMA/TEDdet upon
encountering new videos.

On can clearly observe that most computation to produce coarse tubelets
comes from extracting appearance cues from RGB frames (≥ 65% of the to-
tal computation for all the methods). In AMMA, motion cue extraction is
conducted over duplicated early layers of the same CNN backbone used for
RGB stream; thus, the cost of micro-motion feature extraction is much smaller
and correlates with the designated 2D backbone. Overall, effective motion-
appearance feature fusion significantly improves AMMA18’s ability to reason
action-specific pattern (see Table 6.1) than that of TEDdet at the cost of rais-
ing computation by approximately 1.5 times. Meanwhile, ultra-lightweight
backbone architectures combined with such spatiotemporal modeling scheme
empower AMMAM and AMMAS to obtain highly competitive accuracy with
only 1/4 and 1/5 the computational complexity of AMMA18, respectively.

108 Chapter 6. Diving more deeply into AMMA

TABLE 6.4: Measure of AMMA and TEDdet’s computational complexity (GMACs)
and model size (number of trainable parameters). "MM" stands for micro-motion in
the table.

Modules (T=5) AMMA18 AMMAM AMMAS TEDdet
RGB feat. extraction 16.9 (65%) 4.8 (71%) 3.4 (67%) 16.9 (97%)
MM generation 0.3 (1%) 0.3 (4%) 0.3 (5%) 0.0 (0%)
MM feat. extraction 8.3 (32%) 1.1 (16%) 0.8 (16%) 0.0 (0%)
Detector branches 0.6 (2%) 0.6 (9%) 0.6 (12%) 0.5 (3%)
Total GMACs 26.1 6.7 5.0 17.4
Streaming GMACs 5.2 1.3 1.0 3.5
Param. (M) ∼16 ∼7 ∼6 ∼15

Compared to feature extraction, micro-motion generation and cooper-
ative detection over the three detector branches incur significantly lower
GMACs. This is more spectacularly reflected in AMMA18 and TEDdet lever-
aging the slightly heavier ResNet18 feature backbone, whereas these sub-
modules only take up to 3% of the total computation. On top of these obser-
vations, we can anticipate more rooms to improve action modeling based on
more sophisticated motion representations or cooperative detection scheme
at the expense of additional cost from these lightweight sub-modules.

Finally, the size of each method (i.e., number of trainable parameters) is
reported in the last row of Table 6.4. To put these values in perspective, the
standard SSD which is widely used in the domain of spatiotemporal action
detection [73] [75] [77][84], has around 27M trainable parameters (54M when
adopting the two-stream CNN framework). Similarly, the two-stream SSD
architecture incurs approximately 32 GMACs (with input image of size 300×
300), which is nearly 6 and 32 times more computationally expensive than
our heaviest and lightest architectures. Methods leveraging 3D CNN [4][90]
such as I3D or S3D as the feature backbone, are estimated to exceed 45 and
32 GMACs, respectively [83].

6.4 Runtime

In this section, we formally compare the runtime performance of AMMA
and TEDdet. Following the hardware configuration presented in Chapter 4
and 5, we carry out runtime estimation on a desktop computer with a sin-
gle NVIDIA Titan V5 GPU. Feature-caching and dequeuing are applied, and
the testing mini-batch size is fixed to 1 to simulate real-world action detec-
tion on streaming videos. Runtime is first measured and analyzed based on

6.4. Runtime 109

JHMDB-21 as all the top-performing AMMA and TEDdet models adopt the
same input configuration on this dataset (i.e., input length T = 5). The com-
plete pipeline to generate action tube proposals can be broken down into the
followings: data loading, tubelet inference, tubelet linking, and intra-frame
detection interpolation (the last two steps are grouped together as tube gener-
ation). Their results are presented in Table 6.5. Each row in the table (middle
section) comprises the per-frame time cost for a given task (millisecond/f,
or ms/f), as well as the time consumption relative to the entire detection
pipeline (%).

From Table 6.5, we perceive that CNN model inference to acquire coarse
tubelets takes the least amount of time out of the total runtime (<20%). In
the case for AMMA, data loading ends up being the most time-consuming
task, loading 4 frames each time to acquire the RGB frame and generate com-
plementary micro-motion. It is worth the reminder that due to JHMDB-21
composing of short video clips, the streaming mechanism more frequently
clears the feature buffer and loads 20 new frames upon processing any new
video clip, thus taking relatively longer in data loading than TEDdet (which
only requires sparse RGB frames).

Overall, all three AMMA architectures obtain fairly close speed perfor-
mance (AMMA18 being slighter faster than the others). Their model infer-
ence time (tubelet detection) exhibit noticeable differences, where AMMAM

and AMMAS actually being slower despite incurring less computational cost
(as reported in Table 6.4). We have reported this finding and provided our
insights in Section 5.7.

Compared to TEDdet, AMMA18 obtains similar tubelet inference time
even though it is equipped with additional motion-related sub-networks (as
opposed to TEDdet fully operating on a single stream). This is attributable to
two factors. First, although incurring minimal extra cost in theory, the Tem-
poral Feature Exchange module in TEDdet involves a series of reshape and
transpose operations to carry out feature exchange across the time axis (plus
additional operations to reverse these actions). As TEDdet includes multiple
modules as such, the overall speed is slightly compromised. Second, feature-
caching is executed in a slightly different manner between the two detectors.
During inference, TEDdet retrieves T − 1 cached features extracted at the
output of ResNet18, followed by temporal modeling (feature exchange) in
the subsequent deconvolution block and then the detector branches. On the
other hand, AMMA retrieves cached features directly from the output of the

110 Chapter 6. Diving more deeply into AMMA

TABLE 6.5: Measure of AMMA and TEDdet’s runtime (millisecond and FPS).

Modules (T=5) AMMA18 AMMAM AMMAS TEDdet
Data loading (ms) 7.6 (60%) 8.0 (61%) 7.7 (57%) 3.8 (42%)
Tubelet detection (ms) 1.4 (11%) 1.9 (15%) 2.2 (17%) 1.6 (18%)
Tube generation (ms) 3.7 (29%) 3.1 (24%) 3.5 (26%) 3.7 (40%)
Total runtime (ms) 12.7 13.0 13.4 9.1
Overall speed (FPS) 80 77 75 110

deconvolution block, leaving only cooperative detection for tubelet predic-
tion.

Influence of sequence length on runtime. One may have noticed the
conspicuous speed difference of AMMA18 between JHMDB-21 and UCF-24
(80 FPS vs. 115 FPS) in Table 5.3. Such discrepancy is mainly associated with
the choice of input sequence length. Here, we demonstrate the influence of
sequence length (T = {2, 3, 4, 5}) on AMMA18’s runtime based on UCF-24,
as presented in Figure 6.6. The runtime of each detection phase is separately
presented while the final FPS is plotted in red. As T increases, tubelet in-
ference time remains unaffected as our detector exploits feature-caching and
retrieval. We also observe a consistent yet minor increase in runtime asso-
ciated with data loading, which can be explained by the initialization state
of AMMA. On the other hand, the runtime associated with tubelet linking
prominently arises along sequence length. As tubelet linking depends on
calculating the mean IoUs of detection across T − 1 overlapping frames, de-
termining whether two tubelets match inherently becomes more computa-
tionally demanding when longer tubelets are considered. These results and
those on actions’ location shift in Figure 6.5 pin-point the importance of a
carefully chosen sequence length for balancing AMMA’s accuracy and speed
performance.

6.5 Summary, limitations, and looking ahead

This chapter extends from Chapter 5 and elaborates various performances
of AMMA at a deeper level. It also formally compares many aspects of the
detector with our previously proposed TEDdet from Chapter 4.

Specifically, thorough error breakdown analysis (five mutually-exclusive
error categories) is carried out to evaluate possible sources of frame-mAP
loss. Compared to TEDdet on JHMDB-21, we find that with the addition
of motion cue reasoning, AMMA consistently obtains better frame-mAP by
greatly reducing false-positive classification. On the other hand, qualitative

6.5. Summary, limitations, and looking ahead 111

129

115

104

92

T=2 T=3 T=4 T=5
0

1

2

3

4

5

6

R
u

n
ti
m

e
 (

m
s
)

50

75

100

125

150

F
P

S

Data loading

Tubelet detection

Tubelet linking

FPS

FIGURE 6.6: AMMA18’s runtime breakdown over varied sequence length (T) evalu-
ated on UCF-24. The bar graph (referencing Y-axis on the left) captures the decom-
position of detection runtime. The red plot (referencing Y-axis on the right) describes
the overall FPS of each configured T.

inspection on action sequences of lower AP shows that lacking long-temporal
range modeling potentially prevents our models from learning discrimina-
tive, defining pattern specific to these actions. In the case of the temporally-
untrimmed dataset UCF-24, our methods tend to incur higher time error on
classes where action instances take place relatively short in their videos, indi-
cating the need for an explicit temporal localization module. Detailed break-
down analysis and comparison on AMMA (and TEDde)’s model complexity
and runtime have also been covered, providing a holistic view on our design
choices and potential bottlenecks.

In conclusion, the ultra-fast and lightweight nature of our detectors opens
up manifold potential applications in budget online action detection. Even
though AMMA demonstrates competitive accuracy at significantly reduced
computation and in real-time, there remain rooms for improvement. Mainly,
long-temporal range modeling and temporal boundary modeling are antici-
pated to help reduce false-positive detection in the form of classification and
time error, respectively. In the next chapter, we will refresh on our findings
throughout this thesis as well as discussing pending works in the future.

113

Chapter 7

Conclusion and Future
perspectives

In this thesis, we have presented our three-year research work addressing
the problem of spatiotemporal action detection in videos. Unlike many con-
current research, we imposed strict constraints mandating an online, real-
time and lightweight detection paradigm for feasible edge-device deploy-
ment. These constraints closely reflect the design specifications in realistic
application scenarios such as unmanned surveillance and human-computer
interaction systems. Our main contributions are proposals of three highly
efficient action detectors leveraging compact 2D CNN architectures and raw
video frames (RGB modality) as input, which have been detailed in Chapter
3, 4, 5, and 6.

In this final chapter, we first summarize our contributions in a chapter-
wise order. We then point out some limitations of our research outcomes,
and propose pertinent research directions in terms of both short-term and
long-term future works.

7.1 Summary of contributions

7.1.1 Detection acceleration and spatiotemporal modeling via

flow-guided features

In Chapter 3, we first attempted to enhance the inference speed of the single-
frame action detector on videos by exploiting temporal coherence between
consecutive frames. Our proposed ACDnet sparsely extracts visual features
from a video’s key frames while densely performing feature approximation
at other timestamps (by spatially guiding appearance features from their
precedent key frames using reduced flow fields). Such a detection strat-
egy largely mitigates redundant feature extraction on neighboring frames

114 Chapter 7. Conclusion and Future perspectives

sharing visually similar context. Further, ACDnet recursively accumulates
key frame features from the past (leveraging the same warping schema to
align past and current feature maps), allowing it to adaptively aggregate
past-current observations and model temporal variations of actions in an im-
plicit manner. The proposed feature-approximation and memory aggrega-
tion modules are generic; they can be inserted in off-the-shelf object detectors
with minor adjustments (we experimented with SSD and R-FCN).

Feature approximation helps to accelerate video action detection in ex-
change for a minor drop in accuracy, while pairing it with memory aggrega-
tion enables ACDnet to supersede the baseline detector in both accuracy and
speed (75 FPS when integrated with SSD). In particular, accumulating past
observations allows ACDnet to understand degenerated frames with limited
visual cues.

7.1.2 Spatiotemporal Modeling via feature-channel exchange

and feature-map displacement

In lieu of the previous single-frame detection strategy, we further explored
extracting discriminating video representations in Chapter 3 by concurrently
processing a series of video frames and predicting the underlying action
tubelets. The proposed action tubelet detector (coined TEDdet) makes use
of its Temporal Feature Exchange (TE) and Temporal Feature Difference (TD)
modules for spatiotemporal modeling. Given the CNN features of succes-
sive video frames, TE performs partial and weighted channel-wise exchange
among neighboring features to gather action-specific context. Meanwhile,
TD generates motion maps based on the feature-level displacement to track
actors’ locations over time. We jointly optimize the complementary TE and
TD modules with three detector branches derived from CenterNet, which is
anchor-free thus is not bounded by heuristic anchor configurations.

TEDdet adopts a coarse-detection schema (i.e., its input frames are sep-
arated by the designated temporal stride) to efficiently cover prominent ap-
pearance variations over time. Employing an incremental detection pipeline
and tube construction algorithm, it generates action tubes in real-time (110FPS)
at competitive accuracy when equipped with a 2D ResNet18 backbone. Our
ablation studies indicate that TE-induced feature-channel exchange is capa-
ble of modeling action-specific pattern that is time-sensitive (such as dis-
tinguishing between Sit and Stand). Meanwhile, TD-induced tracking ad-
dresses actors’ location shift throughout the video sequence, leading to more

7.2. Limitations in our models 115

precise localization of individual action instances. It was also found that
enlarging the temporal stride of an input sequence during training permits
learning higher variations of visual pattern and improves the detection ro-
bustness at test time. Such an attribute not only reduces training intensity on
long video sequences, but also lifts off reliance on densely annotated bound-
ing boxes.

7.1.3 Leveraging accumulated motion boundaries

In Chapter 5, we first retraced how optical flow benefited action recogni-
tion from recent studies. Based on the insight that motion boundaries of
moving actors/objects play a critical role to enhance recognition accuracy,
we devised a compact convolutional flow-like estimator to explicitly encode
actions’ short-temporal dynamics on-the-fly from raw video frames (we re-
ferred to this motion representation as micro-motion). Multiple micro-motions
from different timestamps are accumulated to capture continuous dynamics.
Generation of such motion cues can be further integrated into the backbone
of our previous tubelet detector (as described in Chapter 4). In practice, each
pair of RGB and complementary micro-motion features are extracted from a
short clip via two-CNN pathways (and combined by lateral-fusion). The en-
tire tubelet detector (termed AMMA) models a long action sequence on top
of a series of connected video clips.

We conducted multiple ablation studies by varying the input sequence
length, motion compositions, extent of lateral-fusion, and a variety of ultra-
compact 2D CNN backbones (e.g., ResNet18, MobileNetV2, and ShuffleNetV2).
AMMA demonstrates highly competitive frame-mAP and video-mAP while
substantially reducing the computation (lightest variant incurs 1.0 GMACs)
and runtime cost (maximally at 80 FPS). In Chapter 6, we further carried out
comprehensive breakdown analysis to uncover different categories of errors
for AMMA. By comparing three AMMA variants with TEDdet, we showed
that incorporating micro-motion cues with appearance information consis-
tently produces more accurately classified tubelets than inferring only from
RGB features.

7.2 Limitations in our models

The latest action detector (AMMA) from Chapter 5 has successfully addressed
a number of limitations of our earlier works. To recapitulate, AMMA takes

116 Chapter 7. Conclusion and Future perspectives

a series of non-overlapped video clips as input, surmounting ambiguous ac-
tion estimation based upon the glance over only one frame. Building upon
an anchor-free detection framework, AMMA does not suffer from the heuris-
tic anchor configuration, complicated training-sample selection nor 3D-NMS
to filter redundant detection (the above improve upon Chapter 3). Moreover,
the integration of a convolutional motion estimator and the two-pathway
CNN architecture facilitate simultaneous mining of action-specific appear-
ances, subtle dynamics, and their interactions. Last but not least, AMMA’s
detection paradigm is generic and has been validated on three ultra-lightweight
CNN backbones, demonstrating a better mix of efficiency and accuracy than
state-of-the-art models (the above improve upon Chapter 4). We refer our
readers to the introduction and conclusion sections of Chapter 3-6 regarding
our research advancement in detail.

Despite having gradually overcome a myriad of design challenges under
a tight hardware constraint, we argue that AMMA still exhibits perceivable
limitations when encountering the following scenarios.

7.2.1 Drastic inter-class variations

Firstly, it was observed that AMMA’s classification performance was com-
promised on groups of actions encompassing drastic inter-class variations.
For instance, the action Run or Throw can each be perceived very distinc-
tively when captured by different camera shot angles (examples are illus-
trated at the bottom of Figure 6.2). When video samples are insufficient and
fail to convey a wide range of possible inter-class visual variations for par-
ticular actions, it is reasonable to suspect that our model is prone to over-
fitting on scenic cues that do not generalize well to those actions’ defining
traits. The inclusion of appearance-invariant motion representation moder-
ately mitigates this issue but only to an extent.

7.2.2 Pruning low-confidence predictions

Second, we observed that AMMA’s video-mAP is less impressive at lower
detection thresholds (refer to the JHMDB-21’s comparison in Table 5.4) due
to retaining a higher number of false-positive action tubes. On the one hand,
this is attributed to AMMA coarsely detecting tubelets from an extended
video sequence and then interpolating the inter-frame detection (presuming
the consistency of any action instance within this duration). It thus becomes
more difficult to simply prune false-positive detection by a bounding-box

7.3. Future works 117

association strategy during the linking phase. On the other hand, the man-
ifestation of low-confidence detection may suggest that the spatiotemporal
features learned and extracted by our models are not discriminative enough
to produce quality tubelets in the first place.

7.2.3 Temporal localization

Third, it was apparent that the most challenging classes in the untrimmed
UCF-24 dataset for AMMA are those spanning a shorter fraction of their
videos (see Table 6.3). When the appearance and motion cues of a continuous
action gradually change over time, the frames near the boundaries (between
action and no-action) may only exhibit subtle differences. In such a case, it is
extremely difficult to precisely identify actions’ temporal boundaries, leaving
a large room for improvement of temporal localization.

7.2.4 Long-temporal relations

Notably, AMMA lacks the capacity to extract very long-range supportive
context as it operates on connected video clips. Consequently, it is likely
to miss capturing relevant visual/motion cues pertinent to specific actions
(some examples are depicted at the top of Figure 6.2). In addition, this limita-
tion also makes it hard to identify actions that are somewhat similar through-
out most parts of the video, e.g., both the action LongJump and PoleVault
involve actors running at the beginning and are only different at the last part
of their videos. Naively taking in more clips is sub-optimal as such a strategy
is prone to introducing more redundancy and irrelevant context.

7.3 Future works

In this section, we propose a number of future works based on the aforemen-
tioned experimental results, observed limitations, and the latest advance-
ments in action understanding. Our future works can be loosely divided
into short-term tasks and long-term research directions as detailed below.

7.3.1 Short-term future tasks

Actions can be semantically similar but visually very different. Even when
initialized with ImageNet pretraining, detection models are inclined to over-
fit on non-generalized scenic cues (especially when the target dataset is small).

118 Chapter 7. Conclusion and Future perspectives

A better model initialization that can guide CNN to learn generalized video
representations is inherently critical. Meanwhile, recent action recognition
methods have demonstrated success when first pretraining the CNN back-
bones on top of the large-scale Kinetics dataset [38] and then fine-tuning their
models on smaller action datasets. The same practice can be transferred to
our action detection problem and possibly mitigate limitation 7.2.1. Even
though the volume of Kinetics may be training-intensive, the research com-
munity in action understanding is active and has made various off-the-shelf
pretrained models available [114][115].

It is worth mentioning that off-the-shelf Kinetics-pretrained models are
typically based on 3D CNN, which can not be directly applied in our pro-
posed 2D-based architecture. To leverage 3D-pretrained weights, one possi-
ble way is to revert the inflated 3D architecture [38] back to 2D. We hypoth-
esize that by properly collapsing the weights of a 3D convolutional kernels
along the temporal axis (e.g., averaging or weighted-sum), we can obtain bet-
ter generalized visual representations to initialize our 2D CNN backbone. At
the same time, it would be interesting to investigate decomposed variants of
3D architectures such as P3D [45], R(2+1)D [46] or S3D [47] which decouple
3D convolution into 2D-spatial and 1D-temporal convolutions for efficiency
gain.

After the write-up of this manuscript, we will also evaluate the proposed
methods against more public benchmarks, especially on AVA [4]. This is a
tremendously challenging spatiotemporal action dataset comprising realis-
tically complex scenes of multiple co-occurring action instances and subtly
different action categories (such as touching vs. holding an object). More-
over, actors can be associated with multiple labels corresponding to the their
poses, interactions with surrounding objects, and with other persons. We
believe the performance on AVA will grant us a more transparent under-
standing of our models’ strengths and weakness when coping with realistic
scenarios.

Furthermore, we aim to look into the topic of network compression and
deploy our latest models (i.e., variants of AMMA integrated with ResNet18,
MobileNetV2 and ShuffleNetV2) on embedded vision systems, such as those
powered by NVIDIA Jetson or Xavier series. Not only will we formally assess
the feasibility of the proposed detectors localizing actions from streaming
videos, but also examine computational bottlenecks, time and power con-
sumption closer to the real-world sensing configuration.

7.3. Future works 119

7.3.2 Long-term future research directions

As opposed to short-term tasks which may be oriented toward algorithmic
implementation and optimization, we propose three long-term research di-
rections with the aim of systematically enhancing our current action detec-
tion framework.

The first research direction is to improve temporal localization for untrim-
med action videos (this limitation was described in Section 7.2.3). A potential
solution is to additionally devise class-specific actionness classifiers (i.e., N
binary classifiers where N is the number of action classes) to post-process
linked action tubes, as inspired by Su et al. [111]. In such a setup, each class-
specific training sample of a linked action tube may include bounding boxes
from frames that do not contain the action. These frames can thus serve as
negative samples, allowing its class-specific actionness classifier to learn and
identify the subtle yet defining attributes of that particular action. At test
time, the actionness classifier can be simply applied after action tubes are
constructed, refining temporal localization by filtering out bounding boxes
that take place in low-actionness frames. Similarly, Song et al. [112]. pro-
posed a transition-aware classifier to jointly predict the action category and
transitional state (as shifting between no-action and action is gradual and
challenging to distinguish). We believe that these two works, along with lit-
erature in temporal action detection, will offer us solid insights to proceed
improving temporal localization.

The second research direction is to explore finer-grained motion represen-
tations for precisely encoding dynamics of actions. This is driven by the lim-
itation (observed in Section 7.2.2) that our action tube detector is manifested
with low-confidence, false-positive detection, an indication of insufficient
spatiotemporal modeling to distinguish visually similar actions. Here, we
identify a number of research works to explore, all of which focusing on pro-
ducing trainable motion representations in the latent space [30][28][52][116][117].
Specifically, the above methods encode actions’ motion information by oper-
ating on successive CNN feature maps of the video sequence. As feature
maps have smaller spatial resolutions, these methods tend to be much more
efficient and computationally lightweight. Moreover, we believe that motion
can be further employed to adaptively sample salient video frames pertinent
to actions while suppressing the irrelevant background distraction [118]. At
last, it would be interesting to also seek different motion-appearance fusion
schemes, such as bilateral fusion [119], more sophisticated message-passing

120 Chapter 7. Conclusion and Future perspectives

modules [111], or a heterogeneous two-stream CNN architecture when ex-
tracting spatial-temporal context.

Finally, we aim to incorporate long-range temporal modeling in our meth-
ods for understanding complex actions/activities in streaming videos. Re-
cent works in [92] and [120] have demonstrated caching distant observations
from the past in a feature bank, which can then be retrieved for augment-
ing current observations and detection. Particularly, it would be encourag-
ing to progressively delve into the topic of the attention mechanism [44] and
its derivations in the image [121][122] and video space [89][88]. The atten-
tion mechanism not only facilitates long-temporal range modeling but also
redundant-feature filtering, both being highly crucial for effectively model-
ing video sequences. In search of an architecture that is both efficient and
accurate, a factorized transformer [43] that retains all spatiotemporal fea-
ture structure while maintaining high efficiency is particularly promising
to explore. While some of the aforementioned methods may have over-
looked efficiency and real-time performance (not to mention their compat-
ibility with computation-constrained devices), we will continue to seek for
ultra-compact alternatives that accomplish an optimal trade-off among accu-
racy, speed, and efficiency.

121

Bibliography

[1] Thomas Marcoux et al. “Analyzing cyber influence campaigns on YouTube
using YouTubeTracker”. In: Big Data and Social Media Analytics. Springer,
2021, pp. 101–111.

[2] Yann LeCun et al. “Object recognition with gradient-based learning”.
In: Shape, contour and grouping in computer vision. Springer, 1999, pp. 319–
345.

[3] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. “Imagenet
classification with deep convolutional neural networks”. In: Advances
in neural information processing systems 25 (2012).

[4] Chunhui Gu et al. “Ava: A video dataset of spatio-temporally local-
ized atomic visual actions”. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition. 2018, pp. 6047–6056.

[5] Khurram Soomro, Amir Roshan Zamir, and Mubarak Shah. “UCF101:
A dataset of 101 human actions classes from videos in the wild”. In:
arXiv preprint arXiv:1212.0402 (2012).

[6] Hueihan Jhuang et al. “Towards understanding action recognition”.
In: IEEE ICCV. 2013, pp. 3192–3199.

[7] Matthew S Hutchinson and Vijay N Gadepally. “Video action under-
standing: A tutorial”. In: IEEE Access (2021).

[8] Adnan ÖZSOY. “A Comprehensive Performance Comparison of Ded-
icated and Embedded GPU Systems”. In: Dicle Üniversitesi Mühendis-
lik Fakültesi Mühendislik Dergisi 11.3 (2020), pp. 1011–1020.

[9] Ivan Laptev. “On space-time interest points”. In: International journal
of computer vision 64.2 (2005), pp. 107–123.

[10] Marti A. Hearst et al. “Support vector machines”. In: IEEE Intelligent
Systems and their applications 13.4 (1998), pp. 18–28.

[11] Alexander Klaser, Marcin Marszałek, and Cordelia Schmid. “A spatio-
temporal descriptor based on 3d-gradients”. In: BMVC 2008-19th British
Machine Vision Conference. British Machine Vision Association. 2008,
pp. 275–1.

122 Bibliography

[12] Paul Scovanner, Saad Ali, and Mubarak Shah. “A 3-dimensional sift
descriptor and its application to action recognition”. In: Proceedings of
the 15th ACM international conference on Multimedia. 2007, pp. 357–360.

[13] Geert Willems, Tinne Tuytelaars, and Luc Van Gool. “An efficient dense
and scale-invariant spatio-temporal interest point detector”. In: Euro-
pean conference on computer vision. Springer. 2008, pp. 650–663.

[14] Ivan Laptev et al. “Learning realistic human actions from movies”. In:
2008 IEEE Conference on Computer Vision and Pattern Recognition. IEEE.
2008, pp. 1–8.

[15] Heng Wang and Cordelia Schmid. “Action recognition with improved
trajectories”. In: Proceedings of the IEEE international conference on com-
puter vision. 2013, pp. 3551–3558.

[16] Gabriella Csurka et al. “Visual categorization with bags of keypoints”.
In: Workshop on statistical learning in computer vision, ECCV. Vol. 1. 1-22.
Prague. 2004, pp. 1–2.

[17] Florent Perronnin and Christopher Dance. “Fisher kernels on visual
vocabularies for image categorization”. In: 2007 IEEE conference on
computer vision and pattern recognition. IEEE. 2007, pp. 1–8.

[18] Karen Simonyan and Andrew Zisserman. “Very deep convolutional
networks for large-scale image recognition”. In: arXiv preprint arXiv:1409.1556
(2014).

[19] Kaiming He et al. “Deep residual learning for image recognition”. In:
Proceedings of the IEEE conference on computer vision and pattern recogni-
tion. 2016, pp. 770–778.

[20] Andrej Karpathy et al. “Large-scale video classification with convolu-
tional neural networks”. In: Proceedings of the IEEE conference on Com-
puter Vision and Pattern Recognition. 2014, pp. 1725–1732.

[21] Karen Simonyan and Andrew Zisserman. “Two-stream convolutional
networks for action recognition in videos”. In: Advances in neural in-
formation processing systems 27 (2014).

[22] Christoph Feichtenhofer, Axel Pinz, and Andrew Zisserman. “Convo-
lutional two-stream network fusion for video action recognition”. In:
Proceedings of the IEEE conference on computer vision and pattern recogni-
tion. 2016, pp. 1933–1941.

Bibliography 123

[23] Eunbyung Park et al. “Combining multiple sources of knowledge in
deep cnns for action recognition”. In: 2016 IEEE Winter Conference on
Applications of Computer Vision (WACV). IEEE. 2016, pp. 1–8.

[24] Limin Wang et al. “Temporal segment networks: Towards good prac-
tices for deep action recognition”. In: European conference on computer
vision. Springer. 2016, pp. 20–36.

[25] Jeffrey Donahue et al. “Long-term recurrent convolutional networks
for visual recognition and description”. In: Proceedings of the IEEE con-
ference on computer vision and pattern recognition. 2015, pp. 2625–2634.

[26] Joe Yue-Hei Ng et al. “Beyond short snippets: Deep networks for video
classification”. In: Proceedings of the IEEE conference on computer vision
and pattern recognition. 2015, pp. 4694–4702.

[27] Sepp Hochreiter and Jürgen Schmidhuber. “Long short-term mem-
ory”. In: Neural computation 9.8 (1997), pp. 1735–1780.

[28] Shuyang Sun et al. “Optical flow guided feature: A fast and robust
motion representation for video action recognition”. In: Proceedings
of the IEEE conference on computer vision and pattern recognition. 2018,
pp. 1390–1399.

[29] Bowen Zhang et al. “Real-time action recognition with deeply trans-
ferred motion vector cnns”. In: IEEE Transactions on Image Processing
27.5 (2018), pp. 2326–2339.

[30] Hakan Bilen et al. “Dynamic image networks for action recognition”.
In: Proceedings of the IEEE conference on computer vision and pattern recog-
nition. 2016, pp. 3034–3042.

[31] Can Zhang et al. “Pan: Towards fast action recognition via learning
persistence of appearance”. In: arXiv preprint arXiv:2008.03462 (2020).

[32] Alexey Dosovitskiy et al. “Flownet: Learning optical flow with convo-
lutional networks”. In: Proceedings of the IEEE international conference
on computer vision. 2015, pp. 2758–2766.

[33] Eddy Ilg et al. “Flownet 2.0: Evolution of optical flow estimation with
deep networks”. In: Proceedings of the IEEE conference on computer vision
and pattern recognition. 2017, pp. 2462–2470.

[34] Joe Yue-Hei Ng et al. “Actionflownet: Learning motion representation
for action recognition”. In: 2018 IEEE Winter Conference on Applications
of Computer Vision (WACV). IEEE. 2018, pp. 1616–1624.

124 Bibliography

[35] Yi Zhu et al. “Hidden two-stream convolutional networks for action
recognition”. In: Asian conference on computer vision. Springer. 2018,
pp. 363–378.

[36] Shuiwang Ji et al. “3D convolutional neural networks for human ac-
tion recognition”. In: IEEE transactions on pattern analysis and machine
intelligence 35.1 (2012), pp. 221–231.

[37] Du Tran et al. “Learning spatiotemporal features with 3d convolu-
tional networks”. In: Proceedings of the IEEE international conference on
computer vision. 2015, pp. 4489–4497.

[38] Joao Carreira and Andrew Zisserman. “Quo vadis, action recogni-
tion? a new model and the kinetics dataset”. In: proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition. 2017, pp. 6299–
6308.

[39] Christoph Feichtenhofer et al. “Slowfast networks for video recogni-
tion”. In: Proceedings of the IEEE/CVF international conference on com-
puter vision. 2019, pp. 6202–6211.

[40] Xiaolong Wang et al. “Non-local neural networks”. In: Proceedings of
the IEEE conference on computer vision and pattern recognition. 2018, pp. 7794–
7803.

[41] Gedas Bertasius, Heng Wang, and Lorenzo Torresani. “Is space-time
attention all you need for video understanding”. In: arXiv preprint
arXiv:2102.05095 2.3 (2021), p. 4.

[42] Daniel Neimark et al. “Video transformer network”. In: Proceedings of
the IEEE/CVF International Conference on Computer Vision. 2021, pp. 3163–
3172.

[43] Raivo Koot and Haiping Lu. “VideoLightFormer: Lightweight Action
Recognition using Transformers”. In: arXiv preprint arXiv:2107.00451
(2021).

[44] Ashish Vaswani et al. “Attention is all you need”. In: Advances in neu-
ral information processing systems 30 (2017).

[45] Zhaofan Qiu, Ting Yao, and Tao Mei. “Learning spatio-temporal rep-
resentation with pseudo-3d residual networks”. In: proceedings of the
IEEE International Conference on Computer Vision. 2017, pp. 5533–5541.

[46] Du Tran et al. “A closer look at spatiotemporal convolutions for action
recognition”. In: Proceedings of the IEEE conference on Computer Vision
and Pattern Recognition. 2018, pp. 6450–6459.

Bibliography 125

[47] Saining Xie et al. “Rethinking spatiotemporal feature learning for video
understanding”. In: arXiv preprint arXiv:1712.04851 1.2 (2017), p. 5.

[48] Mohammadreza Zolfaghari, Kamaljeet Singh, and Thomas Brox. “Eco:
Efficient convolutional network for online video understanding”. In:
Proceedings of the European conference on computer vision (ECCV). 2018,
pp. 695–712.

[49] Chenxu Luo and Alan L Yuille. “Grouped spatial-temporal aggrega-
tion for efficient action recognition”. In: Proceedings of the IEEE/CVF
International Conference on Computer Vision. 2019, pp. 5512–5521.

[50] Christoph Feichtenhofer. “X3d: Expanding architectures for efficient
video recognition”. In: Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition. 2020, pp. 203–213.

[51] Ji Lin, Chuang Gan, and Song Han. “Tsm: Temporal shift module for
efficient video understanding”. In: Proceedings of the IEEE/CVF Inter-
national Conference on Computer Vision. 2019, pp. 7083–7093.

[52] Myunggi Lee et al. “Motion feature network: Fixed motion filter for
action recognition”. In: Proceedings of the European Conference on Com-
puter Vision (ECCV). 2018, pp. 387–403.

[53] Boyuan Jiang et al. “Stm: Spatiotemporal and motion encoding for
action recognition”. In: Proceedings of the IEEE/CVF International Con-
ference on Computer Vision. 2019, pp. 2000–2009.

[54] Yan Li et al. “Tea: Temporal excitation and aggregation for action recog-
nition”. In: Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition. 2020, pp. 909–918.

[55] Limin Wang et al. “Tdn: Temporal difference networks for efficient
action recognition”. In: Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition. 2021, pp. 1895–1904.

[56] Jasper RR Uijlings et al. “Selective search for object recognition”. In:
International journal of computer vision 104.2 (2013), pp. 154–171.

[57] C Lawrence Zitnick and Piotr Dollár. “Edge boxes: Locating object
proposals from edges”. In: European conference on computer vision. Springer.
2014, pp. 391–405.

[58] Shaoqing Ren et al. “Faster r-cnn: Towards real-time object detection
with region proposal networks”. In: Advances in neural information pro-
cessing systems 28 (2015).

126 Bibliography

[59] Jifeng Dai et al. “R-fcn: Object detection via region-based fully con-
volutional networks”. In: Advances in neural information processing sys-
tems 29 (2016).

[60] Tsung-Yi Lin et al. “Feature pyramid networks for object detection”.
In: Proceedings of the IEEE conference on computer vision and pattern recog-
nition. 2017, pp. 2117–2125.

[61] Joseph Redmon and Ali Farhadi. “YOLO9000: better, faster, stronger”.
In: Proceedings of the IEEE conference on computer vision and pattern recog-
nition. 2017, pp. 7263–7271.

[62] Wei Liu et al. “Ssd: Single shot multibox detector”. In: European con-
ference on computer vision. Springer. 2016, pp. 21–37.

[63] Tsung-Yi Lin et al. “Focal loss for dense object detection”. In: Pro-
ceedings of the IEEE international conference on computer vision. 2017,
pp. 2980–2988.

[64] Hei Law and Jia Deng. “Cornernet: Detecting objects as paired key-
points”. In: Proceedings of the European conference on computer vision
(ECCV). 2018, pp. 734–750.

[65] Xingyi Zhou, Dequan Wang, and Philipp Krähenbühl. “Objects as
points”. In: arXiv preprint arXiv:1904.07850 (2019).

[66] Zhi Tian et al. “Fcos: Fully convolutional one-stage object detection”.
In: Proceedings of the IEEE/CVF international conference on computer vi-
sion. 2019, pp. 9627–9636.

[67] Georgia Gkioxari and Jitendra Malik. “Finding action tubes”. In: Pro-
ceedings of the IEEE conference on computer vision and pattern recognition.
2015, pp. 759–768.

[68] G David Forney. “The viterbi algorithm”. In: Proceedings of the IEEE
61.3 (1973), pp. 268–278.

[69] Philippe Weinzaepfel, Zaid Harchaoui, and Cordelia Schmid. “Learn-
ing to track for spatio-temporal action localization”. In: Proceedings of
the IEEE international conference on computer vision. 2015, pp. 3164–3172.

[70] Suman Saha et al. “Deep learning for detecting multiple space-time
action tubes in videos”. In: arXiv preprint arXiv:1608.01529 (2016).

[71] Xiaojiang Peng and Cordelia Schmid. “Multi-region two-stream R-
CNN for action detection”. In: European conference on computer vision.
Springer. 2016, pp. 744–759.

Bibliography 127

[72] Zhenheng Yang, Jiyang Gao, and Ram Nevatia. “Spatio-temporal ac-
tion detection with cascade proposal and location anticipation”. In:
arXiv preprint arXiv:1708.00042 (2017).

[73] Gurkirt Singh et al. “Online real-time multiple spatiotemporal action
localisation and prediction”. In: Proceedings of the IEEE International
Conference on Computer Vision. 2017, pp. 3637–3646.

[74] Harkirat Singh Behl et al. “Incremental tube construction for human
action detection”. In: arXiv preprint arXiv:1704.01358 (2017).

[75] Vicky Kalogeiton et al. “Action tubelet detector for spatio-temporal
action localization”. In: IEEE ICCV. 2017, pp. 4405–4413.

[76] Suman Saha, Gurkirt Singh, and Fabio Cuzzolin. “Amtnet: Action-
micro-tube regression by end-to-end trainable deep architecture”. In:
Proceedings of the IEEE International Conference on Computer Vision. 2017,
pp. 4414–4423.

[77] Suman Saha, Gurkirt Singh, and Fabio Cuzzolin. “Two-stream amtnet
for action detection”. In: arXiv preprint arXiv:2004.01494 (2020).

[78] Pavel Tokmakov, Karteek Alahari, and Cordelia Schmid. “Learning
video object segmentation with visual memory”. In: Proceedings of the
IEEE International Conference on Computer Vision. 2017, pp. 4481–4490.

[79] Rui Hou, Chen Chen, and Mubarak Shah. “Tube convolutional neural
network (T-CNN) for action detection in videos”. In: Proceedings of the
IEEE international conference on computer vision. 2017, pp. 5822–5831.

[80] Dong Li et al. “Recurrent tubelet proposal and recognition networks
for action detection”. In: Proceedings of the European conference on com-
puter vision (ECCV). 2018, pp. 303–318.

[81] Wei Li et al. “Deformable tube network for action detection in videos”.
In: arXiv preprint arXiv:1907.01847 (2019).

[82] Jiawei He et al. “Generic tubelet proposals for action localization”. In:
2018 IEEE Winter Conference on Applications of Computer Vision (WACV).
IEEE. 2018, pp. 343–351.

[83] Yixuan Li et al. “Actions as moving points”. In: European Conference on
Computer Vision. Springer. 2020, pp. 68–84.

[84] Jiaojiao Zhao and Cees GM Snoek. “Dance with flow: Two-in-one stream
action detection”. In: Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition. 2019, pp. 9935–9944.

128 Bibliography

[85] Okan Köpüklü, Xiangyu Wei, and Gerhard Rigoll. “You only watch
once: A unified cnn architecture for real-time spatiotemporal action
localization”. In: arXiv preprint arXiv:1911.06644 (2019).

[86] Yuxi Li et al. “Finding action tubes with a sparse-to-dense frame-
work”. In: Proceedings of the AAAI Conference on Artificial Intelligence.
Vol. 34. 07. 2020, pp. 11466–11473.

[87] Yuxi Li et al. “Cfad: Coarse-to-fine action detector for spatiotempo-
ral action localization”. In: European Conference on Computer Vision.
Springer. 2020, pp. 510–527.

[88] Rohit Girdhar et al. “Video action transformer network”. In: Proceed-
ings of the IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition. 2019, pp. 244–253.

[89] Jiaojiao Zhao et al. “Tuber: Tube-transformer for action detection”. In:
arXiv preprint arXiv:2104.00969 (2021).

[90] Chen Sun et al. “Actor-centric relation network”. In: Proceedings of the
European Conference on Computer Vision (ECCV). 2018, pp. 318–334.

[91] Yubo Zhang et al. “A structured model for action detection”. In: Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition. 2019, pp. 9975–9984.

[92] Chao-Yuan Wu et al. “Long-term feature banks for detailed video un-
derstanding”. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition. 2019, pp. 284–293.

[93] Haroon Idrees et al. “The THUMOS challenge on action recognition
for videos “in the wild””. In: Computer Vision and Image Understanding
155 (2017), pp. 1–23.

[94] Philippe Weinzaepfel, Xavier Martin, and Cordelia Schmid. “Human
action localization with sparse spatial supervision”. In: arXiv preprint
arXiv:1605.05197 (2016).

[95] Hildegard Kuehne et al. “HMDB: a large video database for human
motion recognition”. In: 2011 International conference on computer vi-
sion. IEEE. 2011, pp. 2556–2563.

[96] Mark Everingham et al. “The PASCAL visual object classes challenge
2007 (VOC2007) results”. In: (2008).

Bibliography 129

[97] Xitong Yang et al. “Step: Spatio-temporal progressive learning for video
action detection”. In: Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition. 2019, pp. 264–272.

[98] Yu Liu, Fan Yang, and Dominique Ginhac. “ACDnet: An Action De-
tection network for real-time edge computing based on flow-guided
feature approximation and memory aggregation”. In: Pattern Recogni-
tion Letters 145 (2021), pp. 118–126.

[99] Xizhou Zhu et al. “Deep feature flow for video recognition”. In: Pro-
ceedings of the IEEE conference on computer vision and pattern recognition.
2017, pp. 2349–2358.

[100] Thomas Brox et al. “High accuracy optical flow estimation based on a
theory for warping”. In: European conference on computer vision. Springer.
2004, pp. 25–36.

[101] Congrui Hetang et al. “Impression network for video object detec-
tion”. In: arXiv preprint arXiv:1712.05896 (2017).

[102] Tianqi Chen et al. “Mxnet: A flexible and efficient machine learn-
ing library for heterogeneous distributed systems”. In: arXiv preprint
arXiv:1512.01274 (2015).

[103] Alaaeldin Ali and Graham W Taylor. “Real-time end-to-end action de-
tection with two-stream networks”. In: 2018 15th Conference on Com-
puter and Robot Vision (CRV). IEEE. 2018, pp. 31–38.

[104] Till Kroeger et al. “Fast optical flow using dense inverse search”. In:
European Conference on Computer Vision. Springer. 2016, pp. 471–488.

[105] Adam Paszke et al. “Pytorch: An imperative style, high-performance
deep learning library”. In: Advances in neural information processing sys-
tems 32 (2019).

[106] Dejun Zhang et al. “Learning motion representation for real-time spatio-
temporal action localization”. In: Pattern Recognition 103 (2020), p. 107312.

[107] Laura Sevilla-Lara et al. “On the integration of optical flow and ac-
tion recognition”. In: German conference on pattern recognition. Springer.
2018, pp. 281–297.

[108] Mark Sandler et al. “Mobilenetv2: Inverted residuals and linear bot-
tlenecks”. In: Proceedings of the IEEE conference on computer vision and
pattern recognition. 2018, pp. 4510–4520.

130 Bibliography

[109] Ningning Ma et al. “Shufflenet v2: Practical guidelines for efficient
cnn architecture design”. In: Proceedings of the European conference on
computer vision (ECCV). 2018, pp. 116–131.

[110] Marin Orsic et al. “In defense of pre-trained imagenet architectures for
real-time semantic segmentation of road-driving images”. In: Proceed-
ings of the IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition. 2019, pp. 12607–12616.

[111] Rui Su et al. “Improving action localization by progressive cross-stream
cooperation”. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition. 2019, pp. 12016–12025.

[112] Lin Song et al. “Tacnet: Transition-aware context network for spatio-
temporal action detection”. In: Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition. 2019, pp. 11987–11995.

[113] Zhaofan Qiu et al. “Learning spatio-temporal representation with lo-
cal and global diffusion”. In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition. 2019, pp. 12056–12065.

[114] Okan Köpüklü et al. “Resource efficient 3d convolutional neural net-
works”. In: 2019 IEEE/CVF International Conference on Computer Vision
Workshop (ICCVW). IEEE. 2019, pp. 1910–1919.

[115] Kensho Hara, Hirokatsu Kataoka, and Yutaka Satoh. “Can spatiotem-
poral 3d cnns retrace the history of 2d cnns and imagenet?” In: Pro-
ceedings of the IEEE conference on Computer Vision and Pattern Recogni-
tion. 2018, pp. 6546–6555.

[116] AJ Piergiovanni and Michael S Ryoo. “Representation flow for action
recognition”. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition. 2019, pp. 9945–9953.

[117] Heeseung Kwon et al. “Motionsqueeze: Neural motion feature learn-
ing for video understanding”. In: European Conference on Computer Vi-
sion. Springer. 2020, pp. 345–362.

[118] Yuan Zhi et al. “Mgsampler: An explainable sampling strategy for
video action recognition”. In: Proceedings of the IEEE/CVF International
Conference on Computer Vision. 2021, pp. 1513–1522.

[119] Guoxi Huang and Adrian G Bors. “Video classification with finecoarse
networks”. In: arXiv e-prints (2021), arXiv–2103.

Bibliography 131

[120] Sara Beery et al. “Context r-cnn: Long term temporal context for per-
camera object detection”. In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition. 2020, pp. 13075–13085.

[121] Nicolas Carion et al. “End-to-end object detection with transformers”.
In: European conference on computer vision. Springer. 2020, pp. 213–229.

[122] Alexey Dosovitskiy et al. “An image is worth 16x16 words: Trans-
formers for image recognition at scale”. In: arXiv preprint arXiv:2010.11929
(2020).

	Declaration of Authorship
	Abstract
	Acknowledgements
	Introduction
	Context
	Types of action understanding tasks
	Types of action understanding tasks
	Why targeting online spatiotemporal action detection?

	Toward real-time and lightweight detection
	Thesis overview

	Related Work
	Action recognition
	Recognition from hand-crafted features
	Recognition from learned features: 2D CNNs
	Recognition from learned features: 3D CNNs
	Toward lightweight and efficient action recognition

	Action detection
	Spatial localization (object detection)
	Spatiotemporal action detection/localization
	Single-frame based methods
	Short-clip based methods
	Clip-based 3D CNN representation for contextual support

	Related datasets
	Overview on action detection datasets
	Datasets used in this thesis

	Evaluation metrics
	Frame-level mean Average Precision (frame-mAP)
	Video-level mean Average Precision (video-mAP)
	Model efficiency

	Recap on our research directions

	ACDnet: Action detection framework based on flow-guided feature approximation and memory aggregation
	Introduction
	Review on SSD (Single Shot MultiBox Detector)
	Overview: flow-guided detection framework
	Feature approximation by motion guidance
	Memory feature aggregation
	Training ACDnet
	Adaptation for multi-scale detection

	Experimental validation
	Implementation details
	Impact of FA and MA
	Efficiency analysis
	Impact of varied temporal strides at train/test time
	Global detection performance and comparison

	Summary and limitations

	TEDdet: Temporal feature exchange-difference network
	Introduction
	Review on CenterNet
	Overview of TEDdet and temporal sub-modules
	Overview
	Temporal Feature Exchange: multi-frame feature aggregation
	Temporal Feature Difference: pair-wise displacement as motion

	Temporal Feature Exchange-Difference action tubelet detection framework
	TE and Center branch
	TD and Trajectory branch
	Box branch
	Coarse-tubelet inference
	Online tubelet linking and tube generation

	Experimental validation
	Implementation details
	Effect of feature aggregation and tracking
	Effect of sequence coverage
	Effect of varying sequence coverage at train/test time
	Action tube generation and runtime
	Global detection performance and comparison

	Summary and limitations

	AMMA: Accumulated micro-motion features for real-time spatiotemporal action localization
	Introduction
	How optical flow facilitates action understanding?
	Overview of the detection framework
	AMMA - Backbone
	Clip-level appearance information
	Accumulated micro-motion: clip-level action dynamics
	Multi-scale spatiotemporal fusion

	AMMA - Detector branches
	Center branch
	Trajectory branch
	Box branch
	AMMA - loss

	Online detection and tube generation
	Incremental detection via feature-caching-dequeueing
	Linking coarse tubelets into action tubes

	Experimental validation
	Implementation details
	Effect of input duration
	Effect of micro-motion generation and fusion
	From lightweight to ultra-lightweight
	Global detection performance and comparison

	Summary and limitations

	Diving more deeply into AMMA
	Introduction
	Accuracy and error breakdown analysis
	Recap on AMMA and TEDdet
	Unveiling frame-mAP
	Evaluation on JHMDB-21
	Evaluation on UCF-24

	Computational complexity
	Runtime
	Summary, limitations, and looking ahead

	Conclusion and Future perspectives
	Summary of contributions
	Detection acceleration and spatiotemporal modeling via flow-guided features
	Spatiotemporal Modeling via feature-channel exchange and feature-map displacement
	Leveraging accumulated motion boundaries

	Limitations in our models
	Drastic inter-class variations
	Pruning low-confidence predictions
	Temporal localization
	Long-temporal relations

	Future works
	Short-term future tasks
	Long-term future research directions

