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M. Claude FABRE Professeur Émérite, Laboratoire Kastler Brossel, Sorbonne Université, France Examinateur
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Titre : Description spatio-temporelle de photons uniques : de la production en cavité à la détection
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Résumé : Ce travail fournit une analyse des
propriétés spatio-temporelles d’états à un photon.
En commençant par une quantification directe-
ment réalisée en espace position, nous démontrons
que deux formulations différentes de la théorie
sont équivalentes : elles prédisent les mêmes
résultats. L’équivalence est formulée sous forme
d’un isomorphisme de leurs espaces de Hilbert re-
spectifs. On utilise par la suite cette construc-
tion en espace position pour étudier la propa-
gation des photons décrits par des impulsions.
Nous démontrons que la dynamique de n’importe
quel état du champ électromagnétique quantique
est alors donnée par l’évolution temporelle de
la représentation de l’état, telle que décrite par
les équations de Maxwell classiques. Nous con-
struisons également un modèle de détection lo-
cale de photons en utilisant l’opérateur densité
d’énergie. Ce modèle nous permet de démontrer

la non-localité de tout état à un photon grâce à la
propriété d’anti-localité de l’opérateur fréquence
Ω = c(−∆)1/2. Nous caractérisons ensuite cette
non-localité pour un état à un photon produit
par l’émission spontanée d’un atome d’Hydrogène
et montrons que la décroissance de sa densité
d’énergie se comporte asymptotiquement comme
1/r6 pour des distances r loin de l’atome. En-
fin, nous nous intéressons à la production de pho-
tons en cavités pour laquelle nous démontrons
au travers d’un argument topologique que, dans
la limite adiabatique, l’approximation de l’onde
tournante (rotating wave approximation) est jus-
tifiée et permet donc la production de photons très
proches de photons uniques parfaits. Nous con-
struisons aussi, comme résultat préliminaire, un
modèle heuristique utilisant des modes quasinor-
maux pour décrire la production de photons dans
des cavités ouvertes.

Title: Spatio-temporal description of single photons: from cavity production to local detection

Keywords: single photons, spatio-temporal properties, photon localization, Bia lynicki-Birula
and Landau-Peierls position representations, spontaneous emission of Hydrogen atoms, adiabatic
production of single photons, quasinormal modes

Abstract: This work provides an analysis of
spatio-temporal properties of single-photon states.
Starting with a direct quantization in position
space representation, we show that two differ-
ent formulations are equivalent, i.e., they give the
same quantum theory. The equivalence is formu-
lated in terms of isomorphisms of their respective
Hilbert space of states. We then use this construc-
tion in position space to study the propagation of
photons in terms of pulses, and we show that the
dynamics of any state of the quantum electromag-
netic field is given by the classical Maxwell equa-
tions for the classical pulse onto which the photons
are defined. We also construct a model for local
detection of photons using the energy density op-
erator. This model allows us to show the nonlocal-

ity of all single-photon states using the anti-local
property of the frequency operator Ω = c(−∆)1/2.
We then characterize this nonlocal property for
a single-photon state spontaneously emitted by a
Hydrogen atom, and we show a radial decay of its
energy density of 1/r6 in the asymptotic limit of
large distances r from the atom. Finally, we con-
sider the production of photons in cavities, where
we show through topological arguments that in
the adiabatic limit, the rotating wave approxima-
tion is justified, and thus the photons produced
with these techniques can be very close to perfect
single photons. We also construct, as a prelimi-
nary result, a heuristic model using quasinormal
modes to describe the production of photons in-
side leaky cavities.
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Is the world moving fast for you as well ? [...], I can’t tell if it be only me.
Loyle Carner, Speed of Plight
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Résumé long

De manière générale en optique quantique, les photons sont décrits dans l’espace de Fourier
et représentés par des vecteurs |⃗k, λ⟩ avec un vecteur d’onde et une polarisation donnés.
L’état correspondant dans l’espace position est une onde plane complètement délocalisée
et donc peu utile pour décrire les propriétés spatiales. De plus, les ondes planes ne sont
pas physiques puisqu’elles possèdent une énergie infinie et servent donc uniquement à con-
struire des paquets d’ondes qui eux ont une énergie finie. Dans cette thèse, nous utiliserons
donc une construction de la théorie quantique du champ électromagnétique directement
faite en termes d’impulsions bien définies et à partir desquelles les propriétés spatiales
peuvent être analysées. Les photons uniques seront donc décrit par des vecteur |η⃗⟩ où η⃗
est une condition initiale des équations de Maxwell formulée dans une représentation com-
plexe. Plusieurs de ces représentations complexes existent, telles que les représentations
dites de Landau-Peierls et de Bia lynicki-Birula. Après avoir rappelé comment elles sont
construites, nous démontrons qu’elles sont en fait complètement équivalentes en formulant
un isomorphisme reliant leurs espaces de Hilbert respectifs. Cette équivalence garantie
que les deux théories ainsi construites sont identiques, c’est à dire qu’elles prédisent les
mêmes résultats. La forme relativement simple de l’isomorphisme permet donc de passer
de l’une à l’autre des représentations en fonctions des différents aspects de la théorie que
l’on souhaite étudier. Nous démontrons également à travers l’étude des générateurs de
la dynamique, que cette équivalence se préserve au cours du temps. Finalement, nous
discutons de la généralisation de cette description sous forme d’impulsions au cas de la
propagation de photons dans des milieux diélectriques passifs inhomogènes.

Un des avantages de la description en termes d’impulsion en espace position est en-
suite illustré pour le calcul de la propagation d’états du champ quantifié. En effet,
nous démontrons que l’évolution temporelle d’un état quelconque est déterminée par la
dynamique prédite par les équations de Maxwell des fonctions classiques représentants
l’état. La représentation en espace position fournit donc une approche simple pour traiter
l’évolu-tion de n’importe quel état du champ quantique grâce à l’utilisation de l’évolution
temporelle classique souvent bien connue. Cette propriétée est illustré avec l’exemple de
la lame séparatrice, et permet notamment de retrouver les résultats observés dans l’effet

xv



Résumé long

Hong-Ou-Mandel.

Puisque l’interprétation des phénomènes quantiques ne peut se faire que par une analyse
conjointe des états et des observables, nous introduisons également un modèle permettant
de discuter la détection locale de photons. En effet, l’existence de résultats expérimentaux
utilisant des photons à priori plus grand que n’importe quel détecteur utilisé pour les
mesurer, témoigne du besoin d’un tel modèle tenant compte de cette distribution spatiale.
Pour cela, nous utilisons la densité d’énergie électromagnétique comme observable locale et
calculons sa valeur moyenne pour différents états du champ. Ces résultats nous permettent
ensuite de démontrer la non-localité des états à N photons en général, pour N fini. C’est
à dire que pour ces états, il n’existe pas de volume de localisation à l’extérieur duquel la
valeur moyenne de la densité d’énergie cöıncide avec celle obtenue pour le vide. Ce résultat,
déjà connu dans la littérature, est redémontré ici pour une observable locale concrète qui
en principe peut représenter un détecteur réel utilisé dans une expérience. De plus, notre
démonstration est valable pour tous les états à N photons, le plus général soient ils, et ne
fait pas intervenir l’évolution temporelle de ces derniers. En revanche, les états cohérents,
qui représentent ce qu’émet un laser par exemple, peuvent être localisés. Ce résultat
vient du fait que leur état s’écrive comme une superposition d’états à n photons, pour n
arbitrairement grand.

Concernant la production de photons, et au vu des résultats sur leur non-localité, nous
caractérisons la distribution spatiale d’états à un photon produits par l’émission spon-
tanée d’un atome d’Hydrogène. On trouve une décroissance algèbrique asymptotique
de 1/r6, pour des distances r loin de l’atome. Afin de mieux comprendre la produc-
tion expérimentale d’états très proche de photons uniques, nous considérons par la suite
l’interaction entre un mode du champ et un atome à deux niveaux, dans une cavité par-
faite. Ce modèle prédit la production d’états à un photon uniquement si l’on applique
l’approximation de l’onde tournante (rotating wave approximation, RWA). En considérant
l’interaction entre l’atome et le mode de cavité comme un champ de contrôle, et en
ajoutant une interaction avec un laser classique externe, nous démontrons, grâce à la
théorie de Floquet et dans la limite adiabatique, que les termes non résonants qui sont
éliminés par l’approximation RWA, n’empêchent pas le contrôle du système vers l’état
final cible : atome dans son état fondamental et un photon dans la cavité ; et ce, en con-
servant les mêmes champs de contrôle. Cette analyse est réalisée en utilisant un argument
topologique, et indique que les photons produits par des méthodes de contrôle adiabatique
seront très proches de photons uniques parfaits.

Pour terminer, et à titre de résultats préliminaires, nous introduisons le concept de modes
quasinormaux (quasinormal modes, QNMs) qui sont des solutions de l’équation d’onde
obtenues en appliquant une condition dite d’onde sortante. Elles permettent par exemple
de décrire classiquement une cavité imparfaite, c’est à dire pour laquelle au moins un des
miroirs n’est pas complètement réfléchissant. En utilisant un QNM tronqué spatialement,
nous construisons une fonction pouvant représenter la sortie d’un photon initialement dans
la cavité. Une telle approche est intrinsèquement dynamique et se fait en gardant la même
structure pour la théorie quantique du champ. Seule la fonction représentant l’état est
choisie de telle sorte que le photon, naturellement, sorte de la cavité. De plus, en con-
struisant une base hybride composée de QNMs tronqués à l’intérieur de la cavité et d’une



base standard tronquée à l’extérieur, nous construisons un modèle quantique heuristique,
similaire à celui construit généralement pour les cavités parfaites. L’originalité de cette
approche réside dans l’utilisation d’opérateurs créations et annihilations directement con-
struits sur des QNMs, de ce fait, on s’attend à ce que les photons produits suivant la
dynamique de ce modèle se propagent naturellement vers l’extérieur de la cavité.
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Introduction

Parts of the present work have led to the following articles:

[1] M. Federico, V. Dorier, S. Guérin and H. R. Jauslin. Space-time propagation of photon
pulses in dielectric media, illustrations with beam splitters. Journal of Physics B: Atomic,
Molecular and Optical Physics, 55(17):174002, 2022.

[2] M. Federico and H. R. Jauslin. Isomorphism between the Bia lynicki-Birula and the
Landau-Peierls Fock space quantization of the electromagnetic field in position represen-
tation. Journal of Physics A: Mathematical and Theoretical, 56(23):235302, 2023.

[3] M. Federico and H. R. Jauslin. Nonlocality of the energy density for all single-photon
states. Physical Review A, 108(4):043720, 2023.

[4] M. Federico and H. R. Jauslin. Nonlocality of the energy density of a spontaneously
emitted single-photon from a Hydrogen atom. arXiv:2403.13622v1, 2024.

P
hotons are the elementary excitations of the quantum electromagnetic field. Be-
fore being interpreted as such, they have been postulated and described within
several different models [5] starting with the pioneering works of Planck [6] and

Einstein [7, 8]. The transition from Planck’s mathematical trick and Einstein’s energy
quanta to our current understanding of photons has involved many physicists but one of
the starting works discussing electromagnetic radiations in a quantum field framework was
done by Dirac [9]. The concept of photons, as described by Dirac, was originally a key
tool for understanding subatomic interactions and, together with the relativistic descrip-
tion of electrons, they were the starting point towards the construction of the standard
model of particle physics. In optics, all the light sources available at that time were far
from the quantum regime and one had to wait until the construction of lasers to have
the first optics experiments involving a small number of photons [10–13], giving birth to
the field of quantum optics. Theoretically, the description of such experiments cannot be
done with the models used in subatomic physics since in this context one needs to consider
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Introduction

much more particles of matter ranging from one single atom to a full solid medium. The
description of matter is thus often non relativistic in quantum optics and it will be the
case in the rest of this manuscript.

Over the past 50 years, the field has grown in an impressive manner and both experimental
and theoretical techniques have been pushed forward in order to build light sources able to
produce photons one-by-one and on-demand. There exists now many different platforms to
do so, e.g., spontaneous parametric down conversion with nonlinear crystals, color centers
in diamonds, quantum dots or single-atoms/ions in cavities. Moreover, the experimental
controllability over these schemes allows now to select some properties of the emitted
photons such as their spatial/temporal distribution, often refered to as the “shape of the
photon”. This notion, which seems to be relevant for the description of experimentally
well-mastered techniques, was the starting point of this thesis, i.e., we want to have models
taking into account the spatial properties of photons when describing current quantum
optics experiments. To analyze the question, we will consider the three key elements in
these experiments, namely the production, propagation, and detection of the photons.

*
* *

In many works, single photons are described in the momentum/Fourier space and repre-
sented as |⃗k, λ⟩ with a given wavevector and polarization. The corresponding states in
position space are associated to plane waves that are completely delocalized and therefore
not useful to describe spatial properties. Additionally, plane wave photons are not physi-
cal since they have infinite energy and can be used only to construct wavepackets of finite
energy. Following this line, we want to use a construction of the quantum theory of the
electromagnetic field which explicitly makes use of these well-defined photons on pulses
from which we can analyze the spatial properties directly. We will thus work beyond the
standard notation |n⟩ referring to the number of photons in the system, and use a more
detailed notation |η⃗ ⟩ where η⃗ will be a valid initial condition for Maxwell’s equations
written in a complex formulation. Several complex formulations of Maxwell’s equations
exist and we will discuss in this thesis two of them, showing that they are both a valid
option to construct the quantum field theory in position space and that the two resulting
theories are indeed equivalent. We will also provide an explicit formula linking the two
formulations and allowing to pass from one to the other in a rather simple way. The use of
one formulation or the other will thus be a matter of preferences, in particular depending
on the aspect of the theory one wants to look at and in order to simplify the calculations
as much as possible. We will also show that the description of photons with pulses is not
valid only in the vacuum but can be generalized to the case of an inhomogeneous passive
dielectric medium [1, 14], in particular to be able to discuss the propagation of photons
through lenses, beam-splitters, dielectric mirrors or inside optical fibers.

This question of the description of photons in position space is historically closely related
to that of the wavefunction of photons [15–27], however we will deliberately not use this
terminology in our work for several reasons: (i) Wavefunctions in standard non-relativistic
quantum mechanics, e.g., for electrons, are eigenfunctions of a position operator associated
to the described particle. For photons, the concept of position operator has been widely
debated and is certainly not as simple and intuitive as it can be for other systems. (ii)
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Wavefunctions usually are associated to a Born probability rule, namely they provide the
probability density of a certain measurement and its associated operator. The objects we
will use for the photons do not yield the probability density but rather the expectation
value of some associated operator. In that sense, we believe that the word wavefunction
can be misleading in the context of photons and we will thus not use it for clarity reasons.
Instead, we will only use the concept of states of the electromagnetic field.

The importance of Maxwell’s equations in the quantum theory of the electromagnetic
field is not reduced to its construction since the dynamics of free photons, i.e., without
considering their sources, is in fact given by the classical dynamics of the associated pulse
on which the photons have been created. This result, well-known for single-photon states
[28], is true for any N -photon state and we will give an explicit proof of it. To illustrate this
property, we will consider two examples starting with the passage of a single-photon state
through a dielectric beam-splitter and recover the behavior that is observed in experiments.
The particularity of our approach is that we will not use any creation-annihilation operator
related to vacuum fluctuations as it is often done in quantum optics textbooks [28–35] since
the description in terms of propagating pulses is enough to obtain the full picture. The
second example is the Hong-Ou-Mandel effect which describes the passage of a two-photon
state constructed on two disjoint pulses so that they simultaneously impinge on the two
faces of a beam-splitter. The formulation of the theory in terms of propagating pulses
gives consistent results for this setup and predicts the bunching property of photons. We
will also discuss the semantics often used for photons since the Hong-Ou-Mandel effect
gives a clear indication that photons do not behave as waves nor as particles.

An important feature of field theories is that looking at the state functions only does
not give a full picture of the system. One has to consider the joint representation of
the states and the observables to obtain the full information on a certain property of the
system. In particular, we need to introduce an observable relevant for the discussion of
the spatial properties of photons. Following the works of Bia lynicki-Birula [21, 25], we
will use the energy density operator as the observable describing the local detection of
photons as it can be done in experiments, e.g., using superconducting nanowires [36]. The
interesting particularity of this detection model is that it allows one to probe photons
described by a state function that is never fully inside the detector volume. It represents
thus the local detection of photons. Such a model for local detection is needed since
there exist on-demand single-photon sources that produce photons carried by ∆τ ≃ 1 µs
pulses which correspond to a spatial extension of ∆x = c∆τ ≃ 300 m [37], and therefore
cannot fully fit into any actual detector. Using this detection model, we will show that
all single-photon states are nonlocal, i.e., the expectation value of the energy density
observable is never zero for any open set of R3. Our result is an extension of the works by
Bia lynicki-Birula [38,39], and a complementary approach to the results of Knight [40] and
of Hegerfeldt [41–44], which is valid without using the time evolution of the states. The
nonlocality of photons is thus not a consequence of their dynamics but a property already
true for initial conditions.

Regarding the production of single photons, in view of the results obtained for the detec-
tion, we will first characterize the spatial distribution of single photons produced by the
spontaneous emission of a Hydrogen atom. As expected, the nonlocality can be seen in
the decrease of the expectation value of the energy density with respect to the position of
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the atom. We find in the asymptotic limit of large distances from the atom, a 1/r6 fall-off.

This result can be obtained only by considering a full
⃗̂
A · ⃗̂p coupling between the atom

and the quantized electromagnetic field since the standard dipole approximation does not
allow to compute the state of the emitted photon but only the decay of the atom [45–49].
The recent methods for the experimental production of single photons does not rely on
spontaneous emission but on the control of generally a two- or three-level system by dif-
ferent control parameters. We will thus discuss how photons can be produced through
the interaction of an atom with a laser field inside a perfect cavity. The key point to
get as close as possible to the production of single-photon states relies on the validity
of the rotating wave approximation. We will show using a topological argument con-
structed using the Floquet theory [50] that in the adiabatic limit [51], this approximation
is valid all along the dynamics of production and this regime of control is thus well-suited
for the production of single photons. In practice however, photons must be produced in
leaky/open cavities if one wants to use them in the outside environment. The theoretical
description of such leakage by the photons remains a crucial point in quantum optics and
several techniques have been developed to address this question. We will try in this work
to briefly sketch, as a preliminary result, how one could use the concept of quasinormal
modes in this context. Quasinormal modes (QNM) are particular solutions of Maxwell’s
equations with outgoing boundary conditions [52–63]. They have the interesting property
of being able to fully describe a resonant structure taking into account the leakage towards
the outside. Nonetheless, they possess a drawback that is their divergence for positions
infinitely far from the resonant structure, preventing to use them as a basis for the full
space of study. We would like to use them as a state function describing the photon that
is produced in a cavity and which will eventually leak out. To do so, we will show that it
is possible to construct a dynamical function using a truncated QNM initially only inside
the cavity but which will propagate to the outside at any later time. The importance
of taking a truncated QNM is to avoid the divergence at infinite positions while keeping
the intrinsic leaking property. Such a function can thus be normalized and used as state
function for the photon. The last step in our preliminary construction will be to introduce
a hybrid basis made of QNMs inside the cavity and any other basis for the outside. This
basis can then be used to represent observables in the quantum model and to build a
heuristic model similar to what one had for the perfect cavity case but taking into account
the leakage towards the outside.

*
* *

To address all these questions, the manuscript will be divided in four main chapters.
We will start in Chapter 1 by recalling the basic theoretical tools we will extensively
use in the rest of the work, i.e., Maxwell’s equations and their generalization for passive
dielectric media, then the quantum description of atoms and the standard equations for
light-matter interaction, including the most relevant approximations. We will conclude
on this chapter with the definition of some operators that we will extensively use in the
description of the quantum electromagnetic field, as well as some eigenfunctions of these
operators which will be of interest to solve the models we will construct in the next
chapters. Chapter 2 will be devoted to the quantization of the free electromagnetic field
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in position space, and to the equivalence of the different position space representations.
Chapter 3 will be divided into two parts with first the description of propagation, including
the illustration with beam-splitters, and then with the construction of the model for local
detection and the proof of nonlocality of all single-photon states. Finally Chapter 4 will
be dedicated to the production of photons starting with the characterization of the spatial
distribution of spontaneously emitted photons from a Hydrogen atom. We will then discuss
the production of photons in a perfect cavity and show the relevance of the rotating wave
approximation in the adiabatic limit. We will, in the last part, introduce the concept of
quasinormal modes and briefly discuss, as a preliminary result, how one could use them
to describe the production of photons in open cavities.
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1
Theoretical background

This first chapter is dedicated to the introduction of the concepts that will be needed to
understand the quantum description of the electromagnetic field in position space repre-
sentations, as well as its interaction with matter.

We start by recalling the basics of classical electrodynamics, based on the microscopic
Maxwell equations and then formulate the macroscopic Maxwell equations which allow to
take into account the propagation of light in media. In order to prepare the quantization
scheme, we introduce the notions of potentials for both formulations and explicitly write
the theory in terms of wave equations. We also recall important results on the quantum
description of atoms and their interaction with classical light. Particularly, we show how
standard approximations are derived and construct semi-classical Hamiltonians to prepare
the passage towards a full quantum description. Finally, we define mathematical tools
which will be extensively used throughout this work, in particular the frequency and helicity
operators and their associated eigenfunctions.

1.1 Maxwell’s equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.1.1 Light propagation in a dielectric medium . . . . . . . . . . . . . . . 8

1.1.2 Potentials and wave equation . . . . . . . . . . . . . . . . . . . . . . 11

1.2 Quantum description of matter . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.2.1 Quantum description of an atom . . . . . . . . . . . . . . . . . . . . 13

1.2.2 Semi-classical light-matter interaction . . . . . . . . . . . . . . . . . 15

1.2.2.1 Atom in the electromagnetic field . . . . . . . . . . . . . . 15

1.2.2.2 Dipole approximation . . . . . . . . . . . . . . . . . . . . . 16

1.2.2.3 Few-level approximation . . . . . . . . . . . . . . . . . . . 17

1.2.2.4 Rotating wave approximation . . . . . . . . . . . . . . . . . 19

1.3 Mathematical tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.3.1 Plane waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.3.2 Curl, frequency and helicity operators . . . . . . . . . . . . . . . . . 22

1.3.3 Helicity spherical vector eigenfunctions of the Laplacian . . . . . . . 25
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Chapter 1. Theoretical background

1.1 Maxwell’s equations

Any physical systems involving electromagnetic radiations, charges and currents are de-
scribed by the microscopic Maxwell equations

∇× B⃗ = µ0j⃗ + µ0ε0
∂E⃗

∂t
, (1.1a)

∇× E⃗ = −∂B⃗
∂t
, (1.1b)

∇ · E⃗ =
ρ

ε0
, (1.1c)

∇ · B⃗ = 0, (1.1d)

where E⃗ and B⃗ are the electric and magnetic fields, ρ and j⃗ the charge and current
densities, ε0 and µ0 the vacuum permittivity and permeability, related to the speed of
light in vacuum c by µ0ε0c

2 = 1. We also used the notations ∇· and ∇× for the divergence
and the curl operators.

This set of equations can be interpreted as follows:

� (1.1a) indicates that the presence of currents or time variations of the electric field,
produce a magnetic field;

� (1.1b) indicates that time variations of the magnetic field produce an electric field;

� (1.1c) shows that electric charges create electric fields;

� (1.1d) expresses the non-existence of magnetic charges.

More information is contained in the set (1.1) such as the charge conservation which is
obtained by combining the divergence of (1.1a) with (1.1c) yielding

∂ρ

∂t
+ ∇ · j⃗ = 0, (1.2)

known as the continuity equation. This relation expresses that any variation of the density
of charges is related to a variation of current.

So far, we have considered the microscopic Maxwell equations that are useful to describe
systems having a small number of charges with some easily tracked motion (currents simple
to describe) or in vacuum (without any charges nor current, ρ = 0, j⃗ = 0). However, to
describe light propagating in a medium, one uses macroscopic quantities which encompass
the collective response of the medium, containing many charges.

1.1.1 Light propagation in a dielectric medium

To construct such a phenomenological model for matter, we split charges and currents
into two categories: one bounded to the medium (ρm, j⃗m) and one external to the medium
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1.1 Maxwell’s equations

(ρext, j⃗ext). The total charge and current densities that appear in the microscopic Maxwell
equations (1.1) can thus be replaced by

ρ = ρm + ρext, (1.3a)

j⃗ = j⃗m + j⃗ext. (1.3b)

Using Poincaré’s lemma [64] and the continuity equation, the total charge and current
densities can be expressed as

ρ = −∇ · P⃗, (1.4a)

j⃗ = ∇× M⃗ +
∂P⃗

∂t
, (1.4b)

where the fields P⃗ and M⃗ are called polarization and magnetization densities, respectively.
They sum up the collective information from charges and current on a macroscopic scale
without needing to know the behavior of every single one of them.
In the following, we will only consider non magnetic media, i.e., M⃗ = 0. Putting the new
expressions for ρ and j⃗ inside (1.1), leads to the macroscopic Maxwell equations

∇× B⃗ = µ0
∂P⃗

∂t
+

1

c2
∂E⃗

∂t
, (1.5a)

∇× E⃗ = −∂B⃗
∂t
, (1.5b)

∇ · E⃗ = − 1

ε0
∇ · P⃗, (1.5c)

∇ · B⃗ = 0. (1.5d)

We explained above that the polarization density arises from the collective behaviors
of charges and currents both inside and outside the medium. We can thus divide its
expression from three contributions:

P⃗ = P⃗ind + P⃗sp + P⃗ext, (1.6)

where the last term describes the contribution from external charges (ρext, j⃗ext), the second
describes spontaneous contribution generated by charges inside the medium and the first
describes the contribution induced by the interaction between the medium and light. The
first and second terms come from the medium charges and currents (ρm, j⃗m).
The spontaneous polarization density is a difficult quantity to estimate (especially for
experiments) which depends on the initial condition of the medium. Therefore, it is
often treated theoretically as a random noise, or set to zero when its effect is known to be
negligible. The latter is the option we will take in this work. Additionally, we will consider
only systems which do not have any external charges nor current so that the polarization
density — in our case — is identical to the induced one.
The media we will consider are neutral — before the interaction with an electromagnetic
field — hence the induced polarization is created by the electric field which displaces
electric charges inside the medium. Indeed, as one can see in Figure 1.1, an atom —
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Chapter 1. Theoretical background

Figure 1.1: Sketch illustrating the electromagnetic response to an static electric field of
a neutral medium. (a) Neutral case with zero electric field: the positive nuclear and
negative electronic disributions compensate each other. (b) When an electric field is
applied, nucleus and electronic density of charges are displaced in opposite directions,
breaking the symmetry of the system. (c) The asymmetry brought by the static electric
field creates a net charge distribution (in red) yielding the medium polarization density.
(Illustration partially reproduced from [65])

considered in the vacuum — is neutral, so it does not give any polarization density, unless
an electric field is applied to it resulting in a displacement in opposite direction of positive
and negative charges. The net result is then proportional to the electric field and powers
of it. In this thesis, we will only deal with linear optics. One can thus express the induced
polarization density as

P⃗ind(x⃗, t) = ε0

∫ +∞

−∞
dt′χ(x⃗, t− t′)E⃗(x⃗, t′), (1.7)

where the dimensionless function χ is the linear response function of the medium. The
expression (1.7) is so far too general since it would take into account the influence of
the electric field from past time as well as future time which does not make sense from
a causality point of view. However, one can choose a particular form for the response
function χ which takes into account this requirement; two choices can be done and lead
to two types of media that have different physical properties. We have:

� A retarded response function χ(x⃗, t− t′) = χm(x⃗, t− t′)Θ(t− t′), where Θ stands for
the Heaviside step function

Θ(t− t′) =

{
1 if t′ ≤ t
0 if t′ > t

, (1.8)

yielding for the polarization density

P⃗ind(x⃗, t) = ε0

∫ +∞

t
dt′χm(x⃗, t− t′)E⃗(x⃗, t′). (1.9)

� An instantaneous response function χ(x⃗, t − t′) = χm(x⃗)δ(t − t′), where δ(t − t′) is
the Dirac delta function so that the polarization density simply becomes

P⃗ind(x⃗, t) = ε0χm(x⃗)E⃗(x⃗, t). (1.10)
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1.1 Maxwell’s equations

The retarded response gives rise to Kramers-Kronig media which feature both dispersion
and dissipation. The instantaneous response leads to passive media, for which refractive
indices do not depend on the frequency and without absorption. In this thesis, we will
consider only the latter since we are interested in describing the production of photons
inside a cavity having dielectric mirrors and then propagating in a dielectric medium
(optical fiber) over sufficiently short distances such that both dispersion and dissipation
inside that medium will be neglected.

Inserting the expression (1.10) of the instantaneous response polarization into Maxwell’s
equation (1.5a) yields

∇× B⃗ =
1

c2
(χm(x⃗) + 1)

∂E⃗

∂t
. (1.11)

We consider media under sufficiently stable conditions compared to the interaction time
scale such that their response do not change with time. We introduce the dielectric
coefficient εm(x⃗) := χm(x⃗) + 1, giving for Maxwell’s equation (1.11)

∇× B⃗ =
εm(x⃗)

c2
∂E⃗

∂t
. (1.12)

By doing the same for the constraint (1.5c), one can rewrite it as

∇ ·
(
εm(x⃗)E⃗

)
= 0. (1.13)

1.1.2 Potentials and wave equation

For now, we have described Maxwell’s equations inside a passive medium using the electric
and magnetic fields. However, the set of equations we ended up with mixes the electric and
magnetic fields which sometimes makes it harder to solve. To circumvent this difficulty,
we are going to introduce the notion of potentials that are very useful in both classical and
quantum electrodynamics as we will see later. Indeed, one can remark (using Poincaré’s
lemma) that equation (1.5d) implies the existence of a vector field A⃗′ such that

B⃗ = ∇× A⃗′. (1.14)

Inserting this new vector field into (1.5b) gives

∇×

(
E⃗ +

∂A⃗′

∂t

)
= 0, (1.15)

which implies the existence of a scalar potential U ′ such that

E⃗ +
∂A⃗′

∂t
= −∇U ′. (1.16)
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Maxwell’s equations can then be expressed in terms of these potentials and become

∇×∇× A⃗′ +
εm
c2

∂

∂t
∇U ′ +

εm
c2
∂2A⃗′

∂t2
= 0, (1.17a)

∇ ·
(
εm(x⃗)E⃗

)
= 0, (1.17b)

B⃗ = ∇× A⃗′, (1.17c)

E⃗ = −∇U ′ − ∂A⃗′

∂t
. (1.17d)

The last two equations define the potentials, the second one (1.17b) is the generalized
constraint taking the medium into account and the first one (1.17a) is a generalized form
of a wave equation.
An advantage of using potentials to write Maxwell’s equations is that they are not unique
since for any field f(x⃗, t), the new potentials defined as

A⃗′
g = A⃗′ + ∇f, (1.18a)

U ′
g = U ′ − ∂f

∂t
, (1.18b)

will give rise to the same electromagnetic fields as (A⃗′, U ′). Such transformations are called
gauge transformations and are used in practice to construct potentials which simplify the
equations to be solved. In our case, the generalized wave equation can be drastically
simplified by the choice of potentials in the generalized Coulomb gauge. It corresponds to
the set of potential (A⃗′

gC, U
′
gC) chosen (using an appropriate field f) such that they fulfill

∇ ·
(
εmA⃗

′
gC

)
= 0, (1.19a)

U ′
gC = 0, (1.19b)

and it simplifies the wave equation (1.17a) to

∇×∇× A⃗′
gC +

εm
c2
∂2A⃗′

gC

∂t2
= 0. (1.20)

The set of Maxwell equations for a passive medium we will use in the rest of this thesis
reads thus

∇×∇× A⃗′
gC +

εm
c2
∂2A⃗′

gC

∂t2
= 0, (1.21a)

∇ ·
(
εmA⃗

′
gC

)
= 0, (1.21b)

B⃗ = ∇× A⃗′
gC, (1.21c)

E⃗ = −
∂A⃗′

gC

∂t
. (1.21d)
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1.2 Quantum description of matter

In the particular case of the vacuum, i.e., εm = 1, it simplifies to

∂2A⃗′
C

∂t2
= c2∆A⃗′

C, (1.22a)

∇ · A⃗′
C = 0, (1.22b)

B⃗ = ∇× A⃗′
C, (1.22c)

E⃗ = −
∂A⃗′

C

∂t
, (1.22d)

where we have used ∇×∇× A⃗′
C = −∆A⃗′

C + ∇(∇ · A⃗′
C) = −∆A⃗′

C which is valid since A⃗′
C

is transverse (1.22b).

1.2 Quantum description of matter

To have a full description of the production and propagation of photons, we will need to
consider the sources and the propagating media. These elements are composed of matter
that we will have to describe from a quantum point of view. We will use two different
approaches to treat on one hand the sources and on the other hand the propagation me-
dia. Indeed, we have seen already in the classical formulation of electrodynamics that the
medium into which light propagates can be taken into account in a macroscopic effective
model that gathers all the matter information and interaction with electromagnetic quan-
tities into the dielectric function. Although this model does not contain the microscopic
behavior of each element in the medium, it can be formulated with a Hamiltonian struc-
ture that is close to the one we will obtain for the vacuum, and therefore a quantum model
can be constructed in a similar way with only few modifications. This approach will be
detailed in Chapter 3 following the general procedure that we will develop in detail in
Chapter 2.

Regarding the sources, the production of single photons relies heavily on the discretization
of energy levels of the emitters. Indeed, it is the transition from of a higher to a lower
energy level which is mostly responsible for the creation of photons. Before going into the
details of this transition, and being able to understand how one can control such emission
in order to have on demand single-photon sources, it is important to understand the
internal structure of such emitters alone. In this work, for simplicity reasons, we will focus
on the description of photons produced by atoms. However, we note that the description
we will use to represent atoms, is applicable to many other sources like ions or quantum
dots for example. In this section, we recall some basic results on the quantum description
of atoms, explain how to describe classically their interaction with the electromagnetic
field and introduce the most common approximations performed in that context.

1.2.1 Quantum description of an atom

For simplicity, we consider a Hydrogen atom which is composed of a proton of mass mp =
1.7×10−27 kg and charge q = 1.6×10−19 C; and of an electron of mass m = 0.91×10−30 kg
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Chapter 1. Theoretical background

and charge −q [66]. Since m
mp

≪ 1, the center of mass of the system is close to the proton

which we consider from now on fixed and placed at x⃗at = 0. The classical interaction
between the two particles is electrostatic and described by the Coulomb potential

VCoul = − q2

4πε0|x⃗at − x⃗|
= −e

2

r
, (1.23)

where x⃗ denotes the position of the electron, r = |x⃗| and e2 = q2/4πε0. The classical
Hamiltonian of the system is thus given by

Hat =
p⃗ 2

2m
− e2

r
, (1.24)

where p⃗ is the momentum vector associated to the electron. To obtain the quantum
Hamiltonian, one applies the standard correspondence principle

p⃗ 7→ ⃗̂p = −iℏ∇, (1.25a)

x⃗ 7→ ⃗̂x, (1.25b)

where the position operator ⃗̂x acts on elements of the atomic Hilbert space, in position rep-
resentation Hat = L2(R3), as the multiplication by x⃗. The quantum atomic Hamiltonian
reads thus

Ĥat =
⃗̂p 2

2m
− e2

r̂
, (1.26)

where in this central symmetric problem, the operator r̂ acts on elements of Hat as mul-
tiplication by r.
To characterize the system, one solves now the time-independent Schrödinger equation

Ĥatφnlm(x⃗) = Enφnlm(x⃗), (1.27)

where the eigenenergies are

En = −Ei

n2
, (1.28)

expressed in terms of the ionization energy Ei = α2mc2/2, with α ≃ 1/137 the fine-structure
constant. The quantum numbers (n, l,m) label the different eigenfunctions and can take
the following values:

n = 1, 2, 3, . . . , i.e., n ∈ N∗; (1.29a)

l = 0, 1, 2, . . . , n− 1; (1.29b)

m = −l,−l + 1, . . . , l − 1, l. (1.29c)

For each l there is thus 2l + 1 different values of m and the total degeneracy of each En
level is

gn =
n−1∑
l=0

(2l + 1) = n2, (1.30)

and should be multiplied by two to take into account the electron spin 1/2 which we will
not consider in this work.
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The expression in spherical coordinates (r, ϑ, φ) of the eigenfunctions for n = 1 and n = 2
are

φn=1,l=0,m=0(r, ϑ, φ) =
1√
πr3B

e−r/rB , (1.31a)

φn=2,l=0,m=0(r, ϑ, φ) =
1√

8πr3B

(
1 − r

2rB

)
e−r/2rB , (1.31b)

φn=2,l=1,m=1(r, ϑ, φ) = − 1

8
√
πr3B

r

rB
e−r/2rB sinϑ eiφ, (1.31c)

φn=2,l=1,m=0(r, ϑ, φ) =
1

4
√

2πr3B

r

rB
e−r/2rB cosϑ, (1.31d)

φn=2,l=1,m=−1(r, ϑ, φ) =
1

8
√
πr3B

r

rB
e−r/2rB sinϑ e−iφ, (1.31e)

where rB = ℏ/αmc is the Bohr radius.

1.2.2 Semi-classical light-matter interaction

The semi-classical approach of light-matter interaction consists in describing matter with
a quantum model while the electromagnetic field remains classical. This is a first step
which allows to account for many phenomena that cannot be understood properly in a
fully classical model but which still fails for some other ones, e.g., spontaneous emission.
In this section, we want to construct a semi-classical model in which a quantum Hydrogen
atom interacts with the classical electromagnetic field.

1.2.2.1 Atom in the electromagnetic field

The central point to build such a model is to construct its Hamiltonian. Classically, the
electron is subjected to the Lorentz force F⃗L = q(E⃗+ ⃗̇x× B⃗) so that the Newton equation
of motion reads

m⃗̈x = q
(
E⃗ + ⃗̇x× B⃗

)
. (1.32)

Here, the notation ⃗̇x refers to a time derivative of the variable x⃗ which gives the velocity
of the electron, and ⃗̈x the acceleration. An equivalent formulation can be done using the
classical Hamiltonian expressed for a pair of potentials (A⃗, U)

H =
1

2m

(
p⃗− qA⃗(x⃗)

)2
+ qU(x⃗), (1.33)

and the corresponding Hamilton equations for the j component

ẋj =
∂H

∂pj
=

1

m
(pj − qAj) , (1.34a)

ṗj = −∂H
∂xj

=
q

m

3∑
i=1

(
∂Ai
∂xj

pi − qAi
∂Ai
∂xj

)
− q

∂Uj
∂xj

. (1.34b)
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Indeed, by inserting (1.34a) in (1.34b) and using the relations

dAj
dt

=
∂Aj
∂t

+
(
⃗̇x · ∇

)
Aj , (1.35)

and [
⃗̇x×

(
∇× A⃗

)]
j

=

3∑
i=1

ẋi

(
∂Ai
∂xj

− ∂Aj
∂xi

)
, (1.36)

as well as the definition of the potentials (1.14) and (1.16), equations (1.34) give back
Newton’s equation of motion (1.32). We emphasize here that throughout this work, the
dot product will denote u⃗ · v⃗ =

∑3
i=1 uivi, i.e., without complex conjugation when applied

to complex vectors.
The semi-classical Hamiltonian describing a Hydrogen atom in the electromagnetic field
is thus obtained by applying the correspondence principle (1.25) to the atomic variables
and yields

Ĥ =
1

2m

(
⃗̂p− qA⃗(⃗̂x)

)2
+ qU(⃗̂x). (1.37)

1.2.2.2 Dipole approximation

From the general classical Hamiltonian we have introduced in the preceding section, the
dipole approximation for the interaction is often performed. It is constructed as follows:
We start working in the Coulomb gauge which has the advantage that one can make a
clear separtaration of the static field induced by the fixed nucleus and the time dependent
external field applied to the atom [28]. Indeed, the vector potential is not affected by the
static field produced by the nucleus while the scalar potential is equal to the static Coulomb
potential UC = VCoul/q. The next step consists in applying a change of gauge which
allows to get rid of the vector potential dependence and instead express the Hamiltonian
in terms of the electric field. To do so, one defines the Göppert-Mayer gauge [67] which
is constructed from the Coulomb gauge using the standard gauge transformation (1.18)
with the auxiliary function fGM

fGM = (x⃗at − x⃗) · A⃗C(x⃗at), (1.38)

yielding the potentials

A⃗GM(x⃗) = A⃗C(x⃗) − A⃗C(x⃗at), (1.39a)

UGM(x⃗) = UC(x⃗) + (x⃗− x⃗at) ·
∂A⃗C(x⃗at)

∂t
=

1

q
VCoul(x⃗) − (x⃗− x⃗at) · E⃗(x⃗at). (1.39b)

By inserting these potentials into (1.33) and defining the electric dipole function as d⃗(x⃗) =
q(x⃗− x⃗at), we obtain

H =
1

2m

(
⃗̂p− qA⃗GM(x⃗)

)2
− e2

|x⃗− x⃗at|
− d⃗(x⃗) · E⃗(x⃗at). (1.40)
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So far, no approximation has been made, we only rewrote the Hamiltonian using another
gauge that is well suited for the problem we want to analyze. To further simplify this
Hamiltonian, we make the long wavelength approximation which states that for the type
of interaction we will consider in this work, the wavelengths of the fields will be large
compared to the atomic dimensions. As an example, the typical emission and absorption
lines of a Hydrogen atom have a wavelength of at least 100 nm while atomic sizes are of
the order of the Bohr radius rB = 0.053 nm. Fields amplitude are thus almost constant
over the spatial extension of the atom so that we approximate them by their value at
the position of the atom x⃗at. Applying this approximation for (1.40) means replacing
A⃗GM(x⃗) by A⃗GM(x⃗at) which is zero according to (1.39a). We obtain finally the classical
Hamiltonian in the dipole approximation

H =
p⃗ 2

2m
− e2

|x⃗− x⃗at|
− d⃗ · E⃗(x⃗at) (1.41a)

= Hat − d⃗ · E⃗(x⃗at), (1.41b)

which is the free atomic Hamiltonian plus the electric dipole interaction term. We note
that although we have made several gauge transformations on the potentials to obtain
this result, in the end it does not depend on the potentials anymore. The semi-classical
Hamiltonian is again obtained by applying the correspondence principle (1.25) to the
atomic variables:

Ĥ =
⃗̂p 2

2m
− e2

|⃗̂x− x⃗at|
− ⃗̂
d · E⃗(x⃗at) (1.42a)

= Ĥat − ⃗̂
d · E⃗(x⃗at). (1.42b)

1.2.2.3 Few-level approximation

The model we have been constructing so far to describe the interaction between an atom
and the classical electromagnetic field, contains the full free atomic Hamiltonian plus the
dipole interaction term. According to the results of Section 1.2.1 of this chapter, the
atomic part can be decomposed using the spectral theorem as

Ĥat =
∑
n,l,m

En |n,m, l⟩ ⟨n,m, l| , (1.43)

where |n, l,m⟩ ≡ φnlm, and thus

Ĥ =
∑
n,l,m

En |n,m, l⟩ ⟨n,m, l| − ⃗̂
d · E⃗(x⃗at). (1.44)

To express the dipole operator, we use a trick [68] using the parity operator ϖ̂ which flips
the sign of the position operator ⃗̂x, i.e., ϖ̂⃗̂xϖ̂−1 = −⃗̂x and thus ϖ̂⃗̂x = −⃗̂xϖ̂. The parity
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operator ϖ̂ is an involution, i.e., ϖ̂−1 = ϖ̂, ϖ̂2 = and its spectrum is {±1}. One can
then conclude that for any atomic eigenstates

⟨n, l,m|
(
ϖ̂
⃗̂
d+

⃗̂
dϖ̂
) ∣∣n′, l′,m′〉 = 0 (1.45a)

⇔ (ϖnlm +ϖn′l′m′) ⟨n, l,m| ⃗̂d
∣∣n′, l′,m′〉 = 0, (1.45b)

where ϖnlm is the parity of the state |n, l,m⟩, i.e., ϖ̂ |n, l,m⟩ = ϖnlm |n, l,m⟩ with ϖnlm =

±1. A first consequence of (1.45) is that diagonal elements of
⃗̂
d are all zero since for any

(n, l,m), ϖnlm +ϖnlm = ±2 ̸= 0 and thus

⟨n, l,m| ⃗̂d |n, l,m⟩ = 0. (1.46)

The dipole operator can be written in an abstract way as

⃗̂
d =

∑
n,l,m
n′,l′,m′

〈
n′, l′,m′∣∣ ⃗̂d |n, l,m⟩

∣∣n′, l′,m′〉 ⟨n, l,m| , (1.47)

where the sums over n and n′ go until a given nmax which corresponds to the last state
before the ionization of the atom. The full interaction term in the semi-classical light-
matter interaction Hamiltonian in the dipole approximation reads thus

Ĥint = −
∑
n,l,m
n′,l′,m′

〈
n′, l′,m′∣∣ ⃗̂d · E⃗(x⃗at) |n, l,m⟩

∣∣n′, l′,m′〉 ⟨n, l,m| , (1.48)

and depending on the type of electric field that is applied to the atom, this expression can
be drastically simplified.
In Chapter 4, we will be interested in the control of atoms using lasers which can be
considered as quasi-monochromatic with a central frequency ωL that is resonant with a
particular transition |ng, lg,mg⟩ ↔ |ne, le,me⟩, i.e., which fulfill

ωL ≃
Ene − Eng

ℏ
. (1.49)

In that case, the matrix element |⟨e| ⃗̂d · E⃗(x⃗at) |g⟩| , where |e⟩ ≡ |ne, le,me⟩ and |g⟩ ≡
|ng, lg,mg⟩, will be much bigger than any other and the interaction term can be rewritten
as

Ĥint ≃ −⟨e| ⃗̂d · E⃗(x⃗at) |g⟩ |e⟩ ⟨g| − ⟨g| ⃗̂d · E⃗(x⃗at) |e⟩ |g⟩ ⟨e| . (1.50)

Only two levels are thus concerned by the dynamics, and the full Hamiltonian can be
rewritten as

Ĥ2-level = Eng |g⟩ ⟨g|+Ene |e⟩ ⟨e| − ⟨e| ⃗̂d · E⃗(x⃗at) |g⟩ |e⟩ ⟨g| − ⟨g| ⃗̂d · E⃗(x⃗at) |e⟩ |g⟩ ⟨e| , (1.51)

which is the Hamiltonian of a 2-level atom interacting with a classical electric field in
the dipole approximation. It can be notationally simplified by choosing without lost of
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1.2 Quantum description of matter

generality the zero energy to be Eng and by fixing the phase of ⟨e| ⃗̂d · E⃗(x⃗at) |g⟩ so that it
is real, and one obtains

Ĥ2-level = Ene |e⟩ ⟨e| − ⟨e| ⃗̂d · E⃗(x⃗at) |g⟩ (|e⟩ ⟨g| + |g⟩ ⟨e|) . (1.52)

In many experiments, two different lasers with different central frequencies are used to
control the atom. In such situation, two transitions will be favored in the sum (1.48) and
one can construct a 3-level Hamiltonian with the states |1⟩, |2⟩ and |3⟩

Ĥ3-level = En2 |2⟩ ⟨2| + En3 |3⟩ ⟨3| − ⟨1| ⃗̂d · E⃗12(x⃗at) |2⟩ (|1⟩ ⟨2| + |2⟩ ⟨1|)

− ⟨2| ⃗̂d · E⃗23(x⃗at) |3⟩ (|2⟩ ⟨3| + |3⟩ ⟨2|) , (1.53)

where the zero of energy has been set for E1. Here, we have chosen to couple the states
|1⟩ ↔ |2⟩ with one laser and the states |2⟩ ↔ |3⟩ with another, but any other choice can
be constructed in the same fashion.

The main advantage of such formulation, is that it can be obtained for many different
systems and not only atoms. For instance, ions, quantum dots and superconducting
circuits can be described with a finite number of discrete energy levels and thus a 2- or
3-level Hamiltonian with the same structure can be equivalently constructed for those
systems. In Chapter 4 of the present work, we will show some results on how to control
the dynamics of 2- level systems in general.

1.2.2.4 Rotating wave approximation

In the preceding section, we have constructed a model where a 2-level atom interact with
the classical electromagnetic field under the electric dipole approximation coupling. This
approach is general and in particular, we did not consider the time-dependence of the
electric field that is applied on the atom. This is the purpose of this section and it will
lead to a widely used approximation called the rotating wave approximation (RWA) and
which will be of utmost importance in the description of the production of single photons
in cavities. We will focus mostly on the 2-level case since the 3- or higher-level cases can be
deduced from it. To construct the interacting 2-level Hamiltonian (1.52), we have assumed
that the electric field is quasi-monochromatic, i.e., it can be written with the following
form

E⃗(x⃗, t) = E⃗L(x⃗, t) cos
(
k⃗L · x⃗− ωLt

)
, (1.54)

where ωL = c|⃗kL| is the central frequency which must be resonant with the transition
frequency of the atom, and E⃗L(x⃗, t) is the polarization-amplitude vector. Since in the
interaction, the field is taken at the position x⃗at = 0, one obtains

E⃗(x⃗at, t) = E⃗L(x⃗at, t) cos(ωLt) (1.55a)

=
E⃗L(x⃗at, t)

2

(
eiωLt + e−iωLt

)
, (1.55b)
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and the interacting part of (1.52) becomes

Ĥint = −⟨e| ⃗̂d · E⃗(x⃗at, t) |g⟩
2

(
eiωLt + e−iωLt

)
(|e⟩ ⟨g| + |g⟩ ⟨e|) (1.56a)

=
ℏΩeg(t)

2

(
eiωLt + e−iωLt

)
(|e⟩ ⟨g| + |g⟩ ⟨e|) , (1.56b)

where Ωeg(t) = −⟨e| ⃗̂d · E⃗(x⃗at, t) |g⟩ /ℏ is the time-dependent Rabi frequency of the tran-

sition. If we fix a matrix representation for the states |g⟩ =
(
1 0

)T
and |e⟩ =

(
0 1

)T
,

the full 2-level Hamiltonian can be expressed as

Ĥ =
ℏ
2

(
0 Ωeg(t)

(
eiωLt + e−iωLt

)
Ωeg(t)

(
eiωLt + e−iωLt

)
2ωa

)
, (1.57)

where we have introduced the Bohr frequency of the transition ℏωa = Ene − Eng . The
Hamiltonian can be further analyzed by extracting the resonant contribution from the
coupling, by applying the unitary resonant transformation

R =

(
1 0
0 eiωLt

)
(1.58)

to obtain

Ĥ ′ = R†ĤR =
ℏ
2

(
0 Ωeg(t)

Ωeg(t) 2ω0

)
+

ℏΩeg(t)

2

(
0 e2iωLt

e−2iωLt 0

)
. (1.59)

The interaction part has been separated into two parts, a resonant one that we have put in
the first term and a non resonant contribution in the second term. The RWA consists then
to remove the second term. This procedure can be justified in several ways but what we
want to emphasize here is that the second term can in fact be iteratively eliminated using
KAM type transformations which allow to keep track of the non resonant terms. This
procedure of quantum averaging using KAM transformations is more detailed in [50, 69].
In the end, if one puts aside the non-resonant term, and applies the inverse resonant
transformation, we obtain the RWA Hamiltonian as

Ĥ2-level,rwa =
ℏ
2

(
0 Ωeg(t)e

−iωLt

Ωeg(t)e
iωLt 2ω0

)
. (1.60)

1.3 Mathematical tools

Before getting into the main results of the present work, we need to introduce some
mathematical tools which will be extensively used.

1.3.1 Plane waves

Even though plane waves have limitations when it comes to describe photons and their
spatial properties, they still allow in many situations to perform calculations in a much
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simpler way. The reason for their practicality will become clear later when we will use them
to diagonalize some operators that are central for the description of the electromagnetic
field.
We start by defining circularly polarized plane waves

ϕ⃗
k⃗,±(x⃗) =

1

(2π)3/2
ϵ⃗±(k⃗)eik⃗·x⃗, k⃗ ∈ R3, (1.61)

where +/− labels the left/right circular polarization vectors with the following parametriza-
tion

ϵ⃗+(k⃗) =
1

√
2|⃗k|

√
k2x + k2y

 −kxkz + i|⃗k|ky
−kykz − i|⃗k|kx

k2x + k2y

 , ϵ⃗−(k⃗) = ϵ⃗+(k⃗)⋆. (1.62)

If the wave vector k⃗ is aligned with the z-axis, then one makes the following choice

ϵ⃗+(k⃗) =
sign(kz)√

2

 1
i
0

 . (1.63)

Other equivalent parametrizations exist with different global phase conventions but in the
rest of the thesis, plane waves are to be understood with this particular choice. So far,
the plane waves are transverse since ∇ · ϵ⃗±(k⃗) = 0 but one can also define longitudinal
plane waves with a polarization vector ϵ⃗0(k⃗) = k⃗/|⃗k| . In fact, the unit vectors ϵ⃗σ(k⃗) for
σ = {0,±} satisfies

n⃗× ϵ⃗σ(k⃗) = −iσϵ⃗σ(k⃗), (1.64)

with n⃗ = k⃗/|⃗k| . In this section, for the sake of completeness, we will discuss the most
general plane waves, including longitudinal ones, even though in the rest of the manuscript
we will deal only with transverse fields.
Plane waves are useful to describe square integrable functions — which will be used to
represent photon states — since they satisfy the following relations of orthonormality∫

R3

d3x ϕ⃗⋆
k⃗,σ

(x⃗) · ϕ⃗
k⃗′,σ′(x⃗) = δ(k⃗ − k⃗′)δσ,σ′ , (1.65)

and completeness∫
R3

d3k
∑
σ

|ϕ⃗
k⃗,σ

⟩ ⟨ϕ⃗
k⃗,σ

| =

∫
R3

d3k
∑
σ

ϕ⃗
k⃗,σ

(x⃗)ϕ⃗⋆
k⃗,σ

(x⃗′) = δ(x⃗− x⃗′), (1.66)

so that any square integrable vector field v⃗ ∈ L2 can be written as

v⃗(x⃗) =

∫
R3

d3x′ δ(x⃗− x⃗′)v⃗(x⃗′) (1.67a)

=

∫
R3

d3x′
∫
R3

d3k
∑
σ

ϕ⃗
k⃗,σ

(x⃗)ϕ⃗⋆
k⃗,σ

(x⃗′) · v⃗(x⃗′) (1.67b)

=

∫
R3

d3k
∑
σ

(∫
R3

d3x′ ϕ⃗⋆
k⃗,σ

(x⃗′) · v⃗(x⃗′)

)
ϕ⃗
k⃗,σ

(x⃗) (1.67c)

=

∫
R3

d3k
∑
σ

⟨ϕ⃗
k⃗,σ

|v⃗⟩ ϕ⃗
k⃗,σ

(x⃗), (1.67d)
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where ⟨·|·⟩ is the scalar product in L2.
Since plane waves are not themselves square integrable, they are not in L2 and should thus
not be considered as a basis of the space. However, the denomination generalized basis
is used to refer to such functions able to generate any element of a space, like in (1.67),
even though they do not belong to that space. From now on, we will use the term basis
without specifying whether it is a generalized basis or not.
If one wants to describe a general transverse field u⃗, i.e., ∇ · u⃗ = 0, the completeness
relation for the subspace of transverse field H⊥ ⊂ H reads∫

R3

d3k
∑
λ=±

|ϕ⃗
k⃗,λ

⟩ ⟨ϕ⃗
k⃗,λ

| = δ⊥(x⃗− x⃗′), (1.68)

where δ⊥(x⃗−x⃗′) is the transverse delta function defined for any field v⃗ with a decomposition
in transverse and longitudinal part v⃗ = u⃗+ w⃗ with ∇ · u⃗ = 0 and ∇× w⃗ = 0 as∫

R3

d3x′ δ⊥(x⃗− x⃗′)v⃗(x⃗′) = u⃗(x⃗). (1.69)

The set of circularly polarized plane waves {ϕ⃗
k⃗,λ

}, with λ = ± will thus be used as a basis
for transverse fields.

1.3.2 Curl, frequency and helicity operators

We have seen in Maxwell’s equations that vectorial differential operators are central for
the description of the electromagnetic field. In particular, if one puts aside the divergence
∇· which appears only for the constraints, and focuses on the dynamics, the curl operator
∇× is of uttermost importance. It is a local differential operator for which the plane waves
with circular polarization are eigenfunctions

∇× ϕ⃗
k⃗,σ

(x⃗) = σ|⃗k| ϕ⃗
k⃗,σ

(x⃗), (1.70)

and the operator can thus be written using the spectral decomposition as

∇× =

∫
R3

d3k
∑
σ

σ|⃗k| |ϕ⃗
k⃗,σ

⟩ ⟨ϕ⃗
k⃗,σ

| . (1.71)

When Maxwell’s equations are expressed in terms of a wave equation, the important
operator becomes the double curl ∇×∇× for which plane waves are still eigenfunctions

∇×∇× ϕ⃗
k⃗,σ

(x⃗) = |⃗k|
2
ϕ⃗
k⃗,σ

(x⃗), (1.72)

and the operator can be written as

∇×∇× =

∫
R3

d3k
∑
σ

|⃗k|
2
|ϕ⃗
k⃗,σ

⟩ ⟨ϕ⃗
k⃗,σ

| . (1.73)

If one adds the transversality constraint, the double curl operator is then equal to −∆
which can be decomposed as

−∆ =

∫
R3

d3k
∑
λ

|⃗k|
2
|ϕ⃗
k⃗,λ

⟩ ⟨ϕ⃗
k⃗,λ

| . (1.74)
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The difference between (1.73) and (1.74) is that for the Laplacian, we have removed the
contribution of longitudinal fields with index σ = 0.

To describe the Maxwell equations with a Hamiltonian structure, we will need to define
an operator Ω2 = −c2∆ and its positive square root, called frequency operator, using the
spectral decomposition

Ω =

∫
R3

d3k
∑
λ

ω
k⃗
|ϕ⃗
k⃗,λ

⟩ ⟨ϕ⃗
k⃗,λ

| , with ω
k⃗

= c|⃗k| > 0. (1.75)

It is a real and selfadjoint operator since

(Ωϕ⃗
k⃗,λ

)⋆ = (c|⃗k| ϕ⃗
k⃗,λ

)⋆ = c|⃗k| ϕ⃗⋆
k⃗,λ

= Ωϕ⃗⋆
k⃗,λ
, (1.76)

and

⟨u⃗|Ωu⃗′⟩ =

∫
R3

d3k

∫
R3

d3k′
∑
σ

∑
σ′

ω
k⃗
⟨ϕ⃗
k⃗,σ

|u⃗⟩ ⟨u⃗|ϕ⃗
k⃗′,σ′⟩ ⟨ϕ⃗k⃗′,σ′ |ϕ⃗k⃗,σ⟩ (1.77a)

=

∫
R3

d3k
∑
σ

ω
k⃗
⟨ϕ⃗
k⃗,σ

|u⃗⟩ ⟨u⃗|ϕ⃗
k⃗′,σ′⟩ (1.77b)

=

∫
R3

d3k

∫
R3

d3k′
∑
σ

∑
σ′

ω
k⃗′ ⟨ϕ⃗k⃗,σ|u⃗⟩ ⟨u⃗|ϕ⃗k⃗′,σ′⟩ ⟨ϕ⃗k⃗′,σ′ |ϕ⃗k⃗,σ⟩ (1.77c)

= ⟨Ωu⃗|u⃗′⟩ . (1.77d)

Using the spectral theorem, one can also define any power Ωp for a real p [70–73] by giving
its action on the plane wave basis

Ωpϕ⃗
k⃗,λ

= ωp
k⃗
ϕ⃗
k⃗,λ
. (1.78)

Another operator, called helicity, will be of great importance especially when we will
discuss local detection and nonlocal properties of single photons. It is defined as a combi-
nation of the curl and frequency operator

Λ = cΩ−1∇× . (1.79)

Because ∇× and Ωp have common eigenfunctions the three operators commute [∇×,Ωp] =
0 = [∇×,Λ] = [Ωp,Λ] and Λ fulfills the following eigenvalue equation

Λϕ⃗
k⃗,σ

= σϕ⃗
k⃗,σ
. (1.80)

From this, one can remark that the Hilbert space generated by {ϕ⃗
k⃗,σ

} can be split into
three subspaces according to the helicity

H = H(h+) ⊕H(h−) ⊕H(h0). (1.81)

The zero-helicity subspace is identical to the subspace of longitudinal fields while the
subspace of transverse fields is the sum of positive and negative helicity subspaces H⊥ =
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H(h+) ⊕H(h−). It means that any transverse field u⃗(x⃗) can always be written as the sum
of a positive and negative helicity components as

u⃗(x⃗) = u⃗(h+)(x⃗) + u⃗(h−)(x⃗), (1.82)

with Λu⃗(h±) = ±u⃗(h±). To construct helicity components, one defines the following pro-
jectors

P(h±) =
P⊥ ± Λ

2
, (1.83)

where P⊥ =
∫
R3 d

3k
∑

λ |ϕ⃗
k⃗,σ

⟩ ⟨ϕ⃗
k⃗,σ

| is the projector into the subspace of transverse fields.
For the zero helicity component, one simply projects onto the subspace of longitudinal
fields, i.e., using P∥ = − P⊥.

This result of splitting into +/− helicity component will be central for the isomorphism
linking the two position space representations of photons as well as for the description of
local detection and will give an explanation for the nonlocal property of single photons.

Remarks:

� The concept of helicity is common in quantum field theory where it is defined as the
projection of the spin onto the direction of motion. Here, we emphasize that the def-
inition involves only a combination of operators which will naturally appear in some
complex formulations of Maxwell’s equations. However, one can make the link between
the two descriptions by rewriting the curl operator in a matrix form as

∇× =

 0 −∂3 ∂2
∂3 0 −∂1
−∂2 ∂1 0

 (1.84a)

=
⃗̂
S · ∇

i
=
⃗̂
S ·

⃗̂p

ℏ
, (1.84b)

where ⃗̂p = −iℏ∇ is the standard quantum momentum operator and
⃗̂
S =

(
Ŝ1, Ŝ2, Ŝ3

)T
are the spin-1 operators defined as [Ŝi]j,k = −iϵijk, with ϵijk the totally antisymmetric
Levi-Civita tensor which gives in the matrix representation

Ŝ1 =

0 0 0
0 0 −i
0 i 0

 , Ŝ2 =

 0 0 i
0 0 0
−i 0 0

 , Ŝ3 =

0 −i 0
i 0 0
0 0 0

 . (1.85)

Equation (1.84b) illustrates the standard interpretation of quantum field theory.

� The notation (h±) refers to positive/negative helicity parts of a field and should not be
confused with the positive/negative frequency parts of a field. Indeed, in general the
two concepts do not coincide, i.e., for a transverse field u⃗,

u⃗(h±) ̸= u⃗(f±). (1.86)

More details about the concept of positive/negative frequency parts are given in Ap-
pendix A.
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1.3 Mathematical tools

1.3.3 Helicity spherical vector eigenfunctions of the Laplacian

In the last chapter of this thesis concerning the spontaneous emission by a Hydrogen atom,
we will need another basis of eigenfunctions of the Laplacian which is not the plane waves
basis. Indeed, to perform calculations for systems with a spherical symmetry, we will

need a basis of vectors |k, J,M, λ⟩ ≡ ψ⃗
(λ)
k,J,M (x⃗) that are eigenfunctions of the following

operators [45,74,75]

−∆ψ⃗
(λ)
k,J,M = k2ψ⃗

(λ)
k,J,M , k ∈ (0,∞), (1.87a)

Ĵ2ψ⃗
(λ)
k,J,M = J(J + 1)ψ⃗

(λ)
k,J,M , J ∈ {0, 1, 2, . . . }, (1.87b)

Ĵ3ψ⃗
(λ)
k,J,M = Mψ⃗

(λ)
k,J,M , M ∈ {−J, . . . , J}, (1.87c)

Λψ⃗
(λ)
k,J,M = λψ⃗

(λ)
k,J,M λ = ±1, (1.87d)

where

⃗̂
J =

⃗̂
L+

⃗̂
S, (1.88a)

⃗̂
L = ∇× x⃗ = x⃗×∇, (1.88b)

⃗̂
S =

(
Ŝ1, Ŝ2, Ŝ3

)T
, [Ŝi]j,k = −iϵijk. (1.88c)

The helicity vector spherical eigenfunctions can be written in spherical coordinates (r, ϑ, φ)
as

ψ⃗
(λ)
k,J,M (r, ϑ, φ) =

i√
2

[√
J + 1

2J + 1
ψ⃗J−1
k,J,M (r, ϑ, φ) −

√
J

2J + 1
ψ⃗J+1
k,J,M (r, ϑ, φ)

− iλψ⃗Jk,J,M (r, ϑ, φ)

]
, (1.89)

where the functions ψ⃗Lk,J,M can be expressed in terms of vector spherical harmonics Y⃗ L
J,M ,

i.e., eigenfunctions of Ĵ2, Ĵ3, L̂
2 and Ŝ2 but not of Λ, and spherical Bessel functions jL(kr)

as

ψ⃗Lk,J,M (r, ϑ, φ) =

√
2

π
k jL(kr)Y⃗ L

J,M (ϑ, φ). (1.90)

We remark that by constructing the functions ψ⃗
(λ)
k,J,M from ψ⃗Lk,J,M we obtain eigenfunctions

of −∆, Ĵ2, Ĵ3 and Λ but not of L̂2 while ψ⃗Lk,J,M is an eigenfunction of −∆, Ĵ2, Ĵ3 and L̂2

but not of Λ.

The helicity spherical vector eigenfunctions {ψ⃗(λ)
k,J,M} are transverse, ∇ · ψ⃗(λ)

k,J,M = 0, or-
thonormal ∫ ∞

0
dr r2

∫ π

0
dϑ sinϑ

∫ 2π

0
dφ ψ⃗λ⋆k,J,M (r, ϑ, φ) · ψ⃗λ′k′,J ′,M ′(r, ϑ, φ) =

δ(k − k′)δJ,J ′δM,M ′δλ,λ′ , (1.91)
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and form a complete set of the subspace of transverse field since the set of function
{ψ⃗J−1

k,J,M , ψ⃗
J
k,J,M , ψ⃗

J+1
k,J,M} from which they are defined is a complete set with

∫ ∞

0
d3k

∞∑
J=0

J∑
M=−J

J+1∑
L=J−1

[
ψ⃗Lk,J,M (r′, ϑ′, φ′)

]
µ

[
ψ⃗L⋆k,J,M (r, ϑ, φ)

]
ν

=

1

r2 sinϑ
δµ,νδ(r − r′)δ(ϑ− ϑ′)δ(φ− φ′). (1.92)

The last equation is a consequence of the completeness of the Bessel functions jL(kr) and
vector spherical harmonics Y⃗ L

J,M .

26



2
Fock space quantization of the electromagnetic field in

position space

This chapter is dedicated to the quantization of the free electromagnetic field both in mo-
mentum and position space representations. The equivalence between the representations
is shown using explicit isomorphims between their respective Hilbert spaces of states.

We start by recalling the construction of a Hamiltonian formulation of Maxwell’s equa-
tions in the Coulomb gauge where canonical variables can be defined first in position space
and then in momentum space. The quantization using a correspondence principle is then
performed in momentum space since the Hamilton function in that representation takes the
form of a set of uncoupled harmonic oscillators. A similar correspondence principle can be
applied in position space and the two quantizations are equivalent since their Hilbert spaces
are isomorphic. A similar procedure, called the Bia lynicki-Birula (BB) quantization, was
put forward by taking directly the electromagnetic fields as canonical variables and defining
in momentum space a correspondence principle. The central result of this chapter is to
show that the BB quantization is also linked to the Coulomb gauge quantization through
an isomorphism of their Hilbert spaces. This isomorphism, that we explicitly give, shows
that the two constructions are equivalent and can be used to analyze spatial properties of
photons. Finally, we look at the generator of the dynamics in each representation and
show that the equivalence will be preserved at all times.

Most of the results in this chapter have been published in [2].

2.1 Fock space and quantization procedure . . . . . . . . . . . . . . . . . . . . . 28
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2.2.5 Equivalence between the LP and momentum quantizations . . . . . 35
2.3 Bia lynicki-Birula’s quantization . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.3.1 Hamitonian structure . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.3.2 The Riemann-Silberstein vector . . . . . . . . . . . . . . . . . . . . . 37
2.3.3 Alternative choice of canonical variables . . . . . . . . . . . . . . . . 38
2.3.4 The Bia lynicki-Birula complex representation . . . . . . . . . . . . . 39
2.3.5 Quantization in the Bia lynicki-Birula representation . . . . . . . . . 40

2.4 Equivalence between the LP and the BB quantizations — Isomorphism . . 42
2.5 Dynamics in the quantum models . . . . . . . . . . . . . . . . . . . . . . . . 44

2.1 Fock space and quantization procedure

The major novelty brought by quantum field theory is to allow processes for which the
number of quanta in the system is not fixed. To have a well-defined mathematical de-
scription of such processes, we introduce a new type of Hilbert space for the states called
Fock space. Given a one-particle Hilbert space H , the corresponding bosonic Fock space
is defined as the direct sum of spaces of n quanta [76,77]

FB(H ) =

∞⊕
n=0

H ⊗Sn, (2.1)

where H ⊗Sn is the symmetrized n-times tensor product of H with itself. A similar
construction using the anti-symmetrized tensor product could be done for fermions but in
the following, we will use the Fock space only for photons that are known to be bosons1.
Each subspace corresponds thus to a fixed number of quanta

H ⊗S0 = C ≡ Hilbert space of the vaccum,

H ⊗S1 = H ≡ Hilbert space of one-quantum states,

H ⊗S2 = H ⊗S H ≡ Hilbert space of two-quanta states,

...

H ⊗Sn = H ⊗S . . .⊗S H︸ ︷︷ ︸
n times

≡ Hilbert space of n-quanta states.

The symmetrized tensor product formally represented by ⊗S hides in fact the following
construction

η1 ⊗S . . .⊗S ηn = Sn (η1 ⊗ . . .⊗ ηn) , (2.2)

{ηi} being elements of H and Sn the projectors into the symmetric subspaces defined by

Sn (η1 ⊗ . . .⊗ ηn) =
1

n!

∑
ς∈Pn

(ης1 ⊗ . . .⊗ ηςn) , (2.3)

1Photons are known to be bosons and several arguments can support this claim: experimental evidences,
e.g., Hong-Ou-Mandel effect with bunching property (see Chapter 3); but also theoretical one like the spin
statistics theorem [78]. One can also remark that the quantum field theory of light emerges as a collection
of independent harmonic oscillators which suggests the bosonic construction as we will later see in this
chapter.
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2.1 Fock space and quantization procedure

with a sum over every permutation ς in the permutation group Pn of order n.
A state |Φ⟩ of the Fock space can be labeled by a sequence

|Φ⟩ = (|ϕ0⟩ , |ϕ1⟩ , |ϕ2⟩ , . . . ), (2.4)

where each |ϕm⟩ ∈ H ⊗Sm can be written as a linear combination of terms of the form

|η1 ⊗S · · · ⊗S ηm⟩ . (2.5)

The construction we have done so far is general in the sense that it would be the same for
any field whose quantum excitations are bosons. The only difference will appear from the
choice of the one-quantum Hilbert space H that is made.
We construct then creation-annihilation operators allowing to go from one subspace with
a fixed number of quanta to another built for any η ∈ H as

B̂†
η : H ⊗Sn → H ⊗S(n+1), B̂η : H ⊗Sn → H ⊗S(n−1), (2.6)

and defined on the tensor product monomials by

B̂†
η |η1 ⊗ . . .⊗ ηn⟩ =

√
n+ 1 Sn+1 |η ⊗ η1 ⊗ . . .⊗ ηn⟩ , (2.7a)

B̂η |η1 ⊗ . . .⊗ ηn⟩ =
1√
n

n∑
j=1

⟨η|ηj⟩H Sn−1 |η1 ⊗ . . .⊗ �Aηj . . .⊗ ηn⟩ , (2.7b)

where the notation �Aηj indicates that this term is missing and ⟨·|·⟩H refers to the scalar
product in H . They fulfill the standard bosonic commutation rules2 [33, 80][

B̂η1 , B̂
†
η2

]
= ⟨η1|η2⟩H , (2.8a)[

B̂η1 , B̂η2

]
= 0 =

[
B̂†
η1 , B̂

†
η2

]
. (2.8b)

The Fock space will be central in the construction of the quantum theory of the electro-
magnetic field as we will see in the coming sections.
As a quick reminder, we recall the quantization procedure we will extensively repeat in
the next sections to construct the quantum theory of the electromagnetic field in several
momentum and position space representations. It consists in the following steps:

� Formulate Maxwell’s equations in a Hamiltonian form, identifying a pair of canonical
variables, defining a phase space such that the corresponding Hamilton equations
are equivalent to Maxwell’s equations.

� Construct a complex Hilbert space H of classical configurations and a complex
representation of the Hamiltonian structure.

� Build a bosonic Fock space by following the general procedure we have presented
before.

2If the {ηi} are orthonormal states, the commutation relation (2.8a) is thus equal to a Kronecker delta
δ1,2 and it gives back the standard formulation in terms, e.g., of plane waves as it is often formulated in
the quantum optics literature [29,79].
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Chapter 2. Fock space quantization of the electromagnetic field in position space

� Construct quantum observables from their classical equivalent using a correspon-
dence principle.

� Define the generator of the quantum dynamics in Fock space from the single-photon
dynamics, which is determined by the classical Hamiltonian dynamics.

2.2 Quantization in the Coulomb gauge

The first step to construct a one-quantum Hilbert space which suitably represents the
theory to quantize, is to find a Hamiltonian formulation of that specific theory. We will
construct in the following, a real Hamiltonian formulation and then a complex version of
it from which the one-quantum Hilbert space can be easily built. This construction will
be done in both position and momentum representations and the explicit isomorphism
linking the two representations will be introduced.

2.2.1 Hamiltonian formulation

We start by recalling Maxwell’s equations in the form we introduced in Chapter 1 equations
(1.14), (1.16), (1.19a) and (1.20) but now expressed for the particular case of the vacuum,
i.e., εm = 1:

∂2A⃗

∂t2
= c2∆A⃗, (2.9a)

∇ · A⃗ = 0, (2.9b)

B⃗ = ∇× A⃗, (2.9c)

E⃗ = −∂A⃗
∂t
. (2.9d)

We have also used ∇ × ∇× = −∆ which can be deduced from ∇ · A⃗ = 0. By choosing

as canonical variables A⃗ and its conjugate variable Π⃗ = ε0
∂A⃗
∂t = −ε0E⃗, the wave equation

(2.9a) can be written in a Hamiltonian form3

∂A⃗

∂t
=
δH

δΠ⃗
=

Π⃗

ε0
, (2.10a)

∂Π⃗

∂t
= −δH

δA⃗
= ε0c

2∆A⃗ = −ε0Ω2A⃗, (2.10b)

where the Hamilton function H is given by

H =

∫
R3

d3x

(
1

2ε0
Π⃗ · Π⃗ +

ε0
2
A⃗ · Ω2A⃗

)
. (2.11)

The Hamilton equations (2.10) and the constraints

∇ · A⃗ = 0, (2.12a)

∇ · Π⃗ = 0, (2.12b)

are equivalent to Maxwell’s equations (2.9).

3A detailed description of Hamiltonian mechanics can be found in the following references [81–83].

30



2.2 Quantization in the Coulomb gauge

Remark: The Hamilton function H has a structure similar to a one-dimensional harmonic
oscillator where ε0 takes the place of the mass, and the operator Ω takes the place of the
frequency. Because of this analogy, it has been stated that Maxwell’s equations look like
an infinite dimensional harmonic oscillator. This image can be used as a guideline for the
construction of the quantized theory in terms of a bosonic Fock space for the states. The role
of Ω also justifies a posteriori its denomination as frequency operator (see Chapter 1).

2.2.2 Complex representation — The Landau-Peierls field

To construct a complex Hilbert space with the Hamiltonian structure introduced before,
we define the following complex field, called the Landau-Peierls (LP) field [15,18,19] as

ψ⃗ =
1√
2ℏ

[
(ε0Ω)

1/2A⃗+ i(ε0Ω)
−1/2Π⃗

]
, (2.13)

from which we build the Hilbert space

HLP =
{
ψ⃗(x⃗)

∣∣∣∇ · ψ⃗ = 0, ⟨ψ⃗|ψ⃗⟩LP <∞
}
, (2.14)

with the scalar product

⟨ψ⃗|ψ⃗′⟩LP =

∫
R3

d3x ψ⃗⋆(x⃗) · ψ⃗′(x⃗). (2.15)

Remark: The LP Hilbert space HLP is a complex representation of pulse shaped electro-
magnetic fields. Therefore, it does not contain fields which carry infinite energy such as
plane waves. Nevertheless, we will make an extensive use of fields that are not in HLP , e.g.,
circularly polarized plane waves ϕ⃗k⃗,λ, as generalized eigenfunctions of selfadjoint differential
operators.

The Hamilton function in terms of the LP complex variable takes the form

H = ℏ
∫
R3

d3x ψ⃗⋆ · Ωψ⃗, (2.16)

and the corresponding complex Hamilton equation is

i
∂ψ⃗

∂t
=

1

ℏ
δH

δψ⃗⋆
= Ωψ⃗. (2.17)

Together with the transversality constraint ∇ · ψ⃗ = 0, they are equivalent to Maxwell’s
equations (2.9). We remark that (2.17) has the form of a Schrödinger equation where Ω
is the generator of the dynamics. This result will be central when considering dynamics
in the quantum model (Section 2.5).
Electromagnetic fields can be recovered from ψ⃗ by inverting (2.13),

A⃗(x⃗) =

√
ℏ

2ε0
Ω

−1/2
(
ψ⃗(x⃗) + ψ⃗⋆(x⃗)

)
, (2.18a)

E⃗(x⃗) = i

√
ℏ

2ε0
Ω

1/2
(
ψ⃗(x⃗) − ψ⃗⋆(x⃗)

)
, (2.18b)

B⃗(x⃗) =

√
ℏ

2ε0
Ω

−1/2∇×
(
ψ⃗(x⃗) + ψ⃗⋆(x⃗)

)
. (2.18c)
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Chapter 2. Fock space quantization of the electromagnetic field in position space

2.2.3 Momentum space formulation

A similar procedure can be done in the reciprocal momentum (or Fourier) space. In
this section we will only give the main results of that description and the link with the
position description. For a more detailed overview of this formulation, we refer to the
standard quantization of the free electromagnetic field of the quantum optics literature
[28,29,31–34,67,79].
We use the orthonormal basis of circular polarization plane waves (1.61) to decompose ψ⃗
as

ψ⃗(x⃗) =

∫
R3

d3k
∑
λ=±

ϕ⃗
k⃗,λ

(x⃗)z(k⃗, λ), (2.19)

where z(k⃗, λ) = ⟨ϕ⃗
k⃗,λ

|ψ⃗⟩LP ∈ C. We define the momentum Hilbert space as

HM = {z(k⃗, λ) | ⟨z|z⟩M <∞}, (2.20)

endowed with the scalar product

⟨z|z′⟩M =

∫
R3

d3k
∑
λ=±

z⋆(k⃗, λ)z′(k⃗, λ). (2.21)

The denomination of this space as momentum space is anticipated from the quantized
theory since in that context, the variable k⃗ is proportional to the momentum of monochro-
matic photons. It is sometimes also referred to as the Fourier space representation since
it is related to the position space formulation by a decomposition into the circular plane
waves basis which is very close to a Fourier transform. Indeed, one can pass from the
position space description to the momentum description using the map

M : HLP → HM

ψ⃗(x⃗) 7→ z(k⃗, λ) =

∫
R3

d3x ϕ⃗⋆
k⃗,λ

(x⃗) · ψ⃗(x⃗), (2.22)

which is a unitary transformation providing an isomorphism between the two Hilbert
spaces. The inverse map M−1 is given by (2.19), and the equivalence of the scalar products
can be computed as

⟨z|z′⟩M =

∫
R3

d3k
∑
λ=±

z⋆(k⃗, λ)z′(k⃗, λ) (2.23a)

=

∫
R3

d3k
∑
λ=±

(∫
R3

d3x ϕ⃗
k⃗,λ

(x⃗) · ψ⃗⋆(x⃗)

)(∫
R3

d3y ϕ⃗⋆
k⃗,λ

(y⃗) · ψ⃗′(y⃗)

)
(2.23b)

=

∫
R3

d3x

∫
R3

d3y ψ⃗⋆(x⃗) ·

(∫
R3

d3k
∑
λ=±

ϕ⃗
k⃗,λ

(x⃗)ϕ⃗⋆
k⃗,λ

(y⃗)

)
· ψ⃗′(y⃗) (2.23c)

=

∫
R3

d3x

∫
R3

d3y ψ⃗⋆(x⃗) · δT (x⃗− y⃗)ψ⃗′(y⃗) (2.23d)

= ⟨ψ|ψ⃗′⟩LP , (2.23e)
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2.2 Quantization in the Coulomb gauge

where we have used the completeness (1.66) of the basis {ϕ⃗
k⃗,λ

}. The Hamilton function
expressed in the new variables takes the form

H =

∫
R3

d3k
∑
λ=±

ℏω
k⃗
z⋆(k⃗, λ)z(k⃗, λ), (2.24)

and can be put in a harmonic oscillator form

H =

∫
R3

d3k
∑
λ=±

(
1

2ε0
p2
k⃗,λ

+
1

2
ε0ω

2
k⃗
q2
k⃗,λ

)
, (2.25)

by defining the real variables

p
k⃗,λ

= −i
√

ℏε0ωk⃗
2

(z − z⋆), (2.26a)

q
k⃗,λ

=

√
ℏ

2ε0ωk⃗
(z + z⋆), (2.26b)

z(k⃗, λ) =
1√
2ℏ

(
(ε0ωk⃗)

1/2q
k⃗,λ

+ i(ε0ωk⃗)
−1/2p

k⃗,λ

)
. (2.26c)

The Hamilton equation for the complex and real variables can be written as

i
∂z

∂t
=

1

ℏ
δH

δz⋆
= ω

k⃗
z, (2.27)

and

∂q
k⃗,λ

∂t
=

δH

δp
k⃗,λ

=
p
k⃗,λ

ε0
, (2.28a)

∂p
k⃗,λ

∂t
= − δH

δq
k⃗,λ

= −ε0ω2
k⃗
q
k⃗,λ
. (2.28b)

One of the advantages of the momentum representation for the quantization, is that the
canonical variables (q

k⃗,λ
, p
k⃗,λ

) or (z(k⃗, λ), z(k⃗, λ)⋆), are free of constraints and can thus be
quantized by applying directly a correspondence principle as we will show in the following
section.

2.2.4 Correspondence principle

Using the general construction presented in Section 2.1 for the bosonic Fock space, and
the two classical Hilbert spaces of states constructed from the complex formulations of
Maxwell’s equations, we can build the quantum model. The next step now is to associate
classical objects to the already constructed operators acting on the Fock space. For a
system like the Maxwell field that has a quadratic Hamiltonian, it can be done through
a principle of correspondence, suggested by the fact that in the momentum space, the
classical Hamilton function (2.25) has the form of an infinite collection of independent
harmonic oscillators.
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Chapter 2. Fock space quantization of the electromagnetic field in position space

2.2.4.1 Quantization in the momentum space HM

By this analogy, one postulates the following rule of correspondence, first defined in the
momentum Fock space FB(HM ):

Quantization map: z(k⃗, λ) 7→ B̂φ
k⃗,λ
, (2.29a)

z⋆(k⃗, λ) 7→ B̂†
φ
k⃗,λ
, (2.29b)

where φ
k⃗,λ

are the generalized basis eigenfunctions in HM given by

φ
k⃗,λ

(k⃗′, λ′) = Mϕ⃗
k⃗,λ

(2.30a)

=

∫
R3

d3x ϕ⃗⋆
k⃗′,λ′

(x⃗) · ϕ⃗
k⃗,λ

(x⃗) (2.30b)

= δλ,λ′δ(k⃗ − k⃗′), (2.30c)

which comes from the orthonormality of the functions ϕ⃗
k⃗,λ

.

2.2.4.2 Quantization in the Landau-Peierls space HLP

By the isomorphism M (2.19), the correspondence rule can be translated to the position
LP Fock space FB(HLP ) and gives:

Quantization map: ψ⃗(x⃗) 7→
∫
R3

d3k
∑
λ=±

ϕ⃗
k⃗,λ

(x⃗)B̂
ϕ⃗
k⃗,λ

=
⃗̂
Ψ(x⃗), (2.31a)

ψ⃗⋆(x⃗) 7→
∫
R3

d3k
∑
λ=±

ϕ⃗⋆
k⃗,λ

(x⃗)B̂†
ϕ⃗
k⃗,λ

=
⃗̂
Ψ†(x⃗), (2.31b)

which defines the field operators
⃗̂
Ψ(x⃗) and

⃗̂
Ψ†(x⃗). From these maps, one can write the

electromagnetic field operators following their classical expressions (2.18)

⃗̂
A(x⃗) =

√
ℏ

2ε0
Ω

−1/2
(
⃗̂
Ψ(x⃗) +

⃗̂
Ψ†(x⃗)

)
, (2.32a)

⃗̂
E(x⃗) = i

√
ℏ

2ε0
Ω

1/2
(
⃗̂
Ψ(x⃗) − ⃗̂

Ψ†(x⃗)
)
, (2.32b)

⃗̂
B(x⃗) =

√
ℏ

2ε0
Ω

−1/2∇×
(
⃗̂
Ψ(x⃗) +

⃗̂
Ψ†(x⃗)

)
. (2.32c)

Remark: We point out that the interpretation of the field operators
⃗̂
Ψ† and

⃗̂
Ψ is not to be

confused with that of the creation-anihilation operators B̂†
ψ⃗

and B̂ψ⃗ for ψ⃗ ∈ HLP . Indeed,

when applied to the vacuum state, B̂†
ψ⃗

creates a photon carried by the classical solution ψ⃗ of

Maxwell’s equations, while each component Ψ̂†
j is an operator-valued distribution which has

to be integrated over the whole space acting on a test function to properly create a state. For
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2.2 Quantization in the Coulomb gauge

instance, if we consider the jth component at a given position x⃗0, the field operator yields

Ψ̂†
j(x⃗0) |∅⟩ = |ξ⃗x⃗0,j⟩ =

∫
R3

d3k
∑
λ=±

ϕ
(j)⋆

k⃗,λ
(x⃗0)B̂†

ϕ⃗
k⃗,λ

|∅⟩ (2.33a)

=

∫
R3

d3k
∑
λ=±

ϕ
(j)⋆

k⃗,λ
(x⃗0) |ϕ⃗k⃗,λ⟩ , (2.33b)

which is not a regular single-photon state since |ϕ⃗k⃗,λ⟩ are not in HLP as we discussed before.

Similarly, the use of the functions ϕ⃗k⃗,λ and φk⃗,λ as classical functions onto which photons are
created, also yields a singular photon state. That is why we will use them only to decompose
regular functions in the Hilbert space, mostly for calculation reasons.

2.2.5 Equivalence between the LP and momentum quantizations

In this section, we show that the isomorphism M given by equations (2.19), (2.22) and
(2.23), provides a direct relation between the quantized theories we have constructed
above. Indeed, since the central concept of bosonic creation-annihilation operators, which
allows one to write any state and observable in the theory, are explicitly linked by the
classical isomorphism M, all physical predictions made with the two representations are
the same.
If one considers, e.g., a single-photon state in the position space LP representation which
reads

B̂†
ψ⃗
|∅⟩LP = |ψ⃗⟩LP , (2.34)

with ψ⃗ ∈ HLP . One can use the isomorphism M to write it in terms of a creation operator
in the momentum space as follows

|ψ⃗⟩LP = |M−1z⟩LP (2.35a)

= M−1 |z⟩M (2.35b)

= M−1B̂†
z |∅⟩M (2.35c)

= M−1B̂†
zM|∅⟩LP , (2.35d)

from which we deduce that B̂†
ψ⃗

= M−1B̂†
zM = M−1B̂†

Mψ⃗
M, where B̂†

z : H ⊗S l
M →

H
⊗S(l+1)
M is the creation operator acting on the momentum Fock space FB(HM ). We

have extended here the isomorphism M to the whole Fock space by defining its action on
the vacuum state: M|∅⟩LP = |∅⟩M . The same state can then be described in one or the
other representation without ambiguity.

Remark: Photon states |z⟩M or |ψ⃗⟩LP are well defined for any classical configuration z

or ψ⃗, without any restriction about their normalization. However, for simplicity of their
interpretation, they are often chosen to be normalized, i.e., ⟨z|z⟩M = ⟨ψ⃗|ψ⃗⟩LP = 1. If the
state function is not normalized, it is anyway always possible to rewrite the photon state in
terms of a normalized classical function for example: if ⟨ψ⃗′|ψ⃗′⟩LP ̸= 1, it can be rewritten

as ψ⃗′ = αψ⃗ for α ∈ C and ⟨ψ⃗|ψ⃗⟩LP = 1, which yields an unnormalized photon state of the

form |ψ⃗′⟩ = B̂†
αψ⃗

|∅⟩ = α |ψ⃗⟩. We will see in Chapter 3 that unnormalized states of this form
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Chapter 2. Fock space quantization of the electromagnetic field in position space

naturally appear through the dynamics.

Regarding the observables, one can for instance express the electric field in terms of
creation-annihilation operators in the LP position representation as

⃗̂
ELP (x⃗) = i

√
ℏ

2ε0
Ω

1/2
(
⃗̂
Ψ(x⃗) − ⃗̂

Ψ†(x⃗)
)

(2.36a)

= i

√
ℏ

2ε0

∫
R3

d3k
∑
λ=±

ω
1/2

k⃗

(
ϕ⃗
k⃗,λ

(x⃗)B̂
ϕ⃗
k⃗,λ

− ϕ⃗⋆
k⃗,λ

(x⃗)B̂†
ϕ⃗
k⃗,λ

)
, (2.36b)

which is then expressed in the momentum representation by

⃗̂
EM (x⃗) = M ⃗̂

ELPM−1 (2.37a)

= i

√
ℏ

2ε0

∫
R3

d3k
∑
λ=±

ω
1/2

k⃗

(
ϕ⃗
k⃗,λ

(x⃗)MB̂
ϕ⃗
k⃗,λ

M−1 − ϕ⃗⋆
k⃗,λ

(x⃗)MB̂†
ϕ⃗
k⃗,λ

M−1

)
(2.37b)

= i

√
ℏ

2ε0

∫
R3

d3k
∑
λ=±

ω
1/2

k⃗

(
ϕ⃗
k⃗,λ

(x⃗)B̂φ
k⃗,λ

− ϕ⃗⋆
k⃗,λ

(x⃗)B̂†
φ
k⃗,λ

)
(2.37c)

= i

√
ℏ

2ε0

∫
R3

d3k
∑
λ=±

ω
1/2

k⃗

(
ϕ⃗
k⃗,λ

(x⃗)â
k⃗,λ

− ϕ⃗⋆
k⃗,λ

(x⃗)â†
k⃗,λ

)
, (2.37d)

where we have used in the last equality the usual notation â
k⃗,λ

= B̂
δλ,λ′δ(k⃗−k⃗′)

and

â†
k⃗,λ

= B̂†
δλ,λ′δ(k⃗−k⃗′)

. Furthermore, if one plugs in the expression of the circular plane

wave eigenfunctions (1.61), we obtain the usual expression of the quantum optics litera-
ture [29,31,33,67,79]

⃗̂
EM (x⃗) = i

√
ℏ

2ε0(2π)3

∫
R3

d3k
∑
λ=±

ω
1/2

k⃗

(
ϵ⃗λ(k⃗)eik⃗·x⃗â

k⃗,λ
− ϵ⃗λ(k⃗)⋆e−ik⃗·x⃗â†

k⃗,λ

)
. (2.38)

With this example, we have shown how one can pass from one representation to the other
using directly the classical isomorphism M in a standard way, i.e., directly applied to the
states and through a similarity relation for creation-annihilation operators or observables.
This simple relation guarantees that the predictions one can make with one theory is equal
to what is obtained with the other.

2.3 Bia lynicki-Birula’s quantization

2.3.1 Hamitonian structure

We consider now another approach for the quantization which has been developed mainly
by Bia lynicki-Birula [21,25,38]. One of the advantages of this construction is that it does
not require to choose any particular gauge since it starts by defining the canonical variables
to be directly proportional to the electric and magnetic fields as

P⃗RS =
B⃗

√
µ0
, Q⃗RS =

√
ε0E⃗. (2.39)
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2.3 Bia lynicki-Birula’s quantization

The Hamilton function is defined by

KRS =
c

2

∫
R3

d3x
(
P⃗RS · ∇ × P⃗RS + Q⃗RS · ∇ × Q⃗RS

)
(2.40a)

=
c

2

∫
R3

d3x

(
ε0E⃗ · ∇ × E⃗ +

1

µ0
B⃗ · ∇ × B⃗

)
, (2.40b)

yielding the following Hamilton equations

∂P⃗RS
∂t

= −δKRS

δQ⃗RS

= −c∇× Q⃗RS , (2.41a)

∂Q⃗RS

∂t
=
δKRS

δP⃗RS
= c∇× P⃗RS , (2.41b)

that are equivalent to Maxwell’s equations (1.1). We denote the Hamilton function by
KRS and not by H, to emphasize that it is not the total electromagnetic energy [67, 84],
which reads

Etot =
1

2

∫
R3

d3x

(
ε0E⃗ · E⃗ +

1

µ0
B⃗ · B⃗

)
(2.42a)

=
1

2

∫
R3

d3x
(
P⃗RS · P⃗RS + Q⃗RS · Q⃗RS

)
. (2.42b)

2.3.2 The Riemann-Silberstein vector

From the canonical variables defined above one can construct a complex representation of
the field called the Riemann-Silberstein (RS) vector [85]

F⃗RS =
1√
2

(
Q⃗RS + iP⃗RS

)
=

√
ε0
2

(
E⃗ + icB⃗

)
. (2.43)

Maxwell’s equations can be written in the RS complex representation as

i
∂F⃗RS
∂t

= −δKRS

δF⃗ ⋆RS
= c∇× F⃗RS , (2.44)

with

KRS = c

∫
R3

d3x F⃗ ⋆RS · ∇ × F⃗RS . (2.45)

In analogy with what we did for the Coulomb gauge, we define the unitary map

F⃗RS 7→ zRS(k⃗, λ) =

∫
R3

d3x ϕ⃗⋆
k⃗,λ

(x⃗) · F⃗RS(x⃗), (2.46)

from which we deduce the Hamilton function in terms of the RS momentum variable zRS

KRS =

∫
R3

d3k
[
ω
k⃗
z⋆RS(k⃗,+)zRS(k⃗,+) − ω

k⃗
z⋆RS(k⃗,−)zRS(k⃗,−)

]
. (2.47)
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Chapter 2. Fock space quantization of the electromagnetic field in position space

Written in terms of the real variables defined as

pRS
k⃗,λ

= −i
√
ε0ωk⃗

2
(zRS − z⋆RS), (2.48a)

qRS
k⃗,λ

=

√
1

2ε0ωk⃗
(zRS + z⋆RS), (2.48b)

zRS(k⃗, λ) =
1√
2

(
(ε0ωk⃗)

1/2qRS
k⃗,λ

+ i(ε0ωk⃗)
−1/2pRS

k⃗,λ

)
, (2.48c)

the Hamilton function becomes

KRS =

∫
R3

d3k

[(
(pRS
k⃗,+

)2

2ε0
+
ε0
2
ω2
k⃗
(qRS
k⃗,+

)2

)
−

(
(pRS
k⃗,−

)2

2ε0
+
ε0
2
ω2
k⃗
(qRS
k⃗,−)2

)]
. (2.49)

We see here that it looks like two infinite collections of independent harmonic oscillators
but the second one appears with a minus sign. This situation is similar to the one encoun-
tered with the Dirac equation, in which the electrons could have positive and negative
energies. It poses a difficulty for the construction of the quantized model. However, this
difficulty can be avoided by making a different choice for the canonical variables, as we
describe in the next section. The construction we are going to introduce is strongly in-
spired by the work of Bia lynicki-Birula (BB) [21] which is the reason why we will call it
the BB complex representation, although we formulate it in a slightly different form.

2.3.3 Alternative choice of canonical variables

To construct canonical variables that avoid the difficulty of the negative eigenvalues de-
scribed above, we have to locate the variables that lead to negative contributions. This
can be done using the notion of helicity (see Chapter 1) which allows us to decompose the

RS vector into its positive and negative helicity parts F⃗RS = F⃗
(h+)
RS + F⃗

(h−)
RS or equivalently

in terms of the real canonical variables P⃗RS = P⃗(h+)
RS + P⃗(h−)

RS and Q⃗RS = Q⃗(h+)
RS + Q⃗(h−)

RS ,
from which the Hamilton function takes the form

KRS =
c

2

∫
R3

d3x
[(

P⃗(h+)
RS · ∇ × P⃗(h+)

RS + Q⃗(h+)
RS · ∇ × Q⃗(h+)

RS

)
+(

P⃗(h−)
RS · ∇ × P⃗(h−) + Q⃗(h−)

RS · ∇ × Q⃗(h−)
RS

)]
(2.50a)

=
1

2

∫
R3

d3x
[(

P⃗(h+)
RS · ΩP⃗(h+)

RS + Q⃗(h+)
RS · ΩQ⃗(h+)

RS

)
−(

P⃗(h−)
RS · ΩP⃗(h−)

RS + Q⃗(h−)
RS · ΩQ⃗(h−)

RS

)]
, (2.50b)

where we have used c∇× = ΩΛ to obtain the second expression and the fact that
Λv⃗(h±) = ±v⃗(h±). It shows that the negative contributions identified in the momen-
tum representation come from the negative helicity part of the field. To circumvent this
problem, one can define new canonical variables that we call the BB variables

Q⃗BB = Q⃗RS , P⃗BB = ΛP⃗RS , (2.51)
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2.3 Bia lynicki-Birula’s quantization

and a new classical Hamilton function

KBB =
1

2

∫
R3

d3x
[(

P⃗(h+)
BB · ΩP⃗(h+)

BB + Q⃗(h+)
BB · ΩQ⃗(h+)

BB

)
+(

P⃗(h−)
BB · ΩP⃗(h−)

BB + Q⃗(h−)
BB · ΩQ⃗(h−)

BB

)]
, (2.52)

which is positive since Ω is a positive operator, as opposed to ∇×. This alternative choice
of the canonical variables thus avoids the problem of negative eigenvalues. We emphasize
that KBB is not the Hamilton function KRS expressed in the new variables since the
relation (2.51) is not a canonical transformation.

2.3.4 The Bia lynicki-Birula complex representation

We have chosen with the BB variables a different Hamiltonian structure that gives the same
classical Maxwell equations. For the complex representation, we define thus a modification
of the RS vector adapted to the new canonical variables which we call the Bia lynicki-Birula
vector

F⃗ =
1√
2

(
Q⃗BB + iP⃗BB

)
=

√
ε0
2

(
E⃗ + icΛB⃗

)
, (2.53)

which can be decomposed in the six-component field (bispinor) notation used originally
in [21]

ΨBB =

(
F⃗ (h+)

F⃗ (h−)

)
=

(
F⃗

(h+)
RS

F⃗
(h−)⋆
RS

)
. (2.54)

The Hamilton function KBB in the BB complex representation reads

KBB =

∫
R3

d3x F⃗ ⋆ · ΩF⃗ , (2.55)

and the corresponding Hamilton equations can be written as

i
∂F⃗

∂t
=
δKBB

δF⃗ ⋆
= ΩF⃗ . (2.56)

Using the six-component notation ΨBB the last two equations are equivalent to

KBB =

∫
R3

d3x Ψ⋆
BB · ΩΨBB, (2.57)

and

i
∂ΨBB

∂t
=
δKBB

δΨ⋆
BB

= ΩΨBB. (2.58)

Remarks:

� The BB vector F⃗ that we introduced here was not mentioned explicitly in [21,25] but is a
completely equivalent formulation of the original formulation using the six-component
field ΨBB . We prefer, however, to use F⃗ since it is a more compact notation which
allows us to write simpler formulas especially when we will introduce the isomorphism
with the LP field.

� In the original works of BB [21], the six-component field ΨBB was defined using the
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Chapter 2. Fock space quantization of the electromagnetic field in position space

positive and negative frequency parts of the RS field which we denote by F⃗
(f±)
RS , instead

of the positive and negative helicity parts as we have done here. This difference does

not change anything for the definition of ΨBB since F⃗
(h±)
RS = F⃗

(f±)
RS (see Appendix A).

However, we stress out that this property is in general not true, e.g., ψ⃗(h±) ̸= ψ⃗(f±)

since ψ⃗(f−) = 0 for any ψ⃗ ∈ HLP while ψ⃗(h−) ̸= 0 in general. Other examples are the
electric and the magnetic fields for which E⃗(h±) ̸= E⃗(f±) and B⃗(h±) ̸= B⃗(f±). Explicit
demonstrations of these relations are given in the Appendix A

� The construction introduced here is similar to what is done for the Dirac equation to
remove the negative energy solutions and which led to the interpretation of anti-matter.
However, in our case the negative contributions are not negative energies since KRS is
not the energy of the field. We remove them because it is more convenient for the
quantization as we will see later, and it allows to make the link with the quantization
in the Coulomb gauge explicit.

� The RS vector can be expressed in terms of the BB vector as

F⃗RS =

√
ε0
2

(
E⃗ + icB⃗

)
(2.59a)

=

√
ε0
2

(
E⃗(h+) + icB⃗(h+)

)
+

√
ε0
2

(
E⃗(h−) + icB⃗(h−)

)
(2.59b)

= F⃗ (h+) + F⃗ (h−)⋆. (2.59c)

� The BB vector is equal to the wave function proposed by Sipe [20].

2.3.5 Quantization in the Bia lynicki-Birula representation

Since we have now a well-defined Hamiltonian structure, we can proceed with the quanti-
zation, following the same procedure as what we did for the LP field. We associate thus
to the BB vector, a classical Hilbert space HBB defined as

HBB =
{
F⃗ (x⃗)

∣∣∣∇ · F⃗ = 0, ⟨F⃗ |F⃗ ⟩BB <∞
}

(2.60)

with the following weighted scalar product [21,25,38]

⟨F⃗ |F⃗ ′⟩BB =
1

ℏ

∫
R3

d3x F⃗ ⋆(x⃗) · Ω−1F⃗ ′(x⃗). (2.61)

The main motivation for the choice of this weighted scalar product is that it is Lorentz in-
variant [21,23,24,26]. We will see that it is also an essential ingredient for the isomorphism
with the standard quantization in the Coulomb gauge.
Classical electromagnetic fields can be expressed in terms of the BB vector by inverting
(2.53) which gives

E⃗(x⃗) =
1√
2ε0

(
F⃗ (x⃗) + F⃗ ⋆(x⃗)

)
, (2.62a)

B⃗(x⃗) =
−i√
2ε0c2

Λ
(
F⃗ (x⃗) − F⃗ ⋆(x⃗)

)
. (2.62b)

From this classical Hilbert space HBB, one can construct the bosonic Fock space FB(HBB)
by the general procedure. The quantum observables associated to the classical physical
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2.3 Bia lynicki-Birula’s quantization

quantities are then obtained by a correspondence principle in analogy with what was
done for the Coulomb gauge and with the harmonic oscillator structure of the Hamilton
function. Indeed, one can develop the BB vector into

F⃗ (x⃗) =

∫
R3

d3k
∑
λ=±

g⃗
k⃗,λ

(x⃗)zBB(k⃗, λ), zBB(k⃗, λ) = ⟨g⃗
k⃗,λ

|F⃗ ⟩BB , (2.63a)

F⃗ ⋆(x⃗) =

∫
R3

d3k
∑
λ=±

g⃗⋆
k⃗,λ

(x⃗)z⋆BB(k⃗, λ), (2.63b)

where the functions {g⃗
k⃗,λ

} are a generalized orthonormal basis of HBB, which can be taken

as g⃗
k⃗,λ

= i
√

ℏω
k⃗
ϕ⃗
k⃗,λ

. The quantization map of the BB representation is thus defined by

zBB 7→ Ĉg⃗
k⃗,λ
, (2.64a)

z⋆BB 7→ Ĉ†
g⃗
k⃗,λ
, (2.64b)

where Ĉ†
g⃗
k⃗,λ

and Ĉg⃗
k⃗,λ

are creation-annihilation operators in the BB Fock space FB(HBB),

defined by the general construction (2.7). We also introduce BB field operators as

⃗̂
F(x⃗) =

∫
R3

d3k
∑
λ=±

g⃗
k⃗,λ

(x⃗)Ĉg⃗
k⃗,λ
, (2.65a)

⃗̂
F†(x⃗) =

∫
R3

d3k
∑
λ=±

g⃗⋆
k⃗,λ

(x⃗)Ĉ†
g⃗
k⃗,λ
. (2.65b)

Quantized electromagnetic observables are given directly by the operators

⃗̂
E(x⃗) =

1√
2ε0

(
⃗̂
F(x⃗) +

⃗̂
F†(x⃗)

)
, (2.66a)

⃗̂
B(x⃗) =

−i√
2ε0c2

Λ
(
⃗̂
F(x⃗) − ⃗̂

F†(x⃗)
)
. (2.66b)

One can check that it corresponds to the quantization proposed by BB, by computing the
form of the RS field operator:

⃗̂
FRS =

⃗̂
F(h+) +

⃗̂
F(h−)† (2.67a)

=

∫
d3k

∑
λ=±

[
P(h+)g⃗

k⃗,λ
(x⃗)Ĉg⃗

k⃗,λ
+ P(h−)g⃗⋆

k⃗,λ
(x⃗)Ĉ†

g⃗
k⃗,λ

]
(2.67b)

=

∫
d3k

[
g⃗
k⃗,+

(x⃗)Ĉg⃗
k⃗,+

+ g⃗⋆
k⃗,−(x⃗)Ĉ†

g⃗
k⃗,−

]
(2.67c)

=

∫
d3k

[
i

√
ℏω

k⃗

(2π)3
ϵ⃗+(k⃗)eik⃗·x⃗Ĉg⃗

k⃗,+
+ i

√
ℏω

k⃗

(2π)3
ϵ⃗−(k⃗)⋆e−ik⃗·x⃗Ĉ†

g⃗
k⃗,−

]
(2.67d)

=

∫
d3k

√
ℏω

k⃗

(2π)3
e⃗(k⃗)

[
eik⃗·x⃗â(k⃗) + e−ik⃗·x⃗b̂†(k⃗)

]
, (2.67e)
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where we have used the notation e⃗(k⃗) = ϵ⃗+(k⃗) = ϵ⃗−(k⃗)⋆ and the creation-annnihilation

operators are linked through â(k⃗) = iĈg⃗
k⃗,+

and b̂†(k⃗) = iĈ†
g⃗
k⃗,+

. The expression (2.67)

coincides with [38, equation (7)] which confirms that the quantization we have defined in
(2.64) coincides with the one used by BB, e.g., in [21,25,38,86–89].

2.4 Equivalence between the LP and the BB quantizations
— Isomorphism

In Section 2.2.5, we have shown that the Coulomb gauge quantizations in position and mo-
mentum representations are equivalent and linked through explicit relations given by the
classical isomorphism M. In the same spirit, we will now introduce a classical isomorphism
I between the LP and the BB Hilbert spaces in order to show that the two constructed
quantized theories are equivalent. We will also show how one can pass from one theory to
the other through explicit transformations involving the classical isomorphism.
We start by defining the map

I : HLP → HBB

ψ⃗ 7→ F⃗ = Iψ⃗ = i
√
ℏΩ

1/2ψ⃗, (2.68)

which is extended to the Fock space by also defining I |∅⟩LP = |∅⟩BB. The inverse
transformation is given by

I−1 : HBB → HLP

F⃗ 7→ ψ⃗ = I−1F⃗ = − i√
ℏ

Ω
−1/2F⃗ . (2.69)

One can check that I indeed links the two representations by computing directly

i
√
ℏΩ

1/2ψ⃗ = i

√
ε0
2

(
ΩA⃗− iE⃗

)
(2.70a)

=

√
ε0
2

(
icΛ∇× A⃗+ E⃗

)
(2.70b)

=
1√
2

(
√
ε0E⃗ +

i
√
µ0

ΛB⃗

)
(2.70c)

=
1√
2

(
Q⃗BB + iP⃗BB

)
= F⃗ , (2.70d)

where we have used the relation Ω = cΛ∇× and Λ−1 = Λ. The equivalence of their
respective scalar products follows immediately from the definitions

⟨F⃗ |F⃗ ′⟩BB = ⟨Iψ⃗|Iψ⃗′⟩BB (2.71a)

=
1

ℏ

∫
R3

d3x (Iψ⃗)⋆ · Ω−1Iψ⃗′ (2.71b)

=

∫
R3

d3x Ω
1/2ψ⃗⋆ · Ω−1Ω

1/2ψ⃗′ (2.71c)

=

∫
R3

d3x ψ⃗⋆ · ψ⃗′ = ⟨ψ⃗|ψ⃗′⟩LP , (2.71d)
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where we have used the selfadjoint property of Ω1/2 to obtain (2.71d).
We can express the link between the creation-annihilation operators of both representa-
tions by starting, e.g., with a single-photon state in the LP representation

B̂†
ψ⃗
|∅⟩LP = |ψ⃗⟩LP , (2.72)

and by rewriting it using the isomorphism I as

|ψ⃗⟩LP = |I−1F⃗ ⟩LP (2.73a)

= I−1 |F⃗ ⟩BB (2.73b)

= I−1Ĉ†
F⃗
|∅⟩BB (2.73c)

= I−1Ĉ†
F⃗
I |∅⟩LP . (2.73d)

From this one can identify

B̂†
ψ⃗

= I−1Ĉ†
F⃗
I = I−1Ĉ†

Iψ⃗
I, (2.74)

and therefore the other relations are

B̂
ψ⃗

= I−1ĈF⃗I, Ĉ†
F⃗

= IB̂†
ψ⃗
I−1, ĈF⃗ = IB̂

ψ⃗
I−1. (2.75)

The equivalence of electromagnetic quantities can be verified for instance for the electric
field

I ⃗̂ELPI−1 = i

√
ℏ

2ε0

∫
R3

d3k
∑
λ=±

ω
1/2

k⃗

(
ϕ⃗
k⃗,λ

(x⃗)IB̂
ϕ⃗
k⃗,λ

I−1 − ϕ⃗⋆
k⃗,λ

(x⃗)IB̂†
ϕ⃗
k⃗,λ

I−1

)
(2.76a)

= i

√
ℏ

2ε0

∫
R3

d3k
∑
λ=±

ω
1/2

k⃗

(
ϕ⃗
k⃗,λ

(x⃗)ĈIϕ⃗
k⃗,λ

− ϕ⃗⋆
k⃗,λ

(x⃗)Ĉ†
Iϕ⃗

k⃗,λ

)
(2.76b)

=
1√
2ε0

∫
R3

d3k
∑
λ=±

(
g⃗
k⃗,λ

(x⃗)Ĉg⃗
k⃗,λ

− g⃗⋆
k⃗,λ

(x⃗)Ĉ†
g⃗
k⃗,λ

)
(2.76c)

=
1√
2ε0

(
⃗̂
F(x⃗) +

⃗̂
F†(x⃗)

)
=
⃗̂
EBB(x⃗), (2.76d)

where we have used the basis g⃗
k⃗,λ

= Iϕ⃗
k⃗,λ

= i
√
ℏω

k⃗
ϕ⃗
k⃗,λ

of HBB and we have identified
⃗̂
F

and
⃗̂
F† by their definitions (2.65). This expression indeed coincides with (2.66a) for the

electric field.

Remark: The key point to obtain the last result is to note that applying the isomorphism

I to the electric field operator or any other set of three operators, e.g., the field operator
⃗̂
Ψ,

should be done component by components, i.e., for i = 1, 2, 3,

IÊ(i)
LPI

−1 = i

√
ℏ

2ε0

∫
R3

d3k
∑
λ=±

ω
1/2

k⃗
I
(
ϕ
(i)

k⃗,λ
(x⃗)B̂ϕ⃗

k⃗,λ
− ϕ

(i)⋆

k⃗,λ
(x⃗)B̂†

ϕ⃗
k⃗,λ

)
I−1 (2.77a)

= i

√
ℏ

2ε0

∫
R3

d3k
∑
λ=±

ω
1/2

k⃗

(
ϕ
(i)

k⃗,λ
(x⃗)IB̂ϕ⃗

k⃗,λ
I−1 − ϕ

(i)⋆

k⃗,λ
(x⃗)IB̂†

ϕ⃗
k⃗,λ

I−1

)
, (2.77b)
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where I does not act on ϕ
(i)

k⃗,λ
(x⃗) since it is not an element of the Fock space.

However, one has to be careful when transforming other objects like the field operators
⃗̂
Ψ and

⃗̂
F. Indeed,

⃗̂
F ̸= I ⃗̂ΨI−1 since if one decomposes the LP field operator in terms of

creation-annihilation operators, it yields

I ⃗̂Ψ(x⃗)I−1 =

∫
R3

d3k
∑
λ=±

ϕ⃗
k⃗,λ

(x⃗)IB̂
ϕ⃗
k⃗,λ

I−1 (2.78a)

=

∫
R3

d3k
∑
λ=±

ϕ⃗
k⃗,λ

(x⃗)Ĉg⃗
k⃗,λ

(2.78b)

= −i
∫
R3

d3k
∑
λ=±

(ℏω
k⃗
)
−1/2g⃗

k⃗,λ
(x⃗)Ĉg⃗

k⃗,λ
(2.78c)

=
−i√
ℏ

Ω
−1/2 ⃗̂F. (2.78d)

2.5 Dynamics in the quantum models

So far, we have constructed the quantum field theory of the free electromagnetic field
using several representations and we have shown that they can all be related trough
different isomorphisms of their respective Hilbert spaces. We have discussed how states
and electromagnetic field operators are constructed in the quantum theory but we have
on purpose put aside the particular case of the Hamiltonian. The aim of the present
Section is to deal with the quantized Hamiltonian and discuss how the dynamics of the
theory is defined. Indeed, the Hamiltonian in a quantum theory plays two roles: it is the
operator associated to the total energy observable of the system and it is the generator of
the dynamics of the states in the Schrödinger representation.
The construction of the dynamics within the Fock space formulation is done as follows: one
starts with the one-quantum subspace, which coincides with the classical Hilbert space H ,
and whose time evolution is given by the classical one. From this, a one-quantum operator
is identified as the generator of the dynamics. For Maxwell’s equations, the generator of
the dynamics is ℏΩ for all representations we discussed before (see equations (2.17), (2.27)
and (2.56) or (2.58), where ℏ has been added in order to match the dimensions required by
a Schrödinger equation in the quantized model). The next step is to extend this operator
ℏΩ, which is defined in the single-photon subspace, to the entire Fock space FB(H ). This
can be done in general with the map denoted dΓ(ℏΩ) [77,90] and defined by its action on
the monomials |η1 ⊗S η2 ⊗S . . .⊗S ηn⟩ ∈ H ⊗Sn:

dΓ(ℏΩ) |η1 ⊗S η2 ⊗S . . .⊗S ηn⟩ = |ℏΩη1 ⊗S η2 ⊗S . . .⊗S ηn⟩ + |η1 ⊗S ℏΩη2 ⊗S . . .⊗S ηn⟩
+ · · · + |η1 ⊗S η2 ⊗S . . .⊗S ℏΩηn⟩ . (2.79)

If {ϕκ} ∈ H is an orthonormal basis, with respect to ⟨·|·⟩H , of eigenfunctions of Ω, i.e.,
Ωϕκ = ωκϕκ, the map dΓ(ℏΩ) can be expressed as [77, p. 440]

dΓ(ℏΩ) =
∑
κ

ℏωκB̂†
ϕκ
B̂ϕκ . (2.80)
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We apply this procedure to the different Hilbert spaces defined in the preceding sections,
starting with the LP representation

dΓLP (ℏΩ) =

∫
R3

d3k
∑
λ=±

ℏω
k⃗
B̂†
ϕ⃗
k⃗,λ

B̂
ϕ⃗
k⃗,λ
. (2.81)

We see that it is equal to the quantized total energy operator which can be written as

ĤLP = ℏ
∫
R3

d3x
⃗̂
Ψ† · Ω

⃗̂
Ψ =

∫
R3

d3k
∑
λ=±

ℏω
k⃗
B̂†
ϕ⃗
k⃗,λ

B̂
ϕ⃗
k⃗,λ
, (2.82)

showing that the total energy is the generator of the dynamics in the position space
Coulomb gauge formulation of the quantized electromagnetic field. For the momentum
representation, one has directly

dΓM (ℏΩ) =

∫
R3

d3k
∑
λ=±

ℏω
k⃗
â†
k⃗,λ
â
k⃗,λ

= ĤM , (2.83)

and finally for the BB formulation, using the basis {g⃗
k⃗,λ

} one obtains

dΓBB(ℏΩ) =

∫
R3

d3k
∑
λ=±

ℏω
k⃗
Ĉ†
g⃗
k⃗,λ
Ĉg⃗

k⃗,λ
, (2.84)

which coincides with the total energy

Êtot =

∫
R3

d3x
⃗̂
F† · ⃗̂F (2.85a)

=

∫
R3

d3k

∫
R3

d3k′
∑
λ,λ′

(∫
R3

d3x g⃗⋆
k⃗,λ

(x⃗) · g⃗
k⃗′,λ′(x⃗)

)
Ĉ†
g⃗
k⃗,λ
Ĉg⃗

k⃗′,λ′
(2.85b)

= ℏ
∫
R3

d3k

∫
R3

d3k′
∑
λ,λ′

⟨g⃗
k⃗,λ

|Ωg⃗
k⃗′,λ′⟩BB Ĉ†

g⃗
k⃗,λ
Ĉg⃗

k⃗′,λ′
(2.85c)

= ℏ
∫
R3

d3k

∫
R3

d3k′
∑
λ,λ′

ω
k⃗′ ⟨g⃗k⃗,λ |⃗gk⃗′,λ′⟩BB Ĉ†

g⃗
k⃗,λ
Ĉg⃗

k⃗′,λ′
(2.85d)

=

∫
R3

d3k
∑
λ=±

ℏω
k⃗
Ĉ†
g⃗
k⃗,λ
Ĉg⃗

k⃗,λ
≡ ĤBB. (2.85e)

This confirms that in the quantized theory, the generator of the dynamics is the quantized
operator of the total energy in the BB representation and not the quantization of the
classical Hamilton function KBB. The time evolution of the states is given by the unitary

operator ÛBB(t) = e−iĤBBt, and it leads, e.g., when applied to single-photon states to the
expressions given in the literature [21, equation (4.20)]. One can further check that the
Hamiltonians written in their respective representations can be recovered from one to the
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other using the isomorphisms, e.g., between the LP and BB field operators (2.78)

IĤLPI−1 = ℏ
∫
R3

d3x I ⃗̂Ψ†I−1 · ΩI ⃗̂ΨI−1 (2.86a)

=

∫
R3

d3x Ω
−1/2 ⃗̂F† · Ω

1/2 ⃗̂F (2.86b)

=

∫
R3

d3x
⃗̂
F† · ⃗̂F = ĤBB. (2.86c)

The equivalence of the generators of the dynamics guarantees that the isomorphism is
preserved during the time evolution and that the theories are completely equivalent at
any time.
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3
Propagation and local detection of photons

In this chapter, we focus on the dynamical properties of photons assumed to be already
produced. We discuss their propagation in inhomogeneous dielectric media as well as their
detection by detectors well localized in space and with a finite volume.

After recalling how one can generalize the free space Landau-Peierls quantization to inho-
mogeneous passive dielectric media, we show that the time evolution of any photon state
is given by the time evolution of the associated classical configuration. To illustrate this
property, we discuss the passage of a photon through a beam-splitter and show how one can
describe the Hong-Ou-Mandel effect in a dynamical way. We then discuss the construction
of a detection model in which the photon spatial distribution is taken into account. We use
the energy density observable to characterize the nonlocal property of photons and show
that any single-photon state is nonlocal. The demonstration is done using the anti-local
property of the frequency operator and is a complementary approach to what was already
in the literature so far since our proof does not involve the time evolution. Photons are
thus nonlocal at any time including the initial condition.

The first part of this Chapter has led to the article [1] and the second part to [3]

3.1 Generalization of the Landau-Peierls quantization to dielectric media . . . . 48

3.2 Evolution of the photon states determined from the dynamics of the classical
modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.2.1 Proof of the time evolution formulas . . . . . . . . . . . . . . . . . . 51

3.2.2 Physical interpretation and application . . . . . . . . . . . . . . . . . 53

3.2.2.1 Propagation in an optical fiber — Space-to-time mapping . 54

3.2.2.2 Time-bin photon encoding . . . . . . . . . . . . . . . . . . 54

3.3 Photons through beam-splitters . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.3.1 One-photon state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.3.1.1 Initial classical mode and its time evolution . . . . . . . . . 56

3.3.1.2 Quantum dynamics of the one-photon state . . . . . . . . 57

3.3.1.3 Alternative treatments of beam-splitters . . . . . . . . . . . 58

3.3.2 Two-photon state: The Hong-Ou-Mandel effect . . . . . . . . . . . 61
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3.3.2.1 Initial classical modes and their time evolution . . . . . . . 61
3.3.2.2 Quantum dynamics of the two-photon state . . . . . . . . 62
3.3.2.3 Detection model to interpret the dynamics . . . . . . . . . 63
3.3.2.4 Photons are not like classical waves nor like classical particles 64

3.4 Local detection of single-photon states . . . . . . . . . . . . . . . . . . . . . 65
3.4.1 Single-photon detectors . . . . . . . . . . . . . . . . . . . . . . . . . 65
3.4.2 Local observable for the detection . . . . . . . . . . . . . . . . . . . 65
3.4.3 Brief review on photon’s nonlocality property . . . . . . . . . . . . . 68
3.4.4 Nonlocality of the energy density for single-photon states — Proof . 70
3.4.5 Illustration of the nonlocality . . . . . . . . . . . . . . . . . . . . . . 72
3.4.6 Localization properties of other states of the quantum electromag-

netic field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
3.4.6.1 N-photon states . . . . . . . . . . . . . . . . . . . . . . . . 74
3.4.6.2 Coherent states . . . . . . . . . . . . . . . . . . . . . . . . 75

3.4.7 Glauber’s photodetection operator . . . . . . . . . . . . . . . . . . . 76
3.4.8 Nonlocality and causality . . . . . . . . . . . . . . . . . . . . . . . . 77

3.1 Generalization of the Landau-Peierls quantization to di-
electric media

In this Section, and following the pioneering work of Lewenstein and Glauber [14], we want
to generalize the quantization we performed before to a case where the electromagnetic
field is interacting with a linear inhomogeneous dielectric medium as we have classically
described in Chapter 1. We start again with Maxwell’s equations which read in this
situation

ε(x⃗)
∂2A⃗′

∂t2
= −c2∇×∇× A⃗′, (3.1a)

E⃗ = −∂A⃗
′

∂t
, B⃗ = ∇× A⃗′, (3.1b)

where we use the potential vector A⃗′ in the generalized Coulomb gauge ∇ · (εA⃗′) = 0.
Here, ε(x⃗) is the position dependent dielectric function which describes the interaction of
the fields with the surrounding medium. The medium is considered to be absorption free,
dispersionless and linear, i.e., ε is real, frequency-independent and comes from a linear
instantaneous response of the medium.
In the following, we will show how one can construct a generalization of the LP quantiza-
tion for the dielectric medium case. By making the following change of variable

A⃗ =
√
ϵA⃗′, (3.2)

the wave equation (3.1a) becomes

∂2A⃗

∂t2
= − 1√

ε
c2∇×∇× 1√

ε
A⃗. (3.3)
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The operator
c√
ε
∇×∇× c√

ε
= Ξ†Ξ, with Ξ = ∇× c√

ε
, (3.4)

is positive, selfadjoint, and there is a unique positive operator Ωm, such that

Ξ†Ξ = Ω2
m, i.e., Ωm =

(
c√
ε
∇×∇× c√

ε

)1/2

. (3.5)

Thus Maxwell’s equations in a passive dielectric medium can be written as

∂2A⃗

∂t2
= −Ω2

mA⃗, (3.6)

which has the same structure as in empty space, where Ω2 = −c2∆, but with the frequency
operator Ωm defined in (3.5) and the generalized transversality constraint.
The LP construction in a medium can then be done in the exact same way by defining
first

ψ⃗m =
1√
2ℏ

(
(ε0Ωm)

1/2A⃗+ i(ε0Ωm)
−1/2Π⃗

)
, (3.7)

where Π⃗ = ε0
∂A⃗
∂t and from which Maxwell’s equations become

i
∂ψ⃗m

∂t
= Ωmψ⃗m. (3.8)

The classical phase space (Π⃗, A⃗) has a natural Hilbert space structure, which in the com-
plex representation takes the form

HLPm = {ψ⃗m(x⃗)| ⟨ψ⃗m|ψ⃗′
m⟩LP <∞}, (3.9)

with the same LP scalar product

⟨ψ⃗m|ψ⃗′
m⟩LP =

∫
R3

d3x ψ⃗⋆m(x⃗) · ψ⃗′
m(x⃗). (3.10)

We obtain here exactly the same structure that what we had before in the free field case.
The only difference is hidden in Ωm.
For the quantization, everything can then be run through without any differences, i.e.,
with a bosonic Fock space FB(HLPm) in which act bosonic creation-annihilation operators
defined on elements of HLPm . Physical observables such as the electric field become
operators whose forms are postulated through the correspondence principle. Finally, the
quantum Hamiltonian is constructed as the generalization of Ωm to the full Fock space,
i.e., Ĥm = dΓ(ℏΩm). The dynamics will thus automatically take into account the medium
since all its information is included into Ωm. In the following, we will drop the indices m

that refer to the medium construction in order to lighten the notations.

Remarks:

� A momentum representation can also be defined using an orthonormal basis {φ⃗κ} of
eigenvectors of the medium frequency operator Ωm. Beside the use of {φ⃗κ} instead of

{ϕ⃗k⃗,σ}, the construction is identical to what we did in Chapter 2, and both representa-
tions can also be related by a Hilbert space isomorphism. Just like in the vacuum case,
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the momentum representation allows to diagonalize the Hamiltonian which reads

Ĥ =
∑
κ

ℏωκB̂†
φ⃗κ
B̂φ⃗κ

. (3.11)

The sum over κ stands for a combination of sums and integrals over the multiple in-
dices hidden in the notation κ and which reflect the degeneracy of the spectrum. This
degeneracy will depend on the geometry of the considered medium and we thus use the
abstract notation κ to be as general as possible.

� For the description of the fields inside a medium, the BB representation is less useful
since the main aim was to construct a Lorentz invariant formulation which cannot be
obtained in a medium that is by construction considered as non-relativistic.

3.2 Evolution of the photon states determined from the dy-
namics of the classical modes

We are going to show that the time evolution of photon states in Fock space, which is
determined by the standard Schrödinger equation

iℏ
∂ |Φ⟩
∂t

= Ĥ |Φ⟩ , |Φ⟩ ∈ FB(H), (3.12)

can be expressed in terms of the time evolution of the classical modes, determined by
the classical wave equation, i.e., by Maxwell’s equations. Here, Ĥ is the Hamiltonian of
the system which can be equivalently written in momentum or position representations
as discussed in Chapter 2. To prove the following formula, we will use the momentum
representation since it diagonalizes Ĥ and makes the calculations easier.

(a) For a one-photon initial condition |Φ(t = 0)⟩ = B̂†
ψ⃗(t=0)

|∅⟩ the time evolution is

|Φ(t)⟩ = B̂†
ψ⃗(t)

|∅⟩ , (3.13)

where ψ⃗(t) is the solution of the classical wave equation (3.8) with initial condition ψ⃗(t =
0).

(b) For a two-photon initial condition |Φ(t = 0)⟩ = B̂†
ψ⃗1(t=0)

B̂†
ψ⃗2(t=0)

|∅⟩ the time evo-

lution is
|Φ(t)⟩ = B̂†

ψ⃗1(t)
B̂†
ψ⃗2(t)

|∅⟩ , (3.14)

where ψ⃗1(t) and ψ⃗2(t) are two solutions of the classical wave equation (3.8) for the corre-
sponding initial conditions.

(c) In the general case of an N -photon initial condition |Φ(t = 0)⟩ =
∏N
j=1 B̂

†
ψ⃗j(t=0)

|∅⟩
the time evolution is

|Φ(t)⟩ =

N∏
j=1

B̂†
ψ⃗j(t)

|∅⟩ , (3.15)

where ψ⃗j(t) are the solutions of the classical equation (3.8) for the corresponding initial
conditions.
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Remark: The family of operators B̂†
ψ⃗(t)

parametrized by time can be thought of as a time-

dependent operator which can be written as

B̂†
ψ⃗(t)

= Û(t)B̂†
ψ⃗(t=0)

Û†(t), (3.16)

where Û(t) = exp
(
− i

ℏĤt
)

is the propagator in Fock space. This can be verified, e.g., by

applying both sides to the vacuum state: Indeed, since

Û†(t) |∅⟩ =

∞∑
n=0

(
i

ℏ
t

)n(∑
κ

ℏωκB̂†
φ⃗κ
B̂φ⃗κ

)n
|∅⟩ = |∅⟩ , (3.17)

we can write

Û(t)B̂†
ψ⃗(t=0)

Û†(t) |∅⟩ = Û(t)B̂†
ψ⃗(t=0)

|∅⟩ (3.18a)

= Û(t) |ψ⃗(t = 0)⟩ (3.18b)

= |ψ⃗(t)⟩ (3.18c)

= B̂†
ψ⃗(t)

|∅⟩ . (3.18d)

We remark however that it is not the time evolution in the Heisenberg picture, which is given
by a different expression [33, p.84]:(

B̂†
ψ⃗(t=0)

)Heisenberg

(t) = Û†(t)B̂†
ψ⃗(t=0)

Û(t) = B̂†
ψ⃗(−t)

̸= B̂†
ψ⃗(t)

. (3.19)

3.2.1 Proof of the time evolution formulas

Although the proof of the general N -photon case given in (c) implies of course the results
for the one- and two-photon cases, since it is notationally harder to read we will first give
the proofs for the simplest particular cases.
We will use the relation

B̂†
αψ⃗1+βψ⃗2

= αB̂†
ψ⃗1

+ βB̂†
ψ⃗2

for α, β ∈ C, (3.20)

which is a direct consequence of the definition of creation operators (2.7).

Proof of (a): We consider a state |Φ(t)⟩ as written in (3.13), and we verify that it fulfills
the Schrödinger equation (3.12). We start by expressing the time evolution of the classical
modes in terms of the eigenfunctions φ⃗κ of Ω

ψ⃗(t) =
∑
κ

e−iωκtφ⃗κακ, ακ = ⟨φ⃗κ|ψ⃗(t = 0)⟩ , (3.21)

and
|Φ(t)⟩ = B̂†

ψ⃗(t)
|∅⟩ =

∑
κ

e−iωκtακB̂
†
φ⃗κ

|∅⟩ . (3.22)

With this representation we can rewrite the left-hand side of Schrödinger’s equation as

iℏ
∂

∂t
|Φ(t)⟩ =

∑
κ

ℏωκ e−iωκtακB̂
†
φ⃗κ
|∅⟩. (3.23)
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The right-hand side can also be rewritten using (3.22) and the representation of the Hamil-
tonian (3.11); it yields

Ĥ |Φ(t)⟩ =
∑
κ,κ′

ℏωκ′e−iωκtακB̂
†
φ⃗κ′
B̂φ⃗κ′

B̂†
φ⃗κ

|∅⟩ (3.24a)

=
∑
κ,κ′

ℏωκ′e−iωκtακB̂
†
φ⃗κ′

(
B̂†
φ⃗κ
B̂φ⃗κ′

+ δκ,κ′
)
|∅⟩ (3.24b)

=
∑
κ

ℏωκe−iωκtακB̂
†
φ⃗κ

|∅⟩ (3.24c)

= iℏ
∂

∂t
|Φ(t)⟩ , (3.24d)

where we have used the commutation relation B̂φ⃗κ′
B̂†
φ⃗κ

= B̂†
φ⃗κ
B̂φ⃗κ′

+ δκ,κ′ , the fact that

B̂φ⃗κ′
|∅⟩ = 0 and (3.23), which completes the proof.

Proof of (b): We will use here notations which should help understanding the general
N -photon case. We now consider a state |Φ(t)⟩ as written in (3.14), and we verify that it
fulfills the Schrödinger equation (3.12). To do so, we expand the classical state functions
in terms of eigenfunctions of Ω

ψ⃗j(t) =
∑
κj

e−iωκj tφ⃗κjακj , ακj = ⟨φ⃗κj |ψ⃗(t = 0)⟩ , j = 1, 2, (3.25)

which allows us to write

|Φ(t)⟩ = B̂†
ψ⃗1(t)

B̂†
ψ⃗2(t)

|∅⟩ =
2∏
j=1

∑
κj

e−iωκj tακj B̂
†
φ⃗κj

 |∅⟩ (3.26a)

=
∑
κ1,κ2

e−i(ωκ1+ωκ2 )tακ1ακ2B̂
†
φ⃗κ1

B̂†
φ⃗κ2

|∅⟩ , (3.26b)

and

iℏ
∂

∂t
|Φ(t)⟩ =

∑
κ1,κ2

ℏ(ωκ1 + ωκ2)e−i(ωκ1+ωκ2 )tακ1ακ2B̂
†
φ⃗κ1

B̂†
φ⃗κ2

|∅⟩ . (3.27)

Applying the Hamiltonian (3.11) to (3.26) yields

Ĥ |Φ(t)⟩ =
∑
κ′

ℏωκ′B̂†
φ⃗κ′
B̂φ⃗κ′

∑
κ1,κ2

e−i(ωκ1+ωκ2 )tακ1ακ2B̂
†
φ⃗κ1

B̂†
φ⃗κ2

|∅⟩ (3.28a)

=
∑
κ1,κ2

e−i(ωκ1+ωκ2 )tακ1ακ2
∑
κ′

ℏωκ′B̂†
φ⃗κ′
B̂φ⃗κ′

B̂†
φ⃗κ1

B̂†
φ⃗κ2

|∅⟩ . (3.28b)

Using the commutation relations B̂φ⃗κ′
B̂†
φ⃗κj

= B̂†
φ⃗κj

B̂φ⃗κ′
+δκj ,κ′ and the fact that B̂φ⃗κ′

|∅⟩ =

0 we can write

B̂φ⃗κ′
B̂†
φ⃗κ1

B̂†
φ⃗κ2

|∅⟩ = δκ′,κ1B̂
†
φ⃗κ2

|∅⟩ + B̂†
φ⃗κ1

B̂φ⃗κ′
B̂†
φ⃗κ2

|∅⟩ (3.29a)

= δκ′,κ1B̂
†
φ⃗κ2

|∅⟩ + δκ′,κ2B̂
†
φ⃗κ1

|∅⟩ + B̂†
φ⃗κ1

B̂†
φ⃗κ2

B̂φ⃗κ′
|∅⟩ (3.29b)

= δκ′,κ1B̂
†
φ⃗κ2

|∅⟩ + δκ′,κ2B̂
†
φ⃗κ1

|∅⟩ , (3.29c)

52



3.2 Evolution of the photon states determined from the dynamics of the classical modes

and thus∑
κ′

ℏωκ′B̂†
φ⃗κ′
B̂φ⃗κ′

B̂†
φ⃗κ1

B̂†
φ⃗κ2

|∅⟩ =
∑
κ′

ℏωκ′B̂†
φ⃗κ′

(
δκ′,κ1B̂

†
φ⃗κ2

|∅⟩ + δκ′,κ2B̂
†
φ⃗κ1

|∅⟩
)

(3.30a)

= ℏωκ1B̂
†
φ⃗κ1

B̂†
φ⃗κ2

|∅⟩ + ℏωκ2B̂
†
φ⃗κ2

B̂†
φ⃗κ1

|∅⟩ (3.30b)

= (ℏωκ1 + ℏωκ2) B̂†
φ⃗κ1

B̂†
φ⃗κ2

|∅⟩ , (3.30c)

which inserted into (3.28) yields

Ĥ |Φ(t)⟩ =
∑
κ1,κ2

e−i(ωκ1+ωκ2 )tακ1ακ2 (ℏωκ1 + ℏωκ2) B̂†
φ⃗κ1

B̂†
φ⃗κ2

|∅⟩ (3.31a)

= iℏ
∂

∂t
|Φ(t)⟩ . (3.31b)

In the last equality we have used the relation (3.27), which completes the proof.

Proof of (c): The notationally more heavy proof for the general N -photon case can be
performed in the same spirit and the detailed calculations are given in Appendix B.

3.2.2 Physical interpretation and application

In the preceding section, we have shown that the dynamics of any photon state is given by
the associated classical dynamics of the pulse on which photons have been constructed. To
fully understand the consequences of this property, let us focus first on the single-photon
case: Such a state (and its time evolution) can be mathematically written as

|1ph(t)⟩ = B̂†
η⃗(t) |∅⟩ , (3.32)

where η⃗(t) ∈ HLP is a classical solution of Maxwell’s equations, meaning that the photon
is carried by η⃗(t) for the whole dynamics as represented in Figure 3.1 (a)-(c). This result
allows then to use the classical dynamics to analyze any single-photon propagation as we
will illustrate later with the beam-splitter.
If we consider now a two-photon state, it is represented mathematically by

|2ph(t)⟩ = B̂†
η⃗1(t)

B̂†
η⃗2(t)

|∅⟩ , (3.33)

where η⃗1,2(t) ∈ HLP are two possibly different classical solutions of Maxwell’s equations.
The dynamics of each classical configuration governs then the propagation of the two-
photon state. If η⃗1 = η⃗2 ≡ η⃗, we have thus a single-mode two-photon state

|2ph⟩ =
(
B̂†
η⃗(t)

)2
|∅⟩ , (3.34)

carrying the two photons. Since the function η⃗ can be any classical solution of Maxwell’s
equation, one can choose a double-pulsed function like in Figure 3.1(c). However, as
opposed to the two-photon state with two different classical functions, one cannot say
that one photon is carried by one pulse and the second photon by the other. The state
is to be interpreted as a global two-photon state which is carried by a single classical
function which has a double-pulse shape. The difference between the two scenarios will
also be illustrated later with the beam-splitter and the Hang-Ou-Mandel effect.
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Chapter 3. Propagation and local detection of photons

Figure 3.1: Sketch of the one-dimensional propagation of pulses of any shape. (a)-(c) Blue
curves correspond to a fixed time t1, red curves to a later time t2 > t1 and yellow curves to
yet another time t3 > t2. All the pulses represented here propagate towards the positive x
in a homogenous dielectric medium of optical index n =

√
ε at the speed c/n. (d)-(f) The

same pulses are represented as a temporal evolution seen from a fixed space point xp.

3.2.2.1 Propagation in an optical fiber — Space-to-time mapping

In Figure 3.1 (a)-(c), we have represented the propagation in one-dimension of several
pulses. This simple one dimensional model can be used, e.g., to describe the propagation
in an optical fiber. The function representing the single-photon state in the fiber can thus
be written as

ηfiber(x, t) ≡ ηfiber

(
x− c

n
t
)
, (3.35)

where n =
√
ε is the optical index of the fiber. Here, we see that the space and time

coordinates are linked by the propagation and thus one or the other can be equivalently
used to describe the state. Indeed, one can either choose particular times tp and look at
the pulse over the entire space as represented in Figure 3.1 (a)-(c), or look at the pulse from
a given position xp during the time interval [0,+∞) as represented in Figure 3.1 (d)-(f).
Such mapping between space and time is a feature of propagating pulses that is extensively
used experimentally since detectors are often fixed and one can only say when the photon
is detected. Such space-to-time mapping is thus used to rebuild the spatial distribution
of the state, as it is done, e.g., in [37]. It also justifies to qualify our formulation of the
theory to be a “spatio-temporal description of photons”. The key message behind these
terms is the fact that we fully take into account the dynamics of photons which can in the
end be equivalently considered as either a spatial or a temporal description.

3.2.2.2 Time-bin photon encoding

The theoretical construction and experimental production of photon states carried by
pulses of any shapes, allows to encode information. Indeed, since Maxwell’s equations
are linear equations, any linear combination of solutions is still a solution, and one can

54



3.2 Evolution of the photon states determined from the dynamics of the classical modes

Figure 3.2: Schematic illustration of the definition of time-bins. ti is the initial time
corresponding, e.g., to the emission of the photon. The left violet rectangle corresponds to
the first time-bin, i.e., if the detector clicks in the time interval [t0, t0 + ∆t], the photon is
in the state |0⟩. The right green rectangle corresponds to the second time-bin, i.e., if the
detector clicks in the time interval [t1, t1 +∆t], the photon is in the state |1⟩. If one is able
to repeatedly produce the same photon state, the statistics given by the time-bin detection
allows to recover the parameter absolute value |α| and |β| . For time-bin encoding to be
relevant and consistent, one should pay attention to have enough delay between the two
bins, i.e., t1 − t0 ≫ ∆t. The blue trace gives an example of a time-bin encoded state for
which |α| < |β|.

construct single-photon states of the following form

|1ph(t)⟩ = B̂†
αη⃗1(t)+βη⃗2(t)

|∅⟩ (3.36a)

= αB̂†
η⃗1(t)

|∅⟩ + βB̂†
η⃗2(t)

|∅⟩ , (3.36b)

where we have used the linearity of the creation operators and α, β are complex numbers
such that |α|2 + |β|2 = 1. Considering now that η⃗1 and η⃗2 are two identical normalized
disjoint pulses, one can rewrite the single-photon state as

|1ph(t)⟩ = α |η⃗early(t)⟩ + β |η⃗late(t)⟩ , (3.37)

where η⃗early and η⃗late refer, respectively, to the first and second identical pulse, by chrono-
logical order of a hypothetic detection, and which we can represent using time as

|1ph(t)⟩ = α |ηearly(t)⟩ + β |ηlate(t)⟩ . (3.38)

Such notation is relevant for the propagation in 1D systems, e.g., in an optical fiber and
is often used for quantum key distribution (QKD) protocols [91]. The so-called time-bin
encoding is thus constructed by considering for instance a time interval ∆t corresponding
to the width of the pulses ηearly(t) and ηlate(t) and which defines two time-bins starting
at t0 and t1 > t0 as represented in Figure 3.2. The detector will thus click either in the
time bin 0 corresponding to the late pulse or in the time bin 1 corresponding to the early
pulse. The dimensionality of the full system is thus reduced to a state yielding two possible
outcomes for a detection that one can therefore write simply as

|1ph⟩ = α |0⟩ + β |1⟩ , (3.39)

where ⟨0|0⟩ = 1 = ⟨1|1⟩ and ⟨0|1⟩ = 0. The detection into one or the other time bin can
thus be represented by the following operators

T0 = |0⟩ ⟨0| , T1 = |1⟩ ⟨1| . (3.40)
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Such construction of both a qubit state (3.39) and of projective measurement operators
show that one can use spatio-temporal properties of pulse-shaped photons to encode some
information. This encoding method is called time-bin encoding and has been demonstrated
experimentally using different sources of single-photon states such as trapped atoms/ions
[92] or quantum dots [93, 94]. Practically, single-photon states carried by double-pulses
can be produced using several techniques, e.g., directly through the shaping of the photon
pulses [37, 95–99] or can be done for any single-pulse single-photon states using beam-
splitters as we will describe in the next section. Furthermore, sources of entangled photon
pairs like SPDC sources can generate time-bin entangled photons [100–102] of the following
form

|2ph⟩ = α |01⟩ + β |10⟩ . (3.41)

Although this construction seems to efficiently work in practice, we will see later in this
chapter that the nonlocal property of single photons could be a technical limitation for
the reliability of such scheme.

3.3 Photons through beam-splitters

3.3.1 One-photon state

In this section, we want to show that the description of photons through beam-splitters
is fully determined by the classical dynamics of their associated pulses. We consider for
simplicity, a single-pulse arriving on a 50/50 beam-splitter at 45o.

3.3.1.1 Initial classical mode and its time evolution

The pulse at the initial time ti, before it arrives at the beam splitter, is a classical mode.
We define the following pulse shape function S⃗(r1, r2, r3, t; k), depending on three spatial
arguments, r1, r2, r3, a temporal variable t, and a wave number k,

S⃗(r1, r2, r3, t; k) = N e⃗zE(r1 − ct)ei(kr1−ωt)g(r2, r3) (3.42)

where e⃗z = (0, 0, 1) is the linear polarization vector, ω = ck > 0 is the carrier frequency,
and E(r1) is the pulse envelope in the direction of propagation. Here, g(r2, r3) is the
transverse profile, which we assume to be smaller than the beam splitter, and in the usual
circumstances does not change significantly with the propagation. For the pulse envelope
E(r1) one can take, e.g., a sine squared function with a finite support, so that there is
no ambiguity about when the process starts, or a Gaussian multiplied by a characteristic
function to give it a finite support. The normalization constant N is chosen such that∫
R3 d

3r S⃗⋆ · S⃗ = 1.

With these assumptions, and as we discussed before, the propagation of the photon pulse
can be reduced to a one dimensional propagation. The initial mode is chosen as

ψ⃗i(x⃗) = S⃗(x, y, z; k, t = 0) = S⃗(x, t = 0), (3.43)

where we introduce an abridged notation S⃗(x, t), indicating only the first spatial argument
of its direction of propagation and the time argument.
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3.3 Photons through beam-splitters

(a) (b)

Figure 3.3: Schematic illustration of the partial transmission and reflection of a single-
photon state through a 50/50 beam-splitter. (a) Incoming pulse, (b) reflected and transmit-
ted pulses. The dynamics of the single-photon state is the same as the classical dynamics
of a pulse through a beam-splitters according to (3.13). DX and DY represent detectors.

After crossing the beam splitter, the classical mode evolves into a reflected and a trans-
mitted pulse as shown in Figure 3.3,

ψ⃗i
B-S−−→ ψ⃗R + ψ⃗T , (3.44a)

ψ⃗R(x⃗, t) = r̃S⃗(y − ct) = r̃Y⃗ (y) (3.44b)

ψ⃗T (x⃗, t) = t̃S⃗(x− ct) = t̃X⃗(x), (3.44c)

where r̃ and t̃ are the reflection and transmission coefficients, respectively, which in general
satisfy the relations |r̃|2 + |t̃|2 = 1 and r̃∗t̃ + r̃t̃∗ = 0. We have introduced the abridged
notations Y⃗ (y), X⃗(x) to improve the readability of the construction below (X⃗: propagation
along the x-axis; Y⃗ : propagation along the y-axis).

3.3.1.2 Quantum dynamics of the one-photon state

We assume that the system is prepared with one photon on the initial mode, described in
the Fock space by

|ψ⃗i⟩ = B̂†
ψ⃗i

|∅⟩ . (3.45)

The mode function must be normalized to use a probabilistic interpretation later on∫
R3

d3x|ψ⃗i(x⃗)|
2

= 1, (3.46)

which entails [
B̂
ψ⃗i
, B̂†

ψ⃗i

]
= ⟨ψ⃗i|ψ⃗i⟩ = . (3.47)

After crossing the beam splitter, this one-photon initial state evolves according to the
classical dynamics of the carrying pulse, i.e., according to (3.44) which yields

B̂†
ψ⃗i

|∅⟩ B-S−−→ B̂†
ψ⃗R+ψ⃗T

|∅⟩ . (3.48)
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The physical interpretation of the state at time t after the crossing of the beam-splitter is
as follows: |ψ⃗R + ψ⃗T ⟩ is a one-photon state on the single classical mode ψ⃗R + ψ⃗T , which
has two spatially disjoint components, one propagating in the x direction and the other
one in the y direction, as represented by the classical pulses in Figure 3.3.

3.3.1.3 Alternative treatments of beam-splitters

In the quantum optics literature, beam-splitters are usually theoretically treated in a
different way. The aim of this section is thus to illustrate some differences that exist and,
in particular, explain why the construction of photon states directly defined on pulses
of arbitrary shape, as we are using in this work, is also of interest in that context. We
emphasize, however, that we do not intend to make a critical review of the literature; we
only want to locate our approach within the most commonly used approaches that one
can find in many textbooks.
First, we remark that the creation operator in (3.48) can be decomposed as the sum of
two terms

B̂†
ψ⃗R+ψ⃗T

= B̂†
ψ⃗R

+ B̂†
ψ⃗T
. (3.49)

This property is a direct consequence of the definition (2.7), due to the linearity of the
tensor product in each of its arguments. Since the time evolution of the classical modes
is unitary, it implies that the norm of the states in Fock space is preserved, and also[

B̂
ψ⃗R+ψ⃗T

, B̂†
ψ⃗R+ψ⃗T

]
= . (3.50)

However, the separate terms in (3.49) satisfy the commutation relations[
B̂
ψ⃗R
, B̂†

ψ⃗R

]
= ⟨ψ⃗R|ψ⃗R⟩ = |r̃| 2 ̸= , (3.51a)[

B̂
ψ⃗T
, B̂†

ψ⃗T

]
= ⟨ψ⃗T |ψ⃗T ⟩ = |t̃| 2 ̸= . (3.51b)

Thus, the separate creation operators cannot be “bosonic creation operators”. This is
sometimes presented as a major problem that needs to be corrected.
In order to analyze this question, we first make the link with the notation that is used
conventionally in most of the literature, e.g., in [29, p. 511]:

B̂
ψ⃗i

→ â1, B̂
ψ⃗R

→ â2, B̂
ψ⃗T

→ â3. (3.52)

The proposed correction is to add a fourth port represented by an operator â0 that should
correspond to “incoming fluctuations of the vacuum”, represented by green dashed lines
in Figure 3.4 (see, e.g., [28, p.432], [29, p.511 and p.640], [30, p.70], [31, p.138], [32, p.8
and p.229], [33, p.249 and footnote 1], [34, p.96 and p.123], [35, p.102], ). The addition of
this port is supposed to solve the problem, since instead of

â2 = t̃â1, â3 = r̃â1, (3.53)

its inclusion allows to construct modified operators

â′2 = t̃â1 + r̃â0, â′3 = r̃â1 + t̃â0, (3.54)
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(a) (b)

Figure 3.4: Schematic illustration of the description of beam-splitters which uses a fourth
port representing the “incoming fluctuations of the vacuum”. (a) Incoming pulses repre-
senting the initial state (in blue) and the vacuum fluctuations (dashed green curve). (b)
Reflection and transmission of the initial pulse and the fluctuation pulse. Fluctuation
pulses are drawn in dashed green lines since they do not have any meaning neither in the
classical nor in the quantum theory.

that satisfy the bosonic commutation relations[
â′2, â

′†
2

]
= ,

[
â′3, â

′†
3

]
= , (3.55)

since |r̃| 2 + |t̃| 2 = 1.
Although formally this seems to solve the “problem”, yielding operators with apparently
bosonic commutation relations, we have two criticisms of this construction:

� It is not a problem that the operators in (3.51) do not satisfy the commutation
relation for bosons. The photon is not an excitation of the individual transmitted
pulse nor of the reflected one. The photon is an excitation of the global mode ψ⃗R+ψ⃗T
and thus the bosonic nature of the photon is expressed by the global commutation
relation (3.50). So in fact the commutation relations (3.51) are correct, and they do
not pose any problem, since creation operators in Fock space are also well defined
for unnormalized modes.

� The formal expression â†0 that would have to correspond to B̂†
vac does not have any

well-defined sense in the quantum field theory of light. There is no creation operator
that could create “fluctuations of the vacuum”. In Figure 3.4, the pulses drawn in
dashed lines, which are supposed to refer to vacuum fluctuations, don’t have any
meaning. Creation operators can only add photons carried by classical modes, to
the vacuum or to other states.

Our main conclusion from the analysis presented above is that vacuum fluctuations do
not play any role in the transmission of a one-photon pulse through a beam splitter. Our
explanation for the discrepancy sometimes found in the literature is that the notation
â1, â2, â3, â0 is misleading and clearly insufficient for the description of the transmission of
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a one-photon pulse through a beam splitter. One difficulty is that the operator B̂†
ψ⃗R+ψ⃗T

has no natural representation in the conventional notation: it could maybe be noted as
â†2+3, but it is not usually done. The notation also suggests that all operators that are
denoted with âj should satisfy the standard bosonic commutation relations, which is not
well suited for the beam-splitter, as shown by equation (3.51). Another shortcoming
of this notation is that it does not include the propagation in time: When one writes
â3 = t̃â1, the operator â1 is not the incoming one, but implicitly it must be interpreted
as the time evolution of the incoming one (which is not the evolution in the Heisenberg
representation, as we remarked in (3.19)). All these difficulties disappear if one uses the

more precise notation B̂†
ψ⃗

, which indicates on which classical mode a photon is created.

With this notation it is immediately clear that it does not make sense to define a creation
operator like â†0 that would create “fluctuations of the vacuum”, since there is no ψ⃗ that
can do that.

However, we emphasize that the above remarks do not mean that there are no quantum
fluctuations in the one-photon pulse transmission through a beam splitter. The detector
readings have quantum fluctuations that can be traced back to the fact that the state of
the optical quantum field is not an eigenstate of the observable measured by the detector.
Our point is only that the statement “vacuum fluctuations enter through the unused port”
is not well defined within the theory and that it is unnecessary, since, without any such
addition, the theory already gives a complete and consistent description of the process,
including the fluctuations that will be manifest at the detectors. The fluctuations are a
global feature of the quantum system, they are everywhere and delocalized, they do not
enter through any particular port. The photon states and in particular the vacuum are
global entities, they are not localized in any specific port. If the electromagnetic field is in
a one-photon state, one cannot claim that it is in the vacuum state anywhere, in particular
not in an “unused port”. The fluctuations that may be measured in a particular detector,
will be the ones determined by the one-photon state, and not by some partially localized
vacuum.

In fact the model with four ports can describe a concrete physical situation, but only when
an actual classical mode is injected into the fourth port, as we will see in the next section
with the Hong-Ou-Mandel effect (HOM) [103,104].

One should also note that other approaches using also four bosonic operators to describe
beam-splitters exist but do not invoke vacuum fluctuations to justify them (see e.g., [79,
105, 106]). Instead, the beam-splitter is seen as a device which creates an interaction
between four modes, each represented by their own creation-annihilation opertors. The
passage of a single-photon state corresponds thus to the situation where three modes are
in the vacuum state and one mode is in a one-quantum excited state. This model is
therefore very close to what we have presented above, the major difference being that we
do not use the concept of modes that would be located either before or after the beam-
splitter but only consider propagating solutions of Maxwell’s equations which include the
beam-splitter in the dielectric function ε(x⃗). Our approach is thus a description within
the entire Fock space while the other one is a model which treats only four modes in their
respective tensorial Hilbert space. This difference in the dimensionality of the approaches
is a good argument for the modal description, however, one should be very carefull when
interpreting the results since the excitation of output modes is not strictly speaking a
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(a) (b)

Figure 3.5: Schematic illustration of the HOM effect. (a) Two disjoint identical pulses
impinge on the beam splitter at the same time. (b) Each of them produces reflected and
transmitted pulses. DX and DY represent detectors, located at the same distance from
the beam-splitter.

photon. Indeed, in the situation where a single-photon passes through the beam splitter,
the modal approach predicts a state of the form |1⟩3 |0⟩4 + |0⟩3 |1⟩4, where the indices
referred to the output modes 3 and 4. Although this state is an entangled state of the two
considered modes, it simply represents a single-photon.

3.3.2 Two-photon state: The Hong-Ou-Mandel effect

We consider two pulses arriving on a 50/50 beam splitter at 45o: ψ⃗A,i moves horizontally

in the x direction and ψ⃗B,i moves vertically in the y direction as it is shown in Figure 3.5
(a).

3.3.2.1 Initial classical modes and their time evolution

Each pulse at the initial time ti (before the pulses arrive on the beam splitter) is a classical
mode. We will use the pulse shape function S⃗(r1, r2, r3; k, t) defined in (3.42).

The initial modes A and B are chosen as

ψ⃗A,i(x⃗) = S⃗(x, y, z, t = 0; kA) = S⃗A(x, t = 0), (3.56a)

ψ⃗B,i(x⃗) = S⃗(y, x, z, t = 0; kB) = S⃗B(y, t = 0), (3.56b)

where we introduced an abridged notation S⃗A, S⃗B, indicating only the first spatial argu-
ment and the time argument.

After crossing the beam splitter, each classical mode evolves into a reflected and a trans-
mitted pulse

ψ⃗A,i
B-S−−→ ψ⃗A,R + ψ⃗A,T , (3.57a)

ψ⃗B,i
B-S−−→ ψ⃗B,R + ψ⃗B,T , (3.57b)
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where

ψ⃗A,R(x⃗, t) = r̃S⃗A(y − ct, t) = r̃Y⃗A(y), (3.58a)

ψ⃗A,T (x⃗, t) = t̃S⃗A(x− ct, t) = t̃X⃗A(x), (3.58b)

ψ⃗B,R(x⃗, t) = r̃S⃗B(x− ct, t = r̃X⃗B(x), (3.58c)

ψ⃗B,T (x⃗, t) = t̃S⃗B(y − ct, t) = t̃Y⃗B(y), (3.58d)

and r̃ and t̃ are still the reflection and transmission coefficients satisfying |r̃|2 + |t̃|2 = 1
and r̃∗t̃+ r̃t̃∗ = 0. For a 50/50 beam splitter they satisfy furthermore

t̃ = ir̃, i.e., r̃2 + t̃2 = 0. (3.59)

We again introduce the abridged notations Y⃗A(y), X⃗A(x) Y⃗B(y), X⃗B(x) to improve the
readability of the construction below (X⃗: propagation along the x-axis; Y⃗ : propagation
along the y-axis).

3.3.2.2 Quantum dynamics of the two-photon state

We assume that the system is prepared with one-photon on each mode. The two-photon
state in the Fock space is thus

|Φi⟩ = B̂†
ψ⃗A,i

B̂†
ψ⃗B,i

|∅⟩ (3.60a)

=
√

2 |ψ⃗A,i ⊗S ψ⃗B,i⟩ (3.60b)

=
1√
2
|ψ⃗A,i ⊗ ψ⃗B,i + ψ⃗B,i ⊗ ψ⃗A,i⟩ . (3.60c)

The mode functions must be normalized∫
d3x|ψ⃗A,i(x⃗)|

2
= 1,

∫
d3x|ψ⃗B,i(x⃗)|

2
= 1, (3.61)

which entails [
B̂
ψ⃗A,i

, B̂†
ψ⃗A,i

]
= =

[
B̂
ψ⃗B,i

, B̂†
ψ⃗B,i

]
, (3.62a)[

B̂
ψ⃗A,i

, B̂†
ψ⃗B,i

]
= ⟨ψ⃗A,i|ψ⃗B,i⟩ =

∫
R3

d3x ψ⃗⋆A,i(x⃗) · ψ⃗B,i(x⃗) = 0, (3.62b)

since the support of the two classical modes ψ⃗A,i(x⃗) and ψ⃗B,i(x⃗) is disjoint.
To obtain the time evolution after the beam splitter of the two-photon initial state, we
apply the classical time evolution of each pulse

ψ⃗A,i ⊗S ψ⃗B,i
B-S−−→

(
ψ⃗A,R + ψ⃗A,T

)
⊗S

(
ψ⃗B,R + ψ⃗B,T

)
(3.63a)

= ψ⃗A,R ⊗S ψ⃗B,R + ψ⃗A,R ⊗S ψ⃗B,T + ψ⃗A,T ⊗S ψ⃗B,R + ψ⃗A,T ⊗S ψ⃗B,T

= r̃Y⃗A ⊗S r̃X⃗B + r̃Y⃗A ⊗S t̃Y⃗B + t̃X⃗A ⊗S r̃X⃗B + t̃X⃗A ⊗S t̃Y⃗B

=
1

2

[
r̃2Y⃗A ⊗ X⃗B + t̃2X⃗A ⊗ Y⃗B + r̃t̃

(
Y⃗A ⊗ Y⃗B + X⃗A ⊗ X⃗B

)
+r̃2X⃗B ⊗ Y⃗A + t̃2Y⃗B ⊗ X⃗A + r̃t̃

(
Y⃗B ⊗ Y⃗A + X⃗B ⊗ X⃗A

)]
. (3.63b)
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In the degenerate Hong-Ou-Mandel effect the shapes of the two incoming classical modes
are the same and they arrive at the same time at the beam splitter and at the detectors,
which means that Y⃗A = Y⃗B = Y⃗ and X⃗A = X⃗B = X⃗. Therefore the final state after
the beam-splitter can be deduced from (3.60), (3.63) and from the condition of identical
modes, which yields

Φf =
r̃2 + t̃2√

2

(
X⃗ ⊗ Y⃗ + Y⃗ ⊗ X⃗

)
+
√

2 r̃t̃
(
Y⃗ ⊗ Y⃗ + X⃗ ⊗ X⃗

)
. (3.64)

Since for a 50/50 beam splitter r̃2 + t̃2 = 0, the final state for the degenerate Hong-Ou-
Mandel effect can be written as

|Φi⟩ =
√

2 |ψ⃗A,i ⊗S ψ⃗B,i⟩
B-S−−→ |Φf ⟩ =

√
2r̃t̃
(
|Y⃗ ⊗ Y⃗ ⟩ + |X⃗ ⊗ X⃗⟩

)
. (3.65)

From this expression, one can conclude that there will be no simultaneous detection of one
photon in each detector, since the state does not contain terms of the form |X⃗ ⊗S Y⃗ ⟩. In
order to make this statement more precise we have to construct a model for the detectors,
i.e., we have to write the observables that correspond to single and double detections.

3.3.2.3 Detection model to interpret the dynamics

A simple model for these observables can be constructed using the classical modes X⃗ and
Y⃗ . Following what we briefly introduced for the time-bin measurements (see equation
3.40), the observable corresponding to the detection of one photon in the considered mode
shape in the detector DX is

Ô1X = |X⃗⟩ ⟨X⃗| ⊗ + ⊗ |X⃗⟩ ⟨X⃗| , (3.66)

and correspondingly in the detector DY

Ô1Y = |Y⃗ ⟩ ⟨Y⃗ | ⊗ + ⊗ |Y⃗ ⟩ ⟨Y⃗ | . (3.67)

The major difference with the time-bin detection model is that here, we have an entangled
state — similar to (3.41). The observable corresponding to the detection of two photons
in DX is

Ô2XX = |X⃗⟩ ⟨X⃗| ⊗ |X⃗⟩ ⟨X⃗| , (3.68)

and correspondingly for DY

Ô2Y Y = |Y⃗ ⟩ ⟨Y⃗ | ⊗ |Y⃗ ⟩ ⟨Y⃗ | . (3.69)

Finally, the observable corresponding to the detection of one photon in DX and simulta-
neously one photon in DY is

Ô2XY = |Y⃗ ⟩ ⟨Y⃗ | ⊗ |X⃗⟩ ⟨X⃗| + |X⃗⟩ ⟨X⃗| ⊗ |Y⃗ ⟩ ⟨Y⃗ | . (3.70)

Since Ô2XY is a projector, the probability to observe simultaneously one photon in each
detector in the final state |Φf ⟩ is given by

P(DX and DY ) = ⟨Φf | Ô2XY |Φf ⟩ , (3.71)
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which we can compute using the expression (3.65) for |Φf ⟩

P(DX and DY ) = ⟨Φf | Ô2XY |Φf ⟩ (3.72)

= 2|r̃t̃| 2
〈
Y⃗ ⊗ Y⃗ + X⃗ ⊗ X⃗

∣∣∣ ( |Y⃗ ⟩ ⟨Y⃗ | ⊗ |X⃗⟩ ⟨X⃗|
) ∣∣∣Y⃗ ⊗ Y⃗ + X⃗ ⊗ X⃗

〉
,

and since(
|Y⃗ ⟩ ⟨Y⃗ | ⊗ |X⃗⟩ ⟨X⃗|

)
|Y⃗ ⊗ Y⃗ ⟩ = 0 =

(
|Y⃗ ⟩ ⟨Y⃗ | ⊗ |X⃗⟩ ⟨X⃗|

)
|X⃗ ⊗ X⃗⟩ , (3.73)

we conclude that P(DX and DY ) = 0, namely, the probability for simultaneous detection
of one photon in each detector is zero, which is the main characteristic of the Hong-Ou-
Mandel effect.

3.3.2.4 Photons are not like classical waves nor like classical particles

We emphasize that the last equality of (3.63), and thus (3.64) and (3.65), are only true
because photons are bosons (i.e., indistinguishable quanta) meaning that the effect of the
bosonic symmetrization is essential for the HOM effect. In particular, the HOM effect is
a purely quantum effect which does not appear with classical waves. Indeed the classical
waves would arrive at the two detectors simultaneously — as one can see in Figure 3.5(b)
with the dynamics of the classical pulses — and thus it is excluded that only one detector
is activated. The event that for photons have probability zero, would have probability one
for classical waves. The behavior of photons in the HOM effect is also completely different
from that of classical particles. Indeed, for classical particles having 1/2 probability of
transmission and 1/2 probability of reflection, the probability of detecting two particles in
the detector DX would be

P(2 particles in DX) = P(1 particle in DX) × P(1 particle in DX) =
1

2

1

2
=

1

4
, (3.74)

and similarly for DY

P(2 particles in DY ) = P(1 particle in DY ) × P(1 particle in DY ) =
1

2

1

2
=

1

4
, (3.75)

and by labeling the particles moving initially horizontally and vertically by Xi and Yi,
respectively, the probability of a joint detection would be

P(1 particle in DX and 1 particle in DY ) = P(particle Yi in DY and particle Xi in DX)

+ P(particle Yi in DX and particle Xi in DY )

=
1

2

1

2
+

1

2

1

2
=

1

2
. (3.76)

It means that the event that has zero probability for photons has probability 1/2 for classical
particles.
This example gives an illustration for the question on whether photons are particles or
waves, or both. The answer is that they are neither particles nor waves in the classical
sense. It is not that photons “behave sometimes like particles and sometimes like waves”,
as it was often stated in the early stages of the development of quantum mechanics. They
are purely quantum entities, that have properties that do not exist in classical objects.
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3.4 Local detection of single-photon states

We have seen in the preceding sections that the description of photon’s dynamics cannot
be fully understood by considering only the states, but requires to take into account the
observables as well. So far, we have described several types of observables such as the
electromagnetic fields and a quite simplistic model for a detection for the interpretation
of the Hong-Ou-Mandel effect. In this section, we would like to introduce a more detailed
model for the detection which should be relevant in some actual single-photon experiments.

3.4.1 Single-photon detectors

A single-photon detector should be an apparatus which informs of the presence of a photon,
inside its volume of sensitivity Vd, at a given time τ . Ideally one would like the following
properties:

� 100% of detection efficiency, i.e., it does not miss any photon;

� a dark count rate of zero, i.e., it does not give a signal when there is no photon;

� no dead time, i.e., it can detect a photon at any time, no matter if it has detected
a photon before.

No such perfect detector exists but some are reasonably approaching these conditions
to be used in experiments. One can cite for instance photomultipliers, single-photon
avalanche photodiodes, quantum-dot field-effect transistor-based detectors, up-conversion
single-photon detectors or superconducting nanowire single-photon detectors [107]. All of
them rely on a current that is triggered when a photon is absorbed. To go into further
details of the different processes that exist to detect a photon, one can look in [107]
and refereces therein. In the following, we want to build a theoretical model that could
represent some of these detectors. In a first approach, and to grasp the basic physics of
photons, we will assume that the three conditions stated above about perfect detectors
are true. We will rather focus on a fourth property that will allow us to probe interesting
spatial properties of photons. We will consider detectors that have a finite volume Vd.
This particularity, which one always deals with in a real experiment, brings questions
about when the detection process starts and ends as illustrated in Figure 3.6. Keeping in
mind that photons are always carried by classical pulsed functions, the detection is to be
thought as a dynamical process.

3.4.2 Local observable for the detection

The fact that photons are carried by pulse-shaped classical functions, must influence the
detection and one cannot ignore the different scenarios brought by the size of the considered
photon pulses. In Figure 3.6, one can see that a detector cannot always probe photon pulses
as a whole. To theoretically describe such situation, we need to use a local observable,
i.e., a selfadjoint operator which depends on the position of the photon field.
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(a) (b) (c)

(d)

Figure 3.6: Sketch of the different scenarios possible for a photon state to pass through a
detector. Photon states are represented by their associated classical pulses which propa-
gate to the right and pass through the detector (in gray). The colors represent different
times during the propagation of the pulse. (a) The photon pulse is so small compared to
the detector size that it looks like a delta function. Consequently, it is either inside or
outside the detector without any ambiguity. (b) The photon pulse is still small compare
to the detector but some ambiguity can appear (green pulse). However, they are usually
neglected since they correspond to a very short period of time, usually much shorter than
the detector’s time resolution. (c) Photon’s size is comparable to that of the detector
meaning that it can still be fully inside the detector but ambiguities on when does it come
in and out become more important. (d) The photon pulse is bigger than the detector so
it cannot be considered inside at any moment. This situation points out the need for a
model of a local detection of photons.
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Remarks:

� We note that a local observable is rather a physical than a mathematical consideration:
an operator is said to be a local observable if it represents a physical measurement which

can be made with an instrument well localized in space. We can assume that
⃗̂
E(x⃗) and

⃗̂
B(x⃗) are local since in practice they can be measured by instruments involving, e.g.,
localized charged particles or magnetic moments and thus possibly designed as small as

required. Any operator that can be written as a point-wise function of
⃗̂
E(x⃗) and

⃗̂
B(x⃗)

is thus considered to be a local observable too.

� To analyze the detection process in a rather simple way, we assume that the detector is
placed far from any optical device like mirrors or beam-splitters. With this condition,
the dielectric function in the surroundings of the detector can be considered as constant,
and we therefore do not need to use the generalized quantization for inhomogeneous
media anymore. Instead, we will work with the quantization in the vacuum, i.e., with a
frequency operator Ω = c(−∆)−1/2, as well as with the BB representation. In practice,
if the photon reaches the detector through a propagation in a homogenous dielectric
medium of optical index n > 1, e.g., an optical fiber, one can still use the results we
develop hereafter by replacing the vacuum speed of light c by its analog c/n.

The local observable we want to use in the context of single-photon detection is the
electromagnetic energy density [38] represented by

Êem(x⃗) =
ε0
2

(
⃗̂
E2(x⃗) + c2

⃗̂
B2(x⃗)

)
, (3.77)

where · stands for the normal ordering. This observable is a function of the position x⃗,
but one can construct an more realistic model by integrating it over the detector volume
Vd

Êem,Vd
=

∫
Vd

d3x Êem(x⃗). (3.78)

To analyze the response of a detector represented by such operators, we need to compute
the mean values for a general single-photon state. We remark that Êem can be rewritten
in terms of the RS vector

Êem(x⃗) =
ε0
2

(
⃗̂
E − ic

⃗̂
B
)
·
(
⃗̂
E + ic

⃗̂
B
)

(3.79a)

=
⃗̂
F †
RS(x⃗) · ⃗̂FRS(x⃗) , (3.79b)

and we recall (equation 2.67c) that the quantized RS vector can be written as

⃗̂
FRS(x⃗) =

∫
d3k

[
g⃗
k⃗,+

(x⃗)Ĉg⃗
k⃗,+

+ g⃗⋆
k⃗,−(x⃗)Ĉ†

g⃗
k⃗,−

]
(3.80a)

=
⃗̂
F(h+) +

⃗̂
F(h−)†. (3.80b)

Since we have a quite compact expression for Êem in the BB representation, we write a
general single-photon state as |1ph⟩ = |F⃗ ⟩ = Ĉ†

F⃗
|∅⟩ and the expectation value reads

⟨Êem⟩|1ph⟩ = ⟨∅| ĈF⃗
⃗̂
F †
RS(x⃗) · ⃗̂FRS(x⃗) Ĉ†

F⃗
|∅⟩ . (3.81)

67



Chapter 3. Propagation and local detection of photons

Combining (3.79) and (3.80), the energy density operator can be written as

Êem(x⃗) =
⃗̂
F(h+)† · ⃗̂F(h+) +

⃗̂
F(h−) · ⃗̂F(h−)† +

⃗̂
F(h+)† · ⃗̂F(h−)† +

⃗̂
F(h−) · ⃗̂F(h+) , (3.82)

where one remarks that only the first two terms will contribute to mean values. Equation
(3.81) transforms then into

⟨Êem⟩|1ph⟩ = ⟨∅| ĈF⃗
⃗̂
F(h+)† · ⃗̂F(h+)Ĉ†

F⃗
|∅⟩ + ⟨∅| ĈF⃗

⃗̂
F(h−)† · ⃗̂F(h−)Ĉ†

F⃗
|∅⟩ (3.83)

which can be computed using the following commutators[
⃗̂
F(h±)(x⃗), Ĉ†

F⃗

]
=

∫
R3

d3k g⃗
k⃗,±(x⃗)

[
Ĉg⃗

k⃗,±
, Ĉ†

F⃗

]
(3.84a)

=

∫
R3

d3k

∫
R3

d3k′
∑
λ′

⟨g⃗
k⃗′,λ′ |F⃗ ⟩BB g⃗k⃗,±(x⃗)

[
Ĉg⃗

k⃗,±
, Ĉ†

g⃗
k⃗′,λ′

]
(3.84b)

=

∫
R3

d3k ⟨g⃗
k⃗,±|F⃗ ⟩BB g⃗k⃗,±(x⃗) (3.84c)

= F⃗ (h±)(x⃗), (3.84d)

and [
ĈF⃗ ,

⃗̂
F(h±)†(x⃗)

]
=
[
⃗̂
F(h±)(x⃗), Ĉ†

F⃗

]†
= F⃗ (h±)⋆(x⃗). (3.85)

We obtain thus [38]

⟨Êem(x⃗)⟩|1ph⟩ =
∣∣∣F⃗ (h+)(x⃗)

∣∣∣2 +
∣∣∣F⃗ (h−)(x⃗)

∣∣∣2. (3.86)

In the LP representation, it is expressed as

⟨Êem(x⃗)⟩|1ph⟩ = ℏ
∣∣∣Ω1/2ψ⃗(h+)(x⃗)

∣∣∣2 + ℏ
∣∣∣Ω1/2ψ⃗(h−)(x⃗)

∣∣∣2, (3.87)

and in the momentum representation

⟨Êem(x⃗)⟩|1ph⟩ = ℏ
∣∣∣∣∫ d3k ω

1/2

k⃗
ϕ⃗
k⃗,+

(x⃗)z(k⃗,+)

∣∣∣∣2 + ℏ
∣∣∣∣∫ d3k ω

1/2

k⃗
ϕ⃗
k⃗,−(x⃗)z(k⃗,−)

∣∣∣∣2. (3.88)

We remark that the splitting into helicity components of the field plays a central role in
the model for local detection. In the following, we will use this property to discuss the
nonlocal character of single-photon states.

3.4.3 Brief review on photon’s nonlocality property

The question of the localization of single-quanta and in particular single photons has been a
common theme throughout the development of quantum field theory. As in Chapter 2, we
will again not use the concept of photon wavefunction to describe it since it usually carries
the connotation of a Born probability rule, which is not well-adapted to photon detection.
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Figure 3.7: Sketch illustrating Knight’s definition of a localized state. We consider a state
|φ⟩ with an associated localization volume Vs, and a detector Ô(Vd) with finite volume Vd,
which probes the state. Two situations can occur: (a) a general state where Vd ∩ Vs ̸= ø
and the expectation value of Ô(Vd) is not equal to that of the vacuum, or (b1) a localized
state where Vd∩Vs = ø and the expectation value of Ô(Vd) is equal to that of the vacuum
for all observables Ô. This means that the state cannot be “seen” outside its volume of
localization by any localized detector. (b2) A state is considered to be nonlocalized if
it can be probed outside its apparent volume of localization by some observable Ô(Vd),
i.e., ⟨φ| Ô(Vd) |φ⟩ ̸= ⟨∅| Ô(Vd) |∅⟩ for Vd ∩ Vs = ø. In general, this means that for such
extended states, there is no Vs satisfying (a) and (b1) for any Ô(Vd).

We will rather use the combination of position space representations with suitable local
observables to consider spatial localization properties of photons and discuss measurements
that can be performed in actual experiments.

Before going through the state of the art regarding photon localization, we define the
localization criterion that will be used thereafter, and following Knight [40]: We consider
a state |φ⟩, represented in a position representation in the Fock space of the considered
quantum field theory. It is said to be a localized state if for any local observable Ô(x⃗),
the expectation value ⟨φ| Ô(x⃗) |φ⟩ is equal to that of the vacuum state outside a certain
volume Vs called the localization volume of the state. Mathematically it means that

⟨φ| Ô(x⃗) |φ⟩ ≠ ⟨∅| Ô(x⃗) |∅⟩ for x⃗ ∈ Vs, (3.89)

and

⟨φ| Ô(x⃗) |φ⟩ = ⟨∅| Ô(x⃗) |∅⟩ for x⃗ /∈ Vs. (3.90)

This property is illustrated in Figure 3.7. Consequently, a nonlocalized or nonlocalizable
state would not respect this condition for at least one local observable, i.e., one can find
a local observable for which ⟨φ| Ôs(x⃗) |φ⟩ ≠ ⟨∅| Ôs(x⃗) |∅⟩ for at least one x /∈ Vs as shown
in Figure 3.7 (b2).

Following this definition, Knight showed that for states composed of a finite number of
quanta, a class of space- and time-dependent correlation functions of the Klein-Gordon
field cannot be zero anywhere. Only states involving the superposition of infinitely many
quanta, e.g., coherent states, can be spatially localized. This result was reformulated and
extended by De Bièvre [90,108] in terms of expectation values of Weyl unitary operators.
In these type of approaches the main property that leads to nonlocality is the anti-local
property of the frequency operator [109–111], where anti-locality means that if for some
square-integrable field v⃗(x⃗) both v⃗ = 0 and Ωv⃗ = 0 in some finite volume, then v⃗ = 0
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everywhere in R3 as we will precisely describe in Lemma 1. The main result one can
extract from these works is that for any single-photon state and for any finite volume,
there exists a local observable with support in that volume for which the expectation
value in the single-photon state differs from the one in the vacuum.

In [112, 113], following the results of Knight, Licht characterized the whole set of strictly
localized states by showing that they can be obtained by applying a partial isometry
Ŵ †Ŵ = on the vacuum Ŵ † |∅⟩.
Bia lynicki-Birula showed that for two particular classes of single-photon states, the expec-
tation value of the energy density cannot be zero in any finite volume. The two classes
considered are states with a spherically uniform support [38], and states having either a
magnetic or an electric localization property, defined in [39]. The argument in [38] was
constructed using the Paley-Wiener theorem [114]: Single photons with an exponential
radial falloff of the form exp(−Ar), A > 0, cannot exist, but weaker falloffs are allowed
and an example corresponding to a falloff of the form exp(−A

√
r) was given. In general,

in order to fulfill the constraint from the Paley-Wiener theorem, a quasi exponential local-
ization is possible with a falloff exp(−Arγ), where γ < 1. The advantage of the argument
of [38] is that it provides a localization limit and gives a concrete example of a solution of
Maxwell’s equations approaching that limit. In [39] the authors introduced the notions of
electrically and magnetically localized states and using a proof of the nonlocality of the
helicity operator Λ, they showed that electrically or magnetically localized states cannot
be considered as local if one uses the energy density observable.

We also mention [115, 116] where it was shown that there exist cylindrical functions for
which a Gaussian falloff is possible in the waist plane only, making the localization, in
these directions, stronger than the exponential limit shown in [38] but the nonlocality is
transferred to the remaning direction. More recently in [117–119], some classes of strictly
localized states — that are not single-photon states — were constructed so that they
approach single-photon states as close as possible.

In an other line, Hegerfeldt [41,42] established some general properties of bosons: For states
containing exclusively positive energies, if the state function has a finite support at a given
time, the time evolution will spread it over all space at any later times (see also [120]).
In a later work, concerning causality in Fermi’s two-atom model [121], he showed that for
positive bounded observables 0 ≤ Ô ≤ 1, the expectation value ⟨ψ(t)| Ô |ψ(t)⟩ is either
nonzero for almost all t or identically zero for all t. Some recent works have explored the
possibility of constructing variations of quantum field theory involving negative energy
states that could avoid Hegerfeldt’s non locality [122–125].

In view of these results, the nonlocality of photons is considered as a well established prop-
erty which however has not been fully characterized using an observable able to represent
an actual detector used in experiment. This is what we will do in the next section by
extending the proof of [39] using the energy density to all single-photon states.

3.4.4 Nonlocality of the energy density for single-photon states — Proof

In this section, we will show that all single-photon states cannot be localized in space.
This is an extension of the works [38,39], and it has the advantage that it does not require
the use of the time evolution compare to the results of Knigth and of Hegerfeldt. To do
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so, we will use a property of the frequency operator Ω to demonstrate that the mean value
of the local energy density observable (3.86) cannot be zero for any x⃗ ∈ R3, i.e.,

⟨Êem(x⃗)⟩|1ph⟩ ̸= 0, ∀x⃗ ∈ R3. (3.91)

We emphasize that the proof will be constructed to consider any single-photon state |1ph⟩
and that the result is valid irrespective of the representation used to describe the photon
since the isomorphisms M and I can be applied to switch from one representation to
another. Having a proof that is true for any state is an improvement of Bia lynicki-Birula
et al proof [38,39] and does not contradict Knight’s general theorem [40]. One advantage
of our proof is that we explicitly find a local observable from which the nonlocalization
character of photons can be seen. Moreover, as mentioned in Section 3.4.2, the local
energy density observable is a relevant observable to describe actual detectors and thus
the nonlocalizability of single photons is not a feature hidden in a hard-to-measure property
of photons.

The result (3.91) is a consequence of the following Lemmas

Lemma 1: For any field g⃗(x⃗) that is not identically zero, Ωg⃗ and g⃗ cannot be both zero
in any open set of R3 [109–111].

Lemma 2: Fields of ± helicity, i.e., Λg⃗(hλ)(x⃗) = λg⃗(hλ)(x⃗), λ = ±, have the property
that either g⃗(hλ) is identically zero or g⃗(hλ) ̸= 0 in any open set of R3.

A proof of Lemma 1 following the argument of [110] is given in Appendix D.

Lemma 2 can be shown directly as follows: Let g⃗ be a transverse field, g⃗ = g⃗(h+) + g⃗(h−).
The helicity components are eigenfunctions of the helicity operator Λg⃗(h±) = ±g⃗(h±).
Using the definition of the helicity operator Λ = cΩ−1∇×, we can reformulate this relation
as

c∇× g⃗(h±) = ±Ωg⃗(h±). (3.92)

Taking a given λ = ±, if g⃗(hλ) is zero in an open set S, then ∇× g⃗(hλ) is zero in the same
set and finally (3.92) implies that Ωg⃗(hλ) is also zero in S, which by Lemma 1 implies that
g⃗(hλ) is zero everywhere. We conclude that g⃗(hλ) is either identically zero or nonzero for
any open set as stated in Lemma 2.

The central result (3.91) can thus be shown by taking g⃗ to be the BB representation
F⃗ of any single-photon state which is transverse and thus can be decomposed as F⃗ =
F⃗ (h+) + F⃗ (h−). We conclude then that F⃗ (h±) is either identically zero or nonzero in any
open set. Moreover, since (3.86) has two terms, even if one of them is identically zero, the
other cannot be zero too since it would mean that the single-photon state itself is zero.
This result is valid for any open set and therefore one can extend it to any point x⃗ ∈ R3,
which completes the proof.

Thus, since the zero-point energy has been removed using the normal ordering in (3.77),
⟨Êem(x⃗)⟩|1ph⟩ is never equal to the vacuum mean value, preventing Knight’s localization
criterion to be fulfilled for any single-photon state.

In physical terms this means that if the electromagnetic field is prepared in a single-photon
state, a detector, placed anywhere in space, which measures the energy in a finite volume,
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has a nonzero probability of detecting the photon. The probability can be small but it is
strictly nonzero.
The main advantage of our argument to show the nonlocality of single photons is that
it does not require the time-evolution of the states. This is an important difference with
the works of Knight using time-dependent correlation functions and of Hegerfeldt where
locality is possible at initial time and nonlocality considered as a consequence of the time
evolution. Also, we show in Appendix C that the result we have obtained for the energy
density cannot be deduced from Knight’s general theorem since the latter is not valid
for equal-time correlation functions. Moreover, a strength of our result is that, while
Knight or De Bièvre were showing that there always exists a local observable for which
the expectation value differs from the vacuum one, we show that for the electromagnetic
field, this local observable can always be the energy density. This result is an extension of
the result of Bia lynicki-Birula et al. [39] since no assumptions on the type of single-photon
states have been done.

3.4.5 Illustration of the nonlocality

The nonlocality brought by the splitting into helicity components can be illustrated
through simple one-dimensional examples. We can compute the expectation value ⟨Êem(x⃗)⟩
for single-photon states representing three extreme cases: First we consider a state |ψLPcomp⟩ =

B̂†
ψLP
comp

|∅⟩, where ψLPcomp ∈ HLP is a function of compact support, i.e., ψLPcomp(x) = 0 outside

an interval of size L; then we consider a state |FBBcomp⟩ = B̂†
FBB
comp

|∅⟩, where FBBcomp ∈ HBB is

a function of compact support, i.e., FBBcomp(x) = 0 outside an interval of size L, and finally a

state |ψext⟩ = B̂†
ψext

|∅⟩, where ψext ∈ HLP is extended over all space, i.e., ψext(x) ̸= 0 for
any x ∈ R. To construct ψext, we use the real fields Ecomp(x) and Acomp(x) with support
in the interval [−L/2, L/2] of the form

Ecomp(x) ∝
{

sin2( πLx+ π
2 ) if x ∈ [−L

2 ,
L
2 ],

0 otherwise,
(3.93a)

Acomp(x) ∝
{

sin2( πLx+ π
2 ) if x ∈ [−L

2 ,
L
2 ],

0 otherwise,
(3.93b)

and to build ψLPcomp we take the extended fields

ELPext (x) = Ω
1/2Ecomp(x), (3.94a)

ALPext (x) = Ω
−1/2Acomp(x). (3.94b)

The resulting ψLPcomp and ψext are represented by blue solid lines in Figure 3.8 (a),(d),

and (b),(e), respectively. To construct a localized BB representation FBBcomp we take the
following fields

EBB(x) = Ecomp(x), (3.95a)

ABB(x) = Ω−1Acomp(x). (3.95b)

The resulting localized BB representation is shown by the green dotted line in Figure 3.8
(c) and (f).

72



3.4 Local detection of single-photon states

Figure 3.8: Illustration of the nonlocality of single-photon states for three extreme cases.
(a) The blue solid line shows the LP representation of a single-photon state |ψLPcomp⟩ with
compact support and the green dotted line its BB representation. The red dashed line
shows the expectation value of the energy density computed for that state. The compact
support property of |ψLPcomp⟩ is lost for both the BB representation and the energy. (b) The
blue solid line shows the LP representation of an extended single-photon state |ψext⟩ and
the green dotted line its BB representation. The red dashed line shows the expectation
value of the energy density computed from that state. The extended property of |ψext⟩ is
visible from both representations and for the energy. (c) The green dotted line shows the
BB representation of a single-photon state

∣∣FBBcomp

〉
with compact support and the blue

solid line its LP representation. The red dashed line shows the expectation value of the
energy density computed for that state. The compact support property of

∣∣FBBcomp

〉
is lost

for the LP representation and the energy. (d), (e), and (f) are the same plots as (a), (b),
and (c), respectively, but with a logarithmic scale.

For these three examples, we compute the expectation value of the energy density operator
and obtain the results displayed as the red dashed lines in Figure 3.8. In general one can see
that the localization property of the LP or BB representation does not give any information
for the localization of the energy density. Indeed, the compact support property of the
states ψLPcomp and FBBcomp is not preserved for the expectation value of the local energy —
Figure 3.8 (a), (d), and (c), (f) — as expected. Moreover, a localized LP representation
implies a nonlocalized BB representation and vice versa due to the form of the isomorphism
I. This is also illustrated in Figure 3.8 (a), (d), and (c), (f), where we have either a
localized LP function and a nonlocalized BB function or a nonlocalized LP function and
a localized BB function. The most general case is shown in Figure 3.8 (b) and (e), where
neither the LP nor the BB representation is localized and so neither is the energy density.
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3.4.6 Localization properties of other states of the quantum electromag-
netic field

In the preceding sections, we have shown the nonlocal property of all single-photon states,
and briefly discussed a direct impact this property could have on their production. In
the present section, we would like to extend this proof to a general N -photon states and
discuss the case of coherent states. Finally, we will show that one cannot see the nonlocal
property of single-photon states using Glauber’s photodetection theory.

3.4.6.1 N-photon states

To construct the most general N -photon state, one takes linear combinations of states
constructed by applying N bosonic creation operator on the vacuum, for instance in the
BB representation

|Nph⟩ =

(
N∏
i=1

Ĉ†
F⃗i

)
|∅⟩ , (3.96)

where the functions F⃗i are elements of HBB. If one wants to describe an N -photon
state carried by the same classical configuration F⃗ , all the F⃗i are taken to be F⃗ and the
N -photon state becomes

|NF⃗ ⟩ =
(
Ĉ†
F⃗

)N
|∅⟩ . (3.97)

To analyze the locality of such states, we start with the particular case of a single classical
configuration for simplicity. Indeed, the expectation value of the electromagnetic energy
density can be computed in a similar way of what we did for the general single-photon
state by using the generalization of the commutators (3.84) and (3.85)[

⃗̂
F(x⃗), (Ĉ†

F⃗
)N
]

= NF⃗ (x⃗)(Ĉ†
F⃗

)N−1, (3.98a)[
(ĈF⃗ )N ,

⃗̂
F†(x⃗)

]
= NF⃗ ⋆(x⃗)(ĈF⃗ )N−1, (3.98b)

which can be computed by induction for N ≥ 1 using (3.84) and (3.85) as the base cases
and the standard identity for commutators [a, bc] = [a, b]c+ b[a, c] for the induction steps.
One has thus for the energy density

⟨Ê(x⃗)⟩|N
F⃗
⟩ =

∑
λ=±

〈
NF⃗

∣∣ ⃗̂F(hλ)† · ⃗̂F(hλ)
∣∣NF⃗

〉
(3.99a)

=
∑
λ=±

⟨∅| (ĈF⃗ )N
⃗̂
F(hλ)† · ⃗̂F(hλ)(Ĉ†

F⃗
)N |∅⟩ (3.99b)

= N2|F⃗ (h+)(x⃗)| 2 +N2|F⃗ (h−)(x⃗)| 2. (3.99c)

The result features a splitting into positive and negative helicity parts from which we
conclude on the intrinsic nonlocality of the state.

For the most general N -photon state, the expression for the mean value of the energy
density is much harder to compute but in fact one does not need to make the full calculation
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to conclude on the nonlocality since

⟨Ê(x⃗)⟩|Nph⟩ =
∑
λ=±

⟨Nph| ⃗̂F(hλ)† · ⃗̂F(hλ) |Nph⟩ (3.100a)

=
∑
λ=±

⟨∅|

(
N∏
i=1

ĈF⃗i

)
⃗̂
F(hλ)† · ⃗̂F(hλ)

 N∏
j=1

Ĉ†
F⃗j

 |∅⟩ (3.100b)

= N2
∑
λ=±

N∏
i,j=1

F⃗
(hλ)⋆
i (x⃗) · F⃗ (hλ)

j (x⃗) ⟨(N − 1)F⃗i
|(N − 1)F⃗j

⟩ (3.100c)

= N2F⃗(h+) +N2F⃗(h−), (3.100d)

where the functions F⃗(hλ) are

F⃗(hλ) =
N∏

i,j=1

F⃗
(hλ)⋆
i (x⃗) · F⃗ (hλ)

j (x⃗) ⟨(N − 1)F⃗i
|(N − 1)F⃗j

⟩ , (3.101)

and are eigenfunctions of the helicity operator with eigenvalue λ. The fact that the result
again can be written as a sum of functions with well-defined helicity, implies that the
result we have explicitly shown for single-photon states, is valid here too. Consequently,
the splitting into helicity part of the energy density allows to explicitly show that any
photon state with a finite number of quanta is nonlocal. This result is in agreement with
Knight’s theorem but again is obtained without using the time-evolution of the states.

3.4.6.2 Coherent states

Coherent states are another class of states that are extensively used in quantum optics:
for fundamental tests, e.g., the analysis of cat states [126], but also for application in
particular the development of continuous variables quantum computing [127] and quantum
key distribution [128–130]. The question of their localization property is thus interesting
to address, especially in regard to the impact it could have for the application.
We recall their definition in terms of Weyl operators (also called displacement operators)

|cohη⃗⟩ = Ŵη⃗ |∅⟩ = exp
(
Ĉ†
η⃗ − Ĉη⃗

)
|∅⟩ (3.102)

for any BB function η⃗ ∈ HBB. They can also be expressed in terms of creation-annihilation
operators as

|cohη⃗⟩ = e−
1
2
⟨η⃗|η⃗⟩BB

∞∑
n=0

1

n!
Ĉ†
η⃗ |∅⟩ . (3.103)

More details and properties of coherent states are given in Appendix E. Regarding the
localization properties, the expression (3.103) shows that a coherent state is a superposition
of an infinite number of multicomponent states which, according to Knight’s theorem, can
be localized. To analyze this result from our model of local detection, we compute the
mean value of the energy density and obtain

⟨Ê(x⃗)⟩|cohη⃗⟩ = |η⃗(h+)(x⃗)| 2 + |η⃗(h−)(x⃗)| 2 + η⃗(h+)⋆(x⃗) · η⃗(h−)⋆(x⃗) + η⃗(h−)(x⃗) · η⃗(h+)(x⃗)

= |η⃗RS(x⃗)| 2, (3.104)
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where the last term is the RS vector related to the BB vector by η⃗RS = η⃗(h+) + η⃗(h−)⋆ (see
Chapter 2). The details of the calculations of the expectation value of the energy density
are given in Appendix E. The question of localization of coherent states in our model for
local detection can thus be answered by analyzing the RS vector for which we recall its
expression in terms of the electromagnetic fields

η⃗RS(x⃗) =

√
ε0
2

(
E⃗(x⃗) + icB⃗(x⃗)

)
. (3.105)

A localized RS vector is thus constructed by taking compactly supported electric and
magnetic fields, i.e., E⃗(x⃗) = B⃗(x⃗) = 0 for all x⃗ outside a volume Vs. As a consequence, co-
herent states can be localized but we emphasize that not all of them are localized. Indeed,
if one construct a state with a compactly supported state function η⃗, the corresponding
η⃗RS will not have a compact support so will not be the expectation value of the energy
density for the associated coherent state. We also remark that all the localized coherent
states are constructed with a delocalized state function η⃗ ∈ HBB since the relation be-
tween the RS and BB vectors involves the splitting into helicity parts. The same remark
applies for the associated LP function due to the form of the isomorphism I. This remark
is another illustration of the irrelevance of the state functions alone to characterize local-
ization properties. It is only through the analysis of both the states and the observables
that one can address the question without ambiguity.

The local character of coherent states is not a surprising result since it is commonly
accepted that they accurately represent what is emitted by a laser [33], which are able to
produce extremely localized pulses as it is experimentally verified with the development
of femtosecond pulses for instance.

3.4.7 Glauber’s photodetection operator

In the quantum optics literature, another model of detection referred to as Glauber’s
photodetection theory [33] is often used to describe the detection of photons. It is built
by considering an ideal apparatus of negligible size that has a frequency-independent
photodetection probability. From this definition, it can be shown that the rate at which
it detects photons is proportional to the expectation value of the following operator

Ĝij(x⃗) = Ê
(f−)
i (x⃗)Ê

(f+)
j (x⃗), (3.106)

where the superscripts (f±) refer to the positive and negative frequency part of the electric
field operator as it is defined in Appendix A and i, j = 1, 2, 3 refer to one particular

component of
⃗̂
E. Using this definition, Ĝ can be expressed in terms of the field operators

for instance in the BB representation, as

Ĝij(x⃗) =
1

2ε0
F̂†
i (x⃗)F̂j(x⃗) (3.107a)

=
1

4

(
ÊiÊj + c2ΛB̂iΛB̂j + icÊiΛB̂j − icΛB̂iÊj

)
. (3.107b)
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One can compute the expectation value of this observable for a general single-photon state
using the commutators (3.84) and (3.85) and obtains [23]

⟨Ĝij(x⃗)⟩|1ph⟩ =
1

2ε0
F ⋆i (x⃗)Fj(x⃗). (3.108)

We remark that the result does not involve a splitting into helicity components and that
therefore the nonlocality of photons is not visible for such a detection model. Indeed,
to construct a function F⃗ ∈ HBB with localized components, one takes a localized field
v⃗, i.e., v⃗(x⃗) = 0 outside a certain open set, which is also true for all the components.
A corresponding localized BB vector is obtained by defining F⃗ = ∇ × v⃗, to ensure the
transversality constraint. Since ∇× does not affect the localization properties, all the
components of F⃗ are localized too. The construction of a localized F⃗ have been illustrated
in Figure 3.8 in a one dimensional example.

The fact that the nonlocality of single photons cannot be seen from the Glauber pho-
todection theory is not surprising because Ĝij(x⃗) is not a local observable since it is not
a point-wise combination of local electromagnetic observables as one can see in (3.107b)
with the presence of the helicity operator Λ.

3.4.8 Nonlocality and causality

In view of the results for the nonlocality of single-photon states, one has to carefully
interpret the consequences of this feature for the production of photons. The fact that the
energy density is delocalized over the whole space for any time, raises the question about
the possibility to produce perfect single photons through a processus that is localized
in a finite volume. Indeed, if one considers a system, localized in a finite volume Vp,
where a single-photon can be produced at a time tp, the nonlocality tells us that the
expectation value of the energy density will be instantaneously nonzero in any volume Vd

where a detector is placed. Consequently, the probability to detect the produced photon
immediately after its production is nonzero, no matter what is the position of the detector.
In particular, the causality requirements are explicitely not statisfied and we remind that
the quantum field theory for the electromagnetic field is a relativistic theory as we have
already discussed with its construction in the BB representation. A direct repercussion
of this assessment is that perfect single-photon states cannot be produced by a physical
process localized in a finite volume. One can expect that approximate single photons can
be produced, as evidenced by the various experiments producing states with behaviors that
are very close to single-photon state signatures, but they must be an infinite superposition
of states with multiphoton contributions.

We note that the theory we have been constructing and analyzing so far does not predict
the production of single-photon states since it is a free theory, without any interaction
with matter1, which is needed for the production of photons. The theory is thus perfectly
consistent and for now, the existence of any photon state we have been using was always
an assumption. The nonlocality of single-photon states is therefore not a failure of the
theory which does not give any information about the production.

1The interaction with the propagating medium is in our case considered as a passive interaction meaning
that it cannot produce nor destroy any photon.
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In the next chapter, we will focus on the production of photons to complete our analysis of
the nonlocality. We will see that the systems able to produce photon states in a localized
volume in fact produce states with multiphoton components. It gives then a consistent
result from a causality point of view. Besides this, the existence of experimental states
with behaviors close to what we expect from single photons, is a clear indication that these
multiphoton component must be small, not zero but small. The characterization of these
components is an important theoretical inquiry especially with the current development
of photon number resolving detectors [131–134]. Moreover, applications like time-bin
encoding (see beginning of this chapter) seems to be working in practice [92,100–102] even
though the basic principles do not take into account the nonlocality.
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To analyze some of the photon properties, as we have done in the preceding chapter, we
have assumed that one can create photons in a reliable way. This chapter deals with that
question and will address it by considering atoms as photon emitters.

To start, we consider the simplest process known to produce photons: spontaneous emis-
sion, and we look at the projection into the single-photon subspace of the dynamics. Within
this approximation, we compute the energy density mean value of the emitted photon and
show that it is nonlocal with an asymptotic radial decay of 1/r6 for distances far away from
the atom. Then we consider the production of photons in a controlled way using a cavity
quantum electrodynamics scheme in a perfect cavity. In that context, we discuss the im-
portance of the rotating wave approximation which allows to predict perfect single-photon
states. The validity of this approximation is thus analyzed, and we show using the Floquet
theory that it is a relevant approximation in the adiabatic limit. Finally, as preliminary
results, we introduce quasinormal modes as particular solutions of the wave equation with
outgoing boundary conditions. By defining a dynamical function made of a spatially trun-
cated quasinormal mode, we show that they can be used to describe the leakage of a photon
from the cavity. We then introduce a heuristic quantum model by using a hybrid basis
composed of quasinormal modes in the cavity, allowing to describe the system in a way
similar to what is usually done for perfect cavities but including the leakage.

The first part of this Chapter has led to the article [4].
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4.1 Spontaneous emission of a Hydrogen atom

The description of the spontaneous decay of a Hydrogen atom is a standard calculation
that can be done using either the Weisskopf-Wigner theory [135–137] or time-dependent
perturbation theory, e.g., with the Fermi golden rule [137]. These two approaches are
usually applied to the Hydrogen atom approximated by a two-level system that is coupled
to the quantized electromagnetic field in vacuum through a dipole coupling. These models
are quite successful in describing the atomic decay, and allow to understand interesting
experimental results like the Purcell effect. However, these approaches in general consider
a dipole coupling between the field and the atom, taken as a two-level system, which
prevents from computing the state of the emitted photons since there is a frequency Lamb
shift given by a diverging intergral. The treatment of this divergence could be done by
a renormalization procedure, as suggested in [138]. This problem was discussed, e.g.,
in [45–49,139] and a way out was found by considering a minimal coupling instead of the
dipole approximation, which provides an intrinsic ultraviolet cutoff function that avoids
the need of a renormalization. Following the results of Moses [45, 46] (see also [49, 140]),
we will alternatively use a model for spontaneous emission with a coupling of the form

⃗̂p · ⃗̂A, which allows to compute the state of the emitted photon and we will then analyze
its energy density distribution across space to characterize its falloff. We show that in
this single-photon approximation, the mean energy density decreases as 1/r6 with the
distance, which is quite far from the maximal quasi-exponential decrease rate established
by Bia lynicki-Birula [38].
The usual intuition about spontaneous emission is that it produces pure single-photon
states, without any multiphoton components. However, the result on the nonlocality of
the energy density and the remark about causality we have discussed before indicate that
this is an approximation. There must be a linear combination of n-photon components
for arbitrarily high n. The weights of these components can be small, but they cannot be
zero.
In what follows, we consider the spontaneous emission from the first excited state of a
Hydrogen atom, making a single-photon approximation with the projection on the single-
photon subspace. With this projection, we obtain a model of Weisskopf-Wigner type
that is amenable to an explicit solution and to a description of the space-time properties
of the produced single-photon state, as probed by the energy density expectation value.
This approach is a first step towards a deeper characterization of such emission, where
one should also include multiphoton components. It would give an information about
the importance of these higher photon contributions for the emission to be causal. Some
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results in this direction were obtained in [141, 142]. This second step, that we do not
pursue in this work, would be an interesting theoretical analysis that one could hope to
test experimentally with the current development of photon number resolving detectors
[131–134].

4.1.1 Model

We consider a non-relativistic Hydrogen atom represented by a two-level system corre-
sponding to the Lyman-α transition with ground state |ng = 1; jg = 0;mg = 0⟩ ≡ |g⟩ and
excited state |ne = 2; je = 1;me = 0,±1⟩ ≡ |e⟩. This transition is relevant since it can be
prepared experimentally by applying, e.g., a π-pulse on the ground state with a linearly
polarized laser light for me = 0 and a circularly polarized laser light for me = ±1. The
wavefunctions associated to the ground and excited states are, respectively,

|g⟩ = φg(r, ϑ, φ) =
1√
πr3B

e
− r

rB , (4.1a)

|e⟩ = φe(r, ϑ, φ) = βme(ϑ, φ)
r

rB
e
− r

2rB . (4.1b)

where rB = ℏ/αmc is the Bohr radius expressed here in terms of the fine structure constant
α, the electron mass m and the speed of light c. The functions βme(ϑ, φ) depend on the
choice that is made for me = {0,±1} and read

β0(ϑ, φ) =
1

4
√

2πr3B

cosϑ, β±1(ϑ, φ) = ∓ 1

8
√
πr3B

sinϑ e±iφ, (4.2)

The free Hamiltonian of the two-level atom can be expressed as

Ĥat = Eg |g⟩ ⟨g| + Ee |e⟩ ⟨e| , (4.3)

where Eg and Ee are the energies of the ground and excited states, respectively. To
describe the spontaneous emission, the two-level Hydrogen atom is interacting with the

quantized electromagnetic field which we write using the basis |k, J,M, λ⟩ ≡ ψ⃗
(λ)
k,J,M of

helicity vector spherical harmonics as defined in (1.89):

Ĥem =

∫ ∞

0
dk
∑
J,M

∑
λ=±

ℏωkB̂†
ψ⃗
(λ)
k,J,M

B̂
ψ⃗
(λ)
k,J,M

. (4.4)

For the interaction part, and following [45], we take an operator of the form

Ĥint = − e

m
⃗̂p · ⃗̂A(x⃗), (4.5)

where ⃗̂p = −iℏ∇ is the momentum operator of the electron and
⃗̂
A(x⃗) is the vector potential

in the Coulomb gauge and −e the charge of the electron.
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Remark:
⃗̂
A(x⃗) acts on the whole tensor product space Hat ⊗ Hem with Hat = C2 and

Hem = F(H ). However, in the Coulomb gauge, [⃗̂p,
⃗̂
A(x⃗)] = 0 since for any state |f⟩ ⊗ |ϕ⃗⟩ ≡

|f, ϕ⃗⟩ ≡ |φf , ϕ⃗⟩

−iℏ∇ ·
(
⃗̂
A(x⃗) |f, ϕ⃗⟩

)
= −iℏ

(
∇ · ⃗̂A(x⃗)

)
|f, ϕ⃗⟩ − iℏ ⃗̂A(x⃗) · |∇φf , ϕ⃗⟩ (4.6a)

= −iℏ ⃗̂A(x⃗) · |∇φf , ϕ⃗⟩ (4.6b)

=
⃗̂
A(x⃗) · ⃗̂p |f, ϕ⃗⟩ . (4.6c)

The resulting total Hamiltonian is finally

Ĥ = Ĥat + Ĥem + Ĥint (4.7a)

= Eg |g⟩ ⟨g| + Ee |e⟩ ⟨e| +

∫ ∞

0
dk
∑
J,M

∑
λ=±

ℏωkB̂†
ψ⃗
(λ)
k,J,M

B̂
ψ⃗
(λ)
k,J,M

− e

m
⃗̂p · ⃗̂A(x⃗), (4.7b)

where regarding the interaction, we have neglected the Â2 term coming from the minimal
coupling since it has been shown by Moses [45] (see also [48,140]) that taking an interaction

of the form ⃗̂p · ⃗̂A is enough to have a consistent model allowing to compute the photon
state. Moreover, the typical order of magnitude for the effects relating to the Â2 term

have been estimated to be much smaller than those from the ⃗̂p · ⃗̂A term [29].
In the following, since we are interested in the characterization of single photons, we project
the system into the subspace generated by the vacuum and the single-photon states, which
corresponds in the tensor product Hilbert space to the subspace generated by

{|e;∅⟩ , |g; ψ⃗
(λ)
k,J,M ⟩},

i.e., the atom in its excited state and zero photons or the atom in its ground state and
one photon. Within this subspace, the interaction coefficient takes the form [45]

ρ(k, J,M, λ) = − e

m
⟨g; ψ⃗

(λ)
k,J,M | ⃗̂p · ⃗̂A(x⃗) |e;∅⟩ (4.8a)

=

(
2

3

)7/2
√
α5

π
mc2

1√
k

k/K[
1 +

(
k
K

)2]2 δJ,1δM,me (4.8b)

≡ ρ(k)δJ,1δM,me , (4.8c)

where K = 3/(2rB). A step-by-step derivation of this formula is given in Appendix F.

Remarks:

� We have chosen a slightly different convention for the global phases of the eigenfunctions

ψ⃗
(λ)
k,J,M than the one of [45]. Our convention has the advantage that ρ is real and

independent of the helicity λ.

� It was shown in [45–47,49,140] that using the ⃗̂p· ⃗̂A interaction without making the electric
dipole approximation, leads to a coupling ρ(k) that does not diverge for k → ∞. This
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4.1 Spontaneous emission of a Hydrogen atom

avoids the problem encountered with the dipole approximation that the frequency shift
for the photons in the solution of the Weisskopf-Wigner equation was divergent.

4.1.2 Weisskopf-Wigner equations

If one considers a general state in such subspace

|Ψ⟩ = c0 |e;∅⟩ +

∫ ∞

0
dk
∑
J,M,λ

ck,J,M,λ |g; ψ⃗
(λ)
k,J,M ⟩ , (4.9)

the standard Schrödinger equation gives a set of coupled equations for the coefficients

iℏċ0(t) = Eec0(t) +

∫ ∞

0
dk
∑
λ=±

ρ(k)ck,J=1,M=me,λ(t), (4.10a)

iℏċk,J ̸=1,M ̸=me,λ(t) = (Eg + ℏωk) ck,J ̸=1,M ̸=me,λ(t), (4.10b)

iℏċk,J=1,M=me,λ(t) = ρ(k)c0(t) + (Eg + ℏωk) ck,J=1,M=me,λ(t), (4.10c)

from which we extract first the solution for the coefficients

ck,J ̸=1,M ̸=me,λ(t) = e−i(Eg/ℏ+ωk)ck,J ̸=1,M ̸=me,λ(t = 0). (4.11)

In order to study spontaneous emission, we consider the following initial condition

c0(t = 0) = 1, (4.12a)

ck,J,M,λ(t = 0) = 0, for any k, J,M and λ, (4.12b)

implying directly
ck,J ̸=1,M ̸=me,λ(t) = 0, for all t. (4.13)

The set of equation is thus reduced to

iℏċ0(t) = Eec0(t) +

∫ ∞

0
dk
∑
λ=±

ρ(k)ck,λ(t), (4.14a)

iℏċk,λ(t) = ρ(k)c0(t) + (Eg + ℏωk) ck,λ(t), (4.14b)

where we have introduced the shorter notation ck,J=1,M=me,λ ≡ ck,λ. This set of equations
is actually composed of three equations if one considers both helicities

iℏċ0(t) = Eec0(t) +

∫ ∞

0
dkρ(k) (ck,+(t) + ck,−(t)) , (4.15a)

iℏċk,+(t) = ρ(k)c0(t) + (Eg + ℏωk) ck,+(t), (4.15b)

iℏċk,−(t) = ρ(k)c0(t) + (Eg + ℏωk) ck,−(t). (4.15c)

Since ρ(k) is λ-independent, the last two equations are also λ-independent and thus
ck,+(t) = ck,−(t) for all t and one can define dk(t)/

√
2 = ck,λ(t), to rewrite the set of

dynamical equations as

iċ0(t) = ωac0(t) +

∫ ∞

0
dk

√
2

ℏ
ρ(k)dk(t), (4.16a)

iḋk(t) =

√
2

ℏ
ρ(k)c0(t) + ωkdk(t), (4.16b)
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and then in terms of ωk = ck

iċ0(t) = ωac0(t) +

∫ ∞

0
dωkρ̃(ωk)Dωk

(t), (4.17a)

iḊk(t) = ρ̃(ωk)c0(t) + ωkDk(t), (4.17b)

where

ρ̃(ωk) =

√
2

cℏ2
ρ(ωk), (4.18)

and we have set Eg = 0, Ee − Eg = ℏωa and

Dωk
= dωk

/
√
c. (4.19)

One can then write the set of equations (4.17) in a matrix form

i

[
ċ0
Ḋωk

]
=

[
ωa ⟨ρ̃|·⟩
ρ̃ ωk

] [
c0
Dωk

]
, (4.20)

which is the Friedrichs-Lee formulation [143, 144]. We remark that the choice of the
prefactors in the variables Dωk

and ρ̃(ωk) is made in order to obtain a formulation very
close to the notations used in [136, Section 17.3], where the solution of the model is given
as

c0(t) =

∫ ∞

0
dω g(ω)e−iωt, (4.21a)

Dωk
(t) = −ie−iωktρ̃(ωk)

∫ t

0
dt′ eiωkt

′
c0(t

′), (4.21b)

with

g(ω) =
1

2π

Γ(ω)

(ω − ωe − ∆(ω))2 + Γ(ω)2

4

, (4.22)

and

Γ(ω) = 2π|ρ̃(ω)| 2, (4.23a)

∆(ω) = pv

∫ ∞

0
dωk

|ρ̃(ωk)| 2

ω − ωk
. (4.23b)

Equations (4.21), (4.22) and (4.23) give the exact solution of the Weisskopf-Wigner model
in terms of integrals, provided that the coupling is weak enough to guarantee that the
spectrum is absolutely continuous. A derivation of these results is given in Appendix G
for any model which can be written like (4.20).

To have a concrete expression of these parameters, we express the coupling function in
terms of ωk = ck

ρ̃(k) = ρ̃(ωk/c) =

(
2

3

)7/2
√

2α5

πℏ2
mc2

1
√
ωk

ωk/(cK)[
1 +

(
ωk
cK

)2]2 ≡ ρ̃(ωk). (4.24)
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In the weak coupling regime g(ω) has a high peak centered at ω = ωa and one can thus
make the following approximation [136]

g(ω) ≃ gw(ω) =
1

2π

Γ(ωa)

(ω − ωa − ∆(ωa))2 + Γ(ωa)2

4

(4.25a)

=
1

2π

Γa

(ω − ωa − ∆a)2 + Γ2
a
4

, (4.25b)

which allows to express c0(t) as

c0(t) ≃
∫ ∞

0
dω gw(ω)e−iωt = e−

Γa
2
te−i(ωa+∆a)t, (4.26)

yielding a result essentially equivalent to the Weisskopf-Wigner approximation. From this,
one can compute

Dωk
(t) = −ie−iωktρ̃(ωk)

∫ t

0
dt′ eiωkt

′
c0(t

′) (4.27a)

≃ −ie−iωktρ̃(ωk)

∫ t

0
dt′ e−

Γa
2
t′e−i(ωa−ωk+∆a)t′ (4.27b)

= −i ρ̃(ωk)
Γa
2 + i(ωa − ωk + ∆a)

(
e−iωkt − e−i(ωa+∆a)te−

Γa
2
t
)
. (4.27c)

4.1.3 Spatial distribution of the energy density

Using the preceding results, we are going to express the state of the photon that is spon-
taneously emitted by the Lyman-α transition of the Hydrogen atom in the single photon
approximation, and then compute the expectation value of the electromagnetic energy
density to characterize the nonlocality of such photons. We consider here only the photon
part of the state, i.e.,

ψ⃗ph(r, ϑ, φ) =

∫ ∞

0
dk
∑
λ=±

ck,λ(t)ψ⃗
(λ)
k (r, ϑ, φ) (4.28a)

=

∫ ∞

0
dk
dk(t)√

2

(
ψ⃗
(+)
k (r, ϑ, φ) + ψ⃗

(−)
k (r, ϑ, φ)

)
, (4.28b)

where we use the abridged notation ψ⃗
(λ)
k ≡ ψ⃗

(λ)
k,J=1,M=me

. The positive and negative
helicity parts of the state can be written as

ψ⃗
(h±)
ph (r, ϑ, φ) =

∫ ∞

0
dk
dk(t)√

2
ψ⃗
(±)
k (r, ϑ, φ). (4.29)

To compute the mean value, one further needs

Ω
1/2ψ⃗

(hλ)
ph (r, ϑ, φ) =

∫ ∞

0
dk
dk(t)√

2
Ω

1/2ψ⃗
(λ)
k (r, ϑ, φ) =

∫ ∞

0
dk

√
ωk
2
dk(t)ψ⃗

(λ)
k (r, ϑ, φ), (4.30)

85



Chapter 4. Production of photons

and ∣∣∣Ω1/2ψ⃗
(hλ)
ph (r, ϑ, φ)

∣∣∣2 =

∣∣∣∣∫ ∞

0
dk

√
ωk
2
dk(t)ψ⃗

(λ)
k (r, ϑ, φ)

∣∣∣∣2. (4.31)

To be able to compute these terms, we need to insert the functions ψ⃗
(λ)
k (r, ϑ, φ) which

according to (1.89) read

ψ⃗
(λ)
k (r, ϑ, φ) =

i√
π
k

[√
2

3
j0(kr)Y⃗

0
1,me

(ϑ, φ) −
√

1

3
j2(kr)Y⃗

2
1,me

(ϑ, φ) − iλj1(kr)Y⃗
1
1,me

(ϑ, φ)

]
.

(4.32)

The integral in (4.30) becomes thus

Ω
1/2ψ⃗

(hλ)
ph (r, ϑ, φ) =

i√
π

∫ ∞

0
dk

√
ωk
2
dk(t)k

[√
2

3
j0(kr)Y⃗

0
1,me

− 1√
3
j2(kr)Y⃗

2
1,me

−

iλj1(kr)Y⃗
1
1,me

]
(4.33a)

= F0(r, t)Y⃗
0
1,me

+ F1(r, t)Y⃗
1
1,me

+ F2(r, t)Y⃗
2
1,me

(4.33b)

=
2∑

L=0

FL(r, t)Y⃗ L
1,me

(ϑ, φ), (4.33c)

where we have defined

F0(r, t) =
i√
3π

∫ ∞

0
dk

√
ωkdk(t)kj0(kr), (4.34a)

F1(r, t) =
λ√
2π

∫ ∞

0
dk

√
ωkdk(t)kj1(kr), (4.34b)

F2(r, t) = − i√
6π

∫ ∞

0
dk

√
ωkdk(t)kj2(kr). (4.34c)

Equation (4.31) can thus be written as∣∣∣Ω1/2ψ⃗
(hλ)
ph (x⃗)

∣∣∣2 =

2∑
L=0

2∑
L′=0

F ⋆L(r, t)FL′(r, t)Y⃗ L⋆
1,me

· Y⃗ L′
1,me

, (4.35)

and to go further into the calculation, we need to express the integrals FL which are
proportional to

FL(r, t) ∝
∫ ∞

0
dk

√
ωkkdk(t)jL(kr) (4.36a)

=

∫ ∞

0
dk ck

3/2Dk(t)jL(kr). (4.36b)

We then insert (4.27) to obtain

FL(r, t) ∝ −i
(

2

3

)7/2
√

2cα5

πℏ2
mc2

∫ ∞

0
dk

kjL(kr)

Γ̃a + i(Ωa − k)

k/K[
1 +

(
k
K

)2]2 (e−iωkt − e−i(Ωa−iΓ̃a)t
)
,

(4.37)
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with the abridged notations

Γ̃a =
Γa

2
, Ωa = ωa + ∆a. (4.38)

To analyze the asymptotic behavior r → +∞ of the FL functions, we express them in
terms of the dimensionless parameters

A =
Γ̃a

cK
=

Γa

2cK
, B =

Ωa

cK
=
ωa + ∆a

cK
, (4.39a)

p = cKt, q =
k

K
, r′ = Kr, (4.39b)

as

FL(r, t) ∝ −i
(

2

3

)7/2
√

2α5K2

πcℏ2
mc2

∫ ∞

0
dq

q2

A+ i(B − q)

jL(qr′)

[1 + q2]2

(
e−iqp − e−i(Ωa−iΓ̃a)t

)
.

(4.40)
We also express the spherical Bessel functions in terms of qr′

j0(kr) =
sin(kr)

kr
=

sin(qr′)

qr′
, (4.41a)

j1(kr) =
sin(kr)

k2r2
− cos(kr)

kr
=

sin(qr′)

q2r′2
− cos(qr′)

qr′
, (4.41b)

j2(kr) =
3

kr
j1(kr) − j0(kr) =

3

qr′
j1(qr

′) − j0(qr
′), (4.41c)

and we perform an asymptotic analysis for r′ → ∞. The details of the calculations are
given in Appendix H where we show that F1(r

′, t) is the leading term with the following
behavior

F1(r
′, t) ∼

r′→∞
−iλ

(
2

3

)5/2
√
α5

c

mc2

πℏrB
T (t)

1

r′3
. (4.42)

Here, T (t) is a dimensionless function of time which reads

T (t) =
1

A+ iB

(
1 − e−i(Ωa−iΓ̃a)t − 2icKt+ i

1 − e−i(Ωa−iΓ̃a)t

A+ iB

)
. (4.43)

In view of this result, the sum (4.35) can be rewritten in the asymptotic limit as∣∣∣Ω1/2ψ⃗
(hλ)
ph (x⃗)

∣∣∣2 ∼
r′→∞

|F1(r
′, t)| 2Y⃗ 1⋆

1,me
· Y⃗ 1

1,me
(4.44a)

=

(
2

3

)5 α5m2c3

π2ℏ2r2B
|T (t)| 2 1

r′6
Y⃗ 1⋆
1,me

· Y⃗ 1
1,me

, (4.44b)

where we have discarded the terms which decrease faster than 1/r′6.

We need now to compute the angular part for which we have to pick different values of
me. We start with me = 0, meaning, e.g., that the atom has been prepared in the first
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Figure 4.1: Plot of the angular distribution γ|me|(ϑ) of the photon state emitted by sponta-
neous emission of the Lyman-α transition of a Hydrogen atom, obtained in the asymptotic
limit of large distances. The green solid line is the distribution for an excited state with
me = 0. The red dashed line is the distribution for an excited state with |me| = 1.

excited state using a linearly polarized light. In this case, the vector spherical harmonic
and its scalar product with itself are

Y⃗ 1
1,0 = i

√
3

8π

− sinϑ sinφ
sinϑ cosφ

0

 , Y⃗ 1⋆
1,0 · Y⃗ 1

1,0 =
3

8π
sin2 ϑ, (4.45)

yielding for the asymptotics∣∣∣Ω1/2ψ⃗
(hλ)
ph (x⃗)

∣∣∣2 ∼
r′→∞

(
2

3

)4 α5m2c3

4π3ℏ2rB
|T (t)|2γ0(ϑ)

1

r′6
. (4.46)

The angular distribution γ0(ϑ) = sin2 ϑ is represented by the green solid curve in Figure
4.1. The other two possibilities, me = ±1 yield the following vector spherical harmonics
and corresponding scalar products with themselves

Y⃗ 1
1,±1 = −

√
3

16π

 ± cosϑ
i cosϑ

sinϑ e±iφ

 , Y⃗ 1⋆
1,±1 · Y⃗ 1

1,±1 =
3

16π

(
1 + cos2 ϑ

)
, (4.47)

which give asymptotics of the form∣∣∣Ω1/2ψ⃗
(hλ)
ph (x⃗)

∣∣∣2 ∼
r′→∞

(
2

3

)4 α5m2c3

4π3ℏ2rB
|T (t)|2γ1(ϑ)

1

r′6
. (4.48)

The angular distribution γ1(ϑ) = (1 + cos2 ϑ)/4 is represented by the red dashed curve in
Figure 4.1.
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4.1 Spontaneous emission of a Hydrogen atom

To summarize the results, one reinstates the original variables so that the positive and
negative helicity parts of the energy density mean value read∣∣∣Ω1/2ψ⃗

(h±)
ph (x⃗)

∣∣∣2 =

(
2

3

)10 m2c3r4Bα
5

4π3ℏ2
γ|me|(ϑ)|T (t)|2 1

r6
+ o

(
1

r6

)
. (4.49)

We remark that the result does not depend on the helicity, thus the full energy density
mean value of the spontaneously emitted photon, in the asymptotic limit of large distances,
is twice this result multiplied by ℏ

⟨Êem⟩|1ph⟩ =

(
2

3

)10 m2c3r4Bα
5

2π3ℏ
γ|me|(ϑ)|T (t)|2 1

r6
+ o

(
1

r6

)
. (4.50)

4.1.4 Interpretation and multiphoton components

As we explained in the beginning of this section, the model we use to describe spon-
taneous emission does not predict the production of single-photon states only but also
multiphoton components. Our calculation however only takes into account single photons
since we looked at the interaction by projecting into the single-photon subspace. The
resulting asymptotic distribution of the energy density mean value for distances far from
the atom yields a decrease which scale like 1/r6. This behavior, which is far from the
quasi-exponential limit derived in [38], illustrates the fact that one should consider higher
photon number components without which the emission would not be causal. Indeed, at
any fixed time t there would be a non-zero probability of detecting the photon with an
instrument located at an arbitrary distance r from the source, in particular one could take
r > ct, where c is the speed of light. This was already stated in [141] in an analysis of
the energy density for spontaneous emission within a second order perturbation theory,
but without a characterization of the decrease of its mean value. Similar calculations with
asymptotics of the energy density for near and far fields up to second order in perturbation
theory were also performed in [142, Section 7.2] but for the dressed atomic ground state
only.

The non causality of the spontaneous emission of single-photon states by a non-relativistic
Hydrogen atom was also analyzed in [145–149]. In this series of articles, a representation
of the state, that is essentially equivalent (up to a global phase) to the BB representation,
is used to look at the emitted single-photon state in the near-, mid- and far-field regions
as well as within multiple time regimes such as the Zeno regime for very short times, the
Fermi regime for short times and the Weisskopf-Wigner regime for long times. The model
used for this analysis is of Weisskopf-Wigner type with a full coupling of the form (4.8).
However, no local observables are introduced to probe the nonlocality as we have done
with the energy density, and the nonlocality is analyzed only through the properties of
the state functions. This is a major limitation as we already discussed in Section 3.4.3
since a state can be found with a compact support while its expectation value for a local
observable is not (see Figure 3.8).

Another remark was made in [150] concerning the nonlocality of the atomic wave functions.
Indeed, eigenfunctions of the Hydrogen atom (4.1) decrease exponentially in the radial
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variable meaning that they are nonzero everywhere. Based on this remark, the emission
of photons cannot be expected to be local but should at least have an exponential tail.
This effect has been described as a “blurring of the light cone” and should be of the same
order as the quasiexponential decrease limit of [38]. However, the algebraic decrease that
we found cannot be solely justified by the nonlocality of the atomic part and is thus mostly
a feature coming from photon’s properties.

In view of these remarks, an open question that should be addressed is the determination
of the weights of the n-photon components in concrete emission processes, like spontaneous
emission or in the production of photons at demand by the different techniques that are
being developed experimentally.

4.2 Photon production in perfect cavities

In practice, to produce on demand single photons from individual atoms, one needs to
have a very good control of the light-matter interaction. To do so, cavities are often used
to enhance the light-matter coupling for some particular atomic transitions. The atom can
be described by a 2- or 3-level system as we have discussed in Chapter 1, which allows to
drastically reduce the dimensionality of the problem. Moreover, if the cavity is considered
to be perfect, i.e., the mirrors are 100% reflective, only a set of discrete electromagnetic
modes exist in the cavity and will be available to be populated by the produced photons.
Therefore, instead of describing a system composed of a large number of energy levels
interacting with a continuum of electromagnetic configurations, one needs to deal with
two or three energy levels interacting with a few quantum electromagnetic modes. This
huge simplification of the problem justifies this approach, even though perfect cavities do
not exist in practice. Conversely, since calculations are often very heavy when cavities are
far from perfect, it also justifies why experimental techniques have been extensively used
to construct cavities that are close to perfect, i.e., with high quality factor Q.

Due to the theoretical results on the nonlocality of single-photon states, and to the ex-
perimental progress for the construction of on-demand single-photon sources, we want in
this section to analyze the models that are used to describe these experiments. Indeed, we
want to give a theoretical insight into the importance of the multiphoton components that
are predicted by certain models but which can also be removed with some approximations,
like the rotating wave approximation (RWA). The validity of this approximation is thus a
central question that we want to analyze in the following.

4.2.1 Hamiltonian and rotating wave approximation

To analyze the possible production of single photons in a perfect cavity, we consider a
model in which a 2-level system interacts with the quantized electromagnetic field of a
perfect cavity and an external laser field described classically. In a cavity, the quantum
description of the electromagnetic field we have been using so far is still valid. The
difference will come from the classical electromagnetic configurations on which photons
are created. Since the emitter is a 2-level atom {|e⟩ , |g⟩}, we can select one cavity mode
which has a frequency ωc that is the closest to the 2-level transition ωa = (Ee − Eg)/ℏ,
where Ee,g are the respective energies of the excited and ground states. The Hamiltonians
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of the two isolated subsystems are thus

Ĥat = Ee |e⟩ ⟨e| + Eg |g⟩ ⟨g| , (4.51a)

Ĥc = ℏωcB̂
†
ζ⃗
B̂
ζ⃗

= ℏωcâ
†â, (4.51b)

where ζ⃗(x⃗) is the resonant cavity mode chosen to be real. Since the cavity will be described
only with one mode, we have also introduced the single-mode creation-annihilation op-
erators â = iB̂

ζ⃗
and â† = −iB̂†

ζ⃗
, which is the standard choice in the cavity quantum

electrodynamics (cQED) literature. Here, Ĥat acts on the atomic Hilbert space C2 and
Ĥc on the single-mode bosonic Fock space F = {|n⟩ , n ∈ N}, where n is interpreted as
the number of photons in the cavity.

The interaction Hamiltonian can be split into two parts: the full quantum part which
describes the interaction between the atom and the cavity, and the semi-classical part
which describes the interaction between the quantum atom and the classical laser field.
In order to start with the simplest model possible, we consider a dipole coupling and to
justify this choice in our context, we recall (see Chapter 1) that the dipole coupling arises
from the long wavelength approximation which is relevant if one chooses a cavity mode
with a resonant wavelength λc = 2πc/ωc large compared to the typical atomic dimensions,
i.e., λc ≫ rB. Cavity QED experiments are in general performed in the infrared or visible
domain so that typical wavelengths are of the order of 10−5m ≫ rB ≃ 10−10m.

The interaction Hamiltonian reads thus

Ĥint = −⟨e| ⃗̂d · E⃗(x⃗at, t) |g⟩ (|e⟩ ⟨g| + |g⟩ ⟨e|) − ⟨e| ⃗̂d · ⃗̂Ec(x⃗at, t) |g⟩ (|e⟩ ⟨g| + |g⟩ ⟨e|) , (4.52)

where E⃗(x⃗at, t) is the classical electric field created by the control laser and
⃗̂
Ec(x⃗at, t) is the

cavity quantized electric field. The time dependence of the quantized field has been added
to account for the motion of the atom inside the cavity. This motion is not always needed
to have a control scheme able to produce photons but it is anyway unavoidable practically.
The semi-classical first term in (4.52) is identical to what we had in Chapter 1 and it can
thus be reformulated in the same way. The second full quantum term however needs the
expression of the quantized electric field in terms of the cavity-mode creation-annihilation
operators which is

⃗̂
Ec(x⃗at, t) =

√
ℏωc

2ε0
ζ⃗(x⃗at, t)

(
â+ â†

)
. (4.53)

The interaction Hamiltonian can thus be rewritten as

Ĥint =
ℏΩeg(t)

2

(
eiωLt + e−iωLt

)
(|e⟩ ⟨g| + |g⟩ ⟨e|) + ℏG(t)

(
â+ â†

)
(|e⟩ ⟨g| + |g⟩ ⟨e|)

(4.54a)

=
ℏΩeg(t)

2

(
0 eiωLt + e−iωLt

eiωLt + e−iωLt 0

)
+ ℏG(t)

(
0 â+ â†

â+ â† 0

)
, (4.54b)

and the full Hamiltonian as
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Ĥ = ℏ
(
â†â 0
0 ωa + â†â

)
+ℏG(t)

(
0 â+ â†

â+ â† 0

)
+
ℏΩeg(t)

2

(
0 eiωLt + e−iωLt

eiωLt + e−iωLt 0

)
(4.55)

where we have set the zero of energy Eg = 0 and the Rabi frequency G(t) =
√

ωc
2ℏε0 ζ⃗(t) · d⃗.

This Hamiltonian is general and is usually simplified by applying the rotating wave ap-
proximation (RWA) as introduced in Chapter 1 for the semi-classical interaction. We want
now to explain why such approximation is relevant for the quantum interaction too. To do
so, we consider the Hamiltonian (4.55) wihtout the classical control, i.e., Ωeg(t) = 0 for all
t and with a constant cavity coupling G(t) ≡ G for all t. We obtain the Rabi Hamiltonian

ĤRabi = ℏωat |e⟩ ⟨e| + ℏωcâ
†â+ ℏG

(
â+ â†

)
(|e⟩ ⟨g| + |g⟩ ⟨e|) (4.56a)

= Ĥ0 + Ŵ , (4.56b)

where Ĥ0 = ℏωa |e⟩ ⟨e| + ℏωcâ
†â and Ŵ = ℏG

(
â+ â†

)
(|e⟩ ⟨g| + |g⟩ ⟨e|). To decide which

interaction terms produce resonances, we treat the Rabi Hamiltonian perturbatively, con-
sidering Ĥ0 as the unperturbed part where the set {|g;n⟩ , |e;n⟩} is a basis of eigenstates
with eigenvalues

Ĥ0 |g;n⟩ = nℏωc |g;n⟩ = Eg,n |g;n⟩ , (4.57a)

Ĥ0 |e;n⟩ = (ℏωa + nℏωc) |g;n⟩ = Ee,n |e;n⟩ . (4.57b)

Time-independent perturbation theory allows to compute the corrections to these eigen-
states and eigenenergies for the perturbation Ŵ . We obtain up to second order for the
energies

Ecorr.
g,n = Eg,n + ⟨g;n| Ŵ |g;n⟩ +

∑
s=g,e

∑
m̸=n

|⟨s,m| Ŵ |s, n⟩| 2

Es,n − Es,m
(4.58a)

= Eg,n +
|⟨e;n− 1| ℏG |e⟩ ⟨g| â |g;n⟩| 2

Eg,n − Ee,n−1
+

|⟨e;n+ 1| ℏG |e⟩ ⟨g| â† |g;n⟩| 2

Eg,n − Ee,n+1
(4.58b)

= Eg,n −
nℏG2

ωa − ωc
− (n+ 1)ℏG2

ωa + ωc
, (4.58c)

and

Ecorr.
e,n = Ee,n + ⟨e;n| Ŵ |e;n⟩ +

∑
s=g,e

∑
m̸=n

|⟨s,m| Ŵ |s, n⟩| 2

Es,n − Es,m
(4.59a)

= Ee,n +
|⟨g;n+ 1| ℏG |g⟩ ⟨e| â† |e;n⟩| 2

Ee,n − Eg,n+1
+

|⟨g;n− 1| ℏG |g⟩ ⟨e| â |e;n⟩| 2

Ee,n − Eg,n−1
(4.59b)

= Ee,n +
(n+ 1)ℏG2

ωa − ωc
+

nℏG2

ωa + ωc
. (4.59c)
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The corrected states up to the first order are

|g;n⟩corr. = |g;n⟩ +
∑
s=g,e

∑
m ̸=n

⟨s;m| Ŵ |s;n⟩
Es,n − Es,m

|s;m⟩ (4.60a)

= |g;n⟩ − G
√
n

ωa − ωc
|e;n− 1⟩ − G

√
n+ 1

ωa + ωc
|e;n+ 1⟩ , (4.60b)

and

|e;n⟩corr. = |e;n⟩ +
∑
s=g,e

∑
m̸=n

⟨s;m| Ŵ |s;n⟩
Es,n − Es,m

|s;m⟩ (4.61a)

= |e;n⟩ +
G
√
n+ 1

ωa − ωc
|g;n+ 1⟩ +

G
√
n

ωa + ωc
|g;n− 1⟩ . (4.61b)

We see that corrections come with different amplitudes due to the denominators of the
form ωa − ωc ≃ 0 and ωa + ωc ≫ 1. One can thus trace back to the resonant and non
resonant contributions in Ŵ

Ŵ = Ŵres. + Ŵnres., (4.62a)

Ŵres. = ℏGâ |e⟩ ⟨g| + ℏGâ† |g⟩ ⟨e| , Ŵnres. = ℏGâ† |e⟩ ⟨g| + ℏGâ |g⟩ ⟨e| , (4.62b)

and the quantum RWA consists in neglecting Ŵnres.. The Rabi Hamiltonian in the RWA
becomes thus

ĤJC = ℏωa |e⟩ ⟨e| + ℏωcâ
†â+ ℏG

(
â |e⟩ ⟨g| + â† |g⟩ ⟨e|

)
, (4.63)

known as the Jaynes-Cummings (JC) Hamiltonian. The particularity of the JC Hamilto-
nian is that it drives only transitions of the form |g;n⟩ ↔ |e;n− 1⟩ and thus if one manages
to prepare the system in the state |e; 0⟩, the dynamics will automatically couple it to |g; 1⟩
and the production of single photons in that context seems to be quite straightforward.
Applying the RWA for both interactions in (4.55), we obtain

Ĥrwa = ℏ
(
â†â 0
0 ωa + â†â

)
+ ℏG(t)

(
0 â
â† 0

)
+

ℏΩeg(t)

2

(
0 e−iωLt

eiωLt 0

)
. (4.64)

4.2.2 Floquet theory and adiabatic theorem

The RWA allows to construct Hamiltonians able to produce perfect single-photon states
provided that one brings the atom to its excited state. However, in sight of the results we
have shown regarding the nonlocality of single photons, we want to analyze the validity
of this approximation not only through the basic estimation of the contribution of non
resonant terms, but also on the impact of these terms when one applies the control scheme.
For that, we will compare what path the state follows in the adiabatic limit considering
both the RWA Hamiltonian (4.64) and the general one (4.55) [50,151].
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The aim of the Floquet formalism is to simplify the resolution of systems with a time-
dependent Hamiltonian for which the dynamics is given by Schrödinger’s equations of the
form

iℏ
∂ |ϕ(t)⟩
∂t

= Ĥ(t; θ) |ϕ(t)⟩ , (4.65)

where θ = ωt. The idea is to work in an enlarged Hilbert space K = H ⊗ S, where
S = L2(S1, dθ/2π) is the space of square integrable functions of the variable θ on the circle
S1 of length 2π generated by the basis {eilθ}l∈Z, and H is the Hilbert space of the system.
The parameter l will represent the relative number of photons with respect to the large
mean number l̄ of the classical field. In the Floquet space, the dynamics is given by

iℏ
∂ |ψ(t)⟩
∂t

= K̂(t; θ) |ψ(t)⟩ , (4.66)

with the Floquet Hamiltonian

K̂(t; θ) = −iℏω ∂

∂θ
+ Ĥ(t; θ). (4.67)

The relation between |ψ⟩ and |ϕ⟩ is given by the following: if |ψ(t; θ)⟩ is a solution of
(4.66) with initial condition |ψ(t0; θ)⟩ = |ϕ0⟩ ⊗ S where S is the function f(θ) = 1 in S,
then |ϕ(t)⟩ = |ψ(t;ωt)⟩. A more detailed review of the Floquet theory is given in [50].
The second ingredient we will be using to analyze the production of photons in a cavity,
is the adiabatic approximation which rests on the following adiabatic theorem as stated
originally by Born and Fock [51]:
A physical system remains in its instantaneous eigenstate if a given perturbation is act-
ing on it slowly enough and if there is a gap between the eigenvalue and the rest of the
Hamiltonian’s spectrum.
In our case, it means that for slow-enough variations of the coupling constants G(t) and
Ωeg(t), the dynamics will follow the instantaneous eigenstates where the spectrum has
gaps.

4.2.3 Impact of the RWA on the production of single-photon states

Using the Floquet formalism and the adiabatic theorem, we want now to analyze the
impact of the RWA on the controlled production of single photons by a 2-level atom.
Indeed, as we have briefly stated before, the RWA Hamiltonian drives only transitions of
the form |g;n+ 1⟩ ↔ |e;n⟩, i.e., if one manages to put the system in the state |e; 0⟩, it
will eventually be transferred to the state |g; 1⟩ — without controls, the system oscillates
between the two states, but using an appropriate control scheme, one can force the system
to be completely transferred to |g; 1⟩ — and a perfect single-photon state would be created
in the cavity. However, without the RWA, transitions of the form |g;n⟩ ↔ |e;n+ 1⟩ are
also driven and even if the system is put in the state |e, 0⟩, it will be resonantly coupled to
|g, 1⟩ which itself is non resonantly coupled to |e, 2⟩, yielding photon states with arbitrarily
high photon component — in agreement with causality requirements. The production of
perfect single-photon states1 in a cavity is thus related to the validity of the RWA, which

1By perfect single-photon states, we mean states that approach ideal single-photon states as much as
wanted. Since the production scheme we are considering here is a local process, we know that causality
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we will analyze from the adiabatic point of view to justify the use of the approximation
in that regime.
We start with the full Hamiltonian (4.55)

Ĥ = ℏ
(
â†â 0
0 ωa + â†â

)
+ ℏG(t)

(
0 â+ â†

â+ â† 0

)
+

ℏΩeg(t)

2

(
0 eiωLt + e−iωLt

eiωLt + e−iωLt 0

)
(4.68a)

= Ĥrwa + V̂ , (4.68b)

where Ĥrwa is given by (4.64) and the non resonant coupling Hamiltonian V̂ is

V̂ = ℏG(t)

(
0 â†

â 0

)
+

ℏΩeg(t)

2

(
0 eiωLt

e−iωLt 0

)
. (4.69)

We construct now the Floquet Hamiltonian

K̂(t, θ) = −iℏωL
∂

∂θ
+ Ĥ(t; θ) (4.70a)

= −iℏωL
∂

∂θ
+ Ĥrwa + V̂ (4.70b)

= K̂rwa + V̂ , (4.70c)

with θ = ωLt. Following the procedure presented in [151], we apply the resonant transfor-
mation

R̂ =

(
e−iθ 0

0 1

)
, (4.71)

which yields

K̂ ′
rwa = R̂†K̂rwaR̂ = ℏ

(
ωC â

†â+ ∆L − iωL
∂
∂θ

Ωeg(t)
2 +G(t)âeiθ

Ωeg(t)
2 +G(t)â†e−iθ ωcâ

†â− iωL
∂
∂θ

)
, (4.72)

and

V̂ ′ = R†V̂ R = ℏ

(
0 G(t)â†eiθ +

Ωeg(t)
2 e2iθ

G(t)âe−iθ +
Ωeg(t)

2 e−2iθ

)
. (4.73)

To further simplify the Hamiltonian, we use the phase representation of the creation-
annihilation operators [152,153]

â→ e−iφ

√
−i ∂
∂φ

, â† →

√
−i ∂
∂φ

eiφ, â†â→ −i ∂
∂φ

, (4.74)

where φ ∈ [0, 2π]. The phase representation corresponds to a mapping of the single-
mode bosonic Fock space F onto the positive restriction of S, i.e., generated by the basis

prevents to produce a perfect single-photon state. We also emphasize that the theory does not predict
such a state that would contradict causality but it is only through particular approximations that such
states arise.
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(a) (b)

Figure 4.2: Plot of the first five eigenenergy surfaces of the Floquet Hamiltoni-
ans. From bottom to top, the surfaces correspond, respectively, to the states
{|g, 0⟩ , |e, 0⟩ , |g, 1⟩ , |e, 1⟩ , |g, 2⟩}. (a) has been computed with the RWA, i.e., with the
Hamilotnian K̂ ′

rwa (4.72). (b) has been computed without the RWA, i.e., with the Hamil-
tonian K̂ ′ (4.77). For both cases, we have used the following parameters: ∆L = ∆c = δ/2
and ωL = 3δ. The black lines correspond to the adiabatic path that the system follows if
it is driven with the pulse sequence shown in Figure 4.3; it brings thus the system from
|g, 0⟩ to |g, 1⟩, i.e., it allows to produce a single-photon state in the cavity. The key result
shown by this path is that the non resonant terms do not impact the production of single
photons since the topology of the energy surfaces are unchanged. In both plots, the term
G+ 2ωL has been added to the energies for clarity of the display.
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4.2 Photon production in perfect cavities

Figure 4.3: Pulse sequence that can be used to produce a photon in the cavity, i.e.,
manipulating the system from the initial state |g, 0⟩ to the final state |g, 1⟩. Both pulses
have a full width at half maximum — also called interaction time — of Tint = 100/δ, The
amplitude of the normalized controls G(t) and Ωeg(t) are, respectively, 0.8δ and 1.4δ. The
time delay between the two pulses is τ = 70/δ.

{eilθ}l∈N, to ensure that −i∂/∂φ is positive. This mapping combined with the change of
variables

ζ = φ− θ, η = θ, (4.75a)

∂

∂φ
=

∂

∂ζ
,

∂

∂θ
=

∂

∂η
− ∂

∂ζ
, (4.75b)

allow to define the new operators

b̂ = e−iζ

√
−i ∂
∂ζ
, b̂† =

√
−i ∂
∂ζ
eiζ , (4.76)

which can formally be interpreted as the exchange of a photon between the laser and the
cavity. One can then rewrite the full Hamiltonian as

K̂ ′ = −iℏωL
∂

∂η
+ ℏ

(
δb̂†b̂+ ∆L

Ω(t)
2 +G(t)b̂

Ω(t)
2 +G(t)b̂† δb̂†b̂

)
+

ℏ

(
0 G(t)b̂†e2iη + Ω(t)

2 e2iη

G(t)b̂e−2iη + Ω(t)
2 e−2iη 0

)
, (4.77)

where δ = ωC −ωL and ∆L = ωa −ωL. We see that the second term is independent of the
Floquet parameter η and can thus be diagonalized by considering time as a parameter.
It gives the results presented in [151] that we extend here for a non resonant coupling
(third term in (4.77)) to compare the adiabatic control with and without the RWA. To
do so, we numerically diagonalize the Floquet Hamiltonian and we obtain the eigenenergy
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surfaces shown in Figure 4.2 where we see that the non resonant terms do not change the
topology of the surfaces, meaning that in the adiabatic limit, one can equivalently bring
the system from the initial state |g, 0⟩ to |e, 1⟩ by following the paths shown by the black
line. It corresponds to the adiabatic following of the system with the counterintuitive pulse
sequence shown in Figure 4.3 which is similar to the STIRAP configuration but for a 2-
level system. The key point in the adiabatic following here is that the crossings between
the different energy surfaces only happen when one of the controls is zero. In that case,
the adiabatic theorem predicts that the dynamics follows diabatically the crossing [151].
In general, the typical dynamics to bring the system from zero photon to one photon in
the cavity is thus a mix of an adiabatic following around the intersections and of a diabatic
evolution through the intersections of the energy surfaces.

This result shows that in the adiabatic limit, the states produced by such controls are
very close to single-photon states and that multiphoton components are expected to be
small. From this analysis, we can expect that on-demand single-photon sources using an
adiabatic process should create photons that are very close to perfect single-photon states,
e.g., [37, 95–98]. The contribution of the multiphoton components is thus given by the
correction terms to the adiabatic evolution which scale as 1/τ where τ is the typical duration
of the control pulses [154]. As expected for an adiabatic process, one can thus reduce the
multiphoton components as much as needed by increasing the duration of the driven pulses.
Smaller corrections can even be obtained using superadiabatic techniques [155].

4.3 Perspectives for further developments: open cavities

In the preceding section, we have considered the standard cQED scheme where one cavity
mode is coupled to a two-level system. The major hypothesis behind this model is to have
a cavity of high finesse, i.e., with very low transmission towards the outside and where the
different sustained modes are well-separated in frequency. These two conditions ensure
that the outside can be neglected and that the inside can be described with a single-
mode. This model and its generalizations to three-level systems and few cavity modes
have been extensively used to analyze cavity experiments in general [156, 157]. However,
the use of cavities to produce single-photon states as well as the developments of plasmonic
resonances to enhance the light-matter coupling [158,159], have revealed the need of cQED
models in which the outside environment must be taken into account.

Several theoretical approaches have been developed to analyze this question, and they can
be separated into two main categories. A first technique is to describe the same system
for which decay parameters are added — usually empirically. The Hamiltonian of the
resulting lossy system is then non-Hermitian, and one should treat it within the framework
of Lindblad master equations. A second technique consists in including the description
of the outside environment into the quantum model, so that the full system remains
conservative and can thus still be described within the standard quantum framework
of Hermitian systems. The two major difficulties associated to these models are that
the non-Hermitian approach uses phenomenological parameters to introduce the leakage,
while the Hermitian approach drastically increases the dimensionality of the problem.
Bypassing these issues is still a current topic of research and one can refer to the following
articles [160–162] and references therein to get a more detailed overview of the state of
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4.3 Perspectives for further developments: open cavities

Figure 4.4: Sketch of the one-dimensional open cavity we analyze in this section. A perfect
mirror is placed at x = 0 and a partially reflective mirror lies in [Lin, L]. The associated
dielectric function is given in (4.78).

the art.

We want now to present, as a set of preliminary results which should be further developed
in a near future, how one can use the concept of quasinormal modes (QNM) [163, 164]
to describe the production of photons inside an open cavity. QNMs (also called resonant
states) have been extensively used in scattering problems which appear in many branches
of physics [52, 165–168]. They have already proved to be very useful for computational
purposes in plasmonics for instance where they allow to reduce the number of modes that
must be taken into account to obtain a convergence of the results [56,60].

In the rest of this section, we will introduce our approach to use these QNMs as a tool for
the quantum dynamics of photons in an open cavity. We note that some works have already
tried to construct models using QNMs to describe photons in cavities [52–54,60,169–172]
but the approach we will introduce hereafter will be different since we will not attempt
to quantize the QNMs as one would do with normal modes, but we will take benefit from
the importance of the classical dynamics in the quantum model to incorporate only some
of the features of QNMs in our description.

Before getting into the details of QNMs, we first introduce the cavity system we will be
considering in the following. An open cavity is a cavity for which at least one mirror is
not fully reflective. For simplicity, we choose a one-dimensional cavity which has a perfect
mirror located in x = 0 and a partially reflective mirror whose right extremity is located
in x = L as illustrated in Figure 4.4. We take into account the thickness of the partially
reflecting mirror to be as general as possible. The dielectric function of such a system has
the following form

ε(x) =


1 for x ∈ (0, Lin),
m(x) for x ∈ (Lin, L),
n2out for x ∈ (L,+∞),

(4.78)

where nout > 1 is the optical index of the outside material into which the photon will
propagate and m(x) can be a piecewise constant function to represent mirrors made of
dielectric stacks [173]. We assume here that the inside of the cavity is in the vacuum but
the formalism could be further generalized by considering an optical index nint for the
inside without much difficulties.

The classical electromagnetic description of such a system is governed by the one dimen-
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sional wave equation
∂2ϕ(x, t)

∂t2
− c2

ε(x)

∂2ϕ(x, t)

∂x2
= 0, (4.79)

written here for a general field ϕ(x, t). The decomposition of the solutions ϕ(x, t) into a
set of modes, is the standard technique to analyze perfect cavities, and it is with a similar
objective that the QNMs are defined as we will show in the next section.

4.3.1 Normal modes vs quasinormal modes

We recall that a normal mode — in the context of the wave equation (4.79) in [0, L] — is

an eigenfunction of the positive operator − c2

ε(x)
∂2

∂x2
with its boundary conditions, i.e., it is

a function fi satisfying

− c2

ε(x)

∂2

∂x2
fi(x) = ω2

i fi(x), (4.80a)

fi(x = 0) = 0 = fi(x = L), (4.80b)

where ω2
i is real. Consequently, if one takes such a mode as initial condition for (4.79),

the system has a harmonic evolution

ϕ(x, t) = e−iωitfi(x), ωi > 0. (4.81)

They are called normal modes because {fi}i∈N is an orthonormal basis of L2 ([0, L]) mean-
ing that any g ∈ L2([0, L]) can be written as

g(x) =
∑
i

αifi(x) =
∑
i

⟨fi|g⟩ fi(x), (4.82)

and solutions of the wave equation can thus also be written as linear combinations of
normal modes

ϕ(x, t) =
∑
i

αifi(x)e−iωit. (4.83)

The power of such a representation is that it makes the dynamical part of the problem
much easier since the modes have a harmonic evolution. All the properties of the system
are thus contained in this modal decomposition.

The concept of quasinormal modes arises if one wants to follow a similar procedure but
considering the wave equation over [0,+∞). Indeed, in this situation, the boundary
conditions for the cavity change since we need to allow waves escaping from [0, L]. The
quasinormal mode is thus a function fj satisfying

− c2

ε(x)

∂2

∂x2
fj(x) = ω2

j fj(x), (4.84a)

fj(x = 0) = 0, (4.84b)

fj(x ≥ L) = eiωj
nout

c
x. (4.84c)
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The last equation is known as the Sommerfeld outgoing boundary condition because it
yields a solution of (4.79) for x ≥ L that is a wave propagating towards positive x. This

change of boundary conditions modifies the nature of the operator − c2

ε(x)
∂2

∂x2
which has

now complex eigenvalues ω2
j ∈ C. We define ωj as the particular square root for which

ωrj = Re(ωj) > 0 to obtain outgoing waves propagating in the correct direction. A
particularity of the QNM eigenfrequencies is that they always have negative imaginary
parts, i.e.,

ωj = ωrj − i|ωij | , (4.85)

with ωij = Im(ωj). The negativity of the imaginary part leads to the divergence of QNMs
when x→ +∞ since for x ≥ L

|fj | = |eiωj
nout

c
x| = |eiω

r
j
nout

c
xe|ω

i
j |

nout
c
x| = e|ω

i
j |

nout
c
x −→
x→∞

+∞. (4.86)

This exponential divergence prevents from using QNMs as a basis — even generalized
— of L2([0,+∞)) which is the major drawback of these functions. From the dynamical
point of view, however, taking a QNM as initial condition for the wave equation yields the
following solution

ϕ(x, t) = e−iωjtfj(x) = e−iω
r
j tfj(x)e−|ωi

j |t. (4.87)

We see that the real part of the quasinormal mode eigenfrequency is responsible for the
usual harmonic evolution while the imaginary part is a damping parameter. Physically,
a QNM represents thus a solution with a damped oscillation in [0, L], arising from the
natural leakage towards [L,+∞) of the solution. Such behavior is what is observed in any
actual resonator like cavities and it is the reason why QNMs are promising tools for the
description of open systems and already proved to be useful for calculations with systems
where the losses are large like in plasmonics for instance.
Additionally, at least in one dimension, QNMs can be used as a basis inside the cavity,
i.e., any function g ∈ L2([0, L]) can be written as

g(x) =
∑
j

αjfj(x) =
∑
j

⟨⟨fj |g⟩⟩fj(x), (4.88)

where ⟨⟨·|·⟩⟩ stands for the bilinear form as defined in [52, 53, 55] that one should use to
construct the decomposition in place of the standard scalar product. This point is a key
ingredient for applications of QNMs and has been discussed in several works [52, 53, 55,
174–176]. In the following, we will assume that it is true for our system and that the
decomposition (4.88) is valid with an appropriate bilinear form like the one given in [52]2.
With this assumption, and similarly to what is done for normal modes, any solution of
the wave equation inside the cavity can be written as

ϕ(x, t) =
∑
j

αjfj(x)e−iω
r
j te−|ωi

j |t, (4.89)

where we explicitly see the decay with time of the solution.

2In [52], one sufficient condition given for the completeness of the set of QNMs in the cavity, is that the
dielectric function ε(x) has a discontinuity at x = L. In our model for open cavities, this is always true
and could thus justify that the QNMs are a basis in [0, L]
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In our context, and in view of the natural leakage property of QNMs, we would like to
use them to describe how a photon leaks out from the cavity. Indeed, the combination of
damped oscillation and propagation towards the outside is what one expects for a photon
produced in the cavity. However, due to their diverging property, the QNMs cannot be
used directly for the quantum model outside the cavity. In the following, we want to
introduce a way out for this issue using spatially truncated QNMs.

4.3.2 Truncated quasinormal modes — Leakage of single photons

We start in this section by considering photons without their sources since we know from
Chapter 3 that the propagation is given by the classical solutions of Maxwell’s equations.
Therefore, in order to describe the leakage of a single-photon from the cavity, we construct
a truncated QNM of the form

f̃j(x) =

{
fj(x) for x ≤ L,
0 for x > L,

(4.90a)

= fj(x)χ[0,L]. (4.90b)

The notation χ[a,b] stands for the characteristic function over the interval [a, b], i.e., a

function that is one on this interval and zero everywhere else. If we choose f̃j as initial
condition for the wave equation (4.79), we obtain the following solution

ϕ̃j(x, t) =


fj(x)e−iωjt for x ≤ L,

fj(L)e−iωj(nout
c

(L−x)+t) for L < x ≤ L+ ct/nout,
0 otherwise,

(4.91a)

= fj(x)e−iωjtχ[0,L] + fj(L)e−iωj(nout
c

(L−x)+t)χ[L,L+ct/nout], (4.91b)

which splits into two parts: inside the cavity the QNM keeps its standard time evolution,
namely oscillation at the real frequency ωrj and damping due to the imaginary part ωij ; in
the causal set [L,L+ ct/nout] the discontinuity of the truncated QNM propagates towards
positive x at the speed of light. The function ϕ̃j(x, t) has thus a time-dependent support
[0, L+ct/nout] which tends toward the full half-line for infinite time. This solution ϕ̃j(x, t),
obtained with a truncated QNM as initial condition, is by construction not divergent since
it is smooth and has a finite support [0, L+ct/nout] for any time t. One can indeed compute
its norm as

∥ϕ̃j(t)∥
2

=

∫ ∞

0
dx|ϕ̃j(x, t)|

2
(4.92a)

=

∫ L

0
dx|fj(x)e−iωjt| 2 +

∫ L+ct/nout

L
dx|fj(L)e−iωj(nout

c
(L−x)+t)|

2
<∞ (4.92b)

=

∫ L

0
dx|fj(x)| 2e−2|ωi

j |t +
|fj(L)| 2

2|ωij |

(
1 − e−2|ωi

j |t
)
. (4.92c)

Additionally, the norm must be constant in time since we integrate over the full space
[0,+∞) and the system is by construction lossless. Thus

∥ϕ̃j(t)∥
2

= ∥ϕ̃j(x, t = 0)∥ 2
=

∫ L

0
dx|fj(x)| 2 ≡ Nj , (4.93)

102



4.3 Perspectives for further developments: open cavities

which combined with (4.92c) leads to

Nj =
|fj(L)| 2

2|ωij |
. (4.94)

We can then define a normalized truncated QNM solution of the wave equation

ϕ̃nj (x, t) = N−1/2
j ϕ̃j(x, t), (4.95)

which fulfills all the requirements to represent a photon state in the BB or LP represen-
tation. For instance, for t = 0, the LP representation of the states gives the following
single-photon state

|ϕ̃nj ⟩ = B̂†
ϕ̃nj

|∅⟩ , (4.96)

with its associated time evolution

|ϕ̃nj (t)⟩ = B̂†
ϕ̃nj (t)

|∅⟩ (4.97a)

= e−iωjtB̂†
fjχ[0,L]

|∅⟩ + fj(L)e−iωj(
nout

c
L+t)B̂†

eiωj
nout

c xχ[L,L+ct/nout]

|∅⟩ , (4.97b)

which can be interpreted as the superposition of a single-photon with damped oscillations
inside the cavity and a plane wave like single-photon propagating outside the cavity. The
time-dependent factors give a smooth transition between the two extreme cases: oscillating
single-photon only in the cavity and propagating single-photon only in the outside.

4.3.3 Quantum models using quasinormal modes

Given the interesting properties of QNMs, we would like to use them not only as classical
solutions onto which photon states can be created, but also to express the whole quantum
field theory and its interaction with matter. In this section, we will sketch some preliminary
ideas in this direction with first a procedure that could allow to use QNMs as a basis to
represent any quantum observable and then the construction of a heuristic model that
consists of one QNM interacting with a two-level system in order to describe the production
of single photons in open cavities.

4.3.3.1 Hybrid basis

We have seen that QNMs can be used as a basis for the inside of the cavity [0, L]. This
result is a key tool towards the description of open cavities since the field inside the cavity
can thus be expressed in terms of modes that eventually leak out to the exterior. However,
to have the full picture of the processes, one cannot restrict the description to the interior
only, since it would yield a non-Hermitian system for which the standard construction
of the quantum theory cannot be used. Instead, one needs a basis able to represent the
quantum theory over the full half-line [0,+∞).

To do so, we want to construct a hybrid basis composed of QNMs for the inside and of any
other basis for the outside. We start with the set of QNMs {fj} and with a plane wave
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basis {ϕk} of L2([L,+∞)), ϕk = exp(ikx) with k ∈ R. From these two bases we construct
a hybrid basis over the full half-line, composed of the functions defined as

φj,k(x) = fj(x)χ[0,L] + ϕk(x)χ[L,+∞), (4.98)

from which any g ∈ L2([0,+∞)) can be decomposed as

g(x) =
∑
j

αjfj(x)χ[0,L] +

∫
R
dk βkϕk(x)χ[L,+∞) (4.99a)

=

∫
R
dk
∑
j

γj,kφj,k(x), (4.99b)

with αj = ⟨⟨fj |g⟩⟩, βk = ⟨ϕk|g⟩ and γj,k = αjχ[0,L] + βkχ[L,+∞). The set {φj,k} is a basis
since it has been constructed from two separated bases on disjoint intervals. It can then
represent any function and in particular the one dimensional LP representation

ψ(x) =

√
ε0
2ℏ

(
Ω

1/2A(x) − iΩ
−1/2E(x)

)
(4.100a)

=
∑
j

αjfj(x)χ[0,L] +

∫
R
dk βkϕk(x)χ[L,+∞) (4.100b)

=

∫
R
dk
∑
j

γj,kφj,k(x). (4.100c)

Following the quantization procedure presented in Chapter 2, we apply the correspondence
principle

Quantization map: ψ(x) 7→
∫
R
dk
∑
j

φj,k(x)B̂φj,k
= Ψ̂(x), (4.101a)

ψ⋆(x) 7→
∫
R
dk
∑
j

φ⋆j,k(x)B̂†
φj,k

= Ψ̂†(x), (4.101b)

defining the bosonic creation-annihilation operators as well as the field operators acting on
the bosonic Fock space. They are the key tools to express the electromagnetic observables
as

Â(x) =

√
ℏ

2ε0
Ω

−1/2
(

Ψ̂(x) + Ψ̂†(x)
)

=

√
ℏ

2ε0

∫
R
dk
∑
j

Ω
−1/2

(
φj,k(x)B̂φj,k

+ φ⋆j,k(x)B̂†
φj,k

)
,

(4.102a)

Ê(x) = i

√
ℏ

2ε0
Ω

1/2
(

Ψ̂(x) − Ψ̂†(x)
)

= i

√
ℏ

2ε0

∫
R
dk
∑
j

Ω
1/2
(
φj,k(x)B̂φj,k

− φ⋆j,k(x)B̂⋆
φj,k

)
,

(4.102b)

and the energy as

Ĥ = ℏ
∫
R
dx Ψ̂†(x)ΩΨ̂(x) (4.103a)

= ℏ
∫
R
dk

∫
R
dk′
∑
j,j′

⟨φj,k|Ω |φj′,k′⟩ B̂†
φj,k

B̂φj′,k′ . (4.103b)
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We emphasize that the expressions for the quantum observables cannot be further simpli-
fied since the functions φj,n are not eigenfunctions of Ω and Ω±1/2.

However, the advantage of the formulation in terms of the basis functions φj,n is that we
can easily split the observable according to the inside and outside part of the cavity. The
electric field, e.g., can be expressed as

Ê(x) = i

√
ℏ

2ε0

∫
R
dk
∑
j

Ω
1/2
(
fj(x)χ[0,L] + ϕk(x)χ[L,+∞)

)
B̂fj(x)χ[0,L]+ϕk(x)χ[L,+∞)

+ h.c.

(4.104a)

= i

√
ℏ

2ε0

∑
j

Ω
1/2fj(x)χ[0,L]B̂fjχ[0,L]

+ i

√
ℏ

2ε0

∫
R
dk Ω

1/2ϕk(x)χ[L,+∞)B̂ϕkχ[L,+∞)
+ h.c.

(4.104b)

= Êin(x) + Êout(x). (4.104c)

The interest of such a splitting will become clear when constructing a model for the
interaction of an atom in an open cavity since only the inside part of the electric field
will be used in that context. However we emphasize that, due to the antilocality of Ω1/2

discussed in Chapter 3, in general Êin(x) ̸= 0 for x ∈ [0,+∞) and Êout(x) ̸= 0 for
x ∈ [0, L].

4.3.3.2 Interacting model

Combining the quantum construction using QNMs and the model for production of single
photons in perfect cavity, we want to construct a model for the production of single
photons in open cavities. We start with the interaction part of the Hamiltonian for which
we consider that the atom is coupled to only one QNM fj , meaning that ωrj ≃ ωa. The
electric field at the position xat inside the cavity — where the interaction takes place —
is given by

Ê(xat) = i

√
ℏ

2ε0
Ω

1/2fj(xat)B̂fjχ[0,L]
+ i

√
ℏ

2ε0

∫
R
dk Ω

1/2ϕk(xat)χ[L,+∞)B̂ϕkχ[L,+∞)
+ h.c..

(4.105)
We emphasize again that the second term here is a priori nonzero due to the nonlocality
arising with Ω1/2. However, since it is applied on a function with compact support over
[0,+∞) one can argue that its contribution will be small in the cavity and can be neglected
compare to the first term. We obtain then

Ê(xat) ≃ i

√
ℏ

2ε0
Ω

1/2
(
fj(xat)B̂fjχ[0,L]

− f⋆j (xat)B̂
†
fjχ[0,L]

)
. (4.106)

Using this approximate expression for the electric field operator, we construct an effective
interaction Hamiltonian in the RWA as

Ĥeff.
int = id

√
ℏ

2ε0
Ω

1/2
(
fj(xat)B̂fjχ[0,L]

|e⟩ ⟨g| − f⋆j (xat)B̂
†
fjχ[0,L]

|g⟩ ⟨e|
)
. (4.107)
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It looks very similar to what we had for the perfect cavity case (4.63) but here, the
interaction is expressed in terms of creation-annihilation operators defined on a truncated
QNM which satisfies the outgoing boundary condition. We can thus expect the dynamics
to produce photon states with a natural propagation towards the outside. The rest of the
Hamiltonian is given by the free contributions: for the atom Ĥat = Ee |e⟩ ⟨e| + Eg |g⟩ ⟨g|
and for the field

Ĥelm = ℏ
∫
R
dk

∫
R
dk′ ⟨φj,k|Ω |φj,k′⟩ B̂†

φj,k
B̂φj,k′ . (4.108)

The free Hamiltonian of the field could in principle be further simplified by splitting it
into a bright part and a dark part following the procedure given in [177]. The advantage
of such procedure would be to extract all the basis functions that are needed to represent
the chosen propagating QNM with index j. The rest of the sum would thus be decoupled
from the dynamics and could be removed. For instance, if one splits the basis ϕk according
to the sign of k = ±|k|, all the functions for negative k should be in the dark part since
they correspond to waves propagating towards the left and thus are not needed to describe
the outgoing photon. Another important task that one should consider to perform some
calculations with this model, is the action of the operators Ω and Ω1/2 on the hybrid basis
functions φj,k.

4.3.4 Summary on the perspectives

To conclude on the perspective section, we want to make a brief overview of what we
expect to obtain with the models using QNMs, and rapidly explain why our approach is
different from what exists already in the literature.
Regarding the use of a truncated QNM function to describe the dynamics of a photon
state, the formalism we have used does not introduce anything new. Indeed, we have only
constructed a function that is a valid classical configuration to be used in the Fock space
formalism for representing a photon and its dynamics. The key point in this construction,
is that the truncated QNM is not divergent but still fulfills the outgoing condition. Similar
approaches have been developed in the literature, e.g., in [60, 178–180] where QNMs are
also used only in the resonant structure and regularized for the outside to avoid the
divergence. In [60, 178, 179], the regularization for the outside is done using the Green
function of the outside in a way very close to what we did here but for 3D. In [180]
QNMs outside the resonant structure are regularized by taking advantage of the dispersion
properties of the dielectric function as well as causality conditions. The major difference
of these approaches with our construction, is that they never use the regularized QNMs
as a state function representing the dynamics of a leaky photon, but they rather use them
to express the classical Green function of the system.
Regarding the construction of the quantum model, everything is based on the property that
QNMs are a basis inside the cavity. This result is claimed in several works [52, 53, 55, 60]
and is used to obtain relevant results. A mathematical proof in one-dimension also points
in this direction [174–176]. Assuming that it is true, and using the truncated QNMs
construction, we were able to construct a hybrid basis into which any square integrable
function can be represented. Consequently, the quantum field theory of light in an open
cavity can be expressed in terms of QNMs that naturally propagate the photons towards
the outside. Then, by applying the standard single-mode approximation and a coupling
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of the RWA form, we obtained a model similar to the JC model but for an open cavity.
To validate our result, we will need to make detailed calculations to see whether this
construction predicts behaviors that are observed in practice for open cavities. A first
step could be to look at the time evolution of the system for an initial condition of the
form |e, 0⟩, i.e., atom in its excited state and no photon in the cavity, for which we expect
to observe Rabi oscillations with a damping in time. A second step would be to add some
control parameters like we did in the perfect cavity case to force the system to go from |0, g⟩
to |1, g⟩ which by construction of the model is a one-photon state propagating towards the
outside and thus would perfectly represent an on-demand single-photon experiment that
uses single atom/ions in cavities.
In the literature, several attempts to quantize the electromagnetic field using QNMs have
been made [60, 179, 181, 182]. In [181, 182], the quantization is performed by considering
the outside as a bath and using the non-positive bilinear form ⟨⟨·|·⟩⟩ in place of a scalar
product for the Hilbert space. In [60,179], the construction in terms of regularized QNMs
is used to quantize the field by splitting the electromagnetic field observable into two parts:
the one which can be written in terms of the regularized QNMs, and the rest. The first part
is then quantized while the other is forgotten since should not contribute to the dynamics.
Another important difference with our approach is that they formulate the quantization
in terms of Green functions while we used a canonical quantization with a correspondence
principle. This last difference could be of major importance when considering the quan-
tization in a dispersive and dissipative media, e.g., in plasmonics, since the quantization
using Green functions brings intrinsic problems for finite size structures [183,184].
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Conclusion and outlook

In this thesis, we have shown that the description of photons and in particular single pho-
tons, should not only be done in momentum space. Even though the latter often allows to
make explicit calculations, it can also restrain our ability to interpret the obtained results.
This is why having an explicit relation between the equivalent momentum and position
formulations, as we introduced in Chapter 2, gives the possibility to take advantage of
both representations to maximize our understanding of the theory. On top of this, there
exists several equivalent formulations within the momentum and position representations
that we also related with explicit isomorphisms. This diversity for the description of the
same theory is a nice feature one can take benefit from in order to simplify the problems
to analyze. It also demonstrates the robustness of the general quantization procedure that
we used to construct all these equivalent representations which in the end arise simply
from different Hamiltonian formulations of the same Maxwell equations. Other formula-
tions are of course conceivable and a systematic procedure close to the so-called Glauber
extraction rule [24,146] could be developed as a generator of equivalent representations of
the quantum theory of the electromagnetic field.

One advantage of the position space representations is illustrated when it comes to com-
puting the dynamics of photons. Indeed, we have shown that the time evolution of any
free photon state is given by the dynamics predicted by the associated classical Maxwell
equations. Therefore, the position space formulation in terms of pulses provides an easy
picture of how a photon state evolves with time since it is the standard propagation of the
associated classical pulse onto which the photon has been defined. This picture can even
be kept for the propagation of photons inside linear inhomogeneous dielectric media like
lenses, beam-splitters or optical fibers, by generalizing the position space quantization in
free space to this particular interacting situation in a rather simple way. To illustrate the
efficiency of this model, we discussed the passage of a pulse-shaped single-photon through
a beam-splitter as well as the Hong-Ou-Mandel effect, and obtained results in agreement
with the known experimental observations.

The description of photons in terms of pulses in position space, also unveils the impor-
tance of their spatial distribution when it comes to detection processes. In fact, as it is
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sometimes the case in experiments, photons can be carried by pulses that cannot fit inside
the finite volume of the detector. The process of detection should thus be considered as
a local operation meaning that the detector does not probe photons as a whole but it
probes their spatial distribution. To address this issue, we have used a model for the local
detection using the energy density operator which we consider to be a relevant observ-
able to represent detectors, e.g., superconducting nanowires. To analyze this model, we
have computed the mean value of this observable for several states of the quantum elec-
tromagnetic field: general single- and N -photon states as well as coherent states. These
results have led us to conclude that any state with a finite number of excitation, i.e.,
N -photon states and in particular single-photon states, are intrinsically nonlocal meaning
that there is no localization volume outside which the expectation value of the energy
density coincides with the value obtained for the vacuum state. This result was already
known and demonstrated using several techniques, but we showed it for an explicit ob-
servable which can represent concrete detectors, and without using the time evolution of
the states. It means that the intrinsic nonlocality is present at any time and is not only
a consequence of the dynamics. A direct effect of this nonlocal character of single-photon
states is that one cannot produce a perfect single-photon state in a finite volume due to
causality restrictions. States produced in a finite volume are expected to have an infinite
number of multiphoton components. Regarding the experiments that aim to produce on-
demand single-photon states, and which provides experimental tests of their claim using
the Hanbury-Brown-Twiss effect, we expect these multiphoton components to be quite
small but they definitely cannot be zero. A characterization of their contribution is a dif-
ficult task both theoretically and experimentally but it is certainly an open question that
could be answered by a combination of theoretical calculations characterizing the exact
state emitted by those sources, and of the experimental measurement of the multiphoton
contributions using, e.g., photon number resolving detectors.

The production of photons has been analyzed in the last part of this work, where we
have computed the spatial distribution of the state produced by spontaneous emission
of a Hydrogen atom in the single-photon approximation. All the calculations have been
performed in the subspace of single-photon states meaning that we did not analyze the
contributions from multiphoton components, even though the model does predict some, in
agreement with the causality restrictions we have stated before. Within this approxima-
tion, we characterized the decrease of the energy density for large distances and we found
an asymptotic of 1/r6 behavior which is far from the quasi-exponential mathematical limit
established in the literature. It illustrates the nonlocality and shows that depending on
the method of production, the single-photon approximation is not always sufficient. To be
closer to the description of actual on-demand single-photon sources, we have also analyzed
the production in a perfect cavity by considering a model with a two-level atom interacting
with a single-mode bosonic field, as it is customary in cavity quantum electrodynamics.
The key point for the production of single-photon states in such model is related to the
validity of the rotating wave approximation (RWA). Indeed, the Jaynes-Cummings model
that includes the RWA predicts the production of perfect single-photon states while the
Rabi model which is the version without the RWA predicts the appearance of an infinite
number of excitations. By considering the interaction between the atom and the cavity
as a control parameter and by applying another control through the interaction with a
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classical laser field, we have analyzed using the Floquet theory, the impact of the RWA
in the adiabatic limit. We found through a topological argument that within this limit,
the non resonant terms that appear in the Rabi model, do not prevent to control the
system dynamics to the target state interpreted as one photon in the cavity and atom in
its ground state, i.e., production of a perfect single-photon state as it is done with the
RWA. If the process is adiabatic, the same controls applied to both models, yield the same
final states. This result justifies the efficiency of on-demand single-photon sources using
adiabatic processes to produce states that are close to perfect single-photon states. The
error will be given by the validity of the adiabatic approximation, i.e., first order correc-
tion terms will be of order 1/τ , for τ the interaction time of the adiabatic — i.e., slow —
process. Smaller correction can even be obtained using superadiabatic techniques.

As preliminary results, we have also presented a line to follow in order to describe the
production of photons in open cavities. To do so, we have used, in a one-dimensional model,
the concept of quasinormal modes (QNMs) that are functions with outgoing properties,
i.e., they are constructed to naturally propagate outside the cavity. Using a state function
composed of a truncated QNM, we have shown that the dynamical leakage of a photon
from the cavity can be described without changing the formulation of the quantum theory.
Moreover, by introducing a hybrid basis made of the direct sum between truncated QNMs
inside the cavity with a standard basis truncated for the outside, quantum observables
like the total energy and the electric field operators can be expressed in a natural way.
Using this technique, we have constructed a heuristic model similar to the one we have
used for perfect cavities but that will automatically include the leakage of the emitted
photons towards the outside. The construction of such model is a promising result from
which we could in principle describe the dynamics of open systems like cavities without
introducing empirical parameters for the coupling with the environment. Indeed, all the
information for the leakage is included in the QNMs for which several techniques have
been developed to compute them for many different systems. A natural continuation of
this work is thus to compute actual dynamics predicted by this model to check whether
it yields expected properties, e.g., damped Rabi oscillations. A second step could be to
generalize the procedure introduced briefly here to more complex systems like 3D cavities
or plasmonic resonators.
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A
Positive and negative frequency parts of a field

In this work, we extensively use the notion of helicity and the associated splitting into
positive and negative helicity parts one can apply to transverse fields. However, this
concept is not to be confused with that of positive and negative frequency parts of a time-
dependent field. In this appendix, we will explain in details the latter and show why the
two concepts do not coincide in general but only in some particular cases, which could be
misleading in our context.

Definition and properties

In this section, we consider a complex time-dependent field f(t) with well-defined time-
frequency Fourier transforms, i.e.,

f(t) =
1

2π

∫ +∞

−∞
dω f̃(ω)e−iωt, (A.1a)

f̃(ω) =

∫ +∞

−∞
dt f(t)eiωt. (A.1b)

The positive frequency part — also referred to as the analytic signal — of f(t) is defined
by

f (f+)(t) =
1

2π

∫ +∞

0
dω f̃(ω)e−iωt, (A.2)

and the negative frequency part by

f (f−)(t) =
1

2π

∫ 0

−∞
dω f̃(ω)e−iωt. (A.3)

The total field is thus the sum of its positive and negative frequency parts

f(t) = f (f+)(t) + f (f−)(t). (A.4)
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Remark: If f(t) is real, f̃(ω) =
(
f̃(−ω)

)⋆
and the corresponding positive/negative frequency

parts are complex and fulfill

f (f−)(t) =
(
f (f+)(t)

)⋆
. (A.5)

Positive and negative frequency parts of electromagnetic fields

The separation of the positive and negative parts have been widely used in classical elec-
trodynamics. In quantum optics they also play a role, but it is extended in some ways
that we will describe in this section. The main point is that one wants to separate the op-
erators representing the observables for the electric field, the magnetic field and the vector
potential. In the Heisenberg representation the observables are time-dependent and one
can use the definitions of the preceding section. But one would like to make the separation
also in the Schrödinger representation, where they do not have any time-dependence. We
define for real classical time-independent electromagnetic quantities

E⃗(x⃗) = E⃗(f+)(x⃗) + E⃗(f−)(x⃗), (A.6a)

B⃗(x⃗) = B⃗(f+)(x⃗) + B⃗(f−)(x⃗), (A.6b)

A⃗(x⃗) = A⃗(f+)(x⃗) + A⃗(f−)(x⃗). (A.6c)

To analyze these separations, we use the Landau-Peierls (LP) complex representation

ψ⃗ =

√
ε0
2ℏ

(
Ω

1/2A⃗− iΩ
−1/2E⃗

)
, (A.7)

in terms of which the electromagnetic fields can be expressed as

A⃗(x⃗) =

√
ℏ

2ε0
Ω

−1/2
(
ψ⃗(x⃗)) + ψ⃗⋆(x⃗)

)
, (A.8a)

E⃗(x⃗) = i

√
ℏ

2ε0
Ω

1/2
(
ψ⃗(x⃗)) − ψ⃗⋆(x⃗)

)
. (A.8b)

Maxwell’s equations written in terms of the LP field are

i
∂ψ⃗

∂t
= Ωψ⃗, ∇ · ψ⃗ = 0, (A.9)

and solutions can be written as

ψ⃗(x⃗, t) = e−iΩtψ⃗(x⃗, t = 0) (A.10a)

=

∫
R3

d3k
∑
λ=±

ϕ⃗
k⃗,λ
e−iωk⃗

t ⟨ϕ⃗
k⃗,λ

|ψ⃗(t = 0)⟩LP , (A.10b)

for any initial condition ψ⃗(x⃗, t = 0) satisfying ∇ · ψ⃗(x⃗, t = 0) = 0. Since Ω is a positive
operator, its eigenvalues ω

k⃗
are positive and thus ψ⃗ has zero negative frequency part

ψ⃗(f+)(x⃗, t) = ψ⃗(x⃗, t), ψ⃗(f−)(x⃗, t) = 0. (A.11)
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We extend this result to the initial time and one can then define the positive and negative
frequency parts of the time-independent electromagnetic quantities as

A⃗(f+)(x⃗) =

√
ℏ

2ε0
Ω

−1/2ψ⃗(x⃗), A⃗(f−)(x⃗) =

√
ℏ

2ε0
Ω

−1/2ψ⃗⋆(x⃗), (A.12a)

E⃗(f+)(x⃗) = i

√
ℏ

2ε0
Ω

1/2ψ⃗(x⃗), E⃗(f−)(x⃗) = −i
√

ℏ
2ε0

Ω
1/2ψ⃗⋆(x⃗). (A.12b)

They can also be expressed in terms of the real electromagnetic quantities as

A⃗(f+)(x⃗) =
1

2

(
A⃗(x⃗) − iΩ−1E⃗(x⃗)

)
, A⃗(f−)(x⃗) =

1

2

(
A⃗(x⃗) + iΩ−1E⃗(x⃗)

)
, (A.13a)

E⃗(f+)(x⃗) =
1

2

(
E⃗(x⃗) + iΩA⃗(x⃗)

)
, E⃗(f−)(x⃗) =

1

2

(
E⃗(x⃗) − iΩA⃗(x⃗)

)
. (A.13b)

Remarks:

� The positive frequency part of E⃗ is in fact proportional to the Bia lynicki-Birula (BB)

vector (2.53) since ΩA⃗ = c∇× ΛA⃗ = cΛB⃗, which gives

E⃗(f+) =
1

2

(
E⃗ + icΛB⃗

)
=

1√
2ε0

F⃗ . (A.14)

In the same time it shows that, just like the LP field, the BB vector has zero negative
frequency part. This result arises from the fact that the generator of their dynamics Ω
is a positive operator.

� The Riemann-Silberstien (RS) vector

F⃗RS =

√
ε0
2

(
E⃗ + icB⃗

)
, (A.15)

has the property that the concept of positive/negative frequency parts coincides with
the concept of positive/negative helicity parts. Indeed, the splitting into helicity parts
reads

F⃗
(h±)
RS = P(h±)F⃗RS (A.16a)

= P(h±)

∫
R3

d3k
∑
λ=±

ϕ⃗k⃗,λ ⟨ϕ⃗k⃗,λ|F⃗RS⟩LP (A.16b)

=

∫
R3

d3k ϕ⃗k⃗,± ⟨ϕ⃗k⃗,±|F⃗RS⟩LP , (A.16c)

while the splitting into frequency parts can be deduced in a similar way as for the LP
field starting with Maxwell’s equations for the RS vector

i
∂F⃗RS
∂t

= c∇× F⃗RS , ∇ · F⃗RS = 0. (A.17)
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The solutions for an initial transverse field F⃗RS(x⃗, t = 0) can be written as

F⃗RS(x⃗, t) = e−ic∇×tF⃗RS(x⃗, t = 0) (A.18a)

=

∫
R3

d3k
∑
λ=±

ϕ⃗k⃗,λe
−iλω

k⃗
t ⟨ϕ⃗k⃗,λ|F⃗RS(t = 0)⟩LP (A.18b)

=

∫
R3

d3k ϕ⃗k⃗,+e
−iω

k⃗
t ⟨ϕ⃗k⃗,+|F⃗RS(t = 0)⟩LP

+

∫
R3

d3k ϕ⃗k⃗,−e
iω

k⃗
t ⟨ϕ⃗k⃗,−|F⃗RS(t = 0)⟩LP , (A.18c)

from which we identify at t = 0

F⃗
(f±)
RS =

∫
R3

d3k ϕ⃗k⃗,± ⟨ϕ⃗k⃗,±|F⃗RS(t = 0)⟩LP = F⃗
(h±)
RS . (A.19)

This special property of the RS vector has led to some misleadingness in the litera-
ture. Indeed, to construct the BB 6-component spinor from the RS vector (see equation
(2.54)), one can use equivalently the splitting into frequency parts as it was done orig-
inally in [21], or the splitting into helicity parts as we have chosen to do in this work.
Our choice is justified by the fact that it is the splitting into helicity parts that is needed
to construct the isomorphism between the BB representation and the LP representation
(see Chapter 2).

Positive and negative frequency parts in the quantum model

The concept of positive and negative frequency parts, as described in the preceding section,
can be extended to the quantum electromagnetic field operators, even in the Schrödinger
representation. Indeed, one starts with the LP field operator which by analogy with its
classical counterpart has zero negative frequency part and thus

⃗̂
Ψ(f+)(x⃗) =

⃗̂
Ψ(x⃗) =

∫
R3

d3k
∑
λ=±

ϕ⃗
k⃗,λ

(x⃗)B̂
ϕ⃗
k⃗,λ
. (A.20)

Positive and negative parts of the electromagnetic field operators are thus directly

⃗̂
A(f+) =

√
ℏ

2ε0
Ω

−1/2

∫
R3

d3k
∑
λ=±

ϕ⃗
k⃗,λ
B̂
ϕ⃗
k⃗,λ
,

⃗̂
A(f−) =

√
ℏ

2ε0
Ω

−1/2

∫
R3

d3k
∑
λ=±

ϕ⃗⋆
k⃗,λ
B̂†
ϕ⃗
k⃗,λ

,

(A.21a)

⃗̂
E(f+) = i

√
ℏ

2ε0
Ω

1/2

∫
R3

d3k
∑
λ=±

ϕ⃗
k⃗,λ
B̂
ϕ⃗
k⃗,λ
,

⃗̂
E(f−) = −i

√
ℏ

2ε0
Ω

1/2

∫
R3

d3k
∑
λ=±

ϕ⃗⋆
k⃗,λ
B̂†
ϕ⃗
k⃗,λ

.

(A.21b)

In view of these results, and especially in the Scrödinger picture where the concept of
positive and negative frequency is not natural, this separation is also called creation and
annihilation splitting of the operators, where positive frequencies corresponds to annihi-
lation operators and negative frequencies to creation operators.
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B
Time evolution of a general N-photon state

In this appendix, we want to show the result of Chapter 3 about the time evolution of a
general N -photon state of the form

|Φ(t = 0)⟩ =
N∏
j=1

B̂†
ψ⃗j(t=0)

|∅⟩ , (B.1)

where ψ⃗j(t = 0) are the initial conditions in the Landau-Peierls (LP) representation (see
(2.13) and (3.7) for vacuum and medium cases). Just like for the one- and two-photon
cases which have been shown in Chapter 3, the time evolution of such state is given by
(see point (c) in Section 3.2)

|Φ(t)⟩ =
N∏
j=1

B̂†
ψ⃗j(t)

|∅⟩ . (B.2)

To do so, we first expand the state function ψ⃗j in terms of the eigenfunctions of Ω

ψ⃗j(t) =
∑
κj

e−iωκj tφ⃗κjακj , ακj = ⟨φ⃗κj |ψ⃗(t = 0)⟩ , j = 1, . . . N, (B.3)

which allows us to write the full N -photon state as

|Φ(t)⟩ =

N∏
j=1

B̂†
ψ⃗j(t)

|∅⟩ =

N∏
j=1

∑
κj

e−iωκj tακj B̂
†
φ⃗κj

 |∅⟩ (B.4a)

=

(∑
κ1

e−iωκ1 t ακ1B̂
†
φ⃗κ1

)
. . .

(∑
κN

e−iωκN
tακN B̂

†
φ⃗κN

)
|∅⟩ (B.4b)

=
∑

κ1,...,κN

e−i
∑N

j=1 ωκj t

∏
j′

ακj′

∏
j′′

B̂†
φ⃗κj′′

 |∅⟩ . (B.4c)
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We want to check now that this state fulfills Schrödinger’s equation, i.e.,

iℏ
∂

∂t
|Φ(t)⟩ = Ĥ |Φ(t)⟩ , (B.5)

and we compute first the left-hand side

iℏ
∂

∂t
|Φ(t)⟩ =

∑
κ1,...,κN

∑
j

ℏωκj

 e−i
∑

j ωκj t
∏
j′

ακj′
∏
j′′

B̂†
φ⃗κj′′

|∅⟩ . (B.6)

The right-hand side is obtained by applying the Hamiltonian written in momentum rep-
resentation

Ĥ =
∑
κ

ℏωκB̂†
φ⃗κ
B̂φ⃗κ′

(B.7)

to (B.4), which yields

Ĥ |Φ(t)⟩ =
∑
κ

ℏωκB̂†
φ⃗κ
B̂φ⃗κ

∑
κ1,...,κN

e−i
∑N

j=1 ωκj t

∏
j′

ακj′

∏
j′′

B̂†
φ⃗κj′′

 |∅⟩ (B.8a)

=
∑

κ1,...,κN

e−i
∑

j ωκj t
∏
j′

ακ′j

∑
κ

ℏωκB̂†
φ⃗κ
B̂φ⃗κ

∏
j′′

B̂†
φ⃗κj′′

|∅⟩ . (B.8b)

Using the commutation relations B̂φ⃗κB̂
†
φ⃗κj

= B̂†
φ⃗κj

B̂φ⃗κ + δκj ,κ one can show by recursion

that

B̂φ⃗κ

N∏
j=1

B̂†
φ⃗κj

=
N∑
j=1

δκ,κj
∏
j′ ̸=j

B̂†
φ⃗κj′

+
N∏
j=1

B̂†
φ⃗κj

B̂φ⃗κ . (B.9)

Indeed, in (3.29b) we have shown that it is true for N = 2. If we assume now that it is
true for N , the following relations show that it is true also for N + 1:

B̂φ⃗κ

N+1∏
j=1

B̂†
φ⃗κj

=

 N∑
j=1

δκ,κj
∏
j′ ̸=j

B̂†
φ⃗κj′

+
N∏
j=1

B̂†
φ⃗κj

B̂φ⃗κ

 B̂†
φ⃗κN+1

(B.10a)

=

N∑
j=1

δκ,κj
∏
j′ ̸=j

B̂†
φ⃗κj′

B̂†
φ⃗κN+1

+

N∏
j=1

B̂†
φ⃗κj

(
B̂φ⃗κB̂

†
φ⃗κN+1

)
(B.10b)

=

N∑
j=1

δκ,κj
∏
j′ ̸=j

B̂†
φ⃗κj′

B̂†
φ⃗κN+1

+

N∏
j=1

B̂†
φ⃗κj

(
δκ,κN+1 + B̂†

φ⃗κN+1
B̂φ⃗κ

)
(B.10c)

=
N∑
j=1

δκ,κj
∏
j′ ̸=j

B̂†
φ⃗κj′

B̂†
φ⃗κN+1

+
N∏
j=1

B̂†
φ⃗κj

δκ,κN+1 +
N+1∏
j=1

B̂†
φ⃗κj

B̂φ⃗κ (B.10d)

=

N+1∑
j=1

δκ,κj
∏
j′ ̸=j

B̂†
φ⃗κj′

+

N+1∏
j=1

B̂†
φ⃗κj

B̂φ⃗κ . (B.10e)
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Thus, using the fact that B̂φ⃗κ |∅⟩ = 0 we have

B̂φ⃗κ

∏
j

B̂†
φ⃗κj

|∅⟩ =
∑
j

δκ,κj
∏
j′ ̸=j

B̂†
φ⃗κj′

|∅⟩ , (B.11)

and further∑
κ

ℏωκB̂†
φ⃗κ
B̂φ⃗κ

∏
j

B̂†
φ⃗κj

|∅⟩ =
∑
κ

ℏωκB̂†
φ⃗κ

∑
j

δκ,κj
∏
j′ ̸=j

B̂†
φ⃗κj′

|∅⟩ (B.12a)

=
∑
j

∑
κ

ℏωκB̂†
φ⃗κ
δκ,κj

∏
j′ ̸=j

B̂†
φ⃗κj′

|∅⟩ (B.12b)

=
∑
j

ℏωκj B̂
†
φ⃗κj

∏
j′ ̸=j

B̂†
φ⃗κj′

|∅⟩ (B.12c)

=

∑
j

ℏωκj

 ∏
all j′

B̂†
φ⃗κj′

|∅⟩ . (B.12d)

Finally inserting (B.12d) into (B.8b) we obtain

Ĥ |Φ(t)⟩ =
∑

κ1,...,κN

e−i
∑

i ωκi t
∏
j

ακj
∑
κ

ℏωκB̂†
φ⃗κ
B̂φ⃗κ

∏
j′

B̂†
φ⃗κj′

|∅⟩ (B.13a)

=
∑

κ1,...,κN

e−i
∑

i ωκi t
∏
j

ακj

∑
j′

ℏωκj′

∏
j′′

B̂†
φ⃗κj′′

|∅⟩ (B.13b)

= iℏ
∂

∂t
|Φ(t)⟩ , (B.13c)

where in the last equality we have used the relation (B.6), which completes the proof.
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C
Knight’s theorem and equal-time correlation functions

The goal of this appendix is to show that one cannot deduce the nonlocality of the energy
density expectation value from the nonlocality of the time-dependent correlation functions
used by Knight [40]. To do so, we will give as counterexamples, states for which equal-
time correlation functions of A⃗ or E⃗ are local in the sense defined by Knigth [40] (see
Chapter 3). This example is inspired by the work of Bia lynicki-Birula et al. [39]. Since
we are interested in photons, we adapt Knight’s construction for the scalar Klein-Gordon
equation to the electromagnetic case but a similar argument can be made for massive
scalar fields.

We start with a state |ψ⃗A⃗⟩ = B̂†
ψ⃗
A⃗

|∅⟩ with the properties

[
B̂
ψ⃗
A⃗
, B̂†

ψ⃗
A⃗

]
= , (C.1a)[

⃗̂
A(x⃗j , t0), B̂

†
ψ⃗
A⃗

]
= 0 for all x⃗j /∈ R, (C.1b)

where R is an open set of R3 and t0 a given time which we take as zero in the following
without loss of generality. The mean value of the equal-time correlation function of the
potential vector outside R for a state with such properties is thus

⟨ψ⃗A⃗|
⃗̂
A(x⃗1) . . .

⃗̂
A(x⃗M ) |ψ⃗A⃗⟩ = ⟨∅| B̂

ψ⃗
A⃗

⃗̂
A(x⃗1) . . .

⃗̂
A(x⃗M )B̂†

ψ⃗
A⃗

|∅⟩ (C.2a)

= ⟨∅| B̂
ψ⃗
A⃗
B̂†
ψ⃗
A⃗

⃗̂
A(x⃗1) . . .

⃗̂
A(x⃗M ) |∅⟩ (C.2b)

= ⟨∅|
(

+ B̂†
ψ⃗
A⃗

B̂
ψ⃗
A⃗

)
⃗̂
A(x⃗1) . . .

⃗̂
A(x⃗M ) |∅⟩ (C.2c)

= ⟨∅| ⃗̂A(x⃗1) . . .
⃗̂
A(x⃗M ) |∅⟩ . (C.2d)

This calculation shows that outside R, the mean value is that of the vacuum. The key
point of this result is to construct a state |ψ⃗A⃗⟩ with the properties (C.1). To do so, one
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Appendix C. Knight’s theorem and equal-time correlation functions

remarks that the commutator (C.1b) can be written as[
⃗̂
A(x⃗j), B̂

†
ψ⃗
A⃗

]
=

√
ℏ

2ε0

∫
R3

d3k
∑
λ=±

ω
−1/2

k⃗
ϕ⃗
k⃗,σ

(x⃗j)

[
B̂
ϕ⃗
k⃗,σ
, B̂†

ψ⃗
A⃗

]
(C.3a)

=

√
ℏ

2ε0
Ω

−1/2

∫
R3

d3k
∑
λ=±

ϕ⃗
k⃗,σ

(x⃗j) ⟨ϕ⃗k⃗,σ|ψ⃗A⃗⟩ (C.3b)

=

√
ℏ

2ε0
Ω

−1/2ψ⃗A⃗(x⃗j), (C.3c)

which is zero outside R if one takes a function ξ⃗A⃗ with compact support in R, i.e., ξ⃗A⃗(x⃗j) =

0 for all x⃗j /∈ R and defines ψ⃗A⃗ = Ω1/2ξ⃗A⃗.

A similar construction can be done for
⃗̂
E where one has[

B̂
ψ⃗
E⃗
, B̂†

ψ⃗
E⃗

]
= , (C.4a)[

⃗̂
E(x⃗j , t0), B̂

†
ψ⃗
E⃗

]
= 0 for all x⃗j /∈ T , (C.4b)

which gives for the correlation function

⟨ψ⃗E⃗ |
⃗̂
E(x⃗1) . . .

⃗̂
E(x⃗M ) |ψ⃗E⃗⟩ = ⟨∅| B̂

ψ⃗
E⃗

⃗̂
E(x⃗1) . . .

⃗̂
E(x⃗M )B̂†

ψ⃗
E⃗

|∅⟩ (C.5a)

= ⟨∅| B̂
ψ⃗
E⃗
B̂†
ψ⃗
E⃗

⃗̂
E(x⃗1) . . .

⃗̂
E(x⃗M ) |∅⟩ (C.5b)

= ⟨∅|
(

+ B̂†
ψ⃗
E⃗

B̂
ψ⃗
E⃗

)
⃗̂
E(x⃗1) . . .

⃗̂
E(x⃗M ) |∅⟩ (C.5c)

= ⟨∅| ⃗̂E(x⃗1) . . .
⃗̂
E(x⃗M ) |∅⟩ . (C.5d)

To construct the state |ψ⃗E⃗⟩, we use the expression of the commutator[
⃗̂
E(x⃗j), B̂

†
ψ⃗
E⃗

]
= i

√
ℏ

2ε0

∫
R3

d3k
∑
σ=±

ω
1/2

k⃗
ϕ⃗
k⃗,σ

(x⃗j)

[
B̂
ϕ⃗
k⃗,σ
, B̂†

ψ⃗
E⃗

]
(C.6a)

= i

√
ℏ

2ε0
Ω

1/2

∫
R3

d3k
∑
σ=±

ϕ⃗
k⃗,σ

(x⃗j) ⟨ϕ⃗k⃗,σ|ψ⃗E⃗⟩ (C.6b)

= i

√
ℏ

2ε0
Ω

1/2ψ⃗E⃗(x⃗j), (C.6c)

and define ψ⃗E⃗ = Ω−1/2ξ⃗E⃗ , where ξ⃗E⃗ is a function with compact support in T , i.e., ξ⃗E⃗(x⃗j) =
0 for all x⃗j /∈ T .

Remark: The construction for
⃗̂
B can be deduced from that for

⃗̂
A by using

⃗̂
B = ∇× ⃗̂

A which
gives for the commutator [

⃗̂
B(x⃗j), B̂

†
ψ⃗B⃗

]
=

√
ℏ

2ε0
∇× Ω

−1/2ψ⃗B⃗(x⃗j). (C.7)
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We take then simply ψ⃗B⃗ = ψ⃗A⃗ = Ω1/2ξ⃗A⃗ since ∇× ξ⃗A⃗ also has compact support in R ⊂ R3.

These two examples show, as it was already said by Knight [40], that the theorem does
not apply for equal-time correlation functions. As a consequence, the non locality of the
energy density, which is a time-independent operator, cannot be deduced from Knight’s
theorem and one needs to use another approach to show the nonlocality, e.g., what we
have done in Chapter 3.
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D
Anti-locality of the frequency operator — Proof of Lemma 1

We provide in this appendix, a proof of the Lemma 1 used to show the nonlocality of
photons in Section 3.4.4. This result was shown in [109–111] and we will sketch here the
argument of [110]. We recall the statement:

Lemma 1: For any field v⃗(x⃗) that is not identically zero, Ωv⃗ and v⃗ cannot be both zero
in any open set of R3.

To show the Lemma, we will show an equivalent formulation that is: if v⃗ and Ωv⃗ are
both equal to zero in some open set S, it implies that v⃗(x⃗) = 0 everywhere.

Since Ω is positive and selfadjoint, the operators U(t) = exp(iΩt), t ∈ (−∞,+∞) define a
one-parameter family of unitary operators. The field defined as u⃗(x⃗, t) = U(t)v⃗(x⃗) satisfies
the wave equation

∂2u⃗

∂t2
= −Ω2u⃗, (D.1)

with initial conditions

u⃗(x⃗, t = 0) = v⃗(x⃗), (D.2a)

∂u⃗

∂t
(x⃗, t = 0) = iΩv⃗(x⃗). (D.2b)

Since the solutions of the wave equation propagate with a finite speed c, the property of
the initial conditions to be zero, i.e., v⃗(x⃗) = 0 in a set S, implies that there is a t0 > 0
and a nonempty open subset S0 ⊂ S such that u⃗(x⃗, t) = 0 for all x⃗ ∈ S0 and 0 ≤ t < t0.
Thus, for any C∞ field φ⃗(x⃗) with compact support in S0,

⟨φ⃗|u⃗(·, t)⟩ =

∫
R3

d3x φ⃗(x⃗)⋆ · u⃗(x⃗, t) = 0 (D.3)

for 0 ≤ t < t0. We now consider the continuation of the variable t into the upper complex
half-plane and define the function

f(z) = ⟨φ⃗|eiΩz v⃗⟩ , (D.4)
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for Im z ≥ 0 that has the following properties [110]:

(i) f(z) is holomorphic for Im z > 0, and continuous for Im z ≥ 0;

(ii) f(t) = ⟨φ⃗|u⃗(·, t)⟩ when t ∈ R, and f(t) ∈ R for t ∈ (0, t0);

(iii) f(t) = 0 for 0 ≤ t < t0.

We remark that for t > t0, f(t) is not necessarily zero nor real. The main steps of a
proof that f(z) is holomorphic in the upper half plane, by showing the existence of the
derivative df/dz, can be summarized as follows: v⃗ can be developed in the basis ϕ⃗

k⃗,σ
of

continuum eigenfunctions of the Laplacian v⃗ =
∫
R3 d

3k
∑

σ αk⃗,σϕ⃗k⃗,σ. We can then write

d

dz
f(z) =

d

dz

∫
S0

d3x φ⃗⋆ · eiΩz v⃗ (D.5a)

=

∫
S0

d3x φ⃗⋆ · eiΩziΩv⃗ (D.5b)

=

∫
S0

d3x

∫
R3

d3k
∑
σ

φ⃗⋆ · ϕ⃗
k⃗,σ
α
k⃗,σ
iω
k⃗
eiωk⃗

z. (D.5c)

The derivative can be brought inside the integral by the Weierstrass M -test and the
Lebesgue dominated convergence theorem, because the integral converges absolutely since
eiΩz is a contractive semi-group [185]. The existence of the derivative is then obtained by
exchanging the two integrals by the Fubini-Tonelli theorem: Writing z as z = zr + izi, one
obtains ∣∣∣∣ ddz f(z)

∣∣∣∣ ≤ ∫
S0

d3x

∫
R3

d3k
∑
σ

|φ⃗⋆ · ϕ⃗
k⃗,σ

| |α
k⃗,σ

|ω
k⃗
e−ωk⃗

zi

=

∫
R3

d3k
∑
σ

|α
k⃗,σ

|ω
k⃗
e−ωk⃗

zi

∫
S0

d3x|φ⃗⋆ · ϕ⃗
k⃗,σ

|

≤ C

∫
R3

d3k
∑
σ

|α
k⃗,σ

|ω
k⃗
e−ωk⃗

zi <∞, (D.6a)

where C is a constant. The last integral is finite for zi > 0, which completes the argument
for the existence of df/dz.
We will now use the Schwarz reflection principle [186, p.75], which in the present context
can be formulated as follows: If f+(z) satisfies the following properties:

(S-i) f+(z) is holomorphic in the open upper complex rectangleD+ = {Im z > 0,Re z ∈ (0, t0)};

(S-ii) f+(z) continuous in D+ ∪ (0, t0);

(S-iii) f+(t) is real in the interval t ∈ (0, t0);

then f+(z) can be continued holomorphically through the interval (0, t0) to the lower
rectangle D− = {Im z ≤ 0,Re z ∈ (0, t0)}, by defining

f+(z) =

{
f+(z) for z ∈ D+,
[f+(z⋆)]⋆ for z ∈ D−.

(D.7)
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This defines thus a holomorphic function f+(z) in the whole open set D+ ∪ D− =
{Re z ∈ (0, t0)}, which includes the interval (0, t0).
By applying the Schwarz reflection principle to the function f(z) that we combine with
the properties (i) and (ii), it shows that f(z) is analytic in the union of the open upper half
plane and D−. Property (iii) states that f(z) = 0 in the interval z ∈ (0, t0), which implies
that f(z) = 0 in the whole region where f is holomorphic, in particular in the whole open
upper half-plane Im z > 0. Since, according to (i), f(z) is continuous for Im z ≥ 0, this
implies that f(z) = 0 for Im z ≥ 0. In particular, f(t) : ⟨φ⃗|u⃗(·, t)⟩ = 0 for −∞ < t < ∞.
Since φ⃗ is an arbitrary function, this implies that u⃗(x⃗, t) = 0 for −∞ < t <∞ and x⃗ ∈ S0.
The unique continuation theorem for solutions u⃗(x⃗, t) of the wave equation, proven, e.g.,
in [187], states that if u⃗(x⃗, t) = 0 for an open set for all −∞ < t < ∞, then u⃗(x⃗, t) = 0
everywhere. In particular, for t = 0 this implies that

u⃗(x⃗, t = 0) = v⃗(x⃗) = 0, for all x⃗ ∈ R3, (D.8)

which completes the proof.
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E
Coherent states

Coherent states, also called quasi-classical states, are states that were originally con-
structed for the standard one-dimensional quantum harmonic oscillator in order to ana-
lyze the classical limit of the quantum theory. One can also define them for the quantum
theory of the electromagnetic field as we will do in this appendix. They are interesting
states of the field since it is commonly accepted that lasers produce coherent states [33].

Definition

We start by defining for any BB function η⃗ ∈ HBB the following Weyl operator

Ŵη⃗ = exp
(
Ĉ†
η⃗ − Ĉη⃗

)
(E.1a)

= e−
1
2
⟨η⃗|η⃗⟩BB exp

(
Ĉ†
η⃗

)
exp
(
−Ĉη⃗

)
, (E.1b)

which is unitary, i.e., Ŵ−1
η⃗ = Ŵ †

η⃗ , and where we have used the Baker-Hausdorff-Campbell

formula as well as the commutation relation [Ĉη⃗, Ĉ
†
η⃗] = ⟨η⃗|η⃗⟩BB to obtain the second

expression. We note that Ŵη⃗ is a generalization of the displacement operator traditionally
used for the construction of coherent states for the quantum harmonic oscillator. An
equivalent formulation can be done in the LP representation by applying the isomorphism

I−1Ŵη⃗I = exp
(
I−1B̂†

η⃗I − I−1B̂η⃗I
)

(E.2a)

= exp
(
Ĉ†
I−1η⃗

− ĈI−1η⃗

)
= ŴI−1η⃗. (E.2b)

A coherent state, described in position space representation, is thus obtained by applying
a Weyl operator to the vacuum state as

|cohη⃗⟩ = Ŵη⃗ |∅⟩ . (E.3)

This construction is general in the sense that no constraints about the normalization of η⃗
are required. However, one can express the same coherent state in terms of a normalized
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BB function ξ⃗ related to η⃗ by η⃗ = αξ⃗, for α ∈ C, as

|cohη⃗⟩ = |coh
αξ⃗
⟩ = Ŵ

αξ⃗
|∅⟩ = exp

(
Ĉ†
αξ⃗

− Ĉ
αξ⃗

)
|∅⟩ = exp

(
αĈ†

ξ⃗
− α⋆Ĉ

ξ⃗

)
|∅⟩ . (E.4)

The last expression shows the close relation between the construction we are doing here
using Weyl operators and the standard quantum harmonic oscillator construction using
the displacement operator. We remark that a coherent state is always normalized, no
matter the normalization of the state function since

⟨cohη⃗|cohη⃗⟩ = ⟨∅| Ŵ †
η⃗Ŵη⃗ |∅⟩ = ⟨∅|∅⟩ = 1. (E.5)

By decomposing the exponential in (E.1a), one can also express coherent states in terms
of bosonic creation-annihilation operators as

|cohη⃗⟩ = e−
1
2
⟨η⃗|η⃗⟩BB

∞∑
n=0

1

n!
Ĉ†
η⃗ |∅⟩ , (E.6)

and this is the representation we will use in the following.

Energy density

We have used in Chapter 3 the expectation value of the energy density operator for a
coherent state |cohη⃗⟩ which yields

⟨Ê(x⃗)⟩|cohη⃗⟩ = |η⃗(h+)(x⃗)| 2 + |η⃗(h−)(x⃗)| 2 + η⃗(h+)⋆(x⃗) · η⃗(h−)⋆(x⃗) + η⃗(h−)(x⃗) · η⃗(h+)(x⃗)

= |η⃗RS(x⃗)| 2, (E.7)

where η⃗RS = η⃗(h+) + η⃗(h−)⋆ is the Riemann-Silberstein vector (see Chapter 2). In this
section, we aim at showing this result. We recall that the energy density operator can be
expressed in terms of the BB field operators (3.82) as

Êem(x⃗) =
⃗̂
F(h+)† · ⃗̂F(h+) +

⃗̂
F(h−)† · ⃗̂F(h−) +

⃗̂
F(h−)† · ⃗̂F(h+)† +

⃗̂
F(h+) · ⃗̂F(h−), (E.8)

and to compute the mean value, one has to compute four terms:

T1 = ⟨∅| Ŵ †
η⃗
⃗̂
F(h+)† · ⃗̂F(h+)Ŵη⃗ |∅⟩ , (E.9a)

T2 = ⟨∅| Ŵ †
η⃗
⃗̂
F(h−)† · ⃗̂F(h−)Ŵη⃗ |∅⟩ , (E.9b)

T3 = ⟨∅| Ŵ †
η⃗
⃗̂
F(h+)† · ⃗̂F(h−)†Ŵη⃗ |∅⟩ , (E.9c)

T4 = ⟨∅| Ŵ †
η⃗
⃗̂
F(h−) · ⃗̂F(h−)Ŵη⃗ |∅⟩ . (E.9d)

We will use the extension of the commutation relation used in Chapter 3 and its complex
conjugate [

⃗̂
F, (Ĉ†

η⃗)
n
]

= nη⃗(x⃗)(Ĉ†
η⃗)
n−1, for n ≥ 1, (E.10a)[

(Ĉη⃗)
n,
⃗̂
F†,
]

= nη⃗⋆(x⃗)(Ĉη⃗)
n−1, for n ≥ 1. (E.10b)
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It can be proved by induction by remarking that (3.84) is the base case n = 1, and by
propagating it to n+ 1 with the commutator identity [a, bc] = [a, b]c+ b[a, c][

⃗̂
F, (Ĉ†

η⃗)
n+1
]

=
[
⃗̂
F, (Ĉ†

η⃗)
n
]
Ĉ†
η⃗ + (Ĉ†

η⃗)
n
[
⃗̂
F, Ĉ†

η⃗

]
(E.11a)

= nη⃗(x⃗)(Ĉ†
η⃗)
n + η⃗(x⃗)(Ĉ†

η⃗)
n (E.11b)

= (n+ 1)η⃗(x⃗)(Ĉ†
η⃗)
n. (E.11c)

This commutation relation can be expressed for any positive/negative helicity part of the
field operator since[

⃗̂
F(h±), (Ĉ†

η⃗)
n+1
]

= P(h±)
[
⃗̂
F, (Ĉ†

η⃗)
n+1
]

= nη⃗(h±)(x⃗)(Ĉ†
η⃗)
n−1. (E.12)

We compute then

T1 = e−⟨η⃗|η⃗⟩
∑
n,m

1

n!m!
⟨∅| (Ĉη⃗)n

⃗̂
F(h+)† · ⃗̂F(h+)(Ĉ†

η⃗)
m |∅⟩ (E.13a)

= e−⟨η⃗|η⃗⟩
∑
n,m

1

n!m!
⟨∅|nη⃗(h+)⋆(x⃗) · (Ĉη⃗)

n−1 ⃗̂F(h+)(Ĉ†
η⃗)
m |∅⟩ (E.13b)

= e−⟨η⃗|η⃗⟩
∑
n,m

η⃗(h+)⋆(x⃗)

(n− 1)!m!
· ⟨∅| (Ĉη⃗)n−1mη⃗(h+)(x⃗)(Ĉ†

η⃗)
m−1 |∅⟩ (E.13c)

= e−⟨η⃗|η⃗⟩
∑
n,m

|η⃗(h+)(x⃗)| 2

(n− 1)!(m− 1)!
⟨∅| (Ĉη⃗)n−1(Ĉ†

η⃗)
m−1 |∅⟩ (E.13d)

= |η⃗(h+)(x⃗)| 2 ⟨cohη⃗|cohη⃗⟩ = |η⃗(h+)(x⃗)| 2, (E.13e)

and following the same procedure we obtain the three other terms

T2 = |η⃗(h−)(x⃗)| 2, (E.14a)

T3 = η⃗(h+)⋆(x⃗) · η⃗(h−)⋆(x⃗) (E.14b)

T4 = η⃗(h−)(x⃗) · η⃗(h+)(x⃗). (E.14c)

The mean value of the energy density is then the sum of the four terms

⟨Êem(x⃗)⟩|cohη⃗⟩ = |η⃗(h+)(x⃗)| 2+|η⃗(h−)(x⃗)| 2+η⃗(h+)⋆(x⃗)·η⃗(h−)⋆(x⃗)+η⃗(h−)(x⃗)·η⃗(h+)(x⃗). (E.15)

To be able to analyze its localization property, we express the result in terms of the RS

vector (2.43) by reminding its relation with the BB vector: η⃗(h+) = η⃗
(h+)
RS and η⃗(h−) =

η⃗
(h−)⋆
RS . It gives for the energy density

⟨Êem(x⃗)⟩|cohη⃗⟩ = |η⃗(h+)
RS (x⃗)|

2
+ |η⃗(h−)

RS (x⃗)|
2

+ η⃗
(h+)⋆
RS (x⃗) · η⃗(h−)

RS (x⃗) + η⃗
(h−)⋆
RS (x⃗) · η⃗(h+)

RS (x⃗)

= |η⃗RS(x⃗)| 2. (E.16)
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F
Coupling coefficient for the single-photon spontaneous

emission

To compute the spontaneously emitted photon produced by the Lyman-α transition of a
Hydrogen atom, we have used in Chapter 4 the coupling function (4.8)

ρ(k, J,M, λ) = − e

m
⟨g; ψ⃗

(λ)
k,J,M | ⃗̂p · ⃗̂A(x⃗) |e;∅⟩ (F.1a)

=

(
2

3

)7/2
√
α5

π
mc2

1√
k

k/K[
1 +

(
k
K

)2]2 δJ,1δM,me (F.1b)

≡ ρ(k)δJ,1δM,me . (F.1c)

In this appendix, we aim at deriving this coupling, i.e., computing the matrix element

M = ⟨g; ψ⃗
(λ)
k,J,M | ⃗̂p · ⃗̂A(x⃗) |e;∅⟩ , (F.2)

where |g⟩ ≡ |φg⟩ = φn=1,l=0,m=0(r, ϑ, φ) and |e⟩ ≡ |φe⟩ = φn=2,l=1,m=0,±1(r, ϑ, φ) as
introduced for the Hydrogen atom in Chapter 1.

Following the remark from Chapter 4 equations (4.6), and choosing ψ⃗
(λ)
k,J,M as the basis ϕ⃗κ

to represent
⃗̂
A, we have first

M = ⟨g; ψ⃗
(λ)
k,J,M |

√
ℏ

2ε0

∑
κ

ω
−1/2
κ ϕ⃗⋆κ · |−iℏ∇φe; ϕ⃗κ⟩ (F.3a)

= −iℏ
√

ℏ
2ε0

∑
κ

ω
−1/2
κ ⟨g; ψ⃗

(λ)
k,J,M |ϕ⃗⋆κ · ∇φe; ϕ⃗κ⟩ (F.3b)

= −iℏ
√

ℏ
2ε0

∑
κ

ω
−1/2
κ ⟨φg|ϕ⃗⋆κ · ∇φe⟩at ⟨ψ⃗

(λ)
k,J,M |ϕ⃗κ⟩em (F.3c)

= −iℏ
√

ℏ
2ε0

ω
−1/2
k ⟨φg|ψ⃗(λ)⋆

k,J,M · ∇φe⟩at , (F.3d)
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and now we want to compute the atomic scalar product

I = ⟨φg|ψ⃗(λ)⋆
k,J,M · ∇φe⟩at =

∫
R3

d3x φg(x⃗)ψ⃗
(λ)⋆
k,J,M (x⃗) · ∇φe(x⃗) (F.4a)

=

3∑
j=1

∫
R3

d3x φg(x⃗)ψ
(λ)(j)⋆
k,J,M (x⃗)

∂φe(x⃗)

∂xj
= −

3∑
j=1

∫
R3

d3x
∂

∂xj

(
φgψ

(λ)(j)⋆
k,J,M

)
φe(x⃗) (F.4b)

= −
3∑
j=1

∫
R3

d3x

∂φg
∂xj

ψ
(λ)(j)⋆
k,J,M + φg

∂ψ
(λ)(j)⋆
k,J,M

∂xj

φe(x⃗) (F.4c)

= −
∫
R3

d3x
(
∇(φg) · ψ⃗(λ)⋆

k,J,M + φg∇ · ψ⃗(λ)⋆
k,J,M

)
φe(x⃗) = −

∫
R3

d3x∇(φg) · ψ⃗(λ)⋆
k,J,Mφe(x⃗),

(F.4d)

where we have performed an integration by part in (F.4b) and used the transversality of
the helicity vector harmonics in (F.4d). To go further into the calculation, we use the
identity ∇f(r) = df/dr n⃗ where n⃗ = x⃗/r to compute

∇φg =
dφg
dr

n⃗ = − 1

rB
φgn⃗, (F.5)

and thus

∇φg · ψ⃗(λ)⋆
k,J,M = − 1

rB
φgn⃗ · ψ⃗(λ)⋆

k,J,M (F.6a)

=
i√
πrB

√
J(J + 1)

2J + 1
k
(
jJ−1(kr) + jJ+1(kr)

)
φg(r)Y

⋆
J,M (ϑ, φ), (F.6b)

where we have used the relations [74, p.219]

n⃗ · Y⃗ J
J,M = 0, n⃗ · Y⃗ J+1

J,M = −
√

J + 1

2J + 1
YJ,M , n⃗ · Y⃗ J−1

J,M =

√
J

2J + 1
YJ,M . (F.7)

The integral I becomes then

I =
−ik√
πrB

√
J(J + 1)

2J + 1

∫
R3

d3x φg(x⃗)φe(x⃗)
(
jJ−1(kr) + jJ+1(kr)

)
Y ⋆
J,M (ϑ, φ), (F.8)

which can be simplified by expressing the product φgφe for the different values me = 0,±1:

φg(x⃗)φe(x⃗) ≡ φn=1,l=0,m=0(r, ϑ, φ)φn=2,l=1,m=me(r, ϑ, φ) (F.9a)

=
1√
24π

r

r4B
e
− 3r

2rB Y1,me(ϑ, φ) (F.9b)

= R2,1(r)Y1,me(ϑ, φ), (F.9c)

where we have used the expression of the spherical harmonics

Y1,0(ϑ, φ) =

√
3

4π
cosϑ, Y1,±1(ϑ, φ) = ∓

√
3

8π
sinϑe±iφ. (F.10)
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Radial and angular parts of I are independent and we arrive at

I =
−ik√
πrB

√
J(J + 1)

2J + 1

∫ ∞

0
dr r2R2,1(r)

(
jJ−1(kr) + jJ+1(kr)

)
×
∫ π

0
dϑ sinϑ

∫ 2π

0
dφ Y ⋆

J,MY1,me (F.11a)

=
−ik√
πrB

√
2

3

∫ ∞

0
dr r2R2,1(r)

(
j0(kr) + j2(kr)

)
δJ,1δM,me (F.11b)

=
−ik√
πrB

√
2

3
δJ,1δM,meIr(k). (F.11c)

It remains thus only the radial integral Ir(k) which we compute using the spherical Bessel
functions of the form

j0(kr) =
sin(kr)

kr
, j2(kr) =

(
3

(kr)2
− 1

)
sin(kr)

kr
− 3

cos(kr)

(kr)2
, (F.12)

and thus

Ir(k) =
1√
24π

∫ ∞

0
dr

r3

r4B

(
3

sin(kr)

(kr)3
− 3

cos(kr)

(kr)2

)
e
− 3r

2rB (F.13a)

=
3√

24πr4B

∫ ∞

0
dr

(
sin(kr)

k3
− r

cos(kr)

k2

)
e
− 3r

2rB (F.13b)

= Ir,s + Ir,c. (F.13c)

We compute now the two terms and for simplicity we introduce the notation K = 3/2rB:

Ir,s =
3√

24πr4B

1

k3

∫ ∞

0
dr sin(kr)e−Kr (F.14a)

=
3

2i
√

24πr4B

1

k3

[
e(ik−K)r

ik −K
+
e−(ik+K)r

ik +K

]∞
0

(F.14b)

=
3

2i
√

24πr4B

1

k3

(
−1

ik −K
− 1

ik +K

)
=

3√
24πr4B

1

k2
1

k2 +K2
, (F.14c)

and

Ir,c = − 3√
24πr4B

1

k2

∫ ∞

0
dr r cos(kr)e−Kr (F.15a)

=
3

2
√

24πr4B

1

k2

[
e(ik−K)r

(ik −K)2
+

e(ik+K)r

(ik +K)2

]∞
0

(F.15b)

=
3

2
√

24πr4B

1

k2

(
−1

(ik −K)2
− 1

(ik +K)2

)
=

3√
24πr4B

1

k2
k2 −K2

(k2 +K2)2
, (F.15c)

which allow to calculate

Ir(k) =
3√

24πr4B

2

(k2 +K2)2
=

6

K4
√

24πr4B

1[
1 +

(
k
K

)]2 =

(
2

3

)4 3√
6π

1[
1 +

(
k
K

)]2 .
(F.16)
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We finally gather all the results to express the coupling function ρ(k, J,M, λ) as

ρ(k, J,M, λ) = − e

m
M = i

√
ℏ3e2

2ε0m2ωk
I =

√
ℏ3e2

πε0m2ωk

k

3rB
δJ,1δM,meIr(k) (F.17a)

=

(
2

3

)7/2
√
α5

π
mc2

1√
k

k/K[
1 +

(
k
K

)2]2 δJ,1δM,me , (F.17b)

where we have used the relations

α =
e2

4πε0ℏc
, rB =

ℏ
αmc

, (F.18)

to reach the final result.
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G
Solution of the Friedrichs model

The aim of this appendix is to obtain the solution of the Friedrichs model we have used in
Section 4.1.2. We will mostly reproduce and demonstrate results from [136, Section 17.3].
We start thus with the Hamiltonian from (4.20) written as

Ĥ =

(
ωa ⟨ρ̃|·⟩
ρ̃ ωk

)
, (G.1)

where ℏωa is the energy of the excited state, ωk > 0 is the continuous spectrum, ρ̃ ∈ L2 is
the real coupling function and ⟨ρ̃|f⟩ =

∫∞
0 dωρ̃⋆(ω)f(ω). Our goal, is to look for a solution

of the Schrödinger-like equation

i
∂

∂t
|ψ⟩ = Ĥ |ψ⟩ , (G.2)

where |ψ⟩ =
(
u v(ωk)

)T
, i.e., a solution of the system

i
∂u

∂t
= ωa + ⟨ρ̃|v⟩ , (G.3a)

i
∂v(ωk)

∂t
= ρ̃(ωk)u+ ωkv(ωk), (G.3b)

with an initial state |ψ0⟩ =
(
1 0

)T
to analyze the spontaneous emission. In this situation,

we remark that the second equation can be integrated formally as a function of u(t)

v(ωk, t) = −ie−iωktρ̃(ωk)

∫ t

0
dt′eiωkt

′
u(t′), (G.4)

meaning that the problem is reduced to finding u(t). To do so, we consider a basis set
{|ψν⟩} of eigenfunctions of Ĥ, i.e., Ĥ |ψν⟩ = ν |ψν⟩, with ν ∈ [0,∞) which we will use to
compute u(t) expressed as

u(t) = ⟨ψ0| e−iĤt |ψ0⟩ . (G.5)
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We rewrite this equation using the spectral decomposition of Ĥ and |ψ0⟩

Ĥ =

∫ ∞

0
dν ν |ψν⟩ ⟨ψν | , (G.6a)

|ψ0⟩ =

∫ ∞

0
dν |ψν⟩ ⟨ψν |ψ0⟩ , (G.6b)

and obtain

u(t) =

∫ ∞

0
dν|⟨ψ0|ψν⟩| 2e−iνt =

∫ ∞

0
dν g(ν)e−iνt. (G.7)

We propose now to compute the function g(ν) using the resolvent operator R̂(z) = (z −
Ĥ)−1, z ∈ C, which can be written using the continuous eigenstates as

R̂(z) =

∫ ∞

0
dν ′

1

z − ν ′
|ψν′⟩ ⟨ψν′ | . (G.8)

By taking the limit of zero imaginary part of z = ν+iϵ, and using the identity [64, Chapter
8]

1

ν − ν ′ ± i0+
= pv

(
1

ν − ν ′

)
∓ iπδ(ν − ν ′), (G.9)

where ν is the pole and ν ′ the integrated variable, we arrive at

R̂(ν ± i0+) =

∫ ∞

0
dν ′

1

ν − ν ′ ± i0+
|ψν′⟩ ⟨ψν′ | (G.10a)

=

∫ ∞

0
dν ′
[
pv

(
1

ν − ν ′

)
∓ iπδ(ν − ν ′)

]
|ψν′⟩ ⟨ψν′ | , (G.10b)

and then
R̂(ν + i0+) − R̂(ν − i0+) = −2iπ |ψν⟩ ⟨ψν | . (G.11)

One can apply the resolvent operator on the initial state, yielding a state |η⟩

|η⟩ = (z − Ĥ)−1 |ψ0⟩ , (G.12)

which can be written as

|η⟩ =

(
a

b(ωk)

)
. (G.13)

By inverting the definition of |η⟩, one obtains

|ψ0⟩ = (z − Ĥ) |η⟩ =

(
z − ωa −⟨ρ̃|·⟩
−ρ̃(ωk) z − ωk

)(
a

b(ωk)

)
=

(
1
0

)
, (G.14)

from which a and b(ωk) can be expressed as

b(ωk) =
ρ̃(ωk)

z − ωk
a, (G.15a)

a =

[
z − ωa − ⟨ρ̃| ρ̃

z − ωk
⟩
]−1

= ⟨ψ0| R̂(z) |ψ0⟩ ≡ R0(z). (G.15b)
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Using the decomposition of the resolvent (G.8), one can then write

R0(z) = ⟨ψ0| R̂(z) |ψ0⟩ (G.16a)

=

∫ ∞

0
dν ′

1

z − ν ′
|⟨ψ0|ψν′⟩| 2 =

∫ ∞

0
dν ′

g(ν ′)

z − ν ′
, (G.16b)

from which we can express g(ν) by using (G.11)

g(ν) = − 1

2iπ

(
R0(ν + i0+) −R0(ν − i0+)

)
. (G.17)

To compute g(ν) we need thus to combine the results from (G.15b) and (G.17). As an
intermediary step, we express the scalar product from (G.15b) as

⟨ρ̃| ρ̃

ν − ωk ± i0+
⟩ =

∫ ∞

0
dωk

|ρ̃(ωk)|2

ν − ωk ± i0+
(G.18a)

=

∫ ∞

0
dωk|ρ̃(ωk)|2

[
pv

(
1

ν − ωk

)
∓ iπδ(ν − ωk)

]
(G.18b)

= pv

∫ ∞

0
dωk

|ρ̃(ωk)|2

ν − ωk
∓ iπ|ρ̃(ν)|2 (G.18c)

= ∆(ν) ∓ i
Γ(ν)

2
, (G.18d)

where

∆(ν) = pv

∫ ∞

0
dωk

|ρ̃(ωk)|2

ν − ωk
, (G.19a)

Γ(ν) = 2π|ρ̃(ν)|2. (G.19b)

By combining (G.15b), (G.17) and (G.18), we compute g(ν) as

g(ν) = − 1

2iπ

[
1

ν − ωa + i0+ − ∆(ν) + iΓ(ν)2

− 1

ν − ωa − i0+ − ∆(ν) − iΓ(ν)2

]
(G.20a)

= − 1

2iπ

−2i0+ − iΓ(ν)

(ν − ωa − ∆(ν) + i(0+ + Γ(ν)
2 ))(ν − ωa − ∆(ν) − i(0+ + Γ(ν)

2 ))
(G.20b)

=
1

2π

Γ(ν)

(ν − ωa − ∆(ν))2 + Γ(ν)2

4

, (G.20c)

where every term involving 0+ vanishes by applying the limit.
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H
Asymptotic behavior of the radial integrals for spontaneous

emission

In this appendix, we want to compute the asymptotic behavior of the radial integrals that
appear in the calculation of the energy density of a spontaneously emitted photon from
the Lyman-α transition of a Hydrogen atom. The integrals have the following forms

F0(r, t) =

(
2

3

)3
√
α5

c

mc2

πℏrB

∫ ∞

0
dq
e−iqp − e−i(Ωa−iΓ̃a)t

A+ i(B − q)

q2

(1 + q2)2
j0(qr

′), (H.1a)

F1(r, t) = −iλ
(

2

3

)5/2
√
α5

c

mc2

πℏrB

∫ ∞

0
dq
e−iqp − e−i(Ωa−iΓ̃a)t

A+ i(B − q)

q2

(1 + q2)2
j1(qr

′), (H.1b)

F2(r, t) = −
(

2

3

)3
√
α5

2c

mc2

πℏrB

∫ ∞

0
dq
e−iqp − e−i(Ωa−iΓ̃a)t

A+ i(B − q)

q2

(1 + q2)2

(
3

qr′
j1(qr

′) − j0(qr
′)

)
,

(H.1c)

where

A =
Γ̃a

cK
=

Γa

2cK
, B =

Ωa

cK
=
ωa + ∆a

cK
, (H.2a)

q =
k

K
, p = cKt, r′ = Kr. (H.2b)

To obtain the asymptotic behavior of the FL integrals, and due to the expression of the
spherical Bessel functions

j0(qr
′) =

sin(qr′)

qr′
, j1(qr

′) =
sin(qr′)

q2r′2
− cos(qr′)

qr′
, (H.3)

one needs to analyze integrals of the form∫ ∞

0
dqR(q) sin

(
qr′
)
,

∫ ∞

0
dqR(q) cos

(
qr′
)
. (H.4)
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Here, R(q) is a function with the properties that for some Ns ≥ 0 even or Nc ≥ 0 odd,

dnR(q)

dqn

∣∣∣∣
q=0

=

{
0 for n < Nc,s, n same parity as Nc,s,
cst ̸= 0 for n = Nc,s, n same parity as Nc,s,

(H.5a)

lim
q→∞

dnR(q)

dqn
= 0, (H.5b)

and ∫ ∞

0
dq

∣∣∣∣dnR(q)

dqn

∣∣∣∣ <∞, for all n < Nc,s. (H.6)

The indices c, s, are needed to treat the cosine and sine integrals in (H.4), respectively.
Using these properties and some integrations by parts the sine integral becomes∫ ∞

0
dqR(q) sin

(
qr′
)

= − 1

r′

[
R(q) cos

(
qr′
)]∞

0
+

1

r′

∫ ∞

0
dq
dR(q)

dq
cos
(
qr′
)

(H.7a)

=
1

r′
R(0) − 1

r′

∫ ∞

0
dq
dR(q)

dq
cos
(
qr′
)

(H.7b)

=
1

r′
R(0) + o

(
1

r′

)
. (H.7c)

The last equality is obtained by the Riemann-Lebesgue lemma [64] which states that∣∣∣∣∫ ∞

0
dq
dR(q)

dq
cos
(
qr′
)∣∣∣∣ −→

r′→+∞
0, (H.8)

if
∫∞
0 dq

∣∣∣dR(q)
dq

∣∣∣ <∞, which is true according to (H.6). Therefore, the first term of (H.7c)

gives the asymptotics for large r′ if Ns = 0, otherwise, one has to iterate the integration
by parts as∫ ∞

0
dqR(q) sin

(
qr′
)

=
1

r′2

[
dR

dq
sin
(
qr′
)]∞

0

− 1

r′2

∫ ∞

0
dq
d2R(q)

dq2
sin
(
qr′
)

(H.9a)

= − 1

r′2

∫ ∞

0
dq
d2R(q)
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, (H.9e)

and again, the first term gives the asymptotics by the Riemann-Lebesgue lemma if Ns = 2.
Otherwise, the same process can be continued until one reaches Ns. A similar process can
be done for the cosine integral and gives after one step∫ ∞

0
dqR(q) cos

(
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)

= − 1
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, (H.10b)
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by the Riemann-Lebesgue lemma. This step is enough if Nc = 1 but others can be
performed if not.
To apply this technique, we now need the concrete form of the functions R(q) and thus
we rewrite the FL integrals as

F0 =

(
2

3

)3
√
α5

c

mc2

πℏrB
1

r′

∫ ∞

0
dq
(
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(1)
+ (q) +R
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− (q)

)
sin
(
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)
, (H.11a)

F1 = −iλ
(

2

3

)5/2
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c

mc2
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1
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(
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, (H.11b)

where the R functions are

R
(1)
+ (q) =

e−iqp

A+ i(B − q)

q

(1 + q2)2
, R

(1)
− (q) = − e−i(Ωa−iΓ̃a)t

A+ i(B − q)

q

(1 + q2)2
, (H.12a)

R
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− (q) = − e−i(Ωa−iΓ̃a)t

A+ i(B − q)

1

(1 + q2)2
. (H.12b)

The integral F2 can be deduced rapidly from the other two as we will discuss later. The
asymptotics for F0 and F1 can be computed using the iterative process and we obtain

F0(r, t) ∼
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which can be further simplified using

R
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+ (q = 0) =

1
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Since F0 ∼ F1/r
′, we compute only F1 which will dominate for large r′. We obtain then

the result used in Section 4.1.3 by inserting (H.14) in (H.13b)
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where the dimensionless function of time reads

T (t) =
1
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(
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Appendix H. Asymptotic behavior of the radial integrals for spontaneous emission

Regarding F2 we recall its expression

F2(r, t) = −
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)
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(H.17)
from which we see that the term involving j0 will behave as F0 and can thus be neglected.
For the term involving j1, one has to be more cautious since it does not have the same
form as what we had for F1. It yields
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, (H.18b)

from which one can already see that F2 will decrease faster than F1. Indeed, the first term
scales like 1/r′3 before making the iterative process to analyze the integral. Moreover, the
function of q to integrate does not yield a constant when q → 0 meaning that the iterative
process must be done more than one time. Thus, this term will decrease faster than 1/r′3

and can be neglected. The second term involves a cosine for which the first iterative step
(H.10) already scales as 1/r′2, so that the full term would scale like 1/r′4, decreasing faster
than F1.
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[108] S. De Bièvre. Where’s that quantum ? In Contributions in Mathematical Physics,
pages 123–146. Hindustan Book Agency, 2007. (page 69).

[109] I. E. Segal and R. W. Goodman. Anti-locality of certain Lorentz-invariant operators.
Journal of Mathematics and Mechanics, 14(4):629–638, 1965. (pages 69, 71, 125).

[110] K. Masuda. Anti-locality of the one-half power of elliptic differential operators.
Publications of the Research Institute for Mathematical Sciences, 8(1):207–210, 1972.
(pages 69, 71, 71, 125, 125, 126).

[111] M. Murata. Anti-locality of certain functions of the Laplace operator. Journal of
the Mathematical Society of Japan, 25(4), 1973. (pages 69, 71, 125).

[112] A. L. Licht. Strict localization. Journal of Mathematical Physics, 4(11):1443–1447,
1963. (page 70).

[113] A. L. Licht. Local states. Journal of Mathematical Physics, 7(9):1656–1669, 1966.
(page 70).

152



Bibliography

[114] R. C. Paley and N. Wiener. Fourier Transforms in the Complex Domain. American
Mathematical Society, New York, 1934. (page 70).

[115] P. Saari, M. Menert, and H. Valtna. Photon localization barrier can be overcome.
Optics Communications, 246(4-6):445–450, 2005. (page 70).

[116] P. Saari. Photon localization revisited. In Quantum Optics and Laser Experiments.
InTech, 2012. (page 70).

[117] J. Gulla and J. Skaar. Approaching single-photon pulses. Physical Review Letters,
126(7):073601, 2021. (page 70).

[118] K. Ryen, J. Gulla, and J. Skaar. Strictly localized three-dimensional states close to
single photons. International Journal of Theoretical Physics, 61(5), 2022. (page 70).

[119] J. Gulla, K. Ryen, and J. Skaar. Limits for realizing single photons.
arXiv:2109.06472v2, 2023. (page 70).

[120] E. Karpov, G. Ordonez, T. Petrosky, I. Prigogine, and G. Pronko. Causality, delo-
calization, and positivity of energy. Physical Review A, 62(1):012103, 2000. (page
70).

[121] G. C. Hegerfeldt. Problems about causality in fermi’s two-atom model and possible
resolutions. 1997. (page 70).

[122] A. Mostafazadeh and F. Zamani. Quantum mechanics of Klein-Gordon fields i:
Hilbert space, localized states, and chiral symmetry. Annals of Physics, 321(9):2183–
2209, 2006. (page 70).

[123] H. Babaei and A. Mostafazadeh. Quantum mechanics of a photon. Journal of
Mathematical Physics, 58(8):082302, 2017. (page 70).

[124] D. Hodgson, J. Southall, R. Purdy, and A. Beige. Local photons. Frontiers in
Photonics, 3, 2022. (page 70).

[125] M. Hawton. Validation of classical modeling of single-photon pulse propagation.
Physical Review A, 107(1):013711, 2023. (page 70).

[126] M. Brune, S. Haroche, J. M. Raimond, L. Davidovich, and N. Zagury. Manipulation
of photons in a cavity by dispersive atom-field coupling: Quantum-nondemolition
measurements and generation of “Schrödinger cat” states. Physical Review A,
45(7):5193–5214, 1992. (page 75).

[127] S. L. Braunstein and P. Van Loock. Quantum information with continuous variables.
Reviews of Modern Physics, 77(2):513–577, 2005. (page 75).

[128] T. C. Ralph. Continuous variable quantum cryptography. Physical Review A,
61(1):010303, 1999. (page 75).

153



Bibliography

[129] E. Diamanti and A. Leverrier. Distributing secret keys with quantum continu-
ous variables: Principle, security and implementations. Entropy, 17(12):6072–6092,
2015. (page 75).

[130] S. Pirandola, U. L. Andersen, L. Banchi, M. Berta, D. Bunandar, R. Colbeck, D. En-
glund, T. Gehring, C. Lupo, C. Ottaviani, J. L. Pereira, M. Razavi, J. Shamsul
Shaari, M. Tomamichel, V. C. Usenko, G. Vallone, P. Villoresi, and P. Wallden.
Advances in quantum cryptography. Advances in Optics and Photonics, 12(4):1012,
2020. (page 75).

[131] A. J. Miller, S. Woo Nam, J. M. Martinis, and A. V. Sergienko. Demonstration of
a low-noise near-infrared photon counter with multiphoton discrimination. Applied
Physics Letters, 83(4):791–793, 2003. (pages 78, 81).

[132] L. A. Morais, T. Weinhold, M. P. de Almeida, J. Combes, A. Lita, T. Gerrits,
S. W. Nam, A. G. White, and G. Gillett. Precisely determining photon-number in
real-time. 2020. (pages 78, 81).

[133] A. N. Vetlugin, F. Martinelli, S. Dong, and C. Soci. Photon number resolution
without optical mode multiplication. Nanophotonics, 12(3):505–519, 2023. (pages
78, 81).

[134] C. Fabre. Quantum Processes and Measurement. Cambridge University Press, 2023.
(pages 78, 81).

[135] V. Weisskopf and E. Wigner. Berechnung der natürlichen linienbreite auf grund der
diracschen lichttheorie. Zeitschrift für Physik, 63(1-2):54–73, 1930. (page 80).

[136] H. Spohn. Dynamics of Charged Particles and Their Radiation Field. Cambridge
University Press, 2009. (pages 80, 84, 85, 137).

[137] L. Novotny and B. Hecht. Principles of Nano-Optics. Cambridge University Press,
2012. (page 80, 80).
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[173] A. Saharyan, J. R. Álvarez, T. H. Doherty, A. Kuhn, and S. Guérin. Light-matter
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