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“when you have eliminated the impossible, whatever remains, however im-

probable, must be the truth. ”

Sir Arthur Conan Doyle



Abstract

In this thesis, we focus on multispectral image for face recognition. With such appli-

cation, the quality of the image is an important factor that affects the accuracy of the

recognition. However, the sensory data are in general corrupted by noise. Thus, we

propose several denoising algorithms that are able to ensure a good tradeoff between

noise removal and details preservation. Furthermore, characterizing regions and details

of the face can improve recognition. We focus also in this thesis on multispectral image

segmentation particularly clustering techniques and cluster analysis. The effectiveness of

the proposed algorithms is illustrated by comparing them with state-of-the-art methods

using both simulated and real multispectral data sets.

Keywords: multispectral image, sensory data enhancement, segmentation, cluster anal-

ysis, denoising
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Résumé

La recherche en biométrie a connu une grande évolution durant les dernières années

surtout avec le développement des méthodes de décomposition de visage. Cependant,

ces méthodes ne sont pas robustes particulièrement dans les environnements incontrôlés.

Pour faire face à ce problème, l’imagerie multispectrale s’est présentée comme une nou-

velle technologie qui peut être utilisée en biométrie basée sur la reconnaissance de visage.

Dans tous ce processus, la qualité des images est un facteur majeur pour concevoir

un système de reconnaissance fiable. Il est essentiel de se disposer d’images de haute

qualité. Ainsi, il est indispensable de développer des algorithmes et des méthodes pour

l’amélioration des données sensorielles. Cette amélioration inclut plusieurs tâches telles

que la déconvolution des images, le defloutage, la segmentation, le débruitage. . . Dans

le cadre de cette thèse, nous étudions particulièrement la suppression de bruit ainsi que

la segmentation de visage.

En général, le bruit est inévitable dans toutes applications et son élimination doit se

faire tout en assurant l’intégrité de l’information confinée dans l’image. Cette exigence

est essentielle dans la conception d’un algorithme de débruitage. Le filtre Gaussien

anisotropique est conçu spécifiquement pour répondre à cette caractéristique. Nous pro-

posons d’étendre ce filtre au cas vectoriel où les données en disposition ne sont plus des

valeurs de pixels mais un ensemble de vecteurs dont les attribues sont la réflectance dans

une longueur d’onde spécifique. En outre, nous étendons aussi le filtre de la moyenne

non-local (NLM) dans le cas vectoriel. La particularité de ce genre de filtre est la ro-

bustesse face au bruit Gaussien.

La deuxième tâche dans le but d’amélioration de données sensorielles est la segmenta-

tion. Le clustering est l’une des techniques souvent utilisées pour la segmentation et

classification des images. L’analyse du clustering implique le développement de nou-

veaux algorithmes particulièrement ceux qui sont basés sur la méthode partitionnelle.

Avec cette approche, le nombre de clusters doit être connu d’avance, chose qui n’est pas

toujours vraie surtout si nous disposons de données ayant des caractéristiques incon-

nues. Dans le cadre de cette thèse, nous proposons de nouveaux indices de validation

de clusters qui sont capables de prévoir le vrai nombre de clusters même dans le cas de

données complexes.

A travers ces deux tâches, des expériences sur des images couleurs et multispectrales sont

réalisées. Nous avons utilisé des bases de données d’image très connues pour analyser

l’approche proposée.

Mot clés: image multispectrale, amélioration des données sensorielles, segmentation,

analyse de clustering débruitage
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Chapter 1

Introduction

Human beings interact with their environment through their five sensory inputs: eye,

ear, nose, tongue and skin. These sensors receive external signal that will be processed

by brain to generate the appropriate reaction. All these sensors have their own character-

istics and roles. However, most human interactions and analysis are basically conducted

using the visual sensor.

Visual analysis allows human to interpret his surrounding, characterize its objects and

interact with it based on his reflection. However, the anatomy of the human visual

system has its limitation like all its sensors. We can only see in the visible spectrum

i.e. in the spectral range of [400nm− 720nm] unlike some other species which have the

ability to see outside this range [1].

Face recognition is a simple routine task performed easily by humans which is based on

his visible analysis. Following the evolution and wide availability of computers nowa-

days, interest in incorporating human capacities into computers has grown. Thus, it is

natural that the research on automatic face recognition has emerged.

• Motivation

Face recognition is involved in a wide range of applications including person verification

and authentication, computer entertainment and security. However, even though human

can perform this task easily, accurately, robustly and quickly, none of the existing face

recognition systems can do so. The robustness of this task involves recognizing faces

under different illumination conditions and various facial expressions. Particularly, the

illumination is still an open problem. Indeed, face is a 3D object and, under certain

illumination conditions, some area may be shadowed which makes it difficult to locate

some critical features. Even with absence of shadows, under a non uniform illumina-

tion, a face looks different and the recognition is difficult. Furthermore, under perfect

1



Introduction 2

illumination, features may be distorted with different incident angles [2]. We can con-

clude that face recognition in the broadband visible spectrum is difficult and requires

controlled illumination conditions.

Multispectral images have emerged as a new technology that is able to deal with the

various problems encountered with broadband systems. The development of new cam-

eras and filters enables us to see beyond the visible spectrum for example in the Infrared

[700nm-1mm], Ultraviolet [10nm-380nm], X-ray [0.01nm-10nm]. . . Multispectral image

is a set of several monochrome images of the same scene each of which is taken at a

specific wavelength. Each image is referred as a band or channel. This image may

be seen a as three dimensional image cube: Spatial dimensions which are the vertical

and horizontal axes and a spectral dimension where resides the spectral information.

A monochrome image has one spectral band. A pixel is represented by a scalar value.

Multispectral image consists of at least two bands. A pixel is represented by a vector of

P components where P is the number of spectral bands. Color images may be seen as

multispectral image with three spectral bands but the term is commonly used for image

with more than three bands. With more than a hundred bands, the common used term

is hyperspectral image.

Using multispectral images for face recognition is justified by two main reasons: Narrow

spectral bands exhibit more relevant facial information compared to conventional broad-

band color and black and white images. Indeed, we obtain a unique spectral signature

of the facial tissue. Such information can be employed to enhance the accuracy of face

recognition. Second, by using multispectral images, we are able to separate the illumi-

nation information from object reflectance in contrast to broadband images where it is

almost impossible to do so. This separated information can now be used to normalize

the images. For example, near-infrared spectral band can be combined with the visible

image. This approach has been widely used to construct more effective biometric sys-

tems [3–5]. Thermal infrared images have also been widely used. In fact, these sensors

detect the heat energy radiation of the face which is independent from the illumination

in contrast to the reflectance [6, 7]. Furthermore, thermal infrared is less sensitive to

scattering and absorption by smoke or dust and invariant to illumination change [8]. It

also allows to reveal anatomical information which is very useful in detecting disguised

faces [9].

• Scientific challenges

The quality of the multispectral image has a great implication on the accuracy of the

recognition. Environmental corruption such as noise and blur are common phenomena

of any captured images due to many factors. In particular, a multispectral image ca be

subject to quality degradation due to the imperfectness of the sensors [10]. Enhancing
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the sensory data leads to performance improvement in problems such as image segmen-

tation, classification and object identification. Basically, accuracy of any recognition

system is influenced by these factors [11, 12]. Poor quality images often lead to wrong

and missed features which in turn results in false rejection and false acceptance rates.

The most common artifacts that are manifested include blurring, illumination, distor-

tion and noise. Blur is a common issue in image processing that is caused by focus

incorrectness, motion or environment factors and affects edge information which is cru-

cial for recognition. Uniform illumination is also essential in this task. Any variation

affects the recognition accuracy. Optical distortions are related to the functioning of

the sensors. Finally, noise is an inevitable part in most real world images. The noise

origin is mainly related to environment factors as well as imperfection related to the

sensors and an incorrect use of it. Another stage which can be involved in sensory data

enhancement is segmentation. This process is widely involved in many computer vision

and pattern recognition problems. It consists in extracting important objects of the

captured scene. A segmented multispectral image can be used for visualization purpose.

In face recognition context, it is extremely useful to determine any details in the face

which can be used to enhance the accuracy. These details may be scars in the face,

birthmarks. . .

The sensory data enhancement should take advantage of the additional information

brought by the spectral dimension. Indeed, some details may be absent in some bands

but appear in other bands. Thus, for a given pixel, we no longer dispose of a single

value but a group of values that are grouped in a vector called the pixel vector. Any

enhancement process should take into consideration this important fact.

• Contributions

The specific objectives and contributions of this thesis can be summarized as follows:

1. Study the state of the art of segmentation and clustering algorithms and how to

adapt them for segmentation of multispectral images.

2. Propose new clustering algorithms.

3. Propose new tools that are able to find the number of segments/clusters of a given

data set.

4. Design new filters that are able to ensure maximum noise removal.

5. Proposed filters must ensure a good tradeoff between noise removal and details

preservation since accidentally removing any detail would have great implication

on the recognition accuracy.
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6. These filters should gain benefits from the additional information brought by the

spectral dimensionality.

7. Conduct experiments on several color and multispectral images in addition to

machine learning data sets.

Throughout this thesis, we focus on cluster analysis as it is a widely known mechanism

for image segmentation. We propose new clustering algorithms based on the partitional

clustering and new methods to predict the real number of segments of a given data set.

In addition, we propose two denoising schemes. A particular attention has been given

to ensuring noise removal with details preservation as well as gaining benefit from the

new information brought by the spectral dimensionality.

• Document organization

This manuscript includes four chapters and a conclusion. The below paragraphs describe

the content of each chapter.

In chapter two, we start by giving an idea about the use of multispectral image in several

fields ranging from medicine to military. A general presentation of the process of face

recognition is highlighted where its different components are described. We emphasize

also the importance of using multispectral image in this application and how it can

enhance the accuracy of recognition. In this process, the quality of the images is an

important factor. As we are focusing on denoising and segmentation, we study the state

of the art of both tasks and describe how the research community has approached these

important image processing problems in the context of multispectral images. Denoising

algorithms are studied and for multispectral image segmentation, particular attention is

given to clustering techniques applied to multispectral image segmentation. We study

also the problem of cluster validity and we give some examples of widely used CVIs.

In chapter three, we present our proposed filters for multispectral image denoising. These

two filters are designed so that they gain benefit from the additional information brought

by the spectral dimension. This chapter is divided into two main parts: we propose in

the first one, the first denoising algorithm, called the Vector Anisotropic Gaussian Filter

(VAG). It is based on the well-known anisotropic Gaussian filter whose intrinsic prop-

erty is edge and details preservation. Particular noise model and matrix transform are

used to ensure good denoising performance. In the second part, we propose a second

denoising algorithm based on the Non-Local Mean (NLM) filter known to its robustness

to Gaussian noise. We propose a parametrization of this filter based on an optimization

framework where filter parameters are adjusted in a way that guarantees maximum noise
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removal.

Chapter four is dedicated to the segmentation task. We present our segmentation algo-

rithm based on cluster analysis and the famous Fuzzy C-Means (FCM) method. This

algorithm is inspired from the gravitation theory. We propose also in this chapter two

cluster validity indexes. The first one is based on the geometrical shape of n-sphere.

The second index is based on Jeffrey divergence computation. We base our thought

process on the theory of density of probability to develop a particular index that is able

to predict the real number of cluster for various data sets.

The evaluation of the proposed algorithms is the subject of the fifth chapter. Several

experiments have been conducted on multiple data sets to assess performances of these

algorithms. We use our database of multispectral face images in addition to other data

sets from other well-known databases. We compare the performance of our algorithms

with different approaches.

The conclusion chapter recalls the main contribution of this thesis and gives few potential

expansions of this work.





Chapter 2

Literature review

2.1 Introduction

Multispectral imaging is a powerful tool that involves conventional imaging system, like

cameras, augmented with multi-wavelengths capturing enabled devices, like filters. The

purpose of this combination is to improve data robustness, distinguishability as well

as readability. Hence, we are dealing with P dimensional images, or hypercube, with

two spatial dimensions and P spectral dimension. Hyperspectral or Ultraspectral are

also possible terminologies that may replace the terminology “multispectral” when the

number of captured wavelengths becomes very high. While there are no formal limits

between the later three terms, multispectral is generally used for images with 2 to 100

bands. Hyperspectral are with hundreds of bands and Ultraspectral with thousands of

spectral bands. Hereafter, we use the terminology ‘multispectral images’ for any cube

that includes more than one spectral band.

We focus in this chapter on surveying the research literature in two main enhancement

tasks namely image denoising and segmentation. We start in section 2.2 by giving a

general idea of applications that use multispectral images. A particular attension is

given to face recognition as an application that can use multispectral images. In section

2.3, we give an overview of research works related to multispectral image denoising. In

section 2.4, we detail the works related to multispectral image segmentation particularly

those based on cluster analysis. We conclude this chapter in section 2.5.

2.2 Multispectral image and its applications

Nowadays, multispectral imaging is involved in many applications for different pur-

poses. In remote sensing, multispectral imaging is used to characterize regions or area

6
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of interests like vegetation, analyze urban growth, survey climate change . . . The first

multispectral remote sensing image was conducted by Appolo 9 to capture red, green

and infrared channels of southern USA. Since that, many multispectral remote sensing

systems have been constructed such as NASA’s Landsat which provides coverage of the

earth surface in the visible, near-infrared, short-wave, and thermal infrared bands. In

the captured images, each pixel contains the spectral response representing the light

absorption of the area that the pixel represents. The fact that objects or materials in a

scene reflect, absorb and scatter electromagnetic wave differently, offers the possibility

to identify the area based on the spectrum (also called spectral signature).

Multispectral imaging has been also extensively used in biological and medical fields.

Indeed, it is used during surgical operations to enhance tissue visualization and discrim-

ination [13–15]. Furthermore, multispectral imaging is used to evaluate wound healing

[16]. In oncology, , fluorescence and diffuse reflective spectroscopy have been jointly used

to detect precancerous and cancerous lesions [17].

In food industry, products quality assessment process has been evolved by the integra-

tion of multispectral images. Several kinds of defects that may affect products like fruits

or vegetables are easier to detect in spectrum beyond the conventional visible spectrum

used in RGB or grayscale images [18, 19].

Multispectral imaging is also an obvious choice for military application. Indeed, it has

been extensively used for surveillance, defeating camouflage, detecting landmines, target

acquisition . . .

Numerous applications nowadays rely on human identification. Face recognition is one

of the primary biometric based system. The increasing demands for security as well

as the development in cameras and sensors have motivated more research activities in

face recognition but this problem is still largely unsolved. Since the 1960s, following

the emerging of face analysis and modeling techniques, face detection, recognition and

tracking have been developed but the reliability of these systems is still argued. Thus,

achieving reliable systems is a great challenge to computer vision and pattern recogni-

tion researchers. Kanade [20] was the first who developed an automatic face recognition

system. A typical face recognition system basically involves four modules as depicted in

Fig 2.1: first of all, the face should be detected. This task consists in isolating the face

from the background. In case of a video input, a face tracking component should be

involved. Next, facial components should be identified and face image should be normal-

ized with respect to some geometrical and photometrical properties such as illumination.

After that, we need to extract feature vector which enables us to differentiate between

faces of different persons. The technique used for this procedure should be stable with

respect to any variation in the geometrical and photometrical properties. Finally, the

feature vector is compared and matched against features of faces in the database. The

final output of this process is the determination of the identity of the person to a certain
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Figure 2.1: Processing pipeline of face recognition

degree of confidence. Several aspects interfere in this process and have great influence

on the final output particularly the feature vector and the method used to obtain it

in addition to the technique used to differentiate between faces. Although research on

these topics has achieved great advances, the task has ended up to be difficult. Indeed,

classic face recognition systems require a controlled environment where viewpoint, illu-

mination, facial expression, occlusion and so on [21] should be controlled and adjusted

prior to any recognition procedure. This also includes a cooperative person that will be

recognized. Such luxury is not always available. For example, due to changes in illu-

mination directions and skin colors, significant performance degradation is experienced

[22, 23].

To cope with these issues, researchers have studied the potential of multispectral images

as an alternative to conventional broadband imaging system and great results have been

achieved so far. However, it is commonly known among the community that the quality

of images is an important factor in the design of any multispectral based system.

2.3 Overview of multispectral image denoising

The quality of images is an important factor in almost all applications. For example,

in MRI images, any detail is essential and can have great implications. In face recogni-

tion applications, any detail in the image can improve the accuracy of the recognition.

However, noise is inevitable in all real broadband and multispectral images. Thus, it

is essential to dispose of techniques that ensure noise removal in order to increase per-

formance in many image processing problems such as classification and segmentation

[24, 25].

Several techniques have been proposed to approach this problem. The work of Luisier

et al. [26] constitutes the state of the art for multispecetral image denoising. Authors
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proposed a denoising algorithm parameterized as a linear expansion of thresholds [27].

Optimization is carried out using Stein’s Unbiased Risk Estimator (SURE) [28]. The

thresholding function is pointwise and wavelet based. A nonredundant orthonormal

wavelet transform is applied on the noisy input image. Next, a vector-valued thresh-

olding of individual multichannel wavelet coefficients is performed. Finally, an inverse

wavelet transform is applied to obtain the denoised image. Application of an orthonor-

mal wavelet transform is justified by two main properties. First, assuming a white

Gaussian noise in the image domain Ω, its wavelet coefficients remain also Gaussian and

are independent between subbands. Second, the Mean Square Error (MSE) in Ω is equal

to the sum of subbands MSEs.

Another SURE based approach was proposed in [29]. Authors used a generalized form of

shrinkage estimate. The optimal choice of the parameters is based on the minimization

of the quadratic risk or MSE that depends on the original data which are unknown.

Parameters are chosen so that they minimize the obtained risk. Note that the proposed

denoising framework was applied by considering wavelet-based approach. Two decom-

posing schemes were proposed: a decimated M-band wavelet transform and M-band

dual-tree wavelet decomposition. For each case, the associated estimator is obtained.

Another scheme was proposed in [30]. The algorithm jointly removes noise and blur

from image. It is based on the Expectation and Maximization (EM) algorithm [31].

The noisy signal is decomposed into two independent parts: the first one represents the

blurring problem while the second represents the denoising one. The latter is performed

in wavelet domain. A Gaussian scale mixture is used to model the probability density

of the wavelet coefficients. Besides that, a coregistered auxiliary noise-free image of the

same scene is included in the framework to improve the restoration process. In fact, it

provides an extra prior information to the model.

A partial differential equation denoising system is proposed in [32]. It is based on the

Total Variation (TV) denoising method used in [33] which proposes an objective func-

tion to be minimized. For this purpose, authors used the time marching method [34].

The denoising task is then modified to a partial differential equation (PDE) problem.

Authors injected in this PDE problem an auxiliary image as a prior as seen with the

previous method. This approach is justified by the fact that edge directions and texture

information of the auxiliary image are similar to the noisy image. Thus, a smoothing

term that takes into account the contribution of this prior information is added.

A non-local multidimentional TV model is recently proposed in [35]. Authors presented

the denoising problem as a minimization of a mean square cost function that depends on

a regularization term. The non-local property is not restricted to patches from one band

but also to other bands with high correlation. Thus, for a given pixel, the similarity

between patches from other bands is considered in the computation of the weight. The

multichannel image is first divided into many groups. For a given band, bands with
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high correlation are grouped together. In addition, the regularization parameters are

computed adaptively for each band. They are derived from the estimated noise stan-

dard deviation using the coefficient of the highest frequency wavelet subband. Obtained

minimization problem is solved using Bregmanized operator splitting [36] which intro-

duce an auxiliary variable. The unconstrained problem is approached using Bregmmann

iteration method which leads to an update algorithm where Gauss-Seidel and shrinkage

methods are used. The proposed framework was jointly used for multichannel image

denoising and inpainting.

Zhao et al [37] proposed a denoising framework based on sparse presentation and low

rank constraint. Authors analysed the difference in rank between clean and noisy im-

age and concluded that the rank of the clean image is far smaller than the size of the

multichannel image which is not true for noisy image. Thus, an assumption is made: a

low rank is a characteristic of noise free multichannel image. This information is incor-

porated in the cost function. Furthermore, the cost function requires patch extraction.

To avoid the problem of curse of dimensionality and large error, authors suggested to

reshape the 3D spectral cube into a 2D matrix by converting each band into a vector

and then patches are extracted. The optimization with respect to some variables is

carried out by fixing some other variables. The overall complexity of this framework is

O(HLP 2 +HLP + L) with H and L are the size of the spatial dimension.

Yuan et al. [38] studied the noise presented in multichannel image. Authors concluded

that there are two types of noise distribution: one distribution in spatial domain and one

in spectral domain. Thus, two TV models are used: one applied for multichannel image

denoising in spatial domain and the other model is applied in spectral domain. The

two models are both optimized with the split Bregman method. Authors studied also

the complementary nature of both schemes and concluded that both denoising results

can complement each other and a fusing process can bring additional improvement. By

using the metric Q proposed in [39], a fusion scheme between bands from each denoising

result is proposed and the final denoised multichannel image is obtained.

Yuan et al. [40] proposed also another denoising method. The regularization term in

the cost function is often approached by a kernel model. However, it has three main

drawbacks when applied for multichannel image denoising. First, the spectral informa-

tion is not considered. Second, since the spatial resolution is lower than the spectral

resolution, this approach is inefficient. Finally, noise differs from one band to another.

This fact is not considered. Given these challenges, authors suggested two strategies. In

the first one, a spectral-spatial kernel model where the spatial and spectral information

are simultaneously used. In the second strategy, the noise distributions in spectral bands

are considered different and a local kernel is used to balance the contributions between

bands.
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A denoising framework based on the Bayesian least squares optimization problem is pro-

pose in [41]. This framework requires computation of the posterior distribution based

on Monte Carlo sampling [42]. Given the noisy pixel, the procedure starts by choosing

some neighbor pixels. Then, the acceptance probability of the sampled pixel given the

noisy one is used to decide whether the sampled pixel is considered or not. This decision

is based on a comparison between the acceptance probability and the random variable

drawn from the uniform distribution. After selecting sample pixels, the importance-

weighted Monte Carlo posterior estimate is computed using the weighted histogram

approach proposed in [43] and finally the denoised pixel is obtained.

Peng et al. [44] proposed a vector version of the bilateral filter. The basic assumption

behind this filter is that pixels which have influence on the restored pixels are not just

neighbor pixels but neighbor pixels with similar values. Typically, in a similar way to

Gaussian filter, bilateral filter is defined as a weighted average of neighbor pixels. How-

ever, in order to preserve edges, it takes into account the difference in value with the

neighbor pixels. In their work, Peng et al. extended the bilateral filter to the vector

form. The dissimilarity measure is now expressed as a mutlivariate Gaussian function.

For simplification purposes and to avoid the computation of the noise covariance ma-

trix, data are projected into subspace using Principle Component analysis (PCA) and

noise variances of individual channels are computed using the median absolute deviation

method [45]. However, this adhoc method makes the results enormously dependent on

the choice of the filter parameters.

Authors in [46, 47] proposed an optimization framework for the vector bilateral filter

using SURE. Authors have proven that within a neighborhood of the corresponding

edge pixel, a high Signal to Error (SER) measure is obtained by maximizing the weight

attributed to neighbor pixels with similar values and minimizing the weight given to

pixels with significant different values. Authors have also demonstrated that the SER

of the vector version of the bilateral filter is always greater than the component wise

2D bilateral filter. The optimization scheme is based on the minimization of the MSE.

However, the underlying difficulty of this measure is that it involves the original image

which is unknown. MSE is seen as a random variable that depends on the noise. Its

expected value is called the risk. To overcome this issue, SURE is applied and the filter

parameters are obtained by minimizing the expression of SURE. Obtained minimization

problem is non-linear and is solved numerically using the Sequential Quadratic Program-

ming (SQP). Experiments on color and multispectral images have been conducted and

comparison using the Peak Signal to Noise Ratio (PSNR) is presented.

Manjon et al. [48] have recently proposed a new algorithm for multispectral image de-

noising. It is based on the Non-Local Mean (NLM) filter [49]. NLM filter is designed so

that it takes advantage from the redundancy exhibited in the images. This redundancy

is no longer pixel based but window based. In other words, every small window centered
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around a pixel is supposed to have many similar windows. These windows can be located

anywhere in the image domain Ω and are no longer restricted to the neighborhood. In

the multispectral framework, information from various bands are combined and a new

weight is proposed. This filter is highly dependent on the choice of three parameters:

The radius of the search window, the radius of the neighborhood window and a smooth-

ing parameter that controls the degree of the smoothing. The latter is very important.

Indeed, with a small value, little noise will be removed. On the other hand, with a high

value, image will be blurred. Authors have set these parameters manually.

2.4 Overview of multispectral image segmentation

Segmentation of multispectral image is one of the topics that has started to gain atten-

tion among the research community [50–54]. Image segmentation in general is a crucial

task in many computer vision applications. It consists of partitioning an image to its

constituent objects. Image segmentation is an ill-posed problem [55] as the definition

of an object in an image is ambiguous. Besides that, the definition of what is not an

object is also ambiguous. Last but not least, there are no measures that can assess

segmentation result objectively.

Segmentation can be considered as a clustering problem [56]. The applicability of clus-

tering algorithms for image segmentation has been widely studied [57]. Clustering is

an important unsupervised learning process. It is involved in many applications such

as pattern recognition, data mining, and image segmentation and classification [58, 59].

It consists of regrouping input data into structures called clusters. Members of each

clusters are very similar to each other compared to members of other clusters. Several

issues are related to multispectral image clustering [50]. These issues can be categorized

as computation and complexity related, and quality and accuracy related. The increased

resolution thanks to the improvement of sensors has led to increase in image sizes. Thus,

we may end up easily with million of pixels. For many clustering algorithms that re-

quire for example distance matrix computation, this is a time and memory consuming

process. Another issue related to computation is the feature dimension. Indeed, acqui-

sition can be done on different bands. Thus, for one scene, we have different images in

different wavelengths. Therefore, the dimensionality of the feature grows which causes

also more computation and memory consumption. The so called mixed pixel must be

also considered when clustering algorithms are applied. These pixels contain spectral

responses of different component. Including fuzzy logic in clustering process may be a

solution to this problem. The presence of overlapping clusters is also a major issue in

cluster analysis. Two objects that may belong to different clusters may have similar
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features. Thus, excluding spatial information in the clustering process may lead to er-

roneous results. One of the most critical problems in cluster analysis is the number of

clusters or segments. More often, clusters may have different densities of population. In

some cases, a small cluster can contain important data but it is difficult to find it or

may be considered as outliers. Last but not least, we may dispose of a data set without

priori knowledge of its number of clusters. For this purpose, researchers have proposed

what is called Cluster Validity Index (CVI). CVIs are tools that allow to predict the

real number of clusters of a given data set with unknown number of clusters. In the

following paragraph, we review the state of the art of clustering algorithms applied for

multispectral image segmentation and give an overview of recent works on CVIs. We

finalize by presenting an overview of segmentation techniques other than clustering.

2.4.1 Clustering for multispectral image segmentation

Several clustering algorithms are proposed for multispectral image clustering. In [51],

authors jointly use K-means clustering [60] and Agglomerative Hierarchical Clustering

(AHC) [61] to take advantages of each of them and add a refinement process based on

spatial information to eliminate their limitations. K-means is used first as a prepro-

cessing step to end up with a high number of clusters. This step prevents AHC from

operating on large data set. AHC is then used to merge clusters based on a proximity

matrix calculated for all clusters. The refinement process consists in separating between

large and non well separated classes. With the assumption that misclassified pixels are

located in boundary of clusters, these pixels will be assigned to the closest adjacent

cluster which will lead to a smoothing in the spatial domain.

In [62], authors introduced an objective function based on a modification of the possi-

bilistic objective function proposed in [63] by adding a spatial regularization term forcing

neighborhood membership to be as close as possible to the pixel.

Authors in [64] proposed a size weighted objective function in order to deal with the

problem of unequal cluster size. In fact, in FCM objective function, big clusters are more

influential than small clusters. In worst case, small clusters will be missed. To avoid this

situation, after some distance measures and clusters cardinalities computation, a weight

is computed and associated to each point.

In [65], Affinity Propagation (AP) [52] is applied with fuzzy statistics for multispectral

image clustering. AP is used for exemplars learning. The center of a cluster is called

exemplar if it is selected from data points. Application of fuzzy statistics is justified

by the fact that even though multispectral images have similar information and spatial

structures, each one has its own spectral signature. A fuzzy statistical similarity mea-

sure allows a proper membership assignment of uncertain pixels and gives an accurate
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estimation of how much similar two pixels vectors are.

A new AHC algoithm was proposed in [66] in which a combination of indices is used to

find the most similar classes and merge them. The starting point is a clustered image.

These indices use spatial and spectral criterions:

• Spectral Similarity index: The normalized Mahalanobis distance between the mean

vectors of every pair of classes.

• Spatial Boundary Index: Two classes with significant common boundary are more

likely to merge. By considering 8 neighbors for each pixel, the total boundary

counts for every pair of classes is computed and merging decision is taken based

on its value.

• Spatial Compactness index: This index is derived from the previous one. This

index is computed for each class, . Merging decision of two classes will be taken

based on combination of their spatial compactness indices.

• Class Size index: Class size index of a class is the fraction of the number of pixels

in a class. The Class size index of a pair of classes is the product of their class size

indexes.

The aggregation Index -on which the merging decision is based- is a weighted combina-

tion of the four indices. However, finding the weight of each index is a delicate task. For

this reason, the authors propose to run the algorithm several times until satisfactory

result is obtained. This method extremely depends on the clustering algorithm used at

the beginning.

In [53, 54], Soltani et al. studied the partitional method applied for multichannel image

segmentation and classification particularly the AP algorithm. The focus is on over-

coming the drawbacks of such algorithm especially the high sensitivity to the choice of

its parameter and its quadratic complexity. This is conducted by a pre-precessing pro-

cedure that aims at reducing the number of pixels to be classified before applying AP.

The multichannel image is decomposed into blocks and the reduction is applied on each

block separately which results in a less memory usage. In addition, to correctly estimate

the real number of clusters, a criterion related to the inter-class variance is maximized.

Cariou and Chehdi [67] proposed a novel fully unsupervised clustering algorithm based

on the nearest neighbors with application for multichannel image segmentation and clas-

sification. The objective is to assign a label to each pixel vector based on a modified

maximum likelihood criterion. This is done by partitioning the data into clusters by

sampling from local posterior distribution. Specifically, for each data object, a set of

objects and its label are chosen using the k-nearest neighbors. The local posterior label
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distribution is chosen based on a Gaussian kernel and in a way that the solution won’t

be trapped into a local minimum or a saddle point. Furthermore, the stopping criterion

for this algorithm is well adjusted using a conditional entropy derived from kozachenko-

Leonenko entropy estimation. Knowing that this measure reaches an upper limit at the

convergence, the stopping criteria is set up from its relative magnitude variation. Ex-

periments on synthetic and multichannel images were conducted and comparison with

other unsupervised clustering methods was conducted.

2.4.2 Other techniques for multispectral image segmentation

Besides clustering techniques, several other methods are proposed for multichannel im-

age segmentation.

Many algorithms rely on Bayesian framework for segmentation. Li et al [68] proposed

a semisupervised segmentation algorithm based on multinomial logistic regression with

active learning. The problem is formulated as assigning labels to image regions and

maximizing the posterior distribution. This density is formulated as a multinomial lo-

gistic regression model [69] which introduces a vector of fixed functions of the input

and a set of logistic regressors for each class label. Authors suggested to use a radial

basis function kernel for the vector of functions. By using a semisupervised approach,

the posterior density is reformulated. The regressors are learned using both labels and

through a graph based technique. The maximum a posteriori segmentation is computed

by the α-expansion min-cut-based integer optimization algorithm [70].

Li et al. [71] proposed a second algorithm that is inspired from the previous one which

is based on variable splitting and augmented Langrangian algorithm [72] to learn class

posterior probability. Multilevel logistic prior is then used to segment images. In order

to reduce complexity, the active learning is introduced to avoid acquiring large training

data sets. The α-expansion min-cut-based integer optimization algorithm is also used

to obtain the maximum a posteriori segmentation.

In a third algorithm, Li et al [73] used subspace multinomial logistic regression and

Markov random field for multichannel image segmentation. The subspace projection

is conducted to better characterize highly mixed pixels and noise. Multilevel logistic

Markov random field is used to include contextual information. The α-expansion min-

cut-based integer optimization algorithm is again used to carry out the optimization

process.

The use of the multinomial logistic regression classifier in the previous algorithms is

justified by its ability to learn the class distributions themselves which has contributed

in many multichannel image classification problems.

Authors in [74] proposed a segmentation algorithm based on one-class support vector
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machine (SVM) [75]. From a subset of multichannel image, clustering and validation

procedures are conducted in order to find the optimal number of clusters. Then, seg-

mentation is performed using K-nearest neighbor classification. The training sample

for the classifier is the sample obtained from the first step. This sample is obtained by

conducting a band selection procedure for the purpose of dimension reduction instead

of using transformation-based dimension reduction techniques. The cluster validity pro-

cedure is conducted using a novel algorithm called the support vector power of spectral

discrimination that is derived from the one-class support vector machine.

Mitra et al. [76] proposed a segmentation algorithm for multispectral image based on

the active support vector machine. The need to solve a quadratic programming (QP)

problem in common SVM results in huge memory consumption and computational time.

To circumvent these shortcomings, authors broke the large QP problem into series of

smaller QP problems. This approach exploits the fact that removing the points that cor-

respond to zero Lagrange multipliers (non-support vectors) doesn’t change the solution

of the problem. At each step of the active support vector, the most informative point

not belonging to the current support vector is queried with its label. This strategy aims

at minimizing the total number of labeled points required by the learning algorithm.

We note that for k classes, we need to run this routine k times and that the label of the

queried point is determined by human expert. Although this algorithm presented good

results, it still requires human intervention and highly sensitive to wrong labeling which

would results in performance degradation.

One of the famous techniques used for classic image segmentation is the watershed tech-

nique which is based on the mathematical morphology. Watershed transform considers

the image as a topographic relief. For each pixel, its value is considered as its elevation.

From a topographic view, the pixel with a minimum is considered as a catchment basin.

This transformation is generally applied on the gradient image. Therefore, at homoge-

neous regions, we have a minima. On the other hand, the highest values are located

at the borders between these regions. An efficient watershed transform was proposed

in [77] that is based on flooding simulation. The output of this transform is an image

composed of regions.

Authors in [78] proposed a watershed segmentation algorithm for multichannel image

segmentation. The algorithm starts by extracting features from the multichannel im-

age. Depending on the output of this procedure (single or multi-band image), one of

four techniques used to obtain gradient image is chosen: difference between the dila-

tion and erosion of the image in case of one band or to compute the vectorial gradient,

a multidimensional gradient or a watershed segmentation maps a posteriori in case of

multi-band image. Next, a segmentation and classification procedure is applied which

results in a final segmentation map where every region in the image is identified and
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classified. A major drawback of this approach is that small spatial structures are not

identified as separate regions.

2.4.3 Cluster validity index

Most of the clustering algorithms require the number of clusters. Knowing that clus-

tering is an unsupervised learning process, users don’t have any prior knowledge about

the number of clusters. With a lower number of clusters than the real one, we end up

with an under-partitioned data set. Conversely, a higher number of clusters leads to an

over-partitioned data set. Almost all the proposed CVIs are derived from the partitional

clustering particularly the famous Fuzzy C-Means (FCM) clustering algorithm. Given

a data set X = {Xj}Nj=1 with Xj = (xj1, xj2, . . . , xjd) ∈ <d, FCM clustering seeks to

minimize the following objective function:

JFCM (U, V ) =
c∑
i=1

N∑
j=1

µmijd
2
ij =

c∑
i=1

N∑
j=1

µmij ‖Xj − vi‖2 (2.1)

where c is the number of clusters, U = (µij) is the c × N fuzzy membership matrix

where each element µij ∈ [0, 1] represents the degree of belonging of the jth data to the

ith cluster, V = (v1, v2, . . . , vc)
T is the c × d matrix of cluster centers, m > 1 is the

fuzzification degree and ‖·‖ is the Euclidian norm.

The problem of finding the number of clusters is called cluster validity. Many CVIs are

proposed in the literature; those that are widely used are reviewed in the next para-

graphs. They can be roughly divided into two categories: CVIs based on membership

values and CVIs based on membership values and data set.

2.4.3.1 CVI based on membership values

In crisp environment, data point belongs to one and only one cluster. Conversely, in

fuzzy context each data point belongs to all clusters with a degree of membership called

the membership value. Bezdek proposed in [79] his famous Partition Coefficient (PC)

which is the sum of the squared membership values of all data points over the number

of data points.

PC =
1

N

c∑
i=1

N∑
j=1

umij (2.2)
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The best partition is obtained with the maximum value of PC.

Bezdek also proposed his second CVI, the Partition Entropy (PE) [79, 80] which mea-

sures the amount of fuzziness of the data.

PE = − 1

N

c∑
i=1

N∑
j=1

uij · log(uij) (2.3)

The minimum value of PE is obtained with the optimal partition.

Dave [81] modified PC index to reduce its monotonicity and proposed the Modified

Partition Coefficient (MPC) index.

MPC = 1− c

c− 1
(1− PC) (2.4)

The optimal partition is given by the maximum value of MPC.

Chen proposed validity index P in [82]. It is composed of two terms. The first one

determines the compactness within a cluster. It reflects the closeness of the data point

to the center of the cluster. The second term reflects the separation between clusters.

The maximal value of P points to the best partition.

P =
1

N

N∑
j=1

max
i

(uij)−
1

K

c−1∑
i=1

c∑
j=i+1

[
1

N

N∑
l=1

min(uil, ujl)

]
(2.5)

With K =
∑c−1

i=1 i.

Recently, Žalik proposed a CVI for the estimation of the number clusters with different

sizes and densities [83]. This index aims at quantifying two properties of fuzzy clusters:

overlap and compactness. The overlap measure quantifies the degree of separation be-

tween clusters. When overlap is low, separation between clusters is high and vice versa.

The compactness measure is used to quantify the variation or scattering of the data

within a cluster. We notice that the first measure is computed between clusters while

the second one is within the cluster itself. Thus, the optimal data partition is character-

ized by a higher compactness and lower overlap. The proposed compactness measure is

calculated as a sum of the compactness rates of all data points. The compactness rate of

a data point i in the jth cluster is equal to the membership of this point in this cluster if

the difference between this membership value and the other membership values in other

clusters is higher than a predefined constant. Otherwise, it is equal to 0. The overlap

measure between two clusters is computed based on the overlap degrees of each data

point associated strong enough to both clusters.

CO =
1

N

N∑
i=1

 c∑
j=1:c

Cij −
c−1∑
a=1

c∑
b=a+1

Oabj

 (2.6)
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Where:

Cij =

{
µij if µij − µik ≥ Tc , k = 1, . . . c, k 6= c

0 otherwise
(2.7)

and:

Oabj =

{
1− (µaj − µbj) if µaj − µbk ≥ To, a 6= b

0 otherwise
(2.8)

Tc and To are two constants.

As these indexes are membership based, they exhibit some drawbacks:

• Monotonicity to the number of clusters.

• Indexes are very sensitive to the degree of fuzziness.

• No contribution for the data.

2.4.3.2 CVI based on membership and data

One of the well known CVIs that is based on the data and membership is the Fukuyama

and Sugeno (FS) CVI [84]. FS index is a combination of two terms: the first is a measure

of the compactness that mixes the fuzzy membership with the data set and the second

mixes the fuzzy membership, the distances between cluster centers, and the mean of

these centers. The best partition is the one with the minimum of FS.

FS =

c∑
i=1

N∑
j=1

µmij ‖Xj − vi‖2 −
c∑
i=1

N∑
j=1

µmij ‖vi − v‖
2 (2.9)

Where v = 1
c

∑c
i=1 vi.

Xie-Beni proposed their index called XB in [85]. XB is computed as the ratio of the

within cluster compactness to cluster separation computed as the minimum distance

between cluster centers.

XB =

∑c
i=1

∑N
j=1 u

2
ij · ||xj − vi||2

N ·min
i 6=l
||vi − vl||2

(2.10)

Pakhira [86] proposed another CVI that mixes compactness and separation called the

PBMF index.

PBMF =

(
1

c
· E1

Jm
·Dc

)2

(2.11)

with Jm =
∑c

i=1

∑N
j=1 uij · ||xj − vi|| , E1 =

∑N
j=1 ||xj − v1|| and Dc = max

1≤i,j≤c
||vi − vj ||

Žalik [87] proposed a new validity index based on the separation between clusters and
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the concept of clusters overlap instead of the compactness measure.

OS =

∑N
i=1

∑
xj∈Ci Oxj∑c

i=1minj=1..c,i 6=j ||vi − vj ||
(2.12)

with:

Oxj =

{
a
b if b−a

b+a < 0.4

0 otherwise
(2.13)

a =
1

|ci|
∑
xl∈Ci

||xj − xl|| (2.14)

b =
1

|ci|
∑
xl /∈Ci

||xj − xl|| (2.15)

with |ci| is the cardinality of the ith cluster Ci. This CVI doesn’t involve membership

values. It is based on distance computation between data objects for the overlap measure

and the distance between cluster centers as separation measure. The best partition is

the one which has low intercluster overlap and high separation thus low value of OS.

2.5 Conclusion

In this chapter, we reviewed state of the art of literature of multispectral image denoising

and segmentation. Almost all the denoising algorithms are basically designed to denoise

broadband grayscale and color images. These algorithms have been then extended to the

vector case. The parametrization has been conducted either with adhoc means or using

an optimization framework. As for multispectral image segmentation, we notice that

almost all the proposed algorithms originate from the FCM algorithms. The number

of clusters is a major problem that has been widely addressed and still an important

challenge in cluster analysis.

On the basis of this literature review, we propose new algorithms for multispectral face

images denoising as well as new segmentation methods based on the FCM algorithm.

New CVIs are also proposed to determine the number of clusters even with complex

data sets.





Chapter 3

Multispectral image denoising

3.1 Introduction

Following the widespread of applications relying on image analysis, the need for high

quality images has grown. No matter how good your camera or sensors are, there is

always an improvement that could be done. In this context, there is an overlap between

image enhancement and restoration. While the first procedure is largely subjective, the

second one is objective. As an example, contrast stretching is applied to give the image

a pleasant aspect to the viewer. Thus, it is considered as an enhancement procedure.

On the other hand, deblurring and denoising are considered as restoration techniques.

Multispectral images are prone to these imperfection particularly the noise. Basically,

during image acquisition, many factors affect the sensors such as the level of the light

and sensor temperature [88]. Furthermore, image can be contaminated by noise during

transmission. Noise appears to be inevitable and thus, it is essential to apply techniques

that ensure maximum noise removal. Another problem arises here: denoising algorithms

are generally accompanied by a loss of important features in images. In context of face

recognition, any detail would have a great implication on the accuracy of the system.

Thus, it is essential to design filters that are able to give good denoising performance

while preserving the maximum of details. In this chapter, we extend well known filters to

the vector case and propose two new filters adapted for denoising multispectral images.

The choice of these filters is triggered by the fact that these filters, by definition, are

designed to preserve details and reduce the loss of information. We also consider the

following additive noise:

Iin(m,n) = Ior(m,n) +N(m,n) (3.1)

21
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With Ior is the original pixel and N(m,n) the Gaussian noise, (m,n) are the pixel

coordinates in the spatial domain.

3.2 Vector anisotropic Gaussian (VAG) filter for multi-

spectral image denoising

We first recall the definition of anisotropic Gaussian filter then we will describe how to

extend it to the vector case. More details about the classical anisotropic filters can be

found in classical image processing and computer vision references such as [89–92].

3.2.1 Anisotropic Gaussian filter

Gaussian kernel is a low pass filter frequently used in image processing. It is characterized

by its strict positiveness and exponential decay in both signal and frequency domains.

While Gaussian filters can have different shapes, the most widely used are the isotropic

ones. However, one may argue that isotropic filter can deteriorate details of the image

such as edges and lines. Indeed, with isotropic filtering, parallel lines are highly likely

to be blurred [93]. Furthermore, with isotropic smoothing, crossing lines are not well

detected [94]. Thus, for a good design of a filter, one may prefer to ignore the distortion

along a line or edge while cumulating more information about them using the orientation.

To cope with this problem, the anisotropic Gaussian filter has been proposed.

The general case of the anisotropic Gaussian filter is the convolution of two Gaussians.

It is given by:

H(u′, v′, σu′ , σv′ , θ) =
1√

2πσu′
exp

{
− u′2

2σ2
u′

}
∗ 1√

2πσv′
exp

{
− v′2

2σ2
v′

}
(3.2)

where ” ∗ ” is the convolution and:(
u′

v′

)
=

[
cosθ sinθ

−sinθ cosθ

](
u

v

)
(3.3)

u and v represent the horizontal and vertical axes respectively. u′ and v′ are the axes

in the direction of θ and orthogonal to θ respectively. σu′ and σv′ are the standard

deviations of major axis and minor axis respectively. The decomposition of the filter is

given as follows [93]:

H(u′, v′, σu′ , σv′ , θ) =
1

2πσu′σv′
exp

{
−1

2

(
(ucosθ + vsinθ)2

σ2
u′

+
(−usinθ + vcosθ)2

σ2
v′

)}
(3.4)



Multispectral image denoising 23

Figure 3.1 illustrates an anisotropic Gaussian filter with orientation θ. If an edge lies

along the direction of u’-axis, the edge pixels are highly likely to be included in the

spatial neighborhood. Consequently, the edge will be preserved while denoising the

image [92]. The angle θ is given by:

θ′ = arctan

(
Gv(u, v)

Gu(u, v)

)
Gv(u, v) and Gu(u, v) represent the gradient in the vertical direction (v-axis) and hori-

zontal direction (u-axis) respectively.

θ = θ′ + 90◦

Thus, the anisotropic filter is expressed as follows:

H(u′, v′, σu′ , σv′ , θ) =
1

2πσu′σv′
exp

{
−1

2

(
(−usinθ′ + vcosθ′)2

σ2
u′

+
(−ucosθ′ − vsinθ′)2

σ2
v′

)}
(3.5)

Along a window Υ, at a given position (m,n), we have u = p −m and v = q − n with

p, q ∈ Υ and the resulting filtered image is given by:

Iout(m,n) =

∑
p,q∈Υ exp

(
−Φ1+Φ2

2

)
exp

(
− (Iin(p,q)−Iin(m,n))2

2σ2
r

)
Iin(p, q)∑

p,q∈Υ exp(−
Φ1+Φ2

2 )exp
(
− (Iin(p,q)−Iin(m,n))2

2σ2
r

) (3.6)

with Iout and Iin are the restored and noisy pixel respectively, Φ1 and Φ2 are given

respectively as:

Φ1 =
[−(p−m)sinθ′ + (q − n)cosθ′]2

σ2
u′

(3.7)

Φ2 =
[−(p−m)cosθ′ − (q − n)sinθ′]2

σ2
v′

(3.8)

3.2.2 Noise model

By assuming the independency of the noise from the original image and within a local

window, the local variance is given by:

σ2
in(m,n) = σ2

or(m,n) + σ2
noise (3.9)
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Figure 3.1: Anisotropic Gaussian with orientation θ

Where σ2
in(m,n) is the local variance of the noisy image and σ2

or(m,n) is the local

variance of the original image. Within a local region, we can assume that the original

image is uniform, thus its variance tends to be zero. Consequently, the local variance of

the degraded image is reduced to the noise variance: σ2
in(m,n) ≈ σ2

noise.

To make such approximation more concrete, we show in Fig. 3.2 the histogram of local

variance of some famous images (intensity values between 0 and 255) widely used in

image processing (Camera man, House, Lena, Baboon and Peppers) computed using a

window of 3× 3. We notice that the shape of the histograms is exponentially decreasing

for all images. Most of variance values are close to zero. We note that in case of a

textured image, results will be totally different.

Figure 3.2: Normalized histogram of the variance of several famous images
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3.2.3 Vector anisotropic filter and noise estimation

In this section, we extend the filter of section 3.2.1 to define a new filter called vector

anisotropic Gaussian (VAG) filter adapted to the case of multispectral image and we

present how to use of the sparse matrix transform for covariance matrix estimation.

3.2.3.1 Vector anisotropic filter

In order to extend the vector anisotropic Gaussian filter to the vector case, we use the

multivariate Gaussian function given by:

GΣ(x) =
1

(2π)P/2|Σ|1/2
exp

(
−(xTΣ−1x)

2

)
(3.10)

Where Σ is a positive definite matrix, P is the dimensionality of x.

The vector anisotropic Gaussian filter at a position (m,n) takes the form:

Iout(m,n) =

∑
p,q∈Υ exp

(
−Φ1+Φ2

2

)
GΣS (Iin(p, q)− Iin(m,n))Iin(p, q)∑

p,q∈Υ exp(−
Φ1+Φ2

2 )GΣS (Iin(p, q)− Iin(m,n))
(3.11)

where Iin(m,n) and Iin(p, q) represent the pixel vectors of dimension P -the number of

spectral bands- at positions (m,n) and (p, q). ΣS is the covariance matrix that may be

set as the noise covariance matrix as suggested in [44].

Since we are operating within a sliding window Υ and by adopting the noise model

seen previously, the covariance matrix is estimated. However, within Υ, the number of

observations is much less than the dimensionality P . Thus, a simple computation of the

covariance matrix will give misleading results. We suggest to apply the sparse matrix

transform (SMT) [95] to estimate the noise covariance matrix.

3.2.3.2 Sparse matrix transform

Given a P-dimensional data sample X = [x1, x2, . . . , xm] ∈ RP×m of covariance matrix

RP×P , the likelihood of this m samples is given by:

L(R,X) =
|R|−m/2

(2π)Pm/2
exp

(
−1

2
trace(XTR−1X)

)
(3.12)

The covariance matrix R is decomposed as the product of an orthogonal matrix of eigen-

vectors E and a diagonal matrix Λ of eigenvalues such as R = EΛET . The likelihood is

then maximized with respect to E and Λ. The maximum likelihood (ML) estimates is
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given by:

Ê = argminE∈∆

{
|diag(ETSE)|

}
(3.13)

Λ̂ = diag
(
ÊTSÊ

)
(3.14)

Where S =
〈
xxT

〉
= 1

mXX
T is the sample covariance matrix and ∆ is the set of

allowed orthogonal transforms. Thus, we obtain the ML estimate of the covariance as

R̂ = ÊΛ̂ÊT . To regularize the estimate of the covariance matrix, the Sparse Matrix

Transform (SMT) restricts the set ∆ to the Givens rotation which is the most sparse

nontrivial orthogonal transform. Givens rotation is a rotation in the plane by an angle

θ spanned by two coordinates axes x and y. It is given by E = I + Ξ(x, y, θ) where:

Ξ(x, y, θ)m,n



cos(θ)− 1 if m = n = x or m = n = y

sin(θ) if m = x and n = y

−sin(θ) if m = y and n = z

0 otherwise

(3.15)

We denote Ek a Givens rotation. The product of orthogonal rotations EkEk−1 . . . E1 is

also orthogonal. We denote ∆K the set of orthogonal matrices which can be expressed

as a product of K Givens rotation. The SMT is obtained by restricting the set ∆ in Eq.

(3.13) to ∆K .

3.3 Optimized vector Non-Local Mean filter for multispec-

tral image denoising: OVNLM

3.3.1 Non-Local Mean filter

The Non-Local Mean (NLM) filter is a well known edge and details preservation filter.

Such characteristic has been proven in [96, 97]. Following the same noise model of eq.

(3.1), the basic assumption behind the definition of the NLM filter is that we need to take

advantage of the high degree of redundancy in the image: the neighborhood of a pixel s

is any set of pixels p in the image domain Ω such that a local window surrounding s is

similar to the local window surrounding p [49]. Let a pixel at a position (m,n) expressed

as Is where s = (m,n) ∈ Ω. The general case of NLM filter is given by:

Iout(s) =
∑
p∈Ω

ω(s, p)Iin(p) (3.16)
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ω(s, p) is the weight calculated for each pixel. It is computed based on a similarity

measure between the pixels in position s and p. ω(s, p) satisfies the following constraints:

0 ≤ ω(s, p) ≤ 1∑
p∈Ω ω(s, p) = 1

(3.17)

The similarity between two pixels s and p is measured as a decreasing function of the

Gaussian weighted Euclidean distance ‖·‖22,a where a > 0 is the standard deviation of

the Gaussian kernel. Let N(s) and N(p) be the the pixel vectors of the intensity gray

level within a squared neighborhood centered at positions s and p respectively.

ω(s, p) =
1

Ci
exp

(
−
‖N(s)−N(p)‖22,a

h2

)
(3.18)

h2 acts as a smoothing parameter. Ci is a normalization constant which ensures that∑
p∈Ω ω(s, p) = 1.

Ci =
∑
p∈Ω

exp

(
−
‖N(s)−N(p)‖22,a

h2

)
(3.19)

The Gaussian weighted Euclidean distance is given by:

‖N(s)−N(p)‖22,a =
∑
k∈K

Ga(k)(N(s− k)−N(p− k))2 (3.20)

Where K is a local window and Gα(k) is defined as,

Gα(k) =
1

2πa2
exp

(
−k

2
1 + k2

2

2a2

)
, k = (k1, k2) (3.21)

Thus, we can distinguish two main characteristics: the restored pixel is obtained by

taking into account the contribution of pixels in the whole image and the weight compu-

tation is based on similarity between local windows. Such characteristics have triggered

researchers to design various novel methods [49].

3.3.2 Vector NLM filter

To take benefit from the additional information brought by the spectral dimension, we

extend the NLM filter to the vector case. In multispectral context, we dispose of the

reflectance at a given position in different spectral bands. Thus we are operating on a

set of pixel vectors I = {(Is)/s ∈ Ω}. We define the vector NLM (VNLM) filter as:

Iout(s) =
∑
p∈Ω

ω(s, p)Iin(p) (3.22)
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With the new formulation of the weight between two pixels at position s and p defined

as:

ω(s, p) =

1
Ci
exp

(−1
h2

∑
k∈K(Iin(s− k)− Iin(p− k))TΦ−1(Iin(s− k)− Iin(p− k))

) (3.23)

If Φ = I, I is the identity matrix-, we have the classical Euclidean distance.

C(i) =

∑
p∈Ω

exp(− 1
h2

∑
k∈K(Iin(s− k)− Iin(p− k))TΦ−1(Iin(s− k)− Iin(p− k)))

(3.24)

3.3.3 Optimization framework for vector NLM

In our framework design, we target two main objectives: optimizing the filter parameters

and reducing the computation complexity. First we use both the classical Euclidean

distance ‖·‖22 as suggested in [98] and Mahalanobis distance ‖·‖2Φ where Φ is a covariance

matrix. In addition, we preselect for each pixel a subset of the most similar pixels based

on a probabilistic similarity measure.

The filter depends on two parameters: the smoothing parameter h and the covariance

matrix Φ. Thus, we have:

Iout(s) = f(Iin(s),Θ) with Θ = (h,Φ) (3.25)

Where f is a non linear estimator and Θ is the filter paramter.

Our aim is to optimize the filter parameter Θ so that we can ensure the best parametriza-

tion of the filter in order to obtain the best denoising result. The performance of the

estimator is generally evaluated using the mean square error (MSE):

MSE =
1

HL

∑
s∈Ω

‖Iout(s)− Ior(s)‖2 (3.26)

However, the problem of such estimator is that the ground truth image Ior(s) is unknown.

MSE can be seen as a random variable of the noise. Its expected value is designated as

the Risk Rθ and expressed as:

Rθ = E(MSE) (3.27)

The problem of estimating the risk without the need to dispose of the underlying image

Ior(s) is approached by Stein’s Unbiased Risk Estimator (SURE) [26, 29]. Thus, we



Multispectral image denoising 29

have [28]:

E
(
‖Iout(s)− Ior(s)‖2

)
= E

(
‖Iout(s)‖2

)
− 2E

(
Iout(s)

T Ior(s)
)

+E
(
‖Ior(s)‖2

)
(3.28)

and:
E
(
Iout(s)

T Ior(s)
)

= E
(
f(Iin(s),Θ)T (Iin(s)− ns)

)
= E

(
Iout(s)

T Iin(s)
)
− E

(
f(Iin(s),Θ)Tns

) (3.29)

If we consider a zero mean multivariate Gaussian noise, we have [26]:

E
(
f(Iin(s),Θ)Tns

)
= E

(
trace

{
ΨT 5Iin(s) f(Iin(s),Θ)

})
(3.30)

With Ψ is the noise covariance matrix. By combining eq. 3.28 and eq. 3.29, we end up

with an expression without Ior(s):

E
(
‖Iout(s)− Ior(s)‖2

)
= E

(
‖Iout(s)− Iin(s)‖2

)
− trace(Ψ)

+2E
(
Tr
{

ΨT 5Iin(s) f(Iin(s),Θ)
}) (3.31)

Thus, the risk R̂θ is the unbiased risk estimator of MSE in eq. 3.26 and is given by:

R̂θ = 1
HL

∑
s∈Ω

E
(
‖Iout(s)− Iin(s)‖2

)
− trace(Ψ)

+2 1
HL

∑
s∈Ω

E
(
trace

{
ΨT 5Iin(s) f(Iin(s))

}) (3.32)

Where5Iin(s)f(Iin(s)) = Jf(Iin(s)) is the Jacobian matrix with respect to Iin(s). Jf(Iin(s))

is given by [47]:

(Jf(Iin(s)))i,j = ∂fi(Iin(s),θ)
∂Iin(sj)

=

∑
p∈Ω

∂χ(p)
∂Iin(sj)

Iin(si)+δi,j∑
p∈Ω

χ(p) −

( ∑
p∈Ω

∂χ(p)
∂Iin(sj)

)( ∑
p∈Ω

χ(p)Iin(sj)

)
( ∑
p∈Ω

χ(p)

)2

(3.33)

Where δi,j is the delta function and χ(p) is defined as:

χ(p) = exp

(
− 1

h2

∑
k∈K

(Iin(s− k)− Iin(p− k))TΦ−1(Iin(s− k)− Iin(p− k))

)
(3.34)
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With the derivation of χ(p), we obtain:

(Jf(Iin(s)))i,j =

∑
p∈Ω

χ(p)
(

(Iin(p)−Iin(s))T 1
2h2 (Φ−1+Φ−1T )

)T
j
Iin(si)+δi,j∑

p∈Ω
χ(p)

−

( ∑
p∈Ω

χ(p)
(

(Iin(p)−Iin(s))T 1
2h2 (Φ−1+Φ−1T )

)T
j

)( ∑
p∈Ω

χ(p)Iin(si)

)
( ∑
p∈Ω

χ(p)

)2

(3.35)

Demonstration:

χ(p) = exp
(
− 1
h2

∑
k∈K(ys−k − yp−k)TΦ−1(ys−k − yp−k)

)
= exp(− 1

h2 (ys − yp)TΦ−1(ys − yp))·

exp(− 1
h2

∑
k∈K
k 6=0

(ys−k − yp−k)TΦ−1(ys−k − yp−k))

=⇒ ∂χ(p)
∂ysj

= exp(− 1
h2

∑
k∈K
k 6=0

(ys−k − yp−k)TΦ−1(ys−k − yp−k))·
∂

∂ysj

(
exp(− 1

h2 (ys − yp)TΦ−1(ys − yp))
)

∂χ(p)
∂ysj

= χ(p)
(

(yp − ys) 1
h2 (Φ−1 + Φ−1T )

)T
j

(3.36)

Finally, we formulate the problem of vector NLM filter as a constrained optimization

problem: 
(hopt,Φopt) = arg minh,Φ(R̂(h,Φ))

s.t. : h > 0, Φ ≥ 0

(3.37)

Note that in case of using the Euclidean distance, the only parameter to be optimized

is h.

3.3.4 Relevant pixel selection

Back to eq. 3.22, we can clearly see that in order to restore every pixel, we need to

go through every other pixel in the domain Ω. This is obviously a time consuming

process. To cope with the computation burden of the proposed OVNLM, we propose

to preselect for each processed pixel, a subset of the most relevant pixel based on a
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similarity measure proposed in [99]. It is based on a probabilistic approach to measure

the similarity between two pixels based on the noise distribution. In grayscale case, the

similarity measure is defined as:

S(xs, xp) = 1
4σ|Ω|

√
π
·

exp(− (xs−xp)2

4σ2 )(erf(
2xs0−xs−xp

2σ ) + erf(
xs+xp

2σ ))

(3.38)

Where xs0 is the maximum value of the true intensity, |Ω| is a constant and erf(·) is

the error function defined as

erf(x) =
2√
π

∫ x

0
e−t

2
dt. (3.39)

In case of RGB color images, the similarity between two pixels Is = [rs, gs, bs] and

Ip = [rp, gp, bp] is defined as:

S(Is, Ip) = S(rs, rp) · S(gs, gp) · S(bs, bp) (3.40)

We generalize this similarity measure for the multispectral case. The similarity measure

between I(s) = (I(si)i=1...P ) and I(p) = (I(pi)i=1...P ) is defined as:

S(Is, Ip) =
P∏
i=1

S(I(si), I(pi)) (3.41)

Thus, the proposed NLM filter becomes:

Iout(s) =
∑
p∈Ω

S(Iin(s),Iin(p)) 6=0

ω(s, p)Iin(p) (3.42)

3.3.5 VOLNM algorithm

The proposed framework is detailed below. We solve the constrained non-linear opti-

mization problem using Sequential Quadratic Programming. Giving a noisy image and

noise covariance matrix which can be estimated with the median absolute deviation

method [100], we minimize the risk value based on an optimal choice of parameters

Θ = (h,Φ) until we reach the maximum number of iteration iter max or the decreasing

of the risk value is less than a preset threshold ξ. We implement this framework with

MATLAB and the minimization is carried out using fmincon function.
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Input(Iin(s)s∈Ω),Ψ

Output Optimal (Iout(s)s∈Ω) with minimal R̂h,Φ

1- Initialize Ψ, h, Φ, iter=0, maximum iteration number
iter max and stopping threshold ξ

2- Iteration: do

a- Calculate (Iout(s)s∈Ω) using Eq. (3.42) and

b- Calculate Riter using (3.32)

c- iter = iter + 1

d- Update h with SQP

e- Update Φ with SQP

f- Compute Riter+1 = R̂(hiter+1,Φiter+1)

While (iter ≺ iter max or Riter −Riter+1 � ξ)

3.4 Conclusion

Two denoising schemes: vector anisotropic Gaussian filter (VAG) and the Optimized

Vector Non-Local Mean filter (OVNLM) have been designed for the multispectral case.

The parameters of the VAG filter are chosen heuristically. The parametrization of the

VONLM filter conducted using an optimization framework. So, while the VAG filter is

simple and does not show high complexity, OVNLM is more complex and requires more

computation power due to two factors: the NLM algorithm is by nature time consuming

adding that to the optimization process that requires also more computation. We have

applied the two denoising procedures on simple color imagesas well as face multispectral

images. Obtained results are presented and discussed in Chapter 5 and comparison with

results of some of the algorithms presented in Chapter 2 is also provided.





Chapter 4

Multispectral image segmentation

4.1 Introduction

Image segmentation is a broad term that covers a wide variety of techniques. A basic

view of segmentation is that we intend to find in data structures that share similar char-

acteristics and are different from other structures. This problem is called also clustering.

This process can be roughly conducted using two main strategies: hierarchical and parti-

tional. Hierarchical clustering yields in general to a hierarchy of clusters. This approach

falls in two types: agglomerative (bottom-up) and divisive (top-down). In other words,

either we consider at the beginning that each data point is a cluster or that all data

points are one cluster, then we merge or split. On the other hand, partitional clustering

seeks to divide data into a given number c of clusters C1,C2,. . . ,Cc by minimizing an

objective function. The best known partitional clustering is the K-means algorithm [60].

K-means minimizes the sum of squared distances between features and cluster centers.

The cost function of K-means is:

J =

c∑
i=1

∑
xj∈Ci

||xj − vi||2 (4.1)

A fuzzy version of K-means, called the Fuzzy C-Means (FCM), was proposed by Bezdek

[79]. The fuzzy objective function JFCM is given by eq. 2.1. Various algorithms have

been derived from K-means and FCM. In particular, weighting methods are widely dis-

cussed [101]. They are based on the idea that attributes in the objective functions e.g.

data points or features do not have the same contribution and influence on the clustering

process. Thus, a weight is introduced in the objective function targeting data points

and/or features. Weighting methods are around prototypes [102] where information

about the cluster size is incorporated, features where each feature has a specific weight

33
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[103–105], fuzzy membership degree [106] and distance [107]. Various partitional algo-

rithms require a predefined number of clusters. Cluster validity indexes (CVIs) are used

to look for the optimal number of clusters that best fits the data, and to discriminate

between clustering algorithms.

We propose in this chapter a new clustering algorithm based on the weighting approach

and the gravitation theory. In addition to that, two new CVIs are also proposed. Ex-

periments have been conducted (see Chapter 5) on complex data sets to prove the

outperformance of the proposed methods.

4.2 Gravitational Fuzzy C-Means

4.2.1 Gravitation theory and interaction between particles

The proposed algorithm is based on gravitation theories. We assimilate the data set to

be clustered as a set of particles and each one has a specific mass. The optimization

of the clustering process is based on minimizing the squared distance between centroids

and data points which means that we are looking for centers and data points to be as

close as possible to each other. The idea here is to take into account the interaction

between centroids and data points. In physics, objects of given masses interact between

each others. This interaction comprises an attraction force and an escape velocity. This

model has been introduced in cluster analysis particularly in hierarchical clustering and

is known as gravitational clustering [108]. Indeed, initially, each data point is seen as a

cluster then data points are merged according to their interactions leading to the cre-

ation of new data points. These new particles have a mass equal to the summation of

masses of the merged particles. Iteratively, a dendrogram is formed and clusters are

obtained hierarchically [109, 110].

Our approach in this is to include this interaction into the partitional clustering proce-

dure by weighting data points accordingly.

4.2.2 Attraction force

According to Newton’s law of universal gravitation, two objects of masses m1 and m2

respectively, exert a gravitational attraction force on each other. This force is propor-

tional to the product of masses of the objects and inversely proportional to the squared

distance between them. Fig. 4.1 shows the Newton’s law for gravitational attraction

force. Two objects with masses m1 and m2 separated with distance r exert attraction
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Figure 4.1: Illustration of Newton’s law of attraction forces between two objects

forces |F12| = |F21| on each other:

|F12| = |F21| = G
m1m2

r2
(4.2)

where G is the universal gravitational constant.

A Markovian model of gravitational attraction between two objects is proposed in [111]

where pixels are considered as particles of mass equal to 1 that attract each other:

|F12| = |F21| = G
m1m2

|Z1 − Z2|
(Z1 − Z2) (4.3)

where Z1 and Z2 are the location vectors of object 1 and 2 respectively.

In our work, we use the first expression of the gravitational attraction force.

4.2.3 Escape velocity

Escape velocity Ve is the speed with which an object needs to be traveling to break free

from a planet and leave it. For example, a spacecraft needs to be going 11.2 km per

second to leave the earth without falling back. Escape velocity depends on the mass of

the planet the spacecraft is intending to escape from:

Ve =

√
2GM

r
(4.4)

where G is the gravitational constant, M is the mass of the object to be escaping from

and r is the Euclidean distance between the object and the escape point.
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4.3 Gravitational Weighted Fuzzy C-Means (GWFCM) for

multispectral image segmentation

The interaction between data points and cluster centers is taken into account and in-

corporated in the objective function as a weight. The attraction attrji between the jth

data point and the ith cluster center is computed using equation 4.2. Then, attraction

normalization is conducted:

Attrji =
attrji∑c
i=1 attrji

(4.5)

The escape escji of the jth data point from the ith cluster center is computed using

equation 4.4 then normalized as:

Escji =
escji∑c
i=1 escji

(4.6)

The proposed weight is the ratio of the degree of attraction to the degree of escape:

ωji =
Attrji
Escji

(4.7)

By incorporating the proposed weight, the objective function becomes:

JGWFCM =

c∑
i=1

N∑
j=1

ωjiµ
m
ijd

2
ij =

c∑
i=1

N∑
j=1

ωjiµ
m
ij ‖Xj − vi‖2 (4.8)

Using the Lagrangian multiplier to solve the above equation, we obtain the following

updates:

µij =
1∑c

k=1

(
‖Xj−vi‖2

‖Xj−vk‖2

) 1
m−1

(4.9)

vi =

∑N
j=1 ωjiµ

m
ijXj∑N

j=1 ωjiµ
m
ij

(4.10)

With FCM, the centers of clusters are functions of the membership degree µij , m and

X. However, for GWFCM, besides µij m and X, a set of weights ωji are incorporated

into the updating iteration and together they affect the final results as illustrated below

[112]:
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1- Initialize U = [µij ] = U (0), stoppingcriterionε
2- At iteration k:

a- Calculate ωji

b- Calculate v
(k)
i =

∑N
j=1 ωjiµ

m
ijXj∑N

j=1 ωjiµ
m
ij

c- Update U (k+1) µ
(k)
ij = 1∑c

k=1

(
‖Xj−vi‖2

‖Xj−vk‖2

) 1
m−1

d- If ‖U (k+1) − U (k)‖ ≤ ε then STOP, else go to step 2

4.4 Cluster validity index

We propose two new cluster validity indexes, one based on the geometrical form and

mathematical formulation of n-spheres, and the second is based on Jeffrey divergence.

4.4.1 Cluster validity index based on n-sphere

We propose a novel cluster validity index computation algorithm based on the n-sphere

shape. Classical measures of separation and compactness perform well only with a

specific characteristics of the data set such as absence of overlap or absence of noise.

The proposed CVI is a summation type in which compactness and overlap of the clusters

are taken into account.

4.4.1.1 n-sphere

We base our design of the proposed validity index on the geometric shape of the n-sphere,

also called the hypersphere. An n-sphere is a generalization of the ordinary sphere in

n-dimensional space. It refers to the set of points whose distance from a central point

is equal to r [113].

Sn =
{
x ∈ Rn+1| ‖x‖ = r

}
(4.11)

Therefore, it is an n-dimensional manifold in the (n+1) dimensional space. Particularly,

if we set n = 1, we obtain the 1-sphere which is the circle of radius r. For n = 2, we

have the ordinary 2-sphere which is the 3D sphere. The volume of the n-sphere is given

by:

Vn =
πn/2

Γ(n2 + 1)
rn (4.12)
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Where Γ is the gamma function given by:

Γ(t) =

∫ ∞
0

xt−1e−xdx (4.13)

4.4.1.2 Compactness measure

After applying a clustering algorithm, one will see each cluster as a hypersphere. The

proposed compactness measure is defined as the volume encompassed between two n-

spheres. These two spheres are centered around the center of the cluster. Let xc be the

closest point to the center v of the considered cluster. The volume of the hypersphere

of radius rc = ||xc − v|| is Vc.

In order to determine the second hypersphere, we need to sort the distance between

cluster center and the points belonging to the cluster. Let n be the number of points

inside the cluster and T be a parameter. We compute the distances di = ||v − xi||, i =

1, .., n. We sort now the obtained distances and we have now dj ≥ dj−1 ≥ · · · d1. The

radius of the second hypersphere is defined as the distance between the cluster center v

and the point pk for which dk − dk−1 > T, k = 2 . . . j. Let xf be this particular point

and Vf the volume of the hypersphere of radius rf = ||xf − v||.

We could define xf as the farthest point to v but in the case of an outlier or a noisy

point, this could cause misleading results. So a control over the amount of progress of

the distance to v will prevent from being in this particular case.

The value of parameter T is chosen as follows: We use the outlier measure as defined in

MATLAB R14a 1. T is defined as the ratio of the number of points which have an outlier

measure superior than the mean of all outlier measures over the number of points. The

outlier measure of an observation is computed by taking an inverse of the average squared

proximity between this observation and other observations. Then normalization for all

the outlier measures is applied by subtracting the median of their distribution, taking

the absolute value of this difference, and dividing by the median absolute deviation. A

high value of the outlier measure indicates that this observation is an outlier.

The proposed compactness measure of the ith cluster Ci is defined as:

Compi = Vf − Vc =
πn/2

Γ(n2 + 1)

(
rnf − rnc

)
(4.14)

1http://www.mathworks.com/help/stats/compacttreebagger.outlier
measure.html
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The total compactness measure of a given partition composed of k clusters is defined as:

Comp =
c∑
i=1

Compi (4.15)

4.4.1.3 Overlap measure

As we consider each cluster as a hypersphere, the overlap measure is defined as the

volume of intersection between hyperspheres. In this case, we define d as the distance

between two cluster centers. Let ri and rj be the radii of the two hyperspheres associated

with each cluster and OV R(i, j) the measure of overlap between cluster Ci and Cj . We

have three cases:

• if d ≥ ri + rj : There is no overlap and clusters are completely separated.

OV R(i, j) = 0 (4.16)

• if d ≤ |ri − rj |: One hypersphere is inside the other and the volume of the hyper-

sphere of the smaller radius is the total amount of overlap between clusters.

OV R(i, j) =
πn/2

Γ(n2 + 1)
(min(ri, rj))

n (4.17)

• Otherwise, the volume consists of two hyperspherical caps. The heights of the

caps’ bases are the signed distances computed as:

ci =
d2 + r2

i − r2
j

2d
(4.18)

cj =
d2 − r2

i + r2
j

2d
(4.19)

The volume of a hyperspherical cap of a signed height a in a hypersphere of radius

r is [114]:

V cap
r,a>0 =

1

2

πn/2

Γ(n2 + 1)
rnI

1−a2

r2
(
n+ 1

2
,
1

2
) (4.20)

V cap
r,a<0 =

1

2

πn/2

Γ(n2 + 1)
rn − V cap

r,−a>0 (4.21)

Where I is the regularized incomplete beta function defined as:

Ix(a, b) =
B(x, a, b)

B(a, b)
(4.22)
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With

B(x, a, b) =

∫ x

0
ta−1(1− t)b−1dt (4.23)

and

B(a, b) =

∫ 1

0
ta−1(1− t)b−1dt (4.24)

Then, the volume of intersection of two hyperspheres is:

OV R(i, j) = V = V cap
ri,ci + V cap

rj ,cj (4.25)

The overlap measure is computed as follows:

OV R =

c∑
i=1

c∑
j=1;j 6=i

OV R(i, j) (4.26)

4.4.1.4 validity index S

The proposed validity index is defined as:

S =
1

c
(OV R+ Comp) (4.27)

Index S represents the average sum of the compactness and overlap measures. The best

partition is the one with less compactness and overlap, thus it is highlighted by the

minimum of index S.

4.4.2 Cluster validity index based on Jeffrey divergence

We propose a new CVI based on a new separation measure. The classical separation

measure which uses distances between features and cluster centers does not reflect the

real separation especially when it comes to clusters with different sizes and densities.

One of the possible solutions is to design a distance metric that is adapted to each data

point as proposed in [115] to ensure a significant separation measure. This unsupervised

distance metric learning approach aims at incorporating the maximum of discriminative

information to design a metric that is able to regroup similar data samples in one

class and dissimilar samples in different classes. The learning process can be global

or local. With a global learning, distance between pairs is minimized according to the

equivalence constraints. Separation of the data pairs is conducted using the inequivalence

constraints. However, in case of classes that exhibit multimodal distributions, a conflict

between theses equivalence and inequivalence constraints may occur. In [116], authors

proposed a local discriminative distance metrics algorithm that is not only capable of
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dealing with the problem of the global approach but also incorporate multiple distance

metrics unlike the previous work [117–119] where a single distance metric is learned on

the whole data sets. Our approach is based on considering each cluster as a density

to be estimated. Thus we suggest a new separation measure between clusters based on

Jeffrey divergence [120] between clusters.

4.4.2.1 Motivation

The classical separation measure is based on computing distances between cluster cen-

ters. However, such measure has drawbacks. In Fig. 4.2, three clusters are generated

from Gaussian distributions. Cluster A and B are well separated. The distance be-

tween their centers is dAB = 14.5. Meanwhile, an overlap between cluster A and C is

present but the distance between their centers is dAC = 13.2. This case demonstrates

the shortcoming of the separation measure based on distances between cluster centers.

Figure 4.2: Three clusters generated from Gaussian distributions. Cluster B and C
are equally distant to cluster A but cluster C overlaps more with cluster A

4.4.2.2 Cluster validity index based on Jeffrey divergence

The proposed validity index uses a separation measure based on the computation of

Jeffrey divergence. The Jeffrey divergence (JD) between two distributions P and Q is

given by:

JD(P,Q) =
∑
x

(P (x)−Q(x)) ln

(
P (x)

Q(x)

)
(4.28)

JD is computed as the product of two terms. (P (x)−Q(x)) is proportional to the dis-

tance between two probability densities. ln(P (x)
Q(x)) which is also proportional to the level



Multispectral image segmentation 42

of separation between probability densities. The closer P (x) and Q(x) to each other, the

higher the overlap is and the lesser the value of Jeffrey divergence is. Divergence allows

to evaluate the extent to which two Probability Density Functions (PDF) differentiate.

Jeffrey divergence, unlike the Kullback-Leiber, is symmetric which reduces computa-

tional time in addition to being widely used in pattern recognition and computer vision

applications [121, 122]. It is also numerically stable and robust with respect to noise

and the size of the bins [123]. In our experiments, after applying a clustering algorithm,

the density of each cluster is computed using PDF estimation techniques, then JD is

computed between pairs of clusters. Finally, the separation measure is determined.

• Cluster density estimation

Let x1, x2, . . . , xNi be the Ni features of the ith cluster Ci.

We assume first that data are generated from multivariate Gaussian distribution

given by:

p(x|µ,Σ) =
1

(2π)d/2|Σ|1/2
exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
(4.29)

Where µ and Σ are the mean vector and covariance matrix of the data respectively.

T is the transpose operator and | | is the determinant operator. In order to

determine the PDF, we need to estimate parameters (µ,Σ). We apply a maximum

likelihood estimation [124] and we obtain the following estimations:

µ̂ =
1

Ni

Ni∑
i=1

xi (4.30)

Σ̂ =

Ni∑
i=1

(xi − µ̂)T (xi − µ̂) (4.31)

Demonstration:

In all the expressions below, x is a vector of random variables

whose mean vector and covariance matrix are given by: E(x) =

µ and E((x−µ)(x−µ)T ) = Σ where E means the expectation. Using

matrix properties:

– ∂AT ·x
∂x = ∂xT ·A

∂x = A

– ∂xT ·A·x
∂x = AT +A

– ∂
∂A log|A| =

(
A−1

)T
– ∂

∂A tr [AB] = tr [BA] = BT
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The log likelihood of the multivariate Gaussian distribution

is given by:

L(x|µ,Σ) = −nD
2 log(2π)− n

2 log(|Σ|)−
1
2

∑n
i=1(xi − µ)TΣ−1(xi − µ)

(4.32)

The estimates of the mean and covariance matrix are determined

by computing the derivatives of L(x|µ,Σ) with relative to µ and

Σ and setting it equal to zero.

∂L(x|µ,Σ)
∂µ = ∂

∂µ

(∑i=1
n (xi − µ)TΣ−1(xi − µ)

)
= ∂

∂µ(
∑n

i=1(xTi Σ−1xi − µTΣ−1xi − xTi Σ−1µ

+µTΣ−1µ))

=
∑n

i=1

(
Σ−1xi +

(
Σ−1

)T
xi

)
−

N
(

Σ−1 +
(
Σ−1

)T)
µ

= 0

⇒ µ̂ = 1
n

∑n
i=1 xi

(4.33)

∂L(x|µ,Σ)
∂Σ−1 = ∂

∂Σ−1 (−N
2 log(|Σ|)−

1
2

∑n
i=1(xi − µ)TΣ−1(xi − µ))

∝ ∂
∂Σ−1 (−N

2 log(|Σ|)− 1
2

∑n
i=1 tr[Σ

−1(xi − µ)·

(xi − µ)T ])

= ∂
∂Σ−1 (N2 log(|Σ−1|)− 1

2 tr[
∑n

i=1 Σ−1(xi − µ)·

(xi − µ)T ])

= 0

⇒ Σ̂ =
∑n

i=1(xi − µ̂)(xi − µ̂)T

(4.34)



Multispectral image segmentation 44

The Jeffrey divergence between two clusters Ci and Cj generated from Gaussian

distributions N(µi,Σi) and N(µj ,Σj) is:

JD(Ci, Cj) = 1
2

(
trace(Σ−1

i Σj) + tr(Σ−1
j Σi)

)
+

1
2

(
(µi − µj)T (Σ−1

i + Σ−1
j )(µi − µj)

)
− d

(4.35)

Demonstration:

– E(xT ·A · x) = tr(A · Σ) + µT ·A · µ

– 〈·〉 is the expectation symbol.

p(x|µ1,Σ1) =
1

(2π)d/2|Σ1|1/2
exp

(
−1

2
(x− µ1)TΣ−1

1 (x− µ1)

)
(4.36)

q(x|µ2,Σ2) =
1

(2π)d/2|Σ2|1/2
exp

(
−1

2
(x− µ2)TΣ−1

2 (x− µ2)

)
(4.37)

JD(p, q) = KL(p/q) +KL(q/p) (4.38)

Where KL is the Kullback-Leiber divergence.

KL(p/q) =
∫
log (p(x)− q(x)) p(x)

=
∫

(1
2 log

(
|Σ2|
|Σ1|

)
− 1

2(x− µ1)TΣ−1
1 (x− µ1)

+1
2(x− µ2)TΣ−1

2 (x− µ2))p(x)

= 1
2 log

(
|Σ2|
|Σ1|

)
− 1

2

〈
(x− µ1)TΣ−1

1 (x− µ1)
〉

+1
2

〈
(x− µ2)TΣ−1

2 (x− µ2)
〉

= 1
2

(
log
(
|Σ2|
|Σ1|

)
− tr

(
Σ−1

1 Σ1

)
+ tr

(
Σ−1

2 Σ1

))
+1

2

(
(µ1 − µ2)TΣ−1

2 (µ1 − µ2)
)

= 1
2

(
log
(
|Σ2|
|Σ1|

)
− d+ +tr

(
Σ−1

2 Σ1

))
+1

2

(
(µ1 − µ2)TΣ−1

2 (µ1 − µ2)
)

(4.39)
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Thus:

JD(p, q) = 1
2

(
tr(Σ−1

1 Σ2) + tr(Σ−1
2 Σ1)

)
+

1
2

(
(µ1 − µ2)T (Σ−1

1 + Σ−1
2 )(µ1 − µ2)

)
− d

(4.40)

To generalize this formulation to the non-Gaussian distribution case, let us assume

that data are generated from any arbitrary distribution. To estimate the PDF, we

rely on the multivariate density distribution using the Gaussian kernel and define

the density function as:

p̂H(x) =
1

Ni

Ni∑
i=1

KH(x− xi) (4.41)

Where H is the bandwidth and K is a kernel function:

KH(x) = |H|−1/2K(H−1/2x) (4.42)

We use a Gaussian kernel for the density estimation:

K(x) = (2π)d/2exp(−1

2
xTx) (4.43)

• Separation measure

Based on the computation of JD, we set up the separation measure as follows:

after applying a clustering algorithm, we estimate the density of each cluster Ci.

Divergence between Ci and Cj,j=,1...,k,j 6=i is computed. After that, we take the

minimum of calculated divergences. The separation measure is:

S =
k∑
i=1

Sepi (4.44)

With:

Sepi = min
j=1...k,j 6=i

(JD(Ci, Cj)) (4.45)

It is the sum of the minimum of overlap, e.g. Jeffrey divergence, between each

cluster and other clusters. By choosing the minimum value, we are taking the

least overlap degree for each cluster which is an indicator of its separability. A

high separation value is an indicator of a good partition.

• Compactness measure

The compactness measure is computed as the summation for all clusters of the

squared maximal distance of a feature xj belonging to the ith cluster Ci to its
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center vi. We denote the compactness measure V .

V =

k∑
i=1

max
xj∈Ci

‖xj − vi‖2 (4.46)

A low compactness measure indicates a good partition.

• Proposed cluster validity index: I

The proposed cluster validity index I is the ratio of the proposed separation mea-

sure to the compactness measure [125].

I =
V

S
(4.47)

A good partition is characterized by a high separation value and a low compactness.

Thus, a low value of I is an indicator of a good partition.

4.5 Conclusion

In this chapter, we have proposed new clustering algorithm and two CVIs based on dif-

ferent concepts. To emphasize the performance of the proposed methods, we conducted

experiments on multispectral images and some machine learning data sets from different

databases and with different complexities: simple data sets where clusters are easy to

identify and complex data sets where clusters are completely indistinguishable. Our

focus on cluster analysis for multispectral image segmentation is justified by the variety

of challenges and problems that can be investigated in addition to the complexity of

handling the multispectral data. We note that different approaches for multispectral

image segmentation can be subject for further studies such as active contours and graph

cuts.





Chapter 5

Experimental results

5.1 Introduction

We conducted several experiments for multispectral image segmentation and denoising.

The segmentation experiments are conducted as follows: we applied the proposed grav-

itational FCM in addition to several other algorithms and compared their performances

using different CVIs. Furthermore, we conducted a clustering task and we compared

performances of the algorithms. The proposed CVIs are used to determine the real

number of clusters of several data sets and we compared results with several other CVIs.

For the denoising part, we contaminated images with different levels of Gaussian noise

and applied the proposed denoising algorithms in addition to other denoising methods.

We calculated the Peak Signal-to-Noise Ratio and compared the obtained results.

In our experiments, we used the IRIS M3 multispectral face images database in addition

to HYDICE remote sensing database. Famous color images are also used e.g. Lena and

Baboon images. For the CVIs comparison, we used various machine learning databases

e.g. UCI repository with different complexity to ensure good performance analysis. We

end this section by investigating the impact of multispectral image denoising on the

segmentation results.

5.2 Data sets

This section presents the image and machine learning databases used in our experiments

to test the proposed algorithms and metrics, and compare their performances with the

state of the arts tools.

47
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5.2.1 IRIS M3 multispectral images database

This database is constructed by the IRIS Lab from University of Tennessee [126]. The

database was collected between August 2005 and March 2006. It consists of 2624 mul-

tispectral face images taken along the visible spectrum in addition to thermal images

with a resolution of 640 × 480. RGB images are also generated with a resolution of

2272 × 1704. These images are taken in different lightening conditions: Halogen light,

daylight and fluorescent. The total size of the database is 8.91GB. A total of 82 par-

ticipants were involved from different genders (76% male, 24% female), ethnicities as

depicted in Table 5.1, ages, facial expression, genders and hair characteristics. Samples

from this database taken in halogen and daylight illuminations are illustrated in Fig.

5.1

Table 5.1: Ethnicity percentage in IRIS M3 database

Caucasian Asian Asian Indian African descent

% 57% 23% 12% 8%

5.2.2 HYDICE multispectral images database

This database has been collected by HYperspectral Digital Imagery Collection Exper-

iment (HYDICE) sensor, which has been in use since 1995. It is used to collect hy-

perspectral imagery of natural scene and man-made object with a spatial and spectral

resolution of one meter and 10 nm respectively. which results in 210 channels from

400nm to 2500nm. HYDICE airborne sensor has been used by several organizations to

demonstrate the usefulness of the hyperspectral imagery. Figure 5.2 illustrates samples

from this database.

5.2.3 Machine learning databases

• UCI repository : The UC Irvine Machine Learning repository is hosted by the

Center for Machine Learning and Intelligent Systems at UC Irvine. It consists

of databases, domain theories and data generators that are widely used by the

machine learning community. The 189 data sets are not categorized but listed

according to their popularity. Among these data sets, we can find the famous iris

data set from Fisher, wine data set, the Wisconsin Breast Cancer (diagnostic) data

set . . . .
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Figure 5.1: Sample of four subjects from IRIS M3 database: left: 530nm, right:
650nm, top rows: Daylight, bottom rows: Halogen light)

• Speech and Image Processing Unit synthetic database : This database is

hosted by the University of Eastern Finland. We used synthetic 2D data sets of

5000 points generated from a Gaussian distribution resulting in 15 clusters, these

are characterized by their different degrees of overlap between clusters which makes

them quite interesting for CVIs comparison [127]. In addition, we used a special

shaped synthetic data set [128].

• The extended Yale Face Database B [129]: This database is composed of

16128 images of 28 human subjects. Images are acquired under 64 illumination

conditions with 9 poses.

• Hopkins 155 1: This data set consists of 156 sequences of two and three motions

1http://www.vision.jhu.edu/data/hopkins155/
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Figure 5.2: Sample image from HYDICE: (a) 750nm, (b) 761nm (c) 772nm, (d)
859nm

which can be divided into three categories: checkerkboard, traffic and articulated

sequences. Each sequence is a segmentation task. The checkerboard category

consists of 104 sequences of indoor scenes taken with a handheld camera under

controlled conditions. The checkerboard pattern on the objects is used to assure a

large number of tracked points. Traffic category consists of 38 sequences of outdoor

traffic scenes taken by a moving handheld camera. Articulated sequences display

motions constrained by joints, head and face motions, people walking, etc.

5.3 Multispectral image denoising: experimental results

Experiments on multispectral image denoising is basically conducted by contaminating

the original image with additive Gaussian noise with different levels. Then, we apply
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denoising algorithms on the noisy images. We calculate certain metrics that are able to

assess the denoising performance and compare results of algorithms. Typically, the used

metric is either the Signal to Noise Ratio (SNR) or the Peak Signal to Noise ratio both

expressed in dB: The PSNR is expressed as follows.

PSNR = 10log10

 max
i,j
{Ior(i, j)}2

1
MN

∑M
i=1

∑N
j=1 |Ior(i, j)− Iout(i, j)|

2

 (5.1)

where Ior(i, j) and Iout(i, j) are the pixel values at position (i, j) in the original and

output images respectively. PSNR is the ratio of the maximum possible value of the

signal in term of power and the power of the distortion caused by the noise. PSNR is

expressed in term of the logarithmic decibel scale. The higher the PSNR is, the better

the result is.

5.3.1 Vector anisotropic Gaussian filter: Experimental results

We have applied the vector anisotropic Gaussian filter method proposed in section 4.3

for color and multispectral image denoising. We conducted the experiments on a color

image (Baboon, see Fig. 5.3) which has a wide range of colors and multispectral images

from HYDICE set and IRIS M3 databases. Eleven images are extracted for experi-

mentation from HYDICE, and corrupted with an additive zero-mean white Gaussian

noise of different levels. Two denoising algorithms are used for comparison with the

proposed method: (i) Vector SURE-LET multichannel image denoising algorithm [26]

(ii) the anisotropic filter applied on each band image separately. These algorithms have

been chosen for comparison purposes. SURE-LET multichannel algorithm has presented

good performance for multichannel image denoising. We apply the 2D anisotropic filter

to show the importance of including the spectral information in the denoising process.

Figure 5.3 shows the denoising results of the Baboon image for σnoise = 20. Table 5.2

represents the PSNR comparison between the three algorithms. We can see that the

proposed method outperforms other methods for different noise levels. Even in the case

of heavily corrupted image (σnoise=100, 8.13 dB), the proposed method presents good

performance compared to other methods. With these results, we confirm two things.

First, VAG presents good performance for color image denoising. Second, results con-

firm the outperformance of the denoising algorithms that take into account the spectral

information compared with the 2D denoising algorithm.

Figure 5.4(a) represents image from HYDICE database taken at 490nm and. We cor-

rupted it with a white additive Gaussian noise. The noisy image is illustrated in 5.4(b).

Results of the three denoising algorithms are illustrated in Fig.5.4(c), (d) and (e).
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Figure 5.3: (a) Original Baboon image (b) Corrupted image (σnoise = 20) (c) 2D
anisotropic filter (d) SURE-LET (e) Proposed VAG method

Table 5.2: Comparison of different denoising methods for different noise level of the
Baboon image (best result is bold)

Noise Standard
deviation per

channel

Input PSNR
(dB)

2D anisotropic
filter

Vector
SURE-LET

Proposed vector
anisotropic filter

20 22.18 24.56 26.65 28.85

30 18.77 21.92 24.69 27.25

40 16.44 20.02 23.43 26.01

50 14.71 18.56 22.55 24.67

100 10.22 14.04 20.32 21.15

PSNR Results in Table 5.3 demonstrate the outperformance of the proposed VAG al-

gorithm particularly with high level of noise: with (σnoise=100, 10.62 dB) we obtained

a PSNR=20.15 dB compared to 14.10 dB and 11.07 dB for vector SURE-LET and 2D

anisotropic filter respectively. Fig. 5.5(a) represents a sample of the multispectral face

image from IRIS M3 database. Fig. 5.5(b) illustrates the noisy image with (σnoise=30,

18.62 dB) . Denoising results of the 2D anisotropic filter, vector SURE-LET and VAG

filters are presented in Fig. 5.5(c),(d) and (e) respectively. PSNR results from Table 5.4

demonstrates that VAG filter outperforms the other algorithms even with high level of

noise.

Figure 5.4: (a) Hydice original image (b) Corrupted image (σnoise = 30) (c) 2D
anisotropic filter (d) SURE-LET (e) Proposed VAG method
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Table 5.3: Comparison of different denoising methods for different noise level of
Hydice image (best result is bold)

Noise Standard
deviation per

channel

Input PSNR
(dB)

2D anisotropic
filter

Vector
SURE-LET

Proposed vector
anisotropic filter

20 22.46 23.74 27.83 29.83

30 19.25 20.52 24.41 28.67

40 17.04 18.27 21.98 28.01

50 15.37 16.56 20.07 27.33

100 10.62 11.07 14.10 20.15

Figure 5.5: (a) IRIS original image (520nm) (b) Corrupted image (σnoise = 30) (c)
2D anisotropic filter (d) SURE-LET (e) Proposed method

Table 5.4: Comparison of different denoising methods for different noise level of IRIS
image (best result is bold)

Noise Standard
deviation per

channel

Input PSNR
(dB)

2D anisotropic
filter

Vector
SURE-LET

Proposed vector
anisotropic filter

20 22.11 26.65 29.10 31.16

30 18.62 23.25 24.37 29.61

40 16.20 20.70 22.69 25.12

50 14.40 17.86 21.11 24.49

100 9.98 11 13.96 14.12

To emphasize the adopted noise model seen in paragraph 3.2.2, we have computed the

normalized histogram of local variance of all multispectral images of each data set.

Results are depicted in Fig. 5.6. We notice the same decreasing exponential curve seen

in Fig. 3.2. Most of the values are around zero as expected.
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Figure 5.6: Normalized histogram of the variance of Hydice and IRIS images

5.3.2 Optimized Vector Non-Local Mean filter: Experimental results

We have applied the proposed OVLNM for color and mulispectral face images and we

compare it with (i) the vector SURE-LET [26] and (ii) ONLM proposed in [48]. The

latter is also inspired from the NLM filter and is adapted for multispectral image de-

noising where parametrization is conducted using ad-hoc means. Figure 5.7 illustrates

Lena image corrupted with white Gaussian noise and the outputs of the three denoising

algorithms. By analysing Fig. 5.8 which describes the variation of the PSNR according

to the noise variance, we notice the outperformance of the proposed framework espe-

cially in area of high level of noise. For an input PSNR of 10.27 dB, we have an output

PSNR of 28.04 dB for the proposed algorithm compared to 23.16 dB and 18.45 dB for

SURE-LET and ONLM respectively.

For Baboon image, Fig. 5.9 exhibits the original, the noisy and the output images of

three denoising algorithms. PSNR curves shown in Fig. 5.10 demonstrate the outper-

formance of OVNLM compared to other algorithms. With a high level of noise: Input

PSNR=8.14 dB, we have obtained 22.57 dB for OVNLM compared to 19.76 dB and

17.96 dB with SURE-LET and ONLM.

Figures 5.11 and 5.13 illustrate the multispectral image samples used in our experiments.

We corrupt these images with different levels of noise then application of the three de-

noising algorithms gives the results in Fig 5.15 and 5.17 for subject 1 and 2 respectively

with noise standard deviation σ = 30.

To emphasize the performance of the proposed framework, we present the pixel along a
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Figure 5.7: Lena image and denoising results (a) Original (b) Corrupted (c) ONLM
(d) SURE-LET (e) OVNLM

Figure 5.8: PSNR variation according to noise standard deviation for Lena image

cross-section in the 25th spectral band for both subjects as illustrated in Fig. 5.12 and

Fig. 5.14. We compute the MSE between the cross-section of the original signal and the
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Figure 5.9: Baboon and denoising results (a) Original (b) Corrupted (c) ONLM (d)
SURE-LET (e) OVNLM

Figure 5.10: PSNR variation according to noise standard deviation for Baboon image

output of the three algorithms as illustrated in Table 5.5.

Results demonstrate that the proposed framework presents the best performance with

the closest signal to the original one for both subject 1 and subject 2. PSNR results
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Figure 5.11: Multispectral images for subject 1 in 480nm, 560nm and 720nm

Figure 5.12: Pixel variation along a profile for subject 1

Figure 5.13: Multispectral images for subject 2 in 480nm, 560nm and 720nm

depicted in Fig. 5.16 for subject 1 demonstrates that OVNLM algorithm exhibits good

performance especially in area of high level of noise. Indeed, with σ = 100, the OVNLM
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Figure 5.14: Pixel variation along a profile for subject 2

Figure 5.15: Subject 1: (a) Noisy image (b) SURE-LET (c) ONLM (d) Proposed
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Figure 5.16: PSNR curves for subject 1

Figure 5.17: Subject 2: (a) Noisy image (b) SURE-LET (c) ONLM (d) Proposed
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Figure 5.18: PSNR curves for subject 2

Table 5.5: MSE between original signal and restored signals

SURE-LET ONLM Proposed

Subject 1 6.0796 6.64 3.7
Subject 2 9.73 9.71 4.98

has an output PSNR of 23.03 dB compared to 18.62 dB and 18.11 dB obtained with

SURE-LET and ONLM respectively. PSNR results for subject 2 are illustrated in Fig.

5.18. OVNLM presents also good performance particularly with heavily corrupted im-

ages (σ = 100). Indeed, we obtain for OVNLM a PSNR of 23 dB compared to 18.58 dB

and 17 dB with vector SURE-LET and ONLM.

To emphasize the importance of a good parametrization of the proposed filter, we anal-

yse its performance by varying parameter h which controls the degree of smoothing for

a fixed covariance matrix Φ and with different noise levels as shown in Fig. 5.19. We

notice that the resulting PSNR depends enormously on the choice of parameter h which

also implies a good choice of parameter Φ. Thus, we can deduce the importance of an

optimization scheme to parameterize the filter.

The proposed denoising filters have demonstrated their outperformance compared to

other algorithms. Experiments on real color and multispectral images have shown good

results in terms of PSNR. We have tried while denoising to take advantage from the

spectral information brought by the imaging system and achieve a good tradeoff be-

tween good denoising performance and edge and line preservation by extending filters
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i.e. anisotropic Gaussian filter and NLM filter, whose intrinsic property is details and

fine structures conservation, to the vector case.

Figure 5.19: Variation of PSNR with relative to h

5.4 Gravitational Weighted Fuzzy C-Means: Experimen-

tal results

To validate our Gravitational Weighted Fuzzy C-Means (GWFCM) method proposed in

section 4.3, we conduct two kinds of experiments: (i) clustering two data sets from UCI

repository (ii) segmenting multispectral face images from IRIS Lab. The proposed

method is compared to four clustering algorithms: FCM, bootstrap weighted FCM

refered to as BFCM [104], W-K-means [105] and the data weighted clustering DWG-

K [101]. These four algorithms have been chosen for comparison purposes as they

presented good performance for color image segmentation and can be easily applied on

multispectral images.

We use throughout these experiments the following similarity indexes defined as follows:

Let P1 and P2 two partitions. We define a as the number of object pairs that belong to

the same clusters in both P1 and P2. Let b be the number of object pairs that belongs

to different clusters in both pairs. Let c be the number of object pairs that belong to

the same clusters in P1 but in different clusters in P2. Finally, let d the number of

pairs that belong to different clusters in P1 but belong to the same cluster in P2. Rand,
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Fowlkes-Mallows, Jaccard and Adjusted Rand indexes are defined as:

Rand = a+b
a+b+c+d

(5.2)

Fowlkes−Mallows = a√
(a+d)(a+c)

(5.3)

Jaccard = a
a+c+d (5.4)

Adjsuted−Rand =
a− (a+d)(a+c)

a+b+c+d
a+b+c+d

2
− (a+d)(a+c)

a+b+c+d

(5.5)

5.4.1 Clusetring

We use Thyroid data set from UCI repository. It consists of five features and two or three

classes according to patient status: normal and sick (suffering from hyperthyroidism, and

suffering from hypothyroidism). In addition, we use the Glass data set which consists of

nine features and originally seven clusters. We use an imbalanced version of this data

set where four clusters are merged into one cluster and the three others into a second

cluster. For each data point Xj = (xj1;xj2; . . . ;xjd), the mass mj is chosen to be 1.

We run the four algorithms on these data sets with different number of clusters and we

compute the Rand index defined in eq. 5.2 to assess the clustering results. The higher

Rand is, the better the clustering algorithm is. We take into account the maximum

Rand index [130] value obtained after multiple runs. From results in Fig. 5.20, we

notice that the weighted algorithms e.g. BFCM, W-K means and GWFCM outperform

the classic FCM algorithms which demonstrates the utility of such approach. Results

shows also that the proposed GWFCM outperforms the other clustering algorithms. In

fact, it attains the best values in all cluster numbers and best results are obtained with

the real number of clusters (2 or 3). However, for BFCM, best results coincide only with

two clusters. Same behavior is noticed for FCM and W-K algorithms.

Figure 5.21 represents results for Glass data sets. W-K means algorithm showed the

lowest performance among all the clustering algorithms with Rand index value of 0.5 for

c = 2. The proposed GWFCM has the best performance with 0.82 for two clusters. For

the rest of cluster numbers, GWFCM keeps his outperformance over other clustering

algorithms.
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Figure 5.20: Thyroid - Rand index

Figure 5.21: Imbalanced Glass - Rand index

5.4.2 Multispectral image segmentation

To investigate more the performance of GWFCM, we run it for the purpose of multi-

spectral image segmentation using images from IRIS M3 database. In this context the

data point is the pixel vector as illustrated in Fig. 5.22 [131] pj = (pj1, pj2, . . . , pj25)

where pji,i=1...25 is the value of the jth pixel at the ith spectral band. The mass of each
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pixel is defined as the maximum value it can take at a given spectral band:

mpj = maxi {pji} (5.6)

To compare with other clustering algorithm, we use the following cluster validity indexes

Figure 5.22: Multispectral image organization

presented in Chapter 2: XB (see eq. 2.10), FS (see eq. 2.9), PBMF (see eq. 2.11) and CO

(see eq. 2.6) to assess the clustering results. Fig. 5.23 and Fig. 5.24 represent examples

from IRIS M3 database taken in the Halogen light (first twelve bands). Figure 5.25

Figure 5.23: Multispectral face image: subject 1

Figure 5.24: Multispectral face image: subject 2

and Fig. 5.26 show segmentation results for the five algorithms discussed in the previous
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section. Table 5.6 presents CVIs values for each clustering algorithm applied on images

of Fig. 5.23. We notice that the proposed method presents the best performance with

the smallest values of FS and XB indexes. With PFMF and CO, the optimal partition

is highlighted by the maximum value. According to these two CVIs, the best partition

is obtained with GWFCM. Results for segmentation of Fig. 5.24 in Table 5.7 also show

that GWFCM outperforms the other clustering algorithm according to the minimum

value of FS index and maximum value of PBMF and CO indexes. The optimal partition

according to XB index is obtained with DWG-K. However, GWFCM provides the best

separation between clusters centers: 1.9 105 compared to 1.8 105 obtained by applying

DWG-K. Thus the obtained results confirms that GWFCM is superior to the other four

clustering algorithm.

Figure 5.25: Segmentation result: subject 1

Table 5.6: CVIs values for subject 1

CVI FCM BFCM W-K DWG-K Proposed

XB 0.09 0.09 0.09 0.08 0.08

FS (108) −2.57 -2.60 -2.39 -0.1 -3.17

PBMF (104) 0.25 0.26 0.25 0.39 1.06

CO 6.56 6.70 5.99 5 6.79

Figure 5.26: Segmentation result: subject 2
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Table 5.7: CVIs values for subject 2

CVI FCM BFCM W-K DWG-K Proposed

XB 0.07 0.07 0.07 0.04 0.06

FS (108) −6.7 -6.7 -6.6 -7 -7.4

PBMF (104) 0.86 0.88 0.82 0.77 1.5

CO 7.2 7.4 6.9 7.3 7.4

5.5 Cluster validity indexes: Experimental results

5.5.1 CVI evaluation methodologies

The classic CVI evaluation methodology consists in applying a clustering algorithm such

as FCM on each data set while varying the number of clusters and computing CVIs for

each partition. The best CVI determines that the real number of clusters is the one that

best fits the data.

The classic methodology is based on the assumption of perfection of the clustering

algorithm which is not always true. In the alternative methodology, the definition of

the best partition is different [132]. Indeed, the best partition is the one which is most

similar to the perfect partition. Similarity is quantified using similarity measures such

as Rand or adjusted Rand index. The best CVI is the index which determines that the

most similar partition to the perfect partition is the best one.

5.5.2 Cluster validity index based on n-sphere

In order to demonstrate the effectiveness of this CVI, we conduct experimentation on

five data sets from UCI repository. We use: the Tyroid data set, the Wine data set

which is composed of 178 thirteen dimensions vectors, the Glass (balanced version of 7

clusters) data set where each dimension represents a constituent of the three types of

the studied wine, the famous Iris data set which contains 150 data vectors described

by four features: sepal length, sepal width, petal length and petal width and consists

of three clusters: two overlapping clusters and one linearly separable from the others,

the Yeast data set which is composed of 8 attributes and 10 clusters. We use also two

data sets from the eYale B database: Yale 5 and Yale 7 composed of 5 and 7 clusters

respectively.

Table 5.8 represents the values of parameter T used to choose a specific point for the

compactness measure. Our index denoted S is compared to the following CVIs: PC

(see eq. 2.2), PE (see eq. 2.3), XB (see eq. 2.10), FS (see eq. 2.9) and PBMF (see eq.

2.11). Table 5.9 summarizes the results obtained for the thyroid data set. The optimal
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number of cluster i.e. 3 is highlighted only by the proposed CVI S and XB while other

indexes fail. CVIs such as PC and PE, whose computation is based only on membership

values of each data vector in each cluster, are known by their monotonous dependency

on the number of clusters, hence it is not surprising if 2 was determined as the optimal

number of clusters. This behavior is confirmed by the results obtained for the wine data

set in Table 5.10. Indeed and as predicted, PC and PE failed to determine 3 as the

optimal number of clusters. Only the proposed CVI, S, and XB performed well. For

the glass data set, only the FS and S indexes perform well as shown in Table 5.11. The

Iris data set is more complicated due to the presence of overlapping clusters. In this

case, only index S was able to determine 3 as the optimal number of clusters as shown

in Table 5.12. Behavior of PC and PE is also confirmed. In addition, from Table 5.13

for yeast data set, only index S determined 10 as the optimal number of clusters. For

the eYale data sets, only the proposed CVI was able to predict 5 and 7 as the optimal

number of clusters as demonstrated by results in Tables 5.14 and 5.15. Experimental

results showed that the proposed CVI outperforms the other indexes for all data sets

particularly those where overlap between clusters is present. In addition the proposed

CVI is also efficient in case of high dimensional data e.g. wine data set.

Table 5.8: Values of parameter T for each data set

data Iris Glass Thyroid Wine Yeast Yale 5 Yale 7

T 0.09 0.001 0.01 0.05 0.01 0.04 0.002

Table 5.9: CVIs values for Thyroid data set: best result is bold

c PC PE XB FS PBMF S

2 0.7478 0.4019 0.3774 4.8857 0.0281 7.82

3 0.7459 0.4772 0.1564 -2.6151 0.0208 7.06

4 0.5881 0.7425 0.8178 -3.9952 0.0387 9.7

5 0.4622 0.9962 1.4409 -4.8197 0.0072 22.77

6 0.5007 0.9826 0.7670 -7.3917 0.0234 17.74

7 0.4253 1.1637 1.3790 -6.5266 0.0157 15.82

8 0.3609 1.3440 1.8672 -5.8464 0.0020 16.31

We use besides Rand index (see eq. 5.2), other similarity indexes: Fowlkes-Mallows (see

eq. 5.3), Jaccard index (see eq. 5.4), and Adjusted Rand (see eq. 5.5). Jaccard index

ranges in [0, 1] with 1 corresponds to totally similar sets. With Fowlkes-Mallows index,

a higher value indicates a greater similarity between the objects. The adjusted Rand

index is derived from the Rand index. It ranges in [−1, 1] and with a value of 1, we

have a perfect match between objects. We use Iris and Thyroid data sets in this case.
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Table 5.10: CVIs values for Wine data set: best result is bold

c PC PE XB FS PBMF S

2 0.62 0.55 0.48 33.33 0.109 2.05

3 0.51 0.83 0.34 8.39 0.07 0.98

4 0.38 1.14 2312 5.68 0.048 5.80

5 0.30 1.36 43.88 5.03 0.031 34.43

6 0.26 1.52 2189 4.00 0.021 57.28

7 0.22 1.68 1.1e+4 3.11 0.015 49.71

8 0.19 1.83 3.8e+7 2.69 0.011 94.97

9 0.17 1.96 1.1e+4 2.48 0.010 30.23

Table 5.11: CVIs values for Glass data set: best result is bold

c PC PE XB FS PBMF S

2 0.82 0.29 0.13 -7.93 0.051 72.71

3 0.71 0.51 0.36 -9.85 0.044 58.22

4 0.68 0.61 0.24 -19.28 0.030 59.56

5 0.58 0.83 0.91 -14.46 0.015 51.22

6 0.51 0.99 1.34 -13.20 0.006 55.83

7 0.57 0.93 0.34 -20.06 0.002 45.33

8 0.48 1.09 1.86 -16.35 0.004 50.39

9 0.46 1.19 1.83 -14.88 0.003 68.12

10 0.45 1.22 1.63 -16.34 0.002 69.33

Table 5.12: CVIs values for Iris data set: best result is bold

c PC PE XB FS PBMF S

2 0.84 0.26 0.09 -9.87 0.047 1.61

3 0.72 0.49 0.20 -12.76 0.02 1.45

4 0.64 0.66 0.30 -13.02 0.01 2.07

5 0.55 0.88 0.57 -13.28 0.009 3.49

6 0.54 0.91 0.41 -12.31 0.009 3.42

7 0.50 1.08 0.43 -14.37 0.004 3.55

8 0.49 1.09 0.43 -12.17 0.002 5.72

9 0.46 1.20 0.29 -13.72 0.003 6.3

Results for thyroid data set shown in Table 5.16, demonstrate that the proposed index

S and XB have the best performances which is consistent with the results in Table 5.9.

In fact, the best partition with classic and new methodologies coincides 100 times over

100 executions. For Iris data set which comprises two overlapping clusters, results are

different. Results are illustrated in Table 5.17. With the Rand index, this specific case

occurs 58 times, 100 times with Jaccard and Fowlkes-Mallows and only 7 times with the
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Table 5.13: CVIs values for Yeast data set: best result is bold

c PC PE XB FS PBMF S

8 0.17 1.92 3496 9.59 0.002 8.69

9 0.15 2.04 3457 8.36 0.001 7.82

10 0.13 2.15 451.31 7.42 0.001 5.6

11 0.12 2.25 476.17 6.71 0.001 6.74

12 0.11 2.34 3.2e+4 6.09 9.7e-4 6.78

13 0.10 2.42 1615 5.62 6.1e-4 6.60

14 0.10 2.48 3824 5.03 7.6e-4 36.54

Table 5.14: CVIs values for Yale 5 data set: best result is bold

c PC PE XB FS PBMF S

2 0.788 0.9 42.2 -5.8e+7 745 5.8e+3

3 0.754 1.08 42.2 -1.3 e+7 615 4.1e+3

4 0.732 2.21 45.3 -6e+7 513 5.3e+3

5 0.718 2.57 48.7 -4.4e+7 522 2.8e+3

6 0.712 2.77 47.2 -2.8e+7 510 3e+3

7 0.700 2.90 50 -1.6e+7 500 4.2e+3

8 0.710 2.97 43.8 -1.2e+7 500 6.5e+3

9 0.713 2.97 41 -1e+7 500 6.8e+3

Table 5.15: CVIs values for Yale 7 data set: best result is bold

c PC PE XB FS PBMF S

3 0.662 0.69 12 -3.2e+7 131 2.1e+3

4 0.640 0.82 9 -1.e+7 116 3.6e+3

5 0.590 0.91 22 -0.7e+7 109 5.3e+3

6 0.567 0.99 16 -1.1e+7 102 1.9e+3

7 0.534 1.04 19 -0.6e+7 101 1.6e+3

8 0.530 1.09 15 -0.4e+7 103 2.2e+3

9 0.520 1.13 12.4 -0.5e+7 100 4.7e+3

10 0.516 1.17 14 -0.6e+7 100 5.2e+3

Modified Rand. Results for 1R2RCT A, 1R2RT B and car5 from Hopkins 155 database

also demonstrate the superiority of index S over the other indexes. From Table 5.18

for 1R2RCT A data set, index S exhibited the best performance particularly with the

Fowlkes-Mallows index. For 1R2RT B data set, results in Table 5.19 also demonstrate

the outperformance of the proposed index. The other indexes particularly PC and PE

completely failed. Same results are obtained for the car5 data set as illustrated in Table

5.20.
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Table 5.16: Number of times each index proposes the optimal partition highlighted
by the similarity measures as the best one for Thyroid

Similarity measure PC PE XB FS PBMF S

Rand 0 0 100 0 40 100

Jaccard 0 0 100 0 44 100

Fowlkes-Mallows 0 0 100 0 37 100

Modified Rand 0 0 100 0 44 100

Table 5.17: Number of times each index proposes the optimal partition highlighted
by the similarity measures as the best one for Iris

Similarity measure PC PE XB FS PBMF S

Rand 0 0 0 1 0 58

Jaccard 0 0 0 0 0 100

Fowlkes-Mallows 0 0 0 0 0 100

Modified Rand 0 0 0 13 0 7

Table 5.18: Number of times each index proposes the optimal partition highlighted
by the similarity measures as the best one for 1R2RCT A

Similarity measure PC PE XB FS PBMF S

Rand 0 0 0 26 0 45

Jaccard 0 0 0 0 0 17

Fowlkes-Mallows 0 0 0 0 0 82

Modified Rand 0 0 22 13 17 55

Table 5.19: Number of times each index proposes the optimal partition highlighted
by the similarity measures as the best one for 1R2RT B

Similarity measure PC PE XB FS PBMF S

Rand 0 0 0 10 8 32

Jaccard 0 0 0 0 0 56

Fowlkes-Mallows 0 0 0 0 0 8

Modified Rand 0 0 54 11 19 63

Table 5.20: Number of times each index proposes the optimal partition highlighted
by the similarity measures as the best one for car5

Similarity measure PC PE XB FS PBMF S

Rand 0 0 0 0 8 12

Jaccard 0 0 0 0 0 9

Fowlkes-Mallows 0 0 0 17 0 48

Modified Rand 0 0 0 22 14 54
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•Cluster validity index based on Jeffrey divergence

• Synthetic data sets

We use four two-dimensional synthetic data sets S1, S2, S3 and S4 consisting

of 5,000 data vectors generated from 15 Gaussian clusters. These data sets are

characterized by clusters of different shapes: circular and elliptical. In addition,

clusters in data set S1 are well-separated compared to the other data sets where

clusters overlap more and more until becoming indistinguishable in data set S4.

Furthermore, we use R15, a specially shaped data set. R15 consists of 15 Gaussian

clusters in 2D. Figures 5.27, 5.29, 5.31, 5.33, and 5.35 show data distribution in

each set. We apply FCM with a number of clusters varying from 10 to 20. The best

CVI should identify 15 as the right number of clusters is the one that outperforms

the others. In our experiments, we use PC, PE, XB, PBM [86], PBMF FVG [133],

OSV and P indexes for evaluation.

Results for each set are represented in Fig. 5.28, 5.30, 5.32, 5.34 and 5.36 where

the proposed index is refered as I. The best result for each CVI is highlighted with

black mark. The findings demonstrate that the proposed validity index successfully

determines the correct number of clusters for all data sets. On the other hand,

indexes such as PC and PE are able to determine the correct number of clusters

when there is a low overlapping between clusters such as in data set S1. But we

can notice that there is a slight variation in their values as overlapping degree gets

higher unlike the proposed index I and the XB index where discrimination between

their values for each number of cluster is obvious. Note that the remaining indexes

such PBM and PBMF FVG completely fail to determine the correct number of

clusters in all cases and the best result is always found to be the lowest cluster

number.

• Real data sets

We use the Balance, Banana and Iris data sets from UCI repository and Yale 5

and Yale 7 data sets from eYale database. First, to test the performance of the

indexes, we use the classic methodology presented in section 5.5.1.

Results in Fig. 5.37 for balance data set demonstrate that only the proposed

index and the P index are able to determine the optimal number of clusters. The

behavior of indexes such as PC and PBM FVG seen with synthetic data sets is

confirmed with the real data set, i.e. the lowest number of clusters is chosen as the

optimal number. These indexes represent a monotonic tendency with the number

of clusters. In Fig. 5.38 for Banana data set, the proposed validity index estimated

that the real number of cluster c∗ is the right number of cluster. A large variation in

index I is noticed. This gives an information about the correct number of clusters.
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Almost all the validity indexes were able to estimate c∗. The monotonic tendency

of some indexes such as PE and PC is also confirmed. The presence of overlap in

the Iris data set makes it difficult to estimate the optimal number of cluster. Only

index I was able to determine c∗ = 3 as the optimal number of clusters as shown

in Fig. 5.39. PC and PE always exhibit the monotonic tendency for the number

of clusters. PBM and PBMF FVG showed the same behavior as for the previous

data sets. With eYale database, index I exhibits good performance. Indeed, for

Yale 5 data set as shown in Fig. 5.40, only the proposed index was able to predict

the real number of cluster as well as for Yale 7 data set according to the results in

Fig. 5.41.

For the alternative methodology, We use the Balance, Banana and Iris data sets

from UCI repository and 1R2RCT A, 1R2RT B and car5 data sets from Hopkins

155 database. We use the four similarity measures namely the Rand index, the

Fowlkes-Mallows index, the Jaccard index and the adjusted Rand (ARI) index. We

run FCM 100 times to cluster the data sets and we compute how many times each

index proposes the optimal partition highlighted by these similarity measures as

the best one. Results for Balance, Banana and Iris are shown in Tables 5.21, 5.22

and 5.23. For the balance data set, index I presents good performance. In fact,

it is able to detect the best partition for all the similarity measures unlike other

indexes which perform well with some similarity measures but fail with others

such as PC and PE known for their monotonic tendency. For the Banana data set,

the proposed index also presents good performance. It was able to determine the

optimal partition with all similarity measures except Rand. For Iris data set, only

the proposed index I was able to determine the best partition in case of Rand,

Jaccard and adjusted Rand indexes. Such result goes with the result obtained

for Iris data in the classic methodology. For the Hopkins 155 data, a classic

preprocessing step before using these data is to project it onto a subspace using

PCA. In fact, it is known for these data that the feature trajectories of n motions

in a video almost perfectly lie in a 4n dimensional subspace. Thus, PCA projection

will reduce the dimensionality with structure preservation [134]. Results are shown

in Tables 5.24, 5.25 and 5.26. The overall performance of the proposed index is

better than the other indexes for 1R2RCT A for all the similarity measures except

ARI. Other indexes completely fail with Rand, FM and Jacc measures. With

1R2RT B, index I presents also good performance with a success of 100 % for

Rand, FM and Jacc. PC and XB in this case present also the same performance.

OSV and P perform well only with ARI. Results for car5 demonstrate also the

outperformance of index I with Rand FM and ARI. In general, results on Hopkins

155 demonstrate that the proposed index I presents the best success rate compared

to other indexes.
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• Discussion

The proposed validity index is highly useful especially for data sets where overlap

between clusters is present. While some indexes completely fail in the presence

of a small overlapping, the proposed index I is robust and able to estimate the

optimal number of cluster even when clusters highly overlap such as in in the case

of Iris and S4 data sets, where clusters are hardly distinguishable. The design

of the separation measure based on the density of clusters is an indicator of the

degree of overlap between clusters which could not be determined with the classical

separation measure based on the distance between cluster centers. However, in case

of high-dimensional data, the computation of the proposed cluster validity index

may be computationally expensive. For example, in case of Gaussian clusters, the

computation of Jeffrey divergence requires the inversion of the covariance matrix

of size d × d. Using Cholesky decomposition, this operation has a complexity of

O(d3).

Figure 5.27: Data set S1 with 15 Gaussian clusters
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Figure 5.28: CVIs for S1 with different number of clusters (lines are scaled for display
purpose)

Figure 5.29: Data set S2 with 15 Gaussian clusters
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Figure 5.30: CVIs for S2 with different number of clusters (lines are scaled for display
purpose)

Figure 5.31: Data set S3 with 15 Gaussian clusters
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Figure 5.32: CVIs for S3 with different number of clusters (lines are scaled for display
purpose)

Figure 5.33: Data set S4 with 15 Gaussian clusters
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Figure 5.34: CVIs for S4 with different number of clusters (lines are scaled for display
purpose)

Figure 5.35: Data set R15 with 15 Gaussian clusters
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Figure 5.36: CVIs for R15 with different number of clusters (lines are scaled for
display purpose)

Figure 5.37: CVIs for Balance data set with different number of clusters (lines are
scaled for display purpose)
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Figure 5.38: CVIs for Banana data set with different number of clusters (lines are
scaled for display purpose)

Figure 5.39: CVIs for Iris data set with different number of clusters (lines are scaled
for display purpose)
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Figure 5.40: CVIs for Yale 5 data set with different number of clusters (lines are
scaled for display purpose)

Figure 5.41: CVIs for Yale 7 with different number of clusters (lines are scaled for
display purpose)
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Table 5.21: Similarity measures for balance data set

Similarity measure PC PE P XB PBM PBM FVG OSV I

Rand 0 0 0 0 0 0 75 9

Fowlkes-Mallows 100 100 0 0 100 100 0 69

Jaccard 100 100 0 0 100 100 0 67

Adjusted Rand 0 0 0 0 0 0 79 11

Table 5.22: Similarity measures for banana data set

Similarity measure PC PE P XB PBM PBM FVG OSV I

Rand 0 81 8 58 0 0 29 0

FM 100 100 0 0 100 100 0 100

Jacc 100 100 0 0 100 100 0 100

ARI 100 0 0 0 0 0 0 100

Table 5.23: Similarity measures for Iris data set

Similarity measure PC PE P XB PBM PBM FVG OSV I

Rand 0 0 0 0 0 0 0 17

FM 100 100 0 100 100 100 0 0

Jacc 0 0 0 0 0 0 0 15

ARI 0 0 0 0 0 0 0 84

Table 5.24: Similarity measures for 1R2RCT A data set

Similarity measure PC PE P XB PBM PBM FVG OSV I

Rand 0 0 0 0 0 0 0 80

FM 0 0 0 0 0 0 0 80

Jacc 0 0 0 0 0 0 0 80

ARI 100 100 0 0 100 100 0 0

Table 5.25: Similarity measures for 1R2RT B data set

Similarity measure PC PE P XB PBM PBM FVG OSV I

Rand 100 0 0 100 0 0 0 100

FM 100 0 0 100 0 0 0 100

Jacc 100 0 0 100 0 0 0 100

ARI 0 100 90 0 0 0 66 0
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Table 5.26: Similarity measures for car5 data set

Similarity measure PC PE P XB PBM PBM FVG OSV I

Rand 0 0 0 76 0 0 0 96

FM 41 41 0 61 0 41 41 82

Jacc 99 99 0 0 0 99 99 0

ARI 0 0 0 0 76 0 0 96

5.6 Impact of multispectral image denoising on segmenta-

tion

In this section, we deploy two scenarios. In the first one, we apply the segmentation

algorithm GWFCM on multispectral image contaminated with additive Gaussian noise.

In the second scenario, we apply one of the proposed filters to reduce the noise and then

apply the GWFCM algorithm. In both scenarios, we calculate several CVIs (including

the proposed ones) to assess the segmentation results. We choose the images illustrated

in Fig. 5.11 and Fig. 5.13 and the proposed NLM filter for denoising. Table 5.27 and

Table 5.28 illustrate the values of several CVIs used in previous experiments for subject

1. We can clearly see the difference in values between CVIs in presence and absence of

noise. For example, with the proposed indexes, we have 20.2 for S and 5.57e+8 or I after

segmenting the noisy image with σ = 100. After applying the NLM filter, we have 10.4

and 3.96e+7 for S and I respectively. Table 5.29 and Table 5.30 of subject 2 confirm

the previous results. With the same noise conditions, we have S=40.1 and I=8.12e+7.

However, with NLM filter, we have S=31.6 and I=5.59e+7.

Results of these experiments confirm the necessity of applying a denoising algorithm and

how it can improve the segmentation results.

Table 5.27: CVIs values of the noisy segmented images for subject 1

σ = 5 σ = 10 σ = 20 σ = 30 σ = 40 σ = 50 σ = 100

PC 0.71 0.63 0.53 0.50 0.50 0.49 0.53

PE 0.50 0.63 0.79 0.84 0.85 0.85 0.80

XB 0.12 0.19 0.36 0.40 0.35 0.30 0.25

PBM 43 78 79 94 104 111 221

CO 1.79 1.27 0.95 0.93 0.95 0.94 1.13

S 3.8 4.8 5.3 10.1 13.4 16.7 20.2

I 4.21e+5 1.78e+6 1.01e+7 1.93e+7 3.23e+7 6.67e+7 5.57e+8
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Table 5.28: CVIs values of the denoised segmented images for subject 1

σ = 5 σ = 10 σ = 20 σ = 30 σ = 40 σ = 50 σ = 100

PC 0.78 0.78 0.76 0.73 0.70 0.67 0.56

PE 0.38 0.39 0.43 0.47 0.52 0.57 0.74

XB 0.08 0.08 0.09 0.11 0.13 0.15 0.29

PBM 418 415 410 414 423 428 354

CO 2.56 2.47 2.23 1.93 1.69 1.49 1.06

S 0.5 1.3 2.1 3.3 5.7 8.3 10.4

I 7.56e+4 4.25e+5 1.46e+6 1.83e+6 3.78e+6 8.07e+6 3.96e+7

Table 5.29: CVIs values of the noisy segmented images for subject 2

σ = 5 σ = 10 σ = 20 σ = 30 σ = 40 σ = 50 σ = 100

PC 0.74 0.71 0.64 0.58 0.54 0.51 0.49

PE 0.45 0.51 0.62 0.71 0.77 0.82 0.86

XB 0.11 0.13 0.19 0.23 0.33 0.46 0.33

PBM 331 319 305 247 361 459 538

CO 2.04 1.73 1.30 1.08 0.98 0.91 0.91

S 25.1 27.5 28.4 30.9 33.8 37.6 40.1

I 2.67e+5 9.49e+5 4.87e+6 8.56e+6 1.22e+7 5.01e+7 8.12e+7

Table 5.30: CVIs values of the denoised segmented images for subject 2

σ = 5 σ = 10 σ = 20 σ = 30 σ = 40 σ = 50 σ = 100

PC 0.80 0.79 0.77 0.75 0.72 0.69 0.57

PE 0.36 0.37 0.41 0.74 0.50 0.54 0.72

XB 0.06 0.07 0.08 0.09 0.11 0.13 0.25

PBM 654 649 640 632 618 595 522

CO 2.83 2.72 2.42 2.10 1.83 1.62 1.11

S 20.3 22.1 25.4 27.9 28.1 29.2 31.6

I 7.44e+4 2.57e+5 1e+6 3.34e+6 5.47e+6 1.17e+7 5.59e+7

5.7 Conclusion

Our experiments have been conducted on several data sets from different databases

with different complexity. The proposed denoising algorithms ensure a great tradeoff

between noise removal and details preservation. The intrinsic property of the anisotropic

Gaussian filter guarantees this important property. The NLM filter is also known by its

high performance on Gaussian noise removal. Our approach for this task is based on

extending these particular filters to the vector cases and we have been able to ensure

good results in term of PSNR.
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Segmentation experiments, which are similar to the approach used in cluster analysis,

have proven the efficiency of the proposed algorithms. We have tried to adapt the

gravitational theory, which is previously used in hierarchical clustering, to the partitional

clustering. In addition, experiments on several machine learning data sets have proven

the outperformance of the proposed CVIs. We have approached the problem of cluster

validity index by using the n-sphere shape and probability density estimation.





Chapter 6

Conclusions and Future work

• Conclusion

The face recognition problem has been widely addressed in the general context of bio-

metric applications. The emerging of multispectral imagery and its applications have

contributed in advancing the face recognition. However, many technical and theoretical

challenges have raised and should be faced to maximize the use of these images. The

imaging system construction and database acquisition need particular attention. In the

midst of this, the quality of multispectral images is an important factor which can be in-

fluenced by the surrounding conditions particularly the light and noise. Thus, enhancing

the sensory data is a must. This enhancement involves noise suppression without a loss

of important details and fine structures. We have adopted a noise model where the local

variance of image is considered as negligible and that noise variance is the only source of

variation within a local window in the noisy image. Our approach for image denoising

is to extend the use of some filters to the vector case so that we gain benefit from the

additional spectral information. We have used the anisotropic Gaussian filter known by

its ability in edge preservation.We have also proposed another denoising algorithm based

on the NLM filter. An optimization framework is adopted using the SURE method to

choose the filter parameters. Experiments on multispectral images have proven the effi-

ciency of the proposed algorithms in term of the Peak Signal to Noise Ratio.

We have also studied segmentation of multispectral images. This problem has been

brought to the general context of cluster analysis. Hence, a novel clustering algorithm

was proposed and applied to multispectral image segmentation. In addition, two CVIs

are proposed using the n-sphere shape and probability density estimation. Experiments

on several machine learning databases have been conducted and we have obtained re-

sults.

The problem addressed in this thesis is critical and has a great implication on the down-

stream processes of face recognition and should also get benefits from the upstream

85
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processes particularly band selection. One of the major encountered issues is the high

dimensionality of the data . Knowing that the information in the images is highly likely

to be redundant, relevant spectral bands can be chosen resulting in dimensionality re-

duction and consequently alleviating the computation duration which is an important

factor towards building a real time face recognition system.

• Future work

The usefulness of multispectral image has made it popular in many applications. This

fact has contributed in advancing research activities in this topic. As we stated through-

out this report, enhancing the sensory data is a critical stage toward the building of

reliable and accurate face recognition system.

Possible future expansion of this work is to investigate deblurring techniques and pro-

pose new algorithms. Indeed, the change in wavelength passing through the filter causes

different level of blurring in multispectral images. Applying unsharpness algorithm via

Laplacian filter could be an interesting option. Particular attention will be also given to

image restoration by deconvultion. Particularly, the adaptively estimated point spread

function has shown great results. Extending it to deal with multispectral case could an-

other future expansion of this work. The challenge here is to propose a good parameter

selection since,in general, it is application dependant.

Another expansion of this work is to investigate other possible techniques for multispec-

tral image segmentation such as the graph cuts method which is a reliable technique

widely used for a classical 2D image segmentation. In addition, Contour detection

methods are worth studying particularly the active contour models especially the pa-

rameterized one since we know what we need to detect in our images i.e. human face

with all its features.
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