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Titre: Flots de Newton, transports paralleles stochastiques, Q-processus de Wiener, et
équation de Dean- Kawasaki sur I’espace de Wasserstein

Résumé:

Nous allons introduire des flots de Newton sur I’espace de Wasserstein. L’existence et
I’unicité de I’équation de Newton avec le probleme de Cauchy sera établie. Nous allons
éclaircir également les liens entre 1’équation d’écoulement de Newton relachée et 1’équation
de Keller-Segel.

Nous allons étendre lad éfinition de la connexion de Levi-Civita de Lott a I’espace de
Wasserstein des mesures de probabilité ayant densité et divergence de tel sorte que les
transports paralleles puissent étre définis comme en géométrie différentielle. Nous allons
démontrer I’existence des transports paralleles au sens fort de Lott pour le cas du tore.

Nous allons établir un formalisme intrinseque pour le calcul stochastique d’1t6 sur I’espace
de Wasserstein a travers les trois fonctionnelles typiques. Nous allons construire la forme
faible et la forme forte de I’équation différentielle partielle stochastique définissant le
transport parallele, dont I’existence et 1’unicité est démontrée dans le cas du tore. Des
processus de diffusion non-dégénérée sont construits en utilisant les fonctions propres du
laplacian.

Nous allons construire une nouvelle approche du systeme d’interaction de particules aux
solutions du probleme de martingale pour 1’équation de Dean-Kawasaki sur le tore sous une
condition plus faible portant sur I’intensité de corrélation spatiale.

Title: Newton flows, stochastic parallel translations, Q-Wiener processes and Dean-
Kawasaki equations on the Wasserstein space

Abstract:

We introduce Newton flows on the Wasserstein space and prove the well-posedness of
Cauchy problem of the Newton flow equation. We show the connections between the
relaxed Newton flow equation and the Keller-Segel equation.

We extend the definition of Lott’s Levi-Civita connection to the Wasserstein space of
probability measures having density and divergence so that parallel translations for can be
introduced as done in differential geometry. In the case of torus, we prove the well-
posedness of Lott’s equation for parallel translations.

We establish an intrinsic formalism for It6 stochastic calculus on the Wasserstein space
throughout three kinds of functionals. We construct the weak and strong form of stochastic
partial differential equations for stochastic parallel translations, the well-posedness is also
proved in the case of torus. As a kind of non-degenerated diffusion process on Wasserstein
spaces, Q-Wiener process is constructed using the eigenfunctions of the Laplacian.

We construct a new interactive particle model approximation to the solution to the
regularized martingale problem of the diffusive Dean-Kawasaki equation on the one-
dimensional torus under a weaker condition on the spatial correlation intensity of the noise
than the classical one.
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Chapter 1

Introduction

1.1 Research background

1.1.1 Optimal transport

Optimal transport problem is firstly proposed by French mathematician Monge form practical engineering prob-
lems. In general, assume that X, Y are two Polish spaces(complete separable metric space), 7' : X — Y is a Borel
map and p € P(X) is a probability measure, then we say the probability measure Tz € P(Y') is a pushforward
measure of p by T', if

Tup(E) = w(T~(E)), VE CY Borel.

The pushforward satisfies, for all Borel function f € L* (T ),

/de#u:/fonu.

Ty is also called the image measure of 1 under 7', or 7' transports (& to Tl .
Letc: X xY - RU+{oo} and x € P(X), v € P(Y), then the Monge optimal transport problem is to find
the optimal transport map 7" such that

minimize I[T] = / c(x, T(x))du(zx) (1.1.1)
X
among all the measurable map satisfying T2+t = v. Monge optimal transport problem is ill-posed because

1. there may not exist 1" satisfying T ;i = v, for example, if 1 is a Dirac measure while v is not.

2. Typ = v is not weakly closed in general weak topology, i.e. if T n = v and T™ weakly converges to T', it
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is not necessary that Ty = v .

In 1940s, Kantorovich proposed a relaxed version of optimal transport problem in the optimal allocation of na-
tional resources. Let C(u,v) = {y € P(X x Y) | 7y = p, 7}y = v} , where 7%, 7" are projection maps
form X x Y to X and Y respectively. The Kantorovich optimal transport plan problem is to find v € C(u, v)
such that it

minimize I[v] :/ c(z,y)dy(z,y). (1.1.2)

XxXY
Usually, we call the minimizer as the optimal transport plan. When the cost function c is lower semi-continuous
and bounded from below, there always exists a optimal transport plan. From Monge-Kantorovich optimal transport
problem, Kantorovich introduced the 2-Wasserstein distance in the probability measure space: for p, v € Pa(X)

and c(x,y) = d?(z,y), define 2-Wasserstein distance W as

Wi = ot [ Eayndndy).
YET (V) J X x X

Since we always consider 2-Wasserstein distance in this thesis, we will call W, as Wasserstein distance without

additional requirements. We also call (P(X), W5) as Wasserstein space.

1.1.2 Geometry and differential equations on the Wasserstein space

Denote ngac(Rd) as the set containing all of the absolutely continuous probability measures with respect to
Lebesgue measure on R< and finite second moments. When it is constrained in Pg,ac(Rd) with the cost function
¢ = d?, Brenier [Bre91] used convex functions to describe optimal transport maps of Monge-Kantorovich optimal
transport problems. This result built a bridge between the fields of optimal transport and Monge-Ampere equation,

fluid dynamics, metric measure geometry, probability etc. We introduced some parts of related works .

e Partial differential equations: A class of diffusive equations can be seen as gradient flows on P(M). This
viewpoint brought new development to contraction of diffusion semigroup, log-sobolev inequality and other
related fields(see [Vil09]) .

e Infinite dimensional differential geometry: Let P5°(R9) be the set of probability measures which have
strictly positive smooth densities. Otto defined a Riemannian metric on P3° (R%), which makes (P5°(R?), W)
a infinite dimensional Riemannian manifold. Also, Otto got the geodesic equation and calculated the lower
bound of section curvature, so that he formally showed that Po(R?) has nonnegative section curvature.
Based on these works, J. Lott [Lot06] derived the Riemann curvature of P3° (M), where the base space M

is a complete simple connected Riemannian manifold without boundary.

e Metric measure geometry: Sturm, Lott, Villani etc. proved that nonnegativeness of Ricci curvature of the
manifold M is equivalent to the convexity of Boltzmann entropy along Wasserstein geodesics(see [Stu06,
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LV09]). This means one can use the geodesic convexity of Boltzmann entropy to give the lower bound of

Ricci curvature of M, even when M is not a smooth Riemannian manifold.

1.1.3 Stochastic analysis on Wasserstein spaces

In 2013, Prof. Xiangdong Li constructed a Langevin deformation connecting geodesic flows and gradient flows,
and collaborated with Songzi Li to prove the W-entropy formula about the Langevin deformation( [LL16]) .In
2017, Prof. Xiangdong Li proposed a research plan for constructing Brown motion and Langevin diffusion process
on Wasserstein spaces in his application for the funding from the National Natural Science Foundation of China.
In 2018, Prof. Xiangdong Li suggested me studying the construction of Brownian motion on Wasserstein spaces.
In this subsection, starting from Brownian motion on Wasserstein spaces, we introduce some developments on
related studies on the stochastic analysis and stochastic differential equations on Wasserstein spaces.

von Renesse and Sturm [VRS09] constructed an entropic measure P° on P(T), and proved that the Wasserstein

Dirichlet form

E(u,v) = /P(T) < Du(p), Dv(p) >r2(,) dP” (1)

is closable, so that they can construct a reversible markov process with respect to % on P(T): (tt)eepo,my- It

satisfies Itd type formula and Varadhan type formula. In detail, for a smooth function v on P(T),

i) =) = 5 [ Lugu)ds

is a martingale, where L is a second order differential operator. And its quadratic variation is square of Wasserstein
gradient of u. This property is similar to the Itd formula for Brownian motion in Euclidean space. (11t );e[o,7 also
satisfies, for any Borel subset A of P(T),

. 1
lim elnP(pye € Alpe) = —§W22(,ut,A).

e—0t

This also shows that (1i¢)¢c[o,7] is @ "Brownian motion" under W5 metric.

von Renesse and Sturm called (1, ) as Wasserstein diffusion. Their original construction is quite abstract. To know
more about its dynamic properties, we can study it by describing it by stochastic partial differential equations or
particle model approximation. We introduce these two aspects of works for the Wasserstein diffusion and other

related stochastic process on the Wasserstein space.

e von Renesse, Sturm etc. [AVR10, Stu14] gave particle model approximation to the Wasserstein diffusion by
finite dimensional approximation. However, since the entropic measure only supports on singular measure
without discrete parts, (t):e[o,7) do not have a absolutely continuous part and a discrete part almost surely.
This property shows the bad analytic property of u;. In order to improve this point, Konaroskyi [Konl7,
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Konl1, KvR15, KvR17] constructed a new particle model to approximate a class of diffusion process on
the Wasserstein space, which still shares the main feature of Wasserstein diffusion but has better analytic
properties. However, the process satisfying Konaroskyi’s model is not necessarily unique. Marx [Mar18]

rectified the original model and constructed a unique diffusion process which satisfies that model.

e Konarovskyi and Von Renesse [KvR17, KvR15, vRLK19] proved that all the diffusion process on the
Wasserstein space which shares the features of Brownian motion are all satisfied by a regularized form
of Dean-Kawasaki type stochastic partial differential equation:

Ohta = -+ Z(p1) + div(y/al),

where = is some nonlinear operator, 1/ is a white noise both in space and time. In particular, [VRLK19]
proved that if one wants to get a non-trivial solution to the Dean-Kawasaki equation, the regularization term
= is necessary. Dean-Kawasaki is a stochastic Fokker-Planck equation, the related problems about McKean-
Vlasov equations also attract much attentions. [Wan21, BLPR17] studied a class of mean-field stochastic
differential equations and the corresponding partial differential equations on the measure space. Stochastic
differential equations on the Wasserstein space are also related to mean-field game theory. In short, mean-
field game theory investigates the Nash equilibrium of the mean-field limit of interactive particle systems,
whose interaction is determined by the distribution of the particles. To study such problems, Larry and
Lions [LLO6a, LLO6b, LLO7] developed differential calculus on the Wasserstein space.

1.2 Main contents

Inspired by the works mentioned above, This paper mainly studies some topics on the geometry and stochastic

analysis on the Wasserstein space.

In Chapter 2, we mainly introduce some preliminaries. Firstly, we review the basic topological facts about the
Wasserstein space. Secondly, we introduce Brenier’s and McCann’s works on the optimal transport map. Then,
starting from Benamou-Brenier formula, we describe geodesics on the Wasserstein space from viewpoint of dis-
placement interpolation and Riemannian geometry. As a remark, we explain the relation between geodesic equa-
tions and zero-pressure Euler equation. Finally, we introduce a gradient flow equation on P(M) and implicit Euler

approximation.

In Chapter 3, we mainly introduce Newton flows on Wasserstein spaces. We firstly give a brief review on the
Newton flow equation on R?, and use implicit Euler approximation method to prove the existence of solutions.
Using a similar method, we prove the existence of solutions to the Newton flow equation on P(T¢) under certain
conditions (Theorem 3.2.6) and give the conditions for uniqueness. In particular, when the base space is R, we

give conditions for the uniqueness of the limiting point of Newton flows, i.e. there exists a unique minimizer of
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the potential functional.. It is known that gradient flows on Wasserstein spaces are equivalent to Fokker-Planck
equations. As a comparison, we introduce the corresponding partial differential equations of Newton flows of
some calsses of calssical functionals in section 3.3. We also reveal the connection between the Newton flow
equation on P(T) and the Keller-Segel equation.

The main contributions of this chapter:

e Under certain conditions, we prove the existence and uniqueness of the solution to the Newton flow equation
on P(T?). The conditions applies to the common functional F(u) = [ Vdu+ [[W * pdy .

e When the base space is R, we give conditions for the uniqueness of the limiting point of Newton flows, i.e.

there exists a unique minimizer of the potential functional.

e on P(T), we reveal the connection between the Newton flow equation and the Keller-Segel equation.

In Chapter 4, we mainly introduce the Riemannian geometry and parallel translation on Py (M). We revisit the
intrinsic differential geometry of the Wasserstein space (Py(M), W3). In detail, we fristly introduce the tangent
space of Po(M) from Ambrosio’s theorem on the representation of absolutely continuous curves on Py(M) .
Next, we prove the existence (Theorem 4.2.4) and uniqueness (Theorem 4.6.3) of solutions to ordinary differential
equations on Po(M). In section 4.3, we rewrite Lie bracket, Levi-Civita connection, proposed by J. Lott in
[Lot06], in an intrinsic geometric way. We also extend the domain of Levi-Civita to more general vector fields
in tangent spaces of the measure included in Py, (M) (Theorem 4.3.6). In section 4.4, we prove that when
0 € Py (M), the square of Wasserstein distance W3 (o, 11) is derivable along any constant vector field at any p
. At last, in section 4.5, based on the pointwise derivability of W2, we obtain the extension of vector fields along
good curves on Py (M) (Theorem 4.5.1), and introduce the calssical results on parallel translation. We also prove
the existence and uniqueness of the smooth solution to the parallel translation equation on Py (T) (Theorem 4.5.7).

The main contributions of this chapter:

e We extend the domain of Levi-Civita connection on P3° (M), so that one can introduce Levi-Civita connec-

tion for more general vector fields on P, (M) .
e We extend vector fields on Py (M), so that one can introduce parallel translations as in differential geometry.

e We prove the existence and uniqueness of the smooth solution to the parallel translation equation on Py (T),

and improve the regularity results on the solution proposed by Ambrosio.

In Chapter 5, we mainly introduce stochastic parallel translations and (Q—Wiener process on the Wasserstein
space. First of all, we do It6 stochastic calculus for three kinds of functional on the Wasserstein space: poten-
tial functional, interaction functional and Entropy functional, along the image measure process induced by some
stochastic differential equation. We also prove the existence and uniqueness of the solution to the stochastic gra-
dient flow equation when the noise is finite dimensional (Theorem 5.2.8). Next, we construct stochastic parallel
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translation, along the image measure process induced by some stochastic differential equation with enough reg-
ularity, as a L? limit of Euler approximation (Proposition 5.3.3). To get more information about the dynamics
of stochastic parallel translation, we prove that stochastic parallel translation is a weak solution, both in sense of
probability and analysis, of a stratanovich form of stochastic partial differential equation (Theorem 5.3.4). Then,
in the spirit of Wong-Zakai approximation, we find the strong form of stochastic partial differential equation sat-
isfied by stochastic parallel translation (Theorem 5.3.5) and prove the conservation of norm (Theorem 5.3.8). In
section 5.4, we pick a base on M so that we can construct a ()—Wiener process on P2 (M) (Theorem 5.4.5).
Finally, as an example, we prove the well-posedness of stochastic parallel translation on Po(T) (Theorem 5.5.1).

The main contributions of this chapter:

e We prove the existence of stochastic parallel translation along the image measure process induced by a
stochastic differential equation. And we construct the weak and strong form of stochastic partial differential
equations satisfied by stochastic parallel translation. Also, we can prove the regular solution to the strong

form equation preserves norm.
e We construct a (Q—Wiener process on the Wasserstein space.

e We prove well-posedness of strong form of stochastic partial differential equations satisfied by stochastic

parallel translation on P»(T).

In Chapter 6, we mainly study the diffusive Dean-Kawasaki equation on one dimensional Torus with colored noise.
Using the idea of ()—Wiener process and interaction particle system, we give a new particle approximation model
to the regularized martingale problem (RM P)‘]ffim of the diffusive Dean-Kawasaki equation on one dimensional

Torus driven by a white noise, whose spatial correlated intensity is larger than 1 (Theorem 6.3.1). Under such

a,B
1rdx

6.4.1). We also prove that the solution {p, ¢ € [0,7]} is non-atomic for all ¢ € [0, 7] almost surely (Lemma
6.4.2).

The main contributions of this chapter:

conditions, we prove the existence of solutions to the regularized martingale problem (RM P) (Theorem

e We proposed a new particle approximation model to solutions to the regularized martingale problem of the
diffusive Dean-Kawasaki equation on one dimensional Torus.

e We prove the existence of nontrivial solutions to the regularized martingale problem of the diffusive Dean-
Kawasaki equation on one dimensional Torus under a weaker condition on noise than other classical condi-

tions.



Chapter 2

Preliminaries

In this chapter, we will introduce some preliminaries about optimal transport theory. We will firstly introduce
the basic topological facts about the Wasserstein space, then we will introduce Brenier’s optimal transport map
theorem and Benamou-Brenier formula. As a remark, We will explain the connection between fluid mechanics
and optimal transport theory. Benamou-Brenier formula can be seen as a representation of the geodesic on the
Wasserstein space. To illustrate this point of view, we introduce displacement interpolation and infinite dimen-
sional Riemannian metric. At last, we will apply implicit Euler approximation method to approximate a gradient

flow equation on the Wasserstein space.

2.1 Optimal transport and geodesics on the Wasserstein space

Theorem 2.1.1. X is a metric space, then
o (P2(X), W) is a metric space;
e convergence in Wy is equivalent to weak convergence plus convergence of second moments;

e if X is a Polish space, then (Py(X), W) is also a Polish space.
Proof. see [Vil03] . O

This theorem shows the topology properties of (Po(X),Ws). When the base space is a connected compact
manifold, W5 metrizes weak convergence. In this paper, we always consider the optimal transport problem when
the cost function is the square of distance.

Now, we come back to Monge-Kantorovich transportation problem and denote C,(u, V) as the set containing all
of the optimal transport plans v € P(X x Y) . It is natural to ask when there is a unique minimizer and when
the minimizer of Kantorovich transportation problem can be a minimizer of Monge transportation problem? The
following theorem gives the answer:
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Theorem 2.1.2. (Brenier) Let i, v € Py(R9), then,

1. If u is absolutely continuous, Then there exists a unique optimal transport plan

v =(d x Vo),

where V¢ is the unique(uniquely determined du—almost everywhere) gradient of a convex func-
tion ¢ which satisfies Vup = v .

2. Under the assumption of 1, V¢ is the unique (du—a.s.) solution to the Monge transportation
problem:

[ o=@l auw) = int [ o= @) duto)
R4 Rd

{T:Typ=v}

3. Ifv is also absolutely continuous, then, for du— almost all x and dv— almost all y ,

Ve oVp =2, VeoVp'(y) =y,

where V* is the (dv— almost everywhere) unique gradient of a convex function which push v
forward to 1 .

Brenier considered the optimal transport problem when ¢ = d? on Po(R?), and gave a sufficient condition for
the uniqueness of the optimal transport plan: the initial probability measure is absolutely continuous with respect
to Lebesgue measure. In this case, the optimal transport plan of Kantorovich transportation problem is also
the optimal transport map of Monge transportation problem, which can be represented by a gradient of some
convex function. McCann gave the optimal transport map theorem when the base space is a complete connected
Riemannian manifold, so that one can see more clearly the geometric feature of optimal transport maps. Here, we

briefly introduce a part of his results:

Theorem 2.1.3. (McCann) Let M be a complete connected smooth Riemannian manifold, dx is a stan-
dard Riemannian measure. The cost function c(x,y) = d*(x,y), where d is the Riemannian diatance.
Given u,v € Py(M), and suppose that . is absolutely continuous with respect to dx, then there is a
unique optimal transport plan v from . to v such that

v = (Id x Ty,

where T is uniquely (du—almost surely) determined. And there is a %lconcave function ¢ such that

T(z) = exp,(—Vo).
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Proof. See [McCO01]. O

These results describe the static optimal transport problem, while the theorem below deals with the optimal trans-
port problem from the viewpoint of dynamics, which can be seen as a representation of geodesics on the Wasser-

stein space.

Theorem 2.1.4. (Benamou-Brenier formula) For (p,v) := (ut,v¢)ici0,1), define the energy functional
Alp,v] = fol |ve|? pedt, then

inf Alp,v] = W2(po, p1), 2.1.1
e (1, 0] = W35 (po, 1) (2.1.1)
where V (uo, 1) i a set contains all the pairs (i1,v) := (i, vt )ie[o,1] Which satisfies the following condi-
tions:
1. we C([0,1],Pa oc(RY)) , where Py ..(R?) is equipped with weak* topology.
2. v e L(dudt).
3. Usejo,1) supp(pe) is bounded.

4. The following mass transportation equation

atﬂt + diV(/ltvt) =0

holds in sense of distribution.

5. pu(t=0,)=po("), pt=1)=pu().
Proof. See [BB0O]. O

Remark 2.1.5. The theorem above showed a connection between fluid dynamics and optimal transport.
We think of 1y and i, as the density of particles in a given region in R® at timet = 0 andt = 1. If we
assume that for any t € [0,1] , there exists a vector field v, , which is smooth in time t and uniformly
Lipschitz in space, describing how particles move around, i.e. we can describe the time evolution of the
particles position by

dX;

— = u(Xy). (2.1.2)

According to the ordinary differential equation theory, given =, € R?, (2.1.2)has a unique solution
X, (t) fort € [0,1]. Also, the map (t,z9) — X5, (t) is a one-to-one Lipschitz map. Then (T})o<i<1 =
(z — X, (t)) is a diffeomorphic flow on R%. By the method of characteristics, j1; = (T;) 4o iS the unique
weak solution of the following mass transportation equation:
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at/,ét + diV(Mtvt) =0. (21 3)

The fluid’s kinetic energy at time t is E(t) = [a pu|ve |2dx . The total energy for all the particles moving
with speed v, fromt =0 tfot =1 is A[u,v] = fol E(t)dt . In fact, (2.1.3) is the Eulerian representation
of the fluid dynamic, (2.1.2) is the Lagranian representation. These two representations are equivalent
when T; is diffeomorphic.

Each pair (11,v) in V (uo, p11) represents a continuous curve from g to juy in Py(R9). It also represent
a dynamic process of a fluid field transporting jy to 111 according to the velocity field v,. The formula
(2.1.1) reveals that the geodesic in probability measure space under W distance corresponds to the
fluid dynamic process with the lowest total kinetic energy, in which case the W distance is the lowest
kinetic energy.

The formula (2.1.1) can be seen as geodesic equation on the Wasserstein space from two points of view. Firstly,
it is a random version of action minimizing curves. In detail, this viewpoint starts from the time dependent
optimal transport problem and uses displacement interpolation to describe geodesics on the Wasserstein space.
Secondly, from the viewpoint of Riemannian geometry, if we equip P with suitable topology, tangent bundles and
Riemannian metric, (2.1.1) can be realized as a energy variation formula for C''-curves. We will introduce these
two viewpoints.

We firstly introduce the time dependent Monge optimal transport problem on P,..:

f{ [

, Ttis easy to see that for any = € R?, the trajectory {T}(x), t € [0, 1]} with lowest cost

th (.17)
dt

2
dtu(dx)‘To = Id, (T)pp = y} . (2.1.4)

d2 (137)
2
is always a straight line( [Vil03]) . Combined with the optimal transport map 7'(x) = V() given by theorem

Due to convexity of

2.1.2, we get the expression of the trajectories T () with lowest cost:

Theorem 2.1.6. (McCann [McC97]) Let ji,v € P,.(R%) , Vo is the unique(du—a.s.) gradient of convex
function ¢ satisfying (Vo)xp = v . Then the solution to the time dependent Monge optimal transport
problem 2.1.4 is

Ti(x) =tVe(r)+ (1 —-t)z, 0<t<1. (2.1.5)
Proof. See [McC97]. O

pe = (Ty)sp is called the displacement interpolation from g to v . It shows the dynamic process of optimal

transport. In general, we can still define displacement interpolation for 1 € P(R?).

Definition 2.1.7. Let ug, 1 € Po(R?) , v € C(uo, p1) is a transport plan. We say that a curve [](t) :
[0,1] — Py (R?) on Py(RY) is a displacement interpolation from p to v induced by v, if
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M) = (1 -7 +tx%) , 7.
where 7', 2 are projection maps to the first variable and the second variable respectively.

It can be proved that the displacement interpolation between p and v is equivalent to the geodesic between p and
v (see [Gigl1]).

Going back to the case for P,.(R?), we can derive the geodesic equation by displacement interpolation. Note
that although P, (R?) is not general, it has a obvious geometry feature and a clear correspondence with geometry
structure and differential calculus on the Euclidean space or finite dimensional manifold. In detail, suppose that
t = 0 the initial velocity field vg = V¢ — Id at time O, then v; = (Vo — Id) o Tt_1 due to the displacement
interpolation. Combined with (2.1.2) , the Lagranian representation of the geodesic from p to v is

d
%Tt = Ut (Tt)
2 (2.1.6)
ﬁTt = O
Using (??), we have
d? Ov
0= @Tt = E(Tt) + U(t, Tt> . VU(t,Tt).
Then, since (2.1.3), we give the Eulerian representation of the geodesic:
8tut + diV(,LLtUt) =0
; (2.1.7)
% +v-Vou =0,
The initial condition is totally determined by p and v:
po = p;  v(0,7) = Vop(z) — 2. (2.1.8)

Remark 2.1.8. There is a long history for researches on displacement interpolation, which is firstly
proposed by McCann(see [Vil09]). Here, we only consider the simplest case for the kinetic energy
E(t), while for a general Lagranian action , displacement interpolation can also be introduced. We refer
to [Vil09] for more details.

Remark 2.1.9. (2.1.7), in which the first equation is mass conservation and the second one is movement
conservation, is a compressible Euler equation for zero pressure. Generally, the well-posedness of
(2.1.7) is not obvious. Even when the initial value is smooth enough, the solution may explode in finite
time because of the intersection of characteristics, or in other word, mass concentration. However,
in the discussion above, since ¢ is convex, characteristics will never intersect with each other during
te€0,1).
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In dimension one, (2.1.7) is also an inviscid Burger’s equation .

Remark 2.1.10. All the theorems above are valid when the base space is a complete connected com-
pact Riemannian manifold with certain conditions on curvature.

2.2 Riemannian structure on the Wasserstein space

Next, we introduce another point of view: Riemannian geometry. This viewpoint is also one of the starting points
of our works. In the early 21st century, Otto firstly proposed a Riemannian metric on P5°(R%). In this section, we

introduce the tangent space and Riemannian metric on P>° (M), where M is a compact Riemannian manifold.

Definition 2.2.1. Given p. € P> (M) with dp = pdz, define the tangent space T, at i as

T, P> (M) :={Vy, ¢ € C*(M)}

For any V1, Vi), € T,P>(M) , the Riemannian metric is defined as

(T, Vo), = / (Vibr, Vibo)pda

M

Theorem 2.2.2 (Geodesics). Ifc : [0,1] — P>(M) is a smooth immersed curve, and suppose that
c(t) = p(t)dx. p satisfies

where V¢(t) # 0 and [,, ¢pdx = 0 . Then, the length of c, denoted as L(c), under Wasserstein distance
satisfies:

1 1
o= [ ([ [wotat)’ ar

Remark 2.2.3. P>°(M) can become a infinite dimensional smooth Riemannian manifold if equipped
with a topology induced by smooth curves(see [Ott01], [KM97]). The definition of tangent space and
Riemannian metric can be naturally extended to Po(M ), which we will introduce in Chapter 4. However,
P, (M) can not be a differentiable Riemannian manifold. This can be seen by a simple observation: At
discrete probability measure, the exponential map can not give a one-to-one local map from its tangent
space to its neighbourhood.

There is an open problem: Can one find a subspace of P(M ), larger than P>° (M), so that it can become a infinite
dimensional Riemannian manifold? Or can the formal Riemannian structure and Riemannian calculus be extended

to a larger space? In Chapter 4, we will try to find the answer to the second question from the point of analysis.
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2.3 Gradient flow equation on the Wasserstein space

A huge class of partial differential equations can be seen as gradient flows on the Wasserstein space. This is firstly
proposed by Otto in [OttO1]. In this section, we briefly introduce the gradient flow equation of the following
functional

[ plogpdx + [Vpdz, p € Py (RY)

400, otherwise.

E(p) =

Its gradient under Wasserstein metric is gradF'(p) = V log p + VV, which we will explained later in Chapter 3 .
Suppose that V' is smooth and A—convex for A > 0 . We will use implicit Euler approximation method to derive
gradient flow equation.

At first, given time step 7 > 0 and initial measure p? = p°. We construct discrete solution {p”}. Given p”, define

ptl = argmin E(p) + LA (p =) Since E is strictly convex( [Vil03]), p 1 is unique. Because

W n+1
/p’TH'1 log p"tda + /Vp"“dx + % < / 'log pdx + /Vp"dx (2.3.1)
T

This means

sup B(p}) < E(p°).
n<0

Thus, we get the uniform boundedness of E(p,), so that p, is weakly compact in L!. At the same time, by

summing together the inequalities 3.2.4, we have the following energy estimate:

ZW2 pT’ ZrH_1 < QT(E(/)O) _infE)7
n>0

Also, from this last estimate, we can get equi-continuity by Cauchy-Schwarz inequality. Then by Ascoli’s theorem,
there exists a subsequence {p-, } x>0 uniformly converging to some p under C([0,7],P,.(R%) —w — L1).

Next, we want to prove p satisfies
Op = Ap + V.(pVV) (2.3.2)

in distribution. Let £ € C° (]R‘i) , we operate a small perturbation around p”*1:
pe = (Id+ €)yp".

When € is small enough, Id + e is a C! difeomorphism. We have

n+1

E(pe)z/ "o gmdﬂc—i—/ ot @)V (z + eé(z))dx

Thus, On the other hand, since p?, p”*! are absolutely continuous, there exists an optimal map V¢ such that
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Vupt = pi+!. Then
pe = [(Id+ €§) o Vplyp?,

SO
Walpop) < [ p2@le = V(o) - € Vil P

Therefore, we obtain

Wi(p7,pe)  Wipy, pr™)
2T 2T

< [ 215z (o = Vola) - €0 Vo@)P - fo — Vo(a)?) do

E(po) — E(p ) +

+ /pf“[V(x +e€) — V(z)|dx — /p:”'l(x) log det(Id + eVE&(x))dz.

Since p?T! is the minimizer of E(p) + W, the left hand side of the above inequality must be larger than 0.

Let e — 07, we get the Euler-Lagrange equation:

. / (@) (Vo(x) — 2, E(V(x)))dz = / P~V log(p ) — YV, €)]da. (2.3.3)

According to the energy estimate, we can prove, without every details which can be seen in [Vil03],
t
[ote= [asre= [ [ ptrac—vv-vear
(2.3.2) is proved .

Although we have not strictly prove (2.3.2) is exactly the gradient flow of £ on the Wasserstein space, it still use
the viewpoint of gradient flow to approximate the solution to the diffusive equation (2.3.2). In Chapter 3 , we will

use a similar method to approximate the Newton flow equation.



Chapter 3

Newton Flow on the Wasserstein
Space

Recently, gradient flows on the Wasserstein space attract much attention and get fruitful results. In 1998, using
implicit Euler approximations to gradient flows on the Wasserstein space, [JKO98] gave a time-discreted interation
method for a class of Fokker-Planck equations. [OttO1] introduced Riemannian geometry on the Wasserstein space
and proved that porous medium equations are gradient flows of Renyi’s entropy on the Wasserstein space. Then,
applying the ideas of gradient flows, Otto proved the contraction of diffusion semigroups under W5 distance. Otto
and Villani [Ott01] proved Talagrand inequalities and HWI inequalities for Fokker-Planck equations.

On the other hand, in Calculus, Newton method is an important algorithm to find solutions of f(x) = 0 for
differentiable functions. It also plays an important role in proving implicit function theorem. Former soviet
mathematician Kantorovich introduced generalized Newton method on Banach space, which can be used to solve
a huge class of integral and differential equations. In May 2011, Fields Medal Winner Villani mentioned Newton
method’s application in nonequilibrium statistical mechanics in a public report.

In 2019, inspired by Villani’s report, professor Xiangdong Li suggested me studying Newton flow on the Wasser-

stein space and related topics. In detail, we consider

e How to reasonably define Newton flow equations on Wasserstein spaces;

the connections between Newton flows and differential equations;

existence of solutions to Newton flow equations;
e uniqueness of solutions to Newton flow equations;

e convergence of Newton methods;

15
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e applications of Newton flows and Newton methods.

In July 2019, under guidance of professor Xiangdong Li, we derived Newton flow equations on the Wasserstein
space and got the conditions for uniqueness of solutions to Newton flow equations. In August 2019, professor Xi-
angdong Li mentioned our works on the joint meeting of Chinese Academy of Mathematics and System Sciences
and Huawei company. After that, we further improved the results under the guidance of professor Xiangdong Li
and studied the existence of Newton flows. Next, we briefly introduce the main contents of this chapter. Firstly, in
section 3.1, we give a short review on Newton flow equations on R?, and use the implicit Euler approximation to
prove the existence of solutions. In section 3.2, we prove the well-posedness of Newton flow equations(theorem
3.2.6, theorem 3.2.12). Especially, when the base space is R, we give the sufficient conditions for the unique-
ness of limiting points of Newton flows of potential functionals (theorem 3.2.13), i.e. uniqueness of minimizer
of potential functional on the Wasserstein space. It is known that gradient flows are equivalent to Fokker-Planck
equations. As a comparison, we give the partial differential equations corresponding to Newton flows of several
classes of classical functionals on the Wasserstein space. In the last section, we reveal the connection between
relaxed Newton flow equations and Keller-Segel equations on P(T1) .

In general, consider the operator PP on a Banach space and suppose that * is a zero point of P, i.e.

P(z*)=0.

Starting from a given point g, assuming that [P’(z0)] ™! exists, define

x1 = x0 — [P'(w0)] " (P(z0)),

If we define in this way recursively , we can construct {z,, } satisfying

Tpi1 = Tp — [P'(x0)] H(P(x)). (3.0.1)

{z,} is a approximation solution to P(x) = 0. The sequence generating method introduced above is called
Newton’s method (see [KA82]). Its continued equation is called Newton flow equation. The convergence problem
of Newton methods has been studied in [KA82] and other related works. It is interesting that the Newton’s method
usually has a faster convergence speed than another algorithm: gradient descent method.

We firstly introduce Newton flow equation on Euclidean space and the corresponding implicit Euler approxima-

tion.

3.1 Review of Newton flow equations on R?

We first study the easiest case to see how to use implicit Euler method to approximate the Newton flow equation.
At the same time, we compare with the process to approximate the gradient flow equation.
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We assume that I/ : R? — R is second order differentiable and the operator V2F is bounded uniformly by
0< X < V2F(x) < )Ag.Given time step 7 > 0 and 27 , let

Fup e 1= Fa) 4 5= (VIF(}) - (2 — o), 7 — ),
We assume it has a unique minimizer and let 2 *! be the unique solution of the minimization problem:
min Fn - (3.1.1)
Then the corresponding Euler-Lagrange equation is

1
V(@) + SV2F(l) - (@2 — 27) = 0
T

1

Also, define V; (t) = ;m: ,whent € [n7, (n+ 1)7). Our goal is to prove that there exists one solution to the

Let the partition of [0, 7] be {0, 7,27, ...nT, ...}, we construct = (¢) by connecting 2" and x7 ! by straight line.
z:,”+

Newton flow equation

V2E(x(t)) - 2(t) = —VF(x(t)) (3.1.2)

Step 1 we want to prove x, (¢) converges to (¢) under uniform norm, as 7 — co.
First, by (3.1.1), we see that

1
P(a) = P(aith) 2 S (VRR@) - (3 — o), antt =)
> 2ot — P

then by Cauchy inequality, we can easily get the uniform boundedness:

et = 2O < TrIF((0) — inf Fla)

and equicontinuity

!

g(n — k)T

lla? = 27|I* < N

Then by Arzela-Ascoli theorem, there exists a subsequence x,(t) uniformly converges to x(t).

Step 2: we will prove V,(¢) has a subsequence weakly converging to some V (¢) in L?(dt). Since

||xn+1_$n‘|2 1
T T < F ny _ F n+1
27_ — >\1< (x‘r) (SUT ))7
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we have

/T V2(t)dt < - |F(2(0) — inf F(z)] < +oo. (3.1.3)
0

By this property, we know that V. (t) is compact with respect to the weak topology of L?(dt) because of Kaku-
tani’s theorem. So we can choose a subsequence , which will be denoted as V. (¢) for convenience. And the weak

limit point is V' (¢).

Step 3: we come to prove x(t) = V/(t) in weak sense, i.e. Vf € C°(T9),
fx(T)) — fo Vf(x(t)),V(t))dt . In fact, by the convergence of z,(t) to x(t) under the uniform
) = f(2(0)) = f(x(T)) — f(2(0)). Also,

norm,we have hmTﬁo f(z(T)

Fn(T)) = f((0)) = SL2 far (6 4+ 1)7) = flalin))

—sl7) / (Vf (o (i + Ar)), 2 — iy
0

(i+1)7
/ (£ (o (1)), Vi (£) e

So to prove lim, ¢ f(z-(T)) — f(x(0)) = fOT<Vf(x(t)),V(t)>dt, we only need to prove, as 7 goes to 0,
T
| / (V£ ((t)), V(1)) dt / (V£ (o (1)), V2 (£)) |
T
< / (Y F((6)), V(8) — Vo () de + / [V F((8)) — V(e (1)), Vo () dt
0 0

The first part on the right side tend to 0 since weak convergence of V. (¢) , the second part also goes to 0 because

Holder inequality:

T

T T
( / (VF(2(8)) — Vf (o (1)), Ve (£)) 1) < / IV F(a(t)) — V f(ar () Pt / V() 2dt
By (3.1.3) and convergence of x-(¢) , Step 3 finished.

Step 4: prove V (t) satisfies —VF (z(t)) = V2F(x(t)) - V(t) in weak sense. We have proved that Vf €
C>([0,T] x RY), lim, o fOT<Vf(:cT(t)),VT(t)>dt = f0T<Vf(at(t)),V(t)>dt. On the other hand, because of

Euler-Lagrange equation, we have

~VE(z,(t) = V2F(z,(t — 7)) - Vo (t), (3.1.4)
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SO

(Vf(zr(t), Vo (1)) = (VF(2r (), ~(V2F) " (2o (t = 7)) VF (2 (1))

Denote (Vf(x,(t)), —(V2F) Yz, (t — 7))VF(2.(t)) and —(V2F)~1(2(t))VF(x(t)) as h,(t) and V (t) re-
spectively. Since convergence of x, (¢) under uniform norm as 7 goes to 0o , it is easy to see that h,(t) converges
to (Vf(x(t)), V(t)) almost surely in ¢. Next, we use Fatou’s lemma to finish the proof.

The crucial point is h,(t) is uniformly bounded from above. In fact,

[V f(@r(8), =(V2F) " (@ (t = 7)) VF (2 (O)] < S(IVF (@) + [V-(0)F) < Cla-(t)?

N =

Therefore, using Fatou’s lemma, fOT<V f(z(t)),V(t))dt < liminf foT h(t)dt. Then by (3.1.4) and our choice of

weak convergent subsequence V() — V(¢) , we have
T ~ T
| s vo < [ ©i6o) v
0 0
Change f into — f, we conclude that Vf € C°([0,T] x R%),

f(x(T))—f(w(O))Z/O (Vf(x(t), =V?F(a(t)) - VF(x(1)))dt.

Remark 3.1.1. Actually , we can prove the existence of strong solution of Newton flow equation (3.1.2)
by classical Peano’s existence theorem. However, that proof is based on forward Euler approximation
which may not be applicable to Newton flow in infinite dimensional space. Implicit Euler(backward Euler)
method guarantees the estimate (3.1.3) and tends to have better stability.

3.2 Newton flow equations on P(T%)

In this chapter, if ;1 € P,.(T?) with density p, we will use p to represent j to simplify the notation. According
to the Theorem 2.1.6 in Chapter 2, for u1, v € P,.(T¢), 3! convex function ¢, such that (V}, )y = v. And let
T, =tVe, + (1—t)Id,then p, = (T})g 4 is the unique geodesic from p to v. The optimal transportation process
can be described by

8tpt = —V(pt . VQDZ o thl).

For u € T, the geodesic {js }sco,c). starting from g with initial velocity v, should satisfy
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as,ufs = _v~(ﬂlsus)
6s(lu/sus) = _V-(Msus (29 us)-

The initial conditions are pp = pand ug = u .

Next, we introduce grad operators and Hessian operators. According to [AKR96, LL07, RW21], at point y €
P(T?), the directional derivative of a functional F along u € T, is defined by

DuF() = Tim F((Id +eu)yp) — Fu)

e—0t IS

When v — D, F(u) is a bounded linear functional on T, then by Riesz representation, there exists a unique

element v € T, such that

(v,u)r2(y) = DuF (1), u€ Ty

We denote v(-) as gradF(u, ). We say that F is differentiable at u if gradF(u,x) exists. We write F' €
C*(P(T9)) if F is differentiable at any p € P(T¢) and gradF(u, x) is jointly continuous in (y, z) € P(T¢) x T¢

If furthermore, for Vu,v € T,
Dy (DyF (1))

exists, and the following form H,(u,v)
H,(0,0) = DD, () = [ (gradF(.2), To(wyu(a))uda)

defines a bounded, symmetric quadratic form on T, x T,,. Then we say F'is second differentiable with respect
to measure at ;1. We denote H,, as Hess,,. We say F' € C%(P(T?)) if F € C'(P(T%)) and for every u € P(T?),
F' is second order differentiable.

When 0 < \; < Hess,, < Ay, then by Lax-Milgram theorem, we can define a bounded linear operator Egs/s ma
from T, toC;, , such that for Vu,v € T,

<I§_(;_;9MF(U), v), = Hess, F(u,v).

If du = pdx, p > 0 and p € C*(T?), then, according to Chapter 4, the projection operator I, from L?(u, T4) to
T, is well defined, and for V¢ € T,

Hess, F(Vo)(x) = HWQ%;L)(@ V() + / vzvy%w,w)) Voy)py)dy)  (3:2.1)



21 3.2 Newton flow equations on P(T%)

Where > stands for the gradlent of the functional of F'(p) with respect to the L?(mux).
In partlcular for F(p) = [ pVdx + 5 [ W(z — y)p(z)p(y)dzdy + [ plog pdz,

gradF(p) = VV + VW % p+ Vlog p,
Hess,F(u,v) = /(u, V2V ) pda + /tr(VuVu)pdx (3.2.2)

" / (Vo(x) — Voly), VW (x — y)(V(x) — Vip(y))) pde

3.2.1 Euler-Lagrange equation

Given time step 7 > 0, for p € P,.(T%) , we assume that
1 L
Lo () == F(u) + EHesspF(V@) -z, Vol —x)

is (% + A)—geodesically convex .
TH.

R

For initial measure p = py € P,.(T¢) , we will construct discrete solution {p? € P,.(T¢), n = 0,1,.

n+1

n+1
given p7', we define ™" as the solution of the minimization problem min F» . Let V@,7  is the optimal

transport map from p” to p”*1, then qup — z belongs to L2(T?, p”) . Let p< is a small perturbation around

pr 1, which satisfies uS = (Id+€€)zpu™*! , where £ € T n-+1- Suppose that the optimal transport map from p*

to ™1 and p” to uS are V(;S‘;g and V(b” respectively. Then we have the following lemma:
He .U‘n+1 un+1

Lemma3.2.1. Vg7 =Vé,i  +e(Veyr ) +ole) .

Proof. Since uS = (Id + €€)xun*t , for any f € C>(T?), we have

[ gaus~ [ gzt =e [wr. 0+ ofo). (3.2.3)

On the other hand,

[ fauc - / F+
= [ svaiya: ~ [ 1vesi g (3.2.4)

€ n+1
— [V Vot - Vel Vo + o900 ~ 96 o).

By triangle inequality,
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€ n41 pmt

n

Thus, HngS‘;% - V¢Z§+l||L2(p¢') < Ce. As ¢ — 0, we can prove the lemma by comparing (3.2.3) with
(3.2.4).

O
We use this lemma to deal with the following inequality. Because
n+1 1 prtt prtt ¢ 1 I I
F(ul™) + ;Hessng(V@ﬂTi —z,Vopr  —x) < F(ug)+ ;Hessng(V@,g —z, Vi — ),
we have
p n+1 1 e prtt
F(uz) — F(u7™") > e=Hess pn (V@i — 2,60V ¢,7 )+ o(e). (3.2.5)
T T T T

But "1 may not be absolutely continuous, which stops us defining the next step discrete solution. To overcome

this difficulty, we pick a mollifier n, on T¢, which satisfying de nr = 1 and

/ |z — z0|*n, (2)dx < 7°.
’]I‘d

for some fixed point zy € T<. Define p?*l = u?*l x* 1, . Since 0 < x < 1, it holds 22 < z. Therefore,

WHE ) = int [ o~ yPdr(e,y) < int [ o = gldr(z,) = Waleh ),

By Kantorovich-Rubinstein theorem,

Wi (pith, ) = sup {/T ed(pith — 2ty o € LMdlp2 ™ — 2T, llellLip < 1} .
So,

Wil ) < [ le—penlitiae < [ [ sl =t @ae < o

Such error is so small that it will never influence the convergence of p”*! . We will derive the Euler-Lagrange
equation. Due to (3.2.5), let £ = V f, then for Vf € C'*°,

1 n+1
(Vf, —gradF(u?Jrl))Lg(MzH) = ;Hessng(Vﬁ \Y% z:+ — ), (3.2.6)

as € — 0. Note that

41
prt
pr

pr
pr

pn+1 pn+1
Vehi —a=Voéli —Véhi +Ven —u,
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Thus, the right hand side of (3.2.6) becomes

1 p"+1 1 Hn+1 pn+1
—HessynF(Vf, V¢, —a)+ —HesspnF(Vf, Vi —Vé,in ).
T . T T T I

If one wants to derive the Euler-Lagrange equation for {p” } , we need Lipschitz conditions on HessF and gradF.
Next , we introduce the corresponding definitions.

Definition 3.2.2. We say HessF is L'-Lips, if Vv € Py ao(T%), p € P(T?) and V¢ € T, satisfying
oV € L?(v) (Here, Vi is the optimal transport map from v to 1),

||Hess, F(€ o V) — Hess, F(€) o V||
WQ(:U‘a V)

Proposition 3.2.3. ForV,W € C3(T9), F(p) = [ pVda+L [ W (z—y)p(z)p(y)dzdy , Hess,F is L'—Lips

D < L)€ 20 (3.2.7)

Proof. Because f/I:zgspF(u) =ViWu+ [V2W(z — y)(u(z) — u(y))p(y)dy, we have

|| Hess, F(IL (€ 0 Vip)) — Hess, F(€) o Vel 1)

< [1072V(@) = V2V (Tola)) - € o Vol@lvla)dot

+[1 / (V2W (@ — y) — V2W(Vp(x) — Vo)) - (€ © Vipla) — € o Vip(y)(y)dylv (@) da
< Kul€llpa o Wali v) +
Kol [ o = V(o) — y + Toly) Prialvlo)dody]} - [ 1€ 2 Tila) € 0 Vil Pulalov)dody]
< LIEll 2o Wa(n,v),

where we assume that |V2V|, |V2WW| are controlled by K, K, on T¢.

Let Vgnt! = V¢Zg+1 If HessF is L! —Lips, then (3.2.6) becomes

1 n+1
(V£ =gradFP () o) — —Hessp PV, Vo) —a)
1 — prtl ontl
< ﬂ(w, Hess o F(V9!7L, —a)o qupg )
+ max [V f|— W2(Pﬂ n+1)”v¢l n+1 ‘T||L2(p:1’+1)
< Do max [V (VO = )l oyt + maax VA Lr (o7, )
< Cmax [V f|7%(1+ Wa(pl, pr™).
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We also give a Lipschitz condition for gradF:

Definition 3.2.4. We say gradF is L?>—Lips , if there exists K > 0 such that for all v,n € P(T?%) and
7w € Co(v, ),

/ V() () — VU (@) Pdn(z,y) < KW 0).

In particular, if v € P,.(T?) , the condition becomes

[ IV 0 V6 - VU0 Pdv < KWE (1),
where V¢ is the optimal transport map from v to p.

Proposition 3.2.5. For F(u) = [Vdu+ 3 [ W(z — y)du(y)du(z) , suppose that VV,VW are differen-
tiable, then gradF (p) is L>—Lips.

Proof.

[ loradF(v.y) ~ gradF (u,2) Pdr(.y)

- / VV(y) = VV (@) + VWV 5 ply) — VW 5 v(x)Pdr (2, )
<2 V) - VV@)Pdrey)
Td xTd

+2/
Td x T4

< 2K Wi (v, 1) +2K2/ ly — 2 — x + c[*dr(c, z)dr(z, )
Td xTd

/ VW (y — z)dn(c,z) — / VW (x — ¢)dr(c, z) 2d7r(93, y)
Td x T4

Td x T4

< KW3 (v, ).

We give some notation. For ¢t € [n7, (n + 1)7):

Lop:(t) = ppt s 5 (t) = pf

2. ForVu,v € IPQM(Td) . let V@7, be the optimal transport map from p to v. its inverse V¢ is the optimal

n+41
transport map from v to p. Especially, for ¢ € [n7, (n + 1)7), ¢, (t) = ¢5§ is denoted as ¢7 1.

3. We connect the adjacent points of discrete solution p, by a unique geodesic. We denote this continuous

polyline as p .

4. Vi(t,x) = L(z — VoI 4 (t,2)), fort € [nT,(n+ 1)7) ; V)T = Yé: )=z

T
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ForVf € C* , we have

1
‘<Vf, *gTadF(P¢+1)>L2(p¢+1) — ;H685p2+1F(Vf7 T — V¢Z+1)‘
1
< (VA ~gradP (i) ooy =~ Hessn F(VE, V6 o)

+ ‘(va —gmdF(NZH»Lz(HZ;“) —(V/, —gTadF(PTTLH»L?(p:H)

1 , (3.2.8)
+ ‘*Hessng(Vf, Ventt — o) — ZHess i F(V f,a — v¢z+1)’
T T i

Vot -

T 7 n n ' n z
< OT*(1+ Wa(pl, pith)) + CWa (i, p2 1) + CWa (o2, pi )| L2 (pm)

T

< C||V,rn+1‘|%2(p¢)7' + 0(7'2).

3.2.2 Existence of solutions to the Newton flow equation

Assumptions 1:
1. F is proper, lower semicontinuous(l.s.c), A\; —geodesically convex and F' € C?(P(T9)) .
2. gradF is L?>—Lips (see definition 3.2.4) .
3.0 <\ < Hess,F < Xy, Hess is L' —Lips in Py 0(T?) (see definition 3.2.2) .
4. Forany p € Pyc(T9),7 > 0, F, ; is (£ + \)—geodesically convex.

5. Forany p,v € P(T9) and f € C*(T%),
|Hess, F(Vf) — Hess, F(Vf)| < C;Wa(p,v).

where C'y is a constant only dependent on f .

Theorem 3.2.6. Under Assumption 1, suppose that the initial value 1o = podx € P,.(T?) , then there
exist a solution ; € P(T?) to the following Newton flow equation in distributional sense:

{atﬂ = —V.(uw)

(3.2.9)
Hessy, (v, Vf) = (—gradF (1), V f),,, Vf € CZ([0,T] x T?)

Proof. Step 1: We will prove {3, (t)}, has a convergent subsequence under C([0, 00), w* — P(T?)) .
Given p” € P,.(T9) , since u"** is a solution to the following problem

inf Fpp (1),
I
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thus

T Walel, )

F(p?) 2 F(ui™) + = . )%

Then for V n,m(n < m),

n—1

Wa(pt, pi!
Walol o) < =(3 DRzl
n—1 ; ;
Wa(pt, pitt 1 1
<r(0 (WP oy gy
e o o (3.2.10)
—  Walph, pit™) + Wa (ui, pitt) o 1
< (30 (Welpmait ) W )2)t(m )
- n—1
<Cr(m—n)2 (D F(pl) — F(uith))? +2(m — n)r®,

Note that F' is A—geodesically convex, let g = pitl, up = pit! and set

9(t) = F(u) = P((w + UV 50 —2)ph0)

Then, g id A—convex, and ¢’(1) = 0. By mean-value theorem,

. . . i+1
F(pr™) = F(p5th) = g(0) = 9(1) < |g'(0)] = [{gradF (), V! 1y — @) .

Because for all u, v € P(T9), Wy (u,v) < d. Alternatively, gradF is L?-Lips, we have

lgradF (u)l|L2(.) < K.

Substituting this inequality to (3.2.10), we get

[N

Wa(p, p') < C72(m —n)? (F(p) — inf F + K (m — n)7°)% +2(m — n)7*

)

therefore,

Wa(pl, ) < C(Jm = nl7)? + o(7?).

In particular, we have the following energy estimate:

W3 (o}, prtt) < Cr.

T

Due to the construction of p. , it is easy to see that
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W3 (pr(t) = pr(s)) < Clt — 5.

We have proved equi-continuity. Uniform boundedness holds because F'(p?) < F(py). Then, according
the compactness theorem, {5, } has a convergent subsequence under C([0, T],w* —P(T¢)), converging
to {/’('h te [OaT]} .

Step 2: Let the discrete rescaled optimal plans v, := (i, x V;)sp, . For every bounded interval I :=
[0, T, denoting by X7 := X x Iy , we can canonically identify 7!, to an element of P(T? x I) and
T4, to an element in P(T¢ x I x T%), simply by integrating with respect to the (normalized) Lebesgue
measure T~ 'dm in I . Therefore V. (t) can be seen as a vector field in L?(p,(t)). By (3.2.10),

Wi(py, pi)
,7—2

<P —inf P4+ KLr2 <, (3.2.11)
T

s.
i Mw
[\

/[0 11 o VA(t,x)p.(t, x)dodt =

By ( [AGS05]. p.114, lemma 5.1.12), (3.2.11) guarantees that 7', is tight with respect to weak*
topology in P(T¢ x Iy x T¢) . Therefore we can extract a subsequence ~v,, weakly converging to 7.
Since m, *T~'v, = T~'p,, so 7,y = T~' . We can define

Vi t) 2 / oy o(22),
Td

where -, . is the disintegration of v w.r.t. p. According to Theorem 5.4.4 in [AGS05], we have

2p,,dr < C".

/\V\Qdu Sliminf/ﬂ/m
h—00

For the sake of convenience, we will still use p- to represent the subsequence p, .

Step 3: Next, we will prove 9, = —V.(uV) holds in distribution, i.e. Vf(t,z) € C*(Ir x T?),

—/ 8tfdu:/ <Vf,V >dpu.
ITXTd ITXTd

Note that
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[ ot [ gpras

— [ - 1V e

= /(Vf(x),x - Von (x)>p¢+1dx + Cl|Von 1 (2) — xHQLz(pg“)

(n+1)T (n+1)T

)(x,y) + CT2||Va( )|[FFpTE
(p777)

- / (VF (@), g)d(rs

thus

— / O¢ fdp = lim — Orfpr(t, x)dxdt
I7xTd =0 JrpxTd

T—=0 T

_ lim _1/ (F(t+72) — F(t,2))ps (£, ) dadt
I xTd

= lim (Vf(x),y)d"yT(x,t,y)

70 J7d « [ xTd
- [ ©vian
ITXTd

Step 3 is finished.

Step 4: Finally, we want to prove

Hess, F(Vf,v) = (Vf, —gradF(p)),, foranyf e C>(T*x Ir). (3.2.12)

Firstly, some definitions and assumptions should be stated.

Definition 3.2.7. weak convergence and strong convergence If (j1,,) C Po(T%) narrowly converges to
w € Po(T9). Letw, € L' (u,). We say v,, weakly cenverges tov € L' (), if

lim [ (Vf,on)dun :/ <Vfo>du YfeC=(TY. (3.2.13)
Td

n—oo Td

Furthermore, we say v,, strongly converges tov € L2, if (3.2.13) holds and

lim sup [[on |22 (1) < |[V]|22 ()
n—oo

We need the following lemma (see [AGS05], Theorem 5.4.4):
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Lemma 3.2.8. /f ;u,, converges to j. narrowly, v,, € L?(u,) satisfy

sup [ |vn(2)Pdpn(z) < +oo. (3.2.14)
neNJTd

If v,, strongly converge to v, then ~,, narrowly converges to (i x v)yu and

. 2 T 2 _ 2
A llesn = B g 1220 = W0l

Proposition 3.2.9. For any fixedt € [0,T], there exists subsequence {—gradF(p,(t))} strongly con-
verges to —gradF () .

Proof. Because
lgradF (pr, ()llc2(p., (1))
= [lgradF (., )P, (01
= / |gradF(u:)) o qugij W~ gradF (u) o V(bﬁij o T gradF (pr, ()| pr, (t)da
o (3.2.15)
<2 [ lgradF () o V[, [, 01z

+ 2/ |gradF(u:) o V(bﬁ; 0 gradF (p-, ())|*p-, (t)dz

<2 / (gradF(ue) 2dpss + KWE(jie, pr, (8),

then by lemma 3.2.8and A— geodesically convexity, as n — oo, there exists a subsequence

{—gradF(p;,(t))} weakly converging to —gradF(p(t)) (see [AGS05],lemma 10.1.3) . And (3.2.15)
shows

lim sup ||gradF (p-, (t))] ‘Lz(prj @) < llgradF (p(t)||2(p))>

Jj—o0

This means —gradF (p-,(t)) strongly converges to —gradF(p(t)) . O

Next , we assume that f(¢) € C§°([0,T)); g(z) € C°>(T?) . Let

-1
V(t) = Hess,, F(—gradF(u)).

We will prove :
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Lemma 3.2.10. as7 — 0,
Hess, ) F(Vg, V(1)) + (Vg, gradF(p:)) 12 (u,) — 0. (3.2.16)

Proof. Note that, because of (3.2.8) and (3.2.10), we have

T
| / £(t) / (V. —gradF (pr (1)) pr (¢)dedt
T —_
—/ f(t)/<V97H€SSPT(t)F(VT(t))>pT(t)d:vdt\

0
T —_—~—
= | / f(t) / (Vg,—Hess, yF(V;(t)) — gradF(p;(t)))p-(t)dzdt|
70 (3.2.17)

T (i+1)7 )
<[ Ot max Vgl VR e

2(pitt
i=0 1T
<cr [ ViPpds
[0,T]xTd
<C'r.

Therefore, according to Proposition 3.2.9, {}ﬁ;epf(t)F(VT(t))} converges weakly to —gradF(u) . This
proposition is proved.
O

Use the convexity, we can get a more accurate estimate on Wa(p2, p1):

Proposition 3.2.11. W (p?, p"*1) < Cr.

pa

Proof. By Assumption 1(4), F;, is (A + 1)—geodesically convex. Set u = argminF, ,. Let the curve
{1t }eepo,1] e the geodesic from p to y, then F ,(u:) is convex with respect to ¢, i.e. for 0 < ¢ < 1,

A+ 2

(1= W5 (p, ).

Since t = 1 arrive the minimum, the derivative of the right hand side of the above equality at ¢ = 1 must
be no bigger than 0:

Frop(pe) < tF: ,(p) + (1 =) Fr ,(p) —

A+ 1
2

1
F(u)— F(p) + ;HesspF(ch)‘; -z, Vol —x) + W3(p, ) < 0.

By the properties of HessF',

W3(p,p) _ Flp) = F(u) Walp, p)
¢ 272 = T Walp ) T
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It follows that

oWelp.n) _ Flp) — Fp)

<||lgradF 2(), 3.2.18
T Wz(p, /1') = ||g (p)HL (p) ( )
which means Wy(p?, u? ') < C|lgradF(p)||L2(on)T -
O
We will prove that, for all t € [0, 7],
Hess, ) F(Vg,V:(t)) = Hess,,F(Vg,V;). (3.2.19)

Note that

’HessPT(t)F(Vg, V. (t)) — Hess, F(Vg, V3|

[ (Hess,. 0 P (V9. VO pr(t)de — [ (Hess, F(a). Vi

< | [ s, o P00 V)00 ~ [ (EEss, (7). V. 0} (0

| [ 5, P (V0. Vi) 0o — [ (s, F(V0). Vi)

=)+ (J).

For (J), setu = %MtF(Vg), we have

lim (u, Voypr(t)de

T7—0 Td % IT

= lim (u(z1), m2)dyr (21, ¢, 22)

T7—0 Td xTd

- /dew (w(zr), x2)dy(x1, t, 22)

= /]1‘" (u, V)dpy.

It folllows that (J) — 0.
For (I), by Assumption 1(5),

[ s, 0 F(Ta) = s, (V). Vo(0)pr0)

< max |Vg|Wa(p-(t), pe) Va2 o, 1))



Chapter 3: Newton Flow on the Wasserstein Space 32

Due to Proposition 3.2.11, we get

1
Vllz2(o, 1)) = ;W2(Pf(t),ﬂf(t+7)) <C.

It follows that (I) — 0. (3.2.19) has been proved. This means Hess,,, (v:, V f) conerverges to
(—gradF(u),V f),, fort—a.e.. We can prove (3.2.12) by dominated convergence theorem. Therefore,
we have proved the existence of solutions to the Newton flow equation.

O

3.2.3 Uniqueness

Next, we state the abstract uniqueness result to finish the well-posedness of Newton flow equation in P(T4) .

— —1
Theorem 3.2.12. Under the Assumption 1, if Hess, F(gradF(u)) is L*—Lips , and the solutions to
(8.2.9) are all abolutely continuous, i.e. y; € P,.(T%), then (3.2.9) has a unique solution in sense of Wy
metric.

Proof. Let p}, p? € P,.(T?) are two absolutely continuous solutions to (3.2.9)with the same initial mea-
sure po. Denote V¢, ?(Ve:') as the optimal transport map from pl(p2) to p2(pi), then (V(btm) =
Vor! . Let V®;? = V¢, — 2. Note that

Vi o Vil? = (Voi! —a) 0 Vol? = —Va}?,

Thus,

d

=2< VP2 Hess;fF(—gradF(p%)) >, 42 < V@f’l,Hessp_le(—gradF(pf)) > 2

(3.2.20)
=2 < VP, HessgllF(—gradF(p%)) - Hess;;F(—gradF(pf)) o Vo2 >0
< 2KW3(py, p})-
By Gronwall inequality, W3 (p},p?) =0 .
O

Next, let the base space be R. If we consider the Newton flow for the potential functional F' = [ Vdu, we will
not only give the conditions for uniqueness of the solution to (3.2.9), but also conditions for the uniqueness of
Newton flow, i.e. for any initial value, Newton flow converges to the unique minimizer of F'.

We consider the absolutely continuous solution p to the Newton flow equation for F = [ Vdy.
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dp=—V.(p¢)
(8.2.21)
/f’V”qi)’pdx = —/ V'¢'de, VfeCX(R)
R i
Because P5(R) is flat, Eé_s/sprl(fgradF(p)) = \‘//,/, . Thus
1d
2dtW2( Pt P7)
12 7ot 1 1 2 1,2
=< 0,Q,", Hess 1 F(—gradF(p;)) — Hess 2 F(—gradF(p;)) o 0z, >,
v’ 1,2 v’ 2,1
= V/I,a(b >1_ V//7a¢ >2
V/ V/
= — << W - W 639(2%172,83;@%72 >P% .
By mean-value theorem,
Ld o 1 o -V’ 1,2 1,2
§EW2 (pe: pt) =< (W) 00 ()0, P ", 0Py >, (3.2.22)

where o () is some value in [z, d,¢; ] . Tt follows that the absolutely continuous solution is unique if |( <% el Y

is bounded. Generally, we have

Theorem 3.2.13. Assume thatV € C3(R), V" > 0. Consider the potential functional

= / Vdu.
R

If
V/v///
|1—ﬁﬁ?¢gc, (3.2.23)
Then, There exists a solution to (3.2.21) .
IfCc>1- ‘(/V‘,{) >K >0, then
W3 (o1 p}) < e W3 (05, 00), (3.2.24)

which means, for any initial measure, the absolutely continuous solution to the Newton flow converges
to the unique limit point in lifetime.
is a

Proof. Note that ]%MF—l(—gmdF(u)) = V,, holds. The assumptions guarantee that — V,,
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differentiable vector field, therefore, the following ODE

VI

X =—o(X)

has a unique solution. p; = (X¢) o is the unique solution to Newton flow equation with initial measure
Ho-

When 1 — {775 > K >0, (3.2.22) hints

1d
2dt
It follows that W2 (p}, p?) < e 2E1W2(p}, p3) .

W3 (pi,p7) < —KW3(pi,p).

3.3 Newton flows of several classes of functionals

In this section, we give partial differential equations satisfied by Newton flows of potential functionals, interaction
functionals and entropy.
Firstly, there is a natural example which satisfies Assumption 1. For VW € C* and V2V > \; , W being

convex, the following functional
F(u) :/Vdu—i—/W*udu

satisfies Assumption 1. We briefly illustrate this. Propositions (3.2.3) and (3.2.5) prove the second and third term
in Assumption 1. The first and fourth one in Assumption 1 is already proved in standard textbooks. The last one

also can be proved with the representation formula (3.2.2). The corresponding Newton flow equation is

{atu = ~V.(uV)
(V2V - Vo + VW (z — y)(Vo(x) — Vo(y))du(y), V) = (~VV = VW % 1,V ).,

Vf e Cx(0,T] x T?).

However, for the functional containing entropy, for example, ' = [Vp + [ plogp(for p € P,.), there is no
existence of solutions to the Newton flow equation. We can still study its corresponding Newton flow equation in
such case.

We consider the following functional:

[plogp+ [Vp, p€Pyac(T?)

400, otherwise.

F(p) =
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According to [Vil09], the gradient of F' under the Wasserstein metric is
gradF = Vlogp+ VV.

HessF'is
Hess,P(V0.90) = [ 1920170+ [ (90.9°VV0).

Td

Thus, from aspect of differential equation, we have

Theorem 3.3.1. For F(p) = [, plogp + [;. Vp, the solution to the following equation is the Newton

flow of F on Py(T):
{8tp+v-(v¢ﬁ’)0 (3.3.1)

V2VVp— AVe —Viogp-V2p = —-VV — Vlog p.

Next, we consider Newton flow equations when the base space is a manifold. Generally, for a complete connected
compact Riemannian manifold M, let dz be the Riemannian measure on A such that | o dr = 1. We consider
Newton flows of entropy functionals on Py (M ). According to [Vil09,LL16], Hessian of E(p) = [,, plog pdz is

Hess, E(V, Vo) = /A IVl + Ric(V. V) pi.

where p > 0. When the base manifold M has a positive Ricci curvature, Hess, E is a positive quadratic form.
By theorem 3.2.6, if Hess, I has a Lipschitz property, the solutions to the Newton flow equation exist. We give
its corresponding partial differential equations under such case. Denote ¢ = — log p, by Bochner’s formula, for
V¢ €T,

Hess, E(V¢) = ~VA¢ + Vv, Vo,

and the gradient is
Vp
gradE(p) = r = Vlogp.

Then we have

Theorem 3.3.2. For E(p) = [,, plogp, if M has a positive Ricci curvature, then the solution to the
following equation is the Newton flow on Py (M) of E

{atp +V.(pVe) = 0
—VA¢ —Vyieg,V¢ =—Vliogp.

Remark 3.3.3. In April 2022, when we were organizing the works in this chapter, we noticed that [LW20]
obtained Newton flow equations on Py (R?), which were similar to some of our results. They formally
gave Newton flow equations of relative entropy in Wasserstein spaces, and the convergence rate of the
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Newton’s method near the minimum point is analysed.

3.4 Relaxed Newton flow equation and Keller-Segel equation

We consider the following functional:

[plogp+ [Vp, pePsqc(T?

400, otherwise.

F(p) =

We will gave the relaxed Newton flow equation. Let u = V¢ and denote ¢ = — log p, according to (3.3.1), we

give the relaxed Newton flow equation , which no longer requires u € T ,:

{(%p + V.(pu) =0 (3.4.1)

ViVu — Ayu=—VV + Vo,

where A,u = Au— Ve - Vu. When V is a strictly convex smooth function, then the second equation above has

a unique solution, and the operator V2V — A, has a inverse. Then (3.4.1) becomes one equation.

Theorem 3.4.1. When V is a strictly convex smooth function on T¢, then the solution to the following
equation is the Newton flow of F':

Ohp=—V.(p(V2V — A,)"H(=VV = Vy)).
Furthermore, according to Bochner formula for 1-form, O, = —A, + V?2¢ + Ric. We have

{@p—i— V.(pu) =0
VAV — @) - u+0O,u=-V(V — ).

WhenV =0,

{&gp +V.(pu) =0 (3.4.2)

—Ayu = V.

We can see the connection between (3.4.2) and Keller-Segel equation. It is known that Keller-Segel equation is

op=ADp+vV (pVA T (p—1)). (3.4.3)

When the base space is T , (3.4.2) becomes
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Orp + 0, (pu) =0
z € [0,1], u(0) = u(1).

For the second equation, we have

Ozu(z) =1+ Cp(z).

In order to make sure u is a function on 1-D Torus , C = —1. Thus, u(z) = z — fox p(s)ds . The Newton flow

=0, (o( [ pls)is ).

On the other hand, the Keller-Segel equation(take v = 1) is

equation becomes

o =2p+0, (o[ pte)is ).

It can be seen as a combination of gradient and Newton flow of entropy functional S(p) = fT plog p:

Oep = —gradS(p) + Hessp_ls(—gradS(p)).

The literature on the Keller-Segel equation is enormous. It is known that in dimensions larger than one, solutions
to (3.4.3) can concentrate finite mass in a measure zero region and so blow up in finite time. The well-posedness

of (3.4.3) in d = 2 and small smooth initial value has been proved by Keller and Segel.



Chapter 4

Geometry and Parallel Transport

In this chapter, based on the Riemannian structure founded by Otto, Sturm, Villani, Lott, etc., we will try to extend
the Riemannian geometric computation to a larger probability measure space and larger function space, so that one
can introduce parallel translation equation on P2 (M) as in differential geometry, and study the well-posedness of
parallel translation equation.

We will define a formal Riemannian structure on Py (M), which is a natural extension of the Riemannian structure
on P>° (M) introduced in the former chapter. For the sake of simplicity, we will consider in this paper a connected
compact Riemannian manifold M of dimension m. We denote by d;; the Riemannian distance and dz the
Riemannian measure on M such that [ a dz = 1. Since the diameter of M is finite, any probability measure  on
M is such that [, d3,(zo,x) du(z) < 400, where x is a fixed point of M. As usual, we denote by Py(M) the
space of probability measures on M, endowed with the Wasserstein distance W5 defined by

W3 pe) = inf{ [ dy(o)nlde,dy), 7 Clmp) .

MxM
where C(u1, o) is the set of probability measures m on M x M, having p1, o as two marginal laws. It is well
known that P, (M) endowed with W5 is a Polish space. In this compact case, the weak convergence for probability

measures is metrized by Wh; therefore (Po(M), W3) is a compact Polish space.

4.1 Tangent space of P,(M)

The introduction of tangent spaces of Py (M) can go back to the early work [OV00], as well as in [Ott01]. A more
rigorous treatment was given in [AGSO05]. In differential geometry, for a smooth curve {c(¢); ¢ € [0,1]} on a
manifold M, the derivative ¢/ () with respect to the time ¢ is in the tangent space : ¢'(t) € T M. A classical
result says that for an absolutely continuous curve {c(t); ¢ € [0, 1]} on M, the derivative ¢’(t) € T, M exists
for almost all ¢ € [0, 1]. Following [AGS05], we say that a curve {c(t); ¢ € [0,1]} on Py(M) is absolutely

38
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continuous in L? if there exists k € L?([0, 1]) such that

WQ(C(tl),C(tz)) < ‘/t2 k(S) dS, t1 < tg.

t1

The following result is our starting point:

Theorem 4.1.1 (see [AGSO05], Theorem 8.3.1). Let {c:; t € [0,1]} be an absolutely continuous curve
on P,y (M) in L2, then there exists a Borel vector field Z; on M such that

/[0 1) UM |Zt(x)‘2er Ct(dx)} dt < 400

and the following continuity equation

de
7;+v-(ztct)=o, (4.1.1)

holds in the sense of distribution. Uniqueness to (4.1.1) holds if moreover Z, is imposed to be in

L?(cr)

{Vip, e C>(M)}

Then, we can define the tangent space T, of P>(M) at uu by

T, ={Vy, ¢ e coo(M)}LZ(“), (4.1.2)

the closure of gradients of smooth functions in the space L?(1). Note that here we use the definition of tangent
space in [AGS05]. It is isomorphic to the tangent space introduced in Chapter 2, which is the original definition
given by Otto. Equation (4.1.1) implies that for almost all ¢ € [0, 1],

d
—/ f(x) ee(dx) = / (Vf(x), Zi(x))r, 00 co(da),  f e CHM). (4.1.3)
We will say that Z; is the intrinsic derivative of ¢; and use the notation
dICf
— =7, €T,,.
dt 8 € Lo

In what follows, we will describe the tangent space T, with the least conditions as possible on the measure f.

Consider the quadratic form defined by

E) = /M V()P du(e), & e CM(M).

We assume that there is a constant C,, > 0 such that
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[ w-wprdnsc, [ vuP (4.1.4)
M M

where (1) = / ¥(x) dz. The condition (4.1.4) is satisfied if x admits a positive continuous density p > 0:
M
dp = pdzx. In fact, let

f1 = inf p(x) >0, f2= sup p(z) < +oo.
zeM zeM

Since M is compact, the following Poincaré inequality holds :

/(w—<w>>2dxsc/ V|2 de,
M M
then

2 Cha 2
/Mw @) dn< % /MIW\ .

Remark that Inequality (4.1.4) is not Poincaré inequality, since the mean (1) is not taken with respect to the
measure /i, but to dx.

Now let Z € T,; there is a sequence of functions 1, € C°°(M) such that Z = hIJ’I_l Vi, in L?(p). By
n——+0o0o

changing 1, to ¥, — (1,,) and by condition (4.1.4), {¢),; n > 1} is a Cauchy sequence in L?(u). If the
quadratic form £(v) is closable in L?(p), then there exists a function ¢,, in the Sobolev space D% (x) such that
Z =V, where D3 (p) is the closure of C°°(M) with respect to the norm

el = [ 1e@P dute) + [ 1Vo@ duta).

A sufficient condition to ensure the closability for £ is that the formula of integration by parts holds for 1; more
precisely, for any C'* vector field Z on M, there exists a function denoted by div,,(Z) € L?(u) such that

/M<Vf(ﬂc),Z(x)>TmM dp(x) = — y f(@)div,(Z)(2) du(z), f € CH(M). (4.1.5)

Definition 4.1.2. We say that a probability measure . has divergence ifdiv,(Z) € L*(u) exists for all
C—vector field Z on M . We will use the notation
Paiy (M)

to denote the set of probability measures on M having strictly positive continuous density and satisfying
conditions (4.1.5).

For example, if dy(z) = p(x) dz for some strictly positive continuous density p € D?(dx), then p € Py (M).

Proposition 4.1.3. For a measure p € Pqy (M), we have
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T, = {Vy; ¥ € D¥(u)}.

Note that this result is not new, see for example [LL16,LL18]. Here we indicate what are necessary conditions
which yield to this result.

The inconvenient for (4.1.3) is the existence of derivative for almost all ¢ € [0, 1]. In what follows, we will present

two typical classes of absolutely continuous curves in Py (M).

4.1.1 Constant vector fields on P, (/)
For any gradient vector field Vi on M with ¢ € C°°(M), consider the ordinary differential equation (ODE):

d

dt
Then © — U;(x) is a flow of diffeomorphisms on M. Let u € Py(M), consider ¢; = (Uy;)p. It is easy to see
that the curve {c; t € [0, 1]} is absolutely continuous in L? and for f € C1(M),

Ut(x) = V'LZJ(Ut(.’E)), Uo(.’E) =x € M.

d d

G | r@atin) = & [ i) due) = [ (950, Vo) dn).

which is equal to, for any ¢ € [0, 1],

/ (V1. 90) ei(da).
M

In other term, ¢; is a solution to the following continuity equation:

dey
dt

According to above definition, we see that for each ¢ € [0, 1],

F V- (Vibey) = 0.

dl C
dt
It is why we call V¢ a constant vector field on Po(M). In order to make clearly different roles played by Vi, we

= V.

will use notation
Vi

when it is seen as a constant vector field on P (M).

Remark 4.1.4. In section 4.3 below, we will compute Lie brackets of two constant vector fields on P (M)
without explicitly using the existence of density of measure, the Lie bracket of two constant vector fields is NOT
a constant vector field.



Chapter 4: Geometry and Parallel Transport 42

4.1.2 Geodesics with constant speed

It is easy to introduce geodesics with constant speed when the base space is a flat space R™. A probability
measure y on R™ is in Po(R™) if [, [#|* dp(x) < +oc. Let co, ¢y € Po(R™), there is an optimal coupling plan
v € C(cp, ¢1) such that

W2(co, 1) = / & — y2 dr(a, ).

R™ xR™
For each t € [0, 1], define ¢; € P2(R™) by
@ dele) = [ flueg) drlay)
R™ R™ X R™

where wi(x,y) = (1 —t)z +ty. For 0 < s < ¢t < 1, define 7, ; € C(cs, ;) by

/ g, y) mos(de, dy) = / o(a(z, 1), w2, ) dr(z, ).
R™ xRm Rm R

Then

W;(csact) S / |Ut(337y) - ’LLS(SU,y|2 dv(‘r’y) = (t - S)QWQ(CO;CI)2~
R™ xR™

It follows that Wa(cs, ¢t) < (t — s)Wa(cp, ¢1). Combing with triangulaire inequality,

Wal(co,c1) < Walceo, es) + Walcs, ¢) + Waler, ¢r)
< sWa(co, 1) + (t — s)Wal(co, 1) + (1 — t)Wa(co, c1) = Wa(co, ¢1),

we get the property of geodesic with constant speed:
Wa(cs, cr) = [t — s| Wa(co, 1).

According to Theorem 4.1.1, there is Z; € T, such that, for f € C}(R%),

d

G | r@etdn) = [ (9fe).y = i)

= [ (95(@). Z@)zen a(da)

where (, )gm is the canonical inner product of R™. We heuristically look for Z; such that Z;(u:(z,y)) =y — «.

Taking the derivative with respect to ¢ yields
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(%Zt)(m(x,y)) +(VZi(w(z,y)),y — x) = 0.

It follows that

d
(%Zt) +VZ,(Z) =0.

In the case where Z; = V1), we have

(%th) + V2 (Vipy) = 0.

We remark that {V);, ¢ €]0, 1[} satisfies heuristically the equation of Riemannian geodesic obtained in [Lot06]
or heuristically obtained in [OVO00], in which the authors showed that the convexity of entropy functional along
these geodesics is equivalent to Bakry-Emery’s curvature condition [BESS] (see also [VRSO05, Stu06]).

In the case of Riemannian manifold M, it is a bit complicated. We follow the exposition of [Gigl1]. Let TM be
the tangent bundle of M and 7 : TM — M the natural projection. For each u € P(M ), we consider the set

r,= {7 probability measure on TM; myuy = u,/ [T, ardy(z,v) < Jroo}.
™

The set I',, is obviously non empty. Let vy € I',, we consider v = exp 7, that is,

f(@)dv(z) = [ fexp,(v)) dy(z,v),
M T™

where exp,, : T, M — M is the exponential map induced by geodesics on M. The map

TM — M x M, (z,v) = (z,exp,(v))

sends -y to a coupling plan 5 € C(u, ). We have

vﬁmmg/ ﬁmwmwmwmms/ (o[, p dy (. v).
TM TM

In order to construct geodesics {c¢; ¢ € [0, 1]} connecting y and v, we need to find yo € T',, such that v = exp 7o

and

www:/|ﬁmmmm. (4.1.6)
TM

As M is connected, let z € M, for each y, there is a minimizing geodesic {£(t), t € [0, 1]} connecting = and y.
Let v, , = ¢'(0) € T, M, then



Chapter 4: Geometry and Parallel Transport 44

y = exp, (vs,y) and dps (2, y) = vz y|T, 011

Take a Borel version = of such a map (z,y) — (2, vy,) from M x M to TM. Let 7 € C(u,v) be an optimal
coupling plan; define v € ', by

/ oz, ) dyo(z, v) = / 9(2,5(z,y)) oz, y).
TM

MxM

Therefore

/ (o[22 dyo (. v) = / (. 9)? dHol )
TM M x M

_ / dar (2, y)? Ao, y) = WE(u,v).
M x M

Now we define the curve {c;; ¢ € [0,1]} on Py(A]) by

/ f@)ede) = [ flexpy(tv)) drolz, v).
M TM

Similarly we check that
Wal(cs, cr) = |t — s| Wa(co, c1).

The organization of this chapter is as follows. In Section 4.2, we consider ordinary equations on Py (M), a Cauchy-
Peano’s type theorem is established, also Mckean-Vlasov equation involved. In Section 4.3, we emphasize that
the suitable class of probability measures for developing the differential geometry is one having divergence and
the strictly positive density with certain regularity. The Levi-Civita connection is introduced and the formula for
the covariant derivative of a general but smooth enough vector field is obtained. In section 4.4, we precise result
on the derivability of the Wasserstein distance on P2 (), which enable us to obtain the extension of a vector field
along a quite good curve on Po(M) in Section 4.5 as in differentiable geometry; the parallel translation along
such a good curve on IPy(M) is naturally and rigorously introduced. And we give the well-posedness results of
parallel translation on Po(T) . In the last section 4.5.1, we give the Lipschitz condition for vector fields and the

uniqueness of the solution to ODE.

4.2 Ordinary differential equations on P, (M)

Let ¢ € C'(M), consider the function F, on P2(M) defined by
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Fo) = [ (@) duo) (4.2.1)

A function F on Py (M) is said to be a polynomial if it is an element of the algebra spanned by all the functions
F = F, - F,,, where ¢1,...,¢} are finite number of functions in C'(M). Let Z = V,, be a constant
vector field on Py (M) with ¢v € C°°(M), and U, the flow on M associated to V). For ug € Py(M), we set
tt = (Uy)#pto. Then we have seen in section 4.1.1,

d
{GFem}, = [ (Tole). Vol duo(e) = (Vo Vel

The left hand side of above equality is the derivative of F,, along V;;,. More generally, for a function F' on Py (M),
we say that F' is derivable at po along Vi, if

(Dv, F) (1) = {%F(M)}ltzu exists.

We say that the gradient VF () € T, exists if for each ¢» € C*°(M), (Dv,, F) (o) exists and

Dy, Fuo) = (VF, Vy)r (4.2.2)

o "

Note that for o € C'(M), there is a sequence of 1,, € C°° (M) such that V,, converge uniformly to V¢ so that
V,, € T,, for any yu € Py(M). It is obvious that V F,, = V,. For the polynomial F = [[¥_, F,,,, we have

VF = Ek:(HFW) V...

i=1 j#i

Note that the family {F},, p € C' (M)} separates the point of P> (M ). By Stone-Weierstrauss theorem, the space

of polynomials is dense in the space of continuous functions on Py (M ).

Remark 4.2.1. If the gradient V1 is replaced by a general C*-vector field on M, the above definition is also
well-settled; in fact this has been done in the early work [AKR96] in another context for other applications. The
links among different type of derivatives are recently characterized in [RW21].

Remark 4.2.2. The definition of gradient gradF' defined in the former chapter is actually an extension of VF' .
Note that VF is defined by smooth constant fields Vi € T,,, p € C°(M), while gradF is defined by u € T,,.
The test function space is different. If gradF is well defined, gradF’ must equal to VF . However, if VF is well
defined, even if the operator A, (u) = (VF(u),u)r2(,) is closable in T, , gradF (1) may still not exist, not to
mention that gradF = VF . We give an example to illustrate the difference.

Consider
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F = [plogp+ [Vp, p€P2al(0,1])

00, otherwise.

F(p) =

Suppose that pg = Lo 17dz, u € L*(po)

1 1

U(l’) = 2n+2 -3 - 27L+2$7 T € [1 - 277 - W

), n=0,1,...
It is obvious to see F'((Id + zrrru)#po) = +oo for every k € N. Thus,

e—0t €

does not exist. It means gradF(py) does not exist, while VF (pg) = 0 .
In this chapter and later chapters, we use VF to represent the gradient of functional F'. Similarly, we will use
V2F rather than HessF to represent the Hessian operator in the later chapters.

We will use V to denote the gradient operator on the base space M, and V to denote the gradient operator on the
Wasserstein space (P2 (M), Wa). For example, if (p, z) — ®(u, x) is a function on Po(M) x M, then V& (u, x)
is the gradient with respect to z, while V®(u, z) is the gradient with respect to .

Definition 4.2.3. We will say that Z is a vector field on P (M) if there exists a Borel map ® : Po(M) x
M — R such that for any j € Po(M), z — ®(u, z) is C* and Z(p) = V(.-

A class of test vector fields on Py (M) is

X(P) = { S~ iV, i polynomial, ; € COO(M)}. (4.2.3)

finite
Let Z be a vector field on Py (M), how to construct a solution u; € Po(M) to the following ODE

dIMt
dt

= Z(pt)?

Theorem 4.2.4. Let Z be a vector field on Po(M) given by ®. Assume that (u,x) — V®(u,x) is
continuous, then for any 110 € P2(M), there is an absolutely continuous curve {p; t € [0,1]} on Py(M)
such that

dI
L= Z(u) By = Ho- (4.2.4)

If moreover, for any i € Po(M), x — ®(u, x) is C? and
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Cy:= sup sup [[V2®(u,z)|| < +o0, (4.2.5)
nEPS (M) xeM

then there is a flow of continuous maps (t,xz) — U;(x) on M, solution to the following Mckean-Vlasov
equation

LU.(w) = VB, Uile), = (U)o (4.2.6)

Proof. We use the Euler approximation to construct a solution. We first note that

Ci=  sup  |[V&(p,2)| < +oo. (4.2.7)
(p,x)EP2(M)x M

Let P, = '™ be the heat semi-group associated to the Laplace operator A,; on functions, and T; =
e~ the heat semigroup on differential forms, with de Rham-Hodge operator . It is well-known that

Ty (V)| < e /2P |Vy|, ¢eC'(M)

where & is lower bound of Ricci tensor on M. Here, V¢ can be identified by 1-form dy. As ¢ — 0,
T; (V) converges to Vo uniformly. For n > 1, let

Zn(,u7 J)) = (Tl/nvq)(,ua ))(JZ‘)
According to (4.2.7) and above estimate, for n big enough,

sup | Zn (p, )| < 2C7. (4.2.8)
(p,x)EP2 (M) X M

Now let ¢, = k2" fork =1,...,2" and
[t] =t ifte [tk,tk+1[.
On the intervall [t, t1], consider the ODE on M:

dUt(”)
dt

= Zn (o, UV), UGV (@) =2, (4.2.9)

and 1\ = (U™).upo for t € [to, t1]; inductively, on [ty tx11], we consider

auv™
dt

= Zu(uy UM), U (@) = U (@), (4.2.10)
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and for t € [tg, try1],

" = (U) ensy) (4.2.11)
and so on, we get a curve {M,E"); t € [0,1]} on Py(M). We now prove that this family is equicontinuous
in C(10,1],P5(M)). Let 0 < s <t <1, define y(6) = Uy, then

dvy(6)

_ (n) (n)
a0 (t—s)Zn ('u[(l—e)s—k—&t]’U(1—9)5+9t)'
We have, according to (4.2.8),

" Lidy(o
0
Define a probability measure = on M x M by
/ 9@, y)m(de, dy) = / g(U (2), U (2)) dpo (x).
M x M M
Then 7 € ¢(u{™, u{™), we have

WE (™, uM) < /M & (U (2), U (2)) dpo (x) < 4CT (t — 5)*.

By Ascoli theorem, up to a subsequence, u.(") converges in C([0,1],P;(M)) to a continuous curve
{pe; t €[0,1]} such that Wa(pus, ps) < 2C4 (t — s).
For proving that {u.; t € [0,1]} is a solution to ODE (4.2.4), we need the following preparation:

Lemma 4.2.5. Set®,(z) = ®(u, ), then

sup (T:V®,)(x) — VO(x)|r,mr =0, ast— 0. (4.2.12)
(11,2) EPy (M) x M

Proof. We use || - ||« to denote the uniform norm on M. Let e > 0, for u € Po(M), there is £, > 0 such
that

sup [|[T;V®, — V[l <e.

t<ty,

Since (u,t) — ||T;V®, — V®,,||~ is continuous, there is 6, > 0 such that for ¢ < £,

Wa(p,v) <6, = |[|T;VP®, — VP, || <e.

Let B(u, 6) be the open ball in (Py(M), W5) centered at u, of radius . We have
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Po(M) = U, ep,(aryB(1t; 0,);

so there is a finite number of {u1, ..., ux} such that

Py(M) = UL B(ui, 0,)-

Lett =min{¢,,, i=1,...,K} > 0. Thenfor0 <t < {,

sup || T}VP, — V||l <e.
HEP2 (M)

So we get (4.2.12). O

End of the proof of theorem : {ug"); t € [0,1]} satisfies the following continuity equation

- [ a Ol @

[0,1]x M (4.2.13)

—a(0) [ Faduoe)+ [ al) (Vi) Zu(uly) x)) " (o),
M [0,1]x M

forall o € C1([0,1)) and f € C*(M). We have

[ e (V@) Zu () o) i ot~ [ a(t) (V) V() plda)de
[0,1]x M

[0,1]x M

[ e (V). Za(u ) ~ VO, 0)) ()
[0,1]x M

+ / a(t) (Vf(z), VO (uy,x)) pi™ (da)dt — / a(t) (Vf(x), VO(us,x)) e (da)dt.
[0,1]x M )

1] x M

It is obvious that the sum of two last terms converge to 0 as n — +oo. Let I,, be the first term on the
right side, then

1
I <191l [l TV, g0 = Vbl

Note that

HTI/nV‘I)HES) — V(I)mHoo < HTl/nV(I)HES) — VCI)HEZ)HOO + HVCI)”ES) — V‘I)MHOO.
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The term [|T1/,V® () — V® W ||« — 0 is due to above lemma. As n — +oo, pﬁ) converges to y;. By
Hie) Hie)

continuity of (u,z) — V®(u, z), the last term tends to 0. Letting n — +o0 in (4.2.13) yields

- / of () (2 e () dt
[0,1]x M
/f 2)poldz) + / o(t) (Vf(2), VO (10, 2)) e (da)dt,
1]x M

which is the meaning of Equation (4.2.4) in distribution sense.

For the proof of second part, since = — ®(u, ) is C2, we can directly use V®(y,-) instead of Z, in
(4.2.9), (4.2.10), (4.2.11).
On the intervall [t, t1], consider the ODE on M:

dUt(n)
dt

= VD (o, UM, UM (2) =, (4.2.14)
and p{™ = (Ut("))#uo for t € [to,t1]; inductively, on [ty, tx.1], we consider

dUt(")

|t tr

(x) = U (), (4.2.15)

and for t € [ty tri1],

™ = (Ul (4.2.16)
By above result, up to a subsequence, {ME"), t € [0,1]} converges to {u,t € [0,1]} in C([0, 1], Po(M)).
We use this subsequence to prove the convergence of {Ut(") (z), t € [0,1]}. Now we prove that, under
Condition (4.2.7),

du (U (@), U () < e (), @,y € M. (4217)

For x,y € M given, there is a minimizing geodesic {{, s € [0,1]} connecting « and y such that
dyr(z,y) fo €] ds. Set

a(t,s) = UM ().
Since the torsion is free, we have the relation:

D d D d
Tg0(hs) = —o(ts), (4.2.18)
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where - denotes the covariant derivative. We have

Lui(e) = va (u) UM (E).

Taking the derivative with respect to s, we get

d

(&) = V2 (i, UM(&) - =

D d_
U
ds

dsdt '
Combining with (4.2.18) yields

U™ (&)

d n n n d n
S U6 = Vo (), U (&) - U €.
Now,
d d 2 n n
Sl Lu ] =2(vie(up, U (€) - SLUME), SUME),

which is, by Condition (4.2.7), less than

20, | LU 6|

By Gronwall lemma,

UM (€,)] < e e,

=

which implies that

an (U (@), U () < e dus(a, ).

Therefore the family {(t,z) — U™ (x); n > 1} is equicontinuous in C([0, 1] x M). By Ascoli theorem,
up to a subsequence, Ut(”)(:z:) converges to U(z) uniformly in (¢,z) € [0,1] x M. It is obvious to see
that (U, ue) solves Mckean-Vlasov equation (4.2.6). O

Remark 4.2.6. Comparing to [BLPR17], as well to [Wan21], we did not suppose the Lipschitz continuity with

respect to u; in counterpart, we have no uniqueness of solutions of (4.2.6).

Remark 4.2.7. Many interesting PDE can be interpreted as gradient flows on the Wasserstein space P (M) (see
[AGSO05], [Vil09], [Vil03], [FS11]). The interpolation between geodesic flows and gradient flows were realized
using Langevin’s deformation in [LL16] and [LL18].
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4.3 Levi-Civita connection on P, (M)

In this section, we will revisit the paper by J. Lott [Lot06]: we try to reformulate conditions given there as weak
as possible, also to expose some of them in an intrinsic way, avoiding the use of density. In order to obtain good
pictures on the geometry of Py(M), the suitable class of probability measures should be the class Pg, (M) of

probability measures on M having divergence (see Definition 4.1.2).

For convenience of readers, we will briefly prepare materials needed for our exposition. For a measure p1 €
Py (M), for any C vector field A on M, the divergence div,,(A) € L?(M, u) is such that

[ V@) A@)ras due) = = [ 60) div, (4)(w) du(o)
M M
for any ¢ € C*(M). Itis easy to see that div,,(fA) = fdiv,(A4) + (Vf, A) for f € CY(M). If du = pdx has a

density p > 0 in the space C' (M), we have

[ wo.dydn= [ (Voparde == [ oavipards =~ [ aivipa)p i,
M M M

M
It follows that
div,(A) = p~tdiv(pA) = div(A) + (V(log p), A). (4.3.1)

For 41 € Pgiy(M) and ¢ € C?(M), we denote L*(¢p) € L?(p1) such that

/ (Vf,Vo)du = —/ fL;Gdu, forany f e CY(M), (4.3.2)
M M
where £ ¢ = div,,(V¢) is a negative operator.

Let v € C3(M), consider the ODE
du,

o = Vi(U), Up(z) ==.

Proposition 4.3.1. Let du = pdx be a probability measure in Py, (M) with a strictly positive density p
in CY(M) and+ € C3(M). Then for eacht € [0,1], p := (Up) gt € Pay(M).

Proof. By Kunita [Kun97] (see also [Cru83], [Mal97]), the push-forward measure (U; )4 u by inverse
map of U, admits a density K, with respect to 1, having the following explicit expression

K, = exp(— /0 tdiv#(Vw)(Us(x))ds).

It follows that the density K of u; with respect to i has the expression

K, = exp( /0 t div,, (Vo) (U (x))ds).
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According to (4.3.1), z — div, (Vi (x)) is C*. Therefore the condition in [Cru83]

/ exp(Adiv, (Vi (z)) du(z) < 400, forall A >0
M

is automatically satisfied. Again by (4.3.1), = — K;(x) is in C*. Now let A be a C! vector field on M
and f € CY(M), we have

/ (V1 (2), A(@))r, ar dpin() = / (VF, gt Ki(w)dpu(e) = — [ fdiv, (K, Z) dp.
M M M

It follows that

div,, (A) = div, (K, A) K; .

O

For 91,12 € C?(M), we denote by Vy;,, Vi, the associated constant vector fields on P2(M). In what follows,
we will compute the Lie bracket [V, , Vi, ].

For f € CY (M), we set Fy(p) = fM f du. According to preparations given at the beginning of Section 4.2,

(Dv,, Fy)() = /N (V2. V1) d = Froa) (0

Using again above formula, we have

(Dvwl DV’KP2Ff)(/I/) = /j\{<vw1,v<v¢27v'f‘>> d:u = - " £#¢1 <V¢27vf> d:u’

Therefore
[Vi/)zv le}Ff - DVwQ Dle Ff - DV’dq Dsz Ff

= / ((LF)1 Vpg — LF9P V1), V f) dp.
M

Let

Cypyn (1) = LYy Vihg — LE4hg Vhy. (4.3.3)

Note that Cy, 4, (1) is in L?(M, TM; u), not in T,,. Consider the orthogonal projection:

I, : L*(M,TM;u) — T,.
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As j1 € Py, (M) and by Proposition 4.1.3, there exists ®,, € DF(u) such that

1T, (Cwlﬂlfz (M)) =VQo,. (4.3.4)

Then we have

Vius Vil = [ (Vb 1) dn = (Drg, Fy)(w) (4.35)

Above equality can be extended to the class of polynomials on Py (M), that is to say that
Wi, Vsl = Vg, on polynomials, (4.3.6)
We emphasize that Lie bracket of two constant vector fields is no more a constant vector field.

Proposition 4.3.2. Let ¢,y € C3(M), for du = pdx with p > 0 and p € C*(M), the function ®,
obtained in (4.3.4) has the following expression :

©, = (L)1 divy, (Cpy s (1)) (4.3.7)

Proof. By (4.3.1),

L' = Aytp 4 (Viog p, Vi),

where A,; denotes the Laplace operator on M. It is well-known that £# has a spectral gap if log p €
C%(M). In [Lot06], the Lie bracket [Vy,, Vy,] was expressed using Hodge decomposition for vector
fields in L?(u). For a complete study on Hodge decompositions, we refer to the paper [Li09]. For
1,19 € C3(M), we have

divy, (Cyy i (1) = (VLF1, Vipo) — (VLI g, Vir).

By Hodge decomposition, Cy, ., (1) admits the decomposition

Cilml/)z (N) = du*w +Vf+h,

where w is a differential 2-form on M, d,,* is adjoint operator of exterior derivative in L?(p), h is harmonic
form : (d,"d + dd,")h = 0. Taking the divergence div,, on the two sides of above equality, we see that
/ is a solution the following equation

Lhf = divﬂ (C’¢17’l[12 (U)) .

It follows that @, has the expression (4.3.7).
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Now we introduce the covariant derivative Vy, '+, Vi, associated to the Levi-Civita connection on P2 (M) by

2<va1 wa V¢3> = DVM <V¢2 ) V¢3> + DVM (Vw3> V¢1> - DV¢3 (Vw1 ) V¢z>
+ <V¢37 [levvwzb - <Vw27 [va Vw:«;D - <V1!117 [szvvw3]>~

We have <V¢2,Vw3> = / <V¢2, v¢3> d,LL = F<V¢27vw3>. Then
M

Dy, (Vi Vi) = / (Y, V (Vb Vo)) dpt = — / (L1 Vo, Vi) d
M M
Replacing 1 by 1, 1 by v and 13 by 11, we get

Dy, (Vs Vi) = — /Mwwz Vi, Vi) di.

We have, in the same way

DVwS <V¢1 ) Vw) = - /M <£H¢S V¢la V¢2> d/J-

Now using expression of [V, , Vi, |, we have

Vi, Vi Vi) = /M<f£“w1 Vi + L Vipn, Viba) dy.

In the same way, we get

Vg Vi Vi) = /M<—w1 Vi + Liap Vapr, Viin) di

and

<V¢17 [Vd)w V¢3]> = /M<—ﬁ”¢2 v¢3 + ﬁ“il)s vaa Vi/h) d/i'

Combining all these terms, we finally get

Vv, Vs, Vi) = /N V(Y01 Vi), Vi) di+ /A (£ Vi = L Vi, Vi) di

Theorem 4.3.3. (see [Lot06]) For two constant vector fields Vy, , V., we have

1 1
Vi, Ve = SVivws v + 5 Vi Vil

(4.3.8)
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Moreover, for any constant vector field Vy,,,

(Vv Vipes Vo), = /M<v2¢2, Vb @ Vas) dp. (4.3.9)

Proof. It is enough to prove (4.3.9). We have

Vs, Vi Vialr, = / (=L Vi + Lo Vb1, V) ds

M

- / (Vs V{(Viba, Vibs)) dpt — / (Vs V{(Vhy, Vibs)) du
M M
= / (<V21/J27 Vb1 ®@ Vs) + (V24h3, Vb @ Vi/)g))d,u
M
- /M (<V2‘(/Jla Vipy ®@ V) + (V21h3, Vihy ® Vl/q})du
= [ (VP42 V1 @ Vu) = (F01, Vs © V) )

due to the symmetry of the Hessian V215. On the other hand,

(Vb s Viwpy Vo) )T, = /M (<V21/’27 Vips @ V1) + (V241, Vi3 © V¢2>>)dl~t~

Summing these last two equalities yields (4.3.9).
O

Remark 4.3.4. By (4.3.8), for two constant vector fields Vi, , Vi, , the covariant derivative Vy, s, Vi, s DOt a
constant vector field on Py (M) if ¢y # 1)o.

Let a : Po(M) — R be a differentiable function, we define

Vv, (@Vy,) = Dy, a-Vy, + aVy, Vy,. (4.3.10)

k
Proposition 4.3.5. Let Z be a vector field on Py (M) in the test space x(P), thatis, Z = Z a; Vi, with
i=1
a; polynomials. Then ¥ 7 Z still is in the test space; moreover

_ 1
VzZ = V‘1>1 + 5‘/\V‘1>2|27
where
k

k k
¢y = Z(Z @ Dmﬂj) bi Py = it
i=1

j=1 i=1
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Proof. Using the rule concerning covariant derivatives, V7 Z is equal to
k

k k
L1
Z (Dv,, ;) Vi, + 5 Z @i Vivy, vy, + 5 > i [V, Vi)

ij=1 ij=1
The last sum is equal to 0 due to the skew-symmetry of [V;,., V], the first one gives rise to ®; and the
second one gives rise to .
O

In what follows, we will extend the definition of covariant derivative (4.3.10) for a general vector field Z on
Py(M). Let A be the Laplace operator on M, let {¢,,, n > 0} be the eigenfunctions of A:

_A(pn = ATL Pn -

We have \p = 0 and g = 1. It is well-known, by Weyl’s result, that

Ay ~ nz/m, n — 400

where m is the dimension of M. The functions {¢,,; n € N} are smooth, chosen to form an orthonormal basis of
L*(M,dz). A function f on M is said to be in H*(M) for k € N, if

1F12e = /M (1 = A2 2 di < 400,

By Sobolev embedding inequality, for & > % +4q,

flles < CIf [

For f € H*(M), put f = _ an, which holds in L?(M, dz) with

n>0
a = [ F@enla)do
M
‘We have :
1117 =D an (1+A)"
n>0

Vn

Van

The system {
Tys-

;oon > 1} is orthonormal. Let V,, = V%/ﬁ, then {V,,; n > 1} is an orthonormal basis of

Let Z be a vector field on Py (M) given by Z(u) = Vip(y,.y or Z(u) = V®(u,-). In the sequel, we denote:
®,(z) = ®(p, x), D" (1) = ®(p, ). Then, if  — VP, () is continuous,
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Vo, = Z(/MN@,“ L\/‘%> dz) \v/% - Z(/M Dppudz) Vin,

n>1 n>1

which converges in L?(M, dz). Let pu € Py (M), the above series converges also in T, Let

an(p) = /M O, (x)pn(z) de. (4.3.11)
Let V;;, be a constant vector field on Py (M) with ¢p € C°(M). For ¢ > p > 1, set

q
Spa = Z(Dv/,an Vo, +an Vv, %) St + 52, (4.3.12)

n=p

respectively. Let ¢ € C°°(M), according to (4.3.9), we have

(S0 Von, = [ (Z an (1) V%01 ) (VO(2), V6 (2)) ().

It follows that

e

|< pqav¢ Ty |VQ/)|T;I/

n?

therefore

152, <H§jan )V2en||_Velr,.
=p

We have

q

IIZan oIz dm)_zan )

q

72(/ (I— Ak/%gpdm) =0

n=

as p,q — +oc if ®, € H*(M). On the other hand, we have

(Dvean)i) = [ (Du,#)on(o)do = [ (vDy @7, 222) ZL,

then
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- ) \% n \% n
Sta= 2 ([ @Dven T2 ar) T2

n=p

and

q

_ Vo 2
1 12 _ T n
/M|Sp}q de = (/MWDwaI) ,mﬂlm) 0

n=p

as p,q — +oo if

/ |Vl_)vw<1>x|2d:(: < 400.
M

Therefore for du = p dz with p € Pgiy (M), as p,q — oo,

Stalt, < ol [ 15,2 do 0.

M

We get the following result, which is new.

Theorem 4.3.6. Let Z be a vector field on Py (M) given by @ : Po(M) x M — R. Assume that
(i) for some number k > % +2, ®, € H*(M) for any ji € Po(M),
(ii) for any x € M, Dy, ®* exists and V Dy, & € L*(M,dz).

Then the covariant derivative Vv, Z is well defined at j € Py, (M) and for ¢ € C>(M),
<?V¢Z, Vo), = / ((VDW@‘), Vo) du +/ VQ@H(V#), V(;S) du. (4.3.13)
M M

q
Proof. Let Z, = > anV,,. Then

n=1

Vv, Zy = S1,4.

P

Letting ¢ — +oc yields the result. O

4.4 Derivability of the square of the Wasserstein distance

Let {ci; t € [0,1]} be an absolutely continuous curve on Py(M), for o € Po(M) given, the derivability of
t— W22 (0, ¢;) was established in Chapter 8 of [AGS05] , as well as in [Vil09] (see pages 636-649); however they
hold true only for almost all ¢ € [0, 1]. The derivability at ¢ = 0 was proved in Theorem 8.13 of [Vil03] if & and ¢
have a density with respect to dz. When {c¢;} is a geodesic of constant speed, the derivability at ¢ = 0 was given
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in theorem 4.2 of [Gigl1] where the property of semi concavity was used. In what follows, we will use constant
vector fields on Py (M).

Before stating our result, we recall some well-known facts concerning optimal transport maps (see [Vil09,McCO01,
BBO00]). Let o € P3 4.(M) be absolutely continuous with respect to dx and p € Po(M), then there is an unique
Borel map (up to a constant),¢ € D?(c) such that

/ V(@) do(x) = W(o, 1)
M

and x — T'(z) = exp,(Vo(x)) pushes o forward to . If f1 is also in Po . (M), the map T : M — M is invertible
and its inverse map T~ ! is given by y — expy(Vgg(y)) with some function ¢ such that S |Vo[2du < +o0. We

need also the following result

Lemma 4.4.1. Letz,y € M and {{(t); t € [0,1]} be a minimizing geodesic connecting x and y, given
by £(t) = exp,,(tu) with some w € T,,M. Then

diy(expy (v), @) — di; (y, ) < 2(v,€' (1)1, a0 + o(|v]) as[v] — 0. (4.4.1)

Proof. See [McCO01], page 10.
O

Theorem 4.4.2. Assume that o € P3,.(M) is absolutely continuous with respect to dz, then y —
x(p) := Wi(o, p) is derivable along each constant vector field V,, at any u € Po(M). If u € Py ,.(M),
the gradient Vx exists and admits the expression :

Vx(p) = —2Vé. (4.4.2)

Proof. Remark first that Formula (4.4.2) is well-known in the case where M = R™ (see for example
Theorem 8.13 in [Vil03]). Let ¢ € C>°(M) and (U;):cr be the associated flow of diffeomorphisms of M:

dU;t(f”) = Vo(Uy(z)), x€ M. (4.4.3)
The inverse map U, * of U, satisfies the ODE
-1
dUtdt(x) = -Vy(U; (), xeM. (4.4.4)

Set jix = (Up) i, then p = (U; ) gp. Let v € Co(o, 1) be the optimal coupling plan such that

W2 (0, 1) = / Br(z,y) dy(z,y).
M x M
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The map (x,y) — (z,U(y)) pushes ~ forword to a coupling plan ~; € C(o, ut). Then for ¢ > 0,

~+ | =

W) = Wiow)| < 7 [ (il Vi) - diy(o.0) drfa)

M x M

= % /MXM(dM$7 Ui(y)) — d?w(x,expy(tvw(y))) dy(z,y)

1

" t /MXM(dﬁ/I(x,eXpy(tvw(y)) —d (e, y)) dy(z,y) = Li(t) + I2(t)

respectively. Let £(t) = exp,(tV¢(x)), by [McCO01], £ is a minimizing geodesic connecting z and y =
T(x). By Lemma 4.4.1, we have

s (z, exp, (tVY(y)) — dis(y, ) < 26V (y), &' (1) z,ar + o([t]) ast — 0.

On the other hand,

§'(1) = dexp,(Vo(x)) - Vo() = //1Vo(x),
where //¢ denotes the parallel translation along the geodesic ¢. Hence |¢/(1)| = [V (x)|. Therefore

B(t) <2 [ (Vi(T(a)).dexp, (Vo(a) - Vo(a) da(e) + o(1)

To justify the passage of limit throught the integral, we note that for ¢t > 0,

s, exp, (17(0)) — s ()|

< =diam(M) d (y, exp, (tV(y))) < 2diam(M) [Vep(y)].

N

Then
Lm/p(t) <2 / (Vi (T'(2)), dexp,(Vo(x)) - Vo(x)) do().
t10 M
For estimating I, (¢), it is obvious that
1
lim & sup dp (Ut (y), exp, (tV(y))) = 0. (4.4.5)

Then 11%1 I,(t) = 0. In conclusion:
t
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tin [W3o) = Wi )] <2 [ (V(T(@)).dexp, (Vota) - Vota) doe).

For obtaining the minoration, we use the fact that %(—at) = —lim, ga;.

Let 4; € C, (0o, uut) be the optimal transport plan:

W2 (o, 1) = / () e (de, dy).
M x M

Let n, € C(o, ut) be defined by

/ £ (@, 9)me(de, dy) = / £ @, U7 @) F(de, dy).
M x M

M x M

Then for t > 0,

t

e —wiewn] <4 [ (i U7 ) = i) Sl dy).

(4.4.6)

Let T; : M — M be the optimal transport map which pushes forward o to p;, with T;(z) = exp, (V@i (x)).

As t | 0, the map T; converges in measure to 7' (see for example [Vil03], page 265). We have

o~ | =
=
X

(s, U7 ) = dis(a, ) ) 3a(da, dy)

M
1 -1
=< /M (d?\J(:ﬂ,Ut (Ty())) — dfw(vat(x))) do(z)
— % /M (d?w(x, U; H(Ty(z))) — d?w(f,eXth(x)(—tVz/;(Tt(x)))) do ()
M

respectively. According to (4.4.5), lim, o J1 () = 0. Concerning J»(t), we note as above,

s (2, expr, ) (4TOT)) — s (0, Tula)
< 2 giam(M)da (T,(x), xpr o) (~1V(Ty ()

< 2diam(M) [Vo(T3 (2)))| < 2diam(M) ||V

Then by Lemma 4.4.1,
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Bat) < =2 [ (V) dexp, (Von(a) - Vou(w)) doa) +of1)
Therefore
@% (Wi (o) = Wi (o, )| < —2 / (VU (@), dexp, (Vo(x)) - Vo(x)) do(z). (4.4.7)
Combining (4.4.6) and (4.4.7), we finally get

lim & (W30, 0) = W] =2 [ (90(T(a), dexp, (Vo@)) - Vo(a) doa). (4.4.8)

Now if u € Py 4.(M) and the map y — expy(vé(y)) is the optimal transport map which pushes p to o.
Consider the minimizing geodesic

E(t) = exp, (1 = 6)Vo(y)),

which connects = and y. We have ¢/(1) = —V¢(y). In this case, replacing dexp,(Vo(x)) - Vo(x) in
(4.4.8) by Vé(y), we obtain

/ (VT (@), VO(T (@) do(x)

M i (4.4.9)
. / (Vo). Vy)) duy).

M

1

1
tim - (W3 (0. u) = W3 (o,1)] = =2

from which we get (4.4.2). The proof is complete.

4.5 Parallel translations

Before introducing parallel translations on the space Py;, (M), let’s give a brief review on the definition of parallel
translations on the manifold M, endowed with an affine connection. Let {y(¢); t € [0, 1]} be a smooth curve on
M, and {Y3; t € [0,1]} a family vector fields along ~: Y; € T’ ;) M. Then there exist vector fields X and Y on
M such that

Y} is said to be parallel along {~(¢); ¢ € [0, 1]} if
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(VXY)(’Y(t)) =0, te [07 1]'

Now let {¢;; t € [0,1]} be a one-to-one absolutely continuous curve on Pg;,, (M) such that

dICt . 2
el Vs,, with ®; € Di(cy). (4.5.1)

Let {Y;; t € [0, 1]} be a vector field along {c;; t € [0,1]}, thatis, Y; € T, givenby Y; = Vi, with ¥, € D3(¢;).
Theorem 4.5.1. Assume thatt — ¢, is C* in the sense that for any f € C'(M), t — Fy(c:) is C* and

fort € [0,1], z — ®,(x) is C*. If foreach t € [0,1],

Vol = [ V@) c(do) >0, (452)
M

then there are functions (1, z) — ®(u, ) and (u, ) — (u, x) on Py(M) x M such that

Dy, x) = Oux), V(e x) = Uy(z); (4.5.3)

moreover for x € M, i — ®(u,x) and p — U(u, x) are derivable on Py(M) along any constant vector
fields V., their gradients exist on Py ,.(M).

Proof. Fix to € [0,1]; consider a(t) = Fs, (ct). Then

d
Oél(t) = &Fq)f/o (Ct) = / <V<I>tO,V<I>t> Ct(dfl?),
M

which is > 0 at t = t,. Therefore there is an open interval I(t,) of t, such that t — «f(t) is a C*
diffeomorphism from I(ty) onto an interval J(tq) containing a(to). Let 8 : J(to) — I(to) be the inverse
map of a. We have

Fg, (ct) € J(to) fort e I(to).

Let

Ulto) = {n € Po(M); Fo, (1) € J(to)},

which is an open set in Py(M). Let r > 0 and v € Py (M), we denote by B(v,r) the open ball in Py (M)
centered at v of radius r. Take rq > 0 small enough such that

Bley,,m0) C Ulto).

We define, for u € B(cs,,70),
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Bro (1) = P(ra, (w)r Viol) = Yo(ra, (n))- (4.5.4)
0 0

We remark that for ¢ € [0, 1] such that ¢; € U(to), we have: 3(Fs, (ct)) = t. Note that {c;; ¢ € [0,1]} is
a compact set of P (M) and

{Ct; te [0, 1]} - Ut06[071]B(CtU7TO)-

There exists a finite number of ¢4, ..., € [0, 1] such that

{er; t€[0,1]} € UE Bley,,mi).
SetU = UF_ | B(cy,,r;). Let p € U, then pu € B(cy,,r;); according to (4.5.4), we define,

Dy, (1) = ‘I),Bi(Fq,ti (1) Ty, (p) = \pﬂi(Fq,ti ()
Then for ¢ € [0,1] such that ¢, € B(cy,,7:), @1, (c) = @, and ¥y, (¢;) = ¥,. Now for r > 0 and v € Py (M),
we define

0r (1) = exp( ). i Wl < (4.5.5)

W3 (v, u

and g, (1) = 0 otherwise. Then g, , (1) > 0if and only if u € B(v,r). By Theorem 4.4.2, if v € Py,
w— gr.,(u) is derivable along any constant vector field V,,. Remark that

k
297*i=0t,, >0 onU.
i=1
Let
o = kgni(’ for p € U, and a; = 0 otherwise. (4.5.6)
die1 Grice,
Now define
) k . ) k .
O(p) =Y ()@, (), T(p) =D a(u) ¥y, (). (4.5.7)
i=1 i=1
We have

k

(i(ct) = Z O‘i(ct)(i)ti (Ct)'

=1
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Note that a;(c;) > 0 if and only if ¢, € B(c,,7:), which implies that &, (¢;) = ®, and ®(¢;) =
k
> ai(c))®, = ®,. Itis the same for ¥. The proof is completed.
=1
O

Notice that for such a curve {c¢;; t € [0,1]} given in Theorem 4.5.1, and {Y3;¢t € [0, 1]} a vector field along
{es; t € [0, 1]} given by U,. If furthermore for any ¢ € [0, 1], ¥; € H*(M) with k > % + 2, then the extension

obtained W obtained in Theorem 4.5.1 satisfies conditions in Theorem 4.3.6.

Definition 4.5.2. We say that {Y:;t € [0, 1]} is parallel along {c:; t € [0,1]} if

(Var, Vg)(ar) =0, te]0,1].
dt
Using this definition, we re-discover the following formula, originally due to [Lot06].

Theorem 4.5.3. Keeping the same notation in Theorem 4.5.1, if {Y;; t € [0,1]} is parallel along {c,t €
[0,1]}, the following equation holds

dv,

/M<V(W) + Vs, VT, v¢> ci(dr) =0, e C®(M). (4.5.8)

Proof. Note that

_ \\s ~
(Ddlct \I/)(Ct) = *\IJ(Ct) = b and V‘I’(Ct, ) = V\I’t

Tt dt dt
Then (4.5.8) follows from (4.3.13). O
v v
When V(%) = dflt ! it is more convenient to put Equation (4.5.8) in the following form :
10, (iv\pt L VA v\pt) -0 (4.5.9)
“\dt K ’
or
Agw, 411, (vm Wf) -0 (4.5.10)
dt * L ’

where I1., the orthogonal projection from L?(M, TM, c;) onto T,,. By arguments in the proof of Proposition
4.3.2, when dc; = p; dx with p; € CQ(M) and p; > 0, II., admits the expression

,u= (VL 'dive,)(u), we L*(M,TM,c,).

The price for this pointwise formulation of (4.5.9) as well as of (4.5.10) is the involement of second order

derivative of W.
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Remark 4.5.4. Let s — £(s) is a smooth curve on M such that £(0) = z and £'(0) = V®;(x), then

d NEAVAV N vA\/
7 V¥t +Vye, VT = lim e VWiie(E(E) =V tm, (4.5.11)
€ €

where 7; is the parallel translation along s — £(s). We refind the similar expression of parallel translations given
in [AGOS].

Proposition 4.5.5. Assume that the curve {c;:; t € [0,1]} is induced by a flow of diffeomorphisms .,
that is, there is a C12 function (t,z) — ®,(x) such that

Wealr) - — GO,(U,4(2), Uss(a) =,
Cy = (UO,t)#CO~

Then for any uo = V¥, € T,,, there is a unique vector field u; = V¥, € T,, along {c:;t € [0,1]} such
that

T Ve (Unge (@) — V‘I’t(m)) —0

L, (lim
“\e—=0 e

(4.5.12)

holds in L?(c;), where . is the parallel translation along {s — Uy 1+s(z), s € [0,¢]}.

Proof. Following Section 5 of [AGO08], for s < ¢, we define

—1
Prs:Te, = Te,, us— 1, (Tt_sus oUgy )

For a subdivision D = {0 =ty < t; < ... < t, = 1} of [0,1], we define

Pp:Tey = Ty g — (Pr,_, 0 0Py 0)(uo).

Under the assumption of Theorem, we have the uniform bound

sup [[V2®,(2)|] < +o0,
(t,z)€[0,1]x M

which allows us to mimic the construction of section 5 in [AG08], so that we get that Pp converges as
D becomes finer and finer, with |D| = max; |t; — t;—1] — 0. O

As aresult of (4.5.12), we have as in [AGO08] the following property:

Proposition 4.5.6. Let {V¥,;t € [0, 1]} be given in Proposition 4.5.5, then

d
aHV\IItHi =0. (4.5.13)



Chapter 4: Geometry and Parallel Transport 68

Proof. We have ¢;1. = (Uy 14<)#ct, and

[ 190 cclde) = [ 9o @) P ).
M M

Therefore

el - b= [ e U@ = V9@ ] o)

/ IV (Ur e (@) — V‘I’t(f)yTe_lv‘l’t+e(Ut,t+a(x))> ci(dz)

/ V\I’t _IV\I’HE(Ut t+€( )) — V\I/t(l‘)> Ct(dl').
It follows that

d 2 . TV (Ugge(x) — V() _
LIV, _2/M<21£% : V() cr(dx) = 0.

45.1 Thecasewhen M =T

In this section, we give well-posedness of parallel translation on P(T) . A function v on T is the derivative of

a function ¢ if and only if / v(x)de = 0. Let du = pdx be a probability measure on T with p > 0. Set
T

¢’ =11,(v); then

/f d:r—/f (x)dx forany fe C™(T),
which implies that (vp)’ = (¢'p)’; so there is a constante K € R such that
K
vp=¢'p+ K, or v=¢’+;;
integrating the two sides over T yields
fqr (z) dx
K= I e
T p
It follows that
dxy 1
Ly (v) = v~ (ITLW) =. (4.5.14)
T p p
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In particular, IT,,(1) = 1 — . In what follows, we denote p = . It is obvious that fTﬁdx =1.

dz dz
(Jz ) ; (Jz e
In order to make clear the dependence of the density p = d—u, we write the projection 11, in the form:
i
I,(v) = v — (/ () dx) 5. (4.5.15)
T

Theorem 4.5.7. Assume that the initial vector 0,V € C°, the initial measure density p, > 0, pg € C*°,
and ¢ € C*. Let the flow {X,, t € [0,1]} is induced by the following ODE:

4, X, = 0,0(Xy)dt.

Denote E; = (X:)~! and the image measure p, = (X;)4po , then the parallel translation equation
(4.5.10) has a unique smooth solution g, satisfies

b fp9s02¢dr 1

=0, ¥y(= ds. 4516
. ol8) + 0 Tidx Ps O Zi_s ? ( )
Proof. If g; solves (4.5.10) , i.e.
875915 = _Hpt (awgt . 61¢)7 (451 7)
then, by (4.5.14) , we have
1 g9
atgt = =020t " aﬂcd)'i- 7Kt
Pt
where
0%¢d
KY = _M. (4.5.18)
fT Edl‘

This is a transport-type integral differential equation. By taking integration on both sides, we can see

1
O / grdr = — / 0,910, pdx + K7 | —dx = 0.
T T T Pt

Assume that f; = g:(X;) , then

% 1 L ko (4.5.19)

_ptOXt K

We can use Euler approximation to prove the existence of solution. Given N—piece partition of [0, 1],
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g =0,V , f& = 0,9, , then for the next step, let

9 = a7, te o). (4.5.20)
t
N _ ¢N gN i
fi (@) = fo (:c>+/0 K pszst’ te (0,5 (4.5.21)

Define g% = fY o E. , then we can continue this construction for g~ and £~ . For the k-th step, let
N N

k kE+1
N — g - = 4522
9 =9x, tE[N, N ), (4.5.22)
¢ 1 E k+1
Nz) = f¥ K" AR 452
t (‘/E) fO (x)+/0 s pszsds7 te (N7 N ] ( 5 3)

K| < MM / 197 |da
T

2
dz

N —_
SC/ ’f[Ns] O Z[Ns]
!~ N

C
N -
< — ’f[Ns] oR=1
m Jp " & N

< C|IfNq
N

(4.5.24)

2
P Ns] dx

N

L2.
Thus, by (4.5.23), when N is large enough,
d C
N2 < NI
So, by Gronwell inequality,

N3 < 1102 ol[3 2 exp Ct. (4.5.25)

L?—uniform boundedness has been proved. Moreover, we can prove uniform boundedness of {f/V} in
D? so that { '} is compact in L2 for each ¢ . In fact,

)| < C 1197 %ol| 2. (4.5.26)

1
0o fN112 < ||0,0,T K9 a,
102 £ g2 < 110200 1= + e |IKE7| o [0,(——

The last inequality needs estimates (4.5.31) and (4.5.32) below. For the equicontinuity, through (4.5.24)
and (4.5.25), we see that
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1Y = £ lz2 < €0 |2 [t — s

Therefore, with compactness and equicontinuity, we know that, according to Arzela-Ascoli theorem,
{fN,t € [0,1]} has a convergent subsequence {f,t € [0,1]} in C([0,1],L?(T)). Denote f; as the
convergent limit . Note that, since

thus,

/Igt Pde < */Igt \QpdeSC/ | fln | da
T mJr n T n

The last inequality is due to (4.5.24). This , combined with (4.5.25), gives uniform boundedness of
{gi,t € [0,1]}. Similarly, we can also prove uniform boundedness of {g} in D?. Actually,

102921 = [1(02 e ) © Einat - OzEma ||

n

should be uniformly bound because of (4.5.26) and (4.5.31). Next , according to lemma 4.5.8 below,
llg7 — 922 < C|t — s| . We proved the equicontinuity of {¢*, t € [0,1]} . Thus , again by Arzela-Ascoli
theorem, we have a subsequence (f"*, g™*) such that f;"* and g,'"* converge to f; and g; respectively
under C([0, 1], L?) . Note that , by (4.5.23) and L? convergence of g;'*, we can easily check that

m7@x|ffk — ft| = 0, (4.5.27)

Thus, again , taking pointwise limit of (4.5.23) , we get

ds.

U KY
fe =0 0+/ psz

Since ps € C>* ,we see that f; € C>* . Let g; = fi o=, thenforeach z € T, gi(x) = limg— 0 g;* () due
to (4.5.27). By dominated convergence theorem, ||g: — g:||2 = 0. Next, we will prove g; is a gradient of
some function on Torus and solves (4.5.17) . In fact,

d _ d d_
%gt = (dtft> Zr+ 05 fe(Z) - dt

1
— g = _ = =
= (Kt o1 o ‘I’t> 0=t — O0p ft(E4)02E4 0,0

1
=K} — — 0,(g1)0: 0.
Pt
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It is easy to check that | K7 — K7¢| < C||g — g¢||z> = 0 . Therefore, g; solves (4.5.17) . Also, by Fubini
theorem,

d [ _ d _
o jrgtdil?—/Tdtgtdx
1
:/Kfi_am(gt)ax(ﬁdx
T Pt

= /(gt — g1)02¢dz.
T

Thus, |4 [ g:dx| < Cllgs — gillz2 = 0 . Note that [} godz = [0, ¥odz = 0. So we proved g; is a
gradient of some function on Torus. We finished the proof. O

Lemma 4.5.8. Fort > s, whenn is large enough,

‘ fl) 0Bttt = flae © Bt ‘ <Ot .
Proof. Since ||f* — fI*||L2 < K|t — 5|, thus
n — n — 1 n n 2 %
‘ f[v;t] ©Emy — f[v:] ° Bl , = — (/(f[r::] - f%) dfl?) < Gyt — sl (4.5.28)
Also, because of
t
Xi==x +/ 0. 0(X5)ds, (4.5.29)
0

E— x| = | X (E(z)) — Ze(x)] < M't . Therefore, when n is large enough,

Hf@ o E[nt] - f[ns] ] E[ns]

n n n n

(4.5.30)

Due to (4.5.23),

10 Xs|ds.

9z finel

t
< max |9, V| —|—/ |K9"| -
T 0

aZE S
e
Ps
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Note that , by (4.5.24) and (4.5.25),
|K9"| < Cl|0,Tol| 2,
Furthermore, by (4.5.29) , we can get
t
0. X, =1 +/ D29(X,)0s X ods,
0
which means |0, X;| < exp{m%x |02¢|t} . Similarly, by the standard argument, when ¢ € C>,
*X,| < C, forselo,1]. (4.5.31)
These estimates also hold for the inverse map Z; , which satisfies
t
Et =T —/ 8m¢(Etfs)d8.
0
On the other hand, by the property of push-forward measure p; = (X;)xpo0 :

pt(Xt) = po|ath|,

therefore, it is easy to deduce that , when pg € C*,

0zps| < C. (4.5.32)

In fact, estimates (4.5.32) and (4.5.31) are standard results on diffeomorphism induced by smooth
vector fields.
Finally, we come to estimate (4.5.30) and get

’ fha 0B im0 = floy ©Zpma| | < Colt =] (4.5.33)
Then, combining (4.5.28) and (4.5.33) , we have
‘ fing ©Ema = flug OE[anJ 12

< ||/ 0 Zimn = flon 0 Zinal|| +‘ fln ©Zina = Sy 0 Zinat |, (4.5.34)

< (Ol +02)| — S|



Chapter 4: Geometry and Parallel Transport 74

4.6 Lipschitz condition for vector fields and uniqueness of solu-
tion to ODE

In what follows, we will say a few words on the Lipschitz condition on vector fields Z on Py ,.(M). Let p, v €

P3 oc(M). Recall that there is a unique optimal transport map T, ,, : M — M which pushes p to v such that

Ty () = exp, (Vo (@)).

Let {47 (t) = exp, (tV¢(z)) and //¢* be the parallel translation along {&,(¢); ¢ € [0,1]}.

Definition 4.6.1. We say that a vector field Z on Py ,.(M) given by ® (see Definition 4.2.3) is Lips-
chitzian if there exists a constant x > 0 such that

v 2
VA VR a) = Vo0 T )| ) < 2 WE 10) (4.6.1)
for any couple (11, v) € Pa qc(M) X Py 4 (M).

Remark that the quantity defined by the left hand side of (4.6.1) is symmetric with respect to (i, V), using the

inverse map 1), , of T}, .

Proposition 4.6.2. Assume that for each u € Po(M), v — V2®(u, x) exists and is continuous such that

Ci= sup [[V?®(u, )|l < +ov, (4.6.2)
WEP, (M)

and there is a constant Cy > 0 such that
VO (u,z) — VO(v,2)| < Co Wa(u,v), x € M; (4.6.3)
then the Lipschitz condition (4.6.1) holds with k* < 2(C? + C3).

Proof. We have

/75 V)~ VO T (0)|
< |1/ V) - /5 VoW )| + |/ Ve @) - VO, T (@)
< |VO(u,2) = VO, 2)| + C1 das (2, Ty (@)

where the second inequality is deduced from the fact for z,y € M and {n;t € [0,1]} a minimizing
geodesic connecting x and y, then for ¢ € C?(M),
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//1Ve(x) = Vo) | <1V ¢lloo dar(x, y). (4.6.4)

. . . D
In fact, set 2(t) = //]Ve(x) — Veo(n:). Then the covariant derivative 7 of z(t) along n has the
expression

D
ﬁz(t) =V V().

D
It follows that ’iz(t)) < 10| ||V oo ; therefore

1
‘//?Vw(@—vso(y)‘ SI\VQsOIIoo/O il dt = ||V?¢||oo das (@, ).

Using conditions (4.6.2) and (4.6.3), we get

/M\//ﬁz'"w(u, z) = Vo (v, Tw(x))f du(z)
<2 [C§W22(/~L7 v) +Ct /M d3; (2, Ty () d,u(w)] .

The result follows. O

Theorem 4.6.3. Let Z be a vector field on Py(M) satisfying the Lipschitz condition (4.6.1), then the
ODE

dI/,Lt
=7 =
dt (u’t)a ,u\t:o Ho

admits unique solution on the space Py ,.(M).

Proof. Let u}, u? be two solutions in P, ,.(M) to above ODE. For fixed t, denote by 7% : M — M the
optimal transport map which pushes y; to u7, with

T}2(2) = exp, (V6! () ).
Let

T3 (y) = exp, (V¢2’1(y))

be the inverse map of 7}'%. Let

nt?(x) = exp, (quﬁl’z(a:)) )
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It is well known (see [Vil09]) that ¢':2 and ¢! are linked by the following relation
/1 OV (2) = ~V T (@), @ e M. (4.6.5)
According to Theorem 23.9 in [Vil09], for almost all ¢ € (0, 1),

d1 d'py 20 d'uf
@2 ar e VO I

. / (V61 (2), V(b)) il (d) — / (V6?1 (y), VB2, ) 12(dy).
M M

W3 (i, pi) = —(Vo'?,

The second term on the right hand side is equal to

- / (VORI ), VR T ) i (),

which is equal to, by (4.6.5),

/A {<//¥1’2<“v¢1’2<x>, Vo(u2, T (2))) pl (da).
Therefore

d1 L2, : 12(g
Wi lutof) = /w AN @), T @) = VR 0)) i (d),

which is dominated, using Cauchy-Schwarz inequality by

1/2

() ve2@laan) ™ ([ [vewd. g2 - 11 O vo 0| aan)

which is again dominated, using Lipschitz condition (4.6.1), by

kW3 (g 17)-

Now using Gronwall lemma, we complete the proof.



Chapter 5

Stochastic Parallel Transport and
()—Wiener Process

Generally, one needs to construct stochastic parallel translation if one wants to intrinsically construct Brown-
ian motion on a Riemannian manifold. Therefore, we will study stochastic parallel translation problem on the
Wasserstein space in this chapter. First, we review some differential calculus on the Wasserstein space. Let M
be a connected compact Riemannian manifold. For any gradient vector field Vi) on M with ¢ € C*°(M), we

consider the ordinary differential equation (ODE):

Then z — U(z) is a flow of diffeomorphisms on M. Let po € Py(M), and p; = (U;)wp. It is obvious that for
feCYM)andanyt € [0,1],

d

d
at J, f(@) pe(de) = — [ f(Us(z)) du(x) = /A (V £, Vi) e (daz).

dt Ju 1
We say that the intrinsic derivatives of {y;t € [0, 1]} at the time ¢ is V4. In order to make clearly different roles
played by V1, we will use notation V; as in [Lot06] when it is seen as a constant vector field on P (). Namely

we denote

dl,ut
dt

For a functionnal F' on Py(M), we say that F’ is derivable at y along Vi, if the directional derivative

=V, €T,, te0,1].

(Dv, F) (1) = {%F(M)} exists.

[t=0

77
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We say that the gradient VF (y) exists in in T, if for each ¢ € C*°(M), (Dy,, F)(u) exists and

Dy,

F(u) = (VF,Vy)r,. (5.0.1)

The main purpose of this work is to develop It6 stochastic calculus on P2 (M); to this end, we will need the
differential calculus of order 2. Following J. Lott [Lot06], the covariant derivative vvm Vi, associated to the

Levi-Civita connection on Py (M) is defined by

2(Vvy, Vio, Vi), = Dvy, (Vs Vi), + Dy, (Vi Vi )1, — Dy, (Vi Vi ),
+ (Vs Vaprs Vi D = (Vapas Vi, Vi D — (Viprs [Vips, Vg D) -

A few computation yields the formula (see [Lot06] and [DF21])

(Vv Vi Vs r, = / (V24s, Vbt © Vi) i, (5.0.2)
M

or

(Vv,, Vi) (1) = T (Vigy, Viba), (5.0.3)
where I, : L?>(M, TM;pu) — T, is the orthogonal projection.

For a functional F on Py(M), we say that the Hessian V2F(u) € T, ® T, exists if for any ¢; € C°(M),
ml VF exists and

(Vv, VF, V)1, = (V?F,Vy, @ Vy,)1,01,, forany ¢y € C®(M).

The following three examples of functionals on Py (M) will play the role of test functions.

Example 1. Let ¢ € C*(M) andF,, defined by

P = [ o) duto). (5.0.4)

We have J
{GFem} = [ (Vo). Vo) duta) = Vo Vi,

Therefore the gradient VF, of F, is equal to V,,. According to (5.0.2), we have

(V2F,, Vi, @ Vg )r, 0w, = /A (.Y © Vi) s, 1,0 € O ().
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Example 2. The entropy functional (1) = Ent(p) = [,, pIn(p) dx for dp = p da.

Let dpo = po(x) dz and define iy = (Uy)s 0. Then dpy, = pi(x) do with p, = po(U_;) K, where

K, = exp<f /Ot div(Vy)(U_y) ds).

‘We have .
K,(U,) = eXp(— /0 (qu;)(Ut_s)ds).

It follows that, if py € C* (M) with pg > 0,

(VEnt, Vi), == [ Avpde = [ (96,9 () po(d). (5.0.5)

Therefore at such a measure /i, the gradient VEnt of Ent exists and

VEnt(110) = Vin(po)-

The Hessian of Ent was first heuristically computed in [OV00], it is profoundly related to the Ricci curvature of
M. We have, by (5.0.5),

(VEnt, Vy)r,, = —/ A py da = —/ AY(Uy) po de.
M M

Taking the derivative with respect to ¢, at ¢ = 0, we get the following expression for the Lie derivative of order 2:

(Dv, Dy Bt) (i) = 5 (VBnt, Vo, = = [ (VAG(@). Vola)o(da). (508

Next example comes from the framework of particle system (see [LWZ21]).
Example 3.
Fln) = [ Weayu(donldy).
MxM
where W € C?(M x M).

Let py = (Up) g p0. We have

Fy(u) = / W) U)ol

Taking the derivative with respect to ¢, at t = 0, we get

d

G B = [ (VW) V@) + (FaW (@), Vo) ) udolds), (5.0.7)
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where V; denotes the partial gradient with respect to the first component, while V; for the second component.
Let ®(x, 1) = [, (W(m, y) + W(y, x)) u(dy); then we have

Dy, Fal) = [ (V(ap), Vo) nldo)

M

Therfore the gradient V F3 (1) exists and

vFi’)(N) = V<I>w (IJM(Z‘) = O(x, ).
We will compute the Hessian V2 F; of Fy. Denote

Then Dy, F5(p) = /M Ny W (z, y)p(dz)p(dy). Using (5.0.7), we have
X

Dy, Dy, Fs(u) = /
MxM

((V1W (), V(@) + (VaW (2,9), Vey) ) ulde)a(dy).
We have

(ViW (z,y), Vi (2)) = (VIW (2, 1), Vi (z) © Vi(z))

+

and

(VaW (z,y), Vi (y)) = (VW (2,y), Vi(y) © Vi (y))

Combing these two terms, we get

/ﬂ (VAW (0.9), T0la) + (V2 (229), V)l
_ / Hess,., W (Vi (x), Vb (y) )u(da) u(dy)
M x M
+ / (VAW (2, y) + VoW (y, 2), Ve Vi (2))u(dz) u(dy).
M x M

Note that

Vo (z, ) = /

(V1W(x, y) + Va2 W (y, x)) p(dy).
M
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By (5.0.2), we have
<vF3, vvw V¢> = /M<vq)($, /14)7 va(r)vw(x»ﬂ(d‘r)

Proposition 5.0.1. We have

(V2Fy, Vy @ V) = /N | Hess, ,IV(V(x). Vo(y)uldz)u(dy). (5.0.8)

In Chapter 4, some elements of differential geometry of the Wassertein space Po(M) were revisited in order to
construct the parallel translation in an intrinsic way; namely, a vector field along a regular curve in Py (M) was
enlarged into a vector field defined on the whole space, so that the parallel translation was introduced as in the
classical differential geometry. We have to note that the equation for parallel translations was stated in [Lot06],
but no existence result was provided. In [AGO8], the authors considered regular curves {j:;t € [0, 1]} generated
by a flow of Lipschitz maps and proved the existence of parallel translations {V,; ¢t € [0, 1]} along such a regular
curve in L2. The method used in [AGO08] is extrinsic and solutions to Lott’s equation for parallel translations is in
a weak sense. In the paper [Lot17], Lott proposed an intrinsic construction for parallel translation along geodesics
in Po(M), also a weak result of existence was obtained. To our knowledge, the existence of strong solutions to

Lott’s equation remains unsolved.

In this chapter, we will consider stochastic regular curves in Py(M), which are generated by stochastic flows of
diffeomorphisms; the main purpose is to construct stochastic parallel translations along them. The involvement of
the Brownian motion arises a basic difficulty, that is, the path of diffusion process is only Holder of exponent less
than 1/2: the method in [AG08] does not work. On the other hand, the limit theorem developed in [Bis81,Mal97,
IW81] provides a powerful tool in stochastic analysis on Riemannian manifolds, we will do some tentatives in this
direction. Let’s now explain a bit the content of this chapter. In section 5.1, we first state main results obtained in
the literature. Since the orthogonal projection plays a fundamental role in our work, we will make a brief study
on it: a representation formula is obtained, and its evolution along an absolutely continuous curve in Po(M) is
studied. In Section 5.2, we will establish an intrinsic formalism for It stochastic calculus on Po(M): 1t formula
is proved throughout three functionals; it takes the form as on a Riemannian manifold, much simpler than those
previously obtained in [BLPR17, Wan21]; stochastic differential equations on Py(M) with a finite number of
Brownian motions are also considered. Section 5.3 is devoted to find, in more or less formal way, a suitable weak
form and a strong form of stochastic partial differential equations for parallel translations along stochastic regular
curves in Po(M); concerning the strong solution, the preservation of norms is proved. The purpose of Section 5.4
is to introduce an infinite numbers of noises in order to construct nondegenerated diffusion processes in Po(M);
to this end, we will use eigenfunctions of the Laplace operator on M. Finally, in Section 6, we deal with the case
of Py (T), the Wasserstein space over the torus: we prove the existence of strong solutions to J. Lott’s equation for
parallel translations, as well as the existence of strong stochastic parallel translations.
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5.1 Regular curves and parallel translations on P, (/)

Let’s first show the state of art for parallel translations in the Wasserstein space Py (M). Let {¢;; ¢ € [0, 1]} be an
absolutely continuous curve in Py (M) and {Y3; ¢ € [0, 1]} a family of vector fields along {¢;; ¢ € [0, 1]}, that is
Y: € T,,. Suppose there are smooth functions (¢, x) — ®,(z) and (¢, z) — U;(z) such that

dICt
— =V Y =W
dt Dy t )

Lott obtained formally in [Lot06] that if {Y;; ¢ € [0, 1]} is parallel along {c;; t € [0, 1]}, then {V¥y; ¢ € [0,1]}
is a solution to the following linear partial differential equation:

d

VU 1L, (thv\pt) -0, (5.1.1)

where 11, is the orthogonal projection to T',. Up to now, only two classes of absolutely continuous curves have
been considered in the literature: regular curves generated by a flow of Lipschitz maps in [AGO08], geodesics of
Py(M) in [Lot17].

To introduce regular curves, we consider the flow of diffeomorphisms defined by the following ODE

dX, s =Vo(t, Xy s)dt, t>s Xs(x) ==,

where (t,x) — ¢(t, x) is a smooth enough function. Let ¢; = (X;,0)uco With deo(x) = po dz and py > 0. The
following result mimics section 5 in [AGOS8] and was proved in [DF21].

Theorem 5.1.1. For any V¥, € L?(cy), there is a unique weak solution {V¥,,t € [0,1]} in the sense
that Vy, € T., and

1, (i 7 Vet =V
“\elo IS

(5.1.2)

holds in L?(c;) for almost all t € [0, 1], where . is the parallel translation along {s — X;s+,s € [0,¢]},
that is equivalent to say thatt — V¥, is absolutely continuous and

d

T /M<Vf7Wt>ct(dw) = /M<V2fvv¢(t, )@ V) e(da), feC®(M). (5.1.3)

Even in this case, the well-posedness of (5.1.1) is not yet established to our knowledge, the implication of (5.1.1)

as well as (5.1.2) to (5.1.3) is obvious. However, for the case of geodesics, it requires some investigation for
dim(M)

this implication, see [Lot17]. In [DF21], it was proved if for any ¢, ¥; € H*(M) with k > ——5— + 2, then

W, admits an extension (y, ) — W(u, z) defined on Po(M) x M such that for any p, ¥(p,-) € H*(M) and

(?V h(t) Vq,) (ct) = 0, that is the classical definition for parallel translation in differential geometry.
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Since the projection II,, : L?(M,TM;u) — T, is basically involved in our work, it will be useful to make a
study on it. Let du = p dx with a smooth density p > 0, recall that for a vector field ¢ on M,

div,.(¢) = div(¢) + (Vlog p, )

and for a function f € C?, £* f = div,,(V f) has the expression

LU =Af+(Viegp, V).

2/ dim(

It is well-known that £ has discrete spectrum of eigenvalue A ~ n M) Consider the equation, for a given

g such that [, g p(dx) =0,

Af+(Vlogp, V) =g.

By Shauder estimate for elliptic operators, if V log p is in C?, then for g € C'%?, the solution f to LV f = g is
in the class C'912“, For a regular vector field ¢ on M, by Hodge decomposition (see for example [Li09]), there
exists a function 8 and a vector field B of div,,(B) = 0 such that { = V3 + B; therefore div,,(¢) = £#(3) and

IL,(¢) = V (£4) 1 (div,.(Q))- (5.1.4)

We will get a representation formula for 11,,. Let T = e*~" be the semi-group associated to £/, then (L)~ =
;;OO TH ds and (5.1.4) becomes

“+oo
1,(¢) = i V T (div,,(¢)) ds. (5.1.5)

To insure the convergence in (5.1.5), we have to introduce a modified De Rham-Hodge operator [J* on differential
1-forms. As usual, for a vector field A on M, we denote by AP the associated differential form and for a differential
1-form w, we denote by w# the associated vector field. Define 6, (w) = —div,,(w#) and d, the dual operator of

exterior derivative d, that is

/ (dyo,w)pr dp :/ (o, dw) p2 dpa.
M

M

Let " = db,, + d;,d. Then the following commutation formula holds: d e f = 75" (df). Note now

D (df) = do,(df) = D(df) +ivv (df),

where we denote for a moment V' = log p and ivy denotes the inner product by VV. By Cartan formula:

Lyy =ivyd+ divy, we get
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ivv(df) = Lov(df) = Vov(df) + (V2V.df).
Therefore, ws = dT* f is a solution to the following heat equation:

dw
7; = —Dwt - <V2‘/, wt>.

m m

Let {A1,..., Ay} be a family of vector fields on M such that Z 5,2% = A and Z Va,A; =0. Let Y, be the
i=1 i=1

solution to the following SDE on M

AYP =2 Y Ai(YP) 0 dW + Vlog(p) (YY) ds, (5.1.6)
i=1
where s — (W2,...,W!™) is a standard Brownian motion on a probability space (2,?). Then T! f(z) =
E(f(Y/(x))). Let
Ric* = Ric — V*(log p), (5.1.7)

and Q* be the resolvent defined by

Q¥
ds

It is well-known that the following representation formula holds

= Ric}, QV.

(e 2 df, 4) = B((dF(Y0), @A), A€ x(M),

Proposition 5.1.2. We have
+oo
1,,(¢) = /O E((Qw)" (Vdiv(Q)yz) ) ds. (5.1.8)

Hence the dependence 1 — I1,, is good in the class of probability measures having C? positive density.

Theorem 5.1.3. For a smooth vector field ¢ on M, t — 1I1.,(¢) is absolutely continuous and

d

e (©) = —Te, (£7(6(8,) (¢ ~ 1L (€)) ). (5.1.9)

Proof. The density p; of ¢; with respect to ¢y admits the expression (see [Cru83, Kun97])

pt(z) = exp [/Ot dive, (Vo) (s, Xs(2)) ds]
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Under the condition that the density pg of ¢y is in class C3, it is easy to see that t — log p; is continuous
from [0,1] to C%(M). Now replacing Vlog p by Vlogp; in (5.1.6) and using the dependence of SDE,
combining with definition Ric® in (5.1.7), we get the absolute continuity of ¢ — II.,(¢). We will use the
following equation for p,

%pt = —div,, (V(t,)ps = =L (H(8,)) ps- (5.1.10)
Let f € C*°(M), we have /M(Vf, ¢)ei(dx) = /M<Vf, IT., () ct(dx) or

/ (V,€) pr coldar) = / (V1. (O)) pr colda).
M M

Taking the derivative with respect to ¢ and using (5.1.10), we get

- / (V1.0) Lo ({2, ))pe colda) = — / (V£ L, (0)) £ ((2, ))pe co(d)
M M
/ (V1 11, (0) pr o).
M

The result (5.1.9) follows.

Proposition 5.1.4. Let ¢ be a smooth vector field on M, {¥; t € [0,1]} be a parallel translation along
{et; t €[0,1]} given in Theorem 5.1.1, then

ddt <C V\ij Ct dl’ ECt (g) V\I/f> Ct(dI)
M

" M (Voo (e (Q)), V) er(dw),

(5.1.11)
where 1. (¢) = ¢ — 11, (¢).

Proof. Let I, = / (I1.,(¢), VW) ci(dx). We have, for e > 0,
M

Tiye Z/ (e, () VWiie) crye(da) Z/ (1o My, (Q)y 72 VW) (X ) crlda).
M M

Then
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Iive — It =/M<T§1Hct+s (O Xiger) = e, (O)(@), 7'V o(Xisen)) cr(da)

+/ (e, (), 72" V¥ e(Xigen) — VU(2)) cr(da) = T+ J2
M

respectively. As ¢ — 0, 7'V, (X;4c) cOnverges to V¥, (z) and the term J2/e converges to 0
according to (5.1.2). For JZ, note that

(7 M (O (K) ~ T ()
1

= 2 (7 e (OKape) = 72 M (O X)) + = (72 T (O(Xipe) = T Q)

As ¢ — 0, the last term converges to V. 11, (¢), while

1 d
tim = (ILe,.. () (Xtse) = e, () (Xerei) ) = 1L, (O)2).
Now using (5.1.9), we obtain (5.1.11). O

5.2 It6 stochastic calculus on Py(M)

We will introduce stochastic regular curves {u; ¢ € [0,1]} on Py(M) and establish Itd formula for them. Let
{X},s,t > s} be astochastic flow of diffeomorphisms defined by the following Stratanovich stochastic differential
equation (SDE) on M:

N
dX; o =Y Voi(t, Xy ) 0dBf, t>s7 X,.(x) =z, (5.2.1)
=0
where dBY = dt, (B},..., BY) is a Standard Brownian motion on R" and (t,2) — ¢;(t, ) is smooth enough

fori =0,1,...,N. Let py(w) = (X¢,0) 4. Then for F,(1) = [, pdp with o € C*(M), t — F,(j) is a real
valued semi-martingale. The It differential od; F,(;) admits the expression:

N

ody Fip(put) = dt/ P(Xt0) dp = Z(/

(V, Vi(t, ) due) o dB;
M o WM

N
= Z<Vs@7 V¢i(t:')>Tut O dBZ
=0
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Definition 5.2.1. We will say that the intrinsic Ité stochastic differential of y,, denoted by od? 11;, admits
the following expression

N
odjjy =Y Vi) ©dBj. (5.2.2)
i=0

Then using this notation, od; Ff(j;) can be rewritten in the form:

ody F<p(,uzt) = <vFapa Od{:ut>T

wt?

the last term can be symbolically read as inner product in T',,,. We will establish It6 formula for such a stochastic
process {p¢; t € [0,1]} on Po(M). The It6 form of SDE (5.2.1) is the following

N N
o1
AXps = 3 Vil Xo) dB; + 5 37 (Vo) Vil ) ) (Xes) di. (5.2.3)
=0 i=1

First of all, we consider the functional Fi,(y1) = [,, ¢ du. By Itd formula,

N
(Vi Vit D) (Xuo) B} + 5 (Y0, Vg 0.y Voi(t, )} (Xio) d

N
dip(Xr0) = Y
1=0 =1
1 N
2
+3 ;W 0, Vilt,) @ Vebi(t,))(Xr0) dt.
Then
N ‘ 1 N
AIEDY| /M<w, Voi(t, )y dus) dBj + 5 ( /N L Lyepdp) di. (524
=0 =1

According to [Lot06] or (5.0.2) or (5.0.3), we have

/MW%Vwi(t,)V@(t, N dpe = (VFp, Vv, 19V (t.)) Ty, »

and

/MWQ% Vil(t,) @ Vi(t,-)) due = (V2 Fu, Vi,(t,) @ Vis,(2,)) Ty, @T,, -
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In other words,
N R T
A Fy(pe) =Y (VFy, Vi), dBi + 3 > (VF,, Vv, (69 V(o)) T, dt
1=0 =1
1Sh
+ 5 Z<V2F¢7 V%(t,-) ® V¢i(tv‘)>Tw®Tw dt.
i=1
Remark that
DV%(L-)DV%(L-)F@ = <vF<P7 vV¢i(ta')V¢i(t7')>Tut + <v2F¢’ V¢qz(f/,') ® V¢i(t7')>T,Lt®TM~
So we get the following Itd formula:
N o N A _
th@(lu't) = Z<VFA,0’ V¢i(t,')>Tut dB; + 9 Z(Dvm(,,,.)DV%(L.)F@)(MO dt.
=0 i=1
Proposition 5.2.2. Let I' be a polynomial onPy(M), we have
N o N B
A F () =Y (VE Vo), dB+5 ) (Dv, Dy, o, F)ue) dt. (5.2.5)
1=0 =1

Proof. For two functionals F' and G satisfying Formula (5.2.5), by Ité formula,
di(FG) () = diF(pe) G(pe) + F(pe) deG(pe) + diF(p) - deG (). Notice that

DVm(t,-)DVm(t,-)(FG) = GDVm(t,-)DVm(t,-)F + FDVmu,»DVm(t,-)G +2(VF, V¢z‘(t7-)> ) <VG7V¢i(t1‘)>7

N

and d;F(u) - diG(pg) = Z(?F, Viiit,)) - (VG, Vy,1.) dt; so Formula (5.2.5) holds true for FG. A

=1

polynomial F' on Po(M) is a finite sum of F,,, ---F,, , therefore Formula (5.2.5) remains true. We

complete the proof.

O

Secondly we deal with the entropy functional in example 3, which is defined for probability measures having

positive density. Note that if du(x) = p(x) dz with p > 0, the measure p; induced by SDE (5.2.3) has a density

p¢ > 0 with respect to p.

Proposition 5.2.3. The stochastic process {p;, t > 0} satisfies the following SPDE:

N N
dpr = — > AV, (i Ve4(t, ) dB} + % > div,, (diva (0 Vi(t, ) Vit ).

=0 i=1

(5.2.6)
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Proof. . We have

/ (V. Voult, ) dus = / (V. pVéilt,)) dp
M M
= —/ @ div, (0 Vilt,-)) du.
M

In the same way, we have

L5g(t,)Lv i (t,)P Dbt = / @div,, (div, (p: V5 (t,-))Ves(t,-)) du.
M M

Using F(p:) = [, ¢ pe dand (5.2.4), combined with above equalities, we get (5.2.6). O

Proposition 5.2.4. We have

N N
_ . 1 _ _
thnt(ut) = E <VEI’1t, V¢i(t7')>T;4t de + 5 E (D‘/mu,.)DV%({,.)Ent)(“t) dt. (527)
i=0 i=1

Proof. For the functional Ent, we have to take the density p, of u; with respect to the Riemannian
measure dz; in this case, we use div for the usual divergence. Therefore p; satisfies the relation

N
dpt = — ZdiV(Ptvg‘bi( ) dBZ Zle d|V Ptv¢z( ))v¢i(ta ))

=0

2
It follows that dp; - dp; = Z[dw peVilt, ))] . By Ito formula, we have
=1

N
11 . .
di(penp) = (Inp; + 1)dp; + §*dpt ~dpy = —(Inpy +1) Y _ div(p;Vei(t,-)) dB}
t

=0
N (5.2.8)

(Inp + 1 Zdlv (div(p Vs (t, ) Vei(t, ) dt + %Z[div(ptwi(t,.))rdt.

i=1 ti=1

I\D\H

We have

’ D div(pVen(t, ) do

/(lﬂpt+1)diV(diV(ptV¢,~(t,-))Vgi)i(t,-)) dx:_/ Vo, Vilt, )
M M

Then integrating over M with respect to dx the sum of last two terms in (5.2.8), we get the quantity
which is equal to
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/M zL [div(pe Vit )) (div(peVei(t, ) = (Vor, Vult, ) ) | da

- / —dlv<pth< ) pebu(t, ) do = / (Vou(t, ), VAG(t, ) prd,
JV[ M

which is (DVW,,,.)DVM,,,.)Ent)(ut) by (5.0.6). For the martingale term, we note that

. \Y%
7/ (Inpy + 1)div(p:Vi(t, ) de = / (— Pt ,Voi(t,))) p dz,
M M Pt
which is equal to (VEnt, Vi, (t,))T,, according to (5.0.5). Therefore we get Equality (5.2.7). O

Proposition 5.2.5. [t6 formula (5.2.5) remains true for the functional F5 considered in Section 1, that
is, F3(1) = [yrsps W, y)p(dz)p(dy).

Definition 5.2.6. Let {u:, t > 0} be a stochastic process on Po(M); we say that it solves the following
SDE :

odj iy = qub,(t () 0dBi, o = p. (5.2.9)
i=0

if for each F' of three functionals considered in Section 1, the following Ité formula holds:

N N
diF () = (VF, V), dB} + = ZDw ey DV o F)(pe) dt.
1=0 =1

In what follows, we will add an interesting drift term to SDE (5.2.9). For the sake of simplicity, we sup-
pose that W(z,y) = W(y,x) in Example 3; recall that ®(x,p) = / W(z,y)p(dy), then VO(z,pn) =
M

2 / (ViW)(z,y)p(dy), where V4 denotes the partial gradient with respect to the first component. We have
M

V20 (x,p) = 2 y VIW (2, y)p(dy).

It is obvious that (z, u) — V®(x, pt) is continuous and sup |V2®(x, 1)|? < +oo. Let w € C(u,v),
(z,u)EM XP2 (M)
we have

V() — V() =2( [ W autdy - [ Wi a)

/JVIXA{<VIW(x y) = VaW(z, ))W(dy,dz).
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Hence

V(2. p) — VB(z,v)| < 2 / V2V W | oodar (3, 2) (dy, d2)
Mx (5.2.10)

<|IVaViW oo Wa(p, v).

We prove that 1 — V F3(p) satisfies the Lipschitz condition introduced in [DF21].

Stochastic Mckean-Vlasov equations have been recently considered in [Wan21, BLPR17], the following
proposition is highly related to [Wan21].

Proposition 5.2.7. There is a solution (X,, u;) to the following Mckean-Vlasov SDE:

N
dXy = Z Voi(Xi) 0 dBf + VO(Xy, pe) dt, py = (X¢) e, (5.2.11)
i=0
where ®(z,p) = | W(z,y)u(dy).

M

Proof. Let (U):>0 be the stochastic flow associated to the folllowing SDE

N
dU; = " V6i(Us) 0 dB}.
=0

Define the stochastic measure dependent vector fields Vi(w, z, 1) on M by

Vilw, 2, ) = (U7 (w,), Ve(x, (Us) ) = (U7 ) (w, Us()) VE (Us(2), (Up) 1),

where the prime denotes the differential with respect to . Since the manifold M is
compact, we have

Ve(w, 2, 1) = Vi(w, 2,0)] < [[(U7Y [l 1@ (Us(2), (Ur) gp) — @(Ue(), (Ue) )]

Now according to (5.2.10), we get

Velw, @, 1) = Viw, 2, )] < [|(U7 ) loo V2V 1W[loo Wa (U0 12, (Ue) ),

which is dominated by

10T e IV2ViW oo [1Uflloo Wa(p, v).

So there is a unique solution (Y3, ;) to
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d
SV = ViYoo), v = (Vi)

Let X; = U,(Y;). By It6-Ventzell formula,

N
dX; =) Vei(Ui(V2)) 0 dB] + U;(Yy) Vi(Yi, 1),
=0

the last term in above equality is

V‘b(f(t, (Ut)#yt) .

Note that (X;)xp = (U)x (Yi)gp = (Up)gvy; therefore (X;, (Uy)41;) is a solution to Equation (5.2.11).
For the uniqueness of solutions, see [Wan21].
O

Theorem 5.2.8. Let F; be the functional in Example 3, and du. = p dx with p > 0 in C*; then there is a
unique solution {yu; t > 0} to the following SDE on Py (M):

N
odfpy =Y Vo, () o dBj + VFs(pe) dt, po = pu. (5.2.12)
1=0

Proof. Let (X, 1) be the unique solution to the Mckean-Vlasov SDE (5.2.11), then for any polynomial
F on Py(M), we have

N N
- o1 _ -
dF(u) = > (VF, V)1, dBi + 3 > (Dv,,Dv,, F)(u) dt + (VF,VFs),, dt.
=0 i=1
We check also this is true for two other examples in Section 1. The uniqueness comes from Lipschitz
continuity of coefficients in (5.2.12).

O
5.3 Towards stochastic parallel translations in Py(1/)
For the reason of simplicity, we consider the following SDE on M
N
dX; = > V¢i(Xy)0dB, Xo(x)=x, (5.3.1)

=0
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where {¢g, ¢1,...,¢n} are smooth enough and independent of the time ¢. We know that SDE (5.3.1) defines a
stochastic flow of C”-diffeomorphisms. The main purpose of this scetion is to deal with the stochastic parallel
translation along stochastic regular curves {y; t > 0} in Py(M) defined by

N
odi{p =Y Vi (i) 0dB, pio = - (5.3.2)
1=0

For almost surely w, t — u;(w, dz) is not a regular curve of Py (M) in the sense of [AGO8]. In fact, denoting

D(t,s) =Lip(X; 0 X' —1d),

then the condition

D2
im 2-08)
t—s ‘t — 3|
. . . . . . |Bt - Bs|2 .
in [AGO08] fails to hold, since for a Brownian motion { B; }, }Hn ti\ = 0. Therefore the method in [AGO08]

does not work directly for stochastic regular curved defined by (5.3.2). On the other hand, divers limit theorems
from ODE to SDE provide powerful tools in stochastic analysis, see for example [Bis81,Mal97,IW81]. In what
follows, we will show what happens in this direction.

We consider the regularized Brownian motion {B}’,t € [0,1]} which is piecewise linear. More precisely, for

n > 1, denote

2t 241
on rn on ?

t, = and B,(t) = 2" (Btf{ - By,),

where [z] denotes the integral part of real number x. Let X[* be the solution to the ODE

N
dX7 = V(X)) Bi(t)dt, X{(z) = . (5.3.3)
i=0
It is well-known ( [Bis81, Mal97,IW81]) that for almost surely w € Q, as n — +oo, X}"(x,w) converges to
X¢(z,w) in a C” topology uniformly with respect to ¢ € [0, 1]. Let u be a probability measure on M having a
positive density p > 0 in C2, put

py (W) = (X7 () e

It is clear that for almost surely w, as n — oo, uy* converges to y; uniformly in ¢ € [0,1]. By Lemma 4.3.1 in
[Kun97], the measure (X, ') relative to 1 admits a positive density K;(z), which has the following expression,
for almost surely w, allt > Oand z € M:



Chapter 5: Stochastic Parallel Transport and QQ— Wiener Process 94

Ky (z) = exp [Z / t div, (V) (X, (2)) 0 dB;} . (5.3.4)

i=0 70

The density p; of (X;)4u relative to p is given by

1

pe(x) = m

The SDE for writing X, ! is much more complicated than ODE. On the other hand, for a C'-diffeomorphism
E: M — M, the differential d=(x) sends T, M into Tx,) M, its dual map (d=(x))* sends Tz, M into T, M.
Denoting o=(x) = (d=(z))* o d=E(z), the density k of Z4 u relative to dz has the expression

[ (5.3.5)
det(o=())
Let pi! = dd%; then, according to above formula,
P = =0 (X]) 7! 1 = (AX](2))" (X (2)). (5.3.6)
det(atyn)

For the convergence of k', we prepare the following lemma

Lemma 5.3.1. Let =, and = be C' -diffeomorphism of M such that =,, and V=,, converge to = and V=
uniformly as n — +oo, then 2,71 converges to == uniformly as n — +oc.

Proof. Let v be a geodesic curve which connects =, (2. (z)) and =, (7 (z)). Let 3(s) = 2, (v(s));
then 5 connects =, !(z) and =~ (z). We have

1(s) =En(3(s)), 7 (s) = d=a(3(5)) 7 (s)-
There is a constant ¢ > 0 such that (o=(2)u, u)r, v > clulF, 5, for all z € M. Since
lim sup |oz, () —o=(x)|=0
Jim sup [0z, (2) - o=(2)]
for big enough n,
(o=, (@)u,w)r,mr > clulT, 1 /2,

which implies that |d=,, (F( s)| > \[| s)|. It follows that

/Ows)msz\f/w s >[5 dur (270,57 ).
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Hence
—=—1 ——1 2 —=/=—1 = (=—1 2 - -
da (2,1 (2), 271 (@) <4/ = du (B(ET (), (Ba(E7H=)) < (/= sup dur (E(y), En(y))-
c C yeM
The result follows.
O
Proposition 5.3.2. Almost surely,
lim su " (x) — pe(x)] = 0. (5.3.7)
n_ﬁoo(t’x)e[og]wlpt( ) — pe()]
Furthermore
lim sup |V 1og(pi'(x)) — Viog(pi(x))| = 0. (5.3.8)

n=+00 (¢ 2)€[0,1]x M

Proof. By formula (5.3.6) and above Lemma, we get the result (5.3.7). For (5.3.8), we note that for a
diffeomorphism =, V=~! = (VE(Efl))_l. Taking the derivative with respect to « in formula (5.3.6), we
have

k

m) o (X)) (VX;L o (Xp)—l)’l,

kazv(

Again by Lemma 5.3.1, we get (5.3.8). O
Now by Theorem 5.1.1, for any V¥, € L?(1) given, there is a unique

V\II?(W7 ) S TH;L(W)7

which is the parallel translation along {u} (w);t € [0, 1]}. Then for almost w € ,n > 1,

[ 199 0,0) . da) = [ [900(0) P ),
M M

or using the density p}’ of u},
[ 19 )P i) do = [ 9@ a(da). (5.3.9)
M M
This result impies that for each (¢,w) € [0, 1] x €, the sequence {VU} (-, ) \/pF(-,w); n > 1} is bounded in

L? by ||[VWql|12(,,). There is a limit point, but unfortunately, the subsequence is dependent of (¢,w). We have to

consider the integration in the space [0, 1] x € x M. For any n > 1,
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Lol e o ot n)do] P = [ 9w i

there exists then a Random time-dependent vector field v (w, ) satisfying
/ [[ ot a)de] de Plaw) < [ (Vo) ()
[0,1]xQ /M M

such that, up to a subsequence, the sequence {VU7 (w, z) v/pf(w,x);n > 1} converges weakly to v, (w, ) in
L?. We note that for any bounded Ramdon variable ¢ :  — R and any bounded function « : [0, 1] — R,

/[0,1]x9 [/M IV (@) pe dx} a(t)€(w) dt P(dw) < +oo.

Therefore

/ {/ <Vf(ff),vt(w7m)>f Ptdfv} (t)€(w) dt P(dw)

[0,1]xQ M @ P(dw

= lim {/ (Vf(z), V) Vi (w, z) \/p»tdx} a(t)é(w) dt P(dw)
0,1]xQ-J M w W

n—-+oo

n—-+oo

= lim [ / (Vf(z), V) p(w, z) dx] a(t)é(w) dt Pdw),
0,1]xQ ~J/ M

Since vy(w, ) p; */* € L2(p¢) for almost surely (£,w), there exists Uy (w,-) € H'(u;) such that for any f €
C2 (M),

[ V@), wlena) o Pputde) = [ (95(a), i) ().
M M
We obtain the following result:

Proposition 5.3.3. There exists VV. such that / VT, (w, x)|2ut(da:)] dtP(dw) is finite and

[0,1]><Q[ M

/ [/ (VI (@), V&) pu(w, dx)] a(t)é(w) dt P(dw)
T (5.3.10)
=i [ [ 950, 997 )] aele) de Pla)

n——+0oo [0,1]x9

This convergence is too weak to yield interesting informations on {¥; ¢ € [0, 1]}.
In what follows, we will try to get a weak form of SPDE for stochastic parallel translations.

Let f € C?(M); by (5.1.3), for any n > 1, almost surely w,
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d N »
it [, (7T ) = [ (973 VoB 0 @ V)

N (5.3.11)
-3 ( | (V5o V1 VU i) B o)

For a C'* vector field ¢ on M, set

22w, t) = /M<<,W?> 2 ().

By (5.1.11), we have

4] v =Y ([
N

=S ([ e om €. vuu ) B,

=0

(V (I (0)), Voi © V)i (de) ) By

or for s < t,

N t )
20-26 =3 [ ([ (V). Vore VU ae) By dr
=07 WM (5.3.12)

N t
- [ (] @m0, v ) Brar
i=0 7S M
Therefore there is a constant C' > 0 independent of n such that

E(|22(t) — 22(s)IP) < Ot — s[P/.
By Kolmogorov’s modification theorem, there exist M,, € L”(€2), bounded in LP(£) such that

|28 (w,t) — 28 (w, 8)| < My (w) [t —s]%,  a >0, (5.3.13)

Remark that
HZ?HOO < HCHOO ||V\I,0HL2(M)‘ (5-3-14)
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For simplicity, denote for the moment, ; = Vg, (V f). Consider the following family of R2N+2 yalued stochas-

tic process

t = AFt) = (2%5(8), 28 (1), -+, 22, (8), BY(t), - , BN (1)).

Let R > 0, define K = {z € C([0,1],R*N*2); ||2(0)|| < R, [|2(t)—2(s)|| < R |t—s|*}. By Ascoli theorem,
K is a compact subset of C([0, 1], R*N*2). Let v} be the law of w — A%}(w, -) in C([0, 1], R*N*2). Then

vi(KR) < vi([l2(0)]| > R) +vi ({3t # 5, []2(t) — 2(s)|| > R|t — 5|*}).

But

2N+2

vE({3t# s, |l2() — 2(s)[| > BRIt — s[*}) Y P({3t # s, [z, (t) — 2¢,(s)|| > Rt — s})
=1
ccvptan, 2y < S0 L

for a constant C' > 0 independent of n. Therefore the family {V}L; n > 1} is tight. Up to a subsequence,
{v}; n > 1} converges weakly to a probability measure v on C([0, 1], R*N*2),

Now by Skorohod representation theorem, there is a probability space (£2¢,IP) and a sequence of Random vari-
ables A : Qp — C([0,1], R*N*2) and Ay : Q; — C([0, 1], R?V+2) such that the law of A" is v}, that of A is
vy, and

A}L converges almost surely to A f, asm — +oo.

Furthermore let

and

Af(t) = (va(t)’ZCO(t)7"' ’ZCN(t)vél(t)"" 7BN(t))'

As marginal laws, (2% ¢ (t), 22, (t), -, 2¢ (t)) and (Z& ((t), Z2 (t), - , ZL, (t)) have the same law, and B; =
(Bl(t), .., BN (t)) is a RN -valued standard Brownian motion on (€25, Py). By (5.3.11), we have, for s < ¢,
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or

We can express the left hand side of above equality as a function J (A;}) of A%. Let G : R — R, be the bounded
continuous function defined by G(§) = |¢|> A M. We have

B(G(28 (1)~ 224(5) Z / 22 (r) Bi(r) dr)
:E(G(z%f( — 2y (s Z/ 20 (T (T dT))zO.

Now letting n — +o0,

Z85(t) — Z84(s) = Zvys(t) — Zvy(s),

and
N t . . N t R .
3 / Ze(r) Bi(r)dr —» 3 / Ze(7) 0 dBL.
i=07% i=07s

Therefore we obtain

Zyy(t) = Zvy(s Z/ Z¢,(T) o dBL  almost surely.

Using the separability of C2?(M) and diagonal method, we can get the common subsequence for all f € C?(M).
We state the above result as follows

Theorem 5.3.4. There is a probability space (2, P) such that there is a subsequence n, for each of
them and each f € C%(M), the C(]0,1],RN*2) valued Random variable

(Z%f’ Z%vm)(vf)’ o ’Z%vm\z(vf))’

has a version A’} defined on (Q, ), says,

A = (Zvava, @ Ly ()

which converges almost surely to
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A= (291 299,y (V1) s L0y (V)

Furthermore for s < t,

Zyp(t) = Zvs(s Z/ va (v (1) odBL almost surely.

Now we look for the strong form of SPDE for stochastic parallel translations. To this end, we suppose that there
is a continuous process {V\I/t eT,;tel0, 1]} such that, up to a subsequence, almost surely, for any C'* vector
field ¢ on M,

/M<<<x>,vw<x>>u?<dx>

converge uniformly in ¢ € [0, 1], as n — 400, to

/ (C(z), VW(2)) pe(dex).
M

In the spirit of Wong-Zakai approximation, the term

N o
> [ ([ 195a(en. vum) ridn)) Biie) dr

converges, as n — 400, to the following Stratanovich stochastic integral:

Z/ / (Vve: (VS), V >M7(dx)) o dB'(T).

We have to compute the Itd stochastic contraction:

7Zdt/ (/ (Vve, (V) V‘I/t>,ut(d$)) -dB'(t).

Using formally the equality (5.1.11), we have

N
d /M<vw (VF), V) pu(de) Z( / (L (BT, (V. (V1)), VO puldr) ) o dBI (1)

ﬁ:( / (Vvo, I, (Vo (V1)) V\Iftm(da:)) o dB’(t).
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Let’s introduce the following notation:

N
R[ - % Z Hut (VV@H}M (vvdh' (Vf)>), (531 5)
i=1
and N
S = 5 (L7 @)L, (Voo (V). (53.16)
i=1

The term R{ has an intrinsic expression using covariant derivatives on Py (M), due to (5.0.3), that is,

N
1 _ _
Rl =23 (Vv Vv, Vi) (o). (5.3.17)

i=1

Hence for any f € C3(M), we obtain the following It6 form of weak SPDE,

/ (V. V) pr(der) = / (V. Vo) ju(da)
M M

* i /Ot ( / Vs, (VF), Vo) pur(de) ) dB'(7) (5.3.18)

(
M
# [ (] (ol B+ 8T, V0 ydn)) i

or more intrinsically

N ot t
Vi Vo, = (Vi Vaghn, + 3 [ (90 ViVam,, B0+ [ (90, V5 Ve, dr
=t (5.3.19)

N t t
1 L
+ 5 E / <Vv¢i VV%‘ Vf, V\IJT>T“T dr + / <S7].c7 V\PT>T“T dr.
i=170 0

The last term in above equality is novel. If furthermore, for t € [0, 1], z — VW,(x) is regular enough, we have

the following strong SPDE:

Theorem 5.3.5. Let {VV,; t € [0,1]} be a solution to (5.3.18) such that z — V,(x) is C3, then

N
4V, = = 1, (Vyy, V) dB; +11,, (—vmv\yt +RY 4 sf“f«) dt, (5.3.20)

i=1

or in Stratanovich form:
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N
od, VU, = — Z I, (Vve, VU,) 0 dB, (5.3.21)
1=0
or intrinsically
N .
ody Vg, = = Vv, Va, 0dB]. (5.3.22)

=0

Proof. Let p; = % be the density of p, with respect to the initial measure p, then {p;; t € [0,1]}
satisfies the following SPDE:

N
odypy = — Z(divm (Vi) pt) odB!. (5.3.23)

1=0
Using p;, the left hand side of (5.3.18) is equal to [, (Vf(x), V¥(z)) p: p(dx), so the Stratanovich
stochastic differential of this term is

/ (V1 (), 0, VT, (1)) pr u(dlr) + / (VF(2), V(@) o dupe p(da) = T2 (t) + (1)
M M

respectively. By (5.3.23),

N

Talt) = = S| [ (950), T00)) v (V0 )] o 5}

=0

N
=3[ (9009 F@). VW) +(VF(@), Vg, V() uld)] o B

1=0
In Stratanovich form, the right hand side of (5.3.18) is
N .
Z{/MWWWW’ V(2))) ut(dx)} o dB;.
=0

Combing these equalities, we obtain, for any f € C?(M),

N
[ (5@, o)) () + > | (V5@ Vo6, 99(@))] o aB] =0,

or (5.3.21) holds. Now transforming Stratanovich stochastic calculus to It6 stochastic calculus yields
the equation (5.3.20). O
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Proposition 5.3.6. For such a solution to (5.3.20), we have ||Vy,||t,, = [|Vu,||T, forallt € [0,1].

et

Proof. Using (5.3.23), we have formally,

dt/ (Vy, V) py(do) :dt/ (VUy, V) py pu(d)
M M

N
:2/ (VU 0ds V) py pu(de) —Z/ (VU,, V) div,, (V) pi p(dz) o dB;
M oYM

N
= 2/ (VI 0dVV; + Y Vg,V 0 dBj) py(dz) =0
M i=0

due to (5.3.21). O

We will give a rigorous proof of above result in the case where M = T, a d-dimensional torus. First we recall
the following Kunita-It6-Wenzell formula [dLHLT20]:

Theorem 5.3.7. Lett — K(t,-) € C%(T¢) be a continuous adapted semimartingale, given by

t N oot
K(t,x):K(O,x)—}—/O G(s,m)ds—l—Z/o H;(s,x)dBI, te€0,T]
j=1

where (B}, ..., BY) is a standard Brownian motion on RY, and G € L'([0, T], C*(T%)),

H € L*([0,T],C?(T%)) are adapted semimartingales. Let X, be the solution of the following Stratanovich
SDE:

N
dXy = b(t, Xe)dt + > &(t, Xy)0dB], Xo(x)=x

j=1

which is assumed to be a C*! diffeomorphism, b(t,-) € WH1(T4 R?) , &;(¢t,-) € C*(T4,RY) and

T N N
| [t x@)+ 5306 Ve K@)l + Ll s Xu@)Plds <o,z e T
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Then the following formula holds:
t N t _
K(t, Xi(x)) =K(0,x)+/ G(S,Xs(ar))ds+2/ Hj(s, Xs(x))dB{
0 =170
t N t )
+/ <VK,b>(s,XS(x))ds+Z/ (VK, &) (s, X(x))dB?
0 =170

1 N t N t
P> / (VITHEh & Xela + | ;.66 X (@)

Using this theorem, we can prove the conservation of norm.

Theorem 5.3.8. If {V,, ¢t € [0,1]} isa £* ([0,1] x Q,C3(T*)) solution of strong S.P.T equation (5.3.20),
then ¥, is a solution to weak S.P.T equation. Furthermore, fort¢ € [0,1] ,

/ V0 (d) = / V|2 u(dr). (5.3.24)

Proof. Let Fy(z) = (Vf,V¥,(z)) . We have
t
Fi(@) =Fo(a) + [ (VAIL, (~vo U+ BY + 52)) (@)ds

N to ‘
- /0 (V£ (Ve VI.))(x)dBI.
=1

Let L be the infinitesimal generator corresponding to diffusion (5.3.1), which satisfies, for Vf € C2,
N

Lf = 5 S (V(V£,V,), Vo)

=1

Then, by Kunita-Ito-Wenzell formula,
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¢ 1 1
Ft(Xt) = Fo(l‘) +/ <Vf7 Hﬂs (—V2\I/SV¢0 + iR?g + 2S;Ilg>> (Xb)dS
0

—Z / VAL, (V20,96,)) (X)dB] + [ (VF, Voo) (X,)ds
+,Z /0 (VP Vo)) (X)dB]+ [ LE(X,)ds

-3 [T, (705 ) e

Denote

= (Vr,, (VR0 + TR 155 ) (0) + (VR Vo) ()

+LF,(Xs) — (V(V [, 1, (V*¥,Ve;)),Ve;) (X
N N
M, == (Vf 1, (VU V) (Xs) + Y (VF, Vé;) (Xo).
Jj=1

Jj=1

Since ¥, € £ ([0,1] x Q,C3(T?)) , ¢; € C*,
I{VFs, Vo) + LF|| < Kq[[¥sl[cs.

The boundedness of the left two terms in A, need a uniform estimate on II,, (V2¥,V¢;). In fact, it is
known that p; € C? and p;, Vp; are continuous functions on [0, 1] x T¢ for almost surely w. Thus, for the
elliptic operators defined by L, u = p;Au + (Vp,, Vu), we have the uniform bound on the coefficients:

in_p>A(w); 0ep} < A
o, P (w) o, {p: 10201} < Alw).

For the unique classical solution v of elliptic equation L,,u = f, we have, by Shauder estimate,
llulle2 < Cu(d, A, A)([lulle + [ flle)-
On the other hand, it can be proved that for Vv € C*(T%R?), m < k — 1,

[IV-(oeV)llom < Ca(A M|V ]|
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Therefore, by (5.1.4),
T, (V20:V ;) ller = [[VL,'V.(p: VUV ))| o1 < O[] gs (5.3.25)

where C is not dependent on ¢. Thus,
[As| < Ko [Ws]|cs. (5.3.26)

Again, by applying (5.3.25) , we also find
|Ms| < KSH\IJSHCQ' (5327)

Combined with (5.3.26) and (5.3.27), we prove that , for almost surely w € 2,

t t 3
/ / |Ag|dspo(z)dz < o0 ; / (/ |MS|2ds) podz < 0.
T4Jo 74 \Jo

Thus, by applying stochastic Fubini’s theorem, we get

t t
/(Vﬁqut)ptdx:/ / Aspod:cds—i-/ (/ Mspodx)ng.
Td 0 Td 0 Td

By direct substitution and integration by part, we proved ¢, is a solution to weak S.P.T. equation .

The conservation of norm can be proved by the same method by defining G;(z) = |[V¥,;|? . By lto
formula, we have

dth(l‘) = 2<V\I/t(x),dtV\Ilt(a:)> + dt < V\I/t(l‘) >

1
2 <Wft(x),nm (VQ\I/thﬁo + int + ;Sf’t> (x)> dt

(I, (V2¢:V ;) (2),10,, (VU,Ve;) (x)) dt

+
-

<
Il
—

2(V,(2),11,, (V20,V¢;) () dBj.

'Flﬂz

Jj=1

Based on estimates above, we can again apply two major tools : Kunita-lto-Wenzell formula and
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stochastic Fubini theorem . In fact, we find

N
|V, = (VT =2V T, Vo), dt —2> (VU V¥, V), dB]
j=1
N
+ Z ||Hpt (szptv(bj) ||Ptdt + <V\I’taR;Ijt + S;yt>ptdt
j=1
N .
+ (VG Vo) pdi + Y (VG V), dB]

Jj=1

<V<VGt’ v¢j>7 v¢j>l’t - 2<V<V\I}t7 Hpt (VQq/tv¢j)>7 v¢j>mdt'

DN | =

-y

j=1
We have (5.3.28) + (5.3.30) = 0 . By integration by parts, we have

N N
(5.3.29) = > [[IL,,, (V2T V¢;) |lp, + > (VU V (II,, (V2U,V;)) Vy),,

Jj=1 Jj=1

N
+ Z/d (V,, VU, Vo, — 11, (V2U,V$;)) V. (Vp) de,
j=17T

which is equal to

N N

D, (V20V65) llp, + D (T8, V (I, (V2UV65)) Vo),

=1 =1

J N J 1

+ D (V(VELIL, (V2W,V6;)), V), — (V(5VGr Ve5), Vi),
j=1

Thus,

N

(5.3.29) + (5.3.31) = > _[[TL,, (V*W:V ;) ||, — (V20 Ve, 1, (V2T V;)),, =0.

Jj=1

The proof is complete.

(5.3.28)

(5.3.29)

(5.3.30)

(5.3.31)
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5.4 (@-Wiener process on P,(M)

Now we will construct a non-degenerated diffusion process on Py(M). Let {,,; n > 0} be the eigenfunctions of
the Laplace A on M:

_AQDn = An‘pn .

We have \y = 0 and ¢y = 1. It is well known that

2/ dim(M)

Ap ~ 1N asn — +oo. (5.4.1)

The functions ¢,, are smooth, and {¢,,; n > 0} forms an orthonormal basis of L?(M, dx):

\% . .
Jas ©nPm dx = 8. The system { \/f\i”; n > 1} is orthonormal, so that {VW/\//\—"; n > 1} is an orthonormal
n

basis of Ty,. A function f on M is in Sobolev space H* (M) if

WMﬁ:AAume%Fm<+m;

2

it is obvious that ||f||3. = Z(l + )\n)k(/ f(@)pn(z) da:) . By the Sobolev embedding inequality, for
n>0 M

dim(M)

k
7T

+q7

[Ifllce < CIf||ge- (5.4.2)

In particular, || f||ococ < C||f]|g* for k > dim(M)/2.

Lemma 5.4.1. There is a universal constant C' > 0, independent of i € N* such that, fork > dim(M)/2,
t € [0,1], for almost surely w,

[ ety < c a0 (5.43)
M
Proof. We have/ li(x)|? pe(dz) < ||@il|%, which is dominated, according to (5.4.2), by
M
C / (I — A 202 de = C (1 + )\i)’“/ o?dr = C(1+ )"
M M
The result (5.4.3) follows. O

In this section, we are given a sequence of strictly positive real numbers {a,; n > 1}. Consider the following
SDE on M:
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Z aiVi(XN) o dBi, (5.4.4)

where {B!; i > 1} is a sequence of independent standard Brownian motions on R. For a given probability
measure dy = pdx with p € C? and p > 0, we consider uiv = (XtN)#u. It has been shown in Section 2 that
{ulN;t > 0} solves the following SDE on Py (M):

od! N _ZCLZ o () odBf, po = p. (5.4.5)

Let Ent be the entropy functional on P5(M). By Proposition 5.2.4, we have
N a2

dEnt(uy’) = a; (VEnt, V,, )1 dB] +Zi Dy, Dy, Ent)(u}) dt.

i=1 i=1

It follows that for any ¢ € [0, 1],

2 t
B (Bot(u)) = Bntu) + 3 5 /O E(Dv, Dy, Ent) (i) ds. (5.4.6)

i=1
Lemma 5.4.2. For k > dim(M)/2 + 1, there is a universal constant C > 0 such that, for any i > 1,
t € [0,1], almost surely w, such that

|(Dv,, Dv,, Ent) (") < C Xi(14 Xi)F. (5.4.7)
Proof. By Formula (5.0.6), we have

(Dy, Dy, Ent)(u) = / (VAg:, Vi) un(da) / Vi ()]? ()
M

<X VeillZ, < X Cllgillze = C A1+ X"

The result (5.4.7) follows. O

Theorem 5.4.3. For an integer k > dim(M)/2 + 1 given, if
> af Ni(1 4+ X)F < 400, (5.4.8)
i>1

then the family {u; N > 1} is tight.

Proof. Let p (w,z) be the density of ' with respect to Riemannian measure dz, then for any N > 1,
according to (5.4.6) and (5.4.7),
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/ PN (w, ) log(p (w, x)) dt P(dw) dz = / E(Ent(y;")) dt
0,1]xQ2x M [0,1]

C 2 2
< Ent(,u) + 5 Zai >\1(1 + )\z) y

i>1
which is finite under Condition (5.4.8). The result follows. O
In fact, we have a stronger result, which says that the sequence {p¥;> 1} is in a weakly compact subset in

L'([0,1] x © x M). Therefore there is p € L' and up to a subsequence, for any o € L>°([0, 1]), &£ € L>°(Q) and
g € L (M), such that,

lim a(t)é(w)g(z) pN (w, ) dt P(dw) dx
N=+00 J[0,1]xQx M

_ / )W) g(2) pe(w, x) dtP(dw) d.
[0,1]xQx M

It is obvious that for almost all (t,w), py(w, =) > 0 and [, p;(w, z)dz = 1.

In order to obtain stronger results, we have to deal with the convergence of diffusion processes {X}¥; n > 1}

appeared in (5.4.4). First of all, we consider the following Random series

+oo
> a4V B. (5.4.9)

i=1
Note that for any smooth function f on M, —VAf = OV f, so that for any k > 1,
V(I - A2 f = (1+D)¥?V ],
Let ¢ > p be two integers,
q q

Z(I + O)k/2 (aiVQDiBZ) = Z a;(1+X)¥/? Ve, B].

1=p 1=p

Then

E[/M‘iu + Oy (aiwiBg‘)

Under Condition (5.4.8), almost surely the Random series (5.4.9) converges in H* (M) uniformly in ¢ € [0, 1]; let

2 q
=p

Wi (w, ) be the sum of this series, which gives rise to a continuous martingale taking values in H*(T'M). When
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k > dim(M)/2 + 2, the vector field x — W;(w, z) is of the class C**. By the classical theory of stochastic
flow [Kun97,Mal97, Elw92], there is a C'*-diffeomorphisms X, (w, -) of M, solving the SDE on Diff* (M):

dXt = Oth(Xt)
or more explicitly

“+o0
dX, = a;Vpi(Xy)odB], Xo(w,z)==. (5.4.10)

i=1

Proposition 5.4.4. Assume that, for k > dim(M)/2 + 3,

+oo
Bi=>ai(1+ )" < +oo. (5.4.11)
=1

Then almost surely, XN (x) converges to X,(x) uniformly in (t,z) € [0,1] x m, as N — +oo.

Proof. Put

N
1
An = b} Za? thpi(v@i>'

i=1
Using (5.4.2), there is a constant C' > 0 such that for & > dim(M)/2 + 3,
+oo +oo

|AN]lse < C D a1+ X\)F and [[VAx|[o < C D al(1+ M),

i=1 i=1

Again

N +oo
S a2 V20l < C S a1+ A)"

=1 i=1

These uniform estimates allow us to conclude. O

Theorem 5.4.5. Let du = pdx be a probability measure on M with a strictly positive C? density p and
ue = (X¢)wp. Then under Condition (5.4.11), {u; t € [0,1]} is a solution to the following SDE on
Py (M)

“+o0
odfps = aiV, () ©dBj, po = p. (5.4.12)
=1

Proof. Note first that
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sup Wi ) < [ sup iy (Xio). X7 (2) ()
te[0,1] M te[0,1]

then Proposition 5.4.4 implies that almost surely, ¥ converges to y; uniformly int € [0,1] as N — +oc.
Let F' be a polynomial on P;(M), by Proposition 5.2.2, we have

N t N t
_ L1 L
Py = P+ 3 [ @D, Py dBi+ 5 Y [ at(Dy, Dy, ) s
=1 " =1

Letting N — +o0 yields

+oo At +oo At
_ o1 L
Flu) = P+ 3, [ @Dy, P aBi+ 53 [ a(Dv, Dy, ) ds
=1 =1

The entropy functional . — Ent () is not continuous. However, if we denote by p¥ the density of 1Y
with respect to dz, then p log(pl¥) converges to p; log(p;) almost surely, and according to [FLT10], the
family {pN log(pN); N > 1} is uniformly integrable, so that we have

li Ny = :
yim  Ent(u’) = Ent(u)

By Proposition 5.2.3, we have

N ot N o2 st
_ . a’ _ _
Ent(u) = Ent(u) + Z/ a; (VEnt, V%.>T“N dB; + Z é / (DVkPi DVWEnt) (u) ds.
¢ P 0

i=170
Letting N — 4o yields
o0 2

too ot t
_ . a — —
Ent () = Ent(p) + / a; (VEnt, Vo, ), dBi+) = / (Dv,, Dy,,Ent)(ps) ds.
i=170 0

Let F5(u) = [y, 00 W (@, y)p(dzx)pu(dy) be the Example 3.
Theorem 5.4.6. Under condition (5.4.11), there is a unique solution (X, ;) to the following Mckean-
Viasov equation:
400 )
dXy = Zaiv%‘(xt) odBj + VO(Xy, pt) dt, py = (Xe¢)ph, (5.4.13)
=1

where ®(x, 1) = / W (z,y)p(dy). Moreover, {us;t € [0,1]} is a solution to
M
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+o00
odfp =Y aiVi, () 0 dB} + VFs(pe)dt, o= p. (5.4.14)

i=1

Remark 5.4.7. Let ! be the law of j; in the Wasserstein space Po(M). By the Bakry-Emery’s T'; theory, the

asymptotic behavior of !} as t — 4oo is dependent of

Ric® + V2F3,
where Ric” is the “Ricci tensor” associated to the Q-Brownian motion.

Remark 5.4.8. Since Po(M) is compact, it is hopeful that for some constant x € R
(Ric"Vy, Vy)r, > K|VslT,, ¢€C®(M), u€Py(M).
Now by Proposition 5.0.1, if the function W is such that

/M y Hess, W (Vo(x), Vo(y)) p(de)u(dy) > k1 [Volr,, ¢ € CF(M), pePy(M)  (5.4.15)

with k + k1 > 0, then as t — +o0, 1} converges to a Gaussian like probability measure v, on Py (M).

5.5 Stochastic parallel translation on P(T)
For simplicity, we consider the following SDE on T:

dXt = V(b(Xt) O dBt

Let p; = (X;)»(dz) and dpy = p, dz, that is to say that the initial measure i is the Haar measure dz. Suppose

there is a solution {awklft; telo, 1]} to the equation of strong parallel translations:

d 0,0y = 11, (Rf’t + sf’f) dt — 11, (aiqzt ax(;s) dB;. (5.5.1)

Let f; = 0, 9¥+(X;). Then by Kunita-It6-Wentzell formula,

1 9,0 1. .5.w,0% 1 o,w, 1
dift = K="tdB; + - K>t = (X)dt — —H="t —(X;) dt,
tft pt(Xt) t t 2 t pt( t) 2 t pt( t)
where
KW = A

T pi
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and

Jo[0r00 0020 0,0) + 352" 520] do

dx
T pe

Htazq/t —

Using the notation

1
prp

we will simplify expression for K; as well for H;. We have

b=

1
K = ([ o0 dn) 5
Pt T

and

Pt

Now remark that

/a U, ¢ do = /(a U (X)) 02p(Xy) —— e /ft 82¢ (Xy) de.

In the same way,

/[a W, 0,(0%6 0,0)| dm—/f M( X,) da.

Set

2 2

Pt Pt

ay =

Then we get the following equation for { f;; ¢ € [0,1]}:

difr = /ft at dﬂ? pr(Xe)dBy — 5 /ft at dﬂﬁ) (1079)(Xy) dt

+* /ftbtdl‘ [A)t(Xt)dt—F* /ftatda: (/ 8§¢ﬁtdﬂi) ﬁt(Xt)dt
2 T 2 T T

We have

D24\ 2 dz
/|at|2dx - /( G e
T T\ Pt T Pt

and

o = ([ [ocvion@o0.0) - 3pu 020 [ 0,0 820ds] ds)
T T

(5.5.2)
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[ utxiyao (1M>2/T(p1t)2ptdx L

T pe

We get the following key estimate:

([ an) ([ jaf?ar) < 102012 552

and

([ an) ([ i ae) < os@20 0.0 (55.4

Theorem 5.5.1. There is a unique strong solution {f;;t € [0,1]} to the equation (5.5.2) such that
fo = 0:¥q.

Proof. The estimate (5.5.3) allows us to use the Picard iteration. Let f° = 9, ¥,, and

ntl g, \I/o—/t</f”asd:v) ps(X,) dB, —;/t</f”asd:v) (5+020)(X.) ds
/ /f"b dz) po(Xy)ds + 5 / /fé 0, dx) /8 6 ps ) po(X,) ds.

(5.5.5)

Set

) = [ ([ = 57 awde) (X)) B

We have

e, [astar) < [[2(p, i) i
SA‘/TE[/O (/T(f” £ ande) pu(X.)? ds] da
4 /OtIE[/T(/T(f;’ffl)as da:)Q,as(Xs)de} ds

t
<alozoll [ B([ 152 - Par) as

due to Cauchy-Schwarz inequality and (5.5.3). In the last term of (5.5.5), with respect to previous ones,
there is an extra term:
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( /T 026 ps d

which is dominated by ||02¢|||.- Finally, there is a constant Cys > 0 such that

s (15 - gipar] < op [B[sw [152 - 5P ae] s

0<s<t 0<7<s

Now standard Picard iteration yields the result. O

Proposition 5.5.2. Let g, = f,(X; ). Then foranyt < [0, 1], /gt(x) dx = 0.
T

Proof. Let K, be the density of X,;"!. We have / gi(z) dx = / fi(z) Ky(x) dz. By (5.3.4),
T T

o= o] [ @60)(%,) 0aB).

Let’s see first the martingale part of d; / fi(x) f(t(x) dz. Using It6 formula, the martingale part of f; K,
T

is
- (/T fra dﬁﬁ) Pt (Xt) K dB; + ft a§¢(Xt) K; dB;.

. - 1
We have / pt(Xy) Ky de = / pt(x) dz = 1; on the other hand, by the relation K; = m we see that
T T t t

/Tfté?gqﬁ(Xt)f{tdm:/Tftatdx.

Therefore the martingale part of d; / fi(z) K¢(x) dz is equal to 0. Futhermore we get
T

dy / fi(z) Ky (x) dz = 0. It follows that
T

/gt(x) dz = /go(x) dx = 0.
T T
We complete the proof. O



Chapter 6

Diffusive Dean-Kawasaki Equation

Dean-Kawasaki equation is a class of nonlinear SPDEs arising in fluctuating hydrodynamics theory( [Kaw98],
[Dea96], [Eyi90]). As a prototype, one may consider the following diffusive Dean-Kawasaki equation

dp = alp — V.(VEE), (6.0.1)

for space-time white noise £anda > 0. In general, we say a continuous measure-valued process {u¢,t € [0,7]}
is a solution to the diffusive Dean-Kawasaki martingale problem (M P)Z‘(J of (6.0.1) with initial condition pg if
there exists a filtered probability space (Q2, F, {F¢}se(0, 77, P) such that for all ¢ € C*(T?),

Mi() = {11, &) — {10, ®) — /O (10, AG)ds

is a J;— adapted martingale, whose quadratic variation is given by

t

The well-posedness of (6.0.1) is challenging. The noise coefficient /1 causes nonlinearity and possible lack of
Lipschitz continuity, also the noise term in the form of a stochastic conservation law causes irregularity. Actually,
according to the regularity theory [Hail4], (6.0.1) is a supercritical equation due to the irregularity of space-time
white noise. And in [VRLK19], it is proved that a unique measure-valued martingale solution to (6.0.1) exists if
and only if 2o € N, and in this case, the solution is trivial, i.e. p; = % Zil 5Wti , where {Wti}izlv_”’
independent Brownian particles starting at different sites.

In order to get nontrivial solution, many works give regularization methods in various settings, along with some
particle approximations. Sturm, Von Renesse, Konarovskyi and their collaborators ( [VRS09, KvR17, KvR15,

AvR10]) prove that the Wasserstein diffusion, which can be seen as a infinite dimensional counterpart of Brownian

117
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motion in probability measure space equipped with Otto’s formal Riemannian metric, is a solution to the Dean-
Kawasaki equation with a modified drift term. And they also give several related particle models in case of 1-D
Torus. Cornalba, Shardlow and Zimmer ( [CSZ19], [CSZ20]) regularize the model from second order Langevin
dynamic derivation and get well-posedness for a regularised undamped equivalent of (6.0.1). Other works (
[Mar10,FG21]) deal with the case when the noise is spatially regularized. For example, Fehrman and Gess prove
a general well-posedness result on a class of Dean-Kawasaki type equations in Stratonovich form of multiplicative
noise in [FG21]. Besides, Marx ( [Mar18]) gives a particle approximation to a diffusion process on Py(R) , which

has similar properties of Wasserstein diffusion but have better regularity on the measure.

According to the literature we know, there is existence of nontrivial solutions of (6.0.1) only when the spatial

correlated intensity is larger than % . Also, only under such conditions on noise, can a particle approximation

model, whose limit measure has a good spatial regularity, be constructed. The main contribution of this chapter is

that, inspired by the idea of ()—Wiener process on P(T), we give a new particle approximation to the solution of

a,B
1rdz

with colored noise £ (see (6.2.3)) , whose spatial correlated intensity is larger than 1(see definition 6.1.1), thus
ith colored noi 5( 6.2.3)) , wh 1 lated 1 han 1(see defi 6.1.1), th

diffusive Dean-Kawasaki regularised martingale problem (RM P) on 1-D Torus in sense of definition 6.2.1,

proving the existence of solution in this case. We also prove that such solution {y, t € [0, 7}, approximated by

the interacting particle model, is nonatomic for all ¢ € [0, T'] almost surely. Next, we will introduce the motivation

of the particle model’s construction.

6.1 From (Q—Wiener process to the Dean-Kawasaki equation

Generally, let () be a nonnegative definite symmetric trace-class on a separable Hilbert space K , {f;}72; be
an O.N.B. in K diagonalizing () , and the corresponding eigenvalues be {); };";1 Then, in general, we say the

following process
Wy =Y NfiWi
j=1

is a ()—Wiener process in K. its derivative with respect ¢ in distributional sense, which denoted as W,, are called

a colored Guassian noise.

Definition 6.1.1. We say the spatial correlated intensity of W, is larger than 3 if

o0
Zjﬂ_l)\j < oQ.
j=1

Especially, for K = L?(T) , we realize the 1-D Torus as the interval [0, 1] in this paper, and set
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er = \/§sin(2k7rx), k=1,2..;
€y = 1;

ex = V2cos(2kmx), k=-1,-2, ...

‘We denote

1 1
B _
j=1

where 8 > 1 is a constant such that K. 5 < 00 . Let {W¥},cn is a sequence of independent standard Brownian
motions on a filtered probability space (2, F, {F; }+>0,P) . Then the usual Q—Wiener process on L?([0, 1]) with
spatial correlated intensity 3 can be defined as

and it satisfies

+oo
E[P(t,2)] = 0; E[EP(t,2)e%(s,y)] =t As- (1 + Z % cos(2k(x — y))) .
k=1

It is obvious that £°(t) € L2([0,1]), (t,w) — a.s. . The kernel

+oo
Q(2.) = 1+ 3 s con(2h(z — )
k=1

determines the distribution of £” , and of course , its spatial correlated intensity. Generally, for a spatially corre-

lated noise with such kernel, we denote it as (Q”) 2 —Wiener process.

(Q—Wiener process can be naturally seen as a infinite dimensional counterpart of Bownian motion in K. On the
other hand, it is known (see [VRS09], [AvR10], [Wan21]) that the solution of (6.0.1) or its regularised form can
be seen as a Wasserstein diffusion. To introduce the motivation of the particle model in section 6.3 , we start from
the viewpoint of (Q—Wiener process on Wasserstein space. Firstly, we will briefly show the connection between

Q—Wiener process on Wasserstein space and the solution to the diffusive Dean-Kawasaki equation.

In [DFL21], they construct a Q—Wiener process extrinsiclly on Wasserstein space on general connected compact
Riemannian manifold M. When it applies to the case M = T, we can choose the orthonormal system as the



Chapter 6: Diffusive Dean-Kawasaki Equation 120

standard Fourier base {ey, }ren on [0, 1], then

oo

dXP = Y apen(X2)dW (6.1.1)
k=—oc0
1
induce a stochastic C' —diffeomorphic flow when a;, = W. Suppose that pig = Lo 17 , let u? = (XtQ )4 1o, and

denote

o0

1

i) = 3 lfsen g dWE+ CU” ). (6.12)
k=—oc0
Rewrite (6.1.2) in form of SPDE on ,u? :
O = COIU® — 9,(n¢P) (6.1.3)

for 5 = 4. We see that the drift term coincides with the drift term in the diffusive Dean-Kawasaki equation.
Following this idea, we want to construct a solution as a image measure process induced by a process X;, which
is in form of (6.1.1). In fact, from the point of fluid dynamic, if we see the diffusive Dean-Kawasaki equation as
a Eulerian discription of some stochastically moving fluid, then, our construction can be seen as a corresponding
Lagrangian’s discription.

However, th will never be a candidate for the solution of martingale problem associated with the diffusive Dean-
Kawasaki equation because their quadratic variation process are not consistent. In fact, if we assume a; = 1 for

all k € Nin (6.1.1), and formally write the flow equation as

dX{= Y ep(X})dW}.
k=—oc
We denote 1; = (X/)x /0, and formally compute the quadratic variation of the martingale part of (f, u}) without
consideration of regularity of the flow, we find that d < (f, up) >=>"2 ([, 6k>,24dt, while for the solution s
of (MP)EO sd < (f, ) >=||f] \QLQ(M)dt . This is not surprising because if one wants to construct a Brownian
motion on a manifold, the *velocity’ should be stochastically parallel translated along the path, while in (6.1.1),
the vector fields {ey, k € N} are just fixed. Here, as an experimental attempt, let
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dX, = > en(Xo)dWy, (6.1.4)

k=—o00

then formally we have

(f,ea(Xi ), dt

d<{fpe)>= e

e I[Je

(f'(X0), eq), dt

— =
Il
—

[ (X Z2 (o) @t = |1F' 1|22, At

Although the computation above is not strict, we still get a direct insight: we can construct a solution to diffusive
Dean-Kawasaki equation on Torus by constructing a image process induced by a diffeomorphic, or at least one-

to-one continuous map flow X; satisfying

AXy = Y aieit, Xo)dWy,
where e;(t, ) is a stochastically moving frame in form of e;(X; *(z)) . We will construct a new particle approx-

imation in section 3 by following this idea.

We briefly introduce the main contents of this chapter. In section 6.2 , we give the definition of the noise term & ﬁ
and regularised martingale problem (RM P)Z‘éﬁ for initial measure pp = 15dz, and show its consistency with
usual martingale problem to (6.0.1). In section 6.3, we will construct a particle model. Theorem 6.3.1 shows the
well-posedness of this discrete model for any 5 > 1. In section 6.4, we will prove that, as the particle number
goes to infinity, the distribution induced by the empirical measure process in C([0, 7], P(T)) is tight so that we
can pick a weakly convergent limit process. We will also prove that any weakly convergent limiting process
{pt, t € [0,T]} is a solution to (RM P)ﬁ%f. Thus we can prove the existence of solution to (RM P)ﬁ%’f ('see
theorem 6.4.1). As a necessary step in the proof, we find that p; is non-atomic for all ¢ € [0, T'] almost surely (see

lemma 6.4.2).

6.2 Introduction of the regularised martingale problem and the
noise

we firstly give the definition of regularised martingale problem (RM P)s; 65 for po(dz) = lypda:
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Definition 6.2.1. We say a continuous (|0, 1])-valued process {u:,t € [0,T]} is a solution to the reg-
ularised martingale problem (RM P);jf , if there exists a filtered probability space (2, F,{F:}iejo, 1), P)
such that for all $ € C?([0,1]),
t
M) = (. 6) — (0. 0) —a [ ()
0

is a Fy— adapted martingale, whose quadratic variation process is given by

<anior>= [ @50

The quadratic form Qﬁﬁ (¢, @) is defined as

o0 = [ [ S0 (13 gy cosar () = B ) (s,

where F,, is the distribution function of ., satisfying F,, (0) =0, F, (1) =1 and

F,.(z) = / Loy (W)ps(dy), for0<az<1.

In particular, we denote such regularised martingale problem, with initial condition duy = 1ydz, as
(RMP)"

Irdx

Note that, due to dz = (F)xdp , we have

B = ! z))¢’ 3 lcos wk(z — x
Q.o =[ [ &G (G ) (1+ 3 g cos2nbte =) ey

— 2
where G ,, is the quantile function of 1, . Because | Z w28 cos(2mk(z —y))| < 2K§ , we get
k=1

L] 6 d Gt 3 msestentn)asty

k=—o00

Q. (6, 9)

S i [ GG @@ [ HG oo
k——o0 |k‘2ﬁ [0,1] He k us\Y))ex\y)ay (6.2.1)

[0,1]
+oo

1 —
= Z W|¢/(Gﬂs)k‘2?

k=—o0

where the fourier coefficient is defined as
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1

fk:Q/o f(z)sin(2rkx)dz, k=1,2,...;
1

fo /Of(l”) T

1
fe = 2/ f(z)cos(2mkz)dx, k=-1,-2,....
0

Remark 6.2.2. In fact, (6.2.1) shows that the spatial correlated intensity of our noise is 3, which we will
only require 8 > 1 in existence theorem 6.4.1. Especially, when 3 = 0, the quadratic variation above
becomes

t t
< My(9) >=/O ||¢’(Gus(f€))||2m[o,1]d5Z/O 161172, ds- (6.2.2)

Although this is just a formal computation, since we can not prove the existence of us a priori, it still
shows that our definition of regularised martingale problem is consistent with the definition of general
martingale problem(see [VRLK19]) .

Next, we introduce the colored noise & 5 . Note that, given ¢ € C?(]0,1]) , the kernel
- 2
Qulw,y) =1+ | 155 cos(2mk(F,(z) — Fu(y)))

k=1

determines the martingale M;(¢) in distribution. Although L?(x) may not be separable, we still can define
a (Qﬁ)% —Wiener process in the tangent space L2(y) with orthonormal eigenfunctions {ey () }ren in L2(p),

which are defined as

er(p, ) = ex(Fu(x)), k e N.

This is because dx = (F)gxdu ,

2 1
o1 Qb (x,y)er(F(y)u(dy) = /[071] (_ZOO Wei(F(SE))ei(F(y)))ek(F(y)),u(dy)
- /[o 1 ( 2 m%ﬁei(F(m))ei(y))ek(y)dy = M%ﬁek(F(x)).

Therefore , for general 1 € P(T) , we still can define a generalized (Q) 2 —Wiener process in L2(y) as
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+oo
1
5(t?$): Z Wek(Fu)Wtk (623)

k=—o0

where {e (11, ) bren is a family of orthonormal vectors in L? (1) .And 55 satisfies :

= 2
B[ (t2)] = 0; EIE(t,2)Ef (s, )] = (A 5)- (1 + 3 5 cos (2mk(F(x) - &(y)))) ,
=1
We denote its time derivative, in distribution, as § 5 . Still, it can be proved by Doob’s inequality, that f 5 (t,-) €
L3 (pt) — a.s. .

Remark 6.2.3. If the solution u; to (RM P),‘jgf is absolutely continuous with respect to Lebesgue mea-
sure, i.e. du; = pidx, then it is easy to see that {p:, t € [0,T|} is a martingale solution to the following
SPDE

Op = aaﬁp - 6Jc(p§5)

Comparing with the original form of (6.0.1), we actually change the bad term /i into . by transferring
nonlinearity to the noise. Luckily, in case of 1-D Torus, the noise 55 has the form of (6.2.3) so that we
can analyse it.

6.3 Construction of the particle model on T

Following the idea introduced in section 6.1 and the definition of L?(1)—Wiener process &}, ex(u,z) is the
stochastically moving frame, and we want to construct a solution to (RM P)jj‘O as a image measure process

pe = (X¢)4 o, induced by the process X, satisfying

+oo
1 k
dX, = k;m Wek(Xo)th .
The main difficulty is we can not guarantee X, is a diffeomorphism, or even a one-to-one C'* map, when [ is only
larger than 1. Although in this paper we will not analyse X, directly since we only need to construct the particle
approximation of X4, the similar difficulty still appears in the construction of the particle model. In detail, given
N particles { X% (t)}i=1,... n, if we use a direct idea for the construction of a particle approximation to X;, we

usually want X & (¢) to satisfy

+N

, 1 , )
AX(t) = Y Wek(X}V(O))de, i=1,...,N.
k=—N
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However, we can not guarantee that { X% (¢)};=1, . v do not collide for ¢ € [0,T], i.e. 34,5 and T" > ¢ > 0 such
that X% (¢) = X" (¢) . This collision phenomenon shows the problem of concentration of mass, which is one of
the main obstacle to avoid triviality of the solution to the martingale problem of (6.0.1). Inspired by mean-field
background ( [LLX20], [RS93]), We will construct a interacting particle model without collision by adding a
replusive interaction between { X (¢)} , and make sure that the interaction term is so small that its influence can
be neglected when the empirical measure of { X (¢)} weakly converges to a solution to (RM P)gfj’rgx . In this

section, we will construct the particle model.

For each NV > 0, we define the following process

1 N N

. . . 1 .
AXN (1) = St D cot (m(Xy(t) = X4 (1)dt+ > Wek(ﬂ)dwf, (6.3.1)
j=1.#i k=-N

where the initial value is X = x’ . Note that in this case , the diffusion coefficient is fixed since ey (z?) is
independent of { X% (¢)}i=1,....n. « is some positive constant which will be chosen later.

Define Ay = {(2i)1<i<y € RY 121 < 29 < ... < 2y, and |21 — 2n| < 1} and Xn(t) = (X5 (1)) 1<i<n -
We denote

N 4W2 1 N 1
KN — . KN
1 *Zaﬂ—w 2 *§+Z-2ﬁ'
j:lj j:1]

where 3 > 1 is a constant such that KI¥ < oo . It is obvious that K{¥ < O(N37%%) for1 < g8 < 3
K <O(logN) for 8 =32 and K{¥ < C'for 3> 3.

Theorem 6.3.1. Forany 3 > 1 and initial condition X;(0) = + , we choose 0 < a < (28—2)A1. Then
there exists a unique strong solution (X (t)).c(o,r] , Which takes value in Ay , to SDE (6.3.1) when N
is large enough.

Proof. We follow the method stated in [RS93] and [LLX20]. We firstly construct the truncated process.
Let ¢ (z) be a C*(R) function which satisfies ¢ (z) = cot(rz) for z € (~1+ %, —%)U(%,1— %). Then
the following SDE

N N .
. 1 i ; 1 )
dXp N(t) = SNaTT Z Or(Xg N (t) — X n(8))dt + Z Wek(ﬁ)dwtk7
k=N

=1

with initial value X7, \(0) = 4 for1 <i < N, has a unique strong solution Xg v (t) . Let

Tg = inf {t : min |62”iX§?»N(t) - eQﬂiX%,N(t” < R_l} .
I#5 -
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Then 75 is monotone increasing in R and Xy n(t) = Xr n(t) forallt <tpand R < R’ .
Let Xn(t) = Xrn(t)Ont € [0,7r) . Then we need to prove: (Xn(t))«c(o,r) does not explode, never
collide and | X x(t) — X1 (¢)| < 1. For abbreviation of notation, we denote X () as X; without confusion

Firstly, we prove non-explosion. Let RY := ;L. S"N  (X{)? , then by Ito formula,

N-1 : 1 i
dRrN = (4N1+Q+K2 Vdt + — ZX (Z TP ex(— )th’“>

Computing the quadratic variation process of RN, we find

1

d a \
dt<Rt >_N2 Z |k|2ﬁ <Z tek )

i=1 j=1li=1,i#j
2 - 1 & al 1 )
= K Y XY Y XX Z sl )en(2)
i=1 j=1i=1,i#j | |
Note that
N

| Z |k|25 e (=7 )|*|1+ZkTBcos( I 2k:7r)\<2K26,

k=—N k=1
thus,

d C

Then, by B.D.G. inequality, we have

E[| max RN’ < Ct* +E
s€[0,t]

(5 fcian) ]

t
<Ct? + C/ E[RY]ds
0

(6.3.2)

t
<Ct* + 0/ E[max R)]ds.
0 qE[O,S]
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On the other hand, by Cauchy inequality, we have

2
E[| max RY|?] > (E[max R ]) . (6.3.3)
s€[0,t] s€[0,t]

Denote r(t) := (E[max,c[o RQ’])2 . By (6.3.2) and (6.3.3) , we finally get

r(t) < Ct? + C/Ot Vr(s)ds.

According to Gronwall type inequality and monotonicity of (¢) , we prove non-explosion of r . It follows
that , if we set ¢ = limg_, o, (x, Where

(x :=inf{t >0:|X/| > K,forsomej=1,...,N}, (6.3.4)

then ¢ > T forany T . RY will not explode in finite time almost surely. Thus the process {e2"¥x(0}._;
is well defined on [0, T .

We secondly prove the non-collision. Consider the Lyapunov function F(z1,...xx) = — 55 > iz log |e2miz —
e2™i| | by It6 formula,

dF(X}, . XY

N 1 N N
E:E: XdXi+ 57 | 22 2 Fdi(X)
=1 j=1 11 =1 sin? - X7))

N N
I yJ
(Z :12 T XJ))dt<X“Xt>)

Note that for the above three terms (denoted as A,B and C) , we have

N
1 .
A:MN(t)—WE: Y cot?(m(X] — X7))dt

i=1 j=1,j#i
N N

1 T 1 l
B = : |ek()|2> dt

2N ;jl,j;él <sm2( (X{ — Xj)) ZN || 2P N
1 = T A l j

C=- - ek<>ek<>> dt,

2N? ;j:%;ﬁl (Sm 2(n(X] - X7)) k:z_:N k2PN N

where My (t) is a local martingale. Thus,
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AP (X} .. XN

l
- 211\72(_2N11+ D, cot’(m(Xi—X])+m 3 > ek ) e’“(N) l2>dt (6.3.5)

1<I<j<N 1<I<j<N k=—N sin(m Xg))
+ di My (2).
INext, we are going to estimate Z Z ex(w) ek(N) > . We divide it into three parts:
1<I<j<N k=—N |k|2ﬁ sin(m th_XtJ))
2
H- 3T S 1| et et
M=1 i=1 k=— NW% sin(r (X} — X{HM))
M;—1 N—M i i 2
-S|t
M=M;, i=1 k=—N |k|2ﬂ sin(m (X} — X{HM))
N-1 N-M N i i 2
i DD PR ETC e
M=M, i=1 k=— N|k|25 sin(m (X7 — X))
We denote

1
= Isin(m(X{ - X;™™))

bm: Z - L

)

2

3

=1
N—m 1 2
Cm = 1 i+m ;
= tan(m(X] — Xt"‘ ))
1 1
QN = 5 , —.
2N 1S§SN |tan(7r(X§ - ‘XtJr ))‘2
For (A) , Note that
i i+ M 1 2v2rM
(—) — < . 6.3.6
|6k(N) ex( N )< BTN ( )

Thus,
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M

1\/[121]\] Z 1 87T M2 1
M=1 i=1 k=—N |k[26=2 N2 Sinz(W(Xf_XtHM))
KN M —1

< N2 Z M?ay,

21\411

NQEZCLM

where € := (3 — 28) vV 0. We pick o/ > a + ¢ and choose M; such that

P < N1, (6.3.7)
then we have
My—1
) 1 1 1 N -1
(A) £ Frrar= 2. 1 < gyirm - )39 e
Nlita ]\/[Z:1 GN 1T 1<I<ZJ<N sin(m(X{ — X{)) 3 12N

When M is large, (6.3.6) is not enough to estimate (B) and (C) . Note that

= 1S 1S 1= —— 2. (6.3.8)

Because of convexity of the function % , we have, foreach 1 < k < [4],

Iz:

1
XX
1
Xz+l Xz+l+k)+z ( XiHn 4 XM —ktny o (6.3.9)

M—k k—1 1
+ . ,
( |X1+l Xz+l+k|2 T; |th+z o th-&-7:,+M—k|2>

Thus,
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N-M 4] 1Mok 1 k—1 1
bar < 3 i i + n+ti i+n+M—k
; 71.2[7[} ’;M?’ (; \XtH _Xt+l+k|2 ; X0+ _Xt-i-n-H\I k|2>
9 (& /M—kN—M k—1N—M
§W2M4 Z (Z Z |Xz+l Xz+l+k|2 Z Z ‘XnJrz Xz+n+M k|2> (6.3.10)
k=1 =0 n=1 i=1
M %]
<— (b + bar—r)
4
M k=1
We denote S,, = Z b; , then
=1
1
by < WSM_L (6.3.11)
Therefore, we see that, form > n ,
S 1
5 < [Ta+ j—g). (6.3.12)
n 4=7L
And when N goes to infinity and n is large enough ,
S =1 1
For (C) , by (6.3.8), we find that
N-1 N-M 8
K
(C) < —2
M=M- ; |sm(7r(X§ _Xt+]w))|2
N—-1
< KJ (bar + N — M)
M=M,
N—-1
= K3 (Sn1—Sw) + K5 Y (N—M)
M=DM>

Combined with (6.3.12), (6.3.13) and choose M- such that

N2> M7 > N't1 > Nite, (6.3.14)

for some constant n > « , then, using (6.3.8), we get
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N—-1
S, + K5y (N = M)
M=DM>

(©) < w155

(6.3.15)
1 N-1

<ZQv+ DY (N-M)< QNJrKBN2
3 M=1

Based on the estimates above , we deal with the part (B) .

M=M; i=1 N? XtHM)) R |F[20-2
M, 9
<CK{" Y 3 (bw+N—M).
M=M,;

sm

Based on (6.3.7) and (6.3.14) and taking use of (6.3.11), we have, for N is large enough,

CKN Xz KN X
(B)< =2~ 2 375t N7
M:Ml Ml
log My —log My KN
og Vo 0og IV B g8

N2 3N 2

(N — M)M?
< NES]\/jz
It follows that

log N

M,
I > (N — M)
( ) SM2N2 - 4+ Nzt <§QN+ M=1

NQ—e + N%+6'

We conclude that when N is large enough,

(A) + (B) + (C) < Qn + KJN?.

Therefore, F(X}, ., X)) — K5t A g is a super-martingale. Since the diffusion process
{ezmva(mﬂ%)}]: ...~ on the torus is well defined alomstly surely, then, following the standard argu-
ment(see [RS93]) , we denote

SZ{TRST}?

then
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F(Xo) + K AT > E[F (X rpn7]
= E[F(X,,1s] + E[F(Xr1lg-]

1 1 1
> ——log(—= ———(N?—N—-2)log2-
> — <5 108(5)B(S) = 575 (N? = N = 2)log 2 B(S)
1
— W(NQ — N)log2-P(S°)
1 N -1
= ﬁ(log(QN) +log 2)P(S) — 5N log 2.
Therefore,
P(r < T) < N2(F(Xo) + KJT +1og 2)

log R + log 2

For fixed T, Letting R — oo , it follows that {(e2X~(tAT))}._, never collide. Then letting T — oo ,
since P(1o, < T) = 0 always holds, so there is no collision of the particles {eQWiX?Q(t)}jzl,___7N in torus for
all t € [0,+00). Furthermore, coming back to the original process , this means {Xf;,(t)}jzl’,,,,N never
collides and | X3 (t) — XX ()] < 1.

Finally, by continuity of the trajectories of X (¢) , we have Xy (t) € Ay for all t > 0. We finished the
proof . O

Remark 6.3.2. We give a short comparison between the common noise and the stochastically moving
noise above . Generally, if we apply the same computation on the Lyapunov function for the case of the

t N
common noise, i.e. / > en(XL)dw}l , the last term in (6.3.5) becomes
0 k=N
I INE
er(Xy) — en(Xy)
X! — X}

Moo
> e (6.3.16)

1<I<j<N k=—N

We can bound it by N>K{¥ . It is obvious that 3 should be larger than 3 in order to get non-collision
of particles in the case of common noise. However, if we use the stochastically moving noise, we can
prove the non-collision of particles for each 5 > 1 .

6.4 Construction of a solution to (RM P)ﬁd’f

K3 .8

14, as a weakly convergent subsequence limit of the

In this section, we will construct a solution to (RM P)
empirical measure process of the interacting particle model introduced in section 3.

Let the integer function [-] : R — N be defined as
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{[x]:x—l, xeN;

[z] = max{n € N|n < z}, otherwise.

And {z} := z — [z]. Then, we define the empirical measure on [0, 1] :

1 N
NZ: (OIS

The distribution function F¥ of Ly (t) , defined on [0, 1], satisfies £V (0) = 0 and

NZ‘ = : .
FN(z) / L (t,dy)

We also denote the corresponding quantile function GV (), which satisfies

GN(FN(z)) =z, —a.s.

Theorem 6.4.1. Under the assumption in Theorem 6.3.1,{Lx(t), t € [0,T]} is tight in C([0,T], ([0, l]ﬂ))

, and the limit of any weakly convergent subsequence of { Ly (t), t € [0,T]} is a solution to (RM P)]lT o

Proof. Denote Py as the distribution of {Lx (), t € [0,7]} in C([0,T]; P(T)) , and P}, as the distribution
of {< Ly(t),¢ >, t € [0, 7]} in C([0,T];R) for ¢ € C>°(T) . Then, by [Daw93] (Theorem 3.7.1), P,
is tight if and only if P]‘(’, is tight for each ¢ € C*°(T) . Here, for ¢ € C*°(T) , we actually means
¢ € C*([0,1]) so that we can extend it as a period function on R. For sake of convenience, we still
denote the extended function as ¢ . Note that, by Theorem 6.3.1, there is no collision and no explosion
for the particles (X% (¢)) for all ¢ € [0,T] . Therefore, we can apply It6 formula to get, V¢ € C>(T)

t +N

(Ln(t),¢) = (Ln NZ/ d) dX’+7Z/ Z |k|25¢// i( )

= (Ly(0) QNMZ/ ¢ (X1) ( > cot (m (X’;V(t)—xjv(t)))) ds 64.1)

j=1,j7#i

1 ¢ 1 : j
Ly / 5 T ? (XD (s + M5 (1)
i=1 k=—N

= (K) + (I) + (J) + MZ(t),

where
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1Lt L i
M) = = / ¢ (XDep(=)dWE
~() N;M;N“dﬁ (Jk(N) .
Note that

Y1 ¢ (Xi(s) — ¢ (X% (s))
4Na/ Z > N7 tan(s N()fxgv(s)))ds

i=1 j=1,#i

(6.4.2)

< L/ / i/y)LN(s dz)Ly(s,dy)ds = O(N~).
- 47TNO( 0 [0’1]2 r—Yy ’ ’

Here, the inequality above is because ¢ is a function on torus, we can choose a shorter interval between

X4 (s) and X% (s) such that we can make sure X% (s) — X3 (s) € (0,1] or [-1,0) , then, applying the

mean value theorem, we have

¢ (X () — (X ()
tan(m(X§(s) — X% (s)))

1

| <11¢"loo |7

On the other hand, we have

Kév K 7 i N ! /1
= e— XZ p— .
) ~ /o ¢"(X)ms = K, /0 [071]¢ (r)Ln(s,dz)ds

For the martingale part, by Cauchy inequality and boundness of |¢’| , we have

N
1 . 1 1
< / 1) 2 2/ Y
< N/o E_ ¢ (X)) (k._E_NkPBek(N))dS
<O | ()% Lu(s))ds < Ct.
Therefore, by B.D.G inequality,

E[[(Lx(t),0) — (Ln(s), 9)[*™] < O(N=)|t = s|™ + C't — 5™
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Also, (K) — [, ¢dx . According to ( [KS12] p.63 Theorem 4.10) , we have proved tightness of {PK’,}
. Thus , PN is tight. Due to separability, we can apply Prohorov theorem, so we proved the relative
compactness of the distribution PY on C([0, T],P(T)) . Therefore , we have a subsequence, still denoted
as Py for convenience, weakly converges to some P in C([0,T],P(T)) . By Skorohod representation
theorem, we can find a new probability space (Q, F,P) and a sequence of random variable {p"}, p
defined on it , which takes value in C([0,T],IP(T")) and satisf ies Law(p™) = Py, Law(p) = P, such that
p™ converges to p weakly almost surely.

Next, we WI|| show that the limiting process {p:(w, x),t e [0,7]} , associated with (€, F,P) , is a solution

to (RMP)]l . - Note that for a solution s to (RMP)hdz, the generator L associated with (u, ¢) is

Lf = K§(u: 7' + 5Qu(@)f", VS € C(R),

Thus, according to the equivalent description of P(T)—valued process, see [Daw93] lemma 7.2.1, we
only need to prove that, for VG € D := {G : G(n) = g({, 9)), ¢ € C*(T), g € C*(R)},

ME(p) = G(p1) — Glpo) - / DG(p.)ds,
0

where DG(u) = K§g’(<¢ 1)) (s @) + 29" ({1, 6))Qu(0) , is a P—local martingale. This suffices to prove
that , for every s <t € [0,T], and any contlnuous function H : C([0, T];P(T)) — R,

E[(G(pt) = G(ps) = | DG(p,)dr) - H(p|, ;)] = 0. (6.4.3)
. [0.5]

In fact, when k& > 0, ex(x) = —ex(—zx) , thus

/ ! 3 lcos T 2)p(dz x
= oy L@ (14X e ok [ S n@) )i

Since we can prove that, for P—a.s. p,(w) is non-atomic for all ¢ € [0, 7] (lemma 6.4.2 below), thus , for
P—almost surely,

/ Lapjdpy —>/ Liapdpe, VYt e€0,T].
[0,1]
It follows that M (p™) H (p |o ;) converges to ME(p p|[0 ) almost surely. Note that

E[[ME (") — MZ (0™ - [H(p[ 5 )]] < o0,

then, by dominated convergence theorem,



Chapter 6: Diffusive Dean-Kawasaki Equation 136

B[(G(p) - Glp:) ~ | DG(p,)dr) - Hiply, )]

= lim E[(G(}) — Gp?) — / DG(p})dr) - H(p"|, ,)]-

n—oo

Also, we define

"(p) = (x)¢’ ” lcos T 2)p(dz x
)= [ [ F@ow (143 greos @rb([ Lnon(n(a=)) et

Since
oo 2 —+oo
Z 725 €08 (27rk(/[ } Lizny,avy) (2)p(d2)))| < Z 72 0, as n — oo,
k=n 0,1 k=n

and

—n

+oo
(ZJr Z )k%ﬁo, asn — 0o,

k=n k=—o0

thus, by denoting D"G() = Kg'((6, 1)) {1, 6") + g" (1, 6))Q1(6) , we have

B[(G(p) ~ Glpo) ~ [ DG(p)dr) - Hly )]

S

= lim @[(G(p?) - G(py) _/ D"G(pﬁ)dr) 'H(pn|[o,s])]'

Because Law(p") = P,,

B[(G0D) - G2~ [ D"Gar) - HG )

S

—E[(G(La(t) = GlLa(9) ~ [ D"G(Lor))dr) - H(Luly )]

S

Therefore, to prove (6.4.3) , we only need to prove

n—oo

lim E[G(Ln(t)) — G(Ln(0)) - /O D"G(Ly(s))ds] =0 (6.4.4)

In fact,
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=1
Then, by It6 formula ,
dG(Ln(1))
9'((¢, Ln WM Z(b ( > cot (m(X(1) —X%(t)))) dt
‘ J=1,j#i
1 « " z
+g %;(b kZﬂ'MQﬂ kﬁ
1 n y n 2 . ¢
72 ¢ (X(t)) 25 ©© (2k—) dt + dMZ?(t)
j=1 k=0
Ddt + (J)dt + (K dt+dM9¢ (t),
where MJ-%(t) is a P—local martingale .
Note that
(J) = K39'((¢, Ln())) (Ln(t), ¢"), (6.4.5)
and
K L. (1), o2k — F™(y)))Ln(t,dz)Ly(t,d
(K) = g"((Ln(t),9)) o Oleb Zkgﬁcos(vr( (@) = F'(y) Ln(t, dw) L (t, dy) (6.4.6)
= g"((La(t), ))QL, (1) (9)-
For the last part (I) , we have
1< e 20261 0, asn s (6.4.7)
So, combining (6.4.5), (6.4.6) and (6.4.7) , we proved (6.4.4) . We finished the proof.
O

Lemma 6.4.2. ForP—a.s., p, is non-atomic for allt € [0,T] .

Proof. Let U = {w : 3t, such that p;(w)is atomic} . If the measurable set U has positive measure, i.e.
P(U) = C > 0. We define
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1
U, ={w e U : 3t,z, such that p;(w, dz) = nd, with n > ;},

then it is obvious that U; C U;+, and U U; = U . Thus , we can find some U}, such that P(Uy,) > % .
=1

We define EY = (z — 5,2 + 5% ) .Note that, for P-a.s. w, pl(w,-) weakly converges to p;(w,-)

uniformly in ¢t € [0,T] . If ps(w,dx) = nd.dz , then, for each N, there exists n(N,w,t,x,) such that

Vn >n(N,w,t, x),

N3

/ P} (w,dy) >
EN

A

Based on this observation, we define

; 1
U,:”’N = {w:3(t,z), such that forVj > n,/ pl(w,dy) > =},
EN 2k

x

then we must have U™ ¢ Uy and U, c | J U;"" . Therefore, for each N, we can find m, such
n=1

that P(U;"") > € = C". Now, let

- 1
Uy — w3 t,x), such that forVj > my, Li(w,t,y)dy > —}.
k N 2k

x

Remember that L,, has the same distribution with p™ . We must have

PO ) = PU™N) = ¢ > 0.
On the other hand, we define a stopping time

i R 1
2miX), (1) eQﬂ'szN (t)| <

~ 2N

7h =inf{t: minle
j

We have proved F(X,,, (t)) + Kft is a super-martingale. Denote

A= {Tk <T}

mN

Then we have
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F(Xy (0)) + KS7h AT
> E[F (X (T AT)]
= E[F (X (T ) La] + E[F (X (T)1ac]

1 my MmN 1
A 1) lo A
= T om3, ok (o~ DIes(g)P(4)
1 9 my My
- — — — —(—= —1))log2P(A
1
—Qm?\’ (m?\, —mpy) log 2IP(A°)
1 my mpy my — 1
= —— —1)(log(2N) + log 2)P(A) — log 2.
% 2k (55 — D(log(2N) +log 2)P(4) o 18

It follows that

Pk <T) < F(j(mN(o)) + KJT +1og2 < 10K2(C + 2F (X, (0))) (6.4.8)

—L (log(2N) +log2) log(2NV) + log 2

4km
Note that

3
—/ log |z — yldzdy = -,
0,1]x[0,1] 2

thus , when N is large enough,

F(XmN _ Zl |Z_j|

i#£]

Now, by (6.4.8), we can choose N so that P(r}, < T) < 1C’. However, for each w € UmN’ , there
must be at least 5/~ particles included in some mterval (x — 5%,z + 5&), which means 7% _(w) < T.
Therefore , P( ,’;’W g T) > ]P’(U,;"”’ ) = C'. Contradiction! We finished the proof.

O

Remark 6.4.3. Actually, we can extend the initial measure into any absolutely continuous measure on

T because the only difference is that when we construct the particle model, we need to set the initial
distribution as

@) = [ o) 1)

and the O.N.B of L?(uy) , {éx }ren , Should be
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€L = €L OFMO‘

The proof is the similar.
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