
THÈSE DE DOCTORAT DE L’ÉTABLISSEMENT
UNIVERSITÉ BOURGOGNE FRANCHE-COMTÉ

PRÉPARÉE A L’INSTITUT DE MATHÉMATIQUES DE BOURGOGNE

École doctorale no 553: Carnot-Pasteur

Non-smooth optimization for the estimation of cellular

immune components in a tumoral environment

Optimisation non-lisse pour l’estimation de composants

immunitaires cellulaires dans un environnement tumoral

THÈSE
Pour l’obtention du titre de

DOCTEUR EN SCIENCES

SPÉCIALITÉ MATHÉMATIQUES APPLIQUÉES
Présentée par

Quentin KLOPFENSTEIN

Thèse présentée devant le jury composé de

Chloé-Agathe AZENCOTT Mines ParisTech Examinatrice
Hervé CARDOT Université de Bourgogne Franche-Comté Co-directeur
Jalal FADILI (Président) ENSICAEN Examinateur
Enrico GLAAB Université du Luxembourg Examinateur
Sophie LAMBERT-LACROIX Université Grenoble Alpes Rapportrice
Jérôme MALICK CNRS, Université Grenoble Alpes Rapporteur
Nelly PUSTELNIK CNRS, ENS de Lyon Examinatrice
Samuel VAITER CNRS, Université de Bourgogne Franche-Comté Directeur



ii



To my wife, Emily





v

Remerciements/Acknowledgements

Je débute ces remerciements par mes directeurs de thèse, Samuel et Hervé. Je vous re-
mercie d’avoir accepté de construire ce sujet de thèse il y a 3 ans de cela. Hervé, je tiens
à te remercier parce que depuis le master MIGS tu m’as souvent aidé et conseillé dans les
choix et les décisions à prendre. Encore aujourd’hui tu continues à me donner de précieux
conseils pour ce qui m’attend après la thèse. Samuel, je te remercie pour ta disponibilité,
ton écoute ainsi que ta capacité à m’encourager et à me motiver. J’ai beaucoup apprécié
travailler avec toi et appris énormément sous ta direction. Je suis très heureux d’avoir été
ton premier doctorant et je te suis reconnaissant pour l’ensemble de ces trois années.

Je tiens à remercier Jérôme Malick et Sophie Lambert-Lacroix d’avoir accepté d’être les
rapporteurs de cette thèse. Merci pour votre lecture attentive et vos conseils pour l’amélio-
ration de ce manuscrit. I would like to thank also Nelly Pustelnik, Enrico Glaab, Jalal
Fadili and Chloé-Agathe Azencott for being part of the jury.

Au cours de ces années de thèse, j’ai eu la chance de faire quelques rencontres : Nicolas je
garderai un très bon souvenir de ma première conférence à Guidel dans notre petit cottage
et les soirées passées à jouer à Overcooked, ainsi que de tous les autres moments que
nous avons pu passer ensemble. Merci également à toi Cindy d’avoir partagé ce bureau
pendant ces trois années, pour les pauses café et les discussions en tous genres.

Au cours de cette thèse j’ai aussi eu la chance de pouvoir collaborer avec plusieurs per-
sonnes et notamment Quentin. Quentin, je te remercie pour tout ce temps que l’on a passé
ensemble à coder, réfléchir aux preuves, à la rédaction des articles et tant d’autres choses.
J’ai grandement apprécié travailler avec toi aussi bien sur le côté scientifique que sur le
plan humain. Je te remercie pour tout ce que j’ai pu apprendre à tes côtés et ce que nous
avons pu découvrir ensemble. J’espère que nous pourrons continuer à collaborer dans
les prochaines années. Merci également à Joseph Salmon, Alexandre Gramfort, Mathieu
Blondel et Mathurin Massias pour les différents projets sur lesquels nous avons pu tra-
vailler ensemble. Merci pour vos conseils et votre supervision.

Je tiens également à te remercier Samuel Herrmann pour tes précieux conseils et ces temps
de discussion que tu m’as accordé tout au long de la thèse. A mes débuts à l’université, tu
as d’abord été un professeur que j’ai beaucoup apprécié et puis aujourd’hui un ami et un
collègue avec qui j’aime discuter et échanger. En partageant ton expérience et ton vécu, tu
m’as très souvent encouragé.

Merci également à Caroline et François du CGFL de m’avoir proposé ce sujet de mémoire



vi

qui portait sur l’estimation de cellules immunitaires il y a déjà 4 ans. Je suis très reconnais-
sant pour tout ce que vous m’avez appris pendant ces 18 mois qui ont précédé cette thèse.
Une pensée pour mes anciens collègues de la PTBC également qui m’ont donné goût à la
recherche dans le monde biomédical: Valentin, Emeric, Corentin, Marion et Sylvain.

En faisant l’ensemble de mes études sur Dijon, j’ai eu l’occasion d’être entouré par beau-
coup de personnes avec qui j’aime partager de bons moments. Merci à ma famille de
l’EPEDE pour votre soutien, votre amitié et pour tout ce que nous avons vécu ensemble
au cours de ces années. Merci tout particulièrement à Julian et Julie et à vos deux garçons
pour votre amitié sans failles, votre soutien et tous les bons moments partagés ensem-
ble. Vous m’avez très souvent encouragé et soutenu au cours de l’avancement de cette
thèse.

Cette thèse n’aurait jamais été possible sans le soutien de ma famille que j’aime du plus
profond de mon coeur. Tout d’abord merci à mes grands-parents Lionel, Violaine, Gilbert
et Jacqueline pour tout ce que vous m’avez donné et apporté tout au long de ces années.
Merci à mes deux soeurs, Jessica et Manon, ainsi qu’à mon petit frère, Benjamin d’avoir
toujours été là pour moi quand j’en avais besoin et d’écouter (parfois) avec attention ce
qui me passionne dans ce métier de chercheur. J’en viens aux personnes à qui je dois
énormément et que je tiens particulièrement à remercier, mes parents André et Magali.
Merci parce que vous m’avez donné l’opportunité de faire des études et que vous m’avez
toujours soutenu dans mes projets. Merci pour votre éducation, votre amour et les sac-
rifices réalisés afin que je puisse soutenir cette thèse. Cette réussite aujourd’hui est en
grande partie grâce à vous et pour vous.

I would like to thank my parents-in-law, Earl and Karen for their unconditional love and
support. You are both examples to me in the way you are and what you do. This has
motivated me to pursue this thesis until its end. Finally, last but not least, thank you
Emily, my dear wife, for your love and your support through these three years. You have
always been by my side, pushing me when I needed to, encouraging me as well. Thank
you for sharing my life and for being a great mom to our little girl Lucy. Both of you are
my family that I cherish, I appreciate every day that I spend with you two.

Je termine ces remerciements avec cette pensée:
Soli Deo Gloria



Abstract

This thesis is concerned with the estimation of different immune cells proportions present
in a tumor from genomic data. This estimation process boils down to a linear inverse
problem. The state-of-the-art method is based on the Support Vector Regression estima-
tor but does not take into account the constraints related to the estimation of proportions.
We propose an estimator based on the Support Vector Regression which is constrained
to be a vector of proportions directly in the estimation process and more generally to
meet polyhedral constraints. We study the resolution of the optimization problem using
an optimization algorithm called coordinate descent. Then, we propose a method to au-
tomatically select the hyperparameters in order to avoid using the grid-search method
which can be applied for any separable non-smooth optimization problem arising in ma-
chine learning. This method is a first-order method that relies on automatic differentiation
techniques to compute the gradient with respect to the hyperparameters given a measure
of performance. Finally, we show how the developed tools can be used to solve the in-
verse problem mentioned above and the improvements obtained in comparison to the
state-of-the-art methods.

Key words: Inverse problem, Non-smooth optimization, Coordinate descent, Hyperpa-
rameters selection, Automatic differentiation, Support Vector Regression, Biomedical ap-
plication



Résumé

Cette thèse s’intéresse à l’estimation de la proportion des différents types de cellules
immunitaires présents dans une tumeur à partir de donnés génomiques. Cette estima-
tion revient à résoudre un problème inverse linéaire bruité. Nous proposons un esti-
mateur basé sur la Support Vector Régression qui intègre dans le processus d’estimation
les contraintes liées à l’estimation de proportions et de manière plus générale à toutes
contraintes polyédriques. Nous étudions la résolution du problème d’optimisation sous-
jacent en utilisant une méthode d’optimisation appelée la descente par coordonnées. Par
la suite, nous proposons une méthode de sélection automatique des hyperparamètres
pour s’affranchir de la méthode de sélection sur une grille qui est coûteuse dans le cas de
la Support Vector Régression par exemple. Cette méthode est une méthode du premier or-
dre qui utilise les techniques de différentiation automatique afin de calculer le gradient en
fonction des hyperparamètres et permet d’obtenir les paramètres optimaux étant donné
un critère de performance pour tout problème d’optimisation non-lisse et séparable. En-
fin, nous montrons comment les outils développés au cours de cette thèse peuvent être
appliqués pour résoudre le problème inverse mentionné ci-dessus et les gains obtenus
par rapport aux méthodes état de l’art.

Mots clés: Problème inverse, Optimisation non-lisse, Descente par coordonnées, Sélection
de paramètres, Différentiation automatique, Support Vector Régression, Application bio-
médicale



CONTENTS

1 Introduction 1
1.1 Medical context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Inverse problem to estimate cell quantities . . . . . . . . . . . . . . . . . . . 6
1.3 State of the art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.4 Coordinate descent for non-smooth optimization . . . . . . . . . . . . . . . . 18
1.5 Automatic hyperparameters selection for non-smooth convex models . . . . 24
1.6 Estimating cells proportions with developed tools . . . . . . . . . . . . . . . 31
1.7 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2 Mathematical background 35
2.1 General notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.2 Convex analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.3 Smooth optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.4 Non-smooth optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

I Non-smooth optimization around coordinate descent 53

3 Local linear convergence of coordinate descent 55
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.2 Structure for separable non-smooth convex functions . . . . . . . . . . . . . 59
3.3 Model identification for CD . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
3.4 Local convergence rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
3.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4 Support Vector regression with linear constraints 77
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
4.2 Constrained Support Vector Regression . . . . . . . . . . . . . . . . . . . . . 81

ix



x CONTENTS

4.3 Generalized Sequential Minimal Optimization . . . . . . . . . . . . . . . . . 86

4.4 Numerical experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.5 Proof of convergence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

II Hyperparameters selection for non-smooth convex models 119

5 Introduction to hyperparameter optimization 121
5.1 Hyperparameter selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

5.2 Bilevel optimization with smooth lower problems . . . . . . . . . . . . . . . 125

5.3 Automatic differentiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

6 Hypergradient computation in non-smooth convex learning 133
6.1 Theoretical framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

6.2 Hypergradient computation using implicit differentiation . . . . . . . . . . . 136

6.3 Hypergradient computation using iterative differentiation . . . . . . . . . . 141

6.4 Stability of the hypergradient . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

6.5 Proposed method for the computation of the hypergradient . . . . . . . . . 154

7 Hyperparameter optimization in non-smooth convex learning 159
7.1 Resolution of the bilevel optimization problem . . . . . . . . . . . . . . . . . 161

7.2 Hyperparameter selection for the Lasso . . . . . . . . . . . . . . . . . . . . . 163

7.3 Hyperparameter selection for the elastic net . . . . . . . . . . . . . . . . . . . 164

7.4 Multiclass sparse logistic regression . . . . . . . . . . . . . . . . . . . . . . . 166

7.5 Hyperparameter selection for the weighted Lasso . . . . . . . . . . . . . . . 168

III Estimating cells proportions with developed tools 171

8 Validation of our method 173
8.1 Simplex ε-SVR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

8.2 Validation on microarray data . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

8.3 Validation on RNAseq/sc-RNAseq data . . . . . . . . . . . . . . . . . . . . . 180

8.4 Clinical application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

9 Conclusion 187

Résumé des travaux 191



CONTENTS xi

Bibliography 209



xii CONTENTS



1 INTRODUCTION

Contents
1.1 Medical context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Inverse problem to estimate cell quantities . . . . . . . . . . . . . . . . . 6

1.3 State of the art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.4 Coordinate descent for non-smooth optimization . . . . . . . . . . . . . . 18

1.4.1 Local linear convergence of the coordinate descent algorithm . . . 19

1.4.2 Convergence of the generalized Sequential Minimal Optimization

algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.5 Automatic hyperparameters selection for non-smooth convex models . . 24

1.5.1 Hypergradient computation in non-smooth convex learning . . . . 26

1.5.2 Hyperparameter optimization in non-smooth convex learning . . . 29

1.6 Estimating cells proportions with developed tools . . . . . . . . . . . . . 31

1.7 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

In 1961, William G. Cochran, professor of statistics at Harvard University, stated that
“Mathematical reasoning can contribute to biology in many ways. It may enable the biolo-
gist to obtain quantitative estimates in situations in which his information has previously
been qualitative” (Cochran, 1961). Nowadays, his statement is true more than ever: math-
ematics is a large part of biomedical research. For example, Statistics have been applied
to clinical trials for many years and give key reasoning to assess the efficiency of a treat-
ment over another one or over a placebo effect. Cells detection on an image, differential
expression analysis for genes, survival analysis are only a few examples that highlight the
importance of mathematics in the medical field.

These past years, the exponential growth of the volume of data generated by the biomed-
ical field (Luo et al., 2016) have forced biologists and physicians to face many challenges

1



2 CHAPTER 1. INTRODUCTION

related to the storage, the processing and the analysis of this flow of information. Tools
that would help them find relevant information in the mass of available data are crucial
to continue the improvement of current medicine.

In this thesis, our goal is to contribute to this interaction between mathematics and biomed-
ical research. The mathematical questions and challenges faced throughout this work are
deeply rooted to a specific application in cancer research that we are detailing now.

1.1 Medical context

Cancer is a major problem of our society, with new statistics giving more than 17 millions
new cases worldwide in 2020 (Sung et al., 2021). This disease is the second leading cause
of death in the world. Behind this general word cancer hides about 100 different types of
cancers located in different organs; each of them having its specificities. Recent medical
research in the field have lead to this general conclusion that two patients’ cancers will
never be the same even if they are located in the same organ (Krzyszczyk et al., 2018).
This observation is key; for a long time cancers were treated similarly if located at the
same place. This generic type of treatment was sometimes ineffective and not adapted to
each patient.

The development of genomic sequencing technologies have paved the way for person-
alized medicine sometimes called precision medicine. The idea is simple, considering each
tumor as unique and find the treatment that suits the best to the patient. This need of pre-
cision medicine became even clearer with the development of the immunotherapy treat-
ment.

Immunotherapy. There exists several possible treatments for a patient suffering from
cancer: surgery, chemotherapy, targeted therapy, hormone therapy, immunotherapy to
only cite a few. This last one, immunotherapy, is recent and has been described in 2013
as “Breakthrough of the year” by Couzin-Frankel (2013), leading to a great hope in the fight
against cancer. The idea behind immunotherapy is to use the patient’s immune system
to fight cancer. Indeed, immune cells can be found in and around a tumor showing a
immune response towards those abnormal cancer cells forming the tumor. Unfortunately,
these cancer cells are often able to hide from the immune cells by changing their genetic
information to look like normal cells. They are also able to turn off the immune response
in different ways. Despite these facts, several studies have showed that a tumor infiltrated
with immune cells often has a better prognosis than a tumor without immune cells (Crisc-



1.1. MEDICAL CONTEXT 3

itiello et al., 2016; Stanton et al., 2016; Glaire et al., 2019; Reichling et al., 2020). From these
conclusions, medical researchers have proposed different treatments that would enhance
the immune response against the tumor.

Early on, this new treatment seemed to be very promising and encouraging results con-
firmed the expectations (for lung cancers for example (Reck et al., 2016)). However a few
years later, the results are mixed. Immunotherapy can be very effective in some types
of cancer but several studies showed that only a few patients were responding to the
treatment. In other words, the patients for which the treatment was working had a good
benefit from it but a majority of patients did not respond to it (Ventola, 2017). Today the
challenge is to understand the reasons of this observation and being able to characterize,
before starting the treatment, which patient will be able to benefit from immunotherapy.
To answer these questions, there is a need to better understand the tumor composition
and its environment. A tumor is not only composed of cancer cells but it also includes
non-malignant cells, secreted proteins and blood vessels (Ansell and Vonderheide, 2013).
Among these non-malignant cells, there exists a large number of immune cells that can be
found inside a tumor as illustrated in Figure 1.1. These different types of immune cells
have different roles regarding the growth and the spread of a tumor. For example, the
quantity of CD8 T-cells inside a tumor was shown to be associated with longer survival
rate (Wahlin et al., 2007) and leads to a better prognosis. On the contrary other types of
immune cells are associated to a poorer survival rate (Barnes and Amir, 2017). These find-
ings lead to the hypothesis that the composition of the tumor influences the efficiency of
the immunotherapy treatment. Today, several questions remain unanswered about the
interactions between these cells, their influence on the tumor growth and what would be
a favorable environment for immunotherapy. One of the keys to answer these questions is
to be able to describe precisely the tumoral environment by quantifying its cells.

Quantifying cells. There exist different methods to quantify the types of cells that can
be found inside a tumor. Three of them will be presented here to better understand the
strengths and weaknesses of these methods.

Flow cytometry is commonly used in medical research to count cells and identify them. The
idea behind the process is to bring the cells one by one in front of a laser. Then captors will
measure the scattered light coming out of the cells. Cells can be marked with fluorescent
markers to be easily identifiable. The major drawbacks of this technique are the limited
number of populations that can be studied at the same time and the complexity of the
analysis needed to interpret the data.



4 CHAPTER 1. INTRODUCTION

Figure 1.1 – Tumor composition. Schematic composition of a tumor showing the differ-
ent types of cells that can be found inside it. A tumor is not only composed of tumor
cells but also of blood vessels, stroma cells and immune cells that are of interest for the
immunotherapy treatment. The cells on the top of the figure are the immune cells, illus-
trating the existence of different types of immune cells within a tumor, each of them has a
specific role in the immune system.

Another possible method is the immunohistochemestry. The first step is to prepare a slice
of tissue that needs to be analyzed coming from a biopsy. Then the idea is to stain the
cells of interest by targeting a specific protein with an antibody. It will create a reaction
and stain the targeted type of cells (see the cells in brown in Figure 1.2). Afterwards,
the slide containing the tissue and the stained cells is digitalized and then the image is
analyzed. Afterwards, the task is to detect the stained cells and count them on the image.
This technique is widely used in the cancer medical field for different purposes: disease
diagnosis, research and drugs development. This method suffers from the same drawback
as the flow cytometry, it is very limited in the number of cell populations that can be
studied at the same time. As an answer to these limitations, scientists have developed
computational methods based on genomic data.



1.1. MEDICAL CONTEXT 5

Figure 1.2 – Immunohistochemestry. Cells of interest are stained in brown whereas other
cells appear blue. (source: https://resources.rndsystems.com/)

Genomic data refers to the data studying the genome, i.e., the complete set of genes (DNA)
of an organism. To be more precise, the genomic data mostly used in the rest of this work
is called transcriptome which is the complete set of all RNA transcripts in an individual
or a cell. The first transcriptome studies were based on the microarray technology (or
biochip). A microarray is a glass slide on which DNA/RNA molecules are fixed in a
predefined location. To keep it simple, one can have in mind that each location uniquely
corresponds to a gene. Then, the studied DNA/RNA will bound to a specific location
because of the complementarity of the nucleic acid sequences. Finally, each location is
excited by a laser and scanned at different wavelengths. An illustration of the process can
be found in Figure 1.3.

To be usable, the data is preprocessed using different normalization techniques (see Ni
et al. (2008); Rao et al. (2008) for more details on normalization techniques and compar-
ison) that will not be detailed here, it goes beyond the scope of this thesis. However, at
the end of the process, genomic data can be represented by a matrix containing the gene
expression of different cells or individuals. For example, we can consider that the gene ex-
pression matrix has n genes and p different cells for which the transcriptome was studied.
The value Xij then represents the expression value of the gene i in the cell j.

https://resources.rndsystems.com/


6 CHAPTER 1. INTRODUCTION

Condition A
(Test condition) 

Condition B
(Normal condition)BA

Pen-group
(sub-array)

Spot
(feature)

Each spot contains 
oligonucleotide sequence 

or genomic DNA that “uniquely” 
represents a gene

Cell Genomic DNA

mRNA
extraction

cDNA 
labelling with dyes

Hybridisation

Excitation with laser

Final image stored as a file

Figure 1

Figure 1.3 – Microarray. Illustration of the process to obtain the gene expression level
using the microarray technique. This technique is used to obtain the gene expression
level from the RNA of a cell. (source: https://www.mrc-lmb.cam.ac.uk/genomes/
madanm/microarray/)

X =

Cell 1 Cell 2 . . . Cell p


x11 x12 . . . x1p Gene 1
x21 x22 . . . x2p Gene 2

...
...

...
...

...
xn1 xn2 . . . xnp Gene n

1.2 Inverse problem to estimate cell quantities

Mathematical modeling. To estimate the quantities of cells inside a tumor, biostatisti-
cians have proposed a mathematical modeling based on genomic data. They consider the
RNA coming from a tumor as a mixed signal composed of pure signals coming from all the
different cells that compose a tumor. Their assumptions is that there is a direct relation

https://www.mrc-lmb.cam.ac.uk/genomes/madanm/microarray/
https://www.mrc-lmb.cam.ac.uk/genomes/madanm/microarray/


1.2. INVERSE PROBLEM TO ESTIMATE CELL QUANTITIES 7

Figure 1.4 – Linear inverse problem. Schematic representation of the linear dependance
assumed between the RNA coming from a tumor and the pure RNA coming from the
different cells that compose it. The signal coming from the tumor is modelized as the
weighted sum of signals coming from the different cells that compose it. The question is
to retrieve the weights (proportions) of cells that lead to the observed mixed signal in the
tumor.

between the quantity of cells inside a tumor and its gene expression level. A linear model
was then proposed to modelize the gene expression level of a tumor as a function of the
expression level of the different cells. From the tumor, it can be observed a vector y ∈ Rn

and we are trying to retrieve the quantity of cells that lead to observing this vector sup-
posing that there is a linear relationship between their quantity and the genes expression
in y. As a result, if one has access to the pure transcriptome of the cells of interest, finding
the quantities of these cells inside the mixed signal would resort to solving a linear inverse
problem as illustrated in Figure 1.4. Formally, we denote y ∈ Rn the mixed signal coming
from a tumor and X ∈ Rn×p the matrix containing the pure transcriptome of the cells of
interest then the linear model writes:

y = Xβ + ε , (1.1)

where ε ∈ Rn is the noise. The inverse problem is the reconstruction of β when observing
y and X .



8 CHAPTER 1. INTRODUCTION

−4 −2 0 2 4
Normal distribution quantiles

−10

0

10

20

30

40

50

O
rd

er
ed

st
an

da
rd

iz
ed

re
si

du
al

s

Quantile-Quantile plot

Figure 1.5 – Quantile-Quantile plot. Quantile-Quantile plot of the standardized residuals
of the Ordinary Least Squares estimator to check for normality distribution. It illustrates
the fact that the noise in the genomic data does not follow a Gaussian distribution but it
is heavy-tailed and skewed.

This linear inverse problem is overdetermined since n � p. Generally, the number of
cells populations p stays small (maximum 30 populations) whereas at first n is close to
20,000. A natural way to obtain an estimation of the vector β ∈ Rp is to use the Ordi-
nary Least Squares (OLS) estimator which is the solution of the following optimization
problem:

β̂OLS = arg min
β∈Rp

1

2
‖y −Xβ‖2 . (1.2)

If X has full rank, Equation (1.2) has a unique solution:

β̂OLS = (X>X)−1X>y . (1.3)

If the noise ε ∈ Rn is i.i.d., homoscedastic and uncorrelated, estimating β by Equation (1.2)
would lead to the Best Linear Unbiased Estimator (BLUE) (Gauss-Markov theorem). How-
ever, the quantile-quantile plot of the OLS residuals in Figure 1.5 shows that the residuals
of the OLS are heavy-tailed and skewed which suggests that using a biased estimator
might decrease the variance and improve the quality of the estimator. The noise comes
from different elements: the preparation of the tissue by the biologists, the data acquisi-
tion device and the biological environment can all induce noise. In this case the noise is



1.2. INVERSE PROBLEM TO ESTIMATE CELL QUANTITIES 9

probably heavy-tailed and asymmetric (skewed) as pointed out by Purdom and Holmes
(2005).

Apart from the heavy tailed noise, there are also constraints on this estimator β coming
from the nature of what is to be estimated. First, quantities of cells are estimated which
means that the coefficients of β have to be positive. Second, β is often interpreted as
proportions with the constraint that its coefficients sum to one. A problem of interest is
then to take into account this prior information in the estimation process as we will see in
details later on.

Note that in the biostatistic field, this linear inverse problem is called deconvolution as
mentioned in Lu et al. (2003) and Abbas et al. (2009) who were the first to propose the
linear inversion for immune cells in blood. We want to address here that there is no direct
link with the deconvolution process coming from the imaging field. For mathematicians,
this problem is a linear inverse problem but the literature in biostatistic has called the
estimation process deconvolution.

It is worth mentioning that a closely related inverse problem arises in hyperspectral imag-
ing named hyperspectral unmixing. The goal is to estimate the proportions of different
objects present in one pixel given a dictionary of objects for which we know the spectral
band signal. The positivity and the sum-to-one constraints also appear in the estimation
process and are often taken into account as prior information. One of the main differences
between hyperspectral unmixing and the estimation of cells proportions is that the esti-
mator proposed in hyperspectral unmixing often has a sparse prior (see Bioucas-Dias et al.
(2012) for a review). In our case, the sparsity prior does not seem relevant. Even if a given
cell type is present in a very small quantity, the information about this quantity could be
important and there is no reason to consider that only a few numbers of cell types can
be present inside the tumor. Most of the cell types can potentially be present inside the
tumor. The state-of-the-art methods in hyperspectral unmixing cannot be applied directly
to our inverse problem. The type of data and the priors on the estimator result in different
challenges and questions.

Challenges. The raw design matrix of the linear model X contains the gene expression
level of approximately 20,000 genes. When considering cells inside a tumor, only a small
fraction of these genes will be expressed differently between the different types of cells.
It means that a large number of the genes (the rows) present in the design matrix are not
informative; they will not reflect the quantity of cells present inside the tumor since they
are equally expressed by all the different types of cells. From a mathematical point of



10 CHAPTER 1. INTRODUCTION

view, it means that the columns of the matrix are highly correlated when considered as a
whole as depicted in Figure 1.6. In other terms, X is ill-conditioned and multicollinearity
is present in the regression problem.

0

10000

20000

30000

40000

Cell type A

R = 0.98

Cell type B

R = 0.98

Cell type C

R = 0.97

Cell type D

0

10000

20000

30000

40000

R = 0.98 R = 0.98

0

10000

20000

30000

40000

R = 0.97

0 20000 40000

0

10000

20000

30000

40000

0 20000 40000 0 20000 40000 0 20000 40000

Figure 1.6 – Multicollinearity in the design matrix X . Scatter plots of the genes expres-
sion of the different types of cells present in the design matrix X . The cell types are com-
pared 2 by 2 to illustrate their high correlation when considering the 5000 first genes.

When considering the Ordinary Least Squares estimator, the conditioning of the matrix
X impacts the stability of the estimator. Let us consider the linear system Ax = b, with
A ∈ Rn×p and b ∈ Rp. Let δb ∈ Rn be a small perturbation of the observation vector
which can occur for example if the vector is perturbed by noise. Let δx the solution of the
perturbed system i.e., Aδx = b + δb. The stability of the OLS estimator is then controlled



1.2. INVERSE PROBLEM TO ESTIMATE CELL QUANTITIES 11

by the following inequality that bounds the relative error on the solution x:

‖δx‖
‖x‖ ≤ κ(A>A)

‖δb‖
‖b‖ , (1.4)

where κ(A) is the condition number of A i.e., κ(A) = σmax(A)
σmin(A)

where σmax(A) and σmin(A)

are the maximal and minimal singular values of A. It means that the relative error on the
solution x is bounded by the relative perturbation multiplied by the condition number. If
the matrix A is ill-conditioned, a small change in the vector b will imply a large error on
the solution x; hence the lack of stability.

One of the many possible ways to deal with ill-conditioned design matrix X is to regular-
ize the estimator. A famous example of such regularization is the Tikhonov regularization
(Tikhonov, 1943). The ridge regression (Hoerl and Kennard, 1970) is the quadratic data
fitting term with an added Tikhonov regularization, it is obtained as the solution of

β̂ ∈ arg min
β∈Rp

1

2
‖y −Xβ‖2 +

λ

2
‖β‖2 , (1.5)

where λ > 0 controls the tradeoff between the data fidelity term and the regularization.
The solution of this optimization problem is given by

β̂ = (X>X + λ Id)−1X>y . (1.6)

Interestingly, the condition number of the matrix X>X + λ Id writes

κ(X>X + λ Id) =
σmax(X)2 + λ

σmin(X)2 + λ
. (1.7)

The value of λ > 0 can be chosen to greatly improve the condition number and hence
increase the stability of the estimator with respect to some perturbation.

However, the classical process in the field of estimating cell proportions is to preselect the
genes (the rows) of the design matrix X . From a biological point of view, the idea is to get
rid of the genes that are not related to the cells considered. In biostatistics, it comes down
to performing differential expression analysis, which is a very common methodology. The
goal is to find the set of genes that characterizes a cell in comparison to the other cells con-
sidered, the genes that are overexpressed or underexpressed for certain cell types. It means
that we seek genes that have a high or low value in comparison to all the other cell types.
These methods rely on performing statistical tests (such as t-test) to find the genes that are



12 CHAPTER 1. INTRODUCTION

0

10000

20000

30000
Cell type A

R = -0.09

Cell type B

R = -0.09

Cell type C

R = -0.02

Cell type D

0

10000

20000

30000
R = 0.29 R = -0.03

0

10000

20000

30000
R = -0.04

0 10000 20000 30000

0

10000

20000

30000

0 10000 20000 30000 0 10000 20000 30000 0 10000 20000 30000

Figure 1.7 – Signature matrix X after gene selection. Scatter plots of the variables of
the signature matrix 2 by 2 to illustrate that the preprocessing selection of genes leads to
decorrelated columns in the matrix X .

differentially expressed between the different cells. The significant genes will be kept and
a new design matrix is built from these genes. There is no consensus in the methodology
to build such a matrix. We refer to Newman et al. (2015) that suggest for example to incre-
mentally add the significant genes and keep the submatrix that has the lowest condition
number. This matrix is often called the signature matrix as it is composed of the genes
that characterize the cell types.

This preprocessing step drastically reduces the number of rows of the design matrix. Com-
ing back to our example, the signature matrix is now composed of 584 genes. As a result
of the preprocessing step, the columns of X are decorrelated as shown in Figure 1.7. The



1.2. INVERSE PROBLEM TO ESTIMATE CELL QUANTITIES 13

estimation is now less sensitive to noise since the preprocessing step has also reduced
the condition number (divided by 3 in our example). Often biostatisticians represent this
signature matrix by a heatmap showing the row z-score i.e.,

Zij =
(Xij −mean(Xi:))

std(Xi:)
,

where mean(x) is the average of the coefficients of x and std(x) the standard deviation.

Figure 1.8 – Heatmap of the signature matrix X after gene selection. Heatmap repre-
senting the z-score of the signature matrix used for the estimation process. The genes
overexpressed in one cell type in comparison to all the others will have a high z-score
(blue on the figure). A hierarchical clustering on the genes shows that we have selected
four blocks of genes, each of them characterizes a cell type.

The different immune cells that are interesting are organized in a structural way. Our goal
here is not to fully explain the different immune cells of the human body nor to explain
their role. We just want to highlight that this preprocessing step gets harder when the
considered cells are closely related. Loosely speaking, cells can be divided in different
families and some look like each other from a genomic point of view. Estimating cell
quantities that are highly similar becomes a challenge.

In this thesis, we consider that the signature matrix is known and fixed. Trying to improve
the signature construction is a whole literature on its own and requires a deep understand-
ing of the relationship between cells and genes. We focus our research on the estimation



14 CHAPTER 1. INTRODUCTION

process once the signature matrix is known and fixed.

1.3 State of the art

We now focus on the estimation process, i.e., the design matrix X is known and fixed and
given the vector of observation y ∈ Rn, one would like to retrieve the proportions β ∈ Rp.
As mentioned earlier, β is interpreted as proportions, the proposed estimator should take
into account the related constraints. It means that estimating β will not be a simple linear
problem but a constrained linear problem. The constraints on β are that it has to belong
to the positive orthant of Rp and that its coefficients sum to one i.e.,

β ∈ {x ∈ Rp : xi ≥ 0,

p∑
i=1

xi = 1} , (1.8)

this set is called the simplex.

We will now describe the methods proposed in the literature to estimate these proportions.
The linearity assumptions and the first estimator of Equation (1.1) was proposed by Abbas
et al. (2009). They estimated β ∈ Rp using the Ordinary Least Squares (OLS) estimator
(Galton, 1886) i.e., doing a simple linear regression, solving Equation (1.2). To be able to
interpret β as a vector of proportions, they projected the given estimator β̂OLS onto the
positive orthant and then divided by the sum of the remaining coefficients. Note that
minimizing Equation (1.2) and then projecting onto the set of constraints generally does
not lead to the solution of minimizing Equation (1.2) under the constraint that β is positive
and sum-to-one.

A second line of work (Qiao et al., 2012; Gong et al., 2011), considered the estimator given
by constrained version of Equation (1.2) namely the Non-Negative Least Squares (NNLS)
estimator (Lawson and Hanson, 1995) obtained as solution of:

β̂NNLS ∈ arg min
β∈Rp

1

2
||y −Xβ||2 (1.9)

s.t. βj ≥ 0 ,

and the Simplex Ordinary Least Squares (SOLS) which is the result of this optimization



1.3. STATE OF THE ART 15

problem:

β̂SOLS ∈ arg min
β∈Rp

1

2
||y −Xβ||2 (1.10)

s.t. βj ≥ 0,
p∑
j=1

βj = 1 .

All these estimators based on the quadratic loss are affected by noise that does not follow a
Gaussian distribution. More importantly the estimation performances are largely affected
by heavy tailed-noise which appears to be the case in our application. It resulted in the
biostatisticians community of a discussion about robustness of these estimators, meaning
their ability to perform well under noisy data.

On microarray data, the considered state-of-the-art method for estimating the proportions
of cells inside a tumor was proposed by Newman et al. (2015). They proposed an estimator
based on the ε-insensitive loss namely the Support Vector Regression (SVR) estimator. The
ε-loss is given by the following formula:

Lε(y, t) = max{0, |y − t| − ε} . (1.11)

The first variant of SVR estimator was proposed by Drucker et al. (1996) and depends on
two hyperparameters: C and ε. It is obtained as the solution of

β̂ ∈ arg min
β∈Rp

1

2
‖β‖2 + C

n∑
i=1

Lε(yi, Xi:β) . (1.12)

This optimization is often written equivalently

β̂ ∈ arg min
β∈Rp,ξ,ξ∗∈Rn

1

2
‖β‖2 + C

n∑
i=1

(ξi + ξ∗i ) (1.13)

s.t. yi −Xi:β − β0 ≤ ε+ ξi

Xi:β + β0 − yi ≤ ε+ ξ∗i

ξi, ξ
∗
i ≥ 0 .

A second variant exists and was proposed by Schölkopf et al. (1999), the parameter ε is
part of the variables to optimize in the optimization problem and a new hyperparameter
ν ∈ [0, 1] appears. This estimator is the one retained by Newman et al. (2015) for the



16 CHAPTER 1. INTRODUCTION

Regression line Support Vectors

Figure 1.9 – Support Vector Regression with one explanatory variable. The points outside
the ε tube (in red) are the support vectors. Changing the hyperparameter ν changes the
size of the tube and the number of support vectors.

estimation of cells proportions.

We will then refer in the following to ε-SVR for the one proposed by Drucker et al. (1996)
and ν-SVR for the one proposed by Schölkopf et al. (1999). The ν-SVR estimator is ob-
tained by solving the following optimization problem:

β̂SVR ∈ arg min
β,β0,ξi,ξ∗i ,ε

1

2
||β||2 + C(νε+

1

n

n∑
i=1

(ξi + ξ∗i )) (1.14)

s.t. yi −Xi:β − β0 ≤ ε+ ξi

Xi:β + β0 − yi ≤ ε+ ξ∗i

ξi, ξ
∗
i ≥ 0, ε ≥ 0 .

The advantage of this modification is that the parameter ε that controls the side of the
ε-insensitive tube (see Figure 1.9) is automatically computed. We will now describe the
idea behind this estimator. At each point Xi: ∈ Rp, an error ε is allowed. If the error is
larger than ε, it is captured in the slack variables appearing in the optimization problem
ξi, ξ∗i . The hyperparameter C > 0 controls the tradeoff between the `2 regularization and
the data fidelity term namely the ε-insentive loss (or equivalently the slack variables).
The value of ε is obtained by a trade off against model complexity and slack variables



1.3. STATE OF THE ART 17

via a constant ν > 0. From the KKT conditions, it can be shown that all problems given
by Equation (1.14) with ν ≥ 1, lead to the same solution (Schölkopf and Smola, 2002,
Chapter 9, p.262). The points Xi: that are lying on or outside the ε-tube are called support
vectors as shown in Figure 1.9. This new formulation of the problem has an interesting
interpretation: ν is an upper bound on the proportions of points Xi: lying outside the
tube (also called fraction of error) and it is a lower bound on the proportions of support
vectors.

A very interesting property of the SVR is that only the points outside the ε-tube are pe-
nalized whereas the points inside the tube have zero loss. This does not mean that only
the points outside the tube determine the regression, it is the contrary: a point outside the
tube can be moved anywhere in its living space as long as it stays outside the tube without
changing the linear estimation. This is certainly the reason why this estimator has shown
to perform well in estimating cells from microarray data. As stated earlier, the noise in the
data is heavy tailed, the SVR can be robust to the points (genes in our application) that are
hit by the tail of the noise distribution.

The selection of support vectors for the estimation acts like a gene selection (i.e., selec-
tion of the rows of the matrix X), the very noisy genes are not kept for the estimation.
Even if, the method seems to perform well in the settings presented in Newman et al.
(2015) looking at how the complete method named Cibersort was implemented raises a
few questions and concerns. First of all, the ν-SVR estimator does not take into account
the underlying constraints from estimating a vector of proportions. The estimated propor-
tions obtained by Cibersort are then obtained by setting to zero the negative coefficients
of β̂SVR and then dividing each coefficients by the sum of the remaining coefficients lead-
ing to a vector of proportions. As already mentioned, solving Equation (1.14) and then
projecting the results onto the set of constraints does not generally lead to the minimum
with the additional constraints. Second, the choice of hyperparameters is done as fol-
lows: the parameter C is always set to be equal to 1. The parameter ν is chosen in the set
{0.25, 0.5, 0.75} and the one leading to the minimal root mean squared error is kept for the
estimation process.

A first natural improvement of their method would be to study the SVR estimator with
the positivity and sum-to-one constraints. However, the new underlying optimization
problem has not been studied in the literature. It raises the question on how to efficiently
solve this new optimization problem. Secondly, the performance of an estimator can be
drastically affected by the choice of the hyperparameters, we believe that choosing C and
ν in a different way could improve the estimation process. Our goal is to avoid grid-search



18 CHAPTER 1. INTRODUCTION

which is costly to set the two hyperparameters of the ν-SVR.

The following questions summarize the main directions of this thesis:

• Can we solve the support vector regression with the proportions constraints op-
timization problem efficiently and have convergence guarantees towards a solu-
tion?

• Can we ease the hyperparameter selection process? We would like to avoid the
grid-search selection which is costly for two hyperparameters in the SVR case.

• Finally, does taking the constraints into account and choosing the hyperparam-
eters more carefully improve the quality of the estimation?

We now briefly present the main contributions of this thesis to answer these questions.

1.4 Coordinate descent for non-smooth optimization

Solving the optimization problem of the SVR estimator is usually done using an optimiza-
tion algorithm called coordinate descent. Generally, the coordinate descent is applied to
the dual optimization problem as proposed by Ho and Lin (2012). More generally, the
optimization problem that we are interested in solving is as follows

x? ∈ arg min
x∈Rp

f(x) +

p∑
j=1

gj(xj)︸ ︷︷ ︸
=g(x)

, (1.15)

where f is a smooth (∇f is Lipschitz) convex function and the functions gj are convex
(possibly non-differentiable). This composite minimization can be solved using proximal
algorithms such as proximal gradient descent (Lions and Mercier, 1979; Combettes and
Wajs, 2005) or proximal coordinate descent (Tseng and Yun, 2009). We now give the defi-
nition of the proximal operator of a general convex function g.

Definition 1.1 (Proximal operators.). The proximal operator of a proper (Definition 2.4),
closed (Definition 2.5), convex function g : Rp → R̄ is the function denoted proxg : Rp → Rp

defined by

proxg(x) , arg min
y∈Rp

1

2
‖y − x‖2 + g(y) .



1.4. COORDINATE DESCENT FOR NON-SMOOTH OPTIMIZATION 19

Several estimators used for regression tasks or classification tasks are the results of an
optimization that can be written like Equation (1.15): the Lasso (Tibshirani, 1996), the
elastic net (Zou and Hastie, 2005), the sparse logistic regression (Koh et al., 2007) and the
SVM/SVR (Boser et al., 1992; Schölkopf et al., 1999). The proximal coordinate descent
algorithm is a very efficient tool to solve these types of optimization problem and we now
state some convergence properties of this algorithm.

1.4.1 Local linear convergence of the coordinate descent algorithm

These non-smooth optimization problems coming from machine learning generate solu-
tion that are structured. For example, the `1 sparse regularization where all gj = | · | leads
to solutions that only have a few non-zero coefficients. The structure induced by the `1

norm is carried out by the notion of support which is the set of non-zero coefficients of the
solution. This notion of support can be generalized for general separable convex functions
gj .

Definition 1.2 (Generalized support). The generalized support Sx ⊆ {1, . . . , p} is the set of
indices j ∈ {1, . . . , p}where gj is differentiable at xj :

Sx , {j ∈ [p] : ∂gj(xj) is a singleton} ,

where ∂g denotes the subdifferential of the function g (see Definition 2.11)

An important question about the fact of using an iterative algorithm to solve Equation (1.15)
is wether we identify the good support of the solution after a finite number of iterations?
In other words, does it exist an iterationK > 0 such that for all k ≥ K, we have x(k)

Sc
x?

= x?Sc
x?

with x? being a solution of Equation (1.15). The finite support identification property was
proved for the coordinate descent in Nutini et al. (2017, Lemma 3) and a similar result
with a different proof technique is given in Chapter 3. Moreover, proximal gradient de-
scent enjoys linear convergence rate once the support is identified (Liang et al., 2014) and
we show that it is the case for coordinate descent as well.

Main contribution. In order to study local linear convergence, we consider the fixed
point iteration of a complete epoch (an epoch is a complete pass over all the coordinates).
A full epoch of cyclic coordinate descent can be written:

x(k+1) = ψ(x(k)) , Pp ◦ . . . ◦ P1(x(k)) , (1.16)



20 CHAPTER 1. INTRODUCTION

where Pj are coordinatewise sequential applications of the proximal operator Pj : Rp →
Rp and γj > 0:

x 7→



x1

...
xj−1

proxγjgj
(
xj − γj∇jf(x)

)
xj+1

...
xp


.

The following theorem states that after support identification the coordinate descent algo-
rithm converges linearly towards to the solution.

Theorem 1.1 (Local linear convergence). Consider a solution x? of Equation (1.15) and S =

Sx? its generalized support. Suppose

1. The solution is non-degenerated i.e., −∇f(x?) ∈ ri(∂g(x?)) where ri(C) is the relative
interior1 of a convex set C and ∂g is the subdifferential of g.

2. For all j ∈ S, gj is locally C2 and f is locally C2 around x?.

3. The restricted injectivity condition hold i.e., ∇2
S,Sf(x?) � 0 (Hessian restricted to the rows

and columns of indices in S).

4. The sequence (x(k))k≥0 generated by the coordinate descent algorithm converges to x?.

5. The model has been identified i.e., there exists K ≥ 0 such as for all k ≥ K

x
(k)
Sc = x?Sc .

Then (x(k))k≥K converges linearly towards x?. More precisely, for any ν ∈ [ρ(JψS,S(x?)), 1[,
there exists a constant C such that for all k ≥ K,

‖x(k)
S − x?S‖ ≤ Cν(k−K)‖x(K)

S − x?S‖ .

We denote by J f(x) the Jacobian of a function f at x and ρ(M) corresponds to the spectral
radius of a matrix M .

1see Definition 2.10 in Chapter 2



1.4. COORDINATE DESCENT FOR NON-SMOOTH OPTIMIZATION 21

practical rate theoretical rate model identification

0 50 100

100

10°5

10°10

∏
m

ax
/2

||x
(k

)
°

x
?
|| leukemia

0 25 50

gisette

0 10 20

real-sim

0 20

rcv1

0 200

100

10°5

10°10

∏
m

ax
/5

||x
(k

)
°

x
?
||

0 100 0 25 0 100

0 200

100

10°5

10°10

∏
m

ax
/1

0

||x
(k

)
°

x
?
||

0 200 400 0 50 0 200

0 250 500
iteration k

100

10°5

10°10

∏
m

ax
/1

5

||x
(k

)
°

x
?
||

0 1000
iteration k

0 100
iteration k

0 200
iteration k

Figure 1.10 – Lasso, linear convergence. Distance to optimum, ‖x(k)−x?‖, as a function of
the number of iterations k, on 4 different datasets: leukemia, gisette, rcv1, and real-sim. The
regularization parameter was chosen proportional to λmax = ‖A>b‖

2n
.

We showed on several real datasets that our theoretical rates derived from Theorem 1.1
match empirical rates as shown in Figure 1.10 for the case of the Lasso where f(x) =
1

2n
‖Ax− b‖2 with A ∈ Rn×p being the design matrix and b ∈ Rn the observation vector and

gj(xj) = λ|xj| for a λ > 0. This theorem is proved in Chapter 3.

Relation to previous works. Local linear convergence was proved for the ISTA and
FISTA algorithm on the Lasso problem (Tao et al., 2016) studying the spectral proper-
ties of the recurrence matrix used for the updates of both algorithms. This result has been
extended to the generic proximal gradient descent algorithm in Liang et al. (2014) suppos-
ing that g is a partly smooth function. The partly smooth class of functions was defined in
Lewis (2002) and unifies most of the non-smooth functions known in machine learning. It
defines properly the structure that we mentioned in the non-smooth optimization prob-
lems cited earlier. In our work, we consider the coordinate descent algorithm with the
assumption that g is separable i.e., g(x) =

∑p
j=1 gj(xj). For a solution x? of Equation (1.15),

we proved that the class of separable functions that are C2 on Sx? at x? is equivalent to
the fact that these functions are partly smooth. Once stated, Theorem 1.1 shows that the
coordinate descent algorithm enjoys the same local linear convergence property than the
proximal gradient descent. The local linear convergence property was also proved for
the SAGA and prox-SVRG algorithms in Poon et al. (2018) under the same framework of
assumptions.

This local linear convergence behavior of the previously mentioned algorithms raises a
natural question about how fast we identify the structure induced by the non-smooth



22 CHAPTER 1. INTRODUCTION

function g. This notion is also known as active set complexity defined in Nutini et al.
(2019) which is the number of iterations needed to identify the structure. Under the as-
sumptions that g is separable, Nutini et al. (2019) gave a bound on the number of iterations
needed for the proximal gradient descent algorithm to identify the structure. This results
was extended for f being strongly convex with separable functions g for the cyclic or
greedy coordinate descent algorithm in Nutini et al. (2017). In our work, we only prove
that the local linear convergence regime happens after structure identification but we do
not prove that it starts immediately after identification even if it seems to be the case in
practice.

1.4.2 Convergence of the generalized Sequential Minimal Optimiza-

tion algorithm

The Support Vector Regression (SVR) is a widely used estimator to estimate linear or non-
linear functions. Motivated by the addition of probability constraint on the estimator in
the linear case, we consider general linear constraints added in the optimization problem
of the ν-SVR estimator (Schölkopf et al., 1999). The optimization problem that we are seek-
ing to solve reads for a design matrix X ∈ Rn×p and an observation vector y ∈ Rn:

min
β,β0,ξi,ξ∗i ,ε

1

2
||β||2 + C

(
νε+

1

n

n∑
i=1

Lε(yi, Xi:β)

)
(LSVR-P)

subject to ξi, ξ
∗
i ≥ 0, ε ≥ 0

Aβ ≤ b

Γβ = d ,

where A ∈ Rk1×p, Γ ∈ Rk2×p, β ∈ Rp, ξ, ξ∗ ∈ Rn and β0 ∈ R, ε > 0.

For example if A = − Idp, b = 0, Γ = 0 and d = 0, the resulting optimization problem adds
non-negative prior on the SVR estimator which can be seen as the counter part of the Non-
Negative Least Squares regression (Lawson and Hanson, 1995). Considering A = − Idp,
b = 0, Γ = (1, . . . , 1) and d = 1 leads to the Simplex SVR with positive and sum-to-one
constraints which is well suited for the estimation of cells proportions.

The SVR optimization problem without linear constraints is usually solved in its dual us-
ing dual coordinate descent algorithm (Ho and Lin, 2012) or a variant named Sequen-
tial Minimal Optimization (SMO) algorithm (Platt, 1999). The dual problem of Prob-
lem (LSVR-P) will be explicitly derived in Chapter 4 but can be written:



1.4. COORDINATE DESCENT FOR NON-SMOOTH OPTIMIZATION 23

min
θ∈R2n+k1+k2

f(θ) =
1

2
θ>Qθ + l>θ (LSVR-D)

subject to 0 ≤ θi ≤
C

n
,∀i ∈ {1, . . . , 2n}

2n∑
i=1

θi = Cν

n∑
i=1

θi − θi+n = 0

θi ≥ 0,∀i ∈ {2n+ 1, . . . , 2n+ k1} ,

with Q a semidefinite positive matrix.

The two equality constraints in Problem (LSVR-D) link some variables together making
classical coordinate descent impossible to use. The SMO algorithm updates two variables
at a time ensuring that the two equality constraints are satisfied after each update.

Main contribution. We show that the linear constrained ν-SVR dual optimization prob-
lem has a convex quadratic objective function under convex constraints mixing blocks of
variables that are separable and non-separable. We propose, in Chapter 4, a generalization
of the SMO algorithm proposed by Platt (1999) to solve Problem (LSVR-D) and prove the
following convergence theorem:

Theorem 1.2. Let us suppose that {x ∈ Rp : Ax ≤ b,Γx = d} defines a non-empty polyhedron.
Then the sequence of iterates (θk)k≥0, defined by the generalized SMO algorithm, converges to an
optimal solution of the optimization Problem (LSVR-D).

The detailed algorithm and proof of convergence are given in Chapter 4.

Relation to previous works. The convergence of the SMO algorithm was proved by
Keerthi and Gilbert (2002). Later, Lopez and Dorronsoro (2012) gave a simpler proof of
convergence. We show in Chapter 4 that the proof technique used in Lopez and Dor-
ronsoro (2012) can be extended to the linear constraints case with some new arguments.
Concerning the convergence rates, She and Schmidt (2017) proved linear convergence rate
when considering random uniform selection of the blocks to update. Our proposed algo-
rithm is a type of greedy algorithm that selects the pair of variables (or single variable)
that violate the Karush–Kuhn–Tucker (KKT) optimality conditions the most.

Convergence guarantees for the coordinate descent algorithm are generally stated assum-



24 CHAPTER 1. INTRODUCTION

ing that the non-smooth function is separable. The classical SMO (Platt, 1999) is an exam-
ple of coordinate descent variant that can be used without the separability assumptions,
here with equality constraints linking the variables together. For the random coordinate
descent, Necoara and Patrascu (2014) proposed a variant of the coordinate descent that
can be used for composite minimization problem (Equation (1.15)) with the addition of
one single equality constraints breaking the separability assumptions. Their proposed al-
gorithm is very similar to the SMO algorithm but encompasses a wider class of optimiza-
tion problem and uses a different index selection strategy (random vs greedy). This result
was then extended by Reddi et al. (2014) with a linear system linking the variables to-
gether i.e., a system of equality constraints using a random index selection. Our algorithm
is a special instance of a coordinate descent variant that solves a problem with variables
that are separable and variables that are linked by equality constraints. To our knowledge,
general proof of convergence with greedy index selection for this type of problems does
not exist and it is a first step towards considering more general optimization problems that
could be solved using coordinate descent variants weakening the separability assumption
in greedy type coordinate descent.

1.5 Automatic hyperparameters selection for non-smooth

convex models

After focusing on optimization tools that would help us in the process of solving the un-
derlying optimization problem for our cells quantification application, we turn towards
the field of hyperparameters selection. Selecting hyperparameters in machine learning
models can be a difficult task mainly when the number of hyperparameters is large. Tak-
ing the SVR as an example, having two hyperparameters to set is usually done using a
predefined grid of hyperparameters on which we test the performance of the model for
each point of the grid. This can be very costly and using a grid of ten values for each
parameters in the SVR already requires to solve a hundred times the optimization prob-
lem.

The hyperparameter selection step requires a measure of performance for a given estima-
tor called a criterion. Formally, a criterion is a function C : Rp → R, it is typically chosen to
promote good generalization error, e.g., the held-out loss (Devroye and Wagner, 1979), the
cross-validation loss (CV, Stone and Ramer 1965, see Arlot and Celisse 2010 for a survey),
or to reduce model complexity, e.g., AIC (Akaike, 1974), BIC (Schwarz, 1978) or SURE
(Stein, 1981) criteria (see Table 1.1 for some common examples). Selecting hyperparam-



1.5. AUTOMATIC HYPERPARAMETERS SELECTION FOR NON-SMOOTH CONVEX MODELS25

Criterion Problem type Criterion C(β)

Held-out mean squared error Regression 1
n
‖yval −Xvalβ‖2

Stein unbiased risk estimate (SURE)2 Regression ‖y −Xβ‖2 − nσ2 + 2σ2dof(β)

Held-out logistic loss Classification 1
n

∑n
i=1 log(1 + e−y

val
i Xval

i: β)
Held-out smoothed Hinge loss3 Classification 1

n

∑n
i=1 L(yval

i , Xval
i: β)

Table 1.1 – Examples of outer criteria used for hyperparameter selection where yval and
Xval are the validation set for the held-out loss.

eters given a criterion can be cast as a bilevel optimization problem (Colson et al., 2007)

arg min
λ∈Rr

{
L(λ) , C

(
β̂(λ)

)}
s.t. β̂(λ) ∈ arg min

β∈Rp
Φ(β, λ) .

(1.17)

Using the grid-search to solve this optimization problem can be seen as using zero-order
optimization method i.e., solving the optimization problem only with the evaluation of
the function as information.

On the other hand, when the hyperparameter space is continuous and the (regularization
path) function λ 7→ β̂(λ) is well-defined and (almost everywhere) differentiable, first-order
optimization methods are well suited to solve the bilevel optimization Problem (1.17).
Using the chain rule, the gradient of L w.r.t. λ, also called hypergradient, evaluates to

∇λL(λ) = Ĵ >(λ)∇C(β̂(λ)) , (1.18)

with Ĵ(λ) ∈ Rp×r the Jacobian of the function λ 7→ β̂(λ). The main challenge of apply-
ing first-order methods to solve Problem (1.17) is evaluating the hypergradient in Equa-
tion (1.18). There are three main algorithms to compute the hypergradient ∇λL(λ): im-
plicit differentiation (Larsen et al., 1996), automatic differentiation using the backward (or re-
verse) mode (Linnainmaa, 1970) or forward mode (Wengert, 1964). Once the hypergradi-
ent in Equation (1.18) has been computed, one can solve Problem (1.17) by using a first-
order optimization scheme, for instance, gradient descent, with a step size ρ > 0: λ(t+1) =

λ(t) − ρ∇λL(λ(t)).

2For a linear model y = Xβ + ε, with ε ∼ N (0, σ2), the degree of freedom (dof, Efron 1986) is defined as
dof(β) =

∑n
i=1 cov(yi, (Xβ)i)/σ2.

3The smoothed Hinge loss is given by L(x) = 1
2 − x if x ≤ 0, 12 (1− x)2 if 0 ≤ x ≤ 1, 0 else .



26 CHAPTER 1. INTRODUCTION

1.5.1 Hypergradient computation in non-smooth convex learning

The goal is to propose an efficient method to compute the hypergradient∇L to use first or-
der method for the resolution of Problem (1.17) when the lower problem is non-smooth.

We consider estimators that are the solution of the following generic optimization prob-
lem:

β̂(λ) ∈ arg min
β∈Rp

Φ(β, λ) = f(β) +
n∑
i=1

gj(βj, λ)︸ ︷︷ ︸
=g(β,λ)

, (1.19)

where∇f is L-Lipschitz and gj are proper, closed and convex. These types of optimization
problems can be solved using iterative proximal algorithms. The solution β̂(λ) satisfies the
following fixed point equation (Combettes and Wajs, 2005), for any γ > 0:

β̂(λ) = proxγg

(
β̂(λ) − γ∇f(β̂(λ))

)
. (1.20)

Main contribution. We give an implicit differentiation formula for composite minimiza-
tion of the form Equation (1.19) based on the notion of generalized support (Definition 1.2).
The set of assumptions used for this theorem is not detailed here but will be given in
Chapter 6.

Theorem 1.3 (Non-smooth implicit formula). Let λ ∈ Rr. Let β̂ , β̂(λ) be the solution of Equa-
tion (1.19), Ŝ be its generalized support. Under a set of assumptions ensuring that the proximal
operator is differentiable at the optimum, the Jacobian Ĵ of the lower problem in Equation (1.19) is
given by the following formula, with ẑ = β̂ − γX>∇f(Xβ̂) :

ĴŜc = ∂2 proxγg (ẑ)Ŝc ,

ĴŜ = A−1
(
∂2 proxγg(ẑ)Ŝ − γ∂1 proxγg(ẑ)ŜX

>
:Ŝ∇

2f(Xβ̂)X:ŜcĴŜc
)
,

where A , IdŜ −∂1 proxγg(ẑ)Ŝ

(
IdŜ −γX>:Ŝ∇

2f(Xβ̂)X:Ŝ

)
.

Here the proximal operator of g(·, λ), is seen as a function ψ of β and λ:

Rp × Rr → Rp

(β, λ) 7→ proxg(·,λ)(β) = ψ(β, λ) .

We denote ∂1 proxg , ∂1ψ and ∂2 proxg , ∂2ψ where ∂1ψ is the Jacobian w.r.t. the first



1.5. AUTOMATIC HYPERPARAMETERS SELECTION FOR NON-SMOOTH CONVEX MODELS27

variable and ∂2ψ the Jacobian w.r.t. the second variable. This theorem is proved in Chap-
ter 6.

As stated in the theorem, the generalized sparsity induced by the non-smooth functions gj
can be taken into account to speed-up the computation of the hypergradient. Moreover,
using an implicit differentiation technique allows us to use the solver of our choice, as
long as it identifies the generalized support after a finite number of iterations.

We compared three different methods for the computation of the hypergradient of Prob-
lem (1.17), with the lower problem being the Lasso (Tibshirani, 1996) and the outer crite-
rion being the held-out mean squared error (see Table 1.1):

• Forward-mode PCD: the classical forward differentiation of the proximal coordinate
descent (PCD) algorithm used to solve the Lasso. This algorithm does not take into
account the sparsity induced by the non-smooth functions gj .

• Implicit diff: the Lasso is solved using the proximal coordinate descent (PCD) algo-
rithm and then in a second time, we solve the linear system given in Theorem 1.3.

• Implicit diff. + Celer: the solver of the Lasso is changed, to apply an accelerated
version of the proximal coordinate descent named Celer. After solving the Lasso,
the linear system given in Theorem 1.3 is solved.

As it can be seen on Figure 1.11, taking advantage of the sparsity of the Jacobian leads
to a significant increase in the speed of the hypergradient computation (Forward-mode
versus Implicit diff.). Moreover, thanks to the implicit differentiation method, we can
use state-of-the-art solvers as long as they identify the support of the solution. We see
that combining the acceleration technique Celer with the implicit differentiation formula
largely increase the speed of the hypergradient computation.

Relation to previous works. Implicit differentiation for the selection of hyperparame-
ters can be traced back to Bengio (2000). Twice differentiable functions Φ were considered
and the implicit differentiation involves the resolution of a linear system of size p × p.
Our result shows that for Lasso-type models the Jacobian has the same sparsity pattern
than the iterates. We can take advantage of this fact to speed-up the computation of the
Jacobian by solving a linear system of size |Ŝ| × |Ŝ|.

One of the key assumptions for our algorithm to work is that the iterative solver of the
Lasso identifies the good support. It is true for both the proximal gradient descent (Hale
et al., 2008) and the proximal coordinate descent algorithm (Massias et al., 2020).



28 CHAPTER 1. INTRODUCTION

Implicit diff. Implicit diff. + Celer Forward-mode PCD

0 2 4
10−10

10−7

10−4

eλ
=
eλ

m
a
x
/1

0

rcv1

1 2 3

real-sim

0 100 200 300 400

news20

0 10 20 30

Time (s)

10−10

10−7

10−4

eλ
=
eλ

m
a
x
/1

02

0 5 10

Time (s)
0 100 200 300 400

Time (s)

Figure 1.11 – Lasso held-out, time to compute one hypergradient. Absolute difference
between the exact hypergradient (using β̂) and the iterate hypergradient (using β(k)) of the
Lasso as a function of time. Results are for three datasets and two different regularization
parameters. For the implicit differentiation, the lower problem is solved using proximal
coordinate descent (Implicit diff.) or Celer (Massias et al. 2020, Implicit diff. + Celer).

Differentiating proximal algorithms was also considered in Deledalle et al. (2014) under
the framework of weak differentiability. However, in their work they only considered
the forward iterative differentiation. The major difference with our work is that thanks
to the finite support identification property, we restrict the computation of the Jacobian
on the support computing the gradient once a solution of the lasso-type models has been
calculated.

Ochs et al. (2015) considered non-smooth lower level problems which can be solved iter-
atively with smooth updates. They proposed to compute the gradient of the bilevel op-
timization problem by computing the derivative of Bregman proximity operators which
are supposed differentiable. By using the geometry of the non-smooth optimization prob-
lem via the generalized support, we are able to prove that classical proximal operators
can be differentiated at optimum under mild assumptions. These iterative proximal algo-
rithms such as proximal coordinate descent are state-of-the-art solvers for problems with
`1 regularization for example leading to a faster convergence of the algorithms and faster
computation of the gradient needed for the first order method.



1.5. AUTOMATIC HYPERPARAMETERS SELECTION FOR NON-SMOOTH CONVEX MODELS29

1.5.2 Hyperparameter optimization in non-smooth convex learning

Capitalizing on the hypergradient computation method described in the previous section,
we now turn towards the resolution of the bilevel optimization problem to perform hy-
perparameter optimization.

Main contribution. We propose a heuristic algorithm for the resolution of Problem (1.17)
using a gradient descent algorithm, see Algorithm 1.

Algorithm 1 HEURISTIC GRADIENT DESCENT WITH APPROXIMATE GRADIENT

input : X ∈ Rn×p, y ∈ Rn, λ ∈ Rr, (εi)

init : use adaptive step size = True
for i = 1, . . . , iter do

λold ← λ

// compute the value and the gradient

L(λ),∇L(λ)← Solution of the linear system given in Theorem 1.3
if use adaptive step size then

α = 1/‖∇L(λ)‖
λ −= α∇L(λ) // gradient step

if L(λ) > L(λold) then
use adaptive step size = False

α /= 10
return λ

We compared our method based on Theorem 1.3 against other methods to select hyperpa-
rameters namely the grid-search, the random search and a Bayesian method named SMBO
on the elastic net (Zou, 2006) estimator which requires 2 hyperparameters.

Figure 1.12 shows the trajectory of our first order method on the level set of the cross
validation loss. It also illustrates that our method is faster than its competitors to find the
two hyperparameters for the elastic net (Zou, 2006) that minimizes the cross validation
loss (bottom of the figure).

Relation to previous works. Pedregosa (2016) studied hyperparameter optimization via
implicit differentiation in the case of smooth bilevel optimization problem. In this case,
he proved that his proposed algorithm HOAG converges to a stationnary point of Prob-
lem (1.17). Our algorithm is heuristic because we do not have guarantees on the con-
vergence towards a solution of Problem (1.17) when the lower problem is non-smooth.



30 CHAPTER 1. INTRODUCTION

0 100 200

Time (s)

0.2

0.3

0.4

0.5

0.6

C
ro

ss
-v

al
id

at
io

n
lo

ss

0 100 200 300 400

Time (s)
0 500 1000 1500 2000

Time (s)

°10 °5 0

°10

°5

0
G

ri
d-

se
ar

ch
∏

2
°
∏

m
ax

rcv1 (p = 19, 959)

°10 °5 0

°10

°5

0
real-sim (p = 20, 958)

°10 °5 0

°10

°5

0
news20 (p = 632, 982)

°10 °5 0

°10

°5

0

S
M

B
O

∏
2
°
∏

m
ax

°10 °5 0

°10

°5

0

°10 °5 0

°10

°5

0

°10 °5 0

∏1 ° ∏max

°10

°5

0

1s
t-

or
de

r
ap

pr
ox

∏
2
°
∏

m
ax

°10 °5 0

∏1 ° ∏max

°10

°5

0

°10 °5 0

∏1 ° ∏max

°10

°5

0

1st-order 1st-order approx Grid-search Random-search SMBO

°10 °5 0

°10

°5

0

G
ri
d-

se
ar

ch
∏

2
°
∏

m
ax

rcv1 (p = 19, 959)

°10 °5 0

°10

°5

0
real-sim (p = 20, 958)

°10 °5 0

°10

°5

0
news20 (p = 632, 982)

°10 °5 0

°10

°5

0

S
M

B
O

∏
2
°
∏

m
ax

°10 °5 0

°10

°5

0

°10 °5 0

°10

°5

0

°10 °5 0

∏1 ° ∏max

°10

°5

0
1s

t-
or

de
r

ap
pr

ox
∏

2
°
∏

m
ax

°10 °5 0

∏1 ° ∏max

°10

°5

0

°10 °5 0

∏1 ° ∏max

°10

°5

0

Figure 1.12 – Elastic net cross-validation, time comparison (2 hyperparameters). Level
sets of the cross-validation loss (black lines, top) and cross-validation loss as a function of
time (bottom) on rcv1, real-sim and news20 datasets.

Extending this result to the non-smooth case is a very challenging question that is left for
future work.

Open source package. The work presented in Chapter 6 and Chapter 7 has lead to
the development of an open source package available in Python named sparse-ho. This
package follows the same application programming interface than scikit-learn (Pedregosa
et al., 2011).

The package is built following the structure of the bilevel optimization Problem (1.17).
First, a model has to be chosen; several models widely used are already available for au-
tomatic hyperparameter selection such as the Lasso, the weighted Lasso, the elastic net,
the sparse logistic regression, the SVM and the SVR. It corresponds to the lower problem
in Problem (1.17). Then, a criterion is needed (outer problem) for the optimization of the
hyperparameters, several options are available for regression such as the held-out Mean
squared Error, the cross-validation Mean Squared Error or the SURE (Stein, 1981). The
drawback of first order methods is that the criterion has to be regular and at least contin-



1.6. ESTIMATING CELLS PROPORTIONS WITH DEVELOPED TOOLS 31

uous so the 0 − 1 loss for classification cannot be used. However, we implemented the
logistic loss, the smoothed hinge loss or the multiclass logistic loss. Finally, one has to
choose a first order method to solve the bilevel optimization problem which can be gradi-
ent descent with constant step-size, line-search or ADAM (Kingma and Ba, 2014).

Examples, documentation and description of the package are available at https://qb3.
github.io/sparse-ho/.

1.6 Estimating cells proportions with developed tools

The results of the two previous sections have lead to a new method to estimate cells
proportions inside a tumor. The new estimator proposed takes advantage of the con-
strained Support Vector Regression which we can solve using the generalized SMO de-
scribed above and the automatic hyperparameters selection. We could successfully apply
this method on real datasets for the estimation of cells proportions and compared it with
previous works.

Figure 1.13 compares our method with the state-of-the-art method named Cibersort (New-
man et al., 2015) and the Simplex Ordinary Least Squares (SOLS) (Gong et al., 2011). We
tested the ability of the different methods to be robust with respect to noise and unknown
tumor content. We added log-Gaussian noise in the dataN (0, σ2) choosing σ as a percent-
age of σmax = 11.6 (taken from Newman et al. (2015)), the percentage was chosen between
0 and 1 with 30 different values. We artificially added tumor content in the data to repli-
cate the condition of the cells inside a tumor and increased this tumor content from 0%

to a 100% taking 30 different percentages. The estimation performance of the three esti-
mators were compared using the Root Mean Squared Error (RMSE) and the correlation
coefficient (R) between the true proportions and the estimated ones.

It can be seen that our proposed estimator the Simplex SVR has better estimation perfor-
mance as the noise increased and is more robust to noise in comparison to Cibersort and
the SOLS estimator.

As part of the Ph.D. thesis, I spent a year working one day per week inside a cancer insti-
tute being able to apply this estimator for clinical purposes as a replacement to teaching
duties. This collaboration has lead to several articles being already published (Klopfen-
stein et al., 2019; Reichling et al., 2020).

The first article describes the use of immune cells proportions inside glioblastoma cancers
to help refine patients’ prognosis. This second article uses a random forest approach to

https://qb3.github.io/sparse-ho/
https://qb3.github.io/sparse-ho/


32 CHAPTER 1. INTRODUCTION

0.00 0.25 0.50 0.75 1.00
Tumor content (%)

0.00

0.25

0.50

0.75

1.00
N

oi
se

(x
1

s.
d.

)
Simplex SVR

0.00 0.25 0.50 0.75 1.00
Tumor content (%)

Cibersort

0.00 0.25 0.50 0.75 1.00
Tumor content (%)

Simplex OLS

0.05

0.10

RMSE

0.00 0.25 0.50 0.75 1.00
Tumor content (%)

0.00

0.25

0.50

0.75

1.00

N
oi

se
(x

1
s.

d.
)

Simplex SVR

0.00 0.25 0.50 0.75 1.00
Tumor content (%)

Cibersort

0.00 0.25 0.50 0.75 1.00
Tumor content (%)

Simplex OLS

0.00

0.25

0.50

0.75

R

Figure 1.13 – Robustness to noise and tumor content. Heatmap representing the Root
Mean Squared Error (RMSE) or the correlation coefficient (R) between the true proportions
of cells and the estimated ones as a function of the tumor content percentage (x-axis) and
the level of noise (y-axis). We compared three different estimator the Simplex Support
Vector Regression, Cibersort and the Simplex Ordinary Least Squares.

automatically detect and compute cells of interest on an immunohistochemestry slide and
it is not directly related to the topic of this thesis.

Another article is currently under review. In this paper, we show that the information
about the proportions of cells is important and can be used for clinical purposes to esti-
mate the risk of relapse for patients suffering from breast cancer and some results will be
presented in Chapter 8 of this thesis.

1.7 Outline

This thesis is organized in 3 parts and 9 chapters that we briefly summarize here.

Chapter 2. This chapter presents the main mathematical tools used in this thesis. We
recall classical definitions and results of convex analysis and convex optimization. We
also present the coordinate descent algorithm which will be encountered throughout the
rest of this manuscript.



1.7. OUTLINE 33

Non-smooth optimization around coordinate descent. Part I focuses on the coordinate
descent algorithm to solve composite minimization problems.

In Chapter 3, we prove an explicit equivalence between the partially smooth class of func-
tions and the functions that are separable and locally C2 on the generalized support. Then,
we prove model identification for the coordinate descent algorithm for this class of con-
vex functions in Theorem 3.1 and prove local linear convergence once identification takes
place (Theorem 3.2). We show on real datasets that our theoretical rates match the empir-
ical convergence rates observed.

In Chapter 4, we study the Support Vector Regression optimization problem with linear
constraints. We derive the dual formulation of the optimization problem and propose an
efficient iterative algorithm to solve it. We prove in Theorem 4.1 the convergence of this
algorithm towards a solution. We also show the utility of our proposed estimator on real
datasets and various settings: non-negative regression, isotonic regression and regression
with simplex constraints.

Publications/Preprints

• Q. Klopfenstein and S. Vaiter. Linear Support Vector Regression with Linear Constraints.
Preprint. arXiv:1911.02306. 39 pages. 2019

• Q. Klopfenstein∗, Q. Bertrand∗, A. Gramfort, J. Salmon, S. Vaiter. Model identification
and local linear convergence of coordinate descent. Preprint. arXiv:2010.11825. 26 pages.
2020

Automatic hyperparameters selection for non-smooth convex models Part II focuses
on hyperparameters selection for non-smooth convex models in machine learning.

In Chapter 5, we give an introduction on hyperparameters optimization. Selecting hyper-
parameters given a function that measures the quality of an estimator can be written as
an bilevel optimization problem which can be solved efficiently using first order meth-
ods.

In Chapter 6, we also prove that the hypergradient of separable non-smooth lower prob-
lems can be computed using implicit differentiation (Theorem 6.1). Moreover, Theo-
rem 6.4 prove that the convergence of the iterative Jacobian algorithm is linear once the
structure induced by the sparsity has been identified. We show that our proposed method
for the computation of the hypergradient outperforms classical tools based on generic
differentiation packages or iterative differentiation.



34 CHAPTER 1. INTRODUCTION

In Chapter 7, we capitalise on the proposed hypergradient computation method to use a
first order method to solve the bilevel optimization for the selection of hyperparameters.
We then show that our proposed first order method outperforms state-of-the-art method
for the setting of hyperparameters on various models: Lasso, elastic net, sparse logistic
regression, SVM and the weighted Lasso.

Publications/Preprints

• Q. Bertrand∗, Q. Klopfenstein∗, M. Blondel, S. Vaiter, A. Gramfort, J. Salmon. Im-
plicit differentiation of Lasso-type models for hyperparameter optimization. ICML. 2020
11825. 26 pages. 2020

• Q. Bertrand∗, Q. Klopfenstein∗, M. Blondel, S. Vaiter, A. Gramfort, J. Salmon. Im-
plicit differentiation for fast hyperparameter selection in non-smooth convex learning. Preprint.
45 pages. 2021

Estimating cells proportions with developed tools Part III and final Chapter 8 aim at
applying the mathematical tools introduced above for the estimation of cells proportions
inside a tumor. We benchmark our proposed methods with different methods proposed
in the literature and show that it can outperform the state-of-the-art methods in differ-
ent settings. We also describe an example of clinical use of the information given by the
estimation of the immune cells proportions for patients suffering of breast cancers. The
information about the cells proportions can help the estimation of the risk of relapse for
patients suffering from breast cancer.

• Q. Klopfenstein, V. Derangère, L. Arnould, M. Thibaudin, E. Limagne, F.Ghiringhelli,
C. Truntzer, S. Ladoire. Evaluation of Tumor Immune Contexture among Intrinsic Molec-
ular Subtypes Helps to Predict Outcome in Early Breast Cancer. Under review. 2021

The last chapter, Chapter 9, summarizes our contributions and discusses several possible
future directions and open problems.



2 MATHEMATICAL

BACKGROUND

Contents
2.1 General notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.2 Convex analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.3 Smooth optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.4 Non-smooth optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

In this chapter, we present the main mathematical tools that will be used throughout this
manuscript. In particular, we present a first order optimization method called coordinate
descent which will be the guideline of this work. We start in Section 2.1 by giving general
mathematical notation that will appear in the following chapters. Section 2.2 recalls basic
definitions and results of convex analysis, Section 2.3 introduces two algorithms used
in smooth optimization and Section 2.4 presents their proximal variant for non-smooth
optimization.

2.1 General notation

In the following, the symbol , means equal by definition. We consider the vector space Rn

with its associated Euclidean structure and its related scalar product denoted 〈·, ·〉 given
by:

∀x, y ∈ Rn, 〈x, y〉 =
n∑
i=1

xiyi .

35



36 CHAPTER 2. MATHEMATICAL BACKGROUND

We also denote its associated `2 norm

‖x‖ =

√√√√ n∑
i=1

x2
i .

Another important norm in this manuscript is the `1 norm given for all x ∈ Rn by

‖x‖1 =
n∑
i=1

|xi| .

We denote by (e1, . . . , en) the Euclidean base of Rn. The vector 1 denotes the vector with
entries all equal to one. Let x ∈ Rn be a column vector, we denote by x> its related row
vector. We use the notation � as the coordinatewise multiplication between two vectors
x, y ∈ Rn i.e.,

x� y = (x1y1, . . . , xnyn)> .

For x ∈ Rn, γ ∈ Rn
+ the weighted norm is denoted

‖x‖γ ,

√√√√ n∑
i=1

γix2
i .

Matrices. The set of matrices of size n by p is denoted Rn×p. For a matrix M ∈ Rn×p,
we will write that M � 0 (M � 0) to say that it is definite positive (resp. semidefinite
positive). We denote by M> its transpose matrix and by Tr(M) its trace. We write the row
wise multiplication of a vector x ∈ Rn and a matrix M ∈ Rn×p by x �M ∈ Rn×p. The
ith row of a matrix M is denoted Mi: and its jth column by M:j . The spectral radius of a
matrix M ∈ Rn×n is denoted ρ(M) = maxi |λi|, where λ1, . . . , λn are the eigenvalues of M
(possibly complex). We denote by ‖M‖2 the matrix norm equal to the maximum singular
value of M . The singular values of a matrix M will be written σi(M).

The Mahalanobis norm of a vector x ∈ Rp for a given matrix A � 0 is noted

‖x‖A ,
√
x>A−1x .

Sets. The set of integers {1, . . . p} is denoted by [p]. Let E be a set, for a subset I ⊆ E, we
denote by Ic its complement and |I| its cardinality. The Cartesian product between sets
A and B is written A × B. The closed ball of radius ε > 0 and center x ∈ Rn is denoted



2.1. GENERAL NOTATION 37

by

B(x, ε) = {y ∈ Rn : ‖y − x‖ ≤ ε} .

Derivatives. Let f : Rn → R be a differentiable function, we write ∇f(x) its gradient at
x ∈ Rn and∇if(x) the ith coordinate of the gradient at x. For a function f : Rn → Rp, such

that x 7→


f1(x)

...
fp(x)

, we denote J f(x) ∈ Rp×n its Jacobian at x ∈ Rn given by

J f(x) =


∂f1

∂x1
(x) . . . ∂f1

∂xn
(x)

... . . . ...
∂fp
∂x1

(x) . . . ∂fp
∂xn

(x)

 .

We recall the definition of weak differentiability (see Evans and Gariepy (1992) for more
details).

Definition 2.1. Let f : x ∈ Ω → R, where Ω is an open subset of Rn, be a function locally
integrable. Its weak derivative with respect to xi in Ω is the locally integrable function gi

such that ∫
Ω

gi(x)φ(x)dx = −
∫

Ω

f(x)
∂φ(x)

∂xi
dx ,

holds for all functions φ that are continuously differentiable and with a compact support.
A function is said to be weakly differentiable if all its weak partial derivatives exist.

For a vector-valued function ψ : Rp × Rr 7→ Rp, we say that it is weakly differentiable if
ψk is weakly differentiable for k ∈ [m]. Then we denote ∂1ψ the weak Jacobian w.r.t. the
first variable and ∂2ψ the weak Jacobian w.r.t. the second variable. We denote Ĵ(λ) ,

(∇λβ̂
(λ)
1 , . . . ,∇λβ̂

(λ)
p )> ∈ Rp×r the weak Jacobian of β̂(λ) w.r.t. λ. Note that to ease the read-

ing, we drop λ in the notation when it is clear from the context and use β̂ and Ĵ .

If ψ : Rp × Rr → R and is twice differentiable, we denote by ∇βψ(β, λ) ∈ Rp (resp.
∇λψ(β, λ) ∈ Rr) its gradient w.r.t. the first variable (resp. the second variable). ∇βjf is the
partial derivative ∂ψ

∂βj
.

Definition 2.2 (Classes of regularity). Let U ⊆ Rp be an open subset of Rp. A function
f : U → R is said to be C1 on U if all its partial derivatives exist and are continuous.



38 CHAPTER 2. MATHEMATICAL BACKGROUND

The function f is said to be Ck, k ∈ N, on U if all its kth order partial derivatives exist and
are continuous.

Definition 2.3 (Local regularity). Let x ∈ Rp. The function f is said to be locally C1 around
x if there exists V ⊆ Rp a neighborhood of x such that f : V → R is C1. The function f is
said to be locally Ck, k ∈ N, around x, if there exists V ⊆ Rp a neighborhood of x such that
f : V → R is Ck.

We denote the right completion of the real line by R̄ = R ∪ {+∞}. The sign a of a vector
x ∈ Rn is denoted sign(x) and each coordinate is obtained as sign(x)i = xi

|xi| with the
convention that sign(0) = 0.

Model specific. The design matrix is X ∈ Rn×p (corresponding to n samples and p fea-
tures) and the observation vector is y ∈ Rn. The underlying optimization problems of the
models considered in this thesis can all be written under the general form:

β̂(λ) ∈ arg min
β∈Rp

Φ(β, λ) , f(β) +

p∑
j=1

gj(βj, λ) , (2.1)

where the regularization parameter, possibly multivariate, is denoted by λ = (λ1, . . . , λr)
> ∈

Rr. We denote β̂(λ) ∈ Rp the regression coefficients associated to λ i.e., a solution of Prob-
lem (2.1) for a fixed λ.

2.2 Convex analysis

In this section, we recall essential elements of convex analysis that are the foundations
of this work. We refer to Rockafellar (1997), Boyd and Vandenberghe (2004) and Hiriart-
Urruty and Lemaréchal (1993a,b) for in depth references about this subject. We recall the
definitions of the domain and epigraph of a function.

Definition 2.4 (Epigragh and domain). The epigraph of a function f : Rn → R̄ is a subset
of Rn+1 given by

epi(f) , {(x, t) ∈ Rn × R : f(x) ≤ t} .

The (effective) domain of f is the set

dom(f) , {x ∈ Rn : f(x) < +∞} .



2.2. CONVEX ANALYSIS 39

A function f is said to be proper if its domain dom(f) is non-empty.

In the rest of this manuscript, we will consider functions that are proper even if not ex-
plicitly stated.

Definition 2.5 (Lower semicontinuity). A function f : Rn → R̄ is lower semi-continuous
at x ∈ Rn if

lim inf
z→x

f(z) ≥ f(x) .

The lower semicontinuity assumption on a function f is equivalent to the fact that epi(f)

is closed (Rockafellar and Wets, 1998, Thm. 1.6), we also say that f is closed then.

Definition 2.6 (Convexity). A set C ⊆ Rn is said to be convex if

∀x, y ∈ C, ∀λ ∈ [0, 1], λx+ (1− λ)y ∈ C .

A function f : Rn 7→ R̄ is convex if

∀x, y ∈ dom (f),∀λ ∈ [0, 1], f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y) .

It is said to be strictly convex if

∀x, y ∈ dom (f),∀λ ∈]0, 1[, x 6= y ⇒ f(λx+ (1− λ)y) < λf(x) + (1− λ)f(y) .

It is strongly convex of modulus µ if for all x, y ∈ dom (f) and all λ ∈ [0, 1],

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y)− µ

2
λ(1− λ)‖x− y‖2 .

We recall the definition of the indicator of a set C.

Definition 2.7 (Indicator function). Let C ⊆ Rn be a non-empty closed convex set. The
indicator function of C is given by

ιC(x) ,

0, if x ∈ C
+∞, otherwise .

An important example of indicator function of a set C will be the indicator of a closed
interval, for example [0, λ] for any λ > 0. This will appear in this manuscript as constraints



40 CHAPTER 2. MATHEMATICAL BACKGROUND

in the Support Vector Regression problem in Chapter 4.

Note also that a constrained optimization problem of the form:

x? ∈ arg min
x∈C

f(x) ,

can be rewritten as an unconstrained one

x? ∈ arg min
x∈Rn

f(x) + ιC(x) .

Definition 2.8 (Affine hull). The affine hull of a convex set C is the smallest affine set
containing C i.e.,

aff(C) ,

{
k∑
i=1

αixi : k > 0, xi ∈ C, αi ∈ R,
k∑
i=1

αi = 1

}
.

Definition 2.9 (Linear hull). The linear hull of a convex set C is the smallest linear sub-
space containing C denoted Lin(C).

Definition 2.10 (Interior and relative interior). The interior of a convex set C is denoted
int(C). Its relative interior ri(C) is the interior relative to its affine hull.

Definition 2.11 (Subdifferential). The subdifferential ∂f of a convex function f at x is the
set

∂f(x) , {u ∈ Rn : f(y) ≥ f(x) + 〈u, y − x〉, ∀y ∈ dom(f)} .

An element of ∂f(x) is called a subgradient. Moreover if f is differentiable at x then ∂f(x)

is a singleton and ∂f(x) = {∇f(x)}. We now give a first order optimality condition based
on the subdifferential of a function that extends the first order condition for differentiable
function: ∇f(x?) = 0.

Proposition 2.1. Let f : Rn → R be a convex function f , then x? is a minimizer of f if, and only
if, 0 is an element of the subdifferential of f at x?, i.e., 0 ∈ ∂f(x?).

Definition 2.12 (Smoothness). A differentiable function f : Rn → R is said to be L-smooth



2.2. CONVEX ANALYSIS 41

if:

∀x, y ∈ Rn, f(x) ≤ f(y) +∇f(y)>(x− y) +
L

2
‖x− y‖2 .

It is equivalent to the fact that∇f is a L-Lipschitz function i.e.,

∀x, y ∈ Rn, ‖∇f(x)−∇f(y)‖ ≤ L‖x− y‖ .

Moreover, if we suppose that f is twice differentiable then it also means for all x ∈ Rn

that:

0 � ∇2f(x) � L Idn .

Proximal operators.

Definition 2.13 (Proximal operators.). The proximal operator of a convex function f :

Rn → R̄ is the function denoted proxf : Rn → Rn defined by

proxf (x) , arg min
y∈Rn

1

2
‖y − x‖2 + f(y) .

The function minimized on the righthand side is strongly convex if f is convex, hence has
a unique minimizer for every x ∈ Rn.

Proximal operators can be seen as a generalization of projection operators. If we consider
a non-empty convex set C and its indicator function f = ιC , the proximal operator of f at
x is the result of the following optimization problem

proxf (x) = arg min
y∈C

‖y − x‖2 ,

which is the Euclidean projection onto the set C. We now give an optimality condition
for the proximal operator which establishes a link with the fixed point equation. This
condition allows us to see the connection between the fixed point iteration induced by the
proximal operator and the solution of a minimization problem.

Proposition 2.2. Let f : Rn → R̄ be a convex function and proxf its proximal operator. Then
we have the following property: x? ∈ Rn is a minimum of f if, and only if, proxf (x

?) = x? (see
Bauschke and Combettes (2011, Chap. 10)).

An important class of convex functions in this manuscript are the separable functions.



42 CHAPTER 2. MATHEMATICAL BACKGROUND

Definition 2.14. We say that f : Rn → R̄ is a separable function if f can be written for all
x ∈ Rn as

f(x) =
n∑
i=1

fi(xi) .

The proximal operator of separable functions is equal to the proximal operator computed
coordinatewise.

Proposition 2.3. Let f : Rn → R̄ be a convex and separable function i.e., f(x) =
∑n

i=1 fi(xi)

then the proximal operator of f is

(
proxf (x)

)
i

= proxfi(xi) .

This proposition is essential for the first order optimization algorithm called coordinate
descent that we will present in Section 2.4.

We now give two examples of proximal operators that will be extensively used in the
following chapters. The proximal operator of f = λ‖·‖1 : Rn → R, is the soft thresholding
operator, defined coordinatewise for x ∈ Rn and λ > 0:

proxλ‖·‖(x)i = ST(x, λ)i = sign(xi)(|xi| − λ)+, ∀i ∈ [n] .

The second example is the proximal operator of the indicator function of the set [0, λ]n, for
any λ > 0. It is simply the projection onto the interval [0, λ] coordinatewise, i.e.,

proxι[0,λ]n
(x)i = P[0,λ](xi) = max(min(0, xi), λ), ∀i ∈ [n] .

2.3 Smooth optimization

In this section, we present two algorithms that can be used to iteratively approach the
minimum of a convex and differentiable function, namely the gradient descent algorithm
and the coordinate descent algorithm.



2.3. SMOOTH OPTIMIZATION 43

Gradient descent. Let us consider the following optimization problem:

x? ∈ arg min
x∈Rp

Φ(x) , (2.2)

where Φ : Rp → R̄ is a convex L-smooth function. Solving Equation (2.2) can be done
using an iterative gradient descent algorithm. The solution x? ∈ Rp will be approximated
by the following scheme, for any 0 < γ < 2

L
:

x(k+1) = x(k) − γ∇Φ(x(k)) .

Note that in practice, we will choose γ = 1
L

when L is known.

Under the assumption that Φ is L-smooth, it is possible to obtain the following rate of
convergence (Nesterov, 2004, Corollary 2.1.2):

Φ(x(k))− Φ(x?) ≤ 2L‖x(0) − x?‖2

k + 4
.

If we assume that Φ is µ-strongly convex, we obtain a linear rate of convergence:

Φ(x(k))− Φ(x?) ≤
(

1− µ

L

)k
(Φ(x(0))− Φ(x?)) .

Coordinate descent. Another first order method can be used to solved smooth problem
like Equation (2.2). This optimization algorithm is simple and is widely used to solve
large scale problems in machine learning (see for example Wright (2015)). The main idea
of the algorithm is the following: choose the index of a coordinate that will be updated
and perform an exact (or approximated) minimization with respect to this chosen variable
while all the others remain constant. In terms of trajectory of the iterative algorithm, each
update only moves the iterate along one axis as shown in Figure 2.1. There exists sev-
eral variants of coordinate descent depending on the update rule and the index selection.
Concerning the update rule, a natural way to use coordinate descent is to perform exact
coordinate minimization iteratively, for j ∈ [p]:

x
(k+1)
j ∈ arg min

xj∈R
Φ
(
x

(k+1)
1 , . . . , x

(k+1)
j−1 , xj, x

(k)
j+1, . . . , x

(k)
p

)
. (2.3)

Breaking up the optimization Equation (2.2) into subproblems of the form Equation (2.3)
makes practical sense if the minimization problem of size one is easy to solve. Supposing
that the minimum of each subproblem is unique, it is possible to show that exact coor-



44 CHAPTER 2. MATHEMATICAL BACKGROUND

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5
x

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

y

5x2 − 6xy + 5y2

Figure 2.1 – Coordinate descent algorithm. Coordinate descent applied to the function
f(x, y) = 5x2 − 6xy + 5y2 with initial point (−0.5,−1.0). The algorithm updates one coor-
dinate at a time while the other one remains constant.

dinate minimization converges towards a solution of Equation (2.2) when Φ is smooth
(Bertsekas, 2015, Prop. 6.5.1).

Computing exact minimization at each step might be difficult in some cases. Another
version of coordinate descent is used for differentiable functions relying on a quadratic
approximation of Φ, the update can then be seen as a coordinate gradient descent step.
Before giving the update formula, we need to define the coordinatewise Lipschitz constant
of a function.

Definition 2.15. Let f : Rp → R be a function. We say that Lj > 0 is a local Lipschitz
constant of f , if for all x ∈ Rp, h ∈ R:

||fj(x+ ejh)− fj(x)|| ≤ Lj|h| .



2.3. SMOOTH OPTIMIZATION 45

Algorithm 2 CYCLIC COORDINATE DESCENT

input : L1, . . . , LP ∈ R+, niter ∈ N, x(0) ∈ Rp

for k = 0, . . . , niter do
x(0,k)←x(k)

for j = 1, . . . , p do // index selection

x(j,k)←x(j−1,k)

x
(j,k)
j ←x

(j−1,k)
j − 1

Lj
∇jΦ(x(j−1,k)) // Coordinate gradient step

x(k+1)←x(p,k)

return xniter+1

The update for the coordinate gradient descent update then reads:

x
(j,k)
j = x

(j−1,k)
j − 1

Lj
∇jΦ(x(j−1,k)) ,

where Lj is the local Lipschitz constant of∇Φ.

As shown in Algorithm 2, the notation x(j,k)
j allows us to keep track of the epoch, meaning

the number of full passes on the coordinates denoted by k and at the same time the current
updated coordinate j. Once all the coordinates have been updated once, we increase the
number of epoch by one and repeat until a stopping criterion is met. This notation can be
found in Beck and Tetruashvili (2013).

Note that if Φ is a quadratic function both approaches, the exact minimization and the
coordinate gradient step with step size 1

Lj
, lead to the same iterative scheme.

We now present different ways to select the coordinate j ∈ [p] that will be updated, also
called the index-rule. There exists three different families of index rules:

• The most natural approach to pick an index is going through all the coordinates
j ∈ [p] cyclically. This choice of index is deterministic and is easy to implement.
There also exists some variants which allow the permutation of the set [p] after each
epoch (i.e., a complete pass on all coordinates) or once and for all. The algorithm
obtained with this choice of index selection is simple to implement and is given in
Algorithm 2. As references for cyclic coordinate descent, we can refer to Luo and
Tseng (1992).

• Another possibility is to select the coordinate at random for a given random distri-
bution. The easiest distribution to choose is the uniform distribution over all the
coordinates as in Nesterov (2012) but other choices can be made to improve conver-
gence based on feature importance score (Zhang, 2004).



46 CHAPTER 2. MATHEMATICAL BACKGROUND

• Finally the last index rule is the greedy coordinate descent. For example, the index
can be chosen such as the decrease in the objective function is maximal or choosing
the index corresponding to the largest gradient coordinate in absolute value i.e.,

j = arg max
i∈[p]

‖∇jf(x(j−1,k))‖ .

This index rule is called the Gauss-Southwell rule and other variants exist as well
such as the Gauss-Southwell Lipschitz selection (Nutini et al., 2015).

Linear regression. We now give an example of a smooth optimization problem that can
be solved using gradient descent or coordinate descent. Let us consider the following
Ordinary Least Squares (OLS) problem for b ∈ Rn and A ∈ Rn×p:

x? ∈ arg min
x∈Rp

1

2
‖Ax− b‖2 .

Applying the gradient descent scheme to this problem leads to the following update with
L = ‖X‖2

2:

x(k+1) = x(k) − 1

L
A>(Ax(k) − b) .

Considering the cyclic coordinate gradient descent for this problem leads to the coordi-
nates updates with Lj = ‖X:j‖2:

x
(j,k)
j = x

(j−1,k)
j − 1

Lj
A>:j(Ax

(j−1,k))− b) (2.4)

Figure 2.2 shows the different convergence trajectories of the linear regression optimiza-
tion problem. The curves represent the objective function at iteration k minus the objec-
tive function at the optimum for the gradient descent and at epoch k for the coordinate
descent. The question here is to know if it is fair to compare a whole epoch of coordinate
descent versus one iteration of gradient descent. The response is yes in terms of computa-
tion cost, if we use cleverly the fact that we update one coordinate at a time. An iteration
of gradient descent cost O(np) operations. When considering coordinate descent, one can
notice that the vector r = Ax(0) − b can be computed once at the beginning of the process.
Then Equation (2.4) becomes

x
(j,k)
j = x

(j−1,k)
j − 1

Lj
A>:jr , (2.5)



2.4. NON-SMOOTH OPTIMIZATION 47

0 100 200 300 400 500
k

10−10

10−7

10−4

10−1

102

Φ
(x

(k
) )
−

Φ
(x

?
)

Gradient descent

Coordinate descent

Figure 2.2 – Coordinate descent versus Gradient descent. Convergence speed of co-
ordinate descent versus gradient descent to solve 50 linear regression problems with
A ∈ R50×20 and b ∈ R50.

and r can be updated by r = (xold
j − x(k,j)

j )A:j . Therefore, an update cost O(n) operations:
O(n) for the multiplication A>:jr and O(n) to keep r updated. A whole epoch then costs
O(np), the same as gradient descent.

Empirically, coordinate descent is often much faster than gradient descent as illustrated
in Figure 2.2. There is a lack of theory backing up these empirical observations but a
possible explanation is that we use the information about updated gradient for each co-
ordinate in the coordinate descent algorithm whereas for the gradient descent algorithm,
the gradient is only updated at each iteration. Coordinate descent is an efficient algorithm
to solve some smooth optimization problems but its main advantage is its efficiency to
solve composite minimization problems that arise in machine learning as we will now
describe.

2.4 Non-smooth optimization

This section contains the class of optimization problems that will be considered in this
entire work. We present how the gradient descent and coordinate descent algorithms can
be extended to solve composite minimization problems.

Proximal gradient descent. Let us now consider a composite minimization problem
such that

x? ∈ arg min
x∈Rp

Φ(x) = f(x) + g(x) , (2.6)



48 CHAPTER 2. MATHEMATICAL BACKGROUND

where f : Rp → R is a L-smooth convex function and g : Rp → R̄ is convex, proper
and closed, possibly non-differentiable. Optimality conditions for Equation (2.6) can be
written as follows, for any γ > 0:

−∇f(x?) ∈ ∂g(x?)⇔ γ∇f(x?) ∈ −γ∂g(x?)

⇔ x? + γ∇f(x?) ∈ x? − γ∂g(x?)

⇔ x? ∈ x? − γ∇f(x?)− γ∂g(x?) .

Using the following characterization of the proximal operator of a function g : Rp → R,
∀v ∈ Rp such that u = proxγg(v) we have that:

1

γ
(v − u) ∈ ∂g(u) hence u ∈ v − γ∂g(u) . (2.7)

Using Equation (2.7), we obtain the following fixed point equation (Combettes and Wajs,
2005):

x? = proxγg (x? − γ∇f(x?)) .

This fixed point equation suggest an iterative algorithm to obtain a solution of Equa-
tion (2.6) that is called proximal gradient descent algorithm or Forward-Backward al-
gorithm (Lions and Mercier, 1979; Combettes and Wajs, 2005) and its iteration update
reads:

x(k+1) = proxγg
(
x(k) − γ∇f(x(k))

)
.

The next iterate is obtained as the composition of a gradient step on the smooth function
f composed with the proximal operator of the non-differentiable function g. Under the
assumptions that f is L-smooth and g is a proper, closed, convex function; this method
converges with rateO(1/k) (same as gradient descent) with a fixed step size γ = 1

L
(which

we will choose in practice when L is known). Actually, the convergence is guaranteed for
step size 0 < γ < 2

L
but the method is no longer a “majorization-minimization” method

for step sizes larger than 1
L

(Combettes and Pesquet, 2011).

Proximal coordinate descent. The proximal gradient descent algorithm can be seen as
the counter part of the gradient descent method to solve composite minimization problem
(Equation (2.6)). Generally, the coordinate descent algorithm does not have convergence
guarantees without more assumptions. However, if we assume that g is a separable func-



2.4. NON-SMOOTH OPTIMIZATION 49

0 10 20 30 40 50
k

10−5

10−4

10−3

10−2

10−1

Φ
(x

(k
) )
−

Φ
(x

?
)

Proximal gradient descent

Proximal coordinate descent

Figure 2.3 – Proximal coordinate descent versus Proximal gradient descent. Conver-
gence speed of proximal coordinate descent and proximal gradient descent to solve the
Lasso optimization problem on the colon dataset from libsvm. The regularization parame-
ter was chosen as λ = λmax

10
, where λmax =

∥∥X>y∥∥∞ /n.

tion (Definition 2.14). The composite minimization problem can then be written:

x? ∈ arg min
x∈Rp

Φ(x) = f(x) +

p∑
j=1

gj(xj)︸ ︷︷ ︸
,g(x)

. (2.8)

Equation (2.8) will be encountered throughout this thesis (Chapters 3, 6 and 7) and we
suppose that these general assumptions remain true.

Assumption 2.1 (Smoothness). f : Rp → R is a convex and differentiable function, with
a Lipschitz gradient. We denote by L its global Lipschitz constant and by Lj its local
Lipschitz constants.

Assumption 2.2 (Proper, closed, convex). For any j ∈ [p], gj is proper, closed and convex.

Assumption 2.3 (Existence). The problem admits at least one solution:

arg min
x∈Rp

Φ(x) 6= ∅ .

Assumption 2.4 (Non degeneracy). The problem is non-degenerated:

∀x? ∈ arg min
x∈Rp

Φ(x), −∇f(x?) ∈ ri (∂g(x?)) .

Assumptions 2.1 to 2.3 ensure that one can use proximal coordinate descent to solve Equa-
tion (2.8) and convergence towards a solution is guaranteed. Assumption 2.4 can be seen



50 CHAPTER 2. MATHEMATICAL BACKGROUND

as a generalization of qualification constraints (Hare and Lewis, 2007, Sec. 1).

Definition 2.16 (Regularity of the composite minimization). We will say that Equation (2.8)
is regular if Assumptions 2.1 to 2.3 hold for the composite minimization problem.

The important property here is that the proximal operator of a separable function g is the
proximal operator of each gj coordinatewise. This result directly leads to a fixed point
equation coordinatewise with local step size γj > 0:

x?j = proxγjgj
(
x?j − γj∇jf(x?)

)
.

In this setting, the coordinate descent algorithm has a proximal version counter part which
will be the common thread of the manuscript. A coordinate update writes:

x
(j,k)
j = proxγjgj

(
x

(j−1,k)
j − γj∇jf(x(j−1,k))

)
.

The separability assumption on g might seem restrictive but in modern machine learn-
ing, a wide class of estimators are obtained by solving Equation (2.6) with a separable
non-differentiable function g. The most famous examples are probably the regularized
optimization problems such as the Lasso (Tibshirani, 1996), the sparse logistic regression
(Hoerl and Kennard, 1970) and the Elastic net (Zou, 2006). Another family of estimators
can be obtained via solving an optimization with coordinate descent: the Support Vector
Machine (Boser et al., 1992) estimator for classification and regression.

The (proximal) coordinate descent algorithm has proved to be very efficient in large scale
problems and is nowadays implemented in the most used machine learning packages like
scikit-learn (Pedregosa et al., 2011) and glmnet (Friedman et al., 2010). In practice, the step
sizes γj will be chosen to be equal to the inverse of the local Lipschitz constants i.e., γj = 1

Lj
.

This algorithm is guaranteed to converge towards a solution of Equation (2.6) (Tseng and
Yun, 2009) and has a convergence rate of O(1/k) (Sun and Hong, 2015). Although, its
theoretical convergence rate is the same as the proximal gradient descent, empirically
the proximal coordinate descent is faster than proximal gradient descent as illustrated in
Figure 2.3 where there proximal coordinate descent outperforms the proximal gradient
descent by several orders of magnitude.

Notion of support. The non-smooth function g in Equation (2.8) generates solution that
are structured as we will see in more details in Chapter 3. The information about the
structure is carried out by the notion of support that is usually well known for the `1-
norm but can be extended to more general functions by the following definition.



2.4. NON-SMOOTH OPTIMIZATION 51

Definition 2.17 (Generalized support, Nutini et al. 2019, Def. 1). For a vector x ∈ Rp, its
generalized support Sx ⊆ [p] is the set of indices j ∈ [p] such that gj is differentiable at xj :

Sx , {j ∈ [p] : ∂gj(xj) is a singleton} .

An iterative algorithm is said to achieve finite support identification if its iterates x(k)

converge to x? ∈ arg minx∈Rp Φ(x), and there exists K ≥ 0 such that for all j /∈ Sx? , for all
k ≥ K, x

(k)
j = x?j .

Examples. For the `1 norm (promoting sparsity) with λ > 0, gj(x?j) = λ|x?j |, the generalized
support is Sx? , {j ∈ [p] : x?j 6= 0}. This set corresponds to the indices of the non-
zero coefficients, which is the usual support definition. For the SVM estimator, gj(x?j) =

ι[0,C](x
?
j) for a given hyperparameter C > 0. This function is non-differentiable at 0 and at

C. The generalized support for the SVM estimator then corresponds to the set of indices
such that x?j ∈]0, C[.

This notion of support will be key to show local convergence properties and to take ad-
vantage of the general sparsity pattern to speed-up computation of algorithms.



52 CHAPTER 2. MATHEMATICAL BACKGROUND



Part I

Non-smooth optimization around
coordinate descent

53





3 LOCAL LINEAR CONVERGENCE

OF COORDINATE DESCENT

Contents
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.1.1 Coordinate descent . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.1.2 Model identification . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.2 Structure for separable non-smooth convex functions . . . . . . . . . . . 59

3.3 Model identification for CD . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.4 Local convergence rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

In this chapter, we prove convergence properties of the proximal coordinate descent algo-
rithm. Non-smooth optimization problems arising in machine learning are often highly
structured and the question of structure recovery for iterative algorithm is key. We first
prove, in Section 3.2, that there is an explicit equivalence between separable functions
that are locally C2 around the optimum on the generalized support and the class of partly
smooth functions. In Section 3.3, we show that cyclic proximal coordinate descent achieves
model identification in finite time. This result already existed in the literature but the
proof and the tools that we propose here are different. In addition, we prove in Section 3.4
explicit local linear convergence rates for coordinate descent. Finally in Section 3.5, we il-
lustrate these results on various estimators and on real datasets. Our experiments demon-
strate that these rates match empirical results well.

55



56 CHAPTER 3. LOCAL LINEAR CONVERGENCE OF COORDINATE DESCENT

3.1 Introduction

3.1.1 Coordinate descent

Over the last two decades, coordinate descent (CD) algorithms have become a powerful
tool to solve large scale optimization problems (Friedman et al., 2007, 2010). Many appli-
cations coming from machine learning or compressed sensing have lead to optimization
problems that can be solved efficiently via CD algorithms: the Lasso (Tibshirani, 1996;
Chen et al., 1998), the elastic net (Zou and Hastie, 2005) or support-vector machine (Boser
et al., 1992). All the previously cited estimators are based on an optimization problem
which can be written:

x? ∈ arg min
x∈Rp

{Φ(x) , f(x) +

p∑
j=1

gj(xj)︸ ︷︷ ︸
,g(x)

} , (3.1)

with f a convex smooth (i.e., with a Lipschitz gradient) function and gj proper, closed and
convex functions. In the past twenty years, the popularity of CD algorithms has greatly
increased due to the well suited structure of the new optimization problems mentioned
above (i.e., separability of the non-smooth term), as well as the possible parallelization of
the algorithms (Fercoq and Richtárik, 2015).

The key idea behind CD (Algorithm 3) is to solve small and simple subproblems itera-
tively until convergence. More formally, for a function Φ : Rp 7→ R, the idea is to minimize
successively one dimensional functions Φ|xj : R 7→ R, updating only one coordinate at a
time, while the others remain unchanged. There exists many variants of CD algorithms,
the main branching being:

• The index selection. There are different ways to choose the index of the updated
coordinate at each iteration. The main variants can be divided in three categories,
cyclic CD (Tseng and Yun, 2009) when the indices are chosen in the set [p] cycli-
cally. Random CD (Nesterov, 2012), where the indices are chosen following a given
random distribution. Finally, greedy CD picks an index, optimizing a given criterion:
largest decrease of the objective function, or largest gradient norm (Gauss-Southwell
rule), for instance.

• The update rule. There also exists several possible schemes for the coordinate up-
date: exact minimization, coordinate gradient descent or prox-linear update (see Shi
et al. 2016, Sec. 2.2 for details).



3.1. INTRODUCTION 57

In this chapter, we will focus on cyclic CD with prox-linear update rule (Algorithm 3):
a popular instance, e.g., the one coded in popular packages such as glmnet (Friedman
et al., 2007) or scikit-learn (Pedregosa et al., 2011).

Algorithm 3 PROXIMAL COORDINATE DESCENT

input : γ1, . . . , γp ∈ R+, niter ∈ N, x(0) ∈ Rp

for k = 0, . . . , niter do
x(0,k)←x(k)

for j = 1, . . . , p do // index selection

x(j,k)←x(j−1,k)

x
(j,k)
j ←proxγjgj

(
x

(j−1,k)
j − γj∇jf(x(j−1,k))

)
// Update rule

x(k+1)←x(p,k)

return xniter+1

Among the methods of coordinate selection, random CD has been extensively studied,
especially by Nesterov (2012) for the minimization of a smooth function f . It was the first
paper proving global non-asymptotic O(1/k) convergence rate in the case of a smooth
and convex f . This work was later extended to composite optimization f +

∑
j gj for

non-smooth separable functions (Richtárik and Takáč, 2014; Fercoq and Richtárik, 2015).
Refined convergence rates were also shown by Shalev-Shwartz and Tewari (2011); Shalev-
Shwartz and Zhang (2013). These convergence results have then been extended to coor-
dinate descent with equality constraints (Necoara and Patrascu, 2014) that induce non-
separability as found in the SVM dual problem in the presence of a¡ bias term. Different
distributions have been considered for the index selection such as uniform distribution
(Fercoq and Richtárik, 2015; Nesterov, 2012; Shalev-Shwartz and Tewari, 2011; Shalev-
Shwartz and Zhang, 2013), importance sampling (Leventhal and Lewis, 2010; Zhang,
2004) and arbitrary sampling (Necoara and Patrascu, 2014; Qu and Richtárik, 2016a,b).

On the cyclic coordinate descent side, Luo and Tseng (1992); Tseng (2001); Tseng and
Yun (2009); Razaviyayn et al. (2013) have shown convergence results for (block) CD al-
gorithms for non-smooth optimization problems (without rates1). Then, Beck and Tetru-
ashvili (2013) showed O(1/k) convergence rates for Lipschitz convex functions and linear
convergence rates in the strongly convex case. Saha and Tewari (2013) proved O(1/k)

convergence rates for composite optimization f + ‖·‖1 under ”isotonicity” condition. Sun
and Hong (2015); Hong et al. (2017) have extended the latter results and showed O(1/k)

convergence rates with improved constants for composite optimization f +
∑

j gj . Li et al.
(2017) have extended the work of Beck and Tetruashvili (2013) to the non-smooth case and

1Note that some local rates are shown in Tseng and Yun (2009) but under some strong hypothesis.



58 CHAPTER 3. LOCAL LINEAR CONVERGENCE OF COORDINATE DESCENT

refined their convergence rates in the smooth case. Finally, as far as we know, the work
by Xu and Yin (2017) is the first one tackling the problem of local linear convergence.
They have proved local linear convergence under the very general Kurdyka-Lojasiewicz
hypothesis, relaxing convexity assumptions. Following the line of work by Liang et al.
(2014), we use a more restrictive framework that allows to achieve finer results: model
identification as well as improved local convergence results.

3.1.2 Model identification

Non-smooth optimization problems coming from machine learning such as the Lasso or
the support-vector machine (SVM) generally generate solutions lying onto a low-complexity
model. For the Lasso, for example, a solution x? has typically only a few non-zeros coef-
ficients: it lies on the model set Tx? = {u ∈ Rp : supp(u) ⊆ supp(x?)}, where supp(x)

is the support of x, i.e., the set of indices corresponding to the non-zero coefficients. A
question of interest in the literature is: does the algorithm achieve model identification
after a finite number of iterations? Formally, does it exist K > 0 such that for all k > K,
x(k) ∈ Tx?? For the Lasso the question boils down to “does it exist K > 0 such that for all
k > K, supp(x(k)) ⊆ supp(x?)”? This finite time identification property is paramount for
features selection (Tibshirani, 1996), but also for potential acceleration methods (Massias
et al., 2018) of the CD algorithm, as well as model selection (Bertrand et al., 2020).

Finite model identification was first proved in Bertsekas (1976) for the projected gradient
method with non-negative constraints. In this case, after a finite number of steps the spar-
sity pattern of the iterates is the same as the sparsity pattern of the solution. It means that
for k large enough, x(k)

i = 0 for all i such that x?i = 0. Then, many other results of finite
model identification have been shown in different settings and for various algorithms.
For the projected gradient descent algorithm, identification was proved for polyhedral
constraints (Burke and Moré, 1988), for general convex constraints (Wright, 1993), and
even non-convex constraints (Hare and Lewis, 2004). More recently, identification was
proved for proximal gradient algorithm (Lions and Mercier, 1979; Combettes and Wajs,
2005), for the `1 regularized problem (Hare, 2011). Liang et al. (2014, 2017); Vaiter et al.
(2018) have shown model identification and local linear convergence for proximal gradi-
ent descent. These results have then been extended to other popular machine learning
algorithms such as SAGA, SVRG (Poon et al., 2018) and ADMM (Poon and Liang, 2019).
Some identification results have been shown for CD on specific models (She and Schmidt,
2017; Massias et al., 2019) or variants of CD (Wright, 2012), in general, under restrictive hy-
pothesis. Model identification property for CD algorithm is not new and was first stated



3.2. STRUCTURE FOR SEPARABLE NON-SMOOTH CONVEX FUNCTIONS 59

in Nutini et al. (2017). We do not claim novelty here but the proof technique and the point
of view is different in our approach.

3.2 Structure for separable non-smooth convex functions

As stated before, the solutions of the Lasso are structured. Using an iterative algorithm
like the coordinate descent to find an approximate solution (since we stop after a finite
number of iterations) brings the question of structure recovery. For the Lasso, the under-
lying structure, also called model (Candès and Recht, 2012), is identified by the Forward-
Backward algorithm. It means that after a finite number of iterations, the iterative algo-
rithm leads to an approximated solution that shares a similar structure than the true solu-
tion of the optimization problem (Liang et al., 2014; Vaiter et al., 2018; Fadili et al., 2018).
For the Lasso, the underlying model is related to the notion of support: i.e., the non-zero
coefficients and this notion of sparsity can be generalized for the case of completely sep-
arable functions using Definition 2.17. This notion can be unified with the definition of
model subspace from Vaiter et al. (2015, Sec. 3.1):

Definition 3.1 (Model subspace, Vaiter et al. 2015). We denote the model subspace at x:

Tx = {u ∈ Rp : ∀j ∈ Scx, uj = 0} , (3.2)

where Sx is the generalized support of x (see Definition 2.17).

Examples in machine learning.
The `1 norm. The function g(x) =

∑p
i=1 |xi| is certainly the most popular non-smooth

convex regularizer promoting sparsity. Indeed, the `1 norm generates structured solution
with model subspace (Vaiter et al., 2018). We have that Sx = {j ∈ [p] : xj 6= 0} since | · | is
differentiable everywhere but not at 0, and the model subspace reads:

Tx = {u ∈ Rp : supp(u) ⊆ supp(x)} . (3.3)

The box constraints indicator function ι[0,C]. This indicator function appears for instance in
box constrained optimization problems such as the dual problem of the SVM. Let I0

x =

{j ∈ [p] : xj = 0} and ICx = {j ∈ [p] : xj = C}, then

Tx = {u ∈ Rp : I0
x ⊆ I0

u and ICx ⊆ I0
u}.

For the SVM, model identification boils down to finding the active set of the box con-



60 CHAPTER 3. LOCAL LINEAR CONVERGENCE OF COORDINATE DESCENT

strained quadratic optimization problem after a finite number of iterations.

To prove model identification for the CD algorithm, we need to rely on the assumption
that the non-smooth function g is regular enough, or more precisely partly smooth. Loosely
speaking, a partly smooth function behaves smoothly as it lies on the related model and
sharply if we move normal to that model. Formally, we recall the definition of partly
smooth functions restricted to the case of proper, lower semicontinuous and convex func-
tions.

Definition 3.2 (Partial smoothness). Let g : Rp → R be a proper closed convex function. g
is said to be partly smooth at x relative to a setM ⊆ Rn if there exists a neighborhood U
of x such that

• (Smoothness)M∩U is a C2-manifold and g restricted toM∩U is C2,

• (Sharpness) The tangent space ofM at x is the model tangent space Tx where Tx =

Lin(∂g(x))⊥,

• (Continuity) The set valued mapping ∂g is continuous at x relative toM.

The class of partly smooth functions was first defined in Lewis (2002). It encompasses
a large number of known non-smooth machine learning optimization penalties, such as
the `1-norm or box constraints to only name a few, see Vaiter et al. (2018, Section 2.1) for
details. Interestingly, this framework enables powerful theoretical tools on model identi-
fication such as Hare and Lewis (2004, Thm. 5.3). For separable functions, the next lemma
gives an explicit link between the generalized support (Definition 2.17) (Sun et al., 2019)
and the framework of partly smooth functions (Hare and Lewis, 2004).

Lemma 3.1. Let x? ∈ dom (g). If for every j ∈ Sx? , gj is locally C2 around x?j if, and only if, g is
partly smooth at x? relative to x? + Tx? .

Proof. We need to prove the three properties of the partial smoothness (Definition 3.2).

Smoothness. Let us writeMx? = x?+Tx? the affine space directed by the model subspace
and pointed by x?. In particular, it is a C2-manifold.

For every j ∈ Sx? , gj is locally C2 around x?j , hence there exists a neighborhood Uj of x?j
such that the restriction of gj to U is twice continuously differentiable. For j ∈ Scx? , let’s
write Uj = R. Take U =

⊗
j∈[p] Uj . This a neighborhood of x? (it is open, and contains x?).

Consider the restriction g|Mx?
of g toMx? . It is C2 at each point of U since each coordinates

(for j ∈ Sx?) are C2 around Uj .



3.2. STRUCTURE FOR SEPARABLE NON-SMOOTH CONVEX FUNCTIONS 61

Sharpness. Since g is completely separable, we have that ∂g(x?) = ∂g1(x?1)× . . .× ∂gp(x?p).
Note that ∂gj(x?j) is a set valued mapping which is equal to the singleton {∇jg(x?j)} if gj
is differentiable at x?j or it is equal to an interval. The model tangent space Tx? of g at x? is
given by

Tx? = span(∂g(x?))⊥ where span(∂g(x?)) = aff(∂g(x?))− ex? , (3.4)

with

ex? = arg min
e∈aff(∂g(x?))

||e|| , (3.5)

called the model vector.

In the particular case of separable functions, we have that

aff (∂g(x?)) = aff
(
∂g1(x?1)× . . .× ∂gp(x?p)

)
= aff (∂g1(x?1))× . . .× aff

(
∂gp(x

?
p)
)
.

In this case,

aff
(
∂gj(x

?
j)
)

=

{∇jg(x?j)} if j ∈ Sx?
R otherwise

and ex?j =

∇jg(x?j) if j ∈ Sx?
0 otherwise .

(3.6)

Thus we have that

span (∂g(x?)) = aff (∂g(x?))− ex? = {x ∈ Rp : ∀j′ ∈ Sx? , xj′ = 0} .

Then

Tx? = span (∂g(x?))⊥ = {x ∈ Rp : ∀j′ ∈ Scx? , xj′ = 0} . (3.7)

Continuity. We are going to prove that ∂g is lower semicontinuous at x? relative toMx? ,
i.e., that for any sequence (x(k)) of elements ofMx? converging to x? and any η̄ ∈ ∂g(x?),
there exists a sequence of subgradients η(k) ∈ ∂g(x(k)) converging to η̄.

Let x(k) be a sequence of elements of Mx? converging to x?, or equivalently, let t(k) be a
sequence of elements of Tx? converging to 0, and let η̄ ∈ ∂g(x?).

For j ∈ Sx? , we choose η(k)
j , g′j(x

?
j+t

(k)
j ), using the smoothness property we have η(k)

j , η̄j .
For all j ∈ Scx? x(k)

j = x?j we choose η(k)
j , η̄j , since x(k) ∈Mx? , we have η(k)

j ∈ ∂g(x(k)).



62 CHAPTER 3. LOCAL LINEAR CONVERGENCE OF COORDINATE DESCENT

We have that η(k) ∈ ∂g(xk) and η(k) converges towards η̄ since g′j is C1 around x?j for
j ∈ Sx? , hence, g′j(x?j + t

(k)
j ) converges to g′j(x?j) = η̄j . Thus, it proves that g is partly smooth

at x? relative to x? + Tx? .

Let us now suppose that g is partly smooth at x? relative toMx? . By Definition 3.2, there
exists U ⊂ Rp a neighboorhood of x? such that g|Mx?∩U is C2. Since g is separable,Mx? =

x? + Tx? with Tx? = {x ∈ Rp : ∀j′ ∈ Scx? , x′j = 0}. Let y ∈ Mx? ∩ U , we have that
∀j′ ∈ Scx? , yj′ = x?j′ . Let us write U =

⊗
j∈[p] Uj , then for all j ∈ Sx? , y ∈ Mx? ∩ U implies

that yj ∈ Uj . Thus, for all j ∈ Sx? , we have that gj is C2 on Uj that contains x?j .

3.3 Model identification for CD

We now turn to our identification result. To ensure model identification, we need the
following (mild) assumption:

Assumption 3.1 (Locally C2). Let x? be a solution of Equation (3.1). For all j ∈ Sx? , gj is
locally C2 around x?j , and f is locally C2 around x?.

It is satisfied for the Lasso and the dual SVM problem mentioned above, but also for sparse
logistic regression and elastic net. The following theorem shows that the CD (Algorithm 3)
has the model identification property with local constant step size 0 < γj ≤ 1/Lj :

Theorem 3.1 (Model identification of CD). Assume that Equation (3.1) is regular (Defini-
tion 2.16). We denote x? ∈ arg minx∈Rp Φ(x) and S = Sx? . Suppose

1. Assumption 3.1 hold,

2. x? is non-degenerated (Assumption 2.4),

3. The sequence (x(k))k≥0 generated by Algorithm 3 converges to x?.

Then, Algorithm 3 identifies the model after a finite number of iterations, which means that there
exists K > 0 such that for all k ≥ K, x(k)

Sc = x?Sc .

This result implies that for k large enough, x(k) shares the support of x? (potentially
smaller).

Proof. Using Lemma 3.1, we have that the regularity of Equation (3.1) (Definition 2.16)
and Assumptions 2.4 and 3.1 imply that g is partly smooth (Lewis, 2002) at x? relative to the
affine space x? + Tx? .

We now prove that for the CD Algorithm 3: dist
(
∂Φ(x(k)), 0

)
→ 0, when k →∞.



3.3. MODEL IDENTIFICATION FOR CD 63

As written in Algorithm 3, one update of coordinate descent reads:

1

γj
x

(j−1,k)
j −∇jf

(
x(j−1,k)

)
− 1

γj
x

(j,k)
j ∈ ∂gj

(
x

(j,k)
j

)
1

γj
x

(k)
j −∇jf

(
x(j−1,k)

)
− 1

γj
x

(k+1)
j ∈ ∂gj

(
x

(k+1)
j

)
.

Since g is separable with non-empty subdifferential, the coordinatewise subdifferential of
g is equal to the subdifferential of g, we then have

1

γ
� x(k)−

(
∇jf

(
x(j−1,k)

))
j∈[p]
− 1

γ
� x(k+1) ∈ ∂g(x(k+1)) , (3.8)

which leads to

1

γ
� x(k) −

(
∇jf

(
x(j−1,k)

))
j∈[p]
− 1

γ
� x(k+1) +∇f(x(k+1)) ∈ ∂Φ(x(k+1)) . (3.9)

To prove support identification using Hare and Lewis (2004, Thm. 5.3), we need to bound
the distance between ∂Φ(x(k+1)) and 0, using Equation (3.9):

dist
(
∂Φ(x(k+1)), 0

)2 ≤
p∑
j=1

∣∣∣∣∣x
(k)
j

γj
−∇jf(x(j−1,k))−

x
(k+1)
j

γj
+∇jf(x(k+1))

∣∣∣∣∣
2

≤ ||x(k) − x(k+1)||2γ−1 +

p∑
j=1

∣∣∇jf
(
x(j−1,k)

)
−∇jf

(
x(k+1)

)∣∣2
≤ ||x(k) − x(k+1)||2γ−1 + L2

p∑
j=1

‖x(j−1,k) − x(k+1)‖2

≤ ||x(k) − x(k+1)||2γ−1 + L2

p∑
j=1

p∑
j′≥j

∣∣∣x(k)
j′ − x

(k+1)
j′

∣∣∣2︸ ︷︷ ︸
→0 when k→∞

.

We thus have:

• dist
(
∂Φ(x(k+1)), 0

)
→ 0

• Φ(x(k))→ Φ(x?) because Φ is prox-regular (since it is convex, see Poliquin and Rock-
afellar 1996b) and subdifferentially continuous.

Then the conditions to apply Hare and Lewis (2004, Th. 5.3) are met and hence we have
model identification after a finite number of iterations.



64 CHAPTER 3. LOCAL LINEAR CONVERGENCE OF COORDINATE DESCENT

Comments on Theorem 3.1. It unifies several results found in the literature: Massias
et al. (2019) showed model identification for the Lasso, solved with coordinate descent,
but requiring uniqueness assumption. As mentioned in the introduction, this theorem
was already stated in Nutini et al. (2017, Lemma 3) but the proof technique is different.
The proof of Nutini et al. (2017, Lemma 3) is based on an explicit manipulation of the
expression of the minimum distance to the boundary of the subdifferential, whereas our
proof is based on Lemma 3.1, a geometrical statement showing that any separable function
regular enough enjoys a natural control on this distance, thanks to partial smoothness
theory.

3.4 Local convergence rates

In this section, we prove the local linear convergence of the CD Algorithm 3. After model
identification, there exists a regime where the convergence towards a solution of Equa-
tion (3.1) is linear. Local linear convergence was already proved in various settings such
as for ISTA and FISTA algorithms (i.e., with an `1 penalty, Tao et al. 2016) and then for the
general Forward-Backward algorithm (Liang et al., 2014).

Local linear convergence requires an additional assumption: restricted injectivity. It is clas-
sical for this type of analysis as it can be found in Liang et al. (2017) and Poon and Liang
(2019).

Assumption 3.2. (Restricted injectivity) For a solution x? ∈ arg minx∈Rp Φ(x), the restricted
Hessian to its generalized support S = Sx? is definite positive, i.e.,

∇2
S,Sf(x?) � 0 . (3.10)

For the Lasso, Assumption 3.2 is a classical necessary condition to ensure uniqueness of
the minimizer (Fuchs, 2004).

In order to study local linear convergence, we consider the fixed point iteration of a com-
plete epoch (an epoch is a complete pass over all the coordinates). A full epoch of CD can
be written:

x(k+1) = ψ(x(k)) , Pp ◦ . . . ◦ P1(x(k)) , (3.11)

where Pj are coordinatewise sequential applications of the proximity operator Pj : Rp →



3.4. LOCAL CONVERGENCE RATES 65

Rp:

x 7→



x1

...
xj−1

proxγjgj
(
xj − γj∇jf(x)

)
xj+1

...
xp


.

Thanks to model identification (Theorem 3.1), we are able to prove that once the general-
ized support is correctly identified, there exists a regime where CD algorithm converges
linearly towards the solution:

Theorem 3.2 (Local linear convergence). Assume Equation (3.1) is regular (Definition 2.16).
We denote x? ∈ arg minx∈Rp Φ(x) and S = Sx? . Suppose

1. x? is non-degenerated (Assumption 2.4)

2. Assumptions 3.1 and 3.2 hold.

3. The sequence (x(k))k≥0 generated by Algorithm 3 converges to x?.

4. The model has been identified i.e., there exists K ≥ 0 such as for all k ≥ K

x
(k)
Sc = x?Sc .

Then (x(k))k≥K converges linearly towards x?. More precisely, for any ν ∈ [ρ(JψS,S(x?)), 1[,
there exists K > 0 and a constant C such that for all k ≥ K,

‖x(k)
S − x?S‖ ≤ Cν(k−K)‖x(K)

S − x?S‖ .

Proof. To simplify the notations, S , Sx? . Let us also write the element of S as follows:
S = {j1, . . . , j|S|}.

We also define πx?Sc : R|S| → Rp for all xS ∈ R|S| and all j ∈ S by

(
πx

?
Sc (xS)

)
j

=

xj if j ∈ S
x?j if j ∈ Sc ,

(3.12)



66 CHAPTER 3. LOCAL LINEAR CONVERGENCE OF COORDINATE DESCENT

and for all js ∈ S, P̃x
?
Sc

js
: R|S| → R|S| is the function defined for all xS ∈ R|S| and all j ∈ S

by

(
P̃x

?
Sc

js
(xS)

)
j

=

xj if j 6= js

proxγjgj
(
xjs − γjs∇jsf(πx

?
Sc (xS))

)
if j = js .

(3.13)

Once the model is identified (Theorem 3.1), we have that there exists K ≥ 0 such that for
all k ≥ K, we have that

x
(k)
Sc = x?Sc and x

(k+1)
S = ψ̃(x

(k)
S ) , Px

?
Sc

j|S|
◦ . . . ◦ Px

?
Sc

j1
(x

(k)
S ) . (3.14)

When no confusion is possible, we denote by P̃j the function P̃x
?
Sc

js
, hence still dependant

on x?Sc . The following lemma shows that P̃j is differentiable at the optimum.

Sketch of proof:

• The first part of the proof, i.e., Lemmas 3.2 and 3.3, aims at proving that x 7→ proxγjgj(xj−
γj∇j) is differentiable for all j ∈ [p] and that its derivative is 0 for all j /∈ S . These
results allow us to compute the Jacobian of ψ̃ at x?S .

• Then Lemmas 3.4 to 3.8 prove that ρ(J ψ̃(x?S)) < 1.

• Finally, all the conditions are met to apply Polyak (1987)[Theorem 1, Section 2.1.2].
The latter reference provides sufficient conditions for local linear convergence of
sequences based on fixed point iterations.

Lemma 3.2. For all j ∈ S, P̃j is differentiable at x?S .

Proof. From Assumption 3.1, we know there exists a neighboorhood of x?j denoted U such
that, for j ∈ S, the restriction of gj to U is C2 on U . In particular, it means that x?j is a
differentiable point of gj and given a pair (u, v) ∈ U × Rp such that

u = proxγjgj(v) ∈ U , (3.15)

we have 1
γj

(v − u) ∈ ∂gj(u) becomes

1

γj
(v − u) = g′j(u)⇔ v = u+ γjg

′
j(u)⇔ v = (Id + g′j)(u) . (3.16)



3.4. LOCAL CONVERGENCE RATES 67

Let H(u) = (Id + g′j)(u), since gj is twice differentiable at u, we have that

H ′(u) = 1 + γjg
′′
j (u) . (3.17)

Thus, H ′ : U 7→ R is continuous and then H : U 7→ R is continuously differentiable. Hence
F (v, u) , v −H(u) is C1 and F (v, u) = 0. By convexity of g, we have g′′j (u) ≥ 0 and

∂F

∂u
(v, u) = −H ′(u) = −1− γjg′′(u) 6= 0 . (3.18)

Using the implicit functions theorem, we have that there exists an open interval V ⊆ R
with v ∈ V and a function h : V 7→ R which is C1 such as u = h(v).

Using (3.15) we thus have with the choice u = x?j , v = x?j − γj∇jf(x?) that the map h

coincides with proxγjgj on V and is differentiable at v = x?j − γj∇jf(x?) ∈ V . It follows that
P̃j is differentiable at x?S .

For the sake of completness, we show that in fact proxγjgj is also differentiable on the
complement of the generalized support at x?j −∇jf(x?).

Lemma 3.3. For all j ∈ Sc, proxγjgj is constant around x?j − γj∇jf(x?). Moreover, the map
x 7→ proxγjgj(xj − γj∇jf(x)) is differentiable at x? with gradient 0.

Proof. Let ∂gj(x?j) = [a; b] and let z?j = x?j −∇jf(x?), then combining the fixed point equa-
tion and Assumption 2.4 leads to:

1

γj
(z?j − x?j) ∈ ri

(
∂gj(x

?
j)
)

=]a; b[ . (3.19)

Thus,

z?j ∈]γja+ x?j ; γjb+ x?j [ . (3.20)

For all v ∈]γja+ x?j ; γjb+ x?j [, we have 1
γj

(v − x?j) ∈]a; b[= ri
(
∂gj(x

?
j)
)
, i.e., proxγjgj(v) = x?j .

As f is C2 in x?, we have that x 7→ proxγjgj(xj−∇jf(x)) is differentiable at x? with gradient
being 0.

From Lemma 3.2, we have that P̃j is differentiable at x?S for all j ∈ S. Since x? is an optimal



68 CHAPTER 3. LOCAL LINEAR CONVERGENCE OF COORDINATE DESCENT

point, the following fixed points equation holds:

x?j = proxγjgj
(
x?j − γj∇jf(x?)

)
. (3.21)

The map ψ̃ is then differentiable at x?S since it is obtained as the composition of differen-
tiable functions and that each function P̃j is evaluated at a differentiable point (only one
coordinate change at each step).

To compute, the Jacobian of P̃j at x?S , let us first notice that

JPj(x?S)> =
(
e1 . . . ej−1 vj ej+1 . . . es

)
, (3.22)

where vj = ∂x proxγjgj
(
z?j
) (
ej − γj∇2

j,:f(x?)
)

and z?j = x?j − γj∇jf(x?). This matrix can be
rewritten as

J P̃j(x?S) = Id|S|−eje>j + ∂x proxγjgj
(
z?j
) (
eje
>
j − γjeje>j ∇2f(x?)

)
= Id|S|−eje>j γj∂x proxγjgj

(
z?j
) (

diag(u) +∇2f(x?)
)

= Id|S|−eje>j γj∂x proxγjgj
(
z?j
)
M

= M−1/2
(

Id|S|−M1/2eje
>
j γj∂x proxγjgj

(
z?j
)
M1/2

)
M1/2

= M−1/2
(
Id|S|−Bj

)
M1/2 , (3.23)

where
M , ∇2

S,Sf(x?) + diag (u) , (3.24)

and u ∈ R|S| is defined for all j ∈ S by

uj =


1

γj∂x proxγjgj (z?j )
− 1

γj
if proxγjgj(z

?
j ) 6= 0

0 otherwise,
(3.25)

and
Bj = M

1/2
:,j γj∂x proxγjgj

(
z?j
)
M

1/2>
:,j . (3.26)



3.4. LOCAL CONVERGENCE RATES 69

Since only one coordinate change at each step, the chain rule leads to

J ψ̃(x?S) = JPjs(x?S)JPjs−1(x?S) . . .JPj1(x?S)

= M−1/2 (Id−Bjs) . . . (Id−Bj1)︸ ︷︷ ︸
A

M1/2

The next series of lemma will be useful to prove that the spectral radius ρ
(
J ψ̃(x?S)

)
< 1.

Lemma 3.4. The matrix M defined in (3.24) is symmetric definite positive.

Proof. Using the non-expansivity of the proximal operator, and the property ∂x proxγjgj(z
?
j ) >

0 for j ∈ S , diag(u) is a symmetric semidefinite matrix, so M is a sum of a symmetric def-
inite positive matrix and a symmetric semidefinite matrix, hence M is symmetric definite
positive.

Lemma 3.5. For all j ∈ S, the matrix Bj defined in (3.26) has spectral norm bounded by 1,
i.e., ‖Bj‖2 ≤ 1.

Proof. Bj is a rank one matrix which is the product of γj∂x proxγjgj(z
?
j )M

1/2
:,j and M

1/2>
:,j , its

non-zeros eigenvalue is thus given by

‖Bj‖2 =
∣∣∣M1/2>

:,j γj∂x proxγjgj(z
?
j )M

1/2
:,j

∣∣∣
=
∣∣∣γj∂x proxγjgj(z

?
j )Mj,j

∣∣∣
=

∣∣∣∣∣∣∣∣∣∣
γj∂x proxγjgj(z

?
j )

∇2
j,jf(x?)︸ ︷︷ ︸

0≤

+

(
1

γj∂x proxγjgj(z
?
j )
− 1

γj

)
︸ ︷︷ ︸

0≤


∣∣∣∣∣∣∣∣∣∣
. (3.27)

By positivity of the two terms,

‖Bj‖2 = γj∂x proxγjgj(z
?
j )∇2

j,jf(x?)︸ ︷︷ ︸
≤Lj≤ 1

γj

+
(

1− ∂x proxγjgj(z
?
j )
)

≤ ∂x proxγjgj(z
?
j ) +

(
1− ∂x proxγjgj(z

?
j )
)

≤ 1 . (3.28)



70 CHAPTER 3. LOCAL LINEAR CONVERGENCE OF COORDINATE DESCENT

Lemma 3.6. For all j ∈ S, Bj/‖Bj‖ is an orthogonal projector onto Span(M
1/2
:,j ).

Proof. It is clear that Bj/||Bj|| is symmetric.

We now prove that it is idempotent, i.e., (Bs/||Bs||)2 = Bs/||Bs||.

B2
j /||Bj||2 = (γj∂x proxγjgj(z

?
j ))

2M
1/2
:,j M

1/2>
:,j M

1/2
:,j M

1/2>
:,j /||Bj||2

= (γj∂x proxγjgj(z
?
j ))||Bj||M1/2

:,j M
1/2>
:,j /||Bj||2

= Bj/||Bj|| .

Hence, Bj/||Bj|| is an orthogonal projector.

Lemma 3.7. For all j ∈ S and for all x ∈ RS , if ‖(Id−Bj)x‖ = ‖x‖ then x ∈ Span(M
1/2
:,j )⊥.

Proof.

Id−Bj = Id−‖Bj‖
Bj

‖Bj‖

= (1− ‖Bj‖) Id +‖Bj‖2 Id−‖Bj‖2
Bj

‖Bj‖2

= (1− ‖Bj‖) Id +‖Bj‖
(

Id− Bj

‖Bj‖2

)
︸ ︷︷ ︸

projection onto M1/2⊥
:,j

. (3.29)

Let x /∈ Span(M
1/2
:,j )⊥, then there exists κ 6= 0, x

M
1/2⊥
:,j
∈ Span(M

1/2
:,j )⊥ such that

x = κM:,j + x
M

1/2⊥
:,j

. (3.30)

Combining Equations (3.29) and (3.30) leads to:

(Id−Bj)x = (1− ‖Bj‖2)x+ ‖Bj‖2xM1/2⊥
:,j

‖(Id−Bj)x‖ ≤ |1− ‖Bj‖2|︸ ︷︷ ︸
=1−‖Bj‖2

‖x‖+ ‖Bj‖2 ‖xM1/2⊥
:,j

]‖︸ ︷︷ ︸
<‖x‖

< ‖x‖ .



3.5. EXPERIMENTS 71

Lemma 3.8. The spectral norm of A is bounded by 1, i.e.,

‖(Id−Bjs) . . . (Id−Bj1)‖2 = ||A||2 < 1 .

Proof. Let x ∈ Rs such that ‖(Id−Bjs) . . . (Id−Bj1)x‖ = ‖x‖. Since

‖(Id−Bjs . . . (Id−Bj1)‖2 ≤ ‖(Id−Bjs)‖2︸ ︷︷ ︸
≤1

× · · · × ‖(Id−Bj1)‖2︸ ︷︷ ︸
≤1

,

we thus have for all j ∈ S, ‖(Id−Bj)x‖ = ‖x‖. One can thus successively apply Lemma 3.7
which leads to:

x ∈
⋂
j∈S

SpanM
1/2
:,j

⊥ ⇔ x ∈ Span
(
M

1/2
:,j1
, . . . ,M

1/2
:,js

)⊥
.

Moreover M1/2 has full rank (see Lemma 3.4), thus x = 0 and

‖(Id−Bjs) . . . (Id−Bj1)‖2 < 1 .

From Lemma 3.8, ||A||2 < 1. MoreoverA andJ ψ̃(x?S) are similar matrices, then ρ(J ψ̃(x?S)) =

ρ(A) ≤ ||A||2 < 1.

To summarize, x?S is the solution of a fixed point equation ψ̃(x?S , x
?
Sc) = x?S . From Lemma 3.2,

ψ̃(., x?Sc) is differentiable at x?S and the Jacobian at x?S satisfies the condition ρ(J ψ̃(x?S)) < 1.
Then all conditions are met to apply Polyak (1987)[Theorem 1, Section 2.1.2] which proves
the local linear convergence.

3.5 Experiments

We now illustrate Theorems 3.1 and 3.2 on multiple datasets and estimators: the Lasso,
the logistic regression and the SVM. In this section, we consider a design matrix A ∈ Rn×p

and a target y ∈ Rn for regression (Lasso) and y ∈ {−1, 1}n for classification (logistic
regression and support-vector machine). We used classical datasets from libsvm (Chang
and Lin, 2011) summarized in Table 3.1.

In Figures 3.1 to 3.3 the distance of the iterates to the optimum, ‖x(k) − x?‖ as a function



72 CHAPTER 3. LOCAL LINEAR CONVERGENCE OF COORDINATE DESCENT

practical rate theoretical rate model identification

0 50 100

100

10−5

10−10

λ
m

ax
/2

||x
(k

)
−
x
?
|| leukemia

0 25 50

gisette

0 10 20

real-sim

0 20

rcv1

0 200

100

10−5

10−10

λ
m

ax
/5

||x
(k

)
−
x
?
||

0 100 0 25 0 100

0 200

100

10−5

10−10

λ
m

ax
/1

0

||x
(k

)
−
x
?
||

0 200 400 0 50 0 200

0 250 500
iteration k

100

10−5

10−10

λ
m

ax
/1

5

||x
(k

)
−
x
?
||

0 1000
iteration k

0 100
iteration k

0 200
iteration k

Figure 3.1 – Lasso, linear convergence. Distance to optimum, ‖x(k) − x?‖, as a function of
the number of iterations k, on 4 different datasets: leukemia, gisette, rcv1, and real-sim.

of the number of iterations k is plotted as a solid blue line. The vertical red dashed line
represents the iteration k? where the model has been identified by CD (Algorithm 3) il-
lustrating Theorem 3.1. The yellow dashed line represents the theoretical linear rate from
Theorem 3.2. Theorem 3.2 gives the slope of the dashed yellow line, the (arbitrary) origin
point of the theoretical rate line is chosen such that blue and yellow lines coincide at iden-
tification time, i.e., all lines intersect at this point. More precisely, if k? denotes the iteration
where model identification happens, the equation of the dashed yellow line is:

h(k) = ‖x(k?) − x?‖ × ρ(JψS,S(x?))(k−k?) . (3.31)

Once a solution x? has been computed, one can calculate JψS,S(x?) and its spectral radius
for each estimator.

For the experiments we used three different estimators that we detail here.

Lasso. (Tibshirani, 1996) The most famous estimator based on a nonsmooth optimiza-



3.5. EXPERIMENTS 73

practical rate theoretical rate model identification

0 100 200

100

10−5

10−10

λ
m

ax
/2

||x
(k

)
−
x
?
|| leukemia

0 50

gisette

0 20

real-sim

0 20

rcv1

0 500

100

10−5

10−10

λ
m

ax
/5

||x
(k

)
−
x
?
||

0 200 0 100 0 100

0 1000

100

10−5

10−10

λ
m

ax
/1

0

||x
(k

)
−
x
?
||

0 250 500 0 200 0 200

0 2000
iteration k

100

10−5

10−10

λ
m

ax
/1

5

||x
(k

)
−
x
?
||

0 500 1000
iteration k

0 200
iteration k

0 200
iteration k

Figure 3.2 – Sparse logistic regression, linear convergence. Distance to optimum, ‖x(k)−
x?‖, as a function of the number of iterations k, on 4 different datasets: leukemia, gisette,
rcv1, and real-sim.

tion problem may be the Lasso. For a design matrix A ∈ Rn×p and a target y ∈ Rn it
writes:

arg min
x∈Rp

1

2n
||Ax− y||2 + λ||x||1 . (3.32)

Table 3.1 – Characteristics of the datasets.

Datasets #samples n #features p density
leukemia 38 7129 1

gisette 6000 4955 1
rcv1 20,242 19,959 3.6× 10−3

real-sim 72,309 20,958 2.4× 10−3

20news 5184 155,148 1.9× 10−3



74 CHAPTER 3. LOCAL LINEAR CONVERGENCE OF COORDINATE DESCENT

practical rate theoretical rate model identification

0 50
iteration k

100

10−5

10−10||x
(k

)
−
x
?
|| leukemia

0 200
iteration k

gisette

0 10
iteration k

rcv1

0 100
iteration k

20news

Figure 3.3 – Support vector machine, linear convergence. Distance to optimum, ‖x(k) −
x?‖, as a function of the number of iterations k, on 4 different datasets: leukemia, gisette,
rcv1 and 20news.

The CD update for the Lasso is given by

xj ← STγjλ
(
xj − γjA>:,j(y − Ax)

)
, (3.33)

where STλ(x) = sign(x) ·max(|x| − λ, 0). The solution of Equation (3.32) is obtained using
Algorithm 3 with constant stepsizes 1/γj =

||A:,j ||2
n

.

Sparse logistic regression. The sparse logistic regression is an estimator for classification
tasks. It is the solution of the following optimization problem, for a design matrix A ∈
Rn×p and a target variable y ∈ {−1, 1}n, with σ(z) , 1

1+e−z
:

arg min
x∈Rp

− 1

n

n∑
i=1

log σ(yix
>Ai,:) + λ ‖x‖1 . (3.34)

The CD update for the sparse logistic regression is

xj ← STγjλ
(
xj − γjA>:,j(y � (σ(y � Ax)− 1))

)
. (3.35)

The constant stepsizes for the CD algorithm to solve Equation (3.34) are given by 1/γj =
||A:,j ||2

4n
.

Support-vector machine. (Boser et al., 1992) The support-vector machine (SVM) pri-
mal optimization problem is, for a design matrix A ∈ Rn×p and a target variable y ∈
{−1, 1}n:

arg min
x∈Rp

1

2
‖x‖2 + C

n∑
i=1

max
(
1− yix>Ai,:, 0

)
. (3.36)



3.5. EXPERIMENTS 75

Table 3.2 – C values for SVM.

dataset leukemia gisette rcv1 20news
C value 10 1.5 10−2 1.5 10−2 5 10−1

The SVM can be solved using the following dual optimization problem:

arg min
w∈Rn

1

2
w>(y � A)(y � A)>w −

n∑
i=1

wi

subject to 0 ≤ wi ≤ C . (3.37)

The CD update for the SVM reads:

wi ← P[0,C]

(
wi − γi((y � A)>i,:(y � Aw)− 1

)
) , (3.38)

where P[0,C](x) = min(max(0, x), C). The stepsizes of the CD algorithm to solve Equa-
tion (3.37) are given by 1/γi = ||(y � A)i,:||2. The values of the regularization parameter C
for each dataset from Figure 3.3 are given in Table 3.2.

Comments on Figures 3.1 to 3.3. Finite time model identification and local linear conver-
gence are illustrated on the Lasso, the sparse logistic regression and the SVM in Figures 3.1
to 3.3. As predicted by Theorem 3.1, the relative model is identified after a finite number
of iterations. For the Lasso (Figure 3.1) and the sparse logistic regression (Figure 3.2), we
observe that as the regularization parameter gets smaller, the number of iterations needed
by the CD algorithm to identify the model increases. To our knowledge, this is a classical
empirical observation, that is not backed up by theoretical results. After identification,
the convergence towards a solution is linear as predicted by Theorem 3.2. The theoretical
local speed of convergence provided by Theorem 3.2 seems like a sharp estimation of the
true speed of convergence as illustrated by the three figures.

Note that on Figures 3.1 to 3.3 high values of λ (or small values of C) were required for the
restricted injectivity Assumption 3.2 to hold. Indeed, despite its lack of theoretical foun-
dation, it is empirically observed that, in general, the larger the value of λ, the smaller the
cardinal of the generalized support: |S|. It makes the restricted injectivity Assumption 3.2:
∇2
S,Sf(x?) � 0 easier to be satisfied. For instance, for λ = λmax/20, the restricted injectivity

Assumption 3.2 was not verified for a lot of datasets for the Lasso and the sparse logis-
tic regression (Figures 3.1 and 3.2). In the same vein, values of C for the SVM had to be
chosen small enough, in order to make |S| not too large (Figure 3.3).



76 CHAPTER 3. LOCAL LINEAR CONVERGENCE OF COORDINATE DESCENT

Note that finite time model identification is crucial to ensure local linear convergence, see
for instance 20news dataset on Figure 3.3. However there exists very few quantitative the-
oretical results for the convergence speed of the model identification. Nutini et al. (2019);
Sun et al. (2019) tried to obtain some rates on the identification, quantifying “how much
the problem is qualified”, i.e., how much Assumption 2.4 is satisfied. But these theoretical
results do not seem to explain fully the experimental results of the CD: in particular the
identification speed of the model compared to other algorithms.

Limits. We would like to point out the limit of our analysis illustrated for the case of
λ = λmax/15 for the sparse logistic regression and the rcv1 dataset in Figure 3.2. In this
case, the solution may no longer be unique. The support gets larger and Assumption 3.2 is
no longer met. In this case, the largest eigenvalue of JψS,S(x?) is exactly one, which leads
to the constant rate observed in Figure 3.2. Despite the largest eigenvalue being exactly
1, a regime of locally linear convergence toward a (potentially non unique) minimizer is
still observed. Linear convergence of non-strongly convex functions starts to be more and
more understood (Necoara et al., 2019). Figure 3.2 with λ = λmax/15 for rcv1 suggests
extensions of Necoara et al. (2019) could be possible in the nonsmooth case.



4 SUPPORT VECTOR

REGRESSION WITH LINEAR

CONSTRAINTS

Contents
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.2 Constrained Support Vector Regression . . . . . . . . . . . . . . . . . . . 81

4.2.1 Previous work : ν-Support Vector Regression . . . . . . . . . . . . . 82

4.2.2 The constrained optimization problem . . . . . . . . . . . . . . . . 83

4.3 Generalized Sequential Minimal Optimization . . . . . . . . . . . . . . . 86

4.3.1 Previous work : Sequential Minimal Optimization . . . . . . . . . . 86

4.3.2 Optimality conditions for the constrained SVR . . . . . . . . . . . . 88

4.3.3 Updates rules and convergence . . . . . . . . . . . . . . . . . . . . . 90

4.4 Numerical experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.4.1 Non Negative regression . . . . . . . . . . . . . . . . . . . . . . . . 97

4.4.2 Regression onto the simplex . . . . . . . . . . . . . . . . . . . . . . . 99

4.4.3 Isotonic regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

4.4.4 Performance of the GSMO versus SMO . . . . . . . . . . . . . . . . 106

4.5 Proof of convergence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

In this chapter, we propose an algorithm to solve the SVR optimization problem with
added linear constraints on the estimator. This algorithm generalizes the SMO algorithm

77



78 CHAPTER 4. SUPPORT VECTOR REGRESSION WITH LINEAR CONSTRAINTS

used to solve the classical SVR optimization problem. In Section 4.2, we study the under-
lying optimization problem and prove that strong duality holds therefore we also provide
the dual problem of the constrained SVR. Then in Section 4.3, we propose the generalized
SMO algorithm and prove its convergence towards a solution of the constrained SVR. This
algorithm has the particularity to combine separable and non-separable variables. This is
an example where the separability condition on the coordinate descent can be weakened
and a coordinate descent based strategy can be used to solve the optimization problem.
Finally in Section 4.4, we show practical use of our proposed estimator to perform non-
negative regression, regression onto the simplex and isotonic regression. We show that
the constrained SVR can be a good estimator in certain settings in comparison to the Least
Squares one.

4.1 Introduction

Regression analysis seeks to find a relation between explanatory variables and an out-
come variable. The most known linear regression estimator is the Ordinary Least Squares
(OLS) which is the best linear unbiased estimator if the noise is i.i.d, uncorrelated and
homoscedastic. Additional constraints on the OLS estimator can be added to ensure that
it follows specific properties. For example, penalized regression such as the Ridge re-
gression improves the efficiency of the estimation by introducing a bias and reducing the
variance of the estimator in presence of collinearity (Hoerl and Kennard, 1970). Another
family of constrained regression is defined by the addition of hard constraints on the es-
timator, such as positivity constraints (Lawson and Hanson, 1995) which can improve the
estimation performance. Some applications in biology, where the goal is to estimate cell
proportions inside a tumor or the estimation of temperature in weather forecast, justify
the use of hard constraints on the estimator. The constrained OLS has been well stud-
ied, but the literature around the Support Vector Regression with additional constraints is
scarcer.

The Support Vector Machine (SVM) (Boser et al., 1992) is a class of supervised learning
algorithms that have been widely used in the past 20 years for classification tasks and
regression. These algorithms rely on two main ideas: the first one is the maximum margin
hyperplane which consists in finding the hyperplane that maximizes the distance between
the vectors that are to be classified and the hyperplane. The second idea is the kernel
method that allows the SVM to be used to solve non-linear problems. The technique is to
map the vectors in a higher dimensional space which is done by using a positive definite
kernel, then a maximal margin hyperplane is computed in this space which gives a linear



4.1. INTRODUCTION 79

classifier in the high dimensional space. In general, it leads to a non-linear classifier in the
original input space.

From SVM to Support Vector Regression. Different implementations of the algorithms
haven been proposed such as C-SVM, ν-SVM (Schölkopf et al., 1999), Least-Squares SVM
(Suykens and Vandewalle, 1999), Linear Programming SVM (Friel and Harrison, 1998)
among others. Each of these versions have their strengths and weaknesses depending on
which application they are used. They differ in terms of constraints considered for the
hyperplane (C-SVM and Least-Squares SVM), in terms of norm considered on the param-
eters (C-SVM and Linear Programming SVM) and in terms of optimization problem for-
mulation (C-SVM and ν-SVM). Overall, these algorithms are a great tool for classification
tasks and they have been used in many different applications like facial recognition (Jia
and Martinez, 2009), image classification (Chapelle et al., 1999), cancer type classification
(Haussler et al., 2000), text categorization (Joachims, 1998) to only cite a few examples.
Even though, SVM was first developed for classification, an adaptation for regression
estimation was proposed in Drucker et al. (1997) under the name Support Vector Regres-
sion (SVR). In this case, the idea of maximum margin hyperplane is slightly changed into
finding a tube around the regressors. The size of the tube is controlled by a hyperpa-
rameter chosen by the user: ε. This is equivalent to using an ε-insensitive loss function,
|y − f(x)|ε = max{0, |y − f(x)| − ε} which only penalizes the error above the chosen ε

level. As for the classification version of the algorithm, a ν-SVR method exists. In this ver-
sion, the hyperparameter ε is computed automatically but a new hyperparameter ν has
to be chosen by the user which controls asymptotically the proportions of support vectors
(Schölkopf et al., 1999). SVR has proven to be a great tool in the field of function estima-
tion for many different applications: predicting times series in stock trades (Van Gestel
et al., 2001), travel-time prediction (C.-H. Wu et al., 2004) and for estimating the amount
of cells present inside a tumor (Newman et al., 2015).

Incorporating priors. In this last example of application, the authors used SVR to es-
timate a vector of proportions, however the classical SVR estimator does not take into
account the information known about the space in which the estimator lives. Adding this
prior information on the estimator may lead to better estimation performance. Incorporat-
ing information in the estimation process is a wide field of studies in statistical learning
(we refer to Figure 2 in Lauer and Bloch (2008) for a quick overview in the context of
SVM). A growing interest in prior knowledge incorporated as regularization terms has
emerged in the last decades. Lasso (Tibshirani, 1996), Ridge (Hoerl and Kennard, 1970),



80 CHAPTER 4. SUPPORT VECTOR REGRESSION WITH LINEAR CONSTRAINTS

elastic-net (Zou and Hastie, 2005) regression are examples of regularized problem where
a prior information is used to fix an ill-posed problem or an overdetermined problem.
The `1 regularization of the Lasso will force the estimator to be sparse and bring statis-
tical guarantees of the Lasso estimator in high dimensional settings. Another common
way to add prior knowledge on the estimator is to add constraints known a-priori on
this estimator. The most common examples are the ones that constrain the estimator to
live in a subspace such as Non Negative Least Squares Regression (NNLS) (Lawson and
Hanson, 1995), isotonic regression (Barlow and Brunk, 1972). These examples belong to a
more general type of constraints: linear constraints. Other types of constraints exist like
constraints on the derivative of the function that is to be estimated, smoothness of the
function for example. Adding those constraints on the Least Squares estimator has been
widely studied (Barlow and Brunk, 1972; Liew, 1976; Bro and De Jong, 1997) and similar
work has been done for the Lasso estimator in (Gaines et al., 2018). Concerning the SVR,
inequality and equality constraints added as prior knowledge were studied in Lauer and
Bloch (2008). In this paper, the authors described a method for adding linear constraints
on the Linear Programming SVR (Friel and Harrison, 1998). This implementation of the
algorithm considers the `1 norm of the parameters in the optimization problem instead of
the classical `2 norm which leads to a linear programming optimization problem to solve
instead of a quadratic programming problem. They also described a method for using
information about the derivative of the function that is estimated.

Sequential Minimal Optimization. One of the main challenges of adding these con-
straints is that it often increases the difficulty of solving the optimization problem related
to the estimator. For example, the Least Squares optimization problem has a closed-form
solution whereas the NNLS uses sophisticated algorithms (Bro and De Jong, 1997) to ap-
proach the solution. SVM and SVR algorithms were extensively studied and used in prac-
tice because very efficient algorithms were developed to solve the underlying optimiza-
tion problems. One of them is called Sequential Minimal Optimization (SMO) (Platt, 1998)
and is based on a well known optimization technique called coordinate descent. The idea
of the coordinate descent is to break the optimization problem into sub-problems selecting
one coordinate at each step and minimizing the function only via this chosen coordinate.
The development of parallel algorithms have increased the interest in these coordinate
descent methods which show to be very efficient for large scale problems. One of the
key settings for the coordinate descent is the choice of the coordinate at each step, the
choice’s strategy will affect the efficiency of the algorithm. There exists three families
of strategies for coordinate descent: cyclic (Tseng, 2001), random (Nesterov, 2012) and



4.2. CONSTRAINED SUPPORT VECTOR REGRESSION 81

greedy. The SMO algorithm is a variant of a greedy coordinate descent (Wright, 2015)
and is the algorithm implemented in LibSVM (Chang and Lin, 2011). It is very efficient
to solve SVM/SVR optimization problems. In the context of linear kernel, other algo-
rithm are used such as dual coordinate descent (Hsieh et al., 2008) or trust region newton
methods (Lin et al., 2007).

Priors and SMO. In one of the application of SVR cited above, information a-priori
about the estimator is not used in the estimation process and is only used in a post-
processing step. This application comes from the cancer research field, where regression
algorithms have been used to estimate the proportions of cell populations that are present
inside a tumor (see Mohammadi et al. (2017) for a survey). Several estimators have been
proposed in the biostatistics literature, most of them based on constrained least squares
(Abbas et al., 2009; Qiao et al., 2012; Gong et al., 2011) but the gold standard is the estima-
tor based on the Support Vector Regression (Newman et al., 2015). Our work is motivated
by incorporating the fact that the estimator for this application belongs to the simplex:
S = {x ∈ Rn :

∑n
i=1 xi = 1, xi ≥ 0} in the SVR problem. We believe that for this appli-

cation, it will lead to better estimation performance. From an optimization point of view,
our motivation is to find an efficient algorithm that is able to solve the SVR optimization
problem where generic linear constraints are added to the problem as prior knowledge,
including simplex prior as described. This work follows the one from Lauer and Bloch
(2008) except that in our case, we keep the `2 norm on the parameters in the optimization
problem which is the most common version of the SVR optimization problem and we only
focus on inequality and equality constraints as prior knowledge.

4.2 Constrained Support Vector Regression

First we introduce the optimization problem related to adding linear constraints to the
SVR and discuss some interesting properties about this problem.



82 CHAPTER 4. SUPPORT VECTOR REGRESSION WITH LINEAR CONSTRAINTS

4.2.1 Previous work : ν-Support Vector Regression

The ν-SVR estimator (Schölkopf et al., 1999) is obtained solving the following quadratic
optimization problem:

min
β,β0,ξi,ξ∗i ,ε

1

2
||β||2 + C(νε+

1

n

n∑
i=1

(ξi + ξ∗i )) (SVR-P)

subject to yi −Xi:β − β0 ≤ ε+ ξi

Xi:β + β0 − yi ≤ ε+ ξ∗i

ξi, ξ
∗
i ≥ 0, ε ≥ 0 .

By solving Problem (SVR-P), we seek a linear function f(x) = β>x+ β0 where β ∈ Rp and
β0 ∈ R, that is at most ε deviating from the response vector coefficient yi. This function
does not always exist which is why slack variables ξ ∈ Rn and ξ∗ ∈ Rn are introduced in
the optimization problem to allow some observations to break the condition given before.
C and ν are two hyperparameters. C ∈ R controls the tolerated error and ν ∈ [0, 1] controls
the number of observations that will lay inside the tube of size 2ε given by the two first
constraints in Problem (SVR-P). It is an ε-insensitive loss function where a linear penal-
ization is put on the observations that lay outside the tube and the observations that lay
inside the tube are not penalized (see Smola and Schölkopf (2004) for more details).

The different algorithms proposed to solve Problem (SVR-P) often use its dual problem
like in Platt (1998); Hsieh et al. (2008). The dual problem is also a quadratic optimization
problem with linear constraints but its structure allows an efficient resolution as we will
see in more details in Section 4.3. The dual problem of Problem (SVR-P) is the following
optimization problem:

min
α,α∗∈Rn

1

2
(α− α∗)>Q(α− α∗) + y>(α− α∗) (SVR-D)

subject to 0 ≤ αi, α
∗
i ≤

C

n

1
>(α + α∗) ≤ Cν

1
>(α− α∗) = 0 ,

where Q = XX> ∈ Rn×n.



4.2. CONSTRAINED SUPPORT VECTOR REGRESSION 83

The equation link between Problem (SVR-P) and Problem (SVR-D) is given by the follow-
ing formula: β = −∑n

i=1(αi − α∗i )Xi: .

4.2.2 The constrained optimization problem

We propose a constrained version of Problem (SVR-P) that allows the addition of prior
knowledge on the linear function f that we seek to estimate. The constrained estimator is
obtained solving the optimization problem:

min
β,β0,ξi,ξ∗i ,ε

1

2
||β||2 + C(νε+

1

n

n∑
i=1

(ξi + ξ∗i )) (LSVR-P)

subject to Xi:β + β0 − yi ≤ ε+ ξi

yi −Xi:β − β0 ≤ ε+ ξ∗i

ξi, ξ
∗
i ≥ 0, ε ≥ 0

Aβ ≤ b

Γβ = d ,

where A ∈ Rk1×p, Γ ∈ Rk2×p, β ∈ Rp, ξ, ξ∗ ∈ Rn and β0 ∈ R, ε > 0.

The algorithm that we propose in Section 4.3 also uses the structure of the dual problem
of Problem (LSVR-P). The next proposition introduces the dual problem and some of its
properties.

Proposition 4.1. If the set {β ∈ Rn, Aβ ≤ b,Γβ = d} is not empty then,

1. Strong duality holds for Problem (LSVR-P).



84 CHAPTER 4. SUPPORT VECTOR REGRESSION WITH LINEAR CONSTRAINTS

2. The dual problem of Problem (LSVR-P) is

min
α,α∗,γ,µ

1

2

[
(α− α∗)>Q(α− α∗) + γ>AA>γ (LSVR-D)

+ µ>ΓΓ>µ+ 2
n∑
i=1

(αi − α∗i )γ>AXi:

− 2
n∑
i=1

(αi − α∗i )µ>ΓXi: − 2γ>AΓ>µ

]
+ y>(α− α∗) + γ>b− µ>d

subject to 0 ≤ α
(∗)
i ≤

C

n

1
>(α + α∗) ≤ Cν

1
>(α− α∗) = 0

γj ≥ 0 ,

3. The equation link between primal and dual is

β = −
n∑
i=1

(αi − α∗i )Xi: − A>γ + Γ>µ .

The proof of the first statement of the proposition is given in the discussion below whereas
the proofs for the two other statements are straightforward and derive from classical La-
grangian computation.

We have that α, α∗ ∈ Rn, γ ∈ Rk1 are the vector of Lagrange multipliers associated the
the inequality constraint Aβ ≤ b which explains the non-negative constraints on its coef-
ficients. The coefficients µ ∈ Rk2 are the Lagrange multipliers associated to the equality
constraint Γβ = d which also explains that there are no constraints in the dual problem on
µ. The objective function f which we will write in the stacked form as:

f(θ) = θ>Q̄θ + l>θ,

where

θ =


α

α∗

γ

µ

 , l =


y

−y
b

−d

 ∈ R2n+k1+k2 ,



4.2. CONSTRAINED SUPPORT VECTOR REGRESSION 85

Q̄ =


Q −Q XA> −XΓ>

−Q Q −XA> XΓ>

AX> −AX> AA> −AΓ>

−ΓX> ΓX> −ΓA> ΓΓ>


is a square matrix of size 2n+ k1 + k2.

An important observation is that this objective function is always convex. The matrix Q̄

is the product of the matrix


X

−X
A

−Γ

 and its transpose matrix. It means that Q̄ is a Gramian

matrix and it is positive semidefinite which implies that f is convex. Problem (LSVR-D)
is then a quadratic programming optimization problem which meets Slater’s condition
if there exists a θ that belongs to the feasible domain which we will denote by F . If
there is such a θ we have strong duality holding between Problem (LSVR-P) and Prob-
lem (LSVR-D). The only condition to have the existence of a minimum on A and Γ is
that they define a non-empty polyhedron in order to be able to solve the optimization
problem.

Our second observation on Problem (LSVR-D) is that the inequality constraint:

1
>(α + α∗) ≤ Cν ,

is replaced by an equality constraint in the same way that it was suggested in Chang and
Lin (2002) for the classical Problem (SVR-D).

Proposition 4.2. If ε > 0, all optimal solutions of Problem (LSVR-D) satisfy

1. αiα∗i = 0, ∀i ∈ [n]

2. 1>(α + α∗) = Cν

Proof. To prove part 1., Let us recall that αi, α∗i are the Lagrange multipliers associated to
the optimization Problem (LSVR-P) constraints:

Xi:β + β0 − yi ≤ ε+ ξi

yi −Xi:β − β0 ≤ ε+ ξ∗i .



86 CHAPTER 4. SUPPORT VECTOR REGRESSION WITH LINEAR CONSTRAINTS

The complementary optimality conditions leads to

αi(Xi:β + β0 − yi − ε− ξi) = 0

α∗i (yi −Xi:β − β0 − ε− ξ∗i ) = 0 .

Let us now suppose that αi > 0 and α∗i > 0 which implies that

Xi:β + β0 − yi − ε− ξi = 0

yi −Xi:β − β0 − ε− ξ∗i = 0 .

It follows that−2ε = ξi + ξ∗i and ξi, ξ∗i ≥ 0 which implies ξi = ξ∗i = ε = 0. This goes against
our condition ε > 0.

To prove part 2., we need to remind the optimality conditions of Problem (LSVR-P);

(Cν −
l∑

i=1

αi + α∗i )ε = 0 . (4.1)

Thus, if ε > 0 we have that
∑n

i=1 αi + α∗i = Cν.

This observation will be important for the algorithm that we propose in Section 4.3.

4.3 Generalized Sequential Minimal Optimization

In this section we propose a generalization of the SMO algorithm (Platt, 1998) to solve
Problem (LSVR-D) and present our main result on the convergence of the proposed al-
gorithm to the solution of Problem (LSVR-D). The SMO algorithm is a variant of greedy
coordinate descent taking into consideration non-separable constraints, which in our case
are the two equality constraints. We start by describing the previous algorithm that solve
Problem (SVR-D).

4.3.1 Previous work : Sequential Minimal Optimization

In this subsection, we define f(α, α∗) = 1
2
(α − α∗)>Q(α − α∗) + y>(α − α∗) and we note

∇f ∈ R2n its gradient. Using Keerthi and Gilbert (2002), we rewrite the Karush-Kuhn-



4.3. GENERALIZED SEQUENTIAL MINIMAL OPTIMIZATION 87

Tucker (KKT) conditions in the following way:

min
i∈Iup
∇αif ≥ max

j∈Ilow
∇αjf , (4.2)

where Iup(α) = {i ∈ [n] : αi <
C
l
} and Ilow(α) = {i ∈ [n] : αi > 0}.

The same condition is written for the α∗ variables replacing αi by α∗i above. These condi-
tions lead to an important definition for the rest of this paper.

Definition 4.1. We will say that (i, j) is a violating pair of variables if one of these two
conditions is satisfied:

i ∈ Iup(α), j ∈ Ilow(α) and ∇αif < ∇αjf

i ∈ Ilow(α), j ∈ Iup(α) and ∇αif > ∇αjf.

Because the algorithm SMO does not provide in general an exact solution in a finite num-
ber of steps there is a need to relax the optimality conditions which gives a new definition.

Definition 4.2. We will say that (i, j) is a τ -violating pair of variables if one of these two
conditions is satisfied:

i ∈ Iup(α), j ∈ Ilow(α) and ∇αif < ∇αjf − τ
i ∈ Ilow(α), j ∈ Iup(α) and ∇αif > ∇αjf + τ.

The SMO algorithm will then choose at each iteration a pair of violating variables in the
α block or in the α∗ block. Once the choice is done, a subproblem of size two is solved,
considering that only the two selected variables are to be minimized in Problem (SVR-D).
The outline of the algorithm is presented in Algorithm 4.

The choice of the violating pair of variables presented in Keerthi et al. (2001) was to always
work with the most violating pairs of variables, which means the variables that leads to
the largest gap compared to the optimality conditions given in Equation (4.2). This choice
is what makes a link with greedy coordinate descent, however greedy here is related to
the largest gap with the optimality score and is not related to the largest decrease in the
objective function.

The resolution of the subproblem of size two has a closed-form. The idea is to use the two
equality constraints to go from a problem of size two to a problem of size one. Then, the
goal is to minimize a quadratic function of one variable under box constraints which is



88 CHAPTER 4. SUPPORT VECTOR REGRESSION WITH LINEAR CONSTRAINTS

done easily. We will give more details of the resolution of these subproblems in Section
4.3.3 for our proposed algorithm.

The proof of convergence of SMO algorithm was given in Keerthi and Gilbert (2002) with-
out convergence rate. The proof relies on showing that the sequence defined by the al-
gorithm f(αk, (α∗)k) is a decreasing sequence and that there cannot be the same violating
pair of variables infinitely many times. The linear convergence rate was proved later by
She and Schmidt (2017) as well as the identification of the support vectors in finite time.

Algorithm 4 SEQUENTIAL MINIMAL OPTIMIZATION (PLATT, 1998)
input : τ > 0, α(0), (α∗)(0) ∈ F
k = 0
while ∆ > τ do

i← arg min
i∈Iup

∇αif j ← arg min
j∈Ilow

∇αjf // Most violating pair in the block α

i∗ ← arg min
i∈Iup

∇αif j∗ ← arg min
j∈Ilow

∇αjf // Most violating pair in the block α∗

∆1 ← ∇αjf −∇αif // KKT violation score in the block α

∆2 ← ∇αj∗f −∇αi∗f // KKT violation score in the block α∗

∆ = max(∆1,∆2)
if ∆ = ∆1 then

α(k+1) ← Solution of subproblem for variables αi and αj
else

(α∗)(k+1) ← Solution of subproblem for variables αi∗ and αj∗
k ← k + 1

return α(k), (α∗)(k)

4.3.2 Optimality conditions for the constrained SVR

In this subsection we define f as the objective function of Problem (LSVR-D) and ∇f ∈
R2n+k1+k2 its gradient. We will now give the KKT conditions of Problem (LSVR-D) for the
different block. The results derive from classical Lagrangian calculation.

The α block. The optimality conditions are satisfied if and only if

min
i∈Iup
∇αif ≥ max

j∈Ilow
∇αjf ,



4.3. GENERALIZED SEQUENTIAL MINIMAL OPTIMIZATION 89

where

Iup(α) = {i ∈ [n] : αi <
C

n
},

Ilow(α) = {i ∈ [n] : αi > 0} .

The α∗ block. In this block, the conditions are very similar to the ones given for the block
α, which gives the following optimality condition:

min
i∈I∗up

∇α∗i
f ≥ max

j∈I∗low

∇α∗j
f ,

where

I∗up(α∗) = {i ∈ [n] : α∗i <
C

n
},

I∗low(α) = {i ∈ [n] : α∗i > 0} .

The γ block. The optimality conditions in this block lead to the following conditions, for
every j ∈ [k1]:

∇γjf ≥ 0 .

Definition 4.3. We will say that j is a τ -violating variable for the block γ if∇γjf + τ < 0.

The µ block. The optimality conditions in this block lead to the following conditions, for
every j ∈ [k2]:

∇µjf = 0 .

Definition 4.4. We will say that j is a τ -violating variable for the block µ if |∇µjf | > τ .

From these conditions on each block, we build an optimization strategy that follows the
idea of the SMO described in Section 4.3.1. For each block of variables, we compute what
we call a violating optimality score based on the optimality conditions given above. Once
the scores are computed for each block, we select the block which has the largest score
and solve an optimization subproblem in the block selected.

If the block α or the block α∗ is selected, we will update a pair of variables by solving a



90 CHAPTER 4. SUPPORT VECTOR REGRESSION WITH LINEAR CONSTRAINTS

Algorithm 5 SEQUENTIAL MINIMAL OPTIMIZATION ALGORITHM

input : τ > 0, α(0), (α∗)(0), γ(0), µ(0) ∈ F
k = 0
while ∆ > τ do

i← arg min
i∈Iup

∇αif j ← arg min
j∈Ilow

∇αjf // Most violating pair in the block α

i∗ ← arg min
i∈Iup

∇αif j∗ ← arg min
j∈Ilow

∇αjf // Most violating pair in the block α∗

∆1 ← ∇αjf −∇αif // KKT violation score in the block α

∆2 ← ∇αj∗f −∇αi∗f // KKT violation score in the block α∗

∆3 ← − min
j∈{1,...,k1}

∇γjf // KKT violation score in the block γ

∆4 ← max
j∈{1,...,k2}

|∇µjf | // KKT violation score in the block µ

∆ = max(∆1,∆2,∆3,∆4) // Block and index selection to update.

if ∆ = ∆1 then
α(k+1) ← Solution of subproblem for variables αi and αj

else if ∆ = ∆2 then
(α∗)(k+1) ← Solution of subproblem for variables αi∗ and αj∗

else if ∆ = ∆3 then
i = arg min

i∈{1,...,k1}
∇γif γ

k+1 ←Solution of subproblem for γi

else
i = arg max

i∈{1,...,k2}
|∇µif | µk+1 ← Solution of subproblem for µi

k ← k + 1
return α(k), (α∗)(k), γ(k), µ(k)

minimization problem of size two. However if the block γ or the block µ is selected, we
will update only one variable at a time.

This is justified by the fact that the variables α and α∗ have non-separable equality con-
straints linking them together. The rest of this section will be dedicated to the presentation
of our algorithm and to giving some interesting properties such as a closed-form for up-
dates on each of the blocks and a convergence theorem.

4.3.3 Updates rules and convergence

The first definition describes the closed-form updates for the different blocks of vari-
ables.

Definition 4.5. The update between iterate k and iterate k + 1 of the generalized SMO
algorithm has the following form:

1. if the block α is selected and (i, j) is the most violating pair of variable then the



4.3. GENERALIZED SEQUENTIAL MINIMAL OPTIMIZATION 91

update will be as follows:
αk+1
i = αki + t∗

αk+1
j = αkj − t∗,

where t∗ = min(max(I1,−
(∇αif−∇αj f)

(Qii−2Qij+Qjj)
), I2) with I1 = max(−αki , αkj − C

n
) and I2 =

min(αkj ,
C
n
− αki ).

2. if the block α∗ is selected and (i∗, j∗) is the most violating pair of variable then the
update will be as follows:

(α∗i )
k+1 = (α∗i )

k + t∗

(α∗j )
k+1 = (α∗j )

k − t∗,

where t∗ = min(max(I1,−
(∇α∗

i
f−∇α∗

j
f)

(Qii−2Qij+Qjj)
), I2) with I1 = max(−(α∗i )

k, (α∗j )
k − C

n
) and

I2 = min((α∗j )
k, C

n
− (α∗i ))

k.

3. if the block γ is selected and i is the index of the most violating variable in this block
then the update will be as follows:

γk+1
i = max(− ∇γif

(AA>)ii
+ γki , 0).

4. if the block µ is selected and i is the index of the most violating variable in this block
then the update will be as follows:

µk+1
i = − ∇µif

(ΓΓ>)ii
+ µki .

This choice of updates comes from solving the optimization Problem (LSVR-D) consider-
ing that only one or two variables are updated at each step. One of the key elements of
the algorithm is to make sure that at each step the iterate belongs to F . Let us suppose
that the block α is selected as the block in which the update will happen and let (i, j) be
the most violating pair of variables. The update is the resolution of a subproblem of size
2, considering that only αi and αj are the variables, the rest remains constant. The two
equality constraints in Problem (LSVR-D),

∑n
i=1 αi − α∗i = 0 and

∑n
i=1 αi + α∗i = Cν, lead

to the two following equalities: αk+1
i +αk+1

j = αki +αkj . The later yields to using a parameter
t for the update of the variables leading to αk+1

i = αki + t and αk+1
j = αkj − t.

Updating the variables in the block α this way will force the iterates of Algorithm 4 to
meet the two equalities constraints at each step. We find t by solving Problem (LSVR-D)
considering that we minimize only over t. Let u ∈ R2n+p+k1+k2 be the vector that contains



92 CHAPTER 4. SUPPORT VECTOR REGRESSION WITH LINEAR CONSTRAINTS

only zeros except at the ith coordinate where it is equal to t and at jth coordinate where it is
equal to−t. Therefore, we find t by minimizing the following optimization problem:

min
t∈R

ψ(t) =
1

2

[
(θk + u)>Q̄(θk + u)

]
+ l>(θk + u)

subject to 0 ≤ αk+1
i , αk+1

j ≤ C

n
.

First we minimize the objective function without the constraints and since it is a quadratic
function of one variable we just clip the solution of unconstrained problem to have the
solution of the constrained problem. We will use the term ”clipped update” or ”clipping”
when the update is projected onto the constraints space and is not the result of the uncon-
strained optimization problem. As we only consider size one problem for the updates, it
will mean that the update will be a bound of an interval. We will use the notation K as a
term containing the terms that do not depend on t. We write that

ψ(t) =
1

2
u>Q̄u+ u>Q̄θk + l>u+K

=
1

2
t2(Q̄ii + Q̄jj − 2Q̄ij) + u>∇f(θk) +K

=
1

2
t2(Q̄ii + Q̄jj − 2Q̄ij) + t(∇αif(θk)

−∇αjf(θk)) +K.

It follows that the unconstrained minimum of ψ(t) is tq =
−(∇αif(θk)−∇αj f(θk))

(Q̄ii+Q̄jj−2Q̄ij)
.

Taking the constraints into account we have that 0 ≤ αki + t ≤ C
n

and 0 ≤ αkj − t ≤ C
n

, which
yields to t∗ = min(max(I1, tq), I2) with I1 = max(−αi, αj − C

n
) and I2 = min(αj,

C
n
− αi).

The definition of the updates for the block α∗ relies on the same discussion.

Let us now make an observation that will explain the definition of the updates for the
blocks γ and µ. Let i be the index of the variable that will be updated. Solving the problem;
θk+1
i = arg min

θi

1
2
θ>Q̄θ + l>θ, leads to the following solution θk+1

i = −∇if(θk)

Q̄ii
+ θki .

Let us recall that the update for the block γ has to keep the coefficient of γ positive to stay
in F hence we have to perform the following clipped update with i ∈ {2n+p+1, . . . , 2n+

p+ k1}:
θk+1
i = max(

−∇γif(θk)

Q̄ii

+ θki , 0).



4.3. GENERALIZED SEQUENTIAL MINIMAL OPTIMIZATION 93

Then noticing that Q̄ii = AA>ii for this block, we obtain the update for the block γ.

There are no constraints on the variables in the block µ, so the update comes from the fact
that Q̄ii = ΓΓ>ii for i ∈ {2n + p + k1 + 1, . . . , 2n + p + k1 + k2} which corresponds to the
indices of the block µ. It comes back to performing a projected coordinate descent step in
the block γ and a simple coordinate descent step in the block µ.

From these updates we have to make sure that

Qii +Qjj − 2Qij 6= 0,

let us recall that Qij = 〈Xi:, Xj:〉which means that

Qii +Qjj − 2Qij = ||Xi: −Xj:||2.

This quantity is zero only when Xi: = Xj: coordinatewise. It would mean that the same
row appears two times in the design matrix which does not bring any new information
for the regression and can be avoided easily. (AA>)ii = 〈Ai:, Ai:〉 is zero if and only if
Ai: = 0 which means that a row of the matrix A is zero, so there are no constraint on any
variable of the optimization problem which will never happen. It is the same discussion
for (ΓΓ>)ii.

The next proposition makes sure that once a variable (resp. pair of variables) is updated,
it cannot be a violating variable (resp. pair of variables) at the next step. This proposition
makes sure, for the two blocks α and α∗, that the update t∗ cannot be 0.

Proposition 4.3. If (i, j) (resp.i) was the pair of most violating variable (resp. the most violating
variable) in the block α or α∗ (resp. block γ or µ) at iteration k then at iteration k + 1, (i, j) (resp.
i) cannot be violating the optimality conditions.

Proof. To prove Proposition 4.3, we start by giving a lemma that will be useful to prove
the proposition for the blocks α and α∗.

Lemma 4.1. If the update between iteration k and k + 1 happens in the block α (or α∗) and that
(i, j) is the most violating pair of variables then

∇αif(θk+1)−∇αjf(θk+1) = ∇αif(θk)−∇αjf(θk) + t∗(Qii +Qjj − 2Qij) .

Proof. Let us recall that the update in the block α (or α∗) has the following form ; αk+1
i =

αki + t∗ and αk+1
j = αkj − t∗, with t∗ as defined in Definition 4.5. In a stacked form we have



94 CHAPTER 4. SUPPORT VECTOR REGRESSION WITH LINEAR CONSTRAINTS

that

∇αif(θk+1)−∇αjf(θk+1) = (Qθk+1)i + li − (Qθk+1)j − lj

=

2n+k1+k2∑
s=1

Qisθ
k+1
s + li −

2n+k1+k2∑
s=1

Qjsθ
k+1
s − lj

= ∇αif(θk)−∇αjf(θk) + t∗(Qii −Qij) + t∗(Qjj −Qij)

= ∇αif(θk)−∇αjf(θk) + t∗(Qii +Qjj − 2Qij) .

This lemma is helpful for the blocks γ and µ.

Lemma 4.2. If θi is the updated variable at iteration k, then it holds that:

∇if(θk+1) = Q̄ii(θ
k+1
i − θki ) +∇if(θk) .

Proof. The proof is straightforward,

∇if(θk+1) =(Q̄θk+1
i )i + li

=

2n+k1+k2∑
s=1

Q̄isθ
k+1
s + li

=

2n+k1+k2∑
s 6=i

Q̄isθ
k+1
s + li + Q̄iiθ

k+1
i

=∇if(θk) + Q̄iiθ
k+1
i − Q̄iiθ

k
i

=Q̄ii(θ
k+1
i − θki ) +∇if(θk) .

We now consider that the update between iteration k and k + 1 takes place in the block
α. We will define (i, j) as the most violating pair of variables as defined in Section 4.3.
From the discussion in Section 4.3.3, we know that minimizing the objective function of
Problem (LSVR-D) considering that only the parameter t is a variable leads to minimizing
the following function:

ψ(t) =
1

2
t2(Q̄ii + Q̄jj − 2Q̄ij) + t(∇αif(θk)−∇αjf(θk)) +K . (4.3)

We recall that t is the parameter that will be used for the update of αi and αj and K is a



4.3. GENERALIZED SEQUENTIAL MINIMAL OPTIMIZATION 95

CC DD

AA BB

Figure 4.1 – Possible update for the block α or α∗

constant term. We also have the following result from Lemma 4.1:

∇αif(θk+1)−∇αjf(θk+1) =∇αif(θk)−∇αjf(θk) (4.4)

+ (Q̄ii + Q̄jj − 2Q̄ij)t
∗ .

The minimization update takes place in the square S = [0, C
n

] × [0, C
n

] illustrated in Fig-
ure 4.1.

At points B and C of the square S, (i, j) cannot be a τ -violating pair of variables because
they belong to the same set of indices Iup (or Ilow). Everywhere else, violation can take
place.

• On ]CA], αi = 0 and αj > 0 so i ∈ Iup and j ∈ Ilow which means that by definition of
τ -violating pair of variable

∇αif(θk)−∇αjf(θk) < −τ < 0 ,

which means tq =
−(∇αif(θk)−∇αj f(θk))

(Q̄ii+Q̄jj−2Q̄ij)
> 0. Let us remind that :

max(−αi, αj −
C

n
) ≤ t∗ ≤ min(

C

n
− αi, αj) . (4.5)

It means that on ]CA], Equation (4.5) becomes : 0 ≤ t∗ ≤ αj There are then two
possibilities:

– if tq ≥ αj , it implies because of the constraints on t∗, that t∗ = αj . The up-
date becomes then αk+1

i = αki + αkj and αk+1
j = 0. Then j belongs to the

set of indices Iup and i belongs to Ilow. From Equation (4.4), we deduce that
∇αif(θk+1) − ∇αjf(θk+1) ≤ 0 which proves that (i, j) is not a violating pair of



96 CHAPTER 4. SUPPORT VECTOR REGRESSION WITH LINEAR CONSTRAINTS

variable anymore and that αk+1 6= αk

– Second possibility is that tq ≤ αj then t∗ = tq, then (αk+1
i , αk+1

j ) belongs to int(S).
From Equation (4.4), we deduce that∇αif(θk+1)−∇αjf(θk+1) = 0, (i, j) is not a
τ -violating pair of variables anymore and αk+1 6= αk.

The same reasoning can be done on each segment of the edge of the square and also for
points that are inside it. Moreover, it stays true for the block α∗ and the proof is similar.

Let us now prove that when the update takes place at index i in the block γ then i is not
violating variable at iteration k + 1. Then we need to show that ∇γif(θk+1) ≥ 0. Let us
start with the case where the update γk+1

i =
∇γif(θk)

Q̄ii
− γki . Using Lemma 4.2, we have that

∇γif(θk+1) = 0. The second possible case is γk+1
i = 0 because−∇γif(θk)

Q̄ii
+γki ≤ 0. If γk+1

i = 0

then ∇γif(θk+1) = −Q̄iiγ
k
i +∇γif(θk). Q̄ii is positive because it is a diagonal element of a

Gram matrix (A>A) thus we get that∇γif(θk+1) ≥ 0, which proves that i is not a violating
variable anymore.

The proof for the block µ relies on the same idea except that it is simpler because there is
no clipped updates possible so ∇µif(θk+1) = 0 if the updates takes place at µi which also
proves that i is not a violating variable for this block of variables anymore.

Finally, we show that the algorithm converges to a solution of Problem (LSVR-D) and
since strong duality holds it allows us to have a solution of Problem (LSVR-P).

Theorem 4.1. For any given τ > 0 the sequence of iterates {θk}, defined by the generalized SMO
algorithm, converges to an optimal solution of the optimization Problem (LSVR-D)

The proof of this theorem relies on the same idea as the one proposed in Lopez and Dor-
ronsoro (2012) for the classical SMO algorithm and is given in Section 4.5. We show
that it can be extended to our algorithm with some new elements. The general idea of
the proof is to see that the distance between the primal vector generated by the SMO-
algorithm and the optimal solution of the primal is controlled by the following expression
1
2
||βk − βopt|| ≤ f(θk) − f(θopt), where βk is the kth primal iterate obtained via the re-

lationship primal-dual and θk and where βopt is a solution of Problem (LSVR-P). From
this observation, we show that we can find a subsequence of the SMO-algorithm θkj that
converges to some θ̄, solution of the dual problem. Using the continuity of the objective
function of the dual problem, we have that f(θkj) → f(θ̄). Finally, we show that the se-
quence {f(θk)} is decreasing and bounded which implies its convergence and from the



4.4. NUMERICAL EXPERIMENTS 97

convergence monotone theorem we know that to f(θk) converges to f(θ̄) since one of its
subsequence converges. This proves that ||βk− βopt|| → 0 and finishes the proof. The con-
vergence rate for the SMO algorithm is difficult to obtain considering the greedy choice
of the blocks and the greedy choice inside the blocks. A proof for the classical SMO exists
but with uniformly at random choice of the block (She and Schmidt, 2017). Convergence
rate for greedy algorithms in optimization can be found in Nutini et al. (2015) for example
but the assumption that the constraints must be separable is a major issue for our case.
The study of this convergence rate is left for future work.

4.4 Numerical experiments

The code for the different regression settings is available on a GitHub repository1, each
setting is wrapped up in a package and is fully compatible with scikit-learn (Pedregosa
et al., 2011) BaseEstimator class.

In order to compare the estimators, we worked with the Mean Absolute Error:

MAE =
1

p

p∑
i=1

|β∗i − β̂i| ,

and the Root Mean Squared Error;

RMSE =

√
1

p
||β∗ − β̂||2 ,

where β∗ are the ground truth coefficients and β̂ are the estimated coefficients. We also
used the Signal-To-Noise Ratio (SNR) to control the level noise simulated in the data de-
fined as

SNR = 10 log 10(
E(Xβ(Xβ)>)

Var(ε)
) .

4.4.1 Non Negative regression

First, the constraints are set to force the coefficient of β to be positive and we compare our
constrained-SVR estimator with the NNLS (Lawson and Hanson, 1995) estimator which

1https://github.com/Klopfe/LSVR

https://github.com/Klopfe/LSVR


98 CHAPTER 4. SUPPORT VECTOR REGRESSION WITH LINEAR CONSTRAINTS

is the result of the following optimization problem

min
β

1

2
||y −Xβ|| (NNLS)

subject to βj ≥ 0,∀j ∈ [p] .

In this special case of non-negative regression, A = −Ip, b = 0, Γ = 0, d = 0, the
constrained-SVR optimization problem which we will call Non-Negative SVR (NNSVR)
then becomes

min
β,β0,ξi,ξ∗i ,ε

1

2
||β||2 + C(νε+

1

n

n∑
i=1

(ξi + ξ∗i )) (NNSVR)

subject to Xi:β + β0 − yi ≤ ε+ ξi

yi −Xi:β − β0 ≤ ε+ ξ∗i

ξi, ξ
∗
i ≥ 0, ε ≥ 0

βj ≥ 0,∀j ∈ [p] .

Synthetic data. We generated the design matrix X from a Gaussian distribution N (0, 1)

with 500 samples and 50 features. The true coefficients to be found β∗ were generated
taking the exponential of a Gaussian distribution N (0, 2) in order to have positive coeffi-
cients. Y was simply computed as the product between X and β∗. We wanted to test the
robustness of our estimator compared to NNLS and variant of SVR estimators. To do so,
we simulated noise in the data using different types of distributions, we tested Gaussian
noise and laplacian noise under different levels of noise. For this experiment, the noise
distributions were generated to have a SNR equals to 10 and 20, for each type of noise we
performed 50 repetitions. The noise was only added in the matrix Y the design matrix X
was left noiseless. We compared different estimators NNLS, NNSVR, the Projected-SVR
(P-SVR) which is simply the projection of the classical SVR estimator onto the positive
orthant and also the classical SVR estimator without constraints. The results of this ex-
periment are in Table 4.1. We see that for a low Gaussian noise level (SNR = 20) the
NNLS has a lower RMSE and lower MAE. However, we see that the differences between
the four compared methods are small. When the level of noise increases (SNR = 10),
the NNSVR estimator is the one with the lowest RMSE and MAE. The NNLS estimator
performs poorly in the presence of high level of noise in comparison to the SVR based
estimator. When a laplacian noise is added to the data, the NNSVR is the estimator that
has the lowest RMSE and MAE for low level of noise SNR = 20 and high level of noise



4.4. NUMERICAL EXPERIMENTS 99

Table 4.1 – Results for the Support Vector Regression (SVR), Projected Support Regression
(P-SVR), Non-Negative Support Vector Regression (NNSVR) and Non-Negative Least
Squares (NNLS) for simulated data with n = 500 and p = 50. The mean (standard de-
viation) of the Root Mean Squared Error (RMSE) and the Mean Absolute Error (MAE)
over 50 repetitions are reported. Different noise distribution (Gaussian and laplacian) and
different Signal to Noise Ratio (SNR) values were tested.

Distribution Estimator RMSE MAE

Gaussian noise SVR 2.238 (0.081) 29.288 (2.452)
P-SVR 2.178 (0.087) 27.248 (2.545)

SNR = 20 NNSVR 2.174 (0.089) 27.224 (2.480)
(σ = 773.1) NNLS 2.120 (0.114) 25.226 (2.699)

Gaussian noise SVR 2.732 (0.099) 44.764 (4.230)
P-SVR 2.584 (0.154) 39.687 (5.963)

SNR = 10 NNSVR 2.536 (0.105) 37.740 (3.866)
(σ = 2444.9) NNLS 3.478 (0.208) 60.553 (7.923)

Laplacian noise SVR 2.086 (0.109) 25.538 (3.181)
P-SVR 2.039 (0.109) 23.978 (3.059)

SNR = 20 NNSVR 2.035 (0.115) 23.827 (3.146)
(b = 546.7) NNLS 2.115 (0.103) 25.028 (2.571)

Laplacian noise SVR 2.665 (0.148) 42.245 (5.777)
P-SVR 2.526 (0.198) 37.745 (7.271)

SNR = 10 NNSVR 2.480 (0.157) 35.786 (5.761)
(b = 1728.8) NNLS 3.463 (0.230) 63.940 (8.375)

SNR = 10.

4.4.2 Regression onto the simplex

In this subsection, we study the performance of our proposed estimator on simplex con-
straints Simplex Support Vector Regression (SSVR). In this case, A = −Ip, b = 0, Γ = 1

and d = 1. The optimization problem that we seek to solve is:

min
β,β0,ξi,ξ∗i ,ε

1

2
||β||2 + C(νε+

1

n

n∑
i=1

(ξi + ξ∗i )) (SSVR)

subject to Xi:β + β0 − yi ≤ ε+ ξi

yi −Xi:β − β0 ≤ ε+ ξ∗i

ξi, ξ
∗
i ≥ 0, ε ≥ 0

βj ≥ 0,∀j ∈ [p]
p∑
j=1

βj = 1 .



100 CHAPTER 4. SUPPORT VECTOR REGRESSION WITH LINEAR CONSTRAINTS

LSSVR Cibersort SOLS

0.0

0.2

n
=

50
R

M
S

E
p = 5

0.0

0.1

0.2
p = 10

0.00

0.05

0.10

p = 25

0.00

0.05

p = 50

0.0

0.2

n
=

10
0

R
M

S
E

0.0

0.1

0.2

0.00

0.05

0.10

0.00

0.05

0.0

0.2

n
=

25
0

R
M

S
E

0.0

0.1

0.2

0.00

0.05

0.10

0.00

0.05

in
f

30 25 20 15 10 5 2 1 0

0.0

0.2

n
=

50
0

R
M

S
E

in
f

30 25 20 15 10 5 2 1 0

0.0

0.1

0.2
in

f
30 25 20 15 10 5 2 1 0

0.00

0.05

0.10

in
f

30 25 20 15 10 5 2 1 0

0.00

0.05

Figure 4.2 – The Root Mean Squared Error (RMSE) as a function of the Signal to Noise
Ration (SNR) is presented. Different dimensions for the design matrixX and the response
vector y were considered. n represents the number of rows of X and p the number of
columns. For each plot, the blue line represents the RMSE for the Linear Simplex SVR
(LSSVR) estimator, the green one the Simplex Ordinary Least Squares (SOLS) estimator
and the orange on the Cibersort estimator. Each point of the curve is the mean RMSE of
50 repetitions. The noise in the data has a Gaussian distribution.

Synthetic data. We first tested on simulated data generated by the scikit-learn function
make regression. Once the design matrix X and the response vector y were generated
using this function, we had access to the ground truth that we will write β∗. This func-
tion was not designed to generate data with a β∗ that belongs to the simplex so we first
projected β∗ onto the simplex and then recomputed y multiplying the design matrix by
the new projected ground truth vector. We added a centered Gaussian noise in the data
with the standard deviation of the Gaussian was chosen such as the signal-to-noise ratio
(SNR) was equal to a defined number, we used the following formula for a given SNR:

σ =
√

Var(y)

10SNR /10 , where σ is the standard deviation used to simulate the noise in the data.
The choice of the two hyperparameters C and ν was done using 5-folds cross validation



4.4. NUMERICAL EXPERIMENTS 101

on a grid of possible pairs. The values of C were taken evenly spaced in the log10 base be-
tween [−3, 3], we considered 10 different values. The values of ν were taken evenly spaced
in the linear space between [0.05, 1.0] and we also considered 10 possible values. We tested
different size for the matrix X ∈ Rn×p to check the potential effects of the dimensions on
the quality of the estimation and we did 50 repetitions for each point of the curves. The
measure that was used to compare the different estimators is the RMSE between the true
β and the estimated β̂.

We compared the RMSE of our estimator to the Simplex Ordinary Least Squares (SOLS)
which is the result of the following optimization problem:

min
β

1

2
||y −Xβ||2 (SOLS)

subject to βj ≥ 0,∀j ∈ [p]
p∑
j=1

βi = 1 ,

and to the estimator proposed in the biostatics literature that is called Cibersort. This
estimator is simply the result of using the classical SVR and project the obtained estimator
onto the simplex. The RMSE curves as a function of the SNR are presented in Figure
Figure 4.2. We observe that the SSVR is generally the estimator with the lowest RMSE,
this observation becomes clearer as the level of noise increases in the data. We notice that
when there is a low level of noise and when n is not too large in comparison to p, the
three compared estimator perform equally. However, there is a setting when n is large
in comparison to p (in this experiment for n = 250 or 500 and p = 5) where the SSVR
estimator has a higher RMSE than the Cibersort and SOLS estimator until a certain level of
noise (SNR < 15). Overall, this simulation shows that there is a significant improvement
in the estimation performance of the SSVR mainly when there is noise in the data.

Real dataset. In the cancer research field, regression algorithms have been used to esti-
mate the proportions of cell populations that are present inside a tumor. Indeed, a tumor
is composed of different types of cells such as cancer cells, immune cells, healthy cells
among others. Having access to the information of the proportions of these cells could be
a key to understanding the interactions between the cells and the cancer treatment called
immunotherapy (Couzin-Frankel, 2013). The modelization done is that the RNA extracted
from the tumor is seen as a mixed signal composed of different pure signals coming from
the different types of cells. This signal can be unmixed knowing the different pure RNA



102 CHAPTER 4. SUPPORT VECTOR REGRESSION WITH LINEAR CONSTRAINTS

signal of the different types of cells. In other words, y will be the RNA signal coming from
a tumor and X will be the design matrix composed of the RNA signal from the isolated
cells. The number of rows represent the number of genes that we have access to and the
number of columns of X is the number of cell populations that we would like to quantify.
The hypothesis is that there is a linear relationship between X and y. As said above, we
want to estimate proportions which means that the estimator has to belong to the proba-
bility simplex S = {x : xi ≥ 0 ,

∑
i xi = 1}.

Several estimators have been proposed in the biostatistics litterature most of them based
on constrained least squares (Qiao et al., 2012; Gong et al., 2011; Abbas et al., 2009) but the
gold standard is the estimator based on the SVR.

We compared the three same estimators on a real biological dataset where the real quan-
tities of cells to obtain were known. The dataset can be found on the GEO website under
the accession code GSE111032. For this example n = 584 and p = 4 and we have access
to 12 different samples that are our repetitions. Following the same idea than previous
benchmark performed in this field of application, we increased the level of noise in the
data and compared the RMSE of the different estimators. Gaussian and laplacian distri-
butions of noise were added to the data. The choice of the two hyperparameters C and ν

was done using 5-folds cross validation on a grid of possible pairs. The values of C were
taken evenly spaced in the log10 base between [−5,−3], we considered 10 different values.
The interval of C is different than the simulated data because of the difference in the range
value of the dataset. The values of ν were taken evenly spaced in the linear space between
[0.05, 1.0] and we also considered 10 possible values.

We see that when there is no noise in the data (SNR = ∞) both Cibersort and SSVR
estimator perform equally. The SOLS estimator already has a higher RMSE than the two
others estimator probably due to the noise already present in the data. As the level of
noise increases, the SSVR estimator remains the estimator with the lowest RMSE in both
Gaussian and laplacian noise settings.

4.4.3 Isotonic regression

In this subsection, we will consider constraints that impose an order on the variables.
This type of regression is usually called isotonic regression. Such constraints appear when
prior knowledge are known on a certain order on the variables. This partial order on the
variables can also be seen as an acyclic directed graph. More formally, we note G = (V,E)

2The dataset can be downloaded from the Gene Expression Omnibus website under the accession code
GSE11103.

https://www.ncbi.nlm.nih.gov/geo/


4.4. NUMERICAL EXPERIMENTS 103

LSSVR Cibersort SOLS

inf 30 25 20 15 10 5 2 1 0
SNR

0.2

0.3

R
M

S
E

Gaussian noise

inf 30 25 20 15 10 5 2 1 0
SNR

0.2

0.3

R
M

S
E

Laplacian noise

Figure 4.3 – The Root Mean Squared Error (RMSE) as a function of the Signal to Noise
Ration (SNR) is presented on a real dataset where noise was manually added. Two differ-
ent noise distribution were tested: Gaussian and laplacian. Each point of the curve is the
mean RMSE of 12 different response vectors and we repeated the process four times for
each level of noise. This would be equivalent to having 48 different repetitions.

a directed acyclic graph where V is the set of vertices and E is the set of nodes. On this
graph, we define a partial order on the vertices. We will say for u, v ∈ V that u ≤ v if
and only if there is a path joining u and v in G. This type of constraints seems natural in
different applications such as biology, medicine, weather forecast.

The most simple example of this type of constraints might be the monotonic regression
where we force the variables to be in a increasing or decreasing order. It means that with
our former notations that we would impose that β1 ≤ β2 ≤ . . . ≤ βp on the estimator.
This type of constraints can be coded in a finite difference matrix (or more generally any
incidence matrix of a graph)

A =


1 −1 0 . . . 0

0 1 −1
. . . ...

... . . . . . . . . . 0

0 . . . 0 1 −1


and Γ = 0, b = 0, d = 0 forming linear constraints as in the scope of this paper. The Isotonic
Support Vector Regression (ISVR) optimization problem is written as follows:



104 CHAPTER 4. SUPPORT VECTOR REGRESSION WITH LINEAR CONSTRAINTS

min
β,β0,ξi,ξ∗i ,ε

1

2
||β||2 + C(νε+

1

n

n∑
i=1

(ξi + ξ∗i )) (ISVR)

subject to Xi:β + β0 − yi ≤ ε+ ξi

yi −Xi:β − β0 ≤ ε+ ξ∗i

ξi, ξ
∗
i ≥ 0, ε ≥ 0

β1 ≤ β2 ≤ . . . ≤ βn .

We compare our proposed ISVR estimator with the classical least squares isotonic regres-
sion (IR) (Barlow and Brunk, 1972) which is the solution of the following problem:

min
β∈Rn

1

2
||β − y||2 (IR)

subject to β1 ≤ β2 ≤ . . . ≤ βn .

Table 4.2 – Results for the Isotonic Support Vector Regression (ISVR), and the Isotonic
regression (IR) for simulated data with p = 50. The mean (standard deviation) of the Root
Mean Squared Error (RMSE) and the Mean Absolute Error (MAE) over 50 repetitions are
reported. Different noise distribution (Gaussian and laplacian) and different Signal to
Noise Ratio (SNR) values were tested.

Distribution Estimator RMSE MAE
Gaussian noise ISVR 0.212 (0.02) 0.254 (0.06)

SNR = 20 IR 0.203 (0.02) 0.229 (0.04)
Gaussian noise ISVR 0.284 (0.04) 0.446 (0.12)

SNR = 10 IR 0.311 (0.04) 0.534 (0.12)
Laplacian noise ISVR 0.202 (0.03) 0.223 (0.05)

SNR = 20 IR 0.203 (0.02) 0.221 (0.04)
Laplacian noise ISVR 0.276 (0.05) 0.414 (0.11)

SNR = 10 IR 0.312 (0.05) 0.513 (0.13)

Synthetic dataset. We first generated data from a Gaussian distribution (µ = 0, σ = 1)
that we sorted and then added noise in the data following the same process as described
in Section 4.4.2 with different SNR values (10 and 20). We tested Gaussian noise and lapla-
cian noise. We compared the estimation quality of both methods using MAE and RMSE.
In this experiment, the design matrix X is the identity matrix. We performed grid search
selection via cross validation for the hyperparameters C and ν. C had 5 different possible



4.4. NUMERICAL EXPERIMENTS 105

1850 1900 1950 2000
Years

−0.50

−0.25

0.00

0.25

0.50

0.75

T
em

p
er

at
ur

e
an

om
al

y

I-SVR

Isotonic Regression

Figure 4.4 – Global warming dataset. Annual temperature anomalies relative to 1961-1990
average, with estimated trend using Isotonic Support Vector Regression (ISVR) and the
classical Isotonic Regression (IR) estimator.

values taken on the logscale from 0 to 3, and ν had 5 different values taken between 0.05
and 1 on the linear scale. The dimension of the generated Gaussian vector was 50 and we
did 50 repetitions. We present in Table Table 4.2 the results of the experiment, the value
inside a cell is the mean RMSE or MAE over the 50 repetitions and the value between
brackets is the standard deviation over the repetitions. Under a low level of Gaussian
noise or laplacian noise, both methods are close in term of RMSE and MAE with a little
advantage for the classical isotonic regression estimator. When the level of noise is im-
portant (SNR = 10), our proposed ISVR has the lowest RMSE and MAE for the two noise
distribution tested.

Real dataset. Isotonic types of constraints can be found in different applications such as
biology, ranking and weather forecast for example. Focusing on global warming type of
data, reserchers have studied the anomaly of the average temperature over a year in com-
parison to the years 1961-1990. These temperature anomalies have a monotenous trend
and keep increasing since 1850 untill 2015. Isotonic regression estimator was used on
this dataset3 in Gaines et al. (2018) and we compared our proposed ISVR estimator for
anomaly prediction. The hyperparameter for the ISVR were set manually for this simula-
tion. Figure 4.4 shows the result for the two estimators. The classical isotonic regression

3This dataset can be downloaded from the https://cdiac.ess-dive.lbl.gov/trends/temp/
jonescru/jones.htmlCarbon Dioxide Information Analysis Center at the Oak Ridge National Labora-
tory.

https://cdiac.ess-dive.lbl.gov/trends/temp/jonescru/jones.html
https://cdiac.ess-dive.lbl.gov/trends/temp/jonescru/jones.html


106 CHAPTER 4. SUPPORT VECTOR REGRESSION WITH LINEAR CONSTRAINTS

estimator perform better than our proposed estimator globally which is confirmed by the
RMSE and MAE values of RMSEIR = 0.0067 against RMSEISVR = 0.047 and MAEIR = 0.083

against MAEISVR = 0.29. Howevever, we notice that in the portions where there is a sig-
nificant change like between 1910-1940 and 1980-2005, the IR estimation looks like a step
function whereas the ISVR estimation follows an increasing trend without these piecewise
constant portions.

4.4.4 Performance of the GSMO versus SMO

0 20 40 60 80 100
Iteration k

10−10

10−8

10−6

10−4

10−2

100

W
it

ho
ut

no
is

e
f

(x
(k

) )
−
f

(x
∗ )

0 50 100 150 200
Iteration k

10−10

10−8

10−6

10−4

10−2

100

O
pt

im
al

it
y

sc
or

e
:

∆

0 100 200 300 400
Iteration k

10−10

10−8

10−6

10−4

10−2

100

W
it

h
ad

de
d

no
is

e
f

(x
(k

) )
−
f

(x
∗ )

0 500 1000 1500 2000
Iteration k

10−10

10−8

10−6

10−4

10−2

100

O
pt

im
al

it
y

sc
or

e:
∆

Figure 4.5 – Plots of 50 trajectories of the dual objective function value (first column) and
the optimality score (second column) in function of the number of iterations for the classi-
cal SMO algorithm in blue and the proposed generalized SMO in red. Two settings were
used, one without noise and another one with additive Gaussian noise.

We compared the efficiency of the SMO algorithm to solve the classical SVR optimization
problem and the SSVR optimization problem in Figure 4.5. To do so, we used the same
data simulation process described earlier in this subsection and set the number of rows
of the matrix X , n = 200 and the number of columns p = 25. Two different settings were
considered here, one without any noise in the data and another one with Gaussian noise
added such that the SNR would be equal to 30. The transparent trajectories represent the
decrease of the objective function or the optimality score ∆ for the classical SMO in blue



4.5. PROOF OF CONVERGENCE. 107

and for the generalized SMO in red for the 50 repetitions considered. The average trajec-
tory is represented in dense color. The first row of figures are the results for the noiseless
setting and the second row for the setting with noise. When there is not noise in the data,
the generalized SMO decreases faster than the classical SMO. It is important to remind
that the true vector here belongs to the simplex so without any noise it is not surprising
that our proposed algorithm goes faster than the classical SMO. However, when noise is
adding to the data, it takes more iterations for the generalized SMO to find the solution of
the optimization problem. Figure 4.5 illustrates the convergence towards a minimum the
GSMO algorithm as stated in Theorem 4.1.

4.5 Proof of convergence.

We begin the proof of Theorem 4.1 by giving several preliminary results that will be help-
ful for giving the final proof. The first result gives a bound for controlling the distance
of the primal iterates generated by the algorithm and the solution of Problem (LSVR-P).

Lemma 4.3. For any generalized SMO iterative, we have:

βk = −
n∑
i=1

(αki − (α∗i )
k)Xi: − A>γk + Γ>µk .

Then let βopt be a solution of Problem (LSVR-P) and θopt a solution of Problem (LSVR-D). It holds
that 1

2
||βk − βopt|| ≤ f(θk)− f(θopt).

Proof. A first observation is that the relationship between the primal optimization problem
and the dual leads to this equality

f(θk) =
1

2
||βk||2 + l>θk . (4.6)

Replacing βk by −∑n
i=1(αki − (α∗i )

k)Xi: − A>γk + Γ>µk leads to Equation (4.6). We have
already seen that there is strong duality between both problems so the dual gap is zero at
the solutions. Thus it means that for any primal optimal solution (βopt, β

opt
0 , ξopt, ξopt, εopt)



108 CHAPTER 4. SUPPORT VECTOR REGRESSION WITH LINEAR CONSTRAINTS

and any dual solution θopt, it holds true that

1

2
||βopt||2 + C(νεopt +

1

n

n∑
i=1

ξ
opt
i + ξ

opt
i ) = −f(θopt)

= −1

2
||βopt||2 − l>θopt .

Using the equation link between primal and dual yields to

〈β, βopt〉 = 〈−
n∑
i=1

(αi − α∗i )Xi: − A>γ + Γ>µ, βopt〉

= −〈A>γ, βopt〉 −
n∑
i=1

(αi − α∗i )〈Xi:, β
opt〉+ 〈Γ>µ, βopt〉 .

Since
∑n

i=1(αi − α∗i ) = 0, we have that

〈β, βopt〉 = −〈A>γ, βopt〉 −
n∑
i=1

(αi − α∗i )〈Xi:, β
opt〉+ 〈Γ>µ, βopt〉 − βopt

0

n∑
i=1

(αi − α∗i )

= −〈A>γ, βopt〉 −
n∑
i=1

αi(〈Xi:, β
opt〉+ β

opt
0 ) +

n∑
i=1

α∗i (〈Xi:, β
opt〉+ β

opt
0 )

+ 〈Γ>µ, βopt〉 .

Moreover, using the constraints of Problem (LSVR-P) and the fact that α ≥ 0 and α∗ ≥ 0 it
holds that:

〈β, βopt〉 ≥ −〈A>γ, βopt〉+
n∑
i=1

αi(−yi − εopt − ξopt
i ) +

n∑
i=1

α∗i (yi − εopt − (ξ∗i )
opt)

+ 〈Γ>µ, βopt〉

= −〈A>γ, βopt〉 −
n∑
i=1

(αi − α∗i )yi − εoptCν −
n∑
i=1

αiξ
opt
i + α∗i (ξ

∗
i )

opt + 〈Γ>µ, βopt〉 .



4.5. PROOF OF CONVERGENCE. 109

Finally we have

1

2
||βk − βopt||2 =

1

2
||βk||2 − 〈βk, βopt〉+

1

2
||βopt||2

≤ 1

2
||βk||2 + 〈A>γk, βopt〉+ εoptCν +

n∑
i=1

(αki − (α∗i )
k)yi +

n∑
i=1

αki ξ
opt
i

+ (α∗i )
k(ξ∗i )

opt − 〈Γ>µk, βopt〉+
1

2
||βopt||2 .

Since βopt satisfies the constraints of the primal optimization problem, it holds that

〈Γ>µ, βopt〉 = µ>d , (4.7)

and since γ ≥ 0 we have 〈A>γ, βopt〉 ≤ γ>b, thus

1

2
||βk − βopt||2 ≤ 1

2
||βk||2 + γ>b+

n∑
i=1

(αki − (α∗i )
k)yi + εoptCν +

n∑
i=1

αki ξ
opt
i

+ (α∗i )
k(ξ∗i )

opt − µ>d+
1

2
||βopt||2 .

The linear term that we wrote l in the objective function of Problem (LSVR-D) defines
l>θ =

∑n
i=1(αi − α∗i )Xi: + γ>b− µ>d which in combination with Equation (4.6) gives

1

2
||βk − βopt||2 ≤ 1

2
f(θk) + εoptCν +

n∑
i=1

αki ξ
opt
i + (α∗i )

k(ξ∗i )
opt +

1

2
||βopt||2 .

Each αki , (α∗i )
k is bounded by C

n
which yields to

1

2
||βk − βopt||2 ≤ f(θk) + εoptCν +

C

n

n∑
i=1

ξ
opt
i + (ξ∗i )

opt +
1

2
||βopt||2.

We recognize the objective function of the primal optimization problem and using that
there is no dual gap at the optimum it follows that

εoptCν +
C

n

n∑
i=1

ξ
opt
i + (ξ∗i )

opt +
1

2
||βopt||2 = −f(θopt) ,

which finishes the proof.



110 CHAPTER 4. SUPPORT VECTOR REGRESSION WITH LINEAR CONSTRAINTS

Before the next statement, we need to give a definition that we will use in the next proofs.

Definition 4.6. Let (i, j) (i ∈ Ilow and j ∈ Iup) be the most violating pair of variables
in the block α, (i∗, j∗) (i∗ ∈ I∗low and j∗ ∈ I∗up) for the block α∗. Let s1 be the index of
the most violating variable in the block γ and s2 in the block µ. We will call ”optimality
score” at iteration k the quantity ∆k = max(∆k

1,∆
k
2,∆

k
3,∆

k
4), where ∆k

1 = max(∇αjf(θk)−
∇αif(θk), 0), ∆k

2 = max(∇αj∗f(θk) − ∇αi∗f(θk), 0), ∆k
3 = max(−∇γs1

f(θk), 0) and ∆k
4 =

max(|∇µs2
f(θk)|, 0).

The next result states that the sequence {f(θk)} is a decreasing sequence. This result al-
ready states the convergence to a certain value f̄ because we know that the sequence is
bounded by the existing global minimum of the function since f is a semidefinite positive
quadratic function.

Lemma 4.4. The sequence generated by the Generalized SMO algorithm {f(θk)} is a decreasing
sequence. This sequence converges to a value f̄ .

Proof. We first prove that f(θk)− f(θk+1) ≥ 0 when minimization takes place in the block
α. Let (i, j) be the indices of the variables selected to be optimized and let u ∈ R2n+k1+k2

be the vector with only zeros except at the ith coordinate where it is equal to t∗ as defined
in Section 4.5 and at the jth coordinate where it is equal to −t∗. We will also define tq =
−(∇αif(θk)−∇αj f(θk))

Qii+Qjj−2Qij
, the unconstrained minimum for the update in α block. Let us compute

f(θk)− f(θk+1) =
1

2
(θk)>Q̄θk + l>θk − 1

2
(θk+1)>Q̄θk+1 + l>θk+1

=
1

2
(θk)>Q̄θk + l>θk − 1

2
(θk + U)>Q̄(θk + u) + l>(θk + u)

= −1

2
u>Q̄u− u>(Qθk + l)

= −1

2
u>Q̄u− u>(∇f(θk))

= −(t∗)2

2
(Qii +Qjj − 2Qij)− t∗(∇αif(θk)−∇αjf(θk)) .

We first study the case when there is no clipping which means that t∗ = tq



4.5. PROOF OF CONVERGENCE. 111

1. No clipping. Replacing t∗ by its expression leads to the following result:

f(θk)− f(θk+1) =
(∆k

1)2

2(Qii +Qjj − 2Qij)

=
(∆k

1)2

2||Xi: −Xj:||2
≥ 0 .

2. Clipping takes place because tq ≤ t∗ = max(−αi, αj − C
n

)

We notice that tq ≤ max(−αi, αj − C
n

) ≤ 0 which implies that i ∈ Ilow and j ∈ Iup. In that
case ∆k

1 = ∇αif(θk)−∇αjf(θk). Replacing tq by its expression leads to

−(∇αif(θk)−∇αjf(θk)) ≤ t∗(Qii +Qjj − 2Qij)

∆k
1t
∗

2
≤ −(t∗)2

2
(Qii +Qjj − 2Qij)

∆k
1t
∗

2
− t∗∆k

1 ≤
−(t∗)2

2
(Qii +Qjj − 2Qij)− t∗(∇αif(θk)−∇αjf(θk))

−1

2
∆k

1t
∗ ≤ −(t∗)2

2
(Qii +Qjj − 2Qij)− t∗(∇αif(θk)−∇αjf(θk)) .

Thus we have that if t∗ = −αi, f(θk) − f(θk+1) ≥ 1
2
∆k

1αi ≥ 0 and that if t∗ = αj − C
n

,
f(θk)− f(θk+1) ≥ 1

2
∆k

1(C
n
− αj) ≥ 0.

3. Clipping takes place because tq ≥ t∗ = min(C
n
− αi, αj).

This time tq ≥ min(C
n
− αi, αj) ≥ 0 which also implies that i ∈ Iup and j ∈ Ilow and that

∆k
1 = ∇αjf(θk)−∇αif(θk). The only difference here is that multiplying by −t∗ will imply

a change in the inequality.

−(∇if(θk)−∇jf(θk)) ≥ t∗(Qii +Qjj − 2Qij)

−∆k
1t
∗

2
≤ −(t∗)2

2
(Qii +Qjj − 2Qij)

−∆k
1t
∗

2
+ t∗∆k

1 ≤
−(t∗)2

2
(Qii +Qjj − 2Qij)− t∗(∇if(θk)−∇jf(θk))

1

2
∆k

1t
∗ ≤ −(t∗)2

2
(Qii +Qjj − 2Qij)− t∗(∇if(θk)−∇jf(θk)) .

Thus we have that if t∗ = C
n
− αi

f(θk)− f(θk+1) ≥ 1

2
∆k

1(
C

n
− αi) ≥ 0 ,



112 CHAPTER 4. SUPPORT VECTOR REGRESSION WITH LINEAR CONSTRAINTS

and if t∗ = αj ,

f(θk)− f(θk+1) ≥ 1

2
∆k

1αj ≥ 0 .

To prove that f(θk) − f(θk+1) ≥ 0 when the update takes place in the block γ and µ we
first need to observe that when only one variable is updated between iteration k and k+ 1

it follows that
f(θk)− f(θk+1) =

1

2
Q̄ii(θ

k
i − θk+1

i )2 .

Therefore, we now prove the result for the block γ. If the update is not a clipped update
and i is the index of the updated variable, it holds that γki − γk+1

i =
∇γif(θk)

(AA>)ii
, which gives

the following bound

f(θk)− f(θk+1) =
1

2(AA>)ii
(∇γif(θk))2 ≥ 0 . (4.8)

Moreover, if a clipped update takes place in this block, we know that it happens when
0 ≤ γki ≤

∇γif(θk)

(AA>)ii
. It yields to the following bound

f(θk)− f(θk+1) =
1

2
(AA>)ii(γ

k
i )2 ≥ 0 .

The result for the block µ is obtained using the same arguments except that there is no
clipped updates.

Lemma 4.5. There exists a subsequence {θkj} of iterations generated by the generalized SMO
where clipping does not take place.

Proof. Let us suppose the contrary, which means that there exists an iteration K such that
for all k ≥ K we only perform clipped updates. The number of variables Nk

B that belong
to the boundary of its constraints (0 or C

n
for the blocks α or α∗ and 0 for the block γ) is

non-decreasing for all k ≥ K and it is bounded thus it must converge to another integer
N∗.

This convergence implies that there exists k∗ such that for all k ≥ k∗, Nk
B = N∗ since Nk

B

and N∗ are integers. This observation allows us to conclude that for all k ≥ k∗ clipped
updates only take place in the blocks α or α∗ since the updates in the block γ are made
on only one variable and that the number of clipped variables has reached its maximum
value. An update in the block γ would strictly increase the number of clipped variables
which is not possible for all k ≥ k∗ or the update would not change the value of θ and we
showed before that this situation is not possible (Proposition 4.3).



4.5. PROOF OF CONVERGENCE. 113

For all k ≥ k∗, we have that updates in the block α (resp. α∗) have this necessary scheme:
αki or αkj is equal to 0 or C

n
thus after the update, one of them will leave the boundary and

the other one goes to it in order to keep the number of clipped variables equals to N∗. The
different possibilities are then the following:

• if αki = 0 and 0 < αkj ≤ C
l

the only possible update following the Definition 4.5 is

αk+1
i = αki + αkj = αkj

αk+1
j = αkj − αkj = 0 .

• if αkj = C
l

and 0 ≤ αki <
C
l

the only possible update following the Definition 4.5 is

αk+1
i = αki + (

C

l
− αki ) =

C

l

αk+1
j = αkj − (

C

l
− αki ) = αki .

It stays true for the block α∗ and the discussion is similar. It is clear that from the descrip-
tion of the updates made above that there is only a finite number of ways to shuffle the
values which means that there exists k1, k2 ≥ k∗ such as θk1 = θk2 and with k1 < k2. There-
fore f(θk1) = f(θk2) which contradicts the decrease of the sequence f(θk) (Lemma 4.4).

Lemma 4.6. Let {θkj} be a subsequence generated by the Generalized SMO algorithm where
clipping does not take place. We then have that ∆kj → 0.

Proof. We have that

f(θkj)− f(θkj+1) ≥ (∇αif(θkj)−∇αjf(θkj))2

2D2
=

(∆kj)2

2D2
,

where D = max
p,q
||Xp: − Xq:|| when the update happens in the blocks α or α∗. When it

happens in the block γ with no clipping we have the following inequality

f(θkj)− f(θkj+1) ≥ (∇γif(θkj))2

2
=

(−∆kj)2

2
=

(∆kj)2

2
.

When the update takes place in the block µ, we have that

f(θkj)− f(θkj+1) ≥ (∇µif(θkj))2

2
) =

(∆kj)2

2
.



114 CHAPTER 4. SUPPORT VECTOR REGRESSION WITH LINEAR CONSTRAINTS

We then define a sequence

ukj =

 1
2D2 (∆kj)2 update in the blocks α or α∗.
1
2
(∆kj)2 update in the blocks γ or µ.

The sequence {ukj} → 0 because of the bound given above and the fact that f(θkj) −
f(θkj+1)→ 0 too (Lemma 4.4). This implies that ∆kj → 0 as well.

A consequence of the lemma above is that ∆
kj
1 → 0, ∆

kj
2 → 0, ∆

kj
3 → 0 and ∆

kj
4 → 0

because ∆kj is defined as the maximum of those four positive values.

Lemma 4.7. Let {θkj} be a subsequence generated by the generalized SMO algorithm where clip-
ping does not take place. This subsequence is bounded.

Proof. To prove the statement, we will show that ||θkj − θopt||2 is bounded where θopt be-
longs to the set of solution of Problem (LSVR-D). Since each αi and α∗i is belongs to [0, C

n
],

we have that

||θkj+1 − θopt||2 = ||αkj+1 − αopt||2 + ||(α∗)kj+1 − (α∗)opt||2

+ ||γkj+1 − γopt||2 + ||µkj+1 − µopt||2

≤ 2C2

n
+ ||γkj+1 − γopt||2 + ||µkj+1 − µopt||2 .

We will work on the bound for the quantity ||µkj+1 − µopt||2 first. If the update happens in
the block µ at coordinate µj , we have the following

||µkj+1 − µopt||2 = ||µkj − ej
∇µjf(θkj)

(ΓΓ>)jj
− µopt||2

= ||µkj − µopt||2 − 2〈µkj − µopt, ej
∇µjf(θkj)

(ΓΓ>)jj
〉+ ||ej

∇µjf(θkj)

(ΓΓ>)jj
||2

= ||µkj − µopt||2 +
∇µjf(θkj)2

(ΓΓ>)2
jj

− 2
∇µjf(θkj)

(ΓΓ>)jj
(µ

kj
j − µ

opt
j ) .



4.5. PROOF OF CONVERGENCE. 115

We then have that

−2
∇µjf(θkj)

(ΓΓ>)jj
(µ

kj
j − µ

opt
j ) = 2(µ

kj+1
j − µkjj )(µ

kj
j − µ

opt
j )

= 2〈µkj+1 − µkj , µkj − µopt〉
≤ 2||µkj+1 − µkj || · ||µkj − µopt||

≤ 2
|∇µjf(θkj)|

(ΓΓ>)jj
||µkj − µopt||

≤ 2
∆
kj
4

(ΓΓ>)jj
||µkj − µopt|| .

From Lemma 4.6, we have that ∆
kj
4 → 0 then it can be bounded by a constant M0. We

know from Equation (4.8) that

∇µjf(θkj)2

(ΓΓ>)2
jj

=
2

(ΓΓ>)jj
(f(θkj)− f(θkj+1)).

From Lemma 4.4, we know that f(θkj)−f(θkj+1)→ 0 then it can be bounded by a constant
M1. Overall we have that

||µkj+1 − µopt||2 ≤ ||µkj − µopt||2 + 2
M0

(ΓΓ>)jj
||µkj − µopt||+ 2

(ΓΓ>)jj
M1 .

By recursion we have

||µkj+1 − µopt||2 ≤ ||µ0 − µopt||2 + 2
M0

(ΓΓ>)jj
||µ0 − µopt||+ 2

(ΓΓ>)jj
M1

<∞ .

Since there is no clipped update on the subsequence {θkj}, the proof for the block γ is
similar which proves that ||θkj − θopt|| is bounded.

Lemma 4.8. Let {θkj} be a subsequence generated by the generalized SMO algorithm where clip-
ping does not take place. There exists a sub-subsequence that converges to θ̄, with θ̄ being a solution
of Problem (LSVR-D).

Proof. From Lemma 4.7, we have that {θkj} is a bounded sequence, it means that we can
extract a converging subsequence that we will write {θkj} not to complicate the notations.
Since F is closed, θ̄ meets the constraints of the dual optimization problem and belongs



116 CHAPTER 4. SUPPORT VECTOR REGRESSION WITH LINEAR CONSTRAINTS

to F . We now want to prove that it belongs to the set of solution of Problem (LSVR-D)
by showing that ∆̄1(θ̄) ≤ 0, ∆̄2(θ̄) ≤ 0, ∆̄3(θ̄) ≤ 0 and ∆̄4(θ̄) ≤ 0. Let us make two
observations that will be used for the following proof. The first one comes from the conti-
nuity of the gradient which implies that for all ε there exists K1 such that for all kj ≥ K1,
|∇if(θkj) − ∇if(θ̄)| < ε for all i. The second observation is that it is possible too chose
an ε small enough such that there exists K2 such that for all kj ≥ K2: if ᾱi > 0, we have
α
kj
i > 0 and if ᾱi < C

n
we have αkji < C

n
. In other words, we say that all the indices in the

set Ilow(ᾱ)( resp. Iup) are also in Ilow(αkj)( resp. Iup). The same argument holds for indices
in the block α∗.

Let us assume that ∆̄1 > 0, it means that there exists at least one violating pair of variables
that we will note (̄i, j̄) at θ̄. From the discussion above, we know that ī ∈ Ilow for all
kj ≥ K2 and that j̄ ∈ Iup for all kj ≥ K2. We then have that for all ε > 0, there exists K1

such as for all kj ≥ max(K1, K2),

∆
kj
1 = min

i∈Iup
∇if(θkj)− max

i∈Ilow
∇if(θkj)

≥ ∇īf(θkj)−∇j̄f(θkj)

≥ (∇īf(θ̄)− ε)− (∇j̄f(θ̄) + ε)

= ∆̄1 − 2ε .

We choose ε = ∆̄1

2
− ε′ where 0 < ε′ < ∆̄1

2
which leads to

∆
kj
1 ≥ ∆̄1 − 2ε′ = 2ε′ > 0 .

This inequality is true for all kj ≥ max(K1, K2) which contradicts the fact that ∆
kj
1 → 0.

The proof is similar to show that ∆̄2 ≤ 0.

Let us now suppose that ∆̄3 > 0 it means that there exists an index ī such that∇γif(θ̄) < 0.
For all ε > 0, there exists K1, K2 such as for all kj > max(K1, K2)

∆
kj
3 = − min

i∈{1,...,k1}
∇γif(θkj)

≥ −∇γīf(θkj)

≥ −(∇γīf(θ̄) + ε)

= ∆̄3 − ε .



4.5. PROOF OF CONVERGENCE. 117

We choose ε = ∆̄3 − ε′ where 0 < ε′ < ∆̄3 which leads to

∆
kj
3 ≥ ∆̄3 − ε = ε′ > 0 .

This inequality is true for all kj ≥ max(K1, K2) which contradicts the fact that ∆
kj
3 → 0.

Finally Let us assume that ∆
kj
4 > 0, it means that |∇µif(θkj)| 6= 0. Using the continuity of

the gradient we write that for all ε > 0 there exists K1 such that for all kj ≥ K1 we have
|∇µif(θkj)−∇µif(θ̄| < ε. Using triangle inequality we get that∣∣∣∣|∇µif(θkj)| − |∇µif(θ̄)|

∣∣∣∣ ≤ |∇µif(θkj)−∇µif(θ̄)| < ε .

Thus −ε ≤ |∇µif(θkj)| − |∇µif(θ̄)| ≤ ε , which means that

|∇µif(θ̄)| − ε ≤ |∇µif(θkj)| .

Then we have the following:

∆
kj
4 = max

i∈{1,...,k2}
|∇µif(θkj)|

≥ ∇µīf(θkj)|
≥ |∇σf(θ̄)| − ε
= ∆̄4 − ε .

We choose ε = ∆̄4 − ε′ where 0 < ε′ < ∆̄4 which leads to

∆
kj
4 ≥ ∆̄4 − ε = ε′ > 0 .

This inequality is true for all kj ≥ max(K1, K2) which contradicts the fact that ∆
kj
4 → 0.

Proof. We are now able to give the proof of Theorem 4.1. From Lemma 4.3, we have
that 1

2
||βk − βopt|| ≤ f(θk) − f(θopt). Moreover, from Lemma 4.6 we know that there is a

subsequence {θkj} generated by the Generalized SMO algorithm where clipping does not
take place and that converges to θ̄, with θ̄ a solution of Problem (LSVR-D). The continuity
of the objective function f allows us to say that f(θkj)→ f(θ̄). From Lemma 4.4, we know
that {f(θkj)} is decreasing and bounded so the monotone convergence theorem implies
that the whole sequence f(θk)→ f(θ̄) and it follows that 1

2
||βk−βopt|| → 0 and finally that

βk → βopt.



118 CHAPTER 4. SUPPORT VECTOR REGRESSION WITH LINEAR CONSTRAINTS



Part II

Hyperparameters selection for
non-smooth convex models

119





5 INTRODUCTION TO

HYPERPARAMETER

OPTIMIZATION

Contents
5.1 Hyperparameter selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

5.2 Bilevel optimization with smooth lower problems . . . . . . . . . . . . . 125

5.2.1 Hypergradient computation . . . . . . . . . . . . . . . . . . . . . . . 125

5.2.2 Resolution of the bilevel optimization . . . . . . . . . . . . . . . . . 127

5.3 Automatic differentiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

5.3.1 Forward differentiation . . . . . . . . . . . . . . . . . . . . . . . . . 129

5.3.2 Backward differentiation . . . . . . . . . . . . . . . . . . . . . . . . 131

In this chapter, we introduce the second part of this thesis dedicated to hyperparameter
selection or hyperparameter optimization. We present the common tools used to select
hyperparameters in machine learning such as grid-search or bayesian optimization. We
introduce the fact that choosing hyperparameters given a performance criterion can be
cast as a bilevel optimization. We present the literature around first order optimization to
solve the bilevel problem and the advantages of using these methods.

121



122 CHAPTER 5. INTRODUCTION TO HYPERPARAMETER OPTIMIZATION

Table 5.1 – Examples of non-smooth lower problems.

lower problem f(β) gj(βj, λ) eλmax

Lasso 1
2n
‖y −Xβ‖2 eλ|βj| 1

n
‖X>y‖∞

elastic net 1
2n
‖y −Xβ‖2 eλ1|βj|+ 1

2
eλ2β2

j
1
n
‖X>y‖∞

sparse logistic regr. 1
n

∑n
i=1 ln(1 + e−yiXi:β) eλ|βj| 1

2n
‖X>y‖∞

dual SVM 1
2
‖(y �X)>β‖2 −∑p

j=1 βj ι[0,eλ](βj) −

5.1 Hyperparameter selection

Almost all models in machine learning require at least one hyperparameter, the tuning of
which drastically affects accuracy. This is the case for a large number of popular machine
learning estimators, where the regularization hyperparameter controls the trade-off be-
tween a data fidelity term and a regularization term. Popular estimators, including Ridge
regression (Hoerl and Kennard, 1970), Lasso (Tibshirani, 1996; Chen et al., 1998), elastic net
(Zou and Hastie, 2005), (sparse) logistic regression (McCullagh and Nelder, 1989; Hastie
and Tibshirani, 1990), support-vector machine (Boser et al., 1992; Platt, 1999) can all be
cast as an optimization problem (see Table 5.1):

β̂(λ) ∈ arg min
β∈Rp

Φ(β, λ) , f(β) +

p∑
j=1

gj(βj, λ)︸ ︷︷ ︸
,g(β,λ)

, (5.1)

with a design matrix X ∈ Rn×p, a function f : Rn → R with Lipschitz gradient, proper
closed convex (possibly non-smooth) functions gj(·, λ), and a regularization hyperparam-
eter λ ∈ Rr. For a fixed λ, the question of solving efficiently Problem (5.1) has been largely
explored. If the functions gj are smooth, one can resort to powerful solvers such as L-BFGS
(Liu and Nocedal, 1989), SVRG (Johnson and Zhang, 2013; Zhang et al., 2013), or SAGA
(Defazio et al., 2014). When the functions gj are non-smooth Problem (5.1) can be tackled
efficiently using working set methods (Fan and Lv, 2008; Tibshirani et al., 2012) combined
with (block) coordinate descent (Tseng and Yun, 2009; Wright, 2015; Shi et al., 2016), see
Massias et al. (2020) for an overview. The question of model selection, i.e., how to select
the hyperparameter λ ∈ Rr (potentially multidimensional), is a more open one, especially
for non-smooth optimization problems, and when the dimension of the regularization
hyperparameter λ is large.

Selecting λ in Problem (5.1) can be cast as a statistical problem. For example, for the Lasso,
and under strong statistical assumptions on the design matrix X , a wide literature has



5.1. HYPERPARAMETER SELECTION 123

−5 0

λ− λmax

0.00

0.25

0.50

0.75

1.00
C(
β

(λ
) )

Grid-search

−5 0

λ− λmax

Random-search

−5 0

λ− λmax

SMBO

−5 0

λ− λmax

1st order method

1
2
3
4
5
6
7
8
9
10

It
er

at
io

ns

Figure 5.1 – Lasso CV, real-sim dataset. 5-fold cross-validation error C(β(λ)) as a function
of λ for multiple hyperparameter optimization methods for the Lasso arg minβ∈Rp

1
2
‖y −

Xβ‖2
2 + eλ‖β‖1. Crosses represents 10 first errors evaluation by each method.

been devoted to model selection, leading to a closed-form formula for the regularization
parameter λ (Lounici, 2008; Bickel et al., 2009; Belloni et al., 2011). Unfortunately, this
formula relies on quantities which are unknown in practice, and Lasso-users still have to
resort to other techniques to select the hyperparameter λ. A popular approach for hy-
perparameter selection is to cast such a tuning as hyperparameter optimization (Kohavi and
John, 1995; Hutter et al., 2015; Feurer and Hutter, 2019), i.e., selecting the hyperparame-
ter λ such that the solution of the optimization problem also minimizes a given criterion
C : Rp → R. This criterion is typically chosen to promote good generalization error,
e.g., the held-out loss (Devroye and Wagner, 1979), the cross-validation loss (CV, Stone
and Ramer 1965, see Arlot and Celisse 2010 for a survey), or to reduce model complexity,
e.g., AIC (Akaike, 1974), BIC (Schwarz, 1978) or SURE (Stein, 1981) criteria (see Table 5.2
for some common examples). More formally the hyperparameter optimization problem
can be cast as a bilevel optimization problem (Colson et al., 2007)

arg min
λ∈Rr

{
L(λ) , C

(
β̂(λ)

)}
s.t. β̂(λ) ∈ arg min

β∈Rp
Φ(β, λ) .

(5.2)

Criterion Problem type Criterion C(β)

Held-out mean squared error Regression 1
n
‖yval −Xvalβ‖2

Stein unbiased risk estimate (SURE)1 Regression ‖y −Xβ‖2 − nσ2 + 2σ2dof(β)

Held-out logistic loss Classification 1
n

∑n
i=1 log(1 + e−y

val
i Xval

i: β)
Held-out smoothed Hinge loss2 Classification 1

n

∑n
i=1 `(y

val
i , Xval

i: β)

Table 5.2 – Examples of outer criteria used for hyperparameter selection



124 CHAPTER 5. INTRODUCTION TO HYPERPARAMETER OPTIMIZATION

−10 0

λ1 − λmax

−10

−5

0

λ
2
−
λ

m
ax

Grid-search

−10 0

λ1 − λmax

Random-search

−10 0

λ1 − λmax

SMBO

−10 0

λ1 − λmax

1st order method

1

5

10

15

20

25

It
er

at
io

ns

0.17
0.21
0.26
0.32
0.39
0.48
0.60
0.73
0.90
1.11

C(
β

(λ
) )

Figure 5.2 – Elastic net CV, rcv1 dataset. Level sets of a 5-fold cross-validation error C(β(λ))
as a function of λ1 and λ2 for multiple hyperparameter optimization methods for the elas-
tic net arg minβ∈Rp

1
2
‖y −Xβ‖2

2 + eλ1‖β‖1 + eλ2‖β‖2/2. The crosses represent 25 first errors
evaluation by each method.

Popular approaches to address Problem (5.2) include zero-order optimization (gradient-
free) techniques such as grid-search, random-search (Rastrigin, 1963; Bergstra and Bengio,
2012; Bergstra et al., 2013), or Bayesian optimization (Brochu et al., 2010; Snoek et al., 2012).
Grid-search consists in evaluating the outer function L on a user-chosen grid of hyper-
parameters, solving one inner optimization Problem (5.1) for each λ in the grid (see Fig-
ures 5.1 and 5.2). For each solution of the lower-problem β̂(λ), the criterion of success
C(β̂(λ)) is evaluated, and the selected model is the one achieving the lowest value. This
can be interpreted as a naive discretization of Problem (5.2). Other examples of gradient-
free methods include Bayesian optimization (Brochu et al., 2010; Snoek et al., 2012) such
as Sequential Model-Based Optimization (SMBO). The core idea is to model the objective
function L via a Gaussian process. Iteratively, good candidates will be tested by the al-
gorithm as potential minimizers of L. These candidates are chosen to maximize a given
function called the expected improvement as described in Bergstra et al. (2011). These
zero-order methods share a common drawback: they scale exponentially with the dimen-
sion of the search space (Nesterov, 2004, Sec. 1.1.2).

On the other hand, when the hyperparameter space is continuous and the (regularization
path) function λ 7→ β̂(λ) is well-defined and (almost everywhere) differentiable, first-order
optimization methods are well suited to solve the bilevel optimization Problem (5.2). Us-
ing the chain rule, the gradient of L w.r.t. λ, also referred to as the hypergradient, evaluates
to

∇λL(λ) = Ĵ >(λ)∇C(β̂(λ)) , (5.3)

1For a linear model y = Xβ + ε, with ε ∼ N (0, σ2), the degree of freedom (dof, Efron 1986) is defined as
dof(β) =

∑n
i=1 cov(yi, (Xβ)i)/σ2.

2The smoothed Hinge loss is given by `(x) = 1
2 − x if x ≤ 0, 12 (1− x)2 if 0 ≤ x ≤ 1, 0 else .



5.2. BILEVEL OPTIMIZATION WITH SMOOTH LOWER PROBLEMS 125

with Ĵ(λ) ∈ Rp×r the Jacobian of the function λ 7→ β̂(λ). The main challenge of applying first-
order methods to solve Problem (5.2) is evaluating the hypergradient in Equation (5.3).
There are three main algorithms to compute the hypergradient ∇λL(λ): implicit differen-
tiation (Larsen et al., 1996; Bengio, 2000), automatic differentiation using the backward mode
(Linnainmaa, 1970) or forward mode (Wengert, 1964; Deledalle et al., 2014; Franceschi et al.,
2017). As illustrated in Figures 5.1 and 5.2, once the hypergradient in Equation (5.3) has
been computed, one can solve Problem (5.2) by using a first-order optimization scheme,
for instance, gradient descent, with a step size ρ > 0: λ(t+1) = λ(t)− ρ∇λL(λ(t)). Note how-
ever that the function Lmay be non-convex and convergence towards a global minimum
is not guaranteed.

5.2 Bilevel optimization with smooth lower problems

The main challenge to evaluate the hypergradient ∇λL(λ) is the computation of the Ja-
cobian J(λ). We first focus on the case where Φ(·, λ) is convex and smooth for any fixed
λ.

5.2.1 Hypergradient computation

Implicit differentiation. In this paragraph, we recall how the implicit differentiation3 for-
mula of the gradient ∇λL(λ) is obtained. This formula is established for smooth lower
optimization problem, we will provide a generalization to non-smooth optimization prob-
lems in Chapter 6.

Theorem 5.1 (Bengio 2000). Let β̂(λ) ∈ arg minβ∈Rp Φ(β, λ) be a solution of Problem (5.1).
Assume that for all λ > 0, Φ(·, λ) is a convex smooth function, ∇2

βΦ(β̂(λ), λ) � 0, and that for all
β ∈ Rp, Φ(β, ·) is differentiable over (0,+∞). Then the hypergradient ∇λL(λ) has a closed-form
expression:

∇λL(λ)︸ ︷︷ ︸
∈Rr

= −∇2
β,λΦ(β̂(λ), λ)︸ ︷︷ ︸
∈Rr×p

(
∇2
βΦ(β̂(λ), λ)

)
︸ ︷︷ ︸

∈Rp×p

−1

∇C(β̂(λ))︸ ︷︷ ︸
∈Rp

. (5.4)

We recall the proof for completeness and pedagogical purpose: it provides insights for the
formula in the non-smooth case (Chapter 6).

Proof. With a convex smooth function β 7→ Φ(β, λ) the first order optimality condition

3Note that implicit refers to the implicit function theorem, but leads to an explicit formula of the gradient.



126 CHAPTER 5. INTRODUCTION TO HYPERPARAMETER OPTIMIZATION

writes:

∇βΦ(β̂(λ), λ) = 0 , (5.5)

for any β̂(λ) solution of the lower problem. Moreover, if λ 7→ ∇βΦ(β̂(λ), λ) is also smooth,
differentiating Equation (5.5) w.r.t. λ leads to:

∇2
β,λΦ(β̂(λ), λ) + Ĵ >(λ)∇2

βΦ(β̂(λ), λ) = 0 . (5.6)

The Jacobian Ĵ >(λ) can then be computed solving the following linear system:

Ĵ >(λ) = −∇2
β,λΦ(β̂(λ), λ)

(
∇2
βΦ(β̂(λ), λ)

)
︸ ︷︷ ︸

∈Rp×p

−1

. (5.7)

Plugging Equation (5.7) into Equation (5.3) leads to:

∇λL(λ) = −∇2
β,λΦ(β̂(λ), λ)

(
∇2
βΦ(β̂(λ), λ)

)−1

∇C(β̂(λ)) .

The computation of the gradient via implicit differentiation (Equation (5.4)) involves the
resolution of a p × p linear system (Bengio, 2000, Sec. 4). The linear system (potentially
large) can be solved using different algorithms such as conjugate gradient (Hestenes and
Stiefel 1952, as in Pedregosa 2016) or fixed point methods (Lions and Mercier 1979; Tseng
and Yun 2009, as in Grazzi et al. 2020). Implicit differentiation has been used for model
selection of multiple estimators with smooth regularization term: kernel-based models
(Chapelle et al., 2002; Seeger, 2008), weighted Ridge estimator (with one λj per feature,
Foo et al. 2008), neural networks (Lorraine et al., 2019) or meta-learning (Franceschi et al.,
2018; Rajeswaran et al., 2019).

Note that Problem (5.1) is typically solved using iterative solvers providing an approxima-
tion of the exact solution β̂. Practically, a high precision solution is expensive to compute,
and solvers usually return only solutions with low precision. Thus, Equation (5.5) is not
exactly satisfied and the linear system to solve Equation (5.4) does not lead to the exact
gradient ∇λL(λ). However Pedregosa (2016) showed that one can resort to approximated
gradients when the lower problem is smooth, justifying that implicit differentiation can
be applied using an approximation of β̂. Interestingly, this approximation scheme was
shown to yield significant practical speedups when solving Problem (5.2), while preserv-



5.2. BILEVEL OPTIMIZATION WITH SMOOTH LOWER PROBLEMS 127

ing theoretical properties of convergence toward the optimum.

Iterative differentiation. Iterative differentiation computes the gradient∇λL(λ) capital-
izing on the iterative algorithms used to solve Problem (5.1). Iterative differentiation can
be applied using the forward mode (Wengert, 1964) or the backward mode (Linnainmaa,
1970). Both techniques rely on the chain rule, the gradient being decomposed as a large
product of matrices, either computed in a forward way, or a backward way. Note that
forward and backward differentiation are algorithm dependent: in this part we present it-
erative differentiation for proximal gradient descent (PGD, Lions and Mercier 1979; Com-
bettes and Wajs 2005).

The most popular method in automatic differentiation is the backward iterative differen-
tiation, which is the cornerstone of modern optimization for deep learning (Goodfellow
et al., 2016, Chap. 8). Iterative differentiation in the field of hyperparameter optimization
can be traced back to Domke (2012), who derived a backward differentiation algorithm
for gradient descent, heavy ball and L-BFGS algorithms applied to smooth loss functions.
It first computes the solution β̂ of the optimization Problem (5.1) using an iterative solver.
It requires to store the intermediate iterates along the computation in order to compute
the hypergradient in a backward way. Forward iterative differentiation computes jointly
the coefficients β̂ along with the gradient ∇λL(λ). It is memory efficient (iterates are not
stored) but computationally expensive when the number of parameters is large; see Bay-
din et al. (2018) for a survey.

5.2.2 Resolution of the bilevel optimization

From a practical point of view, once the hypergradient has been computed, one does not
solve easily Problem (5.2): in addition to being potentially non-convex, the smoothness
constant (if it exists) of the function λ 7→ L(λ) may be hard to estimate. Solving Prob-
lem (5.2) with gradient methods thus relies on optimization algorithms which do not re-
quire the knowledge of the Lipschitz constant: L-BFGS (as in Deledalle et al. 2014), heuris-
tic line search (as in Pedregosa 2016) or gradient descent with heuristic step sizes (as in
Frecon et al. 2018; Ji et al. 2020). The optimization challenge is the same as in deep learning
(Goodfellow et al., 2016, Chap. 8): optimizing a non-convex function with only access to
the gradient.

Solving Problem (5.2) using gradient-based methods is also very challenging from a theo-
retical point of view, and results in the literature are quite scarce. Kunisch and Pock (2013)
studied the convergence of a semi-Newton algorithm to solve Problem (5.2) where both



128 CHAPTER 5. INTRODUCTION TO HYPERPARAMETER OPTIMIZATION

the outer and lower problems are smooth. Franceschi et al. (2018) gave similar results
with weaker assumptions in a work that aimed at unifying hyperparameter optimization
and meta-learning, written as bilevel optimization. They require the lower problem to
have a unique solution for all λ > 0 but do not have the assumption on the second deriva-
tive of Φ. Recent results (Ghadimi and Wang, 2018; Ji et al., 2020) provided quantitative
convergence toward a global solution of Problem (5.2), but under global joint convexity
assumption, and require the knowledge of the Lipschitz constant.

5.3 Automatic differentiation

We now give a quick overview of automatic differentiation and its two modes: forward
and backward which is a crucial aspect of modern deep-learning to quickly and accurately
compute gradients. For a more complete survey on these techniques, we refer to Baydin
et al. (2018).

Automatic differentiation aims at automatically compute the derivatives of numerical
functions that can be written as computer programs. Numerical computations are com-
position of several elementary operations for which it is easy to compute the derivatives.
These operations include the binary arithmetic operations, the unary sign switch and out-
side functions for which the derivative can be computed explicitly such as the exponential,
the logarithm, the trigonometric functions, the polynomial ones or eventually proximal
operators (see Chapters 6 and 7). Using the chain rule, we can obtain the derivative of
the overall composition using the elementary derivatives. One of the main advantage of
automatic differentiation is that it allows the differentiation of functions that can involves
loops, recursion, etc. for which it would be impossible to compute the derivatives explic-
itly.

In our case, automatic differentiation will be used to compute the Jacobian of the function
λ 7→ β̂(λ) where β̂(λ) is a solution of Problem (5.1). We consider that a model depending
of hyperparameters can be seen as a function of these hyperparameters; for each value of
the hyperparameters corresponds one (or several) solution of the optimization problem.
We discuss in more details in Chapter 6 the potential multi-valued mapping (when the
optimization problem has several possible solutions for a fixed λ).

In the non-smooth case, Problem (5.1) can be solved using iterative algorithms involving
the proximal operator of the non-smooth function g such as the proximal gradient de-
scent or the proximal coordinate descent described in Chapter 2. The iterative algorithms
stops in practice after a finite number of iterations and can be seen as a finite number of



5.3. AUTOMATIC DIFFERENTIATION 129

composition of operations for which we can compute the derivatives.

Consider for example that the proximal gradient descent stops after Niter iterations then
the solution given by the algorithm denoted by β(Niter) can be written as:

β(Niter) = h ◦ . . . ◦ h(β(0)) , (5.8)

where β(0) is an initial points and h(x) , proxγg (x− γ∇f(x)). The idea is then to use the
chain rule to compute the derivative of the composition i.e., the derivative of the approxi-
mated solution of Problem (5.1) by the iterative algorithm.

Before diving in the details on how to compute the derivatives of proximal operators
and how to use it for automatic hyperparameter selection, we describe the two modes of
automatic differentiation. To explain these concepts, we use the notation of Griewank and
Walther (2008) called the three parts notation. We consider a function f : Rn → Rp that is
constructed via intermediate variables vi such that:

• vi−n = xi, i = 1, . . . , n are the input variables

• vi, i = 1, . . . , l are the intermediate variables

• yp−i = vl−i, i = p− 1, . . . , 0 are the output variables.

5.3.1 Forward differentiation

Forward differentiation can be traced back to Wengert (1964) and has gain a lot of interest
in the past decade due to improvements in computer programming languages and in
the computer hardware. To present the idea of forward differentiation, we use a simple
example which will hopefully help the readers to apprehend this computer programming
method.

Let us first consider the function f : R3 → R2 with

f(x1, x2, x3) =

(
x1x2 − exp(x3)

x1x2 + x2
3

)
.

Computing the Jacobian of this function at a point (x1, x2, x3) can be done manually and
we easily obtain that

J f(x1, x2, x3) =

(
x2 x1 − exp(x3)

x2 x1 2x3

)
. (5.9)



130 CHAPTER 5. INTRODUCTION TO HYPERPARAMETER OPTIMIZATION

Algorithm 6 FUNCTION f

input : x1, x2, x3 ∈ R
def f(x1, x2, x3) : // (1, 2, 0)

v−2 = x1 // = 1

v−1 = x2 // = 2

v0 = x3 // = 0

v1 = v−2v−1 // = 2

v2 = exp(v0) // = 1

v3 = v2
0 // = 0

v4 = v1 − v2 // = 1

v5 = v1 + v3 // = 2

return (y1, y2) = (v4, v5) // (1, 2)

Algorithm 7 FORWARD DERIVATIVE OF f

input : ẋ1, ẋ2, ẋ3 ∈ R
def df(ẋ1, ẋ2, ẋ3) : // (1, 0, 0)

v̇−2 = ẋ1 // = 1

v̇−1 = ẋ2 // = 0

v̇0 = ẋ3 // = 0

v̇1 = v−2v̇−1 + v−1v̇−2 // = 2

v̇2 = v̇0 exp(v0) // = 0

v̇3 = 2v̇0v0 // = 0

v̇4 = v̇1 − v̇2 // = 2

v̇5 = v̇1 + v̇3 // = 2

return (ẏ1, ẏ2) = (v̇4, v̇5) // (2, 2)

Our goal is to illustrate how the Jacobian of f (or directional derivatives) can be computed
using the forward differentiation. The function f can be seen as a computer program
given in Algorithm 6. This computer program can be broken in elementary operations
involving intermediate variables denoted by vi. As an example, we could put as an input
of the function the values (1, 2, 0) and the computer program would return the values
(1, 2) corresponding to f evaluated at the point (1, 2, 0). To compute the derivative of f
w.r.t. x1 at the point (1, 2, 0), we first associate to each intermediate vi its derivative with
respect to x1 i.e.,

v̇i =
∂vi
∂x1

.

Applying the chain rule to each step in the computer program, leads to the computation of
the directional derivative w.r.t. x1 in Algorithm 7. To obtain the directional derivative with
respect to x1, the input values for the variables ẋ1, ẋ2, ẋ3 has to be the vector e1 = (1, 0, 0).
We want to draw the attention of the readers here on the fact that the function df cannot
be dissociated from the function that computes the value of the functions. The forward
mode is computed along side with the function itself, we dissociated the two algorithms
for readability and to ease the explanation.

Coming back to our example, entering the values (1, 0, 0) in df gives the expected results,
the directional derivative of f at the point (1, 2, 0) is (2, 2) as it can be read on the first col-
umn of the Jacobian matrix Equation (5.9). Thus, the complete Jacobian can be evaluated
in our example in three runs of the function df , initializing the function with the three
vectors of the canonical base of R3. As we will see in Part II of this manuscript, one often
needs to compute the product between a Jacobian and a vector. The forward mode allows



5.3. AUTOMATIC DIFFERENTIATION 131

Algorithm 8 FUNCTION f

input : x1, x2, x3 ∈ R
def f(x1, x2, x3) : // (1, 2, 0)

v−2 = x1 // = 1

v−1 = x2 // = 2

v0 = x3 // = 0

v1 = v−2v−1 // = 2

v2 = exp(v0) // = 1

v3 = v2
0 // = 0

v4 = v1 − v2 // = 1

v5 = v1 + v3 // = 2

return (y1, y2) = (v4, v5) // (1, 2)

Algorithm 9 BACKWARD DERIVATIVE OF f

input : ȳ1, ȳ2 ∈ R
def df(ȳ1, ȳ2) : // (1, 0)

v̄5 = ȳ1 // = 1

v̄4 = ȳ1 // = 0

v̄3 = v̄5
∂v5

∂v3
// = 0

v̄1 = v̄5
∂v5

∂v1
// = 0

v̄1 = v̄1 + v̄4
∂v4

∂v1
// = 1

v̄2 = v̄4
∂v4

∂v2
// = −1

v̄0 = v̄3
∂v3

∂v0
// = 0

v̄0 = v̄0 + v̄2
∂v2

∂v0
// = −1

v̄−1 = v̄1
∂v1

∂v−1)
// = 1

v̄−2 = v̄1
∂v1

∂v−2
// = 2

(x̄1, x̄2, x̄3) = (v̄−2, v̄−1, v̄0) // (2, 1,−1)
return (x̄1, x̄2, x̄3) // (2, 1,−1)

us to compute this product in only one forward pass. By initializing the function df with
a vector r ∈ R3, the output of the forward derivative program is the product Jfv. It gives
a matrix-free way to compute this product which is very efficient in practice.

The forward differentiation only requires one call to the differentiated algorithm to com-
pute the p partial derivatives of a function f : R → Rp. On the other hand, computing
the gradient of a function f : Rn → R requires n calls to the differentiated algorithm.
Generally, for functions f : Rn → Rp, with n� p, a different technique is often preferred.
However we want to address here that in the particular cases described in Part II, the for-
ward differentiation can benefit from the cheap updates described for coordinate descent
in Equation (2.5) leading to lower computation costs which can sometimes make it more
suitable even when a gradient is computed.

5.3.2 Backward differentiation

Backward differentiation, also known as backpropagation, is an essential element of mod-
ern deep-learning but can be traced back to Linnainmaa (1970). It corresponds to using
the chain rule in reverse mode from the output of a computer program to the beginning.
This time the computation of the value of f and its derivative are dissociated. We first run
the function f in Algorithm 6 and store all the intermediate variables vi. Once it is done,



132 CHAPTER 5. INTRODUCTION TO HYPERPARAMETER OPTIMIZATION

we can associate to each variable vi the following:

v̄i =
∂yj
∂vi

,

where yj represents the output of the computer program computing the value of f . This
value v̄i represents the sensitivity of the output yj with respect to changes in vi.

Coming back to our example, we can obtain the derivatives of y1 w.r.t. x1, x2 and x3 in one
pass i.e., the first row of the Jacobian Equation (5.9). Algorithm 9 presents the backward
differentiation to compute the derivatives ∂y1

∂x1
, ∂y1

∂x2
and ∂y1

∂x3
at the point (1, 2, 0). To do

so, one has to initialize the values ȳ1 and ȳ2 at (1, 0). To explain the computation of the
intermediate variables v̄i, we take the variable v0 as an example, we see in Algorithm 8
that the only way it can affect y1 is through v2 and v3, so the change in y1 by v0 is given
by:

∂y

∂v0

=
∂y

∂v2

∂v2

∂v0

+
∂y

∂v3

∂v3

∂v0

,

or equivalently

v̄0 = v̄2
∂v2

∂v0

+ v̄3
∂v3

∂v0

.

We see in Algorithm 9 that it is computed in two steps v̄0 = v̄3
∂v3

∂v0
and v̄0 = v̄0 + v̄2

∂v2

∂v0
.

Similarly to the forward mode, the backward mode gives a very efficient way to compute
the product between the transpose of a Jacobian and a vector i.e., J >f v. This product can
be obtained by initializing the reverse mode with the vector v. The biggest advantage of
the backward mode is to compute gradients very efficiently. The counter part is that it re-
quires the storage of the intermediate variables used to compute the output of a computer
program.



6 HYPERGRADIENT

COMPUTATION IN NON-SMOOTH

CONVEX LEARNING

Contents
6.1 Theoretical framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

6.2 Hypergradient computation using implicit differentiation . . . . . . . . 136

6.3 Hypergradient computation using iterative differentiation . . . . . . . . 141

6.4 Stability of the hypergradient . . . . . . . . . . . . . . . . . . . . . . . . . 149

6.5 Proposed method for the computation of the hypergradient . . . . . . . 154

In this chapter, we focus on the computation of the hypergradient, i.e., the quantity∇λL(λ).
First, we lay the theoretical foundations of our work in Section 6.1 where we discuss
the differentiability of proximal operators and the potential problems of the mapping
λ 7→ β̂(λ). Then, we present how implicit differentiation (Section 6.2) and iterative differen-
tiation (Section 6.3) can be used to compute the desired hypergradient. In Section 6.4, we
prove a stability result when one only has acces to an approximated solution of the lower
problem. Finally, we describe our proposed method for the computation of the hypergra-
dient in the non-smooth case comparing it to classical other methods (Section 6.5).

Solving Problem (6.1) with non-smooth lower problem has been a question of interest in
the literature. Momma and Bennett (2002) used a pattern search method (Dennis and Tor-
czon, 1994) which is derivative free to select the hyperparameters of the SVM/SVR model
based on the cross-validation criterion. Later, Moore et al. (2011) proposed a subgradient

133



134 CHAPTER 6. HYPERGRADIENT COMPUTATION

method to select the best hyperparameters of SVM/SVR writting the problem as a bilevel
optimization problem. Peyré and Fadili (2011) proposed to smooth the lower optimiza-
tion problem, Ochs et al. (2015); Frecon et al. (2018) relied on the forward differentiation
combined with Bregman iterations to get differentiable steps. For non-smooth optimiza-
tion problems, implicit differentiation has been considered for (constrained) convex op-
timization problems (Gould et al., 2016; Amos and Kolter, 2017; Agrawal et al., 2019),
Lasso-type problems (Mairal et al., 2012; Bertrand et al., 2020), total variation penalties
(Cherkaoui et al., 2020) and generalized to strongly monotone operators (Winston and
Kolter, 2020).

6.1 Theoretical framework

We recall that our goal is to use a first order method to select hyperparameters. We saw in
Chapter 5 that solving this problem boils down to the resolution of a bilevel optimization
problem which writes:

arg min
λ∈Rr

{
L(λ) , C

(
β̂(λ)

)}
s.t. β̂(λ) ∈ arg min

β∈Rp
Φ(β, λ) ,

(6.1)

where C is a criterion that measures the performance of the model (see Chapter 5). More-
over, we consider the class of estimators obtained from solving the following generic op-
timization problem:

β̂(λ) ∈ arg min
β∈Rp

Φ(β, λ) , f(β) +

p∑
j=1

gj(βj, λ) . (6.2)

The difficulty comes from the fact that we suppose that the functions gj are possibly non-
differentiable hence one cannot compute the hypergradient directly using for example the
implicit formula of Theorem 5.1. However, we suppose that f is L-smooth. The rest of
this chapter is dedicated to present results on the computation of the hypergradient for
problems of the form Problem (6.2).

Differentiability of the regularization path. Before applying first-order methods to tackle
Problem (6.1), one must ensure that the regularization path λ 7→ β̂(λ) is almost everywhere
differentiable (as in Figure 6.1). This is the case for the Lasso (Mairal and Yu, 2012) and the
SVM (Hastie et al., 2004; Rosset and Zhu, 2007) since solution paths are piecewise differ-
entiable (see Figure 6.1). Results for nonquadratic datafitting terms are scarcer: Friedman



6.1. THEORETICAL FRAMEWORK 135

0 5 10

λmax − λ

−25

0

25

C
oe

ffi
ci

en
t
β̂

(λ
)

Lasso

0 5 10

λmax − λ
−40

−20

0

20

Elastic net

0 5 10

λmax − λ

−0.2

0.0

0.2

Sparse logistic regression

Figure 6.1 – Regularization path, diabetes and breast cancer dataset. Value of the coeffi-
cients as a function of λ for the Lasso, the elastic net and the sparse logistic regression. It
illustrates the weak differentiability of the paths. We used diabetes for the Lasso and the
elastic net, and the 10 first features of breast cancer for the sparse logistic regression.

et al. (2010) address the practical resolution of sparse logistic regression, but stay evasive
regarding the differentiability of the regularization path. In the general case for problems
of the form Problem (6.2), we believe it is an open question and leave it for future work.

Differentiability of proximal operators. The key point to obtain an implicit differenti-
ation formula for non-smooth lower problems is to differentiate the fixed point equation
of proximal gradient descent. Let β̂(λ) be a solution of Problem (6.2) for a fixed λ then the
following equation is satisfied for any γ > 0:

β̂(λ) = proxγg(·,λ)

(
β̂(λ) − γ∇f(β̂(λ))

)
. (6.3)

From a theoretical point of view, ensuring this differentiability at the optimum is non-
trivial: Poliquin and Rockafellar (1996a, Thm. 3.8) showed that under a twice epi-differentia-
bility condition the proximal operator is differentiable at optimum. For the convergence of
forward and reverse modes in the non-smooth case, one has to ensure that, after enough
iterations, the updates of the algorithms become differentiable. Deledalle et al. (2014) jus-
tified (weak) differentiability of proximal operators as they are non-expansive. However
this may not be a sufficient condition, see Bolte and Pauwels (2020a,b). Bareilles et al.
(2020, Thm. 3.2) shows that proximal operators are locally C1 under the assumptions that
g is a partly smooth function (Definition 3.2), f is C2 with a L-Lipschitz gradient and the
non-degeneracy assumption (Assumption 2.4). In our case, we show differentiability af-
ter support identification of the algorithms: active constraints are identified after a finite
number of iterations by proximal gradient descent (Liang et al., 2014; Vaiter et al., 2018)
and proximal coordinate descent, see Nutini (2018, Sec. 6.2) or see Theorem 3.1 in Chap-



136 CHAPTER 6. HYPERGRADIENT COMPUTATION

ter 3.

For the rest of this chapter, we consider the bilevel optimization Problem (6.1) with the as-
sumptions that the lower composite minimization Problem (6.2) is regular (Definition 2.16).
To simplify the notation, we will denote by Ŝ , Ŝβ̂ , the generalized support of β̂ where
β̂ is a solution of Problem (6.2). Moreover, to prove local convergence properties of the
Jacobian we assume regularity and strong convexity on the generalized support.

Assumption 6.1 (Locally C2 and C3). The map β 7→ f(β) is locally C3 around β̂. For all
λ ∈ Rr, for all j ∈ Ŝ the map gj(·, λ) is locally C2 around β̂j .

Assumption 6.2 (Restricted injectivity). Let β̂ be a solution of Problem (6.2) and Ŝ its
generalized support. The solution β̂ satisfies the following restricted injectivity condition:

∇2
Ŝ,Ŝf(β̂) � 0 .

Assumptions 6.1 and 6.2 are classical for the analysis (Liang et al., 2017) and sufficient to
derive rates of convergence for the Jacobian of the lower problem once the generalized
support has been identified.

The next lemma guarantees uniqueness of the solution of Problem (6.2) under Assump-
tions 2.4 and 6.2.

Lemma 6.1 (Liang et al. 2017, Prop. 4.1). Assume that there exists a neighborhood Λ of λ
such that Assumptions 2.4 and 6.2 are satisfied for every λ ∈ Λ such that β̂(λ) is a solution of
Problem (6.2). Then for every λ ∈ Λ, Problem (6.2) has a unique solution, and the map λ 7→ β̂(λ)

is well-defined on Λ.

In the next two sections, we show how implicit and iterative differentiation can be used
with a non-smooth lower problem taking into account the structure of the solution carried
out by the notion of generalized support. Our work suppose that the non-smooth function
is separable which may seem restrictive but already encompasses various examples found
in machine learning.

6.2 Hypergradient computation using implicit differentia-

tion

We use the fixed point iteration given in Equation (6.3) to derive an implicit differenti-
ation formula for the hypergradient. The main theoretical challenge is to show the dif-



6.2. IMPLICIT DIFFERENTIATION 137

ferentiability of the function β 7→ proxγg(β − γ∇f(β)). Besides, taking advantage of the
generalized sparsity of the regression coefficients β̂(λ), one can show that the Jacobian Ĵ
is row-sparse, leading to substantial computational benefits when computing the hyper-
gradient∇λL(λ)) for Problem (6.2),

Theorem 6.1 (Non-smooth implicit formula). Let 0 < γ ≤ 1/L. Suppose Problem (6.2) is
regular (Definition 2.16) and Assumption 6.1 hold. Let λ ∈ Rr, Λ be a neighborhood of λ, and
ΓΛ ,

{
β̂(λ) − γ∇f(β̂(λ)) : λ ∈ Λ

}
. In addition,

(H1) Suppose Assumptions 2.4 and 6.2 hold on Λ.

(H2) Suppose λ 7→ β̂(λ) is continuously differentiable on Λ.

(H3) Suppose for all z ∈ ΓΛ, λ 7→ proxγg(·,λ)(z) is continuously differentiable on Λ.

(H4) Suppose ∂1 proxγg and ∂2 proxγg are Lipschitz continuous on ΓΛ × Λ.

Let β̂ , β̂(λ) be the solution of Problem (6.2), Ŝ its generalized support of cardinality ŝ. Then the
Jacobian Ĵ of the lower Problem (6.2) is given by the following formula,

ẑ = β̂ − γ∇f(β̂), and A , Id|Ŝ|−∂1 proxγg(ẑ)Ŝ

(
Id|Ŝ|−γ∇2

Ŝ,Ŝf(β̂)
)

:

ĴŜc: = ∂2 proxγg (ẑ)Ŝc , (6.4)

ĴŜ: = A−1
(
∂2 proxγg(ẑ)Ŝ − γ∂1 proxγg(ẑ)Ŝ∇2

Ŝ,Ŝcf(β̂)ĴŜc
)
. (6.5)

Proof. According to Lemma 6.1, Assumptions 2.4 and 6.2 ensure Problem (6.2) has a
unique minimizer and λ 7→ β̂(λ) is well-defined on Λ. We consider the proximal gra-
dient descent fixed point equation (Equation (6.3)). Together with the conclusion of
Lemma 6.1, Assumptions 2.1 and 6.1, and given (H2), (H3) and (H4), we have that
λ 7→ ψ

(
β(λ) − γ∇f(β̂(λ)), λ

)
, proxγg(·,λ)

(
β̂(λ) − γ∇f(β̂(λ))

)
is differentiable at λ. One

can thus differentiate Equation (6.3) w.r.t. λ, which leads to:

Ĵ = ∂1 proxγg(ẑ)
(

Id−γ∇2f(β̂)
)
Ĵ + ∂2 proxγg (ẑ) , (6.6)

with ẑ = β̂ − γ∇f(β̂). In addition to 0 < γ < 1/L ≤ 1/Lj , the separability of g, the
regularity of Problem (6.2) (see Definition 2.16) and Assumptions 2.4 and 6.1 ensure (see
Lemmas 3.2 and 3.3 in Chapter 3) that for any j ∈ Ŝc,

∂1 proxγgj

(
β̂j − γ∇jf(β̂)

)
= 0 . (6.7)



138 CHAPTER 6. HYPERGRADIENT COMPUTATION

Plugging Equation (6.7) into Equation (6.6) ensures Equation (6.4) for all j ∈ Ŝc:

Ĵj: = ∂2 proxγgj

(
β̂j − γ∇jf(β̂)

)
. (6.8)

Plugging Equations (6.7) and (6.8) into Equation (6.6) shows that the Jacobian restricted
on the generalized support Ŝ satisfies the following linear system:(

Id|Ŝ| − ∂1 proxγg (ẑ)Ŝ
(
Id|Ŝ| − γ∇2

Ŝ,Ŝf(β̂)
))
ĴŜ: =

−γ∂1 proxγg(ẑ)Ŝ∇2
Ŝ,Ŝcf(β̂)ĴŜc: + ∂2 proxg(ẑ)Ŝ: .

Since 0 < γ ≤ 1/L,

‖∂1 proxγg(ẑ)Ŝ(Id|Ŝ|−γ∇2
Ŝ,Ŝf(β̂))‖2 ≤ ‖∂1 proxγg(ẑ)Ŝ‖2‖Id|Ŝ|−γ∇2

Ŝ,Ŝf(β̂)‖2

< 1 . (6.9)

Since Equation (6.9) hold, A , Id|Ŝ|−∂1 proxγg(ẑ)Ŝ(Id|Ŝ|−γ∇2
Ŝ,Ŝf(β̂)) is invertible, which

leads to Equation (6.5).

Remark 6.2. In the smooth case a p × p linear system is needed to compute the Jacobian
(see in Chapter 5, Equation (5.7)). For non-smooth problems this is reduced to an |Ŝ| × |Ŝ|
linear system (|Ŝ| ≤ p being the size of the generalized support, e.g., the number of non-
zero coefficients for the Lasso). This leads to significant speedups in practice, especially
for very sparse vector β̂(λ).

Remark 6.3. To obtain Theorem 6.1 we differentiated the fixed point equation of proximal
gradient descent, though one could differentiate other fixed point equations (such as the
one from proximal coordinate descent). The value of the Jacobian Ĵ obtained with dif-
ferent fixed point equations would be the same, yet the associated systems could have
different numerical stability properties. We leave this analysis to future work.

Example for the Lasso. We illustrate the result of Theorem 6.1 on the Lasso (Tibshirani,
1996) as the formula obtained is simple and is consistant with the existing literature. The
Lasso is obtained as the solution of the following optimization problem:

Φ(β, λ) =
1

2n
‖y −Xβ‖2

2 + eλ‖β‖1 , (6.10)

whereX ∈ Rn×p is the design matrix, y ∈ Rn the observation vector and λ ∈ R the regular-
ization parameter. Note that we adopt the hyperparameter parametrization of Pedregosa



6.2. IMPLICIT DIFFERENTIATION 139

(2016), i.e., we write the regularization parameter as eλ. This avoids working with a posi-
tivity constraint in the optimization process. It is also coherent with the usual choice of a
geometric grid for grid-search (Friedman et al., 2010).

Solving the Lasso using the proximal gradient descent involves the proximal operator
of the `1-norm, which is the soft-thresholding (ST). It is given by the following formula:
ST(t, τ) = sign(t) · (|t| − τ)+ for any t ∈ R and τ ≥ 0 (extended for vectors component-
wise). In the case of the Lasso, the function f(β) = ‖y − Xβ‖2

2 is L-smooth with the
constant L =

‖X‖22
n

and is C3 on its whole domain. The functions gj(βj) = eλ|βj| are convex,
closed and proper. On the support, β̂j 6= 0 and for all j ∈ Ŝ, gj is C∞ around β̂j .

The non-degeneracy assumptions is key to ensure identification of the support as stated
in Liang et al. (2017). As already said in Lemma 6.1, the assumptions Assumption 6.2 and
Assumption 2.4 ensure the unicity of the solution of the Lasso for a fixed λ, hence the
mapping λ 7→ β̂(λ) is well defined. The non-degeneracy assumption Assumption 2.4 has
been well studied for the Lasso under the name of non-degenerate dual certificate (Candès
et al., 2006) and the restricted injectivity Assumption 6.2 leads to a unique solution for the
problem of Basis Pursuit (Chen et al., 1998).

To apply Theorem 6.1, we need to differentiate the soft-thresholding operator.

Lemma 6.2. The soft-thresholding ST : R × R+ 7→ R defined by ST(t, τ) = sign(t) · (|t| − τ)+

is weakly differentiable with derivatives

∂1 ST(t, τ) = 1{|t|>τ} , (6.11)

and

∂2 ST(t, τ) = − sign(t) · 1{|t|>τ} , (6.12)

where

1{|t|>τ} =

1, if |t| > τ,

0, otherwise.
(6.13)

Proof. See (Deledalle et al., 2014, Proposition 1)

Consider β̂ , β̂(λ) a solution of Problem (6.10) and Ŝ its support i.e., the set of non-zero



140 CHAPTER 6. HYPERGRADIENT COMPUTATION

coefficients. Then, Lemma 6.2 tells us that for any j ∈ [p]

∂1 ST

(
β̂ − 1

L
X>(Xβ̂ − y),

eλ

L

)
j

=

1, if j ∈ Ŝ
0, otherwise .

(6.14)

and

∂2 ST

(
β̂ − 1

L
X>(Xβ̂ − y),

eλ

L

)
j

=

− sign(β̂j)
eλ

L
, if j ∈ Ŝ

0, otherwise .
(6.15)

This leads to an implicit formula for the Lasso that could already be derived from the
solution of the Lasso given in Dossal et al. (2013).

Corollary 6.1 (Implicit formula for the Lasso). The Jacobian Ĵ = Ĵ(λ) w.r.t. λ of the Lasso
Problem (6.10) writes:

ĴŜ = −neλ
(
X>ŜXŜ

)−1
sign(β̂Ŝ), (6.16)

ĴŜc = 0 . (6.17)

Interestingly, the sparsity pattern of the Jacobian is the same than the solution in the case
of the Lasso. Solving the linear system only requires to inverse a matrix of size |Ŝ| × |Ŝ|,
instead of the linear systemp of size p× p in the smooth case (see Section 5.2).

Example for the weighted Lasso. Taking advantage of the sparsity becomes even more
advantageous when considering the weighted Lasso (wLasso, Zou 2006) which was in-
troduced to reduce the bias of the Lasso. This model has one hyperparameter by feature
which means p hyperparameters to select and reads:

Φ(β, λ) =
1

2n
‖y −Xβ‖2

2 +

p∑
j=1

eλj |βj| . (6.18)

Applying Theorem 6.1 involves the derivatives of the soft-thresholding as described in
the previous section.

Corollary 6.2 (Implicit formula for the weighted Lasso). The Jacobian Ĵ = Ĵ(λ) w.r.t. λ ∈ Rp



6.3. HYPERGRADIENT COMPUTATION USING ITERATIVE DIFFERENTIATION 141

Algorithm 10 FORWARD-MODE PGD
input : X ∈ Rn×p, y ∈ Rn, λ ∈ Rr, niter ∈ N,

β(0) ∈ Rp, J (0) ∈ Rp×r, γ > 0
// jointly compute coef. & Jacobian

for k = 1, . . . , niter do
// update the regression

coefficients

z(k) = β(k−1) − γ∇f(β(k−1)) // GD step

dz(k) = J (k−1) − γ∇2f(β(k−1))J (k−1)

β(k) = proxγg(z
(k)) // prox. step

O(p)
// update the Jacobian

J (k) = ∂1 proxγg(z
(k))dz(k) // O(pr)

J (k) += ∂2 proxγg(z
(k)) // O(pr)

v = ∇C(βniter)
return βniter ,J niter>v

Algorithm 11 REVERSE-MODE PGD
input :X ∈ Rn×p, y ∈ Rn, λ ∈ Rr, niter ∈ N,

β(0) ∈ Rp, γ > 0
// computation of β̂

for k = 1, . . . , niter do
z(k)=β(k−1) − γ∇f(β(k−1)) // GD step

β(k) = proxγg
(
z(k)
)

// proximal step

// backward computation of the

gradient g

v = ∇C(β(niter)), h = 0Rr

for k = niter, niter − 1, . . . , 1 do
h += v>∂2 proxγg(z

(k)) // O(pr)
v ← ∂1 proxγg(z

(k))� v // O(p)
v ← (Id−γ∇2f(β(k)))v // O(np)

return βniter , h

of the weighted Lasso Problem (6.18) writes:

ĴŜ,Ŝ = −
(
X>ŜXŜ

)−1
diag

(
neλŜ � sign β̂Ŝ

)
(6.19)

Ĵj1,j2 = 0 if j1 /∈ Ŝ or if j2 /∈ Ŝ . (6.20)

Corollary 6.2 shows that the Jacobian of the weighted Lasso Ĵ(λ) ∈ Rp×p is row and column
sparse. This is key for algorithmic efficiency. Indeed, a priori, one has to store a possibly
dense p × p matrix, which is prohibitive when p is large. It leads to a cheaper way to
compute the Jacobian as it only requires storing and inverting an |Ŝ| × |Ŝ|matrix.

Implicit differentiation can suffer from the fact that the linear system to solve requires the
exact solution which is often not accessible to in practice. Another possibility for com-
puting the Jacobian of the lower problem w.r.t. to the hyperparameters is to turn towards
automatic differentiation which computes the derivatives based on the iterations of the
solver.

6.3 Hypergradient computation using iterative differentia-

tion

We now focus on iterative differentiation for proximal gradient descent and proximal co-
ordinate descent (Algorithms 12 and 13). Iterative differentiation in the field of hyperpa-



142 CHAPTER 6. HYPERGRADIENT COMPUTATION

rameter setting can be traced back to Domke (2012) who derived a backward differentia-
tion algorithm for gradient descent, heavy ball and L-BFGS algorithms applied to smooth
loss functions. Agrawal et al. (2019) generalized it to a specific subset of convex programs.
Maclaurin et al. (2015) derived a backward differentiation for stochastic gradient descent.
On the other hand Deledalle et al. (2014) used forward differentiation of (accelerated)
proximal gradient descent for hyperparameter optimization with non-smooth penalties.
Franceschi et al. (2017) proposed a benchmark of forward mode versus backward mode,
varying the number of hyperparameters to learn. Frecon et al. (2018) cast the problem of
inferring the groups in a group-Lasso model as a bilevel optimization problem and solved
it using backward differentiation.

For coordinate descent, the computation of the iterative Jacobian in a forward way in-
volves differentiating the following update, for γj > 0:

zj ← βj − γj∇jf(β)

βj ← proxγjgj (βj − γj∇jf(β))

Jj: ← ∂1 proxγjgj(zj)
(
Jj: − γj∇2

j:f(β)J
)

+ ∂2 proxγjgj(zj) .

We address now the convergence of the iterative Jacobian scheme, a question which re-
mained open in Deledalle et al. (2014, Section 4.1). We show that the forward differentia-
tion converges to the Jacobian in the non-smooth separable setting. Moreover, we prove
that the iterative Jacobian convergence is linear after support identification.

Theorem 6.4 (Local linear convergence of the Jacobian). Let 0 < γ ≤ 1/L. Suppose Prob-
lem (6.2) is regular (Definition 2.16) and Assumption 6.1 hold. Let λ ∈ Rr, Λ be a neighborhood
of λ, and ΓΛ ,

{
β̂(λ) − γ∇f(β̂(λ)) : λ ∈ Λ

}
. In addition, suppose hypotheses (H1) to (H4) from

Theorem 6.1 are satisfied and the sequence (β(k))k∈N generated by Algorithm 10 (respectively by
Algorithm 12) converges toward β̂.

Then, the sequence of Jacobians (J (k))k≥0 generated by the forward differentiation of proximal
gradient descent (Algorithm 10) (respectively by the forward differentiation of proximal coordinate
descent, Algorithm 12) converges locally linearly towards Ĵ .

Proof. We start the proof with a result on an asymptotic vector autoregressive sequence,
with an error term vanishing localy linearly to 0, then it converges linearly to its limit. In
a more formal way:



6.3. ITERATIVE DIFFERENTIATION 143

Algorithm 12 FORWARD-MODE PCD
input : X ∈ Rn×p, y ∈ Rn, λ ∈ Rr, niter ∈ N,

β ∈ Rp, J ∈ Rp×r, γ1, . . . , γp
// jointly compute coef. & Jacobian

for k = 1, . . . , niter do
for j = 1, . . . , p do

// update the regression

coefficients

zj ← βj − γj∇jf(β) // CD step

dzj ← Jj: − γj∇2
j:f(β)J

βj ← proxγjgj(zj) // proximal step

// update the Jacobian

// diff. w.r.t. λ

Jj: ← ∂1 proxγjgj(zj)dzj
Jj: += ∂2 proxγjgj(zj)

β(k) = β; J (k) = J
v = ∇C(β)
return βniter ,J >v

Algorithm 13 REVERSE-MODE PCD
input : X ∈ Rn×p, y ∈ Rn, λ ∈ Rr, niter ∈ N,

β ∈ Rp, γ1, . . . , γp
// compute coef.

for k = 1, . . . , niter do
for j = 1, . . . , p do

// update the regression

coefficients

zj ← βj − γj∇jf(β) // CD step

βj ← proxγjgj(zj) // proximal step

β(k,j) = β; z
(k)
j = zj // store

iterates
// compute gradient g in a backward

way

v = ∇C(βniter), h = 0Rr

for k = niter, niter − 1, . . . , 1 do
for j = p, . . . , 1 do

h −= γjvj∂2 proxγjgj
(
z

(k)
j

)
// O(r)

vj ∗= ∂1 proxγjgj
(
z

(k)
j

)
// O(1)

v −= γjvj∇2
j:f(β(k,j)) // O(np)

return βniter , h

Lemma 6.3. Let A ∈ Rp×p, b ∈ R with ρ(A) < 1. Let (J (t))t∈N be a sequence of Rp such that:

J (t+1) = AJ (t) + b+ ε(t) , (6.21)

with (ε(t))t∈N a sequence which converges locally linearly to 0, then (J (t))t∈N converges locally
linearly to its limit Ĵ , (Id−A)−1b.

Proof. (ε(t))t∈N converges locally linearly: there exists c1 > 0, 0 < ν < 1 such that:

‖ε(t)‖ ≤ c1ν
t .

Polyak (1987, Chapter 2, Lemma 1) yields a bound on ‖Ak‖2, more precisely for every
δ > 0 there is a c2(δ) = c2 such that

‖Ak‖2 ≤ c2(ρ(A) + δ)k .



144 CHAPTER 6. HYPERGRADIENT COMPUTATION

Since Ĵ = (Id−A)−1b the limit Ĵ of the sequence satisfies:

Ĵ = AĴ + b . (6.22)

Taking the difference between Equations (6.21) and (6.22) yields:

J (t+1) − Ĵ = A(J (t) − Ĵ ) + ε(t) . (6.23)

Unrolling Equation (6.23) yields:

J (t+1) − Ĵ = At+1(J (0) − J ) +
t∑

k=0

Akεt−k

‖J (t+1) − Ĵ ‖2 ≤ ‖At+1(J (0) − J )‖2 +
t∑

k=0

‖Ak‖2‖εt−k‖

≤ ‖At+1‖2 · ‖J (0) − Ĵ ‖2 + c1

t∑
k=0

‖Ak‖νt−k

≤ c2(ρ(A) + δ)t+1 · ‖J (0) − Ĵ ‖2 + c1

t∑
k=0

c2(ρ(A) + δ)kνt−k

≤ c2(ρ(A) + δ)t+1 · ‖J (0) − Ĵ ‖2 + c1c2

t/2∑
k=0

(ρ(A) + δ)kνt−k + c1c2

t∑
k=t/2

(ρ(A) + δ)kνt−k

≤ c2(ρ(A) + δ)t+1 · ‖J (0) − Ĵ ‖2 +
c1c2(ρ(A) + δ)

1− ρ(A)− δ
√
ν
t
+
c1c2ν

1− ν
√

(ρ(A) + δ)
t
.

Thus, (J (t))t∈N converges locally linearly towards its limit Ĵ .

Now we prove Theorem 6.4 for proximal gradient descent.

Sketch of proof:

• The first step of the proof is to derive the forward update of the Jacobian applying
the proximal gradient descent algorithm.

• Then, we show that once the support is identified, the updates lead to a vector au-
toregressive sequence.

• Finally, we use Lemma 6.3 to prove our results on the local linear convergence.

Proximal gradient descent case.



6.3. ITERATIVE DIFFERENTIATION 145

Solving Problem (6.2) with proximal gradient descent leads to the following updates:

β(k+1) = proxγg(β
(k) − γ∇f(β(k))︸ ︷︷ ︸

z(k)

) . (6.24)

Consider the following sequence (J (k))k∈N defined by:

J (k+1) = ∂1 proxγg(z
(k))
(
Id−γ∇2f(β(k))

)
J (k) + ∂2 proxγg(z

(k)) . (6.25)

Note that if proxγg is not differentiable with respect to the first variable at z(k) (respectively
with respect to the second variable λ), any weak Jacobian can be used. When (H3) holds,
differentiating Equation (6.24) w.r.t. λ yields exactly Equation (6.25).

The regularity of Problem (6.2) (Definition 2.16), Assumptions 2.4 and 6.1 and the con-
vergence of (β(k)) toward β̂ ensure proximal gradient descent algorithm has finite iden-
tification property (Liang et al., 2014, Thm. 3.1): we note K the iteration when iden-
tification is achieved. As before, the separability of g, the regularity of Problem (6.2)
(see Definition 2.16) and Assumptions 2.4 and 6.1 ensure (see Lemma 3.2 in Chapter 3)
∂1 proxγg(z

k)Ŝc = 0, for all k ≥ K. Thus, for all k ≥ K,

J (k)

Ŝc: = ĴŜc: = ∂2 proxγg(z
(k))Ŝc: .

The updates of the Jacobian then become:

J (k+1)

Ŝ:
= ∂1 proxγg(z

(k))Ŝ:

(
Id−γ∇2

Ŝ,Ŝf(β(k))
)
J (k)

Ŝ:
+ ∂2 proxγg(z

(k))Ŝ: .

From Assumption 6.1, we have that f is locally C3 at β̂, g(·, λ) is locally C2 at β̂ hence
proxg(·,λ) is locally C2. The function β 7→ ∂1 proxγg(β − γ∇f(β))Ŝ:(Id−γ∇2

Ŝ,Ŝf(β)) is differ-

entiable at β̂. Using (H4) we have that β 7→ ∂2 proxγg(β − γ∇f(β))Ŝ: is also differentiable
at β̂. Using the Taylor expansion of the previous functions yields:

J (k+1)

Ŝ:
= ∂1 proxγg(ẑ)Ŝ

(
Id−γ∇2

Ŝ,Ŝf(β̂)
)

︸ ︷︷ ︸
A

J (k)

Ŝ:
+ ∂2 proxγg(ẑ)Ŝ:︸ ︷︷ ︸

b

+ o(‖β(k) − β̂‖)︸ ︷︷ ︸
ε(k)

. (6.26)

Thus, for 0 < γ ≤ 1/L,

ρ(A) ≤ ‖A‖2 ≤ ‖∂1 proxγg(ẑ)Ŝ‖2︸ ︷︷ ︸
≤1 (non-expansiveness)

‖Id−γ∇2
Ŝ,Ŝf(β̂)‖2︸ ︷︷ ︸

<1 (Assumption 6.2)

< 1 . (6.27)



146 CHAPTER 6. HYPERGRADIENT COMPUTATION

The inequality on the derivative of the proximal operator comes from the non-expansiveness
of proximal operators. The second inequality comes from Assumption 6.2 and 0 < γ ≤
1/L.

The regularity of Problem (6.2) (see Definition 2.16), Assumptions 2.4, 6.1 and 6.2 and the
convergence of (β(k)) toward β̂ ensure (β(k))k∈N converges locally linearly (Liang et al.,
2014, Thm. 3.1).

The asymptotic autoregressive sequence in Equation (6.26), ρ(A) < 1, and the local linear
convergence of (ε(k))k∈N, yield our result using Lemma 6.3.

We now prove Theorem 6.4 for proximal coordinate descent.

Sketch of proof:

• The first step of the proof is to derive the forward update of the Jacobian applying
the proximal coordinate descent algorithm.

• Then, we consider a whole epoch of the coordinate descent algorithm and show that
once the support is identified, the sequence of Jacobian is a vector autoregressive
sequence. The matrix appearing in the vector autoregressive sequence is the same
as the one studied for the iterates in Chapter 3.

• Finally, we use Lemma 6.3 to prove our results on the local linear convergence.

Proximal coordinate descent. Compared to proximal gradient descent, the analysis of
coordinate descent requires studying functions defined as a the composition of p applica-
tions, each of them only modifying one coordinate.

Coordinate descent updates read as follows:

β
(k,j)
j = proxγjgj

(
β

(k,j−1)
j − γj∇jf(β(k,j−1))

)
︸ ︷︷ ︸

,z(k,j−1)
j

. (6.28)

We consider the following sequence:

J (k,j)
j: = ∂1 proxγjgj(z

(k,j−1)
j )

(
J (k,j−1)
j: − γj∇2

j:f(β(k,j−1))J (k,j−1)
)

+ ∂2 proxγjgj(z
(k,j−1)
j ) .

(6.29)

Note that if proxγg is not differentiable with respect to the first variable at z(k) (respectively
with respect to the second variable λ), any weak Jacobian can be used. When (H3) holds,



6.3. ITERATIVE DIFFERENTIATION 147

differentiating Equation (6.28) w.r.t. λ yields exactly to Equation (6.29).

The regularity of Problem (6.2), Assumptions 2.4 and 6.1 and the convergence of (β(k))k∈N

toward β̂ ensure proximal coordinate descent has finite identification property (Theo-
rem 3.1 in Chapter 3): we note K the iteration when identification is achieved. Once the
generalized support Ŝ (of cardinality ŝ) has been identified, we have that for all k ≥ K,
β

(k)

Ŝc = β̂Ŝ and for any j ∈ Ŝc, ∂1 proxγjgj(z
(k,j−1)
j ) = 0. Thus J (k,j)

j: = ∂2 proxγjgj(z
(k,j−1)
j ).

We then have that for any j ∈ Ŝ and for all k ≥ K:

J (k,j)
j: = ∂1 proxγjgj(z

(k,j−1)
j )

(
J (k,j−1)
j: − γj∇2

j,Ŝf(β(k,j−1))J (k,j−1)

Ŝ:

)
+ ∂2 proxγjgj(z

(k,j−1)
j )− γj∂1 proxγjgj(z

(k,j−1)
j )∇2

j,Ŝcf(β(k,j−1))J (k,j−1)

Ŝc: .

We can consider the applications

β 7→ ∂1 proxγjgj (βj − γj∇jf(β))
(
ej − γj∇2

j:f(β)
)
,

and

β 7→ ∂2 proxγjgj (βj − γj∇jf(β))− γj∂1 proxγjgj (βj − γj∇jf(β))∇2
j,Ŝcf(β)ĴŜc: ,

which are both differentiable at β̂ using Assumption 6.1 and (H4). The Taylor expansion
of the previous functions yields:

J (k,j)
j: = ∂1 proxγjgj (ẑj)

(
ej − γj∇2

j,Ŝf(β̂)
)
J (k,j−1)

Ŝ:

+ ∂2 proxγjgj (ẑj)− γj∂1 proxγjgj (ẑj)∇2
j,Ŝcf(β̂)J (k,j−1)

Ŝc:

+ o(||β(k,j−1) − β̂||) .

When considering a full epoch of coordinate descent, the Jacobian is obtained as the prod-
uct of matrices of the form

A>j =
(
e1 . . . ej−1 vj ej+1 . . . eŝ

)
,

where vj = ∂1 proxγjgj (ẑj)
(
ej − γj∇2

j,Ŝf(β̂)
)
. A full epoch can then be written

J (k+1)

Ŝ:
= AjŝAjŝ−1

. . . Aj1︸ ︷︷ ︸
A

J (k)

Ŝ:
+ b+ ε(k) ,



148 CHAPTER 6. HYPERGRADIENT COMPUTATION

Generalized support identification

0 20 40

10−5

‖β
(k

)
−
β̂
‖ Leukemia

0 500

10−4

rcv1

0 500

10−4

20news

0 20 40

10−4

real-sim

0 20 40

# epochs

10−5

‖J
(k

)
−
Ĵ
‖

0 500

# epochs

10−3

0 500

# epochs

10−4

0 20 40

# epochs

10−2

Figure 6.2 – Local linear convergence of the Jacobian for the SVM. Distance to optimum
for the coefficients β (top) and the Jacobian J (bottom) of the forward differentiation of
proximal coordinate descent (Algorithm 12) on multiple datasets. One epoch corresponds
to one pass over the data, i.e., one iteration with proximal gradient descent.

for a certain b ∈ R|Ŝ|.

The spectral radius of A is strictly bounded by 1 (Lemma 3.8): ρ(A) < 1. The regularity of
Problem (6.2), Assumptions 2.4 and 6.1 and the convergence of (β(k))k∈N toward β̂ ensure
local linear convergence of (β(k))k∈N (Theorem 3.2). Hence, we can write the update for
the Jacobian after an update of the coordinates from 1 to p:

J (k+1)

Ŝ:
= AJ (k)

Ŝ:
+ b+ ε(k) , (6.30)

with (ε(k))k∈N converging locally linearly to 0.

The asymptotic autoregressive sequence in Equation (6.30), ρ(A) < 1, and the local linear
convergence of (ε(k))k∈N, yield our result using Lemma 6.3.

Illustration of Theorem 6.4. We illustrate the results of the previous theorem on the SVM
(Figure 6.2), on the Lasso (Figure 6.3) and on the sparse logistic regression (Figure 6.4) for
multiple datasets (leukemia, rcv1, news20 and real-sim1). The values of the hyperparame-
ters λ are summarized in Table 6.1. Regression coefficients β̂(λ) were computed to ma-
chine precision (up to duality gap smaller than 10−16) using a state-of-the-art coordinate
descent solver implemented in Lightning (Blondel and Pedregosa, 2016) for the SVM
or Celer (Massias et al., 2020) for the Lasso and sparse logistic regression. The exact Ja-

1Data available on the libsvm website: https://www.csie.ntu.edu.tw/˜cjlin/libsvmtools/
datasets/

https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/


6.4. STABILITY OF THE HYPERGRADIENT 149

Generalized support identification

0 1000 2000

10−2

100

‖β
(k

)
−
β̂
‖ Leukemia

0 100

10−1

rcv1

0 20 40

10−2

20news

0 20 40

10−1

real-sim

0 1000 2000

# epochs

10−2

10−1

100

‖J
(k

)
−
Ĵ
‖

0 100

# epochs

10−1

0 20 40

# epochs

10−1

0 20 40

# epochs

10−1

Figure 6.3 – Local linear convergence of the Jacobian for the Lasso. Distance to optimum
for the coefficients β (top) and the Jacobian J (bottom) of the forward differentiation of
proximal coordinate descent (Algorithm 12) on multiple datasets.

Table 6.1 – Dataset characteristics and regularization parameters used in Figure 6.2.

Datasets leukemia rcv1 news20 real-sim
# samples n = 38 n = 20,242 n = 19,996 n = 72,309
# features p = 7129 p = 19,959 p = 632,982 p = 20,958

Lasso eλ = 0.01 eλmax eλ = 0.075 eλmax eλ = 0.3 eλmax eλ = 0.1 eλmax

Logistic regression eλ = 0.1 eλmax eλ = 0.25 eλmax eλ = 0.8 eλmax eλ = 0.15 eλmax

SVM eλ = 10−5 eλ = 3× 10−2 eλ = 10−3 eλ = 5× 10−2

cobian was computed via implicit differentiation (Equation (6.5)). Once these quantities
were obtained, the forward differentiation was used of proximal coordinate descent (Al-
gorithm 12) and monitored the distance between the iterates of the regression coefficients
β(k) and the exact solution β̂. We also monitored the distance between the iterates of the Ja-
cobian J (k) and the exact Jacobian Ĵ . The red vertical dashed line represents the iteration
number where support identification happens. Once the support is identified, Figures 6.2
to 6.4 illustrate the linear convergence of the Jacobian. However, the behavior of the iter-
ative Jacobian before support identification is more erratic and not even monotone.

6.4 Stability of the hypergradient

We now adress the question of stability for the computation of the hypergradient via im-
plicit differentiation. Relying on iterative algorithms to solve Problem (6.2), only gives
access to an approximation of β̂(λ): this may lead to numerical errors when computing the
gradient in Theorem 6.1. Extending the result of Pedregosa (2016, Thm. 1), which states



150 CHAPTER 6. HYPERGRADIENT COMPUTATION

Generalized support identification

0 50 100

10−2

‖β
(k

)
−
β̂
‖ Leukemia

0 50

10−1

rcv1

0 20

10−2

20news

0 20 40

10−1

real-sim

0 50 100

# epochs

10−1

‖J
(k

)
−
Ĵ
‖

0 50

# epochs

10−1

0 20

# epochs

100

0 20 40

# epochs

100

Figure 6.4 – Local linear convergence of the Jacobian for sparse logistic regression. Dis-
tance to optimum for the coefficients β (top) and the Jacobian J (bottom) of the forward
differentiation of proximal coordinate descent (Algorithm 12) on multiple datasets.

that hypergradients can be computed approximately, we give a stability result for the
computation of approximate hypergradients in the case of non-smooth lower problems.

Theorem 6.5 (Bound on the error of approximate hypergradient). For λ ∈ Rr, let β̂(λ) ∈ Rp

be the exact solution of the lower Problem (6.2), and Ŝ its generalized support. Suppose Prob-
lem (6.2) is regular (see Definition 2.16) and Assumption 6.1 hold. Let Λ be a neighborhood of λ,
and ΓΛ ,

{
β̂(λ) − γ∇f(β̂(λ)) : λ ∈ Λ

}
. Suppose hypotheses (H1) to (H4) from Theorem 6.1 are

satisfied. In addition suppose

(H5) The application β 7→ ∇2f(β) is Lipschitz continuous.

(H6) The criterion β 7→ ∇C(β) is Lipschitz continuous.

(H7) Both optimization problems in Algorithm 14 are solved up to precision ε with support iden-
tification: ‖β(λ) − β̂(λ)‖ ≤ ε, A> is invertible, and ‖A−1>∇ŜC(β(λ))− v‖ ≤ ε.

Then the error on the approximate hypergradient h returned by Algorithm 14 is of the order of
magnitude of the error ε on β(λ) and v:

‖∇L(λ)− h‖ = O(ε) .

Proof. Overview of the proof. Our goal is to bound the error between the approximate
hypergradient h returned by Algorithm 14 and the true hypergradient ∇L(λ). Following
the analysis of Pedregosa (2016), two sources of approximation errors arise when comput-



6.4. STABILITY OF THE HYPERGRADIENT 151

ing the hypergradient:

• One from the inexact computation of β̂. We denote β the approximate solution and
suppose the problem is solved to precision ε with support identification (H7):

βŜc = β̂Ŝc

‖βŜ − β̂Ŝ‖ ≤ ε .

• One from the approximate resolution of the linear system, using (H7) yields:

‖A−1>∇ŜC(β)− v‖ ≤ ε .

The exact solution of the exact linear system v̂ satisfies:

v̂ = Â−1>∇ŜC(β̂) ,

with

A , Id|Ŝ|− ∂1 proxγg (β − γ∇f(β))Ŝ︸ ︷︷ ︸
,C

(
Id|Ŝ|−γ∇2

Ŝ,Ŝf(β)
)

︸ ︷︷ ︸
,D

,

Â , Id|Ŝ|− ∂1 proxγg

(
β̂ − γ∇f(β̂)

)
Ŝ︸ ︷︷ ︸

,Ĉ

(
Id|Ŝ|−γ∇2

Ŝ,Ŝf(β̂)
)

︸ ︷︷ ︸
,D̂

.

• Using the last two points, the goal is to bound the difference between the exact
hypergradient and the approximate hypergradient, ‖∇L(λ) − h‖. Following Algo-
rithm 14, the exact hypergradient writes

∇L(λ) = B̂v̂ + Ĵ >Ŝc:∇ŜcC(β̂) ,

and the approximate hypergradient writes

h = Bv + J >Ŝc:∇ŜcC(β) ,

with

B , ∂2 proxγg (β − γ∇f(β))Ŝ: − γ∂1 proxγg (β − γ∇f(β))Ŝ

(
∇2
Ŝ,Ŝcf(β)

)
ĴŜc:

B̂ , ∂2 proxγg

(
β̂ − γ∇f(β̂)

)
Ŝ:
− γ∂1 proxγg

(
β̂ − γ∇f(β̂)

)
Ŝ

(
∇2
Ŝ,Ŝcf(β̂)

)
ĴŜc: .



152 CHAPTER 6. HYPERGRADIENT COMPUTATION

We can exploit these decompositions to bound the difference between the exact hy-
pergradient and the approximate hypergradient:

‖∇L(λ)− h‖ = ‖B̂v̂ −Bv + Ĵ >Ŝc:∇ŜcC(β̂)− Ĵ >Ŝc:∇ŜcC(β)‖
≤ ‖B̂v̂ −Bv‖+ ‖Ĵ >Ŝc:∇ŜcC(β̂)− Ĵ >Ŝc:∇ŜcC(β)‖
≤ ‖B̂v̂ −Bv̂ +Bv̂ −Bv‖+ ‖Ĵ >Ŝc:(∇ŜcC(β̂)−∇ŜcC(β))‖
≤ ‖v̂‖ · ‖B̂ −B‖+ ‖B‖ · ‖v̂ − v‖+ LC‖Ĵ >Ŝc:‖ · ‖β − β̂‖ .

Bounding ‖v̂ − v‖ and ‖B̂ −B‖ yields the desired result.

Bound on ‖v̂ − v‖. We first prove that ‖A− Â‖ = O(ε). Let LH be the Lipschitz constant
of the application β 7→ ∇2f(β), then we have:

‖A− Â‖2 = ‖CD − ĈD̂‖2

≤ ‖CD − CD̂‖2 + ‖CD̂ − ĈD̂‖2

≤ ‖C‖2︸ ︷︷ ︸
≤1 (non-expansiveness)

‖D − D̂‖2︸ ︷︷ ︸
≤LH‖β−β̂‖ using (H5)

+ ‖D̂‖2︸ ︷︷ ︸
≤1

‖C − Ĉ‖2︸ ︷︷ ︸
O(‖β−β̂‖) using (H4)

≤ LH‖β − β̂‖+O(‖β − β̂‖)
= O(‖β − β̂‖) . (6.31)

Let ṽ be the exact solution of the approximate system A>ṽ , ∇ŜC(β). The following
conditions are met:

• v̂ is the exact solution of the exact linear system and ṽ is the exact solution of the
approximate linear system

Â>v̂ , ∇ŜC(β̂)

A>ṽ , ∇ŜC(β) .

• One can control the difference between the exact matrix in the linear system Â and
the approximate matrix A.

‖A− Â‖2 ≤ δ‖β − β̂‖ ,

for a certain δ > 0 (Equation (6.31)).



6.4. STABILITY OF THE HYPERGRADIENT 153

• One can control the difference between the two right-hand side of the linear systems

‖∇ŜC(β)−∇ŜC(β̂)‖ ≤ LC‖β − β̂‖ ,

since β 7→ ∇C(β) is LC-Lipschitz continuous (H6).

• One can control the product of the perturbations

δ · ‖β − β̂‖ · ‖Â−1‖2 ≤ ρ < 1 .

Conditions are met to apply the normwise analysis result from Higham (2002, Thm 7.2),
which leads to

‖ṽ − v̂‖ ≤ ε

1− ε‖Â−1‖δ

(
LC‖Â−1‖+ ‖v̂‖ · ‖Â−1‖δ

)
≤ ε

1− ρ
(
LC‖Â−1‖+ ‖v̂‖ · ‖Â−1‖δ

)
= O(ε) . (6.32)

The bound on ‖ṽ − v̂‖ finally yields a bound on ‖v − v̂‖:

‖v − v̂‖ = ‖v − ṽ + ṽ − v̂‖
≤ ‖v − ṽ‖+ ‖ṽ − v̂‖
≤ ‖A−1A(v − ṽ)‖+ ‖ṽ − v̂‖
≤ ‖A−1‖2 × ‖A(v − ṽ)‖︸ ︷︷ ︸

≤ε (H7)

+ ‖ṽ − v̂‖︸ ︷︷ ︸
O(ε) (Equation (6.32))

= O(ε) .

Bound on ‖B − B̂‖2.

‖B − B̂‖2 ≤ ‖∂2 proxγg(β − γ∇f(β))Ŝ: − ∂2 proxγg(β̂ − γ∇f(β̂))Ŝ:‖2

+ γ‖∂1 proxγg(β̂ − γ∇f(β̂))Ŝ∇2
Ŝ,Ŝcf(β̂)ĴŜc: − ∂1 proxγg(β − γ∇f(β))Ŝ∇2

Ŝ,Ŝcf(β)ĴŜc:‖2

≤ L1‖β − γ∇f(β)Ŝ: − β̂ + γ∇f(β̂)‖ using (H4)

+ L2‖β̂ − β‖ · ‖ĴŜc:‖ using (H4) and Assumption 6.1

= O(‖β̂ − β‖) .



154 CHAPTER 6. HYPERGRADIENT COMPUTATION

Remark 6.6. The Lipschitz continuity of the proximity operator with respect to λ (H4) is
satisfied for usual proximal operators, in particular all the operators in Table 6.3. The Lip-
schitz continuity of the Hessian and the criterion, hypotheses (H5) and (H6), are satisfied
for usual machine learning loss functions and criteria, such as the least squares and the
logistic loss.

Remark 6.7. To simplify the analysis, we used the same tolerance for the resolution of the
lower Problem (6.2) and the resolution of the linear system. Theorem 6.5 gives intuition
on the fact that the lower problem does not need to be solved at high precision to lead
to good hypergradients estimation. Note that in practice one does not easily control the
distance between the approximate solution and the exact one ‖β(k) − β̂‖: most softwares
provide a solution up to a given duality gap (sometimes even other criteria), not ‖β(k)−β̂‖.

6.5 Proposed method for the computation of the hypergra-

dient

Algorithm 14 IMPLICIT DIFFERENTIATION

input : X ∈ Rn×p, y ∈ Rn, λ ∈ R, ε > 0

init : γ > 0

// compute the solution of lower problem

Find β such that: Φ(β, λ)− Φ(β̂, λ) ≤ ε

// compute the gradient

Compute the generalized support S of β
z = β − γ∇f(β)

JSc: = ∂2 proxγg(z)Sc

A = Ids−∂1 proxγg(z)S(Ids−γ∇2
S,Sf(β))

Find v such that ‖A−1>∇SC(β)− v‖ ≤ ε

B = ∂2 proxγg(z)S

− γ∂1 proxγg(z)S∇2
S,Scf(β)JSc

∇L(λ) = J >Sc:∇ScC(β) + v>B

return L(λ) , C(β),∇L(λ)

We now describe our proposed method to compute the hypergradient of Problem (6.1). In
order to take advantage of the sparsity induced by the generalized support, we propose
an implicit differentiation algorithm for non-smooth lower problem that can be found in



6.5. PROPOSED METHOD 155

Algorithm 14. First, a solution of the lower Problem (6.2) is computed using a solver that
identifies the generalized support. Then, the hypergradient is computed by solving the
linear system in Equation (6.5). This linear system can be solved using multiple algo-
rithms, including conjugate gradient or fixed point methods. Table 6.2 summarizes the
computational complexity in space and time of the described algorithms.

Table 6.2 – Cost in time and space for each method: p is the number of features, n the
number of samples, r the number of hyperparameters, and |Ŝ| is the size of the generalized
support (Definition 2.17, |Ŝ| ≤ p and usually |Ŝ| � p). The number of iterations of the
lower solver is noted niter, the number of iterations of the solver of the linear system is
noted nsys.

Differentiation Algorithm Space Time

Forward-mode PGD Algorithm 10 O(p r) O(n p r niter)
Reverse-mode PGD Algorithm 11 O(p niter) O(n pniter + n pniter)
Forward-mode PCD Algorithm 12 O(p r) O(n p r niter)
Reverse-mode PCD Algorithm 13 O(p niter) O(n pniter + n p2 niter)

Implicit differentiation Algorithm 14 O(p+ |Ŝ|) O(n pniter + n |Ŝ|nsys)

To compute the hypergradient, one needs to compute the derivatives of the related prox-
imal operator. We provide in Table 6.3 formula for the proximal operators used in this
chapter.

Comparison with alternative approaches (Figure 6.5). First, we compare different meth-
ods to compute the hypergradient:

• Forward differentiation of proximal coordinate descent (Algorithm 12).

• Backward differentiation of proximal coordinate descent (Algorithm 13).

• cvxpylayers (Agrawal et al., 2019), a software based on cvxpy (Diamond and
Boyd, 2016), solving disciplined parametrized programming and providing derivatives
with respect to the parameters of the program. It is thus possible to use cvxpylayers

Table 6.3 – Partial derivatives of proximal operators used.

gj(βj, λ) proxgj(·,λ)(zj) ∂1 proxgj(·,λ)(zj) ∂2 proxgj(·,λ)(zj)

eλβ2
j /2 zj/(1 + eλ) 1/(1 + eλ) −zjeλ/(1 + eλ)2

eλ|βj| ST(zj, e
λ) | sign(ST(zj, e

λ))| −eλ sign(ST(zj, e
λ))

eλ1|βj|+ 1
2
eλ2β2

j
ST(zj ,e

λ1 )

1+eλ2

| sign(ST(zj ,e
λ1 ))|

1+eλ2

(
−eλ1 sign(ST(zj ,e

λ1 ))

1+eλ2
,
− ST(zj ,e

λ1 )eλ2

(1+eλ2 )2

)
ι[0,eλ](βj) max(0,min(zj, e

λ)) 1]0,eλ[(zj) eλ1zj>eλ



156 CHAPTER 6. HYPERGRADIENT COMPUTATION

Forward-mode PCD Reverse-mode PCD Cvxpylayers

102 103

# features p

100

102

T
im

e
(s

)

eλ = eλmax/ 10

102 103

# features p

eλ = eλmax/ 100

Figure 6.5 – Lasso held-out, time to compute the hypergradient, gina dataset. Time com-
parison to compute a single hypergradient as a function of the number of features, for
multiple values of λ: eλ = eλmax/10 (left), and eλ = eλmax/100 (right).

to compute gradients with respect to the regularization parameters.

Figure 6.5 compares the time taken by multiple methods to compute a single hypergradi-
ent ∇L(λ) for the Lasso (see Table 5.1), for multiple values of λ. It shows the time taken
to compute the regression coefficients and the hypergradient, as a function of the number
of columns, sampled from the design matrix from the gina dataset. The columns were se-
lected at random and 10 repetitions were performed for each point of the curves. In order
to aim for good numerical precision, problems were solved up to a duality gap of 10−6 for
the forward and the backward differentiation. cvxpylayers relies on cvxpy, solving
Problem (6.2) using a splitting conic solver (O’Donoghue et al., 2019). Since the termi-
nation criterion of the splitting conic solver is not exactly the duality gap (O’Donoghue
et al., 2016, Sec. 3.5), we used the default tolerance of 10−4. The hypergradient∇L(λ) was
computed for held-out mean squared error (see Table 5.2).

The forward differentiation of proximal coordinate descent is one order of magnitude
faster than cvxpylayers and two orders of magnitude faster than the backward differ-
entiation of proximal coordinate descent. The larger the value of λ, the more the coeffi-
cients β are sparse, leading to significant speedups in this regime. This performance is in
accordance with the lower time cost of the forward mode in Table 6.2.

Combining implicit differentiation with state-of-the art solvers (Figures 6.6 and 6.7).
We now compare the different approaches described in this chapter:

• Forward differentiation of proximal coordinate descent (Algorithm 12).

• Implicit differentiation (Algorithm 14) with proximal coordinate descent to solve the



6.5. PROPOSED METHOD 157

Implicit diff. Implicit diff. + Celer Forward-mode PCD

0 2 4
10−10

10−7

10−4

eλ
=
eλ

m
a
x
/1

0

rcv1

1 2 3

real-sim

0 100 200 300 400

news20

0 10 20 30

Time (s)

10−10

10−7

10−4

eλ
=
eλ

m
a
x
/1

02

0 5 10

Time (s)
0 100 200 300 400

Time (s)

Figure 6.6 – Lasso held-out, time to compute one hypergradient. Absolute difference
between the exact hypergradient (using β̂) and the iterate hypergradient (using β(k)) of the
Lasso as a function of time. Results are for three datasets and two different regularization
parameters. For the implicit differentiation, the lower problem is solved using proximal
coordinate descent (Implicit diff.) or Celer (Massias et al. 2020, Implicit diff. + Celer).

lower problem. For efficiency, this solver was coded in Numba (Lam et al., 2015).

• Implicit differentiation (Algorithm 14) with state-of-the-art algorithm to solve the
lower problem: we used Celer (Massias et al., 2020) for the Lasso, and Lightning

(Blondel and Pedregosa, 2016) for the SVM.

Figure 6.6 shows for three datasets and two values of regularization parameters the ab-
solute difference between the exact hypergradient and the approximate hypergradient
obtained via multiple algorithms as a function of time. Figure 6.7 reports similar results
for the SVM, on the same datasets, except news20, which is not well suited for SVM, due
to limited number of samples.

First, it demonstrates that implicit differentiation methods are faster than the forward
differentiation of the proximal coordinate descent (pink). This illustrates the benefits of
restricting the gradient computation to the support of the Jacobian. Second, thanks to
the flexibility of our approach, we obtain additional speed-ups by combining implicit dif-
ferentiation with a state-of-the-art solver, Celer. The resulting method (orange) signifi-
cantly improves over implicit differentiation using a vanilla proximal coordinate descent
(green).



158 CHAPTER 6. HYPERGRADIENT COMPUTATION

Implicit diff. Implicit diff. + Lightning Forward-mode PCD

0 10 20 30 40 50 60

Time (s)

10−14

10−10

10−6

10−2

rcv1

0 5 10 15 20 25 30 35

Time (s)

real-sim

Figure 6.7 – SVM held-out, time to compute one hypergradient. Absolute difference
between the exact hypergradient (using β̂) and the iterate hypergradient (using β(k)) of
the SVM as a function of time. For the implicit differentiation, the lower problem is solved
using proximal coordinate descent (Implicit diff.) or Lightning (Blondel and Pedregosa
2016, Implicit diff. + Lightning).



7 HYPERPARAMETER

OPTIMIZATION IN NON-SMOOTH

CONVEX LEARNING

Contents
7.1 Resolution of the bilevel optimization problem . . . . . . . . . . . . . . . 161

7.2 Hyperparameter selection for the Lasso . . . . . . . . . . . . . . . . . . . . 163

7.3 Hyperparameter selection for the elastic net . . . . . . . . . . . . . . . . . 164

7.4 Multiclass sparse logistic regression . . . . . . . . . . . . . . . . . . . . . 166

7.5 Hyperparameter selection for the weighted Lasso . . . . . . . . . . . . . . 168

In this chapter, we capitalise on the results from the previous chapter to propose an ef-
ficient algorithm for hyperparameter optimization. We begin with a discussion on the
resolution of the related bilevel optimization in Section 7.1. Then we illustrate the effi-
ciency and the benefits of using our proposed methods to select the hyperparameters of
the Lasso (Section 7.2), the elastic net (Section 7.3), the multiclass logistic regression (Sec-
tion 7.4) and finally the weighted Lasso (Section 7.5).

Multiple datasets will be used in this chapter. We describe in Table 7.1 the characteristics
of these datasets coming from libsvm or openML.

We will compare multiple methods to find the optimal hyperparameters for the Lasso,
elastic net and multiclass sparse logistic regression. The following methods are com-
pared:

159



160 CHAPTER 7. HYPERPARAMETER OPTIMIZATION

name # samples n # features p # classes q density
breast cancer 569 30 − 1

diabetes 442 10 − 1
leukemia 72 7129 − 1

gina agnostic 3468 970 − 1
rcv1 20,242 19,960 − 3.7× 10−3

real-sim 72,309 20,958 − 2.4× 10−3

news20 19,996 632,983 − 6.1× 10−4

mnist 60.000 683 10 2.2× 10−1

usps 7291 256 10 1
rcv1 multiclass 15,564 16,245 53 4.0× 10−3

aloi 108,000 128 1000 2.4× 10−1

Table 7.1 – Characteristics of the datasets.

• Grid-search: for the Lasso and the elastic net, the number of hyperparameters is
small, and grid-search is tractable. For the Lasso we chose a grid of 100 hyperpa-
rameters λ, uniformly spaced between λmax − ln(104) and λmax. For the elastic net
we chose for each of the two hyperparameters a grid of 10 values uniformly spaced
between λmax and λmax − ln(104). The product grid thus has 100 points.

• Random-search: we chose 30 values of λ sampled uniformly between λmax and
λmax − ln(104) for each hyperparameter. For the elastic net we chose 30 points sam-
pled uniformly in [λmax − ln(104), λmax]2

• SMBO: this algorithm is SMBO using as criterion expected improvement (EI) and
the Tree-structured Parzen Estimator (TPE) as model. First it evaluates L using 5

values of λ, chosen uniformly at random between λmax and λmax − ln(104). Then a
TPE model is fitted on the data points (λ(1),L(λ(1))), . . . , (λ(5),L(λ(5))). Iteratively,
the EI is used to choose the next point to evaluate L at, and this value is used to
update the model. We used the hyperopt implementation (Bergstra et al., 2013).

• 1st order: first-order method with exact gradient (Algorithm 15 with constant toler-
ances εi = 10−6), with λmax − ln(102) as a starting point.

• 1st order approx: a first-order method using approximate gradient (Algorithm 15
with tolerances εi, geometrically decreasing from 10−2 to 10−6), with λmax − ln(102)

as a starting point.



7.1. RESOLUTION OF THE BILEVEL OPTIMIZATION PROBLEM 161

Algorithm 15 HEURISTIC GRADIENT DESCENT WITH APPROXIMATE GRADIENT

input : X ∈ Rn×p, y ∈ Rn, λ ∈ Rr, (εi)
init : use adaptive step size = True
for i = 1, . . . , iter do

λold ← λ
// compute the value and the gradient

L(λ),∇L(λ)← Algorithm 14(X, y, λ, εi)
if use adaptive step size then

α = 1/‖∇L(λ)‖
λ −= α∇L(λ) // gradient step

if L(λ) > L(λold) then
use adaptive step size = False
α /= 10

return λ

7.1 Resolution of the bilevel optimization problem

We recall that choosing the best hyperparameters for a given criterion can be written as:

arg min
λ∈Rr

{
L(λ) , C

(
β̂(λ)

)}
s.t. β̂(λ) ∈ arg min

β∈Rp
Φ(β, λ) ,

(7.1)

We saw in the previous chapters that one could rely on first order methods to solve Prob-
lem (7.1) which would require the computation of the gradient of L w.r.t. λ. In Chapter 6,
we presented new results on the computation of this gradient when the lower problem
considered is non-smooth. We now use the previous results to propose an algorithm to
solve Problem (5.2) and hence, dive into the field of hyperparameter optimization.

From a practical point of view, once the hypergradient has been computed, first-order
methods require the definition of a step size to solve the non-convex Problem (7.1). As the
Lipschitz constant is not available for the outer problem, first-order methods need to rely
on other strategies, such as:

• Gradient descent with manually adjusted fixed step sizes (Frecon et al., 2018; Ji et al.,
2020). The main disadvantage of this technique is that it requires a careful tuning of
the step size for each experiment. In addition to being potentially tedious, it does
not lead to an automatic procedure.

• L-BFGS (as in Deledalle et al. 2014). L-BFGS is a quasi-Newton algorithm that ex-
ploits past iterates to approximate the Hessian and propose a better descent direc-



162 CHAPTER 7. HYPERPARAMETER OPTIMIZATION

tion, which is combined with some line search (Nocedal and Wright, 2006). Yet, due
to the approximate gradient computation, we observed that L-BFGS did not always
converge.

• ADAM (Kingma and Ba, 2014). It turned out to be inappropriate to the present
setting. ADAM was very sensitive to the initial step size and required a careful
tuning for each experiment.

• Iteration specific step sizes obtained by line search (Pedregosa, 2016). While the
approach from Pedregosa (2016) requires no tuning, we observed that it could di-
verge when close to the optimum. The adaptive step size strategy proposed in Al-
gorithm 15, used in all the experiments, turned out to be robust and efficient across
problems and datasets.

Remark 7.1 (Uniqueness). The solution of the lower problem may be non-unique, lead-
ing to a multi-valued regularization path λ 7→ β̂(λ) (Liu et al., 2020) and requiring tools
such as optimistic gradient (Dempe et al., 2015, Chap. 3.8). Though it is not possible to
ensure uniqueness in practice, we did not face experimental issues due to potential non-
uniqueness. For the Lasso, this experimental observation can be theoretically justified
(Tibshirani, 2013): when the design matrix is sampled from a continuous distribution, the
solution of the Lasso is almost surely unique.

Remark 7.2 (Initialization). One advantage of the non-smooth case with the `1 norm is
that one can find a good initialization point: there exists a value λmax (see Table 5.1) such
that the solution of Problem (6.2) vanishes for λ ≥ λmax. Hence, a convenient and robust
initialization value can be chosen as eλ = eλmax/100. This is in contrast with the smooth
case, where finding a good initialization heuristic is hard: starting in flat zones can lead to
poor performance for gradient-based methods (Pedregosa, 2016).

Remark 7.3 (Resolution of the bilevel problem). We do not have theoretical results proving
that there is convergence towards a solution of Problem (5.2). From our experiment, the
function that we are trying to minimize is often non-convex and we have to deal with
the presence of local minima. In the case of smooth lower problems, Pedregosa (2016)
proved that their proposed algorithm, HOAG, converges towards a stationnary point of
L. However, when considering a non-smooth lower problem, deriving a similar result
seems to be challenging and would be a topic on its own. We then use the term heuristic to
describe the proposed algorithm to solve the bilvel optimization problem. In practice, the
results show that it is an efficient way to select hyperparameters for a given model but the
theoretical results derived in Chapter 6 focused only on the hypergradient computation



7.2. HYPERPARAMETER SELECTION FOR THE LASSO 163

1st-order 1st-order approx Grid-search Random-search SMBO

0.2

0.4

0.6

0.8

1.0

G
ri

d-
se

ar
ch

C
V

lo
ss

rcv1 (p = 19, 959) real-sim (p = 20, 958) news20 (p = 632, 982)

0.2

0.4

0.6

0.8

1.0

S
M

B
O

C
V

lo
ss

−7.5 −5.0 −2.5 0.0

λ− λmax

0.2

0.4

0.6

0.8

1.0

1s
t-

or
de

r
ap

pr
ox

C
V

lo
ss

−7.5 −5.0 −2.5 0.0

λ− λmax

−7.5 −5.0 −2.5 0.0

λ− λmax

0 20 40 60

Time (s)

0.2

0.3

0.4

C
ro

ss
-v

al
id

at
io

n
lo

ss

0 50 100 150 200

Time (s)
0 500 1000

Time (s)

Figure 7.1 – Lasso cross-validation, time comparison (1 hyperparameter). Cross-
validation loss as a function of λ (black line, top) and as a function of time (bottom).

step.

7.2 Hyperparameter selection for the Lasso

We start our experiments with selecting a single parameter for the Lasso. We pick a K-
fold cross-validation (CV) loss as outer criterion1. The dataset (X, y) is partitioned into
K held-out datasets (X traink , ytraink), (Xvalk , yvalk). The bilevel optimization problem then
writes:

1In our experiments the default choice is K = 5.



164 CHAPTER 7. HYPERPARAMETER OPTIMIZATION

arg min
λ∈R

L(λ) =
1

K

K∑
k=1

‖yvalk −Xvalk β̂(λ,k)‖2
2

s.t. β̂(λ,k) ∈ arg min
β∈Rp

1
2n

∥∥ytraink −X trainkβ
∥∥2

2
+ eλ‖β‖1 ,

(7.2)

Figure 7.1 represents the cross-validation loss in Lasso CV as a function of the regulariza-
tion parameter λ (black curve, three top rows) and as a function of time (bottom). Each
point corresponds to the evaluation of the cross-validation criterion for one λ value. The
top rows show cross-validation loss as a function of λ, for the grid-search, the SMBO
optimizer and the first-order method. The lightest crosses correspond to the first itera-
tions of the algorithm and the darkest, to the last ones. For instance, Lasso grid-search
starts to evaluate the cross-validation function with λ = λmax and then decreases to λ =

λmax − ln(104). On all the datasets, first-order methods are faster to find the optimal regu-
larization parameter, requiring only 5 iterations.

7.3 Hyperparameter selection for the elastic net

The elastic net proposed by Zou (2006) interpolates between the `1 regularization and the
`2 regularization using two hyperparameters: λ1 and λ2. Once again we use the cross-
validation loss as the criterion to perform the selection of the hyperparameters. The bilvel
optimization can be written:

arg min
λ=(λ1,λ2)∈R2

L(λ) =
1

K

K∑
k=1

‖yvalk −Xvalk β̂(λ,k)‖2
2

s.t. β̂(λ,k) ∈ arg min
β∈Rp

1
2n

∥∥ytraink −X trainkβ
∥∥2

2
+ eλ1‖β‖1 +

eλ2

2
‖β‖2

2, ∀k ∈ [K] ,

(7.3)

Figure 7.1 represents the cross-validation loss in Lasso CV as a function of the regulariza-
tion parameter λ (black curve, three top rows) and as a function of time (bottom). Each
point corresponds to the evaluation of the cross-validation criterion for one λ value. The
top rows show cross-validation loss as a function of λ, for the grid-search, the SMBO
optimizer and the first-order method. The lightest crosses correspond to the first itera-
tions of the algorithm and the darkest, to the last ones. For instance, Lasso grid-search
starts to evaluate the cross-validation function with λ = λmax and then decreases to λ =

λmax − ln(104). On all the datasets, first-order methods are faster to find the optimal regu-
larization parameter, requiring only 5 iterations.



7.3. HYPERPARAMETER SELECTION FOR THE ELASTIC NET 165

1st-order 1st-order approx Grid-search Random-search SMBO

−10 −5 0

−10

−5

0
G

ri
d-

se
ar

ch
λ

2
−
λ

m
ax

rcv1 (p = 19, 959)

−10 −5 0

−10

−5

0
real-sim (p = 20, 958)

−10 −5 0

−10

−5

0
news20 (p = 632, 982)

−10 −5 0

−10

−5

0

S
M

B
O

λ
2
−
λ

m
ax

−10 −5 0

−10

−5

0

−10 −5 0

−10

−5

0

−10 −5 0

λ1 − λmax

−10

−5

0

1s
t-

or
de

r
ap

pr
ox

λ
2
−
λ

m
ax

−10 −5 0

λ1 − λmax

−10

−5

0

−10 −5 0

λ1 − λmax

−10

−5

0

0 100 200

Time (s)

0.2

0.3

0.4

0.5

0.6

C
ro

ss
-v

al
id

at
io

n
lo

ss

0 100 200 300 400

Time (s)
0 500 1000 1500 2000

Time (s)

Figure 7.2 – Elastic net cross-validation, time comparison (2 hyperparameters). Level
sets of the cross-validation loss (black lines, top) and cross-validation loss as a function of
time (bottom) on rcv1, real-sim and news20 datasets.

Figure 7.2 represents the level sets of the cross-validation loss for the elastic net (three
top rows) and the cross-validation loss as a function of time (bottom). One can see that



166 CHAPTER 7. HYPERPARAMETER OPTIMIZATION

after 5 iterations the SMBO algorithm (blue crosses) suddenly slows down (bottom) as
the hyperparameter suggested by the algorithm leads to a costly optimization problem to
solve, while first-order methods converge quickly as for Lasso CV. In the present context,
lower problems are slower to solve for low values of the regularization parameters.

7.4 Hyperparameter selection for the multiclass sparse lo-

gistic regression

We now consider a multiclass classification problem with q classes. The design matrix is
noted X ∈ Rn×p, and the target variable y ∈ {1, . . . , q}n. We chose to use a one-versus-all
model with q regularization parameters to illustrate the advantages of using a first order
method to set a large number of hyperparameters. We use a binary cross-entropy for the
lower loss:

ψk(β, λk;X, y) , − 1

n

n∑
i=1

(1yi=k ln(σ(Xi:β)) + (1− 1yi=k) ln(1− σ(Xi:β))) + eλk‖β‖1 ,

and a multiclass cross-entropy for the outer criterion:

C
(
β̂(λ1), . . . , β̂(λq);X, y

)
, −

n∑
i=1

q∑
k=1

ln

(
eXi:β̂

(λk)∑q
l=1 e

Xi:β̂
(λl)

)
1yi=k . (7.4)

With a single train/test split, the bilevel problem to solve writes:

arg min
λ,(λ1,...,λq)∈Rq

C
(
β̂(λ1), . . . , β̂(λq);Xtest, ytest

)
s.t. β̂(λk) ∈ arg min

β∈Rp
ψk(β, λk;X

train, ytrain) ∀k ∈ [q] .
(7.5)

Figure 7.3 represents the multiclass cross-entropy (top), the accuracy on the validation
set (middle) and the accuracy on the test set (unseen data, bottom). When the number
of hyperparameter is moderate (q = 10, on mnist and usps), the multiclass cross-entropy
reached by SMBO and random techniques is as good as first-order techniques. This is
expected and follows the same conclusion as Bergstra and Bengio (2012); Frazier (2018):
when the number of hyperparameters is moderate, SMBO and random techniques can be
used efficiently. However, when the number of hyperparameters increases (rcv1, q = 53

and aloi, q = 1000), the hyperparameter space is too large: zero-order solvers simply
fail. On the contrary, first-order techniques manage to find hyperparameters leading to



7.4. MULTICLASS LOGISTIC REGRESSION 167

Random-search SMBO 1st-order

0 200 400

0.6

0.8

1.0

1.2

M
ul

ti
cl

as
s

cr
os

s-
en

tr
op

y mnist (q=10)

0 500 1000

0.4

0.6

0.8

1.0

usps (q=10)

0 500 1000
0.5

1.0

1.5

rcv1 (q=53)

0 1000 2000

6

7

8

aloi (q=1000)

0 200 400

0.75

0.80

0.85

A
cc

ur
ac

y
va

lid
at

io
n

se
t

0 500 1000

0.75

0.80

0.85

0.90

0 500 1000

0.6

0.7

0.8

0 1000 2000

0.0

0.1

0.2

0.3

0 200 400

Time (s)

0.75

0.80

0.85

0.90

A
cc

ur
ac

y
te

st
se

t

0 500 1000

Time (s)

0.80

0.85

0.90

0.95

0 500 1000

Time (s)

0.6

0.7

0.8

0.9

0 1000 2000

Time (s)

0.0

0.2

0.4

Figure 7.3 – Multiclass sparse logistic regression held-out, time comparison (# classes
hyperparameters). Multiclass cross-entropy (top), accuracy on the validation set (middle),
and accuracy on the test set (bottom) as a function of time on mnist, usps (q = 10 classes),
rcv1 (q = 53 classes), aloi (q = 1000 classes).

significantly better accuracy.

Remark 7.4 (Modelization). We believed at first that considering one hyperparameter per
class could lead to an increased performance for the sparse logistic regression. However,
practically we did not find an increase in the accuracy or an improvement in the mini-
mization of the cross-entropy loss between considering the same regularization param-
eter for all the one-versus-all models or considering one for each class. Our experiment
is still interesting when considering the resolution of the bilevel optimization of the form
Problem (7.5) but the practical use of the model itself still has to be showed.



168 CHAPTER 7. HYPERPARAMETER OPTIMIZATION

7.5 Hyperparameter selection for the weighted Lasso

Evaluating models on held-out or cross-validation data makes sense if the design is formed
from random samples as it is often considered in supervised learning. However, this as-
sumption does not hold for certain kinds of applications in signal or image processing.
For these applications, the held-out loss cannot be used as the criterion for optimizing the
hyperparameters of a given model. In this case, one may use a proxy of the prediction
risk, like the Stein Unbiased Risk Estimation (SURE, Stein (1981)). The SURE is an unbi-
ased estimator of the prediction risk under weak differentiable conditions. The drawback
of this criterion is that it requires the knowledge of the variance of the noise (σ2). The
SURE is defined as follows: SURE(λ) = ‖y −Xβ̂(λ)‖2− nσ2 + 2σ2dof(β̂(λ)) , where the de-
grees of freedom (dof Efron 1986) is defined as dof(β̂(λ)) =

∑n
i=1 cov(yi, (Xβ̂

(λ))i)/σ
2 . The

dof can be seen as a measure of the complexity of the model, for instance for the Lasso
dof(β̂(λ)) = |Ŝ|, see Zou et al. (2007). The SURE can thus be seen as a criterion trading
data-fidelity against model complexity. However, the dof is not differentiable (not even
continuous in the Lasso case), yet it is possible to construct a weakly differentiable ap-
proximation of it based on Finite Differences Monte-Carlo (see Deledalle et al. 2014 for
full details), with ε > 0 and δ ∼ N (0, Idn):

dofFDMC(y, λ, δ, ε) = 1
ε
〈Xβ̂(λ)(y + εδ)−Xβ̂(λ)(y), δ〉 .

In order to go one step further in the validation of our proposed algorithm, we considered
the weighted Lasso model. The weighted Lasso (wLasso, Zou 2006) has p hyperparam-
eters and was introduced to reduce the bias of the Lasso. Its underlying optimization
problem was given in Problem (6.18). However setting the p hyperparameters is impossi-
ble with grid-search.

We use the smooth approximation of the SURE in the bilevel optimization problem to
find the best hyperparameters of the wLasso. The bilevel optimization problem then
reads:

arg min
λ∈Rp

‖y −Xβ̂(λ)‖2 + 2σ2dofFDMC(y, λ, δ, ε) (7.6)

s.t. β̂(λ)(y) ∈ arg min
β∈Rp

1
2n
‖y −Xβ‖2

2 +

p∑
j=1

eλj |βj|

β̂(λ)(y + εδ) ∈ arg min
β∈Rp

1
2n
‖y + εδ −Xβ‖2

2 +

p∑
j=1

eλj |βj|



7.5. HYPERPARAMETER SELECTION FOR THE WEIGHTED LASSO 169

Note that solving this problem requires the computation of two (instead of one for the
held-out loss) Jacobians w.r.t. λ of the solution β̂(λ) at the points y and y + εδ.

To compare the estimation performance of the Lasso and the wLasso with automatic
hyperparameter selection, we used as a metric the (normalized) Mean Squared Error
(MSE) defined as MSE , ‖β̂ − β∗‖2/‖β∗‖2. The entries of the design matrix X ∈ Rn×p

are i.i.d. random Gaussian variables N (0, 1). The number of rows is fixed to n = 100.
Then, we generated β∗ with 5 non-zero coefficients equals to 1. The vector y was com-
puted by adding to Xβ∗ additive Gaussian noise controlled by the Signal-to-Noise Ra-
tio: SNR , ‖Xβ∗‖/‖y −Xβ∗‖ (here SNR = 3). Following Deledalle et al. (2014), we set
ε = 2σ/n0.3. We varied the number of features p between 200 and 10,000 on a linear grid of
size 10. For a fixed number of features, we performed 50 repetitions and each point of the
curves represents the average of these repetitions. We compared the computation time
of different methods used to compute the hypergradient: the Forward mode, the Back-
ward mode and the implicit differentiation solved with a conjugate gradient algorithm
and the Implicit forward mode where the linear system is solved via a coordinate descent
algorithm.

Figure 7.4 shows the estimation MSE and the running time of the different methods to
obtain the hyperparameter values as a function of the number of features used to simulate
the data. Problem (7.6) is not convex for the weighted Lasso and a descent algorithm like
ours can be trapped in local minima, crucially depending on the starting point λinit. To
alleviate this problem, we introduced a regularized version of Problem (5.2):

arg min
λ∈R

C
(
β̂(λ)

)
+ γ

p∑
j

λ2
j

s.t. β̂(λ) ∈ arg min
β∈Rp

, Φ(β, λ) . (7.7)

The solution obtained by solving Equation (7.7) is then used as the initialization λ(0) for
our algorithm. In this experiment the regularization term is constant γ = C(β(λmax))/10.
We see in Figure 7.4 that the weighted Lasso gives a lower MSE than the Lasso and allows
for a better recovery of β∗. This experiment shows that the amount of time needed to
obtain the vector of hyperparameters of the weighted Lasso via our algorithm is in the
same range as for obtaining the unique hyperparameter of the Lasso problem. It also
shows that our proposed method is much faster than the naive way of computing the
Jacobian using forward or backward iterative differentiation. The implicit differentiation
method stays competitive for the wLasso due to the small support of the solution and



170 CHAPTER 7. HYPERPARAMETER OPTIMIZATION

Lasso F. Iterdiff.

Lasso Implicit

Lasso Backward

Lasso Imp. F. Iterdiff. (ours)

wLasso F. Iterdiff.

wLasso Implicit

wLasso Backward

wLasso Imp. F. Iterdiff. (ours)

200 2500 5000 7500 10000
Number of features (p)

0.00

0.05

0.10

0.15

M
S

E

200 2500 5000 7500 10000
Number of features (p)

10−1

100

101

102

103

T
im

e
(s

)

Figure 7.4 – Lasso vs wLasso. Estimation Mean Squared Error (left) and running (right)
of competitors as a function of the number of features for the weighted Lasso and Lasso
models.

hence a small matrix to inverse. A maximum running time threshold was used for this
experiment checking the running time at each line-search iteration, explaining why the
forward differentiation and backward differentiation of the wLasso does not explode in
time on Figure 7.4.

Remark 7.5 (Limits). This last experiment on the weighted Lasso revealed some of the
limits of our work. The objective function of Problem (7.6) is probably non-convex and
very difficult to optimize in comparison to the other examples in smaller dimensions.
The results obtained in Figure 7.4 were dependent on the initialization point hence the
introduction of the heuristic regularization Equation (7.7) to find a starting point. This ex-
periment on the wLasso is exploratory and shows the difficulty to set p hyperparameters
when p� n.



Part III

Estimating cells proportions with
developed tools

171





8 VALIDATION OF OUR METHOD

Contents
8.1 Simplex ε-SVR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

8.2 Validation on microarray data . . . . . . . . . . . . . . . . . . . . . . . . . 177

8.3 Validation on RNAseq/sc-RNAseq data . . . . . . . . . . . . . . . . . . . . 180

8.4 Clinical application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

In this chapter, we use the algorithms described in the previous chapters to propose a
new method to estimate the proportions of cells inside a tumor. In Section 8.1, we start
with the description of the estimator used, namely the ε-SVR with additional constraints
and show how the automatic hyperparameters selection can be applied to it. Then we
validate the use of our proposed method by comparing it to Cibersort and the Simplex
Ordinary Least Squares on different types of data: microarray (Section 8.2) and RNA-seq
(Section 8.3). Finally, we show how this method was used to estimate the cells proportions
of 15 different types of cells to improve the risk of relapse estimation for patients suffering
from breast cancer in Section 8.4.

8.1 Simplex ε-SVR

The start of this work was to propose a method that could improve the resolution of the
inverse problem related to the proportions of cells inside a tumor as described in Chap-
ter 1. As a result of the previous chapters, we now propose a new estimator with an
automatic selection of its related hyperparameters. A first natural candidate would be the
constrained ν-SVR described in Chapter 4. One of the difficulties that comes with using
this estimator is the choice of the two hyperparameters ν ∈ [0, 1] and C > 0. Avoiding a
grid search and relying on automatic differentiation techniques as proposed in Chapter 7
would greatly improve the usability of this estimator. However, the ν-SVR underlying

173



174 CHAPTER 8. VALIDATION OF OUR METHOD

dual optimization problem involves a non-separable equality constraint. This constraint
prevents us from using the results obtained in Chapter 6 to set the hyperparameters using
a first order method. The results on the support identification property and the conver-
gence of the Jacobian is only obtained with the assumption that the non-smooth term is
separable. For these reasons, we consider the Simplex ε-SVR without bias instead which
writes

β̂ ∈ arg min
β∈Rp

1

2
‖β‖2 +

C

n

n∑
i=1

ξi + ξ∗i (8.1)

s.t. yi −Xi:β ≤ ε+ ξi,

Xi:β − yi ≤ ε+ ξ∗i ,

ξi ≥ 0, ξ∗i ≥ 0,

βj ≥ 0,

p∑
i=1

βj = 1 .

The ε-SVR and the ν-SVR are equivalent in the sense that if the ν-SVR has the solution
β? and ε? then computing the solution of the ε-SVR with the same value of C and set-
ting ε = ε? leads to the same solution β? (Schölkopf and Smola, 2002, Prop. 9.3). The
choice of the ν-SVR estimator at first can be explained by the fact that the hyperparameter
ν ∈ [0, 1] has an easy interpretation; it roughly represents the proportions of support vec-
tors (Schölkopf et al., 1999) and is easier to tune. Since the problem of hyperparameters
selection is more simple and straightforward with the first order methods, these argu-
ments on the hyperparameters ν do not hold anymore. The separability of the ε-SVR dual
problem motivates the choice of the ε-SVR for the rest of this chapter.

Deriving the dual problem of Problem (8.1) is very similar to the work done in Chapter 4.
The dual optimization problem is as follows

min
α,α∗,γ,µ

1

2

[
(α− α∗)>XX>(α− α∗) + γ>γ + pµ2 (8.2)

+2
n∑
i=1

(αi − α∗i )γ>Xi: + 2µ
n∑
i=1

1
>Xi: + 2µ1>γ

]

+ ε
n∑
i=1

(αi + α∗i )−
n∑
i=1

yi(αi − α∗i )− µ

s.t. 0 ≤ αi, α
∗
i ≤

C

n

γj ≥ 0 .



8.1. SIMPLEX ε-SVR 175

The primal-dual relation at the optimum is given by the following formula:

β =
n∑
i=1

(αi − α∗i )Xi: + γ + µ1 . (8.3)

Since the non-smooth functions are separable, we can use the cyclic proximal coordinate
descent algorithm to solve the dual optimization problem with theoretical guarantees
(Tseng and Yun, 2009) to converge towards a solution of Problem (8.2). The cyclic co-
ordinate descent algorithm obtained to solve Problem (8.2) is given in Algorithm 16. As
suggested in Ho and Lin (2012) for the classical ε-SVR without constraints, we can avoid
storing the matrix XX> ∈ Rn×n which appears in the quadratic objective function of the
dual problem. To do so, the primal variables are updated at each iterations of the cyclic
coordinate descent based on the dual variables using Equation (8.3). In addition, keeping
β updated at each iteration reduces the computation cost of the gradient required for the
coordinate descent updates.

For example, the gradient of the objective function of Problem (8.2) denoted f w.r.t. to α is
given by

∇αf(α, α∗, γ, µ) = Xβ + ε1− y . (8.4)

Similar tricks can be used in the variables resulting from the additional linear constraints
in the primal. The gradient of f with respect to γ writes

∇γf(α, α∗, γ, µ) =
n∑
i=1

(αi − α∗i )Xi: + γ + µ1 = β . (8.5)

Identically, we have that

∇µf(α, α∗, γ, µ) = 1
>β − 1 . (8.6)

To select the hyperparameters ε > 0 and C > 0, we use the implicit differentiation algo-
rithm Algorithm 15 proposed in Chapter 7. The Mean Squared Error (MSE) was chosen
as the outer criterion for the hyperparameters selection, obtained as

1

2n
‖y −Xβ̂‖2 , (8.7)

with β̂ ∈ Rp being a solution of Problem (8.1). The updates to compute the Jacobian



176 CHAPTER 8. VALIDATION OF OUR METHOD

Algorithm 16 SIMPLEX ε-SVR
input : X ∈ Rn×p, y ∈ Rn, ε ∈ R, C ∈ R, niter ∈ N,
α = 0, α∗ = 0, γ = 0, µ = 0 // potentially warm started

β = 0 // Primal variables for cheap updates

// Perform cyclic coordinate descent

for k = 1, . . . , niter do
for i = 1, . . . , n do

// Update in the block α

F = Xi:β + ε− yi // Gradient w.r.t. αi

αold
i = αi

αi = P[0,C]

(
αi − 1

‖Xi:‖2
F
)

β = β + (αi − αoldi )Xi: // Update primal variables

for i = 1, . . . , n do
// Update in the block α∗

F = −Xi:β + ε+ yi // Gradient w.r.t. α∗
i

(α∗i )
old = α∗i

α∗i = P[0,C]

(
α∗i − 1

‖Xi:‖2
F
)

β = β − (αi − αoldi )Xi: // Update primal variables

for j = 1, . . . , p do
// Update in the block γ

F = βj // Gradient w.r.t. γj

γold
j = γj
γj = max (γj − F, 0)
βj = βj + (γj − γold

j ) // Update primal variables

// Update of the variable µ

F = 1
>β − 1 // Gradient w.r.t. µ

µold = µ
µ = µ− 1

p
F

β = β + (µ− µold)1 // Update primal variables
return β

involve the differentiation of the indicator function ι[0,C] and the non-smooth function
max(0, ·).

In Figure 8.1, we illustrate the difference between using a grid-search method to select the
hyperparameters C and ε and the first order method. The first order method converges
towards the minimum of the MSE on this toy example and only requires an initial points.
The initialization has to be done so that the gradient is not zero, this happens when the
parameter C is chosen too small or ε too large. One can see that the grid search misses the
minimum of the MSE requiring a finer grid to select the best hyperparameters.

Equipped with these tools we can now turn towards applying these methods on real



8.2. VALIDATION ON MICROARRAY DATA 177

−10 0
log(C)

−6

−4

−2

0

lo
g(
ε)

Grid-search

−10 0
log(C)

−6

−4

−2

0
1st order method

0.009
0.013
0.017
0.021
0.026
0.031
0.037
0.045
0.054

M
S

E

Figure 8.1 – Illustration of first order method for hyperparameter selection. Level set
of Mean Squared Error as a function of C and ε for the grid-search method and the first
order method based on implicit differentiation. The crosses represent 25 evaluations of
the Mean Squared Error by each method.

datasets where the goal is to estimate proportions of cells inside a tumor.

8.2 Validation on microarray data

First, we will use microarray datasets as validation for our new method. On this type of
dataset, the state-of-the-art method is called Cibersort (Newman et al., 2015) and is based
on the SVR estimator as described in Chapter 1. The other method that will be considered
is the Simplex Ordinary Least Squares (SOLS), which the OLS estimator with the positivity
and sum-to-one constraints proposed for this application by Gong et al. (2011).

The validation process requires to have access to the ground truth proportions of cells
present inside a tumor. Unfortunately these datasets are rare and a first validation step
consists in using pure transcriptomes from different types of cells and create a semi-
simulated mixture y by using a linear combination of these pure transcriptomes. We will
use the dataset introduced by Abbas et al. (2009) that can be found on the Gene Expression
Omnibus (GEO) (Edgar et al., 2002) under the accession name GSE11103. In this dataset,
there are four different types of cells (Jurkat, IM-9, Raji and THP-1) and 12 mixed samples
with known cells proportions.

As a first experiment, we wanted to assess the robustness of the estimator as it was one
of the main claim about the SVR estimator of Cibersort. We simulated 100 different mix-
tures with known proportions of cells in each of the samples. We added log-Gaussian



178 CHAPTER 8. VALIDATION OF OUR METHOD

0.0

0.5

1.0
S

im
pl

ex
S

V
R

E
st

im
at

ed
R = 0.92
MAE = 0.04

Jurkat
R = 0.93
MAE = 0.03

IM-9
R = 0.96
MAE = 0.04

Raji
R = 0.93
MAE = 0.02

THP1

0.0

0.5

1.0

S
im

pl
ex

L
ea

st
S

qu
ar

es
E

st
im

at
ed

R = 0.08
MAE = 0.35

R = 0.11
MAE = 0.36

R = 0.09
MAE = 0.32

R = -0.05
MAE = 0.43

0.00 0.25 0.50 0.75 1.00
Ground truth

0.0

0.5

1.0

C
ib

er
so

rt
E

st
im

at
ed

R = 0.44
MAE = 0.09

0.00 0.25 0.50 0.75 1.00
Ground truth

R = 0.70
MAE = 0.07

0.00 0.25 0.50 0.75 1.00
Ground truth

R = 0.67
MAE = 0.08

0.00 0.25 0.50 0.75 1.00
Ground truth

R = 0.69
MAE = 0.07

Figure 8.2 – Robustness to noise. Scatter plot of the estimated proportions of cells for
four different types of cells (Jurkat, IM-9, Raji and THP1) as a function of the true pro-
portions. The dashed black line represents the line x = y which would be perfect es-
timation. We compared three different estimators the Simplex Ordinary Least Squares,
the one proposed by Cibersort and our proposed method (Simplex SVR) with automatic
hyperparameters selection.

with σ = 9 to the data as proposed by Newman et al. (2015) and compared the estimation
performance of the SOLS, SVR and our proposed Simplex SVR estimator with automatic
hyperparameters selection. The initial point for the selection of C and ε was set at C0 = 1

and ε0 = 0.1 with 10 outer iterations for the gradient descent to find the best hyperpa-
rameters. The step size for the gradient descent was chosen as suggested in Algorithm 15
i.e., γ = 1

‖∇λL(λ)‖ . The data was normalized following the method described in Nadel et al.
(2021): each row of the concatenated matrix composed ofX ∈ Rn×p and y ∈ Rn is scaled to
have coefficients between 0 and 1. It is done by taking the maximum and the minimum of
each row and then performing the classical min-max scaler on a single row. The interpreta-
tion of this normalization is that each gene has now a comparable influence on the linear
inverse problems, it does not depend on the magnitude of expression anymore.

Figure 8.2 illustrates the benefits of our method. It represents the scatter plots of the esti-
mated proportions as a function of the true proportions for the four different cell types. If
the estimation was perfect, all the points would lie on the line x = y depicted as a dashed
black line on the figure. To compare the different estimators we rely on three different
measures:

• The correlation coefficient (R) between the estimated and the true coefficients.



8.2. VALIDATION ON MICROARRAY DATA 179

0.00 0.25 0.50 0.75 1.00
Tumor content (%)

0.00

0.25

0.50

0.75

1.00
N

oi
se

(x
1

s.
d.

)
Simplex SVR

0.00 0.25 0.50 0.75 1.00
Tumor content (%)

Cibersort

0.00 0.25 0.50 0.75 1.00
Tumor content (%)

Simplex OLS

0.05

0.10

RMSE

0.00 0.25 0.50 0.75 1.00
Tumor content (%)

0.00

0.25

0.50

0.75

1.00

N
oi

se
(x

1
s.

d.
)

Simplex SVR

0.00 0.25 0.50 0.75 1.00
Tumor content (%)

Cibersort

0.00 0.25 0.50 0.75 1.00
Tumor content (%)

Simplex OLS

0.00

0.25

0.50

0.75

R

Figure 8.3 – Robustness to noise and tumor content. Heatmap representing the Root
Mean Squared Error (RMSE) or the correlation coefficient (R) between the true proportions
of cells and the estimated ones as a function of the tumor content percentage (x-axis) and
the level of noise (y-axis). We compared three different estimator the Simplex Support
Vector Regression, Cibersort and the Simplex Ordinary Least Squares.

• The Maximum Absolute Error (MAE) which is obtained as:

MAE =
1

p

p∑
i=1

|β̂j − β?j | ,

where β̂ ∈ Rp are the estimated proportions and β? the true proportions

• The Root Mean Squared Error given by:

RMSE =

√
1

p
‖β̂ − β?‖2 .

It can be noticed that in the presence of heavy-tailed noise, the estimator based on OLS
performs very poorly as it is sensitive to outliers. Our proposed method shows to be more
robust than the method based on the classical SVR estimator with a better correlation
coefficient over the 4 different types of cells and an improvement on the MAE.



180 CHAPTER 8. VALIDATION OF OUR METHOD

To further the validation, an experiment from Newman et al. (2015) was replicated. It aims
at benchmarking different estimators for robustness to noise and unknown content. Dif-
ferent level of noise was added to the dataset GSE11103. The noise follows a log-Gaussian
distribution 2N (0,σ2) where σ is chosen as a percentage of σmax = 11.6 as given in Newman
et al. (2015). We used 30 different percentage on a linear scale between 0 and 1. To sim-
ulate the presence of tumor content mixed with the immune cells, we used a tumor cell
line found under the accession name GSM269529 and GSM269530. We added a percent-
age of tumor content by taking a convex combination between the real mixture and the
tumor content. We increased the coefficient related to the tumor content from 0 to 1 taking
30 different coefficients, equally spaced on a linear scale. This simulation process lead to
900 different datasets, for each of them the ground-truth proportions were known and we
used 25 different mixtures for which the estimation process has to be performed.

Figure 8.3 represents the heatmaps of the RMSE (top) and the correlation coefficient (R,
bottom) calculated between the true proportions and the estimated ones for the 900 datasets.
The increased tumor content is represented on the x-axis and the increased level of noise
on the y-axis. As it can be seen, our proposed method allows a better estimation when
the level of noise increases. The SOLS estimator does not seem to be able to perform well
when the level of noise is above 50% of σmax; for Cibersort it is 80%. Our estimator is able
to give good estimation even when the level of noise is above the 80% of σmax threshold,
this is certainly due to the two facts that have been taken into account in the estimation
process: the natural constraints of being a vector of proportions and the hyperparameters
selection process.

8.3 Validation on RNAseq/sc-RNAseq data

Other methods based on high throughput sequencing, slowly replaced the microarrays
even if this type of data stays largely available in public repositories. The new sequencing
method, called RNA sequencing (RNA-seq), has several advantages over the microarrays.
One of them is the ability of the RNA-seq to detect genes expressed at low level or very
high level, unlike the microarrays which lack sensitivity (Wang et al., 2009). A second
advantage is that the noise level inside the data is significantly reduced in the RNA-seq
data in comparison to microarrays (Zheng, 2019). Moreover, the cost of performing one
RNA-seq greatly decreased in the past decade and RNA-seq has become the preferred
technology to obtain the transcriptome of a cell or a tumor.

A more recent technique, named single cell RNA sequencing (scRNA-seq), is of interest



8.3. VALIDATION ON RNASEQ/SC-RNASEQ DATA 181

for our problem of quantifying cells inside a tumor. This new technology provides the
transcriptome of a single cell in place of the transcriptome of a bulk of cells. This type
of sequencing method leads to a better description of the immune cells that we wish to
quantify. It allows the construction of signature matrices with a better precision because
one can have access to the cells of interest in their environment (like in a tumor for exam-
ple).

Validation on blood samples. Even if the start of this work was the development of a
method for microarray data, we present in this section the developed tools applied on
RNA-seq and scRNA-seq data. Our first validation step involves the quantification of
immune cells in blood samples. Typically, the quantification of cells is easier than in a
tumor for several biological reasons. We used the datasets available on the Gene Expres-
sion Omnibus repository under the accession number GSE127813. It is also available on
the website https://cibersortx.stanford.edu/. In this study, five types of cells
were quantified using flow cytometry for 12 blood samples along side with the RNA-seq
transcriptomes. We used the signature matrix provided on the https://cibersortx.
stanford.edu/ website built from scRNA-seq.

Figure 8.4 presents the scatter plots of the estimated proportions of immune cells for our
proposed method (Simplex SVR) and Cibersort. As it can be seen, the MAE is lower for
Simplex SVR and the estimation is more accurate than Cibersort. The correlation coeffi-
cient (R) is often used in the biostatistic literature to compare methods for the estimation
of cells, here we have an example that shows a method that has a better precision in terms
of absolute error (MAE) but the linear correlation between the estimated proportions and
the ground-truth proportions is lower for our estimator. The improvement is small but it
can be seen that for cells present in low proportions, our algorithm allows a better quan-
tification in comparison to Cibersort on this dataset.

Remark 8.1. The estimation was performed using the batch correction method proposed
by the team that developped Cibersort in Newman et al. (2019). The corrected signature
matrix was obtained using Cibersortx with the S-mode batch correction.

Remark 8.2. We are aware that the comparison for RNA-seq data should be extended to
other methods. The recent literature on this topic has thrived with a large number of
proposed algorithms: Scaden (Menden et al., 2020), Cibersortx (Newman et al., 2019),
Gedit (Nadel et al., 2021), DeconRNAseq (Gong and Szustakowski, 2013), Music (Wang
et al., 2019) is only a short list of available tools to perform the estimation of cells inside
a tumor. Here, our main claim is not the outperformance of all these methods but to

https://cibersortx.stanford.edu/
https://cibersortx.stanford.edu/
https://cibersortx.stanford.edu/


182 CHAPTER 8. VALIDATION OF OUR METHOD

CD8 T-cells

Monocytes

CD4 T-cells

NK cells

B-cells

0.0 0.2 0.4 0.6
Ground Truth

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

E
st

im
at

ed
pr

op
or

ti
on

s R = 0.72
MAE = 0.06

Simplex SVR

0.0 0.2 0.4 0.6
Ground Truth

R = 0.89
MAE = 0.09

Cibersort

Figure 8.4 – Scatter plot of the estimated cells proportions obtained by the Simplex Sup-
port Vector Regression method (left) and Cibersort (right) as a function of the ground-
truth proportions on the PBMC dataset (GSE127813). The estimation process was per-
formed using the S-mode batch correction method implemented in Cibersortx. The
correlation coefficient (R) and the Maximum Absolute Error (MAE) are two measures of
performance to compare the two methods.

show that there is room for improvement in taking mathematical theory into account for
a specific application.

The promising results on blood samples will have to be validated on tumor samples for
which we have access to the RNA-seq transcriptome of the tumors and the ground-truth
proportions of immune cells of interest. This is a current project with a cancer institute
where we designed a study to validate the estimation methods on samples coming from
patients suffering from a colon cancer. For each patient, we will have access to

• the transcriptomes of single cells of interest to construct the signature matrix via
scRNA-seq,

• the transcriptomes of the tumors on which the estimation process will be performed
(RNA-seq),

• the proportions of cells measured by cytometry which will be considered as the



8.4. CLINICAL APPLICATION 183

ground-truth.

This study will allow us to have the final stage of validation for our proposed method and
to see how it compares to the large number of tools mentioned in Remark 8.2.

We want to mention that when using our estimator on mixture reconstituted from scRNA-
seq data as studied in Newman et al. (2019), the estimation performance of our proposed
method was worse than Cibersort. We tested the two methods on the datasets coming
from head and neck squamous cell carcinomas (Puram et al., 2017) which includes18 pa-
tients and the melanoma datasets (Tirosh et al., 2016) with 19 patients. The bad perfor-
mance on these types of mixtures could be explained by different facts: the construction
of the signature matrix, the normalization techniques used on the signature and on the
mixture matrices or the selection of hyperparameters that fails at finding a good estimator
in terms of estimation performance.

Nevertheless, the end-point application of this methodology would be to build signature
matrices from scRNA-seq for each tumor types as we assume that the transcriptome of an
immune cells will not be too different from one patient to another when they are located in
the same organ. Then, a RNA-seq would be performed for each patient and the estimation
process would be used on this RNA-seq transcriptome. The price of a RNA-seq remains
significantly lower than scRNA-seq, this has to be taken into account to imagine that the
whole process could be used for clinical purposes and not only for research. In the end,
the goal is to estimate the proportions of cells coming from bulk RNA-seq.

8.4 Clinical application

This section is dedicated to showing how the estimation of cells proportions can be used
for clinical purposes. We want to draw the attention of the readers towards the fact that
the following results were obtained without the automatic hyperparameters selection de-
scribed in Chapter 7 and the hyperparameters were chosen using grid-search. This work
has lead to an article that is currently under review.

From public datasets repositories, we had access to 2800 microarray transcriptomes of pa-
tients suffering from breast cancer. Our goal was to study the impact of different immune
cells on the progression of the cancer and see if the estimation of cells proportions within
the tumor could bring any valuable information. We estimated the cells proportions of 15
different immune cells that we will not be detailed here but their names are given at the
top of Figure 8.5.



184 CHAPTER 8. VALIDATION OF OUR METHOD
Figure 3:

HG

Figure 8.5 – Estimated cells proportions of 15 immune cells. Bar graph representing
the average estimation of cells proportions in the different groups of ER status (left) and
PAM50 (right).

An important element for the following is that there exists different classification of breast
cancer that will give a direction for the oncologists to choose a treatment. The pam50
classification (Parker et al., 2009) divides the patients in four different subgroups: the
Luminal A, Luminal B, Basal and Her2. Typically, the Luminal B and Basal are the tumors
with the worst prognosis and the Her2 tumors are treated by hormone therapy. Another
classification exists and split the patients in two groups: ER+ or ER- based on the estrogen
receptor.

Figure 8.5 represents the average cells proportions estimated within each of the different
tumor subgroups. The total of the immune cells does not sum-up to one because the
tumor content was taken into account and not represented on the figure. It can be seen
that the HER2 and Basal tumors are generally more infiltrated with immune cells than the
Luminal tumors. These results corroborate the existing literature (Gao et al., 2020) on the
infiltration of immune cells in breast cancer subtypes. An important observation is that
within each subtypes there were differences between patients with the same tumor type.
This fact has driven us to consider the estimation of cells proportions as a valuable piece
of information to estimate the prognosis of each patient which is normally based only the
classification and some clinical variables.

Then we used a Cox regression model (Cox, 1972) including clinical variables, the pam50
classification and the information about the different immune cells proportions estimated
via the Simplex SVR estimator. From this Cox model, we could estimate for each patient



8.4. CLINICAL APPLICATION 185

Figure 4

D

A

0.5
0

0.5
5

0.6
0

0.6
5

0.7
0

Pam50

TIC

Clinical

Pam50+Clinical

Clinical+TIC

TIC+pam50

Pam50+Clinical+TIC

C-index

0.5 0.6 0.7 0.8

Clinical

Pam50

TIC

Clinical + Pam50

Clinical + TIC

TIC+pam50

Clinical + Pam50 + TIC

C-index

CB

Figure 8.6 – Estimation of the relapse probability score. Scatter plot of the Relapse
probability at 5 years of each patient of the whole cohort in each of the PAM50 groups.
The points were colored based on the classification obtained via our model combining all
three types of available information (clinical + PAM50 + cells proportions). The patients
with low, medium and high risk of relapse according to our final model (using tertiles
as the threshold) appears respectively in blue, grey and yellow, distinguishing different
outcomes in each PAM50 tumor group.

the probability of relapse. Figure 8.6 represents the probability estimated for each patient
and for the four different tumor subgroups. The score was split in three groups using
tertiles: high group, medium and low. It is important to see that our model is able to
find patients in the Luminal A group that have a probability of relapse equals or higher
to patients in the Basal group. Typically, the Luminal A group was considered as the best
prognosis and only light treatment was proposed to the patients. These results highlight
the fact that the pam50 classification does not catch all the specificities of the tumors and
that the immune cells proportions help distinguishing the patients that have more chance
to relapse and refine the classical classification.

To illustrate and confirm these results, we represented in Figure 8.7 the estimation of the
Kaplan Meier curve for the relapse free survival probability as a function of the time (in
years). The left Kaplan-Meier curve was obtained on the training cohort (836 patients),
the one used for the estimation of the Cox regression model and the right curves are the
results obtained on a independent cohort (399 patients) used as a validation set. The
total of patients does not reach the 2800 mentioned earlier for the descriptive results in
Figure 8.5 because there was missing data in the clinical information available. This curve
shows the relapse free survival (RFS) for the three different groups built from the Cox
model including clinical variables, pam50 classification and proportions of cells. We can



186 CHAPTER 8. VALIDATION OF OUR METHOD

0 2 4 6 8 10
0

25

50

75

100

Time (years)

R
el

ap
se

 F
re

e 
su

rv
iv

al
pr

ob
ab

ili
tie

s 
(%

)

High

Low
Medium

p<0.0001
HR=0.50

p<0.0001
HR=0.30

p<0.0001
HR=0.59

0 2 4 6 8 10
0

25

50

75

100

Time (years)

R
el

ap
se

 F
re

e 
su

rv
iv

al
pr

ob
ab

ili
tie

s 
(%

)

High

Low

Medium
p=0.001
HR=0.50

p<0.0001
HR=0.25

p<0.0001
HR=0.48

N° at risk

High

Low

Medium

0 2 4 6 8 10

279

286

271

221

255

257

154

215

229

118

172

196

75

135

154

49

101

119

N° at risk

High

Low

Medium

0 2 4 6 8 10

195

176

200

164

167

194

106

141

176

77

107

148

48

79

116

29

58

87

0 2 4 6 8 10
0

25

50

75

100

Time (years)

R
el

ap
se

 F
re

e 
su

rv
iv

al
pr

ob
ab

ili
tie

s 
(%

)

High

Low

Medium p=0.08
HR=0.51

p=0.004
HR=0.35

p=0.14
HR=0.66

N° at risk

High

Low

Medium

0 2 4 6 8 10

42

59

38

32

48

35

27

40

28

23

37

26

20

31

17

15

26

16

0 2 4 6 8 10
0

25

50

75

100

Time (years)

R
el

ap
se

 F
re

e 
su

rv
iv

al
pr

ob
ab

ili
tie

s 
(%

)

High

Low

Medium
p=0.18
HR=0.62

p=0.11
HR=0.56

p=0.76
HR=0.91

N° at risk

High

Low

Medium

0 2 4 6 8 10

42

51

33

26

41

29

23

35

27

20

29

23

8

26

20

5

17

16

A B

C D

Figure 5
Whole population ER+/HER2- population 

ER-/HER2- HER2+

0 2 4 6 8 10
0

25

50

75

100

Time (years)

R
el

ap
se

 F
re

e 
su

rv
iv

al
pr

ob
ab

ili
tie

s 
(%

)

High

Low
Medium p=0.02

HR=0.52

p<0.0001
HR=0.27

p=0.001
HR=0.52

0 2 4 6 8 10
0

25

50

75

100

Time (years)

R
el

ap
se

 F
re

e 
su

rv
iv

al
pr

ob
ab

ili
tie

s 
(%

)

High

Low

Medium
p=0.02
HR=0.46

p<0.0001
HR=0.29

p=0.09
HR=0.65

0 2 4 6 8 10
0

25

50

75

100

Time (years)

R
el

ap
se

 F
re

e 
su

rv
iv

al
pr

ob
ab

ili
tie

s 
(%

)

High

Low
Medium p=0.86

HR=1.14

p=0.01
HR=0.25

p=0.007
HR=0.29

0 2 4 6 8 10
0

25

50

75

100

Time (years)

R
el

ap
se

 F
re

e 
su

rv
iv

al
pr

ob
ab

ili
tie

s 
(%

)

High

Low
Medium p=0.53

HR=0.58

p=0.33
HR=0.48

p=0.12
HR=0.81

A B

C D

N° at risk

High

Low

Medium

0 2 4 6 8 10

82

99

104

70

88

96

47

70

76

31

56

58

18

40

35

10

16

15

N° at risk

High

Low

Medium

0 2 4 6 8 10

24

11

9

19

11

9

15

8

8

9

5

7

6

5

4

3

3

2

N° at risk

High

Low

Medium

0 2 4 6 8 10

36

21

13

25

19

13

12

17

10

8

15

4

2

10

2

1

5

1

N° at risk

High

Low

Medium

0 2 4 6 8 10

142

131

126

112

117

117

71

93

93

48

74

67

28

54

41

13

24

17

0 2 4 6 8 10
0

25

50

75

100

Time (years)

R
el

ap
se

 F
re

e 
su

rv
iv

al
pr

ob
ab

ili
tie

s 
(%

)

High

Low
Medium

p<0.0001
HR=0.50

p<0.0001
HR=0.30

p<0.0001
HR=0.59

0 2 4 6 8 10
0

25

50

75

100

Time (years)

R
el

ap
se

 F
re

e 
su

rv
iv

al
pr

ob
ab

ili
tie

s 
(%

)

High

Low

Medium
p=0.001
HR=0.50

p<0.0001
HR=0.25

p<0.0001
HR=0.48

N° at risk

High

Low

Medium

0 2 4 6 8 10

279

286

271

221

255

257

154

215

229

118

172

196

75

135

154

49

101

119

N° at risk

High

Low

Medium

0 2 4 6 8 10

195

176

200

164

167

194

106

141

176

77

107

148

48

79

116

29

58

87

0 2 4 6 8 10
0

25

50

75

100

Time (years)

R
el

ap
se

 F
re

e 
su

rv
iv

al
pr

ob
ab

ili
tie

s 
(%

)

High

Low

Medium p=0.08
HR=0.51

p=0.004
HR=0.35

p=0.14
HR=0.66

N° at risk

High

Low

Medium

0 2 4 6 8 10

42

59

38

32

48

35

27

40

28

23

37

26

20

31

17

15

26

16

0 2 4 6 8 10
0

25

50

75

100

Time (years)

R
el

ap
se

 F
re

e 
su

rv
iv

al
pr

ob
ab

ili
tie

s 
(%

)

High

Low

Medium
p=0.18
HR=0.62

p=0.11
HR=0.56

p=0.76
HR=0.91

N° at risk

High

Low

Medium

0 2 4 6 8 10

42

51

33

26

41

29

23

35

27

20

29

23

8

26

20

5

17

16

A B

C D

Figure 5
Whole population ER+/HER2- population 

ER-/HER2- HER2+

Training cohort Validation cohort

Figure 8.7 – Relapse Free Survival Kaplan-Meier curves. Kaplan-Meier estimates for
relapse free survival; patients from the training cohort were stratified according to the
score obtained from the Cox model combining clinical variables, PAM50 classification and
immune cell estimations, using tertiles as thresholds. Graphs are presented for all patients
of the training cohort (left) and validation cohort (right).

see that the differences between the different groups created are significant. The logrank
test compares two survival curves and tests if they are significantly different, the p-values
on Figure 8.7 are the results of logrank tests comparing each group 2 by 2. The hazard
ratio (HR) between the different groups is also shown. Note that a hazard ratio smaller
than one means that the considered group has a better prognosis than the group against
which it is compared. These results illustrate the fact that immune cells proportions bring
information for the classification of patients suffering from breast cancer.



9 CONCLUSION

This thesis focused in developing new methods to estimate the proportions of immune
cells present inside a tumor from genomic data. The first part of it was dedicated to study-
ing several convergence properties of an optimization algorithm in a non-smooth setting:
the coordinate descent. We proved that the vanilla cyclic coordinate descent enjoys a finite
model identification property and thanks to this property we could prove local linear con-
vergence property once the model is identified (Chapter 3). These two theoretical results
were illustrated on popular estimators (Lasso, sparse logistic regression and SVM dual)
and popular machine learning datasets. Then, we proposed a variant of the coordinate
descent algorithm to solve a linearly constrained Support Vector Regression optimization
problem and proved its convergence towards a solution (Chapter 4). This algorithm uses
a coordinate descent strategy where a closed-form of the updates were defined. The pro-
posed algorithm is easy to implement and shows good performance in practice.

The second part studies the problem of setting hyperparameters in non-smooth machine
learning models. We first studied the computation of the gradient with respect to the
hyperparameters for which we derived an implicit formula using implicit differentiation
(Chapter 6). This implicit differentiation formula takes advantage of the sparsity of the
estimator to speed-up the computation of the gradient. We showed that our proposed
algorithm outperforms generic differentiation packages or iterative differentiation tech-
niques. In Chapter 7, we showed the interest of first-order techniques to solve the bilevel
optimization problem related to the setting of hyperparameters on a wide range of esti-
mators (`1 penalized methods, SVM, etc.) and datasets. We showed that our first order
method can lead to significant benefits mainly when the number of hyperparameters is
large. Finally, we proposed a new method to estimate the proportions of cells inside a tu-
mor using the results obtained in previous chapters leading to a better estimation perfor-
mance in comparison to the state-of-the-art methods on microarray data (Chapter 8).

The results obtained have given a theoretical background to the method proposed for the

187



188 CHAPTER 9. CONCLUSION

estimation of cells proportions. The natural constraints arising from the estimation of pro-
portions can now be directly taken into account in the estimation process thanks to our
work on the constrained Support Vector Regression. Another important challenge allevi-
ated by our work was the hyperparameters selection for the Support Vector Regression
problem. This process was eased by the proposed first order method to set the hyper-
parameters of generic machine learning models. We believe that the questions coming
from the biomedical application have lead us to answer more generic questions. The
results of this thesis can be applied and useful to various problems and machine learn-
ing users. For example the proposed algorithm to solve the linearly constrained Support
Vector optimization problem can be used to solve generic constraints that can be written
as a polyhedron. Furthermore, the theory and practical methodology developed around
hyperparameters setting can be used for a wide range of non-smooth models and have
showed to be a fast and efficient way to select hyperparameters.

Several questions of interest remain in the continuity of our work.

Results for block coordinate descent. Our result on local linear convergence of the co-
ordinate descent algorithm does not cover the case of block coordinate descent. In this
case the non-smooth optimization problem considered writes:

x? ∈ arg min
x∈Rp

f(x) +
∑
b∈B

gb(xb) , (9.1)

where B = (b1, . . . , bK) is a disjoint partition of [p]. The group Lasso (Yuan and Lin, 2006)
is an example of an optimization problem that can be written as in Equation (9.1) with
f(x) = ‖Ax − y‖2 and gb(xb) = λ‖xb‖, with A ∈ Rn×p, y ∈ Rn and λ > 0. In this case, the
non-smooth term of the composite minimization problem is block separable. We believe
that our results on support identification and local linear convergence can be extended
to the block separable case. The group Lasso penalty is a partly smooth function (Vaiter
et al., 2018) which would allow us to use the identification theorem from Hare and Lewis
(2004, Thm. 5.3) to prove model identification. However, proving local linear convergence
requires to study the differentiability of the proximal operator for a group of variables and
not for a single variable which would require a more careful analysis.

Resolution of the bilevel optimization problem. In Chapter 7, we used the fact that
the hyperparameter selection with respect to a criterion could be written as a bilevel opti-



189

mization problem:
arg min
λ∈Rr

{
L(λ) , C

(
β̂(λ)

)}
s.t. β̂(λ) ∈ arg min

β∈Rp
Φ(β, λ) .

(9.2)

As already mentioned in Chapter 7, we have no convergence guarantees towards a so-
lution of the optimization problem when the lower optimization problem is not smooth.
This remains an opened question which appears to be very difficult to answer for the
moment.

Applying our method for clinical purposes. To extend the validation of our method on
the estimation of immune cells, we would need genomic data with ground-truth propor-
tions. An ongoing work with the cancer institute Georges François Leclerc in Dijon will
try to further the validation on a study that was especially designed for this purpose. This
study will provide samples with ground truth immune cells proportions from patients
that are being cured from colon cancer in the cancer institute. The true proportions of
cells will be assessed by flow cytometry and the transcriptome of the same sample will be
sequenced to obtain the gene expression of the tumor. After the estimation process, we
will be able to compare the proportions obtained by flow cytometry (considered as the
ground truth) and the estimated ones from the genomic data.

Moreover, the end of Chapter 8 shows the potential clinical use of our proposed method.
Our analysis reveals that the information about the proportions of immune cells can be
valuable to assess the risk of relapse in breast cancer. It was also shown to be a valuable
information to predict the prognosis of patients suffering from a brain cancer (glioblas-
toma) in Klopfenstein et al. (2019). A natural extension would be to consider other types
of cancer such as colon cancer tumors, which are known to be highly infiltrated in immune
cells.

Automatic signature matrix construction. As stated in Chapter 1, this thesis was fo-
cused on the estimation process for the linear inverse problem arising from a biological
quantification problem. For this particular application, the design matrix, containing the
pure signals of the cells that we wish to quantify, has to be manually built as a prepro-
cessing step. Currently, this step involves a differential genes expression analysis to select
the genes that are overexpressed in a cell in comparison to all the other cells. The started
assumption was to consider that this matrix was known and fixed.

The gene selection process is decoupled from the estimation step which means that the



190 CHAPTER 9. CONCLUSION

genes selected are not the genes that would lead to the best estimation in some sense
but only the significant genes remaining from the differential gene expression analysis.
We can imagine a model where we select the genes of the matrix X at the same time as
performing the estimation of the quantity of cells.

A first idea would be to control the condition number of the matrix X . This is done
manually as suggested by Newman et al. (2015). A constraint on the condition number
of the design matrix can possibly be added in the optimization problem as considered for
the covariance matrix estimation process by Oh et al. (2015).



RÉSUMÉ DES TRAVAUX

1 Contexte

Le cancer est un problème majeur de notre société avec de nouvelles statistiques donnant
plus de 17 millions de nouveaux cas au niveau mondial en 2020 (Sung et al., 2021). De
récentes recherches dans le domaine médical suggèrent que chaque cancer est unique et
qu’il faut donc trouver le traitement le mieux adapté à chaque patient au lieu de traiter
les différents types de cancer de la même manière, c’est ce qu’on appelle la médecine
personnalisée.

L’immunothérapie est un type de traitement contre le cancer qui existe depuis une dizaine
d’années et qui a pour but d’utiliser le système immunitaire du patient pour combattre le
cancer. Ce type de traitement est très prometteur mais malheureusement une faible pro-
portion de patients répond favorablement au traitement. Une des pistes de recherche
actives est de mieux comprendre pourquoi ces patients répondent ou ne répondent pas à
l’immunothérapie et de pouvoir identifier en amont du traitement les patients qui répondront
ou non. Une des clés pour répondre à ce problème est de pouvoir décrire l’environnement
tumoral de manière précise et de pouvoir comprendre les intéractions entre les cellules
immunitaires qui pourraient influencer l’efficacité du traitement.

Une tumeur est un amas de différents types de cellules, dont parfois des cellules de
notre système immunitaires. Il est important d’avoir accès à l’information concernant
la quantité de ces cellules immunitaires au sein de la tumeur et de pouvoir quantifier les
différentes familles de cellules présentes. Une des manières de quantifier ces cellules est
d’utiliser des données génomiques.

La modélisation est la suivante: le signal ARN venant de la tumeur est vu comme un
signal brouillé composé de différents signaux provenant des différents types de cellules
qui la composent. L’hypothèse est que la relation entre ces signaux purs et le signal de la

191



192 CHAPTER 9. CONCLUSION

Figure 1 – Problème inverse linéaire. Schéma représentant la dépendance linéaire entre
le signal ADN venant de la tumeur et les signaux pures provenant des cellules qui la
composent.

tumeur est une relation linéaire. Trouver les proportions de cellules contenues au sein de
la tumeur revient alors à un problème inverse linéaire comme l’illustre la Figure 1.

Nous nous intéressons à l’estimation de ces proportions une fois les signaux purs et le
signal de la tumeur obtenue.

2 État de l’art

Une des méthodes les plus utilisées pour cette estimation est une méthode appelée Ciber-
sort (Newman et al., 2015). Le processus d’estimation est basé sur la Support Vector Re-
gression (Schölkopf et al., 1999) qui est le résultat du problème d’optimisation suivant



3. RÉSOLUTION DU PROBLÈME D’OPTIMISATION 193

:

β̂SVR ∈ arg min
β,β0,ξi,ξ∗i ,ε

1

2
||β||2 + C(νε+

1

n

n∑
i=1

(ξi + ξ∗i )) (3)

sujet à yi −Xi:β − β0 ≤ ε+ ξi

Xi:β + β0 − yi ≤ ε+ ξ∗i

ξi, ξ
∗
i ≥ 0, ε ≥ 0 .

Cet estimateur dépend de deux hyperparamètres C > 0 et ν ∈ [0, 1]. Nous considérons
que ce processus d’estimation pourrait être amélioré pour deux raisons principales. La
première, Cibersort ne tient pas compte des contraintes sous-jacentes à l’estimation de
proportions, c’est-à-dire, la positivité des coefficients et que leur somme est égale à un.
Nous proposons d’étudier l’ajout de ces contraintes dans la Support Vector Regression. La
deuxième piste d’amélioration concerne la sélection des hyperparamètres pour l’estimation,
pour le moment le paramètre C est fixe et toujours égale à un et ν peut prendre trois
valeurs différentes 0.25, 0.5, 0.75, la valeur retenue est celle qui minimise l’erreur quadra-
tique moyenne.

Ces questions résument les axes de recherche principaux de cette thèse :

• Peut-on résoudre la Support Vector Regression avec les contraintes de propor-
tions avec un algorithme rapide et avoir des guaranties de convergence vers une
solution ?

• Peut-on simplifier le processus de sélection d’hyperparamètres pour éviter la
grid-search qui est coûteuse pour deux hyperparamètres ?

• Finalement, est-ce que la prise en compte des contraintes et le fait de choisir
les hyperparamètres de manière plus précise permet d’améliorer la qualité de
l’estimation ?

3 Résolution du problème d’optimisation

Le problème d’optimisation de la Support Vector Regression (SVR) est souvent résolu en
utilisant un algorithme qui s’appelle la descente par coordonnées. Généralement, la de-
scente par coordonnées est utilisée dans le problème d’optimisation dual comme proposé
par Ho and Lin (2012). La version proximale de cet algorithme permet de résoudre effi-



194 CHAPTER 9. CONCLUSION

cacement les problèmes de minimisation composés qui ont la forme suivante :

x? ∈ arg min
x∈Rp

f(x) +

p∑
j=1

gj(xj) , (4)

où f est une fonction lisse, c’est-à-dire que son gradient est Lipschitz, et les fonctions gj
sont convexes (possiblement non-différentiables).

Plusieurs estimateurs utilisés pour des tâches de régression ou de classification sont obtenus
en résolvant un problème d’optimisation qui s’écrit sous la forme de Equation (4): le Lasso
(Tibshirani, 1996), le problème de elastic net (Zou and Hastie, 2005), la régression logis-
tique parcimonieuse (Koh et al., 2007) et les problèmes de Support Vector Machine (SVM)
et SVR (Boser et al., 1992; Schölkopf et al., 1999).

3.1 Convergence linéaire local pour la descente par coordonnées

Ces problèmes d’optimisation non-lisses provenant du domaine de l’apprentissage au-
tomatique génèrent des solutions qui sont structurées. Par exemple, la régularisation
parcimonieuse de la norme `1, où tous les gj = | · |, donne des solutions qui ont seule-
ment quelques coefficients non-nuls. La structure induite par la norme `1 est portée par
la notion de support qui est l’ensemble des indices correspondant aux coefficients non-
nuls de la solution. Cette notion de support peut être généralisée pour des fonctions gj
convexes.

Définition 1 (Support généralisé). Le support généralisé Sx ⊆ {1, . . . , p} est l’ensemble des
indices j ∈ {1, . . . , p} où gj est différentiable en xj :

Sx , {j ∈ {1, . . . , p : ∂gj(xj) est un singleton.} .

La descente par coordonnées est un algorithme itératif ce qui implique que le problème
d’optimisation est résolu à une certaines précision. Une question importante est de savoir
si cet algorithme itératif est capable d’identifier le bon support après un nombre fini
d’itérations ? En d’autres termes, est-ce qu’il existe une itération K > 0 telle que pour
tout k ≥ K, nous ayons x(k)

Sx? = x?Sx? avec x? qui est une solution de Equation (4). La pro-
priété d’identification du support après un nombre fini d’itérations pour la descente par
coordonnées a été prouvée par Nutini et al. (2017, Lemme 3) et un résultat similaire avec
une technique de preuve différente est prouvé dans le Chapitre 3. De plus, la descente
de gradient proximale a une convergence linéaire une fois que le support a été identifié



3. RÉSOLUTION DU PROBLÈME D’OPTIMISATION 195

(Liang et al., 2014). Nous prouvons que cela est le cas également pour la descente par
coordonnées.

Contribution principale. Afin d’étudier la convergence locale de la descente par coor-
données, nous considérons l’équation de point fixe d’une époque (une époque est une
mise à jour de chacune des coordonnées). Une époque de descente par coordonnées peut
s’écrire :

x(k+1) = ψ(x(k)) , Pp ◦ . . . ◦ P1(x(k)) , (5)

où les Pj sont les applications coordonnées par coordonnées de l’opérateur proximal Pj :

Rp → Rp and γj > 0:

x 7→



x1

...
xj−1

proxγjgj
(
xj − γj∇jf(x)

)
xj+1

...
xp


.

Le théorème suivant montre qu’après l’identification du support l’algorithme de descente
par coordonnées converge linéairement vers la solution du problème d’optimisation Equa-
tion (4).

Théorème 1 (Convergence linéaire locale). Considérons une solution x? de Equation (4) et
S = Sx? . Supposons que

1. La solution est non-dégénérée i.e., −∇f(x?) ∈ ri(∂g(x?)) où ri(C) est l’intérieur relatif1

d’un ensemble convexe C et ∂g est le sous-différentiel de g.

2. Pour tout j ∈ S, gj est localement C2 et f est localement C2 autour de x?.

3. La condition d’injectivité restreinte est vérifiée i.e., ∇2
S,Sf(x?) � 0 (la Hessienne est re-

streinte aux lignes et aux colonnes dont les indices sont dans S.)

4. La suite (x(k))k≥0 générée par l’algorithme de descente par coordonnées converge vers x?.

1voir Definition 2.10 dans le Chapitre 2.



196 CHAPTER 9. CONCLUSION

practical rate theoretical rate model identification

0 50 100

100

10°5

10°10

∏
m

ax
/2

||x
(k

)
°

x
?
|| leukemia

0 25 50

gisette

0 10 20

real-sim

0 20

rcv1

0 200

100

10°5

10°10

∏
m

ax
/5

||x
(k

)
°

x
?
||

0 100 0 25 0 100

0 200

100

10°5

10°10

∏
m

ax
/1

0

||x
(k

)
°

x
?
||

0 200 400 0 50 0 200

0 250 500
iteration k

100

10°5

10°10

∏
m

ax
/1

5

||x
(k

)
°

x
?
||

0 1000
iteration k

0 100
iteration k

0 200
iteration k

Figure 2 – Lasso, convergence linéaire. Distance à l’optimum, ‖x(k) − x?‖, en fonction
du nombre d’itérations k, sur 4 jeux de données: leukemia, gisette, rcv1, et real-sim. Le
paramètre de régularisation a été choisi proportionnellement à λmax = ‖A>b‖

2n
.

5. Le support a été identifié i.e., il existe K ≥ 0 tel que pour tout k ≥ K

x
(k)
Sc = x?Sc .

Alors (x(k))k≥K converge linéairement vers x?. Plus précisément, pour tout ν ∈ [ρ(JψS,S(x?)), 1[,
il existe une constante C tels que pour tout k ≥ K,

‖x(k)
S − x?S‖ ≤ Cν(k−K)‖x(K)

S − x?S‖ .

On désigne par J f(x) la Jacobienne d’une fonction f au point x et ρ(M) correspond au
rayon spectral de la matrice M .

Nous avons montré sur plusieurs jeux de données réels que le taux de convergence obtenu
théoriquement dans le Théorème 1 correspond au taux de convergence empirique comme
montré sur la Figure 2 pour le cas du Lasso où f(x) = 1

2n
‖Ax − b‖2, avec A ∈ Rn×p et

b ∈ Rn, et gj(xj) = λ|xj| pour λ > 0. Ce théorème est prouvé au Chapitre 3.

Relation avec la littérature. La convergence linéaire locale a été prouvée pour les al-
gorithmes ISTA et FISTA pour le problème du Lasso (Tao et al., 2016) en étudiant les
propriétés spectrales de la matrice de récurrence utilisée pour les mises à jour des deux
algorithmes. Ce résultat a ensuite été étendu à l’algorithme générique de la descente de
gradient proximal par Liang et al. (2014) en supposant que la fonction non-différentiable
g était partiellement lisse. La classe des fonctions partiellement lisses a été définis par



3. RÉSOLUTION DU PROBLÈME D’OPTIMISATION 197

Lewis (2002) et regroupe la plupart des fonctions non-lisses utilisées en apprentissage
automatique. Elle définit rigoureusement la structure dont nous avons parlé dans le
cas des problèmes d’optimisation non-lisses. Dans notre travail, nous avons considéré
l’algorithme de descente par coordonnées avec l’hypothèses que g est séparable i.e., g(x) =∑p

i=1 gj(xj). Pour une solution x? de Equation (4), nous avons montré que la classe des
fonctions séparables qui sont C2 sur le support Sx? en x? est équivalent au fait que ces
fonctions sont partiellement lisses. Théorème 1 montre que la descente par coordonnées a
une convergence linéaire une fois le support identifié tout comme la descente de gradient
proximale. La convergence linéaire locale a également été montrée pour les algorithmes
SAGA et prox-SVRG par Poon et al. (2018) avec le même cadre de fonctions partiellement
lisses.

Ce comportement de convergence localement linéaire soulève la question de la vitesse
d’identification de cette structure induite par la fonction non-lisse g. Cette notion est aussi
connue comme étant la complexité de l’ensemble actif défini dans Nutini et al. (2019).
C’est le nombre d’itération nécessaire pour identifier le support. Sous l’hypothèse que g
est séparable, Nutini et al. (2019) ont donné une borne sur le nombre d’itération nécessaire
pour la descente de gradient proximale pour identifier la structure. Ce résultat a ensuite
était étendu pour les problèmes de minimisation avec f fortement convexe et g séparable
pour la descente par coordonnées cyclique et gloutonne. Dans notre travail, nous mon-
trons seulement que le régime de convergence linéaire local arrive après l’identification du
support mais nous ne montrons pas que ce régime débute immédiatement après l’identification
même si cela semble être le cas en pratique.

3.2 Algorithme pour la résolution de la Support Vector Regression sous

contraintes

La Support Vector Regression (SVR) est très utilisée pour l’estimation de fonctions linéaires
ou non-linéaires. Nous souhaitons étudier l’ajout de contraintes linéaires à l’estimateur
ν-SVR (Schölkopf et al., 1999) afin notamment de pouvoir ajouter les contraintes liées à
l’estimation de proportions. Le problème d’optimisation que nous cherchons à résoudre,
pour une matrice de design X ∈ Rn×p et un vecteur d’observations y ∈ Rn, s’écrit :



198 CHAPTER 9. CONCLUSION

min
β,β0,ξi,ξ∗i ,ε

1

2
||β||2 + C

(
νε+

1

n

n∑
i=1

Lε(yi, Xi:β)

)
(LSVR-P)

sujet à ξi, ξ
∗
i ≥ 0, ε ≥ 0

Aβ ≤ b

Γβ = d ,

où A ∈ Rk1×p, Γ ∈ Rk2×p, β ∈ Rp, ξ, ξ∗ ∈ Rn et β0 ∈ R, ε > 0.

Par exemple, si A = − Idp, b = 0, Γ = 0 et d = 0, une contrainte de positivité est ajoutée sur
les coefficients de β. Cet estimateur peut être vu comme une alternative de l’estimateur
des moindres carrés avec des contraintes de positivités (Lawson and Hanson, 1995). En
considérant A = − Idp, b = 0, Γ = (1, . . . , 1) et d = 1, nous obtenons la Simplex SVR avec
des contraintes de positivité et que la somme des coefficients soit égale à 1.

Le problème d’optimisation de la SVR sans contraintes linéaires générales est souvent
résolu dans son dual en utilisant la descente par coordonnées (Ho and Lin, 2012) ou un
algorithme appelé Sequential Minimal Optimization (SMO) (Platt, 1999) qui est une vari-
ante de la descente par coordonnées. Le problème dual de Equation (LSVR-P) sera décrit
explicitement dans le Chapitre 4 mais peut s’écrire :

min
θ∈R2n+k1+k2

f(θ) =
1

2
θ>Qθ + l>θ (LSVR-D)

sujet à 0 ≤ θi ≤
C

n
,∀i ∈ {1, . . . , 2n}

2n∑
i=1

θi = Cν

n∑
i=1

θi − θi+n = 0

θi ≥ 0,∀i ∈ {2n+ 1, . . . , 2n+ k1} ,

avec Q une matrice semi-définie positive.

Les deux contraintes d’égalité dans Equation (LSVR-D) relient des variables entre elles, ce
qui donne un problème d’optimisation non-séparable. L’algorithme SMO met à jour deux
variables à chaque itération en s’assurant que les deux contraintes d’égalité sont satisfaites



3. RÉSOLUTION DU PROBLÈME D’OPTIMISATION 199

après chaque itération.

Contribution principale. Nous prouvons que le problème d’optimisation de la ν-SVR
sous contraintes linéaires est un problème convexe qui mélange des blocs de variables
séparables et non-séparables. Nous proposons dans le Chapitre 4 une généralisation de
l’algorithme SMO proposé par Platt (1999) afin de résoudre Equation (LSVR-D). Nous
prouvons également le théorème de convergence suivant :

Théorème 2. Supposons que {x ∈ Rp : Ax ≤ b,Γx = d} définisse un polyèdre non-vide. Alors
la suite des itérées (θk)k≥0, définie par le SMO généralisé, converge vers une solution du problème
d’optimisation Equation (LSVR-D).

Les détails de l’algorithme proposé et la preuve de convergence sont donnés dans le Cha-
pitre 4.

Relation avec la littérature. La convergence de l’algorithme SMO a été prouvé par Keerthi
and Gilbert (2002). Plus tard, Lopez and Dorronsoro (2012) ont proposé une preuve de
convergence plus simple. Dans le Chapitre 4, nous montrons que la technique de preuve
utilisée dans Lopez and Dorronsoro (2012) peut être généralisée aux problèmes avec les
contraintes linéaires en utilisant de nouveaux arguments. Concernant la vitesse de con-
vergence, She and Schmidt (2017) ont montré que la convergence était linéaire lorsque la
sélection des blocs est faite aléatoirement avec la même probabilité pour chacun des blocs.
L’algorithme que nous proposons est un algorithme glouton qui sélectionne une paire de
variables (ou une seule variable) à mettre à jour. Le choix est basé sur un score qui est lié
aux conditions d’optimalité de Karush–Kuhn–Tucker (KKT).

Les garanties de convergence pour la descente par coordonnées sont généralement données
sous l’hypothèse que la fonction non-lisse est séparable. Le SMO de Platt (1999) est un ex-
emple de variante de la descente par coordonnées qui peut être utilisé sans l’hypothèse de
séparabilité. Pour la descente par coordonnées aléatoire, Necoara and Patrascu (2014) ont
proposé une variante de la descente par coordonnées qui peut être utilisée pour résoudre
un problème de minimisation composée Equation (4) avec l’addition d’une seule con-
trainte d’égalité liant les variables entre elles. L’algorithme proposé est très similaire au
SMO mais permet de résoudre une classe plus large de problèmes et cet algorithme utilise
une stratégie de sélection de coordonnées aléatoire. Ce résultat a ensuite été étendue
par Reddi et al. (2014) avec un système linéaire qui relie les variables entre elles. Notre
algorithme est un exemple de variante de la descente par coordonnées qui résout un
problème avec des variables séparables et non-séparables. A notre connaissance, une



200 CHAPTER 9. CONCLUSION

preuve générale de convergence avec une sélection de coordonnées gloutonne n’existe
pas pour ce type de problème.

4 Sélection d’hyperparamètres pour des problèmes non-lisses

Après avoir porté notre attention sur des outils d’optimisation afin de résoudre le problème
d’optimisation sous-jacent à notre application de quantification de cellules immunitaires,
nous nous tournons vers le problème de la sélection d’hyperparamètres. Choisir les hy-
perparamètres pour les modèles d’apprentissage automatique peut être une tâche difficile
surtout lorsque le nombre d’hyperparamètres à choisir est grand. En reprenant l’exemple
de la SVR, choisir les deux hyperparamètres C et ν est souvent fait en utilisant un algo-
rithme de recherche sur une grille, grid-search. La performance du modèle est testée sur
chacun des points de la grille, ce qui donnerait 100 problèmes d’optimisation à résoudre
pour une grille de taille 10 pour chacun des deux paramètres.

La sélection d’hyperparamètre requiert une mesure de performance pour un estimateur
donné appelé un critère de sélection. Formellement, un critère est une fonction C : Rp →
R, qui est choisi pour avoir une bonne erreur de généralisation, e.g., la fonction held-
out (Devroye and Wagner, 1979), la validation croisée (CV, Stone and Ramer 1965, voir
Arlot and Celisse 2010 pour plus de détails), ou pour réduire la complexité du modèle
e.g., les critères AIC (Akaike, 1974), BIC (Schwarz, 1978) ou SURE (Stein, 1981) (voir dans
le Tableau 1 pour des exemples classiques).

Choisir des hyperparamètres étant donné un critère peut être écrit comme un problème
d’optimisation à deux niveaux (Colson et al., 2007) :

arg min
λ∈Rr

{
L(λ) , C

(
β̂(λ)

)}
sujet àβ̂(λ) ∈ arg min

β∈Rp
Φ(β, λ) .

(6)

Utiliser de la grid-search pour résoudre le problème d’optimisation peut être vu comme
l’utilisation d’une méthode à l’ordre zéro i.e., le problème est résolu en utilisant simple-
ment l’évaluation de la fonction.

Cependant, si l’espace dans lequel vivent les hyperparamètres est continu et que le chemin
de régularisation, i.e., la fonction λ 7→ β̂(λ) est bien définie et presque partout différentiable,

2For a linear model y = Xβ + ε, with ε ∼ N (0, σ2), the degree of freedom (dof, Efron 1986) is defined as
dof(β) =

∑n
i=1 cov(yi, (Xβ)i)/σ2.

3The smoothed Hinge loss is given by L(x) = 1
2 − x if x ≤ 0, 12 (1− x)2 if 0 ≤ x ≤ 1, 0 else .



4. SÉLECTION D’HYPERPARAMÈTRES POUR DES PROBLÈMES NON-LISSES 201

Criterion Problem type Criterion C(β)

Held-out mean squared error Regression 1
n
‖yval −Xvalβ‖2

Stein unbiased risk estimate (SURE)2 Regression ‖y −Xβ‖2 − nσ2 + 2σ2dof(β)

Held-out logistic loss Classification 1
n

∑n
i=1 log(1 + e−y

val
i Xval

i: β)
Held-out smoothed Hinge loss3 Classification 1

n

∑n
i=1 L(yval

i , Xval
i: β)

Table 1 – Exemples de critères utilisés pour la sélection d’hyperparamètres.

alors les méthodes du premier ordre peuvent être utilisées pour la résolution du problème
à deux niveaux. En utilisant la formule de dérivation composée, le gradient de L par rap-
port à λ, aussi appelé hypergradient, s’obtient par :

∇λL(λ) = Ĵ >(λ)∇C(β̂(λ)) , (7)

avec Ĵ(λ) ∈ Rp×r la Jacobienne de la fonction λ 7→ β̂(λ). La principale difficulté est d’évaluer
cet hypergradient. Pour cela, Il existe trois algorithmes principaux pour le calculer: la
différentiation implicite (Larsen et al., 1996), la différentiation automatique avec le mode
backward (Linnainmaa, 1970) ou le mode forward (Wengert, 1964). Une fois l’hypergradient
calculé, Equation (6) peut être résolu en utilisant un schéma du premier ordre, par exem-
ple une descente de gradient avec un pas ρ > 0: λ(t+1) = λ(t) − ρ∇λL(λ(t)).

4.1 Calcul de l’hypergradient pour des problèmes non-lisses

Nous souhaitons proposer une méthode pour le calcul de l’hypergradient∇L afin d’utiliser
une méthode du premier ordre pour résoudre Equation (6) quand le sous-problème est
non-lisse.

Nous considérons pour cela, des estimateurs qui sont le résultat du problème d’optimisation
suivant :

β̂(λ) ∈ arg min
β∈Rp

Φ(β, λ) = f(β) +
n∑
i=1

gj(βj, λ)︸ ︷︷ ︸
=g(β,λ)

, (8)

Ce type de problèmes d’optimisation peut être résolu avec des algorithmes proximaux.
Une solution β̂(λ) satisfait l’équation de point fixe suivante, pour tout γ > 0:

β̂(λ) = proxγg

(
β̂(λ) − γ∇f(β̂(λ))

)
. (9)



202 CHAPTER 9. CONCLUSION

Contribution principale. Nous donnons une formule explicite de la différentiation im-
plicite pour les problèmes qui s’écrivent comme Equation (8) en utilisant la notion de
support généralisé (Définition 1). L’ensemble des hypothèses utilisées pour ce théorème
n’est pas détaillé ici mais est donné dans le Chapitre 6.

Théorème 3 (Formule implicite non-lisse). Soit λ ∈ Rr. Soit β̂ , β̂(λ) une solution de Equa-
tion (1.19) et Ŝ son support généralisé. Sous un ensemble d’hypothèses qui assurent que l’opérateur
proximal est différentiable au point β̂ − γ∇f(β̂), la Jacobienne Ĵ de Equation (8) est donnée par
la formule, avec ẑ = β̂ − γ∇X>f(Xβ̂), et A , Idŝ−∂1 proxγg(ẑ)Ŝ

(
Idŝ−γX>:Ŝ∇

2f(Xβ̂)X:Ŝ

)
:

ĴŜc = ∂2 proxγg (ẑ)Ŝc ,

ĴŜ = A−1
(
∂2 proxγg(ẑ)Ŝ − γ∂1 proxγg(ẑ)ŜX

>
:Ŝ
∇2f(Xβ̂)X:ŜcĴŜc

)
.

Ici l’opérateur proximal de g(·, λ) est vu comme une fonction ψ de β et λ :

Rp × Rr → Rp

(β, λ) 7→ proxg(·,λ)(β) = ψ(β, λ) .

On note ∂1 proxg , ∂1ψ et ∂2 proxg , ∂2ψ où ∂1ψ est la Jacobienne par rapport à la première
variable et ∂2ψ la Jacobienne par rapport à la deuxième variable. Ce théorème est prouvé
dans le Chapitre 6.

Comme énoncé dans le théorème, la parcimonie induite par le support généralisé peut
être prise en compte pour accélérer le calcul de l’hypergradient. De plus, l’utilisation de
la différentiation implicite nous permet de résoudre le sous-problème Equation (8) avec
l’algorithme de notre choix, du moment qu’il identifie le support après un nombre fini
d’itérations.

Nous avons comparé trois méthodes différentes pour calculer l’hypergradient Equation (6)
en choisissant le Lasso (Tibshirani, 1996) comme sous-problème et l’erreur quadratique
moyenne sur un ensemble de validation comme critère de sélection :

• Le mode Forward : C’est l’algorithme classique de différentiation forward utilisé sur
la descente par coordonnées proximale pour résoudre le Lasso. Cet algorithme ne
tient pas compte de la parcimonie de la Jacobienne pour le calcul de l’hypergradient.

• La différentiation implicite : Premièrement, le Lasso est résolu en utilisant une
descente par coordonnées proximale et dans un deuxième temps, nous résolvons le
système linéaire donné dans le Théorème 3 pour calculer l’hypergradient.



4. SÉLECTION D’HYPERPARAMÈTRES POUR DES PROBLÈMES NON-LISSES 203

Implicit diff. Implicit diff. + Celer Forward-mode PCD

0 2 4
10−10

10−7

10−4

eλ
=
eλ

m
a
x
/1

0

rcv1

1 2 3

real-sim

0 100 200 300 400

news20

0 10 20 30

Time (s)

10−10

10−7

10−4

eλ
=
eλ

m
a
x
/1

02

0 5 10

Time (s)
0 100 200 300 400

Time (s)

Figure 3 – Lasso held-out, time to compute one hypergradient. Absolute difference be-
tween the exact hypergradient (using β̂) and the iterate hypergradient (using β(k)) of the
Lasso as a function of time. Results are for three datasets and two different regularization
parameters. For the implicit differentiation, the lower problem is solved using proximal
coordinate descent (Implicit diff.) or Celer (Massias et al. 2020, Implicit diff. + Celer).

• La différentiation implicite + Celer : Nous changons l’algorithme de résolution du
Lasso pour utiliser une version accélérée de la descente par coordonnées proximale
appelée Celer. Après avoir résolu le Lasso, nous calculons l’hypergradient à partir
du système linéaire du Théorème 3.

Comme on peut le voir sur la Figure 3, tenir compte de la parcimonie de la Jacobienne
permet d’obtenir un gain significatif en temps de calcul pour l’hypergradient. De plus,
grâce à la différentiation implicite, nous pouvons utiliser les algorithmes état de l’art pour
la résolution du sous-problème. La combinaison de l’algorithme Celer avec la formule de
différentiation implicite du Théorème 3 augmente grandement la vitesse de calcul.

Relation avec la littérature. La différentiation implicite pour la sélection d’hyperparamètres
remonte à Bengio (2000). Ils ont considéré des fonctions Φ deux fois différentiables et la
différentiation implicite mène à la résolution d’un système linéaire de taille p× p:

∇λL(λ) = −∇2
β,λΦ(β̂(λ), λ)

(
∇2
βΦ(β̂(λ), λ)

)−1

∇C(β̂(λ)) . (10)



204 CHAPTER 9. CONCLUSION

Notre résultat montre que pour les modèles de type Lasso, la Jacobienne a le même sup-
port que les itérées. Nous pouvons utiliser cela pour accélérer le calcul de la Jacobienne
en résolvant un système linéaire de taille |Ŝ| × |Ŝ|.

Une des hypothèses importante est que l’algorithme itératif utilisé pour résoudre le Lasso
identifie le bon support. Cela est vérifié pour la descente de gradient proximale (Hale
et al., 2008) et la descente par coordonnées proximale (Massias et al., 2020). La différentiation
d’algorithmes proximaux a également été considéré par Deledalle et al. (2014) dans le
cadre de la différentiation faible. Cependant, ce travail considère seulement de la différentiation
forward. La grande différence avec notre approche est que nous utilisons la structure in-
duite par le support pour restreindre le calcul de la Jacobienne sur ce support, une fois la
solution du Lasso obtenue.

Ochs et al. (2015) ont considéré des problèmes non-lisses qui peuvent être résolus avec
des algorithmes itératifs dont chaque itération est différentiable. Ils ont proposé de cal-
culer le gradient du problème d’optimisation à deux niveaux en calculant les dérivées
d’opérateurs proximaux de Bregman qui sont supposés être différentiables. En utilisant
la géométrie du problème d’optimisation non-lisse via le support généralisé, nous avons
pu prouver que les opérateurs proximaux classiques peuvent être différentiés à l’optimum
sous quelques hypothèses. Ces algorithmes itératifs comme la descente par coordonnées
sont état de l’art pour les problèmes incluant la norme `1 par exemple, ce qui permet une
résolution plus rapide du problème et un calcul plus rapide du gradient pour la méthode
du premier ordre.

4.2 Optimisation d’hyperparamètres pour des problèmes non-lisses

Grâce au résultat de la section précédente pour le calcul de l’hypergradient, nous pouvons
maintenant nous tourner vers la résolution du problème à deux niveaux afin de faire de
l’optimisation d’hyperparamètres.



4. SÉLECTION D’HYPERPARAMÈTRES POUR DES PROBLÈMES NON-LISSES 205

Algorithm 17 DESCENTE DE GRADIENT HEURISTIQUE

input : X ∈ Rn×p, y ∈ Rn, λ ∈ Rr, (εi)

init : use adaptive step size = True
for i = 1, . . . , iter do

λold ← λ

// compute the value and the gradient

L(λ),∇L(λ)← Solution du système linéaire donné dans le Theorem 1.3
if use adaptive step size then

α = 1/‖∇L(λ)‖
λ −= α∇L(λ) // gradient step

if L(λ) > L(λold) then
use adaptive step size = False

α /= 10
return λ

Contribution principale. Nous proposons un algorithme heuristique (Algorithm 17) pour
la résolution de Equation (6) basé sur la descente de gradient. Nous avons comparé notre
méthode basée sur le Théorème 3 à d’autres méthodes de sélection d’hyperparamètres
comme la grid-search, la random search ou une méthode Bayésienne appelée SMBO. Fig-
ure 4 montre la trajectoire de notre méthode du premier ordre sur les lignes de niveaux
de la fonction de perte de la validation croisée. Cela illustre également que notre méthode
est plus rapide que ses concurrents pour trouver les deux hyperparamètres de l’elastic net
qui minimisent le critère de validation croisée.

Relation avec la littérature. Pedregosa (2016) a étudié l’optimisation d’hyperparamètres
via la différentiation implicite dans le cas de problèmes à deux niveaux lisses. Ils ont
prouvé que leur algorithme, HOAG, converge vers un point stationnaire de Equation (6).
Notre algorithme est heuristique parce que nous n’avons pas de garanties théoriques sur
la convergence vers une solution de Equation (6) quand le sous-problème est non-lisse.
Etendre ce résultat au cas non-lisse est une question difficile qui est laissée pour un travail
futur.

Développement de package Python. Le travail présenté dans le Chapitre 6 et le Cha-
pitre 7 ont abouti sur le développement d’un package disponible en Python appelé sparse-
ho. Ce package suit la même interface de programmation que scikit-learn (Pedregosa et al.,
2011).

Le package est construit pour suivre la structure du problème d’optimisation à deux



206 CHAPTER 9. CONCLUSION

0 100 200

Time (s)

0.2

0.3

0.4

0.5

0.6

C
ro

ss
-v

al
id

at
io

n
lo

ss

0 100 200 300 400

Time (s)
0 500 1000 1500 2000

Time (s)

°10 °5 0

°10

°5

0
G

ri
d-

se
ar

ch
∏

2
°
∏

m
ax

rcv1 (p = 19, 959)

°10 °5 0

°10

°5

0
real-sim (p = 20, 958)

°10 °5 0

°10

°5

0
news20 (p = 632, 982)

°10 °5 0

°10

°5

0

S
M

B
O

∏
2
°
∏

m
ax

°10 °5 0

°10

°5

0

°10 °5 0

°10

°5

0

°10 °5 0

∏1 ° ∏max

°10

°5

0

1s
t-

or
de

r
ap

pr
ox

∏
2
°
∏

m
ax

°10 °5 0

∏1 ° ∏max

°10

°5

0

°10 °5 0

∏1 ° ∏max

°10

°5

0

1st-order 1st-order approx Grid-search Random-search SMBO

°10 °5 0

°10

°5

0

G
ri
d-

se
ar

ch
∏

2
°
∏

m
ax

rcv1 (p = 19, 959)

°10 °5 0

°10

°5

0
real-sim (p = 20, 958)

°10 °5 0

°10

°5

0
news20 (p = 632, 982)

°10 °5 0

°10

°5

0

S
M

B
O

∏
2
°
∏

m
ax

°10 °5 0

°10

°5

0

°10 °5 0

°10

°5

0

°10 °5 0

∏1 ° ∏max

°10

°5

0
1s

t-
or

de
r

ap
pr

ox
∏

2
°
∏

m
ax

°10 °5 0

∏1 ° ∏max

°10

°5

0

°10 °5 0

∏1 ° ∏max

°10

°5

0

Figure 4 – Validation croisée pour Elastic net, comparaison en temps (2 hyper-
paramètres). Lignes de niveaux de la fonction de perte de la validation croisée (lignes
noires) et la valeur de la fonction de perte en fonction du temp sur différent jeux de
données. rcv1, real-sim et news20

niveaux. Premièrement, un modèle doit être choisi; plusieurs modèles très utilisés en
apprentissage automatique sont déjà implémentés pour une sélection d’hyperparamètres
automatique comme le Lasso, le Lasso à poids, l’elastic net, la régression logistique parci-
monieuse ou encore la SVM et SVR. Ensuite, un critère doit être choisi pour mesurer la
performance du modèle, il y a plusieurs options pour la régression l’erreur quadratique
moyenne ou le critère SURE (Stein, 1981). L’un des désavantages des méthodes du pre-
mier ordre est que le critère doit être régulier et au moins continu, donc le taux de bien
classé pour la classification ne peut pas être utilisé ici. Cependant, nous avons implémenté
la fonction de perte logistique, la version lisse de la fonction de perte de Hinge et la ver-
sion multiclasse de la fonction de perte logistique. Finalement, il faut choisir une méthode
du premier ordre pour résoudre le problème d’optimisation à deux niveaux qui peut être
de la descente de gradient avec un pas constant, un algorithme de line-search ou encore
l’algorithme ADAM (Kingma and Ba, 2014).

Des exemples, de la documentation et la description du package sont disponibles sur



5. ESTIMATION DE LA PROPORTION DE CELLULES IMMUNITAIRES 207

0.00 0.25 0.50 0.75 1.00
Tumor content (%)

0.00

0.25

0.50

0.75

1.00
N

oi
se

(x
1

s.
d.

)
Simplex SVR

0.00 0.25 0.50 0.75 1.00
Tumor content (%)

Cibersort

0.00 0.25 0.50 0.75 1.00
Tumor content (%)

Simplex OLS

0.05

0.10

RMSE

0.00 0.25 0.50 0.75 1.00
Tumor content (%)

0.00

0.25

0.50

0.75

1.00

N
oi

se
(x

1
s.

d.
)

Simplex SVR

0.00 0.25 0.50 0.75 1.00
Tumor content (%)

Cibersort

0.00 0.25 0.50 0.75 1.00
Tumor content (%)

Simplex OLS

0.00

0.25

0.50

0.75

R

Figure 5 – Robustesse au bruit et à l’environnement tumoral. Heatmap représentant la
racine carrée de l’erreur quadratique moyenne (RMSE) ou le coefficient de corrélation (R)
entre les vrais proportions de cellules et les proportions estimées en fonction de pourcent-
age de tumeur (axe x) et le niveau de bruit (axe y). Nous avons comparé trois estimateurs
différents le Simplex SVR, Cibersort et les moindres carrés sous contraintes de Simplex.

https://qb3.github.io/sparse-ho/.

5 Estimation de la proportion de cellules immunitaires

Les résultats des deux sections précédentes ont permis de proposer une nouvelle méthode
pour l’estimation de proportions de cellules au sein d’une tumeur. Ce nouvel estima-
teur utilise la SVR sous contraintes qui peut être résolu en utilisant l’algorithme SMO
généralisé et la sélection d’hyperparamètres automatique. Nous avons pu appliquer cette
méthode sur des jeux de données réels et comparer nos résultats avec des travaux antérieurs.

Figure 5 compare notre méthode à la méthode état de l’art appelée Cibersort (Newman
et al., 2015) et les moindres carrés sous contraintes de simplexe (Gong et al., 2011). Nous
avons testé la capacité des différentes méthodes à être robuste par rapport au bruit et
à la présence de cellules tumorales. Nous avons ajouté un bruit log-Gaussien dans les
données,N (0, σ2) , en choisissant σ comme un pourcentage de σmax = 11.6 (valeur prise de
Newman et al. (2015)). Le pourcentage a été choisi entre 0 et 1 avec 30 valeurs différentes.

https://qb3.github.io/sparse-ho/


208 CHAPTER 9. CONCLUSION

Nous avons artificiellement ajouté des cellules tumorales dans les données pour répliquer
les conditions pour les cellules au sein d’une tumeur. Ce pourcentage de contenu tumoral
a été choisi entre 0% et 100% en prenant 30 pourcentages différents. La performance en
estimation de ces trois estimateurs a été comparée en utilisant la racine carrée de l’erreur
quadratique moyenne (RMSE) et le coefficient de corrélation entre les vraies proportions et
les proportions estimées. On peut voir que notre estimateur a une meilleure performance
en estimation alors que le bruit augmente. Il est plus robuste au bruit que les deux autres
estimateurs.

Pendant la thèse, j’ai travaillé une journée par semaine pendant un an dans un centre
spécialisé contre le cancer pour appliquer nos résultats à des buts cliniques. Cette col-
laboration a permis l’écriture de plusieurs articles déjà publiés (Klopfenstein et al., 2019;
Reichling et al., 2020).

Ce premier article décrit comment l’information de la proportion de cellules à l’intérieur
d’un glioblastome peut aider à affiner le pronostique du patient. Le second article utilise
une approche de forêts aléatoires pour détecter automatiquement les cellules d’intérêts
sur une lame d’immunohistochimie.

Un autre article est actuellement en révision. Dans ce travail, nous montrons que l’information
à propos des cellules est importante et peut être utilisée cliniquement pour estimer le
risque de rechute de patientes atteintes de cancer du sein. Quelques résultats et figures
seront présentés dans le Chapitre 8 de cette thèse.



BIBLIOGRAPHY

Alexander R. Abbas, Kristen Wolslegel, Dhaya Seshasayee, Zora Modrusan, and Hilary F.
Clark. Deconvolution of blood microarray data identifies cellular activation patterns in
systemic lupus erythematosus. PLOS ONE, 4(7):1–16, 07 2009.

A. Agrawal, B. Amos, S. Barratt, S. Boyd, S. Diamond, and J. Z. Kolter. Differentiable
convex optimization layers. In Advances in neural information processing systems, pages
9558–9570, 2019.

H. Akaike. A new look at the statistical model identification. IEEE Trans. Autom. Control,
AC-19:716–723, 1974.

B. Amos and J. Z. Kolter. Optnet: Differentiable optimization as a layer in neural networks.
In ICML, volume 70, pages 136–145, 2017.

S. M. Ansell and R. H. Vonderheide. Cellular composition of the tumor microenvironment.
American Society of Clinical Oncology Educational Book, 33(1):e91–e97, 2013.

S. Arlot and A. Celisse. A survey of cross-validation procedures for model selection. Statis-
tics surveys, 4:40–79, 2010.

Gilles Bareilles, Franck Iutzeler, and Jérôme Malick. Newton acceleration on manifolds
identified by proximal-gradient methods. arXiv preprint arXiv:2012.12936, 2020.

R. E. Barlow and H. D. Brunk. The isotonic regression problem and its dual. Journal of the
American Statistical Association, 67(337):140–147, 1972.

T. A Barnes and E. Amir. Hype or hope: the prognostic value of infiltrating immune cells
in cancer. British journal of cancer, 117(4):451–460, 2017.

H. H. Bauschke and P. L. Combettes. Convex analysis and monotone operator theory in Hilbert
spaces. Springer, New York, 2011.

209



210 BIBLIOGRAPHY

A. G. Baydin, B. A. Pearlmutter, A. A. Radul, and J. M. Siskind. Automatic differentiation
in machine learning: a survey. J. Mach. Learn. Res., 18(153):1–43, 2018.

A. Beck and L. Tetruashvili. On the convergence of block coordinate type methods. SIAM
J. Imaging Sci., 23(4):651–694, 2013.

A. Belloni, V. Chernozhukov, and L. Wang. Square-root Lasso: pivotal recovery of sparse
signals via conic programming. Biometrika, 98(4):791–806, 2011.

Y. Bengio. Gradient-based optimization of hyperparameters. Neural computation, 12(8):
1889–1900, 2000.

J. Bergstra and Y. Bengio. Random search for hyper-parameter optimization. J. Mach.
Learn. Res., 13:281–305, 2012.

J. Bergstra, D. Yamins, and D. D. Cox. Hyperopt: A python library for optimizing the
hyperparameters of machine learning algorithms. In Proceedings of the 12th Python in
science conference, pages 13–20, 2013.

J. S. Bergstra, R. Bardenet, Y. Bengio, and B. Kégl. Algorithms for hyper-parameter opti-
mization. In Advances in neural information processing systems, pages 2546–2554, 2011.

Q. Bertrand, Q. Klopfenstein, M. Blondel, S. Vaiter, A. Gramfort, and J. Salmon. Implicit
differentiation of lasso-type models for hyperparameter optimization. ICML, 2020.

D. P. Bertsekas. On the Goldstein-Levitin-Polyak gradient projection method. IEEE Trans.
Autom. Control, 21(2):174–184, 1976.

D. P. Bertsekas. Convex optimization algorithms. Athena Scientific Belmont, 2015.

P. J. Bickel, Y. Ritov, and A. B. Tsybakov. Simultaneous analysis of Lasso and Dantzig
selector. Ann. Statist., 37(4):1705–1732, 2009.

J. M. Bioucas-Dias, A. Plaza, N. Dobigeon, M. Parente, Q. Du, P. Gader, and J. Chanus-
sot. Hyperspectral unmixing overview: Geometrical, statistical, and sparse regression-
based approaches. IEEE journal of selected topics in applied earth observations and remote
sensing, 5(2):354–379, 2012.

M. Blondel and F. Pedregosa. Lightning: large-scale linear classification, regression and
ranking in Python, 2016.

J. Bolte and E. Pauwels. Conservative set valued fields, automatic differentiation, stochas-
tic gradient methods and deep learning. Mathematical Programming, pages 1–33, 2020a.



BIBLIOGRAPHY 211

J. Bolte and E. Pauwels. A mathematical model for automatic differentiation in machine
learning. arXiv preprint arXiv:2006.02080, 2020b.

B. E. Boser, I. M. Guyon, and V. N. Vapnik. A training algorithm for optimal margin
classifiers. In Proceedings of the fifth annual workshop on Computational learning theory,
pages 144–152. ACM, 1992.

S. Boyd and L. Vandenberghe. Convex optimization. Cambridge University Press, 2004.

Rasmus Bro and Sijmen De Jong. A fast non-negativity-constrained least squares algo-
rithm. Journal of Chemometrics, 11(5):393–401, 1997.

E. Brochu, V. M. Cora, and Nando De Freitas. A tutorial on Bayesian optimization of
expensive cost functions, with application to active user modeling and hierarchical re-
inforcement learning. arXiv preprint arXiv:1012.2599, 2010.

J. V. Burke and J. J. Moré. On the identification of active constraints. SIAM J. Numer. Anal.,
25(5):1197–1211, 1988.

C.-H. Wu, J-.M. Ho, and D. T. Lee. Travel-time prediction with support vector regression.
IEEE Transactions on Intelligent Transportation Systems, 5(4):276–281, Dec 2004.

E. J. Candès and B. Recht. Simple bounds for recovering low-complexity models. Math.
Program., pages 1–13, 2012.

E. J. Candès, J. Romberg, and T. Tao. Robust uncertainty principles: exact signal recon-
struction from highly incomplete frequency information. IEEE Trans. Inf. Theory, 52(2):
489–509, 2006.

C.-C. Chang and C.-J. Lin. Libsvm: a library for support vector machines. ACM transac-
tions on intelligent systems and technology (TIST), 2(3):27, 2011.

C. Chang and C. Lin. Training v-support vector regression: Theory and algorithms. Neural
Comput., 14(8):1959–1977, August 2002. ISSN 0899-7667.

O. Chapelle, P. Haffner, and V. N. Vapnik. Support vector machines for histogram-based
image classification. IEEE Transactions on Neural Networks, 10(5):1055–1064, Sep. 1999.
ISSN 1045-9227.

O. Chapelle, V. Vapnik, O. Bousquet, and S. Mukherjee. Choosing multiple parameters
for support vector machines. Machine learning, 46(1-3):131–159, 2002.



212 BIBLIOGRAPHY

S. S. Chen, D. L. Donoho, and M. A. Saunders. Atomic decomposition by basis pursuit.
SIAM J. Sci. Comput., 20(1):33–61, 1998.

H. Cherkaoui, J. Sulam, and T. Moreau. Learning to solve tv regularised problems with
unrolled algorithms. Advances in Neural Information Processing Systems, 33, 2020.

W. G. Cochran. The role of mathematics in the medical sciences. New England Journal of
Medicine, 265(4):176–176, 1961.

B. Colson, P. Marcotte, and G. Savard. An overview of bilevel optimization. Annals of
operations research, 153(1):235–256, 2007.

P. L. Combettes and J.-C. Pesquet. Proximal splitting methods in signal processing. In
Fixed-point algorithms for inverse problems in science and engineering, volume 49 of Springer
Optim. Appl., pages 185–212. Springer, New York, 2011.

P. L. Combettes and V. R. Wajs. Signal recovery by proximal forward-backward splitting.
Multiscale Modeling & Simulation, 4(4):1168–1200, 2005.

Jennifer Couzin-Frankel. Cancer immunotherapy. Science, 342(6165):1432–1433, 2013.
ISSN 0036-8075.

D. R. Cox. Regression models and life-tables. Journal of the Royal Statistical Society. Series B
(Methodological), 34(2):187–220, 1972. ISSN 00359246.

C. Criscitiello, A. Esposito, D. Trapani, and G. Curigliano. Prognostic and predictive value
of tumor infiltrating lymphocytes in early breast cancer. Cancer treatment reviews, 50:
205–207, 2016.

A. Defazio, F. Bach, and S. Lacoste-Julien. Saga: A fast incremental gradient method with
support for non-strongly convex composite objectives. In Advances in neural information
processing systems, pages 1646–1654, 2014.

C.-A. Deledalle, S. Vaiter, J. Fadili, and G. Peyré. Stein Unbiased GrAdient estimator of
the Risk (SUGAR) for multiple parameter selection. SIAM J. Imaging Sci., 7(4):2448–2487,
2014.

S. Dempe, V. Kalashnikov, G. A. Pérez-Valdés, and N. Kalashnykova. Bilevel program-
ming problems. Energy Systems. Springer, Berlin, 2015.

J Dennis and Virginia Torczon. Derivative-free pattern search methods for multidisci-
plinary design problems. In 5th Symposium on Multidisciplinary Analysis and Optimiza-
tion, page 4349, 1994.



BIBLIOGRAPHY 213

L. Devroye and T. Wagner. Distribution-free performance bounds for potential function
rules. IEEE Transactions on Information Theory, 25(5):601–604, 1979.

S. Diamond and S. Boyd. CVXPY: A Python-embedded modeling language for convex
optimization. J. Mach. Learn. Res., 17(83):1–5, 2016.

J. Domke. Generic methods for optimization-based modeling. In AISTATS, volume 22,
pages 318–326, 2012.

Charles Dossal, Maher Kachour, MJ Fadili, Gabriel Peyré, and Christophe Chesneau. The
degrees of freedom of the lasso for general design matrix. Statistica Sinica, pages 809–
828, 2013.

H. Drucker, C.J. Burges, L. Kaufman, A. Smola, and V. Vapnik. Support vector regression
machines. Advances in neural information processing systems, 9:155–161, 1996.

H. Drucker, C. J. C. Burges, L. Kaufman, A. J. Smola, and V. Vapnik. Support vector
regression machines. In M. C. Mozer, M. I. Jordan, and T. Petsche, editors, Advances in
Neural Information Processing Systems 9, pages 155–161. MIT Press, 1997.

R. Edgar, M. Domrachev, and A. E. Lash. Gene expression omnibus: Ncbi gene expression
and hybridization array data repository. Nucleic acids research, 30(1):207–210, 2002.

B. Efron. How biased is the apparent error rate of a prediction rule? J. Amer. Statist. Assoc.,
81(394):461–470, 1986.

L. C. Evans and R. F. Gariepy. Measure theory and fine properties of functions. CRC Press,
1992.

J. Fadili, J. Malick, and G. Peyré. Sensitivity analysis for mirror-stratifiable convex func-
tions. SIAM J. Optim., 28(4):2975–3000, 2018.

J. Fan and J. Lv. Sure independence screening for ultrahigh dimensional feature space. J.
R. Stat. Soc. Ser. B Stat. Methodol., 70(5):849–911, 2008.

O. Fercoq and P. Richtárik. Accelerated, parallel and proximal coordinate descent. SIAM
J. Optim., 25(3):1997 – 2013, 2015.

M. Feurer and F. Hutter. Hyperparameter optimization. In Automated Machine Learning,
pages 3–33. Springer, Cham, 2019.

C. S. Foo, C. B. Do, and A. Y. Ng. Efficient multiple hyperparameter learning for log-linear
models. In Advances in neural information processing systems, pages 377–384, 2008.



214 BIBLIOGRAPHY

L. Franceschi, M. Donini, P. Frasconi, and M. Pontil. Forward and reverse gradient-based
hyperparameter optimization. In ICML, pages 1165–1173, 2017.

L. Franceschi, P. Frasconi, S. Salzo, and M. Pontil. Bilevel programming for hyperparam-
eter optimization and meta-learning. In ICML, pages 1563–1572, 2018.

P.I. Frazier. A tutorial on Bayesian optimization. arXiv preprint arXiv:1807.02811, 2018.

J. Frecon, S. Salzo, and M. Pontil. Bilevel learning of the group lasso structure. In Advances
in Neural Information Processing Systems, pages 8301–8311, 2018.

J. Friedman, T. J. Hastie, H. Höfling, and R. Tibshirani. Pathwise coordinate optimization.
Ann. Appl. Stat., 1(2):302–332, 2007.

J. Friedman, T. J. Hastie, and R. Tibshirani. Regularization paths for generalized linear
models via coordinate descent. J. Stat. Softw., 33(1):1–22, 2010.

T.-T. Friel and R. Harrison. Linear programming support vector machines for pattern
classification and regression estimation: and the sr algorithm: Improving speed and
tightness of vc bounds in sv algorithms. Research report, Department of Automatic
Control and Systems Engineering, February 1998.

J.-J. Fuchs. On sparse representations in arbitrary redundant bases. IEEE Trans. Inf. Theory,
50(6):1341–1344, 2004.

B. R. Gaines, J. Kim, and H. Zhou. Algorithms for fitting the constrained lasso. Journal of
Computational and Graphical Statistics, 27(4):861–871, 2018.

F. Galton. Regression towards mediocrity in hereditary stature. The Journal of the Anthro-
pological Institute of Great Britain and Ireland, 15:246–263, 1886.

Guoxuan Gao, Zihan Wang, Xiang Qu, and Zhongtao Zhang. Prognostic value of tumor-
infiltrating lymphocytes in patients with triple-negative breast cancer: a systematic re-
view and meta-analysis. BMC cancer, 20(1):1–15, 2020.

S. Ghadimi and M. Wang. Approximation methods for bilevel programming. arXiv
preprint arXiv:1802.02246, 2018.

M. A. Glaire, E. Domingo, A. Sveen, J. Bruun, A. Nesbakken, G. Nicholson, M. Novelli,
K. Lawson, D. Oukrif, W. Kildal, et al. Tumour-infiltrating cd8+ lymphocytes and col-
orectal cancer recurrence by tumour and nodal stage. British journal of cancer, 121(6):
474–482, 2019.



BIBLIOGRAPHY 215

T. Gong, N. Hartmann, I. S. Kohane, V. Brinkmann, F. Staedtler, M. Letzkus, S. Bon-
giovanni, and J. D. Szustakowski. Optimal deconvolution of transcriptional profiling
data using quadratic programming with application to complex clinical blood samples.
PLOS ONE, 6(11):1–11, 11 2011.

Ting Gong and Joseph D Szustakowski. Deconrnaseq: a statistical framework for decon-
volution of heterogeneous tissue samples based on mrna-seq data. Bioinformatics, 29(8):
1083–1085, 2013.

I. Goodfellow, A. Courville, and Y. Bengio. Deep learning, volume 1. MIT press Cambridge,
2016.

S. Gould, B. Fernando, A. Cherian, P. Anderson, R. S. Cruz, and E. Guo. On differentiating
parameterized argmin and argmax problems with application to bi-level optimization.
arXiv preprint arXiv:1607.05447., 2016.

R. Grazzi, L. Franceschi, M. Pontil, and S. Salzo. On the iteration complexity of hypergra-
dient computation. arXiv preprint arXiv:2006.16218, 2020.

Andreas Griewank and Andrea Walther. Evaluating derivatives: principles and techniques of
algorithmic differentiation. SIAM, 2008.

E. Hale, W. Yin, and Y. Zhang. Fixed-point continuation for `1-minimization: Methodol-
ogy and convergence. SIAM J. Optim., 19(3):1107–1130, 2008.

W. L. Hare. Identifying active manifolds in regularization problems. In Fixed-Point Algo-
rithms for Inverse Problems in Science and Engineering, pages 261–271. Springer, 2011.

W. L. Hare and A. S. Lewis. Identifying active constraints via partial smoothness and
prox-regularity. Journal of Convex Analysis, 11(2):251–266, 2004.

W. L. Hare and A. S. Lewis. Identifying active manifolds. Algorithmic Operations Research,
2(2):75–75, 2007.

T. Hastie, S. Rosset, R. Tibshirani, and J. Zhu. The entire regularization path for the support
vector machine. J. Mach. Learn. Res., 5(Oct):1391–1415, 2004.

T. J. Hastie and R. J. Tibshirani. Generalized additive models, volume 43. CRC press, 1990.

D. Haussler, D. W. Bednarski, M. Schummer, N. Cristianini, N. Duffy, and T. S. Furey.
Support vector machine classification and validation of cancer tissue samples using mi-
croarray expression data . Bioinformatics, 16(10):906–914, 10 2000. ISSN 1367-4803.



216 BIBLIOGRAPHY

M.R. Hestenes and E. Stiefel. Methods of conjugate gradients for solving linear systems, vol-
ume 49. NBS Washington, DC, 1952.

N. J. Higham. Accuracy and stability of numerical algorithms. SIAM, 2002.

J.-B. Hiriart-Urruty and C. Lemaréchal. Convex analysis and minimization algorithms. I, vol-
ume 305. Springer-Verlag, Berlin, 1993a.

J.-B. Hiriart-Urruty and C. Lemaréchal. Convex analysis and minimization algorithms. II,
volume 306. Springer-Verlag, Berlin, 1993b.

C-H Ho and C-J Lin. Large-scale linear support vector regression. The Journal of Machine
Learning Research, 13(1):3323–3348, 2012.

A. E. Hoerl and R. W. Kennard. Ridge regression: Biased estimation for nonorthogonal
problems. Technometrics, 12(1):55–67, 1970.

M. Hong, X. Wang, M. Razaviyayn, and Z-Q. Luo. Iteration complexity analysis of block
coordinate descent methods. Mathematical Programming, 163(1-2):85–114, 2017.

C.-J. Hsieh, K.-W. Chang, C.-J. Lin, S. SS Keerthi, and S. Sundararajan. A dual coordinate
descent method for large-scale linear svm. In Proceedings of the 25th International Con-
ference on Machine Learning, ICML ’08, pages 408–415, New York, NY, USA, 2008. ACM.
ISBN 978-1-60558-205-4.

F. Hutter, J. Lücke, and L. Schmidt-Thieme. Beyond manual tuning of hyperparameters.
KI-Künstliche Intelligenz, 29(4):329–337, 2015.

K. Ji, J. Yang, and Y. Liang. Provably faster algorithms for bilevel optimization and appli-
cations to meta-learning. arXiv preprint arXiv:2010.07962, 2020.

H. Jia and A. M. Martinez. Support vector machines in face recognition with occlusions.
In 2009 IEEE Conference on Computer Vision and Pattern Recognition, pages 136–141, June
2009.

T. Joachims. Text categorization with support vector machines: Learning with many
relevant features. In Claire Nédellec and Céline Rouveirol, editors, Machine Learning:
ECML-98, pages 137–142, Berlin, Heidelberg, 1998. Springer Berlin Heidelberg. ISBN
978-3-540-69781-7.

R. Johnson and T. Zhang. Accelerating stochastic gradient descent using predictive vari-
ance reduction. In Advances in neural information processing systems, pages 315–323, 2013.



BIBLIOGRAPHY 217

S. S. Keerthi and E. G. Gilbert. Convergence of a generalized smo algorithm for svm
classifier design. Mach. Learn., 46(1-3):351–360, March 2002. ISSN 0885-6125.

S. S. Keerthi, S. K. Shevade, C. Bhattacharyya, and K. R. K. Murthy. Improvements to
platt’s smo algorithm for svm classifier design. Neural Comput., 13(3):637–649, March
2001. ISSN 0899-7667.

D. P. Kingma and J. L. Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Quentin Klopfenstein, Caroline Truntzer, Julie Vincent, and Francois Ghiringhelli. Cell
lines and immune classification of glioblastoma define patient’s prognosis. British jour-
nal of cancer, 120(8):806–814, 2019.

K. Koh, S.-J. Kim, and S. Boyd. An interior-point method for large-scale l1-regularized
logistic regression. J. Mach. Learn. Res., 8(8):1519–1555, 2007.

R. Kohavi and G. H. John. Automatic parameter selection by minimizing estimated error.
In Machine Learning Proceedings 1995, pages 304–312. Elsevier, 1995.

P. Krzyszczyk, A. Acevedo, E. J. Davidoff, L. M Timmins, I. Marrero-Berrios, M. Patel,
C. White, C. Lowe, J. J. Sherba, C. Hartmanshenn, et al. The growing role of precision
and personalized medicine for cancer treatment. Technology, 6(03n04):79–100, 2018.

K. Kunisch and T. Pock. A bilevel optimization approach for parameter learning in varia-
tional models. SIAM J. Imaging Sci., 6(2):938–983, 2013.

S. K. Lam, A. Pitrou, and S. Seibert. Numba: A LLVM-based Python JIT Compiler. In
Proceedings of the Second Workshop on the LLVM Compiler Infrastructure in HPC, pages 1–6.
ACM, 2015.

J. Larsen, L. K. Hansen, C. Svarer, and M. Ohlsson. Design and regularization of neural
networks: the optimal use of a validation set. In Neural Networks for Signal Processing VI.
Proceedings of the 1996 IEEE Signal Processing Society Workshop, pages 62–71, 1996.

F. Lauer and G. Bloch. Incorporating prior knowledge in support vector regression. Ma-
chine Learning, 70, 01 2008.

C. Lawson and R. Hanson. Solving Least Squares Problems. Society for Industrial and Ap-
plied Mathematics, 1995.



218 BIBLIOGRAPHY

D. Leventhal and A. S. Lewis. Randomized methods for linear constraints: convergence
rates and conditioning. Mathematics of Operations Research, 35(3):641–654, 2010.

A. S. Lewis. Active sets, nonsmoothness, and sensitivity. SIAM Journal on Optimization, 13
(3):702–725, 2002.

X. Li, T. Zhao, R. Arora, H. Liu, and M. Hong. On faster convergence of cyclic block
coordinate descent-type methods for strongly convex minimization. Journal of Machine
Learning Research, 18(1):6741–6764, 2017.

J. Liang, J. Fadili, and G. Peyré. Local linear convergence of forward–backward under
partial smoothness. In Advances in neural information processing systems, pages 1970–
1978, 2014.

J. Liang, J. Fadili, and G. Peyré. Activity Identification and Local Linear Convergence of
Forward–Backward-type Methods. SIAM J. Optim., 27(1):408–437, 2017.

C. L. Liew. Inequality constrained least-squares estimation. Journal of the American Statis-
tical Association, 71(355):746–751, 1976.

Chih-Jen Lin, Ruby C Weng, and S Sathiya Keerthi. Trust region newton methods for
large-scale logistic regression. In Proceedings of the 24th international conference on Machine
learning, pages 561–568. ACM, 2007.

S. Linnainmaa. The representation of the cumulative rounding error of an algorithm as a
taylor expansion of the local rounding errors. Master’s Thesis (in Finnish), Univ. Helsinki,
pages 6–7, 1970.

P.-L. Lions and B. Mercier. Splitting algorithms for the sum of two nonlinear operators.
SIAM Journal on Numerical Analysis, 16(6):964–979, 1979.

D. C. Liu and J. Nocedal. On the limited memory bfgs method for large scale optimization.
Mathematical programming, 45(1-3):503–528, 1989.

R. Liu, P. Mu, X. Yuan, S. Zeng, and J. Zhang. A generic first-order algorithmic framework
for bi-level programming beyond lower-level singleton. ICML, 2020.

J. Lopez and J. R. Dorronsoro. Simple proof of convergence of the smo algorithm for
different svm variants. IEEE Transactions on Neural Networks and Learning Systems, 23(7):
1142–1147, July 2012. ISSN 2162-237X.



BIBLIOGRAPHY 219

J. Lorraine, P. Vicol, and D. Duvenaud. Optimizing millions of hyperparameters by im-
plicit differentiation. arXiv preprint arXiv:1911.02590, 2019.

K. Lounici. Sup-norm convergence rate and sign concentration property of Lasso and
Dantzig estimators. Electron. J. Stat., 2:90–102, 2008.

P. Lu, A. Nakorchevskiy, and E. M. Marcotte. Expression deconvolution: a reinterpretation
of dna microarray data reveals dynamic changes in cell populations. Proceedings of the
National Academy of Sciences, 100(18):10370–10375, 2003.

J. Luo, M. Wu, D. Gopukumar, and Y. Zhao. Big data application in biomedical research
and health care: a literature review. Biomedical informatics insights, 8:BII–S31559, 2016.

Z-Q. Luo and P. Tseng. On the convergence of the coordinate descent method for convex
differentiable minimization. Journal of Optimization Theory and Applications, 72(1):7–35,
1992.

D. Maclaurin, D. Duvenaud, and Ryan Adams. Gradient-based hyperparameter optimiza-
tion through reversible learning. In ICML, volume 37, pages 2113–2122, 2015.

J. Mairal and B. Yu. Complexity analysis of the lasso regularization path. In ICML, pages
353–360, 2012.

J. Mairal, F. Bach, and J. Ponce. Task-driven dictionary learning. IEEE Trans. Pattern Anal.
Mach. Intell., 34(4):791–804, 2012.

M. Massias, A. Gramfort, and J. Salmon. Celer: a fast solver for the lasso with dual ex-
trapolation. In ICML, volume 80, pages 3315–3324, 2018.

M. Massias, S. Vaiter, A. Gramfort, and J. Salmon. Dual extrapolation for sparse general-
ized linear models. arXiv preprint arXiv:1907.05830, 2019.

M. Massias, S. Vaiter, A. Gramfort, and J. Salmon. Dual extrapolation for sparse general-
ized linear models. J. Mach. Learn. Res., 2020.

P. McCullagh and J.A. Nelder. Generalized Linear Models, Second Edition. Chapman and
Hall/CRC Monographs on Statistics and Applied Probability Series. London: Chapman
& Hall, 1989.

Kevin Menden, Mohamed Marouf, Sergio Oller, Anupriya Dalmia, Daniel Sumner Ma-
gruder, Karin Kloiber, Peter Heutink, and Stefan Bonn. Deep learning–based cell com-
position analysis from tissue expression profiles. Science Advances, 6(30), 2020. doi:
10.1126/sciadv.aba2619.



220 BIBLIOGRAPHY

S. Mohammadi, N. Zuckerman, A. Goldsmith, and A. Grama. A critical survey of decon-
volution methods for separating cell types in complex tissues. Proceedings of the IEEE,
105(2):340–366, Feb 2017.

Michinari Momma and Kristin P Bennett. A pattern search method for model selection
of support vector regression. In Proceedings of the 2002 SIAM International Conference on
Data Mining, pages 261–274. SIAM, 2002.

Gregory Moore, Charles Bergeron, and Kristin P Bennett. Model selection for primal svm.
Machine learning, 85(1-2):175–208, 2011.

Brian B Nadel, David Lopez, Dennis J Montoya, Feiyang Ma, Hannah Waddel, Misha M
Khan, Serghei Mangul, and Matteo Pellegrini. The gene expression deconvolution in-
teractive tool (gedit): Accurate cell type quantification from gene expression data. Gi-
gaScience, 10(2):giab002, 2021.

I. Necoara and A. Patrascu. A random coordinate descent algorithm for optimization
problems with composite objective function and linear coupled constraints. Computa-
tional Optimization and Applications, 57(2):307–337, 2014.

I. Necoara, Y. Nesterov, and F. Glineur. Linear convergence of first order methods for
non-strongly convex optimization. Mathematical Programming, 175(1-2):69–107, 2019.

Y. Nesterov. Introductory lectures on convex optimization, volume 87 of Applied Optimization.
Kluwer Academic Publishers, Boston, MA, 2004.

Y. Nesterov. Efficiency of coordinate descent methods on huge-scale optimization prob-
lems. SIAM J. Optim., 22(2):341–362, 2012.

A. M. Newman, C.L. Liu, M. R. Green, A. J. Gentles, W. Feng, Y. Xu, C. D. Hoang,
M. Diehn, and A. A. Alizadeh. Robust enumeration of cell subsets from tissue expres-
sion profiles. Nature methods, 12(5):453–457, May 2015. ISSN 1548-7105.

Aaron M Newman, Chloé B Steen, Chih Long Liu, Andrew J Gentles, Aadel A Chaudhuri,
Florian Scherer, Michael S Khodadoust, Mohammad S Esfahani, Bogdan A Luca, David
Steiner, et al. Determining cell type abundance and expression from bulk tissues with
digital cytometry. Nature biotechnology, 37(7):773–782, 2019.

Terri T Ni, William J Lemon, Yu Shyr, and Tao P Zhong. Use of normalization methods for
analysis of microarrays containing a high degree of gene effects. BMC bioinformatics, 9
(1):1–11, 2008.



BIBLIOGRAPHY 221

J. Nocedal and S. J. Wright. Numerical optimization. Springer Series in Operations Research
and Financial Engineering. Springer, New York, second edition, 2006.

J. Nutini. Greed is good: greedy optimization methods for large-scale structured problems. PhD
thesis, University of British Columbia, 2018.

J. Nutini, M. W. Schmidt, I. H. Laradji, M. P. Friedlander, and H. A. Koepke. Coordi-
nate descent converges faster with the Gauss-Southwell rule than random selection. In
ICML, pages 1632–1641, 2015.

J. Nutini, I. Laradji, and M. Schmidt. Let’s make block coordinate descent go fast: Faster
greedy rules, message-passing, active-set complexity, and superlinear convergence.
arXiv preprint arXiv:1712.08859, 2017.

J. Nutini, M. Schmidt, and W. Hare. “active-set complexity” of proximal gradient: How
long does it take to find the sparsity pattern? Optimization Letters, 13(4):645–655, 2019.

P. Ochs, R. Ranftl, T. Brox, and T. Pock. Bilevel optimization with nonsmooth lower level
problems. In International Conference on Scale Space and Variational Methods in Computer
Vision, pages 654–665, 2015.

B. O’Donoghue, E. Chu, N. Parikh, and S. Boyd. Conic optimization via operator splitting
and homogeneous self-dual embedding. Journal of Optimization Theory and Applications,
169(3):1042–1068, 2016.

B. O’Donoghue, E. Chu, N. Parikh, and S. Boyd. SCS: Splitting conic solver, version 2.1.2,
2019.

Sang-Yun Oh, Bala Rajaratnam, and Joong-Ho Won. Towards a sparse, scalable, and stably
positive definite (inverse) covariance estimator, 2015.

Joel S Parker, Michael Mullins, Maggie CU Cheang, Samuel Leung, David Voduc, Tammi
Vickery, Sherri Davies, Christiane Fauron, Xiaping He, Zhiyuan Hu, et al. Supervised
risk predictor of breast cancer based on intrinsic subtypes. Journal of clinical oncology, 27
(8):1160, 2009.

F. Pedregosa. Hyperparameter optimization with approximate gradient. In ICML, vol-
ume 48, pages 737–746, 2016.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon-
del, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,



222 BIBLIOGRAPHY

M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python. J.
Mach. Learn. Res., 12:2825–2830, 2011.

G. Peyré and J. M. Fadili. Learning analysis sparsity priors. In Sampta, 2011.

J. Platt. Sequential minimal optimization: A fast algorithm for training support vector
machines. Technical report, Microsoft Research, 1998.

J. C. Platt. Probabilistic outputs for support vector machines and comparisons to regu-
larized likelihood methods. In ADVANCES IN LARGE MARGIN CLASSIFIERS, pages
61–74. MIT Press, 1999.

R. Poliquin and R. Rockafellar. Generalized hessian properties of regularized nonsmooth
functions. SIAM Journal on Optimization, 6(4):1121–1137, 1996a.

R. Poliquin and R. Rockafellar. Prox-regular functions in variational analysis. Transactions
of the American Mathematical Society, 348(5):1805–1838, 1996b.

B. T. Polyak. Introduction to optimization. optimization software. Inc., Publications Divi-
sion, New York, 1, 1987.

C. Poon and J. Liang. Trajectory of alternating direction method of multipliers and adap-
tive acceleration. In Advances In Neural Information Processing Systems, pages 7357–7365,
2019.

C. Poon, J. Liang, and C.-B. Schönlieb. Local convergence properties of SAGA/Prox-SVRG
and acceleration. In ICML, volume 90, pages 4121–4129, 2018.

Sidharth V Puram, Itay Tirosh, Anuraag S Parikh, Anoop P Patel, Keren Yizhak, Shawn
Gillespie, Christopher Rodman, Christina L Luo, Edmund A Mroz, Kevin S Emerick,
et al. Single-cell transcriptomic analysis of primary and metastatic tumor ecosystems in
head and neck cancer. Cell, 171(7):1611–1624, 2017.

E. Purdom and S. P. Holmes. Error distribution for gene expression data. Statistical appli-
cations in genetics and molecular biology, 4(1), 2005.

W. Qiao, G. Quon, A. Csaszar, M. Yu, Q. Morris, and P. W. Zandstra. Pert: A method for
expression deconvolution of human blood samples from varied microenvironmental
and developmental conditions. PLOS Computational Biology, 8(12):1–14, 12 2012.

Z. Qu and P. Richtárik. Coordinate descent with arbitrary sampling i: Algorithms and
complexity. Optimization Methods and Software, 31(5):829–857, 2016a.



BIBLIOGRAPHY 223

Z. Qu and P. Richtárik. Coordinate descent with arbitrary sampling ii: Expected separable
overapproximation. Optimization Methods and Software, 31(5):858–884, 2016b.

A. Rajeswaran, C. Finn, S. M. Kakade, and S. Levine. Meta-learning with implicit gradi-
ents. In Advances in neural information processing systems, pages 113–124, 2019.

Youlan Rao, Yoonkyung Lee, David Jarjoura, Amy S Ruppert, Chang-gong Liu, Jason C
Hsu, and John P Hagan. A comparison of normalization techniques for microrna mi-
croarray data. Statistical applications in genetics and molecular biology, 7(1), 2008.

L. A. Rastrigin. The convergence of the random search method in the extremal control of
a many parameter system. Automaton & Remote Control, 24:1337–1342, 1963.

M. Razaviyayn, M. Hong, and Z.-Q. Luo. A unified convergence analysis of block succes-
sive minimization methods for nonsmooth optimization. SIAM J. Optim., 23(2):1126–
1153, 2013.

M. Reck, D. Rodrı́guez-Abreu, A. G. Robinson, R. Hui, T. Csőszi, A. Fülöp, M. Gottfried,
N. Peled, A. Tafreshi, S. Cuffe, et al. Pembrolizumab versus chemotherapy for pd-l1–
positive non–small-cell lung cancer. N engl J med, 375:1823–1833, 2016.

S. Reddi, A. Hefny, C. Downey, A. Dubey, and S. Sra. Large-scale randomized-coordinate
descent methods with non-separable linear constraints. arXiv preprint arXiv:1409.2617,
2014.

C. Reichling, J. Taieb, V. Derangere, Q. Klopfenstein, K. Le Malicot, J.-M. Gornet,
H. Becheur, F. Fein, O. Cojocarasu, M. C. Kaminsky, et al. Artificial intelligence-guided
tissue analysis combined with immune infiltrate assessment predicts stage iii colon can-
cer outcomes in petacc08 study. Gut, 69(4):681–690, 2020.

P. Richtárik and M. Takáč. Iteration complexity of randomized block-coordinate descent
methods for minimizing a composite function. Mathematical Programming, 144(1-2):1–38,
2014.

R. T. Rockafellar. Convex analysis. Princeton Landmarks in Mathematics. Princeton Uni-
versity Press, Princeton, NJ, 1997.

R. T. Rockafellar and R. J.-B. Wets. Variational analysis, volume 317 of Grundlehren der Math-
ematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-
Verlag, Berlin, 1998.



224 BIBLIOGRAPHY

S. Rosset and J. Zhu. Piecewise linear regularized solution paths. Ann. Statist., 35(3):
1012–1030, 2007.

A. Saha and A. Tewari. On the nonasymptotic convergence of cyclic coordinate descent
methods. SIAM J. Optim., 23(1):576–601, 2013.

B. Schölkopf and A. J. Smola. Learning with kernels: Support vector machines, regularization,
optimization, and beyond. MIT press, 2002.

B. Schölkopf, P. Bartlett, A. Smola, and R. Williamson. Shrinking the tube: A new support
vector regression algorithm. In Proceedings of the 1998 Conference on Advances in Neural
Information Processing Systems II, pages 330–336, Cambridge, MA, USA, 1999. MIT Press.
ISBN 0-262-11245-0.

G. Schwarz. Estimating the dimension of a model. Ann. Statist., 6(2):461–464, 1978.

M. W. Seeger. Cross-validation optimization for large scale structured classification kernel
methods. J. Mach. Learn. Res., 9:1147–1178, 2008.

S. Shalev-Shwartz and A. Tewari. Stochastic methods for l1-regularized loss minimization.
Journal of Machine Learning Research, 12:1865–1892, 2011.

S. Shalev-Shwartz and T. Zhang. Stochastic dual coordinate ascent methods for regular-
ized loss minimization. Journal of Machine Learning Research, 14(Feb):567–599, 2013.

J. She and M. Schmidt. Linear convergence and support vector identification of sequen-
tial minimal optimization. In 10th NIPS Workshop on Optimization for Machine Learning,
volume 5, 2017.

H.-J. M. Shi, S. Tu, Y. Xu, and W. Yin. A primer on coordinate descent algorithms. ArXiv
e-prints, 2016.

Alex J. Smola and Bernhard Schölkopf. A tutorial on support vector regression. Statistics
and Computing, 14(3):199–222, August 2004. ISSN 0960-3174.

J. Snoek, H. Larochelle, and R. P. Adams. Practical bayesian optimization of machine
learning algorithms. In Advances in neural information processing systems, pages 2951–
2959, 2012.

S. E. Stanton, S. Adams, and M. L. Disis. Variation in the incidence and magnitude of
tumor-infiltrating lymphocytes in breast cancer subtypes: a systematic review. JAMA
oncology, 2(10):1354–1360, 2016.



BIBLIOGRAPHY 225

C. M. Stein. Estimation of the mean of a multivariate normal distribution. Ann. Statist., 9
(6):1135–1151, 1981.

L. R. A. Stone and J.C. Ramer. Estimating WAIS IQ from Shipley Scale scores: Another
cross-validation. Journal of clinical psychology, 21(3):297–297, 1965.

R. Sun and M. Hong. Improved iteration complexity bounds of cyclic block coordinate
descent for convex problems. In Advances in Neural Information Processing Systems, pages
1306–1314, 2015.

Y. Sun, H. Jeong, J. Nutini, and M. Schmidt. Are we there yet? manifold identification of
gradient-related proximal methods. In AISTATS, volume 89, pages 1110–1119, 2019.

H. Sung, J. Ferlay, R. L. Siegel, M. Laversanne, I. Soerjomataram, A. Jemal, and F. Bray.
Global cancer statistics 2020: Globocan estimates of incidence and mortality worldwide
for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians, n/a(n/a), 2021.

J. Suykens and J. Vandewalle. Least squares support vector machine classifiers. Neural
Processing Letters, 9:293–300, 06 1999.

S. Tao, D. Boley, and S. Zhang. Local linear convergence of ISTA and FISTA on the LASSO
problem. SIAM J. Optim., 26(1):313–336, 2016.

R. Tibshirani. Regression shrinkage and selection via the lasso. J. R. Stat. Soc. Ser. B Stat.
Methodol., 58(1):267–288, 1996.

R. Tibshirani, J. Bien, J. Friedman, T. J. Hastie, N. Simon, J. Taylor, and R. J. Tibshirani.
Strong rules for discarding predictors in lasso-type problems. J. R. Stat. Soc. Ser. B Stat.
Methodol., 74(2):245–266, 2012.

R. J. Tibshirani. The lasso problem and uniqueness. Electron. J. Stat., 7:1456–1490, 2013.

A. N. Tikhonov. On the stability of inverse problems. Dokl. Akad. Nauk SSSR, 39:176–179,
1943.

Itay Tirosh, Benjamin Izar, Sanjay M Prakadan, Marc H Wadsworth, Daniel Treacy, John J
Trombetta, Asaf Rotem, Christopher Rodman, Christine Lian, George Murphy, et al.
Dissecting the multicellular ecosystem of metastatic melanoma by single-cell rna-seq.
Science, 352(6282):189–196, 2016.

P. Tseng. Convergence of a block coordinate descent method for nondifferentiable mini-
mization. J. Optim. Theory Appl., 109(3):475–494, 2001.



226 BIBLIOGRAPHY

P. Tseng and S. Yun. Block-coordinate gradient descent method for linearly constrained
nonsmooth separable optimization. J. Optim. Theory Appl., 140(3):513, 2009.

S. Vaiter, M. Golbabaee, J. Fadili, and G. Peyré. Model selection with low complexity
priors. Information and Inference: A Journal of the IMA, 4(3):230–287, 2015.

S. Vaiter, G. Peyré, and J. Fadili. Model consistency of partly smooth regularizers. IEEE
Transactions on Information Theory, 64(3):1725–1737, 2018.

T. Van Gestel, J. A. K. Suykens, D. . Baestaens, A. Lambrechts, G. Lanckriet, B. Vandaele,
B. De Moor, and J. Vandewalle. Financial time series prediction using least squares
support vector machines within the evidence framework. IEEE Transactions on Neural
Networks, 12(4):809–821, July 2001. ISSN 1045-9227.

C. L. Ventola. Cancer immunotherapy, part 3: challenges and future trends. Pharmacy and
Therapeutics, 42(8):514, 2017.

B. E. Wahlin, B. Sander, B. Christensson, and E. Kimby. Cd8+ t-cell content in diagnostic
lymph nodes measured by flow cytometry is a predictor of survival in follicular lym-
phoma. Clinical Cancer Research, 13(2):388–397, 2007.

Xuran Wang, Jihwan Park, Katalin Susztak, Nancy R Zhang, and Mingyao Li. Bulk tis-
sue cell type deconvolution with multi-subject single-cell expression reference. Nature
communications, 10(1):1–9, 2019.

Zhong Wang, Mark Gerstein, and Michael Snyder. Rna-seq: a revolutionary tool for tran-
scriptomics. Nature reviews genetics, 10(1):57–63, 2009.

R. E. Wengert. A simple automatic derivative evaluation program. Commun. ACM, 7(8):
463–464, August 1964. ISSN 0001-0782.

E. Winston and Z. Kolter. Neural monotone operator equilibrium networks. Advances in
neural information processing systems, 2020.

S. J. Wright. Identifiable surfaces in constrained optimization. SIAM Journal on Control and
Optimization, 31(4):1063–1079, 1993.

S. J. Wright. Accelerated block-coordinate relaxation for regularized optimization. SIAM
J. Optim., 22(1):159–186, 2012.

S. J. Wright. Coordinate descent algorithms. Mathematical Programming, 151(1):3–34, 2015.



BIBLIOGRAPHY 227

Y. Xu and W. Yin. A globally convergent algorithm for nonconvex optimization based on
block coordinate update. Journal of Scientific Computing, 72(2):700–734, 2017.

M. Yuan and Y. Lin. Model selection and estimation in regression with grouped variables.
J. R. Stat. Soc. Ser. B Stat. Methodol., 68(1):49–67, 2006.

L. Zhang, M. Mahdavi, and R. Jin. Linear convergence with condition number indepen-
dent access of full gradients. Advances in Neural Information Processing Systems, 26:980–
988, 2013.

T. Zhang. Solving large scale linear prediction problems using stochastic gradient descent
algorithms. In Proceedings of the twenty-first international conference on Machine learning,
page 116, 2004.

Y. Zheng. Chapter 1 - introduction to non-coding rnas and high throughput sequencing. In
Yun Zheng, editor, Computational Non-coding RNA Biology, pages 3–31. Academic Press,
2019. ISBN 978-0-12-814365-0.

H. Zou. The adaptive lasso and its oracle properties. J. Amer. Statist. Assoc., 101(476):
1418–1429, 2006.

H. Zou and T. J. Hastie. Regularization and variable selection via the elastic net. J. R. Stat.
Soc. Ser. B Stat. Methodol., 67(2):301–320, 2005.

H. Zou, T. J. Hastie, and R. Tibshirani. On the “degrees of freedom” of the lasso. Ann.
Statist., 35(5):2173–2192, 2007.


	Introduction
	Mathematical background
	I Non-smooth optimization around coordinate descent
	Local linear convergence of coordinate descent
	Support Vector regression with linear constraints

	II Hyperparameters selection for non-smooth convex models
	Introduction to hyperparameter optimization
	Hypergradient computation in non-smooth convex learning
	Hyperparameter optimization in non-smooth convex learning

	III Estimating cells proportions with developed tools
	Validation of our method
	Conclusion
	Résumé des travaux
	Bibliography


