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Olivier MOREL Co-directeur de thèse Maı̂tre de conférence à l’Université de
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Summary

Polarization is the phenomenon that describes the oscillations orientations of the
light waves which are restricted in direction. Polarized light has multiple uses
in the animal kingdom ranging from foraging, defense and communication to
orientation and navigation. Chapter (1) briefly covers some important aspects
of polarization and explains our research problem.

We are aiming to use a polarimetric-catadioptric sensor since there are many
applications which can benefit from such combination in computer vision and
robotics specially robot orientation (attitude estimation) and navigation appli-
cations. Chapter (2) mainly covers the state of art of visual based attitude
estimation.

As the unpolarized sunlight enters the Earth’s atmosphere, it is Rayleigh-
scattered by air, and it becomes partially linearly polarized. This skylight po-
larization provides a significant clue to understanding the environment. Its
state conveys the information for obtaining the sun orientation. Robot naviga-
tion, sensor planning, and many other applications may benefit from using this
navigation clue. Chapter (3) covers the state of art in capturing the skylight
polarization patterns using omnidirectional sensors (e.g fisheye and catadioptric
sensors). It also explains the skylight polarization characteristics and gives a
new theoretical derivation of the skylight angle of polarization pattern.

Our aim is to obtain an omnidirectional 360◦ view combined with polariza-
tion characteristics. Hence, this work is based on catadioptric sensors which
are composed of reflective surfaces and lenses. Usually the reflective surface
is metallic and hence the incident skylight polarization state, which is mostly
partially linearly polarized, is changed to be elliptically polarized after reflec-
tion. Given the measured reflected polarization state, we want to obtain the
incident polarization state. Chapter (4) proposes a method to measure the light
polarization parameters using a catadioptric sensor. The possibility to measure
the incident Stokes is proved given three Stokes out of the four reflected Stokes.

Once the incident polarization patterns are available, the solar angles can
be directly estimated using these patterns. Chapter (5) discusses polarization
based robot orientation and navigation and proposes new algorithms to estimate
these solar angles where, to the best of our knowledge, the sun zenith angle is
firstly estimated in this work given these incident polarization patterns. We also
propose to estimate any vehicle orientation given these polarization patterns.

Finally the work is concluded and possible future research directions are
discussed in chapter (6). More examples of skylight polarization patterns, their
calibration, and the proposed applications are given in appendix (B).

Our work may pave the way to move from the conventional polarization vi-
sion world to the omnidirectional one. It enables bio-inspired robot orientation
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and navigation applications and possible outdoor localization based on the sky-
light polarization patterns where given the solar angles at a certain date and
instant of time may infer the current vehicle geographical location.



Résumé

La polarisation est le phénomène qui décrit les orientations des oscillations des
ondes lumineuses qui sont limitées en direction. La lumière polarisée est large-
ment utilisée dans le règne animal, à partir de la recherche de nourriture, la
défense et la communication et la navigation. Le chapitre (1) aborde brièvement
certains aspects importants de la polarisation et explique notre problématique
de recherche.

Nous visons à utiliser un capteur polarimétrique-catadioptrique car il existe
de nombreuses applications qui peuvent bénéficier d’une telle combinaison en
vision par ordinateur et en robotique, en particulier pour l’estimation d’attitude
et les applications de navigation. Le chapitre (2) couvre essentiellement l’état
de l’art de l’estimation d’attitude basée sur la vision.

Quand la lumière non-polarisée du soleil pénètre dans l’atmosphère, l’air en-
traine une diffusion de Rayleigh, et la lumière devient partiellement linéairement
polarisée. Le chapitre (3) présente les motifs de polarisation de la lumière na-
turelle et couvre l’état de l’art des méthodes d’acquisition des motifs de po-
larisation de la lumière naturelle utilisant des capteurs omnidirectionnels (par
exemple fisheye et capteurs catadioptriques). Nous expliquons également les
caractéristiques de polarisation de la lumière naturelle et donnons une nouvelle
dérivation théorique de son angle de polarisation.

Notre objectif est d’obtenir une vue omnidirectionnelle à 360◦ associée aux
caractéristiques de polarisation. Pour ce faire, ce travail est basé sur des capteurs
catadioptriques qui sont composées de surfaces réfléchissantes et de lentilles.
Généralement, la surface réfléchissante est métallique et donc l’état de polarisa-
tion de la lumière incidente, qui est le plus souvent partiellement linéairement
polarisée, est modifiée pour être polarisée elliptiquement après réflexion. A par-
tir de la mesure de l’état de polarisation de la lumière réfléchie, nous voulons
obtenir l’état de polarisation incident. Le chapitre (4) propose une nouvelle
méthode pour mesurer les paramètres de polarisation de la lumière en utilisant
un capteur catadioptrique. La possibilité de mesurer le vecteur de Stokes du
rayon incident est démontré à partir de trois composants du vecteur de Stokes
du rayon réfléchi sur les quatre existants.

Lorsque les motifs de polarisation incidents sont disponibles, les angles zénithal
et azimutal du soleil peuvent être directement estimés à l’aide de ces modèles.
Le chapitre (5) traite de l’orientation et de la navigation de robot basées sur la
polarisation et différents algorithmes sont proposés pour estimer ces angles dans
ce chapitre. A notre connaissance, l’angle zénithal du soleil est pour la première
fois estimé dans ce travail à partir des schémas de polarisation incidents. Nous
proposons également d’estimer l’orientation d’un véhicule à partir de ces motifs
de polarisation.
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Enfin, le travail est conclu et les possibles perspectives de recherche sont
discutées dans le chapitre (6). D’autres exemples de schémas de polarisation de
la lumière naturelle, leur calibrage et des applications sont proposées en annexe
(B).

Notre travail pourrait ouvrir un accès au monde de la vision polarimétrique
omnidirectionnelle en plus des approches conventionnelles. Cela inclut l’orientation
bio-inspirée des robots, des applications de navigation, ou bien la localisation en
plein air pour laquelle les motifs de polarisation de la lumière naturelle associés
à l’orientation du soleil à une heure précise peuvent aboutir à la localisation
géographique d’un véhicule.



Chapter 1

Introduction

Solar radiation entering the atmosphere of the Earth becomes partially linearly
polarized due to scattering interactions with atmospheric constituents (e.g vari-
ous gases, aerosol particles, water droplets and ice crystals). The formed skylight
polarization pattern mainly depends on a) the solar position, b) the distribution
of atmospheric components, and c) the reflection characteristics of the underly-
ing surface.

Skylight polarization has been the subject of numerous theoretical and ex-
perimental investigations since its discovery by Arago in 1809 (e.g., [28], [152],
[191], [97], [38]).The characteristics of skylight polarization can be used to indi-
cate atmospheric turbidity ([17]), detect clouds across the sky ([99]), and detect
the horizon line for attitude estimation ([192]) . On the other hand, celestial
polarization also bears a great biological importance, since numerous species are
capable of perceiving polarization, as an independent property of light beyond
intensity and color, and using it as a cue for their orientation (e.g., [66, 67],
[237], [104]). It was also hypothesized that Vikings could make use of skylight
polarization when navigating across the sea ([164, 165]).

In the past, point-source polarimeters were used for ground-based measure-
ments of celestial polarization to obtain degree and angle of linear polarization
for different wavelengths at a small spot in the sky. Recently, the observation
of skylight polarization over the whole celestial hemisphere become available by
the development of full-sky (i.e., 180◦ field of view) imaging polarimetry which
ensures a fast and accurate data collection ([155], [229], [73, 74], [160]).

1.1 Polarization

Polarization is the phenomenon that describes the oscillations orientation of the
light (or other radiation) waves which are restricted in direction. Light’s vector
orientation can be weekly detected by some humans with their naked eyes, but
humans need the help of polarizing optics to visualize most invisible polarization
effects ([78], [1]).

Polarization of light was first discovered by Bartolinus (1625-1698), he found
that when a light ray is refracted by a calcite crystal, two rays are produced. One
follows the ordinary laws of refraction and the other follows a different law [38].
Huygens (1629-1695) made several observations like Bartolinus noting the two

19



CHAPTER 1. INTRODUCTION 20

different rays with different properties. He noticed if either ray passed through a
second crystal, the emergent intensity strongly depended on the second crystal
orientation. This observation proved the existence of an asymmetry around the
direction of propagation of certain light rays which is due to polarization [38].

1.2 Bio-Inspired Polarization Techniques

For long time, it was thought that sensing of polarization in animals is invari-
ably related to their behavior like navigation and orientation. Polarized light
has been shown to have multiple uses in the animal kingdom, ranging from for-
aging, defense, and communication to orientation and navigation ([238, 170]).
The light polarization pattern in the atmosphere or underwater has been found
to be highly regular depending on the position of the sun in the sky, which sug-
gests that the polarization patterns constitute a reliable source of orientational
information for many animals. Recently, it was found that polarization can be
part of a high-level visual perception, permitting a wide area of vision applica-
tions. Polarization vision can be used for most tasks of color vision like: object
recognition, contrast enhancement, camouflage breaking, and signal detection
and discrimination.

Sky polarization patterns are used by many insects for navigation. Honey-
bees use celestial polarization to move between the hive and foraging locations
([167, 238, 42]). Cataglyphis ants ([42]) and nocturnal ([48]) use the sun and
moon, respectively, celestial polarization for similar tasks. Salmon fishes may
have a similar ability ([88]), which allows them to orient in underwater light
fields ([156]). Light reflection from water surfaces results in horizontally polar-
ized light which is utilized by water beetles and other insects for orientation.
([188, 189, 190]). Some of these animals are shown in figure (1.1).

1.3 Skylight polarization

Skylight polarization provides a significant clue to understand the environment.
The skylight polarization state conveys the information for obtaining the sun
orientation. As the unpolarized sunlight enters the Earth’s atmosphere, it is
Rayleigh-scattered by air, and it becomes partially linearly polarized. If the
atmosphere is clear (cloudless), this scattering phenomenon results in the well-
known spatial distribution of the radiance (intensity), color, the degree of po-
larization p , and the angle of polarization α ([94]). Robot navigation, sensor
planning, and many other applications may benefit from using this navigation
clue. Chapter (3) discusses in detail the skylight polarization patterns and
how they are captured. We also provide a new derivation of the skylight angle
of polarization α and a comparison with the state of the art methods. Our
interest is in omnidirectional polarization vision and hence it is dedicated to
the usage of omnidirectional sensors to measure skylight polarization patterns.
Omnidirectional skylight polarization measurements obtained by fisheye lenses,
catadioptric sensors (combing mirrors with cameras), and our proposed omni-
pola-catadioptric sensor formed by a mirror and a polarizational camera are also
covered.
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Figure 1.1: Polarization in the animal kingdom. From left to right and top to
bottom: Bee, desert ant (Cataglyphis), nocturnal bird (owl), and salmon fish

1.4 Problem statement

We are aiming to use a polarizational-catadioptric sensor which has a field of
view up to 360◦ since there are many applications which can benefit from such
combination in computer vision and robotics. Polarization vision can be part
of high-level visual perception permitting wide area of vision applications as
it can be used for most tasks of color vision like: object recognition, contrast
enhancement, camouflage breaking, and signal detection and discrimination.
Omni-pola vision may enrich the robotic visual capabilities in different fields
like:

� industrial inspection applications, e.g (metallic cyclinderical internal sur-
face defect inspection can be greatly enhanced using a pola-catadioptric
sensor).

� mineral exploration, e.g ( inspect the soil characteristics while/after drilling).

� underwater pipe inspection, underwater oil reg inspection.

� transparent objects tracking and camouflage breaking for military pur-
poses.

� mobile robot orientation and navigation, e.g (outdoor orientation and
navigation decisions can be taken based on the skylight polarization pat-
tern like bees, indoor orientation and navigation decisions can be taken
based on the polarizational features of the surrounding environment like
detecting a glass door which is transparent for conventional visual sensors).
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In this work the focus is on the last point, where we investigate outdoor robot
orientation and navigation using bio-inspired techniques based on polarization
vision.

Skylight polarization patterns (chapter 3) constitute a reliable source of ori-
entational information for many animals, hence we proposed an omni-polarizational
sensor to capture the full polarimetric pattern ( chapter 4) and developed algo-
rithms (chapter 5) to obtain the solar angles and the vehicle attitude based on
these patterns.

State of the art in visual based Unmanned Aerial Vehicle (UAV) attitude
estimation is given in chapter ( 2) in which we target vision only techniques
to draw the main research lines considered to solve this problem using visual
sensors only. UAV was mainly aimed to as it can be considered the most general
case for autonomous robots attitude estimation.

Our novel proposed omni-polarizational (pola-catadioptric) sensor consists
of a metallic mirror and a lens. This metallic mirror changes the polarization
state of the incident beam a little but to gain sufficient accuracy we proposed a
method to calibrate the incident polarization state (4).

1.5 Contributions

In this work, our aim is to combine omnidirectional and polarizational sensors
to obtain omnidirectional polarization vision for robot navigation. In the way
to accomplish this target, the literature was surfed to produce three surveys, a
novel pola-catadioptric sensor and several algorithms for solar angles computa-
tion and Autonomous Vehicle attitude estimation algorithms. Here is a list of
contributions:

� A complete dedicated survey to one of the most important bio-inspired
visual features in nowadays applications [see appendix (A) ([197])].

� A complete survey on vision based UAV attitude estimation techniques
[see chapter (2) ([192])].

� A comprehensive survey about measuring skylight polarization patterns
using omnidirectional sensors was given in [see chapter (3)].

� An analytic form of the skylight angle of polarization was derived [see
section (3.5)].

� A novel pola-catadioptric sensor was proposed [see section (3.4) ([193,
197])].

� Only three out of the four reflected Stokes are proved to be sufficient to
estimate the three incident Stokes [see section (4)] and calibrating the
polarization state of incident light after being reflected from any surface
[see section (4)].

� Solar angles estimation from skylight polarization patterns where, to the
best of our knowledge, the sun zenith angle is firstly estimated here given
these patterns [see section (5.2)] and autonomous vehicle attitude estima-
tion from skylight polarization patterns [see section (5.3)].
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� MATLAB® toolbox to simulate skylight polarization patterns, interact
with different types of mirrors, and calibrate the incident polarization
state from the reflected polarization patterns . User can travel in time and
space to simulate these patterns anywhere in the earth at any instant of
time. All solar information are provided. The user is capable of estimating
the solar angles given these polarization patterns. He can also rotate the
mirror (the robot which the mirror is attached to its center of gravity) and
estimate the rotation angles from the polarization patterns. The user is
free to add any amount of noise and play around with several parameters
concerning time, space, and mirrors [snapshots of the different tasks are
provided in chapters (, 5)].

1.6 Organization

Chapter (2) covers vision based UAV attitude estimation techniques passing
through horizon detection, vanishing points, stereo vision and optical flow based
techniques.

Chapter (3) explains the skylight polarization patterns and covers the state
of the art in capturing the skylight polarization patterns using fisheye, cata-
dioptric, our proposed omni-pola-catadioptric sensors, the angle of polarization
derivation, and a comparison between our new formula and what exists in lit-
erature.

Chapter (4) covers the skylight Stokes calibration process where the ambigu-
ity caused by reflective surface is highlighted and the proposed calibration of the
incident skylight polarization by computing its stokes parameters is explained.

Chapter (5) will give a detailed survey about polarization based robot ori-
entation and navigation. The chapter will cover applications based on the cali-
brated incident polarization patterns where the solar angles and robot attitude
(roll, pitch, and yaw angles) are estimated.

Finally the work will be concluded and possible future research directions
will be discussed in chapter (6).



Chapter 2

Vision Based UAV Attitude
Estimation

Unmanned aerial vehicles (UAVs) are increasingly replacing manned systems in
situations that are dangerous, remote, or difficult for manned aircraft to access.
Its control tasks are empowered by computer vision technology. Visual sensors
are robustly used for stabilization as primary or at least secondary sensors.
Hence, UAV stabilization by attitude estimation from visual sensors is a very
active research area. Vision based techniques are proving their effectiveness and
robustness in handling this problem. In this work a comprehensive review of
UAV vision based attitude estimation approaches ([192]) is covered, starting
from horizon based methods and passing by vanishing points, optical flow, and
stereoscopic based techniques.

2.1 Introduction

In order to determine the pose of the vehicle accurately and rapidly, the regular
approach is to use inertial sensors with other sensors and applying sensor fusion.
Some sensors used for this purpose are the Global positioning sensor (GPS),
inertial navigation sensor (INS), as well as other sensors such as altitude sensors
(ALS) and speedometers. These sensors have some limitations. GPS sensor for
example, is not available at some locations or readings are subject to error. INS
has the disadvantage of accumulation of errors. To overcome these limitations,
vision-based navigation approaches have been developed. These approaches can
be used where GPS or INS systems are not available or can be used with other
sensors to obtain better estimations. UAV attitude estimation has been deeply
studied in terms of data fusion of multiple low cost sensors in a Kalman filter
(KF) framework to have the vehicle full state of position and orientation. But in
pure vision based methods, if a horizontal world reference is visible (e.g horizon)
the camera attitude can be obtained.

In order to control a flying vehicle at least six parameters (pose of the ve-
hicle) should be known; Euler angles representing the orientation of the vehicle
and a vector of coordinates, representing the position of the vehicle. Pose esti-
mation basically depends on viewing a world unchanging physical reference (e.g
landmarks on the ground) for accurate estimation. Our main concern in this
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work is to review the work that focuses on attitude (roll, pitch, and yaw angles
shown in figure (2.1)) estimation rather than pose estimation.

Figure 2.1: An illustrative sketch of the attitude (roll, pitch, and yaw angles)

In a typical flight, the demand for yaw angle will be largely constant and
hence disturbances tend to have a relatively small effect on yaw. Further, small
steady state errors are normally acceptable since (unlike roll and pitch) any
errors will have no further effect on the UAV motion. Therefor, for the sake of
UAV stabilization, the most important angles to be estimated are the pitch and
roll angles as most of the work in literature propose. In this work, the focus is
on attitude estimation from perspective and omnidirectional cameras.

Sections (2.2, 2.3, 2.4), will review the general techniques for attitude es-
timation from visual sensors (perspective and omnidirectional only) in detail.
In section (2.2), horizon detection algorithms will be briefly explained and re-
viewed. Vanishing points based techniques are reviewed in section (2.3). The
classical and hybrid approaches using stereo-vision and optical flow are reviewed
in section (2.4). Finally we conclude in section (2.5).

2.1.1 Vision sensors for attitude estimation

Vision based methods were first introduced by [61] . They proposed to equip
a Micro Air Vehicle (MAV) with a perspective camera to have a vision-guided
flight stability and autonomy system. Omnidirectional sensors for attitude es-
timation were first introduced by [51]. The omnidirectional sensors (Fisheye
and Catadioptric cameras shown in figure (2.2)) were used in different scenar-
ios. Catadioptric sensors are commercially available for reasonable prices. A
catadioptric sensor has two main parts, the mirror and the lens. The lens could
be telecentric or perspective. The sensor is in general assembled as shown in
figure (2.2c).
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Omnidirectional sensors were used alone or in stereo configurations. Omni-
directional vision presents several advantages: a) a complete surrounding of the
UAV can be captured and the horizon is totally visible, b) possible occlusions
will have lower impact on the estimation of the final results, c) whatever the
attitude of the UAV, the horizon is always present in the image, even partially,
and the angles can always be computed, d) it is also possible to compute the
roll and pitch angles without any prior hypothesis, contrary to the applications
using a perspective camera. Yet, catadioptric vision also presents some draw-
backs. For example, a) a catadioptric image contains significant deformations
due to the geometry of the mirror and to the sampling of the camera, b) cata-
dioptric cameras should be redesigned to a lower scale to be attached to a micro
air vehicle (MAV).

(a) Perspective (b) Fisheye

(c) Catadioptric

Figure 2.2: Perspective and omnidirectional (Fisheye and Catadioptric) cameras

2.1.2 The main techniques for attitude estimation

In literature, the first group of methods tries to detect a horizontal reference
frame in the world to estimate the up direction and hence the attitude of the
vehicle. The horizon, if visible, is the best natural horizontal reference to be
used [61]. However, in urban environments the horizon might not be visible.
Hence, the second group tries to find the vanishing points from parallel vertical
and horizontal lines which are basic features of man made structure (e.g [53]).
The third group was biologically inspired from insects, it employs the UAV
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motion (optical flow) for the sake of required estimation [12]. Stereo vision
based techniques came to the play to open the door for more accurate estimation
specially if combined with optical flow (e.g [133]). All these techniques will be
discussed in the following sections.

Most of the employed techniques in literature use the Kalman filter (KF)
or one of its variations in order to obtain an accurate and reliable estimation
specially if more than one sensor is used and their measurements are fused. For
a general parameter estimation issue, the extended Kalman filter (EKF) tech-
nique is widely adopted. Due to the processing of EKF in a linear manner, it
may lead to sub-optimal estimation and even filter divergence. Nevertheless,
state estimation using EKF assumes that both state recursion and covariance
propagation are Gaussian. Unscented Kalman filter (UKF) resolves the non-
linear parameter estimation and machine learning problems. It can outperform
the EKF especially for those highly nonlinear system dynamics/measurement
processes. None of the Jacobean or derivatives of any functions are taken under
the UKF processing [105]. For example in [57], using an EFK, the candidate
horizon lines are propagated and tracked through successive image frames, with
statistically unlikely horizon candidates eliminated. In [107], they followed the
EKF framework to combine inertial and visual sensor for real time attitude
estimation. They have designed a KF for image line measurements.

2.2 Horizon Detection

The visual sensor is not only a self-contained and passive like an INS but also
interactive with its environment. An absolute attitude can be provided by
detecting a reliable world reference frame. Attitude computation by vision is
based on the detection of the horizon, which appears as a line in perspective
images or a curve in omnidirectional images as shown in figure (2.3), and on the
estimation of the angle between the horizon and a horizontal reference.

Due to the difficulty in obtaining ground-truth for aircraft attitude, most of
the work in literature do not provide a quantitative measure of error in their
estimates of roll and pitch. In [220], they provided a complexity and performance
comparison between their method and other methods in literature. They have
included a comparison table of execution times for various published studies on
visual attitude estimation.

In the following subsections, we will cover in detail the different segmenta-
tion approaches for horizon detection in section (2.2.1) where both the perspec-
tive and omnidirectional scenarios will be reviewed. Section (2.2.3) will briefly
discuss horizon estimation and attitude computation in the perspective case.
Section (2.2.4) will briefly discuss the same in the omnidirectional case specially
in the catadioptric scenario which is frequently used.
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(a) Perspective (b) Non-central catadiop-
tric

Figure 2.3: Horizon in a) a perspective image, b) a non-central catadioptric
image

2.2.1 Sky/Ground Segmentation

As the segmentation of sky and ground is a crucial step toward extracting the
horizon line/curve, which is used for attitude estimation, these segmentation
methods will be discussed here.

Using perspective vision, algorithms employing Gaussian assumptions for
sky/ground segmentation fails in scenarios where the underlying Gaussian as-
sumption for the sky and ground appearances is not appropriate [61]. These
assumptions might be enhanced by a statistical image modeling framework by
building prior models of the sky and ground then trained. Since the appear-
ances of the sky and ground vary enormously, no single feature is sufficient for
accurate modeling; as such, these algorithms rely both on color and texture as
critical features. They may use hue and intensity for color representation, and
the complex wavelet transform for texture representation. Then they may use
Hidden Markov Tree models as underlying statistical models over the feature
space [222]. In [57], the algorithm is based on detecting lines in an image which
may correspond to the horizon, followed by testing the optical flow against the
measurements expected by the motion filter.

Using omnidirectional vision, some algorithms use markovian formulation of
sky/ground segmentation based on color information [51], or the sky/ground
partitioning is done in the spherical image thanks to the optimization of the
Mahalanobis distance between these regions. The search for points in either
regions takes place in the RGB space [52]. In order to isolate the sky from the
ground [132, 131], an approach based on the method employed by [36] weights
the RGB components of each pixel using the function f (RGB) = 3B2/(R +
G+B).

In [220], they propose an algorithm which can be incorporated into any
vision system (e.g. narrow angle, wide angle or panoramic), irrespective of
the way in which the environment is imaged (e.g. through lenses or mirrors).
The proposed horizon detection method consists of four stages: a) enhancing
sky/ground contrast, b) determining optimum threshold for sky and ground
segmentation, c) converting horizon points to vectors in the view sphere, and
d) fitting 3D plane to horizon vectors to estimate the attitude.
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In [215] they proposed segmentation using temperature from thermopile sen-
sors in the thermal infrared band. However, in this work, the focus will be on
attitude estimation from perspective and omnidirectional sensors only.

The previous segmentation solutions are either complex and/or time con-
suming. A method based on polarization for segmentation in section (2.2.2) is
proposed. We believe it will have significant enhancements in both complexity
and time due to its simplicity . We propose a novel non-central catadioptric
sensor where the mirror is a free-form shape and the camera is polarimetric (e.g
FD-1665P Polarization Camera [1]) to be used for attitude estimation.

2.2.2 Polarization based segmentation

Instead of using color information or edge detection algorithms for segmentation
which may require different complex models and offline processing as shown in
2.2 , we propose to use polarization information which exists in the surrounding
nature. Polarization information are directly computed from three intensity im-
ages taken at three different angles of a linear polarization filter (see section 4.3)
or at one shot using a polarizational camera [1].

Using polarization for segmentation is not new. It was used for rough surface
segmentation [219], material classification [241], water hazards detection for
autonomous off-road navigation [248] , and similar applications. However, to
the best of our knowledge, it is the first time to propose using polarization for
sky/ground segmentation for UAV attitude estimation.

Figure (2.4) shows the segmentation results using the formulas in section (4.3)
for non-central catadioptric images with the horizon detected by simply detect-
ing the transition area. This technique is very simple and can be optimized by
kind of binary search in the image having very rapid and robust results for the
detected horizon in the image. Only few regions of the image are needed to
be inspected for their degree or angle of polarization to decide for the search
direction. Unlike conventional segmentation methods, thanks to polarization,
we do not face the illumination problem caused by the sun being in the image.

After extracting the horizon, the UAV attitude can be estimated by the state
of the art methods as explained in this chapter.
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(a) 0◦ (b) 45◦

(c) 90◦ (d) Segmentation based on the degree
of polarization

(e) Segmentation based on the angle of
polarization

(f) Extracted horizon curve

Figure 2.4: Sky/Ground segmentation and horizon extraction based on polar-
ization from non-central catadioptric images

Section (4.3) shows how to compute the degree and angle of polarization. For
the sake of completeness we mention here a different method by [241] to compute
the angle and degree of polarization which can be used also for segmentation.

The angle (phase) of polarization is computed as follows:

α = 0.5 ∗ tan−1(
I0 + I90 − 2I45

I90 − I0
) + 90 (2.1)

if I90 < I0

if I45 < I0

α = α+ 90

else α = α− 90



CHAPTER 2. VISION BASED UAV ATTITUDE ESTIMATION 31

and the degree of polarization is:

p =
I90 − I0

(I90 + I0) ∗ cos(2α)
(2.2)

where I0, I45, and I90are intensity images taken at 0◦, 45◦, and 90◦ of the
rotating polarizer respectively (or at one shot from a polarizational camera).

In future work, we may provide detailed algorithms with complexity and run
time comparison with other methods found in literature.

2.2.3 Using perspective sensors

The horizon is projected as a line in the perspective image. Intuitively, it
is required to extract that line. Most methods first segment the image into
sky/ground areas, then take the separating points as the horizon line. The at-
titude is dependent on the gradient of that horizon line on the image plane. In
literature, the general approach is to find the normal to the plane of the horizon
in order to estimate the roll and pitch angles. The normal vector has direct
mathematical relation with the attitude as expressed in different methods. The
work done by [10, 223] are examples of successful autonomous control of a MAV
based on attitude estimation from the horizon detected.

In literature, horizon detection problem has been addressed by segmentation
and edge detection. In [61, 62] they proposed to equip a MAV with a perspective
camera to have a vision-guided flight stability and autonomy system. They
detected the horizon by extracting the straight line that separates the sky from
the ground using the context difference of the two regions. In [222] they treated
the horizon detection problem as a subset of image segmentation and object
recognition, and used a percentage of the sky seen as an error signal to a flight
stability controller on a MAV. The resulting system was stable enough to be
safely flown by an untrained operator in real time. In contrast, [10] uses a
direct edge-detection technique, followed by automatic threshold and a Hough-
like algorithm to generate a “projection statistic”’ for the horizon. It claims a
99% success rate over several hours of video. Importantly, it deals only with
detection, not estimation of attitude. In [57] they propose an algorithm slightly
similar to [10] in that it uses an edge detection technique followed by a Hough
transform. However, they propose different image pre-filtering. In [34, ?, 35, 36]
they use the centroids of sky and ground to extract the horizon and derive the
different angles. They try to simplify their work by using a circular mask to
reduce image asymmetry and to simplify the calculations.

2.2.4 Using omnidirectional sensors

The use of a single perspective camera generates several drawbacks. Firstly, a
partial view of the environment and important occlusions in the horizon can
have a serious influence on the final result. Secondly, the horizon is visible only
in a particular interval of roll and pitch values. If the UAV gets out of this
interval, the final image is exclusively made of sky or earth and the horizon
cannot be detected. Thirdly, it is only possible to compute the roll angle while
the pitch is only approximated thanks to a hypothesis on the altitude of the
UAV. All that pushed the need toward employing omnidirectional sensors to
capture the horizon in almost all scenarios. The horizon appears as a curve
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Figure 2.5: The relation between the horizon projection and the roll and pitch
angles. (Adapted from [51]).

in the omnidirectional image. It is common to use both fisheye and central
catadioptric sensors. As both are treated by the equivalence sphere theory
proposed by [9]. The particular geometric characteristics of the catadioptric
sensor will be briefly explained in the next section. Once the horizon is detected,
these characteristics are used to compute the attitude of the UAV.

2.2.5 Central catadioptric projection of the horizon

As demonstrated in [9], a 3D sphere projects on the equivalence sphere in a small
circle, and then on the catadioptric image plane in an ellipse (see figure (2.5)).
Consequently, the attitude computation is based on searching for an ellipse
in the omnidirectional image or a small circle on the equivalent sphere which
corresponds to the horizon. The geometrical properties of the equivalent sphere
allow to deduce the roll and pitch angles. Indeed, the normal of the projected
horizon on the sphere, which is also confounded with the line passing through
the center of the sphere of equivalence and through the center of the earth
represents in fact the attitude of the UAV depending on the position of the
optical axis. Then, the computation of the coordinates of the optical axis is
sufficient in order to deduce the roll and pitch angles.

2.2.6 Horizon estimation and attitude computation

In order to estimate the horizon, first the catadioptric image should be seg-
mented to obtain the sky/ground and hence the points belonging to the horizon.
Next, the horizon points should be back projected on the equivalence sphere.
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Finally, the best plane passes through the horizon on that sphere should be es-
timated to deduce its normal which gives the roll and pitch angles (e.g [51, 52]).

In [51], they proposed to use an omnidirectional visual sensor in order to
compute the attitude of a UAV. They have extended the work of [61, 62] to de-
tect the curved horizon line. They show an adaptation of the Markov Random
Fields (MRFs) to treat the deformations in the catadioptric images in order to
detect the horizon and hence the catadiotric geometric characteristics are used
to compute the UAV attitude. This method gives interesting results but do
not use sufficiently the geometric characteristics of catadioptric vision. More-
over, the segmentation step is time consuming and do not permit a real time
implementation. In [52], they present higher accuracy and computation time.
They use the geometric characteristics of the central catadioptric sensor for a
formulation of the process as an optimization problem which is solved on the
sphere of equivalence in order to compute directly the attitude angles. In [15],
a hybrid method that is using the horizon and the homography is proposed. In
[132, 131], they propose a similar approach to [51] for attitude estimation and
a stereo-based system for height and motion estimation.

2.3 Vanishing Points

In [52, 51], the horizon was determined with Random Markow Fields or RGB
based Mahalanobis distance. This approach requires the conditions where the
horizon is visible. In addition, it can not be used to estimate the yaw angle. In
urban environments, the world reference can be the parallel lines which are a
basic property of man-made structures. In this situations, vanishing points at
the intersection of parallel vertical and horizontal lines can be used for attitude
estimation (e.g low altitude in urban environments [53]).

In [6], a batch process was developed to recover the history of camera ori-
entations from non-linear optimization (bundle adjustment) of the vanishing
points. In [107], their approach is based on vanishing points detection using
raw line measurements directly to refine the attitude. They do not require any
line tracking. But they fuse these line measurements with IMU gyro angle and
compare each line segment with the current best attitude estimate.

Vanishing points were more exploited with the omnidirectional sensors. In
[53], they use lines that are available in urban areas which avoids the limitations
of horizon determination but it is still not possible to estimate the yaw angle,
also it requires to determine the sky. Therefore, their approach is not suitable
in dense city environments as well as closed areas. A more recent work proposes
the use of vanishing points and infinite homography to estimate the helicopter
attitude[16]. This approach can be used in urban environments, however this
method has never been applied to a real UAV. In [214], they used the approach
described in [16] to estimate helicopter attitude and improved it using a KF.

The research area in using vanishing points for attitude estimation is very
active. It provides the intuitive solution for the attitude estimation problem
specially in urban environments. Due to its importance, the following subsec-
tions will explain them in more details using perspective and omnidirectional
sensors. For a comprehensive evaluation of several approaches for vanishing
points detection, the reader is referred to [205, 55].
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2.3.1 Perspective

The perspective projection of parallel lines intersects at a single point on an im-
age called the vanishing point. In [11], given the camera calibration matrix, the
geometric relationship between the vanishing points, the horizon, and camera
orientation has been well established in a Gaussian sphere using 2D projective
geometry . All vanishing points can be considered in a Gaussian sphere rep-
resentation even those at infinity. For more details on representing vanishing
points on a Gaussian sphere from a calibrated camera (see figure (2.6)), the
reader is referred to [11, 168, 107].

2.3.2 Gaussian sphere

Figure 2.6: Gaussian Sphere adapted from [168]

The Gaussian sphere is a unit sphere which shares the same optical center of
the pinhole camera. In the 2D projective space, an image line is represented as
a normal vector of a great circle in homogeneous coordinates. The intersection
of two parallel edges is a vanishing point which can be computed by the duality
between the points and lines in a projective plane i.e vij = li × lj where vij is
a vanishing point and li, and lj are parallel lines. The vanishing point is the
direction to the corresponding 3D point at infinity.

In a calibrated camera, the vanishing points formed by vertical edges and
those formed by horizontal edges are geometrically constrained to:

vTvertical.v
i
horizontal = 0, i = 1, ....., n. (2.3)

Vanishing points that lie on the same plane define a vanishing line in an
image. Then the horizon is equal to the vanishing line that links any two
horizontal vanishing points. The horizon is dual to the vertical vanishing point.
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This can be geometrically explained as having the horizon as the projection of
the world ground plane, and the normal to the ground plane is projected on the
vertical vanishing point i.e:

horizon = vihorizontal × vjhorizontal (2.4)

.
The UAV attitude can be determined when either the vertical vanishing

point or at least two horizontal vanishing points are recovered from the image
given that a) the great circle in the Gaussian sphere has the same orientation
as the world ground plane, and b) the relative camera pose with respect to an
UAV is known. In general, it is assumed that the camera is attached to the
UAV where the camera’s principle axis is aligned along the UAV centerline.

2.3.3 Vertical vanishing points

In urban environments, vertical edges meet at a single vanishing point in the
same direction as the gravity in the world coordinates. The vertical vanishing
point is the perspective projection of the world z-axis with the camera pose
matrix. Let vvertical = (vx, vy)T , be the vertical vanishing point , then once it
is found, the attitude can be immediately computed by (see figure (2.7)):

roll = φ = atan2(vx, vy), pitch = θ = atan
1√

v2
x + v2

y

. (2.5)

The horizon line on the image is a line defined by the vertical vanishing point
where:

sinφcosθx+ cosφcosθy + sinθ = 0 . (2.6)

2.3.4 Horizontal vanishing points

In urban environments, horizontal edges which are orthogonal to the gravity
direction meet at vanishing points in the world ground plane. One of the hor-
izontal vanishing points is the perspective projection of the world x-axis with
the camera pose matrix. Then a horizontal vanishing point is:

vhorizontal = [
cosφsinψ − sinφsinθcosψ

cosθcosψ
,
−sinφsinψ − cosφsinθcosψ

cosθcosψ
]T (2.7)

where ψ is the yaw angle. All the horizontal vanishing points are along the
horizon and their locations are determined by the different yaw angles.

2.3.5 Catadioptric

As previously mentioned, Projection of 3D world points to the image plane can
be done in three steps. Firstly the point is projected to the equivalent sphere,
then to the plane at infinity and finally to the image plane. Besides, projection
of 3D lines generates great circles on the equivalent sphere (see figure (2.5)).
By back projecting every candidate edge on the sphere and checking each edge
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Figure 2.7: Illustration of the relation between a vertical vanishing point and
the roll and pitch angles.

if it verifies the great circle constraint, one can decide which edges belong to
real 3D lines. In order to do this, the edges divided according to their gradient
orientations and selected by their lengths are back projected to the sphere.
Then plane normal of the great circle is computed by cross product of first
and last edgel directions. In addition, parallel lines have the same vanishing
direction on the equivalent sphere. Therefore, dominant parallel lines can be
extracted by counting lines which satisfy some similarity threshold based on
their vanishing direction. By excluding found parallel lines and repeating the
same algorithm, these dominant vanishing directions can be found. Based on
an orthogonality threshold, if |u1 × u2| ≤ OrthogonalityThreshold, the cross
product u3 = u1 × u2 is computed to determine the third vanishing direction,
where uis are orthogonal parallel lines. If the inequality is not satisfied, this
means that the detection of orthogonal parallel lines failed; therefore attitude
estimation at that frame should be skipped. In that case, it is thought that the
UAV does not change its orientation.
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2.4 Stereo Vision And Optical Flow

(a) Stereo vision System

(b) Phase-based estimation of the optical flow
field adapted from [3]

Figure 2.8: Stereo Vision and Optical Flow

2.4.1 Stereo vision

Computer stereo vision is a part of computer vision where two cameras capture
the same scene but they are separated by a distance as shown in figure (2.8a).
A computer compares the images while shifting the two images together over
top of each other to find the parts that match. The shifted amount is called the
disparity.

In [231], the authors used a dual CCD stereo vision system in order to
improve the computation of the attitude by determining the complete pose of
the UAV taking advantages of UKF. However, this system relies on the capture
of ground targets/landmarks in both images which limits the environment in
which the UAV can move. In [63], they presented a mixed stereoscopic vision
system made of fish-eye and perspective cameras for altitude estimation. Since
there exists a homography between the two captured views, where the sensor
is calibrated and the attitude is estimated by the fish-eye camera using the
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techniques in [51, 53] , the algorithm searches for the altitude which verifies this
homography. It allows real time implementation. In [132, 131] , the conventional
stereo system was used for altitude computation. But for attitude computation,
they also used a similar approach to [51].

2.4.2 Optical flow

Optical flow is the approximation of the motion field which can be computed
from time-varying image sequences (see figure (2.8b)). It provides many im-
portant visual cues [72]. It is possible to estimate the flight altitude from the
observed optical flow in the downward direction. Faster optic flow indicates
a low flight altitude. Obstacles can be detected in the forward direction by
detecting expansion, or divergence, in the forward visual field.

Optical flow estimation methods are based on a) differential Techniques
(dense motion field) where spatial and temporal variations of the image bright-
ness at all pixels are considered, b) phase methods where response of filters to
energy signals are used, c) matching techniques (sparse motion field) where the
disparity of special image points (features) between frames is estimated.

In [207, 208], they derived a form of the KF that uses the relationship be-
tween vision-based measurements and the motion of the camera. The resulting
Implicit Extended Kalman filter (IEKF) can be used to recover the camera
motion states. In [82], they reused [207, 208] work in terms of an aircraft state-
estimation problem by incorporating aircraft dynamics into the IEKF frame-
work. The resulting formulation partially estimated the aircraft states but ex-
hibited relatively slow convergence. Improvements have been demonstrated by
[234, 235] who also used an aircraft model. Unfortunately, accurate MAV models
are often not available within an aggressive flight regime where the aerodynam-
ics are difficult to characterize.

Several techniques have utilized the kinematic relationship between camera
motion and the resulting optical flow to directly solve for unknown motion pa-
rameters using constrained optimization. In [69, 110, 112], these techniques
depend on at least partial knowledge of the translational velocity for use in the
optimization. This knowledge often depends on GPS measurements. In [113],
they addressed the problem of estimating aircraft states during a GPS-denied
mission segment. An iterative optimization approach is adopted to determine
the angular rates and the wind-axis angles. No knowledge of vehicle velocity is
required. The coupled aircraft-camera kinematics are used to solve for aircraft
states in similar fashion to previous efforts; however, velocity dependencies are
removed through decoupling the optical flow resulting from angular and trans-
lational motion, respectively. Angular rate estimates are obtained initially and
used to setup a simple linear least-squares problem for the aerodynamic an-
gles. Performance of the least-squares problem is further improved through the
application of a weighting scheme derived from parallax measurements.

But Optical flow is inherently noisy, and obtaining dense and accurate optical
flow images is computationally expensive. Additionally, systems that rely on
optical flow for extracting range information need to discount the components
of optical flow that are induced by rotations of the aircraft, and use only those
components that are generated by the translational motion of the vehicle. This
either requires an often noisy, numerical estimate of the roll, pitch, and yaw rates
of the aircraft, or additional apparatus for their explicit measurement, such as a
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Papers Roll Pitch Yaw
Horizon detection

[61, 62, 34, ?, 35, 36, 52, 51, 57, 220] x x
[15, 132, 131] x x x

Vanishing points
[53, 107] x x
[16, 214] x x x

Stereo vision and optical flow
[112, 113, 57, 133, 135, 134, 89, 63] x x

[132, 131] x x x

Table 2.1: The estimated attitude angles (Roll, Pitch, and Yaw).

three-axis gyroscope. Furthermore, the range perceived from a downward facing
camera or optical flow sensor is only dependent upon altitude, velocity, and the
aircraft’s attitude [135].

Stereo vision provides an attractive approach to solve some of the problems
of providing guidance for autonomous aircraft operating in low-altitude or clut-
tered environments [133, 135]. In [57], the optical flow of the image for each
candidate horizon line is calculated, and using these measurements from the
perspective camera, they are able to estimate the body rates of the aircraft.
In [209], they estimate the heading of a small fixed pitch four rotor helicopter.
Heading estimates are computed using the optical flow technique of phase cor-
relation on images captured using a down facing camera. The camera is fitted
with an omnidirectional lens and the images are transformed into the log-polar
domain before the main computational step.

2.4.3 Optical flow from stereo vision

In [133, 135, 134], they proposed a stereo vision system from two non-central
catadioptric cameras. The profile of the mirror is designed to ensure that equally
spaced points on the ground, on a line parallel to the camera’s optical axis, are
imaged to points that are equally spaced in the camera’s image plane. However,
they have not used physical mirrors, but instead used high resolution video
cameras equipped with wide-angle fish-eye lenses and simulated the imaging
properties of the mirrors by means of software lookup tables. Given the mea-
sured disparity surface from the optical flow, the attitude (roll and pitch) and
altitude can be estimated by iteratively fitting the modeled surface to the mea-
surements. They propose to enhance their method by estimating attitude and
altitude with respect to an assumed ground plane by reprojecting the disparity
points into 3D coordinates. In [89], he presentes a technique for estimating the
aerodynamic attitude in the presence of dynamic obstacles. This technique re-
lies on optical flow and stereo vision to remove dynamic objects from the static
background. The resulting flow field is used for attitude computation from the
calculated flow centroids.



CHAPTER 2. VISION BASED UAV ATTITUDE ESTIMATION 40

2.5 Summary and conclusion

Any UAV may fly in low, middle, or high altitudes. We believe that the
Omnidirectional sensors should be always used because either the horizon will
be always visible (middle and high altitudes) or the vanishing points directions in
low altitudes. If the horizon is visible, then attitude should be estimated based
on it. We proposed a simpler method for segmentation and horizon detection
based on polarization which can be used. In urban environments, techniques
based on vanishing points should be used. If obstacle avoidance and altitude
estimation are required with attitude estimation, then optical flow approaches
from stereoscopic sensors are recommended.

In the work presented in sections (2.2.4, 2.3), the catadioptric sensors used
were assumed to be central sensors having a single view point. But in practice,
non-central catadioptric sensors are more practical due to higher resolution and
simplicity in design. Even the claimed central sensors, might be slightly non-
central due to possible misalignment of the lens. All of that pushed the need
toward developing methods for attitude estimation from non-central catadiop-
tric sensors.

In summary, a comprehensive review on attitude estimation approaches from
visual sensors has been covered. Table (2.1) shows the papers and the estimated
angles in the reviewed work. The main general approaches has been shortly
discussed. Horizon detection which is the main key for attitude estimation in
middle and high altitudes, has been discussed in the light of current ongoing
work using different visual sensors. The sky/ground segmentation methods, for
horizon detection, found in literature have been reviewed and a novel approach
based on polarization applied to UAV attitude estimation has been proposed.
In low altitudes the horizon is mostly invisible, hence the line segments found
in man-made structures are exploited to obtain vanishing points for attitude
computations. Stereoscopic and optical flow based techniques have been also
covered. Optical flow computation from stereoscopic systems is proposed in
very recent works. To the best of our knowledge, the main work done for UAV
attitude estimation from vision sensors (perspective and omnidirectional only)
has been covered here.



Chapter 3

Skylight Polarization

3.1 Skylight polarization patterns

As the unpolarized sunlight enters the Earth’s atmosphere, it is Rayleigh-
scattered by air, and it becomes partially linearly polarized. If the atmosphere
is clear (cloudless), this scattering phenomenon results in the well-known spa-
tial distribution of the radiance I, color c, the degree of polarization p , and the
angle of polarization α ([94]).

The early measurements were performed by point-source polarimetry ([37],
[23], [38]) limited the amount of information on skylight polarization which could
be collected due to the few number of observed celestial points. As a result of this
technical limitation and the difficulty of theoretical and computational study of
the polarization of non-clear skies, the polarimetry of cloudy, smoky, foggy, and
overcast skies has been neglected.

The distribution of polarization in the overcast sky was practically unknown
([38], [114], [104]). Although ([37]) measured, at five different solar elevations,
the degree of polarization p of skylight under conditions of a heavy stratus
overcast along the solar and antisolar meridians, these data were gathered by
point-source polarimetry only from a few celestial points and he did not publish
data on α from the overcast sky. Using a point-source polarimeter, ([23]) also
measured the polarization of light from the overcast sky when the sun was
invisible and obtained extremely low p values and α diverging considerably
from the theoretical predictions.

A breakthrough of the mentioned technical limitation happened by the de-
velopment of full-sky imaging polarimeters. Skylight polarization has been ex-
tensively studied by this mechanism for clear or partly cloudy skies, where the
the development of celestial polarization Rayleigh-scattering is dominant, by
([73, 74], [160], [100], [211], [229], [155], [74]). It became possible to measure
the polarization patterns of partly cloudy ([160],[211]), foggy ([90]), smoky ([93])
skies, and overcast skies ([94]).

Hegedüs et al. ([90]) found that the α patterns of foggy and cloudy skies
were very similar, while the average p was considerably reduced compared to
that of clear skies. They concluded that in principle if p was high enough
under foggy and cloudy conditions, Vikings could have navigated by means of
skylight polarization. They also ([94]) investigated the polarization patterns

41
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of totally overcast skies. They showed that although p of overcast skies was
rather low, their α patterns were quite similar to those of clear skies. They
([93]) studied the effects of forest fire smoke on skylight polarization and their
possible consequences on the orientation of polarization-sensitive animals. They
established that sky polarization is anomalous in several aspects due to the forest
fire smoke. They suggested that the disorientation of certain insects observed
by other researchers under smoky skies during the forest fire season could be
partly caused by the drastic decrease of p of skylight. They ([91]) found that
the α pattern of sunlit tree canopies was qualitatively the same as that of the
sky, even in those patches of the celestial hemisphere where dense foliage could
be seen. They concluded that this can be important for those polarization-
sensitive animals which live in forests and use celestial polarization as compass
information. They ([95]) also investigated the polarization characteristics of
”water-skies” developing above Arctic open waters (polynyas) and that how
these polynyas can be detected visually from a distance. They showed that
there are statistically significant differences in the αpattern between the water-
sky and the other parts of the sky (ice-sky) surrounding it, which may help
biological and man-made sensors to detect far-laying open waters when they
are not directly visible.

Hegedüs et al. ([94]) show that the α pattern is a very robust pattern
being qualitatively always the same under all possible sky conditions. This is
of great importance for the polarization-sensitive animals orientation based on
sky polarization under the sun absence conditions. The celestial distribution
of the α pattern is formed as isolines. The isolines were always eight shaped
with a center at the zenith and an axis of mirror symmetry coinciding with the
solar–antisolar meridian in such a way that the smaller loop of the eight figure
was always in the solar half of the sky.

At low solar elevations (when the elevation angle of the sun from the hori-
zon is not larger than about 25◦), there are always two unpolarized (neutral)
points in the clear sky: the Babinet point above the sun and the Arago point
above the anti-sun. Both neutral points are placed along the solar and antisolar
meridians at a position where the negative polarization of skylight switches to
positive polarization. The Babinet and Arago neutral points are placed at the
intersections of the neutral lines (Neutral lines separate regions conventionally
referred to as having positive and negative polarization) and the solar– antiso-
lar meridian. Since the mirror symmetry axis of the α pattern is always the
solar-antisolar meridian, the azimuth direction of the sun can be assessed from
this polarization pattern ([91]) (Note that only the solar azimuth, i.e. the di-
rection of the solar meridian can be determined, rather than the solar position,
possessing two components: the azimuth and the elevation).

The results presented in ([160], [211], and [93, 94, 90]) clearly show that the α
pattern is very robust being qualitatively always the same under all possible sky
conditions. The only qualitative difference among clear, partly cloudy, foggy,
smoky, and totally overcast skies is in p : the higher the optical thickness of the
non-clear (partly cloudy, smoky, foggy, or overcast) atmosphere, the lower the
p value.
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3.2 Skylight polarization from a Fisheye lens

To measure the skylight polarized radiance distribution, [229] developed a se-
quential full-sky imaging polarimeter. It is based on a 178◦ field-of-view fisheye
camera lens, a CCD sensor controlled by a computer interface card and a re-
motely controlled filter changer. The polarimeter Mueller matrix can be changed
by placing linearly polarizing filters in one of the filter wheels. Three polariza-
tional images with different orientations of the polarizers transmission axes are
taken to obtain one complete measurement in a period of 1.52 min. From these
three images the first three components of the Stokes vector as well as the linear
polarization degree p and angle α of the incident light are computed. During
the measurements the direct solar radiation is blocked by a sun blocker to avoid
camera lens flaring and overexposure of the CCD. This polarimeter needs a
main power supply and connection with a computer and hence is not portable,
furthermore its CCD has to be thermoelectrically cooled.

A 180◦ field-of-view sequential rotating analyzer imaging photopolarimeter
was designed by [74], with which numerous measurements have been performed
(e.g. [73, 74, 75], [159, 161], [20], [14], [13]) due to the portability of the in-
strument and because it is easy to manage. An angle of view of 180◦ is en-
sured by a fisheye lens including a built-in rotating filter wheel mounted with
three neutral density linearly polarizing filters with three different orientations
(0◦, 45◦, and 90◦ measured from the radius of the wheel) of their transmission
axis. Three photographs are taken for the three different alignments of the
transmission axis of the polarizers on the built-in filter wheel. In order to elimi-
nate distorting internal reflections of direct sunlight from the refracting surfaces
of the fisheye lens, a sun blocker was used. The overall time needed for one
complete measurement is about 6− 8 sec under normal illumination conditions.
Then the patterns of the intensity I, degree p and angle α of linear polarization
are calculated the same as in video polarimetry case ([103]).

The major problem of the previously described polarimeters is their slowness
due to sequentially recording the three polarizational images of the full sky
. Depending on the time of exposure, one cycle of three exposures and, in
between, exchanging the polarizer may take several seconds or minutes. Thus,
these instruments cannot be used if the cycle duration is comparable with the
time, during which the optical characteristics of the sky change considerably.
Such situations occur in the following cases: a) The sky is cloudy and the clouds
move fast. b) Moving aerial objects (e.g. birds or airplanes). c) Immediately
after sunset or prior to sunrise when the radiance of skylight changes rapidly
and moreover the time of exposure increases considerably due to the relatively
low radiance of skylight. d) The platform of the polarimeter, being on the board
of a moving ship ([98]).

In order to eliminate the slowness problem, ([99]) designed a 3-lens 3-camera
full-sky imaging polarimeter, which takes the three polarizational images (at
0◦, 60◦ and120◦) simultaneously rather than sequentially. Thus, celestial polar-
ization patterns can be captured even if rapid temporal changes occur in the
sky. The polarimeter consists of three cameras where each of them equipped
with a 180◦ fisheye lens. Each fisheye lens consists of two lens groups with a
circular filter mount in between. Into the mounts neutral density linearly po-
larizing filters are inserted. The simultaneous triggering of all three cameras is
mechanically ensured by synchronous pressing the remote exposure cords but-
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tons. A sun blocker was used to block the direct sunlight. The evaluation of the
three polarizational images taken with this 3- lens 3-camera full-sky imaging
polarimeter is the same as in the case of the 1-lens 1-camera full-sky imaging
polarimeter of [74].

The scientific results presented in the ([93, 94, 95, 90, 91]) were obtained
by the same experimental technique of 1-camera 1-lens as in ([74]). A 180◦

field of view was ensured by a fisheye lens with a built-in rotating disc mounted
with three broad-band neutral density linearly polarizing filters with three dif-
ferent polarization axes ( at 0◦, 45◦, and 90◦). Three images were taken at the
three different directions and the patterns of the radiance (or intensity) I, lin-
ear polarization degree p and angle α (or E-vector alignment) of skylight were
determined.

As we saw, many theoretical and experimental studies ([160], [74], [93, 94,
95, 90, 91]) have been done using one or more fish-eye lenses. ([129]) show
results of p and α patterns obtained by a camera with a fish-eye lens which
affirms the experimental studies of ([160], [74], [94]). In addition, unlike the
previous studies, they tilt the fish-eye lens camera and analyze the α patterns.
The technique used in ([129]) was similar to the technique described in ([160],
[74], [100], [94]) . However in ([129]), using a commercial Digital Single-Lens
Reflex (DSLR) camera, it was imperative to setup the polarizing filter in front
of the fish-eye lens. Hence, their imaging polarimeter allowed only a viewing
angle of 130◦which is the first drawback as it limited the field of view. Three
images were taken for three different polarizer transmission axis alignments and
it was rotated manually which is the second drawback.

The contribution of ([129]) is to analyze the p and α patterns when the cam-
era is tilted from the horizon. All the studies of skylight polarization patterns
([160], [74], [94]) were performed using a camera setup in the horizontal plane
(i.e., the optical axis of the fish-eye lens was vertical to the ground). This con-
dition is considered as a serious limitation as the interest should be not only
in the skylight patterns but also in the object appearance (reflectance) in the
outdoor environment which requires a free camera movement. When an image
is taken in the outdoors, only a small part of the sky is visible, and the camera is
not horizontal. Hence, it is worth investigating sky polarization patterns using
a camera in a general position (i.e., the optical axis of the fish-eye lens is not
necessarily vertical).

3.3 Skylight polarization from Catadioptric sen-
sors

North and Duggin [155] used a four-lens camera with negative color roll films.
Four neutral density linearly polarizing filters were used to cover the four aper-
tures of the camera. Their transmission axes were oriented at 0◦, 45◦, 90◦ and
135◦ with respect to a given reference direction. Hence, all sky polarizational
images were taken simultaneously. The polarimeter was suspended 2.7m over a
spherical security convex mirror (46cm diameter, back-surface aluminium coat-
ing on an acrylic matrix) by four thin rods. This height was required to mitigate
the parallax effects created by the finite separation of the four lenses. A 6m air-
driven shutter release was used to minimize obscuration by the photographer.
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Although the spherical mirror of this imaging polarimeter encompassed almost
180◦field of view , the polarimeter could not capture the entire skydome, since
the camera above the mirror and the tetrapod screened out certain areas of the
equipment. The results on skylight polarization obtained by ([155]) have been
never published.

In a different context, ([123]) proposed another design based on cone mir-
ror and CCD camera for surveillance equipped with a linear/circular polarizer.
They capture three images at 0◦, 45◦, and 90◦ . However, in (p.220) it was
wrongly stated that “For reflective mirror with metallic reflection surface, how-
ever, the effects on polarization are simpler. For many highly reflective metallic
surfaces the polarization of reflected light is the mirror image of the original po-
larization pattern.” The light polarization state is changed after being reflected
from metallic surfaces (e.g a linearly polarized light reflects as an elliptically
polarized light) ([22], p.741). This problem is solved by calibrating the original
incident light polarization state from the reflected state as will be shown in this
work.

Carey and Sturzl ([25]) tried to determine whether a small lightweight om-
nidirectional system could resolve the polarization pattern of the clear sky with
sufficient accuracy. Their imaging system consisted of a linear polarizer, UV
transmitting glass filter, two different cameras, each directed towards identi-
cal constant-gain omnidirectional mirrors, and attached to a swiveling mount.
A sun-blocker was attached to the used tripod. The polarizer was manually
rotated to obtain four different images which are 45◦ apart.

Although the aluminium coating on the mirror induce a small amount of
circular polarization, the fourth component of the Stokes vector was assumed to
be zero ([155, 123, 25]). This simplifying assumption allowed to obtain images of
the partial Stokes vector by using only linear polarizers. Since the polarimeters
of ([155, 123, 25]) were not calibrated, the Stokes vector Ssky of the incident
skylight could not have been measured. With this system only the spatial
distribution of the Stokes vector Simage of skylight reflected from the mirror
could be determined, which is the major disadvantage of their polarimeters.
From the resulting partial Stokes vector Simage the intensity image I, linear
polarization degree p and angle α were derived, which inform qualitatively about
skylight. Thus, a controlled experiment remains to be executed to provide
absolute polarimetric calibration, to obtain full polarimetric characterization
of the optical system, and to invert Simage to derive Ssky. To the best of our
knowledge, this work has not been done until now. Hence, a method is proposed
in this work to perform this polarimetric calibration.

Furthermore, the equipment is voluminous and cumbersome in ([155], [229],
[74]), which does not permit easy and rapid setting up, disassemble, transfer and
transport. Even more recent smaller constructions ([129]) have been heavy and
unsuitable for mobile applications. Conversely, polarization systems built for
small robotic systems have tended to have a limited field of view and produced
a highly simplified sky map ([115], [30]). Although ([25]) proposed a smaller
lightweight omnidirectional system, it was quite complex and contains some
manual and mechanical interference.

Our imaging system which was firstly proposed in ([193]) is much simpler as
it consists of a mirror and a polarizational camera ([1]).
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3.4 Omni-Pola-Catadioptric

The previous polarimeters (e.g [155], [160], [74], [100], [94], [129], [25]) utilize
optical imaging systems that are external to the detectors. Design compact-
ness and fastly generated polarization images can be improved greatly by in-
corporating an array of microscopic polarization filtering optics directly onto a
photosensitive chip ([245] ) or designing color cameras to use a non-polarizing
beam-splitter that directs equal amounts of incoming light onto three separate
CCD sensors for the red, green and blue spectral ranges and placing a linearly
polarizing filter over every CCD where each filter has a unique direction of its
transmission axis. Hence, a polarizational camera can be built that operates
in white light or in a given part of the spectrum ([242], [84]). A polarizational
camera is a generalization of the conventional intensity camera. If necessary, the
former can function as the latter. Adding color-sensing capability to a polariza-
tional camera makes it possible to sense the complete set of light electromagnetic
parameters incident on the camera. Polarizational cameras have more general
capabilities than standard intensity cameras, and can be applied for different
purposes ([243]).

Polarimetric or polarization imaging is an active research area in medical,
machine vision and defense applications. Polarization provides additional infor-
mation to analysts and researchers because the polarimetric preserving and/or
inducing properties of materials are often complementary to their spectral sig-
natures. Polarization can be part of a high-level visual perception, permitting
a wide area of vision applications. Polarization imaging can be used for most
tasks of color vision like: object recognition, contrast enhancement, camouflage
breaking, and signal detection and discrimination. It has been used to iden-
tify stress and defects in aircraft assemblies; “see” into the water column in
many applications, such as oil spill detection; separate specular from diffuse
reflectance for material analysis and identification; and many other applications
([243], [197], [1]).
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Figure 3.1: FD-1665 3CCD [1]

We propose to use a combination of polarizational camera (FD-1665 3CCD
[1] figure (3.1)) and a convex shaped mirror (see sec (B.1)) to obtain the
360◦polarimetric view. The prisms of the FD-1665P optical assembly are fab-
ricated with neutral, non-polarizing beam splitter coatings. The first coating
surface reflects 30 % of the light and transmits 70 %. The second coating pro-
vides a 50 % transmittance and 50 % reflectance. This combination results in
splitting the incoming broadband light into three components with equal spec-
tral and spatial content. Linear polarization trim filters with > 99 % polariza-
tion efficiency and contrast ratio of up to 3000 : 1 are placed in front of each
sensor. The filters are oriented at three equal angular spacing (0◦, 60◦, 120◦

or 0◦, 45◦, 90◦) and cover the spectral range 380 − 1000nm. The FD-1665P
polarization camera is configured with monochrome sensors for each channel.
Different configurations of the FD-1665P polarization camera are also possible
([1]). Such a polarizational total sky imager, based on the camera configuration,
can monitor continuously the radiance, spectral and polarizational properties of
the full sky.
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3.5 Deriving the Angle of Polarization: A new
approach

(a) The clear sky provides polarized light
according to the Rayleigh scattering model.
The degree and angle of polarization (p and
α angles respectively) measured at a celestial
point C are related to the Sun position, the
angle of scattering and the plane of scatter-
ing defined by O, C and Sun. The electric
vector is represented by ~E and is orthogonal
to the plane of scattering [137].

(b) Scattering plane contains C, S, and O.
Eparallel oscillates in this plane. E is per-
pendicular to the scattering plane, R is per-
pendicular to C, and B is perpendicular to
C and R. α is the angle of the plane of po-
larization taken with respect to the vertical
direction. In other words, it is defined as the
angle between the ~E direction and θ − axis
in the local polar coordinate system formed
by θ − axis and ψ − axis.

Figure 3.2: AOP geometrical sketch.

The clear sky provides polarized light according to the Rayleigh scattering
model. The degree p and angle of polarization α measured at a celestial point
C are related to the SunS position, the angle of scattering and the plane of
scattering defined by O, C and S. The electric vector is represented by ~E and
is orthogonal to the plane of scattering [137]. See figure (3.2a).

Figure (3.2b) sketches the scattering plane which contains C, S, and O.
Eparallel oscillates in this plane. E is perpendicular to the incident plane, R
is perpendicular to C, and B is perpendicular to C and R. α is the angle of
the plane of polarization taken with respect to the vertical direction. In other
words, it is defined as the angle between the ~E direction and θ − axis in the
local polar coordinate system formed by θ − axis and ψ − axis.

S =

 cos(ψs)sin(θs)
sin(ψs)sin(θs)

cos(θs)

, C =

 cos(ψ)sin(θ)
sin(ψ)sin(θ)

cos(θ)

, R =

 −cos(ψ)cos(θ)
−cos(θ)sin(ψ)

sin(θ)

, E = S ×C,

B = C ×R,

where S, C, and R are the Sun, Celestial, and Observer vectors respectively.
Hence, the angle of polarization α is:
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α = atan(
E.R

E.B
) (3.1)

= atan(
sin(ψ − ψs) ∗ sin(θs)

cos(ψ)cos(ψs)cos(θ)sin(θs)− cos(θs)sin(θ) + cos(θ)sin(ψ)sin(ψs)sin(θs)
)

= atan(
sin(ψ − ψs) ∗ sin(θs)

cos(θ)sin(θs)cos(ψ − ψs)− cos(θs)sin(θ)
) (3.2)

3.6 Comparison of the derived AOP and the lit-
erature

While investigating the literature, it was found that the theoretical Rayleigh
formulation for the angle of polarization α was only recently derived by ([129])
as a direct trigonometric formula. It was also indirectly derived by [21] comput-
ing the phase of a complex quartic polynomial. Otherwise only the theoretical
Rayleigh simulation was introduced without a clear mention of the formula
([160, 100, 101, 99, 104, 93, 94, 95, 90, 91]). [21] proposed a complex quar-
tic polynomial, formed by the four singularity points in the sky, commonly
known as neutral points (which are the Brewster and the Babinet points below
and above the sun respectively, and the Arago, the fourth neutral point above
and below the anti-sun respectively), to represent the polarization patterns em-
phasizing that the polarization global patterns are strongly constrained by the
arrangement of these local singularities. Although [21] formulation shows good
accuracy, it is quite complex to be directly applied. Recently ([25]) have pro-
posed a new sensor and compared their results with the theoretical formulation
given by ([129]) as a ground truth.

By visually comparing the given theoretical simulation in ([160, 129, 25])
and the actual captured α patterns, a sufficient amount of inaccuracy is noticed
as shown in figures (3.3, 3.4). Hegedüs et. al ([93, 94, 95, 90, 91]) have simulated
the α patterns based on ([21]) and compared them to the α captured patterns
with high accuracy. The limitations of [21] formulation are the complexity of
their formulation and assuming the knowledge of the neutral points positions to
obtain higher accuracy. Berry et. al [21] compared their theoretical results to
[27]’s results which were calculated by multiple-scattering theory. A comparison
between our, [27], [21], and [129] results is shown in figure (3.5).

Due to the inaccuracy found in [129] formulation or reported results by [160]
and the complexity of [21], a new derivation of the angle of polarization α is
introduced to obtain higher accuracy than the reported results in ([160, 129, 25])
as shown in figures (3.3, 3.4, 3.5) which is simpler than [21] and has no previous
assumptions. In the given comparisons in figures (3.3, 3.4, 3.5) between our
results and ([27], [21], [129] ), the reader is urged to compare the shape of the
α pattern (the α global pattern) which should be as close to the captured α
pattern as possible but not the color of peer areas which might be different due
to different local references. Starting from figure (3.4) till the end of this work, a
modified colormap of ([160]) to represent the α pattern is used to emphasis the
±45◦contour which is the most significant feature in the skylight polarization
pattern as will be shown in chapter (5).
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Figure 3.3: Comparing our results against [160, 129]. The α patterns simulations
in first, third, and fourth raw represent the captured α patterns in the second
raw on 26-August-1999 (at 6, 12, 19 UTC+1 from left to right respectively) in
the Tunisian Chott el Djerid (Latitude:33.867, Longitude:8.367) as reported in
[160]. East is on the down rather than up in the figure (left rather than right of
the compass) because we are looking up through the celestial dome rather than
down onto a map.
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Figure 3.4: Comparing our results against [129]. The α patterns simulations
in first and third rows represent the captured pattern (as reported in [129]) in
the second raw in June & July 2008 one hour before sunset at the university
of Tokyo (Latitude:35.667, Longitude:139.667), Japan. Two different colormaps
are used to simulate ([129])’s and our formula to emphasis the difference. East is
on the down rather than up in the figure (left rather than right of the compass)
because we are looking up through the celestial dome rather than down onto a
map.
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(a) Neutral lines (contours of theα pat-
tern at ±45◦ to the vertical ) , calculated
by multiple-scattering theory ([27]), for
the indicated Sun elevations.

(b) Neutral lines for the same Sun el-
evations as in (3.5a), calculated on the
balanced singularities (complex quartic
polynomial) theory [21] with the same
locations of the singularities (neutral
points) as in (3.5a)

(c) Our simulation at 0◦elevation angle.
The contours of theα pattern at ±45◦

to the vertical are around the green-blue
pattern as indicated by the colorbar.

(d) [129]’s simulation at 0◦elevation an-
gle. The contours of theα pattern at
±45◦ to the vertical are around the
yellow-red pattern as indicated by the
colorbar.

(f) Our simulation at 30.3◦elevation an-
gle. The contours of theα pattern at
±45◦ to the vertical are around the
green-blue pattern as indicated by the
colorbar.

(g) [129]’s simulation at 30.3◦elevation
angle. The contours of theα pattern
at ±45◦ to the vertical are around the
yellow-red pattern as indicated by the
colorbar.

Figure 3.5: A comparison between our results and ([27], [21], [129] ).



CHAPTER 3. SKYLIGHT POLARIZATION 53



Chapter 4

Skylight Stokes Calibration

Any catadioptric sensor is composed of a reflective surface and a perspec-
tive/telecentric lens. Usually the reflective surface is metallic and hence the
incident skylight polarization state, which is mostly partially linearly polarized,
is changed to be elliptically polarized after reflection [22]. Our aim is to calibrate
the polarization state of the incident light, in other words, given the measured
reflected polarization state we want to obtain the incident polarization state.

4.1 Ambiguity caused by a reflective surface

Once the incident light is reflected from a metallic surface, its polarization state
is changed as shown in figure (4.1).

(a) Difference between incident
and reflected α

(b) Incident α (c) Reflected α

Figure 4.1: The difference between the incident and reflected Angle of Polar-
ization pattern (α pattern) using a metallic (Aluminum) spherical mirror with
refractive index n̂ = 1.44 + 5.23i. Simulation parameters are as shown in ta-
ble (4.1).

Another valid assumption is that the metallic surface can be covered by a
dielectric layer or the mirror can be replaced by a non-metallic mirror. In these
cases the reflected light will keep the original polarization state but with different

54
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values resulting into high ambiguity in the reflected polarization pattern as
shown in figure (4.2).

(a) Difference between incident
and reflected α

(b) Incident α (c) Reflected α

Figure 4.2: The difference between the incident and reflected Angle of Polariza-
tion pattern (α pattern) using a non-metallic spherical mirror with refractive
index n̂ = 1.44. Simulation parameters are as shown in table (4.1).

Location Le Creusot, France

Latitude +N 46.8

Longitude +E 4.4333

Date 16 May 2012

Time 16:4:20.218 GMT

Altitude 40.1037

Zenith 49.8963

Azimuth East North 164.5745

Mirror Spherical

Refractive index fig (4.1) n̂ = 1.44 + 5.23i

Refractive index fig (4.2) n̂ = 1.44

Table 4.1: Simulation parameters of figures (4.1, 4.2)

It is noticed that the ambiguity in the reflected pattern from the metallic
surface in figure (4.1) is less than the ambiguity in the reflected pattern from
the non-metallic surface in figure (4.2). The reflected polarization pattern from
a metallic surface has been studied by ([230]) and they showed that for angles of
incidence less than approximately 50◦, the relevant polarization parameters are
not significantly affected by reflection from the mirror. We expect that under
normal conditions, most of the sky-view should fall within this range, however
it was not exactly the case as shown in figure (4.3), where we simulated the
reflected polarization angle α from a metallic sphere at different incident angles
.
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On the other hand, for a non-metallic surface, the relevant polarization pa-
rameters are significantly changed for incidence angles greater than approxi-
mately 25◦as shown in figure (4.4).

Figure 4.3: The reflected polarization angle −90 6 α 6 90 over the full range
of incident angles. The polarization angle α is not significantly affected by
reflection from the metallic mirror for incidence angles less than approximately
50◦. Aluminum surface with refractive index n̂ = 1.44 + 5.23i .
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Figure 4.4: The reflected polarization angle −90 6 α 6 90 over the full range of
incident angles. The polarization angle α is significantly affected by reflection
from the non-metallic mirror for incidence angles more than approximately 25◦.
Non-metallic surface with refractive index n̂ = 1.44 .

Figures (4.1, 4.2, 4.3, 4.4) show clearly the source of ambiguity in both
metallic and non-metallic reflective surfaces. This ambiguity pushed the need
for polarimetric calibration of the incident light.

In this work, our aim is to perform polarimetric calibration in the sense of
finding the incident skylight polarization pattern given the reflected ambiguous
pattern from all reflective surfaces specially metallic surfaces as will be explained
in this chapter. Then the calibrated polarization patterns can be used for several
applications as will be discussed in chapter (5).

4.2 Incident Stokes Calibration

4.2.1 Muller calculus

The polarization state of an incident beam is characterized by its Stokes vector
Si, it interacts with the polarizing medium M4×4 known as the Mueller matrix
for that medium, and the emerging beam is characterized by a new vector
Sout[78]. Sout can be expressed as a linear combination of the four parameters
of the incident beam where:
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Sout = M4×4.Si = M4×4.


S0

S1

S2

S3

 (4.1)

.
The first parameter S0 expresses the total intensity of the optical field. The

remaining three parameters describe the polarization state. The parameter S1

describes the amount of linear horizontal or vertical polarization, the parameter
S2 describes the amount of linear +45◦ or −45◦ polarization, and the parameter
S3 describes the amount of right or left circular polarization contained within
the beam [78].

For any state of polarized light the parameters always satisfy the relation:
S2

0 ≥ S2
1 + S2

2 + S2
3 . The equality sign applies when we have completely po-

larized light, and the inequality sign when we have partially polarized light or
unpolarized light.

4.2.2 Calibration process

Figure 4.5: Pola-Catadioptric design.

We want to measure the three Stokes parameters (S0, S1, S2) of a partially
linearly polarized light using a simplified Pola-Catadioptric sensor, see figure
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Sout = Mrot.Mrefl.S (4.8)

=


(F⊥−F‖)S1

2
+

(F⊥+F‖)S0

2

−cos (δ)
√
F‖F⊥sin (2ψ)S2 +

(F⊥+F‖)cos(2ψ)S1

2
+

(F⊥−F‖)cos(2ψ)S0

2

cos (δ)
√
F‖F⊥cos (2ψ)S2 +

(F⊥+F‖)sin(2ψ)S1

2
+

(F⊥−F‖)sin(2ψ)S0

2
−sin (δ)

√
F‖F⊥S2

 (4.9)

=


t0
t1
t2
t3



(4.5), in which a new optical element (the metallic reflector) is introduced. The
Mueller matrix of the specular reflection, in the plane of incidence, is given by
the product of two matrices: the Mueller matrix of a partial polarizer and the
Mueller matrix of a perfect retarder [136] as shown in equations (4.2, 4.3, 4.4).

Mrefl = Mpp(F⊥, F‖).Mret(δ, 0) (4.2)

Mpp =


F⊥+F‖

2

F⊥−F‖
2

0 0
F⊥−F‖

2

F⊥+F‖
2

0 0
0 0

√
F‖F⊥ 0

0 0 0
√
F‖F⊥

 (4.3)

Mret =


1 0 0 0
0 1 0 0
0 0 cos (δ) sin (δ)
0 0 −sin (δ) cos (δ)

 (4.4)

where F⊥ and F‖ are respectively the perpendicular and parallel polarized
reflected components and δ is the phase shift.

Therefore, the Mueller matrix of the specular reflection in the plane of inci-
dence is:

Mrefl =


F⊥+F‖

2

F⊥−F‖
2

0 0
F⊥−F‖

2

F⊥+F‖
2

0 0
0 0 cos (δ)

√
F‖F⊥ sin (δ)

√
F‖F⊥

0 0 −sin (δ)
√
F‖F⊥ cos (δ)

√
F‖F⊥

 (4.5)

Hence, we have:

Sout = Mrefl.S =


F⊥+F‖

2
S0 +

F⊥−F‖
2

S1
F⊥−F‖

2
S0 +

F⊥+F‖
2

S1

cos (δ)
√
F‖F⊥S2

−sin (δ)
√
F‖F⊥S2

 (4.6)

The Stokes parameters are defined in the plane of incidence. In order to
have all computed Stokes parameters in the same reference plane, a rotation by
the azimuth angle ψ, see figure (4.5), should be applied using a rotation matrix
Mrot:

Mrot =


1 0 0 0
0 cos (2ψ) −sin (2ψ) 0
0 sin (2ψ) cos (2ψ) 0
0 0 0 1

 (4.7)
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Finally, we have equation (4.8). Equations (4.6, 4.8) prove what we stated
earlier about having the reflected light elliptically polarized as the last parameter
in equation (4.8) is non-zero −sin (δ)

√
F‖F⊥S2. Furthermore, it implies that

F⊥, F‖, δ, and, ψ must be known to estimate S0, S1, and S2.
At the first glance, it might be thought that it is necessary to measure

the four Stokes components of the reflected beam in order to calibrate the three
Stokes components of the incident beam. However, by rechecking equation (4.8)
it is proved that only three out of the four Stokes components of the reflected
light should be measured to perform the incident Stokes calibration. This fact is
important to reduce the number of optics required to measure the polarizational
state of the reflected beam. In fact, it is possible to measure it using a polariza-
tional camera (e.g [1]) which is capable of measuring the reflected Stokes at one
shot without introducing any manual or mechanical rotations of the involved
optics.

From the Fresnel formula [22]:

f‖ =
tan(θ − θt)
tan(θ + θt)

, (4.10)

f⊥ = −sin(θ − θt)
sin(θ + θt)

(4.11)

where θ is the zenith angle, and θt is the transmitted angle. F⊥, F‖, and δ
can be computed according to:

F⊥ = |f⊥|2 , F‖ =
∣∣f‖∣∣2 (4.12)

δ = arg (f‖ − f⊥) (4.13)

Assuming that the complex refractive index n̂ of the metallic mirror is known
and using the Snell-Descartes law, we can deduce that F⊥, F‖, and δ are related
to the zenith angle θ:

θt = arcsin(
1

n
sin(θ)) (4.14)

Finally, the estimation of the zenith angle θ and the azimuth angle ψ are
sufficient to solve the problem if the refractive index is known. This estimation
can be done by placing the whole setup inside a cylindrical sheet of paper to
obtain unpolarized light and to apply the calibration process as described in
[139]. This calibration step belongs to techniques commonly used in “Shape
From Polarization” where unpolarized light becomes partially linearly polarized
depending on the incident zenith angle θ and the azimuth angle ψ. By measuring
the first three Stokes parameters of the reflected light, θ and ψ angles can be
computed.

As mentioned, from equation (4.8), it is noted that only three out of the four
equations are enough to estimate the incident Stokes parameters. Consequently,
the polarization state of the incident light can be measured by combining a
metallic mirror and one of the following optical setups [22]:

� a Stokes polarizational camera (camera + rotating polarizer + two re-
tarders). This setup is able to measure t0, t1, t2, t3.
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� a simplified polarizational camera (camera + rotating polarizer). This
setup is able to measure t0, t1, t2 .

� a simplified polarizational camera + quarter wave-plate. This setup is
able to measure t0, t1, t3 .

The use of a simplified polarizational camera, which is able to measure the first
three Stokes parameters t0, t1, and t2, is more appropriate as the same setup
can be employed in calibration and the polarization state measuring process.
Moreover, the whole process can be done in real time by replacing the simplified
polarizational camera by a commercial polarizational camera, e.g. FD-1665P
Polarization Camera ([1]), which enables the measurement of the first three
Stokes parameters at one shot.

Assuming the knowledge of the refractive index n̂, the calibration process
can be summarized as follows:

1. Compute the zenith angle θ and the azimuth angle ψ by means of “Shape
From Polarization” techniques [139].

2. Compute F⊥, F‖, and δ as shown in equations (4.12, 4.13).

3. Measure the first three Stokes parameters of the reflected skylight by
means of a simplified polarizational camera or a commercial polarization
camera (e.g [1]).

4. Compute the incident Stokes parameters by algebraically manipulating
equation (4.8).

4.3 Computing the angle and degree of polar-
ization using Stokes parameters

Polarization information are directly computed from three intensity images
taken at three different angles (0◦, 45◦, and 90◦) or (0◦, 60◦, and 120) at one
shot using a polarizational camera. The polarization patterns consist of the
angle of polarization α and the degree of polarization p which are defined as:

α = arctan(
S2

S1
)/2 (4.15)

,

p =

√
S2

1 + S2
2

S0
(4.16)

where Si are the Stokes components ([78]) which can be computed from:

I0 = 0.5(S0 + S1cos (2ϕ) + S2sin (2ϕ)) (4.17)

where ϕ is the polarizer angle. Hence:

S0 = I0 + I90,

S1 = I0 − I90,

S2 = 2I45 − I0 − I90 (4.18)
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or

S0 =
2

3
(I0 + I60 + I120),

S1 =
2

3
(2I0 − I60 − I120),

S2 =
2√
3

(I60 − I120) (4.19)

where I0, I45, and I90 are intensity images taken at (0◦, 45◦, and 90◦) or I0, I60,
and I120 are intensity images taken at (0◦, 60◦, and 120◦ as an optimum com-
bination ([226])) at one shot using a polarizational camera (e.g FluxData FD-
1665 series like FD-1665P-M ([1]) which has three monochrome CCDs with
0◦, 45◦, and 90◦ or 0◦, 60◦, and 120 linear polarizers. See figure (3.1)) .

4.4 Calibration results

An example of incident, reflected, and calibrated angle and degree of polariza-
tion using a metallic spherical mirror is given in figures (4.6, 4.7) according to
table (4.2).

Location Le Creusot, France

Latitude +N 46.8

Longitude +E 4.4333

Date 3\7\2012

Time 17:52:59.843 GMT

Altitude 25.4398

Zenith 64.5602

Azimuth East North 187.034

Mirror Spherical

Refractive index fig (4.1) n̂ = 1.44 + 5.23i

Table 4.2: Simulation parameters of figures ( 4.6, 4.7)
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(a) Incident Angle of Po-
larization α.

(b) Reflected Angle of Po-
larization α.

(c) Calibrated Angle of
Polarization α.

Figure 4.6: Simulation of incident, reflected and calibrated angle of polarization
α for a metallic spherical mirror.

(a) Incident Degree of Po-
larization p.

(b) Reflected Degree of
Polarization p.

(c) Calibrated Degree of
Polarization p.

Figure 4.7: Simulation of incident, reflected and calibrated degree of polarization
p for a metallic spherical mirror.

A snapshot of the program we developed is shown in figure (4.8) and the
metallic spherical mirror simulated is shown in figure (4.9).
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Figure 4.8: A snapshot of our simulation program.

Figure 4.9: Metallic spherical mirror simulation.

In the previous simulation, the incident angle of polarization in figure (4.6-
a) is computed as explained in 3.5, the reflected and calibrated angle patterns
are computed as explained in 4.3 once the Stokes are obtained as explained in
4.2.2. The incident degree of polarization in figure (4.7) is computed using the
Rayleigh model ([160]):
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cos (γ) = Sun · Celestial

p =
sin (acos (cos (γ)))2

(1 + cos (γ)2)
(4.20)

The reflected and calibrated degree of polarization patterns are computed
as explained in 4.3 once the Stokes are obtained as explained in 4.2.2.

The initial incident Stokes used in simulation are computed using the fol-
lowing formulas:

S0 = I

S1 = I p cos (2α)

S2 = I p sin (2α) (4.21)

where I is the intensity which is equivalent to the first Stokes component
S0which is assumed to be uniform.

In practice, the light is reflected on the sensor’s mirror and it is captured in
three different intensity images which are used to compute the reflected Stokes,
angle, and degree of polarization as explained in 4.3. These reflected Stokes
are used to calibrate the incident Stokes and hence find the incident angle and
degree of polarization patterns as explained in 4.2 and 4.3. More calibration
results using different types of mirrors are shown in B.



Chapter 5

Applications

Skylight polarization patterns are used by many insects for navigation. Honey-
bees use celestial polarization to move between the hive and foraging locations
([167, 238, 42]). Cataglyphis ants ([42]) and nocturnal ([48]) use the sun and
moon, respectively, celestial polarization for similar tasks. Salmon fishes may
have a similar ability ([88]), which allows them to orient in underwater light
fields ([156]). Hence, many researchers, being bio-inspired, have made theo-
retical and experimental investigations on skylight polarization for autonomous
orientation and navigation 5.1.

The patterns of the degree of linear polarization p, and the angle of polariza-
tion α of a clear sky were simulated 3.5 and calibrated 4.2 using the proposed
omni-pola-catadioptric sky-imaging polarimetry. As expected, p from the clear
sky was highest at 90◦ from the sun and gradually decreased toward the solar
and antisolar points. The α pattern had the characteristic pattern explained in
sec (1.3), the isolines were always shaped like an eight with a center at the zenith
and an axis of mirror symmetry coinciding with the solar-antisolar meridian in
such a way that the smaller loop of the eight was always in the solar half of the
sky. The solar-antisolar meridian expresses the sun orientation (sun azimuth)
with excellent precision. One of this work contributions is that we found out
that the eight shape expresses the sun zenith with excellent precision. Solar
angles (azimuth and zenith angles) proposed computation algorithms are given
in 5.2.

Here we investigate the skylight polarization as a significant global feature
to be used for autonomous robots. We focus on Autonomous Vehicle (AV)
orientation and attitude estimation. If the AV is capable of computing the solar
angles, it will be able to decide its new orientation based on the planned target.
AV attitude estimation means to find out the AV orientation. Unmanned surface
vehicle (USV) or autonomous surface vehicle (ASV), which refers to any vehicle
that operates on the surface of the water, or a Ground Vehicle (GV) can have
a simplified model which has only one orientation angle to be estimated which
is the yaw angle γ around z-axis. This simple model is considered in 5.3.1.
However, if it is assumed to have many changes in the GV angles where it is
required to estimate roll, pitch, and yaw angles, then it is possible to apply the
method described for any AV in 2 or 5.3.2.

66
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5.1 Robot Orientation and Navigation

Many researchers have made theoretical and experimental investigations on sky-
light polarization for autonomous orientation and navigation. The sky is po-
larized due to the scattering of sunlight by particles and air molecules in the
atmosphere. The sky polarization patterns present us with the polarization in-
formation which can be used as an external compass. The location of the sun
mainly determines the celestial skylight polarization pattern. It is visible and
stable even in open sky patches when the sun is occluded by clouds, and it also
appears beneath dark objects in air that is illuminated by the sun ([160, 211]).
The benefit of using the skylight polarization pattern, rather than directly using
the sun is that only patches of sky are sufficient for orientation task ([44, 247]).

Firstly, orientation techniques using photodiodes as a primary sensor to read
polarization data will be covered 5.1.1. Secondly, as the camera technology
became less expensive and more advanced, new techniques using CCD, CMOS,
and/or fisheye lens to obtain polarization information will be covered 5.1.2.
Thirdly, water and mud detection for off-road navigation will be covered 5.1.3.
All methods require a rotating polarizer as a primary optic combined with the
mentioned sensors as will be explained.

5.1.1 Sensors using Photodiodes

Inspired by the basic biological neuronal circuit, Lambrinos et al. ([115, 116,
117]) and Möller et al. ([130]), have developed Polarization-Opponent units
(POL- OP units) as input devices that are functionally similar to the POL-
neurons found in insects. Each POL-OP unit consists of a pair of polarized
light sensors (POL-sensors) followed by a log-ratio amplifier. POL-sensors are
explained in algorithm (5.1).

Algorithm 5.1 Polarized light sensors (POL-sensors)

POL-sensors

1. The POL-sensors consist of photodiodes with a linear polarizer and a blue
transmitting filter on the top.

(a) In each POL-OP unit the polarizing axis of one POL-sensor was
adjusted 90◦ to the polarizing axis of the other sensor, thus mimicking
the crossed-analyzer configuration in the POL-area of insect eyes.

2. The signals of each pair of POL-sensors were fed into a log ratio amplifier.

3. The three pairs of POL-sensors were mounted on a mobile robot and
adjusted such that the polarizing axis of the positive channel was 0◦, 60◦

and 120◦ (similar to the insect layout) with respect to the robot’s body
axis. The visual fields of the POL-OP units are about 60◦ and are centered
around the zenith.
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There are two models to obtain compass direction from the POL-OP re-
sponses: a) scanning models and b) simultaneous models. Scanning models
(Lambrinos et al. 1997 [115]) are explained in algorithm (5.2).

Algorithm 5.2 Scanning models (Lambrinos et al. 1997 [115])

Scanning models

the agent has to:

1. find the solar meridian to use it as a reference direction 0◦ for its propri-
oceptive system.

(a) For doing that it has to actively scan the sky by rotating around its
vertical body axis.

(b) When the output signal of one POL-OP unit (or a combination of
multiple POL-OP units) reaches its maximum, the robot is known
to be aligned with the solar meridian.

2. use proprioceptive information to find its heading direction based on the
solar meridian.

3. obtain the compass direction by comparing the current output values of
the POL-OP units with a lookup table that associates the output values
of the POL-OP units with the corresponding orientation of the robot.

4. record the lookup table before each experiment by a single 360◦ rotation
of the robot.

In contrast, the heading direction can be determined continuously and no
scanning movements are necessary in a simultaneous model. (Lambrinos et al.
2000 [117]) implemented a simultaneous model which does not require a lookup
table, but uses an analytical procedure to derive compass information from the
values of the POL-OP units. The change in the polarization pattern during
the day has to be taken into account. This can be done by either regularly
updating the lookup table or by normalizing the outputs of the POL-OP units
as explained in algorithm (5.3).
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Algorithm 5.3 Simultaneous models (Lambrinos et al. 2000 [117])

Simultaneous model

normalizing the outputs of the POL-OP units

1. The POL-OP signals are delogarithmized by applying a sigmoid function.

2. Find the two candidate orientations (an ambiguity of π exists) from the

equation derived in ([117]) φ = 1
2arctan

p̄1(φ)+2p̄2(φ)− 3
2√

3(p̄1(φ)− 1
2 )

where p̄i is the del-

ogarithmized sensors output and i = 1, 2, or3.

3. Solve the ambiguity by employing a set of ambient-light sensors on the
robot.

(a) The values from eight ambient-light sensors, arranged in two half-
circles covering a visual field of 180◦, are used to obtain a rough
estimate of the robot’s heading with respect to the sun (ambient-
light sensors with the visual field enclosing the solar meridian will
have a stronger response).

4. Transform the current POL-OP readings to signals that are independent
of the degree of polarization as shown in ([117]).

Figure 5.1: Diagrammatic description of POL OP unit. (Adapted from (Lam-
brinos et al., 2000, Chu et al., 2007))
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Chu et al. ([32, 31, 33, 30] and Zhao et al. ([254]), have a bionic navigation
sensor which is similar to Lambrinos et al. ([115, 116, 117]) and Möller et
al. ([130]) with the same POL-OP unit (see figure (5.1)) and used the same
mathematical formulation. Their design is explained in algorithm (5.4).

Algorithm 5.4 Bionic navigation sensor design (Chu et al. [32, 31, 33, 30, 254])

Bionic navigation sensor design

1. Three polarization direction analyzers whose polarizing axis of the positive
channel is adjusted to 60◦ difference from one to one.

(a) Each one consists of two POL-sensors which have the shape of regular
triangular prisms (total of six sensors).

(b) For each direction analyzer, the polarizing axis of one POL-sensor
was adjusted 90◦ to the polarizing axis of the other sensor.

2. A POL-OP unit consists of a pair of POL-sensors and a log-ratio amplifier.

(a) The log-ratio amplifier receives input from the two POL-sensors and
delivers the difference of their logarithmized signals (exactly the same
idea technique of Lambrinos et al. [115, 116, 130, 117]).

3. The three direction analyzers are mounted on a base plate.

4. Six ambient-light sensors are arranged in a ring and mounted in the metal
cylinder of the six POL-sensors.

(a) Each ambient-light sensor consists of standard photoresistors with
blue filter in front.

Chu et al. simulated their design in Simulink® and analyzed the output
error. Then some outdoor experiments were carried out.

All outdoor experiments performed by Lambrinos et al. ([115, 116, 130, 117])
and Chu et al. ([32, 31, 33, 30, 254]) proved to have high accuracy in obtaining
directional information from polarization and the error is independent of the
traveling distance.

The performance of the path integration without external reference in ([186])
is compared with the performance using a polarization compass. As propriocep-
tive estimate, wheel revolutions were used in both cases. The experiments were
carried out using a Khepera miniature robot. They found that the e-vector (the
observed regular pattern across the entire celestial hemisphere formed by the
directions of polarization) compass was much better in accuracy.

Two biomimetic sensors were developed by ([26]) and made flight tests for
stabilization and navigation of an aircraft using the spatial, polarizational, and
spectral distributions of light in the environment. They tried to mimic the head
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of a dragonfly called Hemianax Papuensis. Here we consider the polarization
sensor only which is explained in algorithm (5.5).

Algorithm 5.5 Mimicking polarization vision in the head of a dragonfly called
Hemianax Papuensis (Chahl & Mizutani, 2010 [26])

Polarization sensor

in the mimicked head of a dragonfly called Hemianax Papuensis

1. It used three photodiodes each with their own optics and polarization
filters.

(a) The output of the photodiode amplifiers were digitized and processed
on a microcontroller.

(b) Each photodiode had a voltage bias and gain that required calibra-
tion.

2. The direction was computed using three samples from an assembly of
diode, filter, and amplifier at known angles (0◦, 60◦ and 120◦) relative to
the orientation of the polarization axis of the polarization filter.

Each photodetector response to incident light in terms of voltage v is v =
b + P.F + q, which includes the response to unpolarized light q and a bias
term b which is due to the electronics. The sensor response to the polarized
component of the light is given by the dot product P.F where F is a column
vector representing the orientation of the polarization axis of the filter and P is
a row vector representing the direction and magnitude of the incident polarized
light. To eliminate electronic and optical biases (b and q) the difference between
the responses of the three samples v1 to v3 was taken. Solving for P gives:

PT =

[
v1 − v2

v1 − v3

] [
F1 − F2 F1 − F3

]−1
where F1 − F2 is a column vector.

This solution assumes a calibrated system. To test their sensor, a remotely
piloted aircraft was instrumented with a calibrated polarimeter and attitude
reference that included a magnetic compass. The flight was run early in the
morning when the sun was low. The polarization compass produced a dis-
continuity several times during the flight as the solution passed through 180◦.
There were minor differences between the two measures. They conclude that the
absence of any correction for attitude probably contributed to most deviation
between the magnetic and north-aligned polarization heading.

5.1.2 CCD, Fisheye and CMOS Sensors

Usher et al. ([228]) proposed to perceive sky polarization pattern using a color
CCD video camera and a linear polarizing film as a filter. The blue component
was used for analysis as the sunlight polarization is most apparent at UV and
blue wavelengths (350− 450nm). They smoothed all images by a 2D Gaussian



CHAPTER 5. APPLICATIONS 72

function to overcome the poor response at these short wavelengths. Two images
were taken at a time, with the second image having its polarizing filter axis
orthogonal to the first. Taking a set of images, they modeled the response
as f(Ô) = K ∗ [1 + d ∗ cos (2Ô)] where K is a scaling factor dependent on
camera shutter settings and ambient conditions, d is degree of polarization, Ô
is the orientation of the polarizing filter with respect to the solar meridian (line
connecting the zenith and the sun), and f(Ô) is the mean intensity of an image.
Their model had the same form for the photosensitive diodes of ([117]). Their
initial experiments proved that it is possible to locate the solar meridian using
a digital camera applying the scanning method of ([115]) and hence extracting
a reference bearing from an arbitrary orientation.

The mentioned methods are simulating insect strategy taking advantage of
the skylight polarization through single numerical values rather than patterns.
Wu et al. ([247]) presented a method to get navigation orientations by gradient
vectors of skylight polarization maps even if the sun is invisible or occluded
by clouds. The maps were provided by a zenith centered imaging polarime-
ter with narrow field of view. The imaging polarimeter was constructed by a
sensitive industrial CCD camera with short focus lens and a linearly polarizing
filter. Assisted by a compass and gradienter, the imaging polarimeter was kept
horizontal with the local sea level so its field of view center was adjusted to
the zenith of the sky area during the experiments. Then the linear polarizer
mounted in front of the objective lens was rotated. For a certain sky area, four
images were taken by rotating the linear polarizer to four different relative posi-
tions (0◦, 45◦, 90◦, and 135◦) following the method in ([119]). They estimated
the solar azimuth by searching the maximum attenuation gradient vector among
different azimuth relative to zenith in the degree of polarization p map, or the
symmetrical axis in the angle of polarization α map making use of the atten-
uation from zenith to horizon along the local meridian in the p maps and the
symmetrical distribution of α along the local meridian. They concluded that the
skylight polarization maps are able to supply stable solar azimuths information
and if aided by calendar (insect circadian clock), the real body orientation could
be located.

Sarkar et al.([174, 177, 175, 176]) proposed a polarization analyzing CMOS
image sensor. It is able to sense polarization information in real time using a
metallic wire grid micro-polarizer oriented in various directions on top of the
pixel. The p and α patterns can be computed using three intensity images
(0◦, 45◦, and 90◦) using the Stokes parameters as in ([125, 70, 49]), the vari-
ations of which can be used as compass clues. The image sensor consists of
an array of 128 × 128 pixels, occupies an area of 5 × 4mm2 and it has been
designed and fabricated in a 180nm CMOS process. They concluded to use the
computed polarization information as a clue for autonomous robot navigation.

Unlike previous investigations, Miyazaki et al. ([129]) analyzed sky polariza-
tion patterns with the fisheye lens. They have tilted the measurement system
based on a fisheye lens, a CCD camera, and a linear polarizer, in order to an-
alyze transition of the 180◦ sky polarization patterns while tilting. The used
technique is similar to the technique described in ([160, 92]). Three photographs
were taken for three different alignments (0◦, 45◦, and 90◦) of the transmission
axis of the polarizer clockwise from the top view of the camera. Their main
contribution was to analyze the sky polarization patterns when the camera was
tilted from the horizon. They presented a method to determine the solar merid-
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ian orientation from photos taken outdoors, while only a small part of the sky
was available and the camera sensor was not horizontal. Therefore, the orien-
tation of the camera could be determined from the solar meridian.

5.1.3 Water and mud detection for off-road navigation

Water and mud detection based on polarization depends on the physical prin-
ciple that the light reflected from water surface is partially linearly polarized
and the polarization phases of them are more similar than those from the scenes
around. These hazards can be detected by comparison of polarization degree
and similarity of the polarization phases. There is a comparison between differ-
ent approaches of water and mud hazards detection in ([126, 166]) and a survey
in ([108]).

Icy or wet roads present dangerous situations as there is an increased danger
of losing control of the vehicle and the glare from wet roadway may hide path
markings and other road features. A polarizing filter can considerably reduce
reflections due to the fact that water tends to horizontally polarize reflected
light. Huber et al. ([106]) have developed a spectro-polarizational imager. It is
a portable machine vision system that operates at video frame rates. It contains
only electronically controllable components, including an imaging acousto-optic
tunable filter, a phase retarder, and a standard CCD-based camera. The sys-
tem operates much like an ordinary CCD camera, except that the spectral and
polarizational content of light to be viewed is electronically controlled using com-
puter. During operation, the host computer sends commands to the controller
to select the desired spectral and polarization parameters. They proposed glare
reduction and glare detection in which their imaging system could be applied to
wet or icy road conditions. Glare reduction works similarly to a polarizing filter
inserted in the optical path. However, the phase retarder accomplishes this elec-
tronically and can be programmatically enabled and disabled, which is beneficial
since an additional filter reduces the overall intensity of the image. For glare
detection, they identify horizontally polarized reflections, thereby detecting pos-
sible dangerous road conditions. In a computer-assisted driving scenario, this
additional information could be used to alert the driver of the danger, or in an
autonomous vehicle, the controller could modify its driving habits accordingly.

Yamada et al. ([249]) discriminated the wet road using the ratio between hor-
izontal and vertical polarization image intensity for each pixel. This algorithm
obtained good discrimination accuracy when applied to highway environment
where most water reflects the sky. A drawback of this polarization ratio based
method is that it becomes imprecise when water reflects other aspects of the
environment, which is common in off-road navigation.

Sarwal et al. ([178]) have made use of two approaches for small water bodies’
detection. The first one requires use of an existing custom camera with three
polarization filters (0◦, 45◦, and 90◦); intrinsically mounted such that these fil-
ters and connected optics view exactly the same scene. The other approach
requires use of three physically distinct cameras with the same type of polariza-
tion filters mounted on three low-cost cameras each with similar optics, running
with certain geometric approximations due to the flat-earth assumption. There
are pros and cons for each approach. Both approaches used the formulas from
([243]).
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In order to detect water hazards for autonomous off-road navigation, espe-
cially bodies of water which roofed with tree canopy, Xie et al. ([248]) presented
another polarization method based on the similarity between polarization pat-
terns reflected from water surface than those from other scenes. Their detection
algorithm is based on the comparison of p and similarity of α using the formulas
from ([243]).

Polarization imaging and stereo vision was used by ([157]) to detect water
hazards for robot navigation. He investigated the conventional single camera
polarization imaging setup employing a mechanically rotated polarizer, polar-
ization contrast imaging using two cameras, a three camera setup enabling the
complete characterization of partially linearly polarized light, and a four camera
setup employing two polarizers with identical orientations. The main challenge
in their proposed system was to improve the pixel correspondence across the
polarization images. They obtained good results for water detection, however
further in-depth experiments are still required.

Robust mud detection is also a critical perception requirement for autonomous
navigation. Mud is highly polarized and hence polarization based techniques can
be used. The use of multiple sensors for mud detection including a polarization
camera was proposed by ([166]). At a pixel level, partial linear polarization is
measured by the transmitted radiance through a polarization filter. To deter-
mine the polarization state, three images of a scene are acquired, each with the
polarization filter at a different orientation. To calculate “polarization contrast”
as a simplified measurement, only two images are required where the polariza-
tion filter orientations differ by 90◦. The “polarization contrast” at each pixel
can be calculated by dividing the absolute value of the difference between the 0◦

and 90◦ intensity values by the sum of them. Regions that have a significantly
higher degree of polarization p can be a potential cue for water or mud. In the
experiments of ([166]), two polarization sensors were used: SAMBA and SALSA
polarization cameras produced by Bossa Nova Technologies. The SAMBA cam-
era provides a “polarization contrast” image and the SALSA camera provides
degree of polarization p, intensity I, and angle of polarization α images.

5.2 Solar angles estimation

All solar algorithms used to obtain the skylight polarization patterns at a given
time and location are based on ([127, 4]).

5.2.1 Azimuthal angle estimation

The slope of the solar-antisolar meridian is directly related to the solar azimuthal
angle ψs. Algorithm (5.6) which is visually explained in figure (5.2) finds ψs
from east to north by fitting a line to the solar-antisolar meridian. Figure (4.8)
shows a snapshot of the program, figure (B.20) shows some examples of solar
angles estimation within the day, and table (5.1) gives the simulation parameters
and the computation results.

Generally the error of algorithm (5.6) was found to be within ±0.2 (the max
error was ±0.2 with 128×128 resolution, it was ±0.03 with 256×256 resolution).
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Figures (5.3a, 5.3b) show examples of Azimuthal angle estimation after adding
noise. Section (B.3) shows more examples on solar angles estimation.

Figure 5.2: Azimuth estimation.

5.2.2 Zenital angle estimation

The contours of theα pattern at ±45◦are directly related to the solar zenital
angle θs. Algorithm (5.7) finds θs. Figure (B.20) shows some examples. It is
assumed that the mirror shape and refractive index are known. If the mini-
mization step in algorithm (5.7) fails (the solver fails) to find the correct zenith,
then it is repeated with a new start point within the given bounds (it can be
improved by a smart start point based on the time of the day), until it converges
to a correct solution (the error is very close to zero). In all experiments, the
start point is 0, the lower bound is 0, and the upper bound is 90 to92 (when
the sun altitude is negative the zenith is more than 90).

Algorithm 5.7 Solar zenital angle estimation.

1. Find azimuth as explained in algorithm (5.6).

2. Find the contours of ±45◦in the captured α pattern.

3. argmin
θs

(α− captured), where α is as defined in equation (3.1).
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Algorithm 5.6 Solar azimuthal angle estimation.

1. Extract solar-antisolar meridian points where the angle of polarization α
is very close to zero.

2. IF the points are highly correlated

(a) Fit a line to these points.

3. ELSE using one of the RANdom SAmple Consensus (RANSAC) algorithm
family ([2])

(a) Remove outliers

(b) Fit a line to the inliers

4. Find the antisolar side of the line where the corresponding degree of po-
larization p is higher than the solar side.

5. Find the slope of this line.

6. Compute the Azimuth from East to North as follows:

7. IF Morning

(a) IF Slope < 0◦

i. Azimuth = −(90◦ + Slope)

(b) ELSEIF Slope > 0◦

i. Azimuth = 90◦ − Slope
(c) ELSE Slope = 0◦

Azimuth = 0◦

8. ELSE Noon&Afternoon

(a) IFSlope < 0◦

i. IF Slope = −180

A. Azimuth = 90◦

ii. ELSE

A. Azimuth = 90◦ − Slope
(b) ELSEIF Slope > 0◦

i. Azimuth = 180 + (90◦ − Slope)
(c) ELSE Slope = 0◦

i. Azimuth = 180◦



CHAPTER 5. APPLICATIONS 78

If the incident α pattern is very noisy then using the complete pattern for
zenith estimation is more robust and reliable. Only angle of polarization α
values corresponding to some degree of polarization p values greater than a
given threshold (e.g p > 0.4) are considered when the complete pattern is used.
Algorithm (5.8) explains how to compute the zenital angle from the complete α
pattern.

Algorithm 5.8 Solar zenital angle estimation.

1. Find azimuth as explained in algorithm (5.6).

2. argmin
θs

(α− captured), where α is as defined in equation (3.1).

Without adding noise, the error for zenith estimation in algorithms (5.7,
5.8) was found to be zero where up to 4 solvers were required and each solver
requires up to 30 iterations (10 iterations in average). If the start point or the
search bounds are smartly provided based on the time of day then only one
solver with an average of 4 iterations (up to 10 iterations) is required.

Figures (5.3a, 5.3b) show examples of zenital angle estimation after adding
noise. Section (B.3) shows more examples on solar angles estimation.

5.2.3 Adding noise

Two types of noise are used to evaluate our results; Gaussian and Speckle noise
as follows [79]:

� NI = I +
√
v ∗ randn(size(I)) + m adds Gaussian white noise of mean

m and variance v to the image I where NI is the noisy image and
randn(size(I)) generates normally distributed pseudorandom numbers of
the same size as I.

� NI = I + sqrt(12 ∗ v) ∗ I. ∗ (rand(size(I))− .5) adds Speckle noise (mul-
tiplicative noise) to the image I, where rand(size(I)) − .5 is uniformly
distributed pseudorandom numbers with mean 0 and variancev.

Examples of adding noise to the skylight polarization patterns are shown in B.2.
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(a) Solar angles estimation from a noisy
(Gaussian noise of variance 4 and mean
2) α pattern at 05:20. The correla-
tion between the extracted points was
greater than a given threshold (e.g 0.85)
and hence a line was fitted to esti-
mate the azimuthal angle. The zenital
angle is estimated from the extracted
±45◦contours. The ground truth val-
ues are: azimuth = −16.8579 and
zenith = 72.537 . Simulation parame-
ters are shwon in table (5.1a).

(b) Solar angles estimation from a noisy
(Speckle noise of variance 0.04 and mean
0) α pattern at 11:50. Due to high
noise many outliers exist and the corre-
lation between the extracted points was
less than or equal a given threshold (e.g
0.85), hence different RANSAC methods
were applied and the one with the high-
est number of inliers was selected. A
line is fitted to these points in order to
estimate the azimuthal angle. The zeni-
tal angle is estimated from the extracted
±45◦contours. The ground truth values
are: azimuth = 89.1161 and zenith =
43.2814 . Simulation parameters are
shown in table (5.1a).

Figure 5.3: Solar angles estimation from a noisy α pattern.

The error in estimating the solar angles in extremely noisy conditions is
shown in tables (5.2, 5.3, 5.4, 5.5). All experiments were performed on low
resolution 128× 128 pixels. The results show that the proposed algorithms are
robust against high levels of noise.



CHAPTER 5. APPLICATIONS 80

Azimuth estimation

5.6

Speckle noise with mean m and variance v

Ground Truth GT Error

Time Azimuth EN Using all points

Morning (6:00) Noise Variance GT -8.0277 Speckle m = 0

v = 0.1 -8.0634 0.0357

v = 0.15 -8.0712 0.0435

v = 0.20 -8.0331 0.0054

v = 0.25 -8.0671 0.0394

v = 0.3 -8.0638 0.0361

Afternoon (18:00) GT 191.2770

v = 0.1 191.3375 -0.0605

v = 0.15 191.3522 -0.0752

v = 0.20 191.3121 -0.0351

v = 0.25 191.3174 -0.0404

v = 0.3 191.3234 -0.0464

Table 5.2: Azimuth estimation after adding speckle noise with v < 0.3

The azimuthal estimation error using algorithm (5.6) was between ±0.03◦

and ±0.07◦ after adding speckle noise with zero mean and variance up to 0.3.
Increasing the amount of noise resulted in adding many outliers and hence using
the extracted points failed to find the azimuthal angle. After removing outliers,
the error was between ±0.2◦ and ±0.4◦ with the speckle noise variance between
0.35 and 1. Generally, adding speckle noise with zero mean and variance 0.04
is considered very high and the experiments are done for levels of speckle noise
with variance higher than 0.04.

The azimuthal estimation error was less than ±0.2◦ after adding Gaussian
noise with zero mean and variance up to 2. Increasing the amount of Gaussian
noise the error became between ±0.3◦ and ±0.5◦ with zero mean and variance
up to 5. Increasing the amount of noise the error became between ±0.35◦ and
±0.9◦ with zero mean and variance up to 18. The azimuthal estimation error
was between ±1◦ and ±2.5◦ after adding Gaussian noise with mean = 5 and
variance up to 18.

The zenital estimation error using the ±45◦ contours as explained in algo-
rithm (5.7) was within ±2.3◦ after adding speckle noise with zero mean and
variance up to 0.025. Increasing the amount of speckle noise, the error was
within ±3.3◦ with zero mean and variance up to 0.110. Adding speckle noise
with zero mean and variance more than 0.110 the algorithm fails to find an es-
timation within acceptable range where the error was more than 8◦. Generally,
adding speckle noise with zero mean and variance 0.04 is considered very high
and the experiments are done for levels of speckle noise with variance higher
than 0.04.

The zenital estimation error using the complete pattern as explained in al-
gorithm (5.8) was within ±2◦ after adding speckle noise with zero mean and
variance up to 0.02. Increasing the amount of speckle noise, the error was
within ±7.5◦ with zero mean and variance up to 0.03. With zero mean and
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variance more than 0.03 it fails to find an estimation within acceptable range
where the error was more than 8◦.

The zenital estimation error using the ±45◦ contours as explained in algo-
rithm (5.7) was within ±0.3◦ after adding Gaussian noise with zero mean and
variance up to 6. Increasing the amount of Gaussian noise, the error was within
±0.8◦ with zero mean and variance up to 18.

The zenital estimation error using the complete pattern as explained in al-
gorithm (5.8) was within ±0.5◦ after adding Gaussian noise with zero mean and
variance up to 6. Increasing the amount of Gaussian noise, the error was within
±2◦ with zero mean and variance up to 18.

Some examples of noisy α patterns and the estimated solar angles in different
times of the day are shown in figures (B.21, B.22, B.23).

5.3 AV attitude estimation

The algorithms discussed here are generally based on the contours of theα pat-
tern at ±45◦ or the complete α pattern. Whenever the complete α pattern is
used only α values corresponding to some degree of polarization p values greater
than a given threshold (e.g p > 0.4) are considered.

5.3.1 USV/GV attitude estimation

USV/GV is assumed to move on a flat surface and hence the vehicle can have
a simplified model which has only one rotation angle to be estimated which is
the yaw angle around z-axis γ. We propose three different algorithms:

Algorithm 5.9 Estimating the GV orientation from the solar azimuthal angle.

1. Given date, time and location, calculate the solar azimuth.

2. Estimate the azimuth from the captured α pattern as in algorithm (5.6).

3. The orientation of the vehicle is the difference between the theoretical az-
imuth and the computed azimuth (rotating around the z-axis is equivalent
to rotating the solar anti-solar meridian line).

Algorithm 5.10 Estimating the GV orientation from the α pattern.

1. Given date, time and location, calculate the solar azimuth and zenith.
The mirror shape and refractive index are assumed to be known.

2. argmin
γ

(Rzα− captured), where α is as defined in equation (3.1), Rzα is

the theoretically rotated α around the z-axis, and γ is the angle of rotation
to be estimated around z-axis.
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Algorithm 5.11 Estimating the GV orientation from the α pattern.

1. Given date, time and location, calculate the solar azimuth and zenith.
The mirror shape and refractive index are assumed to be known.

2. Find the contours of ±45◦in the captured α pattern.

3. argmin
γ

(Rzα − captured), where α is as defined in equation (3.1), and

Rzα is the theoretically rotated α around the z-axis and γ is the angle of
rotation to be estimated around z-axis.

If the minimization step in algorithms (5.10, 5.11) fails, then it is repeated
with a new starting point within reasonable range (our experiments were in the
range −45 ≤ γ ≤ 45), until it converges to a correct solution (the error is very
close to zero). Algorithm (5.11) is more robust than algorithm (5.10) as it is
mush faster and does not require the Jacobin matrix in the optimization step.

Figure (5.4) shows some examples applying algorithms (5.10, 5.11) for neg-
ative and positive rotations around the z-axis and estimation results.

(a) Original α pattern
before rotation.

(b) α pattern rotated
by −33◦around the z-
axis.

(c) γ estimation using
algorithm (5.10)

(d) γ estimation using
algorithm (5.11)

Figure 5.4: γ estimation using algorithms (5.10, 5.11).

5.3.2 AV attitude estimation from α pattern

Algorithm (5.12) described here can be used for any AV which is modeled with
a general rotation around x, y, and z axises. We consider applying it to UAV
vehicles.
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Algorithm 5.12 Estimating the AV orientation from the α pattern.

1. Given date, time and location, estimate the solar azimuth and zenith. The
mirror shape and refractive index are assumed to be known.

2. argmin
φ,β,γ

(Rα− captured), where α is as defined in equation (3.1), and Rα

is the theoretically rotated α around x-axis (roll φ), y-axis (pitch β), and
z-axis (yaw γ) respectively, and φ, β, γ are the angles of rotation to be
estimated.

Algorithm 5.13 Estimating the AV orientation from the α pattern.

1. Given date, time and location, estimate the solar azimuth and zenith. The
mirror shape and refractive index are assumed to be known.

2. Find the contours of ±45◦in the captured α pattern.

3. argmin
φ,β,γ

(Rα− captured), where α is as defined in equation (3.1), and Rα

is the theoretically rotated α around x-axis (roll φ), y-axis (pitch β), and
z-axis (yaw γ) respectively, and φ, β, γ are the angles of rotation to be
estimated.

If the minimization step in algorithms (5.12, 5.13) fails, then it is repeated
with a new starting point within reasonable range (e.g −45 ≤ φ, β, γ ≤ 45 ),
until it converges to a correct solution (where the error is very close to zero).
There are many combinations of rotation angles to obtain the same final AV
attitude if the general rotation is considered where roll φ, pitch β, and yaw γ
angles have to be computed and no knowledge is assumed. Otherwise, an exact
solution is obtained if one or two different rotations occurred assuming that we
know the rotation axis.

Algorithm (5.13) is more robust than algorithm (5.12) as it is mush faster and
does not require the Jacobin matrix in the optimization step. Both algorithms
converge to the exact solution if rotation occurs around one or two axises and
the axises of rotation are assumed to be known however the order of rotation is
unknown, see figures (5.5a, 5.5b). If the rotation occurs around the three-axises
then the algorithms always converge to a correct solution, see figures (5.6, 5.7).
Figures (5.5a, 5.5b, 5.6, 5.7) are based on algorithm (5.13).

If a better range is defined for upper and lower bounds on the amount of
rotation (see figure (5.8a)) or a good starting point is provided, which is possible
in practice, then the possibility to converge to the exact solution is higher using
algorithm (5.13). If there is only one or two rotations but the axises of rotations
are unknown and the number of axises are unknown then algorithm (5.13) can
be applied to estimate an equivalent rotation (roll φ, pitch β, and yaw γ ). Fig-
ure (5.8b) shows an example of estimating an equivalent rotation to a rotation
about one unknown axis and figure (5.8c) shows an example of estimating an
equivalent rotation to two rotations about two unknown axises.

In figures (5.6, 5.7, 5.8b, 5.8c) it is noted that the original rotated pattern
and the estimated one are visually identical except for the earth (the dark
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green area). That is because another rotation equivalent to the original one
is estimated with a new pose of the camera where part of the earth appears
due to a higher rotation around x or y axises. This can be avoided if an initial
guess about the axis of rotation is provided or conditioned based on the real
circumstances.

Latitude +N 46.8

Longitude +E 4.433

Date (24 and 26)\7\2012

Time Zone GMT +1

Mirror Spherical

Refractive index n̂ = 1.44 + 5.23i

Table 5.6: Simulation parameters
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Correctly estimated solution

x y z Order

10 0 20 1

(a) Estimating two angles of rotation assuming the knowledge of the rotation
axis. The robot is rotated around x by 10◦then around z by 20◦. Note that
the rotation order is not assumed to be known. The earth is represented in
dark green. The simulation parameters are shown in table (5.6). Simulated
pattern in Le Creusot on 24/07/2012 at 12:39:5

Correctly estimated solution

x y z Order

0 10 20 1

(b) Estimating two angles of rotation assuming the knowledge of the
rotation axis. The robot is rotated around y by 10◦then around z by
20◦. Note that the rotation order is not assumed to be known. The earth
is represented in dark green. The simulation parameters are shown in
table (5.6). Simulated pattern in Le Creusot on 24/07/2012 at 12:39:5

Figure 5.5: Estimating angles of rotation assuming the knowledge of the rotation
axis.
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(a) Original α pattern (b) α pattern rotated by
10◦around x, 20◦around y,
and 30◦around z.

(c) First estimated rotation.

Correctly estimated solutions

x y z Order

4.7941 4.1273 -4.2800 1

4.9230 0.9909 -10.3987 2

6.3039 12.9598 13.5135 3

4.9917 7.1731 1.6941 4

(d) Second estimated solu-
tion.

(e) Third estimated rotation. (f) Fourth estimated solu-
tion.

Figure 5.6: Estimating three angles of rotation where no knowledge is assumed.
The simulation parameters are the same like figures (5.5a, 5.5b) where the
original α pattern is rotated by 10◦around x, 20◦around y, and 30◦around z
respectively. The estimated solutions are shown in the second, third and fourth
row. Note that the rotation order is not assumed to be known. The start point
is (0◦,0◦,0◦), the lower bound is (−45◦,−45◦,−45◦), and the upper bound is
(45◦,45◦,45◦). The earth is represented in dark green.
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(a) Original α pattern (b) α pattern rotated
−5◦around y, 40◦around z,
and 7◦around x.

(c) First estimated rotation.

Correctly estimated solutions

x y z Order

1.5997 -14.1301 28.4087 1

1.4826 -14.3034 28.0335 2

-0.9179 -18.5157 19.3373 3

1.8691 -13.7397 29.2599 4

(d) Second estimated solu-
tion.

(e) Third estimated rotation. (f) Fourth estimated solu-
tion.

Figure 5.7: Estimating three angles of rotation where no knowledge is assumed.
The simulation parameters are the same like figures (5.5a, 5.5b) where the
original α pattern is rotated by −5◦around y, 40◦around z, and 7◦around x
respectively. The estimated solutions are shown in the second, third and fourth
row. Note that the rotation order is not assumed to be known. The start point
is (0◦,0◦,0◦), the lower bound is (−45◦,−45◦,−45◦), and the upper bound is
(45◦,45◦,45◦). The earth is represented in dark green.
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Correctly estimated solutions

x y z Order

5.1650 15.2724 25.658 1

5.0692 15.1152 25.277 2

4.5345 14.1881 23.072 3

4.7700 14.6072 24.061 4

(a) Estimating three angles of rotation where no knowledge is as-
sumed about the rotation order however better lower (2◦,12◦,22◦)
and upper (8◦,18◦,28◦) bounds are assumed to be provided. The
robot is rotated by (5◦, 15◦, 25◦) around x, y, and z respectively
. The earth is represented in dark green.

Correctly estimated equivalent solution

x y z Order

-8.0627 -7.8795 -6.3434 1

(b) Estimating one angle of rotation assuming no knowledge of the rotation axis. The
robot is rotated around z-axis by 10◦. The ground truth rotated α pattern is on the
left and the computed rotated pattern based on the first estimation is shown on the
right. The earth is represented in dark green. The simulation parameters are shown in
table (5.6). Simulated pattern in Le Creusot on 26/07/2012 at 11:12:15

Correctly estimated equivalent solution solutions

x y z Order

1.9067 -5.3061 5.8858 1

(c) Estimating two angles of rotation assuming no knowledge of the rotation axises. The robot is
rotated around x by 10◦then around z by 20◦. The ground truth rotated α pattern is on the left
and the computed rotated pattern based on the first estimation is shown on the right. The earth is
represented in dark green. The simulation parameters are shown in table (5.6). Simulated pattern
in Le Creusot on 26/07/2012 at 11:12:15

Figure 5.8: Estimating angles of rotation assuming no knowledge of the rotation
axises or rotation order.

5.3.3 Adding noise

Rotation estimation based on algorithms (5.11, 5.13) which depend on the ±45◦

contours of the α pattern is faster and robuster than using algorithms (5.10,
5.12) which depend on the complete α pattern at points which has p higher
than a given threshold. Hence a demonstration of the performance of these
robust algorithms (5.11, 5.13) against high levels of noise is provided here as
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they will always outperform algorithms (5.10, 5.12).
Gaussian noise with zero mean and variance = 10, Gaussian noise with

mean = 3 and variance = 10, and speckle noise with zero mean and variance =
0.04 are added to each rotation estimation scenario respectively. The error found
to be at maximum ±2.48◦ for these high levels of noise and the average error
was ±0.5◦.

Figures (5.9a, 5.9b, 5.9c) show the results of adding noise on γ estimation
(one angle of rotation) based on algorithm (5.11). Simulation parameters are
shown in table (5.6).

Figures (5.10a, 5.10b, 5.10c) show the results of adding noise on two angles
of rotation estimation based on algorithm (5.13).

As mentioned in sec (5.3.2), in practice if a better range is defined for upper
and lower bounds on the rotation angles or a good starting point is provided then
the possibility to converge to the exact solution is higher. Figures (5.11a, 5.11b,
5.11c) show the rotation estimation after adding Gaussian noise with zero mean
and variance = 10, Gaussian noise with mean = 3 and variance = 10, and
speckle noise with zero mean and variance = 0.04 to figure (5.8a) respectively.

Figures (B.32, B.33, B.34) in appendix (B) show the results of adding noise
on general rotation estimation based on algorithm (5.13). The presented results
in this section are shown with more simulation details in section (B.4).
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Figure Estimation Error

Ground truth is 25◦rotation around z-axis

5.9a 24.6276◦ 0.3724◦

5.9b 26.0435◦ 1.0435◦

5.9c 25.9580◦ 0.958◦

(a) γ estimation after adding Gaussian noise with zero mean and variance =
10. The simulation parameters are shown in table (5.6).

(b) γ estimation after adding Gaussian noise with mean = 3 and variance =
10. The simulation parameters are shown in table (5.6).

(c) γ estimation after adding speckle noise with zero mean and variance =
0.04.

Figure 5.9: γ estimation using algorithm (5.11) after adding noise. The table
at the top shows the ground truth rotation, the estimated rotation, and the
estimation error. Images from left to right are: the noisy rotated α pattern, the
difference between the noisy and the theoretically rotated α pattern, the noisy
rotated p pattern, and the difference between the noisy and the theoretically ro-
tated p pattern. The simulation parameters are shown in table (5.6). Simulated
pattern in Le Creusot on 24/07/2012 at 12:39:5.
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Figure Estimation Error Estimation Error

Ground truth is: 10◦ around x-axis 20◦ around z-axis

5.10a 12.0512◦ 2.0512◦ 21.0855◦ 1.0855◦

5.10b 10.6650◦ 0.6650◦ 20.6087◦ 0.6087◦

5.10c 11.0645◦ 1.0645◦ 21.9056◦ 1.9056◦

(a) Two angles of rotation estimation assuming the knowledge of the rotation
axises after adding Gaussian noise with zero mean and variance = 10.

(b) Two angles of rotation estimation assuming the knowledge of the rotation
axises after adding Gaussian noise with mean = 3 and variance = 10.

(c) Two angles of rotation estimation assuming the knowledge of the rotation
axises after adding speckle noise with zero mean and variance = 0.04.

Figure 5.10: Two angles of rotation estimation assuming the knowledge of the
rotation axises using algorithm (5.13) after adding noise. The table at the top
shows the ground truth rotation, the estimated rotation, and the estimation
error. Images from left to right are: the noisy rotated α pattern, the difference
between the noisy and the theoretically rotated α pattern, the noisy rotated p
pattern, and the difference between the noisy and the theoretically rotated p
pattern. The earth is represented in dark green. The simulation parameters
are shown in table (5.6). Simulated pattern in Le Creusot on 26/07/2012 at
11:12:15.
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Figure Estimation Error Estimation Error Estimation Error

Ground truth is: 5◦ around x-axis 15◦ around y-axis 25◦ around z-axis

5.11a 5.3505◦ 0.3505◦ 14.7630◦ 0.237◦ 24.8889◦ 0.1111◦

5.11b 5.3269◦ 0.3269◦ 14.1094◦ 0.8906◦ 23.9005◦ 1.0995◦

5.11c 5.4238◦ 0.4238◦ 14.6818◦ 0.3182◦ 27.4859◦ 2.4859◦

(a) Estimating three angles of rotation after adding a Gaussian noise with
mean = zero and variance = 10 .

(b) Estimating three angles of rotation after adding a Gaussian noise with
mean = 3 and variance = 10.

(c) Estimating three angles of rotation after adding speckle noise with mean =
zero and variance = 0.04 .

Figure 5.11: Estimating three angles of rotation using algorithm (5.13) after
adding noise where no knowledge is assumed about the rotation order however
better lower (2◦,12◦,22◦) and upper (8◦,18◦,28◦) bounds are assumed to be
provided. The robot is rotated by (5◦, 15◦, 25◦) around x, y, and z respectively.
The table at the top shows the ground truth rotation, the estimated rotation,
and the estimation error. Images from left to right are: the noisy rotated
α pattern, the difference between the noisy and the theoretically rotated α
pattern, the noisy rotated p pattern, and the difference between the noisy and
the theoretically rotated p pattern. The earth is represented in dark green.
The simulation parameters are shown in table (5.6). Simulated pattern in Le
Creusot on 24/07/2012 at 12:39:5.



Chapter 6

Conclusion and
Perspectives

Animal’s behavior is extremely flexible and robust facing environmental con-
tingencies. By adopting some of these behaviors in machines, it is possible
to obtain similar flexibility and robustness. Many aspects of animals lead to
biological inspiration like a) behavioral strategies, b) physical design, and c)
the nervous systems organization. In this work, we focused on the animals’
polarization based visual behavior strategies.

Human visual awareness can be greatly expanded by augmenting different
sensor models by the different capabilities of computer vision systems. Po-
larization vision represented in polarizational cameras becomes available to a
broad range of audience, specifically outdoors and underwater applications. Un-
manned robots for surveillance or exploring tasks may greatly benefit from such
sensors. Thanks to polarizational cameras, it will be easier to have real time
bio-inspired robotics.

Polarization information has strong cues for orientation and navigation. It
can be used efficiently in communication, removing backscattering for underwa-
ter vision, breaking camouflage in complex backgrounds, and easily adapted in
various machine vision applications where analyzed polarization filtered images
proved to be useful.

A complete dedicated survey to one of the most important bio-inspired visual
features in nowadays applications was presented in appendix (A). Many exam-
ples of skylight polarization patterns and the proposed applications were given
in appendix (B). A comprehensive survey about vision based attitude estimation
was given in chapter (2) and another survey about measuring skylight polariza-
tion patterns using omnidirectional sensors was given in chapter (3) along with a
derivation of an accurate analytic form of the skylight angle of polarization. Our
aim was measuring the polarization state of incident light using a catadioptric
sensor. Hence we proved that, using the proposed pola-catadioptric design, only
three out of four parameters are required to compute the incident polarization
state as shown in chapter (4). The algorithms proposed to estimate solar angles
and AV attitude directly serve AV orientation and navigation applications as
shown in chapter (5).

For the sake of solar angles estimation, algorithms (5.6, 5.7) are highly rec-
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ommended as they are fast, robust, and can be used in real time due to the small
number of used points. Algorithms (5.11, 5.13) are also highly recommended
for AV attitude estimation for the same reasons. It is worthy to note that all
experiments were simulated on low resolution images 128×128 and against high
levels of Gaussian and speckle noise.

This work emphasizes the significance of the ±45◦ contour and the neutral
line (in the angle of polarization α pattern) which are directly connected to the
solar zenital and azimuthal angles respectively. These results suggest that ani-
mals highly depend on these features for orientation and navigation purposes.
In literature, some animals need to observe any part of the sky with a suffi-
cient degree of polarization p to be able to use polarization features. Actually,
our results may recall two important questions: “Which part of the polarized
skylight is sufficient for animals polarization based behavior?” , and “what if
the animal is not able to observe one of these features, will it be able to take a
correct decision?”. These questions are left for biologists to re-answer.

We think that there are four important fields of polarization research which
will evolve in the next few years: spectral-polarization vision, omni-polarization
vision, a combination of both (omni-spectro-polarization vision), and night po-
larization vision. Independently, polarizational and spectral features do not
completely represent an object of interest ([257]). The objects elemental com-
position defines the reflected spectral signature. The polarization characteristics
depend on surface features, such as smoothness and conductance. These fea-
tures can be combined to reduce false alarms, improve target identification, and
enhance the scene description. Some work has already been done on this com-
bination in ([71, 255, 257, 256, 47]). The future of polarization vision is going
to be omni-directional due to its wide range of applications and the amount of
information captured at one location and one shot. It takes the conventional
vision applications into the omni-directional dimension. We propose to have
an omni-spectro-polarizational camera (e.g combining a mirror with FD-1665
3CCD Multispectral Cameras with a linear polarizer at 0◦, 60◦, 120◦ in front
of each camera). It is a combined inspiration of the birds’ field of view (which
can reach 360◦), the Daphnia magna spectral vision, and Cataglyphis ants po-
larization vision. The proposed sensor might be able to show the spectral and
polarizational features from an omni-directional perspective. It can be used in
almost all machine vision applications enhancing the quality of perceived images
and fusing comprehensive information in a single image. It may greatly enhance
the autonomous robotics world especially in open environments. To the best of
our knowledge, here is the first time to propose such sensor. Also being inspired
by the nocturnal, we think that in the near future it will be possible to use
the skylight polarization patterns in the night for robot autonomous navigation
like day light using the moon polarization patterns which are similar to sun
polarization patterns ([48]).

One possible future application is a Natural Positioning System (NPS) that
exploits the skylight polarization pattern to find out the latitude and longitude
of the AV given date, time, and solar angles.
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surfaces métalliques spéculaires par imagerie polarimétrique. PhD thesis,
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Appendix A

Visual Behavior Based
Bio-Inspired Polarization
Techniques

Bio-inspiration is an established concept which is developing to meet the needs of
many challenges particularly in machine vision applications. Polarization vision
is one of the most important biological features in the animal kingdom. A
broad range of applications has been inspired from it. Light’s vector orientation
(polarization) can be surprisingly weakly detected by some humans with their
naked eyes ([83]), but humans need the help of polarizing optics to visualize
most invisible polarization effects ([80]).

Many fish, cephalopods, crustaceans, insects, and other animals are capable
of perceiving polarized light ([104]). Most animal photoreceptors are able to
differentially react to partially linearly polarized light ([76], [154], [232], [238]).
Fish ([88]) and birds ([158]) photoreceptors respond to polarized light patterns
and hence are able to analyze linear polarization ([42]).

Firstly, we will briefly cover the polarization based visual behavior in the
animal kingdom A.1, especially behaviors that can be mapped directly to the
machine vision world such as orientation and navigation A.1.1, water and trans-
parent object detection A.1.2, camouflage breaking A.1.3, and communication
A.1.4. Secondly, a comprehensive cover of polarization-inspired machine vision
applications will be given (A.2, A.3, A.4, A.5, A.6, A.8).

The main part of the chapter will go into details regarding bio-inspired polar-
ization techniques in robotics applications A.2. We start with a short coverage
of how to visualize polarization information A.3. Then a detailed complete sur-
vey of robot orientation and navigation techniques based on polarization will
be given A.4 due to its importance for both communities of computer vision
and robotics and its active ongoing research. A comprehensive survey of un-
derwater polarization vision is also given A.5 due to the challenging problem of
enhancing vision underwater and how it is greatly improved using polarization.
Moderate survey of communication A.6 (few methods are clearly bio-inspired)
and camouflage breaking A.7 techniques based on polarization are then covered.
Finally, examples of general computer vision techniques based on polarization
are mentioned A.8.
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Figure A.1: Polarization in the animal kingdom. From left to right and top to
bottom: Bee, desert ant (Cataglyphis), nocturnal bird (owl), and salmon fish

Our objective is to give a top view of polarization applications in com-
puter vision and robotics, especially the bio-inspired polarization dependent
techniques in order to have a comprehensive coverage of such important and
active area of research.

A.1 Polarization based visual behavior in the
animal kingdom

A.1.1 Orientation and Navigation

See section (5.1).

A.1.2 Water and Transparent Object Detection

Water surfaces can be discriminated from virtual surfaces (like mirages) by fly-
ing insects using their polarization vision ability ([102, 42]). Reflected polarized
light is used by aquatic insects such as dragon-flies, mayflies, and backswim-
mers to detect calm water surfaces ([104]). Lythgoe & Hemmings ([124]), were
the first to propose enhancing the transparent targets visibility in water using
polarization. It was found that there are some objects which strongly reflect
polarized light underwater ([41, 42]). It is proved that squids and their relatives
see obscure objects using polarized light ([198, 203]).
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A.1.3 Camouflage Breaking

Camouflage is a tool to defeat visual detection by predators. Lythgoe & Hem-
mings ([124]) proposed that polarization could be used to detect well-camouflaged
targets in water. Polarization vision helps to detect transparent preys ([202]).
Cephalopods (squid, cuttlefish, and octopus) can produce a variety of body pat-
terns for camouflage using their optically malleable skin that contains neutrally
controlled pigmented chromatophores as well as structural light reflectors and
some of them are able to see camouflaged objects ([85, 201, 199, 200]). Mäthger
& Hanlon ([150]), give evidence that the polarized aspect of iridescent color in
squid skin produces highly dynamically changeable camouflaged patterns.

A.1.4 Communication

Polarization patterns are used for signaling by some animals. Some of these
signals are controlled by the reflection of linearly polarized light. Forests but-
terflies use their wings as identifying markers by utilizing their polarization-
dependent reflectivity ([212, 56]). Males seem to recognize females based on
that ([212, 42, 56]).

Although the spectral irradiance varies strongly underwater with depth, sig-
nal constancy is stable and predictable thanks to polarization ([109]). Linked to
specific communications, polarized light is strongly reflected from many stom-
atopod species body parts that are specialized for that kind of reflection ([42]).
Polarized-light signals and color signals are used in much the same way by man-
tis shrimps ([42]). Cephalopods can produce body patterns for signaling using
their skin that contains controlled pigmented chromatophores and structural
light reflectors ([85]).

A.2 Polarization-Inspired machine vision appli-
cations

It is clear that the polarized patterns seen by some animals have an important
impact on image formation as they are significant image features within the
animals’ visual fields. These significant polarized features can be transferred
to the computer world leading toward numerous biologically inspired applica-
tions in camera technology, image formation, computer vision and robotics. A
lot of researchers have already made use of polarization features in nature and
inspired artificial vision techniques e.g ([115, 77, 218, 68]). Some of the current
applications which imitate the animal natural behavior are found in robot ori-
entation and navigation, camouflage breaking, communication, and underwater
vision. Scene segmentation and object detection, recognition, and tracking are
also active research areas e.g ([18, 5, 219, 210, 192]).

There are many applications that utilize polarization but are not biologically
inspired (e.g. camera calibration, fiber optics communication, etc). Therefore
these methods are out of the scope of this chapter, however, section (A.8) is ded-
icated to list different examples of polarization based applications in computer
vision. This chapter mainly covers methods that imitate animal’s behavior.
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A.3 Visualizing Polarization Information

Polarization-Difference Imaging (PDI) inspired by polarization vision of certain
animal species was introduced by ([169]). They demonstrated that PDI tech-
niques may facilitate targets detection in scattering media even if targets show
very weak polarization or are distant far from the optical setup ([236, 123, 169]).

In order to represent polarization without affecting other visual information
such as color and brightness, special sensory substitution forms are required.
Yemelyanov et al. ([251, 250]) investigated several bio-inspired representational
methodologies for mapping polarization information into visual cues readily per-
ceived by the human visual system. The visual cues and strategies they explored
were a) the use of coherently moving dots superimposed on image to represent
various range of polarization signals, b) overlaying textures with spatial and/or
temporal signatures to isolate image regions with differing polarization, c) mod-
ulating luminance and/or scenes color contrast in terms of certain aspects of
polarization values, and d) fusing polarization images into intensity-only im-
ages. They tried to determine which mappings are most suitable for specific
applications such as object detection, navigation, sensing, scene classifications,
and surface deformation. Lin et al. ([123]), proposed to use these visual cues to
enhance visual surveillance techniques using polarization.

A.4 Robot Orientation and Navigation

See section (5.1).

A.5 Underwater Polarization Vision

Underwater imaging is widely used in scientific research and technology. Com-
puter vision methods are used for a variety of applications, such as swimming
pool life guards, mine detection, inspection of underwater power and telecom-
munication cables, pipelines, nuclear reactors, research in marine biology, ar-
chaeology and mapping.

The underwater polarized light distribution is mainly affected by a) the po-
sition of the sun or the moon in the sky, b) the water optical properties, c) the
viewing depth, and d) surfaces reflections ([233, 156, 41, 204]). There are two
distinct polarization patterns underwater, one inside Snell’s window (underwa-
ter natural lighting comes from a limited cone above the scene which is caused
by the illuminating rays refraction through the water surface, and is called the
optical manhole or Snell’s window) and one outside it. Generally, the polar-
ization pattern inside Snell’s window in a few meters depths is assumed to be
determined by the same factors as those influencing the sky polarization ([233]).
Small differences between the polarization patterns within Snell’s window and
outside it were found by ([41]). With increasing depth, the polarization pattern
simplifies rapidly, tending to become horizontal everywhere ([221, 204]).

Lerner et al. ([120]) found that, only in clear waters, the polarization is
correlated with the sun’s elevation and the maximum value of the e-vector ori-
entation angle equals the angle of refraction in the horizontal viewing direction.
They concluded that navigation by means of underwater polarization is possible
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under restricted conditions like being in clear waters, mainly near the horizon-
tal viewing direction, and in locations where the sea floor has limited effects on
the light’s polarization. In underwater vision, the scattering of light largely de-
grades contrast between the observer and any object observed ([124, 238]). As
a result of the existing horizontal polarization, a vertical analyzer would reduce
the scattered light amount perceived and, hence, increase contrast.

In order to improve airborne underwater target detection, a proper polar-
ization filter should be selected. This reduces line of sight problems and false
alarms. Detection processing of a polarization filter that gives mostly surface
related detections can be used to filter the final detection list as proposed in
([46]). They found that reducing the effect of the surface reflections is possible
using a linear horizontal and a linear vertical polarizer. One of them contains
surface reflection and one does not. If the system is active, the choice is the
image from the polarizer that aligns with the light source. Otherwise (if pas-
sive), the linear horizontal polarizer image contains the most surface effects.
They chose an algorithm called FX target detection ([45]) along with the linear
polarizers to improve the detection of underwater targets.

The SHallow water Real-time IMagIng Polarimeter (SHRIMP), developed
at the Office of Naval Research in 2000, can measure underwater partial po-
larization imagery ([218]). This sensor is a passive, three-channel device that
concurrently measures the three Stokes vector components needed to find out the
partial linear polarization of the scene. The testing of this sensor was completed
in 2002 and the data was analyzed in ([216, 217]). They presented performance
results which showed high probability for detecting the target with a low prob-
ability of a false alarm. The tests were done in very shallow water and surf
zone regions. Their results support that a) the passive polarization signature is
a range dependent quantity that decreases with increased range which do not
impact performance greatly, and it is reflective (it is a function of target shape,
surface characteristics, and light source level), b) the polarization magnitude
signature is higher for the more turbid water.

Shashar et al. ([204]) studied how polarization signals vary when seen from
different distances in water. To check how polarization changes as a function
of distance in water, a polarization target was created. The target was set
at different locations and types of water (clear and turbid). The target was
videotaped over a range of distances with a custom-built underwater imaging
polarimeter where the polarizer was rotated automatically at (0◦, 45◦, and 90◦).
Images were analyzed based on ([245]). Based on these measurements, ([204])
expect that polarization sensitivity will be most useful in a few meters distance
for visual tasks in water. It will be much less useful for detecting objects, signals,
or structures from far away. Celestial polarization patterns for navigation and
orientation are expected to be limited to shallow waters, while solar navigation
is possible through a deeper range.

In order to improve underwater visibility, some methods applied image en-
hancement either by showing p ([169, 218]) or showing the polarization contrast
by subtracting two orthogonal polarization images ([54, 87]). The previous so-
lutions assumed that polarization is associated with the object radiation, rather
than the causes which degrade this signal. This assumption is not valid with in-
creasing distance ([149]). In natural illumination, underwater polarization is as-
sociated with the visibility disturbance ([114]). The approach in ([181, 182, 225])
uses the captured polarization components using an underwater polarimetric
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camera ([111, 225]) to delete that disturbance and inverts the physical model
to recover an image similar to the clear visibility appearance. In their methods,
they use two images maintaining the same viewing position while varying the
polarization filter orientation. Polarization analysis was integrated with stere-
ovision ([173]) by extending the single-camera method in ([224]) to a pair of
cameras displaced by a finite base line where each camera makes use of a differ-
ent polarization setting. The stereo disparity and polarization analysis are used
to construct enhanced de-scattered views.

A method proposed for backscatter rejection ([121]) where the difference be-
tween object and background depolarization characteristics is used to improve
image contrast. If the object and the background differ considerably in their
depolarization properties, the signal-to-noise ratio (SNR) of the image may in-
crease. Polarization image fusion for I, p, and α in a false RGB image was
proposed to enhance the underwater image contrast ([122]).

A.6 Communication

From a communication’s perspective, polarization modulation of an optical sig-
nal is an old concept that was proposed in ([153]). A basic theoretical treatment
of a polarization modulation system can be found in ([162, 19]). The use of light
polarization for sending data is common in fiber optic systems ([29]), and has
previously been proposed for free space communications ([227]), but is rarely
implemented due to concerns about depolarization in free space communica-
tions ([163]). Intensity modulation schemes are usually implemented and the
polarization of the signal is usually ignored. A comparison of intensity and
polarization modulation can be found in ([81]) which proves that polarization
modulation outperforms intensity modulation.

Due to the seawater high conductivity which limits the electromagnetic
waves propagation, radio frequency communications in seawater are impractical.
Current methods, such as acoustic communication, are limited in bandwidth,
data rate, and have a high latency ([96]). The use of cables is impractical for au-
tonomous vehicles. Optical wireless communications that utilize the blue/green
transparency window of seawater offer high bandwidth short range communica-
tions ([86]).

One useful feature of optical communications is the ability to exploit the light
beam polarization to differentiate the received signal from backscatter, other
transmitters, or surface light. (Cox, Hughes, & Muth, 2009 [39]) demonstrate
a simple and low-cost system to explore the light polarization for underwater
communication. The system uses diode lasers and is portable. It consists of a
transmitter (which uses two diode lasers mounted to the faces of a polarizing
beam splitter (PBS) to combine the orthogonal polarizations) and a receiver
(which is constructed using another PBS with two detectors mounted to the
faces that detect the imposed modulated data on the orthogonal polarizations).
Their work is based on ([40]).

A communication method using an invisible polarization code which is drawn
on the eyes of the robot was proposed by ([68]). A special graphics display
for showing expression of robot’s eyes was developed. The mobile robots are
able to send and receive data, using the invisible polarization code, in order
to establish an environment for cooperative robots. The code is a variation
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of QR (Quick Response) Code which is a kind of 2D symbology developed by
Denso Wave in 1994. QR Code contains information in both the vertical and
horizontal directions. This QR Code was used to establish the communication
between the mobile robots. To embed the invisible polarization code within the
displayed data, they used a polarized symbol image to overlap additional data
on the display. Their display consists of a conventional LCD panel, an additional
liquid crystal (LC) layer and some optics. The LC layers can rotate the direction
of the polarization axis according to the applied voltage. The LC layer in the
LCD panel is responsible for showing visual data. The additional LC layer
changes the direction of polarization from LCD outputs to generate invisible
symbol patterns which are horizontal or vertical linear polarized light waves.
This difference of orientation creates a binary symbol image. The invisible code
can be perceived using a polarizer.

A.7 Camouflage Breaking

Polarization has a strong role to play in camouflage breaking specially in re-
mote sensing. Camouflage technology has exposed the conventional remote
sensing drawback because the natural background makes the targets detection
very complicated. Scattering light polarimetric characteristics of camouflaged
targets are very different from that of natural backgrounds. Polarimetric imag-
ing can remove the backgrounds influence and improve the inspection efficiency.
Compared with reflectance images, polarization images have advantages in cam-
ouflage targets detection. Polarimetric imaging has proven to be the most effec-
tive approach as it strongly reveals camouflaged targets embedded in complex
backgrounds ([58, 24, 239, 253]).

In different remote sensing applications, polarimetric techniques were studied
to find the optimum polarization for rain cancellation [213]), to enhance the
image visibility of ocean waves ([187]), and to find optimum polarizations in the
bistatic scattering from layered random media ([118]). An optimum polarization
set that is able to enhance the signal-to-clutter ratio of a foliage-camouflaged
stationary target was sought by ([50]). They employed a genetic algorithm to
find optimum polarization configurations which minimize the effect of forests on
the backscattered radar cross section response of a camouflaged hard target.

A field study of polarimetric characteristics was done by many researchers.
It indicated that polarimetric imaging in hot infrared can eliminate the influence
of background and enhance the efficiency of detection. Military coatings on alu-
minous plate was tested by ([77]) and ([59, 60]) studied the aircrafts and cam-
ouflaged vehicles polarimetric characteristics. Polarimetric experiments were
carried out on vehicles ([65]) and ([7]) did it on tents.

In order to set up a portable polarimetric camera, ([43]) placed two twisted
nematic liquid crystals and a fixed polarizing filter in front of a CCD camera.
They presented two configurations: an autonomous sensor that uses a small
camcorder for recording images; and an on-line sensor that uses a digital camera
connected to a personal computer. For the same purpose ([252]) used a mul-
tispectral CCD polarization camera, a trisection prism to divide the scattering
light from targets into three parts, and a polarizer. The simplest polarimetric
camera may consist of a rotating linear polarizer and a CCD camera.

A polarimetric camera was used to break color camouflage ([43]). An orange
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caterpillar camouflaged on an orange leaf show a case where polarization can
be used where the orientation of polarization difference is significantly larger
than the differences that appear in the brightness of the natural full colored
image. Moreover, the angle of polarization variation in the light reflected from
the caterpillar is much larger than that reflected from the leaf.

The properties of camouflage targets polarization scattering according to
the change of incidence angle and observational angle were studied by ([252]).
They concluded that the spectra of camouflage targets can simulate that of
backgrounds. Polarization remote sensing proved that the camouflage targets
with the same spectra most likely have very different polarimetric characteristics
with background. Camouflage targets can be identified clearly in degree of
polarization imaging and angle of polarization imaging. The camouflage effect
is lost when it comes from traditional remote sensing to polarization remote
sensing.

The spectral scattering light polarization signature is affected by the inci-
dence angle, azimuth and the characteristics of materials. In ([253]) the coating
degree of polarization was studied, and the results indicated that the coating
degree of polarization represented a reverse trend with the surface reflectance
and azimuth angle. A model based on Fresnel reflection equation was set up to
describe the coatings polarization scattering behavior which can be predicted
by the model up to visible light and infrared wavelengths.

A.8 Miscellaneous

Polarization filtered images analysis proved to be useful for computer vision.
Hence, in this section we will cover different applications in computer vision
based on polarization, which are not necessarily bio-inspired, to give the flavor of
polarization in this important research area. See table (A.1) for some examples.

A.9 Summary

This section will summarize the different areas of bio-inspired polarization based
computer vision and robotics applications, highlighting the important points in
each area.

Visualizing polarization information A.3: A short survey was given
on available methods to visualize polarization information in order to map it
into visual cues such as polarization-difference imaging, coherently moving dots
superimposed on image, overlaying textures with spatial and/or temporal sig-
natures, modulating luminance and/or scenes color contrast in terms of certain
aspects of polarization measured values, and fusing polarization images into
intensity-only images.

Robot orientation and navigation A.4: We surveyed the different bio-
inspired polarization techniques for robot orientation and navigation. Photodi-
odes, CCD/CMOS, and special sensors were used. The methods using photodi-
odes are cheap however they are simulating insects’ strategy taking advantage
of the skylight polarization through single numerical values rather than pat-
terns. The techniques based on CCD/CMOS sensors are more expensive but
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they can analyze the sky polarization patterns giving polarization maps (degree
of polarization p, angle of polarization α, polarization contrast) in order to ob-
tain various orientation and navigation clues. Using a fisheye lens with a CCD
sensor is a good solution to obtain an omni-directional polarization image up
to 180◦. CMOS based techniques are promising for miniature robots as size is
important for practical situations however the viewing angle is limited. Stereo
vision based techniques provide different points of view but require more equip-
ment and they are not practical especially if the cameras do not share the same
baseline. Polarimetric cameras are a good solution as they acquire the polar-
ization information in one shot which is better than conventional sensors which
need at least three acquisitions. The spectro-polarimetric imager is good in the
sense that it is possible to obtain both polarimetric and spectral information to
be fused to obtain various clues for orientation and navigation.

Underwater polarization vision A.5: The effect of water surface reflec-
tions can be reduced using a linear horizontal and a linear vertical polarizer.
The passive polarization signature decreases with increased range, and it is a
function of target shape, surface characteristics, and light source level. Polar-
ization sensitivity will be most useful in a few meters distance for visual tasks
in water. In short distances, it is valid to assume that polarization is associated
with the object radiation, and hence it is possible to use degree of polarization,
angle of polarization, and difference polarization imaging to enhance the image.
However it is not valid with long distance, therefore, the visibility disturbance
should be deleted and the physical model of the disturbance cause should be
inverted to obtain a clear image.

Communication A.6: Polarization modulation outperforms intensity mod-
ulation. Optical communications are able to exploit the light beam polarization
to differentiate the received signal from any other signal in air and underwater.
It is possible to show invisible polarization code on a display (e.g robot’s eyes) to
be embedded within visual information. Polarization information can be used
effectively for cooperative robots.

Camouflage breaking A.7: Polarization has a strong role to play in cam-
ouflage breaking specially in remote sensing. Polarimetric imaging has proven
to be the most effective approach as it strongly reveals camouflaged targets em-
bedded in complex backgrounds. The camouflage targets with the same spectra
most likely have very different polarimetric characteristics with background.
The camouflage effect can be lost when it comes from traditional sensing to
polarization sensing.

Miscellaneous A.8: Polarization filtered images analysis proved to be use-
ful for computer vision and robotics applications. It has been used in a broad
range of applications like specularities analysis, separating transparent and semi-
reflected scenes, material classification, camera calibration, 3D reconstruction,
industrial inspection, scene segmentation, de-hazing, and developing new cam-
era technologies (e.g polarimetric cameras).
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Polarization patterns
simulation examples

B.1 Omni-Pola-Catadioptric sensors

Figure B.1: Program snapshot to simulate polarization patterns on different
types of mirrors

In the following sections each mirror is represented by f , its derivative is
fd , r = sqrt(x2 + y2) where x and y are the mirror points coordinates with the
center at the tip of the mirror, the radius is R , and the height is h . The mirror

127
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local polar coordinate system has θ − axis and ψ − axis where θ = −atan(fd)
is the zenith angle and ψ = atan2(y, x) is the azimuth angle.

B.1.1 Uniform'

&

$

%

1. tmax = π/4

2. k = tmax/R

3. k1 = 1/k

4. f = k1 ∗ log(abs(cos(k ∗ r)))

5. fd = −tan(k ∗ r)

Figure B.2: Uniform mirror
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Figure B.3: Polarization patterns (incident/reflected/calibrated) as they appear
on a uniform mirror

(a) Without noise (b) Adding Gaussian
noise with mean = 0 and
variance = 6

(c) Adding Speckle noise
with mean = 0 and
variance = 0.04

Figure B.4: Solar angles estimation from calibrated polarization patterns after
being reflected on a uniform mirror



APPENDIX B. POLARIZATION PATTERNS SIMULATION EXAMPLES 130

(a) Without noise

(b) Adding Gaussian noise with mean = 0 and variance = 6

(c) Adding Speckle noise with mean = 0 and variance = 0.04

Figure B.5: One rotation angle estimation from calibrated polarization patterns
after being reflected on a uniform mirror

B.1.2 Spherical�
�

�
�

1. f = sqrt(R2 − r2)

2. fd = −r/sqrt(R2 − r2)
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Figure B.6: Spherical mirror

Figure B.7: Polarization patterns (incident/reflected/calibrated) as they appear
on a spherical mirror
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(a) Without noise (b) Adding Gaussian
noise with mean = 0 and
variance = 6

(c) Adding Speckle noise
with mean = 0 and
variance = 0.04

Figure B.8: Solar angles estimation from calibrated polarization patterns after
being reflected on a spherical mirror
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(a) Without noise

(b) Adding Gaussian noise with mean = 0 and variance = 6

(c) Adding Speckle noise with mean = 0 and variance = 0.04

Figure B.9: Two rotation angles estimation from calibrated polarization pat-
terns after being reflected on a spherical mirror

B.1.3 Parabolic�
�

�
�

1. f = h ∗ (1− (r/R)2)

2. fd = −2 ∗ h ∗ r/R2
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Figure B.10: Parabolic mirror where radius = height

Figure B.11: Polarization patterns (incident/reflected/calibrated) as they ap-
pear on a parabolic mirror
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(a) Without noise (b) Adding Gaussian
noise with mean = 0 and
variance = 6

(c) Adding Speckle noise
with mean = 0 and
variance = 0.04

Figure B.12: Solar angles estimation from calibrated polarization patterns after
being reflected on a parabolic mirror
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(a) Without noise

(b) Adding Gaussian noise with mean = 0 and variance = 6

(c) Adding Speckle noise with mean = 0 and variance = 0.04

Figure B.13: Three rotation angles estimation from calibrated polarization pat-
terns after being reflected on a parabolic mirror
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B.1.4 Hyperbolic'

&

$

%

1. a = (1/(2 ∗ h)) ∗ ((R2/(e2 − 1))− h2)

2. b = a ∗ sqrt(e2 − 1)

3. c = a+ h

4. f = c− a ∗ sqrt(1 + (r2/b2))

5. fd = −a ∗ r/(b2 ∗ sqrt(1 + (r2/b2)))
where eccentricity e > 1, R2 > h2(e2 − 1)

Figure B.14: Hyperbolic mirror where radius = 2∗height and eccentricity = 1.3
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Figure B.15: Polarization patterns (incident/reflected/calibrated) as they ap-
pear on a hyperbolic mirror

(a) Without noise (b) Adding Gaussian
noise with mean = 0 and
variance = 6

(c) Adding Speckle noise
with mean = 0 and
variance = 0.04

Figure B.16: Solar angles estimation from calibrated polarization patterns after
being reflected on a hyperbolic mirror
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(a) One angle estimation without noise

(b) Two angles estimation without noise

(c) Three angles estimation without noise

Figure B.17: Rotation angles estimation from calibrated polarization patterns
after being reflected on a hyperbolic mirror

B.2 Noisy skylight polarization patterns

The noisy incident angle α and degree p of polarization patterns after adding
high Speckle noise with variance 0.85 and mean 0 are shown in figure (B.18) and
the noisy incident angle α and degree p of polarization patterns after adding
high Gaussian noise with variance 15 and mean 3 are shown in figure (B.19),
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where the simulation parameters in table (5.1a) are used.

Figure B.18: Noisy incident angle α and degree p of polarization patterns.
Speckle noise with variance 0.85 and mean 0.

Figure B.19: Noisy incident angle α and degree p of polarization patterns.
Gaussian noise with variance 15 and mean 3.

B.3 Solar angles estimation

Figure (B.20) shows some examples of solar angles estimation within the day,
and table (5.1) gives the simulation parameters and the computation results.
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(a) Sunrise (0:37) (b) Morning (6:00) (c) Noon (11:53)

(d) Afternoon (18:00) (e) Sunset (23:04)

Figure B.20: Solar azimuthal and zenital angles estimation.

Examples of noisy α patterns and the estimated solar angles in different
times of the day are shown in figures (B.21, B.22, B.23).
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Figure B.21: Solar angles estimation from a noisy α pattern at 01:38. Simulation
parameters are shown on the left handside and estimation results on the right
handside.

Figure B.22: Solar angles estimation from a noisy α pattern at 05:20. Simulation
parameters are shown on the left handside and estimation results on the right
handside.
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Figure B.23: Solar angles estimation from a noisy α pattern at 11:50. Simulation
parameters are shown on the left handside and estimation results on the right
handside.

B.4 AV attitude estimation

Examples of estimating two angles of rotation assuming the knowledge of the
rotation axis based on algorithm (5.13) are shown in figures (B.24, B.25).
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Figure B.24: Estimating two angles of rotation assuming the knowledge of the
rotation axis. The robot is rotated around x by 10◦then around z by 20◦. The
simulation parameters and the original α pattern (before rotation) are shown
on the top. The estimation results and the rotated α pattern are shown on the
bottom. Note that the rotation order is not assumed to be known. The earth
is represented in dark green.
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Figure B.25: Estimating two angles of rotation assuming the knowledge of the
rotation axis. The robot is rotated around y by 10◦then around z by 20◦. The
simulation parameters and the original α pattern (before rotation) are shown
on the top. The estimation results and the rotated α pattern are shown on the
bottom. Only the first solution is accepted as the second did not converge to a
value close to zero. Note that the rotation order is not assumed to be known.
The earth is represented in dark green.

Estimating three angles of rotation where no knowledge is assumed about
the rotation order however better lower and upper bounds are assumed to be
provided, figure (5.8a) shows an example which is based on algorithm (5.13).
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Figure B.26: Estimating three angles of rotation where no knowledge is as-
sumed about the rotation order however better lower (2◦,12◦,22◦) and upper
(8◦,18◦,28◦) bounds are assumed to be provided. The robot is rotated by (5◦,
15◦, 25◦) around x, y, and z respectively . The earth is represented in dark
green.

Figure (B.27) shows an example of estimating an equivalent rotation (3 an-
gles) to a rotation about one unknown axis and figure (B.28) shows an example
of estimating an equivalent rotation (3 angles) to two rotations about two un-
known axises.
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Figure B.27: Estimating one angle of rotation assuming no knowledge of the
rotation axis. The robot is rotated around z-axis by 10◦. The simulation pa-
rameters are shown on the top. The the rotated α pattern, estimation results,
and the rotated pattern based on the first estimation are shown on the bottom
from left to right respectively. The earth is represented in dark green.
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Figure B.28: Estimating two angles of rotation assuming no knowledge of the
rotation axises. The robot is rotated around x by 10◦then around z by 20◦.
The simulation parameters are shown on the top. The the rotated α pattern,
estimation results, and the rotated pattern based on the first estimation are
shown on the bottom from left to right respectively. The earth is represented
in dark green.

Figures (B.29, B.30, B.31) show the results of adding noise on γ estimation
(one angle of rotation) based on algorithm (5.11). Simulation parameters are
shown in table (5.6).
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Figure B.29: γ estimation using algorithm (5.11) after adding Gaussian noise
with zero mean and variance = 10. The upper part shows the program with
the simulation parameters and the lower part shows the rotated noisy α pattern
and the estimation results on the axis of rotation (z-axis).
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Figure B.30: γ estimation using algorithm (5.11) after adding Gaussian noise
with mean = 3 and variance = 10. The upper part shows the program with
the simulation parameters and the lower part shows the rotated noisy α pattern
and the estimation results on the axis of rotation (z-axis).
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Figure B.31: γ estimation using algorithm (5.11) after adding speckle noise with
zero mean and variance = 0.04. The upper part shows the program with the
simulation parameters and the lower part shows the rotated noisy α pattern
and the estimation results on the axis of rotation (z-axis).

Figures (B.32, B.33, B.34) show the results of adding noise on general rota-
tion estimation based on algorithm (5.13).
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Figure B.32: General rotation estimation using algorithm (5.13) after adding
Gaussian noise with zero mean and variance = 10. The upper part shows
the program with the simulation parameters and applying the original rotation.
The lower part shows the rotated noisy α pattern, the estimation results, and
the first rotation estimation (roll φ, pitch β, and yaw γ) after being applied to
the original incident α pattern.
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Figure B.33: General rotation estimation using algorithm (5.13) after adding
Gaussian noise with mean = 3 and variance = 10. The upper part shows
the program with the simulation parameters and applying the original rotation.
The lower part shows the rotated noisy α pattern, the estimation results, and
the first rotation estimation (roll φ, pitch β, and yaw γ) after being applied to
the original incident α pattern.
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Figure B.34: General rotation estimation using algorithm (5.13) after adding
speckle noise with zero mean and variance = 0.04. The upper part shows the
program with the simulation parameters and applying the original rotation. The
lower part shows the rotated noisy α pattern, the estimation results, and the
first rotation estimation (roll φ, pitch β, and yaw γ) after being applied to the
original incident α pattern.
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