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INTRODUCTION

This chapter explains the clinical motivation and thesis objectives for automatically seg-

menting the myocardial muscle, including Acute Myocardial Infarction (AMI), to help

diagnosis and therapy planning. Also, it introduces the thesis outline and the significant

publications ensuring from the thesis as a clue of its scientific quality.

1.1/ CLINICAL BACKGROUND

Cardiovascular Diseases (CVDs) are the leading causes of mortality worldwide, with an

estimated 17.9 million deaths in 2019, mainly due to myocardial infarction (MI), commonly

known as heart attack and stroke1. Radiologically diagnosing MI in its early phases plays

a crucial role in treating and improving clinical outcomes. In recent decades, significant

research works have been developed to improve the prognosis of cardiac diseases and

therefore reduce CVDs deaths.

MI is a medical condition preventing blood supply to the cardiac muscle, caused by the

blocking of coronary arteries (see Figure 1.1). The size of infarcted myocardial tissue

is impacted by the time taken until treatment is performed. Acute complications may

progress towards Heart Failure (HF) if the affected heart cannot pump blood sufficiently

to the circulatory system’s lungs and body [27].

MI occurs as a result of atherosclerosis, in which plaque builds up inside the artery walls.

This build-up makes the arteries progressively narrower and slows blood flow, causing

angina. Finally, an area of cholesterol plaque can tear inside of a coronary artery. This

rupture results in a blood clot forming on the plaque’s surface, which can then completely

block blood flow through arteries. If the blockage isn’t remedied fast, the heart muscle

begins to die. The healthy heart area is substituted with the infarct area.

Medical studies have shown that in AMI, the infarct tissue mainly contains heterogeneous

1Source:https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds)
2Source:http://simple.wikipedia.org/wiki/Myocardial infarction
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Figure 1.1: Illustration of how a blocked coronary artery leads to MI. The artery inhibits
blood flow to the muscle, causing damage to the muscle tissue.2

regions. The chronic setting develops immediately after MI, and the aim of treatment is

the fast recovery of blood flow. There is a lack of a viable myocardium (MYO) with the

increased extracellular area. In chronic myocardial infarctions, capillaries in myocardial

tissue continue to be impeded after the reperfusion, and a gray zone called peri-infarct

exhibits decreased contractile activity. The permanent absence of tissue perfusion is

known as microvascular obstruction (MVO), also called the no-reflow phenomenon [30].

Subjects sustaining MVO zones have higher proportions of MI and raised mortality [25].

There is a potent correlation between the peri-infarct region, ventricular arrhythmias, and

unexpected death [45, 19]. Coronary revascularization for curing AMI is related with MVO

in the scar core and peri-infarct area at the border of infarcts.

Late gadolinium enhancement (LGE) magnetic resonance imaging (MRI) is the reference

standard for detecting MI [7, 11]. Myocardial LGE-MRI studies are achieved approxi-

mately 10 minutes following injection of the gadolinium-based contrast agent. With this

method, healthy and infarct tissues are distinguished by their altered wash-in and wash-

out contrast agent. By the automatic extraction of the geometry of the MYO, cardiologists

can conclude the functionality of the damaged muscle, which supplies guidance on fur-

ther treatment of the patient. As shown in Figure 1.2, the MVO area is defined as the

hypointense region within the core of the MI on LGE-MRI sequences achieved at 3 min-
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utes or 10 minutes following gadolinium injection.

Figure 1.2: Short-axis view of early and late cardiac LGE-MRI in a subject with AMI.
The MI occurs hyperintense on the late LGE image, with a subendocardial region (black
arrow) corresponding to MVO. On the early LGE sequence, the MYO is still saturated with
gadolinium, although the MVO already occurs hypointense (black arrow) [56].

Today, the accurate segmentation of the MYO is of high relevance in clinical practice.

Clinicians achieve manual contouring of the MYO as an essential first step in analyzing

cardiac images. An example of a delineation of a patient’s slice can be seen in Fig-

ure 1.3. Nevertheless, as the workflow that clinicians face, manual segmentation is usu-

ally time-consuming, depends on expert experience, and suffers from expert variability.

Consequently, there is an increasing need for automated segmentation methods. This

requirement was primarily justified through the success rate performed by these methods

[71].

1.2/ GOALS AND ORIGINAL CONTRIBUTIONS

Cardiac MR (CMR) imaging is of the greatest interest for morphological evaluation and

diagnosis of different CVDs. Deep learning (DL) networks have significantly boosted

state-of-the-art segmentation performance in Cardiac MRI (CMRI). Nevertheless, pre-

vious techniques have mainly applied various pre-processing stages to segment low-

resolutions images. This thesis aims to develop a DL model using prior constraints per-

forming automatic segmentation of the MYO of patients affected by diseased myocardial

tissue (MI, MVO). Specifically, we proposed three end-to-end models (SegU-Net, SPIU-

Net, ICPIU-Net) for myocardial segmentation in CMRI. Research on cardiac segmentation

has been extensively promoted through benchmarking datasets, notably those associated

with MICCAI challenges. We evaluated these approaches’ performance on the EMIDEC
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Figure 1.3: Short-axis LGE-MR images show left ventricular cavity (red), healthy MYO
(green), myocardial scarring (blue), and MVO (yellow). The slices were extracted and
cropped from the EMIDEC dataset (see section 4.4.5).

dataset to conclude which is well adapted to this task. Therefore, the goal is to build an

automated system that produces a delineation of the myocardial regions shown as drawn

boundaries over the LGE-MRI, presented in Figure 1.3. Different metrics evaluate the

model’s performance for finding the best-performing model by comparing the predicted

results with the manual delineations. Experimental results highlight the efficiency of the

proposed models compared to ground truth and state-of-the-art segmentation algorithms.

Resources on the NVIDIA Tesla V100 with four embedded GPUs were available to fulfill

the computational demands.

1.3/ THESIS ORGANIZATION

In response to the HF problem described above, this thesis is composed of seven chap-

ters. In the second one, we give an overview of the clinical context, where we present

the anatomy and the functioning of the heart. Chapter 3 describes some fundamental

concepts within the field of DL. In Chapter 4, we comprehensively provide a brief review

of existing methods dedicated to medical segmentation tasks. We then describe the data

material given by the EMIDEC challenge. Chapter 5 details the three general frameworks

underlying the prior constraints based on inclusion and classification coupled with reg-

ularization penalty terms and the fusion of SegNet and U-Net architectures to segment

all myocardial diseases in LGE-MR images. According to several metrics, Chapter 6

focuses on evaluating the performance of proposed algorithms (slice-by-slice 2.5D, a 3D-

to-3D, and constrained with inclusion and classification 3D-to-3D). Chapter 7 summarizes

the work and outlines some future directions for further improvement in the field.



1.4. PUBLICATIONS ENSUING FROM THE THESIS 7

1.4/ PUBLICATIONS ENSUING FROM THE THESIS

The Ph.D. research led to 3 journal papers (1 accepted, 1 subject to major revisions, and

1 submitted), 2 conference papers, and 1 workshop paper.

1.4.1/ JOURNAL ARTICLES

• Brahim, K., Qayyum, A., Lalande, A., Boucher, A., Sakly, A., and Meriaudeau, F.:

A 3D Network Based Shape Prior for Automatic Myocardial Disease Segmentation

in Delayed-Enhancement MRI. IRBM. (2021) [211]. - 1st Author.

• Lalande, A. et al.: Deep learning methods for automatic segmentation of delayed

enhancement-MRI. The results of the EMIDEC challenge. Medical Image Analysis.

- Contributing.

• Brahim, K., Arega T.W, Boucher, A., Bricq, S., Sakly, A., and Meriaudeau, F.: An

Improved 3D Deep Learning-Based Segmentation of Left Ventricular Myocardial

Diseases from Delayed-Enhancement MRI with Inclusion and Classification Priors

Information U-Net (ICPIU-Net). Computer Methods and Programs in Biomedicine.

- 1st Author.

1.4.2/ CONFERENCE PROCEEDINGS

• Brahim, K., Qayyum, A., Lalande, A., Boucher, A., Sakly, A., and Meriaudeau, F.:

A 3D deep learning approach based on Shape Prior for automatic segmentation of

myocardial diseases. In 2020 Tenth International Conference on Image Processing

Theory, Tools and Applications (IPTA) (pp. 1–6). IEEE. (2020, November) [191]. -

1st Author.

• Brahim, K., Qayyum, A., Lalande, A., Boucher, A., Sakly, A., and Meriaudeau, F.: A

deep learning approach for the segmentation of myocardial diseases. In 2020 25th

International Conference on Pattern Recognition (ICPR) (pp. 4544–4551). IEEE.

(2021, January) [212]. - 1st Author.

1.4.3/ INTERNATIONAL WORKSHOPS
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1.5/ CONCLUSION

Medical imaging is currently a research field in active expansion. Many studies are used

nowadays to put in evidence infarction tissues and lesions attributed to other diseases

such as hypertrophic cardiomyopathy. This thesis contributes to enhancing the diagno-

sis and monitoring of MI on LGE data, leading to better prevention and higher survival

opportunities for the patient. Over the past few decades, DL is rapidly growing in image

analysis, particularly CMRI segmentation. Designing a deep neuronal network is exciting

guidance for our research. The primary objective is to develop new DL tools to assess

risk, quantify and predict myocardial tissues’ presence on a set of contrast-enhanced

acquisitions.



2

CLINICAL CONTEXT

The cardiovascular system plays a significant role in the functioning of living organ-

isms. In this chapter, we briefly describe the heart anatomy and its function. Then,

we outline the most used imaging modalities for diagnosing and monitoring different car-

diac conditions. In particular, MI can be identified at early phases by radiologists from

CMRI. However, infarct region segmentations depend on intra- and inter-observer vari-

ability, which is critical to determining suitable therapy. Consequently, a computer-aided

method should be carried out to detect scars, affording clinicians more consistency.

2.1/ HEALTHY CARDIAC STRUCTURE AND FUNCTION

2.1.1/ CARDIAC STRUCTURE

A detailed review of the cardiac structure is provided in [15]. The heart is a muscular

organ responsible for pumping oxygen-rich blood throughout the body. It is geometrically

located at the chest’s center between the right and left lungs.

The heart comprises two sides, split into two parts: two atria (upper chambers) and two

ventricles (lower chambers), as illustrated in Figure 2.1. The atria are connected to veins

and proceed as reservoirs for venous blood transits, with a pumping function for assisting

ventricular filling. The ventricles are connected to arteries and primary pumping cham-

bers that distribute blood to the systemic circulatory (left ventricle (LV)) and pulmonary

circulations (right ventricle (RV)). The septum separates the two sides of the heart.

The heart wall consists of three layers: the epicardium, the MYO, whose thickness values

vary between 6 and 16 mm, and the endocardium. The epicardium is the outer layer

that helps lubricate and preserve the outside of the heart. The MYO is the muscular

layer of the heart and comprises cardiac muscle tissue responsible for the blood pumping

through the organism. The endocardium is the innermost layer that protects the blood

from sticking inside the heart.

9
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Figure 2.1: Anatomy of the heart.1

2.1.2/ CARDIAC CYCLE

The heart is a muscular pumping organ, reiterating the same cardiac cycle. Its frequency

is usually expressed in beats per minute. Each cardiac cycle is split into two primary

periods: diastole (relaxation), when the heart fills with blood, and systole (contraction),

when the heart pumps the blood. These two periods depict a sequence of all the events

that occur with every heartbeat. An electrocardiogram (ECG) detects the electrical im-

pulses in the heart using electrodes attached to the skin. The graph of electrical activity

through the heart includes three main waves: P, which represents depolarization of the

atria; QRS complex, which represents depolarization of the ventricles; and T, which rep-

resents repolarization of the ventricles [60]. ECG is a standard test used to diagnose

heart rhythms and electrical activity. Modifications in the typical ECG graph appear in

several cardiac abnormalities, such as insufficient coronary arteries blood flow and car-

diac rhythm troubles. Figure 2.2 shows the relationship between the cardiac cycle and

ECG.

A great physician’s interest has been dedicated to computing the LV mass and volume

at the most significant contraction’s time (end-systole) and the utmost filling’s time (end-

diastole) (see Figure 2.3).

1Source:https://basicmedicalkey.com/structure-and-function-of-the-cardiovascular-and-lymphatic-systems
2Source:https://www.reddit.com/r/Mcat/comments/i2r06k/the cardiac cycle ecg and all

https://basicmedicalkey.com/structure-and-function-of-the-cardiovascular-and-lymphatic-systems
https://www.reddit.com/r/Mcat/comments/i2r06k/the_cardiac_cycle_ecg_and_all
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Figure 2.2: Overview of the cardiac cycle showing all phases and relative mechanical
changes. Relationship to the ECG is revealed as color red in black segments.2

Figure 2.3: CMRI at end-diastole (left) and end-systole (right) [38].

2.1.2.1/ DIASTOLE

During diastole, the atria contract and propel the blood into the relaxed ventricles through

the open atrioventricular valves. More specifically, the diastole comprises three sub-

phases:
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1. Isovolumic relaxation: The ventricles relax, with a rapid decrease in ventricular

pressure. Both the aortic and the semilunar valves are closed over this sub-phase.

2. Passive ventricular filling: When left ventricular pressure drops below atrial pres-

sure, the atrioventricular valves are open, and the semilunar valves keep closed.

This sub-phase accounts for most of the ventricular filling with blood.

3. Ventricular diastole or atrial systole: The atria contract and then complete the

ventricular filling.

2.1.2.2/ SYSTOLE

The Systole period pushes the blood from the ventricles to the pulmonary and systemic

circulations. This period is divided into two stages:

1. Isovolumic contraction: As the ventricle starts to contract, the pressure surpasses

that of the respective atrium, causing the atrioventricular valves to shut. Again, all

the valves are closed, preventing blood from being ejected.

2. Ventricular ejection: When ventricular pressure overtakes that of the aorta and

pulmonary arteries, the semilunar valves open. The LV and RV eject the blood

to the aorta and pulmonary arteries, whereas the atrioventricular valves remain

closed. And the cycle keeps repeating until the individual is dead.

2.2/ CARDIAC IMAGING MODALITIES

In terms of follow-up, treatment monitoring, and diagnosis purposes, several non-invasive

imaging modalities have been made to provide clinicians a vision of the patient’s medical

condition. We introduce the three common imaging modalities utilized in cardiology, con-

centrating on MRI, the primary modality used in this thesis [32, 204]. Every technique is

based on various image acquisition principles.

2.2.1/ MAGNETIC RESONANCE IMAGING

Magnetic resonance imaging (MRI) is a comparatively recent imaging modality developed

in the ’70s. This technology is based on spin’s physical quantum mechanical property.

MRI is the favored modality for the guidance of cardiac interventions thanks to its multiple

advantages, including high-quality, soft tissue contrast, and non-invasive aspects. Its use

in cardiology is of greater focus through the last decades for disease segmentation and
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treatment planning, and therefore the requirement for fast and accurate segmentation

methods for identifying the diseased region is critical.

This technique depends on powerful magnetic fields, field gradients, and radio waves

to acquire images into the body. Indeed, a uniform magnetic field (most of the utilized

clinics’ scanners perform at 1.5 or 3 Teslas) aligns the hydrogen atoms’s spin. Then, a

further magnetic field is superimposed to re-orient the aligned spins. The time that the

spins takes to realign with the magnetic field relies on the environment and the molecules’

chemical nature, which permits the scanner to reconstruct an image presenting various

contrasts on the biological structures.

Through CMR imaging, it is possible to characterize myocardial tissues. T1 and T2 map-

ping sequences techniques have been progressively incorporated into CMR imaging set-

tings, yielding accurate tissue characterization. Standardized cardiac T1 mapping is an

MRI technique performed using balanced Steady-State Free Precession (bSSFP) se-

quences to compute a definite tissue’s T1 (spin-lattice or longitudinal relaxation) time and

visualize them voxel-vice on a parametric T1 map. It is a highly reproducible index that

offers necessary measurements reflecting main myocardial properties [104]. T2 mapping

mainly provides visualization and reliable quantification of myocardial edema and is thus

a focus of several research tasks [29, 51]. It is more advantageous than other modalities

in subjects with reduced LV function [104]. Similarly, T2 maps are acquired from a sig-

nal intensity versus time curve based on several spin-spin (transverse) relaxation times.

Native T1, T2, and ExtraCellular Volume fraction (ECV) values, predictive parameters for

diagnosis and treatment monitoring of cardiovascular diseases, are shown in Figure 2.4.

Recently, several approaches used deep neural networks for CMRI segmentation (see

section 4.3).

Figure 2.4: Short-axis images of native T1 (T1 time computed in the absence of a contrast
agent), T2, and ECV maps of control subject [100].
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2.2.1.1/ CARDIAC IMAGING PLANES

Cardiac planes are typical views to visualize the heart on different cardiac imaging modal-

ities such as MRI. These planes are oriented according to the long axis of the LV, the line

that transects the LV apex, and the center of the mitral valve. Typical imaging axes per-

tinent to cardiac imaging are shown in Figure 2.5. In the following, we outline commonly

used cardiac imaging planes which are not generally utilized for diagnostic goals other

than for calibration goals:

Figure 2.5: Cardiac axis imaging planes, depending on thorax planes, (A) Coronal, (B),
Sagital, and (C) Axial. (D) Vertical long axis (VLA) localizer and Horizontal long axis
planning (HLA). (E) HLA localizer and short-axis planning (SA). (F) VLA localizer and SA
planning. (G) SA plane is prescribed perpendicular to both the VLA and HLA [34].

1. Vertical long axis (two-chamber view (VLA))

The two-chamber view is aligned from the axial plane and passes through the center

of the mitral valve and the LV apex. This view provides an overview of the LV and

left atrium (LA).

2. Horizontal long axis (four-chamber view (HLA))

Horizontal long axis aligned orthogonal to the VLA, passing through the center of

the mitral valve and LA and continuing through the long axis of the LV. This view

displays all four chambers of the heart, the left and right atria, and ventricles (LA,

RA, LV, RV).
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3. Short axis (SA)

The short axis view yields excellent cross-sections of the LV and RV. This view is

defined such that a series of slices are perpendicular to the two long axes (VLA,

HLA) and often is utilized for viability analysis in MI.

2.2.1.2/ CARDIAC CINE IMAGING

An accurate evaluation of cardiac morphology and function is crucial for diagnosing car-

diac diseases [10]. Dynamic image sequences (cine) are essential in obtaining complete

heart function information throughout the cardiac cycle [63]. Indeed, cine CMRI is the

fundamental method for quantifying the heart’s global and regional contractile function

[10, 9, 103]. As such, cine imaging is of primary significance to both clinical and research

applications of CMRI. In typical cine scans, several 2D slices covering the whole volume

of the heart are acquired (see Figure 2.6).

(a) (b)

Figure 2.6: CMRI. a) Cine MRI HLA. b) Cine MRI SA [73].

2.2.1.3/ MULTIPLE PROCEDURES OF LGE ACQUISITION

MRI technique is one of the best to visualize cardiac issues via several methods, such

as Cine-CMR and, in particular, LGE acquisitions. LGE-MRI is usually performed after

10 minutes of gadolinium injection. Primarily, these acquisitions are an effective tool for

image-guided prognosis and treatment planning. Its goal is to characterize myocardial

infarct [18], which is the context for the thesis aiming to perform automatic segmentation

of abnormal tissues within the LV, healthy MYO, and cavity. Image acquisition for LGE-

MRI is often achieved with a T1 gradient echo and either Magnitude Inversion Recovery

(MIR) or a Phase-Sensitive Inversion-Recovery (PSIR) (see Figure 2.7).

The constitution of a database is usually achieved using a single acquisition recovery

technique. Indeed, while being effective at a given task, DL networks tend to depend on

3Source:http://mriquestions.com/ps-phase-sensitive-ir.html

http://mriquestions.com/ps-phase-sensitive-ir.html
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Figure 2.7: Example of an LGE-T1 slice in a patient with septal ischemia (arrow) using
magnitude IR (left) against a second one using Phase-Sensitive IR (right).3

the provided data and fail because of differences among images when switching from one

acquisition technique to another.

1. Magnitude Inversion Recovery (MIR)

IR sequences usually use magnitude reconstruction for the translation of the MR

signal to pixel intensity. In this approach, pixel intensity depends just on the mag-

nitude of the longitudinal magnetization of a tissue. The performance of such a

technique when employing magnitude reconstructed images is very sensitive to the

inversion recovery time chosen.

2. Phase Sensitive Inversion Recovery (PSIR)

Phase-Sensitive IR can eliminate the background phase while retaining the in-

tended magnetization sign during IR [1, 3]. In PSIR, scar tissue has a higher signal

than healthy MYO. Contrary to MIR, the PSIR method yields good results on a

comparatively extensive range of inversion recovery time. The differences of signal

among healthy and infarcted tissues may last longer.

2.2.2/ ECHOCARDIOGRAPHY

Echocardiography is nowadays extensively used for diagnostic tools in cardiology [2]. An

echocardiogram (see Figure 2.8) is based on ultrasound in biological tissues. The main

advantages of the Echo are its ease of use, low cost, safety (as it does not use ionizing

radiation), and rapidity [4]. Due to the variance in the sound reflection, relying on the

tissue, the ultrasound image can distinguish inner body structures from internal organs.

During, echo acquisitions the clinician places the ultrasound probe utilizing a gel to pro-

mote the waves’ transmission across the skin. In addition, ECG electrodes can be applied

to gate the acquisition with the cardiac rhythm. Thus, several 2D temporal acquisitions

are made in various positions, each taking from 10 to 30 minutes. A more recent method
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enables real-time three-dimensional echocardiography where 3D acquisitions are made

in one heartbeat. This method is of great significance in clinical practice to detect struc-

tural abnormalities [24, 26]. Several studies evaluated the potency of Myocardial Contrast

Echocardiography (MCE) for myocardial viability assessment [12, 22, 28].

Figure 2.8: 2D and 3D echocardiography of the heart with the 3 most useful views [43].

For radiologists, echocardiography has been recognized as an efficient visualizing and di-

agnostic tool of LV due to its availability and low cost. However, echocardiography images

suffer from specific artifacts (e.g., edge dropout, attenuation, and shadowing), prevent-

ing expert interpretation and automated computer analysis [42]. Therefore, automated LV

segmentation of echocardiographic images has been a challenging task. Many advanced

methods to echocardiographic segmentation data have been developed [174, 119, 105].

2.2.3/ COMPUTED TOMOGRAPHY

As compared with MRI, Cardiac Computed Tomography (also called as CT scan, see Fig-

ure 2.9) does involve X-rays to acquire many images of the heart, and its acquisition takes

less time. Furthermore, patients with medical implants may not be capable of incurring

an MRI examination. Similar to cardiac motion from the MRI sequence, several temporal

acquisitions of CT scans are obtained and ECG gated to reconstruct all the sequences.

The CT scan’s principle is based on detecting the X-rays intensity, which passe across

the anatomy to estimate the “material density” and thus acquire the image of the anatomy.

Electrons are diffused onto a tinny surface, leading to the radiation’s emission.
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Several X-rays images are fused to generate cross-sectional views of the body. Before

acquisitions, the patient can be injected with a contrast medium, a chemical substance

that discloses internally in the body’s tissues [14, 13].

Figure 2.9: Three different views acquired using 3D CT image [109].

3D CT images are significant imaging modalities that provide detailed tissue information

to assist diagnosis and planning treatment [21]. Nevertheless, anatomical segmentation

based on CT images on a broad human body tissue is still challenging due to similarities

of image appearance between several structures. Thus, many approaches focused on

medical image segmentation from 3D CT images [89, 124, 112, 136, 185].

2.3/ CONCLUSION

According to the cardiac activity to visualize, several imaging modalities can be utilized

to image the heart. For instance, infarcted tissues can be observed using MRI and

gadolinium-contrast agents to help therapy planning. In the clinical diagnostic process,

segmentation of the heart is essential to yielding quantitative measurements. Neverthe-

less, heart segmentation is a tedious and time-consuming task if drawn manually. DL-

based networks are widely used due to their promising performance in diverse cardiac

image segmentation challenges.
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BACKGROUND ON DL

Deep learning is a subset of machine learning that iteratively updates to extract rele-

vant features from data. These models were born out of deep artificial neural net-

works with several successive layers: input, output, and hidden layers, to imitate the

functioning of the human brain. DL is highly advantageous to data scientists to process

data and make decisions quickly. Recently, it has reached promising performance on

different computer vision applications. Current advances in DL motivate us to develop

deep-based approaches for myocardial disease segmentation. This chapter introduces

the background knowledge of DL networks and the model training techniques. Finally, to

quantitatively evaluate automated segmentation algorithms’ performance, different evalu-

ation metrics are presented.

3.1/ MEDICAL IMAGE SEGMENTATION BASED ON DL

This section presents fundamental neural networks and building blocks that are often

used to improve the potential of the network architectures in learning features that are

helpful for image segmentation, being the thesis subject.

3.1.1/ CONVOLUTIONAL NEURAL NETWORKS (CNNS)

Convolutional neural networks (CNNs) are well-known deep-based neural networks used

for image analysis. They have reached great hits in the field and ancillary diagnosis. A

typical CNN contains an input layer, a stack of functional layers, which usually include

convolutional layers, pooling layers, and fully connected layers, and an output layer (see

Figure 3.1). Mainly, each convolution applies a n × n kernel (case of 2D input) or n × n × n

kernel (case of 3D input). This operation is especially helpful in getting local patterns,

i.e., visual elements in images. The convolved outputs are then passed per a batch nor-

malization (BN) [58] followed by a nonlinear activation function to perform feature maps

19
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extractions, which are later downsampled by pooling layers to capture an increasingly sig-

nificant field of vision. Fully connected layers are then used to decrease features’ dimen-

sions and achieve high-level reasoning [40, 53, 58]. The final output is a fix-dimension

vector which each element’s form depends on the specific task (object localization, image

classification, regression, patch-based segmentation, etc.). Through increasing depth

(stacking many hidden layers), accuracy might be improved to a great extent or might

not, depending on the complexity of the task.

Figure 3.1: Architecture of a CNN. The network’s input is a CMR image containing three
building blocks: convolutional, pooling, and fully connected layers [195].

CNNs can be used for image segmentation tasks [89, 48, 79]. Nevertheless, this task

needs to split every input image into patches and, after that, train a CNN to predict the

class label of each patch’s center pixel. A pixel-wise segmentation map is finally obtained

for the entire image through forwarding patches at various positions into the CNN for

classification. For reliable pixel-wise segmentation, a fully convolutional neural network

(FCN) is more often employed.

3.1.2/ FULLY CONVOLUTIONAL NEURAL NETWORKS (FCNS)

FCNs are variants of CNNs that Long et al. [61] proposed for image segmentation. They

are the pioneering networks of the most leading DL techniques for volumetric medical

image segmentation [89, 95, 65]. For instance, Zhou et al. [89] segmented anatomical

structures in 3D CT images by majority voting the segmentations of multiple 2D slices

from an FCN, reaching promising results against experts annotations. FCNs have an

encoder-decoder architecture. The encoder maps the input image into a high-level fea-

ture representation. Then, the decoder interprets these feature maps and retrieves spatial

information for pixel-wise prediction. Compared with a patch-based CNN for segmenta-

tion, FCN is trained on the whole images, without patch choice’s requirement. An example

of FCN architecture for cardiac image segmentation is shown in Figure 3.2.

Many variants of FCNs have been introduced to enhance the segmentation accuracy.

The U-Net [64], which will be discussed in the upcoming chapter, is the most widespread
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.

Figure 3.2: Architecture of fully convolutional neural networks (FCN) for image segmen-
tation. Acronyms: ReLU – Rectified Linear Unit; MVN – Mean-Variance Normalization
[86]

variant of FCNs for biomedical image segmentation. It uses skip connections amongst

the up-sampling path and the down-sampling path to retrieve the spatial context loss,

achieving accurate segmentation (see Figure 3.3).

Figure 3.3: Overview of the U-Net network structure. The LV cavity is displayed in blue,
the MYO in green, and the RV in red.1

The advance of U-Net has become a research hotspot in medical image segmentation.

Various cardiac image segmentation works in the literature were based on the U-Net

and its 3D variants (the 3D U-Net [70] and the 3D V-Net [78]), yielding outstanding seg-

mentation accuracy for different cardiac segmentation applications [97, 146, 182]. Based

on FCNs, Badrinarayanan et al. [90] proposed an encoder-decoder architecture, called
1Source:https://www.escardio.org/Education/Digital-Health-and-Cardiology/Virtual-Journal/

how-to-read-this-cardiac-segmentation-with-ai

https://www.escardio.org/Education/Digital-Health-and-Cardiology/Virtual-Journal/how-to-read-this-cardiac-segmentation-with-ai
https://www.escardio.org/Education/Digital-Health-and-Cardiology/Virtual-Journal/how-to-read-this-cardiac-segmentation-with-ai


22 CHAPTER 3. BACKGROUND ON DL

SegNet for image segmentation. Whereas SegNet passes max-pooling indices to the

upsampling layers, FCN learns deconvolution filters to upsample (i.e., appending the rel-

ative feature map from the encoder phase) (see Figure 3.4). As detailed in chapter 5, the

current work is based on 3D U-Net (SPIU-Net, ICPIU-Net) and a hybrid architecture of

U-Net and SegNet, which takes the best of both models (SegU-Net).

Figure 3.4: Overview of the SegNet architecture [90].

3.1.3/ RECURRENT NEURAL NETWORKS (RNNS)

Recurrent neural networks (RNNs) are artificial neural networks used for sequential data,

such as ultrasound image sequences and cine MRI [183]. As shown in Figure 3.5 RNNs

retain previous outputs and use their internal state to decide when processing the next

inputs. The fusion of RNN and 2D FCN is widely used in cardiac segmentation to refine

the inter-slice coherence of generated segmentation [83].

3.1.4/ AUTOENCODERS (AES)

Autoencoders (AEs) are unsupervised neural networks that aim to learn compact latent

representations from input data. A classic autoencoder’s architecture contains two main

networks: an encoder network that compresses the input and produces the code and

a decoder network to reconstruct the data back to the input dimension using this code

(see Figure 3.6). As the learned representations include usually helpful information in the

data, several researchers have used autoencoders to extract common semantic features

and shape information from original data for cardiac image segmentation guidance [80,

142, 186]. Oktay et al. [80] developed a residual convolutional network-based model to

reconstruct 3D volumes from the full stack of 2D images for better image analysis.



3.1. MEDICAL IMAGE SEGMENTATION BASED ON DL 23

Figure 3.5: Overview of the RFCN network for cardiac image segmentation. The orange
arrow represents a recurrent connection to manage inter-slice dependencies learned via
GRU. The network aims to segment cardiac ventricles from 2D CMRI [83].

Figure 3.6: A typical structure of an autoencoder. An autoencoder uses an encoder-
decoder framework, where the encoder maps the input into a lower-dimensional latent-
space representation and then the decoder interprets this code to reconstruct the original
data [195].

3.1.5/ GENERATIVE ADVERSARIAL NETWORKS (GANS)

Generative adversarial networks (GANs) are generative-based models proposed by

Goodfellow et al. [46] to create new, synthetic images. GANs learn to generate from

a training process through two adversarial networks contesting with each other: a gen-

erator network and a discriminator network (see Figure 3.7a). The generator aims to

artificially create fake images across a random noise that it received, while the discrimi-

nator is used to determine whether an image is “real”. GANs are successfully applied to
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segmentation tasks (see Figure 3.7b). A segmentation network substitutes the genera-

tor. The discriminator is needed to identify the generated segmentation maps from the

gold standard ones [77, 141]. Lau et al. [139] proposed ScarGAN network to simulate

scar region on healthy MYO and artificially augment the training sets using chained GAN.

Training a U-Net with supplementary simulated scar tissue scans demonstrated more

accurate segmentation on test images (“80.5%” vs. “75.9%”).

(a)

(b)

Figure 3.7: a) Chart of GANs framework for cardiac image synthesis. b) Schematic of
adversarial training for cardiac image segmentation [195].

3.1.6/ ADVANCED BUILDING MODULES FOR BETTER SEGMENTATION

Recently, several researchers have introduced advanced building modules to learn im-

proved features for the accurate segmentation of images. These modules have been

extensively used in previous neural networks to boost the performance of cardiac image

segmentation. With this aim, we report in this section three different types of state-of-the

art methods: a) advanced convolutional blocks for multiscale feature aggregation (e.g.,

deep supervision [59], inception modules [66], dilated convolutional kernels [67], atrous

spatial pyramid pooling [92]); b) adaptive convolutional kernels to capture most relevant
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features (e.g., attention units [113], squeeze-and-excitation blocks [138]); c) interlayer

connections to recover previous features in the following layers (e.g., residual connec-

tions [72], dense connections [96]).

3.2/ TRAINING NEURAL NETWORKS

The training process is the most challenging step on DL methods due to the computa-

tional and configuration intricacy required for the execution. This process needs a dataset

including paired images and ground truths, an optimizer, and a loss function. The model

training aims to get the best network parameters to reduce the loss function.

3.2.1/ GRADIENT DESCENT OPTIMIZER

A deep network contains millions of parameters representing a mathematical solution to

such a task. The trained network is adapted to the learning process beneath a specific

parameter set by optimizing many network attributes. In particular, gradient descent is an

optimization algorithm to reduce the loss function. Different gradient descent optimizers

have been designed (e.g., Momentum SGD [8], AdaGrad [36], Adam [47]).

3.2.2/ LOSS FUNCTIONS IN DL

During the training process, we reduce the network error through a loss function, which

assesses how well the learning algorithm fits the dataset. To that end, a suitable loss

function is highly required to design and configure the network.

Given a series of of paired images and labels {(xi, yi) : i = 1, ...,N}, the network learns the

mapping link of x → y. Thus it predicts the output (ŷ) the closest possible to the ground

truth (y). In the following, we report different loss functions frequently used for regression,

image classification, and segmentation.

Mean Squared Error Loss (MSE), also recognized L2 Loss is the default loss function

for regression tasks such as image reconstruction, heart localization. The MSE is defined

as:

LMS E =
1
N

N∑
i=1

(yi − ŷi)2 (3.1)

where yi, ŷi denote the vectors of the gold standard and predicted values, N represents

the number of dataset samples.
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Cross-entropy (CE) is the most used loss function for image classification and segmen-

tation problems. In multi-class segmentation, and for every class, this loss resumes the

pixel-wise probability errors between the actual gold standard map y and its relative pre-

dicted output p.

LCE = −
1
N

N∑
i=1

C∑
c=1

yc
i log(pc

i ) (3.2)

where C represents the number of all categories.

Especially for image segmentation, several researchers used soft-Dice loss function
[78], that penalizes the dissimilarity between the actual gold standard map and its corre-

sponding predicted segmentation at pixel-level:

LDice = 1 −
2
∑N

i=1
∑C

c=1 yc
i pc

i∑N
i=1
∑C

c=1(yc
i + pc

i )
(3.3)

Moreover, different variants of the cross-entropy and soft-Dice loss functions (e.g., the

weighted cross-entropy loss [98, 91] and weighted soft-Dice loss [117, 169]) are

widely utilized to solve the class imbalance issues in medical image segmentation tasks

in which the loss value is weighted to consider infrequent categories.

Several other DL networks use a hybrid loss that fused various loss functions (e.g., focal
loss [160], soft-Dice loss, and weighted cross-entropy) to alleviate the class imbalance

problem, and so to boost the segmentation performance [118, 185].

3.2.3/ REDUCE OVER-FITTING

Due to the limited training size datasets compared to the number of the learnable param-

eters in a deep model, over-fitting is the greatest challenge of training deep models (see

Figure 3.8). Below, we review few methods overcoming this issue in the literature:

trained with limited size datasets

Weight initialization [33, 62, 57] is a crucial conception choice that aims to impede the

outputs of layer activations from vanishing or exploding in the forward transfer process of

DL networks.

Dropout [40, 54], a regularization method to avoid overfitting by randomly removing a

fraction of nodes in DL networks over each training iteration, is amongst the widely used

features for improving the network’s performance.

Data augmentation [188, 194] is an effective technique used in model training, where it

raises the number of input data by artificially generating training images through applying
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Figure 3.8: Illustration of over-fitting [171].

an ensemble of affine transformations to existing data.

Transfer learning is a deep network method that aims to reuse a model pre-trained on

existing large datasets, using its knowledge gained for this task. The model can rapidly

converge even with restricted data. Several works have proved the potential of transfer

learning in improving the network generalization capacity for cardiac ventricle segmenta-

tion [161, 165, 169].

3.3/ EVALUATION METRICS

How to assess the efficiency of segmentation methods is a crucial issue. The validity of

segmentation algorithms can be evaluated in many aspects, such as quantitative accu-

racy, inference time, and memory uses. Below we mainly outline the EMIDEC challenge’s

metrics2 for measuring the performance of segmentation algorithms. Region-based met-

rics and volume-based metrics were computed for each test subject. After that, we mea-

sured their mean values to evaluate the performance of our myocardial disease segmen-

tation. Frequently used comparison measures to evaluate automatic segmentation, such

as volumetric Dice similarity coefficient or Hausdorff distance, have proven to be good

geometric similarity evaluation metrics. In the present task, the volumetric difference

metric for evaluating 3D myocardial segmentation is calculated to visualize the volume-

wise performance of the approach. Though quantitative metrics are utilized to compare

several methods on benchmarks (doctors’ manual-contouring for medical segmentation),

qualitative results are significant in concluding which technique is best.

1. Dice similarity coefficient (DSC) is a popular metric in validating medical image
2Source:https://github.com/EMIDEC-Challenge/Evaluation-metrics/.

https://github.com/EMIDEC-Challenge/Evaluation-metrics/.
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segmentation (see Eq. 3.4). It is commonly used to compute the similarity between

predicted and gold standard maps. Its value range is 0 (mismatch) to 1 (excellent

match).

DS C = 2
|P ∩G|
|P| + |G|

(3.4)

where P, G denote the predicted and gold standard maps, respectively.

2. Hausdorff distance (HD) [50] calculates the degree of similarity amongst two sets

of points: the distance between the two delineations of the gold standard and the

predicted segmentation. It is a complementary statistic to the DSC. The HD identi-

fies segmentations with wide local differences, although they were well segmented.

A lower value of HD mirrors a higher segmentation performance. The metric is

determined as follows:

HD = (max
pi∈P

(min
g j∈G

(d(pi, g j))),max
gi∈G

(min
p j∈P

(d(pi, g j)))) (3.5)

where P = {pi : i = 1, ...,NP}, G =
{
g j : j = 1, ...,NG

}
denote the predicted and gold

standard maps, respectively, d represents the distance between pi and g j.

3. Absolute volume difference (AVD) measures the difference average across a

whole set of slices between predicted VP and gold standard VG LV volumes.

4. Absolute volume difference rate according to the volume of the MYO (AVDR)
is computed as follows:

AVDR =
AVD
VMYO

(3.6)

where AVD = |VP − VG | and VMYO is the MYO volume of the gold standard annota-

tion.

3.4/ CONCLUSION

DL has been the research boom and the development engine of the image area. This

chapter summarizes different neural networks and several methods for model training.

Then, a brief overview of evaluation metrics for image segmentation is provided. The next

chapter presents a detailed literature review of the state-of-the-art medical image seg-

mentation, including scar segmentation approaches and benchmarking CMRI datasets.
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STATE-OF-THE-ART

This chapter reviews a summary of DL-based methods, highlighting their contributions

to network design. Several recent studies based on DL have demonstrated excel-

lent performances in segmenting particular tissues such as the LV, scars, and coronary

vessels, aiding follow-up quantitative analysis of cardiovascular anatomy and function.

Benchmarking datasets with assessment metrics are much required to compare new

methods for MI segmentation with state-of-the-art. Thus, we conduct a brief coverage of

popular datasets for the LV myocardial segmentation task.

4.1/ MEDICAL IMAGE SEGMENTATION

Medical image segmentation, dividing an image into several predefined sets of organs

or diseased bodies from medical imaging modalities, is one of the grand challenges, in

medical image analysis to assist doctors in diagnosing and make decisions significantly.

In the previous few years, many researchers have applied DL-based networks to medical

image segmentation in the scar [151, 148, 177], pancreas [65, 134], atrial [127, 147],

prostate [121], brain [50, 82, 94], lung [74], and multi-organ [124, 112]. Their automated

segmentation accuracy has outperformed classical segmentation techniques, including

thresholding [35], edge-based [23], and region-based methods [20].

4.2/ COMMONLY DL ARCHITECTURES FOR MEDICAL IMAGE SEG-

MENTATION

4.2.1/ 2D U-NET

Based on FCN architecture, Ronneberger et al. [64] proposed a U-Net network for

biomedical image segmentation. This model comprises a U channel, composed of two

paths of analysis (contracting) and synthesis (expansive), and skip-connections linking

29
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the layers of the contracting path to their counterparts of the expansive one to provide

them crucial high-resolution features. The network architecture uses two 3 × 3 convolu-

tions followed by a ReLU activation function and a max-pooling operation to reduce the

size of the latent image. The process is repeated until attaining a single features vector,

useful to reconstruct an image with probability-wise classified pixels for accurate seg-

mentation by incorporating transmitted outputs during the analysis path. The proposed

network simultaneously fuses low-level feature maps, for better accuracy, with high-level

feature maps, for complex features extraction. The U-Net architecture is shown in Fig-

ure 4.1.

Figure 4.1: Original U-Net implementation. Skip-connections are represented by horizon-
tal arrows [64].

Thanks to its outstanding performance, U-Net, and its variants (integrating novel mod-

ules and other concepts) have been extensively applied to many domains of computer

vision [137, 91, 154, 125, 187]. For example, Gordienko et al. [137] employed a U-Net-

based network for lung segmentation using X-ray scans. Their design achieved fast and

accurate image segmentation. Farrag et al. [213] compared several automated frame-

works for LV myocardial segmentation in native and contrast-enhanced T1-maps. The

authors proved that U-Net architecture achieved better results than Dense Nets and At-

tention Nets, indicating the reliability of the U-Net-based method in clinical applications.

Figures 4.2 and 4.3 show resultant myocardial segmentation of the U-Net-based archi-

tecture in native and contrast-enhanced T1-maps, respectively.
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Figure 4.2: Myocardial contours in two example cases from DCM and HCM patient
groups. Columns from left to right represent the original native T1-maps, Ground truth,
and U-Net-based contours. [213].
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Figure 4.3: Myocardial contours in two example cases from DCM and HCM patient
groups. Columns from left to right represent the contrast-enhanced T1-maps, Ground
truth, and U-Net-based contours. [213].

4.2.2/ 2.5D APPROACHES

Several networks performing medical image segmentation are based on 2.5D ap-

proaches. These approaches reaped the benefits of 3D segmentation by integrating

(partial) 3D information to improve segmentation, whereas sidestepping its high mem-

ory consumption challenges. One of the more frequent methods is to use an ensemble

of 2D CNNs applied to three orthogonal views of many directions (i.e., axial, coronal, and

sagittal views) [44]. Such a 2.5D approach has richer neighboring pixel spatial informa-

tion with lower computational cost than 3D [154]. These studies demonstrated slightly
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improved accuracy than 2D. Since a 3D volume represents a stack of adjacent 2D slices

(2D image with neighbor slices), other alternatives integrated neighbor slice information

to adduce a 3D temporal context for better segmentation performance. For example,

Ganaye et al. [166] incorporated neighboring slices to that of the central as different in-

put channels. Some authors investigated a 2.5D design system combining 2D and 3D

methods [150, 207].

Zheng [189] used a U-Net-based architecture that provides spatially consistent results

on a whole volume through propagating the segmentation across slices to perform 2D

segmentation on both ventricles, including the MYO. Their network accuracy appears to

be in line with manual delineations, achieving a Percentage of Good Contours (PGC,

defined in [31]) of “99.21%” for LV epicardial and “97.08%” for LV cavity with the Sun-

nybrook dataset (see section 4.4.1). Moeskops et al. [79] proposed a 2.5D approach

to assess whether a single CNN can perform several segmentation tasks. The authors

proved this concept using multiple modalities (i.e., brain MRI, breast MRI, and cardiac CT

angiography) for each of the three segmentation tasks. Their results showed that such

a system could visualize diverse anatomical structures with multiple modalities without

task-specific training. Other 2.5D approaches proposed hybrid image segmentation us-

ing a DL network fused with statistical shape modeling. For instance, Wang and Smedby

[114] correlated orthogonal 2D U-Nets’ outputs with a volumetric shape prior for better

delineations. Their network demonstrated great results on CMRI segmentation.

4.2.3/ FULLY VOLUMETRIC APPROACHES (3D APPROACHES)

In this section, we will review two state-of-the-art networks based on 3D data processing.

Most of them expanded the core idea of 2D approaches and modified it to a higher di-

mensional space [196, 170, 70, 78]. Compared to 2D and 2.5D approaches, volumetric

images may provide complete 3D information in different orientations rather than in one

view or three orthogonal views. Nevertheless, one of the primary challenges of such 3D

networks resides in their higher requirement of resource consumption, as a consequence

of the increased size of the model parameter space, restricting their implementation.

4.2.3.1/ 3D U-NET

One of the most famous variants of U-Net architecture to reinforce it with richer spatial

coherency information is 3D U-Net, proposed by Cicek et al. [70]. The authors extended

the U-Net architecture via substituting 2D operations with their volumetrics counterparts.

Figure 4.4 provides a schematic representation of 3D U-Net. The proposed algorithm

provided dense volumetric segmentation from learned sparse 2D annotations. It densely

segmented new data. Extensive results demonstrated its efficiency on a complex and
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highly variable 3D structure.

Figure 4.4: Schematic representation of 3D U-Net architecture [70].

The advent of 3D U-Net is of great interest to process volumetric images. Many volumetric

segmentation methods, including LV CMR delineation, re-used the 3D U-Net model [197,

117, 91, 97, 108]. For instance, Fahmy et al. [197] proposed a 3D U-Net-based model

with a sliding window to process large input stacks for accurate LGE scar quantification.

The suggested method achieved consistent performance across diverse vendors. Yang

et.al [117] developed a fully automatic network for ventricular structure segmentation.

Their network is similar to [70] but replaces the concatenation operator with a Residual

Unit (ResU). Deep supervision and transfer learning are used to improve the training

process. Using Multi-class Dice Similarity Coefficient, this network reached promising

results (DSC scores of “0.8037” for LV epicardial and “0.8580” for LV endocardial with the

ACDC dataset (see section 4.4.4)).

4.2.3.2/ V-NET

In [78], the V-Net model to MRI prostate volume segmentation based on a volumetric

CNN is proposed. Its network structure is illustrated in Figure 4.5. The authors brought a

contribution to a novel objective function based on DSC. They also used 3D convolutions

with a kernel size of 2 × 2 × 2 and a stride of 2. The convolutions replaced pooling

with the benefit of having a smaller memory footprint. PReLU non-linearities [57] were

employed throughout the model. Similar to [64], it propagated features extracted from the

compression path to the decompression path to assemble fine-grained detail, yielding a

two-channel volumetric segmentation at the last convolutional layer. Finally, the outputs

were turned into probabilistic segmentation by using soft-max voxelwise.
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Figure 4.5: Original structure of V-Net [78].

The experimental evaluation demonstrated that V-Net model reached good performances

on the “PROMISE 2012” challenge test dataset [49]. This method proved its capacity in

cardiac image segmentation tasks [218, 146]. For instance, Vesal et al. [218] performed

extensive experiments and interesting metrics comparison against V-Net, 3D U-Net, and

several variants of the latter, including a multi-stage approach, for a multi-class segmen-

tation on the ACDC dataset. Based on dilated convolutions and residual connections in

the analysis path, the proposed multi-stage network reached a DSC score of “0.928” for

LV and “0.853” for MYO delineations, compared to “0.908” and “0.809” for the V-Net and

“0.889” and “0.805” for the original 3D U-Net. Gibson et al. [136] proposed deep-learning-

based architecture, known as DenseVNet, with a larger receptive field to segment eight

organs. Compared to [78], DenseVNet achieved remarkably higher DSC scores for all

organs (e.g., “0.84” vs. “0.72” for the gallbladder, “0.76” vs. “0.68” for the esophagus,

“99.21%” vs. “0.71” for the pancreas).

4.3/ DL METHODS FOR CMRI SEGMENTATION

CMRI is used to accurately quantify cardiac disease (e.g., scars) and assess the heart’s

anatomy and function. At present, CMRI draws much attention in the cardiac analysis
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domain. In this section, we described several DL-based CMRI segmentation networks.

4.3.1/ VENTRICLE SEGMENTATION

As the LV plays a significant role in cardiac function assessment, many research studies

have been made. We reviewed in Table 4.1 a list of bi-ventricle segmentation algorithms

that have been evaluated on the ACDC dataset1. Our comparison comprises challenge

participants’ techniques and three other segmentation models that have been developed

after the challenge: [156, 172, 178]. As shown, the top networks are those built by

Isensee et al. [97] and Li et al. [172]. For example, compared to the classical level-

set technique [93], both models reached higher accuracy, highlighting the efficiency of

DL-based models.

Table 4.1: Segmentation accuracy of previous works on the testing (ACDC) dataset. Best
dice value for each structure is shown in bold.

Methods
End diastolic End systolic

LV RV MYO LV RV MYO

Isensee et al. [97] 0.968 0.946 0.902 0.931 0.899 0.919

Baumgartner et al. [91] 0.963 0.932 0.892 0.911 0.883 0.901

Jang et al. [98] 0.959 0.929 0.875 0.921 0.885 0.895

Zotti et al. [125] 0.957 0.941 0.884 0.905 0.882 0.896

Khened et al. [169] 0.964 0.935 0.889 0.917 0.879 0.898

Wolterink et al. [115] 0.961 0.928 0.875 0.918 0.872 0.894

Patravali et al. [108] 0.955 0.911 0.882 0.885 0.819 0.897

Rohé et al. [110] 0.957 0.916 0.867 0.900 0.845 0.869

Tziritas and Grinias [93] 0.948 0.863 0.794 0.865 0.743 0.801

Yang et al. [117] 0.864 0.789 N/A 0.775 0.770 N/A

Li et al. [172] 0.967 0.920 0.949 0.902 0.905 0.917

Zotti et al. [156] 0.963 0.934 0.886 0.912 0.885 0.902

Painchaud et al. [178] 0.961 0.933 0.881 0.911 0.884 0.897

*Clinical metrics were also taken into account for the ranking.

4.3.1.1/ FCN-BASED SEGMENTATION

Tran [86] uses an FCN [84] to segment the LV, MYO, and RV on SA CMRI. Their au-

tomated FCN-based method reached significant segmentation performance compared
1Source:https://www.creatis.insa-lyon.fr/Challenge/acdc/

https://www.creatis.insa-lyon.fr/Challenge/acdc/
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to classical techniques in terms of speed and accuracy. A variety of more advanced

FCNs-based studies have been developed to perform remarkable improvements in

segmentation performance. Indeed, much research has been conducted on optimiz-

ing the model architecture to improve the feature learning potential for segmentation

[169, 173, 190, 187, 130, 98, 165]. For instance, in [169] a dense U-Net with inception

modules is proposed to fuse multiscale features for accurate segmentation across images

with wide anatomical variability. In [83], Poudel et al. designed a recurrent FCN (RFCN)

based on GRU, a variation of LSTM [6], and FCN networks to learn image representa-

tions from 2D image stacks and perform LV segmentation. RFCN fuses detection and

segmentation into a unique architecture. Multiple works [98, 117, 181, 160] introduced

several loss functions (e.g., weighted cross-entropy loss, weighted Dice loss, and focal

loss) for better segmentation performance. Due to CMR scans’ motion artifacts, restrict-

ing the applicability of 3D approaches for segmentation [91], most FCN-based networks

utilize 2D architectures, which cope better in these cases.

4.3.1.2/ TEMPORAL AND SPATIAL COHERENCE

As 2D Networks are used to process every 2D slice of a whole volume, instead of a 3D

volume, the primary disadvantage of applying 2D cardiac segmentation networks is that

they work slice-by-slice without learning inter-slice dependencies. Thereby, 2D models

may not be sufficient to segment the LV on slices where the boundaries of the LV are not

greatly delineated. Multiple studies have leveraged further contextual information such as

shape priors [125, 159] to overcome this issue and thus improve 2D FCN segmentation.

Several other methodologies used RNNs, and multi-slice models (2.5D models) [83, 108,

154, 164] to introduce spatial constraints, improving the segmentation of stack of slices.

These models are also used to highlight Spatio-temporal information over the cardiac

cycle’s frames for better segmentation performances [115, 141, 149, 140, 164].

4.3.1.3/ ANATOMICAL CONSTRAINTS

The training process using only standard loss functions may fail to extract relevant

anatomical structures’ features. Thus, different works explored the benefit of integrating

anatomical constraints at the training step for a perfect model prediction. These constrain-

ing, represented as regularization terms to consider prior knowledge (e.g., topology [162],

contour [159], and shape [107, 156, 186]), force the model to produce more accurate seg-

mentation results. For example, Oktay et al. [107] proposed an ACNN model that embeds

prior knowledge into CNNs-based segmentation through an autoencoder network. Its out-

put is enforced to follow a non-linear compact representation of the underlying anatomy.

Zotti et al. [156] developed a GridNet-based network that incorporates a cardiac shape
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prior to help kinetic cardiac MRI segmentation. Unlike these models, Painchaud et al.

[178] developed a Variational AE (VAE) to refine the network’s output through correcting

non-anatomically plausible segmentation masks in the post-processing step.

4.3.1.4/ MULTI-TASK LEARNING

Over the years, there is an increased interest in regularizing cardiac segmentation net-

works through achieving simultaneously additional tasks that are pertinent to the principal

segmentation task (e.g., ventricle size classification [152] and cardiac function estimation

[131]). Training a model for several tasks helps the model learn valuable features for

better segmentation accuracy.

4.3.1.5/ MULTI-STAGE MODELS

Various automated networks have been designed using a multi-stage pipeline, dividing

the main segmentation task into subtasks [144, 154, 172, 101, 111, 205, 217]. An es-

sential stage in the cardiac segmentation method is automatically localizing the target

structure in the MRI volume to segment slices based on the localization result, reducing

computational complexity. For example, Sulaiman et al. [205] first estimate a coarse

density map localizing the structure of interest to then focus the second stage of the

model (segmentation) in the Region(s) Of Interest (ROI). Their network achieves better

segmentation performance than previous CNN-based segmentation methods. Morever,

Omega-Net developed by Vigneault et al. [144] for the ACDC challenge, includes several

stages: First, an initial segmentation is achieved on the input image. Subsequently, the

features learned over this initial stage are employed to predict the parameters required

for transforming the image into a canonical orientation. Finally, the transformed image is

segmented.

4.3.1.6/ HYBRID SEGMENTATION APPROACHES

Some approaches focus on fusion DL methods with traditional cardiac segmentation ones

such deformable models [68, 176], graph-cut segmentation algorithms [175], and level-

sets methods [106, 132] for better generalization. DL models are used for informative

feature extraction and initialization steps to minimize manual interactions dependence

and reach higher segmentation performance. For instance, Avendi et al. [68] adopted

a CNN to detect the LV in cardiac SA images and an AE to deduce the LV shape. This

deduced shape is integrated into deformable models to get the best compromise for a

more accurate segmentation result. Alike, Ngo et al. [106] applied a Deep Belief Network

(DBN) to direct a level-set method for accurately LV segmentation.
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4.3.2/ SCAR SEGMENTATION

4.3.2.1/ SCARCITY OF NETWORKS DUE TO A MORE RECENT INTEREST

LGE-MRI is often used to put in evidence MI regions and lesions assigned to other dis-

eases for better management of scar [7]. Earlier scar segmentation was usually achieved

using traditional techniques (e.g., thresholding and clustering techniques), responsive to

the local intensity variations [151]. The primary drawback is its need for manual de-

lineation of the ROI, reducing the computational costs [69]. These techniques are not

relevant for advanced research works and clinical applications.

In recent studies, DL networks have been fused with classical segmentation tools to seg-

ment scar regions. For example, the authors in [116] employed an atlas-based technique

for LA identification and a DL model for fibrotic tissue detection in that area. Chen et

al. [128] used an end-to-end DL method for LA and atrial scars segmentation. In this

method, a multi-view CNN with a recursive attention block is proposed to improve the

segmentation performance by combining features from different views.

Segmentations of MYO lesions, particularly MI and MVO delineations algorithms involv-

ing DL, are less common and more recent. Motivated by the success of DL, Fahmy et al.

[133] adopted a U-Net architecture for segmenting LV MYO and scars from LGE-MRI ob-

tained from subjects with heart disease. Moccia et al. [177], and Zabihollahy et al. [151]

applied a semi-automated technique that needs manual delineation of the MYO and then

used a 2D network to discriminate scars from healthy MYO. Nowadays, fully automated

infarction segmentation is still a challenging task. Xu et al. [148] proposed an RNN which

learns motion patterns for automatic MI segmentation from cine MRI sequences without

the injection of contrast agents. Compared to the ground truth segmentation on LGE-

MRI, this network achieved a great overall Dice score. De La Rosa et al. [163] proposed

an automatic network for scar segmentation, including MVO regions from LGE-MRI. Their

methodology is derived from VGG19 and consisted of two blocks. Firstly, healthy and dis-

eased scans are distinguished using a classifier. Then, the MI is segmented by an initial

fast coarse segmentation which is further refined by a boundary reclassification strategy.

The proposed network reached state-of-the-art segmentation performances.

4.3.2.2/ EMIDEC SEGMENTATION NETWORKS

EMIDEC segmentation aims to automatically segment the MYO and the diseased regions

on each slice of LGE-MR volume. As shown in Table 4.2, many challengers proposed

two-stage networks: a) delineation of the MYO (in its first stage); b) segmentation of the

myocardial diseases around the vicinity of the MYO region (in its second stage). However,

some others developed one-stage networks to perform a segmentation of all the tissues
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of interest in a single step.

Table 4.2: Main concepts of EMIDEC challenge methods.

Contest Methods Description

EMIDEC Segmentation

Camarasa et al.a [193]
MYO: 3D U-Net variant

Scar: 3D U-Net variant

Feng et al.b [198] 2D U-Net with dilated convolution

Girum et al.a [199]
MYO: 2D U-Net with SE block

Scar: 2 U-Net with SE block

Huellebrand et al.a [201]
MYO: 2D U-Net variant

Scar: Mixture model

Yang and Wang b [208] 2D U-Net with SE and SK blocks

Zhanga [209]
MYO: 2D U-Net variant

Scar: 3D U-Net variant

Zhou et al.b [210] 2D U-Net with Attention

a Two-stages model, b One-stage model.

Camarasa et al. [193] proposed two approaches to assess if the uncertainty of an

auxiliary unsupervised task is helpful for myocardial infarction segmentation. As illus-

trated in Figure 4.6, their Baseline method first determined the ROI centered on the

non-background labels to then used U-Net architecture to segment all myocardial re-

gions from the definite ROI. Similar to the baseline segmentation, the Uncertainty-based

method first localized the ROI. Then, a probabilistic Auto-Encoder is employed to provide

an uncertainty map relative to ROI reconstruction. An uncertainty-based U-Net used the

generated uncertainty map for myocardial delineations.

Feng et al. [198] proposed an automatic LGE-MRI segmentation model using: a) rotation-

based augmentation to force the model to eliminate the image orientation and learn the

anatomical and contrast relationships; b) dilated 2D U-Net to increase the robustness of

the network against several slices’ misalignment. The authors used the weighted cross-

entropy and soft-Dice loss functions to alleviate the class imbalance issue. They also

favored slices containing myocardial disease areas, which existed in few cases, particu-

larly the MVO. Girum et al. [199] developed a two-stage CNN network to segment the

anatomical structures firstly and then pathological areas from LGE-MRI. The segmented

MYO tissue from the anatomical network is further employed to refine the pathological

network’s segmentation, thus produce the final four-class segmentation result (see Fig-

ure 4.7).
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Figure 4.6: Overview of the segmentation network [193].

Figure 4.7: Schematic representation of the segmentation network [199].

Huellebrand et al. [201] compared a hybrid mixture model approach with two U-Net seg-

mentations. The proposed mixture model is inspired by [39] and is suited to EMIDEC

data. This model distinguished the infarct zones depending on the intensity distribu-

tion. The authors demonstrated that a better segmentation is obtained using a mixture of

Rayleigh and Gaussian than a mixture of Rician and Gaussian. In addition, they realigned

the image slices to avoid any inconvenience due to respiratory motions. Yang and Wang

[208] proposed an improved and hybrid U-Net architecture for myocardial segmentation in

LGE-MRI. The modified U-Net embodied the Squeeze-and-Excitation Residual (SE-Res)

module in the encoder part and Selective Kernel (SK) block in the decoder part. The SE-

Res module aimed to mold the interdependencies between features’ channels and SK

block to adaptatively settle the respective field. Figure 4.8 shows category and segmen-

tation labels and hybrid branches that are used to supervise the complete segmentation

process.

Zhang [209] proposed a cascaded convolutional neural network to segment myocardial

areas from LGE-MRI automatically. Its method achieved the best segmentation perfor-

mance. As shown in Figure 4.9, the winner first employed 2D U-Net to focus on the

intra-slice information for a preliminary segmentation, and then a 3D U-Net to use the
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Figure 4.8: Overall architecture of the segmentation network [208].

volumetric spatial information for a better segmentation based on both original volume

and 2D segmentation. Finally, post-processing removing all the scattered pixels from the

latest segmentation is applied to yield the final segmentation.

Figure 4.9: Framework of the cascaded convolutional neural network [208].

Zhou et al. [210] developed an anatomy prior-based network, which fuses the U-Net

segmentation architecture with attention blocks (see Figure 4.10). They also presented a
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neighborhood penalty strategy to evaluate the inclusion relationship among the MYO and

diseased regions and a data augmentation technique based on the mix-up strategy [123]

to interpolate two images and their corresponding segmentation maps.

Figure 4.10: Schematic representation of anatomy prior based U-Net architecture [210].

4.3.3/ AUTOMATIC WHOLE HEART SEGMENTATION

DL-based segmentation has been extensively used to segment the principal heart’s

substructures in 3D MRI, as the primary step for diagnosis and treatment planning

[120, 88, 76, 143]. The authors in [120] applied a 3D dense FCN to 3D MR scans for

MYO and blood pool segmentation. Thanks to the availability of benchmark datasets for

whole heart segmentation, DL-based networks used in recent medical image segmenta-

tion research segment more specific substructures (e.g., aorta, MYO, and four chambers)

from 3D MRI.

4.4/ EXISTING CMRI DATASETS FOR THE TASK

The heterogeneous aspect of the tissue of interest (huge size, shape, and location vari-

ations from one subject to another [99]) is one of the main challenges in medical image

segmentation. In addition, the requirement for a proper dataset is still critical to reach-

ing coherent segmentation results. Thus, some prevalent challenges are established to
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achieve accurate LV segmentation and benchmark several CMR segmentation networks.

Table 4.3 depicts the MRI cardiac dataset details mentioned below.

Table 4.3: Summary of benchmarking CMRI datasets available for comparison goals.

Name Year
Nb subjects Ground truth

Train Test LV RV MYO Pathology

Sunnybrook 2009 45 - 4 8 4 4

LV 2011 100 100 4 8 4 8

LivScar 2012 10 20 4 8 4 4

ACDC 2017 100 50 4 4 4 4

EMIDEC 2020 150 50 4 8 4 4

4.4.1/ SUNNYBROOK CMR LV SEGMENTATION CHALLENGE - MICCAI 2009

The Sunnybrook Cardiac Data (SCD)2 contains 45 cardiac cine MRI images from a fu-

sion group of subjects and several pathologies: hypertrophy cardiomyopathy, HF with

infarction, HF without infarction, and healthy. The MRI images are provided with a set of

hand-drawn delineations, given in text files, for both endocardium and epicardium [31].

The data were acquired with a 1.5T GE Signa MRI and temporal resolution of 20 car-

diac phases for 10-15 second breath-holds. Recent works [52, 68, 85] reported several

segmentation approaches’ results achieved since the SCD challenge.

4.4.2/ LV SEGMENTATION CHALLENGE (LVSC), MICCAI-STACOM 2011

The database comprises CMR acquisitions in long axis and SA views from 200 sub-

jects with coronary artery disease and prior MI. Binary segmentation masks of the MYO

for the 100 training subjects were provided. It is made disposable via the Cardiac At-

las Project [37]. Multiple MRI scanners were used: GE Medical Systems (Signa 1.5T),

Philips Medical Systems (Achieva 1.5T, 3T, and Intera 1.5T), and Siemens (Avanto 1.5T,

Espree 1.5T, and Symphony 1.5T). The data are a clinically significant subject group as

mass and volume are fundamental diagnostic indicators of adverse cardiac remodeling.

This challenge3 highlights LV segmentation approaches’ performances [55]. This survey

generated consensus segmentation images based on the STAPLE algorithm [16] using

three semi- and two fully automated networks of contributing participants (raters).

2Source:http://smial.sri.utoronto.ca/LVChallenge/Home.htmls/
3Source:www.cardiacatlas.org/challenges/lv-segmentation-challenge/

http://smial.sri.utoronto.ca/LV Challenge/Home.htmls/
www.cardiacatlas.org/challenges/lv-segmentation-challenge/
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4.4.3/ VENTRICULAR INFARCT SEGMENTATION CHALLENGE (LIVSCAR), MIC-
CAI 2012

The LivScar dataset is presented in the review [75]. The database4 contains 30 LGE-

MRI of humans (nh=15) and pigs (np=15), obtained from two imaging centers (see Fig-

ure 4.11). A myocardial mask, manually drawn by an expert observer using SA view

slices, was publicly available. The human and porcine data were acquired with a 1.5T

MR unit (Philips Achieva, The Netherlands) and 3T MRI unit (Siemens Healthcare, Ger-

many), respectively. An exciting characteristic of this dataset is its heterogeneous image

quality, which is helpful to perform the robustness of a network.

Figure 4.11: A sample of LivScar dataset. (top-row) Human; (bottom-row) Porcine [75].

4.4.4/ AUTOMATED CARDIAC DIAGNOSIS CHALLENGE (ACDC), MICCAI-
STACOM 2017

The ACDC dataset [126] was acquired in clinical routine at the University Hospital of Dijon

(France) with two MRI scanners of magnetic strengths ((1.5T - Siemens Area and 3T -

Siemens Trio Tim), Siemens Medical Solutions, Germany). The expert annotations are

manually delineated 3D volumes of the MYO, the LV and RV cavities, at end-systolic and

end-diastolic slices. A set of SA view slices cover the LV, with a thickness from 5 mm

to 10 mm and at times an interslice gap of 5 mm. The data coat different pathologies

with enough patients to efficiently train deep-based networks and evaluate the primary

physiological parameters’ variability acquired from cine MRI. The dataset includes SA

view MRI for 150 subjects evenly contains five classes: (NOR: patients with normal car-

diac anatomy, MINF: patients with MI, DCM: patients with dilated cardiomyopathy, HCM:

patients with hypertrophic cardiomyopathy, and ARV: patients with abnormal RV). Fig-

ure 4.12 presents a visualized example.
4Source:https://www.doc.ic.ac.uk/∼rkarim/la lv framework/lv infarct/index.html/

https://www.doc.ic.ac.uk/~rkarim/la_lv_framework/lv_infarct/index.html/
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Figure 4.12: Visualized examples in ACDC challenge. (left) Input image. (right) Ground
truth [126].

4.4.5/ AUTOMATIC EVALUATION OF MYOCARDIAL INFARCTION FROM DELAYED-
ENHANCEMENT CMRI (EMIDEC) CHALLENGE, MICCAI-STACOM
2020

The EMIDEC dataset [202] comprises 150 clinical exams with LGE-MRI in SA view cover-

ing the LV from healthy subjects (nh=50) or cases with MI (ni=100), using a NIfTI format,

and their respective myocardial annotations (i.e., the MYO, MI, and MVO). The EMIDEC

challenge5 aims first to classify whether the patient is healthy or pathological from the

attached clinical characteristics (e.g., age and ECG), available on a text file, with or with-

out LGE-MRI, and then automatically segment the several relevant regions (the LV MYO,

MI, and MVO). All acquisitions were performed with a 1.5 T and a 3T (Siemens Medical

Solution, Erlangen, Germany) 10 minutes after injecting a contrast agent (Gd-DTPA; Mag-

nevist Schering- AG, Berlin, Germany). The data include a stack of SA view slices with

a slice thickness of 8 mm and pixel spacing between 1.25 × 1.25 mm2 and 2 × 2 mm2.

The number of slices goes from 5 to 10 per exam. EMIDEC challenge presents these

principal issues: data imbalance, low contrast, heterogeneous appearances of diseased

regions, and various SA views. To the best of our knowledge, the EMIDEC challenge is

the first one that provided annotated data and clinical information for improving methods’

classification and segmentation.

4.4.6/ OTHER DATASETS

To evaluate performances of CMRI segmentation approaches, other international chal-

lenges, providing LGE-MRI and manual delineations, have been organized over the MIC-

CAI conference (e.g., the MS-CMRSeg challenge6 and the MyoPS challenge7). Although,

their subjects’ number was inferior to that in the EMIDEC dataset. Visualized samples in

both segmentation tasks are shown in Figure 4.13 and Figure 4.14.

5Source:http://emidec.com//
6Source:https://zmiclab.github.io/projects/mscmrseg19/
7Source:http://www.sdspeople.fudan.edu.cn/zhuangxiahai/0/MyoPS20/

http://emidec.com//
https://zmiclab.github.io/projects/mscmrseg19/
http://www.sdspeople.fudan.edu.cn/zhuangxiahai/0/MyoPS20/
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Figure 4.13: Visualized examples in MS-CMRSeg challenge. Rows from top to bottom
represent the basal, middle and apical slices, respectively. (left) Input image. (right)
Ground truth [180].

Figure 4.14: Visualized examples in MyoPS challenge. From Left to Right: Input image,
Ground truth, and 3D rendering [216].

4.5/ CONCLUSION

This chapter reviewed existing CMR datasets and algorithms for cardiac image segmen-

tation to give a global overview of advanced networks performed on LV, myocardial, and

infarct segmentation, the main concerns in this thesis. Based on the reported assess-

ment, we compared previous works on segmentation benchmark datasets. The pre-

sented state-of-the-art provides a global starting layer from which the idea of our delin-

eation methodologies has been deepened.



II
CONTRIBUTION

47





5

PROPOSED METHODOLOGY

This thesis aims to design deep network models for automatic myocardial segmenta-

tion on LGE-MRI and find hyperparameters that provide the best performance. Based

on the survey of segmentation techniques described above, this chapter focuses on the

approaches applied to solve the infarct segmentation’ issue. A comprehensive myocar-

dial quantification on cardiac LGE-MRI implementation has been designed in a Python

environment on a Tesla V 100 machine with four embedded GPU.

5.1/ OVERVIEW OF THE PROPOSED PROCESS

As mentioned above, we developed DL-based methodologies for infarct segmentation

on LGE-MRI. The proposed process first applies a pre-processing stage on the whole

EMIDEC dataset. The processed LGE-MR images are then passed through proposed

models to provide a myocardial segmentation map. The labeling of the target regions

is finally post-processed, remapping it to the original volume size and smoothing the

segmentation result. The details of the process stages are summed up in the following

sections.

5.2/ DATA PROCESSING

In this work, the EMIDEC dataset was used for assessment purposes. This section will

depict the data processing (i.e., pre-processing including data dimension choice and post-

processing methods). It is a necessary stage in DL-based image segmentation.

5.2.1/ PRE-PROCESSING

Data pre-processing task was performed before models training and testing to efficiently

prepare the data for the following myocardial segmentation step. Particularly, target im-

49
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ages and their associated labels were cropped to a normalized set whose center was the

centroid of the LV cavity tissue to reduce the processing area. A reduction of the original

data dimension is required to remove unnecessary information and accelerate the seg-

mentation processing. An automatic crop function is proposed to determine a sub-volume

containing myocardial tissues in all SA slices from the LGE-MRI.

Since EMIDEC data size varied from subject to subject, cropped LGE-MRI sizes were

standardized. To this end, all MR volumes were resized to 96×96×16 pixels3 volume size

(i.e., the best minimum crop size found) through adding empty slices [203].

The resulting images were further processed through standard adaptive histogram equal-

ization technique to enhance the image quality [5, 206] and a non-local mean denoising

to smooth the image [17]. The preprocessed image results can be observed in Figure 5.1.

Middle Apex

(a) (b)

(c) (d)

Figure 5.1: Two LGE-MRI slices of a patient, showing the original image (a, b) and the
preprocessed image (c, d).

5.2.2/ POST-PROCESSING

Post-processing was required as the last stage in the segmentation pipeline for an ac-

curate smoothing of prediction contours while removing noisy predicted tissues. This

computational step will improve the quantification performance, including false-positive
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reduction. A mathematical morphology image opening operation with a kernel size of

3 × 3 is performed to exclude any isolated or small predicted segments with a minimum

setting size of 64 voxels from the segmentation result. We also used connected compo-

nents for better segmentation of diseased regions in the whole slices in LGE-MRI stacks.

A majority voting technique based on all fusions of segmentation maps, obtained with

varying training parameters, is required to increase sensitivity for segmenting myocardial

tissues, yielding the desired results. For example, the voxel was labeled as MI if at least

three out of the proposed models’ outputs predicted this voxel as an MI label. The final

segmentation network (or ensemble) that achieves the highest DSC on the training set is

automatically chosen. In the last step, labeled cropped slices were resized to the original

volume size.

5.3/ NETWORK ARCHITECTURES

This section presents an end-to-end overview of our proposed models. We achieved the

myocardium quantification issue using three approaches: the 2.5D SegU-Net framework

and 3D constrained frameworks based on volumetric U-Net architecture. Significant rea-

sons motivated the choice of these approaches. As reported in the previous chapters,

2D U-Net, 3D U-Net, and 2.5D methods achieved outstanding performance in medical

segmentation. Several authors have also introduced anatomical constraints, contextual

information, and advanced building blocks such as inception modules and atrous spatial

pyramid pooling to improve image segmentation.

5.3.1/ ALGORITHM 1: SEGU-NET

Algorithm 1: SegU-Net

Khawla Brahim, Abdul Qayyum, Alain Lalande, Arnaud Boucher, Anis Sakly,

and Fabrice Meriaudeau.

A Deep Learning Approach for the Segmentation of Myocardial Diseases

25th International Conference on Pattern Recognition, (ICPR), IEEE, ISBN 978-

1-7281-8808-9, pages 4544–4551, May 05, 2021.

DOI: 10.1109/ICPR48806.2021.9412793

The first network we proposed for the myocardial segmentation issue is called 2.5D SegU-

Net. The algorithm is a hybrid of SegNet [90], and U-Net [64] networks. The schematic

view of our approach can be seen in Figure 5.2. In total the proposed model has 29

convolutional layers, 3 × 3 filter kernel of convolution, and an increased number of filters

from 64 to 512 for extracting different feature representations. Our proposed methodology
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has a U-shaped encoder-decoder architecture. Max pooling indices [90] and skip con-

nections [64] are incorporated to improve myocardial segmentation. The yellow arrows

indicate the pooling indices and skip connections between the contracting part and the

expansive part. Indeed, the proposed algorithm benefits from U-Net and SegNet based

architectures, i.e., the capacity to capture fine image details and the computational effi-

cacy. The model output for each input of sub 2.5D was one segmentation map with a size

of 224 × 224 × 3, representing the predicted category of each pixel relative to the tissue

type (MYO, scar, MVO, or background (BG) areas). The loss function was weighted to

alleviate the class imbalance issue. The process is repeated for 100 epochs, using the

following parameters: Batch size = 2, Adadelta [41] as the optimizer algorithm, BN, and

ReLU activation function were done on each layer of the model structure, and a multi-

class softmax classifier with four labeled outputs: BG (0), MYO (1), MI (2), and MVO (3)

as a model prediction.

2D Convolutional Layer + BN + RELU

MaxPoolingWithArgmax2D

MaxUnpooling2D

Softmax

Pooling Indices + Scip Connections

2.5D SegU-Net

Segmentation2.5D LGE-MRI

S1

S5

sub 2.5D slices

S1
S2

S3
S2

S3
S4

S3
S4

S5

Segmentation next
sub 2.5D 

S1
S2

S3

Segmentation maps 1

2.5D SegU-Net n

Segmentation maps 2

Segmentation maps n

Majority voting Technique

Final prediction

sub 2.5D slices

sub 2.5D slices

sub 2.5D slices

2.5D SegU-Net 1

2.5D SegU-Net 2

S1
S2

S3

S1
S2

S3

Stack of 2D 
slices

Training 2.5D SegU-Net 1
Training 2.5D SegU-Net 2

.

.
Training 2.5D SegU-Net n

Figure 5.2: Architecture of the proposed 2.5D SegU-Net network based on late-
combination method for myocardial segmentation.

Consider a stack of n “rgb” slices (224×224×3×n), we create a sub 2.5D from each three

consecutive slices, resulting in n–2 sub 2.5D of size 224 × 224 × 3, which contain spa-

tial information of the 3D data. As a consequence of sub 2.5D overlapping, the majority

of slices were processed three times. We varied estimated training parameters for bet-

ter myocardial segmentation performance. The proposed model has been implemented

using Tensorflow (version 1.14.0) and Keras (version 2.3.1) libraries.
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5.3.2/ ALGORITHM 2: SPIU-NET

Algorithm 2: SPIU-Net

Khawla Brahim, Abdul Qayyum, Alain Lalande, Arnaud Boucher, Anis Sakly,

and Fabrice Meriaudeau.

A 3D Network Based Shape Prior for Automatic Myocardial Disease Segmenta-

tion in Delayed-Enhancement MRI

IRBM, Elsevier, Date of Publication: February 15, 2021.

DOI: 10.1016/j.irbm.2021.02.005

Our second algorithm, SPIU-Net, improves the U-Net architecture by extending a shape

prior constraint to help handle anatomical inconsistencies. We also incorporated several

blocks (i.e., CBAM (Convolutional Block Attention Module), inception residual, and EDP

(Expansion, Depth-wise, and Projection layers) blocks to the proposed algorithm).

Figure 5.3 shows our proposed shape prior-based model for fully myocardial segmenta-

tion. Segmenting the MYO is a significant stage towards identifying both healthy MYO and

MI. The SPIU-Net model comprises two essential steps. We first introduce the anatomical

network to segment the MYO and LV cavity structures. Then, the 3D pre-trained Autoen-

coder network and the 3D U-Net architecture were fused to produce the final myocardial

segmentation. Details of each stage are explained in the following paragraphs.

Anatomical Network 
(Myocardium and Cavity
segmentation network)

Pathological Network (MI 
and MVO segmentation 

network)

Original Input Image SegmentationWhole LV ROI

Figure 5.3: Workflow of the SPIU-Net segmentation approach with two components:
anatomical and pathological networks. As mentioned above, we first crop the ROI. An
anatomical network is then applied to the ROI images to segment the LV cavity and the
MYO regions. Finally, a pathological network is proposed to identify damaged areas (scar
and MVO) from MYO segmented tissues. The red, green, blue, and yellow colors denote
the LV cavity, the MYO, scar, and MVO, respectively.

5.3.2.1/ ANATOMICAL NETWORK

The proposed anatomical model is built based on an encoder-decoder architecture. We

have introduced the proposed CBAM in the encoding path and the proposed EDP block in

the decoding path. A modified attention module has been used in concatenated shortcut

connections to pass contextual and positional features from the contracting path to the
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extracting path.

The features maps are aggregated from several branches using kernels of different sizes

in the inception residual block. The residual connections provide smooth learning regard-

ing the layer inputs, rather than learning an unreferenced function [66]. The proposed

anatomical network is shown in Figure 5.4.

CBAM

DWConv
3 × 3

DWConv
3 × 3

CBAM

Inception Residual Block
× 2

DWConv
3 × 3

CBAM

DWConv
3 × 3

Proposed
KASPP

AM

96 × 96 × 1

1 × 1 Conv

Decoder Block

Conv Upsample

Decoder Block

Conv Upsample

Decoder Block

Conv Upsample

Decoder Block

Conv Upsample

Down Sample

Concatenation

Attention Module 

Proposed Inception
Residual Block

Convolutional Block 
Attention Module

Inception Residual Block
× 3

Inception Residual Block
× 4

AM

AM

AM

Inception Residual Block

Figure 5.4: Overview of the proposed anatomical network based on inception residual,
CBAM, and decoder (EDP) blocks for accurate myocardium segmentation.

Figure 5.5 shows the detailed architecture setting of the inception residual block. Com-

pared with the original inception residual module, BN layer has been used after each

convolutional layer, excluding bottleneck layers. We used 1 × 1 and 3 × 3 kernel, and also

introduced 5×5 kernel branch as inspired by the DeepLab network [129]. BN layer makes

smooth training and may avoid gradient vanishing while keeping convolutional layers. At

each inception residual block we doubled the number of feature channels. The feature

maps are aggregated through convolving with three kernels (i.e., 1 × 1, 3 × 3, and 5 × 5).

The 3 × 3 and 5 × 5 kernels are further decreased into 1 × 3, 3 × 1, 1 × 5, and 5 × 1 to

minimize the number of training parameters.

Given xl is the output of the lth layer, c(n×n)(.) is a n × n kernel convolutional layer, cb(.)

designates the BN layer, and 1× 1 Conv denotes the bottleneck layer. The output of each

inception residual block is summarized in Eq. 5.1.

xl+1 = c1×1(c1×1(xl)).cb(c3×3(c1×1(xl))).cb(c3×3(cb(c3×3(c1×1(xl))))).cb(c5×5(cb(c5×5(c1×1(xl))))) + xl

(5.1)
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Figure 5.5: Proposed inception residual block.

We have incorporated the EDP block into the expanding path to extract pertinent semantic

information. The overall graphic scheme of the decoder block is presented in Figure 5.6.

Activation 
(Swish)

Conv 1 × 1

BN

Activation 
(Swish)

DWiseConv
3 × 3

BN

Conv 1 × 1

BN

Projection 
Layer

Expansion 
Layer

Figure 5.6: Proposed EDP block.

Woo et al. [145] proposed the CBAM, which extract attention maps and multiply them by

input feature maps to get adaptive feature refinement. The channel and spatial attention

maps are generated by exploiting features’ inter-channel and inter-spatial relationships,

respectively. Every channel of a feature map is considered a feature detector. The feature

descriptors are produced by applying both average-pooling and max-pooling operations

along the channel axis and concatenated them. Using pooling operations is supposed to

be efficient in highlighting informative significant areas. The 1 × 1 2D convolutional layer

is applied to the 2D descriptor, getting the raw attention map. A swish-based sigmoid

function is employed on the final attention map. In the experiment, the spatial attention

module is used before the channel attention module, providing better performance (see

Figure 5.7).

Huang et al. [167] introduced a Kernel-Sharing Atrous Convolutional (KSAC) layer in

Atrous Spatial Pyramid Pooling (ASPP) module. The 3 × 3 kernel is shared with atrous

convolutional layers with different dilation rates. In the proposed algorithm, we have ex-

tended KSAC and combined several features extracted from the convolutional path with
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Spatial attention
Channel attention
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Figure 5.7: Proposed CBAM.

different scale (5 scales) in the KASPP. The proposed K-Atrous Spatial Pyramid Pooling

(KASPP) module (see Figure 5.8) extracted multi-scale contextual information from the

downsampling path of the anatomical network.

Rate=2
2D Conv

Rate=6
2D Conv

Rate=1
2D Conv

Rate=1
2D Conv

Rate=1
2D Conv

Up 
Sampling

Rate=1 
2D Conv
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Concatenate
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96 × 96 × 1 48 × 48 × 64 24 × 24 × 128 12 × 12 × 256
Shared 3 × 3 Kernel

Figure 5.8: Proposed KASPP module.

5.3.2.2/ PATHOLOGICAL NETWORK

In this stage, we proposed to improve myocardial segmentation consistency with deep

network predictions by incorporating prior constraints. As shown in Figure 5.9, our 3D

pathological network combines 3D U-Net with a Shape-Reconstruction (SR) module to

constrain prior knowledge shape [186]. 3D Autoencoder aims to accurately encode and

reduce the original input volume, which may be reconstructed from the encoded represen-

tation. A pre-trained 3D Autoencoder is an effective model to regularize the segmentation

output into a realistic shape. It is connected to the 3D U-Net and takes the segmented

volume as input. A regularization term is proposed to restrain the segmentation output. In

experiments, we choose to extract volume patches of size 12×12×12 pixels3, yielding the
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best-obtained results for damaged myocardial segmentation. The proposed pathological

network was implemented using the Chainer library, Batch size of 4, and Adam optimizer

with a learning rate α = 10−4.
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Feature Map

3D Convolutional Layer
+ BN + RELU

Max Pooling

3D Deconvolutional Layer

Concat

3D Convolutional Layer
+ Softmax

Encoder Decoder

3D Convolutional Layer

3D Deconvolutional Layer

16
6
6
6

32
3
3
3

64
2
2
2

128
1
1

100
1
1

128
1
1

64
2
2
2

32
3
3
3

16
6
6
6

5
12
12
12

Nbr.filters:
Depth:
Width:
Height:

5
12
12
12

Reconstructed masks

3D Convolutional Variational AutoEncoder

Pre-Training

SR LossSeg Loss +

Pre-Training Dataset

Final Loss =

Reshape Layer

Dense Layer

1

32

32 32 64

64 64 128

128 + 64 64 64

32 32 564 + 32

LGE-MRI

Real masks

Segmentation
Reconstructed segmentation

Figure 5.9: Overall network structure of our 3D pathological approach for myocardial
disease segmentation. The number of channels is denoted above every feature map.

The proposed algorithm used the 3D U-Net architecture. In short, successive convolution-

pooling layers are introduced in the contracting path to capture more high-level semantic

features. The feature maps are then up-sampled to retrieve the localization for each voxel.

Skip connections concatenated symmetrically features from contracting and expanding

pathways to recover fine-grained details in the prediction. In the last layer, a 1 × 1 × 1

convolution reduced the output channels’ number to that of the predicted categories (i.e.,

five in our myocardial segmentation task).

The 3D regulariser network has a fully connected layer, including five neurons denot-

ing the predicted categories (BG, LV cavity, MYO, MI, and MVO areas). The weights

of the pre-trained 3D Convolutional Variational AutoEncoder (CVAE) network were first

transferred. Then, they were fine-tuned via using Adam optimizer over the training data.

The pre-trained CVAE architecture has in-depth knowledge about segmenting different

feature representations’ types, and by fine-tuning its training parameters, it learns the

present task feature representations.

In segmentation, we used the Jaccard loss function, which is a metric-inspired loss based

on a Jaccard score, computing the overlap between two objects [122]. A weighted Jac-

card (wIOU) and a mean weighted Jaccard (mwIOU) are two loss functions using the

class weights and the weight coefficient’s ratio to the sum of the weight coefficients, re-

spectively. To alleviate the class imbalance between relatively small segmentation cate-

gories and the extensive BG, we optimize the summation of a Jaccard-based (i.e., wIOU

or mwIOU) loss and a shape constraint loss. In short, the following equation gives the

final loss function used for training the proposed pathological network.
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LFinal = LS eg + λS R × LS R (5.2)

where LS eg represents the wIOU or mwIOU based loss function, λS R denotes the regular-

ization term and LS R indicates the L2 loss function that is defined in Frobenius norm Eq.

5.3. λS R = 10−2 was found to be the best choice.

LS R =

n∑
i=1

||RPi − RGi||
2
F (5.3)

where n denotes the total number of training volumes, RGi is the reconstructed ground

truth, RPi is the reconstructed predicted segmentation and ||.||F representes the Frobenius

norm of an m × n matrix.

5.3.3/ ALGORITHM 3: ICPIU-NET

Algorithm 3: ICPIU-Net

Khawla Brahim, Tewodros Weldebirhan Arega, Arnaud Boucher, Stephanie

Bricq, Anis Sakly, and Fabrice Meriaudeau.

An Improved 3D Deep Learning-Based Segmentation of Left Ventricular Myocar-

dial Diseases from Delayed-Enhancement MRI with Inclusion and Classification

Priors Information U-Net (ICPIU-Net)

Submitted to Computer Methods and Programs in Biomedicine, Elsevier,

September 15, 2021.

The pipeline of our last algorithm, ICPIU-Net, is displayed in Figure 5.10. Since my-

ocardial diseases (scar and MVO) are ensured to be localized within the MYO, it makes

sense to first segment the MYO and LV cavity to remove other hyper-enhanced and hypo-

enhanced regions of the LGE-MRI.

A block diagram of our ICPIU-Net approach is presented in Figure 5.11. In the training

phase, Anatomical-Net and Pathology-Net were trained separately on 100 LGE-MRI. 50

LGE test MRIs were passed to the trained network to produce the corresponding seg-

mentation maps in the testing phase. Each stage’s details are described below.

5.3.3.1/ ANATOMICAL NETWORK

The segmentation methods used in the proposed anatomical network are inspired by

the state-of-the-art nnU-Net [214] architecture with default settings. nnU-Net is a fully

automatic segmentation network based on U-Nets [64] structure. It adapts to any new



5.3. NETWORK ARCHITECTURES 59

Input LGE-MRI Whole LV ROI

Anatomical-Net Pathology-Net 3D View of Myocardial Segmentation

Input LGE-MRI Whole LV ROI

Anatomical-Net Pathology-Net 3D View of Myocardial Segmentation

Input LGE-MRI Whole LV ROI

Anatomical-Net Pathology-Net 3D View of Myocardial Segmentation

Input LGE-MRI Whole LV ROI

Anatomical-Net Pathology-Net 3D View of Myocardial Segmentation

Input LGE-MRI Whole LV ROI

Anatomical-Net Pathology-Net 3D View of Myocardial Segmentation

Figure 5.10: Pipeline of our proposed ICPIU-Net network for automatic myocardial dis-
ease segmentation. The red, green, blue, and yellow colors represent the LV cavity, the
MYO, MI, and MVO.
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Figure 5.11: Schematic flowchart of ICPIU-Net approach.

challenge in the biomedical field. nnU-Net proved high-quality configurations on a wide

diversity of datasets and target image properties [214]. Similar to U-Net, a stack of convo-

lutional layers between poolings in the down-sampling path and of deconvolution opera-

tions in the upsampling path is used. Nevertheless, it replaced ReLUs activation functions

with leaky ReLUs (leakiness = 10−2) and used instance normalization [87] instead of BN

[58]. The operations are arranged as follows: convolution - instance norm - leaky ReLUs.

The downsampling is done using strided convolutions rather than max-pooling. nnU-Net

ensembles 2D U-Net and 3D U-Net architectures. 2D U-Net trained whole slices to focus

on intra-slice information. 3D U-Net is used to learn volumetric spatial features. There-

fore, the cross-validation outputs automatically yield to the best-obtained ensemble to be

used for the testing prediction.
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The proposed anatomical network used 2D, 3D, and cascaded U-Net to overcome the

practical shortcoming of a 3D U-Net network on datasets with huge-size images. In a

cascaded U-Net architecture, we first trained a 3D U-Net on 3D downsampled images

for a preliminary segmentation. The segmentation outputs are then upsampled to the

original resolution and transferred to a second 3D U-Net architecture, trained on patches

at full resolution for final anatomical segmentation.

The anatomical network has been implemented using the Pytorch source code 1 based on

the nnU-Net architecture. To train our approach, we used a five-fold cross-validation and

Adam optimizer with an initial learning rate of 3×10−4. The learning rate is decreased over

the training process using a polynomial learning rate scheduler. The SA slice and volume

inputs are provided for both 2D and 3D U-Nets, respectively. The sum of the Cross-

entropy loss (LCE) and the Dice loss (LDICE) is applied to train the proposed anatomical

network, as the final loss function (Eq. 5.4).

L = LCE + LDICE (5.4)

The LDICE loss function is defined as follows:

LDICE = −
2
|K|

∑
k∈K

∑
i∈I

uk
i vk

i∑
i∈I

uk
i +
∑
i∈I

vk
i

(5.5)

where u represents the softmax output of the proposed anatomical network and v refers

to the one-hot encoding of the gold standard delineation drawn manually by the experts.

Both u and v have shape I × K with i ∈ I indicates the pixels’ number in the training

patch/batch and k ∈ K denotes the different categories.

5.3.3.2/ PATHOLOGICAL NETWORK

Our last pathological network extended and modified the pathological framework of SPIU-

Net, integrating more prior knowledge for better segmentation performance. The training

process took a total time of 314 mins for 200.000 iterations. As shown in Figure 5.12,

we incorporated the inclusion (IC in cyan) and class constraints (CC in purple) modules,

linked as an extended framework and to the bottom of the 3D U-Net architecture respec-

tively, to improve the final prediction of myocardial disease segmentation. These con-

straints are proposed as auxiliary LIC and LCC loss terms for highlighting small categories

tissue to aid the segmentation.

We trained the proposed 3D CVAE using an iterative optimization process with manual

1Source:https://github.com/MIC-DKFZ/nnunethttps://github.com/MIC-DKFZ/nnunet

https://github.com/MIC-DKFZ/nnunet
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Figure 5.12: Schematic representation of the proposed pathological segmentation net-
work. Both inclusion and class constraints are used to better supervise diseased myocar-
dial segmentation.

delineations to represent anatomically plausible shapes with inclusion constraint segmen-

tation. A pre-trained 3D CVAE on several input cardiac shapes is used as a constraint to

transform a segmentation output into a correct shape [186]. The 3D pre-trained CVAE has

in-depth knowledge about segmenting different feature representations’ tissues. Com-

pared to [186], our proposed 3D CVAE learned the myocardial shape as well as the

inclusion of the MVO region into the scar itself into the MYO. The inclusion criteria yielded

plausible reconstruction with accurate localization of the cardiac tissues’ contours. The

schematic representation of the proposed 3D CVAE architecture can be seen in Fig-

ure 5.12.

We also proposed a binary classification module to differentiate infarcted subjects from

healthy cases. The proposed is introduced in the pathology segmentation process for

constraining the predicted label in this known class.

Optimizing the appropriate loss function for accurate segmentation is critical in the training

process, especially to alleviate the class imbalance issue. To this end, we trained our

pathological network with a fusion of multi-class IOU loss LS eg [168], inclusion constraint

loss LIC, and a classification constraint loss LCC. This final loss function is summarized in

Eq. 5.6.

LFinal = LS eg + λIC × LIC + λCC × LCC (5.6)

where λIC represents the inclusion constraint penalty-term, LIC denotes the L2 loss func-

tion which is defined in Frobenius norm (Eq. 5.7), λCC indicates the class constraint
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penalty-term and LCC is the cross-entropy loss function. We regulate with λIC and λCC

weights in the gap [10−2, 10−1].

LIC =

n∑
i=1

||RPi − RGi||
2
F (5.7)

where n indicates the total number of training data, RGi designates the reconstructed

manual contouring, RPi denotes the reconstructed segmentation output and ||.||F repre-

sents the Frobenius norm of an m × n matrix.

The multiclass LS eg loss function computes the overlap between two samples [122] and

is integrated into the pathological framework as follows:

LS eg = LIoU =
1
|C|

∑
c∈C

∑
i

pic × p∗ic∑
i

pic + p∗ic − pic × p∗ic
(5.8)

where pic denotes the prediction score at position i for class c, and p∗ic represents the

ground truth distribution being a delta function at yi∗, the true label.

5.4/ CONCLUSION

This chapter proposes three accurate myocardial segmentation models based on a U-Net

architecture with introduced blocks. The next chapter focuses on results and extensive

experiments on the EMIDEC dataset performed using the proposed networks to assess

their efficiency to segment the whole myocardium.
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EXPERIMENTAL RESULTS AND

DISCUSSION

This chapter outlines the outputs of each segmentation algorithm depicted in chapter

5 to the expert references of EMIDEC datasets. Each algorithm segmentation output

is assessed with standard evaluation metrics introduced in chapter 3.

6.1/ FINDING THE BEST MODEL

Quantifying pathological regions in the LV may have significant clinical involvements. This

work proposes an evaluation framework for several methods that segment and quantify

myocardial areas. To evaluate how our approaches handled the MYO and diseased re-

gions, we compare their outputs against several network’s outputs, submitted to respond

to the EMIDEC challenge, and a reference standard annotation.

6.2/ NETWORK PERFORMANCE

In summary, in this section, we assessed the performance of three novel DL methods

which have been proposed for automatic myocardial segmentation, as described in chap-

ter 5.

6.2.1/ EXPERIMENT ONE - SEGU-NET SEGMENTATION

6.2.1.1/ ACCURACY OF INTRA-OBSERVER MANUAL MYOCARDIAL DELINEATION

The first proposal is achieved before the EMIDEC dataset has been publicly available.

Intra-observer variability of manual segmentation of both healthy and diseased myocar-

dial contours in LGE-MRI is necessary to establish a gold standard for clinical diagnosing

63
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and the assessment of automatic segmentation methods. To assess, intra-observer vari-

ability, a subset of cases (in total, nc = 35 exams, ns = 210 slices) was fully re-contoured

by the same expert. The agreements of the intra-observer for myocardial manual de-

lineations in terms of IOU, Accuracy, and DSC metrics, are summarized in Table 6.1,

showing the relevance of an expert observer’s manual masks to evaluate the myocar-

dial segmentation approaches. For all considered metrics, estimation of BG, healthy and

diseased myocardial regions were consistently efficient for reference two when compared

against reference one (intra-observer DSC scores varied from “0.67561” to “0.99836” and

Accuracy from “0.74108” to “0.99842”).

Table 6.1: Metrics comparing intra-observer manual myocardial correlations.

Local measures BG MYO MI MVO
IOU 0.99665 0.67385 0.50625 0.57868

Accuracy 0.99842 0.77974 0.74108 0.92347
DSC 0.99836 0.80834 0.67561 0.71602

6.2.1.2/ EVALUATION RESULTS OF SEGU-NET METHODOLOGY

In this study, a 2.5D SegU-Net has been trained to perform accurate automatic seg-

mentation of infarcted subjects. Qualitative and quantitative evaluations were performed.

Representative examples of the masks produced by the intra-observer manual segmen-

tation and the output from the proposed network for test data are visualized in Figure 6.1.

The experimental result shows that the automated approach yielded good segmentation

of myocardium tissue. As compared to the intra-observer ground truths, the proposed

SegU-Net model can also accurately detect myocardial diseased areas.

Table 6.2 and Table 6.3 demonstrate the agreement between the proposed automated

segmentation and intra-observer manual masks in identifying myocardial contouring us-

ing IOU, Accuracy, and DSC comparison metrics. These performance metrics have been

measured on base, middle, and apex slices. For considered metrics, our proposed net-

work achieved better scores against the intra-observer study. The extensive validation of

our algorithm turns this proposal into an efficient tool with clinical transfer potential.

Table 6.2: Results. Final SegU-Net values % First intra-observer manual segmentation.

Local measures BG MYO MI MVO
IOU 0.99998 0.98960 0.91808 0.58423

Accuracy 0.99999 0.99805 0.96945 0.90470
DSC 0.99999 0.99478 0.95729 0.73755
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(a) (b) (c) (d) (e)

Figure 6.1: Representative three slices from three test input cases and relative masks.
From left to right : (a) Original LGE-MRI , (b) 2.5D Input images, (c) First intra manual
segmentation, (d) Second intra manual segmentation, and (e) 2.5D SegU-Net generated-
result. (MYO (blue), MI (green), and MVO (red)).

Table 6.3: Results. Final SegU-Net values % Second intra-observer manual segmenta-
tion.

Local measures BG MYO MI MVO
IOU 0.99998 0.98874 0.91547 0.64371

Accuracy 0.99999 0.99873 0.96273 0.91972
DSC 0.99999 0.99434 0.95587 0.78324

Table 6.4 and Table 6.5 illustrate that SegU-Net network with focal-jaccard loss function

combination achieved the best trade-off between considered evaluation metrics agreeing

with manually segmented test data. Promising results performed through adding the

Focal loss[102] function show the relevance of SegU-Net model in detecting diseased

myocardial areas.

To analyse the impact of the loss function f summarized in Eq. 6.1, segmentation results

obtained from training our SegU-Net with several α and β values were compared with

the expert annotations by using precision, recall, F1-score, and IOU metrics. These

values settle the degree of penalties for FNs and FPs, respectively. Table 6.6 reports

the performance metrics (on the test data sets). For all considered test measures, the

best results were achieved using the SegU-Net model trained with IOU loss function
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Table 6.4: Results. SegU-Net values % Second intra-expert delineation (Loss Function =
Categorical focal-jaccard Loss).

Local measures BG MYO MI MVO
IOU 0.99998 0.98704 0.91076 0.62415

Accuracy 0.99998 0.99898 0.95962 0.90499
DSC 0.99999 0.99348 0.95329 0.76858

Table 6.5: Results. SegU-Net values % Second intra-expert delineation (Loss Function =
Categorical focal-dice loss.

Local measures BG MYO MI MVO
IOU 0.99996 0.97121 0.81029 0.37830

Accuracy 0.99996 0.99110 0.93513 0.86170
DSC 0.99998 0.98539 0.89520 0.54893

(α = β = 1.0) performing much better than the SegU-Net trained with the dice loss function

corresponding to α = β = 0.5 and other combinations of F-scores (α + β = 1.0). We also

show how adjusting the hyperparameters of IOU performs highly with imbalanced data.

f =
T P + smooth

T P + α × FN + β × FP + smooth
(6.1)

where smooth = 1e-5 and TP, FP, FN: were the abbreviations of True Positive, False

Positive, and False Negative, respectively.

Table 6.6: Comparative study of the MYO on the test set conducted for several values of
the hyperparameters α and β used in training the SegU-Net.

Average test Precision Recall F1 score IOU
α = β = 1.0 0.99987 0.99979 0.99982 0.95607
α = β = 0.5 0.99969 0.99955 0.99959 0.92662

α = 0.4 , β = 0.6 0.99935 0.99917 0.99921 0.94996
α = 0.3 , β = 0.7 0.98725 0.98806 0.98657 0.60654
α = 0.7 , β = 0.3 0.99124 0.99444 0.99252 0.89903
α = 0.6 , β = 0.4 0.98967 0.98868 0.98719 0.63285

Our algorithm predicted 52 out of 53 LGE-MRI slices presenting MVO areas when com-

pared against the second expert reference annotation. However, as the disease might

not cover the complete LGE-MRI slices, the decision at the infarcted subject diagnostic

is determined based on one slice at least being predicted as MI. Representations slice-

by-slice for each subject are shown in Figure 6.2. It can be seen that 33 of 33 have

been predicted as infarcted patients with an accuracy of 100%, and 18 of 17 have been
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predicted as MVO infected with an accuracy of 94,44%. TP = 17 and FP = 1 are the

respective numbers of patients with MVO areas segmented correctly and of cases with

only MI predicted as cases with MVO tissue.

MVO slice count

0/0
6/8
1/1
3/3
0/0
1/3
6/6

2/1(2/3(%FS))
4/4

2/0 (noise)
0/0
0/0
0/0
4/4
0/0
4/4
0/0
0/0
0/0
1/1
0/0
1/1
0/0
3/3
1/1
0/0
4/3
0/0
0/0
5/5
0/0
3/3
0/0
0/0
1/2

Predicted as MVO

False
True
True
True
False
True
True
True
True

True (FP)
False
False
False
True
False
True
False
False
False
True
False
True
False
True
True
False
True
False
False
True
False
True
False
False
True

Predicted as MI

False
True
True
True
True
True
True
True
True
True
True
True
True
True
True
True
True
True
False
True
True
True
True
True
True
True
True
True
True
True
True
True
True
True
True

MI slice count

0/0
9/9
8/8
6/6
4/4
6/6
7/7
5/5
4/4
5/5
5/5
4/4
5/5
5/5
5/5
5/5
4/4
5/5
0/0
6/6
5/5
5/5
2/2
5/5
6/6
2/2
6/6
4/4
4/4

10/10
5/5
4/4
4/4
4/4
8/8

Patients

Patient1
Patient2
Patient3
Patient4
Patient5
Patient6
Patient7
Patient8
Patient9
Patient10
Patient11
Patient12
Patient13
Patient14
Patient15
Patient16
Patient17
Patient18
Patient19
Patient20
Patient21
Patient22
Patient23
Patient24
Patient25
Patient26
Patient27
Patient28
Patient29
Patient30
Patient31
Patient32
Patient33
Patient34
Patient35

LGE-MRI slices per patients

FS: First intra-segmentation
FP: False Positive

Figure 6.2: A conductive report showing for each test patient the total number of slices
presenting scar (green) and MVO (orange) regions compared to healthy MYO (blue). For
each ratio, the numerator and the denominator represent the total number of slices with
MI or MVO per case predicted by our proposed algorithm and manually segmented by an
expert, respectively.

Figure 6.3 and Figure 6.4 provide a comparison of the automated method to manual

delineation. The detailed boxplot results show that our method segmentation reached

accurate similarity to expert ground truth using DSC and IOU evaluation metrics.

6.2.1.3/ COMPARISON STUDY WITH RELATED WORK

We compared the proposed SegU-Net segmentation results with seven previous methods

to assess its performance. Summary of the quantitative results presented in Table 6.7

demonstrates that our proposal performed better for all the three evaluation metrics: IOU,

Accuracy, and DSC.

6.2.1.4/ VALIDATION OF THE PERFORMANCE OF SEGU-NET ON A BENCHMARK

DATASET

To further validate our approaches’ performance under another clinical dataset, Table 6.8

shows its accuracy on the MS-CMRSeg dataset (see section 4.4.6), achieving a DSC
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Figure 6.3: Boxplots of the evaluation of DSC for the final SegU-Net algorithm.
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Figure 6.4: Boxplots of the evaluation of IOU for the final SegU-Net algorithm.

score of “0.8594” in MYO. In addition, the experiments demonstrated that the proposed

automated model accurately segmented LV and RV regions.
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Table 6.7: Quantitative evaluation for myocardial segmentation methods.

Methods Metrics
Structures

BG MYO MI MVO

SegU-Net
IOU 0.99998 0.98874 0.91547 0.64371

Accuracy 0.99999 0.99873 0.96273 0.91972
DSC 0.99999 0.99434 0.95587 0.78324

[96]
IOU 0.99984 0.95443 0.73963 0.31258

Accuracy 0.99989 0.99467 0.85563 0.82690
DSC 0.99992 0.97668 0.85033 0.47628

[64]
IOU 0.99737 0.74302 0.19792 0.00459

Accuracy 0.99861 0.90564 0.41232 0.74867
DSC 0.99868 0.85257 0.33044 0.00913

[135]
IOU 0.99257 0.80819 0.20069 0.0000

Accuracy 0.99262 0.92750 0.91291 0.74762
DSC 0.99627 0.89392 0.33429 0.0000

[157]
IOU 0.99761 0.82020 0.11265 0.0000

Accuracy 0.99963 0.91314 0.33900 0.74762
DSC 0.99881 0.90122 0.20249 0.0000

[72]
IOU 0.99980 0.80202 0.0000 0.0000

Accuracy 0.99996 0.99254 0.21429 0.74762
DSC 0.99990 0.89014 0.0000 0.0000

[81]
IOU 0.99956 0.77503 0.0000 0.0000

Accuracy 0.99993 0.96345 0.21429 0.74762
DSC 0.99978 0.87326 0.0000 0.0000

[153]
IOU 0.99030 0.27225 0.0000 0.0000

Accuracy 0.99824 0.31130 0.21905 0.77619
DSC 0.99513 0.42799 0.0000 0.0000

Table 6.8: Results. SegU-Net values on MS-CMRSeg dataset.

Local measures MYO LV RV
IOU 0.75360 0.78380 0.94241

Accuracy 0.80848 0.95228 0.93370
DSC 0.85949 0.87880 0.97035

6.2.2/ EXPERIMENT TWO - SPIU-NET SEGMENTATION

6.2.2.1/ SEGMENTATION PERFORMANCE OF SPIU-NET METHODOLOGY ON EMIDEC

DATASET

For SPIU-Net model evaluation, the whole 100 LGE-MRI with published ground truths

was randomly split into 5 non-overlapping cross-validation folds. We aggregated the val-
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idation sets from 5-fold cross-validation. Table 6.9 and Table 6.10 illustrate our segmen-

tation results on validation sets experiment without using any auxiliary post-processing

operations compared with the other two existing methods. The Averages (Avg) and Stan-

dard deviations (Std) of the evaluation metrics, presented in Table 6.9 demonstrate the

efficiency of the proposed algorithm to segment anatomical structures and pathological

tissues on LGE-MRI scans accurately. Quantitatively, the results show the performance

of the SPIU-Net network despite the small number of training samples.

Table 6.9: Quantitative myocardial segmentation performance in 5-fold cross-validation.

Targets Metrics
5-fold cross-validation

fold0 fold1 fold2 fold3 fold4 Avg Std

MYO
DSC (%) 95.27 94.40 95.11 95.23 95.49 95.10 0.37

AVD (mm3) 256.81 343.50 247.88 252.19 231.69 266.41 39.46
HD (mm) 4.41 5.29 4.36 4.06 3.89 4.40 0.48

MI
DSC (%) 74.93 77.85 76.37 76.52 75.02 76.14 1.08

AVD (mm3) 342.00 308.69 212.31 176.75 284.81 264.91 61.31
AVDR (%) 6.82 6.87 4.09 2.99 5.84 5.32 1.54

MVO
DSC (%) 71.60 77.03 77.64 70.60 72.06 73.79 2.94

AVD (mm3) 41.06 34.50 60.00 76.31 63.56 55.09 15.28
AVDR (%) 0.75 0.75 1.10 1.41 1.24 1.05 0.26

Summary of the quantitative results tabulated in Table 6.10 proves that our segmenta-

tion results achieved a better consensus with the manual references than the results of

the competing networks. It can be observed that myocardial regions were consistently

segmented with high DSC and HD.

Table 6.10: Performance comparison of various segmentation networks using 5-fold
cross-validation. Bold result values are the best.

Targets Metrics
Methods

[201] [209] SPIU-NET

MYO
DSC (%) 81.00 94.40 95.10

AVD (mm3) 13655.55 6474.38 266.41
HD (mm) 16.72 17.21 4.40

MI
DSC (%) 36.08 72.08 76.14

AVD (mm3) 8980.5 4179.5 264.91
AVDR (%) 7.07 3.41 5.32

MVO
DSC (%) 54.15 71.01 73.79

AVD (mm3) 1501.73 918.69 55.09
AVDR (%) 1.08 0.69 1.05

We conducted extensive experiments for a comparative study of different methods based
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on wIOU and mwIOU loss functions. The SPIU-Net algorithm is also compared with the

baseline 3D U-Net architecture to demonstrate the significance of enforcing shape prior

information in the final prediction. Figure 6.5 and Figure 6.6 illustrate plots of DSC, HD,

and difference in volume between automated segmentation among all loss functions and

expert annotation of the validation data set. Results show that incorporating shape prior in

the resulting network made the best trade-off between evaluation metrics. Quantitatively,

our approach yielded promising results, achieving an average DSC score of “0.9507”,

“0.7656”, and “0.8377” for MYO, scar, and MVO, respectively. It can be seen that our

SPIU-Net model outperformed the baseline 3D U-Net architecture (median HD of “3.16

mm” vs. “4.12 mm”).
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Figure 6.5: Comparison of the networks results. Our approach outperformed the 3D
U-Net architecture in segmenting myocardial areas.

Figure 6.7 shows examples of expert myocardial delineation and corresponding segmen-

tation results of 3D U-Net and the final proposed model in our own split testing set. Our
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Figure 6.6: Comparison of segmentation performance. The proposed SPIU-Net model
achieves superior AVD and AVDR values on the MI, and MVO areas.

segmentation results appear to be in line with the ground truth. Two axial slice views

and a 3D surface rendering with expert annotation are shown in the first row. Segmented

images produced by our proposed algorithm and 3D U-Net architecture are illustrated in

the corresponding row. Compared to ground truths, our approach correctly segmented

myocardial regions yielding a good agreement with expert annotations. Qualitative results

comparison demonstrate the efficiency of the SPIU-Net model to improve segmentation

performance.

Table 6.11 demonstrates how the incorporation of the pathological network, which is re-

sponsible for detecting the diseased tissues, affects the segmentation performance of the

MYO and LV cavity structures produced by the anatomical network. The table quantita-

tively shows the anatomical segmentation network’s performances alone and after inte-

grating the shape prior auxiliary model into it.
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Figure 6.7: Visual exemplar segmentations for our SPIU-Net model and 3D U-Net applied
for the same subject on our own split testing set. Each row displays a patient on two heart
locations, followed by a 3D surface rendering. The rows from top to bottom are the expert
delineation, our approach prediction, and 3D U-Net segmentation. LV cavity, MYO, scar,
and MVO are labeled in red, green, blue, and yellow, respectively.

Table 6.11: Performance analysis and comparison between the proposed anatomical
model and our final SPIU-NET network (anatomical + pathological) without and with using
post-processing. An example is presented for one fold as 5 fold-cross validation is done.

Targets Metrics
Methods

Anatomical model Without post-processing SPIU-NET

MYO
DSC (%) 91.18 95.27 95.07

AVD (mm3) 348.62 256.81 315.5
HD (mm) 23.65 4.41 5.02

Infarction
DSC (%) – 74.93 76.56

AVD (mm3) – 342.00 234.12
AVDR (%) – 6.82 4.92

MVO
DSC (%) – 71.60 83.77

AVD (mm3) – 41.06 30.25
AVDR (%) – 0.75 0.60

6.2.2.2/ VALIDATION OF THE PERFORMANCE OF THE PROPOSED ANATOMICAL NET-

WORK ON BENCHMARK DATASETS

To further evaluate the performance of the proposed anatomical model, we tested the pro-

posed anatomical model on other publicly available LGE-MRI datasets using the same op-



74 CHAPTER 6. EXPERIMENTAL RESULTS AND DISCUSSION

timized parameters setting chosen during training with the EMIDEC dataset. The data has

been preprocessed based on the multivariate mixture method (MvMM) [155]. Table 6.12

and Table 6.13 illustrate the performance comparison of the proposed anatomical with

state-of-the-art networks on MS-CMRSeg and MyoPS challenges, respectively. These

tables show that our anatomical approach achieved excellent DSC scores as compared

to previous methods. The experiments prove the efficiency of our proposed anatomical

network on other clinical datasets.

Table 6.12: Performance analysis and comparison of myocardial results of the proposed
anatomical network and existing DL-based networks on MS-CMRSeg database. (DSC
(%) and HD (mm)). Best results are highlighted in bold font.

Methods Dataset DSC HD
Proposed Anatomical model BSSFP+ T1 for training LGE 81.87 9.98

[184] Used different combination for training LGE 74.90 11.35
[158] Used different combination for training LGE 68.00 12.00

Table 6.13: Performance analysis and comparison of myocardial results of the proposed
anatomical network and existing DL-based networks on MyoPS database. Best results
are highlighted in bold font.

Methods DSC (%) HD (mm) AVD (ml)
Proposed anatomical model 84.69 16.3190 8.6275

[200] 82.17 17.9299 7.3824
[179] 80.05 23.2728 11.6204
[64] 0.7956 114.7892 26.3757

6.2.3/ EXPERIMENT THREE - ICPIU-NET SEGMENTATION

The trained ICPIU-Net model was used to predict myocardial segmentation for each of the

test volumes. We compared the segmentation results of our approach to other existing

networks reported in section 4.3.2.2. We also compared the ICPIU-Net prediction results

to ground truths and [211], which only enforces a shape prior information for segment-

ing damaged myocardial tissues. Both qualitative and quantitative results are described

below.

Figure 6.8 illustrates the MYO, scar, and MVO segmentation results of our proposed

ICPIU-Net and [211] for three diverse slices, randomly selected from three different sub-

jects of the testing dataset. Segmented 2D slices were stacked up to reconstruct a 3D

rendering surface of myocardial tissues. Compared to [211], the ICPIU-Net model seg-

mented infarct and MVO more accurately. Qualitative results show that the final segmen-
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tation narrowly matched the expert annotation for all the labeled areas.

LGE-MRI GT [211] ICPIU-Net 3D rendering
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Figure 6.8: Qualitative segmentation results. In the first fourth columns, input LGE-MRI,
manually segmented contours, and examples of the segmentation results on three vari-
ous slices extracted from LGE-MRI of three testing subjects produced by [211] network
and the proposed ICPIU-Net model are displayed. The fifth column illustrates the 3D
view of the myocardial tissues of our proposed method prediction. Red: LV cavity, Green:
MYO, Blue: Scar, and Yellow: MVO.

Figure 6.9 shows examples of the segmentation results of proposed model and expert

delineations at basal, mid-ventricular, and apical slices. With the incorporation of the

additional inclusion and classification constraints, the segmentation results reached a

good consensus with the ground truths. Qualitative evaluations prove that our approach

produced more robust segmentation results, especially at the middle slices. It can be

observed that most segmentation errors appear at basal and apical slices.

Bland–Altman plots of the proposed ICPIU-Net model vs. expert manual LV volumes

are provided in Figure 6.10. In these graphs, the dashed blue line and red dashed lines

illustrate the mean value of the difference, the upper and lower limits of accordance, re-

spectively. Compared to expert annotations, our model’s mean bias in evaluating MYO,

infarct, and MVO volumes was “4.9888 cm3”, “1.2266 cm3”, and “0.5112 cm3”, respec-

tively. The proposed ICPIU-Net network lightly overvalued myocardial region volumes

producing a mean absolute LV volume error of “8.12%”. In addition, a case-by-case study

of our approach’s generated segmentation demonstrated that the MI area could be ac-

curately detected in 32 out of 33 pathological patients from the test dataset. The results
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Figure 6.9: Examples of myocardial test segmentation compare results and the gold
standard for three levels (base, middle, and apex) of two subject slices (columns 1-3 from
subject 1 and columns 4-6 from subject 2). The proposed model is capable of segmenting
the MYO while also identifying the small diseased areas. LV cavity is displayed in red,
MYO in green, MI in blue, and MVO in Yellow.

prove the superiority of the ICPIU-Net network and the efficiency of each incorporated

constraint information.

Table 6.14 outlines the quantitative results of our approach against state-of-the-art mod-

els on EMIDEC challenge for the testing dataset. Our proposed algorithm outperformed

top-ranked frameworks achieving the best DSC, AVD, and AVDR results for diseased tis-

sues segmentations. The second best DSC score was attained using [209] (“71.24%”

for MI and “78.51%” for MVO). Our proposed model also yielded much better results in

all metrics than several competing methods (DSC, AVD, and HD of “87.65%”, “8863.41

mm3”, and “13.10 mm”, respectively). The significant correlation between expert anno-

tation and the proposed network demonstrated our approach’s performance and clinical

applicability for the automatic assessment of MI.

We conducted a comparative ablation study to assess the effect of adding prior constraint

information to the segmentation loss. As can be seen from Table 6.15, the introducing

of IC and CC regularization penalty terms into the baseline 3D U-Net improved the seg-

mentation accuracy and thus provided more plausible segmentation close to the expert

annotation. The experimental results revealed the pertinence of constraints modules to

aid the myocardial segmentation.

The evaluation metrics (DSC, AVD, and AVDR) used for MVO segmentations may be in-
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Figure 6.10: The graph shows the difference between the resulting network and ground
truth volumes according to their average. (a), (b), and (c): Representative Bland-Altman
plots of MYO, MI, and MVO volumes obtained from our ICPIU-Net model over testing
examples, respectively.

consistent due to the small area of the MVO compared to the complete input LGE-MRI.

MVO absence on all the data may apparently provide correct results with DSC and vol-
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Table 6.14: Comparative study for EMIDEC segmentation results [215]. (DSC (%), HD
(mm), AVD (mm3), and AVDR (%)).Significant results are marked in bold font.

Methods
Structures

MYO MI MVO
DSC AVD HD DSC AVD AVDR DSC AVD AVDR

[198] 83.56 15187.48 33.77 54.68 3970.73 2.89 72.22 883.42 0.53
[201] 84.08 10874.47 18.3 37.87 6166.01 4.93 52.25 953.47 0.64
[208] 85.53 16539.52 13.23 62.79 5343.69 4.37 60.99 1851.52 1.69
[209] 87.86 9258.24 13.01 71.24 3117.88 2.38 78.51 634.69 0.38
[193] 75.74 17108.13 25.44 30.79 4868.56 3.64 60.52 867.86 0.52
[210] 82.46 13292.68 83.42 37.77 6104.99 4.71 51.98 879.99 0.54
[199] 80.26 11807.68 51.48 34.00 11521.71 8.58 78.00 891.13 0.51
[64] 85.82 11368.04 14.23 58.30 3380.43 2.57 74.97 626.33 0.38
[70] 87.77 9454.43 13.07 70.76 3214.65 2.48 78.90 540.95 0.34

ICPIU-NET 87.65 8863.41 13.10 73.36 2693.84 1.95 81.31 511.25 0.32

Table 6.15: Performance metrics for various values of training hyperparameters λIC and
λCC. (DSC (%), HD (mm), AVD (mm3), and AVDR (%)). Significant results are marked in
bold font.

Hyperparameters
Structures

MYO MI MVO
DSC AVD HD DSC AVD AVDR DSC AVD AVDR

λIC = λCC = 0 87.77 9381.77 13.07 65.05 3096.54 2.39 78.82 553.56 0.34
(λIC , 0) ∧ (λCC = 0) 87.74 9201.04 13.09 71.71 2830.32 2.15 80.99 538.60 0.34

ICPIU-NET 87.65 8863.41 13.10 73.36 2693.84 1.95 81.31 511.25 0.32

umes metrics. Nevertheless, the accuracy highlights the efficiency of our approach to

segmenting MVO tissues. Table 6.16 shows the additional metrics of MVO regions. Seg-

mentation results demonstrate the effectiveness of inclusion and classification constraints

in identifying MVO areas.

Table 6.16: Supplementary metrics for myocardial segmentation [215]. Best results are
highlighted in bold font.

Metrics
Methods

[198] [201] [208] [209] [193] [210] [199] ICPIU-NET

MVO
Accuracy (case,%) 80.00 70.00 76.00 84.00 74.00 64.00 78.00 84.00
Accuracy (slice,%) 90.78 85.75 81.56 94.97 84.36 86.87 89.66 94.97
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6.3/ CONCLUSION

This chapter compares the segmentation results of three proposed networks, presented

in chapter 5, against expert annotated delineation and some other methods on the 50

test sets. Experimental results on the EMIDEC dataset demonstrate that the proposed

ICPIU-Net outperforms the state-of-the-art myocardial segmentation networks.
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CONCLUSION AND FUTURE WORK

“As a technologist, I see how AI and the fourth industrial revolution will impact

every aspect of people’s lives”

—Fei-Fei Li

7.1/ GENERAL CONCLUSION

Myocardial scar segmentation of CMR is a highly challenging area of research that can

afford critical information to aid diagnosis and therapy planning. As the manual segmen-

tation for LV infarct is a time-consuming and observer-biased task, automatic myocardial

segmentation using DL techniques has been extensively explored in the last decades to

grow the survival rate.

LGE-MRI has emerged as the gold standard for quantifying scar or MVO areas. It relies

on the difference in signal intensity between normal myocardial area and infarcted tissue.

Studies have proved the feasibility of LGE-MRI to evaluate the viability of the myocardial

segment. Promising results were acquired through a gadolinium-based contrast agent,

putting into evidence re-perfused areas within the MYO wall as a sign of MI.

In this context, the present dissertation has been realized to develop improved, robust,

and fully automated DL-based segmentation networks to assess and quantify pathologi-

cal tissues within the LV (MI, MVO), including healthy MYO on a set of contrast-enhanced

acquisitions. To support this overall purpose, we evaluate their performances on EMIDEC

datasets, comprising 100 training images and 50 test images from healthy and infarcted

patients, to help cardiologists establish diagnosis and treatment pipelines faster. The

methods’ assessment and validation were achieved based on different evaluation met-

rics, including DSC, HD, and AVD. We demonstrated that the segmentation results were

consistent with the manual contouring and that our proposed models compared favorably

with methods recently developed for the EMIDEC challenge. Extensive experiments on

83
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two other public datasets (MS-CMRSeg, MyoPS) show that our resulting architectures

achieved a good performance.

The proposed process first used a pre-processing step on the complete LGE data. Next,

the processed LGE-MR images are passed through proposed algorithms to segment nor-

mal MYO, infarct, and MVO regions. The framework results are finally post-processed to

improve the segmentation accuracy. In the following, we summarize the principal contri-

butions of this thesis.

• We first proposed a 2.5D SegU-Net network based on fusing two DL architectures

(U-Net and Seg-Net) for automated LGE-MRI myocardial disease segmentation in

a new multifield expert annotated dataset (EMIDEC before being publicly available).

We used the combination of the Jaccard loss and the Focal Loss as the final op-

timization loss function. Compared to the intra-observer variability, the proposed

framework perfectly segments diseased myocardial regions of infarcted patients.

Our novel segmentation pipeline worked best in comparison with previous models.

• Secondly, we developed an SPIU-Net DL-based shape prior model for automatic MI

segmentation from LGE-MRI. Furthermore, the proposed method aimed to detect

MVO areas accurately. We first segmented the anatomical structures, i.e., the LV

cavity and the MYO, to produce a preliminary segmentation. Then, we proposed

to combine 3D U-Net architecture and 3D Autoencoder segmentation network to

incorporate shape prior information on the framework pipeline to ensure plausible

segmentation of myocardial tissues. Experiments results have demonstrated the

algorithm’s performance in identifying myocardial areas.

• Finally, an ICPIU-Net segmentation algorithm based on the inclusion and classifica-

tion priors information was implemented to efficiently segment the normal MYO,

scar, and MVO tissues. The proposed method first used nnU-Net architecture

to segment the LV cavity and MYO. Then, our approach introduced the inclusion

and classification information of the LGE-MRI to improve the resulting segmenta-

tion of the diseased tissues within the pre-segmented MYO. Compared to several

DL-based models participating in the EMIDEC challenge for MI segmentation, our

approach achieved a more significant agreement with the gold standard in segment-

ing myocardial diseases.

7.2/ FUTURE PERSPECTIVES

Our research on myocardial segmentation in LGE-MRI using prior constrained informa-

tion opens several perspectives. The proposed networks are envisioned to foresee future
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research lines. It would be interesting to extend these algorithms to other modalities

and heart conditions or to develop new improvements to the proposed algorithms. Our

segmentation methods can be fused with traditional cardiac segmentation techniques to

bring an excellent diagnostic package with high reliability. Further works are also needed

to impose clinical information, intensity, and transverse sections (basal, middle, and api-

cal) prior knowledge into the segmentation process. An uncertainty rectifying block can

be introduced to boost the network performance, where the uncertainty estimation can

be generated with a bayesian method. A memory module propagating the initial segmen-

tation over the whole volume can also be incorporated to guide the next slice to segment

based on the current segmentation of each slice.

There is still much research work possible to improve MI segmentation. Despite the

success of CNNs, the locality of convolution operations limits their ability to learn global

context and long-range spatial dependencies. Recently, transformers, developed initially

to solve natural language processing tasks, are considered the alternative methods to

U-Nets. Nevertheless, they focus only on the global context but fail to extract detailed

localization features. Transformers demonstrate outstanding performance in several DL

tasks, including image recognition. Nowadays, few studies have used pure transformer

and transformer-CNN (UNETR, vision transformer (ViT)) hybrid methods for medical im-

age segmentation and classification. In the future, transformer-based architectures can

be applied to EMIDEC dataset for improved segmentation of myocardial diseases.
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Abstract:

Accurate myocardial segmentation in LGE-MRI is
an important purpose for diagnosis assistance of
infarcted patients. Nevertheless, manual delineation
of target volumes is time-consuming and depends
on intra- and inter-observer variability. This thesis
aims at developing efficient deep learning-based
methods for automatically segmenting myocardial
tissues (healthy myocardium, myocardial infarction,
and microvascular obstruction) on LGE-MRI. In this
regard, we first proposed a 2.5D SegU-Net model
based on a fusion framework (U-Net and SegNet)
to learn different feature representations adaptively.
Then, we extended to new 3D architectures to
benefit from additional depth cues. In a second step,
we proposed to segment the anatomical structures
using inception residual block and convolutional
block attention module and diseased regions using

3D Auto-encoder to perfect myocardial shape. To
this end, a prior shape penalty term is added
to 3D U-Net architecture. Finally, we proposed
first segment the left ventricular cavity and the
myocardium based on the no-new-U-Net and second
use a priori inclusion and classification networks to
maintain the topological constraints of pathological
tissues within the pre-segmented myocardium. We
have introduced a post-processing decision phase
to reduce the uncertainty of the model. The state-
of-the-art performance of the proposed methods is
validated on the EMIDEC dataset, comprising 100
training images and 50 test images from healthy
and infarcted patients. Comprehensive empirical
evaluations show that all of our algorithms have
promising results.

Titre : Architectures d’apprentissage profond pour la détection automatique de segments myocardiques
viables

Mots-clés : Segmentation myocardique, LGE-IRM, Apprentissage profond, Forme antérieure, Myocarde,
Contraintes topologiques, Tissus pathologiques.

Résumé :

La segmentation précise du myocarde en LGE-
IRM est un objectif important pour l’aide au
diagnostic des patients infarctus. Néanmoins, la
délimitation manuelle des volumes cibles prend
du temps et dépend de la variabilité intra- et
inter-observateur. Cette thèse vise à développer
des méthodes efficaces basées sur l’apprentissage
profond pour segmenter automatiquement les
tissus myocardiques (myocarde sain, infarctus du
myocarde et obstruction microvasculaire) sur LGE-
IRM. À cet égard, nous avons d’abord proposé
un modèle 2.5D SegU-Net basé sur un cadre
de fusion (U-Net et SegNet) pour apprendre
différentes représentations de caractéristiques de
manière adaptative. Ensuite, nous avons étendu
à de nouvelles architectures 3D pour bénéficier
d’indices de profondeur supplémentaires. Dans un
deuxième temps, nous avons proposé de segmenter
les structures anatomiques à l’aide du module

d’attention du bloc résiduel initial et du bloc convolutif
et des régions malades à l’aide de l’auto-encodeur
3D pour perfectionner la forme du myocarde. A cet
effet, un terme de pénalité de forme préalable est
ajouté à l’architecture 3D U-Net. Enfin, nous avons
proposé dans un premier temps de segmenter la
cavité ventriculaire gauche et le myocarde sur la
base du no-new-U-Net et dans un second temps
d’utiliser des réseaux d’inclusion et de classification
a priori pour maintenir les contraintes topologiques
des tissus pathologiques au sein du myocarde pré-
segmenté. Nous avons introduit une phase de
décision post-traitement pour réduire l’incertitude du
modèle. Les performances de pointe des méthodes
proposées sont validées sur l’ensemble de données
EMIDEC, comprenant 100 images d’entraı̂nement
et 50 images de test de patients sains et infarctus.
Des évaluations empiriques complètes montrent que
tous nos algorithmes ont des résultats prometteurs.
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