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Titre : Diagnostic automatisé des pathologies de la rétine à l'aide des volumes OCT. 

Mots clés : OCT, CNN, DR, DME, GNN.   

Résumé : 

La principale cause de cécité dans la 

population pourrait être surtout la 

détérioration de la rétine causée par les 

problèmes liés au diabète et la 

complication du vieillissement. La 

rétinopathie diabétique (DR) et l'œdème 

maculaire diabétique (DME) sont les 

principales causes directes de problèmes 

de vision chez les citoyens en âge de 

travailler de la plupart des pays avancés. 

Le nombre élevé de personnes diabétiques 

dans le monde indique que le DME et la RD 

resteront les principaux facteurs de perte 

de vision partielle ou totale, ce qui affecte 

la qualité de vie des patients pendant de 

nombreuses années et menace leur vie. 

Par conséquent, une détection précoce 

suivie de procédures de traitement rapide 

des personnes atteintes de maladies liées 

au diabète est importante pour prévenir 

les problèmes optiques et peut réduire le 

risque de cécité. De plus, les personnes de 

plus de 50 ans sont exposées à la 

dégénérescence maculaire liée à l'âge 

(AMD) qui attaque la rétine. Par 

conséquent, les chercheurs du monde 

entier sont attirés par les différences liées 

à plusieurs maladies rétiniennes.   

 Plusieurs méthodes automatisées 

utilisant l'AI ont été appliquées pour la 

détection et le test des maladies 

rétiniennes. Malheureusement, ces 

modèles peuvent être confondus avec une 

incapacité de calcul, ce qui nécessite une 

intervention supplémentaire de la part de 

spécialistes. Cette thèse présente une 

méthode automatique - basée sur des 

algorithmes de réseaux de neurones 

d'apprentissage en profondeur - pour 

détecter DME et DR, ce qui permet de 

dépasser l'évaluation pratique subjective 

des ophtalmologistes. 

 Basé sur "Convolutional Neural 

Network", un modèle proposé est présenté 

avec un classificateur soft-max et entrainé 

de bout en bout pour la classification 

automatique des images rétiniennes de 

tomographie par cohérence optique (OCT). 

Ce modèle a la capacité de détecter des 

caractéristiques permettant d'identifier la 

DR et le DME en utilisant ces images 

rétiniennes avec une précision et une 

sensibilité améliorées. De plus, un modèle 

préformé a été affiné et réformé à l'aide 

d'un ensemble de données qui a été 

enrichi à l'aide de "Generative Adversarial 

Networks" (GAN). Contrairement au 

diagnostic manuel de la maladie rétinienne 

basé sur un examen clinique personnel et 

l'analyse des images OCT, cette méthode a 

montré la capacité de prédire 

automatiquement les cas atteints de DME 

par rapport aux cas sains. Les expériences 

ont été évaluées sur plusieurs ensembles 
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de données fournis par différentes 

institutions. 

 Le modèle, comparé à d'autres 

modèles CNN entrainés de bout en bout ou 

pre-entrainés et affinés, montre des 

fonctionnalités d'extraction efficaces, avec 

moins de temps, sur la base d'une étape 

de prétraitement efficace des données. Les 

résultats expérimentaux ont montré une 

plus grande précision de classification, ce 

qui est prometteur dans le domaine de la 

détection précoce des maladies 

diabétiques pour aider les 

ophtalmologistes dans les technologies 

biomédicales.

 

Title: Automated Diagnostics of Retinal Pathologies Using OCT Volumes. 

Keywords: OCT, CNN, DR, DME, GNN  

Abstract:  

 

 

The leading cause of blindness in the 

population could mostly be the 

degeneration of the retina caused by the 

diabetic-related problems and the aging 

issue. Diabetic retinopathy (DR) and 

diabetic macular edema (DME) are the 

main direct causes of vision problems in 

the labor age citizens of most advanced 

countries. The elevated number of diabetic 

people globally indicates that DME and DR 

will remain to be the principal factor to 

partial or total vision loss, which affects 

the lives quality of patients for many years 

to come and threaten their lives. 

Therefore, early detection followed by fast 

treatment procedures of persons with 

diabetic-related diseases is significant in 

preventing optical problems and can 

decrease the risk of blindness.  
 

In addition, people above 50 are 

exposed to age-related macular 

degeneration (AMD) disease that hits the 

retina. Therefore, researchers over the 

world have attracted to the differences 

related to several retinal diseases. 

         Several automated methods using 

Artificial Intelligence (AI) (varying from 

traditional computer vision to advanced 

machine learning algorithms) have been 

applied for the detection and examination 

of retinal diseases. Unluckily, these models 

are able to be mistaken with 

computational inability, which necessitates 

additional interference from specialist 

personal. This thesis presents an 

automatic method - based on deep 

learning neural networks algorithms - to 

detect DME and DR, which allows 

overstepping the subjective handy 

evaluation of ophthalmologists.  

 

 Based on Convolutional Neural 

Network, a proposed model is presented 

with a soft-max classifier and fully trained 

from scratch for the automatic 

classification of Optical Coherence 

Tomography (OCT) retinal images where 

OCT screening techniques are applied as 

the current dependable assessment and 

measurement method to discover the 

existence of swallow in the retina. This 
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model has the ability to detect patterns for 

DR and DME using these retinal images 

with improved accuracy and sensitivity. 

Moreover, a pre-trained model has been 

fined-tuned and re-trained using a dataset 

that has been augmented using Generative 

Adversarial Networks (GANs). In opposite 

to manual retinal disease diagnosis based 

on personal clinical examination and 

analysis of OCT images, this method 

showed the capability to automatically 

predict DME diseased cases versus healthy 

cases. The experiments have been 

evaluated over several datasets provided 

by different institutions. 

 The model, compared to other CNN 

end-to-end or transfer learned models, 

shows effective extracting features, with 

less time consumption, based on an 

efficient data pre-processing stage. The 

experimental results showed a higher 

accuracy of classification which is 

promising in the field of early detection of 

diabetic diseases to aid ophthalmologists 

in biomedical technologies.
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Introduction 

1- General context 

 The lifestyle of recent civilization has improved significantly with the evolution of 

AI in recent years, which is a technology with multiple advanced components like ML 

and DL algorithms. These algorithms are awaited to supply the ophthalmologists with 

automated machines for early detection and diagnosis for the treatment of ocular 

diseases in the next years. DL has been applied in the ophthalmic domain to confirm 

the diagnosis of pathologies and scan images where the ophthalmic imaging presents 

a method to diagnose and detect the progress of plenty of diseases including DR, DME, 

and other ophthalmic.  

 There are two types of imaging applied as diagnostic techniques in the ophthalmic 

application: fundus photography and OCT is recently the assessment standard utilized 

to measure the fluid leaks in the retina in ophthalmology worldwide. Variations of 

lifestyle in communities, demographics differences, the extended average age, and the 

growing pattern of diabetic pathologies constitute an increasing need for such images. 

Moreover, the unavailability of many retina-trained human specialists is a principal 

obstacle in numerous advanced countries. Therefore, regarding the speed growth of 

the population, it is sure that examining a large number of images takes time and 

effort besides labor wages and human mistakes. Consequently, the early detection 

leading to suitable treatment of diabetic disorders via computerized systems will be 

assured in the coming future. 

 Any person with an uncontrolled high sugar level in the blood can lead to diabetes 

stage 1 or 2. Over time, this patient is likely infected by diabetic retinopathy in both 

eyes with different infections level. The blood vessels that fulfill blood to the eye's 

retina will be blocked which may lead to swallow and prevent the retina to get the 

blood it needs to work normally. Eventually, these blood vessels might begin to 

bleed a thick fluid into the vitreous, which affects the quality of sharp vision (dark 

spots) and can lead to permanent or partial vision loss. It is crucial in this stage to get 

immediate treatment. Otherwise, the patient is in danger of losing his sight. 

 DR and DME are the most generally diabetic eye pathologies that threat the vision 

and they are the primary causes of blindness in the most advanced nations. Hence, 

early detection accompanied by urgent therapy systems is meaningful in limiting vision 

problems and can minimize the prospect of vision loss. 

 From old traditional methods to new deep learning methods, numerous papers 

have addressed the problem of the detection of pathologies in the retina using OCT 

scans. This retinal medical field has been covered using various feature detectors and 



21 
 

classifiers for the classification and segmentation of retinal disease layers. Certain 

models could be confused and necessitate intervention from ophthalmologists. Deep 

learning models for retinal disease detection over OCT images have received much 

attention in many research fields such as medical analysis and computer-aided 

diagnosis. This continuous growth can be related to the computational performance 

availability and accessibility of processing materials, which were not generally 

affordable 10 years ago. Besides, it has shown forefront achievement widely in image 

processing and computer vision, and especially in image detection object recognition, 

alongside other research fields.  

 Moreover, the effectiveness of deep learning methods has a powerful dependence 

on the structure of the proposed model, which raises the processing burdens. The 

progress and appropriateness of deep learning methods rely simultaneously on the 

design of the model and its adaptation. In this thesis, we propose a novel deep 

learning perspective applied to a medical domain with less processing overheads. 

 

2- Thesis objective 

 In this thesis, the foremost objective is to detect the pathologies from scanned 

OCT images. Therefore, the major plan is to propose a classification model with the 

ability to detect patterns for diabetic macular edema and diabetic retinopathy with no 

intervention of clinical persons analyzing these retinal scans. The model must provide 

the capability to automatically detect pathology with high precision for predicting 

image classes as normal or infected. For that reason, this thesis focused on the 2 

principal retinal pathologies (DR and DME) using an augmented dataset in order to 

train a CNN model which is conceivably considered the most efficient model of deep 

learning algorithms in computer vision.  

 

3- Thesis synthetic plan  

 The first covered subject is an overview and description of the eye structure and 

the commonly diabetic ocular-related diseases that can harm human vision. This topic 

covers detailed information about the pathology besides its causes and symptoms 

where the detection requires subjective reviews of professionals to examine patient's 

volumetric OCT scans. Subsequently, deep learning methods are presented where the 

advantages of DL are shown regarding this topic, alongside with other domains.  

 The second chapter will introduce an overview of data pre-processing and 

classification. The first part will present the method to use for data manipulation as a 

pre-step in order to prepare it to be fed into ML algorithms, leading to the best result. 
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The second will present definitions of classification types, algorithms, approaches, 

terms, learners, and categories to be used partially in this thesis.    

 Based on relevant studies, the third chapter of this thesis will discuss the different 

methods and models used in related work. The first part covers the bottleneck of 

traditional ML including the different modeling techniques, the feature extractors used, 

and the classifiers applied for solving the detection problem. In the second part, we 

present the concept of neural networks and the performance of CNN when applied to 

medical images. In the third part, we discuss the effectiveness of data augmentation 

techniques. 

 The fourth chapter of this thesis will focus on solving the classification of diabetic 

retinopathy pathologies and detect particularly DR and DME. In the first part, we 

present a CNN model being trained from scratch over a pre-processed dataset. We 

show that the proposed model achieved advanced accuracy in detecting pathologies. 

The second part presents a well-architected CNN model by using hyper-parameters 

values that provide better results. The third part discussed the classification results.   

 The fifth chapter will also focus on solving the classification of DME. Based on the 

CNN model presented in the fourth chapter, this chapter presents a fine-tuning of the 

pre-trained model using a similar dataset from other institutions after being enlarged 

using both classical and GAN augmentation methods. This final model achieves 

advanced accuracy in detection of DME cases. 

 Finally, we conclude by a general conclusion presenting different perspectives 

covered by this thesis. 
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1.1. Introduction 
 

 The eye, which is one of the most important and critical part of a human's body, 

can be sensitive to different problems that affect visual quality. The leading cause of 

vision loss is primarily related to age and diabetic pathologies that affect the retina. 

Therefore, due to the value of vision as the main cause of independent healthy life, a 

worldwide warning has been declared about retinal diseases.  

 One of these pathologies is diabetes that affects the retina if it is left untreated. 

Diabetes is a considerable disease that happened when a human's blood sugar is 

excessively high. Eventually, extra sugar in the blood can lead to crucial health 

problems [1], such as heart disease, stroke, blindness, nerve damage, and kidney 

failure. Moreover, people with diabetes appear to be vulnerable to becoming hardly 

sick with the COVID-19 virus [2]; When diabetic people reveal infected, it can be 

tougher to heal due to vacillations in blood glucose levels and the appearance of 

diabetes complexities; Firstly, because the immune system performance made it 

stubborner to fight the virus and may lead to a more extended recovery period. 

Secondly, the virus may flourish in an environment of elevated blood glucose. 

Globally, 1 in 10 persons have diabetes where about 463 million adults over the age of 

20 in 2019 were living with diabetes and more than 4 million are deceased; by 2045 

this will increase to 700 million [2] while new diabetes cases have increased over the 

last decade in people younger than 20 years [3]. 

 This thesis focuses on diabetic retinal-related diseases, specifically DR and DME 

using Spectral Domain OCT (SD-OCT) high-resolution scans that capture the retinal 

depth. OCT is considered a new screening modality used in the automatic classification 

of retinal pathologies.  

 
 In this chapter, we described the eye’s structure, diseases related to age and 

diabetic causing the retinal problems, types of retinal pathologies, and the methods 

applied to observe the retina. Besides, we reviewed the powerful deep learning 

applications in other research fields where its success is considered the main reason to 

choose it as our work methodology for this thesis.    

  

1.2. Overview of eyeball and retinal-related pathologies 
 

1.2.1. The Eyeball  

 

 The eye is an organ located within a protective bony cavity in the human head, 

where the diameter is up to 2.5 cm. The eye is linked to its socket by six muscles 

connected to the sclera [4]. These extra-ocular muscles are responsible for moving the 

eye in different directions. The eye picks up the light reflected by objects, which allows 
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a human to see where a sensory receptor interacts with the light coming or reflected 

from the visual objects, and the retina in the eye converts this light into an electrical 

signal that is transmitted through the nerves and then towards the visual area in the 

brain. The anatomy of the eye is shown in Fig. 1 with different layers.  

 
Fig. 1: Eye's anatomy [4] 

1.2.2. Eye structure  

 The eye consists of a number of different parts working together step-forwardly to 

make a clear vision, where the vision task for every part is listed as follows: 

 

• Cornea: a lens that captures incoming reflected light. It focuses the entry of light 

into the eye. 
 

• Anterior Chamber: space filled with a transparent watery fluid inside the eye 

between the iris and the cornea's surface. It maintains the intraocular pressure, 

expands the globe of the eye, and provides amino acids and glucose for the ocular 

tissues. 
 

 Pupil:  a hole placed in the center of the iris of the eye that permits controlled 

beams of light to hit the retina. 
 

 Iris: a colored division of the eye that aids to determine the entering amount of 

light by moving the eye muscles depending on the pupil instructions. 
 

• Lens: transparent formation in the eye that directs light beams onto the retina. 
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• Retina: nerve layer that fills the end of the eye, senses, and transforms the lights 

into electrical impulses that transfer through the optic nerve to the brain. 
 

 Macula: a small section in the retina that includes sensitive receptors and enables 

a clearly detailed view. 
 

 Optic nerve: links the eye toward the brain and transfers the electrical impulses 

formed by the retina to the visual cortex of the brain. 
 

 Vitreous: a clear, jelly-like substance that fills the middle of the eye. 

1.2.3. Retinal layers  

 A retina is a thin multi-layered membrane holding light-sensitive receptors that 

line the internal aspect of the back wall of the eyeball. It is composed of epithelial, 

glial, and neural cells, which are organized into 10 distinctive layers in which a 

specialized group of receptors, photoreceptors, can be found [5]. These photoreceptors 

are localized around an area near the macula, which is the practical center of the 

retina. The fovea is placed in the center of the macula. The macula is responsible for 

high-resolution and color vision which is provided by different types of photoreceptors.  

  
Fig. 2: Anatomy of the retina [6] 

 Fig. 2 presents the parts of the retina. Photoreceptors are a specialized type of 

neuro-epithelial cells that collects light and transforms it into an electrical signal. 

Photoreceptors are arranged tightly together, permitting a large mass of light to be 

captured across a small area on the retina. Photoreceptors are organized into two 

groups: Rod cells are highly sensitive to light and operate in night vision, whereas 
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Cone cells are responsible for color vision and capable of identifying a wide spectrum 

of light photons.  

The retina measures 0.56 mm and consists of 10 layers presented from the 

vitreous to the choroid as follows: (1) the internal limiting membrane (ILM); (2) the 

nerve fiber layer (NFL); (3) the ganglion cell layer (GCL); (4) the inner plexiform layer 

(IPL); (5) the inner nuclear layer (INL); (6) the outer plexiform layer (OPL); (7) the 

outer nuclear layer (ONL); (8) the external limiting membrane (ELM); (9) the 

photoreceptor layer (rod and cone inner and outer segments (IS/OS); (10) the retinal 

pigmented epithelium (RPE). Fig. 3 presents an organization of retina's layers in an 

OCT scan. 

 

 

Fig. 3: A representation of the 10 layers in the retina's OCT image [6]  
where BM= Bruch's membrane and c= choroid 

 

1.2.4. Retinal pathologies 

 

This part describes the deformations that may occur in the retina caused by 

different deterioration such as aging and diabetic-related issues. Eye deformities do 

not have any preliminary warning system since any pain or vision obstacles may be 

felt or perceived by the person unless the problem improves. Therefore, an urgent 

detection approach is addressed to early discover the foremost silent retinal-related 

eye diseases. Thus, the main scope in this thesis is to examine the diabetic-related 

diseases especially DR and DME.  

Internationally, the number of people with DR will develop from about 126 million 

in 2011 to more than 190 million by 2030 which indicates that more than a third of 

diabetic citizens are infected with DR and the number keeps on rising [3]. Meanwhile, 

the incidence over the last decade is 20% in younger diabetic patients versus 40% in 

older diabetic patients [21].  
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 Diabetic eye disease is one of the eye problems that can harm people with 

diabetes. These ailments involve diabetic retinopathy DR, diabetic macular edema 

DME, cataracts, and glaucoma. Over time, diabetes can cause harm to people's eyes 

that may lead to vision loss progressively [1]. Several actions can be taken to prevent, 

early detect diabetic eye diseases or manage and control diabetes in case of infection. 

Usually, there are neither symptoms signs of diabetic eye disease nor blindness when 

the illness first occurs. An entire widened eye exam assists the doctor to detect and 

treat eye problems at the beginning before serious vision problems can happened. 

 Diabetes strikes the eyes when glucose in the blood is excessively increased, 

which doesn't necessarily lead to blindness in the short term, except for blurriness 

vision sometimes which affects people for several days or weeks, since care plan 

programs or medicines have been changed. This temporary blurred vision is caused by 

upraised fluid levels or swelling in the tissues, and vision will be normal and stable as 

soon as the sugar level reaches closer to average.  

 Over time, high glucose in the blood can destroy the blood vessels in the eyes. 

When the blood glucose begins firstly to rise, especially during the pre-diabetes period, 

the damage can begin without even diagnosed as infected. Damaged vessels 

commence at the beginning to leak fluid that can cause swelling which makes blood 

vessels start to expand and provoke a bleed in the eye, lead to scarring, or begin 

seriously high pressure inside the eye.  

The frequently retinal diseases that can endanger the vision are: 

1.2.4.1. Age-related macular degeneration (AMD) 

 

Age-related macular degeneration (AMD) is an acute eye disease that affects 

the macula and can blur the central clear vision of older people above 50. AMD is a 

condition commonly spread in advanced western countries; it progresses slowly in 

some people, and for other people it proceeds faster which can lead to central 

blindness in one eye or both eyes as shown in Fig. 4.  
 

 
     Fig. 4 : Partial blindness in the central vision caused by AMD [7] 
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AMD is distinguished by degeneration or collapse of the macula. In AMD, blood 

vessels begin to swell up from the choroid located below the retina into the retina. 

This loss in central clear vision induced by AMD makes the person suffer to see face 

details, drive easily, or perform any home improvements. For AMD, there are two 

categories: dry AMD and wet AMD. In wet AMD, the growing blood vessels behind 

the retina start to arise, leaking fluid, leading to fast central vision loss. In dry AMD, 

the macula sensitive cells for lights start slowly breaking down leading to central 

vision decrease over time. Fig. 5 shows an example of fluid leakage in the retina. 

 

Risk factors for developing macular degeneration include aging, gender (which 

strikes women more than men), obesity and inactivity, heredity, cardiovascular 

disease, and smoking.  

 
Fig. 5: Leakage representation caused by AMD [4] 

1.2.4.2. Cataracts  

 

A cataract is a painless disease in the eye's lens providing a cloudy-like shape in 

the crystalline, which creates blurry vision as seen in Fig. 6. It grows slowly with age 

which causing some changes to the cornea. The cataracts are caused commonly by 

diabetes, trauma, some medications like steroids, and extreme UV light exposure. 

Any routine eye exam can observe the cataract while the treatments involve 

glasses, magnifying lenses, or risky surgery to remove and replace the lens by an 

artificial one [4].  Patients with cataract afford badly light sensitivity with dimming 

color; they suffer to see during the night with blurred vision in one or both eyes [8]. 

 
Fig. 6: An eye infected by cataracts [4] 
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1.2.4.3. CytoMegaloVirus Retinitis (CMV) 

Cytomegalovirus retinitis (CMV retinitis) is a dangerous viral eye disease of the 

retina founded most often in persons with weakened immune systems [9]. CMV 

retinitis signs can start with a  blurred vision caused by a slow beginning of floaters 

over a couple of days, or an obstructed spot in the central vision, leading to side 

vision loss in one eye but often develop to the other eye. CMV retinitis can damage 

the retina and destroy the optic nerve if not treated properly or enhancing the 

immune system. People with CMV retinitis will often generate a detached retina.  

Fig. 7 presents a sample of CMV in a fundus image.  

 
Fig. 7: Fundus image with CMV retinitis [10] 

1.2.4.4. Retinal Detachment  
 

Retinal detachment is observed by the existence of fluid under the retina that 

occurs when the retina detaches from its underlying tissue layers [4]. This painless 

lift-away issue usually happens when fluid passes through a retinal tear. The 

accumulation of fluid behind the retina is the reason that separates the retina from 

the back wall of the eye as seen in Fig. 8. The notable symptoms include the 

perception of flashing lights, floaters, or a curtain drawn over your visual field.  

 
Fig. 8: Retinal Detachment representation [11] 
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1.2.4.5. Glaucoma 

Glaucoma is a combination of eye ailments that damages the optic nerve; it 

originates due to raised intraocular fluid pressure inside the eye [4] causing 

headache, dizziness and blurry vision [12]. As seen in Fig. 10, the elevated 

pressure attacks the optic nerve and may lead to blindness.  

 
Fig. 9: An Eye representation with Glaucoma [13] 

Glaucoma is commonly painless and occurs without any symptoms in the early 

phases, thus it is hard to detect. Glaucoma is classified either as open-angle (a 

most common painless form that progresses slowly over a long time) or angle-

closure glaucoma (a painful form with sudden redness of the eye as seen in Fig. 9. 

By the time the damage is permanent and cannot be cured which can cause 

irreversible blindness [13]. 

 
Fig. 10: Developpement of the Glucoma [14] 

 

1.2.4.6. Cardiovascular Disease 

The cardiovascular condition reveals itself in the retina in a number of ways. 

Hypertension and atherosclerosis cause variations in the ratio among retinal vessels' 

diameter and veins. Any ratio diminishing, such as arteries' thinning and veins' 

widening, is connected with elevated stroke risk and myocardial infarction [15].  
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Direct retinal ischemia can be caused by Hypertension that makes the infarcts of 

the retina apparent as cotton wool spots (CWS) and the infarcts of the choroid 

apparent as retinal yellowish spots as seen in Fig. 11. 

 
Fig. 11: Retinal degeneration with yellow spots is a sign of heart problem [16] 

 

1.2.4.7. Diabetic Retinopathy (DR) 

DR is one of the leading causes of blindness among adults around the world, 

and the growth of DR is attached to diabetes mellitus disease duration. DR is a 

disease that can affect and destroy blood vessels and harm the retina which is the 

inside part at the end of each eye. A person can see when the retina captures light 

and transforms it into signals to be decoded by a brain.  

 

a. Healthy Eye                                           b. Eye with DR 

Fig. 12: A normal eye vs. DR eye showing abnormal leaking and vessels growth [17] 

There are two stages of DR [1]. The first is called non-proliferative DR and the 

second is called proliferative DR. The non-proliferative stage occurs near the 

beginning of diabetic retinopathy where blood vessels can be thinner and make a 

bulge that leads to leaking into the retina. The stage of proliferative happens when 

DR becomes worse, some blood vessels are blocked causing new blood vessels to 

expand or increase in the retina leading to dangerous vision difficulties. Fig. 12 
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shows a demonstration how normal eye may look in comparison to proliferative 

stage where the eye with DR contains bulges, blood vessels swelling leading to 

abnormal growth, leaking fluid and some changes in retina's appearance [17]. 

 
DR is considered as epidemic disease affecting one-third of diabetic patients. It is 

considering as the most frequent reason for blindness in diabetic persons. 

Therefore, besides personal caring programs, early exploring and treating can 

reduce the risk of vision loss by 95% [3]. Fig. 13 (a) depicts an overview of healthy 

eye seeing 2 boys clearly meanwhile Fig. 13 (b) shows diabetic patient with DR 

seeing the same boys hardly with hazy and dark spots blocking the sharp vision. 

 

 
a: scene of normal eye            b: scene of eye with DR 

Fig. 13: A display of healthy vision vs. same one infected by DR with dark spots [18].  

DR directs to progressive changes in vasculature formation (including vascular 

tortuosity, branching angles, and calibers) and producing malformations 

(microaneurysms, hemorrhages, and exudates). DR is diagnosed by visually 

inspecting retinal fundus images for the presence of one or more retinal lesions like 

microaneurysms (MAs), hemorrhages (HEs), soft exudates (SEs), and hard 

exudates (EXs) [19] as described in Fig. 14. 

 

Fig. 14: Fundus retinal image representation in the center. Pointing to normal formations (fovea, vessels and 
optic disc) and deformations related to DR: The left section (MAs), and HEs and in right( SEs), and (EXs) [20]. 
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1.2.4.8. Diabetic macular edema (DME) 

 

The macula is the vital partition of a person's retina allowing him to view and 

controls the ability of detailed sight. Any leak into the macula produces macular 

edema. This leak is caused by the accumulation of fluid that is called diabetic 

macular edema (DME). It forms a sort of swelling, and in some cases, cyst 

formation in the macula, caused by chronic hyperglycemia [21]. Progressively, it 

may damage the clear vision, leading to partial or total vision loss. 

DME is commonly a consequence to people who previously have additional 

symptoms of DR and is secondary to retinal barrier rupture where up to one-third of 

diabetic patients are diagnosed with DME. The most significant molecule in the 

retinal barrier rupture is the vascular endothelial growth factor (VEGF). The 

initiation of anti-VEGF and steroid medications for treating DME has increased the 

understanding of pathophysiology [22]. However, the utilization of anti-VEGF drugs 

has shown that about one-third of patients built an immune system to intra-vitreal 

therapy [23]. 

The diagnosis of macular edema is performed clinically. Traditionally, 

stereoscopic fundus photography was used as a standard screening system for 

diagnosing DME [24] but has since been replaced by OCT images. DME can be 

classified into focal and diffuse. Focal macular edema is characterized by the 

appearance of retinal thickening in local areas, derived from leakage of 

individual/clusters of microaneurysms.  

 

      (a): diffuse retinal thickening          (b): cystoid macular edema 

 

       (d): serous retinal detachment           (e): mixed type 

Fig. 15: Representative OCT images of the different types of DME [25]  
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Diffuse macular edema is derived from damaged capillaries, microaneurysms, 

and arterioles. It is distinguished by a more spread thickening of the macula. 

Cystoid macular edema is usually linked to diffuse macular edema, it occurs from a 

breakdown of the retinal barrier with a swollen fluid in the outer plexiform and inner 

nuclear layers. The appearance or absence of cystoid does not affect the diagnosis 

of DME. Fig. 15 presents different types of DME in OCT scans. If the macular edema 

has not improved yet, the first sign of this disease will be the hazy vision in the 

middle of the visual scope amongst the surrounding area of one eye. Another sign is 

the loss of color brightness with double vision. 

Unfortunately, people affected by DME will have symptoms that vary from 

lightly blurry vision to complete blindness eventually. A person having DR might 

develop into DME when there is an unnatural accumulation of fluid in the macula left 

untreated caused by broken blood vessels in the retina. These blood vessels start to 

increase pressure in the eye and leak fluid. Fig. 16 presents an eye with abnormal 

vessels growth in a DR person in image (a) which is the principal cause to swollen 

macula in image (b). This leakage in retina leads to macular edema DME [17].  

 

      a: Eye with DR                            b:Eye with DR and DME 

Fig. 16: DR vs. DME eye where swelling vessels in DR leads into leaking fluid in macula [17] 

DME can also happen after an eye's operation, which can be related to age 

macular deterioration, or as a result of inflammatory disorders that impact the eye 

[26]. Macular edema may occur within a few weeks after any eye surgery related to 

retinal disease. The infection probably hits the second eye with an incidence of 50% 

after the first eye is infected. Contrary to macular edema caused by diabetes, this 

inflammation is temporary and mild, which will be healed using eye-drop treatment. 

Diabetes as well as early unsupervised high blood glucose may lead to DR and 

DME. It is necessary to control the blood sugar otherwise, problems with vision may 
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occur. Fig. 17 presents a diversity of sights where each image indicates the progress 

of disease. DR in group 'A' may differ from thin to dark spots as seen in image 'b' 

and 'c'. Meanwhile group 'B' shows multiple develops of vision failure such as blurry 

vision like image 'd', loss of color brightness in image 'e' or blunt one in image 'f'.   

Early detection of DR and DME can save lives and prevent unpleasant 

consequences. Thus diabetic patients should control their blood sugar initially, then 

undergo clinical examination to check the retina frequently using a powerful optical 

scan tool via Spectral-Domain Optical Coherence Tomography SD-OCT [27]. OCT is 

popularly used in ophthalmology for investigating the morphology of the retina for 

disease discovery. This thesis applies this important optical screening system to 

help patients with diabetic by detecting diseases in their eyes before any partial or 

total blindness may occur. 

       Group A: Eye sight with DR 

 
        a: vision of a healthy normal eye            b: small dark area                      c : large dark area 
 

     Group B: Eye sight with DME 

 
                d: Blurry vision                              e: fade vision                             f: corrugated vision 
 

Fig. 17: Comparison between several sight being seen by eye infected with DR (Group A) and DME (Group B) [17] 

 

1.3. Optical Imaging Modalities 

Optical imaging (especially for retina) has experienced progress in the past 

century [28] to provide better knowledge of the eye in wellness and illness. Important 

developments have occurred in hardware as well as for image analysis software. In 

this section, we will present different ocular imaging techniques that have been made 

to improve the visualization of ocular pathophysiology.  



37 
 

1.3.1. Fundus Photography 

The easy to use fundus photography is a widely available machine that captures 

pictures of the retina and optic nerve from 30- to 50- degree as shown in Fig. 18. 

Almost all ophthalmologists own a fundus camera that is very useful at registering 

the appearance of the optic nerve and presence of blood accumulation, but the 

treatment decisions made based on the captured views are rare [29].  

Although recent cameras produce colored fundus images with high resolution, 

fundus photography has not encountered any significant transformations since the 

last 50 years; improvements that are more novel, introduce developed capabilities 

for generating color photographs of the back and outside pole with computerized 

software.  

 

The fundus dyeing process is applied using some dyes like indocyanine and 

fluorescein to build-up a colored fundus. Besides, a new stereo fundus imaging 

system represents the amount of the reflected light from several view angles for 

depth resolution.  

 
Fig. 18: Color Fundus photograph of a healthy person [30] 

1.3.2. Adaptive Optics (AO) 

Adaptive Optics (AO) is an emerging imaging system that attempts to enhance 

the performance of an ocular system by decreasing the consequences of wave-front 

deformities [31]. AO uses active ocular components to compensate for irregularities 

in the visual path between the target and the camera. It includes three main 

elements: a wave-front sensor, an adjustment element, and a controller system 

[32].  

The efficiency of AO is to produce cellular-level imaging of retina by adjusting 

ocular irregularities. In recent times AO has been integrated with some primary 

imaging devices, such as AO-SLO, AO-OCT. Fig. 19 depicts a presentation of 2 

clinical AO system prototypes with similar contrast and resolution, where (A) 

Photograph of the imagine system and (B) its corresponding acquired image. (C) 

Photo of the scientific integrated system and (D) its corresponding acquired image. 
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Fig. 19: An illustration of 2 AO systems with its corresponding image [33] 

1.3.3. Scanning Laser Ophthalmoscopy (SLO) 

Scanning Laser Ophthalmoscopy (SLO) uses a single low power, monochromatic 

confocal laser to acquire an image of the cornea, the retina, and the optic nerve 

head [34]. The obtained images show higher contrast than regular fundus images 

since they can decrease the factor of dispersed light.  

 

Fig. 20: Images of the normal retinal nerve fiber layer using AO-SLO [35] 
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A powerful enhancement in results is achieved by combining SLO to AO since 

AO-SLO has the capability of real-time observation of photoreceptors and vessels 

which is essential in diagnosing retinal ailments such as DR, and DME as presented 

in Fig. 20 where (A) represents a SLO image of an eye. (B): Magnified blue-channel 

fundus photography image of the region within the red box in (A). (C): Magnified 

red-free SLO image of the same red region in (A). (D): Magnified red-free AO-SLO 

image of the red area in (C). (E), Magnified AO-SLO image of the red area in (A). 

The resolution and contrast are higher in the AO-SLO images (E). 

  1.3.4. Photoacoustic microscopy (PAM) 

Photoacoustic microscopy (PAM) is a safe, non-invasive visual excitation using 

ultrasonic exposure. A low pulse laser in nanosecond duration illuminates and 

attracts a spot tissue, thus producing ultrasonic pressure waves that have been 

focused on the tissue surface and record the signals to generate an image [36]. PAM 

can image retinal vessels besides the RPE with a better contrast ratio than any 

other retinal imaging modality. Quantitative ocular information can be obtained 

using PAM that can determine the anatomic formations of the eye. PAM is important 

to assess the role of oxidative damage, hypoxia, and ischemia in the pathogenesis 

of ocular pathologies.  

 
       (a): Fundus                    (b): Max PAM intensity             (c): 3D PAM image  

Fig. 21: PAM imaging presentation of a Rabbit [36] 

When PAM is combined with other imaging techniques, (especially SD-OCT), 

more structural and useful information can be provided [37]. SD-OCT can acquire 

retinal structural information whereas PAM can provide molecular details of 

biological tissue. Nowadays, PAM stills in the development process without any 

licensed eyes clinical system existence [38], and all the imaging work has been 

performed in vitro. Fig. 21 presents a PAM imaging of eye retinal blood vessels for a 

rabbit where (a) presents a close-up look of the retinal vessels, while (b) shows a 
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projection of PAM waves with maximum intensity, (c) renders the PAM projection 

with a 3D volumetric projection. However, its improvement may considerably 

increase the range of retinal scanning in the future. 

1.3.5. Ultrasound Biomicroscopy (UBM) 
 

UBM provides screening of eye pathologies including the anterior and obscured 

area by overlying opaque pathologic optical structures. It offers diagnostically 

crucial information in diseases such as cysts, neoplasms, and glaucoma given that it 

measures the time between each high radiofrequency pulses (35–50 MHz) reflected 

by the ocular tissues to provide 2D scans as seen in Fig. 22. Furthermore, it 

presents significant biometric information concerning anterior structures, such as 

the cornea and its layers and the posterior chambers. Although it has been in use 

presently for more than a decade, including transducer arrangements, and 

aggregation of light with ultrasound, provide the potential for meaningful advances 

in 3D high-resolution diagnostic imaging structure of the eye [39]. 

 

Fig. 22: An Ultrasonography presentation of retinal detachment [40]. 

1.3.6. Magnetic resonance imaging (MRI) 
 

MRI is a nuclear magnetic resonance-based screening modality that provides 

deeply detailed high-resolution physiological photographs of the internal structure 

and anatomical large field of views, without depth limitations of the eye [41]. MRI 
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produces excellent structural details and tissue contrast for clinical analysis 

considering at a precise radiofrequency pulse, the nuclei particles spin to retrieve 

signals that involve information about the physical structure of molecules. It can 

capture quantitative blood-flow variations in the retina. MRI has the capability to 

offer unique information on how retinal blood-flow is controlled. The density of the 

nuclei and the internal frame affect the magnitude and the decay of the signal. Fig. 

23 presents an MRI scan of both Rat and Cat retina including inner and outer layers. 

 

Fig. 23: A presentation of anatomical MRI of a Rat and Cat retina [41] 

 

1.3.7. Optical Coherence Tomography (OCT) 

 

Optical coherence tomography (OCT) is a non-invasive modality applied for 

cross-sectional imaging without contact. It captures the eye vessels and the 

subsurface structures that cannot be reached by different optical systems or 

operations. Using OCT imaging, ophthalmologists detect notable retinal layers that 

enable them to map and scale these layers that contribute to treatment [42]. It is a 

type of diagnostic equipment where a fast infrared laser emission is pointed at the 
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patient's eye, with a beam reflected at a mirror for real-time visualization. The 

absorbed noisy light is filtered out leading to only consistent light being caught, 

producing HD images of tissue structures [43]. OCT is an important imaging 

modality for its fast development into clinical perspectives, given the advantages 

that it advises clinicians. The light needed for OCT imaging is quite low to use in 

sensitive eye tissue and structures [44]. OCT is widely available in market just after 

5 years since its inception in 1991 [45]. OCT has become the recommended 

modality for imaging diabetic diseases like DME and DR. It can provide volumes of 

retinal layers that can be segmented, allowing measurement of thickness, leading to 

improve diagnosis, where thinning of the tissue fiber layer indicates the onset and 

growth of the disease.  

Compared to ultrasound medical mechanisms, OCT uses similar principles of 

waves where beams are oriented to the examined tissue. The rapid echo waves are 

reflected and scrutinized using IR light delay range to unveil the depth. This delay 

cannot be measured immediately, therefore an interferometer is used, where a 

portion of the beam is pointed to the sample and another part is directed to a 

reference arm. The idea of estimating low-interference is the policy, where time 

cohesion is a property of the light source and characterizes the continuous period of 

waves transmitted by the source, and measured at a specific point in space. Wave 

chains exiting from a light source of low temporal cohesion simply maintain a stable 

bond phase during a very limited period of time, which corresponds to a restricted 

travel range, coherence length, or coherence gate. A light source with a wide 

spectral frequency range consists of a set of wavelengths. The interferometer 

divides the emitting light from a source into two separate paths and collects the 

light coming from the two tracks at the output of the interferometer. The associated 

light strength can be measured as an electrical signal using a light detector [46]. 

In the initial execution of OCT [47], the reference length was changed for 

several scan depths. This modification is described as time-domain OCT (TD-OCT) 

and the principal structure is presented in Fig. 24. For every sample examined, the 

reference wave is scanned in-depth path and the light strength is recorded on the 

image detector. Thereby an amplitude scan (A-scan) for the whole depth 

characterization of the reflected sample is produced. A-scan utilizes a singular one-

dimensional wave to estimate the density of the aimed structure. Diagnoses can be 

well-performed if the aiming is accurate at the targeted formation. A-scan has the 

capability to identify internal swelling structure and composition. Meanwhile, to 

generate a brightness cross-sectional scan (B-Scan), the wave is examined 

alongside the sample. B-scan applies a two-dimensional array of one-dimensional A-

scan waves (produced at higher MHz frequencies) to determine the density and 

generate valuable images. B-scan is helpful due to its two-dimensional detailing. 
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Fig. 24: Operating method of TD-OCT: light emitting from the light source is divided into the 
reference wave and the middle wave. The echo light received is joined again and recorded 

by the detector [48] 

Thus, several one-dimensional scans (A-scan) are performed at different depths 

to create a two-dimensional image (B-scan). Those B-scans, if obtained closely and 

quickly, can be translated into a volumetric image (C-scan) of a retina. There are 

three principal benefits of OCT over older traditional methods: non-invasive, rapid 

scanning, and three-dimensional figures generation. Each volumetric OCT scan can 

take several seconds in comparison to about 20 minutes for techniques such as 

fluorescein tomography. However, despite the speed of OCT, the patient must be 

held still during scanning since the body motion and eye blinking might present 

artifacts measurements into imaging that is common due to the high frequency of 

macular disease happening in aged patients. Typically, during OCT scanning, the 

blinking eye generates black lines across the image, and degeneration of the signal 

is caused by the patient's motion [49]. 

 

       (a): SPECTRALIS+OCT       (b): 3D SD-OCT 

Fig. 25: Demonstration of 3D OCT-2000 SD-OCT machine and SPECTRALIS OCT device [52, 53] 

Fourier domain OCT (FD-OCT or SD-OCT) is the next generation of OCT. It 

provides an effective implementation of the interferometer. In contradiction to TD-

OCT, FD-OCT uses spectral data to produce A-scans without any mechanical 

scanning for the optical depth length. FD-OCT was initially introduced by Fercher et 

al. in 1995 [50]. The principal structure is represented in Fig. 26. SD-OCT is related 
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to TD-OCT, but the detector point is changed by a spectrometer. The spectrometer 

uses a diffractive component to divide the various emitting waves into a line-image 

captured by a fast line-scan camera. 

 
Fig. 26: Optical implementation of spectrometer based OCT (SD-OCT) which contains a 

spectrometer for wave division. (Diagram is taken from Drexler et al. [51]) 

SD-OCT instruments operate greatly as a spectrometer performs, allowing 

exposed results with single exposure only. These SD-OCT systems generate image 

resolutions higher than 12 MP within 5 microns. Fig. 25 (b) illustrates an example 

of an SD-OCT machine named: "3D OCT-2000 Spectral Domain OCT from Topcon 

Medical Systems", which is a system to integrate HD camera (12.3 MP) [52]. The 

appearance of SD-OCT offered the capability to surmount the restrictions of older 

OCT techniques. SD-OCT was able to improve image quality and capturing speed, 

allowing to simultaneously imaging the entire depth information. In addition, the 

SPECTRALIS device has been developed by Heidelberg Engineering [53] combines 

SD-OCT technology with a scanning laser fundus as seen in Fig. 25 (a). It was the 

first platform that has been proposed and it helps to find the fundus intended to be 

scanned with the cross-sectional OCT. This combination allowed precise motion 

tracking for re-scanning at the same position. Fig. 27 shows a recorded sample of 

the eye fundus using SPECTRALIS. The left image is the optic nerve tissue. The 

green line indicates the selected location of the OCT B-scan showed on the right 

image. 

 

 

Fig. 27: The left image is a fundus optic nerve tissue captured by SPECTRALIS machine where the green line is 
represented on the right image as OCT cross-sectional B-scan . The Edema area is presented with blue arrow [54]. 
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1.3.8. Optical coherence tomography angiography (OCTA) 

Optical coherence tomography angiography (OCTA) is a non-invasive photograph 

modality aimed to reveal human retinal vascular networks [55]. OCTA utilizes low-

coherence interferometry to cover variations in backscattered signals to distinguish 

blood-flow areas from static tissue areas. OCT needs a very high density in order to 

obtain the required resolution of the samples to discover the thin retinal capillaries. 

During scanning, the variations of bulk tissue are excluded in order to control 

patient movement, guaranteeing that all detected variations are related to red blood 

flow [56]. OCTA becomes widely applied clinically to detect different 

ophthalmological disorders, such as AMD, DR, glaucoma, and artery/vein occlusions.  

Fig. 28 presents samples of OCTA corresponding to a young Caucasian woman's 

right eye. (A) Full-thickness (ILM to BM) 3 x 3 mm OCTA. (B) Full-thickness 6 x 6 

mm OCTA. (C) Consequent OCT B-scan. (D) 3 x 3 mm retinal nerve OCTA of the 

retinal nerve. (E) 3 x 3 mm retinal GCL OCTA. (F) 3 x 3 mm OCTA of the internal 

retinal depth. 

 

Fig. 28: OCTA Fields of View [56] 
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1.4. Deep Neural Networks: 

  

 Machine learning is a study domain of artificial intelligence that allows systems to 

learn automatically and to develop from practice without or with limited human 

intervention. It concentrates on the improvement of computer programs that can 

collect data and produce models in order to build solid decisions according to previous 

observations or stored data.  

 Machine learning systems are regularly classified as unsupervised or supervised 

methods.  

 In supervised learning method, a model is learned on specific known data 

simultaneously with its corresponding labels. 

 In unsupervised learning method, the labels are useless for the addressed 

application. Consequently, it allows for studying how systems can understand 

functions to determine unknown structures from unlabeled data. Semi-

supervised learning is a different method aiming to utilize small-labeled datasets 

and large unlabeled datasets. 

 In opposite to traditional networks, recent work presents an important focus on 

deep learning where multiple fully or partially connected layers perform learning from 

the dataset. This dataset is passed progressively over a lengthy deep series of layers. 

These architectures have existed for a long time since the expression "deep" was 

presented by Hinton et al. [57] in 2006, the performance of multiple layers of a neural 

network is considering effective by pre-training a single layer and considering the 

other layers as an unsupervised Restricted Boltzmann Machine (RBM). In 2007, Bengio 

et al. [58] produced the Stacked AutoEncoder (SAE); this deep model concatenates 

several Auto-Encoders. Each AutoEncoder owns three layers, firstly a visible input 

layer, another hidden layer, and finally a regenerated layer with the same input size.  

 Finally, the well-known architecture is the Convolutional Neural Network (CNN) 

[59]. CNN contains several layers divided into 2 parts: convolution part (feature 

filtering) and pooling (down-sampling). The series of Conv/Pool layers is resolved 

regularly by a logistic regression layer in order to predict the class of the input image. 

2D Raw images fed into CNN offer the benefit of shortly been processed by performing 

connections and balancing weights with sub-sampling.  

 However, it is apparent that deep architectures especially CNNs, bear complicated 

processing, which requires extremely robust computation machines. Fig. 29, Fig. 30 

and Fig. 31 present examples of architectures for a Restricted Boltzmann Machine, an 

Auto-Encoder and a Convolutional Neural Network. 
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Fig. 29: An example of RBM network architecture [60]. 

 

Fig. 30: An example of AE network architecture [61] 

 

 

Fig. 31: An example of CNN model architecture [62]. 
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1.4.1. Deep learning applications 

 

 Deep learning requires a large volume of data and enormous mathematical 

abilities, opening the skills of artificial intelligence to reach rational thought, and that 

lies in the program itself; much like the mind of a young child is patchy, but his 

flexibility is limitless.  

 

 Deep learning has been proposed to resolve problems linked to different domains 

of research. In optical remote sensing, for example, both AE and CNN have been 

implemented in two diverse ship detection and classification models. Tang et al. [63] 

introduced a feature extraction method based on Stacked Denoising Auto-encoder 

(SDA) and feature classification method using extreme learning machine (ELM). This 

work cannot satisfy the conditions and demand for real-life practice since it was 

applied using simple and tiny datasets. A related work, presented by Ying et al. [64], a 

CNN model has been introduced as classifier, and achieving better detection and 

classification accuracy compared to AE.  

 

 In market financial forecasting field, Barra et al. [65] integrate several CNNs 

models to create a new system that anticipates changes in the market for greater 

gains and fewer losses, better than previous attempts to use artificial intelligence in 

managing portfolios. With the new system being able to analyze the layers of existing 

data that have accumulated over previous data, deep learning is moving forward with 

market expectations, and in this way simulates savvy investors' intuition more than 

acting as a robotic system. The network can also modify buying and selling methods 

based on current and past events. Taking into account current factors increases the 

validity of the decision resulting from both random guessing and trading algorithms 

that are not able to learn in real time.  

 

 In art field, a novel CNN model has succeeded in generating realistic, reliable face 

graphics, from just a quick scribble of the subject proposed by Chen et al. [66]. The 

model was trained in portraits of the faces of celebrities and has proven ability to 

transform scribbles into realistic images in a revolutionary style Fig. 32 illustrates an 

example of scribble renovation. It is suggested to use the technology to identify 

suspects in criminal investigations, or to facilitate moving images in movies and 

electronic games.  

 

 In the biomedical domain, RBM and AE were applied to resolve problems of 

deformities detection and classification of Electro-cardiogram impulse (ECG) [67,68] 

and Electro-myogram waves (EMG) [69]. Beside solving detection problems, deep 
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learning is also being widely adopted for resolving recognition problems like traffic 

signs and symbols [70], faces [71] and fingerprints [72]. 

 The possibility of deep learning developing special mechanisms of thinking to reach 

advanced stages that resemble human beings has been a subject of controversy 

among scholars and philosophers, many of whom promised a form of science fiction 

until we reached in the present era to the first phases of this new orientation of 

machines. 

 
 Deep learning has already begun years ago to produce creative works. Like 

poems, plastic arts, and music. The new approach to developing the creativity of 

robots began with primitive works, similar to the writings and drawings of beginners or 

children; but the technical development and the promotion of deep learning of 

machines and providing artificial intelligence with massive data, apparently an 

unprecedented shift in this framework, may change our stereotypical view of creativity 

and our bias towards the idea that it is monopolized by our species. 

 

 

Fig. 32:  Example of generated HD face images (Bottom) produced by handy drafts 
(top) and proposed by [65]. 

   

 In this context, Bena et al. [73] have developed a system that can poetize in a 

professional manner, as simulating the emotions and feelings of human creators. The 

new system was fed with huge quantities of verses from poetry from various sources, 

with their classification within the categories that correspond to the type of feelings: 

Like sadness, anger, and joy, artificial intelligence brings new systems into its 

database with original verses. The new system showed the strength of automated 

texts to stimulate emotion similar to the emotions taken by the learned texts of 

human authors literary.  

 Moreover, in the sounds research domain, a group of researchers seeks to develop 

artificial intelligence that generates sound effects that simulate reality enough to fool 

the general public. These are news that may spoil the viewer's pleasure or cause the 
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aura of film magic to fade among its fans because many of the sound effects that we 

hear in films and television are prepared and later modified by Folie-Art artists.  

 Furthermore, in a recent study, a small group of participants fell into the scam. 

They thought the noise produced by the AI was real, according to EEE Spectrum 

reports [74]. Sometimes, participants chose AI voices as more realistic than real 

voices in the audio.  

 Ghose et al. [75] presented an artificial synthesis work of synchronized 

soundtracks for silent videos with DL where 41 out of 53 participants were deceived by 

the sounds generated by AI. This seems horrifying to the fate of the Folie-Art artists 

working on studio sound effects, but for now, the algorithm for producing simulated 

sounds is still far from perfect. 

 The researchers also created several systems for composing songs and music, 

including Dubai's song [76]. The world's first music track created by AI in May 2018, 

strongly renewed the debate about the ability of machines to think, consciousness and 

feeling, and to engage in one of the most specialized fields of humankind, linking the 

arts to emotions and human conscience.  

 Even if the creative aspects (Like literary works and figurative art) are among the 

most prominent aspects of human uniqueness, yet the AI companies strive to make 

progress in them, to enter the machines slowly and steadily, achieving noticeable 

improvements. For example, Google Deep Dream [77] learned the mechanism of 

object recognition by scanning millions of pixels by pixels, to learn at first how to 

distinguish between all colors and their grades; then to scan the boundaries of the 

spaces between objects, learn through time how to separate one object from another, 

and build an index for all objects of all the scanned images; then came up with a 

method for arranging and classifying objects with similar properties, and learning to 

reproduce random combinations of these objects.  

 A new AI project has shown just how cheap it can be to design celebrity faces with 

Deep-Fakes. The Black-hack Computer Conference showed a fake image of famous 

actor Tom Hanks developed by artificial intelligence using deep learning algorithms for 

machines. Tully [78] created a virtual version of Hanks, to see how easy it is to use 

artificial intelligence algorithms in disinformation campaigns. The new technology 

improved Hanks' image at a lower cost, although flaws appear when viewed at full 

resolution. Hanks' details remain familiar like the green color of his eyes and the shape 

of his eyebrows. To create the fake, he used a few hundred Hanks' photos and spent 

less than $100 improving his facial recognition software to match his features. Faced 

with this advancement in face design techniques, ethical concerns emerge from their 
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disadvantages, as they are low-cost and easy, which may lead to an exacerbation of 

counterfeiting campaigns and the spread of misinformation on the Internet. 

 

1.5. Conclusion 

 

 In this chapter, we have studied the eye structure and retinal disease 

pathophysiology involving a list of the optical pathologies that may hit the eyes. 

Moreover, screening techniques are described.  After that, we introduced the different 

approaches of deep learning, and we pointed to the applicability of these methods in 

different domains of research.  

 To be mentioned eventually, neural networks establish a denominator of all the 

discussed methodologies in this thesis, the applications remain attached conceptually. 

Therefore, the subsequent chapters were managed with the necessity of preserving 

passage of the chapters sequentially. Although we assumed that, the readers are 

familiar with typical theories and notions of AI, CV, ML, and DL. Contrarily, it is 

recommended to follow the references mentioned in each chapter.  

 In the next chapter, we will present an overview of data pre-processing methods 

and classification techniques.  
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2.1. Introduction 

 

  The development of IT methodologies and algorithms has created a large amount 

of data in different fields and in various structures. These generated data can be 

stored locally in several formatting or distributed in multiple database servers, or 

publically published on the Internet. The importance of well-presented datasets has 

been discussed and shown in different studies and research fields. This stored data has 

been considered as a precious factor of decision making in solving detection and 

recognition problems. 

 Data preprocessing in ML/DL is a significant step that serves to improve the data 

quality and helps to obtain essential insights from the data. In order to produce a 

suitable data for creating and training DL algorithms, several methods have been 

covered to prepare and manipulate raw data such as normalizing, organizing, and 

cleaning. It is a kind of data mining system that converts raw data into meaningful 

formatting data. Thereby, data analysis has been considered as the major step to 

extract knowledge from stored information. It presents a tool for processing digital 

structured data for any data type such as natural text languages, images/videos, and 

sound, etc... 

 Data pre-processing is the opening action pointing to the start of the process in a 

DL model. In reality, data is deficient, discrepant, inexact (with errors), and usually 

requires specific characteristic values. To solve this, data preprocessing rebuilds this 

data lacking and deformation, in addition, it helps to clarify, setup, and prepare the 

raw data to be ready to be trained by DL algorithms. 

 

2.2. Data pre-processing in ML 

 

 Data pre-processing in ML is a data-mining technique that changes raw data into a 

comprehensible, readable and clear format. In order to perform this transformation, 

several iterative steps have to be achieved:  

2.2.1. Dataset acquisition: 

An initial step to build models is to acquire the appropriate dataset collected from 

multiple and dissimilar sources to be combined in a conventional format to create a 

dataset. It contains different steps: 

 Data selection, transformation, or combination: select and retrieve related data 

from the data sources/databases to study, where data are converted or 

consolidated into an appropriate and suitable form for performing tasks. 
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 Data integration: at this phase, various unrelated sources of data may be 

merged in a common source. 

2.2.2. Dataset Cleaning:   

Data cleaning is a stage where incomplete or inappropriate data are excluded 

from the set. It is crucial to recognize and precisely handle the absent values. 

Otherwise, incorrect and wrong results and conclusions from the data set might be 

faulty drawn. Typically, there are three methods to deal with missing data: 

 Removing a specific column or row having a null/empty value, taking into 

concern that the rule requires more of two-third of the values to be missing. 

Nevertheless, this method is inefficient and unwise to use with inadequate 

dataset samples. 

 

 Computing the median for numeric features of column or row with null value by 

substituting the result for the lost value that can make a variation to the 

dataset. 

  

 Approximating values of linear data: Another way of estimation is the deflection 

of neighboring values. 

2.2.3. Dataset splitting: 

Dataset splitting is an essential procedure in ML models where the dataset must 

be divided into two isolated sets – training sets (for training the ML models with a 

size ratio usually varies from 70% to 80% ) and test sets (for testing the trained 

models and predict results with a size ratio normally from 20% to 30%). The 

splitting method takes into consideration different variables like the shape, type, 

and size of the dataset. The training part of dataset is fed into classifier that is a 

necessary step in which intelligent methods are used to extract useful features and 

to recognize the surely useful patterns and features based on various criteria. 

 

2.3. Classification tasks in ML 

 Classification is a task that necessitates the application of "learning from data" of 

ML algorithms, where the training dataset leads to obtain more reliable, observed 

features, used to define specific target class type. Generally, a prediction task of the 

target class is the subsequent step following the extracted features.  

  
 In this thesis, we are motivating to use classification and prediction; also, we can 

observe that there are two categories of classifications: 
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 Supervised classification: classes are identified in advance; they normally possess 

an associated substance. 

 

 Unsupervised clustering: classes are based on the formation of objects; the 

substance correlated with classes is not easy to define. It is necessary to 

determine the measures of aggregation.  

 

2.3.1. Unsupervised classification: 

     The concept of clustering is to attempt to group the related, similar, and alike 

kind of objects (documents) by considering the most satisfying situation; everything 

in the same collection should be similar. Moreover, two distinct group parts should 

not be similar. Unsupervised classification is applied when there are objects that are 

not classified. At the end of the process, the objects must be related to one of the 

classes produced by the classification. There are two classes of unsupervised 

classifications: hierarchical (HC) and non-hierarchical (NHC). 

 

  In the HC, the generated subsets are nested together hierarchically. We 

recognize the descending HC that begins from the group of all the objects and 

divides these objects into a particular number of subgroups, next each subgroup 

being split into another number of subgroups, and so on. Furthermore, the 

ascending HC begins with an individual group that is divided into subgroups, and so 

on. To decide which classes we are going to join, we use the aggregation criterion 

where it compares classes to choose the most similar classes based on certain 

measures, like the nearest neighbor, the average distance, etc... 

 

  In the NHC, objects are not hierarchically structured. We notice the term 

"partition" when each object is only part of a subgroup. Otherwise, "recovery" is the 

term where each object may refer probably to certain groups. 

 

2.3.2. Supervised classification: 

  Supervised classification is the method used regularly for the analysis of 

quantifiable image data. A training dataset has been used to get fitter shapes that 

could be applied to detect the destination class type. Once these conditions are 

defined, the following task is to predict the class.  

 

  Different algorithms are convenient to do the task. Some can manage 

predefined classes that overlap each other (called soft classification methods); 

others generate firm borders between classes (called hard classification methods). 



56 
 

2.3.2.1. Standard terms in classification algorithms 

 Classifier: An algorithm that outlines the input data to a particular class. 
 

 Classification model: A classification model attempts to form some result from 

the input provided from training. It will predict the class type for the new 

data. 
 

 Feature: A feature is a specific measurable characteristic of an input data 

being observed. 
 

2.3.2.2. Types of classification: 

 Binary Classification: a task with two potential results (True/False, Yes/No). 
 

 Multi-class classification: a task with more than two class classification 

results. Each sample unit is mapped to only one target class label. 
 

 Multi-label classification: a task where each sample unit is assigned to more 

than one class target labels.  
 

2.3.2.3. Types of classification learners: 

 2.3.2.3.1. Lazy learners 

  It is a type of learner based on comparing a new test sample with the 

stored training data. The classification is handled based on the most similar 

data in the stored one. Lazy learning methods are usually slower to evaluate. 

Different classification algorithms may be found like k-nearest neighbor (KNN). 

 2.3.2.3.2. Eager learners 

  Eager learner's methods build a classification model based on the provided 

training data before accepting data for classification. It must be capable to 

perform to a single hypothesis that satisfies the whole sample space. Due to 

the model architecture, eager learners necessitate a long time to train and less 

time to predict. Different classification algorithms may be found like Decision 

Tree and Artificial Neural Networks (ANN). 

2.3.2.4. Classification algorithms and techniques 

     Based on the application purpose and nature of the possessed dataset, different 

classification algorithms are now available in ML with no conclusion that one is 

above the others. Among the classification techniques, in this thesis, we will be 

present the used classifier listed by some state-of-the-art methods. 
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2.3.2.4.1. Softmax classifier: 

 

Softmax classifier is a class of multi-class Logistic Regression based on 

Softmax function. Contrary to other functions such as RELU and Sigmoid, 

Softmax classifier is a type of activation function used for classification usually; it 

uses the cross-entropy loss and provides "probabilities" for each class. The 

Softmax regression is a class of logistic regression presented in Fig. 33 that 

normalizes input into a vector of values that result in a probability distribution 

where the sum of the total is up to one. The Softmax regression model calculates 

first a score for each class, and then estimates the probability of each class by 

applying Softmax function to the scores. In ML, Softmax is employed through a 

neural network layer added with the same number of nodes as the output layer. 

The Softmax function is presented in equation (1) as below:  
 

𝑷(𝒚 = 𝒋 | 𝒛(𝒊)) =  ∅𝑺𝒐𝒇𝒕𝒎𝒂𝒙(𝒛(𝒊)) =
𝒆𝒛(𝒊)

∑ 𝒆
𝒛

𝒌
(𝒊)

𝒌
𝒋=𝟎

     (1) 

Where z is an input defined in equation (2) as:  

𝒛 = 𝒘𝟎𝒙𝟎 + 𝒘𝟏𝒙𝟏 + … + 𝒘𝒎𝒙𝒎 =  ∑ 𝒘𝒍𝒙𝒍
𝒎
𝒍=𝟎 =  𝒘𝑻𝒙                   (2) 

 The softmax function calculates the probability that the training sample x(i) 

belongs to class j knowing the weight and the net input z(i) which is a vector 

containing the score of each class for the instance x(i). Note that, w = weight 

vector, x = feature vector of a single training sample, and w0 = bias unit.  

 
Fig. 33: : Softmax Regression [79] 
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 Therefore, Softmax regression estimates the probability that the instance 

x(i) belongs to class j given the scores of each class for that instance. Moreover, 

Softmax regression classifier predicts the class with the highest estimated 

probability. To achieve this prediction model, a cost function is defined to be 

minimized using an optimization algorithm, which leads to estimates a high 

probability for the target class and hence a low probability for the others. Cross-

Entropy is a type of cost function that penalizes the model when it estimates a 

low probability for a target class. Cross-Entropy is the most known hinge loss of 

Softmax regression in discriminative models that is regularly applied to calculate 

losses that can be assumed when training a dataset. This loss computes the 

difference between the predicted output to the actual output using a cost 

function J and a loss function H as presented in equation (3). 

𝑱(𝑾) =
𝟏

𝒏
 ∑ 𝑯(𝑻𝒊, 𝑶𝒊)

𝒏
𝒊=𝟏      (3) 

 J(W) is the average of all cross-entropies over the n training samples where 

T stands for the true class labels, O is the actual output and i is the number of 

layers. The Cross-Entropy function is defined in equation (4) as: 

 𝑯(𝑻𝒊, 𝑶𝒊) =  − ∑ 𝑻𝒊 . 𝒍𝒐𝒈 (𝑶𝒊)               (4) 

2.3.2.4.2. Artificial Neural Networks: 

 ANN is a collection of related input and outputs known as connectionist 

systems. The network in the learning stage learns by modifying the weights of 

the processing inputs examples to be capable to predict the right class label. 

Several network architectures are now possible like convolutional, feed-forward, 

etc.  The suitable architecture hangs on the purpose of the model. For image 

processing, feed-forward models provide fairly reliable results but convolutional 

networks have superior performance.  

 The number of multiple hidden layers in the architecture depends on the 

intricacy of the task that is running to be outlined by the model. More hidden 

layers lead to complex multi-connected models like deep networks and take a lot 

of time to train and modify weights. Fig. 34 shows a demonstration of two hidden 

layers of ANN architecture where all neurons are connected. Due to the unknown 

characteristic significance behind the learned weights, ANN has inferior model 

interpretability in comparison to model like Decision Tree. ANN performed better 

with continuous and consecutive inputs/outputs values based on real applications 

in the world, and capable to classify inexperienced exemplars with high sensitivity 

to noise. ANN is a type of eager learners considering it trains earlier a model to 

practice it for later prediction. 
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Fig. 34: A flowchart overview of ANN architecture [80] 

2.3.2.4.3. K-Nearest Neighbors (KNN) 

 KNN classifier is a lazy type non-learning algorithm based on the majority 

vote of the case's neighbors to classify a new case among all available stored 

cases. The case is related to the class type which is most apparent amidst its k 

nearest neighbor calculated by a distance function, like Manhattan and Euclidean 

(used for continuous variables), and Hamming (used for categorical variables), 

where k is an integer number handy hardly specified. It weights the participation 

of every of the k neighbors depending on their distance utilizing the following 

query providing superior weight to the nearest neighbors. 

𝒘 ≡
𝟏

𝒅(𝒙𝒒,𝒙𝒊)
           (5) 

 KNN is a model that simply classifies items based on similar feature but it is 

computationally consuming in time and resources. Moreover, a pre-processing 

step as denoising is necessary before proceeding for KNN and variables must be 

normalized else higher scale variables may bias it. 

 
2.3.2.4.4. Support Vector Machine (SVM) 

 SVM is a supervised ML algorithm that is mostly used in classification 

challenges. It is a discriminative classifier formally defined by a dividing hyper-

plane (in multidimensional spaces). Given labeled training data, the algorithm 

outputs an optimal hyper-plane that classifies new samples, such as a line (called 

decision boundary) in two-dimensional space that separates the data points in 

two parts wherein each class lay on either side. The perfect decision boundary is 

the one that has the longest distance from the nearest points of these two 

classes (called support vectors). The gap that the closest points define around 

the decision boundary is called the margin. As a result, SVM firstly finds lines or 

boundaries that properly classify the training dataset, then, it chooses the one 

that has the max distance from only the closest points (high Gamma). 
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 Theoretically, in the Maximum Margin Classifier (MMC), the idea is to make 

the margin as large as it can be, therefore, the threshold boundary must lay in 

the halfway between these closets points. Thus, this classifier cannot achieve 

zero tolerances with perfect separation due to outlier observation. Since MMC is 

extremely sensitive to outliers in the training dataset, it is better to Tradeoff by 

allowing misclassification of the outlier observation to solve the sensitivity issue. 

This misclassification permit is an example of Bias/Variance Tradeoff that plagues 

all of ML. The Regularization "C" parameter tells the optimizer how much you 

want to evade misclassifying each training example.   

 In other words, before we allowed misclassification, we picked a threshold 

that was very sensitive to the training dataset (low bias), and it performs poorly 

when we got a new data sample (high variance). In contrast, when we picked a 

threshold that was less sensitive to the training data and allowed misclassification 

(higher bias); it performed better when we got new data (low variance). When 

we allow misclassification, the distance between the observations and the 

threshold is called Soft Margin (SM).  

 In order to achieve the optimal SM, we use Cross-Validation to determine 

how many misclassifications and observations to permit inside of the SM to get 

the best classification. Therefore, when we use SM to determine the location of a 

threshold, we are using an SM Classifier (called Support Vector Classifier "SVC") 

to classify observations.      

 In real-world applications, finding an optimal class for millions of tons of 

overlapped training datasets takes a long time, and neither MMC nor SVC don't 

perform well with this type of data due to a lot of misclassifications. Therefore, 

Support Vector Machines (SVM) can handle this issue by (1) starting with data in 

relatively low dimension; (2) move the data into a higher dimension (data 

transformation); (3) find an SVC that separates the higher dimensional data into 

two groups. In order to choose the best mathematical data transformation, SVM 

use Kernel Functions to find systematically SVC in higher dimensions.  

 In data transformation, we can use Polynomial Kernel with a parameter "d", 

which stands for the degree of the Polynomial; when d=x, the Polynomial Kernel 

computes the relationships between each pair of observations in x-Dimension, 

and these relationships are used to find SVC. In summary, Polynomial Kernel 

systematically increases dimensions by setting the degree of the Polynomial "d", 

where a good value of d is found using Cross-Validation.  Another very commonly 

used Kernel is the Radial Kernel (called Radial Basis Function Kernel "RBF") where 
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it finds SVC in infinite dimension. The nearest neighbors have a lot of impact on 

organizing the new observation by using their classification.  

 Therefore, Kernel functions only calculate the relationships between every 

pair of points as if they are in the higher dimension; they do not actually do the 

transformation. This trick, calculating the higher dimensional relationships 

without actually transforming the data, is called the Kernel Trick that reduces the 

amount of computation required for SVM by avoiding the math that transforms 

the data from low to high dimensions and it makes relationships in the infinite 

dimensions used by the Radial Kernel possible.    

 

2.3.2.4.5. Decision Tree 

 Decision Tree is a decision-maker algorithm graphically represented like a 

tree model. It breaks the data into two or more homogeneous parts (leaf) 

depending on the most important predictors in the input variables. It generates a 

series of rules that can be applied to classify the data. To determine a 

differentiator, the algorithm analyzes all features and produces a binary 

separation on them, where the categorical data is divided by category, and for 

continuous data, a cut-off threshold is applied. It will next pick the one with the 

lowest cost with the highest accuracy and iterates recursively until divides the 

data into all sides successfully or by reaching the deepest depth.  

 DT needs lightly data preparation that is used for numerical and categorical 

data classification. Furthermore, it can create complicated trees that do not 

generalize properly, as well as small variations of data may lead to feeble 

decision trees. An example of a decision tree is shown in Fig. 35. 

 

Fig. 35: Decision Tree classification algorithm architecture [81] 
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2.3.2.4.6. Random Forest 
 

 Random forest is a supervised algorithm usually used for classification. It 

offers several trees and classifies items depending on the votes of the majority of 

the trees. This is a classifier that works as an estimator to matches a number of 

decision trees on several samples of data and calculates average that increases 

the accuracy of the model and limits over-fitting.  

 

 RF can manage high dimension extensive dataset with missing data while 

keeping the accuracy. An example of a RF is presented in Fig. 36. 

 
Fig. 36: Random Forest algorithm outline [82] 

2.3.2.5 Classifier performance evaluation 

 
  The evaluation of the classifier performance is the most fundamental 

procedure to prove its applicability after training a model. Since supervised and 

unsupervised classifiers are learned on a calculable training dataset, the trained 

classifier has to be evaluated experimentally on a different examination test data, 

where the performance on the multi-set is a representative for the achievement on 

unseen data. It checks the classifier’s generalization capability.  Therefore, there 

is a need for a measure function estimating the classifier performance empirically. 

 
2.3.2.5.1. Holdout method 

 
 The holdout is the most frequent method where the given dataset is split 

into two sets, to test and train a model with a ratio that is set to 20% and 80% 

or 30% and 70% respectively. The train partition will be applied to learn from the 

dataset and train the model, while the unseen test partition will be utilized to test 

the performance of prediction. 
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2.3.2.5.2. Cross-Validation 

  
 Cross-Validation is a classifier validation method where the dataset is 

randomly split into k mutually exclusive sub-groups, each almost with identical 

size, and one is held for experimentation while others are utilized for training. 

This process is repeated during the entire k-folds. K-fold Cross-Validation can be 

handled to prove that the model is not over-fitting ensuring that there is no 

overlap between the validation samples. An example of a 10-fold is presented in 

Fig. 37. 
 

 

Fig. 37: A representation of 10-fold Cross-Validation [83] 

2.3.2.5.3. Confusion matrix (Precision and Recall) 
 

 Confusion Matrix is a type of error measurement matrix that measures the 

performance of a supervised classifier. The confusion matrix presents visually in a 

layout of the contingency table matching the predicted class (formed by column) 

with the actual class (formed by row) of the objects forming the sample. We have 

two types of information: the number of times the model was mistaken and the 

type of error when grading.  
  

Table 1: Confusion Matrix for binary classification 

   

Predicted Class 

X (+) Y (-) 

A
ct

u
al

 
C

la
ss

 X (Yes) VX,X (TP) VX,Y (FN) 

Y (No) VY,X (FP) VY,Y (TN) 
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Table 1 presents a confusion matrix example for a model of two classes X and 

Y where the performance is assessed through the values of the table by 

comparing the assignment situation and the origin situation in order to estimate 

the error rate. In this table, 𝑉𝑋,𝑌 represents the number of cases of class X 

assigned to class Y and 𝑉𝑌,𝑋 represents the number of cases of class Y assigned to 

class X, while 𝑉𝑋,𝑋 and 𝑉𝑌,𝑌 represent the correct number of classification. 

  

A confusion matrix is built from the four values generated as a result of 

classification. A binary classifier predicts all test samples as either negative or 

positive. This prediction provides four results – true positive (TP) for the correct 

prediction as positive, true negative (TN) for correct prediction as negative, false 

positive (FP) for incorrect prediction as positive and false-negative (FN) incorrect 

prediction as negative.  

 

From this confusion matrix, we can identify six common types of measures: 
  

 Error Rate 

 

Error rate (ERR) is measured as the sum number of wrong predictions (FN + 

FP) divided by the entire number (P + N) of the dataset where ERR=0 is the 

optimal result.  

    𝑬𝑹𝑹 =
𝑭𝑷+𝑭𝑵

𝑻𝑷+𝑻𝑵+𝑭𝑷+𝑭𝑵
=  

𝑭𝑷+𝑭𝑵

𝑷+𝑵
                                   (6) 

 

 Accuracy 

 

Accuracy (ACC) is computed as the sum number of all correct predictions (TP 

+ TN) divided by the entire number of the dataset (P + N), where ACC=1 is 

the optimal result, moreover ACC + ERR= 1. 

 

𝑨𝑪𝑪 =
𝑻𝑷+𝑻𝑵

𝑻𝑷+𝑻𝑵+𝑭𝑷+𝑭𝑵
=  

𝑻𝑷+𝑻𝑵

𝑷+𝑵
       (7) 

 

 Sensitivity (Recall or TP rate) 

 

Sensitivity (SN) or recall (REC) is measured as the number of correct positive 

predictions (TP) divided by the entire number of positives (P) where SN=1 is 

the optimal sensitivity. 
 

𝑺𝑵 = 𝑹𝑬𝑪 = 𝑻𝑷𝑹 =  
𝑻𝑷

𝑻𝑷+𝑭𝑵
=  

𝑻𝑷

𝑷
     (8) 
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 Specificity (TN rate) 

 

Specificity (SP) or (TNR) is determined as the number of correct negative 

predictions (TN) divided by the entire number of negatives (N) where SP=1 is 

the optimal specificity. 
 

𝑺𝑷 = 𝑻𝑵𝑹 =  
𝑻𝑵

𝑻𝑵+𝑭𝑷
=  

𝑻𝑵

𝑵
       (9) 

 

 Precision (Positive predictive) 

 

Precision (PREC) or (PP value) is determined as the number of correct 

positive predictions (TP) divided by the entire number of positive predictions 

(TP + FP) where PREC=1 is the optimal PPV. 
 

𝑷𝑹𝑬𝑪 = 𝑷𝑷𝑽 =  
𝑻𝑷

𝑻𝑷+𝑭𝑷
        (10) 

 

 False positive rate (FP rate) 

 

False positive rate (FPR) is determined as the number of wrong positive 

predictions (FP) divided by the entire number of negatives (N) where FPR = 0 

is the optimal value. Moreover FPR+TNR=1. 

 

𝑭𝑷𝑹 =  
𝑭𝑷

𝑻𝑵+𝑭𝑷
= 𝟏 − 𝑻𝑵𝑹 = 𝟏 − 𝑺𝑷   (11) 

 F1-Score 

 

F1-Score is a classifier measurement for the harmonic mean - ranging from 0 

to 1 - between precision and recall. It is a measure of test accuracy where a 

greater precision rate accompanying with less recall rate provides a 

remarkably accurate result; nevertheless, a large missing number of samples 

are complex to classify. Higher F1-Score leads to better model performance. 
 
 

𝑭𝟏 =  𝟐 .
𝑷𝑹𝑬𝑪 .  𝑹𝑬𝑪

𝑷𝑹𝑬𝑪+ 𝑹𝑬𝑪
= 𝟐 .

𝟏
𝟏

𝑷𝑹𝑬𝑪
 + 

𝟏

𝑹𝑬𝑪

     (12) 

 

2.3.2.5.4. Receiver Operating Characteristics (ROC curve) 
 

 ROC curve is a graphical chart that represents the distinguishing efficacy of 

a classifier method, as its discernment threshold is diverse. It is commonly used 

for measuring the performance and the accuracy of classification models, which 

shows the conciliation between the true positive (TP-Sensitivity) and the false 
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positive (FP-Specificity). A perfect accuracy model should have an area of 1.0. Fig. 

38 shows a demonstration of ROC Curve chart. 

 
 The area under the ROC Curve (AUC) calculates all the areas beneath the 

whole ROC curve, it presents a measure of performance overall potential 

classification thresholds, and measures the quality of the predictions regardless 

chosen classification threshold. AUC varies value from zero to one where AUC=1 

signifies a 100% correct predictions. 

 

 

Fig. 38: A representation of ROC Curve plot [84] 

2.4. Conclusion 

 In this chapter, we presented the different definitions and notations of data 

processing as a pre-step for the classification process in machine learning. This pre-

step is considered as an important phase that provides improvement of the qualified 

data that assists to reach overview of the dataset. We presented also that the pre-

processing phase is considered as a main step that helps to extract features, besides it 

aims to organize and prepare the dataset to become appropriate to be fed into ML 

learning process.  

 Moreover, the different types, learners, and models of classification have been 

defined, besides the description of the concepts of the algorithms and techniques of 

classification have been presented also. Finally, a presentation of different evaluation 

methods has been included. The following chapter presents the related work for retinal 

disease segmentation and classification. 
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3.1. Introduction 

 

 In this thesis, we are attracted to image processing for classification using CNN 

based methods of DL. More specifically, we are working on the detection of two 

diseases, which are DME and DR. In this chapter, we present some methods compared 

to our work by covering their limitations. These similar works include image 

segmentation, classification, and feature extractions. Finally, we conclude this chapter 

by defining the circumstances and motivations, which hold us to present this work. 
 

3.2. Literature review 

3.2.1. Conventional ML analysis 

  

 The most initial techniques to identify and distinguish retinal pathologies 

from images involved various image processing methods accompanied by feature 

extraction plus classification. In this section, we evaluate some existing approaches 

for detecting diabetic pathologies based on image analysis. 

 

In order to approach the problem of DME detection, Sankar et al. [85] proposed 

a model based on a semi-supervised learning model using the Gaussian Mixture 

Model (GMM) over OCT volumes, where the method begins with a pre-processing 

stage involving resizing, flattening, filtering. Then extracts features considering the 

intensity and Local Binary Pattern (LBP) after being reduced using PCA as seen in 
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Fig. 39. The proposed method allows the classification and identification of the 

abnormalities as outliers within the volume. Experiments are performed over two 

datasets with 32 OCT volumes for the first dataset; the results achieved a specificity 

and sensitivity of 93% and 80%, respectively. For the second dataset that includes 

30 OCT volumes, the results achieved a specificity and sensitivity of 80% and 

100%, respectively. 

           

Fig. 39: Flowchart of the Gaussian mixtures model creation [85] 
 

 Srinivasan et al. [86] presented a classification system to differentiate 

normal, DME, and AMD SD-OCT volumes. These volumes were improved by firstly 

decreasing the noise using the sparsity-based block-matching and 3D-filtering 

(BM3D) denoising method where BM3D is a collaborative filtering process that group 

similar blocks from the image. A block is grouped if its dissimilarity with a reference 

fragment falls below a specified threshold- block matching. All blocks in a group are 

then stacked together to form 3D cylinder-like shapes. Filtering is done on every 

block group. Linear transform is applied followed by Wiener filtering, and then 

transform is inverted to reproduce all filtered blocks. Secondly flattening the curving 

of the retina and cropping the images. Fig. 40 shows an overview of the proposed 

algorithm. Next, histogram of oriented gradients (HoG) is used to extract features 

information for each slice of a volume, and finally, support vector machine (SVM) is 

applied as a trained linear method using a dataset of 45 patients evenly divided 

within three groups and produced a classification percentage of 100, 100 and 

86.7% for normal, DME and AMD cases, respectively. This dataset needs to be 

refined since it has different sizes of scans in each volume. Besides, it does not offer 

a large variety of DME lesions.  
 

 

Fig. 40: Overview of the algorithm for classifying SD-OCT volumes [86] 
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Alsaih et al. [87] proposed a classification analysis of OCT data for detecting 

DME. First, a step of preprocessing including (i) denoising, (ii) flattening, and (iii) 

cropping has been used. Next, a concatenation of the extraction of the histogram of 

oriented gradients (HOG) and local binary pattern (LBP) features have been 

presented. A multi-resolution approach has been used as well as principal 

component analysis (PCA) and bag of words (BoW). Fig. 41 illustrates an overview of 

the presented algorithm. The results led to sensitivity (SE) and specificity (SP) of 

87.5% and 87.5% respectively using PCA and SVM.    
 

 

 

Fig. 41: Outline of the algorithm for preprocessing and classifying [87] 
 

Another method has been proposed by Lemaitre et al. [88]; the framework 

combines different preprocessing steps in association with Local Binary Patterns 

(LBP) features and various mapping approaches. Using linear and nonlinear 

classifiers, results showed sensitivity and specificity of 81.2%, and 93.7% 

respectively. The framework has been tested on a balanced small dataset of 32 

patients and the result is not considering reliable compared to novel work based on 

neural network. The outcomes of preprocessing steps are incongruous with several 

classifiers and feature configurations, and did not present a better performance 

result. 

 

Liu et al. [89] suggested a model for detecting macular diseases in SD-OCT 

images using LBP. Each scan was adjusted by flattening and a multi-scale pyramid 

with three levels was built. Moreover, boundaries were distinguished by applying 

Canny detector. Next, a histogram of LBP was obtained for each level of the 

pyramid. The resulted histograms were concatenated into global descriptor and fed 

into a diminished dimension using PCA. Subsequently, a combination of classifiers 

has been applied using an SVM with an RBF kernel. Using a small dataset of 326 

OCT scans, the methodology showed a considerable performance of DME or AMD, 

among an AUC of 0.93. 

 

All methods described earlier presents a distinguished sensitivity and specificity 

score since it is trained and tested on the same dataset using a single 
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representation, where the decision is inaccurate when tested on a different dataset. 

This substandard score does not help the doctors to surround the anomalies 

precisely.  Table 2 presents some methods for the traditional classification task. 

 

Table 2: State of the art summary for retinal disorders detection methods using conventional ML analysis 

Ref# Disease 
Dataset 

Size 
Feature Classifier Evaluation Results 

[85] 

DME 32 
Pixel-

intensities 
GMM SE, SP 80%, 93% 

DME 30 
Pixel-

intensities 
GMM SE, SP 100%,80% 

[86] 
DME, AMD  

vs Normal 
45 HOG SVM 

ACC per 

Disease 

100%,86.7%, 

100% 

[87] DME 32 LBP, HOG 
SVM, RF 

SVM-RBF  
SE, SP 87.5%,87.5% 

[88] DME 32 LBP 
KNN, LR, RF, 

GB, SVM 
SE, SP 81.2%,93.7% 

[89] AMD, DME 326 Edge, LBP SVM, RBF AUC 0.93 

 
3.2.2. Deep learning and Neural networks models 

 

Nowadays, many papers have addressed the problem of DME classification using 

deep learning models since CNN [90] has shown exceptional performance when 

applied to medical images examination. CNN showed advantages in analysis over 

traditional machine learning, besides the immense ability to automatic feature 

extraction. Therefore, based on deep learning, several works have been reported a 

superior performance in classification and segmentation tasks.  

 
3.2.2.1. Segmentation approach 

Segmentation approaches attracted the interest of researchers because it 

supplies the physicians with more illustrated outlook allowing them to check the 

situation of the retina's layers more clearly, where the most remarkable way to 

recognize a patient with DME is the significant thickness of macular in the retina. 

Moreover, the recognition of possible cases is performed by the identification of 

the accumulation of fluids in the sub-retinal area. 

 

Lee et al. [91] developed a fully automated segmentation method for OCT-

based on CNN model with a total of 18 Convolutional layers. The SegNet CNN 

model segmented the images with a 0.911 Cross-Validated Dice Coefficient, 

compared with segmentation by experts and detected intra-retinal fluid (IRF) on 

OCT in a manner indistinguishable from clinicians. The features collected from the 
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segmented layer are employed to determine layer deformations that allow 

identifying the diseases. Despite using a very deep CNN architecture and trained 

over 200000 iterations, this method is slow and doesn't show a promising result as 

well as it requires additional human impact since the validation of the suggested 

model was examined using a tiny sized sample. Therefore, the notion of 

automated or semi-automated segmentation using deep learning has not shown 

popularity in medical image processing field yet since not all results are 

encouraging compared to other concepts. 

 

Liu et al. [92] proposed a novel automatic model for the segmentation of OCT 

images using deep residual neural networks (ResNet) as a feature extractor to 

extract deep features, and structured random forests classifier for layer 

segmentation. The proposed method started by data preprocessing of a total of 

110 OCT images from 10 subjects (normalization and denoising), followed by 

feature extraction, which involves network training. Next, a combination of these 

features with the extracted hand-designed features is presented in Fig. 42 (a). 

Finally training the structured random forest and predicting the boundaries of each 

layer for retinal layer segmentation as seen in Fig. 42 (b). The results show that 

the proposed method achieves an F1-score of 0.885. The size of labeled images in 

this method is small thereby data augmented methods can enhance the 

segmentation performance, DME is the only pathology addressed by this work, 

other pathologies may have similar deformation features compared to DME layers. 

This may lead to segmentation problems and conflict. 

 
          a: Training activity                                      b: Prediction activity 

Fig. 42: Flowchart for OCT image [92]. 

 

Lu et al. [93] proposed a new structured model for the segmentation of multi-

level fluid class in the OCT images of the retina. The three classes are: IRF 

intraretinal fluid (IRF), subretinal fluid (SRF) , Pigment epithelial detachment (PED)  

A fully CNN was trained to recognize, identify, and label the fluid pixels based on 

the intensity of retinal images and segmentation of the retinal layers by a graph-

cut algorithm. Random forest classification was conducted on the segmented 

regions to detect and discard the deceitfully labeled regions. The proposed model 
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achieved as a result of the segmentation performance a mean Dice of 0.766 and 

for the detection performance a mean AUC of 1.0. Fig. 43 presents a flowchart of 

the multiclass fluid segmentation. The new framework comprises a fully CNN and 

combines prior information via fluid features, a relative distance map, as well as 

post-processes by level sets and random forest-based classifiers to present the 

final three-class (IRF, SRF, PED) fluid segmentation. The level-set method is able 

to detect the regions with low intensity; it can distinguish the whole fluid region 

from the background 

 
Fig. 43: Flowchart of multiclass fluid segmentation [93] 

In additional, automated segmentation of cystoid formations in OCT images is 

proposed by Karthik et al. [94] where the new method aimed to find and surround 

cysts in 3D OCT slices using a CNN model intended to learn a mapping method. 

Finally, the segmentation is achieved via the clustering of the located cysts' 

positions. After training, the proposed method achieves a mean dice coefficient of 

0.71 on a public dataset. Another experiment was examined by cross-validation 

using a private dataset and achieved a mean dice coefficient value of 0.79.  

 
It is evident that segmentation approaches remained ineffective as a worldly 

identification system of retinal pathology, taking into consideration that comparing 

various retinal layers' information captured by separate machines still yet 

ineffective. Table 3 presents a summary of some segmentation method. 

 

Table 3: State of the art summary for segmentation methods using neural network 

Ref# Pathology 
Dataset 

Size 
Pre-processing 

CNN 
Model 

Classifier Evaluation Results 

[91] DME, AMD 1289 Augmentation SegNet Sigmoid 
Dice 

coefficient 
0.911 

[92] DME 110 Norm, Denois ResNet RF F1-score 0.885 

[93] 
DME, 

DRUSEN 
70 - U-Net RF 

Dice 

coefficient 
0.766 

[94] DME, AEI 30 - Novel Sigmoid 
Dice 

coefficient 
0.71 
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3.2.2.2. Classification approach 

Different deep learning-based classification works have been presented using 

either transfer learning, pre-trained network, or end-to-end model. Since 

algorithms require a sufficient amount of images and an elevated number of 

epochs for convergence, and since the employment of pre-trained models is 

helpful for faster convergence with less data.  

 

Karri et al. [95] presented a model based on GoogLeNet [96] network, where 

the method aimed to classify OCT with models pre-trained on the non-medical 

ImageNet database which contains more than 14 million images grouped into 

more than 20000 categories. The model is applied to classify three cases: normal, 

AMD, and DME. The proposed model involves fine-tuning GoogLeNet to identify 

OCT images with pathology. In addition, it includes a preprocessing stage for 

filtering and flattening OCT image. By using cross-validation for the proposed 

model, the means of decision pooling across all validations for normal, AMD, and 

DME are 0.99, 0.89, and 0.86, respectively. After 10 experiments to achieve the 

optimal model, the prediction test showed a ratio of 96% of model accuracy via 

SVM classifier. This method predicts each image class but it should predict the 

subject class using the stack of images from an expected subject.  

 

Fang et al. [97] introduced an iterative fusion CNN (IFCNN) methodology for 

the OCT image classification. The proposed network embraces an IF approach, 

which merges features from the preceding and current CNN layer, and therefore 

utilizes the several features of CNN layers to obtain a precise classification of OCT. 

The method includes two categories: the basic part (used to extract features of 

multiple layers) and the fusion part. In order to evaluate the classification's 

performance, a 10 folds cross-validation has been used for the suggested IFCNN 

model. Fig. 44 shows a demonstration of the proposed classification method. This 

model, which is applied to classify several classes (DME, Drusen, CNV, and 

Normal), revealed an overall accuracy of 87.3+2.2%. Compared with numerous 

famous classification methods, the results have revealed that the suggested 

method exceeds other related methods. Thus, despite some improvement in the 

performance shown by this IF method, if the amount of feature maps increases, 

the performance will degenerate to some amount while still considerably producing 

further computational cost.  

 

Rasti et al. [98] proposed a diagnosis model to identify two types of macular 

diseases (AMD and DME) versus normal retina using an ensemble of multi-scale 

CNN to classify the SD-OCT dataset. To evaluate this diagnosis system, the 
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performance and the time complexity were examined based on two separate 

datasets. First, a preprocessing pipeline channel is used as shown in Fig. 45. 

 

Fig. 44: Details algorithm for preprocessing and classifying [97] 

Then a combination of CNN experts is applied as a powerful classifier. This 

mixed model is introduced from the notion of the "divide and conquer" strategy in 

ML literature. It mixes the outputs of different expert classifiers by training a 

gating network allowing each expert network evaluates the following pattern of the 

feature space being distributed by a gating network as seen in Fig. 46. The offered 

AUC model was 0.9985 and an overall average precision rate was 98.86%. To 

improve the model accuracy, a larger database with a larger mass of different 

cases should be significantly augmented, since the model handled two datasets 

(containing 193 retinal OCT volumes including AMD, DME, and normal subjects). 
 

 

 
Fig. 45: The preprocessing steps [98] 

 

Fig. 46: Experts and CNN gate network are fed by precise scales of the input model [98] 
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Mehta et al. [99] proposed a novel neural network algorithm that expanded OCT 

images with meta-data such as age, gender, and visual data for multi-label 

classification since patients show various pathologies in the same time. The model 

was examined to classify four different diseases as follows epiretinal membrane, 

DME, AMD, and neovascular AMD (NVAMD). Two training strategies have been 

examined: an ImageNet pre-trained network was applied for transfer learning, 

either the randomly initialized weights have been trained by the network. Since 

OCT scans are grayscale images and ImageNet pre-trained network has been 

trained over colored images. Therefore, the learned features may not concentrate 

on the targeted disease features. The system achieves an overall accuracy of 86%.  
 

Chan et al. [100] presented a classification method with feature reduction 

(Bow, PCA) for distinguishing patients with DME. The features of the retina have 

been extracted from the SD-OCT images using pre-trained Convolutional Neural 

Network (CNN). By using 8-fold cross-validation examinations, the accuracy 

results showed a percentage of 96.88 % using RF classifier. The model has 

experimented over 32 subjects (16 DME, 16 normal).  

 

Ji et al. [101] presented an automatic transfer learning-based model to identify 

AMD and DME from SD-OCT images. The model uses the Inception V3 pre-trained 

neural network as features extractor by eliminating the last several layers. In 

order to learn the shifts in the feature space, the extracted features from the 

altered V3 have been fed to a CNN. The overall system accuracy was above 98% 

using two distinct retinal OCT images datasets.  

 

Hwang et al. [102] presented an assisting tool for the diagnosis and treatment 

of AMD. To make this tool, three different CNN pre-trained models (VGG16, 

ResNet50, and InceptionV3) have been trained over OCT images. The results show 

that the used models performed an accuracy of 91.20%, 95.87%, and 96.93% for 

VGG16, ResNet50, and InceptionV3 respectively. 

 

Nugroho [103] presented a comparative study between the traditional feature 

extractors and deep neural network features. The dataset is small and distributed 

in four classes (CNV, DME, DRUSEN, and normal). The training and testing images 

were regenerated into features vector using Histogram of Oriented Gradient (HOG) 

[104], Local Binary Pattern (LBP) [105], pre-trained CNN: Residual Network 

(ResNet50) [106], pre-trained CNN: Densely-Connected Network (DenseNet-169) 

[107]. The result showed an accuracy of 88% and 89% for DenseNet169 and 

ResNet50 (trained using ImageNet dataset) compared to 50% and 42% for HOG 

and LBP respectively. 
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Awais et al. [108] proposed a model for classifying DME pathology in OCT 

image volumes. The model aimed to extract features from these volumes by using 

a pre-trained VGGNet [109] architecture and classify these features using different 

classifiers. The feature vector provided by the VGG-16 network provided a 

representation with a size scaling from 4096 to 1000 depending on which level of 

the fully connected layer (FCC) the classifier is connected to as shown in Fig. 47. In 

order to evaluate the model, KNN is first used with k=1 and k=3 then 100 trees of 

random forest have been tested. The evaluation is completed using the "Leave one 

patient out cross-validation (LOPO-CV)" method. The majority rule is applied to 

classify the entire volume after evaluating each B-scan. Different experiments 

have been done over OCT volume. These experiments focused on data-

preprocessing on the image being fed into the CNN model. Data manipulation 

focused on denoising and/or cropping raw images in separate experiments where 

the highest accuracy obtained at volume level was 93%. The model used a pre-

trained model over ImageNet without fine-tuning and utilized a small raw dataset 

without any dimension reduction. These updates can lead to better results 

confirmed by the proposed work in this thesis. 

 
Fig. 47: VGG16 Layer block model used by [108] 

Similarly, Feng et al. [110] proposed a transfer learned CNN model based on 

the pre-trained VGGNET network (With 16 Blocks) for automatic classifying AMD 

and DME in OCT images. A total of 207,130 retinal OCT images were picked from 

5319 patients containing several types of macular pathologies for the experiment. 

After labeling and flattening the images, only 1000 images (divided equally for 

each pathology) from 22% of patients were selected for validation while the rest 

images from other 88% of patients were used as a training dataset. The method 
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utilized the transfer-learning approach to fine-tune the VGG-16 network and 

estimated its performance on the validation dataset. The results showed a 

prediction accuracy of 98.6%, with a sensitivity of 97.8%, a specificity of 99.4% 

retinal diseases. This model compared to [108], which are both based on VGGNet, 

showed better results in detecting not only DME but also AMD and used a larger 

dataset to train and a small part of data to validate. However, compared to the 

work proposed in this thesis. The proposed work showed better accuracy results in 

detecting two types of pathologies (DME and DR) with less network complexity and 

converge faster since a pre-processing step was leading to better focusing on the 

region on interest (ROI). 

 
Fig. 48: Overview of combined framework of feature extraction using AlexNet, VggNet and 

GoogleNet prposed by [111] 

Moreover, Chan et al. [111] presented a fusion work between different pre-

trained CNN architectures to combine features: AlexNet [112], VGGNet, and 

GoogleNet, with performing a feature reduction using PCA. The results were 

evaluated using a "Leave-Two-Patients-Out Cross-Validation" LTPO-CV at the 

volume level. The model started by pre-processing steps on the SD-OCT volumes: 

Image denoising was applied first to enhance image classification results. Next, the 

image was filtered using BM3D. Then, images were cropped, leaving only the 

layers with local intensities that distinguished normal and DME features. Finally, 

the images were resized based on the terms of each pre-trained model. The model 

architecture is demonstrated in Fig. 48. 15 models of classifiers were trained such 

as Linear, Quadratic, Fine/Medium Gaussian, Support Vector Machines (SVM), 

cosine, and K-Nearest Neighbour classifiers (kNN).  The accuracy was measured 

for each classifier to compare the achievement of the classification, and the 

highest accuracy was SVM with a ratio of 93.75%. The number of OCT volumes 

was ineffectively grouped (4 for DME and 79 for normal). The disadvantage of the 
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suggested method is that the weights are already pre-trained. Consequently, there 

is a restriction in enhancing the weights to improve classification performance. 

Fine-tuning should be introduced to optimize the weights leading to better 

improvement in performance. 

 

       Perdomo et al. [113] presented an end-to-end CNN model using an OCT 

dataset to extract features and to classify the two classes (DME and Normal). The 

model is demonstrated in Fig. 49. The model started by cropping and resizing the 

volumes. Using K-fold Cross-Validation (leave-one-patient-out), where one fold 

holds all volumes in the training set except one volume was set to test the model. 

The classification of a single volume was completed using a quorum rule, wherever 

50% or more scans for a patient volume was classified as infected, the whole 

volume was identified as infected leading to a DME infected person. The model 

obtained accuracy, sensitivity, and specificity of 93.75%. 

 

Fig. 49:  Architecture of the CNN model proposed by [113] 

  

Kamran et al. [114] proposed Optic-Net a novel convolutional neural network 

incorporated by two novels architectural to identify retinal diseases, this 

architecture proposed a new residual unit subsuming Atrous Separable 

Convolution, a novel building block and a mechanism to prevent gradient 

degradation. The results show an accuracy of 99.8% and 100% for two separately 

public available OCT datasets respectively. The first dataset contains 84484 

images divided into 83484 train-set images and 1000 test-set images. The second 

dataset consists of 3231 image samples divided into 2916 train-set images and 

315 test-set images. For both the dataset, 10-fold Cross-Validation was used to 

find the best models.  
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As presented earlier, classification approaches provide an effective method for 

retinal pathology identification compared to the segmentation approach taking into 

consideration the slight information needed from the retinal layers in feature 

extraction using CNN. Table 4 presents a summary of some classification methods. 
 

Table 4: State of the art summary for classification methods using neural network 

Ref# Pathology 
Dataset 

Size 
Pre-

processing 
CNN Model Classifier Evaluate Results 

[95] 
AMD, DME 

vs Norm 
45 Filter/Flat GoogleNet SVM 

Acc 96% 

Dice 
0.89, 

0.86,0.99 

[97] 
DME, Drus, 

CNV 
84484 - IFCNN 

SVM/RF/  

Bayesian 
ACC 

87.3+ 

2.2% 

[98] AMD, DME 193 
Norm/ROI/ 

Flat/Crop  

Multi-Scale 

CNN 
Softmax 

AUC 0.9985 

Precision 98.86% 

[99] 
AMD, DME, 

NVAMD  
125978 

Crop/Aug/ 

Metadata 
ImageNet Softmax ACC 86% 

[100] AMD, DME 32 
Denos/ 

Crop 
AlexNet SVM SE, SP 

93.75%, 

100% 

[101] AMD, DME 
45+ 

1680 

Denois/Filter 

Norm/Crop 

Inception 

v3 
Softmax ACC 98% 

[108] DME 32 - VGG-16 Softmax SE, SP 
100%, 

81.25% 

[110] AMD, DME 207130 Flat VGG-16 Softmax 

ACC 98.6% 

SE, SP 
97.8%, 

99.4% 

[111] DME 83 
Denois/ 

Crop 

AlexNet/ 

VGG-16/ 

GoogleNet 

SVM/RF 

/KNN 
ACC 93.74% 

[113] DME 32 Crop 
Novel  

OCT-Net 
KNN/RF ACC 93.75% 
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3.3. Perspective and motivation 

 

 In this thesis, we decided to manage two retinal disorders (DR and DME) in first 

work using a new CNN model. Next, another work focused on DME using two 

approaches (CNN and GAN) due to their significant applicability in computer vision 

(CV); taking into consideration the researches rarity of synthesizing OCT images using 

GAN.  

 

 Moreover, the detection of diabetic pathology is a time-consuming task for human 

experts since it contains thousands of images. However, our perspective is to build an 

automated system to simply detect pathologies in real-time using only SD-OCT 

screening modality since it becomes deeply attractive for its significant performance 

for diagnosis despite its cost that is more expensive than the fundus photographing 

technique. Therefore, this thesis will present a simple computerized detection task to 

accomplish with training and learning.  

 

 There are many obstacles faced to implement such strategies as: 

 

 OCT dimension: using a single channel vs. three channels scans. OCT is a 

grayscale 1-channel image where some deep pre-trained models have learned 

to detect features from colored images that depend on color intensity from 

extracted features. 
 

 Brightness circumstances: In any detection operation, image brightness is an 

outstanding factor and it is a tricky problem to solve. Hence, the need for image 

preprocessing such as normalization and denoising is indispensable. 

 

 Interloped dataset: the dataset used in consisted of crossed diseases where we 

can find several diseases in a single patient. 
 

 Cross-sectional retina position: A fovea can be located in different positions in 

an image where it can sometimes be rotated or in curvature shape within 

retina's layers; in this case, the model must be capable to detect the features 

whatever its position. 
 

 Image size: The size of OCT scans is different from one dataset to another or 

from one eye to another, therefore the responsibility of implementing an 

algorithm that unifies datasets without having consequences of its features.  
 

 Components size: There is also the size of the components of the OCT features 

such as the drusen, the fluids, the leakage, or swallow varying from dataset 

scans to another which requires a vast awareness when performing the 

detection. 
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Concerning the feature detection and CNN applications, the challenges 

encountered are: 

o Augmented dataset quality problem. 

o Several liquid and swallow formations. 

o The computational time-consuming neural networks. 

o The hyper-parameters interpolation complexity. 

  

 Moreover, due to some limitations of related works shown in the preceding 

section, our goal in this thesis is to propose simple, reliable, and strong methods 

that deal with several OCT datasets represented by different institutes. 

The related works reveal that many pre-trained CNN models are based on very 

deep CNN models, which are trained over colored images to recognize non-medical 

images. Thus, our model will apply a new simple CNN architecture to be trained 

and tested over mid-size OCT images in order to focus on extracting the most 

relevant needed features. Other related works aimed to use a features extraction 

model using a deep pre-trained CNN architecture to detect unrelated features from 

without processed the dataset rather than creating a new CNN structure that can 

utilize pre-processing raw data to detect related features. 

Generally, most of these works classify the OCT images into three classes, while 

we intended to classify four interloped classes. Besides, they suppose that a huge 

dataset empowers the generalizability of the learned deep models; this assumption 

was not necessarily accurate, since the best accuracy did not reach 90% using the 

largest used dataset. Thus, we need to construct a model with data-driven filters 

on an adequate number of data to avoid over-fitting using an augmented dataset.  

 

3.4. Conclusion 

 

 In this chapter, we have reviewed several retinal states-of-the-art methods. 

Firstly, we discussed classical state of the art using different feature extraction 

methods and different classifiers, and then we have reviewed the OCT segmentation 

researches using OCT for detecting pathologies. Finally, we have reviewed novel 

classification models based on CNN. Successively, we showed the motivations and the 

perspective of our work. In the following chapter, the proposed model will be 

introduced.  
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4.1. Introduction  

 

 Diabetic retinopathy (DR) and Diabetic Macular Edema (DME) are usually the 

popular reason for untreatable vision loss among adults with diabetes. However, early 

detection and treatment can reduce the risk of partial or total blindness, since the 

discovery of eye problems at the beginning will pull the alarm to prevent untoward 

effects of the developing diseases. An automatic method to detect diseases and 

oversteps the biased personnel evaluation of ophthalmologists is needed. Therefore, 

the problem of automatic classification for Spectral-Domain Optical Coherence 

Tomography (SD-OCT) images has been addressed in this chapter for the identification 

of patients with DR, DME versus normal subjects. 

 

 Nowadays, the examination of retinal pathologies is depending on the objective 

clinical analysis of OCT images by skilled ophthalmologists. To accelerate the 
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diagnostic process and enable the automatic classification of diseases, deep learning is 

an encouraging field of research that is applied over OCT for classification. Deep 

learning is a class of ML algorithms that extracts and organizes the feature 

representation of the data without the intervention of expert feature extractors.  

 

 Based on Convolutional Neural Network (CNN), a proposed convolutional model is 

presented and fully trained from scratch for the classification of OCT retinal imaging, 

which is widely used in ophthalmology for scanning the morphology of the retina for 

disease detection. 

 
 A new end-to-end CNN model will be presented in this chapter and has been fully 

trained using the Chinese University of Hong Kong (CUHK) dataset with 3 blocks of 

convolutional layers and max-pooling layers, which considered simpler to other end-

to-end model and converge faster with less learned feature and higher accuracy. The 

last layers consisted of two fully connected layers of 256 units beside four units for the 

classification of DR, DMR, DR/DME, and normal cases. The classification has been 

achieved using a softmax classifier. The evaluation has been performed by randomly 

shuffling and separating the training data along with test data. 

 

4.2. Image processing materials and methods 

 

4.2.1. Dataset acquisition:  

The dataset was acquired by the Chinese University of Hong Kong (CUHK) [115]. 

It consists of 189 SD-OCT volumes (4 DME, 67 DR, 39 DR/DME, and 79 normal 

cases). Each volume contains 128 B-scan with a resolution of 512 x 1024 pixels. All 

scans are interpreted and assessed by trained graders and identified based on the 

personal evaluation. Fig. 50 shows a demonstration of OCT images including DME, 

DR, DR/DME and normal cases. 

 
Fig. 50: An example of OCT images of diabetic pathologies compared to normal case 
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4.2.2. Dataset Pre-processing method 

  

In this chapter, the model proposed requires preprocessing the original images 

regarding the retinal layers that may be turned, distorted, and moved vertically from 

the acquisition process. Thus, a manipulation process of the OCT volumes is needed. 

Furthermore, based on CNN computational requirement, uniform size of 256×256 

dimensions for all images in the dataset is required. To enhance deep learning model 

result, a pre-processing step is applied where the OCT volumes have been routed in 

three stages: (a) normalizing and resizing, (b) denoising (c) and cropping. 

4.2.2.1. Dimension reduction:  

The images have been labeled and normalized via dividing all image pixel 

intensity by the max. After, the images have been resized from the original 

512×1024 pixels into the half 256×512. 

 4.2.2.2. Image denoising 

OCT images endure scattered noises similar to other image patterns like 

Ultrasound [116]. The OCT images are improved by reducing these noises, where 

each slice of B-scan has been denoised using the NLM (Non-Local Means) [117]. Fig. 

51 shows an example of a slice denoizing for a normal patient with an enhancement 

in results. NLM has been strongly applied to ultrasonic images to decrease noise 

[118]. The filtering mechanism of NLM maintains good structures compared to other 

methods such as BM3D [119]. Denoised images can accelerate the model since it is 

end-to-end learning.  

 
Fig. 51: Example of NLM image denoising for a normal patient 

4.2.2.3. Image cropping 

According to CNN computational prerequisite, homogeneous size of 256×256 

dimensions has to be reached, and since the images ensuing from denoised step 

has a dimension of 256×512. Thus, an elimination process of 256 pixels from each 

B-scan rows was applied to reach 256×256 pixels. The method consists on 

analyzing all images and exterminates from each image the rows containing 

unwanted black pixels, aiming to focus on the retina structure region. The cropping 

algorithms automatically computes, for every row in every image, the count of black 
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pixels and remove the rows with the highest count starting from top and/or bottom 

until achieving the target as shown in Fig. 52 (Group A); where the red rectangles 

are the area to eliminate with the count of 256 rows, which let us focus on wanted 

area with 256×256 pixels for all datasets as input for the Convnet as seen in Fig. 52 

(Group B).  

   Group A  

 
 

   Group B 

 

Fig. 52: Cropping example where red rectangles indicates the area to eliminate 256 
rows each (Group A) leading to a 256×256 pixels images (Group B). 

Since the acquired scans may contain tilted and/or distorted images resulting 

from the acquisition procedure that leads to a curved retina. The cropping algorithm 

mentioned earlier can simply remove tiny informative data to adjust the resizing 

process. This missing data did not have a huge effect on the result since the region 

of interest (as swallow and leaks) in the retina exists in the middle of the image and 

it will not be compromised.  

 
          (a): Original                  (b): resized          (c): denoised        (d): cropped 

                             512×1024                       256×512            256×512            256×256 

        Fig. 53: From original to cropped image, Example of OCT image. 
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It is worth to notice that the utilization of an adequate flattening strategy is kept 

to use in the next chapter in order to align the layers and correcting the retina 

curvature to concentrate on RPE. Fig. 53 shows example of images for each step of 

data processing. 

4.3. The proposed method   

4.3.1. CNN architecture   

 The proposed model is discussed in this part where the study will include 

used datasets in the system setup after image pre-processing (including denoising 

and resizing). Fig. 54 presents a flow chart description of the proposed model.  

 
CNN holds several hidden layers that are operating convolution and sub-

sampling techniques to extract different levels of features of the input data for 

single and double dimensions. CNN showed a powerful performance in many fields, 

especially in the medical domain and computer image processing. Fig. 55 presents 

the steps to develop a convolutional architecture for SD-OCT classification.  

 

 

Fig. 54: Flow chart diagram 
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DR/DME, 6471 
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Training and 
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CNN model 

Designing and  
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(Accuracy, Sensitivity 
and Specificity) 
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Our proposed CNN model contains five arranged and ordered types of layers 

(input, multi-layers convolution with RELU, several fully-connected layers, 

classification, and output); The proposed model is used to classify the input images 

into 4 classes (DR, DME, DR/DME, and Normal) and it consists of 16 layers as 

shown in Fig. 56.  

 
Fig. 55: Steps to create a deep learning-based CNN model for DR diagnosis using SD-OCT 

This proposed architecture is composed of five convolutional layers with 3×3 

kernel's size companied by Relu activation, three max-pooling with 2×2 kernel's size 

without zero-padding, and an incremental number of filters from 16 to 256 to learn 

and extract different feature representations. The input to the new model is fixed to 

256x256 grayscale images for the CUHK dataset, and the stride is set to one. Each 

maxpooling is set to each group of convet layers with a single stride.  
 

 
Fig. 56: Architecture of CNN model depth for CUHK dataset: the convnet contains 16 layers.  

The output is classified over 4 class labels. 
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The stack of Convolutional layers is followed by two Fully-Connected (FC) 

layers: the first has 256 channels; the second performs 4-way classifications. 

Moreover, between FC layers, a dropout [120] layer has been set to 0.2. To finish, 

the Softmax classifier layer has been utilized as the model prediction. A 

presentation of the model and its parameters are shown as the diagram in Fig. 57.  

 

Table 5 presents detailed parameter values about layers in the proposed CNN 

model. 
 

Table 5: Layers' values for the proposed architecture 

# Layer Values 

1 Input layer 256×256×1 

2 Convnet 1 

Number of filters : 16 

Kernel Size: 3×3 

Activation: RELU 

3 Batch norm 1 Number of channels: 16 

4 Maxpooling 1 
Kernel size: 2×2 

Stride :  1×1 

5 Convnet 2 

Number of filters : 32 

Kernel Size: 3×3 

Activation: RELU 

6 Convnet 3 

Number of filters : 64 

Kernel Size: 3×3 

Activation: RELU 

7 Batch norm 2 Number of channels: 64 

8 Maxpooling 2 
Kernel size: 2×2 

Stride :  1×1 

9 Convnet 4 

Number of filters : 128 

Kernel Size: 3×3 

Activation: RELU 

10 Convnet 5 

Number of filters : 128 

Kernel Size: 3×3 

Activation: RELU 

11 Batch norm 3 Number of channels: 128 
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This CNN model reduces the number of the layers compared to other pre-trained 

learning methods such as transfer learning technique, which has been reduced from 

25 layers in AlexNet, 48 layers in Inception-V3, 101 layers in ResNet-101, etc. to 

only 16 layers; these pre-trained networks are usually not trained using medical 

data. Decreasing the number of layers will reduce the system resources and time 

needed for training and detecting new images class. 

  
Fig. 57:  Architecture of the CNN model. The input layer accepts B-scans with 256x256 pixels 

from CUHK dataset. The parameters (feature maps and size) are reported beneath every layer. 

 

4.3.2. Setting-Up Hyper-Parameters:  

 The model was trained from scratch over CUHK dataset. CNNs are difficult to 

configure since different parameters have been required to be handled. Grid search 

[121] has been used as a method to choose the best hyper-parameters values for the 

model.  

 Different batch sizes as well as different epoch numbers were tested where results 

showed that batch size of 20 and 100 epochs as maximum size achieved the best 

result using 'Categorical Cross-Entropy' as a loss function. Different solvers were 

tested also between a suite of optimization algorithms (SGD [122]', 'RMSprop [123]', 

'Adagrad [124]', 'Adadelta [125]', 'Adam [126]', 'Adamax [127]') and the results 

suggested 'Adam' to be the best optimizer.  

 "Uniform" weight initialization achieved the best result comparing to other 

network weight initialization techniques [128] ('uniform', 'lecun_uniform', 'zero', 

'normal', 'glorot_uniform', 'glorot_normal', 'he_uniform'). Different activation 

functions have been evaluated from a suite of functions [129] ('softmax', 'softplus', 

'softsign', 'relu', 'tanh', 'sigmoid', 'hard_sigmoid', 'linear') and the 'relu' activation 

function achieved the best results. Finally, the dropout rate of 0.2 reached the best 

accuracy. Furthermore, the subsequent hyper-parameters provide the most reliable 

results; initial learning rate = 0.001, L2 regularization is 1.000e-05.  
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4.4. Experimental performance evaluation 
 

 To assess the performance of the proposed model in classifying the diabetic eye 

retina pathologies, a comparison between the classification outputs with the ground-

truth label of the image was applied. These images were labeled manually by 

specialists to evaluate classification results. The efficiency of the model was computed 

by estimating the accuracy, sensitivity, and specificity, where these values determine 

how accurately the retina is diagnosed. To calculate these values, four statistical rates 

(TP, FP, TN, FN) should be computed first using the confusion matrix (as described in 

chapter 3, section 3.3.2.5.3).  

In addition, the ROC curve was presented to plot the performance of the proposed 

architecture (as described in chapter 2, section 2.3.2.5.4). The best performance result 

of ROC curve is when the curve will be closer to the left upper corner. Moreover, the 

AUC of ROC was also computed where the higher value leads to accurate prediction. 

Furthermore, to evaluate the performance of the proposed model, a 'Categorical 

Cross-Entropy' loss function is compiled in the last layer of the network. This evaluation 

method tells how well the proposed method models the provided dataset. If predictions 

differ too much from actual results, the loss function would come up with a very large 

number. Progressively, with the help of the effective 'Adam' optimizer, the loss function 

learns to diminish the error in prediction. To minimize the errors, the current error is 

propagated back to the previous layer to modify the weights and bias. 

 

The CUHK dataset contains images of 4 classes (DME, DR, DR/DME, Normal) and 

has been resized, denoised and cropped into 256 x 256 pixels resolution as input for to 

feed the CNN model. The dataset has been divided into training (64%), validation 

(20%) and testing (16%) set. A total of 189 patients composed of 128 OCT scans each 

formulated the dataset, corresponding to 24192 samples separated into 15482 for 

training, 4839 for validation and 3871 for testing. Table 6 shows detailed information 

about the used images.  
    

Table 6: The distribution of images used in the system 

Case 
Number of 

training 

images 

Number of 

validation 

images 

Number of 

testing 

images 

Total number 

of images 

DME 326 101 85 512 

DR 5485 1710 1381 8576 

DR/DME 3200 1016 776 4992 

Normal 6471 2012 1629 10112 
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A workstation with Intel Xeon E5-2670 2.3 GHz, and NVIDIA Tesla K40c GPU [130] 

has been used for training and testing the proposed model. Early stop [131] technique 

was used in the training phase to monitor the evaluation of loss function; the training 

will stop when the quantity monitored has stopped decreasing. Early stopping and 

dropout have been applied to reduce over-fitting. 

 We can observe that training and validation are satisfactorily performed with 

an elevated accuracy percentage, where the result of the CNN model after 100 epochs 

showed a training accuracy rate of 99.58% using CUHK OCT dataset with a loss value 

about 0.021 as shown in Fig. 58; and a validation accuracy of 98.63%; besides a 

sensitivity of 99.59% and 98.64% for training and validation respectively, a specificity 

of 99.91% and 99.75% for training and validation respectively as presented in Table 7. 

 

   (a): Accuracy plot      (b): Loss plot 

Fig. 58: Accuracy and Loss rate 

Table 8 and Table 9 present the confusion matrix for training and validation 

respectively. The training and the validation loss have been reduced by time and the 

test loss ends slightly over the training loss. The curve ends in considerably noteworthy 

without over-fitting 

Table 7: Evaluation results of the testing dataset 

Training Validation Testing 

Accuracy 99.58% 98.63% 99.02% 

Sensitivity 99.59% 98.64% 99.03% 

Specificity 99.91% 99.75% 99.79% 
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Table 8: Performance result of proposed model during training 

Confusion  
Matrix 

Predicted Class 

Actual  

Class 

Class DME DR DR/DME Normal Total 

DME 
326 

100% 
0 0 0 326 

DR 0 
5453 

99.42% 
10 22 5485 

DR/DME 0 3 
3190 

99.67% 
7 3200 

Normal 0 36 14 
6421 

99.23% 
6471 

Total 326 5492 3214 6450 15482 

 

To evaluate the proposed model in detecting the classes of retinal eye 
pathologies, this system was tested using the testing unseen part from the dataset, 
where the model achieved an accuracy of 99.02%, a sensitivity of 99.03%, and a 

specificity of 99.79% as seen in Table 7. Using the test set, a confusion matrix is 
presented in Table 10. 

 

Table 9 : Performance result of proposed model during validation 

Confusion  

Matrix 
Predicted Class 

Actual  
Class 

Class DME DR DR/DME Normal Total 

DME 
100 

99.01% 
0 1 0 101 

DR 0 
1686 

98.57% 
8 16 1710 

DR/DME 0 2 
1003 

98.72% 
11 1016 

Normal 0 26 10 
1976 

98.22% 
2012 

Total 100 1714 1022 2003 4839 

 

The ROC curves for each class are plotted in Fig. 59 (a) DME ROC, (b) DR/DME 

ROC, (c) DR ROC, (d) Normal ROC. The AUCs of the various classes were above 0.98 

and have the following values 1, 0.996, 0.992, and 0.984 for DME, DR/DME, DR, and 

Normal respectively. Table 11 demonstrates the evaluation of the performance results 

of testing set showing the ratios of the recall, precision, and F1-score for all classes 

whereas noticing that all ratios bypassed 98%. 
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Table 10: Confusin matrix showing the testing rate  

Confusion  

Matrix 
Predicted Class 

Actual  
Class 

Class DME DR DR/DME Normal Total 

DME 
85 

100% 
0 0 0 85 

DR 0 
1362 

98.62% 
5 14 1381 

DR/DME 0 2 
769 

99.1% 
5 776 

Normal 0 19 7 
1603 

98.39% 
1629 

Total 85 1383 781 1622 3871 

 
 

 
                  (a)                 (b) 

 
             (c)        (d) 

Fig. 59: Curve plot showing the performance of proposed model during testing 
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Table 11: Performance ratios of testing set 

 Recall Precision F1-Score Support 

DME 100% 100% 100% 85 

DR 98.62% 98.48% 98.55% 1381 

DR/DME 99.10% 98.46% 98.78% 776 

Normal 98.40% 98.83% 98.62% 1629 

AVERAGE 99.03% 98.94% 98.99% 3871 

 

4.5. Discussion 

 When comparing the results of the proposed model with some other related works 

based on CNN architectures (mentioned in the state of art), we can note that our work 

focused on the main pathologies in the retinal eye diabetic diseases, using crossed 

data between the DR and DME patients and forming together a new class for patient 

having both diseases that helps to extract new feature.  

 The majority of related works use different OCT databases or an aggregation of 

several datasets to form a large one, and it is noted that they use diverse classes, 

usually more than three classes that can affect the performance of the applied 

classification methods. However, [95] proposed a model based on transfer learning 

techniques using CNN from GoogleNet architecture. This method used 10,000 images 

to classify three classes with an accuracy of 96%. [97] used an iterative fusion CNN 

for classifying four classes of OCT images using 84,484 resulting in an accuracy of 

87%. [86] used SVM with HOG features from 3247 images to classify three classes 

with an accuracy of 95.5%. [99] proposed a transfer learning method based on 

ResNet-V2 CNN architecture to classify four classes from 113,397 OCT images leading 

to 86% accuracy. [101] used also a transfer learning CNN method based on Inception-

V3 to classify three classes from 1680 images with an accuracy of 98%. [113] 

presented an end-to-end CNN model using 4096 OCT images to classify two classes 

with an accuracy of 93%. [102] used a transfer learning CNN method based on 

(InceptionV3, VGG16, and ResNet50) to classify four classes from 35,900 images with 

an accuracy of 90%. [103] also used a transfer learning CNN method based Dense-Net 

and ResNet50 to classify four classes from 84,484 images with an accuracy of 88%. 

The proposed work presented an end-to-end model to classify four classes (three 

types of volumes) from 24192 images with an accuracy of 99.3%. 
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From the model listed above, it is remarkable that many pre-trained CNN models 

are based on very deep CNN models such as GoogleNet and VGG networks, which are 

trained over three channel images to recognize non-medical images. It is worth noting 

that some of the related works aimed to use pre-processing methods and implemented 

transfer learning models with pre-trained CNN rather than creating a new CNN 

structure that can utilize raw data without pre-processing. In addition, some works 

utilized ML techniques with extracted features from the segmented ROI of OCT as a 

classification method. However, most of these methods have achieved high detection 

rates, more than 87%. 

 
 Finally, most of these works classify the OCT images into three classes, while a 

few models classify four classes. Moreover, a general supposition in ML and DL is that 

a huge number of data is needed to improve the generalizability of the learned model; 

this assumption compared to the-states-of-art methods mentioned above was not 

necessarily accurate, since the biggest dataset used was 113,397 images but the 

accuracy result is almost insufficient and did not reach 90%. Meanwhile, the proposed 

work applied a model based on the middle size dataset of OCT images that have never 

been used in such class types with 24,192 images to classify DR and DME. The 

construction of a higher-order model with data-driven filters on an inadequate number 

of data drives to over-fitting, which had a bad impact on testing performance. 

 

4.6. Conclusion 
 

 In this chapter, a representation of a simple new end-to-end CNN classification 

model has been proposed with the ability to detect patterns for diabetic macular 

edema using OCT images. Contrary to manual retinal diseases diagnosis based on 

personal clinical examination, this method showed the capability to automatically 

predict the most two diabetic retinal diseases.  

 This CNN model is formed for the analysis of retinal diseases using raw images and 

it was trained and tested using images from a university of Hong Kong containing four 

different volumes (two diseases, normal cases, and a mixed volume of these 2 

diseases). Besides, the proposed model was trained and tested using a relatively big 

dataset of 24192 images. Furthermore, by tuning the hyper-parameters of the 

proposed model CNN structure, the more accuracy and lower time cost were achieved.  

 The result showed that the proposed method has been highly effective for 

predicting image with diseases where the experimental results show that the proposed 

method achieves a performance and an accuracy test rate of 99.02%. The results, 

using split validation, showed improvement with accuracy and sensitivity, comparing 

to other CNN similar end-to-end or some pre-trained model, which is exceptionally 
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promising in the field of early detection of diabetic diseases such as DME and DR to aid 

ophthalmologists in biomedical technologies.  

 The proposed method showed an advantage with classifying not only DME patients 

(as reported by most CNN-OCT paper focusing on DME), but also patients with DR 

and/or DME, with high efficacy to detect both diseases in patients as recall showed a 

percentage above 98% (see Table 11). 

 Finally, the phase of pre-processing the raw data showed a better result, 

therefore, in the next chapter, the work would focus on using flattened and augmented 

images that produce a larger dataset leading to reduce the error rate while focusing on 

the most risky diabetic disease. 
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5.1. Introduction 
 

 The macula is the most essential part of retina, providing for each person the 

capability to see and adjusts the sharp vision by the observation of detailed scenes. 

Therefore, any leakage within the macula, caused by the accumulation of fluid or 

swelling, will lead to diabetic macular edema (DME). Progressively, it may destroy the 

blood vessels, leading to complete blindness. People with DR are commonly exposed 

to DME. Therefore, prior to any obvious signs of vision problems resulting from the 

development of the retinal diseases for diabetic people, it is necessary to detect any 
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cysts in the retina as soon as possible using an automatic diagnosis system by 

inspecting any layer deformations. 

 In present, the detection of retinal diseases is based on the manual analysis of 

OCT B-scans through skillful doctors. Thus, it is urgent to build a system capable to 

defeat human skills by expediting the process of detection using an automated and 

computerized retinal pathologies classification. Computer vision methods and 

especially deep learning algorithms are the most powerful tool of digital image 

processing and recognition. DL introduces a new era in the research fields of medical 

image classification using SD-OCT scans.  Based on the pre-trained CNN architecture 

presented earlier in chapter 4 using OCT scans, a fine-tuned CNN model has been 

proposed for identifying DME given retinal SD-OCT images, which aimed, with an 

augmented training data, to automatically recognize DME as it considers the major 

cause of irreversible blindness.  

 SERI dataset is used in this chapter to feed the fine-tuned model that is relatively 

similar to CUHK dataset presented in the previous chapter. In addition, the 

experiments have been tested over two datasets provided by different institutions. 

5.2. Image processing methods 
 

5.2.1. Dataset acquisition:  

 

    The experiments have been accomplished using three datasets, provided by 

three different institutions. The first "SERI" has been used to fine-tuned the pre-

trained model proposed in chapter 4 while the two other datasets (DUKE and NOOR) 

are used to test the model prediction result. 
 

5.2.1.1. SERI Dataset 

The dataset was acquired by the Singapore Eye Research Institute (SERI), 

using CIRRUS TM (Carl Zeiss Meditec, Inc, Dublin, CA) SD-OCT device [132].The 

dataset includes 32 SD-OCT volumes (16 DME and 16 normal cases). Each volume 

contains 128 B-scan with a resolution of 512×1024 pixels. All volumes have been 

read and assessed by trained graders, and identified as normal or DME cases [133] 

based on evaluation of retinal thickening, hard exudates, intra-retinal cystoids 

space formation, and sub-retinal fluid. 

5.2.1.2. DUKE Dataset 

The dataset was acquired utilizing Spectralis SD-OCT (Heidelberg Engineering 

Inc. in Germany) scans at Duke University, Harvard University, and the University 
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of Michigan. The dataset includes 45 SD-OCT volumes [134]: (15 normal, 15 AMD 

(excluded from the study in this chapter), and 15 DME patients. All volumes 

contain several B-scans that vary from 31 to 97 with a resolution of 496x768 

pixels. 

5.2.1.3. Noor Eye Dataset 

This dataset was acquired by the Hospital of Noor Eye in Tehran [135]. It 

consists of 148 SD-OCT volumes (50 normal, 48 dry AMD "excluded from this 

study", and 50 DME). All volumes contain a number of B-scans that vary from 20 

to 61 with resolution of 496×512 pixels.  

5.2.2. Dataset Pre-processing technique: 
 

Since the proposed model in this chapter is based on the trained model 

presented previously in chapter 4, therefore, the steps of data manipulation and 

preparation are necessary to fit the requirement of the model. The acquired images 

are captured in different eye position, thus, the raw images showing the retinal 

layers may be tilted, misrepresented, and/or vertically slid composed from the 

acquisition. The pre-processing phase is also applied over the OCT scans and 

managed in four steps: (a) normalizing and resizing, (b) denoising, (c) cropping, (d) 

flattening (e) and mirrored where Fig. 60 shows an example of both classes. 

 The labeled images have been normalized and resized from the original 

512×1024 pixels into 256×512. Noisy OCT images are enhanced by denoising each 

slice of B-scan using the NLM (Non-Local Means). NLM preserves better structures 

compared to other methods such as BM3D as presented previously. Consequently, 

denoised images can speed up the fine-tuned model. The following process was to 

flatten the retinal curve shape to diminish the variations between images within 

patients. OCT images have a curvature caused by the acquisition of captured 

images that alters between subjects and within each volume. 

  

To flatten the image curvature, first, a detection of the retinal pigment 

epithelium layer (RPE) was applied since RPE is considered as the most reflective 

layer. The outermost of the two highest local maxima in each column of the 

denoised image has been assigned as the estimated RPE location [87]. Next, the 

convex hull around the RPE has been calculated and the lower border of the convex 

hull as an estimate of the lower boundary of the retina has been used. A median 

filter has been used to remove outliers. To create the flattened image, a second-

order polynomial has been fitted to the estimated retinal lower boundary points and 

shifted each column up or down so that these points lie on a horizontal line. 
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    Group A: Normal OCT 

 
  

       Group B: DME OCT 

 
                          (a) Original                           (b) resized                 (c) denoised      (d) flattened & cropped   (e): mirrored 

                                         512×1024                             256×512                     256×512                  256×256                256×256 

Fig. 60: Example of an OCT  image pre-processing phase, from original to flattened, cropped and 
mirrored image for a helathy person (Group A) and a diabetic patient with DME (Group B). 

Moreover, based on CNN requirement, SERI is the only dataset used to be 

trained and augmented, and it must be standardized and reached the dimension 

size of 256×256 as well as other datasets presented later. Thus, an exclusion 

process of 256 pixels from each B-scan rows was applied to reach 256×256 pixels 

using the same technique presented in previous chapter where the method consists 

of eliminating from each image the rows outer the region of interest. Fig. 61 

represents a simulation and an example of flattening and cropping algorithm.  

Finally, since all images have been flattened and cropped leading to a standard 

shape for all the dataset that focus on the ROI, a mirrored technique to augment 

the data has been implemented over SERI images. These mirroring techniques are 

more powerful than traditional methods such as rotating where the same 
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transformation formatting is preserved leading to double the images in order to 

enlarge them using GAN network as presented later.    

 

              (a): denoised OCT scan      (b): Flattened & cropped 

             256×512                  256×256   

 

Fig. 61: (a) Cropping simulation where red rectangles indicate the area to eliminate with a 
size of 256×256 pixels resulting a flattenend and cropped image with a size of 256×256 (b). 

5.2.3. Synthetic data augmentation: 

In deep learning models, the most significant problem in training a network is 

the absence of large training datasets that are obligated to be considered enough 

and representative to accurately train the model and prevent over-fitting.  In this 

situation, the generation of synthetic data can be valuable for over-sampling the 

classes and create additional datasets.  

In many cases, it is common for databases to have minority classes that are 

under-represented especially when examining medical data, where the count of 

healthy persons is considerably higher than diseased ones. When this occurs, the 

classification may have struggles recognizing these classes. To overcome this 

problem, it is necessary to augment the minority data by creating new input by 

modifying the raw images in meaningful patterns. This strategy resolves the 

problem of under-representation of minority classes by enhancing this 

representation, which helps to prevent over-fitting. 

To increase the training set and enhance the classification results in the DME 

classification task, we firstly doubled the SERI dataset by mirroring all the images 

after the pre-processing steps, and then we augmented the dataset by synthesizing 

new samples using the GAN model. Contrary to classic augmentation methods that 

include a diversity of image manipulations, GAN showed a promising advance in 

image augmentation results since it was first introduced by Goodfellow et al. [136] 

in 2014. GAN is a type of generative model that can produce new content based on 

its training data. We followed a popular GAN model, the Deep Convolutional GAN 
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(DCGAN), where we are inspired by the architecture presented by Radford et al. 

[137] with some tweaking in parameter values presented later.  

DCGAN attacks the problem of unsupervised learning by training two deep 

networks, called Generator and Discriminator, that compete and cooperate with 

each other. The discriminator is trained to minimize the last classification error 

between real and generated images, while the generator is trained to maximize it. 

Thereby, the idea of adversarial networks derives from it. The balance is attained 

when the generator network provides samples that match the probability 

distribution and the discriminator foresees as fake or real with a 50% probability 

each.  

While training, it is necessary that both networks learn evenly and converge 

concurrently. Otherwise, the generative network can be stuck if the discriminative 

network learns better to identify fake images.  

 

Fig. 62: A representation of GAN model 

When training the discriminator, we neglect the generator loss and only utilize 

the loss of discriminator. Therefore, the weights of the discriminator network are 

modified by using back-propagation; the weights of the generator are not modified. 

Whilst, when training the generator, we utilize the loss of the generator; the 

discriminator network is suspended through generator training and exclusively the 

weights of the generator network are modified using back-propagation. Fig. 62 

shows an overview of the DCGAN model.  

The subsequent steps are performed back and forward letting the DCGAN 

model to deal with contrary generative difficulties:  

a) Pick a set of real OCT images from the training set.  
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b) Generate many bogus images. This is done by examining noise vectors 

randomly and generating images using the generator. 
  

c) Train the discriminator for many epochs using both unreal and real images. 

This will modify just the discriminator’s weights by identifying all the real 

images as one and the fake images as zero. 
  

d) Produce different numbers of fraudulent images.  
 

e) Train the entire DCGAN model for many epochs applying just unreal 

images. This will modify only the generator’s weights by identifying all false 

images as 1. Fig. 63 shows the training plan of the discriminator where the 

weights of generators are frozen which lets the weights of discriminators to 

be modified only using back-propagation for real and fake images; while 

Fig. 64 presents the training plan of the generator where the discriminator 

weights are constant, letting only the weights of the generator be updated 

throw back-propagation 

 
Fig. 63: Discriminator training presentation where the discriminator learns to identify fake images. 

 

Various works on GAN extensions such as DCGANs, Cycle GANs and 

Progressively-Growing GANs [138] were published in 2015, 2017, and 2017, 

respectively. Applying Data Augmentation has become increasingly popular with 

works such as Neural Augmentation [139], Smart Augmentation [140], and Auto-

Augment [141]. Data Augmentation GAN for image synthesis was used by Frid-Adar 

et al. [142] for liver lesion classification. This improved the classification 

performance from 78.6% of sensitivity and 88.4% of specificity using classic 

augmentations to 85.7% of sensitivity and of 92.4% specificity.  
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Fig. 64: Generator training presentation where the generator learns to fool the discriminator. 

 

5.2.3.1. Generator:   

The generator accepts a noise vector of 300 numbers of the latent space and 

generates an image with the same size as the discriminator’s input size 

(256×256×1). The generator learns to predict a sample. The generator is 

estimated by the discriminator, indicating that its purpose is to generate data that 

are alike to the original data. By using the dense layer, the generator increases the 

representation of the noise vector to have sufficient values to be reshaped and fed 

into the first generator layer that must be identical to the dimension of the final 

block in the discriminator model. 

 

Fig. 65: Representation of the proposed generator model 
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DCGAN architecture as presented by [136] consists of a fully connected layer 

reshaped to size 4×4×1024 and four strided de-convolutional layers to up-sample 

the image with a 5×5 kernel size. Meanwhile, we tweaked this model by involving 

5 blocks where each block implements a deconvolution layer with 2×2 strides, 

batch normalization, and instead of RELU, an activation function using Leaky-ReLU 

[143] at the end of each block as presented in Fig. 65.  

At first, a fully connected layer reshaped to 4×4×2048 dimension, and a final 

convolutional layer are applied, where the output of the "tanh" at the last layer 

produces the counterfeited image. 

5.2.3.2. Discriminator:  

 The discriminator is qualified for estimating the condition of the data produced 

by the generator. It is a typical CNN architecture that accepts input data from 

either the original dataset, or the generated one, and tries to foresee the source of 

the input sample. For the SD-OCT dataset, the input is an image with dimension 

size of 256×256×1.  

We presented 5 blocks of CNN layers as architecture for the discriminative 

model, where each block involves a convolutional layer with batch normalization, 

followed by a second convolutional layer including a striding of 2 to downscale the 

image and an extra batch normalization layer since batch-norm stabilizes learning 

in between layers. Subsequently, Leaky-ReLU is the activation function applied at 

the end of each CNN block. Contrary to typical CNN models, the discriminative 

model does not have any max-pooling layer between CNN layers.  

The result proceeds, instead of using average-pooling, accompanied by a 

dense sigmoid layer to outcome a single probability result. The sigmoid output is a 

probability value to test the reality appearance of the image, where the value "0" 

means that the generated image is surely fake, while "1" means real, between 0 

and 1, it shows a gray uncertainly area. Binary cross-entropy has been employed 

for the loss since the output is a sigmoid.  

Adam has been used as an optimizer with a momentum of 0.5, and a dropout 

of 0.25 is applied to limits over-fitting at the end of every CNN block except the 

fully connected layer. Finally, the Learning rate is set to 0.0002.  

Fig. 66 presents a demonstration of the proposed discriminator model. 
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5.2.3.3. Adversarial Model:  

The adversarial model is simply the 

generator-discriminator piled and 

trained together at the same time. The 

generator model is attempting to 

deceive the discriminator and 

concurrently learning from its errors. 

The discriminator will try to become 

more expert at identifying real versus 

unreal data whilst the generator is 

working on producing outputs that are 

progressively near to the original.  

5.2.3.4. GAN architecture:  

Traditional CNN regularly has a 

training loss that will be decreased in 

value during the training process. 

Therefore, early stop techniques or 

calculating the loss on the validation set 

can determine the training end time, 

which prevents over-fitting. Meanwhile, 

GANs control two losses (generator / 

discriminator), thus, to prevent the 

over-powering for one over the other or 

the training gets stuck, a balance should 

be maintained in order to get learn at 

the same rate and force each other to 

be improved. Therefore, different 

learning rates have been implemented 

for both model and tuning the values 

based on which regulation the balance 

should achieve. Then, all generated 

images for the discriminator training are 

labeled as alpha and the fake ones as 

one - alpha instead of 0 and 1 where 

alpha is a stochastic variable inspected 

between zero and alpha_max. In order 

to make the generated prone result 

appears more realistic. We use in both 
Fig. 66: Representation of the  

proposed discriminative model 
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models architecture with five blocks where the following parameters proved an 

advance in results: Leaky-ReLU is used as the activation function with a negative 

slope of 0.3 for all layers of both models, except for their final layer where 

"sigmoid" and "tanh" were used. Weights were initialized to a zero-centered normal 

distribution with a standard deviation of 0.02. Batch size = 32. Binary Cross-

Entropy is applied as the loss function. Adam is adopted as the optimizer algorithm. 

GAN was trained for 10000 epochs using a learning rate of 0.0002. 

5.2.3.5. Synthetic image evaluation 

Since SERI dataset was too small for sufficient and efficient training, we 

combined classic augmentation for the training process. As our baseline, we added 

the mirrored data (see section 5.2.2) to the original pre-processing set in the 

direction of forming the entire dataset, in order to enlarge the data being fed into 

the GAN. Later, we saved the augmented results to increase the amounts of data. 

We applied the customized DCGAN architecture to separately train every class. 

After the generator was trained to recognize each class data distribution, it was 

able to create new samples from a noisy input vector.  

Table 12 and Table 13 depict a sample example of synthesized images from both 

"DME and Normal" cases compared to the real ground-truth images which 

correspond to real pre-processed SERI data. Finally, we fed the whole set (that 

includes the original pre-processed images in addition to mirrored and generated 

ones) into a network to evaluate the classification accuracy result. A detailed 

explanation of the fine-tuning step is presented in the next section.  

Table 12: Examples of generated DME images 
 

At epoch 3000 Synthetic image Ground Truth 
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Table 13: . Examples of generated images for normal cases 
   

At epoch 3000 Synthetic image Ground Truth 

   

   
 

As seen in Table 12 and Table 13, the first column presents the generated 

images at epoch 3000, where both loss functions are near to settle down as 

presented later. The second column presents the synthesized image at epoch 

10000, where these generated images seem similar to compared real images 

presented in the last column. The generated are likely reliable since they show the 

most needed features to be observed and learned. 

Based on these results, we observe a simultaneous decrease, in the beginning, in 

the loss of the discriminator and generator during their training at different epochs. 

Fig. 67 presents the loss plot of the discriminator and the generator, where the loss 

of the discriminator is pursued by some instability for a short epoch's period. 

 

 

Fig. 67: Generator and Discriminator Loss 

 



109 
 

We notice that generator loss was firstable higher than the discriminator loss, 

indicating that the generator was creating images trying to fool the discriminator. 

However, the generator soon learned to make better quality and more realistic 

fraudulent images, and its loss dropped nearly above the discriminator's loss within 

some neighborhood, while the discriminator learned to catch them. We distinguish 

an asymptotic convergence, where the loss of the generator and discriminator 

began to stabilize and settled close at about 6000 epochs with the generator's loss 

being about 2.2, and the discriminator's loss being about 0.39. The continual 

vacillations in both discriminator and generator loss plot, in the beginning, are signs 

of the persistent adversarial struggle that resides well past the point at the end 

which the graph seems to have a neighborly near loss.  

The proposed GAN paradigm leads to a method of increasing the cases and the 

needed experience with a realistically synthetic retinal image representation. From 

this graph, the results confirm that synthetic retinal SD-OCT images can be created 

using GANs. Potential employment will be applicable to the area of ophthalmology 

and generally in medical healthcare. In the current approach, professional trainees 

or doctors are trained by observing anomalies of patients with particular diseases. 

The essentials rules of diagnosing such patients are discovered while caring. 

However, for most common diseases such as DME, the trainees are learned by 

getting unlimited exposure.   

We collected considerable numbers of generated images for both classes and 

formed data groups of synthetic samples additively. To preserve balanced classes, 

we generated the equivalent number of synthetic images for both classes. To 

summarize, the augmented data formation process is presented in Table 14, where 

the total number of images for both classes is 16384 duplicated 3 times making a 

summation number of 49152 images. 

Table 14: Representaton of SERI preparation 

 
Original pre-

processing images 

(volumes × scans)  

Classical 

augmented 
images 

(mirrored) 

Synthetic 
images using 
GAN (from 

original and 
classical) 

Total number  
of images 

DME 
16 × 128 =  

2048 
2048  

2048 + 2048 = 
4096 

8192 x 3 = 
24576 

Normal 
16 × 128 =  

2048 
2048  

2048 + 2048 = 

4096 

8192 x 3 = 

24576 
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5.3. The proposed method   

5.3.1. Fine-tune the pre-trained model 

 

Transfer learning consists of extracted features learned on a task and leveraging 

them on a different but similar task. TL methodology is based on freezing almost all 

layers from a pre-trained model to retain the learned features and weights, and 

leaving only the fully connected ones free. Then append new trainable layers on top 

of the frozen layers to be trained. Considering SERI (containing 16 DME and 16 

normal cases) is a small dataset to train from scratch over a full deep model (which 

leads to over-fitting), hence, transfer learning techniques can usually be used for 

such little dataset problems. Since the proposed model in the prior chapter (see 

section 4.3.1) is previously trained over a similar OCT dataset (CUHK dataset) and 

because SERI was augmented in this chapter to relatively considerable dataset size, 

therefore, the fine-tuning technique (which is a branch of TL) is applied with the 

purpose of achieving significant improvements. Fine-tuning (FT) consists of 

unfreezing (a part or the whole) pre-trained model and re-trains it on the new 

dataset with a low learning rate. FT will re-train the fully connected layers and also 

the convolutional and the pooling layers that incrementally adapt the pre-trained 

features to the new dataset. 

 

Consequently, our strategy involves fine-tuning the pre-trained CNN model 

presented in the previous chapter, to enhance its predictive ability based on a model 

previously trained on a similar dataset. This fine-tuned model could effectively detect 

the most harmful diabetic pathology (DME) for adults compared to classical learning. 

This method aims to take advantage of a pre-trained model that has been trained on 

similar SD-OCT images since OCT images have limited data samples. We can use the 

already trained architecture and leverage its performance to compose predictions and 

acquire improved results.  

   

5.3.2. Re-train the model 

 

Almost all DL models either handled the raw OCT images to train an end-to-end 

CNN demanding a large mass of training data and days to perform classification 

accuracy or used the feature-based TL models without additional adaptation and 

further fine-tuning resulting in reduced classification performance. As this is also the 

case with classical ML, TL has been presented, where the model is trained on a 

related and similar work for which convenient data is sufficient, and the parameters 

are fine-tuned for the necessary target work. 
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The development of a model with an inadequate number of data drives to over-

fitting, which has a bad impact on the effectiveness while testing, given that, SERI 

data is relatively small; therefore, we are distressed to fine-tune the CNN model due 

to over-fitting concerns, taking into consideration that SERI data is similar to the pre-

trained CUHK dataset. Hence, an enlargement of the SERI dataset was performed to 

extend the number of images that are necessary to enhance the generalizability of 

the learned model. As a result, fine-tuning an architecture trained on retinal OCT 

image classification has been explored. This fine-tuning method aims to recognize 

OCT images with pathology. It also involves formerly a pre-processing step for 

denoising and flattening OCT images, which is not a common task in the deep 

learning community. 

 

Considering fine-tuning a network pre-trained on the CUHK dataset for retinal SD-

OCT image classification has not been examined. However, in this chapter, we 

conducted an analysis of the application of a deep TL model based on the network 

architecture presented in chapter 4, to classify SD-OCT images with DME, for 

presenting a timely and accurate diagnosis of the most emerge diabetic pathology. 

The flowchart of the proposed fined-tuned paradigm is shown in Fig. 68.   

This model took advantage of features extracted from the CUHK OCT dataset using 

the pre-trained method to fine-tune another similar dataset. The proposed paradigm 

can be conceivably implemented to ophthalmology clinics to assist clinicians to make 

a symptomatic decision and spread it to an extensive scope of utilization in medical 

imaging approaches to assist the ophthalmologist to achieve more accurate 

examination and proper treatments. 

 

 
Fig. 68: The proposed approach's workflow diagram  for classifying 

Firstly, the images were captured, acquired, and labeled by volumes. After, we 

practiced image pre-processing techniques including normalization, denoising, 

flattening, and cropping. Posteriorly, the SERI dataset was augmented by mirroring 

Labeling RAW 

SERI images 

Image Pre-

processing 

Image augmentation using 

classical and GAN methods 

Pre-trained  
CNN model 

Re-train the fine-tuned model 

with data augmentation 

Validation and 

testing the dataset 

Result evaluation 

(ACC, Se, Sp, ROC) 
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and synthesizing the pre-processing set. Consequently, shuffled and divided the 

entire labeled data into training, validation, and testing dataset. Finally, the 

prediction for the input image was determined by the output from the pre-trained 

CNN network. The proposed method exploited the OCT known features of the CUHK 

images and automatically learned the differentiation of the newly learned features 

from SERI to compose a significant learned feature to increase classification results. 

 

This pre-trained architecture as presented previously in section 4.3.1. is formed of 

5 convolutional layers with 3×3 kernel's size following by Relu activation, 3 max-

pooling with 2×2 kernel's size, and stride is set to 1 after each of the CNN groups, 

and several filters varying from 16 to 256. The input to this model is fixed to 256x256 

pixels grayscale images for the CUHK dataset. Fig. 69 depicts a presentation of the 

model trained using the CUHK dataset. 

 

 
Fig. 69: Flowchart of the model trained over CUHK dataset 

 

  For fine-tuning, we froze firstly all CNN layers and the relevant max-pooling 

layers as feature extractors, therefore only the new classification layers update their 

weights. Otherwise, the randomly initialized weights in the new classification layers 

will lead to a large error rate that affects the weights in the trainable CNN layers by 

back-propagation. As a result, in the re-training process, we manage to unfreeze and 

update the pre-trained weights by back-propagation in the SERI OCT images to fine-

tune the CNN layers to avoid over-fitting. Fig. 70 presents an overview of the new 

classification layers added to the pre-trained CNN layers.  

 

The CNN layers were initialized by loading the pre-trained saved weights to 

accelerate the training. The CNN layers are followed by a new classification layer 

including two adapted Fully-Connected (FCC) layers: the first has 1000 channels; the 

second performs 2-way classifications adjusted to 2 output classes for DME and 

NORMAL instead of the 4 output classes of the CUHK. Moreover, between FC layers, a 

dropout layer has been set to 0.2 to avoid over-fitting when using a new dataset. 
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Finally, the Softmax classifier layer has been utilized as the model prediction for DME 

and normal image diagnosis. 

 
Fig. 70: Flowchart of the pre-trained model over SERI dataset in addition to newly classification (red section)  

 The newly initialized model was trained on an Intel Xeon E5-2670 2.3 GHz 

workstation with NVIDIA Tesla K40c GPU, 12 GB GDDR5 with association of Google-

Colab Server. The hyper-parameters have been based on the pre-trained model and 

adapted carefully and by applying the trial and error, where the following values 

provide the optimal results: We used ADAM optimizer to train layers with a low 

learning rate of 0.0001, a momentum of 0.5. After 120 epochs, the training was 

suspended since both accuracy and cross-entropy loss would not be improved any 

more.  

 

5.4. Performance Analysis  

 

In this chapter, all performance evaluations were achieved using Python including 

NumPy and scikit.learn modules with Keras. The classification accuracy for the training 

and validation sets was measured. Next, the confusion matrix is computed alongside 

with the classification sensitivity and specificity for the validation set. Later, ROC 

curves were plotted. The formulas for computing these values are defined and 

explained in chapter 3 section 3.2.5. 

 

The evaluation of the model was conducted by applying the SERI retinal SD-OCT 

image dataset. Classifying a patients' volume as infected with DME helps him to be 

redirected to an ophthalmologist immediately. Otherwise, his vision is compromised to 

be lost.  

  

For this experiment, The SERI dataset consisted originally, as presented in Table 14, 

of 4096 images from 32 adult patients, divided equally into 16 volumes for DME and 

16 volumes for healthy cases.  Each volume consists of 128 images where the labeling 

methodology took into consideration the majority of the volume as an overall case 

decision despite the possibility of discovering that not all B-scans are labeled as to its 

volume.  
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Consequently, assuming that all images within a volume are labeled the same as 

their volume label, therefore, 2048 images were labeled as DME, and 2048 

represented healthy cases. Later, the data was augmented and duplicated producing a 

total of 49152 images from both cases.  

 
For model evaluation, we shuffled and split the data into 80% for training and 20% 

for validation where the validation set is divided equally for each category from the 

SD-OCT dataset resulting to a total of 9830 images for the validation, and the rest 

images were used for training with a total of 39322 images. We allocated images from 

the same class a single unique label. 

 

Table 15: Images distribution for the training and validation sets 

Number of SD-OCT images DME  Normal Total 

Training set 19661 19661 39322 

Validation Set 4915 4915  9830 

 

The training set was used to re-train the weights of the pre-trained network while 

evaluating the performance using the validation set. Training and validation set 

distribution are shown in Table 15.  

 

As presented in Table 16, a confusion matrix for DME and Normal images was 

identified accurately. By comparing both classes, we observe that 9791 of 9830 

images on the validation set were correctly predicted with an accuracy of 99.6%. 

Alongside, as seen in Table 16, it can be noted that 13 images of DME were incorrectly 

categorized as normal and 26 images were also incorrectly classified as DME.  

 
Table 16: The confusion matrix of our model’s classification on the validation 

Confusion  

Matrix 
Predicted Class 

Actual  

Class 

Class DME Normal Total 

DME 
4889 

99.47% 
26 4915 

Normal 13   
4902 

99.73% 
4915 

Total 4902 4928 9830 
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Table 17 depicts the recall, specificity, precision and F1-score for the validation set. 

The ROC curve reflected the performance measurement of the model to distinguish 

between DME and NORMAL. The AUC produced by plotting sensitivity versus 1-

specificity attained 99.874% as depicted in Fig. 71. 
 

Table 17: Classification report showing the validation ratios 

 Recall Specificity Precision F1-Score 

DME 99.47% 99.87% 99.73% 99.6% 

Normal 99.74% 99.74% 99.47% 99.6% 

 

 

Fig. 71: The ROC curve showed the classification performance 

Two other datasets were used as a test for evaluating the prediction model result. 

The DUKE and the NOOR datasets have been pre-processed to fit the input condition 

for the reason of the difference in quantity, quality, and size; thus, each dataset has 

been adapted separately to test the model. Therefore, in order to test the model 

prediction effectiveness. The DUKE Dataset was priory set to be experimented.  The 

dataset proposed by [86] includes 45 SD-OCT volumes: (15 normal and 15 DME 

patients) besides 15 AMD cases been excluded from this study. All volumes contain 

several B-scans that vary from 31 to 97 with a resolution of around 496x768 pixels 

with some deformation in capturing mechanism. Fig. 72 presents a sample example of 

the dataset. 

 
         (a) DME                                    (b) Normal 

Fig. 72: Example B-scans from Normal, and DME 
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Firstly, the dataset has been pre-processed including normalization, resizing, 

denoising, flattening and cropping where all deformed scans have been fixed and 

reduced to match the model correspondent input dimension fixed to 256x256. Next, 

every image from each volume has been passed through the model to achieve a 

prediction result. After counting the prediction result, a basic rule to make the final 

prediction is to consider a patient as infected if the half+1 of the total predicted image 

of the volume have been predicted as DME and/or a sequence of infected images has 

been detected (for example, a chain of 10 to 15 consecutive detected slices). 

Both DME and Normal volumes have been placed to be tested where each volume 

contains usually 97 OCT B-scan, therefore, the patient is predicted as infected if at 

least 45 to 50 of 97 images are predicted as DME, either a series of scans showing 

DME where it simulates the situation of eye blinking where DME will not appear in OCT 

scans. As shown in Table 18, a slice by slice representation for every volume of DME 

showing the slice of DME in green in the traverse of normal slices presented in red. 

The results showed that 14 of 15 patients have been predicted as infected with an 

accuracy of 93.34% and 15 of 15 are predicted as normal cases with an accuracy of 

100%.  

 
       (a) Normal                           (b) DME 

Fig. 73:  Example B-scans from Normal, and DME 

Another experiment was tested using Noor Eye Hospital Dataset. It consists of 50 

normal and 50 DME OCTs volume, where 19, 25, 31, and 61 B-scans per volume are 

acquired from different patients. Fig. 73 presents an example of OCT images. The 

dataset was also pre-processed as previously achieved using DUKE Dataset with 

respecting the characteristic of acquired images where the images were relatively 

more adequate to use. The result showed that 48 of 50 patients have been predicted 

as DME infected with an accuracy of 96% and 49 of 50 patients are predicted as 

normal cases with an accuracy of 98%. 
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5.5. Discussion 

 

In this chapter, we explored a transfer learning method based on a pre-trained 

model to recognize DME automatically using pre-processed SD-OCT retinal images that 

show better result compared to raw data. This method avoided a large number of 

epochs for convergence with a considerable amount of SERI images, by fine-tuning the 

pre-trained model, and achieved a relatively equivalent performance to specialists in 

diagnosing retinal OCT volumes. The model was validated with an adequate validation 

set incorporating 9830 images from both categories that can additionally yield high 

performance in accuracy, specificity, sensitivity, and AUC for reaching the accurate 

prediction. 

Thereby, the highly powerful classification and prediction abilities of the TL method 

were represented, even though handling a relatively mid-size augmented training set. 

The proposed model can be potentially applied in the pre-diagnosis of other retinal 

pathologies such as CNV, DR, and glaucoma. OCT, a widely use and reliable technique 

in the field of ophthalmology, can present high-resolution cross-sectional images of 

the layers captured in the retina to accurately detect DME. As a general paradigm, the 

pre-trained network can be utilized to a broad category of SD-OCT image 

classifications without understanding the fundamental eye pathology process. 

The results of the proposed method, when compared with other related models 

based on DL architectures discussed previously in the-state-of-the-art, showed an 

advantage that we could notice. Our method focused on re-training a pre-trained 

model on an OCT-based dataset relatively similar to the one held to be re-trained after 

augmentation. Both datasets concentrated on DME that is considered the most 

pathology leading to blindness in the retinal eye diabetic. 

Almost all related works exploit a very deep pre-trained well-known architecture. 

However [95] proposed a very deep model based on GoogLe-Net pre-trained network 

using ImageNet dataset. This model is intended to classify OCT based on a dissimilar 

dataset. The model is implemented to classify 3 cases by fine-tuning GoogLe-Net. 

Additionally, it involves firstly pre-processing the OCT scans. The prediction result of 

testing showed a ratio of 96% of model accuracy via SVM classifier using cross-

validation, this method compared to the proposed model showed less accurate result 

using a very deep architecture pre-trained over an unrelated dataset. 

[108] proposed a transfer learning-based model using a pre-trained VGG-Net for 

classifying DME using OCT scan volumes. In order to evaluate the model different 

classifiers have been examined like KNN and RF. The performance evaluation based on 

the LOPO-CV method and the majority rule has been applied to classify the volume. 

The experiments, after pre-processing OCT images, showed that the accuracy obtained 
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was 93%. The proposed fine-tuned model compared to this pre-trained model without 

fine-tuning, showed better results since the adjustment of the weights via back-

propagation is a necessary step to minimize loss. 

Table 18: A demonstration for all DME volumes where the number of slices showing DME 
prediction are colored in "green" compared to false negative colored in  "red" 

Volume DME Slice Count Predicted as DME 

DME1 92/97 TRUE 

 
DME2 62/97 TRUE 

 
DME3 59/97 TRUE 

 
DME4 94/97 TRUE 

 
DME5 97/97 TRUE 

 
DME6 93/97 TRUE 

 
DME7 61/61 TRUE 

 
DME8 61/61 TRUE 

 
DME9 29/61 TRUE 

 
DME10 2/31 FALSE 

 
DME11 41/61 TRUE 

 
DME12 53/61 TRUE 

 
DME13 39/61 TRUE 

 
DME14 19/61 TRUE 

 
DME15 60/61 TRUE 

 
  

Moreover, [110] introduced a deep transfer learned model based on the pre-trained 

VGG16 CNN network for classifying AMD and DME using OCT images. After pre-

processing a separating the dataset, the results of the fine-tuned model showed an 

accuracy ratio of 98.6%. However, compared to the work proposed in this thesis, the 

proposed work showed better accuracy results in detecting two types of pathologies 

(DME and DR) with less network complexity and converge faster using a similar 
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dataset.  [111] presented a work uniting between several pre-trained popular CNN 

models to merge the reduced features. After a pre-processing step over OCT volumes, 

the results, using an "LTPO-CV" and different classifiers, showed an accuracy of 

93.75% using SVM. 

5.6. Conclusion  
 

 In this work, a representation of a fined-tuned CNN classification model has been 

proposed with the ability to detect patterns for diabetic macular edema using OCT 

images. In the opposite of manual retinal-disease diagnosis based on clinical objective 

examination and analysis of OCT images, this method showed the capability to 

automatically predict DME with a high accuracy rate. The result showed that the 

proposed method has been highly effective for predicting images from an untrained 

and unseen dataset. The experimental results showed an accuracy of classification 

over 99.6% using holdout validation method, which is exceptionally promising in the 

field of early detection of diabetic diseases such as DME to aid ophthalmologists in 

biomedical technologies. The proposed model showed a better classification in 

detecting healthy cases compared to DME that has been improved in comparison to 

other work presented in the state of arts. 

 Finally, the data pre-processing techniques showed improvement in the results, 

where the images flattening method helped other methods to standardize the format 

of model input. Although the augmented images aided to generate a larger dataset 

driving to avoid over-fitting.  
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General Conclusion 

In this thesis, some deep learning architectures and their applications have been 

discussed. In particular, attention was provided to Convolutional Neural Network. CNN 

is formed of an aggregation of convolution and sub-sampling layers and terminated by 

a prediction in order to determine the class label of the image input to the network. 

Despite the significant attention that DL models are gaining and their application in 

many studies in many domain fields, they are yet barely considered in others. This 

may be proved by the evidence that DL models are based on a neural network 

structure that requires an enormous dataset to train. Moreover, the main goal of deep 

models is to extract high-level characteristics and features to utilize them for 

classification.  

Proceeding from this principle, we have generated a deep method based on CNN in 

order to deal with problems of both multi-labeling and binary classification of diabetic 

diseases such as DR and DME, which are the direct causes of vision problem, leading 

to total blindness in the age of working citizens of most countries, which affects the 

healthy lifestyle of patients for decades. Consequently, to avoid vision problems, this 

thesis presents an automated system for detecting patients with diabetic retinopathy 

and macular edema using OCT scans since they are the common scanning method 

applied in ophthalmology in almost all countries. 

In the following, we give highlights emphasizing the proposed deep models. For 

additional details, we guide the reader to the corresponding chapters. 

In chapter 4, a simple new model has been presented based on Convolutional 

Neural Network and fully trained from scratch for the classification of OCT imaging, 

which helps the ophthalmologist to discover and treat the patient before it is too late. 

The proposed CNN model has been trained using the CUHK dataset with 3 blocks of 

convolutional layers followed by max-pooling layers.  The last two fully connected 

layers have consisted of 256 units and 4 units for the classification. The proposed 

model was trained and examined using a mid-size dataset consisting of pre-processed 

24192 images.  

The result showed that the proposed method has been useful for predicting images 

with pathologies. Compared to other models, the results showed that the proposed 

method performed better and achieved a test accuracy rate of 99.02%. The proposed 

method showed a classification advance in patients with and DR in an efficient way to 

detect both diseases together with a percentage of over 98%. 

In chapter 5, a deep transfer learned model has been presented where a fined-

tuned CNN classification model has been applied with the capability to detect DME 
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anomalies using OCT images. The model used SERI dataset in order to retrain the 

model where this dataset was augmented via classical augmentation method then 

using GAN to synthesis another amount of images. Therefore, 4096 images were 

labeled as DME and Normal equally. Later, the data augmentation produced a total of 

49152 images from both cases.  

This method showed a potential performance to automatically predict Normal 

cases with a high accuracy rate. For model evaluation, we shuffled and split the data 

into 80% for training and 20% for validation where the validation set is divided equally 

for each category from the OCT dataset resulting to a total amount of 9830 images for 

the validation, and for training, the rest images were used with a total of 39322 

images.  

The result showed that the proposed method has been highly effective for 

predicting images from an untrained and unseen dataset. By using the holdout 

validation method, the experimental results depicted classification accuracy over 

99.6%, which is remarkably helpful in the domain of diagnosing diabetic disease to 

support ophthalmologists. 
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Conclusion Général 

Dans cette thèse, certaines architectures d'apprentissage en profond et leurs 

applications ont été discutées. En particulier, une attention a été accordée au réseau 

de neurones convolutifs "Convolutional Neural Network". CNN est formé d'une 

agrégation de couches de convolution et de sous-échantillonnage et se termine par 

une prédiction afin de déterminer l'étiquette de classe de l'image d'entrée du réseau. 

Malgré l'attention significative que les modèles DL gagnent et leur application dans de 

nombreuses études dans de nombreux domaines, ils sont encore à peine considérés 

dans d'autres. Cela peut être prouvé par la preuve que les modèles DL sont basés sur 

une structure de réseau neuronal qui nécessite un énorme ensemble de données pour 

s'entraîner. De plus, l'objectif principal des modèles profonds est d'extraire des 

caractéristiques et des fonctionnalités de haut niveau pour les utiliser pour la 

classification. 

Partant de ce principe, nous avons généré une méthode approfondie basée sur 

CNN afin de traiter les problèmes de multi-étiquetage et de classification binaire des 

maladies diabétiques telles que DR et DME, qui sont les causes directes des problèmes 

de vision, conduisant à la cécité totale. À l'âge des citoyens actifs de la plupart des 

pays, ce qui affecte le mode de vie sain des patients pendant des décennies. Par 

conséquent, pour éviter les problèmes de vision, cette thèse présente un système 

automatisé de détection des patients atteints de rétinopathie diabétique et d'œdème 

maculaire à l'aide de scans OCT car ils sont la méthode de numérisation courante 

appliquée en ophtalmologie dans presque tous les pays. 

Dans ce qui suit, nous mettons en évidence les modèles profonds proposés. Pour 

plus de détails, nous guidons le lecteur vers les chapitres correspondants. 

Dans le chapitre 4, un nouveau modèle simple a été présenté basé sur 

Convolutional Neural Network et entièrement formé à partir de début pour la 

classification de l'imagerie OCT, ce qui aide l'ophtalmologiste à découvrir et à traiter le 

patient avant qu'il ne soit trop tard. Le modèle CNN proposé a été formé à l'aide de 

l'ensemble de données CUHK avec 3 blocs de couches convolutives suivies de couches 

de "max-pooling". Les deux dernières couches entièrement connectées ont consisté en 

256 unités et 4 unités pour la classification. Le modèle proposé a été formé et examiné 

à l'aide d'un ensemble de données de taille moyenne composé de 24192 images 

prétraitées. Le résultat a montré que la méthode proposée a été utile pour prédire des 

images avec des pathologies. Par rapport aux autres modèles, les résultats ont montré 

que la méthode proposée fonctionnait mieux et atteignait un taux d'exactitude des 

tests de 99,02%. La méthode proposée a montré une avancée dans la classification 

des patients avec et DR d'une manière efficace pour détecter les deux maladies avec 

un pourcentage de plus de 98%. 
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Dans le chapitre 5, un modèle d'apprentissage par transfert profond a été présenté 

dans lequel un modèle de classification CNN affiné a été appliqué avec la capacité de 

détecter les anomalies DME à l'aide d'images OCT. Le modèle a utilisé l'ensemble de 

données SERI afin de recycler le modèle où cet ensemble de données a été augmenté 

via une méthode d'augmentation classique, puis en utilisant GAN pour synthétiser une 

autre quantité d'images. Par conséquent, 4096 images ont été étiquetées comme DME 

et Normal de la même manière. Plus tard, l'augmentation des données a produit un 

total de 49152 images des deux cas. 

Cette méthode a montré une performance potentielle pour prédire 

automatiquement les cas normaux avec un taux de précision élevé. Pour l'évaluation 

du modèle, nous avons mélangé et divisé les données en 80% pour la formation et 

20% pour la validation où l'ensemble de validation est divisé également pour chaque 

catégorie de l'ensemble de données OCT, ce qui donne un total de 9830 images pour 

la validation et pour la formation, les autres images ont été utilisées avec un total de 

39322 images. 

Le résultat a montré que la méthode proposée s'est avérée très efficace pour 

prédire des images à partir d'un ensemble de données non formé et invisible. En 

utilisant la méthode de validation d'exclusion, les résultats expérimentaux ont montré 

une précision de classification supérieure à 99,6%, ce qui est remarquablement utile 

dans le domaine du diagnostic de la maladie diabétique pour soutenir les 

ophtalmologistes.  
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Future Perspectives 

 

In the future works, we propose as perspective some methods based on our methods 

presented in this work. Among these applications, we can mention: 

 Using different type of networks: such as Auto-Encoder (AE) Neural Network, 

RNNs, R-CNN, Fast R-CNN, and FCNN. 

 Using “One-shot” learning makes use of prior knowledge of learnt categories and 

allows for learning on minimal training examples. 

 Using metadata, like properties of the learning problem, algorithm properties or 

patterns previously derived from the data; it is possible to learn, select, alter or 

combine different learning algorithms to effectively solve an OCT learning problem. 

 We plan to improve GAN works by using different models with a variety of 

numbers of synthetized images. 

 We plan to gather all datasets from different institutions and hospitals to build a 

standard dataset containing almost all diabetic pathologies.   
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