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Résumé : Ces dernières années, le transport fluvial a fait 
l'objet d'une attention croissante de la part des pouvoirs 
publics de France et de nombreux pays européens. 
Cependant, ce mode transport manque de flexibilité, 
dispose d'une infrastructure vieillissante et les bateaux 
actuels ne sont pas adaptés à une augmentation des 
capacités de transport assurant la sécurité des navires et des 
marchandises ainsi que des temps de livraisons fiables et 
constants. Par conséquent, le transport fluvial doit passer 
par une rénovation organisationnelle et technique propre à 
son environnement particulier afin d’espérer concurrencer 
le transport terrestre. Pour répondre à ces exigences, nous 
proposons dans cette thèse de développer un écosystème 
fluvial intelligent s'articulant autour de trois axes principaux 
: (i) automatiser l'infrastructure fluviale existante, (ii) 
intégrer le bateau autonome à cette infrastructure, et (iii) 
promouvoir une navigation connectée et coopérative. Le 
premier axe se concentre sur la modernisation des 
infrastructures en proposant une méthode efficace de prise 
de décision pour l'automatisation des écluses existantes 
(Lock-ADM). L'algorithme Lock-ADM fonctionne en trois 
étapes. Tout d'abord, il calcule le nombre optimal d'écluses 
à automatiser pour un coût d'investissement fixé. Il mesure 
ensuite l'importance des écluses dans le réseau selon 
plusieurs critères. Enfin, il sélectionne les meilleures écluses 
à automatiser grâce à un algorithme génétique. Lock-ADM 
permet ainsi la planification annuelle des écluses à automa- 

tiser, en commençant par les plus  contraignantes pour le réseau 
actuel. Le deuxième axe s'intéresse au développement d'un 
système de perception de l'environnement pour bateaux 
autonomes. Il permet de délimiter les zones navigables où un 
bateau peut naviguer en toute sécurité et ainsi éviter tout obstacle 
sur sa route. Pour ce faire, nous avons construit le premier jeu de 
données (Images étiquetées) open-source et destiné au domaine 
fluvial: InlandAutoDetect. Nous avons étiqueté de manière 
exhaustive les différents objets constitutifs de la navigation fluvial. 
Ensuite, nous avons comparé les performances de neuf 
algorithmes d'apprentissage profond en termes de précision de 
détection et de temps de réponse vis-à-via de nos étiquettes. Nous 
avons ainsi retenu l’algorithme Retinanet qui a montré les 
meilleures performances pour délimiter avec précision et en 
temps réel une zone de navigation qui soit sûre pour notre bateau 
autonome. Enfin, le troisième axe introduit C-IAShips, une 
architecture basée sur les technologies de Blockchain et de MEC 
(Mobile Edge Computing) à destination des bateaux autonomes 
coopératifs. L'architecture proposée garantit une faible latence et 
une communication efficace tout en protégeant la confidentialité 
des bateaux et la sécurité des données échangées. L'avantage 
principal des bateaux coopératifs est qu'ils permettent d’assurer 
un fonctionnement plus puissant et efficace du système global. 
Nous avons étudié, en particulier, la faisabilité de deux 
applications coopératives : la première pour l'ordonnancement du 
passage des bateaux au niveau des écluses et la seconde pour la 
détection de collisions. 
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Abstract: In recent years, inland waterway transport has 
witnessed increasing attention from France and many 
European countries. However, this mode of transport lacks 
flexibility, has an aging infrastructure and the current ships 
are not adapted to an increase in transport capacity ensuring 
the safety of vessels and goods as well as reliable and 
constant delivery times. Therefore, inland transport must go 
through an organizational and technical renovation specific 
to its particular environment in order to hope to compete 
with land transport. In this thesis, we propose developing a 
smart river ecosystem that focuses on three principal axes: 
(i) automatic inland infrastructure, (ii) autonomous inland 
ship, and (iii) promoting connected and cooperative 
navigation. The first axis focuses on efficiently automating 
the existing inland infrastructure using the Lock Automation 
Decision Making (Lock-ADM). The Lock-ADM algorithm 
works in three steps. First, it calculates the optimal number 
of locks to automate for a given investment cost. Then it 
measures the importance of the locks in the network 
according to several criteria. Finally, it selects the best locks 
to automate using a genetic algorithm. Lock-ADM allows the 
annual planning of the locks to be automated, starting with  

the  most constraining ones for the current network. The second 
axis focuses on the development of an environment perception 
system for autonomous ships. It allows to delimit the navigable 
zones where a ship can navigate safely and thus avoid any obstacle 
on its way. To do so, we have built the first open-source dataset 
(labeled images) for the river domain: InlandAutoDetect. We have 
exhaustively labeled the different objects that make up the river 
navigation. Then, we compared the performances of nine deep 
learning algorithms in terms of detection accuracy and response 
time. We selected the Retinanet algorithm which showed the best 
performance to delimit with accuracy and in real time a safe 
navigation zone for our autonomous ship. Finally, the third axis 
introduces C-IAShips, an architecture based on Blockchain and 
MEC (Mobile Edge Computing) technologies for cooperative 
autonomous ships. The proposed architecture guarantees low 
latency and efficient communication while protecting the 
confidentiality of the ships and the security of the exchanged data. 
The main advantage of cooperative ships is that they allow for a 
more powerful and efficient operation of the overall system. In 
particular, we have studied the feasibility of two cooperative 
applications: the first for scheduling the passage of ships at locks 
and the second for collision detection. 
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1.1 Research Context and Motivation

The e�ects of global climate change cannot be denied any longer. These e�ects require
signi�cant modi�cations in our behavior, particularly in the �eld of freight transport. Ex-
cessive use of land transport has many drawbacks such as pollution, road congestion, and
road deterioration. In contrast, thanks to its advantages, Inland water transportation (IWT)
may be a great alternative to other transport modes. The IWT, the oldest and most grow-
ing sector, progressing from primitive ships to highly automated ones [1], played a critical
role before the development of modern land transport. The Commission of the Transporta-
tion Ministries of the European Community Member Countries [2] illustrated the IWT’s
advantages, as follows:

• Cost e�ectiveness: According to German statistical data, 1 tonne-kilometer (tkm)
transportation costs €12.15 by roads, €6.35 by railways, and only €1.95 by inland ship-
ping [1]. In addition, the IWT can carry much larger quantities of heavy goods. For
instance, a single Freycinet barge, which can sail on the tiny French canals, with a
loading capacity of 250 tonnes, can carry around 15 trucks or almost 4 trains [2].

• Energy consumption e�ciency: The towed group achieves an average of 127.5 tkm
per liter of fuel, whereas railway tra�c achieves 76 tkm per liter and road tra�c
achieves only 23 tkm per liter [2].

• Navigational safety: The risks of accidents causing signi�cant damages or injury
are rare in inland waterway tra�c. This bene�t is signi�cant when transporting
dangerous cargo. As a result, some industrial sectors, such as construction, mining,
forestry, metallurgy, chemical, and oil, may reach the market only via inland water-
way transport since other modes are unacceptable.

• Environmentally friendliest: According to various analyses, the inland waterway
tra�c has a lower degree of pollution of air than the other modes. For instance, it has
been demonstrated that the CO2 emissions of a barge carrying 1500 tons of cargo are
three times less than those of the �eet of trucks required in order to move the same
load [2]. In addition, it reduced the noise, olfactory and visual nuisances.

• High reliability: Compared to other modes of transport, which are often confronted
with congestion and capacity problems, inland waterway transport is characterized
by its reliability in transit and delivery times.

Seeing these bene�ts, the European Union (UE) has recently decided to progress this
sector and strengthen the competitive position of inland waterways in the transport sys-
tem by increasing its share by 25% by 2030 and by 50% by 2050 [2]. With 8,500 km of
waterways, France has the most extended network of waterways in Europe [3]. Thanks
to its localization (at the crossroads of Europe) and its multiple ports, the inland network
o�ers potential growth for river freight transportation in the country. However, the French
government should also consider the actual waterways situation and the IWT’s speci�c
characteristics. We classi�ed these obstacles into three categories, as follows:
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• Seasonal character: The navigation in some inland waterways areas may be af-
fected by climatic conditions: water may freeze during winter, or its level may drop
dramatically during summer. However, even rail and road transport may be disrupted
during extreme weather conditions like periods of �ooding and snowfall. Therefore,
the real challenge is making distribution transport chains organized, including road
or rail transport, and building dynamic �eet management to ensure optimal trajecto-
ries while avoiding the blocked areas.

• Longer voyage time: Inland navigation ships have speeds in the range between 10
and 20 km/h, which is much lower than the speed of trains or road vehicles. In addi-
tion, ships have to cross many locks in one voyage generating an enormous waiting
time: for example, on the path between Lyon and Paris, they have to cross 220 locks;
each crossing takes 20 minutes on average. Therefore, it usually takes longer to carry
goods from one place to another through this form of transport in its current format.
Moreover, ships can not operate continually for 24 hours to meet the delivery dead-
lines due to the lack of e�cient navigation systems.

• Isolated and out-dated technology system: In Europe, where the canal epoch be-
gan at the end of the 17th century, France took the lead, further integrating its na-
tional waterway system by forging the missing channels connections [4]. However,
the waterways have barely been maintained since, and some waterways were aban-
doned for navigation, mainly in 1925-1955.

To sum up, although picturesque promises, spanned by inland navigation, developing
this sector yields new challenges compared to the sea/land sector. Therefore, adequate
strategies and solutions must be deployed to bene�t from this old transport system’s sub-
stantial advantages while considering its speci�c characteristics and challenges. Addition-
ally, with the expected growth of inland shipping and the increased number of inland ships
required to convey the freight, the ultimate goal is to design an intelligent shipping sys-
tem to make inland shipping safer and more e�cient. The concept of Smart River may
be the best way out of this impasse. Smart River means integrating information and com-
munication technologies to manage inland components: infrastructure, ships, sensors, and
transport authorities. A smart river aims to improve navigation quality by introducing In-
telligent Transportation System (ITS) techniques to the inland sector. This unprecedented
growth stimulates the emergence of many applications and services that aim to enhance
driving conditions, reduce voyage time, bring e�cient tra�c management, and increase
river safety by collision detection and avoidance. Digital, agile, and �exible rivers manage
costs, support the e�cient use of all resources, and e�ciently adapt to changing demands.
Hence, we seek to integrate smart river technology to meet this expected growth in inland
shipping during our thesis.

1.2 Research Opportunities and Challenges

The smart river concept integrates Information and Communication Technology (ICT) into
the various connected river components to optimize the e�ciency of river operations and
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services, as illustrated in Figure 1.1. Smart river technology allows inland transport author-
ities to interact directly with ships and inland infrastructure to monitor what is happening
in the river. However, such advancement is not yet possible regarding the actual situation
of rivers. In this sense, we formulate our research problem as follows: " Given the cur-
rent situation of the river marked by restricted maneuverability, lack of e�cient navigation
systems, and ine�cient communication among ships and given the inland speci�c charac-
teristics, how to determine the best strategies for the ships and the system to reach reliable
smart navigation?"

Voyage time reduction

Speed control

Safety enhancement

Traffic management

Energy saving

Figure 1.1: The envisioned smart river

One of the most critical steps to ensure such a development is to address the infras-
tructure limitations without huge investments. As mentioned earlier, despite France’s
most extended waterways network in Europe, with no missing channels connections since
the 17th century, it abandoned some of them for navigation last years. Hence, one of the
critical tasks of the inland transport authorities is to introduce technological solutions to
e�ectively modernize and automate the existing river infrastructure, considering the
growing tra�c size. By eliminating the need for a lock keeper, ships will be able to operate
continually for 24 hours and be entirely adapted to observing the delivery deadlines.
A river’s smartness also implies considering autonomous ships in its pillars to develop
more �exible and reliable solutions. An autonomous ship can operate itself and perform
necessary functions without any human intervention through the ability to sense its sur-
roundings. Higher levels of autonomy have the potential to increase safety by reducing
risky driver behaviors. Implementing such ships is becoming a reality thanks to the increas-
ing development and evolution of embedded technologies, integrated automotive sensors,
and machine visions for the reliable external perception of the surroundings.
However, individual autonomous ships may be ine�cient regarding the expected growth of
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inland shipping; the increased number of inland ships required to convey the freight would
lead to new �eet management challenges. For instance, an autonomous ship can sense its
environment but can not comprehend, without fail, the other ships’ intentions. Addition-
ally, each ship acting in its way, a �eet of ships may cause con�icting situations when paths
cross simultaneously. Therefore, cooperative autonomous ships can achieve greater ef-
�ciency, operational capability, and robust applications. Consequently, the success of a
smart river relies on the cooperation between its di�erent components, i.e., autonomous
ships and automated locks, by integrating intra-communication capabilities.

To sum up, the main goal of this thesis is concentrated around inland navigation devel-
opment employing the smart river concept. More speci�cally, the objective is to provide
adequate strategies including, techniques and methods, to allow a reliable cooperative con-
nected autonomous inland navigation. The basic idea of these strategies is to identify the
speci�c requirement to make such a solution become a reality.

1.3 ResearchMethodology andContributions Overview

In the context presented in the previous section, we aim to bene�t from the considerable
development witnessed by the automotive area and available communication technologies
to build an e�cient smart river ecosystem and address the earlier mentioned issues. For this
purpose, the contributions of this thesis make reference to four main requirement classes,
as listed in Table 1.1:

v Infrastructure-related requirements: River locks are the oldest waterway infras-
tructure used to elevate safely and lower ships between water level di�erences and
are considered vital inland navigation nodes. However, they generate an enormous
waiting time due to their lack of �exibility and the need for lock-keepers to perform
the passage through them. In the entire river network, all commercial ships must
announce their entry into the network. They must book the lockage service within
�xed timetables by calling the customer-user relations department. Lock automation
may be an e�cient solution to reduce waiting time, and therefore the shipment costs.
Therefore, we consider solving this problem using the Lock-ADM, a three-stage al-
gorithm for determining the number and locks’ position to automate, respecting the
budgetary and time constraints.

v Autonomous ship-related requirement: The main techniques for autonomous
ships include solving tasks like self-localization, parsing the driving road, and under-
standing objects, enabling the system to reason and act. Therefore, they need reliable
and robust perception systems so that the automated driving system can decide upon
more cautious maneuvers or even bring the ship to a stop if a near obstacle is per-
ceived. In this work, we develop the perception part with two main methods. On
the one hand, using cameras to develop a contextual understanding of the environ-
ment, autonomous ships can apply computer vision techniques to localize obstacles,
detect tra�c signs, and categorize data according to their semantic meaning. To do
this, we start with constructing a dataset, the InlandAutoDetect dataset, adapted to
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the inland domain. Then, we evaluate the accuracy and performance of nine state-
of-the-art object detection models in the inland environment to select the adequate
con�guration for inland navigation. On the other hand, using GPS data, autonomous
ships can provide timely and accurate positioning predictions. We evaluate the ac-
curacy and performance of four state-of-the-art deep learning models architecture to
select the most e�cient and robust one for mobility prediction in the inland environ-
ment to enhance the environmental awareness and, thus, the prediction of potential
collisions.

v Fleetmanagement-related requirement: Increasing the number of ships will lead
to good �eet management requirements. This study supports two fundamental appli-
cations: the Cooperative Lock Scheduling (CLS) application to improve the schedul-
ing method used to cross locks and thus reduce waiting time and fuel consumption,
and the Cooperative Collision Detection (CCD) application to ensure safe navigation.
To this end, cooperative ships send their characteristics to a central node. Then, this
central node can make decisions concerning detected collisions or schedules accord-
ing to the data received while keeping an eye on the state of the river.

v Connectivity-related requirement: Connectivity is the enabling technology for
enhancing the e�ciency of cooperative ships. However, in such a cooperative con-
text, some essential connectivity requirements arise. Low latency connection is con-
sidered to be the most important performance metric as some applications require
very stringent requirements. Since the proposed ecosystem needs numerous data col-
lected, analyzed, and used to gain actionable insights, ships’ privacy and shared data
security need to be protected. Therefore, in this work, we innovatively introduce the
C-IAShips architecture, a three-layer blockchain-based federated learning architec-
ture for cooperative inland autonomous ships. The C-IAShips architecture achieves
high communication e�ciency and protects ships’ privacy from being leaked while
realizing the di�erent proposed applications. Delay-sensitive applications are per-
formed on Mobile Edge Computing (MEC) servers, while delay-tolerant computing
tasks applications are performed on a Cloud server.

Table 1.1: Research Methodology to develop a cooperative connected autonomous inland
navigation

Requirement Objective Proposed Solution Discussed in
Infrastructure-related Automate the existing locks Lock-ADM algorithm Chapter 3

requirements without huge investments

Autonomous ship-related Ensure Reliable environment Vision-based environment perception Chapter 4
requirements perception GPS-based global localization Chapter 5

Fleet management-related Make river waterways more e�cient Cooperative Collision Detection (CCD) Chapter 6
requirements using cooperative applications Cooperative Lock Scheduling (CLS) Chapter 7

Connectivity-related Low latency Mobile Edge Computing (MEC) Chapter5
requirements Ships’ privacy protection Federated Learning & Blockchain Chapter 5

Data security protection Blockchain Chapter 5
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1.4 Thesis Structure

We like to remind the reader that all the objectives mentioned above were implemented, not
necessarily in the described order. However, for comprehension reasons, we will present
them following the organization as given in Fig 1.2.

Automating the 
Inland Infrastructure

Chaptre 3

Automating the 
Inland Ships

Chaptre 4
Cooperative
Autonomous Inland 
Navigation

Chaptre 5

Towards Internet of
Cooperative Autonomous
Inland Ships

Chaptre 2

Introdcution

Chaptre 1

Conlusion

Chaptre 8

Automation

Part I

Cooperation

Part II

Cooperative
Collision Detection

Chaptre 6

Cooperative
Lock Scheduling

Chaptre 7

Figure 1.2: Dissertation outline diagram

Apart from the introductory Chapter 1, this thesis consists of seven chapters divided
into two parts.

Chapter 2-Survey on Cooperative Autonomous Inland Ships
This chapter explores the di�erent state-of-the-art methods, techniques, and technologies
that fall within the scope of our proposed solutions for cooperative, connected autonomous
inland navigation deployment. Before the discussion of this speci�c inland domain, we also
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investigated the other types of transportation domains. This review aims to identify the ex-
isting solutions and reveal the extent of their applicability to our domain.

Part I-Automation

The �rst part of this thesis is dedicated to studying the feasibility of automation in the
inland environment, i.e., automating the inland infrastructure and the inland ships.

Chapter 3-Automating the Inland Infrastructure
Our �rst contribution, introduced in this chapter, deals with the infrastructural limitations.
We �rst highlight the speci�c issues to be addressed by studying the current French river
network’s states. Then, we focus on making infrastructural modi�cations by proposing a
realistic Lock Automation Decision Making (Lock-ADM) algorithm that integrates all the
previously discovered elements. Lock-ADM is a three-stage algorithm. Firstly, we calculate
the optimal number of locks while minimizing the investment costs using the exact solver,
CPLEX. Secondly, we measure the importance of locks in the network, and �nally, we select
the best locks to automate using the Genetic Algorithm (GA) metaheuristic.

Chapter 4-Automating the Inland Ships
This chapter develops the vision-based environment perception part, starting with con-
structing a dataset, the InlandAutoDetect dataset, adapted to the inland domain. The In-
landAutoDetect dataset, including a total of 3,377 images, is destined for the �uvial envi-
ronment with annotations for perception purposes and, more precisely, for object detection
through machine/deep learning processes. The dataset is open-source, and it is available
online for other researchers working in this area. Then, we evaluate the accuracy and per-
formance of nine state-of-the-art perception models architecture for object detection using
the constructed dataset. Among the evaluated models, we select the most e�cient and
propose an adequate con�guration for inland navigation: the Retinanet model with the
resnet101 backbone. We design a system to accurately delimit the area where the naviga-
tion is secure by simultaneously locating and mapping the area using the Retinanet model
�ndings.

Part II-Cooperation

Once the automation problem is appropriately addressed in the �rst part, the next logi-
cal step is to consider the cooperation between the di�erent river entities. Thus, the second
part of this thesis mainly focuses on studying this cooperation’s requirements, advantages,
and achievable useful applications.

Chapter 5-Cooperative Autonomous Inland Navigation
This chapter introduces the Cooperative Inland Autonomous Ships (C-IAShips) architecture
that meets the needs of a smart river, the �eet management-related, and the connectivity-
related requirements. The proposed architecture is blockchain-based federated learning
architecture. It comprises three interactive layers: a user layer containing the cooperative
river components, an edge layer composed of MEC servers, and a cloud layer managed by a
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central authority responsible for managing the �uvial navigation. The architecture enables
cooperative applications, such as Cooperative Collision Detection and Cooperative Lock
Scheduling.

Chapter 6-Cooperative Collision Detection
This chapter investigates the �rst application enabled by the C-IAShips architecture. It
consists of continuously gathering data, such as localization data, from ships and process-
ing them at the MEC level to predict collisions. Then, alerts will be sent to ships to avoid
collisions between them.

Chapter 7-Cooperative Lock Scheduling
This chapter addresses another application based on the CIAShips architecture of cooper-
ative �eet management, cooperative lock scheduling. It aims to reduce the �eet’s waiting
time by scheduling the ships before their arrivals to the lock using a lock-ship real-time
and dynamic cooperation. Additionally, it provides recommendations regarding the com-
ing ships’ speed to minimize their fuel consumption.

Chapter 8-Conclusion
The closing chapter of the thesis provides a general overview of our work. Furthermore,
a detailed review of our contributions and the limitations of the current iteration of our
approach are presented. Its �nal section outlines the potential future research directions
related to cooperative autonomous navigation deployment to improve inland transporta-
tion.
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2.1 Introduction

The Internet of Things (IoT) has witnessed rapid growth—both in scope and number of
smart devices and technologies. In particular, connected and autonomous vehicles (CAVs)
represent a signi�cant part of this IoT industry. Associated with the di�erent components
of intelligent transportation systems, they form the concept of Internet of Vehicles (IoV)
[5]. The latter is a distributed network that supports data created by connected vehicles.
The IoV’s essential goal is to allow vehicles to communicate in real-time with the human
drivers, pedestrians, other vehicles, roadside infrastructure, and �eet management systems.
In this context, the Internet of Ships (IoS) [6] is de�ned as a novel vehicular ecosystem that
incorporates all IoV-based emerging technological trends adapted for sea shipping. As a
particular case of IoS, the Internet of Inland Ships (IoIS) involves river ships. The IoIS com-
bines communication and computing capabilities to provide outstanding inland transport
services, such as real-time monitoring and route planning. However, with its distinctive
characteristics and speci�cations, inland navigation has given birth to di�erent deploy-
ment requirements and challenges to support such an intelligent transport system.
As described in the introductory chapter, in this work, we study the feasibility of employing
a smart river where cooperative autonomous ships can communicate with the surrounding
automated infrastructures to build a robust IoIS. Therefore, we conducted a survey on co-
operative autonomous inland ships solutions over the past years. Furthermore, we did not
limit the scope of this review to the inland domain; we also investigated the other types of
vehicles.

Based on the literature collected, a survey of the current state-of-the-art algorithms and
methodologies has been pursued to identify the most suitable key enabling technologies
to address the problem of Cooperative Autonomous Inland Ships (C-AIS) considered in
this thesis. We use the terms ’unmanned ships’ and ’autonomous ship’ interchangeably
in this manuscript. For clarity of exposition, we separate the research studies into two
main sub-�elds. On the one hand, section 2.2 study the autonomous inland ships from an
individualistic perspective. On the other hand, in section 2.3, we consider cooperative and
connected inland ships. We explain the main requirements, opportunities, and challenges
for each sub-�eld for considering such an advancement. Finally, section 2.4 concludes on
speci�c approaches for building a robust Internet of Cooperative Autonomous Inland Ships.

2.2 Autonomous Inland Ships

The Intelligent Transportation Systems (ITSs) will revolutionize transportation by provid-
ing safer and more e�cient driving experiences. One of the most signi�cant contributions
towards the ITS is developing autonomous vehicles. Over the last decades, the automo-
tive industry has shown interest in integrating new technologies into vehicles’ design to
reduce the driver’s role and exclude him altogether. Seeing the enormous potential to in-
crease driving safety and e�ciency [7], autonomous ships will hopefully soon become a
reality. Thus, the need to adapt to the speci�c needs of this advancement in the inland
environment becomes apparent.

11



Chapter 2

This section intends to elaborate on the feasibility of deploying autonomous inland nav-
igation. First, we de�ne autonomous systems in general, their level of automation, and
their bene�ts. Then, we explore the core competencies of the vehicle’s automation. Next,
we investigate the existing projects related to autonomous ships, their opportunities, and
challenges.

2.2.1 What is an Autonomous System ?

Autonomous systems (ASs) are machines and systems that can sense and operate without
human involvement in an unpredictable and partially unknown environment. They were
�rst invented for the defense and security industries to take jobs too dangerous or unpleas-
ant for humans to do. Nowadays, the deployment of such systems is rapidly growing in a
diverse number of applications, as shown in Figure 2.1.

Application of 
autonomous systems

Agriculture

Industrial 
applications

…

Cleaning 
Services

Search 
and 

rescue

Transportation

Figure 2.1: Applications of autonomous systems.

In particular, autonomous transportation and especially autonomous cars has gained
prominence in the most varied �elds of applications of ASs missions. The idea of au-
tonomous cars started with "phantom autos" in the 1920s, where the car was controlled
through a remote control device [8]. In the 1980s, we witnessed the emergence of au-
tonomous and self-managed autonomous cars. A signi�cant contributor to the autonomous
car �eld was the NavLab at Carnegie Mellon University, where researchers developed the
Autonomous Land Vehicle (ALV) [9]. Although it was not fully autonomous at that time,
since the human intervention was necessary for safety reasons, automatically changing
lanes was a breakthrough. In the 21st century, the increasing interest in autonomous cars
has been fueled primarily by low-cost, high-performance technologies in various areas. Ad-
vanced Driving Assistance Systems (ADASs) and Automated Driving Systems (ADSs) are
being developed to lead to better road safety and lower congestion where the traditional
transport system is becoming increasingly disorganized and ine�cient [10].
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2.2.1.1 Levels of Automation

In order to standardize a conventional de�nition of what is considered autonomous, in
2014, the Society of Automotive Engineers (SAE), in collaboration with the International
Organization for Standardization (ISO), de�ned six levels of vehicle automation [11]. Table
2.1 draws clear lines between the con�icting levels of autonomy ranging from Level 0 (fully
manual) to Level 5 (fully autonomous).

Level 0:
No automation

Level 1:
Driver Assistance

Level 2:
Partial Automation

Level 3:
Conditional Automation

Level 4:
High Automation

Level 5:
Full Automation

The driver is
entirely
responsible for
controlling the
vehicle and
performing all
driving tasks such
as steering,
braking,
accelerating, or
slowing down.

‘’Hands on’’
The driver controls
the vehicle, but the
vehicle’s ADAS can
assist the human
driver with either
steering or
braking/accelerating
.

‘’Hands off‘‘
The vehicle’s ADAS
can perform
complex functions,
such as
acceleration and
braking, in specific
situations. The
driver must,
however, remain
engaged with
driving tasks

‘’Eyes off’’
Drivers can disengage
from the act of driving,
but only in specific
situations. The vehicle’s
ADS can perform all
aspects of the driving
task, Conditions could
be limited to certain
vehicle speeds, road
types, and weather
conditions.

‘’Mind off”
At this level, the
vehicle’s ADS can
fully handle all
driving functions.
It may alert the
driver when it
requires a human
in control. If the
driver does not
respond, it can
secure itself
automatically.

Level 5-capable
vehicles are fully
autonomous, and
their ADS can
ensure all the
driving tasks in all
circumstances. No
driver is required
behind the wheel
at all.

Driver support features Automated driving features

Table 2.1: Vehicle automation levels as described by SAE and ISO.

Some ADASs corresponding to level 2 are already implemented in commercial vehicles,
such as Adaptive Cruise Control, Lane-Keeping Assist, and Automatic Emergency Braking.
They control the steering or speed based on sensor measurements like distance or visual
lane recognition. Moreover, the Audi A8 vehicle with its AI Tra�c Jam Pilot 2 has reached
level 3. It can perceive the environment and operate under certain conditions. However,
they require the driver to stay alert in case of an unexpected event that will require to take
over the control. Level 4 vehicles already exist (taxis, low-speed shuttles). However, they
are pilot projects restricted to operate under certain conditions (restricted areas, weather,
speeds) and analyzed with continuous test evaluations to prove their e�ciency. Level 5
vehicles will not have operational restrictions and will be able to navigate anywhere at any
time.
Each level of automation requires additional layers of sensors, as the vehicles increasingly
assume functions previously controlled by the driver. For example, a Level 1 vehicle might
only have one radar and one camera, whereas Level 5 vehicle will require full 360-degree
sensing across multiple sensor types. The sensor architecture in a modern autonomous
driving system notably includes multiple sets of cameras, radars, Global Positioning System
(GPS), and LiDARs for absolute localization of the vehicle in space.
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2.2.1.2 Bene�ts of Automation

The bene�ts of self-driving vehicles are numerous. Even though many experts have ex-
plored them extensively, we list here some of those potential bene�ts.

Safety.
The bene�ts of automated vehicles in terms of safety are predominant. Studies have found
that over 90 % of road crashes are due to human error. The elimination of human error
through the widespread adoption of autonomous vehicles is thus expected to save lives and
reduce injuries, with some experts [12] expecting the reduction as high as 80 %.

E�ciency and convenience.
In 2014, Americans lost an estimated 6.9 billion hours due to tra�c delays, fuel costs, and
vehicle emissions. The time and money spent commuting could be better spent with auto-
mated vehicles. According to [13], automated vehicles could free up to 50 minutes per day
that were previously devoted to driving.

Lower fuel consumption.
Autonomous vehicle technology can improve fuel economy by 4–10 % by accelerating and
decelerating more smoothly than a human driver [12]. Further improvements could be
achieved by reducing the distance between vehicles and increasing roadway capacity. Over
time, as the frequency of crashes is reduced, cars and trucks could be made much lighter.
This would increase fuel economy even more.

Economic and societal bene�ts.
On the one hand, automated vehicles could deliver additional economic and additional soci-
etal bene�ts. The National Highway Tra�c Safety Administration (NHTSA) study showed
that motor vehicle crashes in 2010 cost $242 billion in economic activity, including $57.6
billion in lost workplace productivity and $594 billion due to loss of life and decreased qual-
ity of life injuries. Eliminating the vast majority of motor vehicle crashes could erase these
costs. On the other hand, postings for jobs in autonomous vehicles have been increasing
steadily over the last several years [12]. Several experts expect that autonomous vehicles
will result in an uptick in engineering-related positions and other positions related to their
integration into society.

However, these gains are circumscribed by the capability of an autonomous vehicle to
learn and adapt to the driving environment. In reality, driving involves complex interac-
tions with other road users that are near-impossible to be exhaustively described through
code or rules. Therefore, autonomous driving systems cannot be pre-programmed with
speci�c rules to cover all possible scenarios on the road. AVs should, thus, potentially dis-
cover such complex situations automatically through exploration. Based on the knowledge
gathered through interplays with the driving environment, they should evolve their plan-
ning and actions to be more successful in driving. More speci�cally, an autonomous vehicle
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needs to develop some key enabling competencies to ensure trustworthy self-driving capa-
bility. We detail these competencies in the following section.

2.2.2 Key Enabling Competencies of an Autonomous Vehicle

The autonomy of vehicles heavily relies on their ability to make decisions based on the
information provided by their sensors. They have to adapt their decisions to their environ-
ments using their sensors and internal memory to analyze and update their representation
of both the state of the world and their inner state. These functional systems must coop-
erate to answer the three critical questions of "Where is the vehicle?", "What is around the
vehicle?", and "What does the vehicle need to do next?" to achieve fully autonomous op-
eration. Hence, their basic software pro�ciencies can be classi�ed into three main groups,
namely: Perception, Planning, andControl, with the interactions between these pro�ciencies
and the interactions of the vehicle with the environment. Figure 2.2 explains the standard
blocks of an autonomous system, demonstrating the pipeline from sensor stream to control
actuation.

En
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Radar
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Trajectory optimization
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Longitudinal control
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Data
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Software

Environment 
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Figure 2.2: Standard components in an autonomous driving system pipeline listing the var-
ious tasks.

2.2.2.1 Perception

Environment perception refers to an AV’s capability to collect and interpret sensory in-
formation to represent the environment and localize itself. Developing a contextual rep-
resentation of the environment involves localizing obstacles, detecting tra�c signs, and
categorizing data according to their semantic meaning. Localization refers to the ability
of the vehicle to determine its position with respect to the environment. Perception thus
is the �rst critical part of the computational pipeline for the AV’s safe functioning. Once
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the vehicle can select relevant data from the enclosing environment, it can accomplish the
other planning and control tasks without human intervention.

Sensors selection
Sensors placement

Sense

Sensor fusion
Behavior prediction
Object mapping

Localize

Obstacle detection
Lane detection

Recognize

Perception

Figure 2.3: Perception main steps.

Fig 2.3 shows the three main steps that should be assured to develop a robust perception
capability:

• Sense the environment and keep track of the vehicle’s current state using onboard
sensors and models,

• Recognize and understand disparate data sources,

• Localize itself and represent the environment and other vehicles/people behavior.

2.2.2.1.1 Sense :
Sensors play a vital role in autonomous vehicles. They help them get their location, iden-
tify informational signs, and avoid obstacles and other hazards. The following describes
common types of sensors and their purposes:

• Ultrasonic sensors: Ultrasonic sensors use high-frequency sound waves to estimate
distances between the sensor and an object. However, they require precise modeling
for their application since their performance is highly dependent on physical prop-
erties [14]. Therefore, they are commonly used in short-distance applications, such
as a vehicle’s parking assistance system.

• Radar sensors: Radar sensors in autonomous vehicles monitor blind spots using short-
range (24 GHz) and long-range (77 GHz) radio waves for safer distance control and
braking assistance applications. However, a drawback of the radar is their high false-
positive rate when detecting objects and an upper bound on the number of objects
that can be detected at the same time, e.g., the Bosch midrange radar with a maximum
range of 160 meters can only detect up to 32 objects simultaneously [15].

• LiDAR sensors: LiDAR sensors use invisible laser light to estimate distance and create
3D images of their surroundings. However, LiDAR relies on rotating systems with a
full 360° view around an autonomous vehicle, making it prohibitively expensive and
more vulnerable to damage. Additionally, LiDAR data processing is computationally
costly.
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• Camera sensors: Video and image cameras are examples of standard optical sensors.
They provide a 2D view of the environment, which is essential for identifying cars,
pedestrians, tra�c signs and signals, and road markings in a tra�c setting. Using
a camera as a vision sensor is a widely used approach to classify and detect objects
on the road. A 3D view can also be provided using a couple of cameras. However,
cameras are not reliable in extreme weather, or lighting conditions [16]. Hence, in-
frared sensors providing images under low-lighting conditions, such as night-vision
systems, may be a suitable alternative.

• GPS sensors: GPS sensors are global radio-navigation systems with antennas that
use a satellite-based navigation system.They are the most representative and widely
used system, suitable for open-sky environments such as outdoor and rural areas to
provide position, velocity, and timing data [17].

Emerging autonomous vehicles should handle two main challenges related to sensing ca-
pability: onboard sensors selection and placement.
First, each sensor has some faults as well as a di�erent range of applications. Considering
aspects of functional safety, a sensor fusion setup would aid in acquiring and developing a
more accurate assessment of the environment. It entails using multiple sensors to combine
the strengths of di�erent sensor types, e.g., a radar sensor’s accurate distance and velocity
information and the precise bearing measurement of a camera. In [18], Daimler researchers
presented Bertha, an autonomous Mercedes Benz S-Class equipped with close-to-market
sensors. They demonstrated their expertise by driving from Mannheim to Pforzheim, Ger-
many, in a fully autonomous manner. The chosen route comprises urban streets and rural
roads, including tra�c lights, roundabouts, and pedestrian crossings. The perception sys-
tem was realized using a stereo camera, two mono cameras, and several short and long-
range radar sensors. Researchers in [19] designed the BRAiVE autonomous vehicle. They
demonstrate advanced safety applications with a low-cost sensor suite, mainly based on vi-
sion, instead of many other autonomous vehicle implementations based on expensive and
invasive sensors. BRAiVE’s sensing suite is based on 10 cameras, 4 laser scanners, 1 radar,
16 �xed laser beams, and a GPS mounted all around the vehicle to obtain a 360◦ all-round
coverage.
The second vital challenge is determining a suitable sensor con�guration responsible for
environment perception. The faulty placement of sensors may create blind spots causing a
vehicle accident when it makes a lane change. Therefore, an optimal sensor con�guration
should consist of each sensor’s carefully selected location and orientation in a heteroge-
neous suite of sensors to maximize coverage from the combined �eld of view obtained
from the sensors and maintain a high object detection rate. There are no generalized rules
for synthesizing sensor con�gurations, as their location and orientation depend heavily on
the target features. [20] proposes VESPA framework to optimize heterogeneous sensor syn-
thesis. The framework uses the genetic algorithm to perform intelligent algorithmic design
space exploration to determine the optimal placement and orientation for each sensor on
the vehicle to support the required ADAS.

2.2.2.1.2 Recognize :
In this step, the raw heterogeneous data from the sensors is processed to extract related

17



Chapter 2

information about the surrounding environment. Many software, algorithms, and frame-
works are developed in the literature to process the data according to each type of sensor.
Speci�cally, existing autonomous driving systems deal essentially with obstacle detection
and lane detection. The solutions vary according to the sensor con�guration, measurement
type, and corresponding performance requirements in each application.

v Obstacle detection.

Obstacle detection consists mainly of components that locate obstacle instances from sev-
eral prede�ned categories in an image. Although radars are useful for long-range detection,
they do not provide visuals of targets, making locating the danger more troublesome and
less viable. Moreover, radars have dead zones near their base area, and the powerful radio
beams are also destructive to living creatures. These shortcomings make visual surveillance
systems an attractive option to assist and supplement radars and other sensors. The point
cloud registration algorithms using Lidar data have been an important topic in computer
vision and robotics, which �nds the best transformation (e.g., rotation and translation) that
matches two di�erent point cloud sets. Traditionally, the Iterative Closest Point (ICP) algo-
rithm [21], which allows the distance between two data set points to be minimal through
a repetitive performance inspection, has been widely used. Various improvements are still
made, such as NICP [22], and voxelized GICP [23]. ICP results generally do not always
guarantee optimal global performances and highly depend on its initial guess. Given an
incorrect initial pose, the ICP-based method can generate a local optimal or wrong solu-
tion. In addition, there is a disadvantage in that the number of computations increases in
proportion to the amount of point cloud data. In recent years, works employing cameras
have increased outstandingly, owing to the sensor’s e�ective dissemination. However, cre-
ating a robust and e�cient obstacle detection method is still challenging due to brightening
variety, background clutter, and perspective alterations. Nowadays, many impressive Deep
Neural Networks (DNNs) have been proposed to help improve performance. Before the
rise of deep learning, Histogram of Oriented Gradients (HOG) detectors [24] were the most
popular solution.
When deep learning methods began to be integrated into detection problems, the main
objective was to replace HOG with a more accurate DNN based detector. Currently, deep
learning has achieved an impressive series of results thanks to its success in automatic fea-
ture extraction via multi-layer nonlinear transformations, especially in computer vision.
In particular, over the last years, Convolutional Neural Network (CNN) architectures have
emerged as a successful solution for problems related to visual object recognition [25], [26].
However, training DNN models require a large amount of labeled data. Traditional datasets
for autonomous driving, such as KITTI [27], and Cityscapes [28], do not have enough data
to deal with complicated scenarios in all navigation environments. Consequently, an im-
perative need is to construct di�erent datasets adapted to each new navigation domain.

v Lane detection.

Lane detection is an essential component within the street scene examination for ADAS
to avoid vehicles run in the wrong direction. Since an autonomous vehicle requires in-
formation on the road where it circulates, the system and algorithm should be as fast and
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straightforward as possible. Many conventional approaches detect the lane using the fol-
lowing information set: edge, color, intensity, and shape. These approaches select a candi-
date lane solution that maximizes the statistical distances between the two regions’ color
distributions created by the candidate solution. For instance, in [29], a gradient-enhancing
conversion and an illumination-based lane detection algorithm are proposed. Gradient-
enhancing conversion produces a color image from an intensity image that has maximized
gradients at the lanes. In [30], sensor data from the camera image, velocity meter, and
steering wheel encoder are fused, and a lane model was proposed as a series of connected
rectangular plates.

2.2.2.1.3 Localize :
Localization is a fundamental capability of autonomous driving. Knowledge of precise ve-
hicle location, coupled with highly detailed maps (often called High De�nition (HD) maps),
adds the context needed to drive con�dently. Thus, mapping approaches have to be ro-
bust even in situations where the vehicle’s metric position estimation is largely erroneous.
Topological maps contain relative information about places in an environment. It consists
of an ordered collection of images: a linear database that re�ects how places are consis-
tently encountered when an environment is visited. In these cases, localization identi�es
the most likely location. Metric maps accurately depict the absolute scale of environments,
maintaining much information about environment details, such as distances, driving di-
rection, or landmark position. They are usually referenced according to a global coordi-
nate system. This representation is most appropriate for vehicle localization and guidance.
However, metric maps are more di�cult to build and maintain and are computationally
demanding. Recent works enable the vehicle to localize itself based on a previously vis-
ited location, tagged with GPS information throughout the place recognition process. It
can then achieve its localization by assimilating its position to the retrieved image through
the recognized place [31]. Using place recognition-based visual localization, accumulation
error that often occurs in the odometry-like approach can be avoided. The system also
should be noted that it identi�es the most likely places and then gets a rough position. Ini-
tially, probabilistic estimation techniques were introduced like Kalman Filters (KF), which
were later extended to Extended Kalman Filters (EKF), and Unscented Kalman Filters (UKF)
for non-linear systems [32]. Later, researchers developed graph-based Simultaneous Local-
ization And Mapping (SLAM) techniques, such as Oriented fast and Rotated Briefs-SLAM
(ORB2- SLAM) [33]. Recently, since the advent of deep learning focused on Convolutional
Neural Networks (CNN), quite interesting results were observed, especially with the work
on CNN-SLAM [34]. Experiments show that vehicle localization could be achieved from
a pair of images. In the same context, Sünderhauf et al. [35] present a novel environment
representation and recognition system built on state-of-the-art object detection methods
and convolutional visual features. As illustrated in Figure 2.4, the astonishing power of
CNN features is used to identify matching landmark proposals between images to perform
place recognition over outer appearance and viewpoint variations. The experiment results
have also revealed further insights: midlevel CNN features appear to be highly suitable as
descriptors for landmarks of various sizes in a place recognition context.
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Figure 2.4: Examples of matched scenes from the Mapillary dataset (adapted from [35]).
Images in a row belong to the same place but have been taken from di�erent viewpoints,
i.e., from the bike lane and the upper deck of a tourist bus. The colored boxes illustrate
some of the extracted and correctly matched landmarks.

2.2.2.2 Planning

The planning step is derived from perception information. It refers to the process of mak-
ing purposeful decisions in order to achieve the vehicle’s higher-order goals, typically to
bring it from a start location to a goal location while avoiding obstacles and optimizing its
trajectory. Path planning can be divided into global path planning (also known as Vehi-
cle Routing Problem (VRP)) and local path planning (also called motion planning). Global
path planning [36] deals with generating the ideal trajectory to reach the �nal destination.
Local path planning [37] is responsible for obstruction avoidance for each segment gener-
ated by the global path planner. The vehicle routing problem is one of the most popular
combinatorial optimization problems. Its study has given rise to several exact algorithms
and heuristics of general applicability [38]. Comparative studies include the following VRP
variants: (1) the VRP with trailers where trucks and trailers are routed to customers who
may be served by either a truck or a truck-trailer pair but not a trailer itself [39]; (2) the
pickup and delivery problem in which each heavy resource (e.g., van) can transport a set of
light resources (e.g., scooters or foot couriers) for serving customers [40]; and (3) the two-
echelon VRP in which freight is �rst transported from a central depot to satellite facilities
by large vehicles, from where it is then brought to the �nal customers by small vehicles
[40].
Motion planning is based on local environment information to obtain local guidance infor-
mation, such as obstacle avoidance. One successful motion planning strategy should react
to all vehicle encounters, including collision avoidance and generating the lowest crash
severity path when avoidance is impossible. Tremendous research e�orts have been con-
tinuously devoted to developing e�cient motion planning approaches for AVs. The early
works mainly use graph search-based planners to generate the shortest paths on the graph
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constructed by the discretization of the environment. The most usual methods applied to
AVs have been the Dijkstra, and A* state lattice algorithms [41]. However, the generated
path may not be optimal for dynamic vehicle behaviors. Trajectory optimization-based ap-
proaches have become the state-of-the-art AV motion planning approaches in recent years
[42]. The core of this technique is formulating the motion planning problem as an opti-
mization problem, taking into account the desired vehicle performance and multi relevant
constraints. To this end, [42] proposed a motion planning method based on Model Predic-
tive Control (MPC), which can handle multi-constraints and convex problems. The method
solves a sequence of �nite-time trajectory optimization problems recursive and can con-
sider updating the environment states during its planning process. Four scenarios were
simulated to show that the proposed MPC algorithm could avoid obstacles and, if the col-
lision was inevitable, could mitigate the crash.

2.2.2.3 Control

The control competency refers to the vehicle’s ability to execute the higher-level processes’
planned actions. An essence of this step is that the vehicle should act only when it is safe
to do so, avoiding situations that pose a risk to human safety, property, or the autonomous
vehicle itself.
There are two classes of vehicle control [43]. The �rst class is longitudinal control, which
deals with the movement of the forward and backward direction of the vehicle (responsi-
ble for regulating the vehicle cruise velocity) [44]. The second one is lateral control which
deals with sideways movements perpendicular to the vehicle’s heading, in other words,
the steering of the vehicle to follow a given trajectory [45]. Usually, two separate con-
trollers are employed to deal with each of them. In previous literature, various studies have
been carried out to explore di�erent hypotheses and techniques. These studies incorporate
the Proportional-Integral-Di�erential (PID) control strategies [46], the predictive control
paradigms [47], and the model reference adaptive control methods [48]. In addition, some
of these studies focused on intelligent approaches like fuzzy control techniques [49], Sup-
port Vector Regression (SVR) method [50], and NN-based control strategies [51]. Recent
e�orts attempt to employ model-free methods and learn from raw sensor data, such as the
Reinforcement Learning (RL) [52] technique that improves its control policy by interacting
with the environment.

To summarize, the core of the self-driving system involves three parts: perception, plan-
ning, and control. Autonomous driving technology means that: self-driving vehicle can
recognize its status and its surrounding environment through a variety of on-board sen-
sors (camera, lidar, radar, GPS, etc.), and make analysis and judgment, then autonomously
control vehicle movement, and �nally achieve self-driving based on the acquired environ-
mental information (including road information, tra�c information, vehicle location, and
obstacle information, etc.)
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2.2.3 Opportunities and Challenges Related to Autonomous Inland
Ships

By analogy with other vehicles, autonomous inland ships must likewise acquire the key en-
abling competencies discussed earlier. However, integrating these competencies in inland
driving involves di�erent challenges related to its natural and infrastructure peculiarities.
Currently, human-crewed transport ships are equipped with autonomous systems respon-
sible for optimizing some ship equipment and processes (loading and unloading in the port,
stability, forecasting the navigation route, and optimizing propulsion system parameters).
However, there is still a crew onboard responsible for making the �nal decisions. An au-
tonomous system installed on the ship collects all parameters related to the ship’s operation
and environmental parameters in real-time. It also has guidelines based on the developed
algorithms that calculate the ship’s optimal operating parameters. In the future, as ships
become equipped with increasingly advanced automation functions, it is expected that the
�rst fully autonomous cargo ship operating without a crew will be commercially available
by 2035 [53].
This subsection will de�ne these peculiarities compared to aerial, land, maritime, and un-
derwater autonomous vehicles. Then, we present existing initiatives related to autonomous
inland navigation in particular.

2.2.3.1 Di�erent Types of Autonomous Vehicles

Autonomous vehicles can be classi�ed into four categories, namely, Unmanned Aerial Ve-
hicles (UAVs) [54] [55] [56], Autonomous Land Vehicles (ALVs) [9] [57], Autonomous Un-
derwater Vehicles (AUVs) [58] [59] , and Unmanned Surface Vehicles (USVs) [60] [61]. Dif-
ferent driving environment implies di�erent characteristics of vehicles and thus di�erent
speci�c challenges. In particular, the USVs are watercraft of small (<1 tonne) or medium
(100 tonnes) size in terms of water displacement. The technology of USVs dates back to
World War II. However, signi�cant e�orts towards development and understanding the
technology started in the 1990s after the successful implementation of USVs in the 1990-
1991 Gulf war [62]. Their primary purposes are military surveillance, safety improvement
by reducing human-related accidents, environmental monitoring, ocean and scienti�c re-
search, and hydrocarbons exploration.
Although the term "autonomous ship" appears, at �rst glance, to imply a concept in which a
ship has a system fully responsible for all aspects of its navigation and is independent of hu-
mans, autonomous ships may have di�erent Levels of Autonomy (LoAs). It is worth noting
that, while the classi�cation given in Table 2.1 is intended to be generic, it was designed pri-
marily with land vehicles in mind. Unlike ALVs, USVs are expected to have various kinds of
automation because multiple crew members are responsible for tasks other than ship han-
dlings, such as engine maintenance and cargo monitoring. An unmanned ship may have a
certain number of people on board, but it does not need to be performed or supervised by
the people. Even if only ship handling is automated, a fully uncrewed autonomous ship still
cannot be realized. Therefore, authors in [63] de�ne 8 di�erent LoA taxonomies speci�c
for vessels, as explained in Table 2.2.
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LoA Description
1 Direct control Direct control of ship, minimal automation and decision support
2 Decision support Decision support and advice to crew on bridge. Crew decides.
3 Automatic bridge Automated operation, but under continuous supervision by crew onboard
4 Periodically unmanned Supervised by shore. Muster crew if necessary
5 Remote control Unmanned, continuously monitored and direct control from shore.
6 Automatic Unmanned under automatic control, monitored from shore.
7 Constrained autonomous Unmanned, partly autonomous, supervised by shore
8 Fully autonomous Unmanned and without supervision

Table 2.2: Levels of autonomy for an USV from [63]

Therefore, USVs may represent the ships essentially belonging to categories 3-8, as
given by [63]. Researchers essentially concede that full autonomy, whereby the Arti�cial
Intelligence (AI) is so complete as to obliterate the need for humans, is not a realistic oper-
ating model is not likely to be implemented in near future. It emerges that humans remain
central to the safe operation of USVs, despite the promise of more machine autonomy. We
observe this ’irony of automation’ emerging in the wake of unmanned ships, manifested in
the Shore Control Centre (SCC) concept. In current operating models of USVs, they may
have a dynamic LoAs: the LoA may change in the same voyage depending on certain con-
ditions. Hence, the operators’ tasks may change during a voyage. The SCC serves a backup
role predominantly: they may have to control the vessel remotely during parts of the voyage
when the AI fails to solve a navigation problem and, once resolved, return the ship to the
autonomous state. The autonomous ship comprises, thus two basic elements: (i) Operators:
the human operators working in the SCC, and (ii) Autonomous systems: the autonomous
systems include all systems onboard, such as the hardware, software, and communication
channels.

According to their speci�c applications, we distinguish four types of USVs, as described
in Table 2.3 along with some relevant reference projects.

USV Description Reference projects
Urban Small vessels sailing in urban canals or waterways Autoferry [64], RoBoat [65]

Upcountry Internal cargo vessels for upcountry waterways H2H Project [66]
Coastal Short-sea shipping routes in tra�cked channels with

aids to navigation present along the shore, Vessel
Tra�c Services (VTS) communication, and demand-
ing navigation.

Land-Based Operation of
Autonomous Ships ([67]),

SFI AutoShip [68]

Ocean Open-ocean transportation with non-demanding MUNIN navigation [53]

Table 2.3: Scope of USV types

This thesis is particularly interested in developing Inland Unmanned Surface Ships (I-
USV), including urban and upcountry USVs.
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2.2.3.2 Inland Unmanned Surface Ships characteristics compared to other Au-
tonomous Vehicles

The transport in inland waterways is di�erent from other AVs. Although the technological
complexity might be assumed to be lower at �rst glance, the overall challenges for au-
tonomous inland shipping are not trivial. For instance, inland ships su�er from a spatially
more restricted complex navigational environment and have no help of tugs to maneuver.
We show in Figure 2.5 some typical scenes of inland navigation.

Figure 2.5: Some typical scenes of inland navigation

Unlike road vehicles whose operations are generally governed by well-structured and
universal roads, the vessels are expected to follow region-speci�c unstructured spaces where
lanes are not well de�ned. Even though all the USVs seem to have the same characteristics,
in reality, I-USVs are di�erent from other USVs, since the �uvial environment characteris-
tics are di�erent from those of the maritime one. Rivers present challenging conditions for
autonomous vessels, where the proximity of the riversides provides a cluttered environ-
ment with surface water re�ections of trees [69]. Analyzing the di�erences between the
two environments would establish a classi�cation into natural features and infrastructure
features. In the maritime environment, water’s color and texture provide strongly distinc-
tive leads in some situations. However, a variation in weather can completely block these
leads in the inland water environment.
Additionally, the river canal is narrower and shallower than the waterway in the maritime
environment. Besides, the origins and destinations of the inland ships are more dispersed.
So, they need to be smaller to ensure accessibility and �exibility. Smaller ships imply a
higher tra�c density. Furthermore, inland areas are characterized by many diversi�ed con-
structions such as locks and bridges, and the limits of the river canal are not marked by
physical infrastructure but generally with trees. Some river portions also may have poor
visibility a�ected by the �xed inland infrastructure. Fluvial environments are strongly af-
fected by external factors. They are, thus, ceaselessly dynamic in both spatial (such as the
rustle of trees) and temporal dimensions (such as parked vessels). Inland vessels are sup-

24



Survey on Cooperative Autonomous Inland Ships

posed to navigate in restricted and congested waterways, shallow waters, and sharp river
bends, enter and leave locks, and pass under bridges. All these features make the �uvial
environment more complex than other environments.

2.2.3.3 Existing Initiatives Related to Inland Unmanned Surface Ships

Despite the growing number of studies on USV, little research has been done on autonomous
ships navigating inland waterways. As a result, I-USVs are still in their early stages.
Much of the literature focuses on a critical reading of the feasibility of their deployment,
forging strong links with governments and technological companies, using a normative
approach. Most projects are still in the conceptual stage, examining legal regulations [70],
[71], and technical elements necessary for the realization of autonomous ships [72]. Withal,
we can �nd studies investigating improving the competencies of an autonomous ship,
namely the perception, the planning, and the control capabilities. We detail them in the
following.

2.2.3.3.1 Regulatory Analysis for the I-USV The authors in [71] identi�ed the reg-
ulatory obstacles to the deployment of autonomous inland cargo vessels in Europe. They
discussed regulations like the international Convention for Safety of Life at Sea (SOLAS)
[73] and the Convention on the International Regulations for Preventing Collisions at Sea
(COLREGS) [74]. The results of these regulatory conventions cannot, however, be directly
applied to inland waterway shipping. This stems from the fact that the inland waterway
ships’ operations and context di�er signi�cantly from the short sea and ocean-going ship
applications. Hence, the authors pointed out that the regulations in their current form
limit the deployment of autonomous ships for many reasons. First, the use of autonomous
seagoing ships is formalized by International Maritime Organization (IMO), responsible
for establishing relations between autonomous seagoing shipping and the international
maritime regulatory framework. However, there is no such international organization for
inland navigation. As a result, the regulatory aspect is fragmented. In Europe, inland wa-
terway regulations are governed by several organizations on both regional and national
levels, such as the Central Commission for Navigation on the Rhine (CCNR), the European
Committee for drawing up Standards in the �eld of Inland Navigation (CESNI), and the
United Nations Economic Commission for Europe (UNECE). Nevertheless, these organi-
zations have di�erent criteria and safety assessment methodologies, which may generate
ambiguities. Hence, there is an urgent need to harmonize regulations for European inland
ships.
Additionally, the technical requirements proposed by these organizations contain several
barriers that could hinder the introduction of I-USV on European waterways. They either
explicitly require the involvement of human operators in data acquisition, monitoring, and
control of systems and devices, or do not make provisions for an automated alternative, or
allow an automated process to be substituted by direct human involvement. Furthermore,
some regulations preclude the remote control of ships. Therefore, the authors propose
some possible improvements of safety standards for inland vessels based on early detection
of hazards or potentially hazardous situations. This hazardous information could be sup-
plied to a remote control center. The data then could be processed and analyzed, and from
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where the human operator of the vessel would be advised on immediate action necessary
for hazard prevention.

2.2.3.3.2 Technical Design of the I-USV A key enabler of the previously envisaged
solution may be an Inland Shore Control Center (I-SCC) capable of remotely monitoring
and controlling inland vessels. The I-SCC’s goal is to enhance the situation awareness and
sense-making capabilities of a remote human operator. This method was also adopted by
the Hull-To-Hull (H2H) project [75]. Accordingly, in [66], the authors investigated the con-
cept and design requirements to achieve an I-SCC that provides interactive services when
supervising an I-USV. Four main design requirements were judged necessary to realize the
desired I-SCC concept and to provide a fully operational and industrially relevant experi-
mental set-up:

1. Generate and communicate information about the voyage plan, the sailing status, the
safety, and emergencies information to the I-SCC. This information will enhance the
situation awareness and sensemaking abilities of the remote operator.

2. Provide interaction possibilities with the I-USV to remotely alter its motion and its
system con�gurations. This interaction will also assist the sensemaking and situation
awareness capabilities of the operator.

3. Install industrial, marine-grade components for the extensions on the I-USV and the
I-SCC system design. This requirement makes the overall system safer, more robust,
and closer to a potential future reality.

4. Keep the system design modular and �exible, where possible. This �exibility smoothens
the likely design iterations and potential future system extensions.

Finally, the authors provide a technical I-SCC and I-USV system design based on its
concept and requirements, as represented in Figure 2.6. The GNSS and IMU sensors (the
autonomous part of the sensor subsystem and the Programmable Logic Controller (PLC))
stream their data, i.e., sailing information to the I-SCC. Similarly, the Stereo Cameras and
the LIDAR produce observation information. The onboard PLC monitors all wanted pa-
rameters and alarms to provide the I-SCC technical, safety, and emergency information.
The images provided by the cameras installed on the I-USV o�er security and observation
information. In the end, the PLC web interface orchestrates the desired actuation system
states from the accumulated information.

In the same context, [76] discussed the design of an experimental platform to study
the feasibility of autonomous inland cargo vessels regarding its speci�c technological chal-
lenges. The introduced �eet of self-propelled Watertruck+ [77] barges initiative introduces
an economically feasible alternative to oversaturated road transport via a �exible model
of waterway transport that is complementary to the current waterway transport. Its size
matches the research potential for urban water freight transport. In addition, the propulsion
system with two 360-degrees-steerable thrusters o�ers the possibility of advanced motion
control. The chosen marine-grade and industry-standard sensors can provide information
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Figure 2.6: H2H-extended I-SCC and USV system design: main components and their com-
munication links (adapted from [66]).

on actual operating vessels and could be transferred to a real-size vessel with minimal mod-
i�cations required. Furthermore, the barges can sail individually on small waterways or
couple together in convoys pushed by a push boat for transport on more extensive water-
ways.

However, in addition to the industrial relevance of the hardware concept, the challenges
involved in actual implementation require an interdisciplinary software approach. This aim
can be tailored to three research questions: (i) How can an I-USV perceive its environment?
(ii) How can an I-USV automatically plan its path based on the environment information
perceived? (iii) How to control an I-USV automatically to follow the planned path? Within
this context, researchers feed each other with challenges and solutions.

2.2.3.3.3 Automated Environment Perception for an I-USV The perception of the
environment of an inland vessel needs to be explored, and crucial information needs to be
shared over the River Information System (RIS). The RIS is a support system used to track
inland ships. This system uses various technologies to assist in observation, e.g., the Auto-
matic Identi�cation System (AIS), radars, and cameras. The AIS is an automated tracking
system that uses information concerning the ship’s position and additional data entered by
the navigator, provided that the ship has an appropriate transmitter. However, the I-USV
characteristics, mentioned in section 2.2.3.2, signi�cantly in�uence its perception capabil-
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ity. From the very limited literature in this area, one of the main challenges of unmanned
ships is the need for analyses of their safety. To ensure the desired safety, two main cate-
gories of solutions can be found in the literature:

v The �rst group of studies focus on monitoring vessels’ tra�c by automatic recogni-
tion of vessels in inland waters [78].

The identi�cation of ships in the channel plays an essential role in navigation aids and
safety control of autonomous ships. Authors in [79] proposed a ship detection method us-
ing Synthetic Aperture Radar (SAR), which estimates the probability distribution of ships
in SAR imagery. However, SAR-based ship detection methods have two main shortcom-
ings: SAR is often limited to big vessels’ detection but may not work well to identify ships
in complex contexts. Second, shipborne radar systems usually work e�ciently on remote
sensing rather than near-side monitoring for ship recognition [80]. For the autonomous
ships that work in complex voyage environments like inland rivers, e�ciently detecting
near and small ships around their channels seems essential to ensure the safety of the voy-
age mission. Thus, surveillance video systems attracted signi�cant attention in the past
decades. However, analysis of the existing works reveals that no system or method is cur-
rently available for the automatic identi�cation of inland vessels. The only way to recognize
them is to observe markings on their sides. RIS and VTS information systems have video
monitoring, where cameras are mounted mainly on river bridges and in ports. It provides
an excellent opportunity to observe ships from di�erent perspectives. However, the entire
process is not automated; instead, human workers operate these systems. Therefore, to
minimize cost, automatic identi�cation of vessels in limited areas is needed.
To this end, we can cite the advancement of the research within the SHREC project [81].
In the proposed system, the camera stream is analyzed using image processing methods
based on convolutional neural networks for classi�cation and text recognition to identify
a vessel correctly. The system is designed to use multiple existing video streams to iden-
tify passing ships on inland waters, especially non-conventional vessels. Tests to verify
the proposed method were carried out on a private dataset containing 200 images of four
classes of ships. They achieve an average accuracy of 90%. However, real-world conditions
unveil more types of inland ships to classify. For this purpose, a more extensive database
of images of ships should be gathered using video cameras at varying resolutions.

v The second group of research focuses on mapping the surrounding environment by
automatically recognizing obstacles in inland waters [82].

Di�erent methods were developed to address the problem of surrounding environment
detection. [83] proposes a vision-based method to detect the outline of ships via maritime
surveillance videos. This method can e�ectively detect ships in both maritime and non-
maritime backgrounds. [84] proposes a hybrid ship detection method that integrates deep
learning methods. Speci�cally, they utilize Deep Neural Networks and Region Proposal
Networks (RPNs) to obtain a 2D bounding box of target ships. Similarly, Zhao et al. [85]
also propose a two-stage neural network for ship detection and recognition. [86] proposes
a Histogram of Oriented Gradients (HOG)-SVM (Support Vector Machine) method to detect
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ships on the images from a ship-mounted camera. However, most of the above methods are
not feasible to be applied by autonomous ships since they are based on static cameras on
ports. They thus do not match the need for moving autonomous ships. Hence, researchers
in [87] worked on autonomous shipping for small target detection. They proposed a de-
tection method based on deep learning using a camera to detect small ships in the river
or near-shore ocean environments. First, they generate an arti�cial dataset of small ships
using Generative Adversarial Nets (GANs) [88]. Then, they compare some DNNs, such as
Faster Region Convolutional Neural Network (Faster R-CNN), Single Shot Multi-Box De-
tector (SSD), and You Only Look Once (YOLO) on the produced dataset. Nevertheless, even
though the proposed method achieved high accuracy, it can not be applied for autonomous
driving assistance since it detects only ships.
For more objects, we cite the Roboat project [65], which is a 5-year research project and col-
laboration between the Amsterdam Institute for Advanced Metropolitan Solutions (AMSs)
and the Massachusetts Institute of Technology (MIT), aiming to develop and deploy au-
tonomous ships to learn about Amsterdam’s canals. The developed autonomous urban
vessels are equipped with a Lidar-inertial sensor, RGB camera, WiFi router and adapter,
battery, computer, and microcontrollers. Their software operates using Robotics Operat-
ing System (ROS) middleware. Researchers [72] claim that Lidar and camera technolo-
gies are coupled to measure the distance to objects (Lidar) and label such objects (cameras
with computer-vision algorithms). More precisely, with the lidar-inertial navigation sys-
tem, Roboat can provide accurate state estimation and high-de�nition point cloud map
of the city by performing real-time Simultaneous Localization and Mapping (SLAM). The
drift of the navigation system is eliminated by constructing a factor graph, which takes
advantage of loop-closure detection and other sensor corrections. Besides, it can view its
surrounding environment via the onboard camera. Perception methods such as clustering
and neural network classi�ers are used on sensor readings to recognize objects in the canal
environment. This enables the Roboat to avoid other boats and obstacles while navigating.
However, till the date, detailed technical information about the methods they used is not
disclosed.

2.2.3.3.4 Automated Path Planning for an I-USV As explained earlier in section
2.2.2.2, the purpose of path planning algorithms is to plan a collision-free feasible path
from the starting point to the target point. Since we can not �nd works for I-USV, we con-
sider here the USV in general. Existing works on path planning for USV classify it into
global path planning and local path planning:

• Global path planning obtains static obstacle information of the driving area through
the electronic chart. It uses an A-star algorithm, a distance optimization Dijkstra
algorithm, a genetic algorithm, and an arti�cial potential �eld method to search for
an optimal path from origin to destination.

• Local path planning determines the optimal collision-free path from the current path
point to the next. Since the ship’s environmental information is complete or partially
unknown, it relies on real-time sensors detecting the surrounding environment and
obstacles.
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Numerous path planning methods have been released in recent years. The most important
ones are listed in Table 2.4 with their description and reference projects.

Classi�cation Method Description Reference
Global path
planning based

A-star algorithm The A-star algorithm performs a Best-�rst search of the
most probable paths leading to the goal.

[89]

on
environmental

Dijkstra algorithm Dijkstra algorithm is an algorithm for calculating single
source shortest path in a weighted directed graph.

[90]

information Genetic algorithm The genetic algorithm simulates natural selection and
evolution theory mechanisms to search for the optimal
solution.

[91]

Arti�cial Potential
Field (APF)
method

APF method is typical online path algorithm. It uses the
idea of "water �ows to low places" and can naturally
understand the generation law of ship routing.

[92]

Ant Colony
Optimization
(ACO)

ACO algorithm is a bionic optimization algorithm to
simulate the intelligent behavior of ants. It has the
advantages of robustness and distributed computing
mechanism.

[93], [94]

Local path
planning based
on sensor

Flower Pollination
Algorithm (FPA)

FPA is a metaheuristic algorithm, that was developed
from the characteristic of the biological �ower pollination
in a �owering plant.

[95]

information Rapidly-exploring
Random Trees
algorithm (RRT)

RRT is a random data structure. It rapidly expands like a
tree to explore most of the space and �nd a viable path.

[96]

Fuzzy logic Fuzzy logic is robust and can avoid the characteristics of
traditional algorithms, which are sensitive to positioning
accuracy and highly dependent on environmental
information.

[97], [98]

Neural network Neural network has the abilities of large-scale parallel
processing of data and strong fusion of knowledge and
can implement e�cient and intelligent path planning.

[99]

Table 2.4: A summary of path planning algorithms for USV
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2.2.3.3.5 Automated Control of the I-USV We summarize in Table 2.5 typical algo-
rithms for control methods for USVs. Unmanned ship navigation may use the mentioned
e�cient real-time intelligent control methods for collision avoidance to ensure navigation
safety.

Method Description Reference
Support Vector Machine

(SVM)
SVM is a fast and dependable classi�cation algorithm that performs
very well with limited analysis data. It takes the characteristic
parameter of multi-sensor as input and outputs the ship’s next
heading action. An SVM system provides real-time control for a
ship’s local path planning. To improve the accuracy of collision
avoidance decisions, the SVM can be combined with other machine
learning methods to monitor learning models, analyze collision
avoidance data, and identify patterns.

[100], [101]

Finite State Machine
(FSM)

FSM is a timing machine that divides a complex problem into smaller,
easier-to-manage chunks. It is de�ned by four elements: current
state, condition, action, and secondary state [109]: the current state
refers to the navigation state in real-time; the condition is used to
determine the state of migration in the next cycle; the action is
related navigation operations; the second state is the next compared
with the current state.

[102]

Line-of-Sight (LoS) The core idea of LoS guidance is that the ship converges to a constant
LoS heading angle between the ship and the target. The LoS angle (
Φlos) is calculated in terms of the current (x,y) and LoS coordinates
(xlos, ylos). The equation is Φlos = (ylos- y)/(xlos x).

[103], [104], [105]

Multi-Sensor Data
Fusion (MSDF)

MSDF refers to the collection, processing and collaborative
combination of data collected by various knowledge sources and
sensors to provide auxiliary decision-making. Various estimation
algorithms available for MSDF include Kalman �ltering based
approach, hybrid multi-sensor data fusion, fuzzy logic based adaptive
Kalman �lter, and crisp decision algorithm.

[106], [107]

Table 2.5: A summary of control methods for USV

The mentioned techniques investigate heterogeneous objectives to ensure e�cient con-
trol. However, in real implementation, the I-USV control may consider combining the pre-
sented objectives to ful�ll a high level of autonomy.

31



Chapter 2

2.3 Cooperative and Connected Inland Ships

Optimizing the performance of inland transportation requires, in addition to the automa-
tion of the individual vessels, cooperation among them. Autonomous but not connected
ships rely only on local intelligence without cooperating with others, leading to some prob-
lems. Therefore, to guarantee the viability of a �eet of ships, autonomous ships should be
equipped with more advanced connectivity capabilities. This section de�nes the cooper-
ative and connected vehicles concept. Then, we highlight the fundamental technologies
for cooperative and connected autonomous inland ships in particle. Finally, we review the
existing e�orts related to Connected and Cooperative Inland Ships (C-CAIS), their oppor-
tunities, and challenges.

2.3.1 What is a Cooperative and Connected Vehicle?

Human drivers can communicate with pedestrians by expression in their eyes and gestures,
through which both drivers and pedestrians can know who will go �rst. Automated vehicles
are, however, incapable of intentional communication, notwithstanding sensors.

2.3.1.1 What is a Connected Vehicle?

Nowadays, wireless communication technologies are applied in di�erent areas of daily life.
Vehicles are equipped with wireless communication devices, enabling them to communi-
cate with other vehicles, with no need to guess their intentions. According to the Center
for Advanced Automotive Technology [108], a Connected Vehicle (CV) is a vehicle with
vehicle connectivity, which can receive beyond �eld-of-view information from Vehicle-
to-Everything (V2X) communication and interact with other road users. Speci�cally, it
uses any of diverse di�erent communication technologies to communicate with the driver,
other vehicles on the road (Vehicle-to-Vehicle (V2V)), roadside infrastructure (Vehicle-to-
Infrastructure (V2I)), pedestrians (Vehicle-to-Pedestrians (V2P)), and the Cloud (Vehicle-
to-Cloud (V2C)). Associated with the component of intelligent transportation systems, CVs
form the Internet of Vehicles (IoV) [5]. The latter is a distributed network that supports data
created by connected mobile vehicles that can interact to establish a network. Communica-
tion o�ers new opportunities for developing new applications for vehicles, such as remote
door locking, stolen vehicle detection, and car-sharing. Connected vehicles are already
available in some vehicles in countries such as USA and Japan. For example, in Japan, the
Toyota Prius [109] provides drivers with: a right turn collision warning, a red light caution,
a tra�c signal advisory change, and an emergency vehicle noti�cation.

Moreover, this concept may be extended by adopting Connected Autonomous Vehicles
(CAVs), and thus, vehicular communications become the Internet of Autonomous Vehicles
(IoAV) [110]. Equipped with onboard sensors and V2X communication devices, CAVs can
expand their horizon and substantially improve their perception capabilities, as shown in
Figure 2.7. Simultaneous internal perception and external communication can minimize
blind zones of AVs and then accurately perceive the situation to make correct interpreta-
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tions and decisions. Hence, CAVs can achieve better safety and performance than AVs and
improve vehicle e�ciency and commute times.
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Figure 2.7: Standard components of a connected autonomous vehicle pipeline listing the
various tasks.

2.3.1.2 What is a Cooperative Vehicle?

AV and CV technologies have inherent shortcomings [111]. The limitations of AV sensing
technologies are highlighted by the fatal accident of Tesla car with autopilot in 2016 and
Uber self-driving car in 2018. In both accidents, AVs’ automated driving systems failed to
monitor the driving environment and identify imminent collisions dangers in the way they
were supposed to. This raised signi�cant concerns about the reliability of autonomous ve-
hicle technology under extreme weather or road conditions. In addition, ADS models used
for AVs are mainly operated in a black box without clear explanation and transparency.
On the other hand, CVs use the message exchange only to build mutual awareness and do
not bene�t from connectivity to perform other tasks. In reality, speci�c issues cannot be
resolved by individual CVs but rather by cooperation between them. For instance, sup-
pose several vehicles are driving at similar lower speeds and occupying all lanes. It may be
impossible for higher speed vehicles approaching from behind to overtake them, causing
unnecessary tra�c congestion. In such a case, it would be e�ective for these vehicles to
cooperate and resolve this issue through agreed adjustments.
Given the limitations of CAV and AV, there are increasing research and development inter-
ests in Cooperative Connected Autonomous Vehicles (C-CAV) technology. C-CAVs are an
autonomous association of vehicles by which each vehicle communicates wirelessly with
other road users with the ultimate aim of achieving bene�ts for many areas of tra�c man-
agement and road safety. The basic idea is that vehicles are equipped with onboard units,
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routers, and antennas: thus, they can receive information from roadside infrastructure, pro-
cess information, display information to the driver (or passengers on public transport), and
communicate information with other vehicles or with roadside infrastructure �tted with
the right technology. Furthermore, C-CAVs may negotiate driving trajectories to their mu-
tual bene�t and to the bene�t of overall tra�c �ow and safety.

Figure 2.8: Journey to Cooperative Automated Vehicles technology.

2.3.1.3 C-CAVs Use Case Applications

Numerous standards are used across all di�erent types of transportation, such as vehicle
safety standards, road standards, and rail standards. In particular, Intelligent Transportation
Systems (ITSs) standards [112] [113] de�ne how ITS systems, products, and components
can interconnect, exchange information, and interact to deliver services within a trans-
portation network. They support multiple applications; some are illustrated in Figure 2.9:

• Cooperative lane changing (Figure 2.9a): With the development of V2V communi-
cation, sharing information among multiple vehicles is possible. Cooperative lane
changes can improve safety and lane-change e�ciency.

• Cooperative merging (Figure 2.9b): As tra�c demands increase rapidly on highways,
e�ective merging strategies based on cooperation between autonomous vehicles can
signi�cantly elevate road safety and improve tra�c operations.

• Cooperative overtaking (Figure 2.9c): Cooperative overtaking can improve overtak-
ing through the real-time information exchange between tra�c participants, includ-
ing road infrastructures, nearby vehicles, and others.
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• Cooperative adaptive cruise control (Figure 2.9d): The Cooperative Adaptive Cruise
Control is an extension to the adaptive cruise control concept using V2X communica-
tion. IT realizes longitudinal automated vehicle control by allowing C-CAVs to form
platoons and be driven at harmonized speeds with a shorter time between them.

• Cooperative intersection assistance (Figure 2.9e): Since most accidents in intersec-
tions are caused by drivers’ lack of attention or understanding, resulting in dangerous
actions, Cooperative intersection assistance can reduce the risk of accidents. It uses
vehicle-based and infrastructure-based technologies to help autonomous vehicles ap-
proaching an intersection understand the state of activities within that intersection.

• Cooperative highway platonning (Figure 2.9f): Cooperative platooning consists on
keeping short spacing with V2V communication. It aims to form a platoon of vehi-
cles along highways to enhance the safety and energy e�ciency of transportation
networks.

(a) Cooperative lane changing (b) Cooperative merging (c) Cooperative overtaking

(d) Cooperative adaptive
cruise control

(e) Cooperative intersection
assistance

(f) Cooperative highway pla-
tonning

Figure 2.9: Some of C-CAVs use case applications

2.3.1.4 Cooperative and Connected Autonomous Inland Ships

By analogy to C-CAVs, we de�ne Cooperative and Connected Autonomous Inland Ships
(C-CAISs) technology as an autonomous association of Inland Ships. Each ship commu-
nicates wirelessly with other river users with the ultimate aim of achieving bene�ts for
many areas of tra�c management and river safety. In the same context, we introduce the
Internet of Ships (IoS) [6] as "the interconnecting of sensing objects like ships, crews, cargoes,
onboard equipment, waterway environment, waterway facilities, shore-based facilities, and
other navigation elements, embedded with sensors and heterogeneous network technologies to
enable these objects to collect and exchange data." As a particular case of IoS, the Internet of
Inland Ships (IoIS) is a vehicular ecosystem that incorporates all IoT-based emerging tech-
nological trends adapted for river ships. The IoIS combines communication and computing
capabilities to provide outstanding inland transport services. However, with its distinctive
characteristics and speci�cations, C-CAISs require new Ship-to-Everything (S2X) commu-
nications approaches and di�erent deployment requirements and challenges.
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2.3.2 Underlying Technologies for Cooperative and Connected Au-
tonomous Inland Ships

Achieving e�cient Cooperative and Connected Autonomous Inland Ships relies on some
existing technologies. We de�ne in this section the necessary technologies enabling their
deployment, including the communication systems, the communication architectures, and
the di�erent types of communication.

2.3.2.1 Communication Systems

Connected ships can adopt di�erent communication technologies according to their dif-
ferent requirements, and their location [114]. In addition to satellite systems traditionally
considered for maritime ships connectivity, the terrestrial solutions, described in Table 2.6,
should be available when the vessel is close to shore. Multihop features, cellular technolo-
gies, and long-range terrestrial systems with end-to-end resource management in critical
data communications are useful technologies for connectivity.

IEEE
802.11p
for ITS

WiFi LTE/4G 5G millimeter wave
(mmW)

VHF digital radio HF

Spectrum 5.9 GHz 2.4/5GHz 450 MHz-3.7
GHz

24-86 GHz 30-300 MHz 3-30 MHz

Bandwidth 10 MHz 20/40 MHz from 1.4 MHz to
20MHz

up to fewGHz 25 kHz channels, can
be bundled together
e.g., to 100 kHz

up to 48
kHz

Max bit rate 27 Mbps 600 Mbps 75/300 Mbps
forUL/DL

up to 20 Gbps VDES: up to 307 kbps
in ship-to-ship or
ship-to-shore, 240 kbps
for satellite link

up to 240
kbps

Tx range < 1 km typically < 100
m,up to 10 km
with �xed service

typically < 2 km
up to 70 km
with directional
antennas

< 10 m for 60 GHz
WiFi,tens of kilometres
with �xed links

up to 85 km Thousands
of
kilometres

Cost Cheap Cheap Expensive Cheap (WiFi)
Expensive (Cellular)

Cheap Cheap

Table 2.6: Comparison of terrestrial communication systems for autonomous ships

Moreover, currently, the 3rd Generation Partnership Project (3GPP) is considering and
developing a system speci�cally for maritime communications to support the needs of fu-
ture maritime users [115]. One of the requirements of this “cellular-Maritime” system is to
support up to 100 km coverage. It will also support the interworking between the 3GPP sys-
tem and the existing/future maritime communication systems for seamless data exchange
between users ashore and at sea or between vessels. Thus, the 5G system will support
service continuity for maritime users between land-based 5G access and satellite-based ac-
cess networks owned by the same operator or by an agreement between operators [116].
Motivated by this advancment, we introduce the C-IAShips Architecture in Chapter 5.
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2.3.2.2 Communication Architectures

The IoS enables the monitoring of vessels and onboard equipment in real-time. A typical
IoS structure is shown in Figure 2.10. It consists of vessels, island base stations, a climatic
observation system, communication satellites, buoys, wireless transmitting and receiving
devices, and the command system [117].

Figure 2.10: A typical IoS structure (adapted from [117])

In recent literature, various architectures have been proposed for adopting IoT in the
maritime industry. We compile a comprehensive IoS architecture consisting of �ve layers:
Perception, Network, Data Resource, Applications, and Exhibition, as shown in Figure 2.11.

v Sensing layer: The �rst layer is responsible for collecting data from various sources
located either on ships or at the shore. For instance, ship heading, ship position,
ship speed, water level, tra�c information, and bridge capacity information are some
examples of data collected through the sensing layer.

v Network layer: The network layer provides communication among the various de-
vices/objects part of the IoS system and comprises di�erent network technologies.
This layer aims to guarantee a successful and smooth data connection and reliable
data transmission.

v Data resource layer: This layer is responsible for storing and managing the collected
data. At the same time, this layer provides information to the application layer. Sev-
eral databases and object stores in the data resource layer must ful�ll various require-
ments, including uniform database naming, management, and uniform information
coding [118]. Furthermore, to handle the wide variety of data, this layer must support
current mainstream data formats such as XML, JSON, CSV, and binary. New big data
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Figure 2.11: Overall architecture of IoS

platforms such as Hadoop, Spark, Kafka, and MongoDB can also store and process a
tremendous amount of collected data.

v Application layer: This layer focuses on developing applications and services that
meet customer requirements. Customers can choose the service or application from
the services list, and then the selected service is o�ered through related resources
[118]. For instance, safety enhancement, route planning, real-time cargo monitoring,
fault detection/prevention, and automatic berthing are the essential services this layer
provides.

v Exhibition layer: Several application systems are developed to utilize resources
from the data resource layer to analyze, calculate, and process data in the applica-
tion layer. Consequently, the applications are used to meet the requirements and
demands of di�erent maritime customers. On top of that, the exhibition layer works
as a service window for communicating with customers in real-time [119]. For in-
stance, smartphones, intelligent terminals, websites, and social media are used for
information sharing with maritime customers.

38



Survey on Cooperative Autonomous Inland Ships

2.3.2.3 Ship-2-Everything (S2X) Communications

Traditional ship communication system only relies on AIS to provide low data services such
as position, course, heading, destination, tonnage, speed, etc.
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Figure 2.12: Ship-2-Everything (S2X) Communications

v Ship-2-Shore (S2Sh) communication: The communication system sends the ship’s
position, course, speed, and ship status �ags in remote monitoring. In the process
of status investigation, SCC can query the detailed status information of the ship
and the surrounding situation. Hence, the communication system needs to transmit
radar images, IR or video images, HDTV images, and automation. This allows the
SCCs to view unmanned ship operations’ real-time data and historical data and make
decisions based on the data.

v Ship-2-Ship (S2S) communication: Similar to the V2V communication [120], ships
can communicate. Ship-2-Ship communications use on-board dedicated short-range
radio communication devices to transmit messages about a ship’s status and receive
the same information from the other ships. In this manner, they can infer the rel-
ative position and the speed direction. Besides, some researchers introduce the Sea
Ad hoc NETworks (SANETs) [121], a bracket of communication ships that can com-
pose and sustain a network among themselves without the help of a main leading
administrator.

v Ship-2-Cloud (S2C) communication: More shipping companies [122] [123] are
now willing to use Cloud computing-based systems to manage the IT environment
securely and get access to the most critical information, even with limited connec-
tivity. For IoS, the concepts of distribution of integrated resources and integration of
distributed resources are expected to be very important. The maritime cloud [124]
holds maritime identities and provides basic authentication, integrity, and con�den-
tiality methods.
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v Ship-2-Infrastructure (S2I) communication: Vehicle-to-Infrastructure (V2I) com-
munication is the wireless exchange of data between vehicles and road infrastructure.
Similarly, ships need to communicate with the river infrastructure surrounding them
through S2I communication. On the one hand, S2I aids in minimizing the time that
vessels need to pass through infrastructures, such as a lock, a movable bridge, an
intersection, and a terminal. On the other hand, infrastructure components such as
road signs and tra�c lights can wirelessly provide information to the ship, which can
help control ships’ tra�c in emergencies, such as ambulances, �re brigades, or police.

v Ship-2-Network (S2N) communication: S2N represents the connectivity between
the ship and a network operator providing access to the ship. This communication
can provide real-time information and cloud-based services that improve road safety,
providing immense guidance regarding waterway updates and serving as a hotspot
for internet connectivity.

However, although adding connectivity to vehicles has its bene�ts, it also has chal-
lenges. By adding connectivity, there can be issues with security, privacy, data analytics,
and aggregation due to the large volume of information being accessed and shared.

2.3.3 Opportunities andChallenges for Connected andCooperative
Inland Ships

Autonomous vessels operating in inland waterways need to perform reliable navigation
and interact safely and with operated vessels. Therefore, some challenges related to the
inland domain characteristics should be considered. In the next section, we discuss such
challenges related to the Internet of Inland Ships.

2.3.3.1 Inland Domain Characteristics Related to IoIS

There are certainly similarities between the Internet of Inland Ships and its ground-based
counterparts, the Internet of Ships, and the Internet of Vehicles in general, such as the inter-
connection of smart devices and standard architectural components and services. However,
there also exist some critical characteristics of the �uvial domain that di�erentiate IoIS from
IoS and IoV, as summarized below:

v Big and heterogeneous data: In the loIS system, the objects of the information
collection are bridges, ships, ship locks, channels, meteorology, hydrology, etc [125].
All the information is in static and dynamic states. Due to the variety of information
sources, the data formats of di�erent sources are quite di�erent. A clear and present
challenge that faces C-CISs is the high degree of heterogeneity of the devices in terms
of communication capabilities.

v Hard data collection: Due to the frequent movement of ships, data gathered in the
shipping sector may be incomplete, inaccurate, or unreliable at speci�c times or par-
ticular locations. For example, ships are not always connected to provide real-time
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information, while sometimes data may be lost or delayed due to poor internet con-
nection. These facts often create problems for quick and intelligent decision-making
in the maritime industry. New data collection technologies must be integrated into
the shipping industry to cope with this crucial challenge. Moreover, the automation
of data capturing is also required to reduce manual data entry.

v Capacity and Scalability: The foreseeable demand to handle the ever-growing in-
land tra�c will stress the IoIS system and drive higher capacity. E�ciency is vital
to maximize the system capacity constrained by the highly scarce communication
resources. Physical and higher layers of the IoIS system are hence to be optimized to
enable spectrally e�cient communications. In addition, the system must be scalable
with future growth when resources are added in response to the growing demand for
capacity and increasing bandwidth needs.

v Safety and security considerations: Shipping is considered a safety-critical appli-
cation but currently lacks a standardized approach to Cyber-security [6]. Since IoIS
connects several geo-distributed objects, such as ships, locks, warehouses, and indus-
trial systems, from di�erent vendors, building an e�cient and secure communication
network in this environment is not easy. Unauthorized access of IoIS objects/data
can cause dangerous results, even loss of lives, so principles of safety-critical sys-
tems must be included, and stricter criteria must be enforced. Furthermore, C-CISs
are expected to face a high information security risk due to their open distributed
network environment. The revealing of location information results in signi�cant
privacy concerns, making location privacy a signi�cantly challenging task.

2.3.3.2 Existing Initiatives Related to C-CAISs

A considerable literature has recently grown up on the theme of ship wireless communica-
tions. However, much of the research up to now has been descriptive in the o�shore area.
There has been little quantitative analysis of wireless communication in inland waterways.
Although the term of Internet of Inland Ships was �rst used in 2013 [126], only the ef-
fects on the inland river environment, the RIS rules meeting by establishing an exhaustive
architecture have been examined since. On the other hand, only a few studies focus on
the cooperative control of vessels in inland waterways. We can �nd mainly cooperative
control in ports, cooperative waterway intersection scheduling, and cooperative collision
avoidance.

2.3.3.2.1 RIS Rules Exploration Previous works mainly explore the basic rules of RIS
and its main opportunities and concern with manned ships while considering the speci�c
character of inland navigation and the topography of inland waterways. As mentioned
earlier, the RIS system aims to unify the technical and legal standards and realize the in-
land ship’s collaboration and normalization. In [127], the authors use 3G wireless, Ra-
dio Frequency Identi�cation (RFID), and ZigBee to establish a dynamic ship management
system for inland waterways. They claim that their proposed system would facilitate the
safety and e�ciency of inland shipping and also the sustainable development of the Chi-
nese shipping industry. However, they explain only how their techniques will be employed
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and do not provide explicit details about their global architecture. To optimize the use of
the Guadalquivir river and improve the control of ships’ navigation, [128] proposes a cen-
tralized Cloud-based integration architecture and a Web Portal. It claims to exchange data
between internal and external sources in real-time while providing data storage and man-
agement security. The collected data is displayed in a web portal, presenting dashboards of
real-time information to the I-SCC, providing noti�cations of obstacles, and managing the
ships with high-precision data. However, the researchers focus only on the development
and design of the architecture but never validate it through simulations or analysis.

2.3.3.2.2 Overall Architecture In [129], the authors proposed a novel design of the
Inland Shipping Management Information System (ISMIS), based on IoT techniques, for
improving the inland shipping management level. The proposed design is based on a wire-
less sensor network to supervise objects dynamically with the help of cloud computing and
RFID middleware technology.

2.3.3.2.3 Information Processing and Information Fusion To deal with the big and
heterogeneous data issue mentioned earlier, researchers use information fusion as the most
critical stage of intelligent information processing. Information fusion is a multi-level,
multi-aspect information process including multi-source data detection, correlation, com-
bination, and estimation. The distributing structure of the information fusion technology
preprocesses the sounding data to generate tracking information and then makes a global
judgment in the center. The work [126] describes a detailed case of the information fu-
sion between the Vessels Tra�c System (VTS) and the AIS. In the VTS system, the radar
is the main facility to collect information and data. Therefore, most characteristics of the
VTS system are similar to that of the radar. Generally, the VTS system has accuracy in
monitoring and tracking the ship moving status information. In addition, it has an excel-
lent extension to fuse much heterogeneous information. The AIS system can get the ships’
dynamic information, including location, speed, and navigational status. As a result, the
information fusion technology could fuse the advantages of these two di�erent systems in
the fusion center. The AIS system could help improve the location information accuracy
of the VTS system. In contrast, the VTS system uses its advantages to capture and track
dynamic information. With the fusion of related trajectory data, the administration could
get more stable and more precise ship position information and movement information.

2.3.3.2.4 Cooperative Control in ports Some research concentrates on the Inter Ter-
minal Transport (ITT) in a port regarded as a small waterway network [130]. ITT refers to
the transportation of goods between terminals within a port. In [131], a �eet of inland Au-
tomated Guided Vehicles (AGVs) are used to handle a set of ITT requests for the advantages
like handling the expected large throughput instead of exploiting limited land, energy sav-
ing for terminals with longer distances by land than by water, etc. A closed-loop scheduling
and control approach is proposed: by solving a pick-up and delivery problem, a sequence of
terminals to visit for each waterborne AGV is generated; a cooperative distributed model,
predictive control method, is applied to control the waterborne AGVs to execute the sched-
ules. The other type of research on cooperation in ports is the Vessel Rotation Planning
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Problem (VRPP) i.e., which decides the sequence of multiple terminals that an inland vessel
visits in the port area. In [132], the VRPP is �rstly proposed, in which the terminal and
vessel operators cooperate to obtain better alignment. In [133], the authors compare four
approaches to solve the VRPP, which concerns deciding on the optimal sequence of vessel
visits to di�erent terminals in a large seaport.

2.3.3.2.5 Cooperative Waterway Intersection Scheduling Vessels passing through
intersections are comparable to the situation of vehicles crossing non-signalized intersec-
tions. In road transport, intersection crossing is one of the most challenging problems and
attracts much attention. In [134], a multi-layer framework is employed to improve the ef-
�ciency of transport in a canal network. The cooperation among vessel controllers and
intersection controllers is achieved through iterative negotiations. More speci�cally, the
authors propose a framework for the cooperative control of vessels in waterway networks
with two types of controllers: a Vessel Controller (VC) for controlling an individual USV
and an Intersection Controller (IC) for solving the con�icts of vessels at an intersection. A
vessel controller uses sensors to get self-state information and information on obstacles.
The navigation system creates pictures of the current situation and informs the Guidance
system of collision risks based on the obtained information. Combining with the prede-
termined global path, optimal trajectories with speci�ed objectives and constraints can be
determined. The commands are then sent to actuators for autonomous navigation.

2.3.3.2.6 Cooperative Collision Avoidance Traditional collision avoidance methods
consider that each ship tries to predict other ships’ actions, either by assuming that others
have a constant speed [135] or according to holonomic or kinematic models [136]. Then,
they allow ships to cooperate only for a limited time, for instance, when they identify a high
collision risk. One method widely used in the literature relies on the geometrical charac-
teristics of the tra�c circumstances among vessels. It assumes that a surrounding region
should be kept clear between ships and other objects, and it focuses mainly on ships’ size
and shapes under stable conditions [137]. Gang et al. [138] build a model estimating the
Collision Risk Index (CRI) of encountered vessels based on the SVM with the fuzzy compre-
hensive evaluation. Another group of methods aims to collect a set of the ships’ speeds or
courses leading to collisions with other ships and present this set in �gures to the o�cers. A
collision alarm is triggered when the current velocity of the ship is inside of this set. How-
ever, most studies focused only on the collision risk between Own Ship (OS) and Target
Ship (TS). Though [139] propose the collision risk assessing models related to multivessel
tracking, only the collision risks between any two vessels in the multivessel encountering
are investigated, which, nonetheless, ignores the global multivessel collision risks. As a re-
sult, it may be hard for surveillance operators to comprehensively understand the collision
risk, especially multivessel collision risk in multivessel encountering. Another limitation
of existing works is their unrealistic assumption that all the environment situations and in-
formation are perfectly observed by each ship. In real-world circumstances, each ship has
to observe and sense the situation from its angle. The capability of sensing and detection is
subject to the navigational equipment on the individual ships, which will raise awareness
beyond the consideration of prior work. Thus, we introduce a novel cooperative collision
detection system in Chapter 6.
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2.4 Conclusion

We showed throughout this chapter that the advancement in cooperative and connected au-
tonomous inland ships has been proliferating in the last years. They have proven to be an
exciting asset for various applications with the aim to enhance the inland shipping. How-
ever, this nascent technology has not yet reached maturity; therefore, it still faces numerous
challenges and issues that need to be addressed before an e�cient and safe deployment.
Throughout this chapter, we surveyed a comprehensive overview of the cooperative and
connected autonomous inland ships by presenting the di�erent challenges related to their
continuous progressing. We �rst conducted a comprehensive overview of autonomous in-
land ships while discussing their main enabling competencies and the di�erent challenges
and concerns facing their development. Then, we highlighted several contributions from
the literature working on this issue. Then, we surveyed on cooperative and connected in-
land ships. We listed not only technical issues, but also communication and networking
challenges to enable ships to connect and cooperate. Then, we presented a detailed review
of existing solutions.
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The previous chapter has given a frame of research initiatives in vari-
ous �elds contributing to the conception of cooperative and connected
autonomous inland ships. In this part, we focus on the fundamental
essence of this advancement by studying the feasibility of automation
in the �uvial environment.

Part I

Automation
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Automating the Inland Infrastructure

Everything in life goes back to the basics.

– Kron Gracie

Chapter 3:
Automating the Inland 

Infrastructure

Input Output

Constraints

• Locks data
• French waterways 

situation

• Number and 
placement of 
locks to automate

• Budgetary constraints
• Waiting time

• Locks data analysis
• Lock-ADM algorithmTo

o
ls

47



Chapter 3

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.2 French Waterways Situation Analysis . . . . . . . . . . . . . . . . 50

3.2.1 River Network . . . . . . . . . . . . . . . . . . . . . . . . 50
3.2.2 Tra�c Density . . . . . . . . . . . . . . . . . . . . . . . . 50
3.2.3 Passage Scheduling . . . . . . . . . . . . . . . . . . . . . . 51
3.2.4 Opening Time . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.2.5 Does Automation Have an Impact on Tra�c Density? . . 52

3.3 Locks Automation Related Works . . . . . . . . . . . . . . . . . . 53
3.4 Problem Formulation and Proposed Solution . . . . . . . . . . . . 54
3.5 Lock-ADM: Optimal Number of Locks to Automate and Their

Placement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.5.1 Lock-ADM - Stage 1: Calculate the Optimal Number of

Locks to Automate . . . . . . . . . . . . . . . . . . . . . . 55
3.5.2 Lock-ADM - Stage 2: Order Locks According to their Im-

portance Score . . . . . . . . . . . . . . . . . . . . . . . . 57
3.5.3 Lock-ADM - Stage3: Select Best Locks to Automate by

Studying their Impact on the Network . . . . . . . . . . . 60
3.6 Implementation and Results . . . . . . . . . . . . . . . . . . . . . 64

3.6.1 Locks Importance Score Calculation (Stage 2) . . . . . . . 64
3.6.2 Metaheuristics Comparison (Stage 3) . . . . . . . . . . . . 67
3.6.3 Comparison with Other Algorithms . . . . . . . . . . . . 67
3.6.4 Impact of the Population’s Initialization . . . . . . . . . . 68

3.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

48



Automating the Inland Infrastructure

3.1 Introduction

Di�erent kinds of issues that are not directly related to the autonomy of ships are yet to
be overcome, such as infrastructure automation. As already mentioned in the motivation
part of the previous chapter, although river transport is competitive, it represents only a
small part of national transport in France, even though France has the most extensive net-
work in Europe with over 8,500 kilometers of waterways. This is mainly due to the lack of
�exibility in its infrastructure compared to road transports. Locks are the oldest and most
used waterway structures that enable ships to surmount water level di�erences safely [140].
However, they generate an enormous waiting time: for example, on the path between Lyon
and Paris, ships have to cross 220 locks. The crossing represents almost half of the total
travel time [141]. Long waiting time increases the duration of the trip and, consequently,
the total cost, which, combined with fuel consumption and tolls, contributes to the cross-
ing’s overall burden. Additionally, the delay sometimes becomes unacceptable, especially
for ships with tight deadlines. To handle this problem, three solutions were proposed in the
literature: (i) adding water-land transshipment as a parallel channel to the lock ([142, 143]),
(ii) expanding the existing locks or building ship elevators ([144, 145]), (iii) or enhancing
the e�ciency of operation of existing locks ([146, 147, 148]).
In the �rst solution, arriving ships can pass through the lock or unload their cargo at the
quay, and the other modes of transport deliver it to their �nal destination. This technique
does not solve the problem; instead, it transfers it to a di�erent transport mode, which
is not optimal for previously explained reasons. Additionally, it creates another challeng-
ing problem: the co-scheduling between the lock and quay integrated system. The second
solution is e�cient because it attempts to address the source of the problem, but it is time-
consuming and costly. Although the delay of ships can be decreased by scheduling locks
algorithmically, the e�ect of the third solution is limited, especially when the locks have
many constraints related to external factors such as lock-keepers and opening times. There-
fore, this thesis focuses on combining the two last solutions by modernizing only important
locks and scheduling the crossing via a proactive real-time method to minimize the ship’s
waiting time. We introduce in this chapter the �rst approach and the second approach is
discussed in Chapter 7.
We found in the literature some works that focus on increasing the e�ciency of speci�c
lock sequences on various waterways around the world, such as the Kiel Canal [149] (98 km
long with two locks), the Welland Canal [150] (43 km long with eight locks), and the upper
Mississippi [151] (2092.147 km long with 29 locks). However, none considered a network
of inland waterways in its entirety, which makes their solutions irrelevant when consid-
ering the vast French waterways network. Reducing waiting time by locks automation is
complicated to consider, but this chapter makes a �rst step towards incorporating it while
considering the French waterways’ speci�cities. We illustrate three main contributions in
this study, as follows:

• We analyze the french waterways’ current situation to discover the river network
speci�cities and its current limitations and constraints. We use real data collected
from the o�cial Voies Navigables de France (VNF) portal.

• We propose a new formulation of the lock automation problem while based on the

49



Chapter 3

knowledge acquired from the �rst analysis. Thoroughly, we introduce the Lock-ADM
algorithm to �nd the optimal number of locks to automate and their placement.

• We validate the e�ectiveness and e�ciency of our algorithm through extensive sim-
ulation results. We analyze these results and suggest possible improvements.

The rest of this chapter is structured as follows: Section 3.2 details and analyzes the French
waterways’ current situation. We investigate the actual locks states’ impact on the travel
time to identify the possible improvements to be implemented. Section 3.3 provides back-
ground information on the automation of locks and reviews related literature. In Section
3.5, the decision-support system for selecting the best locks’ location to be automated, Lock-
ADM, is introduced. We show and analyze the simulation results in Section 3.6. Conclusions
and potential future works are discussed in Section 3.7.

3.2 French Waterways Situation Analysis

This section studies the current locks states impact on the travel time to identify and under-
stand the speci�c issues to be addressed. We begin by studying the French river network’s
topological components. Then, we analyze tra�c density behavior and investigate the cur-
rent passage-scheduling strategy through the locks and their opening time. Finally, we
show how locks automation can enhance tra�c density performances.

3.2.1 River Network

A river network is a realization of a spatial network describing the structure that permits the
inland ship movement. The French river network is composed of 1,632 locks. In Figure 3.1a,
we draw the French navigable waterways and their characteristics, while in Fig 3.1b, we
collect from Google Maps the accurate positions of the locks in the North-Eastern quarter
of France to provide a zoomed view on the features of the distribution of locks. Figure 3.1a
shows that there are no isolated locks, and each lock has at least one path to all other nodes.
Furthermore, we distinguish in red in Figure 3.1b, the locks’ presence with a much higher
number of connections than the other locks.

3.2.2 Tra�c Density

Tra�c density is an approach to study tra�c �ow and predict its behavior in the future
[152]. Here, we de�ne tra�c density as the number of ships passing through a lock. The
data needed for this study are collected from the lock operators’ �les on the o�cial Voies
Navigables de France (VNF) portal [153]. We collect existing data from January 2005 to
September 2019 to analyze the tra�c density through all existing locks. We then store it in
Comma-Separated Values (CSV) �les for each lock. As the data was entered manually by the
lock-keepers, we found irrelevant and missing parts. Therefore, we proceed to replace the
missing values with approximate values. We calculate the average of neighboring values
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(a) French Navigable Waterways (b) Placement of locks in French North-East

Figure 3.1: The actual French Navigable Waterways map.

and replace the missing values with them. Besides, we remove from the analysis the locks
with missing successive rows higher than one year. Figure 3.2 plots the distribution of
di�erent tra�c densities for di�erent locks. We can deduce that locks do not all have the

Figure 3.2: Di�erent tra�c densities for di�erent locks

same properties in the river network. This di�erence can cause congestion at some points,
which leads to extra waiting time to cross locks. To handle this issue, a good passage-
scheduling strategy should be settled.

3.2.3 Passage Scheduling

Current passage through locks is managed in order of priority [154]: ships with urgent
service reasons �rst, then freight ships with authorization, and in third place, the other cat-
egories of ships pass according to their order of arrival. This traditional scheduling strategy
involving some priority-based scheduling is known as First Come First Served (FCFS). By

51



Chapter 3

comparing the performance of various control policies, several researchers in similar do-
mains ([155, 156, 157]) prove that the FCFS policy does not ensure better time management
because it prioritizes equality rather than e�ciency. However, overall e�ciency and trans-
portation safety are sometimes sacri�ced. Solving this problem may lead to win-win solu-
tions since reducing ships’ waiting time yields to economic, operational, and environmental
savings for container terminals and shipping companies.

3.2.4 Opening Time

Another cause of extra waiting time in locks is related to their opening time. In fact, as
lock-keepers manage most of the locks, passage through the locks is limited by each one’s
opening hours:

• Type 1: open from 8am to 6pm with a midday break from 12 to 2pm.

• Type 2: open from 7am to 7pm.

The locks do not operate on public holidays, and there are also occasional changes in open-
ing hours. Additionally, on the entire river network, all commercial ships must announce
their entry into the network and they must book the lockage service within �xed timetables
by calling the customer-user relations department. All these constraints generate additional
waiting time. Lock automation may be an e�cient solution to reduce waiting time, but it
also needs to be bene�cial for ship management companies.

3.2.5 Does Automation Have an Impact on Tra�c Density?

To study the impact of automatizing a lock, we collect the data of some automatized locks.
Then, we calculate the di�erence between tra�c density before and after the automation.
Figure 3.3 illustrates some useful information about the tra�c density one year before and
after the automation of one lock. Figure 3.3 shows that locks’ automation has advantages

Figure 3.3: Illustration of six di�erent locks before and after the automation

in tra�c density and, therefore, toll taxes. However, this bene�t varies from one lock to
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another (an increase of only 56 passages for Languevoisin lock and an increase of 336 pas-
sages for Meuse Quatre Chemins lock) with an average increase of 204 crossings per lock
per year. We notice that locks with similar tra�c densities will not have the same tra�c
density after automation (Canal du nord Languevoisin and Rhin canalli Gambsheim). It is
therefore necessary to make a study before deciding which locks to automate. In the next
sections, we will explain the stages to make such a decision.

3.3 Locks Automation Related Works

Optimizing the operational management of the lock system o�ers signi�cant bene�ts. First,
automation measures and, inevitably, operational management of the transport conveyor
of lock system can reduce the number of locks operations and transportation costs. This
will save energy and time resources. Second, in a high �ow of ships, the automation of
locks will increase the capacity of the canals and relieve them. However, there is very little
work in the literature on the automation of waterways. Di�erent types of automation are
possible such as ships automation or waterways infrastructure automation. Inland water-
way infrastructure includes locks and dams as well as navigation channels. Since we are
interested in improving the waterway navigation by expanding the existing infrastructure,
locks automation will be the primary focus of this study.
Ardavan [158] points out that the development of inland ports increases transportation ef-
�ciency since it creates a smoother �ow on the highways, creates a cleaner environment,
increases the capacity of the ports, reduces the demands on portland, and promotes in-
land economic and logistics integration. Gervais et al. [159] propose a linear programming
model to assess the short-term economic bene�ts of enlarging �ve 600-foot locks on the
Upper Mississippi River (UMR) to 1,200 feet. They estimate the total costs of lock enlarge-
ments to 4 cents a bushel and the total bene�ts to 0.3 cents per bushel. These results suggest
that large-scale improvements on the UMR are not warranted since only small economic
bene�ts are redistributed to grain industry groups. However, this judgment cannot be gen-
eralized since they only study the short-term impact and focus on a single region. In addi-
tion, they do not take into account the potential savings to vessels by reducing the waiting
time at the �ve locks. Thus, a more comprehensive analysis would undoubtedly increase
the total bene�ts. Similarly, Wilson, Dahl, and Taylor [144] study the impact of expanding
the capacity of a lock on the delay costs for grain shipped on the UMR. They show that
increased lock capacity reduces delay costs and signi�cantly increases barge shipments.
However, the authors do not explain why they chose only this speci�c lock. They do not
study its speci�cities and importance among others and do not consider the impact of these
improvements on the entire inland waterway network.
We can also cite [145], which aims to identify the set of maintenance projects to fund to min-
imize the total shipping costs on the river networks. The proposed model e�ectively makes
meaningful recommendations regarding the maintenance project funding. However, they
do not discuss the importance of existing projects, so unimportant and cheap projects can
be funded while essential and expensive projects will not. Moreover, it considers �ve levels
of budget allocation that means it can allocate only a percentage to one project. However,
they do not ensure its continuity over the following years unless the same project requests
an allocation again.
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In summary, this literature review indicates research directed toward the cost-bene�t anal-
ysis of lock infrastructure improvements with a lack of generalization and in-depth real
data analysis. The objective is to �ll this literature gap, laying on the French waterways
analysis presented in Section 3.2 to decide on the relevant locks to automate.
One closely related literature is the positioning problem, which intends to �nd the opti-
mal positions for placing an infrastructure such as antennas, sensors, or drones. However,
these works do not consider the �xed structural constraints imposed by the existing net-
work. Therefore, their methods are not suitable for our work since the locks are already
installed. We aim to automate an optimal number of existing locks to bring more gains to
the whole network. The most in�uential nodes discovery and selection area of research
can also be somehow similar to our problem. However, in the literature, they use di�erent
metrics and measures which are not adaptable to our problem. For instance, to detect key-
words in documents such as PageRank, the algorithm used by Google Search, and in [160],
authors use textual information and keywords to rank nodes. Another example is detecting
the most in�uential users/ communities in social networks [161], where nodes are grouped
into communities based on the users’ interests and shares. Similarly, we can not use these
metrics in our situation.
Therefore, this study introduces the Lock-ADM algorithm to �nd the optimal number of
locks to automate and their placement, using adapted metrics. In the next section, we pro-
vide more details on our problem formulation and introduce the proposed solution.

3.4 Problem Formulation and Proposed Solution

Automating all the locks is costly and time-consuming. However, as shown in Section
3.2.5, it can bring signi�cant �nancial bene�ts. These bene�ts vary from one lock to an-
other. Additionally, we notice that for some locks, these bene�ts can be negligible. Hence,
they should not be automated in priority. Therefore, in this study, we propose to select only
relevant locks to automate.
Choosing the locks to be automated implies selecting the optimal number of locks and the
best candidates among them. These best candidates ensure that journey times are reduced
by minimizing the waiting time in locks, minimizing costs, and maximizing bene�ts to the
whole network. We use graph theory as a powerful tool to characterize the river network
by considering locks as the nodes and the path between them as the edges. Finding a group
of best locks in a network is an example of �nding a maximum weight clique in a weighted
graph problem. As [162] discussed, the latter problem has been proved to be a Nondetermin-
istic polynomial-time- hard (NP-hard) problem. As such, our proposed research problem
is also an NP-hard problem. Therefore, we develop a robust solution, Lock-ADM, shown
in Figure 3.4, which consists of three stages used independently to solve several constraint
functions. We start by calculating the optimal number of locks to be automated. In this
stage, the objective is to �nd the optimal number n of locks to be automated with mini-
mum cost. To address this goal, we use exact solvers such as Gurobi, CPLEX, and LINDO.
However, for large-scale instances, Particle Swarm Optimization (PSO) [163] could be used.
The second stage aims to select the n best locks to automate according to their importance
in the network using di�erent criteria, including centrality measurements. Generally, in
experiments, we �nd more than the expected number of locks. Therefore, a third stage is
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required to select the exact n best locks, using a metaheuristic.

More details of the Lock-ADM are given in the next section.
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Figure 3.4: Lock-ADM work�ow

3.5 Lock-ADM: Optimal Number of Locks to Automate
and Their Placement

Automation is making its way into our daily lives and is certainly changing the way we
travel and move goods. In order to stay competitive towards other modes, minimizing the
waiting time by automating locks is the objective of lock managers and ship owners. This
section details the process of locks automation. We begin by formulating the problem.
Then, we describe the proposed solution and its three stages.

3.5.1 Lock-ADM - Stage 1: Calculate the Optimal Number of Locks
to Automate

Since automating a lock is time-consuming and costly, the algorithm should calculate the
optimal number of locks to automate while allowing to recover the automation cost in
fewer years while respecting budgetary constraints. This section describes the optimization
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problem and de�nes the objective function [164] and the constraint conformance function
to solve.

3.5.1.1 Problem Parameters and Assumptions

In Table 3.1, we de�ne the parameters notation and values [153]. Usually, there are two
lock-keepers per lock, so the annual lock-keepers salary is 2* locker_salary. We assume
that only percentage_budget % per year of the company’s budget (VNF in our case) can be
dedicated to the automation. As shown in Figure 3.3, locks’ automation has advantages in
tra�c density. Indeed, an increase in the number of passages involves an increase in the
earnings from tolls. The gain value is estimated regarding the current prices [153].

Notation Meaning
nb_lock The number of locks to automate(variable)
nb_Year The number of years over which the automation costs are reimbursed(variable)
nb_max The maximal number of locks
automation_cost The cost of automating one lock
locker_salary The annual lock keeper’s salary
max_budget The maximum budget dedicated to automation by the company
gain_toll The gain brought by the automation of a lock

Table 3.1: Problem parameters

3.5.1.2 Problem Formulation

The objective is to maximize the gain thanks to locks automation with the minimum in-
vestment cost. So, we de�ne the objective function as follows:

Maximize
(nb_Year * nb_lock * gain_toll
+ nb_Year * locker_salary
- nb_lock * automation_cost)

(3.1)

subject to:

1. 1≤ nb_lock≤ nb_max => The number of locks can not exceed the number maximal
of locks in all the network,

2. nb_lock * automation_cost ≤ nb_year * (max_budget) => The cost of automation
must not exceed the maximum automation budget,

3. nb_lock * automation_cost≤ nb_year * nb_lock * gain_toll + nb_year * locker_salary
=> The expenses must be less than the pro�ts.

This function is a constrained Non Linear Programming (NLP) problem.
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3.5.1.3 Problem Resolution

Optimization, which consists in selecting the best option among many possible choices
without violating constraints, is considered an NLP problem. There are various methods
for solving NLP problems, and no single method is the best for all problems. Small-scale
instances, such as our problem (1,630 locks), can be solved optimally in less than 1 minute
by exact solvers such as Gurobi, CPLEX, and LINDO. For large-scale instances, such as locks
all over Europe or road tolls, metaheuristics like Particle Swarm Optimization (PSO) [163]
could be used. PSO algorithms are considered computationally e�cient algorithms. They
are now widely used in optimization due to their low cost of memory, high e�ciency, easy
implementation, and modi�cation (generating hybrid techniques) of high quality [165].

After calculating the number of locks to automate regarding the budget constraints, the
next two stages of the algorithm identify their location. We start by ranking all the locks
in the following subsection.

3.5.2 Lock-ADM - Stage 2: Order Locks According to their Impor-
tance Score

This section proposes an e�ective ranking method based on degree centrality values and
tra�c density to select the n best locks. Firstly, the tra�c density score of each node is
calculated using real data. Then, the nodes’ properties in the network are used to compute
their centrality degree score. Finally, a weighted sum of the relevant scores is considered
for ranking the nodes’ importance.

3.5.2.1 Problem Parameters and Assumptions

We consider a directed network G. G = (V, E) has N = |V| nodes and M = |E| edges. It also
can be de�ned as an adjacency matrix A = auv ∈ RN,N , where:

auv =


1 if the nodes u and v are directly

connected.
0 otherwise.

The symbols used are detailed in Table 3.2.

3.5.2.2 Lock-ADM - Stage2a: Identifying In�uential Nodes Based on Tra�c Den-
sity

This stage identi�es the role that each lock plays in the network by studying some tra�c-
related factors. To do this, we calculate the weight (W) of each node according to the tra�c
density as follows:

W(v) =

∑
year crossv,y∑

i

∑
year crossi,y

, (3.2)
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Table 3.2: List of important symbols

Symbol Description
V Set of nodes V = {v1, v2,. . . , vV }
E Set of edges, E = {e12, e13,. . . , eij}, i,i ∈ E ,i 6= j
G A directed network G = (V, E)

A = (ai,j) The adjacency matrix of a graph
di,j The distance between node i and j

sp_ij The total number of shortest paths from i to j
sp_ij(v) The number of shortest paths that pass by v

where crossi,y is the total number of ships that crossed the lock i during the year y and∑
i

∑
year crossi,y is the total number of ships that crossed the lock i among 14 years.

As shown above, in Figure 3.3, locks with similar tra�c densities will not have the same
tra�c density after automation (Canal du nord Languevoisin and Rhin canalli Gambsheim).
Therefore, we will study the topological characteristics of the river network to consider the
network’s physical structure in the following stage.

3.5.2.3 Lock-ADM - Stage2b: Identifying In�uential Nodes Based on Their Cen-
trality in the Network, Neighbors, and Edges

This section aims to review well-known measures of centrality named Degree, Between-
ness, Closeness, Random Walk Betweenness, and Eigenvector, which are mainly used to
analyze social networks such as food web, internet graphs, and biological networks. By
considering centrality measures, we could identify the most critical nodes in the network.
According to the considered information, these measures can be divided into three cate-
gories: local measure, semi-local measure, and global measure [166].

v Degree Centrality:

We de�ne the �rst local measure, the degree (deg) of a vertex v as the number of links
(edges) it has. Then, we calculate the standardized Degree Centrality (DC) of a vertex
v, for a given graph G as follows:

DC(v) =
deg(v)

N − 1
(3.3)

The higher the degree, the more central the node is. Degree centrality is a good
measure of the total connections a node has, but it does not necessarily indicate the
importance of a node connecting others or how central it is to all the group.

v Betweenness Centrality: The betweenness centrality (BWC) of a vertex is a global
measure of the fraction of shortest paths between any two vertices going through
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the vertex. It is one of the widely used shortest path-based centrality metrics for the
complex network analysis. Then, we calculate the standardized Betweeness centrality
of a vertex v, for a given graph G as follows:

BWC(v) =
∑
i 6=j 6=v

spij(v)

spij
(3.4)

A node would have a high BWC if it appears in many shortest paths. Nodes with
high betweenness may have considerable in�uence within a network by virtue of
their control over information passing between others.

v Closeness Centrality: The Closeness Centrality (CC) counts among the global mea-
sures that identify nodes that can spread information e�ciently through a graph. It
is calculated as the normalized inverse of the sum of the length of the shortest paths
between the node and all other nodes in the graph as follows:

CC(v) =
N − 1∑

j dv,j
(3.5)

Thus, the more central a node is, the closer it is to all other nodes.

v RandomWalk Betweenness Centrality: Random walk closeness centrality (WBc)
[167] is a global measure that describes the average speed with which randomly walk-
ing processes reach a node from other node in the network. It is similar to the close-
ness centrality except that the remoteness is measured by the expected length of a
random walk rather than by the shortest path. The measure is based on random
walks, counting how often a node is crossed by a random walk between two other
nodes. Then, we calculate the random walk betweenness centrality of a vertex v, for
a given graph G as follows:

WBc(v) =

∑
s<t I

st
v

1
2
n(n− 1)

, (3.6)

where Istv =1
2

∑
j Avj|Tvs − Tvt − Tjs + Tjt|, for v 6= s, t and Ists = 1 , Istt = 1. T is

a generated matrix by removing last row and column from the Laplacian matrix and
then back substitution of zero rows and columns into inverse Laplacian matrix.

v Eigenvector centrality: Eigenvector centrality is a semi-local measurement of the
centrality of a node in a network based on the weighted sum of centralities of its
neighbors. It measures the in�uence of nodes in road network. The eigenvector
centrality Ec(v) of a node v is given by:

Ec(v) =
1

λ

∑
k

ak,vEc(k) (3.7)

where λ 6= 0 is a constant. In matrix form we have:

λEc = EcA
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The eigenvector centrality network metric takes into consideration not only how
many connections a vertex has, but also the centrality of the vertices that it is con-
nected to.

3.5.2.4 Discussions

It is obvious that di�erent techniques look at varying networks’ properties to assess nodes’
importance. In general, the best measure ought to coordinate more information on net-
works to calculate node importance. The six evaluation techniques can identify the capabil-
ity of each node. However, di�erent centrality measures evaluate the importance of nodes
from various points of view. The centrality measures of DC, BWC, CC, and WBc are single
indices to evaluate node importance, which considers only one of their attributes. There-
fore, we introduce a formula that combines three foreknowledge: “Important locks have
lots of information about them” (DC, W). “Important locks are enclosed by other important
locks” (BWC, CC, Ec). “Having many links even unimportant makes the lock important”
(DC, WBc). It does not require a manual assignment of weights to node properties. The
general formula to rank the nodes we develop is as follows:

Degfin(v) =
∑

i αici(v) (3.8)

Where ci(v) are the di�erent measurement of centrality (DC(v), BWC(v), CC(v), WBc(v),
Ec(v), and W(v)) and αi are variables to set according to each problem (

∑
i αi=1). We will

discuss later how we choose them in our implementation. Experiments show that there may
be more than the required nodes to be returned when several locks have the same maximum
importance score, i.e., we can �nd M>n locks having the same importance. Therefore,
we get the list of M nodes with the best scores to the next step to measure their outer
importance by studying their impact on the network.

3.5.3 Lock-ADM - Stage3: Select Best Locks to Automate by Study-
ing their Impact on the Network

Selecting the best locks to automate by studying their impact on the network is also known
as NP-hard since we only reduced the search setting, which is a subset of the �rst problem.
It is time-consuming to obtain the optimal solution with deterministic methods by testing
all the possible n-tuple combinations of the list, especially when there are many locks.
Therefore, the use of a metaheuristic algorithm is required to select the best n-tuple of
locks e�ciently.

3.5.3.1 Metaheuristic Choice

To solve this problem, the metaheuristic algorithm must meet the following characteristics:
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• Population-based: Our problem involves selecting certain locks among the locks list.
Therefore, if we consider that the locks list forms a population where the locks are the
individuals, the metaheuristic should be able to deal with populations and generate
new ones in order to obtain the best solution.

• Fitness-oriented: Selecting the best locks is based on measuring its impact on the
network. Thus, the metaheuristic should use a �tness function to evaluate the quality
of a generated solution.

• Variation-Driven: If there is no acceptable solution in the current population accord-
ing to each individual’s �tness function, the metaheuristic should generate new solu-
tions. Consequently, individual solutions should produce variations to generate new
solutions.

In the literature, numerous evolutionary algorithms meeting the above criteria are pro-
posed. Many researchers have studied the performance of these algorithms in di�erent ap-
plication �elds [168, 169]. However, it is proven that these results are problem-dependent,
and there is no best metaheuristic for any optimization problem. Therefore, in this study,
we conduct a comparison approach of three well-known metaheuristics, namely Arti�cial
Bee Colony algorithm (ABC) [170], Genetic Algorithm (GA) [171], and Simulated Annealing
(SA) algorithm [172], to select the adequate one for our problem.

Figure 3.5 gives an overview of the used algorithms �ow chart. The three main steps are
population initialization, evaluation of �tness function, and generation of new population.

Start

Initializing population and 

generating the corresponding 

graph

Evaluating fitness function of 

initial population

Evaluating new solutions

Generating new solutions

Update population

optimum?

Retained Solution

No

Yes

Figure 3.5: General �ow chart of the used algorithms.
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3.5.3.2 Initializing Population and Generating the Corresponding Graph

The �rst step is to generate an initial population in which a set of possible solutions are
contained. We form the initial population randomly from the selected locks with the highest
scores.

3.5.3.3 Evaluating the Fitness Function

The �tness function consists in calculating the average travel time between test points.

v Test Points

By test points, we refer to the locks considered to calculate the distance between them
before and after the changes. Since we cannot consider all the existing locks in one test
procedure, we need to select some test points covering most of the relevant locks to reduce
the test process’s time and cost. All the locations are randomly chosen from either side of
the border locks. This choice ensures that each path can go through the maximum number
of points that have been changed.

v Fitness Function

The proposed algorithm calculates the travel time between every 2 test points and gives the
average travel time (ATT) between all the test points. The idea is to �nd the shortest path
between two locks and then calculate the travel time to cross that path. The total travel
time includes the circulation time taken by the ships between the two locks and also the
possible waiting time necessary to cross the intermediate locks.
Several works [173, 174, 175] have been carried out to compare the path search algorithms.
They prove that A* Search [176] is the best implementation for most of the graphs and
found to be superior to other approaches in terms of distance traveled per time complexity
ratio. This is supported by the minimal computation process needed and relatively short
searching time. Therefore, we decide to use the A* search algorithm to �nd the best path,
as illustrated in Algorithm 1. It is an informed search algorithm, as it uses information
about path cost and uses heuristics to �nd the solution. A* is a modi�cation of Dijkstra’s
algorithm [177], which is optimized for a single destination. Dijkstra’s algorithm can �nd
paths to all locations; A* �nds paths to one location or the closest of several locations. It
prioritizes paths that seem to lead closer to a goal. Each time A* enters a lock, it calculates
the cost to travel to all neighboring locks, and then comes the lock with the lowest cost.

3.5.3.4 Generating New Solutions

We represent a solution as an n-tuple combination of locks. For example if we have n= 10,
solutions will be represented as shown in 3.6:

To generate new solutions, each algorithm applies di�erent techniques as follows:
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Algorithm 1 Fitness Function
INPUTS: G, Test Points TP
OUTPUT: ATT (Average Travel Time)
for lock_i, lock_j, i 6= j in TP do
Find the shortest path from lock_i to lock_j
shortest_path= A* (graph: G, from: lock_i, to: lock_j, metric: distance)
Compute the total travel distance.
sumDistance= Distance of shortest_path.
Compute the total travel time.
travel_time= sumDistance

ships′sspeed
+ waiting time

end for
Compute the mean of the travel time between all the TP.
ATT= mean (travel_time)

return ATT

Solution 1

Solution 2

Solution 3

…

Figure 3.6: Solutions representation, where L1,L1’,L2,......L10’ are the locks.

(a) Arti�cial Bee Colony (ABC): It has mainly three phases:

• Employed Bees phase: each employed bee visits a solution and generates a nearby
one by performing a local search. We retain the best solution among the original and
the new one.

• Onlooker Bees Phase: Unlike the employed bees, the onlooker bees calculate a prob-
ability value for each solution shared by the employed bees and generates new solu-
tions.

• Scout Bees Phase: If a solution cannot be improved for a predetermined number of
tries during the onlooker and employed bee phases, then the employed bee associated
with that solution becomes a scout bee. Then, the scout bee �nds a new solution.

(b) Genetic Algorithm (GA): The search progress is achieved by two wide operations,
namely crossover and mutation. Both operations constitute the exploitation and explo-
ration part of the search.

• Crossover: It is the process whereby two chromosomes (called parents) partially con-
tribute characteristics to a new chromosome (child). The type of crossover we used
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L1 L2 L3 L4 L5 L6 L7 L8 L9 L10

L1’ L2’ L3’ L4’ L5’ L6’ L7’ L8’ L9’ L10’

Parent 1

Parent 2

L1 L2 L3 L4 L5 L6’ L7’ L8’ L9’ L10’Child

Figure 3.7: Crossover explanation

is single-point crossover, where the child inherits all genes from one parent up to the
crossover.

• Mutation: It is used to explore new solutions in the solution space. It is important to
avoid blocking in local optima.

(c) Simulated Annealing (SA): The neighborhood generation used in this work is
based on n-opt moves, which is the number of instances for which the best-known solution
quality was reached. For a given solution S, composed of n elements, we select n neighbors
randomly.

3.5.3.5 Retained Solution

The retained solution of the algorithm is the optimal n-tuple of the locks that guarantee a
minimum average travel time (ATT) within an input graph.

3.6 Implementation and Results

In this section, we detail the experimentation process and analyze the results. We �rst
rank the locks using the importance score calculation �ndings (see Stage 2 explained in
Section 3.5.2). Second, we compare the three metaheuristics to deduce which one best suits
our problem (see Stage 3 explained in Section 3.5.3). Then, we test the e�ciency of the
entire algorithm, Lock-ADM, against both the Random-Selection algorithm and the All-
Automated algorithm (automating all the locks).

3.6.1 Locks Importance Score Calculation (Stage 2)

On the one hand, we compute all the centrality measures (Degree, Betweenness, Closeness,
Random Walk Betweenness, and Eigenvector) for all the nodes in the network. We use the
real positions of locks in the network from GoogleMaps and the simulations are done using
the networkx tool [178], which is a Python package for the creation, manipulation, and
study of the structure, dynamics, and functions of complex networks.

The results from these simulations are presented in Figure 3.8.
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(a) Degree centrality (b) Degree betweenness centrality

(c) Degree closeness centrality (d) Random walk betweenness centrality

(e) Degree eigenvector centrality

Figure 3.8: Centrality measures

Figure 3.8(a), Figure 3.8(b), and Figure 3.8(d) reveal a high correlation between DC, BC,
and WBc measures, while other measures are weakly correlated. In general, vertices with
higher shortest path betweenness tend to have high random walk betweenness. This visual
correlation is analyzed in more empirical evidence. Thus, we calculate the Pearson corre-
lation coe�cient R between all the �ve measures.
The calculation formula of R is given by:

R =

n∑
i=1

(xi − x̄)(yi − ȳ)√
n∑

i=1

(xi − x̄)2
n∑

i=1

(yi − ȳ)2

(3.9)

where n is the total number of samples, i refers to a speci�c sample, x and y are the
variables, and x̄ and ȳ are the means of the corresponding variables. If the two variables
are positively linearly correlated, then 0 < R 6 1. If two variables are negatively linearly
correlated, then -1 6 R< 0. If there is no linear correlation between the two variables, then
R=0. Generally, if |R| >0.8, then the two variables are considered to have a strong linear
correlation.
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DC BWC CC WBc Ec
DC 0.97 0.62 0.99 -0.12

BWC 0.97 0.59 0.93 -0.13
CC 0.62 0.59 0.6 -0.16

WBc 0.99 0.93 0.6 -0.11
Ec -0.12 -0.13 -0.16 -0.11

Table 3.3: Correlation coe�cients for the centrality measures

The calculated values presented in the matrix of correlation coe�cients for the central-
ity measures (Table 3.3) con�rm the �ndings visually noticed from the graphs. DC, BWC,
and WBc measures have high correlation coe�cients: R∼ 0.9, meaning strongly correlated.
Hence, it implies that it is unnecessary to use the three variables simultaneously; using one
of these variables is su�cient for our study. Therefore, we kept the DC, CC, and Ec mea-
surements in further calculations.

On the other hand, we plot the tra�c density weight of the locks in Fig 3.9. We notice
a low correlation between the tra�c density weight and the degree centrality. This implies
that most connected nodes are not necessarily the most chosen ones by ships. For instance,
the 112nd node (encircled in red in the �gure) has the highest tra�c density weight (0.21)
but has a low DC = 0.01 and we �nd that the 2nd node with the highest CD (0.27) has a
tra�c density weight equal to 0.13.

Figure 3.9: Tra�c density weight

In our study, we give equal importance for each measure. So, to calculate the Deg�n,
de�ned in Equation 3.8, for each lock, we set αBWC = αWBc =0 and αW = αEc = αCC =
αDC = 1/4.
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3.6.2 Metaheuristics Comparison (Stage 3)

Once the locks are ranked, we implement the stage 3 of the Lock-ADM. We use a meta-
heuristic to select the n best locks among the locks with the highest rank. So, this second
experimental study aims to compare experiments with the di�erent selected metaheuristic
algorithms with the same number of iterations. Table 3.4 illustrates the performance results
in terms of execution time and best value solution for di�erent instances.

Number
of
nodes

SA ABC GA
Best Execution Best Execution Best Execution
value time (s) value time (s) value time (s)

20 826.22 259.40 954.66 640.78 867.26 906.31
30 1863.03 386.34 2137.31 907.63 1720.69 930
50 1271.61 1316.5 1356.42 1501.92 1106.002 1702.95
100 1663.39 3484.05 1687.20 5086.28 979.00 5448.73
150 5578.17 5956.22 5629.66 7883.67 4127.13 9790.34
200 1966.51 8120.3 1971.30 10102.95 1329.12 11635.66

Table 3.4: Comparing metaheuristics

The experimental results show that the GA algorithm yields the best performance on
average and the longest execution time. For small instances, the results are close ∼ 13 %;
however, the di�erence is∼ 32 % for large instances. Although the ABC and SA algorithms
are much quicker, the time required by the genetic algorithm is feasible for our research.
Therefore, in the following experiments, we select the GA as metaheuristic.

3.6.3 Comparison with Other Algorithms

In order to demonstrate the e�ectiveness of the proposed algorithm, a number of randomly
generated instances were tested. In particular, for a given graph, we investigate three pos-
sible test algorithms:

• All-Automated: where all the locks are automated.

• Random-Selection: where n locks randomly selected are automated. We repeat this
process 10 times for each experiment, and we take the average of the value as the
�nal result.

• Lock-ADM: where the metaheuristic selects n locks to be automated from the most
important locks.

The �rst series of experiments aim to compare the solutions obtained during the exe-
cution of Lock-ADM with the results of the other test algorithms, namely All-Automated
and Random-Selection. The results are summarized in Fig 3.10a and Fig 3.10b.
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Figure 3.10: LockADM vs. other test algorithms for di�erent number of nodes

We note that below 20 locks in the network, the locks’ required number is usually equal
to the locks with the highest score (M = n). So, we do not need to run the metaheuristic,
and we retain those locks.
We can conclude that Lock-ADM solution is very e�cient in �nding a solution for all the
instances. Random selection of locks can provide a good solution for small instances, but
it has a huge gap when the number of locks increases. Additionally, our solution results,
especially for small instances, are very close to the All-Automated results. This signi�cant
�nding implies that by automating a small number of locks, we can achieve high perfor-
mance close to those when automating the locks but at a much lower cost.

3.6.4 Impact of the Population’s Initialization

These series of experiments aim to study the impact of the population de�nition. So, we
compare GA’s performance with a random population initialization and Lock-ADM that
used a prede�ned population calculated in the stage 2. Table 3.5 summarizes the GA pa-
rameters set used [179] for testing the genetic algorithm.

Parameter Value
Number of locks in the graph 1632

Population size 100
No. of generations 300
No. of test points 10

Crossover rate 0.3
Mutation rate 0.2

Table 3.5: Algorithm parameters for testing

Figure 3.11 demonstrates graphically the bene�ts of the population de�nition with the
locks with the highest score. We can see that Lock-ADM converges rapidly for the op-
timal solution (within 100 iterations). However, the GA with random initialization takes
over than 300 iterations and it does not converge yet. A summary of results with di�erent
number of locks is shown in Table 3.6.
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(a) GA with random initialization (b) Lock-ADM

Figure 3.11: Convergence history for the Lock-ADM and the GA with random population
initialization .

Number of All-Automated GA with random Lock-ADM Deviation
locks value initialization percentage

20 667.31 1131.58 851.95 24.71
30 754.20 1864.89 1081.34 42.01
50 785.96 2057.38 1311.94 36.23
100 622.29 1319.50 715.92 45.72
150 1017.58 3406.74 2125 37.62
200 891.61 2134.14 1709.10 19.91
250 804.82 2177.46 1252.63 42.47
300 941.37 1866.93 1476.39 20.91

Table 3.6: The Lock-ADM and the GA with random initialization results compared to the
All-Automated values for di�erent parameters.

The �rst column represents the size of the graph in terms of number of locks. The
second, the third, and fourth columns represent the All-Automated results, the GA with the
random initialization, and Lock-ADM solution, respectively. The last column represents the
percentage di�erence between the GA with the random initialization and Lock-ADM. We
can conclude that starting a search with speci�c individuals based on preliminary analysis
done in stage 2 instead of generating the population randomly enables to reach optimum
design with less number of iteration and to get closer to the global optimum.

3.7 Conclusion

French navigation su�ers from several de�ciencies leading to long travel times, mainly due
to aging infrastructure, especially its old locks. However, automating all existing locks re-
quires enormous costs and could be unnecessary when automating a non-important lock.
Therefore, this study gives decision-support systems for ship companies to adjust their river
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network management. We consider determining the optimal number and the best locks to
automate optimally to reduce travel time and costs. We propose Lock-ADM, a three-stage
algorithm for determining the number and locks’ position to automate, respecting the bud-
getary and time constraints with a detailed explanation and the corresponding experimental
results. The proposed algorithm essentially answers the following research questions: (1)
What is the optimal number n of locks to be automated under budget constraints? (2) What
are the most important locks in the existing river network? (3) If this number is greater than
n, how can the n best locks to automate be selected e�ciently?
Performance analysis shows that Lock-ADM ensures a reduced travel time close to that
when automating all the locks (∼ 33.7 % of deviation percentage) but at a much lower cost.
This study serves as the basis of any problem aiming to change some nodes’ states in a
graph in a reasonable time. Many interesting research topics can be derived from our solu-
tion. For instance, studying locks’ individual and external importance may inspire the most
in�uential nodes discovery, selection, and modi�cation in a graph for di�erent applications.
Additionally, the tra�c increase analysis after automation may warrant further studies by
considering other measures of importance, such as centrality measures. In future work,
we can extend this research in several directions. One �rst extension is considering other
methods and other constraints. We can, for instance, explore the method in [180]. Guo
et al. that introduce a multiobjective resource-constrained selective disassembly sequence
optimization using scatter search. Their goal is to minimize the energy consumption and
disassembly time and maximize the disassembly pro�t. It should be noted, however, that
there is no exact correspondence between this proposed method and the locks’ automation.

70



Chapter 4

Automating the Inland Ships

Your present circumstances don’t deter-
mine where you can go; they merely de-
termine where you start.

–Nido Qubein
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4.1 Introduction

Over the last roughly �ve years, autonomous ships have been and continue to be subject to
an ever-increasing interest and have been the origin of numerous works and realizations.
This is also the aim described in this chapter and further developed in the rest of this thesis.
As an autonomous ship, the basic software pro�ciencies can be classi�ed into three main
groups: perception, planning, and control. During the Ph.D., we have focused mainly on the
conception of a reliable perception system. Perception is one of the most critical modules
in autonomous systems. It refers to its capability to collect and interpret sensory infor-
mation to represent and understand the environment. It involves developing a contextual
understanding of the environment, such as localizing obstacles, detecting tra�c signs, and
categorizing data according to their semantic meaning. Perception thus plays a crucial role
in developing autonomous ships. It is the �rst critical part of the computational pipeline
for their safe functioning. In particular, navigable area detection is the most urgent task in
perception since it is the fundamental guarantee of ship security. Once the ship can select
relevant data from the enclosing environment, it can accomplish the other planning and
control tasks without human intervention. Path planning can be conducted in the naviga-
ble area to be guided to drive forward. Therefore, accurate navigable area detection assures
safety for the autonomous ship in any environment.
The lidar-based and radar-based methods are essential parts of perception. It is easy for
these sensors to obtain accurate depth information, but they are short of rich semantic in-
formation. Concretely, it is hard to detect navigable areas using lidars or radars accurately.
Therefore, cameras are used to process the perception tasks in this chapter. In summary,
we propose that navigable area and tra�c objects detection are the essential perception
tasks. With accurate detection of the navigable areas and tra�c objects, the autonomous
ship can sail safely and comfortably in most scenarios. The two tasks are then processed in
a uni�ed system.
In this following, we summarize our three main contributions in this chapter:

• Since there is no dataset corresponding to the types of inland conditions, we produce
the �rst self-driving dataset, the InlandAutoDetect dataset, destined for the �uvial
environment. The annotations are used for perception purposes, more precisely, for
object detection through machine/deep learning processes. InlandAutoDetect dataset
is open-source, and it is available online 1 for other researchers working in this area,

• We evaluate the accuracy and performance of nine state-of-the-art perception models
architecture for the problem of object detection in an inland environment: four ver-
sions of Yolo, Faster R-CNN, SSD, and three di�erent versions of Retinanet. Among
the detection models evaluated, we select the most e�cient and propose an adequate
con�guration for inland navigation. Among these architectures, the Retinanet model
with the ResNet101 backbone o�ers the best performance balance,

• We design a system to accurately delimit the area where the navigation is secure by
simultaneously locating and mapping the area using the Retinanet model �ndings.

1https://widedhammedi.wixsite.com/phdproject/
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The proposed system considers adding a safety distance to avoid detected objects
safely. Then, we analyze the results and suggest possible improvements.

This chapter is structured as follows: We present a brief review of the most commonly
known existing real time object detection and drivable area detection for autonomous ve-
hicles techniques in Section 4.2. In Section 4.3, we describe the InlandAutoDetect dataset
properties, the number of images and annotated objects, the data model, and the annotation
process. Then, we detail the training process implementation, and we explain the con�g-
uration made on the deep learning models in Section 4.4. Discussions of the results and
performance evaluation of the tra�c object detection are drawn in Section 4.5. Based on
the obtained results, we describe the designed system to simultaneously locate and map the
area to delimit a safe navigable zone in Section 4.6. Finally, we summarize our �ndings in
Section 4.7.

4.2 Related Work

Traditional maritime surveillance systems rely on four main types of images: optical re-
mote sensing images [181] [182], radar images [183] [184], infrared images [185] [186], and
visible video images [187] [188]. Optical remote sensing images easily su�er from weather
conditions like waves and clouds, making it di�cult to achieve real-time monitoring in a
long operation period and thus locating the danger more troublesome and less viable. Radar
images can cover a wide range and penetrate occlusions. However, their imaging resolu-
tion is poor, so that the captured ship targets only take up a few pixels in the entire image.
Moreover, radars have dead zones near their base area, and the powerful radio beams are
also destructive to living creatures. This will bring many inconveniences to object detection
and tracking. In addition, the high cost of radar systems makes it challenging to achieve
uninterrupted work within 24 hours. Infrared images have obvious advantages, mainly at
night or under the lack of light, but they fail to provide rich color information. Visible light
video images can realize precise monitoring in the short-distance �uvial area. It holds many
advantages: high resolution, rich in color and texture information, low price, low power
consumption, and all-weather real-time operation. All these features make it the best data
resource for surveillance systems. This motivates us to consider the development of a visi-
ble image camera-based system for autonomous navigation.

Indeed, Inland Unmanned Surface Ships (I-USV) must be equipped with an intelligent
awareness system capable of automatically locating and classifying nearby objects in real-
time. The detection must be fast enough to allow the ship to act if needed. In all these ad-
vancements towards object detection frameworks for autonomous systems, real-time object
detection remains a fundamental problem to solve in building such systems [189]. Many al-
gorithms have been proposed to solve this problem. Nevertheless, one of the most challeng-
ing di�culties in measuring these algorithms’ performance is getting the suitable dataset in
the suitable format. In this section, we detail the characteristics of the inland navigation wa-
terways. Then, we benchmark existing object detection approaches and datasets. Finally,
we study the drivable area detection techniques for autonomous vehicles. We mainly focus
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on the adaptability of the top existing approaches for inland navigation, and we investigate
the e�ect of such challenging conditions on their average performance.

4.2.1 Real-time Tra�c Object Detection for Autonomous Vehicles

The classi�cation consists of predicting a label for input based on the classi�er’s features.
Object detection is a computer vision method that consists of localizing spatially in an image
the Region of Interest (RoI) where an object appears. In particular, tra�c object detection
has become a key technology behind advanced driver assistance systems [25], mainly to
perform security surveillance, road, sign, and pedestrian detection. In recent years, consid-
erable progress has been made in this area due to the development of deep learning methods
able to perform detection and classi�cation simultaneously. However, even though these
many e�orts to solve this problem have been employed in recent decades, it is still challeng-
ing to create a robust and e�cient object detection method due to di�culties from lighting
variety, background clutter, and perspective alterations. We �rst explain the approaches of
object detection, then the existing datasets designed for this purpose.

4.2.1.1 Object Detection Approaches

Most object detection methods can be divided into two approaches:

v Hybrid Approaches: Hybrid approaches consist in using a cascade of successful
algorithms with two steps to identify an object. The aim of the �rst step is the vi-
sual extraction features to provide a semantic and robust representation. SIFT [190],
HOG [191] and Haar-like [192] features are the representative ones. In the second
step, a classi�er is needed to distinguish a target object from all the other categories
and make the representations more hierarchical, semantic, and informative for visual
recognition. Usually, the Supported Vector Machine (SVM) [193], AdaBoost [194] and
Deformable Part-based Model (DPM) [195] are utilized.

v Neural Network (NN) Approaches: Before the rise of deep learning, HOG detec-
tors were the most popular solution. When deep learning methods began to be inte-
grated into detection problems, the main objective was to replace HOG with a more
accurate convolutional neural network (CNN) based detector. Currently, CNN archi-
tectures have emerged as a successful solution for problems related to visual object
recognition [25], [26]. Over the last years, deep learning has achieved an impressive
series of results thanks to its success in automatic feature extraction via multi-layer
nonlinear transformations, especially in computer vision.

The choice of the most suitable object detection approach between these two popular
approaches is crucial. We found that CNN-based approaches are more adaptable for learn-
ing and can yield better and more accurate results in several domains. Moreover, due to the
diversity of appearances, illumination conditions, and backgrounds, it is di�cult to manu-
ally design a robust feature descriptor to describe all kinds of objects perfectly. Therefore, it
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has been proven that automatically learned features through the CNNs perform better than
the hand-crafted ones [196]. In [197], A. Arinaldia et al. compare two systems for vehicle
detection and classi�cation, a system based on background subtraction with an SVM clas-
si�er (a hybrid approach) and a system based on the Faster R-CNN. The results show that
Faster R-CNN outperforms the SVM classi�er in terms of time and accuracy. This study
is just one example of many other investigations that corroborate NN’s superiority over
Hybrid approaches in object detection.
On the other hand, NN-based object detection approaches can be classi�ed into two main
categories: region-proposal-based methods and one-step methods. In the region proposal-
based methods, a region proposal is generated �rst, then the features inside the region
proposal are used to classify the category and regress the location. Faster R-CNN [198] and
R-FCN [199] are representatives examples. Faster R-CNN proposes a Region Proposal Net-
work (RPN); it generates region proposals using neural networks. R-FCN inserts a position-
sensitive score map into the ROI pooling layer. Both Faster R-CNN and R-FCN accelerate
the detection speed and improve the accuracy greatly. SSD [200] and YOLO [201] are the
representatives of the one-step methods. They combine the category classi�cation and lo-
calization regression synchronously. However, this approach requires high-quality training
data as support. It is thought that the recent success of object detectors is a product of the
availability of more large-scale training data.

4.2.1.2 Benchmarked Datasets

Datasets are the most crucial aspect that makes algorithm training possible; without data,
it is impossible to learn. Datasets provide a way to train and validate the computer vi-
sion algorithms and therefore play a crucial role in driving the research. We collect the
characteristics of the existing maritime datasets in the literature in Table 4.1.

We can notice that the �rst datasets can only be used for a classi�cation task as per-
formed in [202] [209] [29] since they do not provide locations of objects (no detection).
Moreover, the images constituting the [204][205][206] datasets are provided by a commu-
nity of active photographers around the globe and are collected mainly for recreational
purposes. We found that the annotations are inconsistent regarding class assignments, and
there are only a few examples for some classes. The SMD and MarDCT datasets are used
mainly for maritime ships localization and classi�cation [210]. However, they implement
an easy detection process, through which they assume that either the target ship or the
sensor ship is stationary. The last two datasets focus on maritime ship detection based on
deep learning models. They provide precise annotations and employ three object detec-
tors (Faster R-CNN, SSD, and YOLO) to detect ships. However, they can only distinguish
between ship types. Therefore, according to the presented literature review, we can con-
�rm that there is no public annotated dataset designed for a �uvial environment with its
speci�cities detailed earlier in section 2.2.3.2.
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Table 4.1: Popular maritime datasets

Dataset Access Description
VAIS (Visible and Infrared
Spectrums) dataset [202]

Publicly available The most popular maritime dataset with 2865 images of
ships from 6 di�erent categories.

Marvel dataset [203] Publicly available A dataset with 140,000 labeled visible images of ships
from 26 di�erent categories.

FleetMon dataset [204] Subscription-based A dataset with 566,250 labeled ship images.
MaritimeTra�c dataset [205] Subscription-based A dataset with 2,600,000 labeled ship images of 500

di�erent ships.
shipFinder dataset [206] Subscription-based A dataset with 459,543 labeled ship images.
SMD (Singapore Maritime
Dataset) [207]

Publicly available A dataset with 31,653 frames of 6 di�erent object
classes.

MarDCT (Maritime Detection,
Classi�cation, and Tracking)
dataset [208]

Publicly available A dataset used for detecting maritime ships with 3,066
labeled ship images.

SeaShips dataset [187] Con�dential A dataset used for detecting maritime ships with 31,455
images including 6 ship types.

ABOShips dataset [188] Con�dential A dataset used for detecting maritime ships with 9880
images including 9 ship types.

4.2.2 Real-time Drivable Area Detection for Autonomous Vehicles

Drivable area detection is an essential component within the street scene examination for
ADAS. Since an autonomous vehicle requires information on the road where it circulates,
the system and algorithm should be as fast and straightforward as possible. Many conven-
tional approaches detect the road using the following information set: edge, color, intensity,
and shape. These approaches select a candidate road solution that maximizes the statistical
distances between the two regions’ color distributions created by the candidate solution.
For instance, in [29], a gradient-enhancing conversion and an illumination-based lane de-
tection algorithm are proposed. Gradient-enhancing conversion produces a color image
from an intensity image that has maximized gradients at the lanes. However, we �gure out
that these methods based on colors are not e�cient for unstructured roads without clear
lane boundaries, such the inland pathways. Besides, they do not work well for complex
tra�c since they are in�uenced by lightning and the re�ection of other objects.
With the recent development of deep CNNs, many deep CNN-based approaches have been
proposed. Pan et al. [211] propose the Spatial CNN (SCNN), which generalizes traditional
deep layer-by-layer convolutions to slice-by-slice convolutions within feature maps thus
enabling message passing between pixels across rows and columns in a layer. Such SCNN
is particularly suitable for long continuous shape structures or large objects, with solid
spatial relationships but fewer appearance clues, such as tra�c lanes, poles, and walls. In
[212], the authors propose a deep neural network, called Road and road Boundary detection
Network (RBNet), that can detect both road and road boundary in a single process. By im-
plementing a Bayesian model, the RBNet can simultaneously estimate the probabilities of a
pixel on the image belonging to the road and road boundary. This method improve the seg-
mentation accuracy by utilizing the predicted results of the two tasks as guidance for each
other. Oliveira et al. [213], and Lyu et al. [214] propose smaller CNNs based on an encoder-
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decoder network architecture to reduce the processing time of road detection. Wang et al.
[215], and Zohourian et al. [216] inject extra knowledge such as contour priors and loca-
tion priors into their network architectures to improve the road segmentation performance.
However, these methods require extra information such as road contour maps and location
priors. Also, they may result in missing regions when illumination variations exist, includ-
ing shadows and overexposure regions. Moreover, the networks’ encoder-decoder structure
often causes inaccurate road boundary due to the loss of details; the spatial information can
easily be lost because of the down-sampling and interpolating operations contained in the
encoder-decoder structure.

To sum um, in inland sailing, the pathways are unstructured roads because there are no
drawn lines in the river canal. Hence, in our case, we aim to estimate the geometric struc-
ture of the lane boundaries of an unstructured pathway on images captured by the camera
to delimit a safety zone for navigation. In the next section,we describe the InlandAutoDe-
tect dataset properties, the number of images and annotated objects, the data model, and
the annotation process.

4.3 InlandAutoDetect Dataset Construction

As explained in section 2.2.3.2, the �uvial environment characteristics are di�erent from
those of the other vehicles [217]. Thus, in this study, we created the InlandAutoDetect
dataset to meet its speci�c requirements. The dataset is available to the research community
following the data model we propose and provides annotated images in two formats, as
described below. This section outlines the features of this proposed open-source dataset,
the data model, and the labeling process.

4.3.1 Data Acquisition

The RGB images were acquired from di�erent publicly published sources found online.
We have obtained the permission of their owners, and we have anonymized the images by
blurring the faces to comply with the European General Data Protection Regulation (GDPR)
legislation. The image data was acquired in waterways as well as near ports. Only images
containing at least one relevant object were selected from the vast corpus of collected data.
Moreover, the selection was performed so that there is usually a signi�cant scene change
between any pair of selected consecutive images.

4.3.1.1 InlandAutoDetect Dataset Diversity

A good detection model should maintain sensitivity to interclass di�erences while giving
stable test results. Due to the complexity of �uvial environments, all in�uencing factors
need to be considered. Some real-world data, by its very nature, can be hard to predict. So,
we will take the following measures to ensure the diversity of our dataset:
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• Background Selection: In most detection tasks, especially face recognition, the de-
tection accuracy is rarely a�ected by background variations because the face area is
�lled in a regular rectangle, easily separated from the background. Nevertheless, un-
like human faces, the shape of inland objects is very irregular, which will lead to a
lot of background information in the labeled bounding box. Background information
will be identi�ed as objects features and will distort �nal detection accuracy. To avoid
the impact of a single background, we collected data under di�erent backgrounds. To
do this, we used images from cameras deployed in di�erent locations.

• Lighting Variations: The illumination di�erences from di�erent temporal peri-
ods and in various geographical areas are particularly signi�cant in natural envi-
ronments. Lighting variations can signi�cantly impact image capture. Illumination
throughout the day, in various geographical areas, and speci�c daylight hours in a
given region can dramatically in�uence image detection. Therefore, to be exhaus-
tive, we collected images under di�erent lighting conditions by selecting videos at
di�erent periods and in various geographical areas.

• Atmospheric Conditions: The dataset includes various images of di�erent atmo-
spheric conditions throughout the day, including sunny, rainy, and cloudy skies.

• Occlusion: Since the inland waterways are narrow, a high number of ships may be
in proximity to each other. This induces signi�cant occasions when ships occlude
each other or occlude other objects in the environment. However, ignoring occlusion
is unreasonable and unrealistic and may cause errors later. So, we collected as much
occlusion data as possible to let the subsequent trained model e�ciently cope with
occlusions. Two examples of occlusion are shown in Figure 4.1.

(a) Several parked ships occluding each other. (b) Trees hiding part of the infrastructure

Figure 4.1: Example image of a occlusion.

• Visible Proportion: As most ships in cameras are moving, only part of inland ob-
jects may appear on the screen when entering and leaving the camera’s �eld of view.
They still belong to the objects we need to detect. We thus annotated both complete
objects and incomplete parts at di�erent visible proportions.
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4.3.1.2 InlandAutoDetect Dataset Characteristics

Our dataset termed the InlandAutoDetect dataset includes a total of 3,377 images with
29,832 tightly annotated objects instances corresponding to 5 di�erent categories of ob-
stacles. Most images are high-resolution (1,280 × 720), while others are lower (500 x 375).
These images include challenging variations and are diverse in background, weather con-
ditions, levels of natural occlusions and shadows, various ranges of a cloudy sky, direct
sunlight, and daytime, to be exhaustive and close to real-world environmental conditions.
The total number of instances is di�erent for each class (see Table 4.3). Each image contains
annotations of visible inland objects greater than 32*10 in the form of rectangular regions
of interest.
The main characteristics of the InlandAutoDetect dataset are illustrated in Table 4.2 and
a sample from the InlandAutoDetect dataset, with multiple challenge types, is shown in
Figure 4.2.

Number
of videos

Number of
annotated
images

Number
of classes

Resolution Annotated
object size

Challenging conditions

5 3,377 5 500x375 to
1,280×720

32x10 to
585x194

illumination, blur, shadow,
re�exion, occlusion, noise

Table 4.2: Main characteristics of InlandAutoDetect dataset

Figure 4.2: A sample from InlandAutoDetect dataset with multiple challenge types

4.3.2 Data Model

The data model lists a large number of objects that can be found in the �uvial environment
and that can obstruct the progress of the ship. We classify these objects into �ve categories:

• Riverside: as there are no lane markings in rivers, specifying the exact location of
a lane marking in a camera image may be very ambiguous. In this category, we
captured the edges of the river canals as shown in Figure 4.3.

• Ship: in this category, we added di�erent types of ships in shape, color, and size.

• Person: we added this category to detect �shers, swimmers, or people by the river-
side since ships could be close to the riverside.
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• Infrastructure: In this category, we collected the two types of construction that can
be found around a river: locks and bridges.

• Tra�c sign: as for cars, ships follow the tra�c code by respecting existing tra�c
signs. So, in this category, we collected tra�c signs that we can �nd in real situations.

We have tested two other versions of this data model: the �rst, considering the waves and
debris, was declined due to the lack of data of these classes. We decided thus to combine
the debris class with the infrastructure class. The second, considering multiple classes for
di�erent infrastructure and ships, was declined due to some classes’ lack of data and the
lower detection performance. Both versions achieved lower accuracy than this model.

4.3.3 Ground Truth Labeling Process

To prepare our ground truth annotations, we choose the labelImg tool [218], which is an
open-source graphical image labeling tool that can be downloaded on GitHub. Each object
in the target set annotation has two attributes: a class (riverside, ship, person, infrastruc-
ture, or road signal) and a bounding box representing an axis-aligned bounding box enclos-
ing the object’s extent.
In this project, we build an annotated dataset where each image has two separate �les, one
in each format: XML �le, used by Dark�ow, and Text �le, used by Darknet.
On the one hand, the XML �le is in the same format of the PASCAL VOC dataset [219],
and it contains the object center in X, the object center in Y, the object width in X, and the
object width in Y values. An example of an annotated image is shown in Figure 4.3.

On the other hand, the text �le contains the category number, the object center in X, the
object center in Y, the object width in X, and the object width in Y. So, we use the following
equations to change XML �les produced with LabelImg to text �les:

∗ Object center in X =
(xmin + xmax)/2

width (4.1)

∗ Object center in Y =
(ymin + ymax)/2

height (4.2)

∗ Object width in X =
(xmax - xmin)/2

width (4.3)

∗ Object width in Y =
(ymax - ymin)/2

height (4.4)

To conclude, our annotation procedure is designed to be: (i) consistent, in terms of the class
de�nition and placement of bounding boxes, (ii) accurate, by providing the fewest possible
annotation errors, and (iii) comprehensive, by labeling all object appearing in the image.
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(a) The details of a labeled object (ship): The blue, green and
red rectangles indicate the shape of the image in the left, the
object name, and its location, respectively.

(b) Multiple rectangular bounding boxes are drawn to delimit
objects with corresponding class labels.

Figure 4.3: An example of an annotated image.

4.4 Object Detection Implementation Details

In this section, we discuss the implementation details of the proposed object detection meth-
ods and pre-processing techniques.

4.4.1 Hardware and Software Con�guration Used

In our experiments, we use the deep learning library Keras built on the top of Tensor�ow
[220] with an NVIDIA GeForce GTX 2,080 Ti GPU [221] with 11GB of GPU memory on
a Linux machine (ubuntu 18.04). We also use the CUDA Deep Neural Network library
(cuDNN) [222], a GPU-accelerated library created by NVIDIA to improve deep neural net-
work performance by providing optimized implementations for standard routines.

4.4.2 Data Preprocessing and Preparation

Data preprocessing is crucial since it helps enhance data quality to promote the extraction
of meaningful insights. It refers to preparing the raw data to make it suitable for building
and training deep neural networks models. Therefore, it has a signi�cant impact on the
performances by dealing with some problems such as over-�tting, which means that the
network is highly biased to the data it has seen in the training set and cannot generalize
the learned model to any other samples. To avoid this problem, we applied three methods:
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4.4.2.1 Data Augmentation (DA)

When training neural networks, the recurring problem is that there is typically not enough
data to maximize the generalization capability of deep neural networks, such as the case
of the InlandAutoDetect dataset. Given the additional cost of annotating images for ob-
ject detection, data augmentation may be an excellent solution to increase the amount of
training data. Data augmentation is a widely used technique to enlarge the training dataset
size virtually. This technique consists in creating new images by manipulating the original
images. It has been shown to produce promising ways to increase the accuracy of detection
tasks [223]. We made some alterations to our existing dataset by implementing a sequence
of data augmentation techniques that can be found in real-world scenarios, such as rotat-
ing (angle=30◦ to angle=45◦), adding random noise, Gaussian blurring, and random erasing
in order to increase the amount of training data arti�cially. Data information about the
number of classes and the number of annotations for each class is shown in Table 4.3.

Table 4.3: The detailed information of the InlandAutoDetect dataset before and after data
augmentation.

Before DA After DA
Total images 3,377 6,753
Number of classes 5 5
Riverside 20,680 34,460
ship 4,692 14,076
Persons 1,768 5,304
Infrastructure 2,309 6,927
Tra�c sign 383 1,532

4.4.2.2 Anchor Boxes Calculation

Anchor boxes are a common element in all recent object detection papers. Previously se-
lective search and edge boxes were used to generate region proposals of various sizes and
shapes depending on the objects in the image. However, it is impossible to generate region
proposals of varied shapes with standard convolutions. Anchor boxes were introduced to
overcome this issue [198]. Each grid cell in an image can be assigned with multiple prior
boxes. These anchor boxes are pre-de�ned, and each one is responsible for size and shape
within a grid cell. Object detection models use a matching phase while training to match
the appropriate anchor box with the bounding boxes of each ground truth object within
an image. Essentially, the anchor box with the highest degree of overlap with an object is
responsible for predicting its class and location. For example, there are two anchor boxes
to make two predictions per location in the image drawn in Figure 4.4.

Anchor boxes eliminate the need to scan an image with a sliding window that computes
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Figure 4.4: Two anchor boxes to make two predictions per location in the image.

a separate prediction at every potential position. This property is used to train the network
and predict the detected objects and their locations once the network has been trained.
However, if anchor boxes are not tuned correctly, the object detection model can never
know that particular small, large or irregular objects exist and cannot detect them. Their
shape, scale, and number impact the e�ciency and accuracy of the detectors. Therefore,
since the objects we aim to detect are di�erent in terms of size and shape, we calculated
correctly tuned anchor boxes based on ground truth labels, as described in [224] and [225].
The anchors estimated do not neglect tiny objects and assure that the resulting anchors
guarantee high IoU between ground truth boxes. Thus, the smallest anchor box used is
21x27.

4.4.2.3 Weighted Sampling for the Training/Test Set

The InlandAutoDetect is class imbalanced since rare objects like tra�c signs are under-
represented, unlike riversides and ships. To address this problem, we �nely sampled the
dataset in train and test sets based on each class’s frequency. In addition, we used the bal-
anced weighted losses sampling to reweigh each class in the cross-entropy loss function to
address the unbalanced dataset issue.

4.4.3 Architectural Con�guration

We chose some network architectures from the most popular and successful object detec-
tion networks used today for this project. Each one has its bene�ts and drawbacks, with
varying levels of accuracy and run-time speeds. In this section, we brie�y discuss their
methodologies and related design choices.

4.4.3.1 Object Detection Models

Nine versions of deep learning architectures were examined within the scope of the pro-
posed system, which are Faster R-CNN, SSD, four versions of Yolo, and three versions of
Retinanet:

v Faster R-CNN : this object detection architecture [198] is a very accurate region-
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based convolutional neural network (R-CNN) [226] which improves Fast R-CNN [199]
by introducing the Region Proposal Networks (RPNs). An RPN takes an image as in-
put and outputs a set of rectangular object proposals, each with an objectness score.
The predicted region proposals are then reshaped using an ROI pooling layer which is
then used to classify the image within the proposed region and predict the o�set val-
ues for the bounding boxes. Thus, the Faster R-CNN architecture has two networks:
a region proposal network for generating region proposals and a network using these
proposals to detect objects, as illustrated in Figure 4.5.

Figure 4.5: Shematic diagram of the FasterRCNN model [198], which consists of two stages.
The RPN module serves as the ‘attention’ of this network. The RPN provides region pro-
posals from that we give the ROI as input to the RCNN network.

Faster RCNN was used for di�erent purposes, such as face detection [227], malaria
parasites recoginition [228], and for object detection in the wild [229].

v Single Shot Multibox Detector (SSD) : SSD [200] is a well-known approach for
object detection in real-time. Faster R-CNN uses a region proposal network to create
boundary boxes and utilizes those boxes to classify objects. While Faster R-CNN is
considered the state-of-the-art in the accuracy, the whole process runs at 7 frames
per second. Far below what real-time processing needs. Thus, SSD accelerates the
process by eliminating the need for the region proposal network, and it uses multi-
scale features and default boxes to recover the drop in accuracy. These improvements
allow SSD to match the Faster R-CNN’s accuracy at a higher speed. In practice, the
model’s main components are a base network block that extracts feature maps and
several multiscale feature blocks connected in series that apply convolution �lters to
detect objects, as illustrated in Figure 4.6.
SSD model was used for damage detection from post-event aerial imagery [230],
garbage detection [231], target detection in Synthetic Aperture Radar (SAR) images
[232], and ship detection using sentinel-1 SAR images [233].

v You Only Look Once (YOLO) and its variants: YOLO [201] is a high-speed multi-
object detection algorithm. It takes the entire image in a single instance and predicts
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Figure 4.6: Shematic diagram of the SSD model Architecture [200]. The model adds several
feature layers to the end of a base network.

the bounding box’s coordinates and the class probabilities for these boxes. There
are two updates for the original YOLO method, described in [201] and [234]. The
newer architecture boasts residual skip connections, and upsampling and its principal
characteristic is performing detections at three di�erent scales. These modi�cations
improve the detection performance. In this project, we use the improved versions of
the models, which are Yolo v2, Tiny-Yolo v2 [234], Yolo v3, and Tiny-Yolo v3 [235].
The architecture of the model is illustrated in Figure 4.7.

Figure 4.7: Shematic diagram of the YOLO model architecture [236]

Yolo was used for several purposes, such as automatic license plate recognition [237],
breast masses detection [238], and pedestrian detection [239]

v Retinanet: RetinaNet [240] is one of the best single stage object detection mod-
els that has proven to work well especially with dense and small scale objects. It
has been formed by making two improvements over existing single stage object de-
tection models - Feature Pyramid Networks (FPN) [241] and Focal Loss [242]. The
feature pyramid network is a structure for multiscale object detection. It combines
low-resolution, semantically robust features with high-resolution, semantically weak
features via a top-down pathway and lateral connections. The net result is that it pro-
duces feature maps of di�erent scale on multiple levels in the network which helps
with both classi�er and regressor networks.
Retinanet was used for road damage detection [243], small object detection in aerial
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Figure 4.8: Shematic diagram of the Retinanet model Architecture [200]. The FPN is used on
top of ResNet to calculate the feature maps at di�erent scales, irrespective of the backbone’s
input image size. It upsamples the spatially coarser feature maps from higher pyramid
levels, and the lateral connections merge the top-down and bottom-up layers with the exact
spatial sizes. Finally, the classi�cation subnetwork predicts the probability of an object
being present at each spatial location, and the regression subnetwork regresses the o�set
for the bounding boxes.

imagery [244], pedestrian detection [245], ship detection [246], and vehicle object
detection in real scenes [247].
The standard Retinanet uses ResNet50 as a backbone. In this project, we tested the
model with three di�erent feature extractors or backbones.

4.4.3.2 Backbones (Feature Extractors)

The architecture of all deep learning models has a common component, which is the feature
extractor or the backbone network. In other words, the backbone refers to the network
which extracts the feature map from an input image, and it represents the �rst block in a
deep learning architecture. We de�ne here two well known networks:

v Visual Geometry Group (VGG) networks: The VGG [248] network is a convolu-
tional neural network that gained notoriety by winning the ImageNet Large Scale Vi-
sual Recognition Challenge (ILSVRC) [249] competition in 2014. The model reached a
92.7% accuracy on Imagenet, which is one of the best scores obtained. The basic build-
ing block of a classic CNN is a sequence of: (i) a convolutional layer with padding to
maintain the resolution, (ii) a nonlinearity such as a ReLU, and (iii) a pooling layer
such as a maximum pooling layer. One VGG block consists of convolutional layers,
followed by a maximum pooling layer for spatial downsampling. The VGG network
can be partitioned into two parts: the �rst consists of convolutional and pooling lay-
ers, and the second consists of fully-connected layers. The convolutional part of the
network connects several VGG blocks from Figure 4.9 in succession.

v Residual Networks (ResNets): The ResNet [250] is an innovative neural network
used as a backbone for many computer vision tasks. This model was the winner of
the ILSVRC challenge in 2015. Prior to ResNet, training very deep neural networks
was complicated.
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Figure 4.9: VGG architecture.

More speci�cally, machine learning experts try stacking more layers in their deep
CNNs to solve a computer vision problem. These additional layers help to solve com-
plex problems more e�ciently as the di�erent layers could be trained for varying
tasks to get highly accurate results. However, they are hard to train because of the
notorious vanishing gradient problem; as the gradient is back-propagated to earlier
layers, repeated multiplication may make the gradient extremely small. As a result, as
the network goes deeper, its performance gets saturated and even degrades rapidly.
This degradation is not due to over�tting. Instead, it results from the problem of van-
ishing or exploding gradients. Therefore, ResNet was created to tackle this problem.
The use of residual blocks based on the concept of "skip connections" helps to im-
prove the accuracy of the models. These skip connections work in two ways. Firstly,
they alleviate the vanishing gradient issue by setting up an alternate shortcut for the
gradient to pass through. In addition, they enable the model to learn an identity func-
tion. As a result, they ensure that the higher layers of the model do not perform any
worse than the lower layers. The right �gure in Figure 4.10 illustrates the residual
block of ResNet, where the solid line carrying the layer input to the addition operator
is called a residual connection.

We show in Section 4.5 the importance of the feature extractor and how its accuracy im-
pacts the �nal detector accuracy by modifying the con�guration of the same model trained
on the same dataset.

4.4.3.3 Fine Tuning

Transfer learning or domain adaptation involves taking features learned on one problem
and leveraging them on a new, similar problem. More speci�cally, it consists of training the
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Figure 4.10: A regular block (left) and a residual block (right).

same model with another dataset with a di�erent class distribution or other classes than
in the �rst training dataset. It is usually done for tasks with too little data to train a full-
scale model from scratch, such as the case of the InlandAutoDetect dataset. Fine-tuning,
an approach of transfer learning, means making minor adjustments to achieve the desired
output or performance. It involves using weights of a previous deep learning algorithm
for programming another similar deep learning process. Weights connect each neuron in
one layer to every neuron in the next layer in the neural network. The �ne-tuning process
provides ease of transferring knowledge and, thus, signi�cantly decreases the time required
for programming and processing a new deep learning algorithm as it already contains vital
information. In our implementation, we initialize our models with weights of the same
trained models on the Pascal VOC dataset, which is considered a reference dataset in the
object detection problem.
To incarnate the �ne-tuning in our context of the study, we employed the following four
steps, illustrated in Figure 4.11:

1. We pretrained the neural network model, i.e., the source model, on a large dataset
(the PascalVoc dataset in our case).

2. We created a new neural network model. This copied all model designs and param-
eters on the source model except the output layer. We added an output layer to the
target model, whose number of outputs is the number of classes in our dataset, the
InlandAutoDetect dataset. Then we randomly initialized the model parameters of
this layer.

3. We trained the target model on the InlandAutoDetect dataset. The output layer is
trained from scratch, while the parameters of the other layers are frozen based on
the parameters of the source model.
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4. We unfroze the entire model we obtained above and re-train it on the new InlandAu-
toDetect dataset with a low learning rate.

InlandAutoDetect
dataset

copy

Freeze early 
layers in the 

network

Pretrain

Layer 1

Output layer

Layer L-1

…

PascalVoc
dataset

Random
initialization

Train from 
scratch

Unfreeze 
early layers 
and train all

Step 1 Step 2 Step 4

New output labelsOutput labels

copy

copy Layer 1

Output layer

Layer L-1

…

Step 3

Figure 4.11: Fine tuning steps.

4.5 Inland Object Detection Performance Evaluation

In this section, we evaluate the e�ectiveness of the models mentioned above in the in-
land environment. We �rst started studying the environment requirements to deduce the
boundary conditions corresponding to the biggest and heaviest ship reaction time. Then,
we compared the performance of the trained models in terms of accuracy and run-time
speed. To provide a realistic evaluation, we used a test set which is di�erent from the train-
ing set, and it contains examples of every object mentioned in the data model with di�erent
backgrounds.

4.5.1 Boundary Conditions

Handling ships is considered as a complicated task since ships do not have an anti-lock
braking system, an anti-skid braking system like those used on aircraft and land vehicles.
Therefore, autonomous ships should be able to detect nearby objects in real time in order to
react in real time and hence avoid the risk of a collision in a timely manner. Our objective
is to �nd the most suitable object detector for an inland waterway environment with the
best balance between accuracy and run-time speed. We started by studying the boundary
conditions to ensure safe navigation for autonomous ships. To do this, we considered the
worst situation in which the largest ship, containing the maximum allowed load and sailing
at the fastest allowed speed must stop immediately. Then, to con�rm whether a NN model
is acting in real time conditions, we needed to calculate the time it takes for a ship to stop
in real conditions and compare it to its time response.
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The navigation authority responsible for the management of the inland waterways net-
works [153] indicates that "unless otherwise speci�ed, signposts indicate limited speed on river
canals at 6 or 8 km/h and between 10 and 15 km/h on rivers". The type of ship, dimensions,
mass, and velocity are the most critical parameters for the ship’s stopping distance and
time. So, to calculate the minimum value of the stopping time (tmin), we should consider
the maximum value of stopping distance (dmax) [251].

dmax =
loadmax ∗ speed2

max

(2 * brake force) = 5.9 meters, (4.5)

tmin =
dmax

ships’s speed = 1.41 seconds =⇒ 0.7 FPS. (4.6)

Thus, the model should be capable to receive an input frame, analyze it, detect existing
objects and send the �ndings to the control system in less than 1.41 seconds.

4.5.2 Comparison Criteria

We evaluated the di�erent networks mentioned above using the following standard metrics:

• mAP (mean Average Precision): it is the �rst popular metric used for evaluating
detection algorithms. The mAP is computed by calculating average precision (AP)
separately for each class, then calculating the average over the class. A detection is
considered a true positive only if the Intersection over Union (IoU) is above 0.5.

mAP =

Q∑
q=1

(AveP (q))

Q
(4.7)

where Q is the number of queries in the set, and AveP(q) is the average precision (AP)
for a given query q.
The AP summarizes a precision-recall curve as the weighted mean of precisions
achieved at each threshold, using the increase in recall from the previous threshold
as the weight:

AP =
∑
n

(Rn −Rn−1)Pn (4.8)

where Pn and Rn are the precision and recall at the nth threshold. The recall refers
to the percentage of total relevant results correctly classi�ed by the algorithm, and
precision means the percentage of relevant results.

• IoU (Intersection over Union): it is the second popular metric used for evaluating
detection algorithms. It is a method that quanti�es the overlap between the target
bounding box and the predicted bounding box, as illustrated in Figure 4.12.

Mathematically, IoU =
Area of Overlap (Ground truth box ∩ Detected box)
Area of Union (Ground truth box ∪ Detected box) (4.9)
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Figure 4.12: Intersection over Union calculation.

• FPS (Frame per Second): It is the third important metric used for evaluating detection
algorithms, and it measures the number of frames processed per second.

• WmAP (Weighted mAP): we added this metric to keep track of each class importance
thanks to the frequency. So that large and small classes have a proportional e�ect on
the result concerning their size.

4.5.3 Experimental Results Analysis

We compared the seven di�erent deep learning architectures (Four versions of Yolo, Faster
R-CNN, SSD, and Retinanet). These models are trained using the same dataset, the Inlan-
dAutoDetect dataset. To evaluate their object detection performance, we �rst draw the
models’ predictions for the same two images. Figure 4.13, Figure 4.14, Figure 4.15, Figure
4.16, Figure 4.17, Figure 4.18, and Figure show the predictions of YOLO v3 model, Tiny-
YOLO v3 model, YOLO v2 model, Tiny-YOLO v2, Faster R-CNN model, SSD, and Retinanet
model, respectively.

Figure 4.13: A sample of predicted images where the rectangles and text overlaid on the
�gures are the outputs generated by YOLO v3 at test time.

It is noticeable that all the models can detect almost all the classes with error percentages
that di�er from model to model and from image to image. To provide a deeper comparison,
we show the experimental results in Table 4.4. We �rst compared them in terms of accuracy,
so we used the �rst metric (mAP). We set the IoU threshold to 0.5, as suggested in [252].
This value ensures that at least half of the objects are correctly detected.
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Figure 4.14: A sample of predicted images where the rectangles and text overlaid on the
�gures are the outputs generated by Tiny-YOLO v3 at test time.

Figure 4.15: A sample of predicted images where the rectangles and text overlaid on the
�gures are the outputs generated by YOLO v2 at test time.

Figure 4.16: A sample of predicted images where the rectangles and text overlaid on the
�gures are the outputs generated by Tiny-YOLO v2 at test time.

Figure 4.17: A sample of predicted images where the rectangles and text overlaid on the
�gures are the outputs generated by Faster-RCNN at test time.
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Figure 4.18: A sample of predicted images where the rectangles and text overlaid on the
�gures are the outputs generated by SSD at test time.

Figure 4.19: A sample of predicted images where the rectangles and text overlaid on the
�gures are the outputs generated by Retinanet at test time.

Table 4.4: Detection metrics in terms of mAP and AP.

AP
Model WmAP Riverside ship Person Infrast- Tra�c

(IoU=0.5) ructure signs
YOLO v3 65.04 45.34 76.18 92.26 68.62 73.19
Tiny-YOLO 41.98 19.34 72.32 54.2 51.67 52.30
v3
YOLO v2 43.1 12.52 77.93 57.30 65.98 54.01
Tiny-YOLO 36.37 15.15 66.29 44.82 42.75 59.71
v2
Faster R-CNN 69.56 48.31 95.41 79.61 86.46 86.23
SSD300 51.15 32.57 69.10 69.25 59.64 50.95
Retinanet 84.80 81.53 81.12 97.14 76.40 87.80
(ResNet50)

Data analysis shows that the state-of-art models have interesting results, and they per-
form as well as in other applications. Additionally, the result images reveal a correlation
between detection in images and the accuracy values. The category "ship" is the most de-
tected object from the image corpus with the highest average precision value throughout
all the algorithms. We presume this is because it has a signi�cant unique visual feature,
allowing the object detection systems to di�erentiate the ships from other objects better.
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Generally, categories that include small objects such as riversides and tra�c signs perform
worse than more signi�cant objects. Given the small size of the riverside boxes, most algo-
rithms cannot distinguish them from other image areas. This confusion is due to the class’s
complexity (di�erences of appearances, the presence of shadows, and variations of the day-
time since, for instance, illumination is usually di�erent during the night). Such situations
are di�cult even with human intervention.

Table 4.5: FPS for the di�erent detection models.

Model FPS
YOLO v3 96
Tiny-YOLO v3 240
YOLO v2 120
Tiny-YOLO v2 160
Faster R-CNN 0.48
SSD300 4.54
Retinanet (backbone ResNet50) 7.67

Moreover, to evaluate the models’ performance in terms of processing speed, we col-
lected the experimental comparative results using the FPS metric summarized in Table 4.5.
We noticed that unlike previously obtained results on the Pascal VOC dataset, the SSD
model is not the best detector. We could easily conclude that by reducing the objects’ size,
their performance decreases. However, it is still among the fastest algorithms. Faster R-
CNN achieves similar detection performances on the two di�erent datasets, although it is
the slowest in run-time speed. Comparing the Yolo versions, we could con�rm the third
version of the YOLO model’s precision improvement compared to the second one. We could
also con�rm that the tiny versions are faster than the large ones but less accurate. Yolo v3
can be an excellent option to deal with real-time object detection since it has the right bal-
ance of accuracy and run-time speed. Although the Pascal VOC dataset results show that
SSD, Yolo v3, and Faster R-CNN overcome the Retinanet model, the obtained results, using
the InlandAutoDetect dataset, show the opposite. We found out that the Retinanet model
outperforms all the other models in analyzing the results. So, from the standpoint of ac-
curacy and run-time speed, we consider Retinanet to be the best method adapted
to our needs.

Table 4.6: Di�erent Retinanet versions performances in terms of WmAP and FPS.

Model WmAP FPS
Retinanet(vgg19) 82.32 4.54
Retinanet (ResNet50) 84.80 7.67
Retinanet(ResNet101) 87.06 4.54
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As shown earlier, Retinanet achieves the best performance regarding mAP (85.63%) and
FPS (7.67). Since it has a higher mAP than the other models, we selected it for further
evaluation. As stated before, various settings for a model may have an impact on the detec-
tion results. So, we modi�ed this selected model’s backbone network (features selection)
to study the in�uence of this modi�cation to improve the detection performance. We ob-
tained the results in Table 4.6. We notice a signi�cant variation of 3% between Retinanet
with vgg19 backbone and Retinanet with ResNet101 backbone. Besides, the run-time speed
was a�ected: the vgg19 and the ResNet101 backbones slow down the model. The exper-
imental analysis shows that the Retinanet model with the ResNet101 backbone owns the
required run-time speed de�ned above. Hence, we selected this architecture and integrated
it into the proposed system for navigable area detection, as detailed in the next section. We
generated additional images of the test images by varying quality distortions such as noise
and blur for each image. Blur can result when a camera is not correctly focused on the ob-
ject of interest. Additionally, blur can simulate the network performance on small or distant
objects captured with low resolution. For the blur, we used a Gaussian kernel and varied
the Gaussian standard deviation from 1 to 5 in steps of 0.5. The size of the �lter window
is set to 4 times the standard deviation. Noise may result from using low-quality camera
sensors. This noise can be modeled as Gaussian noise added to each color component of
each pixel separately. We varied the standard deviation of the noise from 10 to 50 in steps
of 5. We considered each distortion separately and classi�ed the quality from excellent to
low.
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Figure 4.20: Accuracy rates under di�erent quality distortions, using the Retinanet model.

Figure 4.20 shows the results of our experiments. We notice that the model is more
sensitive to blur than noise. This reduction in performance can be explained because blur
removes textures in these images. The network may be looking for speci�c textures to
classify an image. The model is resilient to these distortions. The performance starts to
decrease only at very low-quality levels. These results imply that we can be reasonably
con�dent that our model will perform well even on low-resolution images. Experiments
on our test videos have also shown that small and remote objects can be reliably detected
even when using low resolution. In practice, current state-of-the-art automotive cameras
have resolutions up to 8-megapixel (MP) to 2 MP [253] which implies that our proposed
solution is robust in real situations.
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4.6 Navigable Area Detection Performance Evaluation

Lane marking detection is a substantial part of the road scene analysis for ADAS, and the
extraction of road markings is a critical element of lane position detection. In inland sailing,
the pathways are unstructured roads because there are no drawn lines in the river canal
but only some trees. Hence, in our case, we aim to estimate the geometric structure of the
lane boundaries of an unstructured pathway on images captured by the camera to delimit
the safe navigation area that allows it to navigate safely. This section explains the di�erent
steps of our proposed system and analyzes the experiment results.

4.6.1 Proposed System

We introduce a new system for road recognition that transforms it into an object detection
problem. We use the Retinanet object detection model since we showed that it performs
well compared to the other models in the previous section. We start by describing the
proposed system’s assumptions: we assume that the camera is attached to the ship’s bow
for maximum �eld of vision. We de�ne the navigable area as the zone where there are no
dangerous objects detected. In the �rst stage, the system seeks to overcome the detector’s
possible negligence and ensure that all potential objects are detected. We �rst tested the
Kalman �lter to track the detected objects. We found that tracking all the existing objects in
an image makes the algorithm resource-intensive, time of execution increases, and exceeds
the boundary conditions. Therefore, we created a system that goes through a series of low-
level image processing to guarantee that the desired information is obtained. The global
system consists of mainly six steps (see Figure 4.21):

Figure 4.21: Autonomous navigable area detection system

1. Horizon boundary of the river canal detection: it consists in �nding a border between
the sky and the non-sky regions (ground, water, or mountains) given a grayscale or a

97



Chapter 4

color image [254]. It depends on di�erent features such as the camera’s position, the
ship’s orientation, and the river canal type.

2. Object detection: Retinanet detector with ResNet101 as a backbone is used to generate
predicted bounding boxes. Those boxes mark the objects that the ship should avoid,
which are mainly riverside, other ships, infrastructure, and people.

3. Useful points detection: from these boxes, useful points are calculated, such as the
centroids and the extreme endpoints of objects.

4. Additional preprocessing: to overcome the possible negligence of the detector and
ensure that all potential objects are detected, we implement two techniques. First,
we keep the history of detections of the last three images, and second, we �lter the
points with a 3-point averaging �lter; this step is added to eliminate the outliers. It
consists in calculating an average over the three adjacent areas of a point.

5. First estimation and re�ning: this step seeks to expand the safe zone beginning from
the ship’s bow to the nearest detected point (where an obstacle is detected). Then,
we draw the geometric joining the points.

6. Lane model �tting: the last step aims to create a secure area around the objects by
adding a safety distance to give detected objects a wide berth.

4.6.2 Experimental Results Analysis

We elaborate in this sub-section, the datasets and metrics used for evaluating our system.
To con�rm the feasibility and accuracy of our proposed method to extract the navigation
zone, we performed several experiments using videos captured in real navigation condi-
tions. Some results on the test images are shown in Figure 4.22.

Figure 4.22: A sample from the testing set with complex conditions where the green area
marks the estimated area where a ship can navigate safely.

Then, we conducted a numerical experiment to compare the proposed system’s out-
comes with the background truth. Since there is no method developed in the literature to
evaluate the performance of such systems, we proceeded as follow: �rst, we manually de-
termined the navigable area, which we call Sman. Then we determined the navigable area
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with the system that we developed, which we call Ssys. Finally, we calculated the percent-
age of overlap between the two areas divided by the manually drawn navigable area.

Accuracy = 100 ∗
(Ssys∩Sman)

Sman

Q
(4.10)

where Q is the number of images in the test set.
We applied this process to �ve videos and 24 images, randomly chosen with di�erent back-
grounds, weather conditions, and existing objects. We found out that the average of the
areas well detected over the test images is 88.13%. The average run-time speed of all the
process over the test videos is 0.8 seconds, which is less than the boundary value calculated
in subsection 4.5.1.

4.6.3 Discussions

The experimental results indicate that the proposed system for automatic delimitation of
the navigable zone can realize road recognition and meet the ship’s requirements to nav-
igate automatically on a �uvial canal. The computation time of the proposed method sat-
is�es the real time operation. Moreover, it is robust to noise, and it is invariant to ships’
appearances.

However, the detection performances using our proposed autonomous navigable area
detection system might be negatively a�ected by unfavorable visual conditions. We demon-
strate a few such cases in Figure 4.23.

(a) Peaks due to predictions preserved
from previous images.

(b) Detected area whose surface is less
than the width of the ship.

(c) Very close ship sailing and unadjusted
orientation of the camera.

Figure 4.23: Some false positives and false negatives navigable area detection.
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In Figure 4.23a, some peaks are to be seen and which are due to predictions preserved
from previous images. The system can recover from such inaccurate detections as long as
the other ship moves forward. In Figure 4.23b, the detected area is accurate, but its surface is
smaller than the width of the ship, so it can not navigate in this drawn area. In Figure 4.23c,
the proposed model could not draw a signi�cant area of navigation due to the unadjusted
orientation of the camera. However, the detected area is still safe. All these drawbacks need
to be improved in the future.

4.7 Conclusion

The �uvial environment is complex, which makes autonomous shipping in such an envi-
ronment a complicated task that presents new challenges due to its speci�cities. In this
chapter, we have addressed the speci�c challenge related to �uvial visual perception for
autonomous navigation with the main goal of automating the delimitation of a safe sail-
ing area. At �rst, we prepared a comprehensive open-source dataset, the InlandAutoDetect
dataset, composed of 3,377 images. We exhaustively labeled the di�erent objects that make
up the river navigation, namely: ship, person, riverside, tra�c signs, and infrastructure.
Then, we investigated the performances of nine deep convolutional neural networks able
to detect and recognize these objects: Faster R-CNN, SSD, four versions of YOLO, and three
versions of Retinanet on the proposed dataset. The �rst results demonstrate the e�ective-
ness of these models. Subsequently, we selected the most suitable architecture for a �uvial
environment: Retinanet with the ResNet101 backbone as it establishes a delicate balance
between precision and run-time speed. Finally, we proposed and studied a novel system for
road recognition to map the safe navigation area accurately. This system is veri�ed using
di�erent images and video clips with di�erent backgrounds, weather conditions, and exist-
ing objects. Numerical results show that our system achieves a high accuracy detection rate
of above 88%, performing in less than 0.8 seconds. These results demonstrate our system’s
capacity to react in real-time and validate its e�ectiveness for �uvial navigation.
Despite our proposed system’s outstanding results, the perfect performance is still not
achieved, essentially due to some missed detections. In particular, negative examples in
the training set of the riverside class could be one of the reasons. Trying to annotate the
riverside without leaving negative examples leads to other issues, such as highly imbal-
anced classes and over�tting. Therefore, we will focus on improving this part of the system
by moving some classes to semantic segmentation in the future.
Nevertheless, using a single camera only is still ine�cient for guiding an autonomous in-
land ship. Instead, other types of sources of information should be integrated. Hence, in
the next part, we discuss the concept of cooperative ships sharing relevant data to enhance
perception pro�ciency and other applications.
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Data Availability

The dataset, trained models and the experimental result data used to support the �ndings
of this study are available online for academic research purposes2. The source code data
are available from the corresponding author upon request.

2https://widedhammedi.wixsite.com/phdproject/
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Once the automation problem is properly addressed in the �rst part,
the next logical step is to consider the cooperation between the di�er-
ent river entities. Thus, this part is dedicated to studying this cooper-
ation’s requirements, advantages, and achievable useful applications.

Part II

Cooperation
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Cooperative Autonomous Inland Nav-

igation

If you want to go fast, go alone. If you
want to go far, go together.

– African proverb
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5.1 Introduction

As shown in the previous chapters, Cooperative and Connected Autonomous Inland Ships
(C-CAISs) continue to attract much attention. Their potential use in fret transport is ex-
pected to increase signi�cantly in the near future. In the �rst part of this thesis, we focused
mainly on the challenges related to automation. Speci�cally, we showed that ships’ au-
tomation also implies the automation of the other river entities, mainly its infrastructure.
Indeed, autonomous navigation can reduce the di�culty of ship control and management,
reduce human mistakes, control fuel consumption, reduce costs, and increase revenue [7].
Nevertheless, autonomous ships that do not actively coordinate their actions with others
may fail to fully understand their driving environment—relying only on onboard sensors
to perceive their environment is the cause of several problems. First, misinterpreting the
aims of the nearby ships may cause accidents [255]. Individual sensors fail to achieve high
autonomy due to their technical limitations in di�cult natural conditions, such as foggy or
rainy days or nights. Besides, they can not e�ciently divine other ships’ intentions. Second,
when the tra�c is dense, each ship operating on its own may cause disorganization. Ac-
cording to French police reports [256], accidents that occur at intersections are due mainly
to a misunderstanding between crossing ships or at locks when lock keepers do not get the
alert messages at the right time. Third, con�icting time schedules could lead to ine�cient
utilization of infrastructure resources. For example, a ship traveling from Paris to Lyon
spends almost half of its total journey time waiting at locks [257]. Therefore, ensuring e�-
cient inland transport requires involving the cooperative components in the transportation
process.
With the emergence of Cooperative Intelligent Transport Systems (C-ITS), several stan-
dardization organisms, e.g., 3GPP [116], are working to develop intelligent maritime trans-
portation systems. They intend to achieve an Internet of Ships (IoS) vision while leveraging
emerging technologies, including 5G and Arti�cial Intelligence (AI). As a particular case of
IoS, the Internet of Inland Ships (IoIS) combines ships intelligence with ships networking,
resulting in an intelligent river with communication and computing capabilities that pro-
vide outstanding inland transport services. However, this being said, such a cooperative
environment has some critical requirements, which are discussed below, along with the
technology enablers to meet them:

(a) Need for a low latency communication : One of the main requirements of safety
messages is to dispose of a low latency connection between not only ships but also
ships and the network infrastructure. This will enable to inform ships in real-time,
and thus to ensure their rapid reactions. This issue can be addressed by moving tech-
nology resources from centralized cloud computing to an edge network closer to the
ships. Speci�cally, Mobile Edge Computing (MEC) is a new paradigm that can signi�-
cantly reduce latency and avoid backhaul congestion via computation o�oading and
distributed content caching [258]. MEC provides a service environment and cloud
computing capabilities with ultra-low latency and high bandwidth to help enable
delay-sensitive and safety applications.

(b) Need to preserve ships’ privacy: In a cooperative process, ships need to share
their identity as well as localization information periodically. If this information can
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be continuously tracked, the ships’ privacy will be leaked. This design may not ap-
peal to competing companies when performing some secret tasks. To cope with this
challenge, Federated Learning (FL) [259] has been advanced as an alternative solution
to centralized networks, wherein each ship can maintain its private data locally and
shares only processed data. At the same time, the whole process is executed collab-
oratively under the coordination of a central server that aggregates and shares the
built knowledge among ships. This technique reduces communication overhead and
avoids sharing ships’ private information.

(c) Need to secure the shared data: Unauthorized access to shared data can cause
dangerous results, even loss of lives. Since communication channels are vulnerable
to being compromised by attackers, principles of safety-critical systems must be in-
cluded, and stricter criteria must be enforced. In this context, Blockchain technology
has attracted growing research e�orts in vehicular networks [260] [261]. It can facil-
itate establishing a secure, trusted, and decentralized intelligent transport ecosystem
to address data sharing problems.

Therefore, in this chapter, we design a new Cooperative Inland Autonomous Ships (C-
IAShips) architecture. It architecture proposes connecting several geo-distributed ships
and river components to build e�cient and secure inland navigation while considering its
speci�c requirements. The architecture leverages the MEC concept, blockchain technology,
and federated deep learning to deal with the challenges/requirements discussed above for
e�ective cooperative deployment of autonomous inland-based ships.

The rest of this chapter is structured as follows: Section 5.2 gives an overview of related
work where we investigate the existing types of network architectures. In Section 5.3,
the cooperative inland autonomous ships (C-IAShips) architecture is described. Section
5.4 details the main advantages of the architecture. Moreover, we analyze the security
proprieties that the C-IAShips architecture guarantees and discuss how it can resist the
most common attacks in Section 5.5. Finally, conclusions and potential future works are
discussed in Section 5.6.

5.2 Related Work

Traditionally, vehicular architectures require that the data be processed in a centralized
way, e.g., a cloud data center managed by a third party. The main idea behind this type of ar-
chitecture is to bring together a shared set of con�gurable computing resources (networks,
servers, storage, applications, and services) to o�er a service for multiple consumers using a
multi-tenant model [262]. One of the essential bene�ts of using a central cloud-based solu-
tion is the minimal e�ort required to manage the overall system and swift possible growth,
thanks to its high resiliency. Additionally, large-scale data centers can provide su�cient
computing resources to serve an enormous number of ships [263].
Nevertheless, cloud computing is generally mounted on large computer data centers in var-
ious parts of the world. This centralization of resources implies a large separation between
the ships and their clouds, increasing the average network latency and jitter [264]. Because
of this physical distance, cloud services cannot directly access local contextual information,

107



Chapter 5

such as precise ship position, local navigation conditions, and information about real-time
ships’ mobility behavior. For various delay-sensitive applications, such as collision detec-
tion and avoidance, these requirements (low latency and jitter, context awareness, mobility
support) are needed. Thus, in recent years, various novel paradigms have emerged, such as
fog computing [265], mobile edge computing [266], and mobile cloud computing [267] to
address the limitations of the classical central cloud solutions. We provide throughout this
section a comprehensive overview of these three di�erent architecture paradigms, and we
focus mainly on their characteristics and requirements.

5.2.1 Mobile Cloud Computing (MCC)

MCC is initially built on the notion of ’mobile delegation’. Mobile nodes with limited re-
sources can delegate the storage of bulk data, and the execution of computationally in-
tensive tasks to remote entities [268]. The goal of MCC is to enable the execution of rich
mobile applications on a plethora of mobile devices with a rich user experience. It enhances
mobile computing technologies and leverages uni�ed elastic resources of varied clouds and
network technologies. However, same as cloud computing, it is too costly to upload all con-
tent to the Internet cloud and too time-consuming to search and download content from
the Internet cloud. Besides, most of the content picked up by ships has local relevance only
and is best stored locally [269].

5.2.2 Fog Computing (FogC)

FogC intends to extend the cloud computing paradigm to provide computation, storage,
and networking services between end devices and traditional cloud servers [270]. The fog
architecture facilitates the creation of a hierarchical infrastructure, where the analysis of
local information is performed near low levels. The initial de�nition of fog computing was
revised and extended to become a new paradigm of its own rather than a mere extension of
central cloud computing. With the new de�nition, the fog nodes can interact and cooperate
[271], generating a three-tier architecture (Clients⇔Fog nodes⇔Central Servers) where
centralized cloud servers coexist with fog nodes but are not essential for the execution of
fog services [272].

5.2.3 Mobile Edge Computing (MEC)

MEC aims to “provide an IT service environment and cloud-computing capabilities at the
edge of the mobile network [273]”. It implies the creation of an open ecosystem, where ser-
vice providers can deploy their applications across multi-vendor MEC platforms. Hence,
telecommunication companies are the responsible of deploying this service environment
in their infrastructure. The main advantages of deploying cloud services at the edge of
mobile networks like 5G include: (i) achieving a lower latency, (ii) granting a higher band-
width, and (iii) allowing access to radio network information and location awareness [262].
Thanks to all of these bene�ts, existing mobile infrastructure services can be optimized, and
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novel services that are more demanding become possible. In practice, service deployment
is not limited to mobile network operators; third-party service providers can also use it.
MEC technology has passed the proof-of-concept stage and is being deployed in networks
to enable real-time applications. Instead of receiving all �les from large, regional data cen-
ters, end ships can receive data from local base stations to reduce latency and tra�c in the
backbone network [274]. Therefore, connected vehicles and Internet of Things gateways
are among their potential applications.

To sum up, when analyzing the di�erent paradigms’ properties, we �nd that they all
share the same primary purpose of extending cloud computing capabilities to the network’s
edge. However, they have underlying di�erences in how they want to ful�ll that goal. They
hence have di�erent bene�ts and limitations [262]. Table 5.1 provides a comprehensible
illustration of the main features of the edge paradigms (MCC, FogC, and MEC) compared
to the central cloud.

Cloud MCC FogC MEC
Network
architecture

Centralized N-tier, decentralized, distributed

Deployment Network core Network edge,
devices

Near-edge,
edge

Network edge

Ownership Private entities Private entities, individuals Telecommunication
companies

Hardware Servers Servers, devices Heterogeneous servers
Mobility N/A Yes
Latency, jitter Average Low
Local awareness N/A Yes
Availability High
Scalability Average High

Table 5.1: Comparison of features of Edge paradigms [262].

First, on the one hand, MEC limits the deployment of edge computing platforms to mo-
bile network infrastructures such as 5G. In comparison, fog nodes can also be positioned
at other locations, such as private servers, access points, routers, gateways. However, on
the other hand, MCC is more focused on the distributed nature of services and the coop-
eration between its devices. This fundamental di�erence in deployment and management
of services di�erentiates between the three. For example, in MEC, only telecommunica-
tion operators can become MEC providers, as they own the mobile network infrastructure
where the edge data centers are deployed. Nevertheless, any user (company or even re-
sourceful end-users) can deploy their fog and MCC nodes, e�ectively becoming part of the
service provisioning ecosystem or creating private cloud-like environments.
In our study, the primary end-users, autonomous inland ships, are equipped with high-
performance computing capabilities, data storage, and wireless communication devices.
To deploy cooperation among them, we consider the heterogeneity of the river network,
where high-speed links and wireless access technologies would coexist. Therefore, we uti-
lize the central cloud to make global coordination and analytics, such as route planning,
blocked waterway alerts, and accident warnings. We also deploy the MEC technology for
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delay-sensitive services, such as collision detection and avoidance.

5.3 Proposed Architecture C-IAShips

This section introduces the Cooperative Inland Autonomous Ships (C-IAShips) architec-
ture, connecting several geo-distributed ships and river components to build e�cient and
secure inland navigation while considering its speci�cations. We �rst give an overview of
the architecture and its speci�c requirements. Then, we describe its three interacting layers
and their roles.

5.3.1 C-IAShips Architecture Requirements

Cloud Layer

Edge Layer

User Layer

Storage resource

Computing resource Central authority

Blockchain

Data information

Smart contract

Cooperative functions

RSUVessel

Infrastructure

Figure 5.1: The Envisioned C-IAShips architecture is a blockchain-based federated learning
architecture. It compromises three interactive layers: user layer, edge layer, and cloud layer.

As shown in Figure 5.1, the envisioned C-IAShips architecture is composed of a user
layer, an edge layer, and a cloud layer. In the user layer, cooperative ships require intelli-
gent onboard units to receive local data from onboard and external sensors, analyze and
calculate the real-time tra�c status, and upload the collected information to the edge layer.
Roadside Units (RSUs) and MEC nodes are deployed along the rivers to support real-time
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applications in the edge layer. Ships, RSU, and MEC nodes can communicate through 5G
wireless short-range communication technology, which is envisaged to bring the commu-
nication era with higher reliability data transmissions and reduced delay. Edge nodes store
data from ships and also deliver data to a central cloud to be managed by a central au-
thority. The central authority is necessary for our architecture for three main reasons.
First, ships can be chartered from various merchandise-owning companies for the short- or
medium-term duration. Second, when a ship sail from point A to point B, the information
related to this movement may pass through di�erent systems, each being controlled by dif-
ferent entities such as locks, customs o�ces, trucking companies, and industry information
portals. These entities may do not share a common IT infrastructure or have any agreed
privacy and security standards. Finally, a ship’s voyage is covered by a range of national,
international, and private telecommunication organizations. Therefore, a central authority
manages this heterogeneity in each country and establishes trusted coordination among
the ships. However, wireless communication may belong to di�erent telecommunication
organizations without solid security protection, creating privacy and security concerns.
Therefore, we apply the federated learning (FL) technique due to its superior performance
features and bene�ts without leaking local data. We also use blockchain to ensure secure
data transmission. The use of blockchain is because it o�ers greater security and creatively
uses hash computing, proof of work, and distributed storage to make altering blocks nearly
impossible.

5.3.2 C-IAShips Architecture Layers

The proposed C-IAShips architecture incorporates three layers: a user layer, including the
di�erent river entities, an edge layer composed of network infrastructures equipped with
MEC servers, and a cloud layer managed by an administrative authority.

5.3.2.1 User layer

The bottom layer includes the autonomous ships and the di�erent types of sensors (onboard
sensors and external sensors deployed at river’s edge). It has four di�erent roles:

• Data collection: Data (e.g., ship type, ship position, ship speed, water level, and tra�c
information) is collected from various sensors.

• Perception: Ships equipped with onboard units process the collected data to perform
some perception tasks to extract relevant environmental knowledge. Environmental
perception refers to developing a contextual understanding of the environment, such
as where obstacles are located and categorizing data by semantic meaning. Local-
ization refers to the ability of the ship to determine its position with respect to the
environment.

• Each ship communicates with the nearest RSU to upload its data periodically to the
edge layer.
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• Action: Ships receive command messages sent from edge or cloud nodes when needed.
Command messages may be warning safety messages when a high risk of collision is
detected. Cloud nodes may also send messages about the lock crossing order when
multiple ships are nearing to pass a lock.

5.3.2.2 Edge Layer

The intermediate layer comprises nearby network infrastructures (RSUs), geo-deployed
along the rivers, and equipped with MEC servers. Its responsibility is to perform aggre-
gated analysis on received data from the user layer for further use. Network infrastructures
can provide radio interfaces for ships to achieve seamless coverage and instant wireless
communication. With computation resources, caching resources, and intelligent functions,
MEC servers can provide distributed intelligent wireless computing and caching to imple-
ment computation-intensive and delay-sensitive applications, such as collision detection,
safety enhancement, and emergency warning at the network edge. Edge nodes play an es-
sential role in storing and managing ships data. However, the network infrastructures are
semi-trusted because, on the one hand, they usually do not have strong security protection,
which makes them vulnerable to being compromised by attackers. On the other hand, they
would belong to di�erent telecommunication organizations, which would create privacy
problems. Ships, therefore, may not be willing to upload their data to them because of
security and privacy concerns. To this end, we deploy blockchain when transferring infor-
mation for better security and privacy protection. Blockchain can record all transactions
generated in the wireless network and maintain a distributed ledger to increase security
and privacy. Edge nodes can communicate and deliver the data to a central cloud through
wired connections if necessary. This makes the C-IAShips architecture scalable and reliable.

5.3.2.3 Cloud Layer

The third and last layer comprises a cloud server, which can be a data center of the central
authority in each country. It should be managed by an administrative authority such as Voie
Navigable de France (VNF) [153] in France, which is the navigation authority responsible for
managing the french inland waterways networks. The central cloud manages all edge nodes
to collect the ships’ characteristics, including their identi�cation, type, weight, dimensions,
order of priority, direction of travel, �nal destination, speed, and position.

5.3.3 Blockchain Solution for Security Enhancement

Ships may provide inaccurate or wrong messages, and MEC nodes may also fail or be
hacked. These incidents a�ect the safety of autonomous driving of all ships. Blockchain
technologies ensure transparency, decentralization, and traceability of reported data from
ships, thanks to consensus mechanisms. In addition, the asymmetric encryption technol-
ogy applied in the blockchain can protect the privacy of records and ships. In the circulation
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of data collaboration, the blockchain monitors data �ow and records the data usage activ-
ities to ensure that the behavior of the ships is authentic. The blockchain operations are
summarized as follows: each ship sends a request message for uploading data to the nearby
MEC node. The message contains a public key, the hash of the latest block, the current
timestamp, and the data to upload. To guarantee the request messages’ authenticity, mes-
sages are signed using each ship’s private key. Each edge node collects and veri�es local
data transmitted in its coverage. All MEC nodes exchange and verify the data received, and
then run the Proof-of-Work (PoW), the original decentralized consensus mechanism used
in bitcoin [275]. Once the request is veri�ed, each MEC node generates a block where the
veri�ed data are recorded and competes to �nd an available hash value based on param-
eters of the local data block. The generated block is added to the end of the blockchain.
As shown in Figure 5.2, each block stores the timestamp, the hash of the current block and
previous block, and the data received from di�erent ships [260] [261].

Hash 
(block i-2)

Timestamp i-1

Data from vessel1
Data from vessel2

…
Data from vesselV

Hash 
(block i-1)

Block i-1 Block i

Hash 
(block i-1)

Timestamp i

Data from vessel1
Data from vessel2

…
Data from vesselV

Hash 
(block i)

Figure 5.2: Data stored in blocks of the blockchain.

5.4 C-IAShips Architecture Advantages

The C-IAShips architecture has a multitude of advantages that make it engaging for tra�c
management applications. We illustrate in this section its essential characteristics and its
supported applications.

5.4.1 C-IAShips Architecture Strengths

The C-IAShips architecture has a great potential to bring an extensive range of bene�ts,
such as:

v Low latency and e�ective communication: Applying a decentralized architecture
can signi�cantly reduce the network tra�c and energy consumption by sending a
limited amount of data. Besides, the three interactive layers creates new opportunities
for network operators and applications. First, we pro�t from the intelligence of the
ships by implying them in some calculations. Second, using an edge layer allows
better support for low-latency applications by placing them near their users. Third,
it avoids high data tra�c since only the necessary control information is sent to the
cloud layer.
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v Geo-distribution and location awareness: The C-IAShips architecture is not cen-
tralized. Instead, it can be deployed anywhere and can provide distributed services
and applications. Hence, it supports location awareness, i.e., MEC nodes can be de-
ployed in diverse locations.

v Safety and security considerations: Since the Internet of Inland Ships (IoIS) con-
nects several geo-distributed ships and network infrastructures from di�erent ven-
dors, building an e�cient and secure communication network is crucial. Our pro-
posed architecture handles this issue using two complementary solutions. On the
one hand, employing a federated learning technique can collaboratively train a learn-
ing model on their local data without revealing it to a centralized server. This se-
cure aggregation ensures privacy preservation of data in the local updates. On the
other hand, we utilize smart contracts, which are self-executing scripts that reside
on blockchains and allow distributed multi-step processes. Our smart contract-based
architecture enables data management automation with high e�ciency and defends
against second-hand data sharing without authorization.

v Robustness and e�ectiveness: Ships are frequently and unpredictably o�ine, on
slow connections, or they are allocated with insu�cient communication resources
[276]. However, C-IAShips architecture uses Federal Learning , which does not rely
on synchronization among all the ships. Hence, even when some ships lose connec-
tivity, they can still build their local models.

v A wide range of applications: The C-IAShips architecture enables some coopera-
tive applications to make river waterways safer, more e�cient, and more environment-
friendly. We investigate three cooperative application in the next section.

5.4.2 Cooperative Applications

Compared to individual ships, greater e�ciency, operational capability, and more powerful
applications can be realized by cooperative ones. Here, we discuss three such applications:
Cooperative Lock Scheduling (CLS), Cooperative Route Planning (CRP), and Cooperative
Collision Detection (CCD).

5.4.2.1 Cooperative Lock Scheduling

River locks are used for elevating and lowering ships between low-level and high-level
waterways and are considered vital inland navigation nodes. The scheduling method of
crossing the locks strongly in�uences the ships’ safety and economic e�ciency. Hence, our
architecture considers improving the scheduling method using cooperative lock schedul-
ing. In the �rst step, cooperative ships send their characteristics, including their weight,
dimensions, order of priority, �nal destination, speed, predicted arrival time, and position
to the cloud node. Then, the central can make schedules according to the data received
while keeping an eye on the state of the locks, such as availability and waiting time. In
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return, the scheduling order impacts ships’ decision-making on departure time and speed
choices. Chapter 7 presents a detailed exploration of this application.

5.4.2.2 Cooperative Route Planning

The principal purpose of ships is to transport goods and persons from one place named
origin to another named destination. Therefore, when sailing in waterways, ships usually
follow predetermined geometric global paths. Traditional individual route planning uses
self-state information to create optimal trajectories, considering some constraints, such as
voyage time optimization [277], fuel emissions reduction [278], weather constraints [279].
The ship here has an only objective, path following, considering that it is the only ship in
the waterway. Such a technique is bene�cial for each ship apart; however, it may cause
con�icting situations when paths cross simultaneously. Cooperative coordination between
ships helps to avoid these challenges. On the one hand, optimal global trajectories can be
determined, as the central coordinator in the cloud node has complete information about
the whole �eet of ships and achieves low cost, avoidance of delays, and e�cient utilization
of resources. For instance, ships can coordinate their voyage details to avoid congestion.
On the other hand, iterative communications between the central coordinator and the ships
create an agreement among ships to choose alternative routes if accidents or congestion
occur in a speci�c area during the voyage.

5.4.2.3 Cooperative Collision Detection

Non-cooperative collision avoidance methods do not consider the communication between
ships. On the contrary, each ship tries to predict other ships’ actions, either by assum-
ing that others have a constant speed [135] or according to holonomic or kinematic mod-
els[136]. Information exchange ensured via the C-IAShips architecture among the coop-
erative ships can provide additional information to help the central nodes make collision
detection decisions. Details of this application are provided in Chapter 6.

5.5 Security Analysis

Since the C-IAShips architecture is essentially based on wireless communication channels,
it should cope with some privacy and security threats caused by its complex and geo-
distributed network environment. In this section, we de�ne our architecture vulnerability
by identifying the main malicious intruders. Then, we study how it can preserve ships’
privacy and discover the well-known security attacks.

5.5.1 C-IAShips Architecture Vulnerabilities

The malicious attackers can be categorized into two types: passive and active attackers.
The �rst type holds honest-but-curious attackers, and it aims to read the data transmitted
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without modifying it. It mainly challenges the ships’ privacy and is complicated to detect
passive attacks since they do not a�ect normal functioning. The second type holds dishon-
est attackers, and it aims to destroy or alter the accurate data transmitted or in�uence the
regular functioning with inadequate data. These two types can intervene in three di�erent
levels in our C-IAShips architecture, as illustrated in Figure 5.3:

v Malicious Server: Honest-but-curious servers can inspect ships’ updates without al-
tering the data. In contrast, a potentially dishonest server can inspect the updates
and tamper with the data. The server here can be either the cloud server or one of
the edge servers.

v Insider Villain: Honest-but-curious ships can track the other ships, while dishonest
ships can send incorrect data to the server. These attackers are also known as byzan-
tine attackers [280].

v Outsider Villain: When communicating the updates between trusted ships and servers,
eavesdroppers on the communication channels can manifest. They snoop the IDs of
real ships and pretend to be authorized ships. Then, they participate in the commu-
nication rounds either at the training or the deployment phase.

The C-IAShips architecture implements di�erent techniques to address these vulner-
abilities and achieve a high level of security protection, as we explain in the following
sections.

5.5.2 Ships Privacy Protection

Although federated learning was �rst invented to ensure rigorous privacy protections by
preventing data sharing during the training phase, recent researches [281] [282] prove that
the transmission of the model updates can still reveal sensitive information about ships.
Additionally, ships are also required to expose their sensitive data periodically to satisfy the
RIS standard. Therefore, we use consortium blockchain to preserve privacy concerns by its
asymmetric encryption and smart contracts. The automatic execution of smart contracts
allows only authorized ships to send their data. This data is anonymous, and encrypted, and
attached with digital signatures. In practice, ships use random pseudonyms as public keys
to replace their original address, making the blockchain nodes unable to track the location
of speci�c ships. Hence, the transparency characteristic of blockchain during data sharing
avoids second-hand sharing without authentication, and the anonymous operations using
pseudonyms during data sharing bring data privacy protection.

5.5.3 Security Attacks Detection

We discuss here our architecture ability to detect and prevent the well-known malicious
attacks and provide security guarantees.
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(a) Malicious Server

(b) Insider Villain

(c) Outsider Villain

Figure 5.3: Di�erent malicious actors can attack C-IAShips architecture: malicious server,
insider villain, and outsider villain.

5.5.3.1 Fake Ships Attack:

As described above, the only ships capable to send information are considered valid only if
their private keys exist in the blockchain managed by the legal authorities. A ship trying
to create multiple entities must generate valid blocks for those entities, which is unfeasible
in our architecture.

5.5.3.2 Model Update Poisoning

The intruder can work independently or within a group of malicious ships. Model update
poisoning attacks directly corrupt the global model, by modifying the weights of the re-
sulting local model before submitting it for aggregation. However, it cannot control the
aggregation algorithm used to combine ships’ updates into the global model, nor the be-
nign ships’ training tasks. However, this approach does not work against federated learn-
ing [283]. Aggregation removes most of the poisoned models’ contribution, and the global
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model quickly ignores the poison. For instance, in [284], they conduct an experiment where
they add some random noise generating local models. They observe that even when adding
1000 copies of the sample to the training set, the attack is ine�ective at causing targeted
poisoning in the global model. This occurs because the malicious agent’s update is scaled.
Additionally, in our architecture, we use a random sub-sampling, in which each commu-
nication round, the edge server selects a random subset of ships to share with the global
model. Thus, the attacker needs to be very selective, and then the poisoning is missed or
at least signi�cantly prolonged. This solution is used in [285], where they con�rm that it
does not impact the global model performance.

5.5.3.3 Data Poisoning (also known as byzantine attacks)

Throughout the normal process, one or more ships, who correctly behaved in previous com-
munication rounds, may lately act maliciously and poison the global model. In our case,
such a villain can send wrong information, such as wrong location and ship characteristics.
Data poisoning attacks are one of the Federal Learning vulnerabilities [286]. The support of
a central orchestrator in our architecture is handled by blockchain. In such practice, local
models are shared and veri�ed in the blockchain network while providing rewards to the
ships. However, for the sake of people’s safety, even if we hesitate about the honesty of
some ships, we still process their data. We prioritize human security over data security in
this stage of the study. This threat can nevertheless be resolved by adding the reputation
mechanism in smart contracts. This mechanism aims to validate if a ship is malicious by
studying its behavior. Smart contracts are triggered to block malicious activities by pun-
ishing their owner ships (reducing their coin balance), and setting �ags to stop their future
activities. For instance, we can compare the parameters each ship returns at each training
round. These parameters should converge to optimum value and gradually stabilize after
some training iterations. Ships returning values with high variance, inconsequent training
epochs, probably misbehave. The edge server monitors the parameters returned from each
ship for each training iteration and decides upon the criteria for any misbehaving ship.

5.6 Conclusion

Optimizing the performance of inland transport systems requires involving the coopera-
tive components in the transportation process. Compared to individual waterway entities,
cooperative entities can achieve greater e�ciency and more robust applications. However,
cooperation brings new challenges mainly related to low latency responses, shared data
privacy, and security protection. This chapter innovatively introduces the CIAutoShips, a
blockchain-based federated learning architecture for cooperative intelligent inland trans-
portation. Di�erent applications can be performed in the di�erent layers of our architec-
ture; latency-sensitive applications on the edge layer and latency-tolerate applications on
the cloud layer. The CIAutoShips architecture can achieve high communication e�ciency
and protect the privacy of ships from being leaked while realizing the di�erent proposed
applications. In the following chapters, we discuss two such applications, namely cooper-
ative collision detection and cooperative lock scheduling applications.
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Cooperative Collision Detection

You don’t need to know the whole alpha-
bet of Safety. The A, B, C of it will save
you if you follow it: Always Be Careful. .

– Colorado School of Mines Magazine
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6.1 Introduction

The inland shipping industry is growing continuously, and its tra�c is becoming denser in
many navigable waterways [287]. This Increasing tra�c volume of inland ships imposes a
growing necessity to introduce new measures, tools, and solutions to improve e�ciency in
inland transportation. In this context, cooperative autonomous ships can achieve far more
meaningful bene�ts in optimizing river ship control and management, reducing costs, con-
trolling fuel consumption, and increasing revenue. Therefore, in the previous chapter, we
introduced the Cooperative Inland Autonomous Ships (CIAShips) architecture, which uses
promising technologies to enable various cooperative applications.
Ship collision detection is an essential and fundamental concern because of its high fre-
quency and its serious consequences in terms of property, equipment and human lives [288].
At early ages, researchers aimed to develop navigational assistance systems for enhancing
situational awareness of human operators as humans are at the core of collision avoid-
ance. However, many maritime accident investigations [289, 290] estimate that 75–96% of
marine accidents involve human failures. Accordingly, autonomous ships have recently
gained remarkable attention, focusing on solving collision problems by autonomous sys-
tems. Nevertheless, autonomous but not cooperative and connected ships, relying only on
onboard sensors to perceive their environment, may fail to achieve high autonomy. Individ-
ual sensors have technical limitations in di�cult natural conditions, such as foggy or rainy
days or nights. Besides, they cannot e�ciently guess other ships’ intentions. Therefore,
achieving high safety in inland transport requires involving the cooperative components
in the transportation process.
In this chapter, we design a new inland ships collision detection system based on the CIA-
Ships architecture. It consists of continuously gathering data, such as localization data,
from ships and processing them at the MEC level to predict collisions. Then, alerts will be
sent to ships to avoid collisions between them. The main contributions of this work are
summarized as follows:

• With the lack of real datasets corresponding to inland vessel mobility, we generate
our simulation dataset based on accurate river maps. We select di�erent graphs from
the densest French river network using Overpass turbo [291], an online data mining
tool for OpenStreetMap. Then, we use the Simulation of Urban MObility (SUMO)
software to generate mobility data of ships and adjust ships density. The produced
dataset is open-source, and it is available online for other researchers working in this
area.

• We evaluate the accuracy and performance of four state-of-the-art deep learning
models for ships’ mobility prediction in an inland environment. We select the Con-
vLSTM model among the evaluated models since it is the most e�cient and most
robust. We implement the federated learning method to perform collaborative learn-
ing among ships without leaking their private data.

• We design a cooperative collision detection system to accurately detect collisions
and alert concerned ships su�ciently in advance through analyzing the position of
a �eet of ships using the ConvLSTM model �ndings. The process is deployed at the
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MEC to ensure low latency communication and guarantee real-time reaction to avoid
collisions between ships.

• We evaluate the e�ectiveness of the collision detection system in the inland environ-
ment using the proposed dataset and suggest possible improvements.

The remainder of this chapter is structured as follows: Section 6.2 gives an overview
of related works where we investigate the existing collision avoidance systems. In Section
6.3, we formulate the problem statement and explain the proposed solution brie�y. Section
6.4 explains cooperative collision detection and its two phases: training and deployment.
Discussions about the results and performance evaluation are drawn in Section 6.5. Finally,
conclusions and potential future works are discussed in Section 6.6.

6.2 Related Work

In order to prevent collision accidents, it is crucial to determine if there is a collision risk in
advance accurately. Therefore, the ship collision detection problem has attracted continu-
ous interest from researchers, and many e�orts have been developed to handle this issue.
In the literature, the collision prevention process and its information �ow in the manned
and unmanned ships can be abstracted as in Figure 6.1.

Conflict Detection

Actuator Observer

If safe

Conflict Resolution

Motion Prediction

if needed

Traffic Environment

Figure 6.1: The collision avoidance process (adapted from [292]).

Five components are included [293]: (1) Observer, which contains various sensors of-
fering data to support other modules; (2) Motion prediction module forecasts the future
actions and trajectories of the Own Ship (OS) and the Target Ships (TSs), which is the basis
for con�ict detection and resolution; (3) Con�ict Detection module, which evaluates the
possibility of a collision and, if necessary, issues collision warnings; (4) Con�ict Resolution
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module, which determines the evasive solutions, and (5) Actuator, which implements the
solutions.
The OS can forecast future actions and trajectories based on speci�c assumptions or through
communication with the TSs. Hence, we can divide collision avoidance methods into �ve
categories based on communication and cooperation levels, as shown in Table 6.1.

Cooperation level
Non-cooperative Cooperative Competitive

Non-communication Assumption based methods Rule-based methods Game theoretical methods
Communication Intention-aware methods Negotiation methods

Table 6.1: Collision avoidance methods’ categories based on communication and coopera-
tion levels

Traditional collision avoidance methods usually do not consider the knowledge trans-
mitting and acquiring among the ships. Assumption-based methods, such as potential
�eld [294], and velocity obstacles [295], act as if other ships sail with constant speed and
heading [296] or according to holonomic or kinematic models [136] to predict their actions.
However, those assumptions may not be accurate, making the methods unsuitable for col-
lision prevention in more general collision avoidance cases. Moreover, most methods only
provide one solution. Consequently, if those methods function as navigation assistance
for human-operated ships, the operators are forced to follow the proposed solution blindly
without understanding the decision processes.
Rule-based methods use a set of prede�ned rules to guide collision avoidance. For exam-
ple, when a ship encounters other ships, the ship will turn 75 degrees to the starboard side
[297] or enlarge rudder angle until the trajectory is collision-free [298]. However, a single
rule cannot handle all kinds of encounters in a dynamic environment. Thus, multiple rules
should be considered. As mentioned earlier in Section 2.2.3.3.1, the COLREGs are the most
widely used rule in maritime navigation. They set out the navigation rules to be followed
by ships to prevent collisions between two ships. So, when ships encounter each other, the
controllers reorganize the encounter pattern and execute actions accordingly to comply
with the corresponding rule. An overview of methods that consider COLREGs is provided
in [299]. However, since the enumeration of rules for all scenarios is impossible, this method
does not guarantee collision-free. If a case is not studied in advance, this method might not
�nd out a proper solution. In practice, COLREGs heavily depend on human common sense
in determining rule relevance, mainly when multiple rules apply simultaneously.
Moreover, the rule-based method relies on the assumption that all of the ships follow the
rules. However, ships in the same situation may have di�erent recognitions of the en-
counter pattern, or other ships may violate the rules. Cho, Han, and Kim [300] consider
the probability of rules’ violation to propose a probabilistic collision avoidance decision-
making approach based on a graphical model consisting of system states’ maneuvering
intent and evolution.
Competition between vessels is rarely mentioned in existing studies. Miloh [301] de-
sign the problem of collision avoidance between two vessels as a pursuit-evasion game
between a faster elliptical pursuer and a more maneuverable circular evader. Hoogendoorn
et al. [302] present a method to model the decision-making process of the human oper-
ators according to the expected behavior of the TS. This method aims to include human
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decision-making in comprehensive simulation models to describe the movement of vessels,
including external e�ects due to wind, current, and waves; waterway geometry; and the in-
teraction with other vessels. Lisowski [303] apply the di�erential game control systems for
collision avoidance, considering the uncertainty of information and incomplete knowledge
about other objects. However, it is challenging for this method to handle the encounter
situations, which involve more than two players.
In intention-aware methods, ships can decide their collision avoidance actions accord-
ing to the intentions transmitted by other ships. MIYAKE et al. [304] propose an intention
exchange support system called the “Automatic Navigational Intention Exchange Support
System using AIS (ANIESS).” ANIESS is a communication system to exchange navigational
intentions (e.g., port-to-port passing) between encountered ships by using short-range com-
munication means such as the application-speci�c message of automatic identi�cation sys-
tem (AIS). However, such a solution is not applicable in real situations as anti-collision is
not a one-time activity. It is not reasonable that the ship makes a series of decisions from
origin to its destination at once and carries them out one after another. This consideration is
not only impractical but also makes the problem unnecessarily complex. In real situations,
ships make decisions stepwise in real-time based on their observations and judgments on
whether there is collision risk with ships. Therefore, in [305], Zhang et al. anti-collision
decisions are made in a distributed way where each ship makes decisions according to its
observations and the intentions of the other ships. In practice, each ship can only access
its sensors and actuators. Then, each ship �rst broadcasts its intentions, such as turning
and trajectories to ships within the communication range, and decisions are made based on
the broadcast information. Ships perform computation and broadcast their intentions in a
predetermined sequence. Since information is exchanged after each ship solves its problem
only, the quantity of communication between ships and the computation time is limited.
On the other hand, negotiation methods emphasize closed-loop information exchanges.
After the OS has broadcast its decision, other TSs’ actions based on this decision are sent to
the OS as feedback. The OS will thus adjust its decision accordingly. In this way, agreements
among the ships can be achieved through iterative negotiations. A ship can broadcast its
own intentions and expectations about other ships, such as the actions that it wishes other
ships would take and the trajectory it prefers rather than the trajectory it computes. When
a controller makes decisions, it considers other ships’ expectations and adjusts its decisions.
Thus, such an iterative negotiation framework has a greater potential to achieve overall op-
timal performance [306, 307].
Nevertheless, those methods allow ships to coordinate their behavior only for a limited
time, for instance, when they identify a high collision risk. They assume that a surround-
ing region should be kept clear between ships. They focus mainly on ships’ size and shapes
under stable conditions. Ship domain is treated as a circle with radius R, and other ships’
intrusion must be avoided.

6.3 Problem Formulation and Proposed Solution

Solving the collision detection problem is a matter of determining whether the ship is in
danger and when to take evasive actions. Thus, in order to e�ectively prevent collision
accidents, detecting a collision risk must be accurate and rapid to allow the ship to react
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su�ciently in advance.
Unlike the existing works described in the previous section, this study measures the colli-
sion risk from a global and cooperative perspective on a central MEC node instead of each
OS. The core of this process relies on information exchange among the cooperative ships
to provide additional information to help the central nodes make collision detection deci-
sions. To meet the requirements of the collision detection, two main conditions should be
established. On the one hand, the information exchange should dispose of a low latency
connection between ships and the network infrastructure to ensure rapid reactions from
ships. The C-IAShips architecture addresses this issue since it is based on MEC technology
and federated learning, as explained in the previous Chapter 5.
On the other hand, provided information should be timely and accurate. Hence, in this
study, we fuse two data sources. First, we employ the camera to perceive the surround-
ing environment and detect possible obstacles. Second, we use the GPS to obtain accurate
ships’ positions and estimate their future positioning.

6.4 Federated Learning-based Collision Detection Sys-
tem

The C-IAShips architecture uses the federated computing method, where ships handle their
locally distributed datasets and send processed data to the MEC server. The information
interaction between ships and edge/cloud servers makes other ships get more information,
so more aware of them. Figure 6.2 depicts an overview of the system model of the collision
detection application. Each ship has three main modules on the user layer: the ship mobility
prediction module, the obstacle detection module, and the MEC identi�cation module. The
�rst module allows the ship to predict its future position based on its GPS data history. The
second one consists in detecting eventual obstacles from its camera. The third module uses
the ship’s future position to decide to which MEC node it should send the results of the
two �rst modules. The collision detection application is deployed on all the MEC nodes on
the edge layer, covering a large geographical area with low-latency access. When receiving
data from all the ships, the MEC decides whether there is a risk of collision or not.

6.4.1 Main Modules Description

In the following subsections, we detail the di�erent modules constituting the cooperative
collision detection system.

6.4.1.1 Ships Mobility Prediction Module

This module is placed on each ship to predict its future coordinates based on the accurate
coordinates and speed history obtained from the onboard sensors. We may regard ship
mobility as a time series of multi-dimensional data, which Recurrent Neural Network (RNN)
is able to model [308] [309]. The RNN is suitable to analyze the driving data, owing to its
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Figure 6.2: Cooperative collision detection system model

advantages of learning the temporal features of sequential information. Long Short-Term
Memory (LSTM) [310] is a particular RNN model. It was proposed to solve the problem of
gradient dispersion in the RNN model, which is dedicated to processing the time series data.
Due to the strong ability of self-learning [311, 312, 313], the LSTM network is suitable for
constructing predictive models for ship mobility prediction tasks. Therefore, in our study,
we compare four di�erent variants of LSTM algorithms, namely:

v Vanilla LSTM: It is interpreted as the original LSTM block with the addition of the
forget gate and peephole connections [314]. It has a single hidden layer of LSTM
units and an output layer used to make a prediction.

v Bidirectional LSTM (BiLSTM): It consists of concatenating the interpretations of two
models, one taking the sequence of the input provided in a forward direction and the
second in a backward direction [315]. BiLSTM, therefore, increases the amount of
information available to the network.

v CNN-LSTM: A convolutional neural network (CNN) is a neural network developed
for working with two-dimensional data [316]. The CNN LSTM is a hybrid model that
involves using CNN layers for feature extraction on input data combined with LSTMs
to interpret the feature extracted and support sequence prediction [317].

v ConvLSTM: It is a recurrent neural network introduced by Shi et al. in [318] to solve
spatiotemporal sequence forecasting problems. The ConvLSTM di�ers from CNN-
LSTM in that, for CNN LSTM, the convolution structure is only applied as the �rst
layer, and sequentially LSTM layer is applied in the second layer. In contrast, in the
ConvLSTM, the convolutional reading of input is built directly into each LSTM unit.
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6.4.1.2 Obstacle Detection Module

This module is processed simultaneously with the ship mobility prediction module. The
obstacle detection module of autonomous ships plays an essential role in safe navigation
since the ship needs to detect and avoid nearby ships and infrastructure. We propose to
use the obstacle detection system proposed in Chapter 4, which consists of detecting, clas-
sifying, and tracking objects in the near real-time �uvial domain. Inland obstacles are river
edges, other ships, �shers, swimmers, or people by the riverside, and infrastructure such as
locks and bridges. After comparing di�erent perception algorithms of object detection, we
found that the most suitable algorithm is the Retinanet algorithm with a resnet101 layer as
a feature extractor [240]. We have 87.06 % as the accuracy of detection with 4.54 Frames
per second (FPS). The output of this module is the position and the category of the possible
detected obstacles.
Figure 6.3 draws a sample of predicted results where the rectangles and text overlaid on the
�gures are the outputs generated by obstacle detection module.

Figure 6.3: A sample of predicted images where the rectangles and text overlaid on the
�gures are the outputs generated by obstacle detection module.

6.4.1.3 MEC Identi�cation Module

Figure 5.1 shows that each MEC node covers a de�ned geographical area. Therefore, ships
should know their location to know with which MEC node they will communicate. We only
use a basic function to identify the nearest MEC node based on the ship’s future position,
and we do not consider the MEC capacities. If there are many edge nodes in proximity, the
load situation, quality of service, or other parameters may be regarded for node selection.

6.4.1.4 Collision Detection Module

This module uses a fusion of data received (predicted future ship positions and obstacle
detection information) from all the ships to decide on the risk of collision. This module
estimates the potential dangers of the collisions between ships at a particular instant of time.
For this purpose, a minimum authorized safety distance (Dmin) must be considered. The
navigation authority responsible for managing the french inland waterways networks [153]
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indicates that "Powered ships traveling at speed more than 6 knots must keep a minimum
distance of 30 meters from other ships and structures, and 60 meters from people in the
water." The MEC host calculates distances between the ships using the data received. Based
onDmin and calculated distances, we can determine whether there is an imminent collision
or not. If one distance is less than Dmin, the concerned ships are in a collision risk region,
and warning messages are sent to the corresponding ships. The algorithm runs inde�nitely
in iteration within the edge node.

6.4.2 Cooperative Collision Detection System Training

Step 3. Global Model 
Update

W₁ W₂

…

ΔW=FedAvg(Wi)

Wk

Local models

Local data

Vessels

Edge node

Step 1. Local models initialization

Step 4. Global Model Aggregation

Step 5. Local Models Update

Step 2. Local models training

Global model

Blockchain

block
blockblockblock

Figure 6.4: Collision detection: training phase steps.

As mentioned before, this system is based mainly on ships’ mobility prediction module,
which was trained in a federated way. Figure 6.4 illustrates the mobility prediction training
process. It comprises �ve main steps:

(i) Step1: Localmodels initialization: The federated learning (FL) server placed in the
edge node generates an initial global model G0. Then, it broadcasts the G0 training
hyperparameters to the participating ships.

(ii) Step2: Local models training: Each ship Vi starts to collect new data and update
parameters of its local model Li, based on the global model Gj, where j is the current
iteration index. Then, each Vi tries to �nd optimal parameters minimizing the local
loss function.
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(iii) Step3: Global model update: The local trained models are periodically uploaded to
the FL server. Only the model parameters or gradients are transmitted instead of the
raw data.

(iv) Step4: Global model aggregation and consensus: When receiving the local mod-
els from ships, the FL server aggregates all veri�ed local models and packages them
into consensus blocks. Once consensus is reached, the block will be added to the end
of the blockchain. Finally, the FL server sends the updated model parameters back to
the ships. There are several algorithms to do the aggregation. We use here the Feder-
ated Averaging (FedAvg) algorithm, which is a baseline algorithm presented in [319].
It was shown that it is capable of achieving high accuracy, communication e�ciency,
and privacy preservation.

(v) Step5: Local models update: Gj periodically pushes the updated local model pa-
rameters to connected ships.

The learning process is iterated for many communication rounds until the global model
can converge to the global optimal, a threshold level is reached, or a desirable training
accuracy is achieved.

6.4.3 Cooperative Collision Detection System Deployment

Once trained, the ships are now able to predict and share their positions, and the system
can detect eventual collisions, as shown in Algorithm 2. Each ship executes the ship mo-
bility prediction module, the obstacle detection module, and the MEC identi�cation mod-
ule. Then, it sends its local predicted position and local detected obstacles to the identi�ed
MEC. Each MEC performs the collision detection module and sends warning messages to
the concerned ships when a collision is detected. It is assumed that all the MEC nodes have
su�cient onboard resources to execute the given learning tasks at any instance of time
t. It is worth noting that the collision detection application is instantiated in all the MEC
nodes. In addition, each MEC node serves the ships located within a speci�c area. Thus, if a
ship moves from one area to another, it will be served by the collision detection application
instantiated in a new MEC node.

6.5 Performance Evaluation

The proposed cooperative collision detection system can detect unpleasant situations proac-
tively to make inland transportation safe and reliable. In this section, we evaluate its per-
formance in order to validate it. We �rst de�ne the used simulation scenarios. Then, we
focus on its �rst module, the mobility prediction module, by comparing the algorithms
mentioned above to select the best one to use later. Next, we show through a comparative
experiment the bene�ts of federated learning. Finally, we evaluate the e�ectiveness of the
whole collision detection model under challenging situations.
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Algorithm 2 Collision Detection: Deployment Phase
1: Input For each ship: local position, local detected obstacles
2: Output For each MEC node: Detected collisions, warning messages

3: Initialise the con�guration of all instances of the collision detection application on the
MEC nodes.

4: while True do
5: for each ship do
6: Mobility prediction: Receive a batch of GPS coordinate from the local data and

predict the future position of ship for epoch t + 1.
7: MEC identi�cation: Based on the future position, decide the future recipient MEC.

8: Obstacle detection: Process camera data to detect obstacles (ships, persons, river-
side, or infrastructure).*

9: Send results data to concerned MEC nodes
10: end for
11: for each MEC node do
12: Receive data information from ships
13: Execute the collision detection module and send warning messages to the con-

cerned ships if a collision is detected.
14: end for
15: end while

6.5.1 Simulation Scenarios

Due to the lack of real datasets from industrial systems, especially localization information
in a �uvial environment, we produced our simulations scenarios based on accurate river
maps. The settings of the main mobility-related parameters are reported in Table 6.2. We
use Overpass turbo [291], an internet data mining tool for OpenStreetMap that allows ex-
ecuting di�erent API requests and presents the result on an interactive map to select our
simulation maps. The selected maps are composed of a segment of inland waterways of the
Nord and Pas-de-Calais region, with the densest canals in France. Then, we use SUMO to
generate mobility data with a ship as the vehicle type and adjust each simulation’s circulat-
ing ship’s number. SUMO is an open-source, highly portable, microscopic, and continuous
multi-modal tra�c simulation package, designed to handle large networks. The produced
dataset is open-source, and it is available online 1 for other researchers working in this area.

The ships can navigate in both directions except at intersections. The ship spatial den-
sity and speed vary in our scenarios, while other parameters, such as the maximum speed,
are �xed. The duration of the simulation step in SUMO is the frequency at which the simu-
lator updates the position of the simulated ships. In our case, we set it to 5 s, which allows
us to have a maximum positioning error due to the discrete-events nature of the simulator.
As a result, we have 4 instances of simulation as follows:

1https://widedhammedi.wixsite.com/phdproject/
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Table 6.2: Simulation parameters

Parameter Value
Simulator SUMO
Total number of mobility simulations 4
Vehicle category ships
Number of ships 30, 50, 70, 100
Maximum Speed 15 km/h
Data Output type speed, angle, x, y, z, lane, slope
Simulation time 100000 seconds
Step length of simulation 5 seconds
Simulation maps 60*60 km2 40*40 km2 30*20 km2

• Instance 1: Small network scale with a small number of ships 30*20 km2 30 ships.

• Instance 2: Medium network scale with a high number of ships 40*40 km2 70 ships.

• Instance 3: Large network scale with a high number of ships 60*60 km2 70 ships.

• Instance 4: Large network scale with a very high number of ships 60*60 km2 100 ships.

6.5.2 Mobility Prediction Module Analysis

Unlike the movement of sea ships, river ships are forced to maneuver in con�ned spaces
constantly (e.g., the presence of a large number of possible obstacles, frequent course changes,
a large number of oncoming and passing ships). We compare in this section the e�ective-
ness of the four di�erent variants of LSTM algorithms mentioned in the ship mobility pre-
diction module (see section 6.4.1) in terms of mean squared error (MSE) and in terms of
stability. In statistics, an estimator’s mean squared error (MSE) measures the average of the
squares of the errors — that is, the average squared di�erence between the predicted and
accurate values. The lower it is, the greater is the estimator. MSE is calculated as follow:

MSE =
1

n

∑
(yi − ỹi)2,

where n is the size of data points, y are the accurate values, ỹ and are the predicted values.

A sequence of driving data is utilized as inputs of the four algorithms. We note that the
hyperparameters of each algorithm (number of epochs, batch size, and number of neurons)
are tuned to determine the optimal mean squared error (MSE) between the predicted po-
sition and the actual position while avoiding over/under learning, using the Keras Tuner
[320]. Moreover, we try di�erent window sizes with variations in the window overlapping
percentage to determine the optimum size with optimum MSE. Finally, the input window
size is �xed to �ve, and the output sliding window is �xed to two sample predictions. To
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compare the stability of the algorithms, we proceed as follows: (i) From each instance, we
extract the position data history (HPbi) of each ship Vi separately, (ii) For each ship Vi, we
split its HPbi into train/test sets, (iii) For each ship Vi, we train each model on the train set
and calculate the MSEi on the test set, and (iv) For each instance, we calculate the AvMSE.
AvMSE = Average (

∑
V i

MSEi), where the Vi are the ships that belonged to the instance. We

plot the distribution of the AvMSE for di�erent instances in Figure 6.5.

(a) Instance 1 (b) Instance 2

(c) Instance 3 (d) Instance 4

Figure 6.5: Boxplots of AvMSE value on the test set representing the stabilities of the models
at various instances.

These results con�rm that the four models can correctly predict the ships’ mobility. We
�nd that there is no one best model to �nd the smallest AvMSE. We notice that increasing
the size of the network in itself does not a�ect the performance of the models. However,
while assessing the boxplots of the four neural networks, two signi�cant peculiarities ap-
pear: on the one hand, we �nd that the vanilla and bidirectional LSTMs often exhibits ex-
treme outliers (i.e., a very high MSE), which means that they are not suitable for long-term
use due to the lack of stable prediction quality, and therefore it is impossible to guarantee
the safety of the ship’s motion. On the other hand, the CNN LSTM and ConvLSTM rep-
resent minor variations, which implies more robustness. In addition, the ConvLSTM has
more minor variations and optimal AvMSEs. Several reasons can explain the di�erences:
1) Our input data is ship mobility data characterized by simultaneously changing in time
and space. 2) The LSTM input takes positions directly at each timestamp. However, CNN-
LSTM and ConvLSTM take a fully connected layers-based observer network. The latter
provides more data and relationships to the network. Convolution-based models also use
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historical observations and their expected output to extract correlations between the ob-
servation and the output. The relationship is encoded as a condition tensor. This design
allows these models to more easily extract the trend of trajectory changes and capture the
spatiotemporal dependencies of the input data. 3) The characteristics extracted from the
convolution layers are joined to form more robust features a�ected to a lesser degree by
noise, spatiotemporal variations, and disturbances in the acquired mobility data. The re-
lationships recognized between the CNN layers are exploited to consider the lost spatial
information in the deeper layers. In the following, we use the ConvLSTM as a ship
mobility prediction model.

6.5.3 Federated Learning Bene�ts

This section conducts comparative experiments among classical and federated learning in
terms of convergence, least MSE, and execution time.

6.5.3.1 De�nitions

We �srt brie�y outline the di�erence between the three learning paradigms: centralized
learning (CL), distributed learning (DL), and the federated learning (FL):

v CL: In centralized learning, the ships are connected with the central server to upload
their data. In particular, the ships upload their local data to the edge/cloud server,
and the central server performs all the computational tasks to train the data. The
advantage of this type of learning is that the model can generalize based on data
from all the ships. However, this is extremely hard to ensure. First, the bandwidth
is often limited, and the sheer amount of data that may exceed the reasonable limits
can create communication overhead. Moreover, latency due to communication to the
cloud is often a barrier for an application operating in real-time. Finally, ships’ private
data is highly at risk as the cloud server can be malicious or infer through adversaries.

v DL: Distributed Learning avoids the evoked problems of CL. The distributed models
are trained with the same methodology as centralized machine learning models, but
they are trained separately on multiple ships without needing a central server. In
practice, this simpli�es the task since each model only needs to understand its local
data and not how it varies compared to all other ships. Another bene�t of DL is that
the internet connection does not constrain Learning and that no con�dential infor-
mation needs to be transferred to the central server.

v FL: In federated learning, ships build their models collaboratively using their local
datasets. In essence, FL trains algorithms across decentralized edge devices while
holding data samples locally. In particular, local epochs are declared in the learning
parameters, and each ship trains the data by running the local epochs. After speci�c
epochs, the local update is computed, and the ships send the updates to the central
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server. The central server receives the update from each participant, average them
and aggregate the next global model. Based on this global model, the ships execute
the training process for the next communication round.

6.5.3.2 Training Phase Convergence

The training phase is performed each time a new ship comes, at the beginning of the jour-
ney, and then regularly (each week) to update the models with the new data. Therefore,
the convergence speed of learning is an essential issue for our application. We compare
federated learning with distributed learning and centralized learning with the same ship
mobility prediction model. We assume that the server has unlimited bandwidth and that
the ship nodes have identical upload and download bandwidths. To calculate the necessary
time, we suppose that the ships execute their calculation in parallel. We use the theoretical
speed of 5G: the commercial speeds announced today vary mainly from 100 Mbit/s to 1
Gbit/s in reception and from 50 Mbit/s to 250 Mbit/s in transmission. Figure 6.6 shows the
training process of the three learning techniques for di�erent network characteristics, and
Table 6.3 reveals their training time.

We can �rst observe that all the methods converge towards an optimum but not at an
identical speed. FL converges less fast than the CL but faster than the DL. The CL (5̃ rounds)
and FL (1̃5 rounds) manages to adjust their global models from the �rst rounds. This can
be explained by the fact that the ships are independent of training their models in DL. The
CL has all the data so that it can converge quickly. FL adjusts its parameters quickly due to
the involvement of the central server and the parameters aggregation process.

Computing Method Characteristic Training time
FL 15 communication rounds,

sending local model weights,
and receiving global weights

2h13

DL 10 communication rounds,
sending local data, and re-
ceiving global weights in the
end

4h2

CL 50 communication rounds,
no sending nor receiving

9h19

Table 6.3: Training time for the 3 di�erent learning techniques

Furthermore, results prove that the e�ciency of FL can approach the centralized com-
puting method. As seen from Figure 6.6, the loss during the training of federated learning is
lower than the centralized method, and the �nal MSE is less in most cases. FL performs the
others because it initializes its models with aggregated weights of the overall model, and it
has several models that run in parallel. However, DL, not taking advantage of the results
of other models, fails to �nd an optimum MSE in a reasonable time, as shown in Table 6.3.
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Figure 6.6: Training Phase Convergence of the three di�erent learning techniques vs. dif-
ferent network characteristics.

6.5.3.3 Mean Squared Error (MSE) Comparison

In this series of experiments, we compare performance of the three learning methods on
the test set. We train them with the same number of learning hyperparameters, till the
convergence towards an optimal MSE (10, 15, and 50 communication rounds for the CL, FL,
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and DL, respectively). All these experiments are carried on Google colab Pro T4 GPU from
Google. The results are the average value of 5 simulation runs.
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Figure 6.7: MSE comparison

As for evaluation by test datasets, Figure 6.7 shows the overall results. It indicates that
federated and centralized learning perform almost similarly in terms of MSE. The feder-
ated learning performs slightly better than centralized learning, which proves the practical
value of our method.

6.5.3.4 Main �ndings

To conclude about FL advantages, we can deduce the following main �ndings:

v Advantages of FL over DL:

– Better performance: MSE minimized.

– Fast training convergence: FL does not make several communication rounds
due to its e�cient aggregation of information.

– In DL, each ship generates its model based on its unique data history not seen
by other ships. So, local data remains decentralized, unrepresentative, and not
identically distributed from all data.

– If a new ship comes on the network, its integration in FL will be faster and more
e�cient.

– Ship data can vary in size due to the di�erent environments they pass through.
The non-interaction between them may cause widely varying volumes of train-
ing data. For instance, we take a scenario where a ship has data of just 1 hour
of navigation and another three days. The 1st ship will take too much time to
adjust its model with DL. Meanwhile, with the FL, it will be able to bene�t from
the experience of the 2nd ship and adjust its model easily.
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– With FL, we can choose only a limited number of ships representative of the
entire �ow. Therefore, we can reduce the calculation time and the use of the
communication channels while guaranteeing good performance.

v Advantages of FL over CL:

– Even though the CL can converge in a practically realistic time, it uses massive
communications resources. The FL achieves the same convergence rate as the
CL, but outperforms it by avoiding the saturation of communication channels
and excessive energy use.

– In CL, the MEC node will be submerged with model computation, and thus, it
will not be able to respond to real-time events for other latency-sensitive appli-
cations.

– CL technique implies more data security and privacy concerns.

6.5.4 Cooperative Collision Detection E�ciency

In this subsection, the e�ectiveness of the cooperative collision detection application in
terms of collisions avoided is tested using two main veri�cation scenarios: multi-ship en-
counters into open busy river waterways segment sailing and multi-ship encounters in busy
intersections areas.

6.5.4.1 Performance Metrics

We consider True Positive (TP) as the correct positive predictions. False Positive (FP) are the
incorrect positive predictions. True Negative (TN) are the correct negative predictions, and
False Negative (FN) are the incorrect negative predictions. We use the following standard
metrics to evaluate the performance of the collision detection method:

• Precision (Pr)= TP / (TP + FP)

• Sensitivity (Sn) = TP /(TP + FN)

• Speci�city (Sp) = TN/(TN + FN)

As implied by the above equations, precision is the ability to identify only the relevant
collisions. Sensitivity shows the ability to detect all collisions. Speci�city is the propor-
tion of the true negatives correctly identi�ed. It measures the ability to identify normal
navigation (no collision).

6.5.4.2 Open Busy River Waterways Scenario

This series of experiments consists of detecting collisions on open busy river waterways.
In this case, the results are averaged over a single simulation campaign, 5 runs, speed �xed
to 15 km/h, and di�erent densities of ships per kilometer.
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Figure 6.8: Percentage of collisions avoided. In the x-axis, the ship spatial density is plotted;
each bar corresponds to a di�erent performance metric.

In Figure 6.8, we show the di�erent metrics to measure the avoided collisions. The x-axis
represents the ship’s spatial density, and each bar corresponds to a di�erent performance
metric. In the �rst experiment, where density equals 1 ship/km, we found 177 TP, 20 FP, 2
FN, and 4801 TN. In the second experiment with a density equal to 2 ships/km, we �nd 152
TP, 18 FP, 7 FN, and 4823 TN. The density in the third experiment is 4 ships/km, and it has
235 TP, 4 FP, 3 FN, and 6758 TN. We see that we reach almost 100% of collisions avoided
for all densities. Moreover, we remark high precision, high sensitivity, and high speci�city.
This means that the system returns many results, with all results detected correctly. The
ship spatial density directly impacts the �nal results: the higher it is, the lower the �nal
number of collisions avoided due to the more challenging, complicated con�gurations that
may arise in crowded waterways.

6.5.4.3 Busy Intersections Areas Scenario

Unlike the open river areas, the collision at the intersections has more constraints and
higher risks since only one ship is allowed to pass most of the time. Thus, we call such
zones dangerous zones, and they are usually in channel entrances or at intersections. An
example of such an environment, where red circles surround danger zones, is plotted in
Figure 6.9.

The results seen in Table 6.4 are obtained with 5 simulation runs, each 30000 seconds
long, with a speed �xed to 15 km/h.

Results show a precision equal to 0.91, a sensitivity equal to 0.92, and a speci�city equal
to 0.99. These values prove that the model has a high precision, which means its ability to
trigger an alarm only for an actual risk of collision, and a high sensitivity, which means its
ability to detect all the risks of collision. However, there is still a low rate of FN (a collision
not detected) and FP (a normal passage detected as a collision). Even if these two indicators
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Figure 6.9: Danger zones are surrounded by red circles

Actual “collision” Actual “no collision”
Predicted “collision” 180 16 Pr = 0.91

Predicted “no collision” 14 5790
Sn = 0.92 Sp = 0.99

Table 6.4: Collision detection results on busy intersections areas

are expensive, scary, and even painful, the FN remains the most dangerous since it can be
fatal.

6.6 Conclusion

This chapter proposes a collision detection system application based on federated deep
learning to ensure safety in inland navigation. The proposed system is implemented on
the Cooperative Inland Autonomous Ships (C-IAShips) architecture, previously de�ned in
Chapter 5. Numerical results show that our system achieves a high accuracy collision de-
tection rate above 92% in di�erent circumstances. Furthermore, we demonstrated the trade-
o� between the low latency and accuracy due to the use of the MEC technology and the
federated deep learning technique. These results demonstrate its e�ectiveness for �uvial
navigation.
However, despite our proposed system’s outstanding results, the perfect performance is still
not achieved, essentially due to some missed detection and position inaccuracy. To reduce
the potential for erratic ship behavior, a larger vision should be set. Thus, in the future, we
will focus on improving this part of the system by integrating other sources of information,
such as Lidar, to ensure more comprehensive sensing capabilities of ships. Additionally, at
this stage, we cannot omit the presence of a human operator onboard or remotely to inter-
vene in emergencies and avoid crashes.
In the next chapter, we address another application of cooperative �eet management, co-
operative lock scheduling. We propose a novel scheduling method based on the C-IAShips
architecture to reduce the �eet’s waiting time.
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Cooperative Lock Scheduling

The key is not to prioritize what’s on your
schedule, but to schedule your priorities.

– Stephen Covey
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7.1 Introduction

Locks are considered vital inland navigation nodes. They maintain a water level suitable
for navigation while allowing ships to overcome the resulting di�erences in water level.
Locks also provide a way to detour obstacles such as waterfalls or dams with hydropower
generation facilities. Occasionally, locks may also serve to control the water �ow on a river
or act as a barrier for �ood protection. Figure 7.1 shows two locks: the �rst lock elevates
three ships, whereas the second lock is empty.

Figure 7.1: Example of locks

Due to the time needed to operate these locks, they constitute a natural bottleneck along
rivers. In particular, the arrangements made concerning the operating times of one or mul-
tiple locks determine to a large extent the total delay or waiting time incurred by ships
traveling through a waterway. Therefore, the scheduling method of crossing the locks has
a strong in�uence on the improvement of the channel and economic e�ciency [321]. As
brie�y discussed in Section 3.2.3, the currently used scheduling method in France river locks
is First Come, First Served (FCFS), prioritizing urgent ships such as the police. In practice,
lock operators get the position of navigating vessels based on observations or Very High
Frequency (VHF) radio communication, then decide for passage order by ranking the ships
using the above simple rules. However, it is challenging to keep the scheduling safe and
e�ective simultaneously with the inland tra�c growth. Thus, the sta�s usually make de-
cisions, where they would sacri�ce some e�ciency for more safety [322]. Therefore, their
method does not ensure good time optimization for the whole system.
Moreover, in order to avoid long waiting queues, some ships may speed up to arrive early
and wait at the anchorage so they can get served �rst. This behavior leads to a longer wait-
ing time before the locks. It increases the operational cost for these ships due to the higher
fuel consumption caused by maintaining a higher speed [323]. In contrast, some ships may
arrive late to avoid waiting for a long time at the lock area. However, they may pass through
the lock later than their preferred departure time; hence, they may not meet their sched-
uled arrival time. Therefore, this chapter considers improving the scheduling method using
an automatic cooperative lock scheduling based on the CIAShips architecture previously
explained. We propose the Dynamic Lock Scheduling (Lock-DS) solution to e�ciently man-
age ships scheduling at locks by minimizing their waiting time and optimizing their speed.
Reducing the ships’ waiting time at locks implies minimizing the waiting time of all ships
in the system. We discern three main contributions of this work, summarized as follows:

• We propose the Lock-DS, a cooperative lock scheduling system, to su�ciently order
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the ship’s passage through the locks. The process is deployed at the central cloud to
ensure a global view of the system. The central node can make schedules according
to the data received while keeping an eye on the state of the river, such as locks
availability and ships’ estimated arrival times. In return, the scheduling order impacts
ships’ decision-making on departure time and speed choices.

• We adjust the ships’ arrival times by adjusting their speeds according to their order.
Hence, we can reduce their fuel consumption.

• We evaluate the e�ectiveness of the Lock-DS while considering near real-world con-
ditions and suggest possible improvements.

The rest of this chapter is structured as follows: We start with studying existing research
works on lock scheduling 7.2. Then, we formulate the problem by �rst showing how our
solution addresses these limitations 7.3, before describing the problem parameters and as-
sumptions. Afterward, we detail the proposed solution and its four stages in Section 7.4. We
show and analyze the simulation results in Section 7.5. Conclusions and potential future
works are discussed in Section 7.6.

7.2 Lock Scheduling Related Works

Scheduling consists in planning some tasks of a machine to achieve some goals subject to
certain constraints. Lock scheduling has recently attracted increasing attention. We give
in this section a general overview of the existing related works.
Since the e�orts required for solving this problem depend mainly on the lock con�gura-
tions, we divide the research of lock scheduling into four categories: on the one hand, a lock
can be either a single-chamber lock or a multi-chamber lock. On the other hand, they may
be unidirectional, allowing the transfer of ships in one way, or bidirectional, allowing ships
to pass in both ways. We summarize in Table 7.1 the most well-known methods discussed
in this chapter with their reference projects.

Unidirectional Bidirectional
Single chamber lock [324] [325] [322] [326]
Multi-chamber lock [327] [328] [143]

Table 7.1: Overview of problem variants discussed in this chapter.

Nauss [326] considers a static lock scheduling problem where many ships are queued
on both sides of a lock. They formulate nonlinear integer programs to deal with three po-
tential objective functions: minimize total elapsed time to schedule all the ships, minimize
unweighted cycle time and minimize weighted cycle time. However, this static method
may be applicable for speci�c situations only, when a river lock has been unavailable for a
considerable period, and so many ships arrive meanwhile.
Bugarski, Bačkalić, and Kuzmanov [325] and Liang et al. [322] use a Fuzzy logic-based
method to minimize waiting time while minimizing the number of empty lockages. How-
ever, their solutions are restricted since they make many assumptions, including a constant
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average time for the lockage duration and a �xed capacity of the locks, allowing it to hold
only a single vessel.
A single-chamber unidirectional lock scheduling problem is investigated in [324]. The ob-
jective is to minimize the operation costs and other costs, e.g., water cost, by selecting an
appropriate slot number during a planned period. To solve this problem, Wang et al. use an
Ant Colony Optimization-based data-driven method. Minimizing the lock’s water usage is
often modeled as the total number of lockages required to transfer all ships. While apply-
ing this objective results in water-e�cient scheduling, the resulting waiting time for the
ships can be high, especially when the inter-arrival time between ships is long. However,
the main disadvantage to (mixed) integer programming models is the rapid increase of the
required computation time as the instance increases in size.
Passchyn et al. [327] consider a prede�ned arrival time of the ships and a constant lockage
time to minimize the total waiting time of the ships. They prove that the lock scheduling
problem with multiple chambers is NP-hard even after removing the restrictions of two-
dimensional ship placement.
Ji et al. [143] develop a multi-order-best-�t (MOBF)-based Tabu search method, which is
essentially a speci�c heuristic to minimize the waiting time of ships and place them into
chambers. This hybrid method has been numerically proven to be highly e�cient by com-
paring it with a MIP method.
A hybrid heuristic method, where a modi�ed binary nondominated sorting genetic algo-
rithm is proposed in [328] to solve a coordinated scheduling problem at the Three Gorges
Dam lock.

In conclusion, previous works on lock scheduling consider deterministic frameworks
that do not resemble reality. They either act after the ships arrive or admit that their arrival
times are known. This leads to additional waiting time or high congestion at the locks.
Moreover, most researchers suppose a constant lockage duration and a �xed dimension
of the chambers. Thus, the present study considers bidirectional and multi-chamber locks
with at least one but possibly multiple chambers with di�erent characteristics. Each cham-
ber has a speci�c capacity based on its dimensions and a di�erent lockage duration. Ad-
ditionally, we consider arranging the arrival time of ships by adjusting their speed. When
ships have an Inquired Arrival Deadline (IAD), they may sail at unnecessarily high speeds
to meet the deadline but consume much more fuel than necessary. Thus, adjusting ships’
speeds can necessarily minimize fuel consumption.

7.3 Problem Formulation

A lockage consists of a group of ships entering a chamber from one side of the lock, upon
which the water level inside the chamber changes and the ships can exit the chamber from
the other side of the lock. Note that a lockage may also be empty, i.e., contain no ships and
that such empty lockages cannot always be avoided. Indeed, after serving a ship, the water
level in one of the lock’s chambers changes. Hence, to let another ship waiting at the initial
water level pass by the same chamber, an empty lockage is needed. The necessary steps
to transfer a ship in a lock from downstream to upstream are: i) the ship enters the lock;
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ii) the back door is closed; iii) the lock is �lled with water until the water level rises to the
upstream; iv) the front door is opened; v) the ship exits the lock. Inland locks have at least
one chamber but may consist of multiple consecutive chambers of di�erent dimensions.
Each chamber has a limited capacity and lockage duration, as shown in Fig 7.2.

Figure 7.2: Di�erent types of locks

Lock scheduling is non-preemptive since once a ship enters a chamber, the process must
be completed before allowing another ship to enter. We can, therefore, consider scheduling
a lock as an Unrelated Parallel Machines Scheduling Problem (UPMSP) [329] by consider-
ing the lockage as the task and the lock chambers as the machines. The UPMSP consists
of scheduling a set of jobs without preemption, each available at time zero, on unrelated
machines, regarding some objectives. The processing time depends on the machine where
the job is assigned. In the next section, we formulate our proposed solution and give an
overview of how it works.

7.3.1 Proposed Solution

In this study, we propose to schedule the ships before their arrivals to the lock by a lock-
ship real-time and dynamic cooperation, ensured by the C-IAShips architecture. Figure 7.3
depicts an overview of the system model of the proposed Lock-DS.

Ships Information
Locks status

Central Cloud

Ship 1 Ship 2 Ship n Lock 1 Lock m

Optimized ships speed 
Scheduling order 

Figure 7.3: Lock-DS system model

More speci�cally, Lock-DS works as follow:
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1. Cooperative ships send their characteristics, including their weight, dimensions, or-
der of priority, the direction of travel, �nal destination, speed, and position to the
cloud node.

2. The central cloud estimates their arrival time and lockage duration.

3. The central cloud arranges the ships to minimize the total waiting time and maximize
the chamber area utilization while keeping an eye on the state of the locks, such as
availability and waiting time.

4. The central cloud gives recommendations of optimized ships speed. The scheduling
order impacts ships’ decision-making on departure time and speed choices.

More details about the implementation are provided in the next sections.

7.3.2 Problem Parameters and Assumptions

The decision variables, parameters and assumptions are detailed in this section. We con-
sider a set of ships passing a lock composed of C chambers. The symbols used in this
section are detailed in Table 7.2.

Notation Meaning
V set of ships
C set of di�erent chambers in the lock
ttransition transition time required between two

consecutive lockages performed on the
same chamber both upstream
(or downstream)

li, wdi length and width of ship i (meters)
L0,Wd0 length and width of the smallest chamber

of the lock (meters).
dsafe safe distance to ensure at the lock (meters)
start_ti starting time of a ship i (hour)
estimated_ti estimated arrival time of a ship i (hour)
waiting_ti waiting time of a ship i = sti − eti (minutes)
end_ti completion time of a ship i (minutes)
T end of the scheduling process (minutes)
fci fuel consumption of ship i (tonnes per day)
si speed of ship i (kilometer per hour)
ai weight of the ship i if empty (tonnes)
wi payload of the ship i (tonnes)
ldi lockage duration of the ship i (minutes)

Table 7.2: Lock-DS Parameters
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In this work, we ignore the in�uence of gravity on the movement of water through the
locks. The e�ect of weather conditions is neglected, and we assume that the channel depth
meets the requirement for ships to pass through the channel safely.

7.4 Dynamic Lock Scheduling (Lock-DS) Description

The Lock-DS process is illustrated in Figure 7.4. Details of the Lock-DS algorithm stages
are given in this section.

Ship detected

Stage 1: Collect ship’s characteristics

Stage 2: Estimate ship’s arrival time 

and lockage duration

Stage 3: Schedule Vessels

* Maximize chamber area utilization

* Minimize waiting time

Still ships not 

assaigned ? Yes

Ships passing according to the 

lockage schedule

Lockage complete

No

Stage 4: Optimise 

ships speed

Figure 7.4: Lock-DS process

7.4.1 Lock-DS - Stage 1: Collect Ship’s Characteristics

In the �rst step, a central entity collects the ships’ characteristics including their identi�ca-
tion, weight, dimensions, order of priority, direction of travel, �nal destination, speed and
position. This central entity is located in the cloud and collect information about a speci�c
geographical zone with a certain number of locks that it manages. The central cloud is man-
aged by a central authority in each country, such as Voie Navigable de France (VNF) [153]
in France, which is the navigation authority responsible for managing the french inland
waterways networks, as explained in Chapter 5. Thanks to the advanced communication
and locating methods, the ships’ information can be collected hours before their arrival,
increasing the time available to get a good schedule order later.
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7.4.2 Lock-DS - Stage 2: Estimate Ship’s arrival time and lockage
duration

Based on the data received from the ships, we calculate for each one its estimated arrival
time assuming that its speed remains constant until reaching the lock:

estimated arrival time =
actual ship’s position
actual ship’s speed (7.1)

The second information to calculate is the lockage duration which depends on:

• the weight of the ship (wi) to be transferred; heavy ships require more time to �ll the
lock,

• the type and the capacity of the lock; the lock’s capacity de�nes the number of ships
that can pass together,

• the initial state of the chamber; the chamber’s initial state de�nes its �rst available
time and its state at that time. If a ship is coming from upstream and the lock is on
downstream, an empty lockage may be required.

Taking into account all these parameters, the lockage duration can be calculated using the
following formula [330]:



lockage duration = ttransition× transi
+0.0038× L0

(3×G+1)
1−G/2

+6.23× exp(−(G/2−0.55
0.124

)2),

where :

G = N×L̄
L0

L̄ =
∑

i(ai+wi)

N

N is the number of ships grouped together

(7.2)

transi =


0 if the level of water in the lock

is the same as the coming ship
1 otherwise

7.4.3 Lock-DS - Stage 3: Schedule Ships

This section explains the objectives of our problem (reduce waiting time and maximize
chamber area utilization) and its constrained functions.
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7.4.3.1 Objective 1: Maximize Chamber Area Utilization

each chamber has a limited surface area, which must not be exceeded by the total area of
ships present in the chamber at any given time.

When several ships are assigned to the same chamber in the lockage process, the cham-
ber capacity requirement should be met. We aim to �nd ships coming from the same direc-
tion:

maximize
∑
i

vi ∗ (
li
L0

+
wdi
Wd0

), (7.3)

respect to:

{∑
i vi ∗ li + dsafe ≤ L0∑
i vi ∗ wdi + dsafe ≤ Wd0

where

vi =

{
1 ship i is chosen to pass the lock
0 otherwise.

These constraints indicate that the ships scheduled to pass together should keep a safe
distance between them, and their size should be less than the size of the lock’s chamber.
In particular, the lock scheduling is non-preemptive, and the same group of ships must
pass through all the chambers; hence, we should consider the dimensions of the smallest
chamber of the lock. In other words, the size of ships in any given lockage should not exceed
the smallest chamber capacity. We assume that the lockage process starts immediately
when all the ships in the same group have reached the lock, i.e. we do not consider an extra
waiting time to enter the locks.

7.4.3.2 Objective 2: Minimize the Waiting Time

We de�ne the waiting time as the time spent by that ship waiting before entering a lock
chamber. Note that this excludes the time spent inside lock chambers. The waiting time
can thus be computed as the di�erence between the estimated arrival time of the ship and
the lockage start time. We aim to minimize the waiting time of all the ships:

minimize
∑
i

(start_ti − estimated_ti), (7.4)

respect to:

• estimated_ti ≤ start_ti ≤ T, ∀ i ∈ V =⇒ The starting time of a lockage should be
within its estimated arrival time and the end of scheduling period,
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• start_ti ≤ end_tj ∀ i > j∈ V =⇒ the ship i can only start after the former one
completes.

7.4.3.3 Problem Resolution

To solve the problem described above and �nd the best sequence of ships in a deterministic
way, we need to try all the possible permutations to conclude the best order that mini-
mizes the total waiting time and maximizes the chamber area utilization. We can consider
scheduling a lock as a machine’s scheduling problem by considering the lockage as the
task and the lock chambers as the machines. [331] Garey, Johnson, and Stockmeyer prove
that determining a minimum mean-�ow-time schedule in an m-machine �ow shop is NP-
complete for every m ≥2.

Flow shop problems assume that all tasks are identical so that all operations run in a
uniform order through the machines. Our sequencing problem is more complicated since
each task (lockage) has speci�c operations (lockage duration). Given the inherent com-
plexity, no exact algorithm has been found to solve these problems in a reasonable amount
of time. Therefore, the challenge is to �nd a balance between solution quality and the
model’s speed when creating a lock scheduling model. The traditional solution is to design
e�ciently by approximation or heuristic algorithms with performance guarantees under
certain assumptions. Although these model-oriented algorithms can achieve good results,
they are not adapted to the dynamic environment where the ships arriving rate and den-
sity are unknown in advance. As a model-free reinforcement learning (RL) method [332],
Q-learning can be applied to address this dynamic scheduling problem with a low delay
response. RL is a type of machine learning concerned with how agents should take actions
in an environment to maximize future rewards. The RL main idea is to let agents learn by
trial and error throughout the actions’ execution. So, the algorithm learns about the search
space and directs the search to �nd good-quality solutions. One of the strengths of this al-
gorithm is that it can compare the expected utility of the available actions without requiring
a model of the environment. Several authors use RL to solve scheduling problems [332, 333,
334]. The ability to cope with environmental uncertainty in a dynamic environment, the
ability to self-learn the environment, the computational e�ciency, and the high adaptivity
are all grounds for reinforcement learning to become a promising technology in dynamic
scheduling. We choose the Q-learning algorithm, in particular, because it has many quali-
ties relevant to our problem [335, 336]: (i) it can �nd a variety of distinct solutions for the
same issue thanks to its combination of exploitative and explorative policies (i.e., picking
the best-known action vs. creating a new random one), (ii) the Q-table is highly reusable
and easy to import and export into new executions, and (iii) it takes into account the ef-
fects of implementing an action to measure its suitability. The purpose is to �nd a suitable
sequence of jobs that optimize a set of constraints required by the real-world processes.
Conclusions show that the RL scheduler can �nd near-optimal solutions across di�erent
instances and optimization objectives with high stability and low computation cost. Our
study’s formalization of the reinforcement learning problem is inspired by Markov’s Deci-
sion Process (MDP), a practical approach to model the sequential decision-making problem
to achieve a long-term objective.
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7.4.3.4 MDP Formulation & Model Design

We consider a lock with m chambers, each having L0 as length and Wd0 as width and a
number of ships, with for each ship v: lv as length and wdv as width and having each a
ldv lockage duration. The scheduler picks ships and assigns them to chambers. Over time,
scheduled ships are processed, and the scheduler assigns new ships as long as there are
unassigned ships are remaining or new ships arrive.
Formally, the basic MDP model consists of a triplet {S, A, R} de�ned as:

• a set of environment states S;

• a set of actions A;

• a set of rewards R.

At each time t, the agent perceives its state st in S and the set of possible actions A(st). It
chooses an action a in A(st) and moves to a new state st+1 and receives from the environ-
ment a reward rt+1 (see Figure 7.5). This means that the agent implements a mapping from
states to probabilities of selecting each possible action. This mapping is called the agent’s
policy and is denoted πt, where πt(s,a) is the probability that at=a if st=s, in other words,
it is the probability of selecting action a in state s at time t. A RL agent’s sole objective is
to maximize the total reward it receives in the long run.

v State Representation: The state set S contains all possible states, and a state change
is only possible when a new assignment is made. We de�ne the state set as the ships
scheduling processes that have been completed and the order in which they were
passed, or more precisely, ships’ precedence relations. We represent the state of the
system as binary matrices. In Figure 7.5, we draw a simpli�ed illustration of our
state’s representation.

Vessel 1 Vessel 2 Vessel 3Chamber 1 Chamber 2

dimension

time
Vessels queue

Figure 7.5: Illustration of the state representation with two chambers and 3 waiting ships.

One color represents one ship. The left matrices show the status of scheduled ships
for di�erent chambers. In contrast, the ship matrices show the pro�les of the queuing
ships. For example, the green dots in the �rst matrice indicate that a ship is scheduled
for chamber 1, it has 2/5 of chamber dimension, and its lockage lasts three time-units.
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v Action Space: The action space A of the task scheduling includes two actions: one
is to determine the selection order among V ships, and the other is to assign one of
the C chambers to each ship. Thus, the agent’s action is equivalent to deciding which
ship will be listed next in the sequence already constructed from the set of ships still
waiting.
We de�ne an action a as assigning the ship v to the chamber c. The scheduler takes
multiple actions until all the chambers are full or it takes an invalid action (attempt-
ing to schedule a ship in an inappropriate chamber). With each valid action, one ship
is assigned to one chamber and the system state changes.

v Rewards: In our case, rewards are designed so that the system learns to minimize the
waiting time and maximize the chamber area utilization. Therefore, we relate it with
the inverse of total waiting time and chamber occupation percentage. As mentioned
above, the objective is to minimize the waiting time (Equation 7.4) and maximize the
lock’s chamber area utilization (Equation. 7.3). The reward is designed to guide the
scheduler toward the goal of the optimal policy π = p(a|s). For a valid action, the re-
ward is the sum of the total area utilization and the inverse of the total waiting time,
and we give zero rewards if the invalid action is selected; thus, the reward function
is designed as:

reward =

{
Total Area Utilization(Eq.7.3) + 1

Total Waiting Time (Eq. 7.4) a ∈ Avalide

0 a ∈ Ainvalide

v Q-Learning implementation: The general architecture of reinforcement learning
is presented in Figure 7.6, where the RL agent selects an action according to the Q-
table and executes it. The environment moves to a new state and returns a reward to
the agent [337].

State 
st∈ S

Environment

Update Q-table
Choose an action 

from Q-table

RL agent

action
at ∈ A

st+1

rt+1

reward
rt∈ R

Figure 7.6: RL general architecture

Initially, the RL agent does not know which action will maximize its reward. It has
to discover which actions are most pro�table by applying them. So it performs random
actions from a state and observes the incurred reward using the feedback of that action
from the environment. Knowledge acquired is stored in the Q-Table. This table stores pairs

153



Chapter 7

of states and actions together with a Q-value. The Q-value indicates how good each pair is.
We calculate the Q-values for particular state action pairs based on these feedbacks, with
repeated calculations using the Bellman Equation (Equation 7.5.)

Q(st, at) = Q(st, at) + α(rt+1 + γ maxat+1
Q(st+1, at+1)−Q(st, at)), where: (7.5)

Where :

• α is the learning rate: The learning rate 0 < α < 1 determines what fraction of the old
estimate will be updated with the new estimate. α = 0 will stop the RL agent from
learning anything while α = 1 will completely change the previous values with the
new one. Here, we use α = 0.1.

• γ is the discount factor: The discount factor 0 < γ < 1 determines the importance of
future rewards. For γ = 0 all the upcoming rewards are ignored. For γ = 1, the RL
agent will consider the current and upcoming rewards equal weightage. We use γ =
0.6.

• For action selection, we use the ε-greedy policy: it avoids local optima and maintains
the balance between exploration (i.e., choosing a random action) with probability ε
and exploiting (i.e., choosing the action with highest Q-value) the remainder of the
time. We use an ε of 0.3.

Details of Q-Learning is provided in Algorithm 3, adapted from [335].

Algorithm 3 Q-Learning pseudo-code
Initialize Q-Table
for each training session do

st ← s0
for each each training session step do

Choose at for st using the ε-greedy policy
Take action at, observe state st+1 and rt+1

Update Q-value, with the Equation 7.5
s ← st+1

end for
end for

7.4.4 Lock-DS - Stage 4: Optimize Ships’ Speed

Speed optimization can o�er notable gains in terms of waiting time and fuel consumption.
On the one hand, because of the non-linear relationship between speed and fuel consump-
tion, it is evident that a ship that goes slower will emit much less than the same ship going
faster. On the other hand, instead of reaching the lock and waiting for their turn, ships
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can lower their speeds, for instance, so they arrive at their scheduled starting time. In that
sense, the impact of a change in ship speed can be signi�cant.
In this study, we recommend that ships adjust their speed in di�erent ways:

• For ships grouped to pass the lock together, we recommend the last ones accelerate,
while considering the maximum authorized speed, to reach the lock at approximately
the same arrival time,

• For last scheduled ships, we recommend they decelerate to minimize their waiting
time and thus their fuel consumption.

7.5 Performance Evaluation

This section presents the experiments carried out to validate the proposed solution. We start
by generating problem instances and then, we perform multiple numerical experiments.

7.5.1 Performance Evaluation Metrics

To evaluate the performance of the scheduling process, we use two evaluation metrics. The
�rst metric concerns the Total waiting time of all the ships, which is the sum of the dif-
ference between the lockage start time and the estimated arrival time for all the ship. The
second metric concerns their Fuel consumption.
Most maritime literature considers that fuel consumption has a cubic relationship with sail-
ing speed. However, it is proved that fuel consumption is in�uenced by many other factors,
such as the ship’s payload. Therefore, the formula fci = αs3

i is not accurate, especially for
inland ships because they sail at a low speed. A realistic closed-form approximation that
takes both speed and payload into account is formulated by [338] :

fci = k(p+ sqi )(ai + wi)
2/3, (7.6)

Where k > 0 is a known ship speci�c constant related to its characteristics. p ≥ 0 is a
constant used to ensure obtaining a realistic fuel consumption when the ship speed is low.
q ≥ 3 is a constant related to ships’ speed for generic use a value of q = 3 could be used.
[338] suggests using q≥4 when ship’s speed is greater than 20 knots (37 km/h). Since, the
maximum authorized speed is 10 to 12 km/h on French canals [153], we will use q = 3 in
this study.

7.5.2 Numerical Experiments

The problem instances are randomly generated within �xed ranges according to [153]: the
lock’s length is between 40.50 m and 120 m, and its width is between 6 m and 30 m. The
ships’ weight is between 3000 and 7000 tonnes, their speed is between 5 and 12km/h, their
width is between 5m to 11.40m, their length is between 38m and 95m, and their arrival

155



Chapter 7

times are randomly generated according to a Poisson distribution. Algorithm performance
is tested on a single lock with a di�erent number of ships in both directions. We compare in
Table 7.3 the deterministic, the original navigation that uses First Come First Serve (FCFS),
the Shortest Job First (SJF), and our optimized navigation scheduling, Lock-DS. In the de-
terministic scheduling, we generate all the possible permutations and conclude the best
order to minimize the waiting time. In the original navigation scheduling, we implement
the FCFS technique. The third scheduling technique is the SJF, where we �rst pass the ships
with a minimum lockage duration. In addition, we compare our solution to [328] and [143]
solutions.

Number of ships
Algorithm

Deterministic FCFS SJF [328] [143] Lock-DS

waiting time waiting time waiting time waiting time waiting time waiting time
3 3 14.85 3 3 3 3
4 42 130.49 42 42 42 42
5 24.65 163.79 183.79 24.65 24.65 24.65
6 194.64 354.64 434.64 194.64 194.64 194.64
7 174.53 474.13 494.13 434.13 434.13 174.53
10 - 894.53 1154.53 915.4 987.46 646.91
15 - 1709.45 1669.45 537.69 537.69 537.69
20 - 3190.82 3190.82 2583.01 2320.93 1833.31
25 - 6297.48 6237.48 3963.17 3670.64 3190.64
30 - 6524.44 7784.44 3752.69 2189.7 2390.51
40 - 14930.64 13410.64 9209.24 7266.37 6726.37
50 - 10701.91 9041.91 7477.29 7991.76 6371.59

Table 7.3: Schedulers waiting time comparison

The numerical experiments show that our optimized algorithm produces a near-optimal
solution. It is observed that traditional non-preemptive techniques SJF and FCFS are simple,
fast, and deterministic. However, they are not e�cient in understanding the optimality
problem. FCFS does not prioritize ships, which means when there are ships with a long
lockage duration, in the beginning, all small ships must wait a lengthy time. SJF does not
always provide better solutions. For small instances, [328] and [143] usually obtain the
optimal solution; however, for large instances, they fail to �nd it. Additionally, since we
adjust the ships’ speed with our solution, we always obtain the best values.

Figure 7.7 gives a comparison of the fuel consumption between the FCFS, SJF, [328]
and [143] schedulers and the proposed optimized navigation scheduling. As shown, the
fuel consumption is reduced for all ships in the optimized navigation scheduling. The total
consumption of the ships can be reduced by 48.03 % on average compared to the current
used method.

7.6 Conclusion

With the rapid growth of freight volume in inland waterways, there is an urgent need to
manage the tra�c e�ciently. In particular, crossing the locks is one of the most important
goals of tra�c management. This chapter proposes an e�cient cooperative scheduling al-
gorithm, Lock-DS, based on reinforcement learning to answer which order is optimal for
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Figure 7.7: The fuel consumption (in tonnes) under �ve di�erent schedulers

a given set of coming ships. The optimal order may be the one which: (1) minimizes the
total waiting time, (2) maximizes the lock occupation, (3) reduces the total fuel consump-
tion. We thus study the problem of optimal order selection from the three di�erent angles
mentioned above in a dynamic way. To ameliorate the performance of our scheduler, we
adjust the ships’ speed according to the need. Simulation results show that the proposed
approach could be bene�cial for both ships and locks. For the ships, they can spend less
time waiting at the locks and leave the lock earlier with the optimized ship arrivals.
Additionally, with optimal speeds, they can achieve lower fuel consumption. For the locks,
fewer lockage operations and less time are required to handle the same number of ships
with the optimized lockage plans. Numerical results prove that the Lock-DS reduces fuel
consumption by 48.03 % on average compared to the current scheduling method used at
locks, i.e., the FCFS.
In future work, we propose to extend this research in several directions. One direct exten-
sion is to manage the ship’s positioning in the lock chamber. The ship positioning problem
is a variant of the well-known two-dimensional rectangular Single Bin Size Bin Packing
Problem (2D rectangular SBSBPP). A set of rectangular items (ships) has to be positioned
inside as few rectangular bins (lock chambers) as possible, without allowing the rotation of
these items. In this study, we consider simpli�ed constraints to ensure. However, in future
work, we can tackle this positioning problem. Another extension considers the ships’ speed
adjustment with a more sophisticated solution such as the solution proposed by Buchem,
Golak, and Grigoriev [339]. The paper shows how to �nd a close-to-optimal velocity policy
by introducing a mathematical optimization problem modeling the uncertainty at locks in
inland waterways when considering the operation of a single ship. Additionally, we can
consider other objectives for the lock scheduling problem, including the minimization of
the lock’s water usage.
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To sum up, in this part, we studied the cooperation among the river entities, i.e. ships
and locks. With the proposed C-IAShips architecture, we ensure low latency and e�cient
communication while protecting the privacy of the ships and the security of the exchanged
data. Additionally, it enables a more powerful and e�cient operation of the overall system.
In particular, we have studied the feasibility of two cooperative applications: the �rst for
collision detection and the second for scheduling the passage of ships at locks.
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8.1 Reminder of Goals and Challenges

Inland network is o�ering potential growth for river freight transportation in many world
countries. The inland waterway transport mode may be a great alternative to other modes
since it is environmentally friendly, reliable, secure, and less costly, especially when trans-
porting vast bulk cargo volumes. Europe has over 30,000 kilometers of rivers that link
together many crucial industrial concentration areas, which are already providing services
to freight businesses, and a lesser extent, passengers and boaters. Recently, the European
Union and the French government, in particular, have decided to progress more in this
sector by doubling the share of inland waterways transport in the next few years. Thus,
developing this sector is becoming urgent.
In this context, this thesis proposes to adopt the smart river concept, relying on cooper-
ative and autonomous navigation, in order to improve inland transportation and accessi-
bility, reduce inconvenience, and increase social and economic pro�ts. Basically, we aim
to introduce Cooperative Intelligent Transport Systems (C-ITS) techniques to the inland
sector. However, deploying such a concept reveals some challenges, including information
sensing, communication and navigation, tra�c planning, status monitoring, fault diagno-
sis, distress warning and rescue, and autonomous navigation. Hence, to make the smart
river become a reality, we discern three vital sub-problems:

v How to deal with the restricted maneuverability and lack of �exibility in inland in-
frastructure?

v How to develop a reliable autonomous ship regarding the �uvial environment-speci�c
characteristics?

v How to manage the increasing volume of inland ships with reliable �eet manage-
ment?

8.2 Summary of the Contributions

The manuscript began with a deep survey on cooperative and autonomous inland naviga-
tion, where we discussed its speci�c features, applications, requirements, and challenges.
We realize that it is still in its early stages, although it will have great potentials in the
future. Hence, throughout this thesis, we focused on designing a reliable cooperative and
autonomous inland navigation while considering the aforementioned three sub-problems.
We brie�y conclude our contributions in what follows:

v Providing a Lock Automation Decision Making (Lock-ADM) Inland vessels of-
ten have to cross numerous locks before reaching their �nal destination, which leads
to a signi�cant delay and sometimes represents as much as half of the total travel
time. The delay a�ects shipment costs and can a�ect other parts of the transport
chain, adversely impacting this transportation mode’s growth. Our �rst contribution
focuses on making infrastructural modi�cations by proposing an e�cient Lock Au-
tomation Decision Making (Lock-ADM) method. The problem modeling consists of
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using a three-stage algorithm. Firstly, we calculate the optimal number of locks while
minimizing the investment costs using the exact solver, CPLEX. Secondly, we mea-
sure the importance of locks in the network, and �nally, we select the best locks to
automate using the Genetic Algorithm (GA) metaheuristic. We achieved an average
reduction of 33.7 % in overall lock waiting time at a low cost based on real data.

v Designing a Reliable Awareness System for Autonomous River Ships For au-
tonomous ships, an intelligent awareness system is a fundamental task that provides
crucial information on the sailing environment. Therefore, our second contribu-
tion addressed new challenges related to �uvial visual perception for autonomous
navigation to propose a system that accurately delimits safe navigation areas by si-
multaneously locating and mapping the environment. First, we constructed the �rst
open-source dataset; the InlandAutoDetect dataset that comprises 3,377 images com-
prehensively labeled for object detection in a �uvial domain with almost 30,000 ob-
jects annotated. Second, we analyzed and compared the results of nine deep learn-
ing perception models adapted to the inland environment in accuracy and run-time
speed. The best one, namely Retinanet, was selected to be integrated into the com-
plete system to delimit the safe sailing area. The performance evaluations showed
the proposed system’s robustness and e�ectiveness to give accurate results and ful�ll
real-time operation requirements.

v Implementing a Functional Architecture for Cooperative Inland Fleet Man-
agement The Cooperative Inland Autonomous Ships (CIAShips) architecture lever-
ages the MEC concept, blockchain technology, and federated deep learning for the
e�ective cooperative deployment of autonomous inland-based ships. The architec-
ture can achieve high communication e�ciency and protect the privacy of ships from
being leaked while realizing the di�erent proposed applications.

v Improving Tra�c Safety with the Cooperative Collision Detection System
The inland shipping industry is growing continuously, and its tra�c is becoming
denser in many navigable waterways. Therefore, we designed a new cooperative col-
lision detection system based on the CIAShips architecture. It continuously gathers
localization data from ships and processes them at the MEC level to predict potential
collisions. Then, alerts will be sent to ships to avoid collisions between them. Numer-
ical results showed that our system achieves a high accuracy collision detection rate
while maintaining a trade-o� between the low latency and accuracy due to the MEC
technology and the federated deep learning technique. These results demonstrated
its e�ectiveness for �uvial navigation.

v Ensuring a Dynamic Lock Scheduling (Lock-DS) Our last contribution intro-
duced a Dynamic Lock Scheduling (Lock-DS) to e�ciently manage vessels scheduling
at locks by minimizing their waiting time and optimizing their speed. We achieved
an average reduction of 69.9 % in vessel waiting time and a reduction of 48.03 % in
total fuel consumption compared to existing scheduling methods.

To sum up, the smart river concept proposed in this thesis focus on improving inland
navigation. Our contributions revolve around developing cooperative and autonomous
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navigation. To automate the navigation, we proposed two solutions. The �rst contribution,
Lock-ADM, aims to automate the inland infrastructure, and the second contribution aims
to automate the inland ships. On the other hand, to ensure reliable cooperation between
river components, we �rst propose the CIAShips architecture to deal with the cooperation
challenges and requirements. Then, we focus on improving tra�c management with two
cooperative applications: improving tra�c safety with the cooperative collision detection
system and managing ships crossing through locks with the Lock-DS. Our work is open to
possible extensions to enlarge the treated challenges and face new emerging ones. There-
fore, we enumerate the possible enhancements, which is the aim of our future directions
described in the next section.

8.3 Future Research Directions

Regardless of the presented contributions provided during this thesis to enhance coopera-
tive and autonomous navigation, some aspects can be additionally explored and extended.
Therefore, we devote this section to identify and study some perspectives and possible fu-
ture research directions.

v Improving the Perception Part The �uvial environment is complex, which makes
autonomous shipping in such an environment a complicated task. In this thesis, we
developed an autonomous reliable perception system based on visual analysis only.
Nevertheless, using a single camera only is ine�cient for guiding an autonomous
vessel. Thus, the integration of other sources of information should be considered.
In general, for an autonomous vehicle, both lidar sensors and cameras play essential
roles in an autonomous stack. Cameras bring high resolution to the table, where lidar
sensors bring depth information. That said, in situations where one of the two sensors
may experience degraded performance, such as in the rain, the other sensor can play
a role in picking up the slack for a perception system. When it comes to the utilization
of radar in autonomous vehicles, LiDAR and camera both bene�t from this antecedent
technology: the operation of a camera sensor can be impaired by snow, rain, or fog.
Such weather conditions also change the refractive index of the transmission medium
and reduce the range of a LiDAR sensor. Resistance to weather conditions is one
reason why radar is also incorporated in the design of most automotive sensor suites.

v Implementation on Real Ships Embedding our cooperative approach into real in-
land ships systems would o�er other technical challenges. For instance, to evaluate
our dynamic lock scheduling algorithm, we used the simulated arrival �ow of ships.
In the real environment, some external factors may in�uence their arrivals, such as
the weather conditions and the seasonal characters. Thus, real-world deployment of
our Lock-DS in a non-controlled environment would de�nitely be a plus.

v Environmental Considerations Future works would also be concerned with inte-
grating new methods and disciplines, including those related to environmental pro-
tection enhancement. For instance, we can minimize the water used at locks as an
additional objective of our lock scheduling solution. In addition, we can measure and
thus reduce the ecological footprint [340, 341] at the port using installed sensors.
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